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ABSTRACT

A THEORETICAL AND EXPERIMENTAL STUDY OF THE
PROPAGATION OF PLANE FINITE AMPLITUDE
WAVES IN REAL FLUIDS

by William Wright Lester

Longitudinal elastic waves of large amplitude propa-
gated in real fluilds exhibit a change in form and amplitude
as they travel. An initlally sinusoidal plane, finite
amplitude wave 1s of special interest. A theory is pre-
sented which predicts the harmonic structure of such a wave
on the hypothesis that interactions between harmonic com-
ponents of the wave are weak compared with the processes
which generate and absorb harmonics. The result 1s given
as an infinite sum of infinite series, and i1s a functiocn of
two parameters, one which specifles the initial conditions,
and one which specifies the distance of travel in a reduced
form. Numerical values of the predicted fundamental,
second, and third harmonics are tabulated for general use;
the numerical values of the second and third harmonics have
been computed for a wide range of the governing parameters.
The general behavior of the harmonic structure 1is as
expected from plausible arguments and the results of other
Investigators.

An experimental investigation making use of pulse

techniques 1n water in conjunction with optical methods
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verifies essential aspects of the theory. The accurate
transducer calibration required to specify both the initial
value and reduced distance parameters of the theory is accom-
plished by observation of light diffracted by the ultrasonic
pulse at the transducer face. Temperature stability of

the calibration of barium titanate transducers 1s demon-
strated. The equivalence of the finite amplitude waveform
for pulsed and continuous waves of identical frequency and
initial pressure amplitude is also demonstrated, so that
pulsed and continuous wave methods may be used inter-
changeably.

An investigation of the behavior of the fundamental
frequency component of a finite amplitude wave 1s performec
using a two transducer pulse technigque at 5 MC. The
behavior of the fundamental frequency component as a func-
tion of pressure at fixed distance is obtained, and con-
verted to plots of pressure versus distance at fixed
initial pressure. The fixed distance method is found to
work best for small values of the initial value parameter.
The average and maximum values of the absorption coeffliclent
of the fundamental frequency component of a finite amplitude
wave are found to be linear functions of the initial pres-
sure amplitude. A value for the nonlinearity parameter B/A
of water is obtained from absorption measurements using
weak shock theory. It 1s found that there is a maximum

amount of fundamental sound pressure amplitude which can
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be transmitted over a given distance. Distances as large
as 50 cm and 1initial pressure amplitudes to 15 atm are
used.

The two transducer pulse technique used to investi-
gate the fundamental frequency component is extended to
the case of the second harmonic at 5.0 MC, and is found to
periorm well for larger values of the initial value para-
meter 1n thils case. The receliving transducer 1is calibrated
by allowing a finite amplitude wave of previously measured
second harmonic content to fall upon it while measuring the
output with a tuned receiving system. The absolute measure-
ment of second harmonic content is performed by light
diffraction techniques using continuous waves. Light
diffraction techniques are also used to verify the theory
for the values of the fundamental, second and third
harmonics simultaneously for a range of distances for one
initial pressure amplitude. 1Initial pressures as large as
1.9 atm and distances as large as 80 cm are used. Compar-
ison of the second harmonic with the theoretical predictions

indicate satisfactory agreement.
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CHAPTER I
INTRODUCTION

For a long time, 1t has been known that an exact
solution to the equations of hydrodynamics predicts a
change in form of a longitudinal elastic wave as it
travels (1,2,3,4,5). These early theoretical investi-
gations were performed for the simple case of a plane
wave in a nondisslpative medium, and showed that a simul-
taneous solutlion to the nonlinear differential equations
of hydrodynamics and the equatlon of state could be obtalned.
This solution was in a form such that the value of the prop-
agatlon velocity of phase points on the wave depended on
the pressure-density relation at that point and the local
particle velocity. Thus, the usual case 1is that the points
of higher pressure (particle velocity) travel faster than
the points of lower pressure, and the wave becomes dis-
torted, or acquires various Fouriler frequency components as
1t travels. These early investigators classified these
waves as finlte in amplitude, 1n contrast with the usual
case of infinitesimal amplitude waves, because the solutlons
to the infinitesimal amplitude case were obtained from the
equations of hydrodynamics and state by neglecting small
quantities of second order, while 1t was necessary to

consider second order quantities 1n order to show the change



in wave shape one should actually have. Of course, 1t 1s
never really correct to neglect the second order quantitles,
so that, strictly speaking, all waves are finite in
amplitude. However, 1f one considers that the medium is
dlssipative, it can be shown that only waves of large
amplitude exhlblt the appreciable change in form predicted
by the nondissipative theory; the absorptive processes in
the medium oppose the generation of higher Fourler compon-
ents as the wave travels, cancelllng the rather weak harmonlic
generation process 1n the case of small amplitude waves.
Hence, one has the correct division of wave propagatlion
processes in real medla iInto two categorles: large and
small amplitude. Speclal interest 1s drawn to one case
since 1t 1s easy to investlgate and commonly encountered,
and that 1s the case of an 1nitlally slnusoildal, large
amplitude plane wave in a real (nonlinear, dissipative)
fluid.

The more recent theoretical approaches to thls problem
have been of two general types. First of all, approximation
methods making use of some assumption regarding the manner
in which the harmonic components of a wave are created and
absorbed in the medium have been used (6,7,8). Second,
approximate solutions to the nonlinear differential equa-
tions have been sought, eilther by perturbation technilque
or other means (9-14). In general, these theorles predict

that an initially sinusoidal wave of finite amplitude



develops a spectrum of higher harmonic Fourier components

as 1t travels, the second harmonic being the most important,
and that these higher harmonics first grow rapidly, rising
to a maximum at some distance from the source, and then
decline slowly. Since the higher Fourier components all
come to a maximum in the same neighborhood, and then decrease
slowly (as does the fundamental frequency component), one
may speak of a region in which the wave shape 1s compara-
tively stable, or a "stabilization distance" of travel from
the source. The absorption coefficient for a finite
amplitude wave 1s also different from that of a sinusoidal
wave. Generally speaking, the absorption loss for a sin-
usoldal wave travelling 1n a simple fluld 1s due to two
causes; one, viscosity, and two, heat conduction between
the hotter, compressed parts of the wave and the cooler,
rarefied parts. Analysis of each of these mechanisms
predicts that the losses for such a wave of pure frequency
should be proportional to the square of the frequency. In
the flnite amplitude case, energy must be taken from the
fundamental frequency component of the wave in order to
support growth of the higher harmonics, and since one ex-
pects them to be absorbed much more strongly than the funda-
mental frequency component, the overall energy loss 1n the
wave per unit of distance may be much greater than in the
case of a small amplitude wave, and must also depend on

the distance. Likewlse, one may speak of a partial



absorption coefficlent for a given harmonic component, and
it will in general depend on the distance and pressure ampli-
tude of the wave.

Experimental Investigatlions of the propagation of
plane, finite amplitude waves have been performed in both
gases (6, 15,16) and liquids (7,17-27). Generally speaking,
these 1investligators have made use of elither spectral
analysls of the waveform or observation of the actual pres-
sure waveshape or Iintensity as a functlion of the distance,
thereby obtalning the harmonic structure and absorption
coefficient of the wave. However, the amount and range of
useful experimental data availlable 1s still quite small for
several reasons. First of all, 1t must be emphasized that
the theoretical problem at hand is an "initial value" prob-
lem, that 1s, at zero distance a sinusoldal wave of known
amplitude and frequency 1s postulated in a medium whose
properties are known, and it 1s the task of the theory to
predict what becomes of the wave at other times and dis-
tances. It thus becomes the first task of the experimenter
to provide an accurate measurement of the waveform ampli-
tude at zero distance; the measurement of the wave
frequency and properties of the medium are comparatively
easy. Confining our attention for the remalnder of the dis-
cussion to the case of liquids, measurements of the waveform
amplitude have been performed by a number of methods, such

as calorimetry (23,17,19), thermal probe recelvers (23),



radiometry (23,7), and theoretical transmitter response (27).
However, there are many difficulties 1inherent in these
methods. For example, two methods may be used simultaneously
and yet give grossly different results (23). Also, 1t is
difficult to make an estimate of absolute error, which 1s
essentlal if one 1s to make accurate Judgments when com-
paring results with theory. Agaln, some methods do not

work well at small distances of travel from the sending
transducer, forcing extrapolation of pressure versus dis-
tance curves to zero distance (7), a very dublous procedure
in the finite amplitude case. These problems can all be
resolved with the use of optical techniques for absolute
pressure measurement.

One very troublesome problem in the case of methods
making use of contlnuous waves 1s the possibillity of stray
reflections 1in the apparatus, giving rise to interferences
and standing waves which must be avolded in order to obtailn
accurate comparison with theory. It 1s, therefore, advan-
tageous to use pulse methods, so that reflected wave effects
can easlly be separated in time of arrival from direct wave
effects. This Introduces the experimental difficulty of
making absolute sound pressure measurements of an untrasonic
pulse by optical means, but it will presently be seen that
this difficulty has been resolved (28).

The choice of 1liquid which one wishes to perform ex-

periments on will be dictated, apart from consideratlons



of convenlence and safety, by the necessity of knowing as
accurately as possible those physical constants of the
liquid which appear from the theory to govern finite ampli-
tude wave propagation. An examilnatlon of the theory at
hand (8) shows that such properties as the absorption coef-
ficient for small amplitude waves, a parameter specifyling
the mechanlcal nonlinearity of the medium, and the sound
veloclty for infinitesimal amplitudes, are needed in an
accurate form, as well as other parameters not usually
troublesome. These properties are best known and most in-
vestigated for water (29-31). The first attempt at verifi-
cation of the theory was, therefore, made by means of
measurements 1n water,

It will, therefore, be the task of the present dis-
sertatlion to formulate a theory describing the propagation
of plane, finlte amplitude waves in a dissipative fluid,
and to investigate and tabulate the properties of that
solution. 1In addition, an experimental investigation making
use of pulse technlques in conjunction with optical methods

in water will be presented as verification of the theory.



CHAPTER II

THEORY OF THE PROPAGATION OF PLANE,
FINITE AMPLITUDE WAVES

Fundamental Relatlons

In general, a plane elastlic wave travellng in an
infinite, nondissipative fluld exhibits a change in form
" as 1t travels. This fact can be seen from the nonlinear
form of the equations of motion and state. For example,

in Eulerian coordinates one has the equations of motion

dP/dx = :f)[zéu/dt) + u(du/dgﬂ (1)
B+ ) =0 (2)

the first representing a force law, and the second, the
conservation of mass., The adlabatic equation of state

may be taken as the serles expansion to terms of second

S M= B

or, alternatively, one may use the gas-like equation of

order

state

¥/ro = (I \ (1)

both of which are nonlinear, applicable to the fluld state,



and equlivalent under certain conditions. It should be noted
that 1n the case of a gas,‘g I1s the ratio of the specific
heats Cp/Cv; in the case of a liquid, however, it 1s an
empirical constant.

A solution to Egs. 1 and 2 has been known in implicit
form for some time. Simply stated, any 1nitial wave func-
tion F (X) can be propagated in the positive direction with

a veloclity C', where
1

c' = (dP/g,o)g + u (5)

1s the velocity of phase points of the wave (4). C' is
simply interpreted as the sum of the sound velocity C =
(dP/Qp) and the velocity of the moving medium U at the
phase point. The consequences of this are apparent: any

function

1
u=F [:k - ((dP/gP)? + u)‘EJ (6)

represents a wave travelling the positive X direction1
satisfying Egqs. 1 and 2, and since in general (dP/gP)'§ +

u > C, for u > o0, a discontinuity develops in the wave
after a certain distance of travel, for the points of
greater particle velocity overtake the polnts of lesser
particle velocity. For an initially sinusoidal wave, this
distance, the so-called discontinuity distance L, 1s

3
L = }F%Co (7)

T(B/A + 2)P1(0)2)




At the distance L, the wave develops an infinite slope at
1ts point of zero particle velocity.

One notes that the group velocity of the wave 1s un-
changed, as the poilnts of zero particle veloclty move at

the veloclty of sound CO, where
z
Co = (ap/dp) . (8)
u =

o}
The wavelength 1s constant, as the points of zero particle
velocity maintain thelr relative separation as they travel.

The pressure and particle veloclity are simply related
In a finlte amplitude wave, and one can introduce the

acoustlc 1mpedanc§/fbco so that

P - Po = PoCou (9)

The Phase Velocity of a Plane, Flnite
Amplitude Wave

Expansion of Eq. 5 in series, making use of Eg. 3

and 9, ylelds the serles in u to terms of second order

Byu 3 B uf
Ct = Cq 1+1+2A)CO 8 A2 CO + . . . (lO)
where the identification from Eq. 8
1
2
Co = (4/po) (1)

has been made. One may evidently neglect the second order

term in u for cases where
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2

3 B u

8 A2 Co 1 o
B + 1 <E§~ (1 )

2h

B
In typical liquids, we have 7 ~v10 and Cy ~ 10° cm/sec,

so that
3 B® u 3
8 A Co 10~ u
B ., ~ 15
2R (13)

Thus, the second order terms in u become comparable with the

first order terms for pressures of the order
P - Por\;f%co (16 x 103)~16 x 108 dynes/cm?  (14)

that 1s, for waves of the order of 1600 atmospheres of peak
pressure. For waves of considerably less than 1600 atmos-
pheres pressure, one may take as the veloclty of phase

points of the wave

B
C' = Co + (1 + 35 ) u. (15)

If terms 1n u2 must be included 1n Eq. 15, the equation of

state (3) would probably be inadequate, and a third order
term could be included.

A simlilar calculation, beginning with the alternate
equation of state Eq. 4, making use as before of Egs. 5 and

9, ylelds



2
C' = Cy + (Kg]}u+\((x - é)(b" 3) (g—o) + . . .,(16)

and one may agalin neglect second order terms in u 1if

L (¥+ 1) ¢35 (17)

K(X-l)(?{;3)ul<< 1

Supposing for the moment that one 1is dealing with a
gas, take)~1.5, and Co~3 x 107 em/sec, R~ .0012 g/cc
(corresponding roughly to the case of air at atmospheric

pressure). Then

¥ (- (- 3) | Y- 1) (¥-3) (2 -po)] o

U
4 (¥+ 1)0 4 (Y + 1)fCo3 | e
if
P - Py~ 1.7 x 101* dynes/cm?. (19)
That 1s, one may use the expansion for the phase
veloclity

o = oy + (¥ (20)

in gases at atmospheric pressure 1if the peak wave pressure
1s conslderably less than 1.7 x 108 at m.

The equations of state, Egs. 3 and 4, are both
applicable to elther gases or liquids, and they are equiva-
lent as far as the propagation of elastlc waves 1s concerned
in the approximation that the square of the particle velocity
may be neglected. Comparison of Egs. 15 and 20 shows that

one may take
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+1=Y . (21)

>

Also, since Eq. 7 follows from the phase velocity Eq. 5 as
expanded in Eg. 15, one must have the alternate form for
Eq. 7 as follows:

;4f%co
LT Y R (02 22

Solution for the Case of a Plane,
Initially Sinusoldal Wave

Fubini-Ghiron (32), Keck and Beyer (13), and Hargrove
(33) have given a seriles solution of the finite amplitude
problem for the dissipationless case which describes the
harmonic wave structure as a functlion of the distance. Thils
solution, for the case of an initlally sinusoldal wave, 1is
glven by Hargrove 1in the form

P(K) = 2p1(0) i (-1)™ 5(rK) sin 2T n@t- x )

n=1 oK (23)

and 1s valid only for distances X< L, 1.e., for K< 1. It
should be noted that Eq. 23 1is obtained from Egs. 6, 9, and
15 or 20, and 1s valid only where these hold. In particular,
as has been stated, Eq. 23 should hold in the case of simple
liquids for waves of finite amplitude provided Pq(0)<< 1600
at. Thils result (Eq. 23) allows one to write a Fourler
series for the pressure components of an initially sinusoidal

wave 1In a dissipative medium.
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In a nondissipative medium, examination of Eq. 23 (see
Figs. 1, 2, 3 for oL L = 0) shows that the wave begins with
a pure frequency :9 , and develops hilgher harmonics of fre-
quency n2) at the expense of the component of frequency 2 .
Let this mechanism of the shift of pressure from one
harmonic to another be called the "transfer" mechanism.
Inasmuch as 1t 1s a function of the distance, one may write

the spatial derivative

(dp (K)/dK)transfer - 2P1(o)(_1)n+l a Jn(nK) sin2fn@t-x)
i aK | ™ A
(24)

In the absence of flnlte amplitude effects, the space
rate of change of the pressure due to absorption 1is simply
proportional to the total pressure of a given harmonic.

If the absorption mechanism 1s heat conductlon between the
hotter, compressed parts of the wave, and the cooler, rare-
flied parts, or if 1t 1s viscosity, the absorptlion 1s also
proportional to n2. For the sake of generallty, let the
proportionality for the nth harmonic component be given by

f(n). Then

(ap (K)/dK) -f(n) olLP,(K)total (25)

absorp

The total space rate of change of the amplitude of a
harmonic component 1s now assumed to be the sum of the
rates of change due to harmonic transfer and harmonic

absorption:
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(P, (K)/K) tota1 = (dPn(K)/dK)tpansrer -f(n)XLPn(K)total
(26)
This assumption has first been used successfully by Thuras,
Jenkins, and O0'Neill (6) for the case of small distance
propagation of finite amplitude waves in a gas-filled tube.
Before solving Eg. 26, note that this linear addition
leads approximately to the Fox and Wallace relations (7),
as 1s seen on conversion of Eq. 26 to a finite difference
relationship. For small K or &(L, one can assume
(Pr(K)tpansrer/Pn(K)total &1, and can rewrite Eq. 26 in

the form

d(1nP,(K)tota1) = A(InPh(K)transrer) -of(n)dx. (27)

In terms of the 1intervals proposed by Fox and Wallace, we

have

X exp gln E’ (K + 0.1)/Pn(K) :7 transfer
-«f(n A} , (28)

1n E?n(K + O~1)/Pn(Kﬂtransfer = Sn(?{‘): (29)

but

as can be verified numerically from Egq. 23 and the graph-

ically determined values from Fox and Wallace, taking into

account the change 1in sign of é;l(ﬁ) which they 1introduced.
Equation 26 may, therefore, be taken as approximately

equivalent to the Fox and Wallace equatlions, except for the
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inclusion of the factor exp>[jgl(é9 in their result for
the second and third harmonics. Comparison shows, however,
that g&‘is small in comparison with Sé or 3 for all but
the largest K values.

Integration of Eq. 26, using Eq. 24 gives an integral

equation of the second kind:

K

- f(n) oL P,(K') dK! (30)

(o]
The solutlion of Eq. 30 by the method of successive substil-

2P1(0)Jn(nK)

Pn(K) = K

tutions (34) (assuming ol L approximately constant) 1is an

Infinite alternating series for the nth harmonic amplitude

of the form
P (K) = A (K) - By(K) + Cp(K) - Dh(K) + Ep(K)..... Foae
(31)
The first five terms are found to be
Ap(K) = 2P1(0) Jp(nK)/nK (32a)
/"so
B_(K) = 2P1(O)Z(n) XL :E 23, 4 pq (AK) - In(rK)
" \ q=0 ,
2 2.2 =2 >
n

iy = LIRS Z (2a-1) Ty 4 pq1 (nK)

q=1 (32c)

-0
8 3 313
. (K) Pl(o)i (n) o °L z qun + 24 (rK)

n
q=1 (324d)
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oD
6 4 4ok
En(K) = : Pl(o); (n)od 7T E o° E Inse(gtr)+1 (PK)
" Q= r=0

1
(32e)
The solutlion 1s thus expressible as the series
o0
n+1l
P(K) = E (-1 pn(K) st n (Dt - 2, (33)
n=1

where the Pn(K) are the harmonic amplitudes given by Egs.

31 and 32, We must take note of the fact that, as Eq. 23
holds only for K &£ 1, Eq. 33 also holds only in this region.
For constant o L, the series Egs. 31 and 32 converge
absolutely and uniformly in K.fé 1.

Terms following those given in Egs. 32 may be obtalned
by successively multiplying Eq. 32e by -2f(n)XL/n, adding
2s+1 to the order of the Bessel function, and summing over
s from zero to Infinity. As expected, the correction terms
In Egs. 32 are seen to cause the predicted pressure 1in any

harmonic to be less for a given K value than that predicted

by Eq. 23.

Discussion

For a given absorption law f(n) and reduced distance,
the solution 1s evidently a function only of the product
L. Graphs of Eq. 31 for the fundamental, second and
third harmonic amplitudes are given in Figures 1, 2, and 3,

with the curves from Eq. 23 (dissipationless) for comparison.



17

The oL values specified for the figures are 0.185 and 0.370.
This corresponds to Pl(O) = 1.0 and 0.5 atm, respectively,

In the case of water at a frequency of 5 Mc/sec, taking

f(n) = n® and (B/A) = 5; this value of B/A is given by

Beyer (31) for T = 20°C. The dependence of the harmonics on
distance is that which one would expect; the second and

- third harmonics cease growing at about the same K value

and decrease slowly at larger K values, which suggests the
phenomenon of "waveform stabilization."

Tabulated values of the solutlon are presented in
Tables I, II, and III for the case of the fundamental,
second, and third harmonics. The serles has been evaluated
on the assumption that f(n) = n2, that is, a simple non-
relaxing fluid whose losses are proportional to the square
of the frequency 1s conslidered.

A comparison of the results of the present theory
with those of the Fox and Wallace theory has been made for
the fundamental and second harmonic frequency components.
The fundamental frequency component, as calculated from the
Fox and Wallace theory (7) with constant AX, ylelds graphs
which very nearly coincide with the curves of Fig. 1, the
greatest discrepancy being only Z}PI(K) = 0.02, or 3%, at
K =1 for oL = 0.370. 1In the case of the second harmonic,
calculations have been made from the Fox and Wallace theory

by assuming the dissipationless value for P,(0.1) from Eq.

23 and then calculating forward with Eg. 28 for constant AX.
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The results for the cases o{L = 0.185 and 0,370 are shown

in Flg. 4. The Fox and Wallace curves are seen to follow

the curves of Fig. 2 up to K values of about 0.6 and 0.4,
respectively, and then 1lie below them, but maintain the same
general shape. The discrepancies between the Fox and Wallace
theory and the present theory increase with K and o{L, as
expected from the approximation 1n Eq.27 relating the two
theorles.

The perturbation analysis of Keck and Beyer (13) also
ylelds functions of the product &L and of the reduced dis-
tance K. A calculation of the second harmonic from their
result for the cases &L = 0,185 and 0.370 is shown in
Fig. 4. It is evident that there is fairly good agreement
between the present calculation and theilr results, with the
discrepancy increasing as o{L increases.

There remains some questlon concerning the exact
Interpretation of the reduced variable K. For the dissipa-
tionless case, the value of X corresponding to a given K
value 1s computed on the basis of the initial fundamental
pressure. It might equally well be regarded as based on a
fundamental pressure component which varies with distance
in the manner predicted by Eq. 23. On this interpretation,
one may expect the K(X) relationship to depart from linearity
as the fundamental frequency component of the pressure 1s
absorbed, and the degree of departure could be estimated

numerically. The dependence of the harmonic pressure on
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distance would then become a more complicated functlion than
Eq. 33 as the value of L to be used in Eq. 32 would be

regarded as a function of the distance.



CHAPTER III

AN EXPERIMENTAL STUDY OF THE PROPAGATION

OF PLANE, FINITE AMPLITUDE WAVES

Pulse-Optical Methods

Introduction. The diffraction of light by continuous

ultrasonic waves can be used for the absolute measurement
of sound-pressure amplitudes (35,36) and for studying the
distortion of ultrasonic waves of finite amplitudes (37-39).
It 1s desirable to extend these optical methods to ultra-
sonlc pulses. The evaluatlon of the experimental results
of the optical measurements 1s based on the Raman-Nath
theory (40). This theory predicts the 1intensity distribu-
tion over the diffractlion orders as a function of continuous
sound-pressure amplitudes. Application of the Raman-Nath
theory to the case of ultrasonilc pulses would predict that
the average relatlve llght 1Intensity distribution over the
diffraction orders, except the central order, should be the
same as for continuous waves. The absolute average 1light
intensity in these orders would, of course, depend on pulse
length and repetition rate. If one can obtain experimental
conditions for which the Raman-Nath theory can be applied
for ultrasonic pulses, one can use the optical methods

previously described for continuous waves. A detalled
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experimental Investlgatlon 1s needed 1in order to evaluate
the required experimental conditions.

Cilesiz (41) has made use of a pulse-optical method
in which the total instantaneous diffracted light intensity
was measured in a limited region in order to obtain relative
sound intensitlies. However, for ultrasonic waveform
studles 1t 1s necessary to make measurements of the light
intensitles in discrete diffraction orders. This procedure
is also preferable for absolute sound pressure measurements.

The experimental apparatus used in the optlcal meas-
urements 1s shown schematilcally in Fig. 5. The light source
S 1lluminates a slit SL which 1is used as a source to glve
a collimated light beam by means of the lens L,. The
collimated light beam passes through a rectangular limiting
aperture A placed before the ultrasonic beam, and becomes
phase modulated by the ultrasonic waves, giving rise to a
diffractlon pattern consisting of parallel slit 1images
which are brought to a focus by lens L3. The Intensitles
of the diffraction orders are measured by a photomultiplier
microphotometer mounted on a laterally traversing micrometer
screw.

The Raman-Nath theory predicts that the nth order of
diffraction in such an experiment will occur at an angle On
which satisfles sin6, = + n A /;2*, where ;Z and ;2 * are
the wavelengths of light and sound, respectively, and n 1is

an integer. The 1light intensity in the nth diffraction
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order 1s predicted to be Jng(v) by this theory. J, 1s the
nth order Bessel function and v = 27 pl/A , where u 1is the
maximum change in index of refraction brought about by the
wave and 1 1s the length of the light path in the ultra-
sonic fleld. A convenlient means of calibration 1s to observe
the maxima or minima of a given diffraction order, and make
use of the relationship thus obtained between the Raman-
Nath parameter v and the applied voltage. Then from the
plezo-optic coefficlient relating the change in index of re-
fraction and sound pressure, one can find a pressure-
voltage relatlon. 1In water, one finds that the acoustic
pressure 1n atmosphere 1s numerically equal to 0.56 v/1,
where 1 1s measured in cm.(38) The possible error of this
relation for absolute measurements 1s estimated to be from
8% to 16% by various sources (35,36) because of the lack

of accurate knowledge of the plezo-optic coefficlent of
water.

The same apparatus can be used for ultrasonic pulses
if the time average light intensity of a given diffraction
order--except the zero order--1s measured. This requires
the use of a pulse of nearly rectangular envelope, so that
a constant value of the Raman-Nath parameter v would be
maintained for approximately the duration of the pulse.
Then the time average light intensity observed in a given
diffraction order would be that observed in the same order

for continuous waves, but reduced by a factor approximately
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equal to the fraction of the time that the pulser 1is on.

The observation of the average light intensity in a
glven order requires that reflected pulses which can produce
diffraction be eliminated. This has been accomplished in
the present apparatus by the use of a nonreflecting tank
wilth an absorbing termination of castor oill. The tank 1is

very similar to one described elsewhere (39).

Procedure. A block dlagram of the electronic apparatus
is shown in Fig. 6. A continuous oscilllator or a pulsed
oscillator, each with variable output power, may be chosen
by a switch. A tuned autotransformer provides impedance
matching between the transducer and the pulser. The fre-
quency of the continuous oscillator and the pulser carrler
frequency are set to coincidence by means of the heterodyne
voltmeter. The voltage and waveform applied to the trans-
ducer may be observed on the oscllloscope.

In operation, the pulser frequency 1s set to the
resonant frequency of the transducer, and the frequency of
the continuous oscillator 1s set to coincide with the
pulser frequency. The optical system, photomultiplier
traversing screw, and transducer are then aligned with con-
tinuous waves, and the transducer may be callbrated by
observing the voltage required to produce a maximum or
minimum in a given diffraction order as observed on the

microphotometer. The pulser 1s then connected to the
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fransducer and the maxima of the various diffraction orders
may be observed. The minima of the orders were less con-
venient to observe in the present experiment because of the

low light levels belng measured.

Calibration of a transducer. As an example of the

usefulness of the method, a 1/2-inch round nominal 5 Mc
transducer of the barium titanate type has been calibrated
at 5.45 Mc over the temperature range 5° -33°C in water (42).
Because of the known variation of the physical properties
of such ceramic transducers, there is some reason to suspect
a varilation of the calibration with temperature (43). This
would 1imit the usefulness of such transducers for research
involving the callbration if such variation had a large
slope near room temperature. Filgure 7 shows the Raman-Nath
parameter v per peak-to-peak volt near the transducer face
from pulse and continuous wave measurements on the zero,
first, and second orders of diffration. The crosses were
obtained as averages of several measurements on the plus and
minus second orders of diffractlon. A typlcal set of data
for the pulse measurements has a probable error of 3%; the
error flag shown is for a possible error of 6%.

For comparison, the triangular data points were ob-
tained using continuous waves, and are seen to lead to
approximately the same callbration as was obtalned with

pulses for this transducer. It should be noted that the
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continuous wave measurements, especlally at low temperatures,
were hindered by heating and streaming effects which made
precise measurements difficult; this problem was not present
in the pulsed case because of the low average input power.

It can be seen from Fig. 7 that the transducer cali-
bration at fixed frequency varles by only about 12% over a
30°C temperature range for this transducer. The pressure,
in atmospheres, 1s numerically equal to 0.45 v, so that
this transducer has a calibrated response of about 0,060 atm
per peak-to-peak volt.

A 1/2-inch square 5 Mc transducer of the barium
titanate type has also been callbrated. It 1s found to
yleld the same callbratlon with 12 u sec pulses as with con-
tinuous waves (at 26°C), as was the case with a round trans-
ducer.

It remalned to be shown that the time average light
Intensity observed 1s produced, within negligible error, by
the flat topped portion of the pulse, and that no apprecilable
error 1s made 1n neglecting the finite length of the pulse.
Accordingly, the dependence of the pulse callbration on
pulse length has been observed. Three typlcal pulses observed
on the oscilloscope are shown in Fig. 8. The height in each
case corresponds to the peak-to-peak voltage required to
produce a first maximum in the first diffraction order. The
longest pulse 1is approximately 10 p sec, and the shortest 1s

3 p sec 1In length. It was found that the calibration was
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independent of pulse length until the pulse ceased to be
rectangular, which occurred for a pulse length of 3 u sec
as shown. The fallure of the callbration procedure for
pulses 3 u sec and less in duration 1is attributable to two
causes; the pulse no longer has the rectangular shape
sultable for the averaging process, and the limiting light
beam aperture was 4.3 mm wide, which corresponds to a time
of travel 1n water of approximately 3 u sec. Hence, at a
total pulse duration of 3‘p sec, the limiting aperture width
was equal to the pulse length, and the usual diffraction
sltuatlon ceased to exlist.

The 1nstantaneous diffracted light intensity in the
first diffraction order has also been observed. A typlcal
oscillloscope trace showing the light intensity as a function
of the time 1is shown 1n Fig. 9. The light intenslty does
not appear to have a square envelope because the signal was
obtained from the direct current amplifier output of the
photomultiplier microphotometer, which has poor high fre-
quency response. The variation of the light intensity
duration, amplitude, and time of arrival behaves as would
be expected with varlation of the pulse length, pulse ampli-

tude, and transducer to light beam separation.

Waveform distortion in an ultrasonic pulse. 1In the

past decade, speclal attention has been pald to the distor-

tion of ultrasonic waves by finite amplitude effects. There
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1s a tendency for finite amplitude waveforms to become some-
what "sawtooth" in shape with propagation for large pressure
amplitudes 1n low-dissipation media. The magnitudes of the
harmonic components may be considerable. For example, an
initial pressure of only 0.5 atm at 5 Mc 1in water 1is
theoretically sufficlent to give rise to a maximum second
harmonic component of 17.6% of the initial fundamental pres-
sure amplitude at a distance of 43 cm, assuming plane waves(8).

Among the methods of experimental investigation which
have proven useful are optical technigues, especlally light
diffraction methods. In general, theorles for the diffrac-
tion of light by ultrasonlc waves take into account the
phase modulation of the 1light wavefronts emerging from the
medium. This phase modulation 1s assumed to be a replica
of the ultrasonic waveform in the medlum.

These waveforms, in the case of finlte-amplitude
ultrasonic waves, are asymmetric and give rise to asymmetric
light diffraction patterns. These light diffractlion patterns
have been investligated theoretically and experimentally by
Zankel and Hiedemann (38), who were able to predict the
light intensity distribution in the diffraction pattern
from an assumed ultrasonic waveform.

The equivalence of the finlte amplitude waveform ob-
tained with pulses and with contlnuous waves can be demon-
strated by means of the light diffraction patterns obtalned

in the two cases, The optical work at high intenslties 1s,
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in the case of pulses, not hindered by the heating and
streaming of the liquid associated with the high average
input power of continuous waves. Figures 10 and 11 show
light intensities obtained in the positive and negative
first diffraction orders with pulses and with continuous
waves as a functilon of transducer voltage (initial pressure)
at two distances.

The data for Figs. 10 and 11 were obtained in the
following way: The apparatus was aligned as for callbration,
but with sufficient propagation distance for the ultrasonic
beam to undergo finite amplitude distortion before crossing
the 1light beam. In order to demonstrate this effect, dis-
tances of 13 and 23 cm were used so as to obtailn waveform,
or asymmetry, differences. The frequencies of the pulser
and continuous wave source were set to colncidence, and the
pulse length adJusted to 11.7‘y sec. The transducer was
the same as was used for the calibration procedure, and the
water temperature was 28° + 1°C. The data for the curves
were then recorded by measuring light intensitles as a
function of transducer voltage. The values of the light
intensity maxima of the plus and minus first orders of dif-
fraction were compared for pulses and continuous waves in
order to obtain a scale factor ( A~r50 in this case), which
was used to reduce the continuous-wave light intensitles to
the same magnitude as the pulse-average light intensitlies.

One sees that the data for pulses and for continuous waves
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very nearly colnclde. The sllight differences can be attri-
buted to experimental error, or to heating and streaming in
the case of continuous waves. The curves are very similar
to those obtalned by Zankel and Hiedemann (38) for the first
diffraction orders.

It 1s easy to obtaln large sound-pressure amplitudes
in the case of a pulsed ultrasonic beam as compared with a
continuous one because of the short perliod of time that the
pulse is on and consequent low average power input. This
immedlately leads to the possibllity of obtaining sound-
pressure amplitudes large enough to cause finite amplltude
waveform distortion. For example, consliderable distortion
is evident at the 10-v point on Flgs. 10 and 11, but the
average acoustic power used at that point was of the order

of 2 mw/cmg.

It 1s of interest to note that the method
described here should be applicable with an average input
power several orders of magnitude smaller.

In the case that large ultrasonic-pressure amplitudes
are obtained, one must also exercise care to remaln 1in the
region of validity of the Raman-Nath theory for light dif-

fraction. This region has been summarized by Zankel and

Hiedemann (38).
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The Fundamental Frequency Component of a
Plane, Finite Amplitude Wave

General. The propagation of the fundamental frequency
component of a plane, finite amplitude wave 1s of special
importance because 1t represents a large portion of the
energy transported by the wave. In addition, measurements
of the absorption coefficlent of the fundamental frequency
component in the region of stable waveform should character-
1ze the wave as a whole.

It 1s possible to show that waves of finite amplitude
"stabilize," that is, the competing processes of generation
and absorption of higher harmonics may reach a stage where
they nearly balance, the result being a wave which approxi-
mately maintalins 1ts Fourler spectrum ratios while
traveling (7,44). Such waveforms are called "stable wave-
forms," and they are characterized by the fact that the
decay rates of all of the harmonic components are equal.

In general, a graph of the fundamental frequency com-
ponent of a plane, finlte amplitude wave shows a gradual
decrease at first, followed by a region of rapid loss, and
a return to a gradual decrease rate. One thus has to deal
with an essentilally nonexponential absorption, and the
"absorption coefficilent" must be specified as to the condi-
tions and the reglon in which 1t 1s measured.

Three methods of dealing with the experimental "absorp-

tion coefficient" of a finite amplitude wave have been
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employed by other investigators, and a certain amount of
misunderstanding has resulted. First of all, it 1is useful
to employ the absorption coefficient of a sawtooth wave,
which may be assumed to apply to the case of large ampli-
tude waves in thelr region of stablization, 1.e., after the
absorption coefflclent has reached its maximum. In this
case, the absorption coefficlent 1s proportional to the
local fundamental pressure amplitude, and 1s given by

Rudnick (45) and Naugolnykh (46) as

&+ 2P K) (34)
2 Pyocy

One may also deal with the maximum value to which the

finite

absorption coefficlent rises, and this 1s shown by approxi-
mate analysls for large amplitudes to be proportional to
elther the local or the Initial fundamental pressure ampli-
tude (7,24); the difference between the two 1is neglected.
As this 1s a special case of the sawtooth wave, Eq. 34 above
may be expected to apply to thils case also. However, other
investigators have successfully obtained experimental data
showing the linear relation between pressure and absorption
without specifying where elither is measured (26).

In addition, 1t 1is possible to deal with the construct
of the "average absorption coefficient." In this case, one
may deal only with the endpoints of a pressure versus dis-

tance curve, and find what absorption coefficlent 1is
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effectlvely present over that given path length. This sort
of absorption coefficlent may be useful, for example, in
examining the gross features of propagation over a fixed
distance. It 1s not clear in the literature where or
whether measurements of this quantity have been made, and
if so, whether as a function of the initial pressure ampli-
tude or of some local pressure amplitude (17, 19, 20, 24,
26, 46, 47).

In order to clarify the situation, 1t would be useful
to examine the behavior of all the above "absorption coef-
ficlents" with careful regard to both their method of
measurement and the place of measurement of the pressure

amplitude.

Experimental apparatus. The object of the present

investigation 1s to examine the behavior of the fundamental
frequency component of a finite amplitude wave by a new
method making use of pulse techniques (48). The fundamental
frequency component of a pulse traveling in a liquid may be
observed by means of a recelving transducer resonant at

the fundamental frequency. A block diagram of the electronic
apparatus 1s shown 1n Fig. 12. A pulse of rectangular
envelope and varlable amplitude 1s generated in the pulser
and applied to the sending transducer by means of a tuned
autotransformer which provides impedance matching. The

amplitude of the pulse 1s observed on a calibrated
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oscilloscope. The recelved signal 1is decreased in amplitude
by a known amount in the decade attenuator, and is then
amplified by display on an uncalibrated oscilloscope.
Recelved signal measurements are made by adjusting the decade
attenuator to produce a signal of fixed reference level on
the uncalibrated oscilloscope. The transducers are 5 mc
barium titanate ceramic type; the sending transducer 1s a
1/2-inch dlameter disc, and the recelving transducer 1s a
small chip obtalned from a similar disc. The frequency used
1s 5.65 mc, and the tank 1s filled with distilled water at

a temperature of 28°C. The sending transducer has been
calibrated by a pulse optical technique (see "Calibration

of a Transducer,'"page 27). Distance measurements are made
by observing the delay time between the sent and recelved
pulses on a radar range callbrator oscilloscope, which 1is
accurate to within .1% of the elapsed time. The pulse speed
in water 1s assumed to be 1.5 x 1O5 cm/sec.

A standard procedure for measurement of the funda-
mental frequency component using this apparatus would involve
translating the transducers with respect to one another,
taking care to maintain alignment in the sending transducer
beam and maintaining the angular orlentation of the trans-
ducers. A correction for beam spreading could then be
applied, and the near field pressure distributlon would be
observed. However, 1t may be difficult to maintain the

correct alignment and orientation of the transducers while
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traversing over long distances; this would result in false
readings. In order to eliminate this problem, a fixed dis-
tance method was employed which also corrects for beam

spreading and smooths the near fleld pressure distribution.

Experimental results. The fixed distance method con-

sists of aligning the transducers for maximum signal at one
distance, and then observing the nonlinearity of signal
transmission wilth increasing sending signal. Fig. 13 shows
the result of such observations for several distances.

This nonlinearity of transmisslon 1s due entirely to the
incrase of finite amplitude absorption with lncreasing
sending pressure. Note that there 1s a definite upper 1limit
to fhe sound pressure amplitude which can be transmitted
over a given distance. 1In fact, 1f the pressure 1s suffici-
ently great, the received signal may actually decrease while
the sending signal Iincreases.

The results of a study of the maximum fundamental
pressure amplitude of a finite amplitude wave which can be
transmitted across a given distance under the stated experi-
mental conditions are given in Fig. 14. Note that the
maximum pressure amplitude 1increases rapidly for short dis-
tances. The maximum pressure possible pressure amplitude,

80

in atm, is found to be numerically equal to 21.6X"° where
X 1s measured in cm. This relation was obtained at 5.65 mc.
The nonlinear transmitter-recelver curves are now

converted into varlable distance curves 1n the following
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way: for each value of sending pressure there 1is a data
point on the fixed distance curves. Each of these 1s seen
to represent a fraction of the expected recelved signal
according to linear transmission theory. Thus, the fractilon
of transmission as compared with linear theory multiplied

by e-C><x for that distance may be taken as the ratio of
the local pressure to the 1nitial pressure. If a number

of closely spaced fixed distance curves have been taken, a
smooth curve against distance will result. 1In Fig. 15 are
shown a number of varlable distance curves for various
initlal pressures constructed in this way. The upper
straight line is the e - X x law proposed by linear theory.
Note that the absorption coefficlent(l/p)(dp/dx) is a rapidly
increasing function of the distance, and that 1t reaches a
maximum value at some distance which depends on the initial
pressure amplitude of the wave. Due to this behavior of

the absorption coefficient, 1t 1is seen to be very difficult
In the case of large amplitudes to attempt to obtaln the
initial pressure ampllitude by extrapolating pressure versus
distance curves to the transducer face.

In order to test the valldity of the experimental
method, 1t 1s proposed to check a few known facts with the
data at hand. For example, weak shock theory predicts that
the local absorption coefficient for a sawtooth wave 1s

proportional to the local fundamental frequency pressure

component. (See Eq. 34.) Tangent lines have been drawn



39

to the pressure versus distance curves at convenlent
intervals of a few centimeters, and the local absorption
coefficlent calculated as a function of the local funda-
mental pressure component. The result is shown in

Fig. 16. Data curves for six different sending pressures
have been analyzed, and a straight line of best fit drawn.
The value of B/A obtained from the line of best fit is
6.3 + .8 which agrees well with experimentally determined
values of B/A by others (26, 49). The line shown for B/A =
5.2 refers to a result obtained by Beyer (31) from theo-
retical conslderations.

The "absorption coefficient" rises to a maximum
value at some distance from the transducer., Other experi-
menters have also found that this maximal absorption coef-
ficient 1s linear with the initlal pressure (26). Since
it 1s also linear with the local pressure, the local
pressure at the maximal value of the absorption coefficlent
must be linear with respect to the inlitial pressure.
Figure 17 shows thls linear relationship.

We also find that the average "absorption coeffici-
ent" over an interval of distance 1is proportional to the
initial pressure amplitude; see Fig. 18. The space
averaged "absorption coefficient" has been calculated for
20, 30, and 50 cm, and is found to be linear with the
initial pressure amplitude with a slope which increases

with decreasing distance.
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The Second Harmonic Frequency Component

General. The theory presented predicts the Fourler
spectrum of the wave, based on the two parameters K and o{L.
Accordingly, a complete verification of the theory would
requlire a varlation of all of the constants 1nvolved in the
parameters, and a verificatlon for all of the significant
harmonlc components of the wave. However, 1t 1s sufficlent
to measure the second harmonic component as a functlon of
oL and K, since it i1s the major determination of the de-
partures of the waveform from sinusoldal. It 1s desilrable
to use a commonly avallable, pure liquld whose flulid
properties are well known 1n order to determine the values
of the governing parameters as accurately as possible.
Water was chosen as the fluid, and the frequency of the
waves was taken at 5.0 mc/sec, 1in order to obtain &L
values of a convenient order of magnitude while allowing
the use of optilcal methods.

It 1is preferable to employ ultrasonic pulse techniques,
inasmuch as contlnuous wave measurements introduce the d4if-
ficulties of heating and streaming of the liquid at large
amplitudes, and require the elimination of standing waves.

Experimental data 1s desired which gilves the harmonic
structure of the wave over a range of both the initilal
value and distance parameters. In the literature one finds
that a few measurements have been made over a range of
distances, but the availlable range of 1initlal value parameters

is small (see Table IV).
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TABLE IV

AVAILABLE olL VALUES

Krassilnikov, et al. . . .0Oll
.022
.043

Ryan, et al. . . . . . .01l6
.032

Present work . . . . . .10-1.7

For example, good agreement between theory and experiment
have been obtalned by Ryan, Lutsch, and Beyer (27) for the
ol L values shown over a range of distances. Also, Keck
and Beyer (13) have successfully fitted values of the
harmonics obtailned by Krassilnikov, Shklovskaya-Kordy and
Zarembo (22), and the ©{L values 1in thils experimental work
were of the order of .01 - .04, Since a solution for dis-
sipationless flulds, or the case oL = 0 is known exactly,
all of the availlable disslpative theories, which are really
approximations for the case ©{L not zero, add to our knowl-
edge only 1if they are valid for large values of ©fL. Since
none of them has been compared with experiment for values

of oL as large as .05, further experimental work is called
for in the region o(I,:>.O5. The experimental work pre-
sented below spans the range oL = .1 to 1.7, and compares
results with theory for the second harmonic 1n that region

over a range of distances.

Experimental arrangement. The electronic apparatus

is shown in Fig. 19. A pulser or a contilnuous wave source,
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each set to 5.0 mc, may be chosen by means of a switch.
The second harmonic component of the wave 1s received by a
10 mc barium titanate transducer and passed through a
filtered amplifying system so as to display the 10 mc second
harmonic frequency component on an oscilloscope. The medium
is distilled water; the transducers are in rotating mounts
about vertical and horizontal axes to allow for alignment,
and can be translated to a separation of 80 cm. The filtered
amplifying system 1s prevented from overloading by means of the
decade attenuator, which also provides a test of the llnearity
of the system while in use. Distance measurements are made by
reading the time of traversal of the pulse between the two
transducers on a radar range calibrator oscilloscope, which
is accurate to about .1% of the elapsed time. The pulse
velocity is assumed to be 1.5 x 10° cm/sec.

The sending transducer is a 1 x 1 inch barium
titanate ceramic type, and the recelving transducer 1s
either a 3 x 3 mm or 1/2 x 1/2 inch barium titanate ceramic,

depending on the sensitivity required.

Transducer calibration. The receiver-tuned amplifiler

system for the second harmonic 1s calibrated in actual use
by allowing a wave of known second harmonic component to
fall on it, while measuring the actual voltage response of
the entire system. Two methods of obtaining a wave of known
second harmonic content are used, and both give the same

end result.
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First of all, at small reduced distances and small
amounts of second harmonic, one would expect the simple dis-
sipationless theory to be valid. Then 1t should be the case
that the smallest possible reading of second harmonic content
at a given distance 1s correct, according to dissipationless
theory, and this can be used as a calibration-point.

Second of all, 1t 1s possible to verify a postulated
finite amplitude waveform by observing the light diffracted
by such a wave. The asymmetric ultrasonic waveforms 1n the
finite amplitude case give rise to asymmetric light diffrac-
tion patterns, and these patterns can be predicted from
knowledge of the Fourler spectrum of the wave. A number of
light diffraction patterns making use of the theoretical
harmonic structure of the wave for one value of the initial
value parameter have been computed. In this way, predicted
light diffraction patterns have been compared with experi-
mental ones every few cm. By inserting varilous values for
the harmonic structure of the wave in the calculatlon, it
1s found that the (n -1)st orders of diffraction are very
sensitlve to the magnitude of the nth harmonic, at least
forn=1, 2, 3. It is thus comparatively easy to separate
the effects of various Fourler components of the wave from
each other.

Good agreement was obtalned between theory and experi-
ment if the fundamental, second and third harmonics of the

wave were considered correct according to the theory for the
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case @ L = ,370. This corresponds to an initial pressure
amplitude of .5 atm in the case at hand.

One thus has a wave of known absolute second harmonic
content which can be used to callbrate the recelver. It 1is
furthermore possible by this means to obtain a superior
callbration for the initial transducer pressure. That 1is,
agreement between theory and experiment can be forced by
varying the transducer voltage at fixed distance and obtain-
Ing a fit between the predicted and observed light diffraction
patterns. The voltage so obtalned can then be used as a cal-
ibration point. By averaging a number of such forced-fit
calibrations, a callbration for the initial pressure ampli-
tude can be obtained which has the advantage of compensating
for near field pressure fluctuatlons. The value of the case
at hand was found to be -05“:.i .0053 at/volt. This probable
error was obtained from an analysls of the deviations of
the measurements from the mean. There 1s an additional
possible error of about 10% inherent in any absolute optical
calibration caused by a lack of accurate knowledge of the
plezo-optic Coefficlent of water. Thils calibration 1is in
good agreeﬁent with calibrations carried out near the trans-

ducer face.

Experimental results. The system comprised of calibrated

sending and receiving transducers, with the assoclated

electronic apparatus, could now be used to obtaln the second
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harmonic component of the wave as a functlon of the distance
by increasing the transducer separation while maintaining
alignment. There are several difficulties inherent in this
scheme. For example, it i1s difficult to maintaln correct
transducer allignment while in the process of moving them.
A smoothed plot of the second harmonic of the wave can be
obtained by means of the fixed distance method. This method
and results obtained by 1t were described in the section on
the fundamental frequency component.

Fixed distance measurements in the present case may
be made by aligning the transducer system previously cali-
brated, and recording the received second harmonic as a
function of the initial fundamental pressure amplitude.
This can convenlently be correlated with theory by calculat-
ing the oL and K value for each value of initial pressure
at which readings are taken. One can then find the appro-
priate second harmonic value for the theory by referring to
Table II with both &o¢L and K variable. 1In Figs. 20 to 25
one sees the result of such theoretical calculations as the
solid line; the experimental data polnts are seen to agree
quite well with the theory. The theory line 1is shown as
far as it applies; that 1s, as the initlial pressure 1s in-
creased at fixed X, K increases and finally becomes unity.
As has been pointed out, the theory applies only for K<1
(see Chapter II). The data points are referred to as

either "large" or "small," depending on whether the
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measurements were made with the large (1/2 x 1/2 inch) or
small (3 x 3 mm) receiver.

Such fixed distance measurements allow sufficlent
correlation with theory to indicate good agreement, but do
not glve as good an idea of the variation of the second
harmonic with distance for fixed initlal pressure as one
may desire. The fixed distance data may be converted to
variable distance data by recording the value of the
second harmonic obtained at a given 1nitlal pressure for a
number of distances. The results of several such data tab-
ulations are shown in Figs. 26 to 29 as graphs of the second
harmonic against distance for flxed 1nitlial pressure. The
solld line shows the theory, and 18 a straightforward appli-
cation of the tabulated values, Table II, for fixed oL
but varlable K, which corresponds to fixed initlal pressure.
The dotted line 1s extrapolation of the theory to fit the
data points in the region K > 1.

In all of the above calculations of K and o{L, the
values ‘)Do = 1.0 g/cc, Co = 1.5 x 10° cm/sec, @ = 5.0 x 106
CPS, and B/A = 5.0 have been assumed. This results in the

relations

XL = .185 Pl(o)‘l (35)

and

o
]

30.6 2, (0)"L cm (36)

where P, (0) 1s measured in atm.



CHAPTER IV
SUMMARY

The theory which has been presented has, as 1ts found-
ation, the postulate that the interactions between the
harmonic components of a plane, finite amplitude wave are
weak compared to the absorption mechanism and the mechanism
of higher harmonic formation. This assumption takes the
mathematical form that the derivative of the pressure of a
given harmonic component of the wave 1is equal to the sum of
the derivatives due to the absorption and generation of
higher harmonics separately (Eq. 26). The fact that one 1s
able to thus write an experimentally verifled solution of
a nonlinear problem free of interaction terms and in a
readily calculated form justifies the assumption. In addi-
tion, 1t 1is clearly seen that the solution 1s a function of
two parameters K and ©{L, so that, for example, one may
make use of "scaling" techniques, that is, equal values of
K and ©{L in completely different fluids should yleld the
same harmonic wave structure.

The verification of the theory has been done exten-
sively only for the second harmonic frequency component,
but the fundamental and third harmonic components also agree

with the predictions of the theory for one value of
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XL = .37. This verification was not carried out exten-
sively for the fundamental frequency component because of
the use of the fixed distance method, which works best for
large pressure amplitudes in this case. Since the theory
holds only for distances thjL, and L, for example, is 6cm
at 5 atm of 1nitlal pressure under these experimental con-
ditions, 1t would be necessary to make the theory comparisons
at very small distances and oL values. The development of
the flxed distance method was most useful, in the case of
the fundamental frequency component, for studylng the
absorption coefficlient and its impllcations. Among those
implications were the possibility of determining B/A, and
the maximum sound pressure amplitude which could be trans-
mitted over a given distance. The fixed distance method
proved to be a very sensitive method for the determlnation
of the second harmonic frequency component of the wave, and
thus performed well at small values of initlal pressure.
This allowed a verification of the theory for the second
harmonic 1n a region of interest.

Preliminary to the investigation of the harmonic
components of the wave, the development of the tools of
Investigation was necessary. The extenslon of the known
optical methods of measuring sound pressure amplitudes and
waveforms to the case of ultrasonic pulses put the use of
pulse methods on a firm basis. The demonstration of the

equivalence of both the transducer calibration and the
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finite amplitude waveform for the case of pulses and con-
tinuous waves made the two interchangeable for the purposes
of the investigation. In additlon, the results of pulse
calibration proved very rellable because of the low average
input power and consequent lack of heating and streaming,

often a problem in the use of optical methods.
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Filg. 5. Optilcal apparatus for diffraction studies.
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Fig. 6. Electronic apparatus for calibration of a
transducer.
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Fig. 9. Oscilloscope trace of the light intensity
in the first diffraction order.



Ta
"wo €2 3B (S9[0JLT[O) saaemM "wo €T 9B (S9[0JdTO) sanBM
SNONUT3UO0D U pue (sassoad) sasind snonutquoo Ul pue (sassodd) sasind
ut sopnjtirdwe sanssgsgad-punos TeT3ITUT uT sopnagirdue sanssaad-punos TeRT3TUT
Jo uoTj3ouny ® Sk S8T3TSUS3UT JUITT JO uoTaounJ ® SB S3TQTSUdqUT QUITT

P91OBIJITP J9DPIO-34SITJ PIZTTeWION “TT ‘3Td P930BIJJTP JIOpJIO-3SJITJ PIZTTeuIoN °OT '3Td

HER RS I R R 1oNAa S NYM L NQ‘FJ°> Y] ‘l:J_ d(&.—

ov __of 02 0l oo 0z b o ¢ o
v v L4 . o
]
m
» >
m -
s <
¥30M0 2 m
3A1L1S0d M C
) £
r -
W ¥3a40 z
-y 3JAILISOd -4
- z
...u | 0y
g | <
<
-
-t
{ «
<
¥3CH0 1
® IAILVYIN
Bn As




impedonce pulser

metcher
colibrated decade
oscilloscope ,__ N | ] ottenuator
) fenk )
wnoelibreted widebend
oscillescepe omplifier

Fig. 12. Electronic apparatus for study of the
fundamental frequency component.
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pressure amplitude 1n atmospheres.
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Fig. 15. The fundamental frequency component as a
function of the distance, for several initial
pressure amplitudes.
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Electronic apparatus for study of the second
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Fig. 20. The second harmonic frequency component as
a function of the initial peak pressure amplitude
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line, extrapolation.)
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