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ABSTRACT

THE FLOW OF NON-NEWTONIAN FLUIDS
THROUGH POROUS MEDIA

By

Hee Chung Park

The Ergun equation is widely used to relate pres-
sure drop to volumetric flow rate of Newtonian fluids in
packed beds. In this study the Ergun equation was ex-
tended to non-Newtpnian fluids by using an effective
viscosity in place of the Newtonian viscosity. The
effective viscosity was calculated based on the result of
a hydrodynamic analysis of the capillary model of the
packed bed using the appropriate constitutive equation
for each non-Newtonian fluid.

Measurements of pressure drops and corresponding
flow rates were made for several concentrations of aqueous
solutions of three polymers (polyacrylamide, polyvinyl-
pyrrolidone, and polymethylcellulose) flowing through
packed beds, and the rheological properties of these
agqueous polymer solutions were determined with a Weissen-
berg rheogoniometer.

The Sprigg's four-parameter model was selected to

characterize the rheological properties of aqueous
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solutions of polyacrylamide because these solutions ex-
hibited viscoelastic behavior. The average percent devi-
ation in the apparent viscosities between values predicted
from the model and experiment for 103 data points was
3.4% for shear rates in the range 0.00675 to 851.0 sec—l
for concentrations of 0.50, 0.25, 0.10, and 0.05 weight
percent. The pressure drop-flow rate data for aqueous
solutions of polyacrylamide were correlated very well by
the Ergun equation whose effective viscosity was calcu-
lated based on the result of a hydrodynamic analysis of
the capillary model of the packed bed using the Sprigg's
model. The average percent deviation between the experi-
mental values of friction factor and the corresponding
values from the Ergun equation was 5.7% for 117 experi-
mental points with the Sprigg's model. The corresponding
deviations for the power-law model and the Ellis model
were 19.1% and 9.3%, respectively.

Meter's four-parameter model was selected to
characterize the rheological properties of aqueous solu-
tions of polyvinylpyrrolidone because these solutions were
purely viscous having both upper and lower limiting vis-
cosities. The average percent deviation in the apparent
viscosities between values predicted from the model and
experiment for 98 data points was 2.1% for shear rates
in the range 0.02689 to 1076.0 sec-l for concentrations

of 4.0, 3.0, 1.0, and 0.5 weight percent. Large
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deviations between experimental values of friction factor
and those from the Ergun equation occurred for effective
Reynolds numbers greater than one. A new correction
parameter (DPGO/M(l - e)nd«;ox/pnp) was used to account
for the deviation. Agreement was excellent after cor-
rection. The average percent deviation between the
experimental values of friction factor and the corres-
ponding values from the Ergun equation was 10.8% for 87
experimental points; before correction the deviation was
greater than 60%.

The Herschel-Bulkley three-parameter model was
used to characterize the rheological properties of aqueous
solutions of polymethylcellulose because these solutions
exhibited yield stresses with non-linear flow curves.

The average percent deviation in the apparent viscosities
between values predicted from the model and experiment
for 72 data points was 1.7% for shear rates in the range
1.076 to 851.0 sec !, for concentrations of 0.3 and 0.5
weight percent of each of two different molecular weights.
The pressure drop-flow rate data for aqueous solutions of
polymethylcellulose were correlated very well by the Ergun
equation using the Herschel-Bulkley model for effective
viscosity calculation. The average percent deviation
between the experimental values of friction factor and
the corresponding values from the Ergun equation was

8.2% for 139 experimental points.
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Polymer solutions are adequately represented by
the capillary model of the packed bed for effective
Reynolds numbers less than one. The pressure drop-flow
rate data for non-Newtonian fluids is not correlated
very well by the Ergun equation for effective Reynolds
numbers greater than one. It appears as though an improve-
ment in the model for packed beds is required in order to
account for inertial effects and surface effects of
polymer solutions. Past investigators have used the
power-law and the Ellis model to calculate the effective
viscosity for packed beds. However, this work has shown
that considerable improvement in accuracy of the friction
factor predictions can be accomplished by using the
rheological model which characterizes the shear stress-
shear rate relationship with minimum error for calculating

the effective viscosity for packed beds.
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CHAPTER 1

INTRODUCTION

The aims of this work were to measure and correlate

friction factor data for the flow of non-Newtonian fluids
through porous media and to characterize non-Newtonian
fluids by a rheological equation of state more generally
applicable than the commonly used power-law model. Rheo-
logical measurements were made on a number of rather
different types of non-Newtonian fluids and several rheo-
logical models were compared and criticized in view of
experimental data. Non-Newtonian fluids were categorized
as: (a) purely viscous, (b) with yield stresses and non-
linear flow curves, and (c) viscoelastic.

Many studies of the flow of fluids through porous
media have been concerned with Newtonian fluids; i.e.,
fluids for which the relation between shear stress and
shear rate is a simple proportionality. This includes
gases and most homogeneous, non-polymeric liquids. 1In
many branches of engineering one is faced with design
problems for non-Newtonian fluids; i.e., fluids for which

the relation between shear stress and shear rate is not



a simple proportionality. Suspensions and solutions of
polymers are examples of this latter class of fluids.

The vast majority of these "non-linear" fluids show a
decrease of apparent viscosity with increasing shear rates.

The open literature was essentially devoid of any
studies on the flow of non-Newtonian fluids through porous
media until recently. During the past few years a number
of papers in this area have appeared. Several different
approaches were taken to treat the experimental flow data.
Bird and Sadowski [l1] and Sadowski [2, 3] correlated a
friction factor with a modified Reynolds number. The
correlation was based on Darcy's law and the Ellis equation
for non-Newtonian fluids. Christopher and Middleman [4]
and Marshall and Metzner [5] used a similar approach ex-
cept that they used the power-law model for non-Newtonian
fluids. Gregory and Griskey [6] developed a friction
factor versus Reynolds number correlation based on the
Mooney-Rabinowitch equation.

Chemical engineers have traditionally been employed
in industries involving the manufacture of products from
raw materials by chemical reactions and physical changes.
The activities of many chemical engineers in industry
involve the development of processes and the design and
operation of production facilities. A major portion of
the skills required by the engineer engaged in these

activities is obtained through study of the transport



processes of mass, heat, and momentum. In particular, an
understanding of fluid flow and the behavior of fluids in
process equipment is a basic element of modern engineering
training.

The flow of polymeric fluids is an important
aspect of engineering science in the polymer industry.
The conversion of high polymers to useful products by
operations such as extrusion, molding, mixing, and
calendering constitutes a new and challenging branch of
technology of polymeric fluids called polymer processing.
This development has led to a demand for scientific
engineering research into the area of polymeric fluid
behavior, including synthetic polymers as well as natural
polymers such as proteins, cellulose, and natural rubber.

Knowledge of flow of fluids through porous media
is basic for many scientific and engineering applications.
It is essential to the individual problems of such
diversified fields as soil mechanics, ground water
hydrology, industrial filtration of polymer solutions
and slurries, ceramic engineering, and the movement of
agueous polymer solutions through sand in secondary oil
operations. To the chemical engineer, such knowledge
forms the basic background for the design of packed
towefs and reactors containing granular catalysts.

The impetus for this investigation is both of a

practical and of a fundamental nature. There is interest



in the secondary recovery of oil from underground reser-
voirs by displacement of the o0il with non-Newtonian fluids.
Non-Newtonian fluid flow in liquid-solid chromatographic
separations is common in the pharmaceutical industry.

Very small concentrations of high molecular weight polymers
will increase the solution viscosities to values greater
than those for the reservoir oils.1 Models which have
been used to describe non-Newtonian fluid behavior have
been tested in relatively simple flow geometries. A test
of these models for a very complex flow geometry, such as
that which exists in a packed bed, may lead to more confi-
dence in the application of the models to any arbitrary
flow geometry. These problems will be discussed in
Chapter 2.

In order to construct a tractable mathematical
model of the complicated flow system involved, it is neces-
sary to resort to a number of simplifications. 1If the
viscosity of the fluid is properly characterized, tra-
ditional treatments for the study of the fluid flow in
porous media may be adequate.

The following assumptions were made for the
present investigation:

a. The fluid was treated as an incompressible and a
continuous medium in which each point had a flow-

path.

1Typical reservoir oil viscosities are generally
less than 100 c.p. (Muskat, 1949, p. 96).



b. The porous medium was isotropic, homogeneous,

and of regular geometry.

c. The flow of the fluids was isothermal and

single-phase.

d. The external forces on the fluids were homogeneous

and time independent.
e. For simplicity the gravity term was neglected.

f. The inertia terms are omitted from the equations

of fluid motion.

g. Different parts of one sample were macroscopically
identical. This means that a fluid particle pro-
ceeding through the porous medium found the same
total probability for displacement along all

points of its path.

The analysis for this investigation included the
characterization of the non-Newtonian fluids with an
appropriate rheological equation of state and the develop-
ment of the Ergun equation, derived from the equations
of motion and the rheological equation of state for an

appropriate model of the packed bed.



CHAPTER 2

RHEOLOGY

The subject of non-Newtonian flow is a subdivision
of rheology, "the science of flow and deformation of
matter." In this chapter the equations of change and
several rheological equations of state will be presented.
Emphasis will be placed on the several "generalized
Newtonian models" as well as the empirical viscoelastic
rheological equations of state of Spriggs and Bird-
Carreau.

The word fluid does not have a precise meaning.
It may be said that the essential property of fluids is
the absence of preferred configurations. Therefore, a
fluid may be defined as that substance whose configur-
ation can not be distorted. Some dictionaries define
fluid as a substance capable of flowing.

Non-Newtonian fluids are defined as materials
which do not conform to a direct proportionality between
shear stress and shear rate. Because of negative defi-
nition of non-Newtonian behavior, an infinite number of

possible rheological relationships exist for this class



of fluids and, as yet, no single equation has been proven
which can describe exactly the shear rate-shear stress
relationships of all such materials over all ranges of
shear rates. As a result non-Newtonian fluids are classi-

fied in the following manner [120]:

1. Time-independent fluids . . . those for which
the rate of shear at a given point is solely
dependent upon the instantaneous shear stress

at that point.

2. Time-dependent fluids . . . those for which the
shear rate is a function of both magnitude and
the time lapse between consecutive applications

of shear stress.

3. Viscoelastic fluids . . . those that show partial
elastic recovery upon removal of a deforming
shear stress. Such materials possess properties

of both fluid and elastic solids.
§2.1 Time-independent Non-Newtonian Fluids

These purely viscous fluids are usually classified
into two groups, fluids with yield stresses and fluids

without yield stresses.
§2.1.1 Fluids with Yield Stresses

The physical behavior of fluids with yield

stresses is usually explained in terms of an internal



structure in three dimensions which is capable of pre-
venting movement for values of shear stress less than the
yield value, Ty‘ For Tyx > Ty, the internal structure
collapses completely, allowing shearing movement to occur.
When Tyx < Ty, the internal structure is considered to be
reformed virtually instantaneously.

Examples of fluids with yield stresses may be
found in the following materials: certain plastic melts,
0il drilling mud, ores, sand in water, coal, cement, rock
and chalk slurries, grain water suspension, chocolate
mixtures, tooth paste, peat slurries, margarine and

shortenings, greases, aqueous thorium oxide slurries,

soap and detergent slurries, and paper pulp.
§2.1.2 Fluids Without Yield Stresses
A. Pseudoplastic Fluids

The majority of non-Newtonian materials are found

in this category. A logarithmic plot of =1 vs. dvx/dy

yX
for these materials is often found to be linear over a
wide range of shear rates. Fluid dispersions of asym-
metric molecules or particles are probably characterized
by extensive entanglement of the particles when the fluid
is at rest. Progressive disentanglement should occur
under the influence of shearing forces, the particles

tending to orient themselves in the direction of shear.

This orienting influence is proportional to shear rate



and is opposed by the randomly disorienting effects of
Brownian movement [7], the extent of which is determined
only by the temperature of a given fluid.

Pseudoplastic behavior would also be consistent
with the existence of highly solvated molecules or parti-
cles in the dispersion. Progressive shearing away of
solvated layers with increasing shear rate would result
in decreasing interaction between the particles (because
of their smaller effective size) and consequent reduction
in apparent viscosity.

Examples of pseudoplastic fluids may be found in
the following materials: rubber solutions, adhesives,
certain polymer solutions or melts, greases, starch sus-
pensions, cellulose acetate solutions used in rayon manu-
facturing, mayonnaise, soap, detergent slurries, paper
pulp, napalm, paints and dispersion media in certain

pharmaceutical fluids.

B. Dilatant Fluids

Two phenomena have been observed with dilatant
materials [8, 9]. Volumetric dilatancy denotes an increase
in total volume under shear, whereas rheological dilatancy
refers to an increase in apparent viscosity with increas-
ing shear rate. It is this latter property which is
usually associated with dilatant fluids, although these

materials are far less common than pseudoplastic fluids.
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Examples of materials which have been found to
exhibit both volumetric and rheological dilatancy include
the following materials: aqueous suspensions of titanium
dioxide, some gum arabic and borax solutions, some corn
flour and sugar solutions, starch, potassium silicate,
gum arabic in water, quicksand, wet beach sand, many
defloculated pigment dispersions containing high suspension
concentrations, solids such as mica, powdered quartz, and
iron powder in low viscosity liquids.

Flow curves for various types of time-independent
fluids and models relating Tyx to dvx/dy are shown in

Figure 2.1-1.
§2.2 Time-dependent Non-Newtonian Fluids

These materials are usually classified into two
groups, thixotropic fluids and rheopectic fluids, depending
upon whether the shear stress decreases with time at a

given shear rate and constant temperature.
§2.2.1 Thixotropic Fluids

These substances exhibit a reversible decrease in
shear stress with time at a certain rate of shear and
fixed temperature. Flow curves for thixotropic fluids in
continuous experiments in which the shear rate is steadily

increased from zero to a maximum value and then immediately
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Fluid with a yield
stress and a non-
linear flow curve

Shear
Stress

Tyx

Shear Rate —=
dy

Figure 2.1-1 Flow Curves for Various Types of Time-
independent Fluid
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decreased steadily towards zero form a hysteresis loop
as shown in Figure 2.2-1.

Examples of thixotropic properties have been found
in the following materials: some solutions or melts of
high polymers, o0il well drilling muds, greases, margarine

and shortening, printing inks, and many food materials.

§2.2.2 Rheopectic Fluids

These materials, occasionally referred to as
antithixotropic fluids, are relatively rare in occurrence.
They exhibit a reversible increase in shear under iso-
thermal conditions.

Rheopectic behavior is often explained in terms
analogous to those used to account for dilatancy but in
this case with more prolonged time periods for the struc-
tural changes involved. Although for some of these
examples rheopexy is confined to moderate rates of shear,
rheopectic characteristics have been observed in the
following materials: bentonite clay suspensions, vanadium
pentoxide suspensions, gypsum suspensions, certain soils,

and dilute suspensions of ammonium oleate.

§2.3 Viscoelastic Fluids

These materials exhibit both viscous and elastic
properties. Oldroyd [10, 11] has shown that dispersions

of one Newtonian fluid in another may lead to emulsions
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Thixotropic
Shear
Stress
T
Xy
Rheopectic

dVx
Shear Rate v
Y

Figure 2.2-1 Flow Curves for Thixotropic and Rheopectic
Fluids in Single Continuous Experiments
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possessing both viscous and elastic characteristics. More
discussions about viscoelasticity will be given in

sections 6, 7, and 8.
§2.4 Definitions of Material Functions

Some investigators have defined various measurable
material functions based on their experiments [14, 15, 16,
17]. The tube-flow experiment suggests the definition of
a non-Newtonian viscosity n(Y). The study of Weissenberg
effects has led to the definition of a primary normal
stress coefficient 8(Y) and a secondary normal stress
coefficient B(Yy). The oscillatory flow experiments have
suggested the definition of the complex viscosity n* (w)
with its real and imaginary contributions n' (w) and
n"(w).

It is convenient to summarize the definition of
these material functions at this point in terms of flow
between two infinite flat plates. Such a summary is

given in Table 2.4-1.
§2.5 Generalized Newtonian Fluids

In order to characterize the nature of different
fluids, one introduces a rheological equation of state,
or constitutive equation, which identifies the basic
properties of the fluids. 1In particular, one must specify
a relation between the deviatoric part of the shear stress

tensor, Tij, and the shear rate tensor eij'
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TABLE 2.4-1 Summary of Definitions of Material Functions

1. Steady Shear Flow.

. av,
vV, =V X)) Y EE,
X2 ‘
> vV
,) Y X
X3
a. Viscosity: n(y) = le/(-§)

b. Normal Stress .
Functions: 8 (yv)

°2
(Tll - Tzz)/(_Y )

. _ *2
BY) = (1, = T33)/(=7)

2, Small Amplitude Sinusoidal Oscillations

] NS
v, = Vl(xz,t) Y = Re{y e }
X5
—o? T = R {7 eiwt}
Xl——— 12 ° e 'l12

(o) 2iwt}

X Ti3  Relajtrye

a. Complex Viscosity n*(w) = nzw)-in?w) = ng/(-Qo)

b. Complex Normal
Stress Coefficients:

= ' XU = o - o] _'OZ
0% (w) = 6'(w) - i6" (w) = (Tll Tzz)/ (vy™)

- < on - o _ _o _(20,2
B*(w) = B'(w) - iB"(w) = (122 133)/ (vy™)

c. Normal Stress
Displacement Functions:

gd

*0,2
R (d; - d,}/-|¥"|

d .
,YO|2

11

B Re{d2 - d3}/-
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Consider a fluid placed in the region between two
parallel plates which extend infinitely. The upper plate
is held fixed, whereas the lower one is made to move with
a constant velocity (see Table 2.4-1). The force per unit
area in the x-direction required to maintain this motion

is proportional to the velocity gradient:

Tyx = -udvx/dy (2.5-1)

and the proportionality constant u is called the viscosity.
This relation is called "Newton's law of viscosity."

All the gases and simple liquids whose behaviors follow
this relationship are called Newtonian fluids. It is also
known that, if one can assume that the fluid is incom-
pressible, then for motions more complicated than that

above, Eq. (2.5-1) can be generalized to give [12]:

ov. avi
Tiy = 7 5xi + axj

which serves to define the quantities e, in Eq. (2.5-2)

j=
it is understood that i and j can be x, y, or z.

Reiner [18] suggested a most useful and practical
constitutive relation which is so-called "generalized

Newtonian fluid,"

Ti] = -2ﬂeij (2. 5-3)
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This relation is a simplification of the Reiner-Rivlin-

Prager relation (19, 20]
= =-ne,. =N Zk ek ekj (2.5-4)

T, .
ij ij c

where n and the "cross viscosity" n. are, in general,

functions of the scalar invariants of the e tensor:

e; = (e:d) = Z.eii (2.5-5)
er; = (e:e) = zizjeijeji (2.5-6)
erry = det e = zizjzkeijkeliere3k (2.5-7)

Eq. (2.5-4) is the most general relation between Tij and

eij which does not involve space time derivative of either

Tij or eij' The exclusion of time effects restricts the
relation to inelastic fluids.

The reduction of Eq. (2.5-4) to Eq. (2.5-3)
depends upon several assumptions. First, in all cases,
the fluid must be considered to be incompressible; there-
fore the first invariant e is identically equal to zero.
Second, cross viscosity effects must be neglected,

i.e., g = 0. There is little known about cross viscosity
effects. Some investigators [21, 22] have assumed Ne

to be constant. Leigh [23], however, has shown that
thermodynamic principles require that Ne not be a con-

stant. Most investigators are content to ignore this
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function. Third, it must be assumed that there exists no
functional dependence of the viscosity n on the third in-

variant e There is little known about the effect of

I11°
eryp on fluid flow. In simple flow geometries, e.g.,
flow through a tube or a slit, the third invariant is

identically zero.
§2.6 Specific Rheological Equation of State

Numerous empirical functions of the form of Eq.
(2.5-3) have been presented in the literature. Any pro-
posed rheological model should represent the actual be-
havior of a fluid with accuracy, convenience, and
simplicity. No known model describes the behavior of
all non-Newtonian fluids with a reasonable number of
constants. Different models may be necessary to describe
different fluids or even the same fluid under different
conditions. The best relationship for a given fluid is
not necessarily known until an experiment is made on the
fluid to relate Tij and eij'

The power-law model is a rheological equation of

state which is used widely [12],

n-1

—

_ e:e| 2 _
Tij = K[—i—] eij (2.6-1)

where K and n are two positive fluid parameters determi-
nable from viscometric experiments. When n = 1 and K = u,

this model becomes Newton's law of viscosity. This model
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does not describe the limiting viscosity at zero shear
rate n_, the limiting viscosity at infinite shear rate

n and the relaxation time A. It is also subject to

!
Reiner's [19] "dimension objection" since the dimension
of K will vary with the value of n.

Nonetheless, the model generally gives an adequate
description of fluid behavior over an intermediate range
of shear rates. Because of its mathematical simplicity,
the power-low model has been used extensively by several
investigators. It was used by Lyche and Bird [24] to
extend the Graetz-Nusselt problem in heat transfer theory
to non-Newtonian fluids. It was also used for an exact
analysis of laminar tube and annular flow by Fredrickson
and Bird [25], in an approximate analysis of flow around
a sphere by Tomita [26] and Slattery [27], in a variational
analysis of flow by Bird [28]) and Schechter [29], and in
laminar nonisothermal flow by Hanks and Christiansen [30],
and in correlation of a friction factor with a modified
Reynolds number by Christopher and Middleman (4], and
Marshall and Metzner [5].

Ellis [19] and, more recently, Gee and Lyon [31],
for plastic melts, proposed the following three-parameter

model,

a-1
_ T:T) 2 _
eij = - ¢o + ¢1[T} Tij (2.6 2)
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where ¢o' ¢1, and a are the fluid parameters. The Ellis
model does not describe the limiting viscosity at infinite
shear rate n_, but more important is the fact that it
describes the limiting viscosity at zero shear rate
Ng = l/¢o for polymer solutions.

An alternate form for Egq. (2.6-2) has been sug-
gested by Bi;d, viz.,

1

e . = - L), {/5(1:1)
T

1] o 9

a-1
] Tij (2.6-3)

where Nor  Tyr and o are the fluid parameters. The shear
stress Ty is that value of shear stress for which the
corresponding non-Newtonian viscosity has dropped off to
one-half of the value of the limiting viscosity at zero
shear rate Noe The introduction of the fluid parameter
Ty, enabled the elimination of the dimensional objection
to Eq. (2.6-2). Slattery and Bird [32] used the Ellis
model to predict the drag coefficients for flow around a
sphere. They found that the three-parameter model in

Eq. (2.6-3) provided a better description of non-Newtonian
behavior than the two-parameter power-law model. Ree and
Eyring [33] discussed several successful applications of
Eq. (2.6-3) to polymeric and colloidal systems. The
application of this model to various flow geometries
(McEachern [34], for flow through tube, and Ziegenhagen
[35], for flow around sphere) led to very formidable

mathematical expressions of the flow behavior.
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A four-parameter generalization of the Ellis
model, in which there is limiting viscosities at both
zero shear rate and infinite shear rate, is that pro-

posed by Meter [36]

. N = N

. . nw e. .
1] 1+ /%(T:T)]a-l 1]
Tm

~
]
!

(2.6-4)

where Nge N T and a are the fluid parameters. The

oo’ ml

Meter's model in Eq. (2.6-4) may be thought of as an ex-
tension of the Peek-Mclean model (a = 2) [37] and the
Reiner-Phillippoff model (a = 3) [19, 38]. The parameter
Tn is the value of the shear stress for which the corres-
ponding non-Newtonian viscosity has dropped off to the
arithmetic mean of the limiting viscosities, i.e., to the

value of %(no + n_). The constant a indicates the abrupt-

ness of the transition from o to n_ . Meter [39] has
successfully applied this model to the description of the
turbulent flow through tubes of seven hydroxyethyl-
cellulose solutions. For many fluids, N is at least an

order of magnitude smaller than n, so that Eq. (2.6-4)

can be rewritten as:

e, = -2 |1+ [fgilill]“'l T [- 2:(/§T¥??7]a-1]j o
N j=o M ij

T
m O m

(2.6-5)
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by rearranging and then expanding in powers of nm/no.
In this form, the Meter's model may be considered to be
the Ellis model with a small perturbation on it.
Equations (2.6-4) and (2.6-5) reduce to Newton's law for
the limit in which T, approaches infinity.
Herschel and Bulkley [40, 41] proposed a three-
parameter model
1-m]1
e:el 2 |m

T.. = T = UO[—Z— el] (2.6-6)

where Ty' Hor and m are the fluid parameters. This model
is the combination of the Bingham plastic model and the
power-law model. In evaluating the parameters in this
model, the yield stress Ty is first read from the flow
curve. Parameters m and Mg are then obtainable from the
slope and intercept of a logarithmic plot of -dvz/dr vs.
Teg Ty. There are not many applications of this model

reported in the literature.
§2.7 Linear Response of Viscoelastic Fluids

Although the generalized Newtonian theory, in its
various forms, describes non-Newtonian fluid behavior
quite well, it fails to predict the normal stress effects
and the viscoelastic effects associated with time-
dependent phenomena.

Normal stress effects were demonstrated by Weissen-

berg's [42] experiments in which various types of fluids
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were sheared in a gap between two concentric cylinders.
Greensmith and Rivlin [43], for a modified parallel-plate
viscometer, found that the fluid, in manometer tubes
placed at various radii into the fixed plate of the
viscometer, tended to rise in the center manometer tubes,
while the second plate rotated at a constant angular
velocity. Markovitz and Williamson [44] noted the same
effect for a modified cone-and-plate viscometer.
Transient and dynamic (oscillatory) experiments [45]
exhibit behavior, for viscoelastic fluids, which are not
predicted by the generalized Newtonian theory.

Linear behavior is defined as that in which the
measured value of a material property is unaffected by a
change in magnitude of shear stress and shear rate. Within
the framework of linear behavior and sinusoidal shearing,
a significant achievement of molecular theory exists. Zimm
[46), Rouse [47], and Bueche [48] have all proposed
theories which relate the response of dilute polymer
solutions to such parameters c (number-concentrations of
solute molecules), T (absolute temperature), g (solution
viscosity at zero shear rate), and n(s)(solvent viscosity,
Newtonian). Theoretical similarities between all three

involve the assumptions:

1. Dilution to the extent that solute molecules have

no direct interaction with each other.
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2. "Segmented necklace" structural model, highly
flexible to the point that a Gaussian distribution
describes relative positions of the segments along

the molecular chain.

3. Responsiveness to the random restorative forces of

entropy, i.e., Brownian motion.

From these and other postulates, a differential
equation can be written to describe a balance between dis-
torting and restoring forces acting on the cooperating
segments of the entire molecules. Rouse and Zimm obtained
solutions expressible in terms of the complex viscosityl

n*(w):

(s) (2.7-1)

I
0
~
-3
I~

L 1 + iwA
n n w b

where Ap is the relaxation time of the p'th mode of motion,
and k is Boltzmann's constant. The Rouse assumption of a

"free-draining" molecular coil led to:

= o 1 - -
A= 2 (2.7-2)

1Complex notation is a convenience for manipulat-
ing simultaneously two separate equations: one describing
the component of stress in-phase with the shear, the other
describing the out-of- phase component. Thus we assume
T12 = Re{19,e'¥T} and e;; = Re{e? elWT} in which 195, €93
are complex amplitudes and w = % is the radian frequency.
Then we define:

17,/€75 = n'(w) - in"(w)

n*(w)
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where AR is the longest relaxation time constant. 2Zimm's
introduction of hydrodynamic interaction between segments

gave the result:
A = I:AR:I l—A-7—l (2.7-3)

where the Ap are numerical solutions to a complicated
equation. Bueche's concepts, similar to those of Rouse,
produced a slightly different expression with relaxation

times twice the magnitude of Rouse's.
§2.8 Non-linear Response of Viscoelastic Fluids

In recent years several models have been proposed
which describe non-Newtonian viscosity, normal stresses,
and oscillatory phenomena of viscoelastic fluids [49, 50,
51, 52, 53]. Most of these theories have been partially
successful in describing some of the observed features of
viscoelastic phenomena. Naturally none of them seems to
be able to simulate, without ambiguity, all features of
viscoelastic phenomena and certain other effects observed
in complex fluids. Most of these theories and special
cases of the more general theories are naturally subject

to certain assumptions. Typical assumptions include:

l. An absence of peculiarities within the fluid or
between the fluid and the confining boundaries
which would cause the no-slip criterion to be

violated.
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2. No preferred orientation by the fluid with respect

to the confining boundaries.
3. Absence of a yield stress.

4. No time-dependent behavior of the type referred

to as thixotropy, rheopexy, etc.

5. The fluid is a continuum rather than a collection

of discrete particles.

Molecular theories have also been developed which
attempt to portray certain viscoelastic phenomena and non-
Newtonian viscosity behavior in terms of inter- and intra-
molecular forces, polydispersity, coil rigidity, network
and entanglement effects, and other morphological
parameters [54, 55, 56].

Models of great generality, and great complexity,
have been proposed by Rivlin and Erickson [57], in terms
of functions of time rather than time constants, and by
Coleman and Noll [14, 15], in terms in functionals evalu-

ated at different times.

§2.8.1 Sprigg's Four-parameter Model

Spriggs proposed [58] a non-linear extension of
the generalized Maxwell model as a constitutive equation
for viscoelastic fluids. The non-linear operator which
is a special case of the one used by Oldroyd in formulating

his 8-constant model [l11] is given by
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DT
Ft1=—=(lL+c¢€)(eT + Toe-2¢t (1-e)68) (2.8-1)
€ Dt 3 °r
where
Dt 9T
_—= — 4+ VeVT + T - T°W (2.8-2)
Dt ot
Here 2e = VV + (VV)T, 2w = VW - (VV)T and € is an adjust-

able dimensionless parameter. The components of VV and
VeVt in rectangular, cylindrical, and spherical coordi-
nates are tabulated in Tables 2.8-1 and 2.8-2. Simple
shear flow notation is also tabulated in Table 2.8-3.

In terms of operator Fe defined in Eq. (2.8-1),
the extension of the generalized Maxwell model is given by

P P _ _ -
™ + APFET 2npe (2.8-3)

t= 3 1P (2.8-4)

where Ap and np are constants which characterize the linear
viscoelastic behavior of the fluid. The TP are given an
interpretation in the "spring and dashpot" theory of

linear viscoelasticity [59]. The components of P are
differentiated and integrated in the same manner as the
component of T.

If one lets

-Q
A= A 2.8-5
p P ( )
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TABLE 2.8-1 Components of AV
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TABLE 2.8-2 Components of V-Vt

o -
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v v
. % - -2
C = (V V)Tr_,o + < [hrr tOO) + T cotb ) T Tee
v v
. £ -2 2
D = (V \7)1ee + 2 T Tre 2 T Yoo cot®
v v
- (Ve ) - 8
E (v ‘7)?6o + < [TIO + (ree r“)cocel + Teo

v

v
- . —— —2
Foo (VeNTea# 2 5 Ty 4 25 Tgy cotl

+

nlm

n|a)<

62z

rz

+ emmas o
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TABLE 2.8-3 Simple Shear Flow Notation

Coordinate Notation
Flow Geometry

1 2 3
0 z
A \
VA
l. Poiseuille Flow z r )
[~ 6
2. Couette Flow ) r z
r
2
3. Parallel Plate Torsion 0 z r

8

4. Cone and Plate Torsion ¢ 0 r
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and
n_ = n_A b A = — (2.8-6)
P op p=1 P paZ(a)

z p-a denotes the Riemann zeta-function
p=1
[60], then, expressions for the material functions n¥*,

o*, ed, B*, Bd, n, 6, and B can be derived in terms of

where 2 (a)

four parameters: (1) a zero-shear viscosity Ngr (2) a
characteristic time A, (3) a dimensionless parameter o
which describes the slope of log n' vs. logwand log n
vs. log Y plots in the "power-law" region, and (4) a
dimensionless parameter € which accounts for deviations

from the Weissenberg [61] hypothesis that Tyy = Ty3 = 0.
§2.8.1.1 Derivation of Material Functions

For simple shearing motion, the velocity field
has the form Vl = Vl(XZ't)' V2 =0, V3 = 0. Then the
only non-vanishing components of the e and w tensors are
€15 = €y = Wy, = -w;, = ¥/2, where y = dv,/dX,. For the
T tensor one has Tya = T and Ty3 =T33 = T3 = T35 = 0.

Then Eg. (2.8-3) becomes:



B, P Y
(1+)\p t)‘l’ T 0 +2

- 3)

R

= -1 y 0
b Y

o 0

From this matrix

p argz
le + )\p T - Ap(ET

i 31?1 -2 (8
11 p dt p'3
P
9T
P 22 4
122 + A 5t + Ap(3
atP
P 33 4
33 * Ap st t Ap(3

Since Tll + ’l'22 +T33

are independent.
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= 0, only three

[ 8 ,2.,.p P _ < ]
(3 + 3€)T12 erll (2+e)122 0
P _ P 4 2 P
Ap 6111 (2+e:)1'22 (3 §€)T12 0
4 p
i 0 0 3(l+€)Tl%
ol
0
0] (2.8-7)
p P\Y _ _ .2 -
11 + (2+e)r22)2 npy (2.8-8)
+ 26)P Y =0 (2.8-9)
3 12 2 *
- EQ)TP i =0 (2.8-10)
3 12 2 :
+ 3,,P X =0 (2.8-11)
3 12 2

of these equations
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A. Non-Newtonian Viscosity and Normal Stresses

For steady simple shearing, arij/at =0, i,j =

1,2,3, then Equations (2.8-8) through (2.8-11) become:

P _ P P Y - _ -
12 Ap(erll + (2+s)r2 )2 npy (2.8-12)
P 8,2, P Y = -
Tll kp(3 + 3€)T12 2 0 (2.8-13)
p 4.2, Y _ -
55 + Ap(3 38)112 5 =0 (2.8-14)
P 4,4,P Y _ _
33 + Ap(3 + 3€)T12 3 0 (2.8-15)
From Equations (2.8-12), (2.8-13), and (2.8-14)
.Y
i, = - L (2.8-16)
1 + (cA_y)
p
where ¢ is a shift factor and defined as:
2 _ 2 - 2¢ + ¢?
c? = 3 (2.8-17)

Then from Equations (2.8-5), (2.8-6), and (2.8-16) the
non-Newtonian viscosity can be obtained as:
«© n

-y) = P
le/( Y) = E . 2
p=11 + (cApY)

n(y)

o
P (2.8-18)
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From Equations (2.8-13), (2.8-14), and (2.8-16)

2 A_n ?2
-, —2F (2.8-19)
1l + (cApy)

Then from Equations (2.8-5), (2.8-6), and (2.8-19) the

primary normal stress coefficient can be obtained as:

L .2
6 (Y) - 1,,)/(=¥9)

(Tll

2 An
o) 1
- (2.8-20)
Z(a) p=1 p2a + c2>‘2Y2

N o~ 8

From Equations (2.8-14), (2.8-15), and (2.8-16)

€ A_n_ Y2
P _ P .. P_P (2.8-21)

33 . 2
1 + (cA
(c pY)

Then from Equations (2.8-5), (2.8-6), and (2.8-21) the

secondary normal stress coefficient can be obtained as:

Hi

. .2
B (v) - 133)/(-1{ )

(122

e)‘"o 1
= - (2.8-22)
Z(a) p=1 p2a + czxzyz

o8

B. Oscillatory Shear Stresses and Normal Stresses

Assume that the amplitude of the shearing

vibrations is small enough that the terms of order Y
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can be neglected. Since Tij = 0(92), from Eq. (2.8-8)

predicted T2 varies linearly with ?.

Let:
v = R {y° &%) (2.8-23)
), = R_{1], %) (2.8-24)
Then:
112§ = Re{rgz elvty Re{Qo elmt}
_ 1 o :0 _2iwt o —o _
=3 Re{leY e + Ty, } (2.8-25)

Substituting Equations (2.8-23), (2.8-24), and (2.8-25)
into Eq. (2.8-8) and equating terms with a similar time-

dependence by removing Re- operator gives

*0
n, Y
po _ _ -
T12 T‘E‘IGT; (2.8-26)

From Equations (2.8-5), (2.8-6), and (2.8-26) the complex

viscosity n*(w) is given as:

n* (w)

n'(w) - in"(w) = 19,/(-¥°)

; o 1 - i wA p
p=1 paz(a) 1 + w2 Zp-2a 1l + wzxzp-
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Therefore,
n > a
(o) z
n'(w) = - TLE_ (2.8-28)
Z(a) p=1 R T 22
n (o]
o z wA
n"(w) = _ (2.8-29)
Z(a) p=1 p2a + w2)?2

From Equations (2.8-4), (2.8-9), (2.8-10), (2.8-11), and

(2.8-26) the predicted oscillatory normal stress must be

of the form:

o 2iwt
e }

T.. = R {d. + 1.
e ] JJ

Substituting Equations (2.8-23), (2.8-24), (2.8-25), and
(2.8-30) into Equations (2.8-9), (2.8-10), and (2.8-11)
and equating terms with a similar time-dependence by

removing Re- operator gives:

ng (1 + i2wAp) = i—%—g kprﬁg y° (2.8-31)
B (1 + i2wp) = - 2E A,the 7° (2.8-32)
159 (1 + i2wdp) = - l_%_e xprll’g ¥° (2.8-33)
dll> -4 ; € Ap#{g v° (2.8-34)
gP = - 2- €, [pojo (2.8-35)

2 6 p 12



37

1l + ¢ po o

P__1l+ce -
d3 = 3 Aple Y (2.8-36)
From Equations (2.8-26), (2.8-31), and (2.8-32)
2
*0
A_n_ (y)
po _ _po _ _ PP _
T11 T T22 T+ Twx ) (T + 250n) (2.8-37)

Hence, from Equations (2.8-5), (2.8-6), and (2.8-37) the
primary complex normal stress coefficient 6*(w) is given

as:

2
B (w) = 8'(w) - 16"(w) = (19 - 15,)/(-(¥")
noA o 20 _ ., 2,2 _ ... @
= R i ey el LI RELY
P=L (p%® + w29 (p° + 4029
Therefore,
naxoo 2a 2.2
z o) - 2w A
0' (w) = 32— *“ (2.8-39)
2(a) p=1 (p2a + w2x2)(p2a + 4w2A2)
n_Aa iy a
" X 3 (A))\P
8" (w) = oov (2.8-40)
Z(a) p=1 (pﬁa + w2A2)(p2a + 4Q7A2)
From Equations (2.8-16), (2.8-34), and (2.8-35)
nA_ (1 - iwr ) |y°|
P_ 4P _ _ PP P -
a; - &b = o (2.8-41)

1 + w™A
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Hence, from Equations (2.8-5), (2.8-6), and (2.8-41) the

primary normal stress displacement function ed(w) is given

as:

-
0% (w) = R {d] - a,}/(-13°]")

1 Ta ) (2.8-42)

Similarly, from Equations (2.8-5), (2.8-6), (2.8-16),
(2.8-32), (2.8-33), (2.8-35), and (2.8-36) one can obtain
the secondary complex normal stress coefficient B*(w) and

the secondary normal displacement function Bd(w) as:

2
A n (Y
po _ PO _ £ p_p . 8-
Toy ~ T33 T = TX )1+ 1263 ) (2.8-43)
An_ 2a 2.2 . a
z p°% - 202 - i3wlp
B* (w) = 3 'Z£L = (2.8-44)
2 Z(a) p=1 (p2a N wzki)(pza R 4w2A2)
- 2 2.2
2 Z2(a) p=1 (p a2 ) (p 20222
An e a
€ o I 3wip
B (w) = 3 = ; (2.8-46)
2 Z(a) p=1 (p2a + wzkz)(pza N 4w2A2)
AN ®
e = 3 o * L 2.8-47
B7(w) =3 7%y p=1 Za 7.2 ( )
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C. Stress Relaxation

The transient stresses of a viscoelastic fluid can
be studied under simple unsteady flows: stress relaxation
after cessation of steady simple shear which has the

following velocity distributions:
Vi(x,,t) = Y X,[1 = h(t)]
V, =V, =0 (2.8-48)

where h(t) is the unit step function. For stress re-

laxation, the following material functions are given by

model as:
., © n_expl-t/Ap]
n(yg.t) _ -1 Ty, () _1 ¢ -B —
o o ?o n, p=1 1 + (ckao)
- _1_ I Pme"P['Pmtl“2 (2.8-49)
2(a) p=1 p2a + (CXYO)
B (~ (t) _ (t) o _
(Yo,t) _ 1 11 Toy _ 1 1 Zﬁpnpexp[ t/xp]
No o Y‘oz No p=1 1+ (ch v )2
p'o
- -]
- _2) I ex [-pat/A] _
Z(a) p=1 75 © 2 (2.8-30)
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§2.8.1.2 Computation of Material Functions

For general &, simple rearrangement leads to the

rapidly converging series. From Eq. (2.8-18)

o]

n(v) _ 1 I p°
no z(a) p=1 p2a + c2l2§2
m p:l p(l p=l pa(pza + czszz)
2,2:2 o
cA%y z 1
=1 - _ - (2.8-51)
Z(%)  p=1 2T (p2% + c2r2y2)
Similarly,
o(y) _ 1 I 1
2nox Z(a) p=1 p2a + CZAZQZ
2,2:2
Z(2a) c”A z 1 (
= - _—T_¥_ L - 2.8-52)
Z(a) Z(a p=1 p2a(p2a + C2A2Y2)
B(Y) _ _1 I 1
enok Z(a) p=1 p2a + c2A2§2
Jz2w) B2 s - (2.8-53)
Z(a) Z(a) p=1l p2a(p a 02A2Y2)
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n'(w _ 1 = ¢
o Z(a) p=1 P2a + A2w2
22 °
ATw p) 1
-1 - L (2.8-54)
Z(a) p=1 pa(p2a + Azwz)
n"(w _ _1 I 1
mnok Z(a) p=1 p2a + A2w2
22 o
= 2(20) A w_ I : (2.8-55)

(p2a + A2w2)

Z(a) Z(a) p=1 p2a
For cx§>>l Gregory's formula in the form [62]

=]

J f(x)dx = I f(p) + E%QL + error terms (2.8-56)
o p=1

can be used to give asymptotic expressions for n(y), 6(y),

B(Y), n'(w), and n"(w). From Eq. (2.8-18)

oo

n(y) _ _1 I p
o Z(a) p=1 p2a + c2A2§2
Hence,
a
£
£(p) = ——F s g” = 0, and

P + c™A ;



Qo e o) a
J £(x)dx = f X — dx
o o x2a + CZAZYZ
s
m(cAy)
[
20 cos VT
Therefore,
: L 3-1
n(y) _ m (cAy) _
- = - Z () (2.8-57)
o) 20. cos 20
Similarly,
Ly
n'(w) _ L (Aw) (2.8-58)
o 20 cos o z(a) .
20
_ 2-2 _;
n"(w) _ _1 m (Aw) _ Qw) (2.8-59)
w)\no Z(a) sin 21r_a 20 2
. —- . %"-2 . —2
%X(l_)_ - _rl L (cAy) _ (cAy) (2.8-60)
Ng Z2(a) Lfin o 20 2 :
20
. B . %"2 . 2
B(y) _ _1 m (cAy) _ (CXY)-~] -
ekno Z(a) K 20 2 (2.8-61)
sin - J
| " o

From Equations (2.8-18) and (2.8-57) the limiting

slope s of a plot log n vs. log ? is given by

s=3-1 (2.8-62)
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Hence, for high shear rate ?, the viscosity function given
by Equations (2.8-18) and (2.8-57) exhibits power-law

behavior with n = %.

§2.8.2 Bird-Carreau Model

Bird and Carreau [63, 64, 65] proposed a non-
linear extension of the generalized Maxwell model for

polymeric fluids as a constitutive equation which is given

by:
- - ]
‘4 £ = on_ e (ETEN Ao
) = -7 T 22 T > Tt at' (2.8-63)
- Q0 = L]
p=1 )\zp[l + FLEDAT

where Alp and AZp are two sets of time constants; Alp is
associated with the rate of creation of network junctions,
whereas the second set Azp is associated with the rate of
loss of junctions. The term 1 + %ﬂ%(t')xip accounts for

the structural changes of the material when undergoing

strain. The finite strain tensor T'J is defined by [66]

Tii - [[1 + -*23] [aij(t') - @ij(t)J + E g 01873 (0)x

(g, (t") - §__(t) 1] (2.8-64)
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If one lets

n_.=nAi,. /I ; (2.8-65)
P o'lp’ .y 1P
2 %1
A1p = Al(p"'l) ’ (2-8-66)
and
2 2
A2p = AZ(E:T) (2.8-67)
then, expressions for the material functions n*, 0%, ed,

B*, Bd, n, 8, and B can be derived in terms of six

parameters: (1) a zero-shear viscosity Ny (2) two sets
of the characteristic time constants Al and Az, (3) two

sets of dimensionless parameters oy and which describe

%2
the slopes of log n vs. log ; and log 6 vs. log ? plots,
respectively, and (4) a dimensionless parameter € which
accounts for deviations from the Weissenberg hypothesis
that Tog = T33 = 0.

The Bird-Carreau model is an improvement over
Sprigg's four-parameter model which has several weak
points: (1) the curve of the log n vs. log ? incorrectly
has the same slope in the power-law region as log n' vs.
low w, (2) in the power-law region the slope of normal
stress curve is too rigidly related to the slope of the

viscosity curve, and (3) the ratio of the normal stress

difference is required to be constant.



45

§2.8.2.1 Derivation of Material Functions

For a steady simple shearing motion for which the
velocity profile is given by v, = §x2 and then IIe(t') = %2.

The finite strain tensor T'J is given by:

[yo2 Y6 0]
T = |yo vo2 0 (2.8-68)
0 0 0

where 6 is the time elapsed (t-t') since a given inter-
action was formed.

Substitution of Eq. (2.8-68) into Eq. (2.8-63) and
integrating yields the following equations for the shear

and normal stresses:

Ty, == L B (2.8-69)
p=1 1 + (xlpy)
© N A, Y2
2p
Ty = Ton = =2 L. —& (2.8-70)
11 22 p=1 2
1+ (Alpv)
® N A, Y2
_ _ _p "2p -
Tyy = T33 = -E L (2.8-71)

p=1 ° 2
1+ (leY)

Hence, the material functions n, 6, B are given as:



n(y)

8 (Y)

11

B(y)

Note that B(Y)

to be a constant,

tains only the

and Az.
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® n

~
=
N

—£ =z P 5
-y - .
p=11 + (Ale)
o a
n 1
- o z p
T Z{a)) -1 p=2 29, a2 (2.8-72)
p + (2 "Ay)
T11 T T2 Ny A
—=—z— =21 E—
-Y p=1 1 + (A, v)
P
a2+l o —a
2 Azno ; p 1 72 (2.8-73
Z(ay) - 1 p=2 2a, a; L, 2 ) )
p + (2 Tagy)
T - T ©
22 33 _ n_. A
52 * pil N +p(x2p-)2
le
[0 ]
E2 2An @)=,
o P
Za) -1 . T o 2 (2.8-74)
1 p=2 1

is proportional to e(Q) only if E is taken
€. Note further that, whereas n con-

Al, the functions 6 and B contain both kl

Hence one would expect that, in the power-law

region, the slopes of n and 6 would not be connected in

the same way for all fluids.

For oscillatory, small-amplitude motion, the

components of the complex viscosity n*(w) are:
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n*(w) = n' - in"
= o n o wn_ A
- B - : E_2P . (2.8-75)
1+ (Azpw) p=l 1 + (A, w)
n'(w) = = "p
p=l, . (A, w) 2
no o p-al+2a2
= z(a)) =1 22 2a, o, 2 (2.8-76)
P=< p + (2 A
" y w n A
n"(w) = I P _2p
p=1l, ., (A, w) 2
a
2 2ui.n . —ayta,
- 20 ) (2.8-77)
2 al -1 =2 2a2 a, 2
P=< 5 + (2 “)w)

The transient stresses of a viscoelastic fluid
can be studied under simple unsteady flows; stress relax-
ation after cessation of steady simple shear which has the

following velocity distributions:
Vy(xy,t) = Y x,[1 - h(t)]
Vv, =V, =0 (2.8-78)

where h(t) is the unit step function.
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For stress relaxation, the following material

functions are given by the model as:

n(Yolt) _ .-_l. {le(t)] - i, ; TIR QXP('t/Azp)
n - Y n_. - - 2
o o o op=l 1+ (Alpyo)
o a o
1 » p Texp[-(p 2,2 2>\2)t]
=z a,) - 1 piz 2al C (2.8-79)
P + (2 Alyo)
e(Yort) . -1 [Tll 122]=‘2_ ; nglggrexp(-t/agg)
n - 152 N, oo e\ 2
o o o o p=1 1+ (Aleo)
a,+1 a,=0 a a
2
2272, = pl! Zexpl-(p /2 At 2. 5-50,
= Z .8~
zZali -1 p=2 Zal oy 2

P + (2 7 Avy)
§2.8.2.2 Computation of Material Functions

As discussed in section 2.8.1.2, for low shear
rate of frequency, the series for the material functions
given above can be rearranged into rapidly convergent
series, in which usually only the first few terms are
needed. Hence,

. al, .2
No Z(al) -1

(2.8-81)




ia,
v
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2 -(a,+a,)
. 2 A a ® 1 72
o(y) _ 2 I | 2 p
ng - Zlay - 1|2l mm(2 Iy e 5, .2
P=¢p T+ 2 Ty
(2.8-82)
2 2
(2% w) ¢ @
n'(w) _ 2 1 _
O 1 B T o, 2 (2.8-83)
p ~(p + (2 “a,w) )
a
2 -(o,+a,)
2 “A,w a © 1 72
n"(w) _ 2 1o 2 2 P
o z(al) -1 z(0‘1“")‘2) 1-(2 kzw) 52 2a2 oy 2
pP=< 5 + (2 A0
(2.8-84)
For Alp§>>l and A, w>>1 Gregory's formula in the
form [62]

J £(x)dx = L f(p) + f%;l + error terms (2.8-85)
o p=1

can be used to give asymptotic expressions for n(%),

8(y), n'(w), and n" (w).

l-al
o
l .
ny) ____ 1 m(2 Ty b ) 1
n.  Z(a;) -1 1+a a, |, 2
° 1 20, sin(zaEW) (a,+1) (2 1x1y)
1
1+g(ll

- ) (2.8-86)

Ql o
2(1 + (2 "37))

_
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l-al-a

2
a.+1 a a
. 2 e Ly 1l
8(y) _ 2 AZ (2 AlY)
n 2(a,) - 1 l+o,-a
o) 1l .
EGISIH(TI—'—N)
.
1
1 + (o, - a,)
1 6 1 2
- a’l 2 - al 2 (2.8-87)
(al—az)(z Aly) 2(1 + (2 AlY) )
-
l-al
o o
2 2
n' (w) 1 m(2 "A,w)
n T Z(a) - 1 1+2a.,~-0
o 1l . 2 1
2azsln( s )
2
1
1 + =(2a, - a,)
- 1 5 5 - 6 az ; (2.8-88)
2 2
(2a2 - ay + 1) (2 kzw) 2(1 + (2 Azm) )
—
1-al-a2
a a a
2 2 2
n T 2(a,) -1 1+a.,-a
o] 1l . 2 1
2(1251!1(-—-55-2—-—11')
1
1 1l + -6-(a2 - al) (2.8-89)
- a 2 a, 2 .
2
(az - oy + 1) (2 Azw) 2(1 + (2 Azw))




CHAPTER 3

POROUS MEDIA PARAMETERS FOR VARIOUS

CONSTITUTIVE EQUATIONS

When a fluid flows through a porous medium, the
velocity of its elements changes rapidly from point to
point along its tortuous flow path. The forces which
produce these changes in velocity vary rapidly from point
to point. It is reasonable to suppose that the random
variations in flow path for any particular fluid element
are uniformly distributed. Also the variations in magni-
tude of velocity can be expected to be distributed uni-
formly with mean zero. Thus, for steady laminar flow the
lateral forces associated with the microscopic random
variations in velocity can be expected to average to zero
over any macroscopic volume. The only non-zero macro-
scopic force exerted on the fluid by the solid is that
associated with the viscous resistance to flow. For
steady laminar flow this force must be in equilibrium
with the external and body forces on the fluid.

The literature on this subject is voluminous and

experimental investigations have been done by many

51
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workers [67, 68, 69, 70, 71, 72, 73, 74] to determine the
correlation between the pressure drop and the flow rate of
fluids through packed beds. An excellent reference is the
monograph of Scheidegger [75], which contains a par-
ticularly good discussion of permeability concept. Other
general references are those of Collins [76], Carman [77],
Muskat [78], Leva ([79], and Richardson [80].

Some effort has been extended toward establishing
methods for predicting non-Newtonian flow behavior in
porous media and for correlating pressure drop versus flow
rate data with viscometric data for porous media experi-
ments. At the present time there is no universally
acceptable scale-up method for flow of rheologically com-
plex fluids in porous media. The various methods cur-
rently employed or suggested, can be arbitrarily divided
into at least three major categories. The method which
seems to have received the most attention is based on the
coupling of a particular model for a porous medium--i.e.,
the so-called hydraulic radius model, with an assumed
functional relationship between shear rate and shear
stress to describe the rheological behavior of a non-
Newtonian fluid. This method involves correlations of
experimental data from one-dimensional flow experiments
in unconsolidated porous media--i.e., mostly bead packs,
with the appropriate rheological parameters derived from

viscometric experiments on the fluid of interest. The
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power-law and Ellis models have been used to describe

the purely viscous behavior of the non-Newtonian fluids.
Another category involves generalized scale-up methods
which adapt Darcy's law to non-Newtonian fluids without
invoking a particular rheological model of purely viscous
behavior. The appropriate rheological description can,
in principle, be derived from viscometric and porous media
flow experiments. A third approach, based on the concept
of the simple fluid, involves the application of dimen-
sional analysis to the scale-up of porous media flow data
for an arbitrary viscoelastic fluid.

This work was mainly directed at developing a
generalized scale-up method based on the capillary model.
Wall effects were accounted for using the hydraulic
radius concept. Various empirical and derived models for
non-Newtonian fluids were applied to the problem of flow
through porous media. Development of packed bed equations
for various constitutive equations are contained in
Appendix A and the results of the modified Ergun friction
factor versus appropriate modified Reynolds number corre-
lation for each rheological model are listed in Table
3-1.

It has been indicated that Darcy's law is funda-
mental within the assumptions made. Two significant
aspects of this law are the analysis of capillary flow

and the assumption of fluid homogeneity. It is the



54

MUK AU@1a33TP
ora jo auaziad
WBTIm $°0 PuW [

Koywrng
193@m DOT(I8IC UY w Tpe-1 -
asonTTad[Auaewh10g X [ crauseIs
©n i- 1
.—
Juedied ybiea gy
pue ‘0°f ‘01 ‘080 © 1
ELEL
283N POTTTINTQ UT - 43 o 31
suopyroaakdrhurakiod v i ~ ° . -}
° v- %
u
) Jje‘eq
SUT 0 e - T
° Iusd3ed » T=d
v % e , uBYeA 050 puv 4t 3 =2
CN -1 kl $T°0 ‘0T°0 ‘SO0
. 20D o %mhdlo ol o3 1030 v ° sbd1adg
° POTITISTQ Uy ° ln.&. - n—,-n« .t
u(y - . ° opTwetiadeitod
I(0)3 2£ soorz) > %
330‘0y
o YRl et IR}
(14
Jusdzed L
LI o yBrea 050 puw
- _ o™ axe ‘S$T°0 ‘0T°0 ‘s0°0 Y A o
S 1 d i Y 1020m ° £, I_.Aﬂ,...:. 1t
N a PeT17IeIQ UY 111)
iy - - aptuwethroektog o, -
IIr|m_C.uo °
s “a .1 lcmPWIC.- o 330000,
2 a
33
u v =gt < T
s Jusdxed
o byea o5 0 puv
llll) o™ 4 ‘§T°0 ‘0T°0 ‘S0°0
\ 2 -1 . dwe u -1
U PE] u.w (1. L) FLIL™ - ToTened
3 POTTIILTQ UT X
I.CF -~ sprwek1ovitoq
s a0 (_yY ! (L) Jeug (3 - o 330N,
-y i {Ta_ | “uy °, "
- Y 2
T
2 - 1n Son dxe » o
o5 3% % ot |mm. w2 = 1 %. e - 2970 . - Mg PelITISTA " :.:«.. o 0y uPTUOIAGN
. € Q :
(ST Y. 21 7] JeGunN splouley uoTIvIIUSIUO) s100wwiIRg uoryenby
1ol snozog Pa1; PO PUP 303I3FY UOTIITI pur ucrinjosg 1opoK BATINITINUOD Tepon

9193079194 VIPON INOCIOG

1-¢ e



55

failure of these very same aspects which lead to the more
obvious deviations of Darcy's law. By analogy to flow
through tubes, at high flow rates, deviations from Darcy's
law are expected due to the inertial effects. By the same
analogy, we would expect deviations to occur in systems
where the pore diameters become comparable with, or less
than, the molecular mean free paths of the flowing gas,
i.e., the so-called "slip" flow region and the region of
"molecular streaming" or Knudsen flow. Other anomalies
(based on Darcy's law) are adsorption, capillary conden-
sation, and molecular diffusion. These latter effects

may be referred to as surface flow effects, i.e., the
behavior of non-homogeneous flows. Finally, there are
deviations due to chemical reactions and ionic effects

as they are not included in Darcy's law. Scheidegger

[75] has given an extensive discussion of general equations
which account both for high flow rates and for molecular
effects. Carman [77] has presented a thorough summary of

surface flow effects.



CHAPTER 4

POLYACRYLAMIDE SYSTEM

Polyacrylamide is a common industrial flocculant
used for clarification, thickening, and filtration. A
host of factors influence the efficiency of these oper-
ations, and in most systems, it has been found that
flocculation of the solid results in greatly improved
separations. Flocculation by definition is the agglomer-
ation of particles into larger units called flocs, which
normally settle and filter better due to their increased

size.
§4.1 Chemistry

Separan is Dow Chemical Company's (Midland,
Michigan) trademark for a group of synthetic, organic,
high-molecular weight materials of the polyacrylamide type
with normal molecular weight distribution. Dow Chemical
Company provided the Separan AP 30 for this research
project with a molecular weight range of 860,000 to
1,000,000. Separan polymers are very high-molecular

weight synthetic water soluble polymers formed from the

56
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polymerization of acrylamide. The family of Separan
polymers is comprised of varied molecular weight products
ranging from essentially nonionic nature to varying
degrees of anionic character. They are all composed of

the illustrated unit structure

CH2 — CH

Because of the preponderance of amide groups,
polyacrylamide is essentially nonionic in solution, al-
though a small portion of the amide groups are usually
hydrolyzed to anionic carboxyl groups. The nonionic
character of acrylamide may be altered by further re-
placement of amide groups with carboxyl groups thereby
increasing the ionic nature of the polymer. Such polymers
may be classified as anionic polyelectrolytes in neutral
and alkaline solutions. Under acidic conditions the
ionization is repressed and the polyelectrolyte assumes
a nonionic character. Such polymers may be represented

by the following structure.
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The exact mechanism by which Separan polymers
agglomerate suspended inorganic solids is not known. It
is strongly suspected, however, that these long linear-
chain polymers are adsorbed by suspended solids, forming
strong bonds between the polymer and the solid at one end
while the other end of the long molecule is still free in
the suspension to be adsorbed on other particles. With
many polymer molecules in solution, this action quickly
results in the quick and irreversible agglomeration and

flocculation of the particles in suspension.

§4.2 Physical Properties

A. Appearance

Separan polymers are produced as white, free
flowing, amorphous solids with a bulk density of 0.55
grams per cubic centimeter. Ninety-five percent of the
particles have a diameter of less than one millimeter.
Particle size can be reduced to less than 40 microns by
various grinding techniques similar to those used with

other thermoplastic materials.

B. Thermal Stability

The solids soften at 220-230°C. and decomposition
becomes evident at 270°C. The Separan flocculants do not

become fluid upon heating.
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C. Solution Concentrations

Separan polymers are rapidly wetted by water and
can be dissolved in all proportions. In practice, how-
ever, solutions of higher than 1.0% concentration by

weight are rarely used, due to their high viscosity.

D. Solubility in Organic Solvents

Organic solvents such as ether, benzene, hexane,
methanol, and chloroform will not dissolve the Separan
polymers. Some liquids having a high oxygen to carbon
ratio, as in glycerine and ethylene glycol, will, how-

ever, dissolve or swell the Separan polymers.

E. Storage Life

Under usual conditions of storage, the Separan
polymers show excellent stability. To avoid even slight
degradation, however, prolonged periods of storage, such
as a year or more, should be avoided, especially where

storage temperatures are likely to be high.

§4.3 Solution Preparation

The schematic diagram of the stock solution

preparation is shown in Figure 4.3-1.
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Dry Separan
Distilled
Agitator \\\\ \ll r’ I Water

Dissolving
Tank

Figure 4.3-1 Schematic Diagram of the Stock
Solution Preparation

1. Calculate and weigh out the amount of Separan

necessary for the batch. (For example, 200 grams

will prepare 20 litters of 1.0% stock solution

in a 30 litter vessel.)

2. Fill the vessel one-fourth full or more of

distilled water.
3. Turn on the agitator and distilled water.

4, Add the Separan polymer to the funnel and watch
it feed to make sure there is no interruption.
If an interruption occurs, the distilled water
should be turned off immediately, the Separan
polymers removed from the funnel, and the cause
of the stoppage removed. The distilled water
flow may then be started again, and the balance

of the Separan polymers placed in the funnel.
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5. After all the powder is dispersed, leave the
distilled water on until it reaches desired

amount (20 litters in example).

6. Continue the gentle agitation until no trans-
lucent particles can be seen in the solution
(1 to 2 hours). The stock solution is now ready
to use. While increased temperatures will in-
crease the rate of solution, those higher than

150°F. should be avoided.
§4.4 Rheology

The non-Newtonian viscosity of bulk polymers and
their concentrated solutions has been studied extensively
during the past several years [94, 95, 96, 97]. For most
systems of steady shearing flow the viscosity coefficient
depends on the shear rate in a rather characteristic
manner. At sufficiently low shear rates the viscosity
is independent of the shear rate (the Newtonian region);
however, within some critical range of shear rates the
viscosity begins to decrease as the shear rate is in-
creased to still higher values. The Newtonian viscosity
(zero-shear viscosity, no) and the critical shear rate
region may change by many orders of magnitude from one
system to another depending on the nature of the polymer,

its molecular weight, the solvent, and the concentration.
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Several proposed models and material functions

were fully discussed in Chapter 2.

§4.4,1 Experiment

The fluids investigated were solutions of mono-
disperse polyacrylamide in distilled water. The poly-
acrylamide was manufactured and provided for this study
by Dow Chemical Company, Midland, Michigan.

Concentrations were converted to units of gram/
100 cc by assuming additivity of volumes. Solutions were
prepared in the range 0.05-0.5 gram/100 cc of poly-
acrylamide.

Viscosity and primary normal stress difference
measurements of the four series of polyacrylamide solu-
tions were made for the shear rate range of 0.00675 to

851.0 sec !

with a Weissenberg rheogoniometer, a commercial
cone-and-plate viscometer manufactured by Farol Research
Engineers Ltd., Manchester, England. Although a range of
sizes are available with the instruments, a platen diameter
of 10 cm and a cone of angle 2.0083° were used with a

1/16" torsion bar and a 1/16" normal force spring. The
operation of this Weissenberg rheogoniometer is fully
discussed in Appendix B, and several problems arising with

the use of this instrument are discussed elsewhere [98,

99].
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Room temperature was carefully adjusted to 21°C
prior to taking measurements so as to maintain the tem-
peratures of samples and reservoir platen arrangement
which is shown in Figure 4.4-1 constant at 21 + 0.5°C.

In the start-up experiment, the material was
initially at rest. All stresses due to earlier experi-
ments or loading the sample were allowed to relax. When
this instrument was started, the stresses increased with
time, quite often overshooting, then approaching a steady
state value from the high side as shown in Figure 4.4-2.

The maximum chart speed was used in this experi-
ment during high shear rates in order to get the most
accurate curves of shear stress versus time. Using these
data, the relaxation spectrum, H(1), was constructed from
the following equation

N dle(t)

H(T) = - '\.’t W (4.4—1)

where

Ordinarily, a series of points equally spaced on the
logarithmic time scale is chosen, each providing a value
of Hat t = t. Then from a tentative logarithmic plot
of H vs. T, the slope m is measured at each point; the
corresponding value of N is obtained and multiplied by

the provisional value of H (see Ferry, 45, p. 90).
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Figure 4.4-1 Reservoir Platen Arrangement
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log time

Figure 4.4-2 Start-up Experiment

Data reduction and discussion of experimental

errors follow.

Viscosity Measurement

The equation to determine the viscosity from the

rheogoniometer is
n(y) = 17,/(=Y) = kpbn/Y (4.4-2)

where AT is the measurement made on the torque meter (0.001
in.), kT is the machine constant (see Appendix A), and Y

is the shear rate. For the shear stress greater than
80 dyne/cmz, the error in the torque meter reading, AT’
is not greater than 3%. This error appears as fluctu-

ations in the reading. The errors in Q and kT (~0.1%)

are negligible compared to the error in AT.
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Normal Stress Measurement

The primary normal stress difference from a rheo-

goniometer measurement is given by

- T k,,A (4.4-3)

(1, 22) = kyly

where AN is the measurement made on the normal force meter
(0.001 in.) and kN is a machine constant. For values of
-(Tll - 122) < 500 dyne/cm2 there is a fluctuation of the

meter reading of 15% and for values of —(Tll - >

22
1000 dyne/cm2 this fluctuation is 5%. The error in kN
is negligible. Thus, primary normal stress difference
data are accurate to within 15% for low values (< 500
dyne/cmz) and 5% for high values (> 1000 dyne/cmz). For

values of -(Tll - T22)< 100 dyne/cm2 the errors are too

great to consider the values reliable.
§4.4.2 Results

The basic rheological data for Separan AP30 are
summarized in:

Appendix D: Steady Shear Stress, as n(y)
Vs. Y

Appendix E: Steady Normal Stress, as
—(Tll - 122) vs. Y

Appendix F: Stress Relaxation Spectrum, as
H(t) vs. t

As discussed earlier, the viscometric curves

should have a precision of about 3%. Some typical data
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are plotted in Figures 4.4-3,4,5, and 6 as Ty5 Vs. Q,
n(?) vSs. ?, 6(?) vs. ?, and H(1) vs. t, respectively.

There are two important effects which may in-
fluence the viscometric data; these are viscous heating
and aging of the fluid. Viscous heating is a problem at
high cone speed. Readings are not valid when the heat
resulting from viscous dissipation produces significant
temperature gradients within the fluid. Turian and Bird
[100] have derived a formula for the threshold shear rate
at which viscous heating would influence the steady state
torque readings. They did not provide a method by which
the observed readings may be corrected. There was no
tendency for the torque reading to decrease with time for
a fixed cone speed because of heating effects.

Viscous heating was not a problem and shear
degradation over the time of testing was not usually
measurable on this instrument. No attempt was made to
measure shear degradation rigorously but the viscosity
curve was essentially retraced from low speed to high.

It is possible that shearing during preparation of the
solution had already reduced the polymer average molecular
weight to the point where the solution was no longer
sensitive to the levels of shear encountered visco-
metrically. The high-shear behavior is determined by

the coordinated motion of closely-neighboring segments

of the molecular chain. This response is not greatly
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Figure 4.4-5 Primary Normal Stress Difference Coefficient of Separan
Ap 30 Solutions
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affected by the long-chain entanglements which are
destroyed by degradation processes. For most of the
polyacrylamide solutions tested here, the entire shear
range of the viscometer would have to be classed as
"low"; limiting values of n for each solution were
approached.

One difficulty was noted with measurements on the
polyacrylamide solutions: an apparent flow instability
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