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ABSTRACT

ANALYTICAL AND EXPERIMENTAL

MODAL SYNTHESIS

By

James Herman Oliver

This thesis presents modal analysis of an automotive flywheel

using both analytical and experimental techniques. The analytical

work was performed with the finite element code ANSYS, and the

experimental work was performed with the GenRad 2507 Structural

Analysis System. Each technique was used to determine natural

frequencies and mode shapes of the flywheel. Correlation of the

results serves as the basis for a discussion of the effects of

modelling approximations.
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Chapter l

INTRODUCTION

Modal analysis characterizes the dynamics of a structure by

identifying its modes of vibration. Each mode consists of a

resonant frequency, a damping ratio and a mode shape defining

the displacement of the structure at each resonant frequency. The

modes of vibration may be considered properties of the structure.

In recent years, the finite element method has become an

increasingly popular tool for the study of structural dynamics. To

gain confidence in finite element results it is expedient to check

the validity of the mathematical model. Traditionally this has

been done by making rough approximations through "hand" solutions

on a simplified model, or by other analytical techniques which

bound the eigenvalues. However, if the structure is available,

'modal testing via digital signal processing offers an independent

verification.

This thesis will discuss an application of both finite

element and experimental techniques for performing modal analysis

on a simple structure. Chapter 2 describes the structure under

consideration, an automotive flywheel. Chapter 3 discusses modal

testing, and Chapter 4 deals with modal analysis using the finite

element method. Chapter 5 presents correlation of results obtained

by the two methods. Conclusions are presented in Chapter 6.



Chapter 2

THE FLYWHEEL

The structure addressed in this study is a standard automo-

tive flywheel from a General Motors 350 CID engine. The flywheel

was obtained from an auto salvage yard. It was then sandblasted

to remove oxidation.

Figure 2-1 shows both sides of the flywheel. The mean

diameter of the flywheel is approximately 13.75 inches. The

center hole is 2.5 inches in diameter. This is surrounded by

six equally spaced mounting holes, each approximately 1/2 inch

in diameter. The six large circumferential holes are each 2

inches in diameter.

The interior part of the disk has apparently been stamped

from 0.112 inch thick sheet steel. (Thickness was measured

after sandblasting.) The outer gear ring, approximately 0.371

inches thick, was probably cast. These pieces are attached

with twelve equally spaced circumferential welds, each of which

is about 1.35 inches long. A counterweight is attached to the

back of the flywheel, near the intersection of the interior

plate and the gear ring. See Figure 2-1b. The counterweight

spans an arc of approximately 85° and is attached to the fly-

wheel with several small welds.



 

a) Front of Flywheel.

 

b) Back of Flywheel.

Figure 2-1 The Flywheel.



Chapter 3

MODAL TESTING

Modal testing is a means of characterizing the dynamic

behavior of a structure. Specifically, by exciting the structure

with applied forces, its natural frequencies, mode shapes, and

modal damping values can be identified. Since these parameters

are derived experimentally, modal testing provides an independent

verification for analytical solution techniques such as the finite

element method.

This chapter will develop the procedure used in the impact

method of modal testing. Figure 3-1 [l1] presents a schematic dia-

gram of the impact testing method. The structure is subjected to

an impulse force at one point and the acceleration response is

measured at another point. The pair of input-output signals is

then processed with a Fast Fourier Transform (FFT) algorithm. The

resulting ratio, output acceleration over input force, forms

the frequency response function relating that pair of points.

A data base of frequency response functions is created

relating several driven points to a reference point. Curve

fitting algorithms are then applied to the data base to determine

the modal parameters: natural frequencies, mode shapes, and modal

damping values.
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Figure 3.1 Impact Testing Method.



This procedure was applied to obtain modal parameters for

the flywheel. A detailed discussion of each step of the procedure

will be presented in the following sequence:

Test Equipment and Setup

I Geometry Definition

Specification of Test Conditions

Data Acquisition

Modal Parameter Extraction

Mode Shape Calculation

Validity of Modal Data Base

3.1 Test Equipment and Setup

The GenRad 2507 Structural Analysis System was used to perform

the modal testing. This device incorporates the SDRC MODAL PLUS

software package. MODAL PLUS is a product of Structural Dynamics

Research Corporation (SDRC) of Cincinnati, Ohio. The GenRad 2507

is made by GenRad Inc. of Santa Clara, California. The major

components of the GenRad.2507 include; a PDP 11/04 minicomputer-

controller; a high speed micro-programmed processor for Fast

Fourier Transform; a dual floppy disk drive; an analog to digital

converter; a raster-scan type video graphic display terminal;

and a hard copy printer/plotter.

Other necessary equipment are the impact force hammer, response

accelerometer, and accompanying amplifiers and cables. These devices

were made by PCB Piezotronics Inc. The impact hammer is equipped

with a force transducer in the tip to measure input force. The



accelerometer and transducer are each connected to a separate

amplifier. These, in turn, are connected to two separate channels

on the A/D converter of the GenRad; input force on channel A, out-

put acceleration on channel 8.

To simulate free-free boundary conditions, the flywheel was

tested while resting upon a 4 inch thick foam rubber cushion. A

rigid body mode of the flywheel on the cushion was, therefore,

expected.

Figure 3-2 shows the complete experimental setup prepared for

a test.

3.2 Geometry Definition

The geometry of the structure must be defined to allow graphical

presentation of the mode shapes. This was accomplished by selecting

a coordinate system and defining the coordinates of a number of

points on the structure. A sufficient number of points must be

selected to facilitate observation of the highest frequency modes

of interest, i.e., enough to visualize a complicated distortion

of the structure. But, although additional points improve the

visualization of the mode shape, each additional point requires

additional data collection and storage.

In this case, 48 points were used to describe the flywheel.

Figure 3-3 shows the flywheel these locations identified. The

coordinate of each points was input into the MODAL PLUS program.

The geometry was then previewed to insure proper point location

and connectivity. Figure 3-4, output of MODAL PLUS, shows the

geometry in an undeformed shape. Note, in Figure 3-4, a chord



    
Figure 3-2 Test Setup.

 

L:s

 

Figure 3-3 Flywheel with Node Locations.



connecting two points on the circumference. This represents the

approximate location of the counterweight mounted on the back of

the flywheel.

At this point in the procedure a reference coordinate must

be selected. The reference coordinate is the position on the

structure where response to the input forces is measured. The

position must be selected such that there is sufficient amplitude

for all modes of interest. No response could be measured if the

reference coordinate corresponded to a nodal point (or line) for

a particular mode.

In this case, the decision for the location was based on

advance knowledge of the first few mode shapes [1]. Based on

this information the accelerometer was located on the interior

section of the flywheel, at point number 10. (See Figure 3-4.)

Proper selection of the reference coordinate was confirmed later

by the finite element analysis.

3.3 Specification of Test Conditions

Test conditions are required input for MODAL PLUS to calibrate

the system and prepare it for data acquisition. Table 3.1 (output of

MODAL PLUS) lists the test conditions used for this modal test.

Many of the test conditions are determined with the aid of MODAL

PLUS. However, some of the conditions listed in Table 3.1 do not

apply to a two channel system, some are not used in the current

version of MODAL PLUS, and some are set automatically based on

selection of other conditions. The following discussion considers

the significant test conditions.
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Figure 3.4 Undeformed Geometry.

TABLE 3.1

Test Conditions

1 TRIGGER TYPE 1 28 AUKIL SCALE 1.8883

2 TRIGGER LEUEL 18 21 CH 81 RANGE 8.58888

3 COUPLING CODE 8 22 CH 82 RANGE 1.8888

4 HANNING CODE 8 23 CH 83 RANGE 1.8888

5 ENSEMBLE SIZE 5 24 CH 84 RANGE 1.8888

6 MAXIMUM FREQ 1888.8 25 CH 81 SCALE 188.88

7 A-A FILTERS 1888.8 26 CH 82 SCALE 188.88

8 EXCITATION 1 ? CH 83 SCALE 8.88888

9 FREORESP 1 21 28 CH 84 SCALE 8.88888

18 FREORESP 2 8 29 CH 81 SIGNAL 4

11 FREORESP 3 8 38 CH 82 SIGNAL 3

12 OUERRANGES 8 31 CH 83 SIGNAL 3

13 CLEAR FREQ L 8.88888 32 CH 84 SIGNAL 3

14 CLEAR FREQ U 1888.8

15 MINIMUM FREQ 8.88888

:9 MASTER IDENT 16 1* FLYHHL HODAL *1
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The impact method of excitation was chosen because it is

fast, easy to perform and requires less equipment and setup time

than random methods (which require use of a shaker). The maximum

frequency was decided upon based on preliminary calculations [1]

to determine natural frequencies of a uniform circular plate.

The frequency range 0-1000 Hz was judged sufficient to observe

several modes of vibration.

The first condition in Table 3.1, trigger type, set to 1,

indicates impact excitation with internal trigger. The term

"trigger" refers to when the time sample of the signals will be

taken. A positive value for trigger type indicates triggering on

the positive slope of the input (force) signal. Trigger level

(item 2, Table 3.1) is the percentage of full scale voltage

necessary to trigger time sampling.

The ensemble size (item 5) is the number of time samples

averaged to calculate a frequency response function. A large

number of samples reduces the effect of noise in the calculated

function. In this case 5 samples at each measurement point were

taken. The relation between ensemble size and data quality, the

coherence function, will be examined in Section 3.4.

Specification of maximum frequency (item 6) at 1000 Hz auto-

matically sets conditions 7, 13, and 14. Condition 7 specifies

the cut off frequency for the anti-aliasing filter. Aliasing is

a form of amplitude distortion introduced by sampling a continuous

signal at discrete times. Specifically, if the sampling rate is

not greater than twice the highest frequency of any component in

the signal (Nyquist frequency), then some of the signal's high
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frequency components will be effectively translated down in

frequency when the FFT is applied. This unacceptable contamina-

tion of the data is minimized by filtering out all components of

the signal higher than the required maximum frequency. Conditions

13 and 14 are further signal conditioning parameters based on

selection of the maximum frequency.

Items 25 and 26 in Table 3.1 are calibration factors. They

represent the ratio of output units to input voltages. The values,

given by the manufacturers, are 100 1bf/volt for the force trans-

ducer (channel A), and 100 g's/volt for the accelerometer (channel

B). The amplifiers are equipped with a gain selector so that

these values may be adjusted if necessary.

The remaining conditions are set by using the GenRad as an

oscilloscope and observing some sample signals. Figure 3-5 shows

a sample impact force and response acceleration time history.

For best results, the maximum amplitude of the signals should be

fifty to ninety percent of full range. Items 21 and 22 in Table

3.1, set to 0.5 and 1.0, specify the full scale voltage range for

the force and acceleration signals, respectively. By adjusting

input voltage range (item 21) and trigger level (item 2, Table

3.1), the magnitude of the impact necessary to trigger sampling

can be adjusted to the users preference.

Finally, the power spectrum of the input signal must be

examined to insure its frequency content is sufficient. Since

objective of impact testing is to simultaneously excite all the

modes of the structure within a specific frequency range, the

input signal must have adequate energy content throughout that

range.
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The frequency content of an impulse signal is inversely

proportional to the duration of the initial pulse. The duration

of the impulse depends on the hardness of the hammer tip. A softer

tip imparts a longer duration signal than does a hard one. There-

fore, a hard hammer tip can be used to emphasize higher frequency

excitation whereas a softer tip would emphasize lower frequency

excitation. Figure 3-6 shows the power spectrum of a sample

force signal. In this case, a medium hardness (plastic) tip was

used. The figure indicates that the signal has sufficient frequency

content for the range 0 to 1000 Hz.
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3.4 Data Acquisition

The major concern during data acquisition is the quality of

measured data. Since noise is always present in the measured

signal, the user must determine to what degree the measured data

has been contaminated. This is facilitated by the use of the

coherence function.

The coherence function is the ratio of response power caused

by applied input to measured response power. Thus, a perfect

measurement, one with no noise contribution, would present a

coherence equal to one throughout the frequency range. The

coherence function is calculated in terms of averaged input and

output auto-power and crosspower spectrums. Therefore, as the

number of averages increases, the contribution of noise in the

measurement decreases. Reference [2] provides a good discussion

of the coherence function and computation of the transfer func-

tion in the presence of noise.

To acquire modal data, the flywheel was struck five times at

each of the 48 points. In the process, care was taken to avoid

rebound from the initial impact (i.e., a double hit), which is one

of the easiest ways to introduce extraneous noise. In addition,

if the hammer strike is too hard, the input signal overranges its

set maximum value, and the sample is rejected. If the strike is

too light, the input signal never reaches the trigger level and

nothing happens. After five successful impacts, the coherence

function was checked. If the coherence proved acceptable, the

frequency response function was stored. The frequency response

function (ratio of transformed output acceleration over transformed



16

input force) represents the measured modal data. The modal data

base was complete when all 48 frequency response functions were

stored.

Figure 3-7 shows a typical acceptable coherence function from

the flywheel test. The frequency response function obtained from

the data presented in Figure 3-8. The upper plot of Figure

3-8 shows the phase corresponding to the frequency response

function.

3.5 Modal Parameter Extraction

Two methods are employed in MODAL PLUS for extracting modal

parameters. To estimate natural frequencies and modal damping,

a multi-degree of freedom (MDOF) curve fitting algorithm is used.

Mode shapes are then calculated with a single-degree of freedom

circle fitting algorithm. Mode shape calculation is discussed in

the following section.

The MDOF curve fitting technique involves fitting a poly-

nomial representation of the frequency response function to the

measured data over a frequency range containing several resonance

peaks. Figure 3-9 shows the polynomial form of the frequency

response function and the resulting curve fit to a segment of

measured data.

Peaks in the frequency response function represent areas of

high amplitude magnification. Hence, they are referred to as

resonant or natural frequencies. Before implementation of the MDOF

curve fit, the various frequency response functions must be reviewed

to find one which has a representative peak at all the suspected
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Polynomial Form:
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natural frequencies. One point for example, could lie on or near

a nodal point (or line) of a given mode. The frequency response

function relating such a point to the reference point would show a

small amplitude at that natural frequency. Figure 3-8 illustrates

six peaks in the range 100-1000 Hz. Two small peaks at approxi-

mately 15 and 20 Hz were evidence of rigid body modes.

After a useful frequency response function is chosen a

frequency band containing several resonant peaks must be se-

1ected. The approximate number of roots to be generated (i.e.

the order of the polynomials in Figure 3-9) can then be chosen.

The number of roots should be at least twice the number of ap-

parent peaks in the selected frequency range but not more than

eight times this number [3]. The robts of the approximating

polynomial are extracted yielding, for each root, the modal

parameters; frequency, damping ratio, amplitude and phase. From

this list of data the natural frequencies are identified by those

roots which present large amplitude with very little damping. If

such a distinction is not obvious, the procedure must be repeated

using a smaller frequency range and/or more roots. References

[4] and [5] provide a detailed description of the MDOF curve fit

technique.

Table 3.2 presents the modal parameters obtained in the flywheel

test. In this case the frequency response function relating point

5 to the reference point 10 was used to extract all the modal para-

meters.
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TABLE 3.2

Modal Parameters

12221 2225 2222122 222111512 22222 222 222 221;

1 227.122 2.224252 22.22 1.5227 122+ 52+ 1

2 251.212 2.222252 92.21 1.1272 125+ 52+ 5

5 452.244 2.222955 552.2 1.1552 122+ 52+ 2

4 224.52? 2.22525 241.5 1.2524 125+ 55+ 4

5 212.212 2.221522 524.2 -1.2422 125+ 55+ 2

1 522.252 2.222222 45.42 -1.2252 125+ 55+ 2

3.6 Mode Shape Calculation

Mode shapes are approximated with a single-degree of freedom

(SDOF) circle fitting algorithm. A SDOF system has one resonant

frequency. A plot of the real versus imaginary parts of the

frequency response function for such a system (as frequency

varies through resonance) would form a perfect circle. This is

commonly known as the Nyquist plot.

As applied in this case, the Nyquist plot for one peak

would not form a circle because the frequency response function

is a summation of the effects of all modes. However, if the

modes are sufficiently spaced, and the frequency band about reso-

nance is small enough, the resulting plot can be approximated

by a circle. Since a measured frequency response function is

composed of discrete spectral information, the Nyquist plot appears

as several data points in the complex plane. A circle is fit through
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these points using a least squares technique. The size and position

of the circle on the complex plane is sufficient information to

characterize the motion for a single point on the structure at

the natural frequency of interest.

The following procedure was used to calculate mode shapes for

the flywheel. The mode shapes were calculated one at a time

beginning with the lowest natural frequency. First, a digital

cursor was applied to a frequency response function to determine

a frequency band which included the peak of interest. The SDOF

circle fitting technique was then applied to each of the 48

frequency response functions using the same frequency band. If

the circle fit was inadequate, the frequency band was temporarily

adjusted to take more or less data from either the higher or

lower frequency side of the peak. If necessary, several iterations

were done on the frequency band to obtain a good fit. The

data was then stored and the next frequency response function was

fit with the original frequency band. Figure 3-10 shows a typical

circle fit before and after "fine tuning". When all the frequency

response functions were fit for the natural frequency, the ani-

mated mode shape could be viewed. The procedure was then repeated

until all six mode shapes were calculated.

This procedure yields both magnitude and phase. The diameter

of the circle is related to the magnitude of the displacement for

the particular node at the natural frequency in question, and

the position of the circle on the complex plane defines the

phase of the displacement relative to the reference coordinate.

With this information for each node and the geometric data denoting
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their spatial relationship, the mode shape animation is ac-

complished using linear interpolation between nodes.

The SDOF circle fitting technique is discussed in detail

in Reference [2] and [4].

Figure 3-ll shows the mode shape associated with the first

natural frequency. It is shown in one extreme position.

3.7 Validity of Modal Data Base

To gain confidence in the results of the modal test, a check

of the validity of the modal data base must be performed. This

is accomplished by synthesizing an analytical frequency response

function from the extracted modal parameters. The synthesized

function can then be compared to the measured data.

The synthesized function is constructed with an analytical

summation of all the modes extracted. In this case, the frequency

response function for the continuous structure is approximated by

a summation of 6 modes of vibration. Figure 3-l2 shows a syn-

thesized frequency response function superimposed over the actual

measured data. The fit is very good, indicating that the modal

data base and results obtained from it are reliable.

\



24

 

 

 

 
Figure 3-ll Mode Shape at First Natural Frequency (Experimental).
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Chapter 4

ANALYTICAL MODAL ANALYSIS

Analytical methods in structural dynamics have been studied

for many years. For example, the transverse vibration of uniform

circular plates was a popular topic of concern for scientists and

mathematicians in the 18th and 19th centuries. The most notable

researcher in this area, Lord Rayleigh, published a comprehensive

 

compilation of the current plate theory in The Theory of Sound

in l877 [6].

Purely analytical methods, however, are not particularly

useful for problems with complicated geometry and/or boundary

conditions. The advent of modern computing hardware and software

now makes it possible to deal with such complex problems in a

relatively accurate and efficient manner. This most often entails

use of the finite element method.

A common human trait, when presented with a large complex

problem, is to deal with only a small part of it at a time. The

finite element method involves discretization of a large continuous

structure into a number of smaller elements. By formulating the

equations governing each element with its individual boundary

and loading conditions, the system of equations describing the

behavior of the entire structure can be assembled. Assembly and

solution of the large system of equations is made possible with

25
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the use of high speed digital computers. Interactive graphics

hardware and software simplifies the formulation of the mathematical

model, as well as presentation of the results.

This chapter presents a brief background of the finite

element method which was used to perform modal analysis on the

flywheel .

4.l Modal Analysis via the Finite Element Method

Many important engineering problems that can be defined by

partial differential equations can be solved with the finite

element method. This section will be limited to the finite

element method as applied to linear free vibration problems,

specifically, modal analysis.

The equation of motion for a structural system that is un-

damped and has no forces applied (free vibration) may be expressed

as a set of simultaneous second order linear differential equa-

tions. These may be written, in matrix notation, as:

[M] {U(t)} + [K] {u(t)} = {0} (4-1)

where:

[M] = mass matrix

[K] =.stiffness matrix

{U(t)} = acceleration vector

{u(t)} = displacement vector
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If the system has m degrees of freedom, then the matrices

are m by m and the vectors are m dimensional. In some finite

element programs, equation 4-l is condensed to a more manageable

size before the eigenvalues and eigenvectors are extracted. One

such reduction procedure will be discussed in Section 4.2. The

reduced form of equation 4-l may be written as:

[M] {G} + [R] {G} = {0} (4-2)

The matrices are now n by n (where n<m) and the vectors are

n dimensional.

For a linear system, free vibrations will be harmonic of the

form:

{J} = {ii} cos wit (4-3)

{w.} is the eigenvector representing the shape of the

ith frequency

w. is the ith natural frequency (rad/time)

t' indicates time

Combining equations 4-3 and 4-2 yields:

(-m§ [n] + [R]) {$1} = {0} (4-4)
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This is an eigenvalue problem with n values of w? and n eigen-

vectors {wi} which satisfy equation 4-4. The solution of

equation 4-4 may be obtained through matrix iteration techniques

[7].

4.2 ANSYS

Modal analysis was performed on the flywheel using ANSYS.

ANSYS is a general purpose finite element program developed by

Swanson Analysis Systems Inc. The ANSYS program employs a matrix

reduction technique refered to as dynamic (or kinematic) matrix

condensation. This procedure involves specification of a certain

number of "master" degrees of freedom (MDOF). The mass and

stiffness matricies are then condensed to these n master degrees

of freedom, and the eigenvalue problem is solved. This feature

allows ANSYS to efficiently solve for the response of a very large

structural system. The following discussion deals with the

criterion used to select master degrees of freedom as well as

the process of matrix reduction.

A finite element model is created by defining a number of

points (nodes) on a coordinate system. The nodes are then con-

nected to form elements in a manner that closely approximates the

actual geometry of the structure. (Modelling will be discussed

further in Section 4.3.) The number of degrees of freedom per

node is determined by the type of element selected. For instance,

a two dimensional plate element has three degrees of freedom per

node; rotation about two axes in the plane of the element and

translation normal to that plane. A quadrilateral shell element
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has six degrees of freedom per node, translations and rotation

about all three axes.

The purpose of defining a set of master degrees of freedom

is to reduce the complexity of the analysis by including only

enough degrees of freedom to characterize the behavior of the

system. Selection of master degrees of freedom can be viewed as

a further discretization of the model. If dynamic matrix con-

densation were not used, the problem could be reduced in size

by simply modelling with fewer elements. However, this simpli-

fication would be at the expense of the accuracy of the modelled

stiffness. Reduction of the full displacement stiffness and mass

matricies to the master degrees of freedom requires information

relating the master degrees of freedom to the removed (or slave)

degrees of freedom. Thus, the structure may be modelled with

sufficient elements to characterize the stiffness, while dynamic

matrix condensation provides efficient solution of the large

matrix problem. Successful use of the master degrees of freedom

requires that the degrees of freedom associated with the lowest

modes of vibration be selected. The following guidelines are

suggested by Swanson Analysis Inc. for selecting master degrees

of freedom when bending type modes are of primary concern [8]:

l. Neglect rotational degrees of freedom.

2. Neglect stretching modes.

3. The number of master degrees of freedom should be at least

twice the number of modes of interest.

4. Include master degrees of freedom locations having relatively

large mass.
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Current versions of ANSYS are capable of automatically

selecting any number of master degrees of freedom. The total

number of master degrees of freedom must be specified. The user

may then specify some master degrees of freedom and allow the

program to select the rest or, allow ANSYS to automatically

select them all. The program examines all the degrees of freedom

sequentially and attempts to retain those corresponding to the

lowest modes.

Dynamic matrix condensation is most easily explained by

considering the static equation [9]

[K] {u} = {F} (M)

where [K] = total stiffness matrix 2 [Ke]

{u} = displacement vector m—l

{F} = load vector

N = number of elements

[Ke] = element stiffness matrix

Equation 4-5 may be partitioned into two groups, the master

(retained) degrees of freedom, denoted by the subscript "m",

and the slave (removed) degrees of freedom, denoted by the

subscript "s".

------ <- -) = (- -) (4-6)
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or, expanding: .

[Kmm] {um} + [Kms] {Us} {Fm} (4-7)

[Ksm] {Um} + [K55] {Us} {F5} (4-8)

Solving equation 4-8 for {Us},

_ -l -l
{Us} - [K55] {F5} - [K55] [Ksm] {Um} (4-9)

Substituting {Us} into equation 4-7:

([KmmJ-[KmSJIKSS]"[Ksm]){um} = ({Fmi-[KmSJEKSSJ"{FS})

(4-l0)

OY‘:

[k] {a} = {E} (4-11)

where:

[k] = Wm] - [IgnSJIKSSJ’IIKsm] (4-12)

[i=1 = £le - [finSJEKSSJ'1{FS} (443)

{0} = {U } (4-14)
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For modal analysis (equation 4-l) the load vector {F} in

equation 4-5 equals zero.

The mass matrix cannot be reduced directly as described above

because the condensed matrices would be functions of the time

derivatives of displacement and very awkward to implement. There-

fore, the program applies the Guyan reduction procedure resulting

in the reduced mass matrix:

[R] = [NmmJ-[KmSJIKSSJ'][Msml-[MmSJIKSSJ'][Ksm]

+ MEIEKSSI'IIMSSIEKSSJ'][Ksm] (445)

ANSYS solves the reduced eigenvalue problem (equation 4-4)

by applying the Jacobi iteration procedure [l],[7]. The solu-

tion consists of m natural frequencies mi and m eigenvectors {vi},

each of which represent the mode shape of the structure at the

corresponding frequency. Each eigenvector is then normalized

such that:

A T A A -

{vi} [M] {vi} - l (4-l6)

The reduced eigenvectors are then expanded to the full set of

structure modal displacement degrees of freedom by using equation

4-9 (with {FS}={0}). That is:

{is}, = [Kssl'] [Ksm] {i}, (4-17)

This facilitates display of the structure's mode shapes.
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Derivation of element stiffness and mass matrices for a two

dimensional plate element is presented in Pages 2.55-2.63 of the

ANSYS Theoretical Manual [9].

4.3 Modelling

Finite element models of the flywheel were created with the

ANSYS preprocessor, PREP7. PREP7 has sophisticated geometry

generation capabilities which facilitate easy creation of com-

plicated geometries. The utility of the preprocessor is sig-

nificantly enhanced when used on an interactive graphic computer

terminal.

Since manufacturer's drawings of the flywheel were unavail—

able, a full scale drawing was made with dimensions scaled from

the flywheel itself. A 60° segment of the drawing, encompassing

one of the 6 large circumferential holes, was used as the basis

for generation of the geometry. This segment was chosen because

the model is symmetric in 60° increments. PREP7 created the

five similar segments from the basis segment. Figure 4-l shows

the full element grid. -

In this model, two-dimensional triangular and rectangular

elements were used (STIF6 and 46). Since, the accuracy of results

decreases as the shapes deviate from regular triangles and rec-

tangles [8], the major concern in nodal point location was to

maintain regularly shaped polygons. Parallelogram shaped ele-

ments were also acceptable because the theory for rectangular

elements is based in general on parallelograms.

The model consists of 2l6 nodes and 234 elements. Several

modelling approximations were necessary to keep the model at a
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manageable size. For example, the large circular circumferential

holes were approximated by octagons. A mean radius was chosen to

smooth the gear teeth on the outer ring. The small interior cir-

cumferential "mounting" holes were modelled as rectangles, while

several small holes near the outer ring (see Figure Z-l)

were not considered at all. The outer gear ring and the interior

disk were modelled as one continuous piece, neglecting the welds

that actually fasten the two pieces. And the slight curvature

of the interior section was initially neglected. Though

the size of elements was based on shape considerations, the width

of the ring of elements directly interior to the gear ring

corresponds approximately to the width of the counterweight

on the back of the flywheel. This was convenient for later

model modifications to assess the effect of the counterweight.

(Section 4.5.)

A caliper micrometer was used to measure thickness of the

flywheel. The thickness of the outer most (gear) ring of ele-

ments was 0.371 inches, whereas the interior disk thickness was

0.ll2 inches. Slight variations in thickness were observed,

probably due to manufacturing tolerances and/or the effect of

sand-blasting. The modulus of elasticity was estimated as 30

xl06 psi. Poisson's ratio was estimated as 0.27, and weight

density as 0.283 lb/in3.

The flywheel was modelled without external forces and pres-

sures, and no displacements were constrained. However, the

element type used (STIF6 and 46) allows input for an elastic

foundation on which the elements rest. The modal test which
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was described in Chapter 3, revealed rigid body modes in the

range 15 to 20 Hz. The value of the foundation stiffness was

chosen such that the frequency of the rigid body modes corre-

sponded to those from the modal test. These are well below the

first observed bending mode at 227 Hz. .

This model was loaded and an initial modal analysis was

performed. Figure 4-2 shows the mode shape corresponding to the

first natural frequency obtained for this model.

 
Figure 4-2 Mode Shape at First Natural Frequency. (Finite Element

Method).
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4.4 Model Verification

A second model, with refined mesh around the outer circum-

ferential holes, was created to determine whether the base

model (Figure 4-l) had a sufficient number of elements. Figure

4-3 shows the refined model. This model consists of 288 nodes and

264 elements. Note that the outer circumferential holes were

modeled as twelve sided polygons as opposed to octagons used

in the base model.

The refined model was loaded into the main program and the

modal analysis was performed. The same physical and material

properties used in the base model run were applied to the refined

model. Also, the same number of master degrees of freedom were

used in both analyses. I

Table 4.] summarizes the correlation of the first six

natural frequencies between the two models. The table indicates

only slight differences between the results for the two models.

The base model was, therefore, judged sufficient and all further

analyses were based on that geometry. '

The fifth and sixth modes in Table 4.l were found in opposite

order in the modal test. That is, the modal test indicated the

sixth mode in Table 4.1 occUred at a lower frequency than the

fifth. This indicated further model refinement was necessary.



 

 

 

 

 
 

 

 

Figure 4-3
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Refined Element Mesh.
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MIL-l

Effects of the Refined Element Mesh

Natural Frequencies (HZ)

 
 

£553; Base Model Refined Model

I 22l.2 22l.0

2 266.0 266.3

3 563.7 562.9

4 612.2 610.0

5 974.7 . 975.5

6 987.4 986.2

4.5 Analysis of results

Several modal analyses were performed with the base geometry

to assess the effects of various modifications of the model. The

modal test data were used as criterion to qualify a model change

as detrimental or beneficial to the analysis. This section will

present the effects of the following variations:

- Inclusion of the counterweight

- Number and method of selection of master degrees of freedom

. Modified material properties

4.5.l Counterweight

Figure 4-4 shows the base geometry with shading denoting the

approximate location of the counterweight. The shaded elements

were modified to determine how inclusion of the counterweight
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Figure 4-4 Element Mesh with Counterweight Location Denoted by

Shading.
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effects the dynamics of the base model. First, thickness was

added to the shaded elements. This change adds bending stiffness

and mass to this section of the model. Second, the density of

the shaded elements was adjusted so that they contributed addi-

tional mass to the model while leaving the stiffness unchanged.

This modification was considered because significant stiffness

contribution of the counterweight seemed doubtful. Figure 2-lb

indicates that the counterweight itself has 8 holes along its

length. This would considerably reduce bending stiffness as

compared to a piece with uniform cross section. Also, the counter-

weight is attached to the flywheel with several small welds.

These could not be expected to transmit significant bending

moments.

Table 4.2 summarizes the results of the counterweight analysis.

The table presents frequency results for (a) the base model (without

counterweight), (b) the counterweight modelled with stiffness and

mass (thickness adjusted) and (c) the counterweight modelled with

adjusted density. The modified thickness model effectively de-

creased the agreement between the analysis and the experimental

results. The modified density model moved the third frequency in

the right direction but only by a small amount. The change in

frequency was generally small enough to conclude that the counter-

weight had little effect on the dynamics of the structure. For

these reasons, the counterweight was not considered in the re-

maining analyses.
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4.5.2 Master degrees of freedom

The number of master degrees of freedom, and the manner in

which they are chosen, have significant effect on the results of

the modal analysis. The ANSYS users manual recommends the number

of master degrees of freedom be at least twice the number of modes

of interest. In this case, the first six bending modes of vibra-

tion were desired. However, modal analysis of the base model

includes three rigid-body modes (since plate elements allow

three degrees of freedom per node), as well as several redundant

solutions. Double roots occur due to symmetry of the base model.

Modes characterized by nodal diameters (see Figure 4-2) can be

expressed in two unique mode shapes. Theoretically, the fre-

quency of the two redundant mode shapes should correspond exactly.

But due to the numerical analysis involved in matrix condensation,

the frequencies of the double roots tend to deviate progressively

with higher modes.

So, in order to obtain the first 6 bending modes, the first

l3 modes from ANSYS must be considered. Thus the minimum number

of master degrees of freedom for this analysis, based on the

recommendation in the User's Manual, is 26. Table 4.3 presents

the frequency results for runs with 30, 40, 60, and 80 master

degrees of freedom. All other parameters remained constant for

these comparison runs. In each case the master degrees of freedom

were selected automatically. As expected, the lower frequencies

correspond well, and discrepancies increase with the higher

modes. Since the PRIME 750 computer was equipped with only one-

half megabyte of memory at the time of these runs, the computing
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TABLE 4.2

Counterweight Analysis

Natural Frequencies (HZ)
 

 

  

Mode Base Model Thickness Adjusted Density Adjusted

_-——' for Counterweight for Counterweight

1 221.2 222.8 214.1

2 266.0 277.6 265.1

3 563.7 584.3 562.8

4 612.2 621.3 592.8

5 974.7 982.5 964.2

6 987.4 1032.9 985.2

TABLE 4.3

Effects of the Number of Master Degrees of Freedom

Base Model Natural Frequencies (HZ)

Logs ___30MDOF W W @9129:

1 222.8 221.7 221.2 221.2

2 266.9 266.2 266.0 266.0

3 570.3 565.5 563.7 563.8

4 645.3 623.6 612.2 609.0

5 1016.1 990.3 974.7 973.8

6 1040.6 998.4 987.4 986.2
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time increased significantly with the increase in the number of

master degrees of freedom. Thus for the remaining analyses, 60

master degrees of freedom were used. This number seemed a good

compromise between compute time and accuracy of results.

The method of selection of master degrees of freedom,

manual, automatic, or a combination of both, has a more subtle

influence on the analysis. A useful technique is to make an

initial run with all the master degrees of freedom selected

automatically. Then after observing the character of the mode

shapes, a second run can be done specifying master degrees of

freedom in areas of large or complicated displacements. This

procedure was applied throughout the modal analysis of the fly-

wheel. Slight improvement in the agreement between the analysis

and the experimental results were usually obtained.

4.5.3 Material property modification

To obtain better correlation with the experimental results

the modulus of elasticity of the model was varied. Chapter 2,

indicated that the flywheel is apparently made in two separate

parts and welded together. The interior disk appears to have been

stamped from sheet steel, while the outer gear ring was probably

cast. Since the material properties of each of these two parts

was unknown, a significant difference in the properties was pos-

sible.

Several runs were made successively decreasing the modulus

of elasticity of the interior disk while holding the outer gear

6
ring constant at 30 x 10 psi. The experimental results were
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used as a goal. Table 4.4 presents the frequency results of the

base model and the optimum adjusted model. The modulus of elasticity

of the interior disk which provided the best correlation to

6 psi. Note that the fifth andexperimental results was 23.5 x 10

sixth modes switched to the order predicted by the modal teSt.

These results are compared to experimental values in Chapter 5.

TABLE 4.4

Effects of Material Property Modification

Natural Frequencies (HZ)
 

 

 

Mgg§_ Base Model Modified "E" Model

1 221.2 217.8

2 266.0 247.2

3 563.7 514.6

4 612.2 603.4

5 974.7 898.6

6 987.4 891.5



Chapter 5

PRESENTATION OF RESULTS

This chapter presents a comparison of results from the analy-

tical and experimental modal analyses. First, the correlation of

mode shapes between the two techniques is presented. Second, a

comparison of natural frequencies obtained from the modal test

and the best estimate finite element model will be discussed.

And, finally, the thesis is summarized in a brief overview.

5.1 Mode Shape Correlation

Figures 5-1 through 5-6 present the mode shapes obtained

from the modal test of the flywheel, and Figures 5-7 through

5-12 show the mode shape results from the finite element ana-

lysis. The analytically derived mode shapes are displayed with

the aid of the ANSYS post-processor POST25, which presents the

element mesh in the deformed position while the dashed outline

represents the static, undeformed shape. Mode shapes obtained

experimentally are shown in one extreme displacement. In these

figures, the undeformed shape was omitted for clarity.

Mode shapes for circular disk type structures may be con-

veniently categorized by identifying nodal diameters and nodal

circles. The nodal lines represent points on the structure which

46
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Figure 5-1 First Mode Shape - Experimental.

 

 

Figure 5-2 Second Mode Shape - Experimental.
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Figure 5-3 Third Mode Shape - Experimental.

 

Figure 5-4 Fourth Mode Shape - Experimental.
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Figure 5-5 Fifth Mode Shape - Experimental.

   

 

 

   

Figure 5-6 Sixth Mode Shape - Experimental.



Figure 5-8 Second Mode Shape - Finite Element Method.

 

Figure 5-7 First Mode Shape - Finite Element Method.
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Figure 5-10 Fourth Mode Shape - Finite Element Method.

 

Figure 5-9 Third Mode Shape - Finite Element Method.
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Figure 5-12 Sixth Mode Shape - Finite Element Method.

 

 

Figure 5-11 Fifth Mode Shape - Finite Element Method.
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remain stationary while portions of the structure on either side

of the nodal line move in opposite (transverse) directions. Nodal

circles are similar in nature but occur concentrically on the disk.

The natural frequencies corresponding to each mode shape may be

identified using the subscripts m and n; where m denotes the

number of nodal diameters and n denotes the number of nodal circles.

There is excellent agreement between the mode shapes obtained

from the two methods. Each measured mode was also predicted by

ANSYS in the proper order. Figures 5-1 and 5-7 show the flywheel

in deformation consisting of two nodal diameters and no nodal circles.

These correspond to the first natural frequency, “2,0' Figures 5-2

and 5-8 show no nodal diameters and no nodal circles. These cor-

respond to the second natural frequenCy, m Figures 5-3 and
o,o'

5-9 present the third mode, which is characterized by one nodal

diameter and one nodal circle. (The nodal circle occurs very close

to the outer gear ring.) This shape occurs at the third natural

frequency, w],]. Figures 5-4 and 5-10 show three nodal diameters and

no nodal circles. These correspond to the fourth natural fre-

quency w3’0. Figures 5-5 and 5-11 present the fifth mode, which is

characterized by two nodal diameters and one nodal circle. This

shape occurs at the fifth natural frequency m2,1. Finally, the

sixth mode consists of no nodal diameters and one nodal circle.

This shape, shown in Figures 5-6 and 5-12, corresponds to the sixth

natural frequency, mo 1.

5.2 Natural Frequency Correlation

A comparison of the natural frequencies obtained from the

modal test and the optimum finite element analysis is presented
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in Table 4.5. The finite element model used for thisanalysis

6
employed two different material properties, E = 30 x 10 psi for

the outer ring and E = 23.5 x 106 psi for the inner ring as ex-

plained in Chapter 4. The table indicates that the measured and

calculated results were always within ten percent.

TABLE 4.5

Analytical and Experimental Results

Natural Frequencies (HZ)

 

Mode Experimental Analytical Percent Difference

77—7“ (GENRAD) (ANSYS) '

wz’o 227.1 217.8 -4.1

“0,0 271.8 247.2 -9.1

w].] 470.8 514.6 +9.3

w3.0 604.4 603.4 ~0

mz’] 812.0 891.5 +9.8

w0,] 882.8 898.6 +1.8

5.3 Summary

This thesis has presented an application of two independent

methods for performing modal analysis. An experimental technique

involving digital signal processing was presented first. Then,

a numerical technique using the finite element method was dis-

cussed in some detail. The synthesis of these results served as

a basis for a discussion of modelling approximations.

Though the results for the flywheel may have little intrinsic

value, the comparison of the two independent techniques provided
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significant insight in the area of mathematical modelling. The

lessons learned from this relatively simple structure can be

applied to dynamic analyses of more complicated structural designs.



Chapter 6

CONCLUSIONS

The finite element method is widely used because it can

handle difficult problems conveniently. However, as this thesis

has shown, results from a finite element analysis are only

as accurate as the mathematical model.

A possibly significant factor not addressed by this thesis

is the effect of residual stresses on the dynamics of the structure.

Residual stresses are present, to some extent, in almost all mass

produced structural elements. In the flywheel, for example,

residual stresses could have been introduced from the stamping

process used to manufacture the interior disk, or from the welds

which attach it to the outer gear ring. The effects of initial

in-plane stress on the free vibration of circular disks are

discussed in detail in Reference [10].

Many industries commonly use both numerical and experimental

methods for modal analysis. Unfortunately, communication between

analysts in these two areas may be limited. This thesis has shown

that synthesis of results can be very beneficial. In particular,

the merger of these two independent techniques allows the analyst

to gain confidence in his mathematical model, thus lending credi-

bility to further more complex analyses.
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