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ABSTRACT

A THEORETICAL AND EXPERIMENTAL STUDY OF THE

PROPAGATION OF PLANE FINITE AMPLITUDE

WAVES IN REAL FLUIDS

by William Wright Lester

Longitudinal elastic waves of large amplitude prOpa-

gated in real fluids exhibit a change in form and amplitude

as they travel. An initially sinusoidal plane, finite

amplitude wave is of special interest. A theory is pre-

sented which predicts the harmonic structure of such a wave

on the hypothesis that interactions between harmonic com—

ponents of the wave are weak compared with the processes

which generate and absorb harmonics. The result is given

as an infinite sum of infinite series, and is a function of

two parameters, one which specifies the initial conditions,

and one which specifies the distance of travel in a reduced

form. Numerical values of the predicted fundamental,

second, and third harmonics are tabulated for general use;

the numerical values of the second and third harmonics have

been computed for a wide range of the governing parameters.

The general behavior of the harmonic structure is as

expected from plausible arguments and the results of other

investigators.

An experimental investigation making use of pulse

techniques in water in conjunction with Optical methods
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verifies essential aspects of the theory. The accurate

transducer calibration required to specify both the initial

value and reduced distance parameters of the theory is accom-

plished by observation of light diffracted by the ultrasonic

pulse at the transducer face. Temperature stability of

the calibration of barium titanate transducers is demon-

strated. The equivalence of the finite amplitude waveform

for pulsed and continuous waves of identical frequency and

initial pressure amplitude is also demonstrated, so that

pulsed and continuous wave methods may be used inter—

changeably.

An investigation of the behavior of the fundamental

frequency component of a finite amplitude wave is performed

using a two transducer pulse technique at 5 MC. The

behavior of the fundamental frequency component as a func-

tion of pressure at fixed distance is obtained, and con-

verted to plots of pressure versus distance at fixed

initial pressure. The fixed distance method is found to

work best for small values of the initial value parameter.

The average and maximum values of the absorption coefficient

of the fundamental frequency component of a finite amplitude

wave are found to be linear functions of the initial pres—

sure amplitude. A value for the nonlinearity parameter B/A

of water is obtained from absorption measurements using

weak shock theory. It is found that there is a maximum

amount of fundamental sound pressure amplitude which can
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be transmitted over a given distance. Distances as large

as 50 cm and initial pressure amplitudes to 15 atm are

used.

The two transducer pulse technique used to investi-

gate the fundamental frequency component is extended to

the case of the second harmonic at 5.0 MC, and is found to

perform well for larger values of the initial value para-

meter in this case. The receiving transducer is calibrated

by allowing a finite amplitude wave of previously measured

second harmonic content to fall upon it while measuring the

output with a tuned receiving system. The absolute measure—

ment of second harmonic content is performed by light

diffraction techniques using continuous waves. Light

diffraction techniques are also used to verify the theory

for the values of the fundamental, second and third

harmonics simultaneously for a range of distances for one

initial pressure amplitude. Initial pressures as large as

1.9 atm and distances as large as 80 cm are used. Compar-

ison of the second harmonic with the theoretical predictions

indicate satisfactory agreement.
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CHAPTER I

INTRODUCTION

For a long time, it has been known that an exact

solution to the equations of hydrodynamics predicts a

change in form of a longitudinal elastic wave as it

travels (l,2,3,4,5). These early theoretical investi-

gations were performed for the simple case of a plane

wave in a nondissipative medium, and showed that a simul-

taneous solution to the nonlinear differential equations

of hydrodynamics and the equation of state could be obtained.

This solution was in a form such that the value of the prOp-

agation velocity of phase points on the wave depended on

the pressure-density relation at that point and the local

particle velocity. Thus, the usual case is that the points

of higher pressure (particle velocity) travel faster than

the points of lower pressure, and the wave becomes dis-

torted, or acquires various Fourier frequency components as

it travels. These early investigators classified these

waves as finite in amplitude, in contrast with the usual

case of infinitesimal amplitude waves, because the solutions

to the infinitesimal amplitude case were obtained from the

equations of hydrodynamics and state by neglecting small

quantities of second order, while it was necessary to

consider second order quantities in order to show the change



in wave shape one should actually have. Of course, it is

never really correct to neglect the second order quantities,

so that, strictly speaking, all waves are finite in

amplitude. However, if one considers that the medium is

dissipative, it can be shown that only waves of large

amplitude exhibit the appreciable change in form predicted

by the nondissipative theory; the absorptive processes in

the medium Oppose the generation of higher Fourier compon-

ents as the wave travels, cancelling the rather weak harmonic

generation process in the case of small amplitude waves.

Hence, one has the correct division of wave prOpagation

processes in real media into two categories: large and

small amplitude. Special interest is drawn to one case

since it is easy to investigate and commonly encountered,

and that is the case of an initially sinusoidal, large

amplitude plane wave in a real (nonlinear, dissipative)

fluid.

The more recent theoretical approaches to this problem

have been of two general types. First of all, approximation

methods making use of some assumption regarding the manner

in which the harmonic components of a wave are created and

absorbed in the medium have been used (6,7,8). Second,

approximate solutions to the nonlinear differential equa-

tions have been sought, either by perturbation technique

or other means (9-14). In general, these theories predict

that an initially sinusoidal wave of finite amplitude



develops a Spectrum of higher harmonic Fourier components

as it travels, the second harmonic being the most important,

and that these higher harmonics first grow rapidly, rising

to a maximum at some distance from the source, and then

decline slowly. Since the higher Fourier components all

come to a maximum in the same neighborhood, and then decrease

slowly (as does the fundamental frequency component), one

may Speak of a region in which the wave shape is compara—

tively stable, or a "stabilization distance" of travel from

the source. The absorption coefficient for a finite

amplitude wave is also different from that of a sinusoidal

wave. Generally Speaking, the absorption loss for a sin-

usoidal wave travelling in a Simple fluid is due to two

causes; one, viscosity, and two, heat conduction between

the hotter, compressed parts of the wave and the cooler,

rarefied parts. Analysis of each of these mechanisms

predicts that the losses for such a wave of pure frequency

should be prOportional to the square of the frequency. In

the finite amplitude case, energy must be taken from the

fundamental frequency component of the wave in order to

support growth of the higher harmonics, and Since one ex-

pects them to be absorbed much more strongly than the funda-

mental frequency component, the overall energy loss in the

wave per unit of distance may be much greater than in the

case of a small amplitude wave, and must also depend on

the distance. Likewise, one may speak of a partial



absorption coefficient for a given harmonic component, and

it will in general depend on the distance and pressure ampli-

tude of the wave.

Experimental investigations of the prOpagation of

plane, finite amplitude waves have been performed in both

gases (6, 15,16) and liquids (7,17-27). Generally Speaking,

these investigators have made use of either spectral

analysis of the waveform or observation of the actual pres—

sure waveshape or intensity as a function of the distance,

thereby obtaining the harmonic structure and absorption

coefficient of the wave. However, the amount and range of

useful experimental data available is still quite small for

several reasons. First of all, it must be emphasized that

the theoretical problem at hand is an "initial value" prob-

lem, that is, at zero distance a sinusoidal wave of known

amplitude and frequency is postulated in a medium whose

prOpertieS are known, and it is the task of the theory to

predict what becomes of the wave at other times and dis-

tances. It thus becomes the first task of the experimenter

to provide an accurate measurement of the waveform ampli-

tude at zero distance; the measurement of the wave

frequency and prOpertieS of the medium are comparatively

easy. Confining our attention for the remainder of the dis-

cussion to the case of liquids, measurements of the waveform

amplitude have been performed by a number of methods, such

as calorimetry (23,17,19), thermal probe receivers (23),



radiometry (23,7), and theoretical transmitter reSponSe (27).

However, there are many difficulties inherent in these

methods. For example, two methods may be used simultaneously

and yet give grossly different results (23). Also, it is

difficult to make an estimate of absolute error, which is

essential if one is to make accurate Judgments when com-

paring results with theory. Again, Some methods do not

work well at small distances of travel from the sending

transducer, forcing extrapolation of pressure versus dis-

tance curves to zero distance (7), a very dubious procedure

in the finite amplitude case. These problems can all be

resolved with the use of Optical techniques for absolute

pressure measurement.

One very troublesome problem in the case of methods

making use of continuous waves is the possibility of stray

reflections in the apparatus, giving rise to interferences

and standing waves which must be avoided in order to obtain

accurate comparison with theory. It is, therefore, advan-

tageous to use pulse methods, so that reflected wave effects

can easily be separated in time Of arrival from direct wave

effects. This introduces the experimental difficulty Of

making absolute sound pressure measurements of an untrasonic

pulse by Optical means, but it will presently be seen that

this difficulty has been resolved (28).

The choice of liquid which one wishes to perform ex-

periments on will be dictated, apart from considerations



of convenience and safety, by the necessity of knowing as

accurately as possible those physical constants of the

liquid which appear from the theory to govern finite ampli-

tude wave propagation. An examination of the theory at

hand (8) shows that such properties as the absorption coef-

ficient for small amplitude waves, a parameter specifying

the mechanical nonlinearity of the medium, and the sound

velocity for infinitesimal amplitudes, are needed in an

accurate form, as well as other parameters not usually

troublesome. These prOperties are best known and most in-

vestigated for water (29-31). The first attempt at verifi-

cation of the theory was, therefore, made by means of

measurements in water.

It will, therefore, be the task of the present dis-

sertation to formulate a theory describing the prOpagation

of plane, finite amplitude waves in a dissipative fluid,

and to investigate and tabulate the prOperties of that

solution. In addition, an experimental investigation making

use of pulse techniques in conjunction with Optical methods

in water will be presented as verification of the theory.



CHAPTER II

THEORY OF THE PROPAGATION OF PLANE,

FINITE AMPLITUDE WAVES

Fundamental Relations
 

In general, a plane elastic wave traveling in an

infinite, nondissipative fluid exhibits a change in form

“as it travels. This fact can be seen from the nonlinear

form of the equations of motion and state. For example,

in Eulerian coordinates one has the equations of motion

dP/dx = -/o Eiu/dt) + u(du/d;§] (1)

%g + 6% (flu) = o, (2)

the first representing a force law, and the second, the

conservation of mass. The adiabatic equation of state

may be taken as the series expansion to terms of second

was was
or, alternatively, one may use the gas-like equation of

order

state

mo -_- (f/fbf‘ (A)

both of which are nonlinear, applicable to the fluid state,



and equivalent under certain conditions. It Should be noted

that in the case of a gas,‘3’is the ratio of the Specific

heats Cp/Cv; in the case of a liquid, however, it iS an

empirical constant.

A solution to Eqs. 1 and 2 has been known in implicit

form for some time. Simply stated, any initial wave func-

tion F (X) can be prOpagated in the positive direction with

a velocity C', where

l

c' = (dB/<30)? + u (5)

is the velocity of phase points of the wave (4). C' is

Simply interpreted as the sum of the sound velocity C =

(dP/dffll and the velocity of the moving medium U at the

phase point. The consequences of this are apparent: any

function

1

u = F [X - ((dP/gflg + [1)] (6)

represents a wave travelling the positive X direction1

Satisfying Eqs. 1 and 2, and Since in general (dP/dP)E +

u :> CO for u:>»o, a discontinuity develOpS in the wave

after a certain distance of travel, for the points of

greater particle velocity overtake the points of lesser

particle velocity. For an initially sinusoidal wave, this

distance, the so—called discontinuity distance L, is

3

L _ B00
(7)

’ 7T(B/A + 2)Pl(o)7)



At the distance L, the wave deveIOps an infinite SlOpe at

its point of zero particle velocity.

One notes that the group velocity of the wave is un-

changed, as the points of zero particle velocity move at

the velocity of sound CO, where

i
00 = (dP/dp) . (8)

u: o

The wavelength is constant, as the points of zero particle

velocity maintain their relative separation as they travel.

The pressure and particle velocity are simply related

in a finite amplitude wave, and one can introduce the

acoustic impedance/F500 so that

P - PC = prcou (9)

The Phase Velocity of a Plane, Finite

Amplitude Wave

 

 

Expansion of Eq. 5 in series, making use of Eq. 3

and 9, yields the series in u to terms of second order

_B_s___3_ 2.2.2.2
C' = CO 1 + l + 2%) CO 8 A2 CO + . . . (10)

where the identification from Eq. 8

1

Co = (A900)? (11)

has been made. One may evidently neglect the second order

term in u for cases where



lO

2

 

 

3 B u

8 A2 CO 1 12

B + 1 << < >

2A."

B

In typical liquids, we have E'ole and CO n~v105 cm/sec,

 

 

so that

3 B2 u 3

8 A2 Co 10’ u

E + l "’ "TR§"

EA' (13)

Thus, the second order terms in u become comparable with the

first order terms for pressures of the order

P - Po":f%Co (16 x 103)nu16 x 108 dyneS/cm2 (1A)

that is, for waves of the order of 1600 atmospheres of peak

pressure. For waves of considerably less than 1600 atmos-

pheres pressure, one may take as the velocity of phase

points of the wave

B

0' = C0 + (l +'§K ) u. (15)

If terms in u2 must be included in Eq. 15, the equation of

state (3) would probably be inadequate, and a third order

term could be included.

A similar calculation, beginning with the alternate

equation of state Eq. 4, making use aS before of Eqs. 5 and

9, yields



 

2

c'=co+(I—HJ+X(X';)M'3) (a) +. . .,(16)

and one may again neglect second order terms in u if

K(X—1>(i—3)u

A<r+1> ct I<< l

 

(l7)

Supposing for the moment that one is dealing with a

gas, takeXN 1.5, and CO~3 x 105 cm/sec,JDO~ .0012 g/cc

(corresponding roughly to the case of air at atmOSpheric

pressure). Then

xir- 12(X- p, =I1(X- nur- 3) (Pi—Poi]: 1,

A (3+ l)CO I A 05+ lfico3 I (18)

if

P - POrNu’l.7 x 1014 dyneS/cm2. (19)

That is, one may use the expansion for the phase

velocity

C' = C0 + (}:%—l—)u (20)

in gases at atmOSpheric pressure if the peak wave pressure

is considerably less than 1.7 x 108 at m.

The equations of state, Eqs. 3 and A, are both

applicable to either gases or liquids, and they are equiva-

lent as far as the propagation of elastic waves is concerned

in the approximation that the square of the particle velocity

may be neglected. Comparison of Eqs. 15 and 20 shows that

one may take



l2

+l=X. (21)

>
u
n

Also, since Eq. 7 follows from the phase velocity Eq. 5 as

expanded in Eq. 15, one must have the alternate form for

Eq. 7 as follows:

3

9%.

L = 7T<‘o’ + mm); (22)

Solution for the Case of a Plane,

Initially Sinusoidal Wave

 

 

Fubini—Ghiron (32), Keck and Beyer (13), and Hargrove

(33) have given a series solution of the finite amplitude

problem for the dissipationless case which describes the

harmonic wave structure as a function of the distance. This

solution, for the case of an initially Sinusoidal wave, is

given by Hargrove in the form

P(K) = 2F1(o) i (.i)n+1 Jn(nK) Sin 27mph— 3;)

n = l -—jfi?—— (g3)

and is valid only for distances X5; L, i.e., for1{:£lu It

Should be noted that Eq. 23 is obtained from Eqs. 6, 9, and

15 or 20, and is valid only where these hold. In particular,

as has been stated, Eq. 23 should hold in the case of simple

liquids for waves of finite amplitude provided Pl(0)<< 1600

at. This result (Eq. 23) allows one to write a Fourier

series for the pressure components of an initially sinusoidal

wave in a dissipative medium.
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In a nondissipative medium, examination of Eq. 23 (see

Figs. 1, 2, 3 for c£.L = 0) shows that the wave begins with

a pure frequency fl , and develops higher harmonics of fre-

quency nfl at the expense of the component of frequency?) .

Let this mechanism of the shift of pressure from one

harmonic to another be called the "transfer" mechanism.

Inasmuch as it is a function of the distance, one may write

the Spatial derivative

(dPnIK)/dK)transfer = 2Pl(o>(“1)n+1 g-KEQE'é—Hfl SianVt-fi)

(24)

In the absence of finite amplitude effects, the Space

rate of change of the pressure due to absorption is simply

prOportional to the total pressure of a given harmonic.

If the absorption mechanism is heat conduction between the

hotter, compressed parts of the wave, and the cooler, rare-

fied parts, or if it is viscosity, the absorption is also

prOportional to n2. For the sake of generality, let the

prOportionality for the nth harmonic component be given by

f(n). Then

(dPn(K)/dK)absorp = -f(n) ocLPn(K)total (25)

The total Space rate of change of the amplitude of a

harmonic component is now assumed to be the sum of the

rates of change due to harmonic transfer and harmonic

absorption:



l4

(dPn(K)/dK)total = (dPn(K)/dK)transfer 'fIHA9<LPn(K)total

(26)

This assumption has first been used successfully by Thuras,

Jenkins, and O'Neill (6) for the case of small distance

prOpagation of finite amplitude waves in a gas-filled tube.

Before solving Eq. 26,note that this linear addition

leads approximately to the Fox and Wallace relations (7),

as is seen on conversion of Eq. 26 to a finite difference

relationship. For small K or 0(L, one can assume

(Pn(K)transfer/PH(K)total 2:1, and can rewrite Eq. 26 in

the form

d(lnPn(K)total) = d(lnPn(K)transfer) —c(f(n)dx. (27)

In terms of the intervals prOposed by Fox and Wallace, we

have

x exp.§ln[fn (K + O 1)/PnII:] transfer

—o(f(nMA} . (28>

ln [an + O.l)/Pn(KBtransfer = SAT), (29)

but

as can be verified numerically from Eq. 23 and the graph-

ically determined values from Fox and Wallace, taking into

account the change in Sign of 81(K) which they introduced.

Equation 26 may, therefore, be taken as approximately

equivalent to the Fox and Wallace equations, except for the



l5

inclusion of the factor exp [81$] in their result for

the second and third harmonics. Comparison shows, however,

that <51 is small in comparison with 8; or 3 for all but

the largest K values.

Integration of Eq. 26, using Eq. 24 gives an integral

equation of the second kind: K

2P1(O)Jn(nK)

nK

 Pn(K) = — f(n) 04L Pn(K') dK' (30)

O

The solution of Eq. 30 by the method of successive substi-

tutions (34) (assuming oéL approximately constant) is an

infinite alternating series for the nth harmonic amplitude

 

 

of the form

Pn(K) = An(K) - Bn(K) + Cn(K) — Dn(K) + En(K) ..... + .....

(31)

The first five terms are found to be

An(K) = 2Pl(0) Jn(nK)/nK (32a)

/'¢so

Bn(K) = 2P1(0):(n) OCL E 2Jn + 2q (nK) _ Jn(nK)

n ) q=0 2

2 2 2 {To (3 b)

cn<K> = ““03; (“KL 2 <2q-1) Jn + 2.1-1 (mo

q=1 (32c)

 

.0

g 3 3 3
Dn(K) = Pl(0): (n)0< L 2 qun + 2g (nK)

1’1

q=l (32d)
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ob

4 4 4-

End) = 16W“): (“M L E i2 S Jn+e(q+r)+i<nK>
1’1

r=0q=1

(32e)

The solution is thus expressible as the series

00

n+1

P(K) = E (-l) Pn(K) sin27Tn (7) t 7% ), (33)

n=l

where the Pn(K) are the harmonic amplitudes given by Eqs.

31 and 32. We must take note of the fact that, as Eq. 23

holds only for K fézl, Eq. 33 also holds only in this region.

For constant «L, the series Eqs. 31 and 32 converge

absolutely and uniformly in K é 1.

Terms following those given in Eqs. 32 may be obtained

by successively multiplying Eq. 32e by -2f(nk9(L/n, adding

2s+l to the order of the Bessel function, and summing over

s from zero to infinity. As expected, the correction terms

in Eqs. 32 are seen to cause the predicted pressure in any

harmonic to be less for a given K value than that predicted

by Eq. 23.

Discussion
 

For a given absorption law f(n) and reduced distance,

the solution is evidently a function only of the product

0(L. Graphs of Eq. 31 for the fundamental, second and

third harmonic amplitudes are given in Figures 1, 2, and 3,

with the curves from Eq. 23 (dissipationless) for comparison.
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The 9<L values specified for the figures are 0.185 and 0.370.

This correSpondS to Pl(0) = 1.0 and 0.5 atm, respectively,

in the case of water at a frequency of 5 Mc/sec, taking

f(n) = n2 and (B/A) = 5; this value of B/A is given by

Beyer (31) for T = 20°C. The dependence of the harmonics on

distance is that which one would expect; the second and

. third harmonics cease growing at about the same K value

and decrease slowly at larger K values, which suggests the

phenomenon of "waveform stabilization."

Tabulated values of the solution are presented in

Tables I, II, and III for the case of the fundamental,

second, and third harmonics. The series has been evaluated

2, that is, a Simple non-on the assumption that f(n) = n

relaxing fluid whose losses are prOportional to the square

of the frequency is considered.

A comparison of the results of the present theory

with those of the Fox and Wallace theory has been made for

the fundamental and second harmonic frequency components.

The fundamental frequency component, as calculated from the

Fox and Wallace theory (7) with constant 13X, yields graphs

which very nearly coincide with the curves of Fig. l, the

greatest discrepancy being only AP1(K) = 0.02, or 3%, at

K = l for o<L = 0.370. In the case of the second harmonic,

calculations have been made from the Fox and Wallace theory

by assuming the dissipationless value for P2(0.l) from Eq.

23 and then calculating forward with Eq. 28 for constantZfiX.
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The results for the cases 0(L = 0.185 and 0.370 are shown

in Fig. 4. The Fox and Wallace curves are seen to follow

the curves of Fig. 2 up to K values of about 0.6 and 0.4,

respectively, and then lie below them, but maintain the same

general Shape. The discrepancies between the Fox and Wallace

theory and the present theory increase with K and 0(L, as

expected from the approximation in Eq.27 relating the two

theories.

The perturbation analysis of Keck and Beyer (13) also

yields functions of the product GKI.and of the reduced dis-

tance K. A calculation Of the second harmonic from their

result for the cases o<L = 0.185 and 0.370 is shown in

Fig. 4. It is evident that there is fairly good agreement

between the present calculation and their results, with the

discrepancy increasing as o<L increases.

There remains some question concerning the exact

interpretation of the reduced variable K. For the dissipa-

tionless case, the value of X correSponding to a given K

value is computed on the basis of the initial fundamental

pressure. It might equally well be regarded as based on a

fundamental pressure component which varies with distance

in the manner predicted by Eq. 23. On this interpretation,

one may expect the K(X) relationship to depart from linearity

as the fundamental frequency component of the pressure is

absorbed, and the degree of departure could be estimated

numerically. The dependence of the harmonic pressure on
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distance would then become a more complicated function than

Eq. 33 as the value of L to be used in Eq. 32 would be

regarded as a function of the distance.



CHAPTER III

AN EXPERIMENTAL STUDY OF THE PROPAGATION

0F PLANE, FINITE AMPLITUDE WAVES

Pulse—Optical Methods
 

Introduction. The diffraction of light by continuous
 

ultrasonic waves can be used for the absolute measurement

of sound-pressure amplitudes (35,36) and for studying the

distortion of ultrasonic waves ofIHIUImeamplitudes (37-39).

It is desirable to extend these Optical methods to ultra-

sonic pulses. The evaluation of the experimental results

of the Optical measurements is based on the Raman-Nath

theory (40). This theory predicts the intensity distribu-

tion over the diffraction orders as a function of continuous

sound—pressure amplitudes. Application of the Raman—Nath

theory to the case ofultrasoniCleses would predict that

the average relative light intensity distribution over the

diffraction Orders, except the central order, Should be the

same as for continuous waves. The absolute average light

intensity in these orders would, of course, depend on pulse

length and repetition rate. If one can Obtain experimental

conditions for which the Raman-Nath theory can be applied

for ultrasonic pulses, one can use the Optical methods

previously described for continuous waves. A detailed
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experimental investigation is needed in order to evaluate

the required experimental conditions.

Cilesiz (41) has made use of a pulse-Optical method

in which the total instantaneous diffracted light intensity

was measured in a limited region in order to obtain relative

sound intensities. However, for ultrasonic waveform

studies it is necessary to make measurements of the light

intensities in discrete diffraction orders. This procedure

is also preferable for absolute sound pressure measurements.

The experimental apparatus used in the Optical meas-

urements is shown schematically in Fig. 5. The light source

S illuminates a slit SL which is used as a source to give

a collimated light beam by means of the lens L2. The

collimated light beam passes through a rectangular limiting

aperture A placed before the ultrasonic beam, and becomes

phase modulated by the ultrasonic waves, giving rise to a

diffraction pattern consisting of parallel slit images

which are brought to a focus by lens L3. The intensities

of the diffraction orders are measured by a photomultiplier

micrOphotometer mounted on a laterally traversing micrometer

screw.

The Raman—Nath theory predicts that the nth order of

diffraction in such an experiment will occur at an angle 9n

which satisfies sinen = i n 2. //2*, where 2 and 2 * are

the wavelengths of light and sound, respectively, and n is

an integer. The light intensity in the nth diffraction
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order is predicted to be Jn2(v) by this theory. Jn is the

nth order Bessel function and v = 277'}i1/;L , wherep is the

maximum change in index of refraction brought about by the

wave and 1 is the length of the light path in the ultra-

sonic field. A convenient means of calibration is to observe

the maxima or minima of a given diffraction order, and make

use of the relationship thus obtained between the Raman—

Nath parameter v and the applied voltage. Then from the

piezo-Optic coefficient relating the change in index of re—

fraction and sound pressure, one can find a pressure-

voltage relation. In water, one finds that the acoustic

pressure in atmOSphere is numerically equal to 0.56 v/l,

where l is measured in cm.(38) The possible error of this

relation for absolute measurements is estimated to be from

8% to 16% by various sources (35,36) because of the lack

of accurate knowledge of the piezo-Optic coefficient of

water.

The same apparatus can be used for ultrasonic pulses

if the time average light intensity of a given diffraction

order-—except the zero order—-is measured. This requires

the use of a pulse of nearly rectangular enveIOpe, so that

a constant value of the Raman—Nath parameter v would be

maintained for approximately the duration of the pulse.

Then the time average light intensity observed in a given

diffraction order would be that Observed in the same order

for continuous waves, but reduced by a factor approximately
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equal to the fraction of the time that the pulser is on.

The observation of the average light intensity in a

given order requires that reflected pulses which can produce

diffraction be eliminated. This has been accomplished in

the present apparatus by the use of a nonreflecting tank

with an absorbing termination of castor oil. The tank is

very similar to one described elsewhere (39).

Procedure. A block diagram of the electronic apparatus
 

is shown in Fig. 6. A continuous oscillator or a pulsed

oscillator, each with variable output power, may be chosen

by a switch. A tuned autotransformer provides impedance

matching between the transducer and the pulser. The fre-

quency of the continuous oscillator and the pulser carrier

frequency are set to coincidence by means of the heterodyne

voltmeter. The voltage and waveform applied to the trans-

ducer may be observed on the oscilloscope.

In Operation, the pulser frequency is set to the

resonant frequency of the transducer, and the frequency of

the continuous oscillator is set to coincide with the

pulser frequency. The Optical system, photomultiplier

traversing screw, and transducer are then aligned with con-

tinuous waves, and the transducer may be calibrated by

observing the voltage required to produce a maximum or

minimum in a given diffraction order as observed on the

micrOphotometer. The pulser is then connected to the
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transducer and the maxima of the various diffraction orders

may be observed. The minima of the orders were less con-

venient to Observe in the present experiment because of the

low light levels being measured.

Calibration of a transducer. As an example of the
 

usefulness of the method, a l/2-inch round nominal 5 Mc

transducer of the barium titanate type has been calibrated

at 5.45 M0 over the temperature range 5° -33°C in water (42).

Because of the known variation of the physical prOpertieS

of such ceramic transducers, there is some reason to suSpect

a variation of the calibration with temperature (43). This

would limit the usefulness of such transducers for research

involving the calibration if such variation had a large

Slope near room temperature. Figure 7 Shows the Raman—Nath

parameter v per peak-to-peak volt near the transducer face

from pulse and continuous wave measurements on the zero,

first, and second orders of diffration. The crosses were

obtained as averages of several measurements on the plus and

minus second orders of diffraction. A typical set of data

for the pulse measurements has a probable error of 3%; the

error flag shown is for a possible error of 6%.

For comparison, the triangular data points were ob-

tained using continuous waves, and are seen to lead to

approximately the same calibration as was Obtained with

pulses for this transducer. It should be noted that the
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continuous wave measurements, eSpecially at low temperatures,

were hindered by heating and streaming effects which made

precise measurements difficult; this problem was not present

in the pulsed case because of the low average input power.

It can be seen from Fig. 7 that the transducer cali-

bration at fixed frequency varies by only about 12% over a

30°C temperature range for this transducer. The pressure,

in atmOSpheres, is numerically equal to 0.45 v, SO that

this transducer has a calibrated response of about 0.060 atm

per peak-to-peak volt.

A l/2-inch square 5 Mc transducer of the barium

titanate type has also been calibrated. It is found to

yield the same calibration with 121p sec pulses as with con-

tinuous waves (at 26°C), as was the case with a round trans-

ducer.

It remained to be shown that the time average light

intensity observed is produced, within negligible error, by

the flat tOpped portion of the pulse, and that no appreciable

error is made in neglecting the finite length of the pulse.

Accordingly, the dependence of the pulse calibration on

pulse length has been observed. Three typical pulses observed

on the oscilloSOOpe are Shown in Fig. 8. The height in each

case correSpondS to the peak—to-peak voltage required to

produce a first maximum in the first diffraction order. The

longest pulse is approximately 10 p sec, and the shortest is

31p sec in length. It was found that the calibration was
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independent of pulse length until the pulse ceased to be

rectangular, which occurred for a pulse length of 3‘p sec

as shown. The failure of the calibration procedure for

pulses 3,u sec and less in duration is attributable to two

causes; the pulse no longer has the rectangular Shape

suitable for the averaging process, and the limiting light

beam aperture was 4.3 mm wide, which corresponds to a time

of travel in water of approximately 3’u sec. Hence, at a

total pulse duration of 31p sec, the limiting aperture width

was equal to the pulse length, and the usual diffraction

situation ceased to exist.

The instantaneous diffracted light intensity in the

first diffraction order has also been observed. A typical

oscillOSCOpe trace showing the light intensity as a function

of the time is Shown in Fig. 9. The light intensity does

not appear to have a square envelOpe because the signal was

obtained from the direct current amplifier output of the

photomultiplier micrOphotometer, which has poor high fre-

quency response. The variation of the light intensity

duration, amplitude, and time of arrival behaves as would

be expected with variation of the pulse length, pulse ampli-

tude, and transducer to light beam separation.

Waveform distortion in an ultrasonic pulse. In the

past decade, special attention has been paid to the distor-

tion of ultrasonic waves by finite amplitude effects. There
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is a tendency for finite amplitude waveforms to become some-

what "sawtooth" in Shape with prOpagation for large pressure

amplitudes in low-dissipation media. The magnitudes Of the

harmonic components may be considerable. For example, an

initial pressure of only 0.5 atm at 5 M0 in water is

theoretically sufficient to give rise to a maximum second

harmonic component of 17.6% of the initial fundamental pres-

sure amplitude at a distance of 43 cm, assuming plane waves(8).

Among the methods of experimental investigation which

have proven useful are Optical techniques, especially light

diffraction methods. In general, theories for the diffrac-

tion of light by ultrasonic waves take into account the

phase modulation of the light wavefronts emerging from the

medium. This phase modulation is assumed to be a replica

of the ultrasonic waveform in the medium.

These waveforms, in the case of finite-amplitude

ultrasonic waves, are asymmetric and give rise to asymmetric

light diffraction patterns. These light diffraction patterns

have been investigated theoretically and experimentally by

Zankel and Hiedemann (38), who were able to predict the

light intensity distribution in the diffraction pattern

from an assumed ultrasonic waveform.

The equivalence of the finite amplitude waveform ob-

tained with pulses and with continuous waves can be demon-

strated by means of the light diffraction patterns obtained

in the two cases. The Optical work at high intensities is,
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in the case of pulses, not hindered by the heating and

streaming of the liquid associated with the high,average.

input power of continuous waves. Figures 10 and 11 Show

light intensities obtained in the positive and negative

first diffraction orders with pulses and with continuous

waves as a function of transducer voltage (initial pressure)

at two distances.

The data for Figs. 10 and 11 were obtained in the

following way: The apparatus was aligned as for calibration,

but with sufficient propagation distance for the ultrasonic

beam to undergo finite amplitude distortion before crossing

the light beam. In order to demonstrate this effect, dis—

tances of 13 and 23 cm were used so as to obtain waveform,

or asymmetry, differences. The frequencies of the pulser

and continuous wave source were set to coincidence, and the

pulse length adjusted to 11.7 p sec. The transducer was

the same as was used for the calibration procedure, and the

water temperature was 28° :_1°C. The data for the curves

were then recorded by measuring light intensities as a

function of transducer voltage. The values of the light

intensity maxima of the plus and minus first orders of dif—

fraction were compared for pulses and continuous waves in

order to Obtain a scale factor ( evr50 in this case), which

was used to reduce the continuous-wave light intensities to

the same magnitude as the pulse-average light intensities.

One sees that the data for pulses and for continuous waves



32

very nearly coincide. The Slight differences can be attri—

buted to experimental error, or to heating and streaming in

the case of continuous waves. The curves are very Similar

to those Obtained by Zankel and Hiedemann (38) for the first

diffraction orders.

It is easy to Obtain large sound-pressure amplitudes

in the case of a pulsed ultrasonic beam as compared with a

continuous one because of the short period of time that the

pulse is on and consequent low average power input. This

immediately leads to the possibility of obtaining sound-

pressure amplitudes large enough to cause finite amplitude

waveform distortion. For example, considerable distortion

is evident at the lO—v point on Figs. 10 and 11, but the

average acoustic power used at that point was of the order

of 2 mw/cmg. It is of interest to note that the method

described here should be applicable with an average input

power several orders of magnitude smaller.

In the case that large ultrasonic-pressure amplitudes

are obtained, one must also exercise care to remain in the

region of validity of the Raman-Nath theory for light dif-

fraction. This region has been summarized by Zankel and

Hiedemann (38).
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The Fundamental Frequency Component of a

Plane, Finite Amplitude Wave

 

 

General. The prOpagation of the fundamental frequency

component of a plane, finite amplitude wave is of Special

importance because it represents a large portion of the

energy tranSported by the wave. In addition, measurements

of the absorption coefficient of the fundamental frequency

component in the region of stable waveform Should character-

ize the wave as a whole.

It is possible to Show that waves of finite amplitude

"stabilizefl'that is, the competing processes of generation

and absorption of higher harmonics may reach a stage where

they nearly balance, the result being a wave which approxi-

mately maintains its Fourier spectrum ratios while

traveling (7,44). Such waveforms are called "stable wave-

:forms," and they are characterized by the fact that the

decay rates of all of the harmonic components are equal.

In general, a graph of the fundamental frequency com-

ponent of a plane, finite amplitude wave Shows a gradual

decrease at first, followed by a region of rapid loss, and

a return to a gradual decrease rate. One thus has to deal

with an essentially nonexponential absorption, and the

"absorption coefficient" must be Specified as to the condi—

tions and the region in which it is measured.

Three methods of dealing with the experimental "absorp-

tion coefficient” of a finite amplitude wave have been
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employed by other investigators, and a certain amount of

misunderstanding has resulted. First of all, it is useful

to employ the absorption coefficient of a sawtooth wave,

which may be assumed to apply to the case of large ampli-

tude waves in their region of stablization, i.e., after the

absorption coefficient has reached its maximum. In this

case, the absorption coefficient is prOportional t0 the

local fundamental pressure amplitude, and is given by

Rudnick (45) and Naugolnykh (46) as

“Ann. =76: + why) (34)

2 f. c.

One may also deal with the maximum value to which the

 

absorption coefficient rises, and this is shown by approxi-

mate analysis for large amplitudes to be prOportional to

either the local or the initial fundamental pressure ampli-

tude (7,24); the difference between the two is neglected.

As this is a special case of the sawtooth wave, Eq. 34 above

may be expected to apply to this case also. However, other

investigators have successfully Obtained experimental data

showing the linear relation between pressure and absorption

without Specifying where either is measured (26).

In addition, it is possible to deal with the construct

of the "average absorption coefficient." In this case, one

may deal only with the endpoints of a pressure versus dis-

tance curve, and find what absorption coefficient is
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effectively present over that given path length. This sort

of absorption coefficient may be useful, for example, in

examining the gross features of prOpagation over a fixed

distance. It is not clear in the literature where or

whether measurements of this quantity have been made, and

if so, whether as a function of the initial pressure ampli-

tude or of some local pressure amplitude (17, 19, 20, 24,

26, 46, 47).

In order to clarify the situation, it would be useful

to examine the behavior of all the above "absorption coef-

ficients" with careful regard to both their method of

measurement and the place of measurement of the pressure

amplitude.

Experimental apparatus. The object of the present
 

investigation is to examine the behavior of the fundamental

frequency component of a finite amplitude wave by a new

method making use of pulse techniques (48). The fundamental

frequency component of a pulse traveling in a liquid may be

Observed by means of a receiving transducer resonant at

the fundamental frequency. A block diagram of the electronic

apparatus is shown in Fig. 12. A pulse of rectangular

envelOpe and variable amplitude is generated in the pulser

and applied to the sending transducer by means of a tuned

autotransformer which provides impedance matching. The

amplitude of the pulse is observed on a calibrated
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oscillosOOpe. The received signal is decreased in amplitude

by a known amount in the decade attenuator, and is then

amplified by diSplay on an uncalibrated oscilloSOOpe.

Received Signal measurements are made by adjusting the decade

attenuator to produce a signal of fixed reference level on

the uncalibrated oscilloscope. The transducers are 5 mc

barium titanate ceramic type; the sending transducer is a

l/2-inch diameter disc, and the receiving transducer is a

small chip obtained from a similar disc. The frequency used

is 5.65 m0, and the tank is filled with distilled water at

a temperature of 28°C. The sending transducer has been

calibrated by a pulse Optical technique (see "Calibration

of a Transducer,"page 27). Distance measurements are made

by observing the delay time between the sent and received

pulses on a radar range calibrator oscillos00pe, which is

accurate to within .1% of the elapsed time. The pulse speed

in water is assumed to be 1.5 x 105 cm/sec.

A standard procedure for measurement of the funda—

mental frequency component using this apparatus would involve

translating the transducers with respect to one another,

taking care to maintain alignment in the Sending transducer

beam and maintaining the angular orientation of the trans-

ducers. A correction for beam spreading could then be

applied, and the near field pressure distribution would be

observed. However, it may be difficult to maintain the

correct alignment and orientation of the transducers while
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traversing over long distances; this would result in false

readings. In order to eliminate this problem, a fixed diS-

tance method was employed which also corrects for beam

spreading and smooths the near field pressure distribution.

Experimental results. The fixed distance method con-
 

Sists of aligning the transducers for maximum signal at one

distance, and then observing the nonlinearity of signal

transmission with increasing sending signal. Fig. 13 shows

the result of such observations for several distances.

This nonlinearity of transmission is due entirely to the

incrase of finite amplitude absorption with increasing

sending pressure. Note that there is a definite upper limit

to the sound pressure amplitude which can be transmitted

over a given distance. In fact, if the pressure is suffici-

ently great, the received signal may actually decrease while

the sending signal increases.

The results of a study of the maximum fundamental

pressure amplitude of a finite amplitude wave which can be

transmitted across a given distance under the stated experi-

mental conditions are given in Fig. 14. Note that the

maximum pressure amplitude increases rapidly for short dis-

tances. The maximum pressure possible pressure amplitude,

80
in atm, is found to be numerically equal to 21.6X" where

X is measured in cm. This relation was Obtained at 5.65 m0.

The nonlinear transmitter-receiver curves are now

converted into variable distance curves in the following
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way: for each value of sending pressure there is a data

point on the fixed distance curves. Each of these is seen

to represent a fraction of the expected received signal

according to linear transmission theory. Thus, the fraction

of transmission as compared with linear theory multiplied

by e' °<x for that distance may be taken as the ratio of

the local pressure to the initial pressure. If a number

Of closely Spaced fixed distance curves have been taken, a

smooth curve against distance will result. In Fig. 15 are

shown a number of variable distance curves for various

initial pressures constructed in this way. The upper

straight line is the e - «X law prOposed by linear theory.

Note that the absorption coefficient(l/p)(dp/dx) is a rapidly

increasing function of the distance, and that it reaches a

maximum value at some distance which depends on the initial

pressure amplitude of the wave. Due to this behavior of

the absorption coefficient, it iS Seen to be very difficult

in the case of large amplitudes to attempt to obtain the

initial pressure amplitude by extrapolating pressure versus

distance curves to the transducer face.

In order to test the validity of the experimental

method, it is prOposed to check a few known facts with the

data at hand. For example, weak shock theory predicts that

the local absorption coefficient for a sawtooth wave is

prOportional to the local fundamental frequency pressure

component. (See Eq. 34.) Tangent lines have been drawn
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to the pressure versus distance curves at convenient

intervals of a few centimeters, and the local absorption

coefficient calculated as a function of the local funda-

mental pressure component. The result is Shown in

Fig. 16. Data curves for six different sending pressures

have been analyzed, and a straight line of best fit drawn.

The value of B/A obtained from the line of best fit is

6.3 i..8 which agrees well with experimentally determined

values of B/A by others (26, 49). The line shown for B/A =

5.2 refers to a result obtained by Beyer (31) from theo—

retical considerations.

The "absorption coefficient" rises to a maximum

value at some distance from the transducer. Other experi-

menters have also found that this maximal absorption coef-

ficient is linear with the initial pressure (26). Since

it is also linear with the local pressure, the local

pressure at the maximal value of the absorption coefficient

must be linear with respect to the initial pressure.

Figure 17 shows this linear relationship.

We also find that the average "absorption coeffici-

ent" over an interval of distance is prOportional to the

initial pressure amplitude; see Fig. 18. The Space

averaged "absorption coefficient" has been calculated for

20, 30, and 50 cm, and is found to be linear with the

initial pressure amplitude with a SlOpe which increases

with decreasing distance.



40

The Second Harmonic Frequency Component
 

General. The theory presented predicts the Fourier

Spectrum of the wave, based on the two parameters K and oéL.

Accordingly, a complete verification of the theory would

require a variation of all of the constants involved in the

parameters, and a verification for all of the significant

harmonic components of the wave. However, it is sufficient

to measure the second harmonic component as a function of

cKlland K, Since it is the major determination of the de-

partures of the waveform from sinusoidal. It is desirable

to use a commonly available, pure liquid whose fluid

prOperties are well known in order to determine the values

of the governing parameters as accurately as possible.

Water was chosen as the fluid, and the frequency of the

waves was taken at 5.0 mc/sec, in order to obtain o<L

values of a convenient order of magnitude while allowing

the use of Optical methods.

It is preferable to employ ultrasonic pulse techniques,

inasmuch as continuous wave measurements introduce the dif-

ficulties of heating and streaming of the liquid at large

amplitudes, and require the elimination of standing waves.

Experimental data is desired which gives the harmonic

structure of the wave over a range of both the initial

value and distance parameters. In the literature one finds

that a few measurements have been made over a range of

distances, but the available range of initial value parameters

is small (see Table IV).
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TABLE IV

AVAILABLE 0(L VALUES

Krassilnikov, 22.21: . . .011

.022

.043

Ryan, et_§l, . . . . . .016

.032

Present work . . . . . .lO-l.7

For example, good agreement between theory and experiment

have been obtained by Ryan, Lutsch, and Beyer (27) for the

cx(1.values shown over a range of distances. Also, Keck

and Beyer (13) have successfully fitted values of the

harmonics Obtained by Krassilnikov, Shklovskaya-Kordy and

Zarembo (22), and the c(1,va1ues in this experimental work

were of the order of .01 - .04. Since a solution for dis-

sipationless fluids, or the caseeo(li==0 is known exactly,

all of the available dissipative theories, which are really

approximations for the case CXfL not zero, add to our knowl-

edge only if they are valid for large values of o(L. Since

none Of them has been compared with experiment for values

of o<L as large as .05, further experimental work is called

for in the regfitui c<li:>.05. The experimental work pre-

sented below Spans the rangeio(l.= .l to 1.7, and compares

results with theory for the second harmonic in that region

over a range of distances.

Experimental arrangement. The electronic apparatus
 

is shown in Fig. 19. A pulser or a continuous wave source,
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each set to 5.0 mc, may be chosen by means of a switch.

The second harmonic component of the wave is received by a

10 m0 barium titanate transducer and passed through a

filtered amplifying system so as to display the 10 me Second

harmonic frequency component on an oscillOSCOpe. The medium

is distilled water; the transducers are in rotating mounts

about vertical and horizontal axes to allow for alignment,

and can be translated to a separation of 80 cm. The filtered

amplifying system is prevented from overloading by means of the

decade attenuator,which also provides a test 0f the linearity

of the system while in use. Distance measurements are made by

reading the time of traversal of the pulse between the two

transducers on a radar range calibrator oscilloscope, which

is accurate to about .1% of the elapsed time. The pulse

velocity is assumed to be 1.5 x 105 cm/sec.

The sending transducer is a l x 1 inch barium

titanate ceramic type, and the receiving transducer is

either a 3 x 3 mm or 1/2 x 1/2 inch barium titanate ceramic,

depending on the sensitivity required.

Transducer calibration. The receiver-tuned amplifier
 

system for the second harmonic is calibrated in actual use

by allowing a wave of known second harmonic component to

fall on it, while measuring the actual voltage response of

the entire system. Two methods of Obtaining a wave of known

second harmonic content are used, and both give the same

end result.
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First of all, at small reduced distances and small

amounts of second harmonic, one would expect the Simple dis-

sipationless theory to be valid. Then it should be the case

that the smallest possible reading of second harmonic content

at a given distance is correct, according to dissipationless

theory, and this can be used as a calibration—point.

Second of all, it is possible to verify a postulated

finite amplitude waveform by observing the light diffracted

by such a wave. The asymmetric ultrasonic waveforms in the

finite amplitude case give rise to asymmetric light diffrac-

tion patterns, and these patterns can be predicted from

knowledge of the Fourier Spectrum of the wave. A number of

light diffraction patterns making use of the theoretical

harmonic structure of the wave for one value of the initial

value parameter have been.computed. In this way, predicted

light diffraction patterns have been compared with experi-

mental ones every few cm. By inserting various values for

the harmonic structure of the wave in the calculation, it

is found that the (n -1)St orders of diffraction are very

sensitive to the magnitude of the nth harmonic, at least

for n = l, 2, 3. It is thus comparatively easy to separate

the effects of various Fourier components of the wave from

each other.

Good agreement was obtained between theory and experi—

ment if the fundamental, second and third harmonics of the

wave were considered correct according to the theory for the
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case 0(L = .370. This corresponds to an initial pressure

amplitude of .5 atm in the case at hand.

One thus has a wave of known absolute second harmonic

content which can be used to calibrate the receiver. It is

furthermore possible by this means to obtain a superior

calibration for the initial transducer pressure. That is,

agreement between theory and experiment can be forced by

varying the transducer voltage at fixed distance and obtain-

ing a fit between the predicted and observed light diffraction

patterns. The voltage so obtained can then be used as a cal-

ibration point. By averaging a number of such forced-fit

calibrations, a calibration for the initial pressure ampli-

tude can be obtained which has the advantage of compensating

for near field pressure fluctuations. The value of the case

at hand was found to be .054, i .0053 at/volt. This probable

error was obtained from an analysis of the deviations of

the measurements from the mean. There is an additional

possible error of about 10% inherent in any absolute Optical

calibration caused by a lack of accurate knowledge of the

piezo-Optic Coefficient of water. This calibration is in

good agreement with calibrations carried out near the trans-

ducer face.

Experimental results. The system comprised of calibrated
 

sending and receiving transducers, with the associated

electronic apparatus, could now be used to obtain the second
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harmonic component of the wave as a function of the distance

by increasing the transducer separation while maintaining

alignment. There are several difficulties inherent in this

scheme. For example, it is difficult to maintain correct

transducer alignment while in the process of moving them.

A smoothed plot of the second harmonic of the wave can be

obtained by means of the fixed distance method. This method

and results obtained by it were described in the section on

the fundamental frequency component.

Fixed distance measurements in the present case may

be made by aligning the transducer system previously cali-

brated, and recording the received second harmonic as a

function of the initial fundamental pressure amplitude.

This can conveniently be correlated with theory by calculat-

ing the 0(L and K value for each value of initial pressure

at which readings are taken. One can then find the appro-

priate second harmonic value for the theory by referring to

Table II with both o<L and K variable. In Figs. 20 to 25

one sees the result of such theoretical calculations as the

solid line; the experimental data points are seen to agree

quite well with the theory. The theory line is shown as

far as it applies; that is, as the initial pressure is in-

creased at fixed X, K increases and finally becomes unity.

As has been pointed out, the theory applies only for K S 1

(see Chapter II). The data points are referred to as

either "large" or "small," depending on whether the
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measurements were made with the large (1/2 x 1/2 inch) or

small (3 x 3 mm) receiver.

Such fixed distance measurements allow sufficient

correlation with theory to indicate good agreement, but do

not give as good an idea of the variation of the second

harmonic with distance for fixed initial pressure as one

may desire. The fixed distance data may be converted to

variable distance data by recording the value of the

second harmonic obtained at a given initial pressure for a

number of distances. The results of several such data tab-

ulations are shown in Figs. 26 to 29 as graphs of the second

harmonic against distance for fixed initial pressure. The

soild line shows the theory, and is a straightforward appli-

cation of the tabulated values, Table II, for fixed o<L

but variable K, which corresponds to fixed initial pressure.

The dotted line is extrapolation of the theory to fit the

data points in the region Kifi'l.

In all of the above calculations of K and «L, the

values f0 = 1.0 g/cc, Co = 1.5 x 105 cm/sec, 79: 5.0 x 106

CPS, and B/A = 5.0 have been assumed. This results in the

relations

cxu.==.l85 P1(0)"l (35)

and

L = 30.6 Pl(0)‘1 cm (36)

where Pl(0) is measured in atm.



CHAPTER IV

SUMMARY

The theory which has been presented has, as its found-

ation, the postulate that the interactions between the

harmonic components of a plane, finite amplitude wave are

weak compared to the absorption mechanism and the mechanism

of higher harmonic formation. This assumption takes the

mathematical form that the derivative of the pressure of a

given harmonic component of the wave is equal to the sum of

the derivatives due to the absorption and generation of

higher harmonics separately (Eq. 26). The fact that one is

able to thus write an experimentally verified solution of

a nonlinear problem free of interaction terms and in a

readily calculated form justifies the assumption. In addi-

tion, it is clearly seen that the solution is a function of

two parameters K and O<L, so that, for example, one may

make use of "scaling" techniques, that is, equal values of

K and cafiL in completely different fluids should yield the

same harmonic wave structure.

The verification of the theory has been done exten-

sively only for the second harmonic frequency component,

but the fundamental and third harmonic components also agree

with the predictions of the theory for one value of
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GKI1==.37. This verification was not carried out exten-

sively for the fundamental frequency component because of

the use of the fixed distance method, which works best for

large pressure amplitudes in this case. Since the theory

holds only for distances Xé L, and L, for example, is 60m

at 5 atm of initial pressure under these experimental con—

ditions, it would be necessary to make the theory comparisons

at very small distances and GKL values. The develOpment of

the fixed distance method was most useful, in the case of

the fundamental frequency component, for studying the

absorption coefficient and its implications. Among those

implications were the possibility of determining B/A, and

the maximum sound pressure amplitude which could be trans—

mitted over a given distance. The fixed distance method

proved to be a very sensitive method for the determination

of the second harmonic frequency component of the wave, and

thus performed well at small values of initial pressure.

This allowed a verification of the theory for the second

harmonic in a region of interest.

Preliminary to the investigation of the harmonic

components of the wave, the develOpment of the tools of

investigation was necessary. The extension of the known

Optical methods of measuring sound pressure amplitudes and

waveforms to the case of ultrasonic pulses put the use of

pulse methods on a firm basis. The demonstration of the

equivalence of both the transducer calibration and the
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finite amplitude waveform for the case of pulses and con-

tinuous waves made the two interchangeable for the purposes

of the investigation. In addition, the results of pulse

calibration proved very reliable because of the low average

input power and consequent lack of heating and streaming,

often a problem in the use of Optical methods.
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Fig. 5. Optical apparatus for diffraction studies.
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Fig. 8. OscillOSOOpe traces of the outgoing elec-

trical pulse.
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Fig. 9. Oscilloscope trace of the light intensity

in the first diffraction order.
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Fig. 12. Electronic apparatus for study of the

fundamental frequency component.
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Fig. 13. Relative received fundamental frequency

component, as a function of the initial peak

pressure amplitude in atmospheres.
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Fig. 14. The maximum amount of fundamental fre-

quency component which can be transmitted over

a given distance X.
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of the fundamental frequency component as a function

of the local pressure. '
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value of o<is observed as a function of the

initial peak pressure amplitude in atm.
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Fig. 19. Electronic apparatus for study of the second

harmonic frequency component.
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Fig. 22. The second harmonic frequency component as

a function of the initial peak pressure amplitude

at 35.2 cm. (The solid line is the theoretical

prediction.)
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Fig. 23. The second harmonic frequency component as

a function of the initial peak pressure amplitude

at 48.8 cm. (The soild line is the theoretical

prediction.)
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Fig. 24. The second harmonic frequency component as

a function of the initial peak pressure amplitude

at 55 cm. (The solid line is the theoretical

prediction.)
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Fig. 25. The second harmonic frequency component as

a function of the initial peak pressure amplitude

at 80 cm. (The solid line is the theoretical

prediction.)
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Fig. 26. The second harmonic frequency component as

a function of the distance for an initial peak

pressure amplitude of .76 atm. (The solid line

is the theoretical prediction, and the dashed

line, extrapolation.)

 

 
  

Fig. 27. The second harmonic frequency component as

a function of the distance for an initial peak

pressure amplitude of .49 atm. (The solid line

is the theoretical prediction, and the dashed

line, extrapolation.)
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Fig. 28. The second harmonic frequency component as

a function of the distance for an initial peak

pressure amplitude of .32 atm.
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a function of the distance for an initial peak

pressure amplitude of .11 atm.
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