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ABSTRACT

ANALYTICAL AND EXPERIMENTAL
MODAL SYNTHESIS

By

James Herman Oliver

This thesis presents modal analysis of an automotive flywheel
using both analytical and experimental techniques. The analytical
work was performed with the finite element code ANSYS, and the
experimental work was performed with the GenRad 2507 Structural
Anélysis System. Each technique was used to determine natural
frequencies and mode shapes of the flywheel. Correlation of the
results serves as the basis for a discussion of the effects of

modelling approximations.
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Chapter 1
INTRODUCTION

Modal analysis characterizes the dynamics of a structure by
identifying its modes of vibration. Each mode consists of a
resonant frequency, a damping ratio and a mode shape defining
the displacement of the structure at each resonant frequency. The
modes of vibration may be considered properties of the structure.

In recent years, the finite element method has become an
increasingly popular tool for the study of structural dynamics. To
gain confidence in finite element results it is expedient to check
the validity of the mathematical model. Traditionally this has
been done by making rough approximations through "hand" solutions
on a simplified model, or by other analytical techniques which
bound the eigenvalues. However, if the structure is available,
modal testing via digital signal processing offers an independent
verification.

This thesis will discuss an application of both finite
element and experimental techniques for performing modal analysis
on a simple structure. Chapter 2 describes the structure under
consideration, an automotive flywheel. Chapter 3 discusses modal
testing, and Chapter 4 deals with modal analysis using the finite
element method. Chapter 5 presents correlation of results obtained

by the two methods. Conclusions are presented in Chapter 6.



Chapter 2
THE FLYWHEEL

The structure addressed in this study is a standard automo-
tive flywheel from a General Motors 350 CID engine. The flywheel
was obtained from an auto salvage yard. It was then sandblasted
to remove oxidation.

Figure 2-1 shows both sides of the flywheel. The mean
diameter of the flywheel is approximately 13.75 inches. The
center hole is 2.5 inches in diameter. This is surrounded by
six equally spaced mounting holes, each approximately 1/2 inch
in diameter. The six large circumferential holes are each 2
inches in diameter.

The interior part of the disk has apparently been stamped
from 0.112 inch thick sheet steel. (Thickness was measured
after sandblasting.) The outer gear ring, approximately 0.371
inches thick, was probably cast. These pieces are attached
with twelve equally spaced circumferential welds, each of which
is about 1.35 inches long. A counterweight is attached to the
back of the flywheel, near the intersection of the interior
plate and the gear ring. See Figure 2-1b. The counterweight
spans an arc of approximately 85° and is attached to the fly-

wheel with several small welds.



a) Front of Flywheel.

b) Back of Flywheel.

Figure 2-1 The Flywheel.



Chapter 3
MODAL TESTING

Modal testing is a means of characterizing the dynamic
behavior of a structure. Specifically, by exciting the structure
with applied forces, its natural frequencies, mode shapes, and
modal damping values can be identified. Since these parameters
are derived experimentally, modal testing provides an independent
verification for analytical solution techniques such as the finite
element method.

This chapter will develop the procedure used in the impact
method of modal testing. Figure 3-1 [11] presents a schematic dia-
gram of the impact testing method. The structure is subjected to
an impulse force at one point and the acceleration response is
measured at another point. The pair of input-output signals is
then processed with a Fast Fourier Transform (FFT) algorithm. The
resulting ratio, output acceleration over input force, forms
the frequency response function relating that pair of points.

A data base of frequency response functions is created
relating several driven points to a reference point. Curve
fitting algorithms are then applied to the data base to determine
the modal parameters: natural frequencies, mode shapes, and modal

damping values.
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This procedure was applied to obtain modal parameters for
the flywheel. A detailed discussion of each step of the procedure

will be presented in the following sequence:

Test Equipment and Setup

| Geometry Definition
Specification of Test Conditions
Data Acquisition
Modal Parameter Extraction
Mode Shape Calculation
Validity of Modal Data Base

3.1 Test Equipment and Setup

The GenRad 2507 Structural Analysis System was used to perform
the modal testing. This device incorporates the SDRC MODAL PLUS
software package. MODAL PLUS is a product of Structural Dynamics
Research Corporation (SDRC) of Cincinnati, Ohio. The GenRad 2507
is made by GenRad Inc. of Santa Clara, California. The major
components of the GenRad 2507 include; a PDP 11/04 minicomputer-
controller; a high speed micro-programmed processor for Fast
Fourier Transform; a dual floppy disk drive; an analog to digital
converter; a raster-scan type video graphic display terminal;
and a hard copy printer/plotter.

Other necessary equipment are the impact force hammer, response
accelerometer, and accompanying amplifiers and cables. These devices
were made by PCB Piezotronics Inc. The impact hammer is equipped

with a force transducer in the tip to measure input force. The



accelerometer and transducer are each connected to a separate
amplifier. These, in turn, are connected to two separate channels
on the A/D converter of the GenRad; input force on channel A, out-
put acceleration on channel B.

To simulate free-free boundary conditions, the flywheel was
tested while resting upon a 4 inch thick foam rubber cushion. A
rigid body mode of the flywheel on the cushion was, therefore,
expected.

Figure 3-2 shows the complete experimental setup prepared for

a test.

3.2 Geometry Definition

The geometry of the structure must be defined to allow graphical
presentation of the mode shapes. This was accomplished by selecting
a coordinate system and defining the coordinates of a number of
points on the structure. A sufficient number of points must be
selected to facilitate observation of the highest frequency modes
of interest, i.e., enough to visualize a complicated distortion
of the structure. But, although additional points improve the
visualization of the mode shape, each additional point requires
additional data collection and storage.

In this case, 48 points were used to describe the flywheel.
Figure 3-3 shows the flywheel these locations identified. The
coordinate of each points was input into the MODAL PLUS program.

The geometry was then previewed to insure proper point location
and connectivity. Figure 3-4, output of MODAL PLUS, shows the

geometry in an undeformed shape. Note, in Figure 3-4, a chord
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Figure 3-2 Test Setup.

Figure 3-3  Flywheel with Node Locations.



connecting two points on the circumference. This represents the
approximate location of the counterweight mounted on the back of
the flywheel.

At this point in the procedure a reference coordinate must
be selected. The reference coordinate is the position on the
structure where response to the input forces is measured. The
position must be selected such that there is sufficient amplitude
for all modes of interest. No response could be measured if the
reference coordinate corresponded to a nodal point (or line) for
a particular mode.

In this case, the decision for the location was based on
advance knowledge of the first few mode shapes [1]. Based on
this information the accelerometer wés located on the interior
section of the flywheel, at point number 10. (See Figure 3-4.)
Proper selection of the reference coordinate was confirmed later

by the finite element analysis.

3.3 Specification of Test Conditions

Test conditions are required input for MODAL PLUS to calibrate
the system and prepare it for data acquisition. Table 3.1 (output of
MODAL PLUS) 1lists the test conditions used for this modal test.
Many of the test conditions are determined with the aid of MODAL
PLUS. However, some of the conditions listed in Table 3.1 do not
apply to a two channel system, some are not used in the current
version of MODAL PLUS, and some are set automatically based on
selection of other conditions. The following discussion considers

the significant test conditions.
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The impact method of excitation was chosen because it is
fast, easy to perform and requires less equipment and setup time
than random methods (which require use of a shaker). The maximum
frequency was decided upon based on preliminary calculations [1]
to determine natural frequencies of a uniform circular plate.

The frequency range 0-1000 Hz was judged sufficient to observe
several modes of vibration.

The first condition in Table 3.1, trigger type, set to 1,
indicates impact excitation with internal trigger. The term
"trigger" refers to when the time sample of the signals will be
taken. A positive value for trigger type indicates triggering on
the positive slope of the input (force) signal. Trigger level
(item 2, Table 3.1) is the percentagé of full scale voltage
necessary to trigger time sampling.

The ensemble size (item 5) is the number of time samples
averaged to calculate a frequency response function. A large
number of samples reduces the effect of noise in the calculated
function. In this case 5 samples at each measurement point were
taken. The relation between ensemble size4and data quality, the
coherence function, will be examined in Section 3.4.

Specification of maximum frequency (item 6) at 1000 Hz auto-
matically sets conditions 7, 13, and 14. Condition 7 specifies
the cut off frequency for the anti-aliasing filter. Aliasing is
a form of amplitude distortion introduced by sampling a continuous
signal at discrete times. Specifically, if the sampling rate is
not greater than twice the highest frequency of any component in

the signal (Nyquist frequency), then some of the signal's high
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frequency components will be effectively translated down in
frequency when the FFT is applied. This unacceptable contamina-
tion of the data is minimized by filtering out all components of
the signal higher than the required maximum frequency. Conditions
13 and 14 are further signal conditioning parameters based on
selection of the maximum frequency.

Items 25 and 26 in Table 3.1 are calibration factors. They
represent the ratio of output units to input voltages. The values,
given by the manufacturers, are 100 1bf/volt for the force trans-
ducer (channel A), and 100 g's/vo]t‘for the accelerometer (channel
B). The amplifiers are equipped with a gain selector so that
these values may be adjusted if necessary.

The remaining conditions are set by using the GenRad as an
oscilloscope and observing some sample signals. Figure 3-5 shows
a sample impact force and response acceleration time history.

For best results, the maximum amplitude of the signals should be
fifty to ninety percent of full range. Items 21 and 22 in Table
3.1, set to 0.5 and 1.0, specify the full scale voltage range for
the force and acceleration signals, respectively. By adjusting
input voltage range (item 21) and trigger level (item 2, Table
3.1), the magnitude of the impact necessary to trigger sampling
can be adjusted to the users preference.

Finally, the power spectrum of the input signal must be
examined to insure its frequency content is sufficient. Since
objective of impact testing is to simultaneously excite all the
modes of the structure within a specific frequency range, the
input signal must have adequate energy content throughout that

range.
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The frequency content of an impulse signal is inversely
proportional to the duration of the initial pulse. The duration
of the impulse depends on the hardness of the hammer tip. A softer
tip imparts a longer duration signal than does a hard one. There-
fore, a hard hammer tip can be used to emphasize higher frequency
excitation whereas a softer tip would emphasize lower frequency
excitation. Figure 3-6 shows the power spectrum of a sample
force signal. In this case, a medium hardness (plastic) tip was

used. The figure indicates that the signal has sufficient frequency

content for the range 0 to 1000 Hz.
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Figure 3-6 Power Spectrum of Input Signal.
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3.4 Data Acquisition

The major concern during data acquisition is the quality of
measured data. Since noise is always present in the measured
signal, the user must determine to what degree the measured data
has been contaminated. This is facilitated by the use of the
coherence function.

The coherence function is the ratio of response power caused
by applied input to measured response power. Thus, a perfect
measurement, one with no noise contribution, would present a
coherence equal to one throughout the frequency range. The
coherence function is calculated in terms of averaged input and
output auto-power and crosspower spectrums. Therefore, as the
number of averages increases, the contribution of noise in the
measurement decreases. Reference [2] provides a good discussion
of the coherence function and computation of the transfer func-
tion in the presence of noise.

To acquire modal data, the flywheel was struck five times at
each of the 48 points. In the process, care was taken to avoid
rebound from the initial impact (i.e., a double hit), which is one
of the easiest ways to introduce extraneous noise. In addition,
if the hammer strike is too hard, the input signal overranges its
set maximum value, and the sample is rejected. If the strike is
too light, the input signal never reaches the trigger level and
nothing happens. After five successful impacts, the coherence
function was checked. If the coherence proved acceptable, the
fréquency response function was storéd. The frequency response

function (ratio of transformed output acceleration over transformed
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input force) represents the measured modal data. The modal data
base was complete when all 48 frequency response functions were
stored.

Figure 3-7 shows a typical acceptable coherence function from
the flywheel test. The frequency response function obtained from
the data presented in Figure 3-8. The upper plot of Figure
3-8 shows the phase corresponding to the frequency response

function.

3.5 Modal Parameter Extraction

Two methods are employed in MODAL PLUS for extracting modal
parameters. To estimate natural frequencies and modal damping,

a multi-degree of freedom (MDOF) curve fitting algorithm is used.
Mode shapes are then calculated with a single-degree of freedom
circle fitting algorithm. Mode shape calculation is discussed in
the following section.

The MDOF curve fitting technique involves fitting a poly-
nomial representation of the frequency response function to the
measured data over a frequency range containing several resonance
peaks. Figure 3-9 shows the polynomial form of the frequency
response function and the resulting curve fit to a segment of
measured data.

Peaks in the frequency response function represent areas of
high amplitude magnification. Hence, they are referred to as
resonant or natural frequencies. Before implementation of the MDOF
curve fit, the various frequency response functions must be reviewed

to find one which has a representative peak at all the suspected
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natural frequencies. One point for example, could lie on or near
a nodal point (or line) of a given mode. The frequency response
function relating such a point to the reference point would show a
small amplitude at that natural frequency. Figure 3-8 illustrates
six peaks in the range 100-1000 Hz. Two small peaks at approxi-
mately 15 and 20 Hz were evidence of rigid body modes.

After a useful frequency response function is chosen a
frequency band containing several resonant peaks must be se-
lected. The approximate number of roots to be generated (i.e.
the order of the polynomials in Figure 3-9) can then be chosen.
The number of roots should be at least twice the number of ap-
parent peaks in the selected frequency range but not more than
eight times this number [3]. The roots of the approximating
polynomial are extracted yielding, for each root, the modal
parameters; frequency, damping ratio, amplitude and phase. From
this list of data the natural frequencies are identified by those
roots which present large amplitude with very little damping. If
such a distinction is not obvious, the procedure must be repeated
using a smaller frequency range and/or more roots. References
[4] and [5] provide a detailed description of the MDOF curve fit
technique.

Table 3.2 presents the modal parameters obtained in the flywheel
test. In this case the frequency response function relating point
5 to the reference point 10 was used to extract all the modal para-

meters.



20

TABLE 3.2

Modal Parameters

LABEL FREY DAMPING ANPLITWSEZ  FHASE REF RES MOL:
| 227.128 ©.B@4636 &6.20 1.7227 laz+ 32+ |
2 271.818 ©.0088 58 36.681 11678 1eZ+ 32+ 2
3 470.844 @.00@953 338.6 1.1759 @2+ 52+ 3
4 684,367 B.BU4878 241.3 1.85@§ 162+ 32+ 4
5 812,812 B.BE1SER 7042 -1.6498 182+ S+ 3
€ 332,826 ©.0BEIED 45.43 -1.9235 1@+ Si+ &

3.6 Mode Shape Calculation

Mode shapes are approximated with a single-degree of freedom
(SDOF) circle fitting algorithm. A SDOF system has one resonant
frequency. A plot of the real versus imaginary parts of the
frequency response function for such a system (as frequency
varies through resonance) would form a perfect circle. This is
commonly known as the Nyquist plot.

As applied in this case, the Nyquist plot for one peak
would not form a circle because the frequency response function
is a summation of the effects of all modes. However, if the
modes are sufficiently spaced, and the frequency band about reso-
nance is small enough, the resulting plot can be approximated
by a circle. Since a measured frequency response function is
composed of discrete spectral information, the Nyquist plot appears

as several data points in the complex plane. A circle is fit through
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these points using a least squares technique. The size and position
of the circle on the complex plane is sufficient information to
characterize the motion for a single point on the structure at

the natural frequency of interest.

The following procedure was used to calculate mode shapes for
the flywheel. The mode shapes were calculated one at a time
beginning with the lowest natural frequency. First, a digital
cursor was applied to a frequency response function to determine
a frequency band which included the peak of interest. The SDOF
circle fitting technique was then applied to each of the 48
frequency response functions using the same frequency band. If
the circle fit was inadequate, the frequency band was temporarily
adjusted to take more or less data from either the higher or
lower frequency side of the peak. If necessary, several iterations
were done on the frequency band to obtain a good fit. The
data was then stored and the next frequency response function was
fit with the original frequency band. Figure 3-10 shows a typical
circle fit before and after "fine tuning". When all the frequency
response functions were fit for the natural frequency, the ani-
mated mode shape could be viewed. The procedure was then repeated
until all six mode shapes were calculated.

This procedure yields both magnitude and phase. The diameter
of the circle is related to the magnitude of the displacement for
the particular node at the natural frequency in question, and
the position of the circle on the complex plane defines the
phase of the displacement relative to the reference coordinate.

With this information for each node and the geometric data denoting
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their spatial relationship, the mode shape animation is ac-
complished using linear interpolation between nodes.

The SDOF circle fitting technique is discussed in detail
in Reference [2] and [4].

Figure 3-11 shows the mode shape associated with the first

natural frequency. It is shown in one extreme position.

3.7 Validity of Modal Data Base

To gain confidence in the results of the modal test, a check
of the validity of the modal data base must be performed. This
is accomplished by synthesizing an analytical frequency response
function from the extracted modal parameters. The synthesized
function can then be compared to the measured data.

The synthesized function is constructed with an analytical
summation of all the modes extracted. In this case, the frequency
response function for the continuous structure is approximated by
a summation of 6 modes of vibration. Figure 3-12 shows a syn-
thesized frequency response function superimposed over the actual
measured data. The fit is very good, indicating that the modal

data base and results obtained from it are reliable.

\
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Figure 3-11 Mode Shape at First Natural Frequency (Experimental).
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Figure 3-12 Synthesized Frequency Response Function.



Chapter 4
ANALYTICAL MODAL ANALYSIS

Analytical methods in structural dynamics have been studied
for many years. For example, the transverse vibration of uniform
circular plates was a popular topic of concern for scientists and
mathematicians in the 18th and 19th centuries. The most notable
researcher in this area, Lord Rayleigh, published a comprehensive
compilation of the current plate theory in The Theory of Sound

in 1877 [6].

Purely analytical methods, however, are not particularly
useful for problems with complicated geometry and/or boundary
conditions. The advent of modern computing hardware and software
now makes it possible to deal with such complex problems in a
relatively accurate and efficient manner. This most often entails
use of the finite element method.

A common human trait, when presented with a large complex
problem, is to deal with only a small part of it at a time. The
finite element method involves discretization of a large continuous
structure into a number of smaller elements. By formulating the
equations governing each element with its individual boundary
and loading conditions, the system of equations describing the
behavior of the entire structure can be assembled. Assembly and

solution of the large system of equations is made possible with

25
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the use of high speed digital computers. Interactive graphics
hardware and software simplifies the formulation of the mathematical
model, as well as presentation of the results.

This chapter presents a brief background of the finite
element method which was used to perform modal analysis on the

flywheel.

4.1 Modal Analysis via the Finite Element Method

Many important engineering problems that can be defined by
partial differential equations can be solved with the finite
element method. This section will be limited to the finite
element method as applied to linear free vibration problems,
specifically, modal analysis.

The equation of motion for a structural system that is un-
damped and has no forces applied (free vibration) may be expressed
as a set of simultaneous second order linear differential equa-

tions. These may be written, in matrix notation, as:

[M] {u(t)} + [K] {u(t)} = {0} (4-1)
where:

[M] = mass matrix

(K] = stiffness matrix

{u(t)} = acceleration vector

{u(t)} = displacement vector
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If the system has m degrees of freedom, then the matrices
are m by m and the vectors are m dimensional. In some finite
element programs, equation 4-1 is condensed to a more manageable
size before the eigenvalues and eigenvectors are extracted. One
such reduction procedure will be discussed in Section 4.2. The
reduced form of equation 4-1 may be written as:

-

[M] {u} + [K] {u} = {0} (4-2)

The matrices are now n by n (where n<m) and the vectors are
n dimensional.

For a linear system, free vibrations will be harmonic of the

form:
{u} = {@i} cos w;t (4-3)
{v;} is the eigenvector representing the shape of the
ith frequency

w; is the ith natural frequency (rad/time)

t  indicates time

Combining equations 4-3 and 4-2 yields:

(% [M] + [K]) G5y} = (0} (4-4)
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2
i
vectors {wi} which satisfy equation 4-4. The solution of

This is an eigenvalue problem with n values of w; and n eigen-

equation 4-4 may be obtained through matrix iteration techniques

[71.

4,2 ANSYS

Modal analysis was performed on the flywheel using ANSYS.
ANSYS is a general purpose finite element program developed by
Swanson Analysis Systems Inc. The ANSYS program employs a matrix
reduction technique refered to as dynamic (or kinematic) matrix
condensation. This procedure involves specification of a certain
number of "master" degrees of freedom (MDOF). The mass and
stiffness matricies are then condensed to these n master degrees
of freedom, and the eigenvalue problem is solved. This feature
allows ANSYS to efficiently solve for the response of a very large
structural system. The following discussion deals with the
criterion used to select master degrees of freedom as well as
the process of matrix reduction.

A finite element model is created by defining a number of
points (nodes) on a coordinate system. The nodes are then con-
nected to form elements in a manner that closely approximates the
actual geometry of the structure. (Modelling will be discussed
further in Section 4.3.) The number of degrees of freedom per
node is determined by the type of element selected. For instance,
a two dimensional plate element has three degrees of freedom per
node; rotation about two axes in the plane of the element and

translation normal to that plane. A quadrilateral shell element
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has six degrees of freedom per node, translations and rotation
about all three axes.

The purpose of defining a set of master degrees of freedom
is to reduce the complexity of the analysis by including only
enough degrees of freedom to characterize the behavior of the
system. Selection of master degrees of freedom can be viewed as
a further discretization of the model. If dynamic matrix con-
densation were not used, the problem could be reduced in size
by simply modelling with fewer elements. However, this simpli-
fication would be at the expense of the accuracy of the modelled
stiffness. Reduction of the full displacement stiffness and mass
matricies to the master degrees of freedom requires information
relating the master degrees of freedom to the removed (or slave)
degrees of freedom. Thus, the structure may be modelled with
sufficient elements to characterize the stiffness, while dynamic
matrix condensation provides efficient solution of the large
matrix problem. Successful use of the master degrees of freedom
requires that the degrees of freedom associated with the lowest
modes of vibration be selected. The following guidelines are
suggested by Swanson Analysis Inc. for selecting master degrees

of freedom when bending type modes are of primary concern [8]:

1. Neglect rotational degrees of freedom.

2. Neglect stretching modes.

3. The number of master degrees of freedom should be at least
twice the number of modes of interest.

4. Include master degrees of freedom locations having relatively

large mass.
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Current versions of ANSYS are capable of automatically
selecting any number of master degrees of freedom. The total
number of master degrees of freedom must be specified. The user
may then specify some master degrees of freedom and allow the
program to select the rest or, allow ANSYS to automatically
select them all. The program examines all the degrees of freedom
sequentially and attempts to retain those corresponding to the
lowest modes.

Dynamic matrix condensation is most easily explained by

considering the static equétion [9]

[K] {u} = {F} (4-5)
where [K] = total stiffness matrix 2 [Ke]

{u} = displacement vector i

{F} = load vector

N = number of elements

[Ke] = element stiffness matrix

Equation 4-5 may be partitioned into two groups, the master
(retained) degrees of freedom, denoted by the subscript "m",
and the slave (removed) degrees of freedom, denoted by the

subscript "s".

...... -} = - - (4-6)
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or, expanding: .

(Kpmd (U} + [Ke] (UG} = (F 2 (4-7)

[Kgmd (U} + [K 1 {UY = (F() (4-8)
Solving equation 4-8 for U1,
- -1 -1
g} = [Kgg1 {Fg} - [K 1™ K1 (U ) (4-9)
Substituting {US} into equation 4-7:

(K- DK K1 IR D €0 = (€ 3-Dk DK 7R D)

(4-10)
or,
[K] (U} = (F} (4-11)
where:
(K] = [Kppd = K Ik 17V DK, ] (4-12)
[F] = [F,] - [K, K17 (F ) (4-13)
{0y = (U} (4-14)
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For modal analysis (equation 4-1) the load vector {F} in
equation 4-5 equals zero.

The mass matrix cannot be reduced directly as described above
because the condensed matrices would be functions of the time
derivatives of displacement and very awkward to implement. There-
fore, the program applies the Guyan reduction procedure resulting

in the reduced mass matrix:
oa -1 -1
(M1 = (M 1-[K K 17 M 1-DM 0K 17 [K ]
-1 -1
+ [k JIK 1T M K17 K, ] (4-15)

ANSYS solves the reduced eigenvalue problem (equation 4-4)
by applying the Jacobi iteration procedure [1],[7]. The solu-
tion consists of m natural frequencies ws and m eigenvectors {ii},
each of which represent the mode shape of the structure at the

corresponding frequency. Each eigenvector is then normalized

such that:

T M ) = 1 (4-16)
The reduced eigenvectors are then expanded to the full set of
structure modal displacement degrees of freedom by using equation
4-9 (with {FS}={0}). That is:

(gl = K™ [k, T (03 (4-17)

This facilitates display of the structure's mode shapes.
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Derivation of element stiffness and mass matrices for a two
dimensional plate element is presented in Pages 2.55-2.63 of the

ANSYS Theoretical Manual [9].

4.3 Modelling

Finite element models of the flywheel were created with the
ANSYS preprocessor, PREP7. PREP7 has sophisticated geometry
generation capabilities which facilitate easy creation of com-
plicated geometries. The utility of the preprocessor is sig-
nificantly enhanced when used on an interactive graphic computer
terminal.

Since manufacturer's drawings of the flywheel were unavail-
able, a full scale drawing was made with dimensions scaled from
the flywheel itself. A 60° segment of the drawing, encompassing
one of the 6 large circumferential holes, was used as the basis
for generation of the geometry. This segment was chosen because
the model is symmetric in 60° increments. PREP7 created the
five similar segments from the basis segment. Figure 4-1 shows
the full element grid. |

In this model, two-dimensional triangular and rectangular
elements were used (STIF6 and 46). Since, the accuracy of results
decreases as the shapes deviate from regular triangles and rec-
tangles [8], the major concern in nodal point location was to
maintain regularly shaped polygons. Parallelogram shaped ele-
ments were also acceptable because the theory for rectangular
elements is based in general on parallelograms.

The model consists of 216 nodes and 234 elements. Several

modelling approximations were necessary to keep the model at a
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Figure 4-1 Element Mesh.
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manageable size. For example, the large circular circumferential
holes were approximated by octagons. A mean radius was chosen to
smooth the gear teeth on the outer ring. The small interior cir-
cumferential "mounting” holes were modelled as rectangles, while
several small holes near the outer ring (see Figure 2-1)

were not considered at all. The outer gear ring and the interior
disk were modelled as one continuous piece, neglecting the welds
that actually fasten the two pieces. And the slight curvature

of the interior section was initially neglected. Though

the size of elements was based on shape considerations, the width
of the ring of elements directly interior to the gear ring
corresponds approximately to the width of the counterweight

on the back of the flywheel. This was convenient for later

model modifications to assess the effect of the counterweight.
(Section 4.5.)

A caliper micrometer was used to measure thickness of the
flywheel. The thickness of the outer most (gear) ring of ele-
ments was 0.371 inches, whereas the interior disk thickness was
0.112 inches. Slight variations in thickness were observed,
probably due to manufacturing tolerances and/or the effect of
sand-blasting. The modulus of elasticity was estimated as 30
xlO6 psi. Poisson's ratio was estimated as 0.27, and weight
density as 0.283 1b/in°.

The flywheel was modelled without external forces and pres-
sures, and no displacements were constrained. However, the
element type used (STIF6 and 46) allows input for an elastic

foundation on which the elements rest. The modal test which
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was described in Chapter 3, revealed rigid body modes in the
range 15 to 20 Hz. The value of the foundation stiffness was
chosen such that the frequency of the rigid body modes corre-
sponded to those from the modal test. These are well below the
first observed bending mode at 227 Hz. .

This model was loaded and an initial modal analysis was
performed. Figure 4-2 shows the mode shape corresponding to the

first natural frequency obtained for this model.

Figure 4-2 Mode Shape at First MNatural Frequency. (Finite Element
Method).
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4.4 Model Verification

A second model, with refined mesh around the outer circum-
ferential holes, was created to determine whether the base
model (Figure 4-1) had a sufficient number of elements. Figure
4-3 shows the refined model. This model consists of 288 nodes and
264 elements. Note that the outer circumferential holes were
modeled as twelve sided polygons as opposed to octagons used
in the base model.

The refined model was loaded into the main program and the
modal analysis was performed. The same physical and material
properties used in the base model run were applied to the refined
model. Also, the same number of master degrees of freedom were
used in both analyses.

Table 4.1 summarizes the correlation of the first six
natural frequencies between the two models. The table indicates
only slight differences between the results for the two models.
The base model was, therefore, judged sufficient and all further
analyses were based on that geometry. |

The fifth and sixth modes in Table 4.1 were found in opposite
order in the modal test. That is, the modal test indicated the
sixth mode in Table 4.1 occured at a lower frequency than the

fifth. This indicated further model refinement was necessary.
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Figure 4-3 Refined Element Mesh.
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TABLE 4.1
Effects of the Refined Element Mesh

Natural Frequencies (HZ)

Mode Base Model Refined Model
1 221.2 221.0
2 266.0 266.3
3 563.7 562.9
4 612.2 610.0
5 974.7 975.5
6 987.4 986.2

4.5 Analysis of results

Several modal analyses were performed with the base geometry
to assess the effects of various modifications of the model. The
modal test data were used as criterion to qualify a model change
as detrimental or beneficial to the analysis. This section will

present the effects of the following variations:

« Inclusion of the counterweight
» Number and method of selection of master degrees of freedom

« Modified material properties

4.5.1 Counterweight
Figure 4-4 shows the base geometry with shading denoting the
approximate location of the counterweight. The shaded elements

were modified to determine how inclusion of the counterweight
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Figure 4-4 Element Mesh with Counterweight Location Denoted by
Shading.
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effects the dynamics of the base model. First, thickness was
added to the shaded elements. This change adds bending stiffness
and mass to this section of the model. Second, the density of
the shaded elements was adjusted so that they contributed addi-
tional mass to the model while leaving the stiffness unchanged.
This modification was considered because significant stiffness
contribution of the counterweight seemed doubtful. Figure 2-1b
indicates that the counterweight itself has 8 holes along its
length. This would considerably reduce bending stiffness as
compared to a piece with uniform cross section. Also, the counter-
weight is attached to the flywheel with several small welds.
These could not be expected to transmit significant bending
moments.

Table 4.2 summarizes the results of the counterweight analysis.
The table presents frequency results for (a) the base model (without
counterweight), (b) the counterweight modelled with stiffness and
mass (thickness adjusted) and (c) the counterweight modelled with
adjusted density. The modified thickness model effectively de-
creased the agreement between the analysis and the experimental
results. The modified density model moved the third frequency in
the right direction but only by a small amount. The change in
frequency was generally small enough to conclude that the counter-
weight had little effect on the dynamics of the structure. For
these reasons, the counterweight was not considered in the re-

maining analyses.
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4.5.2 Master degrees of freedom

The number of master degrees of freedom, and the manner in
which they are chosen, have significant effect on the results of
the modal analysis. The ANSYS users manual recommends the number
of master degrees of freedom be at least twice the number of modes
of interest. In this case, the first six bending modes of vibra-
tion were desired. However, modal analysis of the base model
includes three rigid-body modes (since plate elements allow
three degrees of freedom per node), as well as several redundant
solutions. Double roots occur due to symmetry of the base model.
Modes characterized by nodal diameters (see Figure 4-2) can be
expressed in two unique mode shapes. Theoretically, ihe fre-
quency of the two redundant mode shapes should correspond exactly.
But due to the numerical analysis involved in matrix condensation,
the frequencies of the double roots tend to deviate progressively
with higher modes.

So, in order to obtain the first 6 bending modes, the first
13 modes from ANSYS must be considered. Thus the minimum number
of master degrees of freedom for this analysis, based on the
recommendation in the User's Manual, is 26. Table 4.3 presents
the frequency results for runs with 30, 40, 60, and 80 master
degrees of freedom. Al1 other parameters remained constant for
these comparison runs. In each case the master degrees of freedom
were selected automatically. As expected, the lower frequencies
correspond well, and discrepancies increase with the higher
modes. Since the PRIME 750 computer was equipped with only one-

half megabyte of memory at the time of these runs, the computing
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TABLE 4.2

Counterweight Analysis

Natural Frequencies (HZ)

Mode Base Model Thickness Adjusted Density Adjusted
for Counterweight for Counterweight
1 221.2 222.8 214.1
2 266.0 277.6 265.1
3 563.7 584.3 562.8
4 612.2 621.3 592.8
5 974.7 982.5 964 .2
6 987.4 1032.9 985.2
TABLE 4.3

Effects of the Number of Master Degrees of Freedom

Base Model Natural Frequencies (HZ)

Mode 30 MDOF 40 MDOF 60 MDOF 80 MDOF
1 222.8 221.7 221.2 221.2
2 266.9 266.2 266.0 266.0
3 570.3 565.5 563.7 563.8
4 645.3 623.6 612.2 609.0
5 1016.1 990.3 974.7 973.8
6 1040.6 998.4 987.4 986.2
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time increased significantly with the increase in the number of
master degrees of freedom. Thus for the remaining analyses, 60
master degrees of freedom were used. This number seemed a good
compromise between compute time and accuracy of results.

The method of selection of master degrees of freedom,
manual, automatic, or a combination of both, has a more subtle
influence on the analysis. A useful technique is to make an
initial run with all the master degrees of freedom selected
automatically. Then after observing the character of the mode
shapes, a second run can be done specifying master degrees of
freedom in areas of large or complicated displacements. This
procedure was applied throughout the modal analysis of the fly-
wheel. Slight improvement in the agreement between the analysis

and the experimental results were usually obtained.

4.5.3 Material property modification

To obtain better correlation with the experimental results
the modulus of elasticity of the model was varied. Chapter 2,
indicated that the flywheel is apparently made in two separate
parts and welded together. The interior disk appears to have been
stamped from sheet steel, while the outer gear ring was probably
cast. Since the material properties of each of these two parts
was unknown, a significant difference in the properties was pos-
sible.

Several runs were made successively decreasing the modulus
of elasticity of the interior disk while holding the outer gear

6

ring constant at 30 x 10" psi. The experimental results were
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used as a goal. Table 4.4 presents the frequency results of the
base model and the optimum adjusted model. The modulus of elasticity
of the interior disk which provided the best correlation to

experimental results was 23.5 x 106

psi. Note that the fifth and
sixth modes switched to the order predicted by the modal test.

These results are compared to experimental values in Chapter 5.

TABLE 4.4
Effects of Material Property Modification

Natural Frequencies (HZ)

Mode Base Model Modified "E" Model
1 221.2 217.8
2 266.0 247.2
3 563.7 514.6
4 612.2 603.4
5 974.7 898.6
6 987.4 891.5



Chapter 5
PRESENTATION OF RESULTS

This chapter presents a comparison of results from the analy-
tical and experimental modal analyses. First, the correlation of
mode shapes between the two techniques is presented. Second, a
comparison of natural frequencies obtained from the modal test
and the best estimate finite element model will be discussed.

And, finally, the thesis is summarized in a brief overview.

5.1 Mode Shape Correlation

Figures 5-1 through 5-6 present the mode shapes obtained
from the modal test of the flywheel, and Figures 5-7 through
5-12 show the mode shape results from the finite element ana-
lysis. The analytically derived mode shapes are displayed with
the aid of the ANSYS post-proéessor POST25, which presents the
element mesh in the deformed position while the dashed outline
represents the static, undeformed shape. Mode shapes obtained
experimentally are shown in one extreme displacement. In these
figures, the undeformed shape was omitted for clarity.

Mode shapes for circular disk type structures may be con-
veniently categorized by identifying nodal diameters and nodal

circles. The nodal lines represent points on the structure which
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Figure 5-1 First Mode Shape - Experimental.

Figure 5-2 Second Mode Shape - Experimental.
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Figure 5-3 Third Mode Shape - Experimental.

Figure 5-4 Fourth Mode Shape - Experimental.
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Figure 5-5 Fifth Mode Shape - Experimental.

Figure 5-6 Sixth Mode Shape - Experimental.
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Figure 5-7 First Mode Shape - Finite Element Method.

Figure 5-8 Second Mode Shape - Finite Element Method.
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Third Mode Shape - Finite Element Method.

Figure 5-9

Fourth Mode Shape - Finite Element Method.

Figure 5-10
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Fifth Mode Shape - Finite Element Method.

Figure 5-11

Sixth Mode Shape - Finite Element Method.

Figure 5-12
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remain stationary while portions of the structure on either side

of the nodal line move in opposite (transverse) directions. Nodal

circles are similar in nature but occur concentrically on the disk.

The natural frequencies corresponding to each mode shape may be

identified using the subscripts m and n; where m denotes the

number of nodal diameters and n denotes the number of nodal circles.
There is excellent agreement between the mode shapes obtained

from the two methods. Each measured mode was also predicted by

ANSYS in the proper order. Figures 5-1 and 5-7 show the flywheel

in deformation consisting of two nodal diameters and no nodal circles.

These correspond to the first natural frequency, wy o Figures 5-2

and 5-8 show no nodal diameters and no nodal circles. These cor-

respond to the second natural frequency, w Figures 5-3 and

0,0°
5-9 present the third mode, which is characterized by one nodal
diameter and one nodal circle. (The nodal circle occurs very close
to the outer gear ring.) This shape occurs at the third natural
frequency, wy 7 Figures 5-4 and 5-10 show three nodal diameters and
no nodal circles. These correspond to the fourth natural fre-

quency w3, 0" Figures 5-5 and 5-11 present the fifth mode, which is
characterized by two nodal diameters and one nodal circle. This
shape occurs at the fifth natural frequency YRE Finally, the

sixth mode consists of no nodal diameters and one nodal circle.

This shape, shown in Figures 5-6 and 5-12, corresponds to the sixth

natural frequency, Wy, 1°

5.2 Natural Frequency Correlation
A comparison of the natural frequencies obtained from the

modal test and the optimum finite element analysis is presented
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in Table 4.5. The finite element model used for this analysis

employed two different material properties, E = 30 x 106

psi for
the outer ring and E = 23.5 x 106 psi for the inner ring as ex-
plained in Chapter 4. The table indicates that the measured and

calculated results were always within ten percent.

TABLE 4.5

Analytical and Experimental Results

Natural Frequencies (HZ)

Mode Experimental Analytical Percent Difference
- (GENRAD) (ANSYS)

wy 0 227.1 217.8 -4.1

wg,0 271.8 247.2 -9.1

0y 1 470.8 514.6 +9.3

w3 o 604.4 603.4 ~0

R 812.0 891.5 +9.8

wg 882.8 898.6 +1.8

5.3 Summary

This thesis has presented an application of two independent
methods for performing modal analysis. An experimental technique
involving digital signal processing was presented first. Then,
a numerical technique using the finite element method was dis-
cussed in some detail. The synthesis of these results served as
a basis for a discussion of modelling approximations.

Though the results for the flywheel may have little intrinsic

value, the comparison of the two independent techniques provided
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significant insight in the area of mathematical modelling. The
lessons learned from this relatively simple structure can be

applied to dynamic analyses of more complicated structural designs.



Chapter 6
CONCLUSIONS

The finite element method is widely used because it can
handle difficult problems conveniently. However, as this thesis
has shown, results from a finite element analysis are only
as accurate as the mathematical model.

A possibly significant factor not addressed by this thesis
is the effect of residual stresses on the dynamics of the structure.
Residual stresses are present, to some extent, in almost all mass
produced structural elements. In the flywheel, for example,
residual stresses could have been introduced from the stamping
process used to manufacture the interior disk, or from the welds
which attach it to the outer gear ring. The effects of initial
in-plane stress on the free vibration of circular disks are
discussed in detail in Reference [10].

Many industries commonly use both numerical and experimental
methods for modal analysis. Unfortunately, communication between
analysts in these two areas may be limited. This thesis has shown
that synthesis of results can be very beneficial. In particular,
the merger of these two independent techniques allows the analyst
to gain confidence in his mathematical model, thus lending credi-

bility to further more complex analyses.
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