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ABSTRACT

THEORETICAL AND EXPERIMENTAL STUDIES OF ESR
SPIN HAMILTONIAN PARAMETERS OF TRANSITION
METAL OXOHALO COMPLEXES

By
K. K. Sunil

A detalled study of the electronic structure of a

series of d1

transition metal oxohalo complexes [MOXn]m',
where M = V, Nb, Cr, Mo, Wand X = F, Cl, Br (n = 4,5),

has been carried out by the self-consistent fileld multiple-
scattering Xa (SCF-MS-Xo) method. The results of the study
provide values of the d-d transition energiles, and also
give some understanding of the similarities and dif-
ferences in bonding characteristics, of the penta- and
hexacoordinated complexes. The g and hyperfine inter-
action (A) tensor components were computed using the
SCF-MS-Xa wavefunctions and values of spin-orbit coupling
constants and <r-3> values computed for the apprcpriate

valence configuration of the atoms in the molecule using

atomic Xa wavefunctlons. Comparison with the g and A



K. K. Sunil

tensor components of [CrOClujl- computed using extended
Huckel wavefunctions shows the importance of using good
quality wavefunctions 1n estimating spin-Hamiltonian

parameters as well as the need to estimate the required

spin orbilt coupling constants and <r’3> values in a non-
empirical manner. The various factors which determine
the magnitudes and signs of the ESR spin-Hamiltonilan
parameters of transition metal oxohalo complexes are also
discussed.

In this thesis, the results of ESR studies of three
pentacoordinated d1 transition metal oxohalo complexes
are also discussed. The single-crystal ESR spectra of
[VOFujz' and [MoOFujl' were studied in single crystals of
(NHy ) ,SbFg and [MoOClu]l- in single crystals of (NH,),SbCl..
The spin-Hamiltonian parameters are compared with those of

the corresponding hexacoordinated species.
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CHAPTER I

INTRODUCTION

The nature of bonding in molecules has been an active
area of study since the early days of chemlstry and will
continue to be so, since more and more powerful experi-
mental and theoretical techniques are belng developed.
The ultimate goal of all spectroscopic studies 1is to
understand the basic forces that hold atoms together in
the form of molecules, lons and radicals and to explailn
the observed trends 1n physical and chemical properties.
The main aim of the various theoretical models of molecu-
lar electronic structure theory 1s essentially the same.

Among the numerous spectroscopic techniques avallable
to study the basic features of bonding in transition

metal complexes, electron spln resonance spectroscopy

is considered to be one of the most powerful. The analysis
of electron spin resonance spectra provides valuable in-
formation concerning molecular symmetry, spin distribu-
tion and the nature of the ground and low lylng excited
states. Hence the electron spin resonance parameters

which depend on the details of molecular electronic struc-

ture are interpreted in terms of the molecular orbitals



of the system.

A detalled study of the electronic structure of a
series of d1 translition metal oxohalo complexes [MOXn]m',
where M = V, Nb, Cr, Mo, Wand X = F, C1l, Br (n = 4,5),
has been carried out by the self consistent fleld mul-
tiple scattering Xa (SCF-MS-Xa) method. The electronic
structure studles were carried out in the SCF-MS-Xoa model
primarily because it allows an approxlimately quantita-
tilve description of the electronic structure of systems
with a large number of electrons. The results of the
study provide values of the d-d transition energies, and
also give some understanding of the similarities and dif-
ferences 1in bonding characteristics, of the penta- and
hexa coordinated complexes. The g and hyperfine inter-
action (A) tensor components were computed using the
SCF-MS-Xa wavefunctions and values of spin-orbit coupling

3

constants and <r °> values computed for the appropriate
valence configuration of the atoms in the molecule using
atomic Xa wavefunctions. Comparison with the g and A
tensor components of [CrOClujl- computed usling extended
Hllckel wavefunctions shows the importance of using good
quality wavefunctlions 1n estimating spin-Hamiltonian
parameters as well as the need to estimate the required

3

spin orbit coupling constants and <r °> values in a non-
empirical manner. The various factors which determine

the matnitudes and signs of the ESR spin Hamiltonian



parameters of transition metal oxohalo complexes are also
discussed.

In this thesls, ESR spectra of three penta coordinated
dl transition metal oxohalo complexes are discussed. The
single-crystal ESR spectra of [VOFujz- and [MoOFujl- in
single-crystals of (NHM)2SbCI5. The spin-Hamiltonian

parameters are compared with those of the corresponding

hexacoordinated species.



CHAPTER II

AN INTRODUCTION TO THE THEORY OF
ESR SPECTRA

An electron has a spin angular momentum of one-half
which, in the absence of a magnetic field gives rise to
a doubly-degenerate spin energy level. The degeneracy
of the spin states 1s removed by a magnetic field and

the energy separation AE, of the two states 1s then gilven

by

AE = hv = gBB, (1)

where h 1s Planck's constant, v 1s the frequency of the
electromagnetic radiation required to induce a transi-
tion between these two energy states, g = 2.0023 1is a
constant for a free electron and B is the magnitude of
the applied magnetic field. An unpaired electron in a
molecule or ion which moves in the force field of nuclei
possess orbital angular momentum in addition to the spin
angular momentum. The interaction between the orbital

and spin angular momenta of the electron, which is

referred to as spin-orbit interaction, makes a



contribution to the g value, thus making 'g' a charac-
teristic property of the molecule or ion containing the
unpaired electronl.

The spin angular momentum of an electron interacts
with the nuclear magnetic moment giving rise to hyper-
fine structure in the ESR spectra of molecules or ions
containing nuclel with nonzero nuclear spin. An electron
interacting with a nucleus of spin angular momentum I
gives rise to (2I+1) lines in the ESR spectrum. The
hyperfine coupling constant can be measured from the
spacling between the lines. The measured values of g and
of the hyperfine coupling constants provide valuable in-
formation concerning the molecular symmetry, symmetry of
the orbital containing the unpaired electron, the spin
distribution and the nature of bonding.

The analysils and interpretation of ESR spectra are
customarily done in terms of a spin HamiltonianQ, since
the spectral transitions arise from induced changes in
the spin state of the system. The spin Hamiltonilan
arises from the replacement of the complete Hamiltonianl
by an effective Hamiltonlan which includes the applied
magnetic fileld, the spin operators and a set of param-
eters which characterize the ESR spectra. The expressions
for the magnetic energy levels of the system can bte
worked out 1in terms of these ESR parameters. The analysis

of an ESR spectrum thus reduces to the specification



of the appropriate values of the parameters which appear
in the spin Hamiltonian for the system and the inter-
pretation of the spectrum 1s concerned with understanding
the magnitudes and signs of the parameters in terms of
the molecular electronic structure of the system.

There are many surveys of the transition metal ESR
literature3°6. The use of molecular orbital theory to
interpret ESR results has been reviewed by McGarveyl,

7 8

» and Kuska and Rogers ., There are two reviews
9,10

Konig

with emphasis on first row transi-
11

by Kuska and Rogers

tion metal complexes. A review by Goodman and Raynor

gives comprehensive coverage of the dl to a9 ions for the

12

entire transition metal series. Recently Kohin has

reviewed ESR studies of vanadyl ion in crystalline solids.
In addition to these the current literature 1s reviewed
in the annual reports of the Chemical Society13, in the
series "Spectroscopic properties of Inorganic and Organo-

metallic Compounds and in the journal "Magnetic Reson-

ance Reviews"ls.

There 1s also a large number of books on ESR. The
books by Carrington and McLachlan16 and by Slichter17
gilve complete introduction to magnetic resonance while
those by AthertonlB, Ortonl9, Pake20 and Wertz and Bolton21
deal with only ESR. A comprehensive account of the ESR

of transition metal ions 1s given in the book by Abragam

22

and Bleaney and a detailed mathematical account of the



theory of transition metal ions is available in the book
by Griffith23. Books dealing with experimental tech-

niques include those by Poole24 and by Alger25.

A. Spin Hamiltonians

For a molecule with fixed nucleil (Born-Oppenheimer

1

approximation), the general Hamiltonian~ which takes into

account all the magnetilic and electric interactions that

arise in ESR spectroscopy can be written as

2

o)

~ 2
K= - Vg ¥V A g + Ry +30gp + X +Hgg I
(2)

where the first term 1s the kinetic energy operator for

51

z
i

the electrons and V 1s the electrostatic potential which

includes both attractive potentials between electrons and
nuclel and repulsive potentials between electrons. The

remalning terms in the Hamiltonian are discussed below:

1. X1q: Spin-Orbit Interaction23

The spin-orbit interaction 1s a relativistic effect
arising from interaction between the spin magnetic moment
of the electron and the magnetic field produced by the
motion of the nucleus. In relativistic quantum theory

thls 1nteraction 1s represented as



3 g = —%‘2—2 (Ex(p + § K135, (3)
2m-C
where E 1s the electric field in which the electron moves,
; is the linear momentum operator for the electron, 3
1s the spin-angular momentum operator in units of 4,
and X 1s the vector potential for any magnetic field
present. In most cases the term involving f is neglected,

owing to its small magnitude. Since the electric field

is spherically symmetric for a single ion or atom,

where i 1s the orbital angular momentum of the electron

in units of . For the case of an atom in a molecule,

where there 1s more than one center of the electric field,

it 1s customary to assume that the spin-orbit interaction

can be written as

-> <>
Hpg = DAL Eglragdhygd = Sy s (5)
where rix is the distance of electron 1 from nucleus K,
->
L1k 1s the orbital angular momentum operator for electron

1 centered at nucleus K and gi is the spin angular momentum



operator for the electron i. Equation (5) is based on

the assumption that the maln contribution to.yis comes
from the region close to the nucleus, since §(r) varies

3

as <r °>, and that near the nucleus the electric field

can be regarded as approximately spherical.

2. JC,: Zeeman Interaction

The interaction between the magnetic field and the
spin and orbital angular momentum 1s called the Zeeman
interaction. Thils interaction 1s represented by the

following term in the Hamiltonian

220

3y = g 8,85 + 8 BT - g8 -1, (6)

where Ze 1s the free electron g value, Be is the electronic

Bohr magneton, § is the magnetic field, gN the nuclear g

factor and By the nuclear Bohr magneton.

3. }CSI: Electron Spin-Nuclear Spin Interaction

This interactlion which 1s called the hyperfine inter-

action can be written as

- > - 2 -5

5

8 L 6(ryp) T3 (7)
t 3 sesnBeby 2 S(Tig) Ik Sy 7

3
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where ey is the nuclear g value, BN the nuclear Bohr
magneton and ;1K the vector connecting electron i with
nucleus K. The summation index 1 represents the summa-
tion over all electrons in the system and for K the sum-
mation 1s over all the nuclel with nonzero nuclear spin.
In Equation (7) é(riK) is the Dirac delta function which,
when integrated with the wavefunction, gives the value of
the wavefunction at ryg = 0. The two terms 1in Equation
(7) are the two limiting forms of the same interaction.
The first term represents the dipole-dipole interaction
for two dipoles that are not too close to each other.

It is the proper form of.HéI for electrons in p,d, and

f orbitals which have nodes at the nucleus. The second
term, which 1s referred to as the contact term in the
hyperfine interaction, represents the interaction between
the nucleus and an electron which has a finite probability

density at the nucleus.

y, }QLI: Nuclear Spin-Orbit Interaction

- =37, .3

Hpr = 8eByBeby I Tix(PixeIx) (8)
y

This term 1is important only in that it gives a second order

contribution to the hyperfine interaction by allowing the

nuclear spin and electron spin to couple indirectly through

the orbital angular momentum.
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5- J‘C

Cggi Electron Dipole Interaction

This iInteraction gives rise to the zero field or the
spin-spin splitting, in the ESR spectra and arises from
a dipole-dipole type interaction between the electrons.

_ 2.2 2 * > > -5
>
where rJK i1s the distance between two electrons. This

interaction arises only for systems with more than one

unpaired electron.

6. JQQ: Nuclear Quadrupole Interaction

If the nucleus has a quadrupole moment Q, there 1is
an electrostatic interaction between the electrons and
the nuclear quadrupole. This interaction 1s represented

by the following term in the Hamiltonian

. > 2 > 2 .29.-5
J'CQ = iZK[e QK/2IK(2IK-1)J[riKIK(IK+1) - 3(riK.IK> JriK s
(10)

where QK 1s the electric quadrupole moment of nucleus K.
Some small terms have not been included in the total

Hamiltonian (Equation (2)) since these terms were not found

necessary to account for the observed ESR spectra. The

terms so neglected are the nuclear spin-spin coupling



12

term and the nuclear chemical shift term. For systems
with only one unpaired electron, including those which
are the subject of this thesis, the electron-dipole inter-
actlions do not make any contribution and the nuclear Zee-
man interaction and the nuclear quadrupole interaction have
been found to be generally negligible. Hence these inter-
actions will not be considered further.

The complete Hamiltonian for a system with one un-
paired electron, where the nuclear Zeeman and nuclear
quadrupole interactions make negligible contributions,

can be written as

I =X, +Hpg +ICy +Hgp v, (11)
where
e = -B g2y (12)
o 2m § 1
> -> > >
JCy = gBeB S+ 8B - L (13)

and the remaining terms in Equation (11) are defined in
Equations (5), (7) and (8). If w§ is the ground state

electronic wavefunction, i.e.,

I,y = ERdy o (14)
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then the wavefunction corrected to first order for the

spin-orbit interaction gives rise to a pair of Kramer's

doublets26 as shown below
o) o
<y | K o |v5e>
> o= [ye> = |w§a> + 3 |yp> K . LSO N
K#N EN-EK
o o
<P | FC o |V B>
N
-> = |p8> = 08> + 1 [yQ —X LS , (15)
N N K o o
K#N EN-EK

These first-order spin-orbit corrected wavefunctions

[+> and |->, are not eigenfunctions of the spin angular
momentum operator g. Now we defline a fictitilous spin
angular momentum operator g, the components of which are
defined to act on the states |+> and |-> in exactly the
same way as the true spin operators act on the spin func-

tions |a> and |8>; that is

A 1 A 1
S, |+> = 5 [+>, §X|+> =3 |->
(16)
S, |-> ==L, &, |4+ =1
<z 2 ’ <Y 2

and so on. Then the total Hamiltonian can be rewritten
in terms of only the spin (fictitious) operators and the

magnetic field as follows



14

3¢ =88 g -8+

tU»

}z{ -ﬁK-IK, (17)
where é and 3 are the g and hyperfine interaction tensors,
respectively. The Hamiltonian of Equation (17) is the ESR
spin Hamiltonian for a system containing only one un-
paired electron. The spin Hamiltonlan is an artificial
but useful concept which has become the crossroad for the
path followed by the experimentalists and the theoretic-
lans. Experimentally, the spin Hamiltonian and the param-
eters which define 1t, are determined from the ESR spectra,

whereas, theoretically, the parameters are computed from

the wavefunctionl.

B. Experimental Methods for Obtaining the Spin-Hamlltonian

Parameters

Electron spln resonance measurements are usually made
on magnetically dilute samples. Measurements made with
pure paramagnetic samples are less Informative because of
exchange broadening of the lines. Magnetig dilution is
usually done 1n solution by preparing a dilute solution of
the material in a suiltable solvent. In the solid state it
1s accomplished by doping the paramagnetic sample to an
extent of about 1% in a diamagnetic solid.

For the transition metal oxohalo complexes studied

here the spin-Hamiltonlan is
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~

J = g||BeBz5z + g_LBe(BxSx + BySy)
M a2 M
+ AHIZSZ + Al(IxSx + IySy)

_ - M_ M Mm__ M _ M

‘where only the interactlon between the unpaired electron
and the metal atom 1s 1ncluded and Si’ Ii’ 1 =x,y,2 are
the components of the electron and nuclear spin operators,
respectively.

The principal components (gll’ gl, ATI, AT) of both the
g and the hyperfine interaction (A) tensors can be obtained
from single crystal studles. In Schonland's method27
of determining the principal components of g and A tensors,
ESR spectra should be obtalned for rotations of the
crystal about three orthogonal axes, The need to obtain
spectra for rotations about three orthogonal axes is only
a limitation of Schonland's method. The method of Waller
and Rogers28 for the general case of rotations about any
three axes can be used to determine the principal components
of both the g and A tensors. Even though 1t 1s difficult,
the principal components of g and A tensors can be ob-

tained from powder and frozen solution samples with fairly

good accuracy29. The spectra of powder and frozen solution
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samples can be simulated to facllitate the analysis and

to obtain accurate values for the spin Hamiltonian
parameters. The ESR spectra of low viscosity solution
samples provide only the average values of g and A tensors
because of the rapid molecular motions. These average
values of g and A are related to thelr principal components

by the equations

0|
"
Wi+
»
-
+
0
]
<
+
o
N
N
~

=]

[}
Wi+
~
=
+
=
+
=3

Since the dipolar part of the hyperfine interaction tensor
is traceless, the measured hyperfine coupling constant
from solution spectra 1s equal to the Ferml contact coupling

constant.
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CHAPTER TIII

THEORY OF g AND HYPERFINE INTERACTION TENSORS

The theory of g values and hyperfine interactions in
the electron spin resonance spectra of transition metal
complexes 1s based on the perturbation theory treatment of
Abragam and Prycel for the crystal field model, later
modifled to include covalency effects. The general
subject of the interpretation of spin Hamiltonian param-

2-4 and the

eters has been discussed in detail by McWeeny
theory of g values and hyperfine interaction has been the
subject of detailled reviews5'7. So in this chapter only
outlines of the theories are given to show the dependence

of g and hyperfine interaction tensor components on the

molecular electronic structure of the system.

A. Theory of the g Tensor

The electronic Zeeman interaction term in the spin

Hamiltonlan which accounts for the observed g value 1is

=83 +-g 8§, (1)

19
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where § is the g tensor, which can be isotropic or aniso-
troplc depending upon the system. If the g value calcu-
lated from the g tensor (average of the principal com-
ponents of the g tensor) differs from the free electron
value of 2.0023, then S cannot possibly represent the true
spins. The experimental g value deviates considerably from
the free electron value. Hence the spin operator S in
Equation (1) should be replaced by a fictitious spin opera-
tor s as shown 1in Chapter I.

The spin and orbital angular momenta interact with the
magnetic field as given in the complete Hamiltonian (Chap-
ter I). Hence the actual total electronic Zeeman inter-

action is given by
K = Be(f,, + geg) « B (2)

Since the electronic Zeeman interaction of Equations (1)

and (2) represents the same interaction, we have

(3)

LY
-

A ~ A A A
Bo(L + g.,8) - B=8B - g -

where § 1s the so called fictitious spin angular momentum
operator.

For a molecule with a single unpaired electron (spin
a) in an orbitally nondegenerate ground state the Zeeman

interaction energy 1s given by
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)]
"

WoalL, + 8.5, (v, a>8,B

BeB<Uy Ly lv > + g B B[S, [a>

1 :
BeB<LZ> + 3 geeeB 5 <Lz> =0
where wo is the molecular orbital containing the unpaired

electron. A similar calculation for the state wOB gives
E, = 8.B<L_> - % g 8.B; <L.> = 0
B e z 2 Bebebs z

Ey - EB = 8.8gB = hv
From this one concludes that the g value should always
be equal to the free electron g value which 1s contradic-
tory to the experimental observation.

The shift in the g value from 8o = 2.0023 is attributed
to the fact that the electron possesses orbital angular
momentum in addition to the spin angular momentum. The
odd electron can acquire orbital angular momentum via the
spin-orbit interaction. The ground state wavefunctions
|¢OG> and |w08>, corrected for the spin-orbit interactions
through first order in the perturbation, takes the follow-

ing form:
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<p_lee)E |y > <y le@)L, |v.>
|+>=lpgo> - 55 —B——EC |y a> - 11 0 t O |y
n#0 n o) n#o0 n o)

(14)

<y le@)D, v, > 1, <wn|€(r)ﬁ-l¢o>|w >
2

- 1
T |w08>+ 2n§0 En - Eo Iwn n#0 En - Eo n

where the summation index n refers to all the excited single
particle states, Enarethe energlies of the exclted single
particle states labelled n, and £(r) the spin-orbit coup-
ling operator. The two states obtained by correcting for
the spin-orbit interaction are no longer eigenstates of

the true spin operator 3. Now we define the fictitious

spin operator § as an operator, the components of which

act on the states |+> and |-> In exactly the same way as

the components of the true spin operator § act on the spin

functions |a> and |B>, 1l.e.,

In a magnetic fileld directed along the z-axis the spin

Hamiltonian for the Zeeman interaction takes the form
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A

F = B B(gy,S; * gyz§y + 8,257)

and Equation (3) can be written as follows:

Be(LZ+geSz)B = BeB(gXZ§x+gyz§y+gzz§z) (5)
Using the expression for |+> of Equation (4), evaluating

the matrix element

<+|BeB(Lz+gesz)|+> = <+|BeB(gxz§x+gyz§y+gzz§z) +>

and solving for g,, we get

<o 18I, [v ><w 1L, v >

z
n#0 En - E,

8

It can be shown  easily that the general expression for the

elements of the g tensor is gilven by

g U lEGEg v ><u 1L vy

g =g, -2
4 € n#0
En - E

[1,]J = x,y,2]
(6)

From the above general expression for the components

of the g tensor 1t follows that they are determined by
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the ground state electronic wave function, the excited
state wavefunctions of appropriate symmetry, the energy
differences between the ground and the various excited
states and the spin-orbit coupling constants of the various
atoms. The evaluation of g-tensor components will be dis-

cussed later.

B. Theory of the Hyperfine Interaction (A)

The hyperfine interaction tensor (A) may be written as
a sum of the anisotropic part arising from the dipolar
interaction between the unpalred electron and the nuclear
magnetic moments plus an 1sotropic part attributed to a
Ferml contact interaction. Since the anisotropic part of
the hyperfine interaction tensor is traceless, the experi-
mentally measured hyperfine tensor can be factored into the
anisotropic and isotropic parts.

For a transition metal complex with the unpaired elec-
tron 1n the d orbital one would expect the 1lsotropic hyper-
fine coupling constant to be zero since the square of the
d orbital wavefunction is zero at the nucleus. But experi-
mentally it 1s seen that 1sotropic hyperfine interaction
does exist in transition metal complexes. This can be
accounted for by 1nvoking either configuration interaction

9

or core polarization”.

The hyperfine interaction term in the spin Hamiltonian

is
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ttn >
.
=>4
.
H»>
-

I = (7)

o)

where A is the hyperfine interaction tensor, % the fic-
titious spin operator and I the nuclear spin operator.

In thils discussion we conslder only the anisotropic part

of the A tensor. In the complete Hamiltonian (Chapter 1II),
the interaction of the spin and the orbital angular momenta
of the unpaired electron with the magnetically active

(I # 0) nucleus 1is given by

Fpert =Fpp, + Hpp (8)
L, « T
~ 1 I
ey = g =

' =
P gegnBeBn ’
where.H&L and.ﬂbD represent the nuclear spin orbit and the
electron-nuclear dipolar interactions, respectively. In
the expression for Hp, Fij is a linear combination of
normalized real spherical harmonics. Since Equations (7)

and (8) represent the same interaction, we have
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341 -

Using the expression for |+> of Equation (4), evaluating

the matrix element

A~ oA L, 1 F
11 S S
<+ +> = Pre+ +
| §§1A1JIJ| > = Predl Il 3 :’]: T4 73 Syll+>  (10)

and solving for Azz’ we get

A

n L
<y gL, | wn><wnl;§l Vo>

F
A4
A, = P'[<wo|?-lwo> + I {2

n#0 Eo - En
Faz
Yo 8L (V> <y [ =57 ¥, >
r
}]
+ T e ’
. B oBz EO - En

where EaBz is the Levi-civita symbol. A rather lengthy

computation of matrix elements similar to the one in Equa-
tion (10) can be used to evaluate the various elements of
the anisotropic part of the A tensor. The general ex-
pression for the anisotropic hyperfine interaction tensor

(AaB) is given by
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~ L
. Yo |8 )Ty v _><v | =5]v >
o n
~ Fog
<wol£(r)LYlwn><wnL;g4wo>
I deg, S }] (11)
Y9 E - E

o n

From the general expression for the anisotropic hyperfine
coupling constant of Equation (11), it follows that the
factors which determine the magnitude of hyperfine inter-
action (dipolar) are the ground and excited state wave-
functions, the energy difference between the ground and
the various excited states of appropriate symmetry, the
spin-orbit coupling constants and <r'3> values of the
atomic orbital containing the unpaired electron. The
expression of Equation (11) had been derived earliler by

Keijzers et 1.10

using a different method.

C. Evaluation of g and A Tensor Components

The evaluation of the principal components of g and
A tensors using the general expressions of Equations (6)
and (11) requires the estimation of various types of matrix
elements. Some approximations are made in the evaluations

of certain types of matrlx elements and are given below

(1) <y lee)L, lv,>
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In the one-particle approximation being used the spin-

orbit coupling operator E£(r) 1s given by

where Z' 1s the effective nuclear charge, with this ap-
proximation for the spin-orbit operator only one center
Integrals are retained in evaluating the above matrix
element, since the contributlon to <r'3> are small and may

be neglected 1n the overlap region.

(11) <<y |—§|w > and <y, | Iw >

Only the matrix elements of the following type are retained

A

L F
Ki“81. K K~ 8a.K
¢n|r3|¢o> and <¢n|r3 '¢o>

s
where K refers to the nucleus for which the hyperfine inter-
action 1s computed, since r is the distance between the
nucleil of interest and the unpaired electron.

The expressions relating theg- and A-tensor components
to the electronic excitation energies, atomic spin-orbit
-3

coupling constants, <r -> values and the coefficients of

atomic orbitals in the molecular orbitals for systems with
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Cuv symmetry are given in Chapter V and the relative im-
portance of the various parameters for transition metal

oxohalo complexes are discussed there.
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CHAPTER IV

AN INTRODUCTION TO THE SELF-CONSISTENT FIELD
MULTIPLE-SCATTERING Xo THEORY

The electronic structure and properties of any mole-
cule, in any of its statlonary states, can in principle
be determined by solving the Schrddinger (time-independent)
equation. The exact solution of the Schrédinger equation
has only been possible for atoms and molecules with one
electron because of the mathematical and computational
complexities involved 1n 1ts solution. So approximate
solutions of the Schrodinger equation are generated to
obtain information of chemical value from theory.

There are many different procedures based on the varia-
tion principle avallable for solving for approximate solu-
tions of the Schrodinger equation. These schemes for
developling approximate solutions can be classified into
two categories, the ab initlio and the semi-empirical
methods. The ab initio method has the well known Hartree-
Fock self-consistent field theory as its basis while the
semi-empirical methods attempts to mimic the ab initio
method. The X-q multiple scattering self-consistent field
method fits well into the traditional gap between the

31
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ab initio and the semi-empirical approaches.

The multiple-scattering Xo self-consistent fileld
method is a computationally convenient method for develop-
ing an approximately quantitative description of the elec-
tronic structure of many-electron systems. The two main
features of the MS-Xa-SCF method are the Xa approximation
for the exchange contribution to the total potential and
the multiple scattering method of solving the modified
one-electron equations. Although the two approximations
are often used in conjunction, they are logically distinct
and each may be used without the other.

A complete discussion of the historical development
of the MS-Xa-SCF method can be found in Slater's auto-
biographyt. The Xo approximation and its application,
with emphasis on atoms and solids are given in detail in
Volume IV' of "Quantum Theory of Molecules and Solids"
by Slaterg. The complete derivation of the system of equa-
tions for the MS-Xq-SCF method has been given in the re-
views by Johnson3 and by Welnberger et gl.u. In addition
to these, there are a few reviews dealing with the outline

of the method and application to molecules” /.

A. Hartree-Fock Equations and the Xqg Approximation2

For a system of N electrons moving in the potential

field due to nuclei, the Schrddinger equation 1s
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HKy(l,2...N) = E¥(1,2,...N) (1)
where 3¢ 1s the Hamiltonlan operator,

J_c =
1

ne~ =

f1) + T g(i,3). (2)
1 i>j

Here the first term 1s the one-electron operator and the

second the two-electron operator

2 M Zu
f(1) = -V - ¥ — (3)
1 u=1 Tui
2
(1,3) = =— v (4)
g riJ

where the first term in Equation (3) 1s the kinetic energy
operator and the second term represents the electron nuclear
attraction. The summation over u in Equation (3) takes
into account the electron nuclear interaction involving all
the nuclei in the system. The two-electron operator
g(1,J) of Equation (4) accounts for the electron-electron
repulsion. The above Hamlltonian is in Rydberg units.

The N electron wavefunction y(1,2,...N) is written as
a single determinantal function in terms of N one-electron
functions Xy each of which is a product of a spatial func-

tion and a spin function,
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W(1,2,...N) = Ax; (1)x5(2) ... oxy(N)

where

and A 1s the antisymmetrizer. The orthonormal set of one-

electron functions {xi}il\f__lare determined using the varia-

tion principle so that

E = <y(1,2,...N)|X[p(,2,...N)> (6)

N
i=1
independently with the orthogonality constraint (Equation

is a minimum. On varying the set of function {Xi}

5) we get the Hartree-Fock equatlion for the spin orbital

Xq>
" N oy N

J=1
(7)

where §12 is a permutation operator.
The second term in the Hartree-Fock equation (Equa-

tion (7)) for x4 can be rewritten as
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N
z Jdt(2)x¥*(2)e(1,2)(1-P (2) 1
o1 T XJ g lZ)XJ Xi( )
N
= I x,@)fdt(2)x*(2)g(,2)x, (2)
3=1 i J J
N
- I x,Q)fdr2)x¥(2)g(@1,2)x4(2) (8)
j=1 J J i

The spin integration in Equation (8) results in a factor
of +1 multilplying the spatial integral for the first term
on the R.H.S. of Equation (8), while the second term van-
ishes unless X4 and xj have the same spin component,
Hence the potential energy contribution (excluding the

nuclear attraction) in the Hartree-Fock equation can be

written as

Il
I xy(1)/xF (21 Q,2)x, (2)dx(2)

Ty, ) ;

L
+ § xj}nyg(E)g(l,2)xJ(2)dr(2)

| ]
) (1) x*¥(2)g(1,2)x,(2)ax(2) (9)
;9 J 1

The terms in Equation (9) can be written in the following

forms (Equations (9)-(12)):
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N
§ X (1)/x3(2)e(,2)xy (2)dT(2)
[
= x4 (1) /e (2)g(1,2)dV(2) (10)

[ |
where p (2) = % de(Z)x3(2)xJ(2) 1s the density of elec-
trons with the same spin as y; at the terminus of a position
vector ?2. The integration in the expression for p (2)

1s the spin integration.

§lxi(1)fx3(2)g(1,2)xj(2)dr(2) = Xi(l)fpl(2)g(l,2)dV(2)
(11)

where p (2) = Zfd€C2)X3(2)XJC2) is the density of electrons
J
with spins opposite to that hosted by Xq -

N
" DXy g (2@, 2 ()ax(2) -

I Xi(l) %059
- oxy Q@) Xy (1) /x3(2)e(1,2)xy (2)at(2)

J

[l (x, (L)x*(2)x4(2))
= - Xi(l)fz J pl i
J Xi(l)

g(1l,2)dt(2)
(12)

We now define the exchange charge density pix(l,E) as
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X+ (1)
o5 (1,2) = ; Yj{ﬁ')' S48 (2)x%(2)x; (2)

and using Equations (10)-(12) can write the Hartree-Fock

equation determining X4y as

{f + ro (2)g(1,2)av(2) + fol(2)g(1,2)dV(2)
- Jo%%(1,2)g(1,2)av(2) }x; (1) = e4x;(1). (13)
Since
[ 1
fp (2)dav(2) = N|| and fp (2)av(2) = Nl’

where N|| + Nl = N, the total number of electrons. The
electron hosted by orbital Xy thus seems to interact with
itself via Coulombs law, which i1s physically unrealistic.
This self interaction is cancelled by a part of the exchange

charge density. The number of electrons in the exchange

charge density 1is

1 x4(1)
ex =
/o®%(1,2)av(2) = ¢ >‘<i‘(ﬁ Ix%(2)x4 (2)at(2)

o

or exactly one electron, and as particle 2 tends to 1
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' I x, (D)
Lim .ex
RN X%ZTT X3 (L)xg (1)>g

I |
D > fx;(l)xj(l)di(l) =p (1)

e

the exchange charge density 1s equal to the densilty of
electrons with the same spin as electron 1.

Hence, 1n the immediate vicinity of electron 1 the
exchange charge denslty 1is equal to the density of elec-
trons with the same spin as electron 1. The exchange charge
1s dense around 1 = 2 and goes to zero rapidly as the

electrons are separated.

In this reglion, therefore, X4 is determined by

Gy + 7 2 avenx ) = egxy (1)

for 1 close to 2.

Thus the following picture then emerges within the Hartree-
Fock model: "Each electron moves in the field of the nucleus,
the electrons of the opposite spin, and those of parallel
spin outside an 'exchange hole' or 'Fermi hole', which
follows around wherever it goes".8

The exchange charge density has a different form
for each wavefunction. The total exchange charge, however,

equals one electronic charge in each case, and 1its value
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when point 1 equals point 2 1s 1n each case equal, so that
the net size of the Fermi hole must be approximately the
same for each wavefunction, even though it may differ in
shape and other detaills. Thus, a great error may not be
made 1f the actual Ferml holes, which are different for
each X4y, are replaced by an average value taken to be the
same for all Xy's. This forms the basis of Xa self-con-
sistent fleld calculations.

In the Xo approximation the different exchange charge
density for each orbital of the Hartree-Fock model is
replaced by a welghted mean of the exchange charge den-
sities, the welighting factor being the probability that an
electron found at the position symbolized by 1 should be
found in the 1th spin orbital. The denslty of charge of
spin-up electron at position 1, arising from the ith spin
orbital, 1s n,x}(1)X;(1), and the total density of spin-
up electron at this position is é;nKxﬁ(l)xK(l). Here it is
assumed that x, 1s a spin orbital corresponding to spin-
up electron. Hence the probability that an electron at
position 1 with spin-up should be in the 1th spin orbital
is

nixi(l)xi(l)

¥
I neXe(l)x.(1)
K4 KAK K

The deslred weighted mean of the exchange potential is then



4o

z Zninjfxz(l)x§(2)g(l,2)xj(l)xi(2)dv(2)

XHFi‘I‘(l)]av =- *

where n,, ny and ny are the occupation numbers of the
respective orbitals. A simllar expression can be written
for the spin-down case. The above expression for the ex-
change potential can be evaluated exactly for a free
electron gas for which the spin orbitals are plane waves.

If one carries through the calculationg, the result is

[Vpe s (WD 15y = 60304 (113 = vy ()
where p+(1) = f nyxi (L)xg (1).
+

In the Xa approximation the exchange potential 1s re-

written as

Vgt (1) = aVygy = =Balghot (113,

where a is an adjJustable parameter. In Slater's approxi-
mation10 for the exchange potential, the exchange potential
of the Hartree-Fock equation is replaced by its average,
and this in turn 1s replaced by its value for a free elec-
tron gas. On the other hand 1f one replaces the exchange

potential in the total energy expression by 1ts statistical
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equilvalent as Gaspar, Kohn and Shmnl2 did, and then varies
the spin orbital X4 1In this statistical expression for
total energy,one obtains a one-electron equation for the
spin orbital with vXSf(l) having only two-third of the
value obtained by Slater's method, If in the statilstical
expression for total energy, the exchange potential term
is replaced by %a times the Gaspar-Kohn-Sham value, the

followlng expression for the total energy 1s obtained

<EXa> i nifxg(l)fxi(l)dv(l)

5 rp(1)p(2)g(1,2)av(1)dv(2)

+

3 o 301000 1M 34 Lov (1)1 Bav (1)
(14)

If In this expresslon for the total energy the spin or-
bitals are varied to minimize energy, the following one

electron equation 1s obtalned

2
[-71 *+ Vo) + Vygy WIxgp (1) = eyyX44 (1) (15)
where
; 2
v (1) = - Ff + § nyfx}(2)x;(2)g(1,2)dv(2)

- 3 1/3
Vs (1) = —6al0t(1)]
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The Equations (14) and (15) are the total energy expres-
sion and the equation for the one electron orbitals in

the Xa approximation, respectively.

B. Determination of a in the Xa Method

In the total energy expression of the Xa model,

<E

v
[}
™M

Xa z nifx§(1)fxi(l)dv(l)

+
=

fo(1)p(2)g(1,2)av(1)dv(2)
- 2 FTor )13 + v )1V Brava)

The Xa exchange term appears with a negative sign and is
linear in a. So a cannot be determined by minimizing the
energy. There are three sets of a values available for
the varlious atoms. One of the criteria used for determin-

ing a 1s to choose a so that <E_, > is exactly equal to the

Xa
configuration averaged Hartree-Fock total energy12.
The a values so determined show a smooth variation wilth
atomic number; o decreases with atomic number, being around
0.78 for the two electron atom, decreasing to a range of
0.72-0.70 for the 3d transition series and remaining
almost constant thereafter at 0.69. The a's determined

in this manner are the most widely used in molecular

calculations. The second procedure is to use Xo atomic
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orbiltals and Hartree-Fock operators to compute the virial
ratio (-V/T) and choose o to get the best number for the
virial ratiol3. In the third procedure for determining
a, a linear varilation of Fermi-hole density is assumed
with the appropriate boundary valueslu. The a values
depend on the number of electrons with each spin type

as shown in the following equations

2 L4+ 3
(éL-+ l)2/3
4+ 3
a = (mya, + na)/(n, +n), (17)

where ny is the number of electrons with spin up (o spin),
n, the number of electrons with spin down (B spin) and

oy 1s the a value for spin up electrons. The expression
for a, is similar to that of Equation (16). These so-
called theoretical o values reproduce the atomic number
dependence of a values determined by the first procedure

in all detalls. The a values determined by thils procedure

also fall in the range 1.0 to 0.6666.
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C. Interpretation of Xa Eigenvalues and Slater Transition

States15

The eigenvalue €4 HF of the Hartree-Fock method is a
finite difference of energiles <EHF> for the two states
for which the occupation number ny of the 1th spin orbital
differs by unity. On the other hand, the eigenvalue

€ of the Xo method 1is given by

iXa

= 9 _
®1Xa = 3n, “Exa”> (18)

l.e., a partial derivative instead of a finite difference.

The total energy 1in the Xa method can be written as

ny<t] 5> + cal<oy/3 )40, 3151,
(19)

1
Ey = In,<i|i> + 3I In
Xo 1 1 13

2 1

where Ny 1s the occupancy of the spin orbital Xg? which

1s a solution of the following one-electron equation

(£ + B (20, (8 (1,2009(2) + zeaer by (D=egxys (1),

(20)

where fl and g(1,2) are the one- and two-electron operators

defined earlier and
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<il1> = fxy)fx; (Dav(D)

<ally> = £ix3xg (Deg(1,2)xF (2)x4 (2)dv(1)av(2)

<p(n)> = fp(n)dv(n) p(n) = i ngx# (n)xg(n)
c=-3 &3,

From Equation (20) the Xa eigenvalue can be written as

o = <KIR + Tngex]lp ¢ $ca<xy, (Lxpes/ 31> (21)

The unrelaxed ilonlzation potential I%r for the Kth or-
bital can be calculated by setting g = 1 for the neutral
state and ny = 0 for the ion in Equation (20) and taking
the difference, keeplng the xi's the same as in the

neutral case. Thus

14" = Y - B = -<k|K> - £ n.<k|]3> - 3<k||x> +
3 2
J#K
Cacpghd (1) = pi/3(1)>, (22)
where

pry = 0, (1) - nKX;(l)xK(l)
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The last term on the R.H.S. of Equation (22) can be re-

written as

x§(1>xx(1>)u/3
p, )

ca<ot/ 32 -

+ - l]> .

Binomial expansion and neglect of all higher powers of

x*(1)xg(1)/p, (1), which are expected to be small, enables
K

us to write this term as

- 3 CosxExe ey 31>

Thus,
T = =<kl £kl 1= o] [0 goag@ng)ey 2 @)>
(23)
and from Equations (21) and (23), we get
I = - ep + 3 <kl k> . (24)

In the Hartree-Fock theory, the unrelaxed ionization po-

tential (Koopmans' approximation) 1is given by

ur _ _ HF _ -+ - O
Iy = €K EHF(K) E¥ , (25)

where E;F(k) is the Hartree-Fock energy of the system with



47

h orbital removed and EO that of the

the electron 1in the Kt
neutral system.

Equations (24) and (25) show that the Xa eigenvalue
does not have the same physical significance as in the
Hartree-Fock theory. 1In the Xo method, the elgenvalue
differs from the lonization potential by the self-inter-
action term %<K||K>. It 1s easy to trace the origin of
this discrepancy. In the Hartree-Fock theory, the self-
interaction term 1s exactly cancelled by part of the ex-
change term; but in the Xo method, because of the exchange
approximation, no such cancellation occurs and this un-
physical term appears in the expression for IK'

In the Slater transition-state method of calculating
ionization potential the eigenvalue €x of the orbital of
interest is calculated for a state midway between the
neutral and ionized states, namely when half an electron

h orbital. The unrelaxed eigen-

1s removed from the Kt
value €x for the transition state Ng = % can be written

as

eK(nK=%)=<K|K>+J§KnJ<J || k>+3<K] K>+§ca<x§(1)xK(1)oi/3 (1)>
(26)

after expanding the exchange term and neglecting all highe
powers of xﬁ(l)xK(l)/20+(l). On comparing with Equations
(23) and (24) we get
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ur _ = 1y _ 1
IK -"EK(nK-§)"-EK+2'<KlIK>.

However, 1n actual transition-state calculations, the
SCF eigenvalue equations are solved for the occupancy
ng = %, which therefore involves some relaxation (complete
relaxation 1s not included since the whole electron is
not removed). These eigenvalues, which we denote by
tr are then identified with the negative of the relaxed

€x >
ionization potential, IEel

, 1.e.,

rel o _ _tr
K

There is empirical Justification for this assumption from

the reported16 agreement between e&r values and

AE(=(E¥(K) - E°) where the E's are the total energies)
values. Then the relaxation contribution to the ioniza-

tion potential 1s given by

tr

rel _ qur _ srel _ _ 1

AEK

It has been shown that the main effect of the transi-
tion-state procedure 1is to correct for the self energy of
the electron in the Xa approximation and that the transi-

tion state eigenvalues do not include any correlation ef-

15 17

fects as had been suggested earlier~'. Recently it has

agaln been shown that the Xa approximation does not include

any correlation effectsls.
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D. Multiple Scattering SCF Method3®"

The multiple scattering SCF method 1s based on the
geometrical partitioning of a molecule or a cluster
into three fundamental types of regions, namely, atomic,
interatomic and extramolecular. The one-electron Schrd-
dinger equation 1s numerically integrated within each
region in the partial-wave representation for spherically-
averaged potentlal iIn the atomic and extramolecular region
and volume-averaged potential in the interatomlc region.
The wavefunctions and thelr first derivatives are joined
continuously throughout the various reglons of the cluster
via multiple-scattering theory. This procedure leads to
a rapldly convergent set of equations which are numerically
solved for the molecular orbital energies and wavefunc-
tions. Thils entire numerical procedure is repeated, using
the wavefunctions obtained at each 1teration to generate
a charge density and new potential, until self-consistency
is attained.

The three fundamental types of regions into which a

molecule 1s partitioned are:

(1) Atomic: The region within nonoverlapping spheres
centered on the constituent atoms (spheres can be made to
overlap too).

(11) Interatomic: The region between the 'inner'

atomlc spheres and an 'outer' sphere surrounding the
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entire molecule.
(111) Extramolecular: The region exterior to the

outer sphere.

The one-electron SchrSdinger equation (in Rydberg

units)
[-v2 + V(r)Jy(r) = Ey(r)

1s solved 1n each of the different regions for the
appropriate local potential V(r)

V(r) = V.(r) + an(r).

The local potential includes the Xa approximation to the
exchange potentlal in addition to the Coulomb potential.

_ 2
+ §njfx§(2)xd(2)g(1,2)dVQ2) g(1,2) = T

n

Z

T, @) = - &

s

Vyo (1) = =6al 0 1)1%/3.

(1) Muffin-tin Approximation:

In the muffin-tin approximation the local potential
field of V(r) of a molecule or a cluster 1s replaced by
a set of individual, non-overlapping spherically sym-

metric potentilals Vi(ri) around each atomic site Ri’
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where Ri refers the atomic site to the origin of the
cluster (Figure 1). A spherically-averaged potential is
used in the region outside the outer sphere while a volume-
averaged or a constant potential 1s used in the inter-
atomic region.

Thus, within the 'muffin-tin' approximation, the po-
tentlal fleld is replaced by a model potential of the

following form

i .
V-(|r-R,[);  [r-Ry[=r; < by 1 =1,...N
= o —-— . - =
V(r) v (|r ROI), |r Rol r, > b
v H otherwise,

The potential energy at an arbitrary point ? of the

molecule can be expanded as a superposition

VEY = 3 vj(lﬁ-ﬁjn
J
of free-atom or free lon SCF-Xq potentlals centered at

posltions RJ’ The potential energy is represented inside
each atomic region I by expanding the superposition in

a serles of spherical harmonics.

VI(;) = E VL(F)YL(F) L= (2,m)
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The muffin-tin approximation consists of using only the
first term L = (0,0) (spherically symmetric) in the
spherical harmonic expansion of the superposed potential.
In the muffin-tin approximation the potential in a par-
ticular atomic region includes not only the contribution
of the atom located there, but also the spherically-
averaged contribution of all the other atomic potentials

to that region.

2. Secular Equations

Consider a molecule with the geometry as shown 1in
Figure 1. The outer sphere will be denoted with an index
1 = 0, and atomic spheres with 1 > 0.

The wavefunction y(r) in regions of spherically-sym-
metric potential (interior to the ith (1 > 0) sphere and

exterior to the outer sphere) can be written as
o) = 1 iR E)Y ()5 L= (2,m) (27)
L L''LY1» LYvi’ ’

0 < ry <Db for all1 1 > 0O

i

b ¢« r < o for 1 = 0,
where the quantities Ci are coefficlents to be determined,
YL(ri) are real spherical harmonics and Ri(ri;E) solutions

of the radial Schrodinger equation in region i, corresponding
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to the trial eilgenvalue E and angular momentum 2:

1 4d 2 a4 2(241) i i
{- = r + + V- (r,) - E} R (r,,E) = 0
ri dri i dri ri i i’

(28)

For all regular scattering potentials Vi(ri) il.e.,

1im
[riVi(ri)] =0
ri+0

Two independent solutions of Equation (28) exist which

behave at the origin 1 as ri and r;z-l

, respectively.

Two boundary conditlons are necessary to make a solu-
tion of Equation (28) unique. The first is a condition
of regularity for Ri(ri,E), and 1is sufficient to identify
one of the two solutions mentioned up to a multiplicative
constant, 1.e.,
¢

L
R2 ri,E) - const. ry; 1 > 0

ri»o 1
which characterizes the asymptotic behavior of R%(ri,E).
In the intersphere region (i.e., region of constant
potential) the Schrodinger equation takes the following
form

{-v2 + K%}y (r) = 0, K2 = (V-E). (29)



55

The solution of Equation (29) around any scatterer

1 > 0 can be divided into an incident wave winc(r) and

a scattered wave wéc(r),
i i
yp(r) = winc(r) + WSc(P); i>0 (30)

i
E BLiz(Kri)YL(ri); E<V; 1>0

1
Yipne(r) =
i —
z By, (Ke)Y  (ry); E>¥; 1>0 (31)
1.(1) . 7.
IAKg (Ke)Yp(ry); B <T5o1>0
i
bgelr) = (32)
g Alu (ke )Y ()5 E>T; 1> 0
L
jz(X) - spherical Bessel function
ul(x) - spherical Neumann function
il(X) = 123£(X) - Modified spherical Bessel function

Kél)(X) = -1‘2h§1)(1x) - Modified Henkel function of

the first kind.

For any scatterer i > 0 the incident wave winc(r) is
regular when expanded about the center of the scatterer,
while the corresponding scattered wave wéc(r) is irregular

at the center of the scatterer when analytically con-

tinued.
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The second boundary condition is to match continu-
ously the wavefunction and its first derivative interior
to a sphere 1 > 0, at the sphere boundary bi with the cor-
responding quantities derived from the field [Equation (30)]
around thils sphere. 1In order to satisfy this condition,
it 1s necessary and sufficient to equate the amplitudes
and the logarithmic derivatives taken at the sphere boun-

dary ri = bi’

i i i
ie AL = tg(E)BL
i
[1,(Kb,),R} (by,E)] _
T kDo ne.nl
[Kﬂ, i)’Rl i
ti(E) = (34)
i

L3, (kby),R; (0 ,E)] .

[Hg (Kby),R7(by ,E)]

where the square bracket in (34) symbolizes the following

Wronsklan form
[£(x),e(x)] = £(x) $& (x) - gx) T () 5

t%(E) is frequently called the 'scattering factor'.

We can express the amplitudes Ai of the scattered

waves wéc(r) in terms of the coefficients CE of Equation
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(27) by matching the wavefunctions at the sphere boundaries.

For example, for E < V we obtain

cirlo,,E) = Bt (xoy) + alxP )
= (i@, o) + kP ko3l
[1,v,),rRYb, ,E)]
ple 2 L 21 "l (35)

[1,(Kby),K " (Kby)]

(1) _ 2+1 ,,. 2
[1£(Kbi),x2 (Kby)] = (-1)" /Kby

[3,(Kb,),u, (Kby)] = 1/KbS

2+1 i .
(-1) [iz(Kbi),Rl(bi,E)], E< T

2
a7 = kpoci (36)

i —
[J, (Ko ),Ry(0y,E)];  E >V
For the region exterlor to the outer-sphere region
_ 0,0
p(r) = t CLR, (0o, EN Yy (r)) (37)

and the regularity of the solution 1s required for

large r
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le lim o
r soity (FgsE) = 0.
o
Hence, we have a different situation from that in the

i > 0 case for solution of Equation (29) in the inter-

sphere region
v) = 9 @) + 3., (38)

namely, the incident wave winc(r) 1s irregular at the
origin of the outer sphere and the scattered wave wgc(r)

regular;

BEKél)(Kro)YL(ro); E <V

Vine @) = (39)

Biuz (Ke )Y (r)); E> 7V

o~

[l ng ]

Agil(Kro)YL(ro); E<V
Ve (r) = (40)

(02N
ALJ,Q,(KrO)YL(rO)’ E >

apll e

[l o
<l

By analogy to the 1 > 0 case, we can express the ampli-

tudes AE of the scattered wave in terms of Bg or Ci,
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o _ .o o
Af, = tz(E)BL

(1) o
[K2 (Kbo)’Rz(bo’E)].

S E <V
[1, (Kb ),R, (b, ,E)]

% =
t9(E) = (41)

[uy (Kb,),RY (b ,E)]

- o
[qz(Kbo),Rl(bo,E)]

2+1 1) 5
(-1)"[RE(b,,E), Ky (KO )]y E < 7
a2 = kolc? (42)

[Ri(bo,E),uz(KbO]; E>V .

Method of constructing a unique wavefunction y(r) for the

whole cluster.

1. The incident wave corresponding to any site 1 > 0
equals the superposition of the scattered waves from all

other scatterers, including the one from the outer sphere:

EAit%(E)-liz(Kri)YL(ri) - §(1—51J)5'AJ.Ké})(Krj)YL.(rJ)

+ A i (R )Y, (r); E <V (43)

1,1,..\-1, J
tA-t, (E) J (Kr Y, (r,) = z(1-8 ) LAY ,u '(KI' )Y |(I' )
I LYg 2 1/'LV 1 j 13 L' g J/TL'

+ I ALV (e )Y () E > T . (L)
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2. The incident wave for i1 = 0 has to match the sum

of the scattered waves from all scattering regions i > 0.

-1,Q1
z 4%t () k) (ke )y (r,)

L L2
J ¢(1) -
= z Ay ,Kov’ (Kr Y. () E <V (45)
PR’ SRR AR
éAEti(E)-lul(Kro)YL(ro) - ZL'Ai.uz'(KrJ)YL.(rJ); E>7V
’ (46)

In order to treat only the center i in Equations (43) and
(44) we expand all scattered waves, j > 0, J # 1, as inci-
dent waves at the site 1 by means of the followlng scat-
tered-wave expansion theorems, and according to the follow-

ing coordinate relations3,

z IL" (L;L' ) X

Kél)(K|r2‘r1|)YL(r2‘r1) = “ﬂﬁ%(—l)l+2'L"

k(%) (Ke ) VYpa(r)) 1, (Rep) Y, (ry) 1por,

(1) - L+ .
KQ (KII‘2-I'1| )YL(P2-I'1) = LHTLZ' (-1) LZ"IL" (L>L') X

il"(Krl)YL" (rl)KfE];)(Krz)YL,(I‘z) I‘l<1"2
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19 (Krgmry Yy (rpmry) = brx (-1

ZILn(LSL')
Ly Lll

12"(Krl)YL"(rl)il'(Kr2)YL'(r2)

2'_2' -0
ug(Klrgmry DYy (rpmry) = br 21?2 e Te M AD

Hogn (Krl)YL" (Pl )J Q(Kr’g)YL' (1"2) r,>rp

- _ L'=2 -qn .
ul(KIrz rlI)YL(r2-rl) = uﬂﬁai gii IL"(L’L')

jl"(Krl)YL"(rl) MQ'(KI'E)YL,(I'2) r'l<r2

(K| o-ry Y- (pomry) = brz 12 725 1781 (1L
jl 2 "1 LY2 "1 “L' Lo Lnibs
Jl"(Krl)YL"(rl)jl'(KrZ)YL'(r2)
2T m
where I.,(L;L') = f d¢f sindde¥,»(0,¢)Y. (6,4)Y,,(0,9)
L o o L L L

The constants IL"(L;L') are called 'Gaunt' numbers and can
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be expressed in terms of Clebsch-Gordan coefficients.

We can similarly express the scattered wave for

1 = 0 in Equations (43) and (44) as an incident wave at the
center 1. We can rewrite Equations (43) and (44) in terms

of the incident waves for a chosen site i, for E < V as

1.1,4-1 - Jgdd
PALEy (BY T (Y () = B T AGLE L, (K )Yy(ry)

o 1o —
+ Lz:L'ALALL.iz(Kri)YL(ri); E <V (47)
’

0 ,O0rpy=1,(1) - Jol (1) .
EALL.tl(E) Koo (Kr )Y (ry) = §1”§nALALL'K2 (Kr )Y (r);

E<V (48)

where

(-1)%+’ ZILn(L;L')K(l)(K|§iJ|)YLn(§ij); E<V

1 L g
GLL'=(1_6iJ )’-l"

-2 "

' -
i i

= In (LD g (K|Ryy D Ypn (Ryy)s BT

242" , > >
(-1) Lz"ILn (L,L' )iﬂ,"(KIRiOI )YL"(RiO)’ E<V
io _ y
ALL' = m

- —o" —
144 5 P (L) e (KIR DY e Ry )5 EST
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and similar equations for E > V can be written. Equating
likewise coefficients in Equations (47) and (48) we ob-
tain the following set of equations for E < V, as well

as for E > V

1.1 -1 2 J AJ3 o) io
Arty (E) L AfaGife + ZAT. A
J,L L'
0,0 -1 _ J oJ
b

which can be writen 1n a more compact form as

& §{tJ(E) I $15Lr - off I - 87220 = 0

£ e o a1 - £S@)7TAl, 5, = 0 . (50)

This set of linear equations (50) determines the ampli-

tudes of Ai and AE of the scattered waves and hence also

the amplitudes of the incident waves and the coefficients

C% in Equation (27). The homogeneous system of equations

(Equation (50)) has a non-trivial solution if, and only

if, the determinant vanishes. Since all the terms of Equa-
tion (50) are energy dependent, it i1s necessary to evaluate
explicitly this determinant as a function of the energy E

and to find the zero locations of this function. Thus,

molecular orbiltal energles correspond to those parameters
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E for which non-trivial solutions of Equation (50) exists.
The determinant for a given parameter E, and conse-

quently the location of zero, depends on the number of L

terms to be included in the summation in Equation (50).

It turns out that this summation 1s very rapidly convergent

and the set 2 = 0,1,2 1s most likely to be sufficlent for

many applications to polyatomic molecules including those

involving transition metals.

3. The Self-consistent Potential Field19

For each root Ex of the secular determinant (Equation
(50)) we get the expansion coefficients for the solution
of one-electron Schrodinger equation in the three dif-
ferent types of regions. The corresponding charge
density pi(ri,eK) in scattering region i being
oy e) = EcéRi (F,,e) Y, (FICE'RE (7,608, (r)); 120,

(51)

where the spherically-averaged charge density oi(ri,eK)
is given by
¢

g

ri,eK) = wai(ri,eK)r2, i> 0. (52)

The expansion coefficients Ci are still unnormalized, as

are the charge densities in Equations (51) and (52).
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The wavefunction corresponding to the energy €x be denoted

by y(r,ey) and must be normalized as follows

ey = [V (reg)av

b

ij_ ©
= r
i§0£> ot i’EK)dri + g GO(PO,EK)drO + L ¥(r,epdy(r,egldvy,

° n (53)

where N(eK) is the normalization constant for this or-
bital. The last integral defines the fraction of charge
in the interstitial region.

The normalized total charge density 1n a scattering

region 1 > 0 1s given by a sum over all occupled states

oHry) = T m/NGe)ot (e (54)

with nK being the occupation number of the orbital K.
The total charge within a sphere 1 > 0 1s defilned as

b

Q, = ici
o

(I'i)dr'i (55)

and exterior to the outer sphere as

% =7, o°(r )dr, (56)
o



66

Using these quantities, we can distribute uniformly the

remainder Qin of the total molecular charge

= (Z4 - Q) - (57)

throughout the volume of the interatomic region, Q

in®
_ 4w 03 3
Qin
Pe = Ty, (59)

In Equation (57), Z1 1s the atomic number for a site
i>o0.

From the quantities ci(ri),p o and Qi’ we can derive
a new Coulomb potential Vi(ri) as in Equation (61) for a
scattering region 1 > 0 by solving Polsson's equation
interior sphere 1 > 0 (first three terms of Equation (61))
and adding the various Coulomb contributions arising from
a hypothetical system of 'effective' point-charge 51,

3, =9 + o0l (60)

located at sites 1 > 0, in a uniformly negative background
Pe together with the corresponding arrangement for the

outer sphere.
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YA I’i b
Vi(r,) = 2 - g2+ 2 7 Tt ar! +r Tot(r]asnry
i 1 o 1 ry
+ 2mo. b2 - &% IR, | - 3 —LGpb2+f o®(r!)arar]
ero TPl T g 1Ryyl o,
(61)

Similarly, the Coulomb potential exterior to the outer

sphere 1s given as

r
®)

Q ©

o =nf_ 9 1 o) 0

Vc(ro)_g{ - + m % o (ré)dré + ﬁ» g (rs)dznré .(62)
(o] (0]

In order to obtain the Coulomb part Vc of the constant
potential V in the interatomic region, we have to average
the various Coulomb contributions from our system of ef-
fective point charges and the outer sphere charge,

respectively, over the volume Qin' Thus, we obtain

7 =47 b2 + 2f°° O’O(I' )d,?,nr - _l._{;ﬁi [1_32 - T (b?
c pc 0 bo o o Qin 3 DC 5 150 -5—
3

R2[03)] + 1 9, [hmo2-tmnl - R 2 - L s Tbj_]}.
1>0 350 M4

J#1 (63)

The exchange part of the potential in any type of region

will be a function of the charge density only:
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Via(y) = =60y (0135 150
Vyy = -6alg01Y3 . (64)

In Equation (64) the constants ay and o are the exchange
parameters for the scattering regions i1 and the inter-

atomic region, respectively. The new molecular potential

field of 'muffin-tin' form is then given by

1 . 1 :
Vilry) = v (ry) + Vg, (py); 120

V=V, + Vg

4, Overlapping-Sphere Model

The principal source of error in the SCF-Xa-MS method
is the assumption of non-overlapping atomic spheres,
the muffin-tin approximation. Thls problem can be circum-
vented, to high order of approximation, through the straight-
forward use of overlapplng atomic spheres. It has been
shown that the use of overlapping spheres with the muffin-
tin approximation for the potential, can be formally
Justified through the analytic continuation of the multiple
scattered wave expansions.zo.
The secular equations of the scattered wave technique

contain two fundamental types of matrix elements, the on-

diagonal atomic "scattering elements" and the off-diagonal
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"structure elements". The former quantities depend solely
on the partial wave solutlions of the radial Schrodinger
equation for each individual spherical potential, regard-
less of 1ts range, and therefore are independent of whether
or not a neighboring spherical potential overlaps. On

the other hand, the structure elements depends only on

the molecular geometry, and their mathematical form is
derived on the basis of certailn standard multipole-type
expansion theorems in the angular momentum representa-
tions3. Similar expansions theorems are also used in the
solution of Poisson's equation of classical electro-
statics, which 1s an integral part of the SCF iterative

20 that these theorems are

procedure. It has been shown
valld over regions of space that can be spanned by both
overlapping and non-overlapping spheres. The only restric-
tlons are that each atomlc sphere does not overlap a neigh-
boring atom beyond its nucleus and that the outer sphere
does not overlap the peripheral atoms beyond their
respective nuclel.

The essential idea behlind the overlapping sphere model
i1s to distribute the charge in the intersphere region among
the various atoms. The nonempirical scheme for choosing
overlapping sphere radii now being used 1s based on the
virial theoremzl. In thls procedure the sphere radius

is assigned the value of the radius of the sphere around

each atom in the 1nitial molecular charge distribution
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which encloses the atomic number of electrons. These

sphere radii are then varied, with the relative sizes

fixed, to get the best value of the virial ratio at self

consistency.

5. Evaluation of One-electron Properties22

The calculation of expectation values over the MS-Xa-

SCF wavefunctions can in principle be done using the or-

bital representations

6(r) = I Chm FRGIYLE)  (Sphere o) (65)
’m ’
¢(;) = 2 zfm A%,m Jl(ra)Y?(;a) (Intersphere) (66)

where Ci,m are the expansion coefficients determined by

the matching conditions at the sphere boundary, the

P%(r) are the appropriately normalized solutions of the
radial Schrodinger equation and Y?(f) are real spherical
harmonics. The wavefunction for the intersphere region

is a multicenter representation where the sum over o cor-
responds to the sum over all the atoms, A%m are the expan-
sion coefficients and Jl(ra) are spherical Bessel functions.

The major problem with a direct numerical integration 1s the

complicated shape of the intersphere region and the fact

that the charge density can vary widely within it.

The integrals involving one-electron operators are
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simple to calculate inside each atomic spheres; the

angular integrals over spherical harmonics can be evaluated
analytically and the one-dimensional radial integrals can
be calculated numerically. In order to avoid the dif-
ficulties arising from the integration over the intersphere
reglon, Case and Karplus22 had proposed a method to divide
the intersphere charge among the varilous atoms by extend-
ing the range of the radial varilables beyond the atomic
sphere radii ba; that 1s, the intersphere charge 1is ap-
proximated by a sum of expressions of the form of Equation
(65) with the assumption that the overlap between atomic
charge distributions can be neglected. Procedure for par-
titioning the intersphere charge: The intersphere charge
is partitioned in proportion to the average charge density
at the surface of each atomic sphere multiplied by the part
of that surface bordering the intersphere region. The
average charge density of the molecular orbital ¢(r) at

the surface of the atomlc sphere o of radius ba is

3 (c§ nPh (0 2% .
Since the wavefunction is continuous across the sphere

boundary, the additional charge in the sphere due to 1its
expansion by an infinitisimal amount 1is proportional to
average density. This quantity has to be multiplied by

the surface area of the sphere bordering the intersphere
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region. For tangent spheres the area is Mnbi and the frac-

tional seduction in surface area caused by each overlapping

sphere g 1s
faB = {bg - (RaB—ba)z}/uRaBba’ RaB < (ba+b8)
=0 Ryg > (ba+b8)
where RaB is the distance between atoms o and g. If the

total intersphere charge is divided among the atoms in

thls way, the extra charge Aq% for each partial wave can

be obtalned from

a - n-1 2cq_ a L0 2
Aqg = N "qy  Arb {1- I fas}rﬁ{cz,sz(ba)} >

a#B

where the normalization constant N 1s given by

N

; zfmhﬂbg{l-sﬁafas}{cszi(ba)}z
and qint is the total intersphere charge. The parameter
A nt 1s calculated by muffin-tin procedures, and its ap-
pearance in the expression for Aq% insures that the
normalization of the molecular orbiltal 1s consistent with
this approximation.

The functional form of the radial function beyond the

sphere boundary 1s determined by extending the radial

function inside an atomic sphere ty using the leading
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term of the multicenter expansion in the intersphere

region, 1l.e.,

o =

Pz(r) = B Jz(r), forr > ba
where

Jz(r) = JECKr) for E > Vint

(1)
= K, (Kr) for E < V4 ¢»

with hK = |2m(E - Vipg)l. Here V is the value of the

int
constant intersphere potentlal. The constant B 1s chosen
to make the expansion continuous at r = ba3 the first
derivative 1s in general discontinuous. It is possible
to assume a more flexible functional form and match both
the function and its derivative at the sphere boundary.
Many properties appear to be rather insensitive to the
cholce of the functional form.

In order to i1nclude the amount of extra atomic charge
Aq% the sphere radius 1s increased to bi for each value
of 2. The function P% as determined above between ba

and bi are used as the standard muffin-tin orbitals and

the functions are assumed to vanish beyond the radius

L
e
The calculation of one-electron properties with the

b
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—~
orbitals defined above 1s equivalent to the conventional
LCAO calculation with the neglect of differential over-
lap. This procedure has been used by Cook and Karplus23
to calculate the one-electron properties of LiH. The
charge-partitioning procedure was found to introduce
errors on the order of those in the Xa wavefunction itself
and to improve 1n accuracy with parameter variations that

improve the Xa wavefunctions.
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CHAPTER V

ELECTRONIC STRUCTURE AND ESR PARAMETERS
oF [croc1,]t”

A. Introduction

The electronic structures of the transition metal oxo-
halo complexes of the type [MOanm', where M = V, Nb, Cr,
Mo, Wand X = F, C1, Br, I (n = U4 or 5), have been exten-
sively studled experimentallyl-lo for more than a decade.
The basis for the interpretation of the experimental data
has been the well-known discussion of the electronic

2+ complexes of Ballhausen and Gray11 based

structure of VO
on extended Hickel calculations. These have been followed
by similar calculations on the oxopentaquovanadium (IV)
1on12 and on the oxotetrachloro- and oxopentachlorovanadium
(1IV) 1onsl3’1u. Recently some ab 1nitio molecular orbital
studlies have been described for CrO3+ complexesls’ls.
Since there are still many ambiguities in the interpreta-
tion of experimental results,we have undertaken a fairly
detailed study of the electronic structure of this class
of compounds in the hope of providing an understanding

of the bonding and consequently a sound basis for the

77
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interpretation of experimental observations.

There are at least two approaches to the study of the
bonding characteristics of transition metal complexes
when detailed ESR data are available. One may assume an
atomic expansion basis for the molecular orbitals and
determine the linear expansion coefficients (the MO
vector) so as to reproduce the available ESR data,u"s’17
or conversely one constructs as accurate a function as
possible for the system under consideration and then cal-
culates the ESR parameters from this functionl8‘22. of
the two, this latter approach is clearly preferred as it
has fewer biases and it 1is the approach we take 1in this
study. In particular, we use the results of SCF-MS
Xa23225 calculations on I:CrOClu]'1 to interpret experi-
mental ESR data. We compare our SCF-MS-Xa results with

726

those we have obtalned using the EH as well as with

earlier theoretical studies.

B. Methods

In this section we describe the SCF-MS-Xa method and
the various modified extended Hlickel methods used in the

present study.
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(1) The SCF-MS-Xa Method

The SCF-MS-Xa method 1s a technique used to approxi-
mate the solutions to the Hartree-Fock equations for a
many electron system. Its underlying assumptions and pro-
cedures, along with the results for many systems, are avail-
able in the literature23'27. The two characterlistic ap-
proximations of the method are the use of the Xa approxi-
mation for the exchange potential and the muffin-tin ap-
proximation for the potential. In this latter approxima-
tion, the most severe of the two, the molecule 1s parti-
tioned into three fundamental types of regions: atomic,
interatomic and extramolecular (this is the region outside
a sphere which encloses the "entire" molecule). The po-
tential in the atomic and extramolecular region are spheri-
cally averaged whille a constant potentlal i1s used in the
interatomic region. The one electron equations are solved
numerically in each of the three regions and the resulting
wavefunctions and their first derivatives are joined con-
tinuously throughout the various regions.

The use of the Xy approximation for the exchange
potentlial makes the interpretation of one-electron eigen-
values different from that of the Hartree-Fock elgen-
values. The correspondence between the SCF-MS-Xa elgen-
values and the Hartree-Fock elgenvalues has been estab-
11shed?8229, In the SCF-MS-Xa calculation the molecular

orbitals are characterized by the charge assoclated with
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each atomic sphere, and with the region outside the outer-
sphere, in terms of the percentage of s,p,d, etc. character
and the charge in the 1ntersphere region. The total charge
assoclated wilth each atom 1n a molecule 1s taken to be the
sum of the charge inside the atomic sphere around the atom
and a fraction of the intersphere charge. The latter was
obtained by the intersphere charge partitioning scheme of
Case and Karplus31 in which the intersphere charge 1is
partitioned among the basis functions centered on the
various atoms in proportion to the average charge density
at the surface of each atomic sphere multiplied by the
area of that surface bordering the intersphere region.

Thus the fractional s,p,d, etc. character of the contribu-

tion of each atom to the molecular orbital can be calculated.

(11) The Extended Hluckel Method

In the extended Huckel method the molecular orbitals

(wi) are expanded as linear combinations of atomic

orbitals (¢J) and are assumed to be eigenfunctions of

an effective one-electron Hamiltonian, ﬁeff‘ On minimizing
the total energy with respect to the molecular orbital

coefficients, the following secular equation is obtained

by = L Cyud
1 j 17

[HiJ - Esijj =0 ,
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where Hij and Sij are elements of the Hamiltonian and over-

lap matrices, respectively,

Hygy = <¢q|Hepplos>

Sij = <¢i|¢j>
The secular equation 1s solved to obtain the orbital ener-
gles and the molecular orbitals.
There are many schemes avallable for approximating
the diagonal and off-diagonal Hamiltonian matrilx elements

and we have explored the following three.

l. In the first, the diagonal matrix elements Hii

are set equal to the negative of the valence shell ioniza-
tion energies (VSIE), which are presumed to be functions
of the charges q on the atoms,

H,: = VSIE(q)

i1

2
Hii = -(Aq° + Bqg + C).
The values of A, B and C which characterize the valence

orbitals and configurations are taken from Reference

30. The off-diagonal elements are approximated by the

Wolfsberg-Helmholz relation32,
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=1

13 =2 331

where K 1s an empirical constant.

2. In our second method we have used the same
parameterization scheme for dilagonal elements while a
welghted HiJ formula was used for the off-diagonal ele-
33

ments

3. In the third method, a term representing the inter-
action of the electron in an orbital i1 with the electro-
static fleld arising from the non-zero net charges on the
other atoms in the molecule 1s added to the diagonal
elements H and the corresponding changes are made in

i1

the way the off-diagonal elements H are evaluated for

1j

molecules with non-zero net charge. The details of this

Madelung correction have been discussed by Hay et g;.3u.

C. Technical Detalls

The calculation has been done for two different

geometries in Cuv symmetry. The atomic arrangements for

bofh the geometries are given in Table 1. Geometry 1 1s

based on the crystallographic data for [AsPhuJ[Cr0014]35

while geometry 2 1s the one used 1n the previous ab initio
studiesl6. In both cases the chromium atom 1s above the

basal plane passing through the chlorlne atoms.



84

In the SCF-MS-Xo calculations the atomic o parameters
(Table 1) were those of Schwartz36 and a weighted average
of the atomic a values was used 1n the interatomic and
extramolecular reglon. The sphere radii were taken to
be 90% of the atomic number radii, in accord with the sug-
gestion of Norman3z and are given in Table 1. Although the
sphere radii were not varied to obtain a correct virial
ratlio, fairly good results were obtained for -V/T: 1.99992
for geometry 1 and 1.99981 for geometry 2. The outer
sphere with origin at the center of nuclear charge of the
molecule was chosen to touch the chlorine spheres and
serve as a Watson sphere38 with +1 charge in order to
simulate the stabilizing effect of the environment on
the ion.

The partial wave expansions were truncated at g = 4
for the outer sphere, 2 = 2 for chromium and ¢ = 1 for
oxygen and chlorine. The core energy levels, i.e.,
ls, 2s, 2p on chromium, 1ls on oxygen and ls, 2s, 2p on
chlorine, were calculated in each iteration using only
the surrounding atomic potentials. The calculations were
carried out self-consistently with the convergence cri-
terion that the maximum relative change in potential be-
tween two consecutive iteratlions was lower than 10'“.

The extended Hlckel calculations were carriled out with
the Slater type double-zeta functions for the chromium 3d

orbita139 and single exponent functions for U4s, Ur on
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chromium, 2s,2p on oxygen and 3s, 3p on chlorine. We had
used the normal Hiickel constant, K = 1.75. The parameters
used in the extended Huckel calculations are given in Table

2.

D. Electronic Structure of ICrOClujl—

The SCF-MS-Xa calculation of the ground electronic
state of [CrOClujl- predicts the ground state to be 2B2
in agreement with the earlier ab 1initio study16. The un-
paired electron 1s in the 2b2 orbital which 1s primarily

a 3dx orbital on chromium (Table 3). The fractional

y
charges given in Table 3 for geometry 1 are based on the
charge partitioning scheme of Case and Karplus3l. The
highest energy occupled orbitals (Me-laz) are primarily
chlorine 3p in character and are essentlally non-bonding.
The orbitals 1b2 and 2b1 which follow this non-bonding set
account for the bonding between chromium and the chlorine
atoms. The next two low-lying orbitals contribute to the
bonding between chromium and oxygen and involve two sig-
nificantly strong bonds: a O(Sal) and a T(3e) bond. There
are substantial differences between the SCF-MS-Xa and the
ab initio descriptions of the Cr-0 bonding. In order to
understand the Cr-0 bonding changes in detall we have
carried out SCF-MS-Xy calculations on CrO and CrO3+ 4o

and have tabulated the fractional atomic character of the

orbitals describing the ¢ and m bonds tetween chromium
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Table 4. Chromium-oxygen bonding in some oxochromium com-

pounds.
o(Cr-0) m(Cr=0)
Atomic Character % Atomic Character %
Cr 0 Cr 0]

3dz2 2pz 3dxz,yz 2px,y

Cro 22.84 63.54 15.84 76.80
cro3t 30.52 57 .46 39.48 58.61
3rcrocy, 1" 26.53 62.29 29.91 64.146
b[c:«ocnujl‘ 26.96 63.10 26.70 62.82
°[0r001u]1‘ 50.00 35.00 16.00 76.00

aGeometry 1.
bGeometry 2.

CAb initio result from Reference 16.
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Table 5. Charge distribution in some oxochromium compounds.¥*

Molecule Chromium Oxygen Chlorine
cro 0.361 -0.361

cro3t 2.379 0.621
a[0r001u31‘ 0.957 ~0.156 ~0.450
b[CrOClu]l- 0.97L ~0.229 ~0.436

aGeometry 1.
bGeometry 2.

*
The outer sphere charge distributed between Cr and O is in
the ratio of atomic numbers in CrO and Cro3+.
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Table 6. Electronic transition energles from EHT and
SCF-MS-Xa calculations.

Geometry E(2b, > Te) E(2b2 -> Mbl)
and
Method KK KK
SCF-MS-Xa
Geometry 1 13.83 19.97
Geometry 2 8.45 20.30

Extended Hickel

Geometry 1

Method 1 9.42 30.82
2 9.59 34.32
3 11.96 38.72

Geometry 2

Method 1 b.s52 31.27
2 4.69 34.94
3 5.97 39.44
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and oxygen in Table 4, along with those of [CrOClujl'.
From the results of Table 4 we conclude that both the o
and 7m Cr-0 bonding in [CrOClu]l- is weaker, compared to
that of Cro3%, than would be anticipated.

The charge distributions in Cr0, Cro3* and [croci,1'”
obtained from the SCF-MS-Xa calculations are tabulated in
Table 5. The extended Huckel charge distribution is
critically dependent on the way the calculation 1s done.
For example, the charges on chromium for geometry 1 are
+0.364, +0.206 and +1.222 for methods 1, 2 and 3, respec-
tively.

The relative energles of the empty d-orbitals follow
the sequence d

< d 5 o < d > in SCF-MS-Xq calculations
X z

-y
in agreement with the order gener'allyl-10 used as the basis

X2Z,y2

of interpretation of electronic spectra of CrO3+ complexes,

but not with the order found 1n the ab initio studiesl6.

The extended Hickel calculation predicts that the empty

d-orbitals lie 1n the order d < dz2 < dx2 5. The

XZ,Y2Z -y
SCF-MS-Xa results for the d-d transition energies calcu-

23-25

lated by the transition-state procedure , along with

those obtained from EHT calculations are given in Table
6. According to the SCF-MS-Xa results, the first absorption
maximim at 13.1 KX in the electronic spectrum should be
assigned to the transition (2b2 + Te), which can be considered

a d-d transition 3dxy + 3d the 2b, and 7e orbitals

XZ,yZ?
being predominantly 34 in character (Table 3). This
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assignment 1s in agreement with the generally accepted
interpretation of the electronic spectra of this class

of compounds and with the recent ab initio studiles. The
same transition energy calculated for geometry 2 predicts
an absorption at 8.45 KK in fairly good agreement with

the corresponding CI result16

of 9.9 KK,but lower in
energy than the experimental result. Our conclusion from
this observation is that the 3dxy + 3dxz,yz transition
energy 1s critically dependent on the angle between the
chromium-oxygen and chromium-chlorine bonds and on the
chromium-oxygen distance. The next lowest energy d-d
transition 2b, + ubl calculated by the SCF-MS-Xa method
predicts an absorption at 19.9 KK, in good agreement with
the experiment (18.1 KK). This assignment of the second
absorption band, though in agreement with the generally
usedl-10 interpretation, doesn't agree with the polarized
single-crystal spectra and CI studles of Garner et g;.ls.
The extended Hickel results for the d-d transition ener-

gles continue to show a strong dependence on the method of

calculation (Table 6).

E. Theory of g and Hyperfine Interaction Tensors

The theory of g and hyperfine interaction tensors of

transition metal complexes 1s generally based on the per-

turbation method introduced by Abragam and Pryceul for

the crystal field model and later modified to include
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17'

covalency effects This general topic has been the
subject of many r'ev:Lewsu2 and the perturbation method has
been applied to the specific case of transition metal oxo-
halide complexes of CUV symmetry by DeArmond et g;.u. In
this section we give an outline of our treatment of g and
hyperfine interaction (A) tensors indicating the dif-
ferences from earlier versions.

The fcllowing general expressions for the components

of the g and A tensors have been obtalned from the standard

second order perturbation theory treatment of gu3 and A22
tensors,
) <o lE@)Ly v ><vy Lo v, >
gae - ge -2 (l)
n#0 E - E,
. B,
Fle { 2<wo|g(r)La|wn><wn|;§|wo>
A = P'[<y —j—lw >+ I
aB Olr ° n#0 E <~ E
o n
R Fsg
<wo|5(r)1‘ylwnan| 3 Vo>
+ I le o } o+« (2)
v, Y E, - E,
FaB
= .15} (
Hpp = P' = I 3 Sg (3)
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where wo 1s the orbital containing the unpalred electron,
the summatlon over n 1s over all excited states, ﬁa 1s the
a-th component of orbital angular momentum and Z(r) is

the one-electron spin-orbit coupling operator. In the
expression for AaB’ FaB and FGB,are linear combinations

of normalized real spherical harmonics arising from the
electron nuclear dipolar Hamiltonlan (ﬁDD),as in Equation
(3). P' is a constant equal to g_g B.B,, where g, 1is

the free electron g value, g, the g value for the nucleus,

8
respectively, and eyéa is the Levi-Civita symbol. The

o and Bn are the electron and nuclear Bohr magneton,
term « in Equation (2) takes 1into account the Fermil contact
interaction.

The unpalred electron in the system under considera-
tion here is in an orbital of b, symmetry (Cuv)‘ So the
computation of g and A tensor components requires the
evaluation of matrix elements between orbitals of b2
symmetry and orbitals of bl and e symmetry. The molecular

orbitals required to computeg- and A-tensor components

are:
= M _ _
bop T €28, 272%, () T E3% (x,y) T Suto (2)
M
Y,r = €l¢ + €'l¢ - €l - €'¢
bJ 17d,2_y2 2"b, (s) 37b, (x,y) 470, (2)
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= 1-s7)s el = pted)s 0513 = odnd)
¢izz) = (pi+pg)

¢bl(s) = (sl-sz+s3-su)

¢bl(x,y) - (pi+p§-p3-p3)

%o (z) = (py-ptp3-p,)
B1¢<P:,1[xy - B2¢b2(x,y)
O‘1¢Plfpx = “2¢%py + a3¢gxz - “u¢§yz - 0‘5“’gpx
c‘6‘*’8% +aro1d) - ooy * ogtely)
@ 0%8(2) * @119218) - “12¢§?i) ¥ “13¢§?3)
a1u¢§2g)
Al b alen 4+ alen 4 areh - arel
1"4py 2"l 37d,, 4734, 572p,
0‘é‘*’gpy +apseld) - WBhela) - 8%l - Mo%elr)
a11¢222) - “i2¢§?i) - ai3¢§2$) + “iu¢§?i) )
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Figure 1. Coordinate system for [CrOClujl'.
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where the ¢M and ¢O are orbltals centered on the metal and
oxygen atoms, respectively, while the remaining ¢'s are
the symmetry adapted linear combination of chlorine or-
bitals for the coordinate system shown in Figure 1. The
¢§,h in Vo1 and Vo, have the same form as the ¢é’3 given
above. The molecular orbitals wel and we2 are the lowest-
lying degenerate empty orbitals of e symmetry, the orbital
Vp1 is the next-lowest-energy empty orbital and ¥y 1s
a doubly-occupied orbital of b1 symmetry. .

On evaluating the required matrix elements retaining
only single center contributions,while evaluating matrix
elements 1nvolving the spin orbit coupllng operator, we get

the following expressions for the principal components

of the g and A tensors

A1) = 8e = 822

2(2B e Ay =UBEQAL)
_ 1"1™M 2°3L°r - .

<+

2Ble3s(b1(x,y);dx2_y2) - 281€u5(b1(2);dx2-y2)

<+

28,27 S(by(x,y)35dyy) = Bye58(by(5)3b1(x,¥))

- UBye,Q - BoegS(by(x,¥)3b(x,¥))], (%)
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-2(2818:’LAM+’4 82eéAL)

A = r 1+ .
11¢y) BE(6] + 5,0 -2nf1 T 2Reas ey (shid, o)

- 287638y (x,¥)5 4, o) - 281efS(by(2)3d 5 o)

x2-y

+ 28,e1S(bp(x,y)3d, ) + BebS(by(s)3bq(x,y))

+ uezeéQ + B2€éS(bl(x,y);b1(x,y)]’ (5)
2(0y By Ay+20q ABsAT )
= 3°1"M 10°2"L o.
A_[(el) = AE(b2 > e) [(1381 - aSBlS(pr, dXZ)

+ a,8S(eT3(s); a,,) - ags s(er 3); ay,)

z

+ “10818(e2’u(2)5dxz) - al2BlS(e2’u(x); dxz)
- a18,5(kp,zet?3(2))
- a332s(dxz;el’3(z)) + a582s(2p§;e1’3(z))

+ apo8,8(eT 3 (2)5et 23 (2], (6)
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2(231elxM-U32e3AM) By . 3
AE(b, » b]) TAE(b, + e)

M 4,2
Azz(bl) = -P[781 +

{(agByAyt2a) oBoA ) B ag + (afBydy*2a] (Bo)p )8 af

+

(auBlkM+2alu82AL)Blau + (a&BlkM+2a'

1uBAp )8} #]

(7)

M 2,2 2
xx = Byy = ~Pl- 78, ¥ BE(b, > e) {(Braghyt2Ba0 ph)eshy

o=
"

+

(Bla§AM+282aiOAL)Blaé}

3
7AE(b2 > 57 {(GMBIXM+201u82AL)Blau +

+ (aByAyt2a], BoA IBqay} + k] (8)
where AM and AL are the single-electron spin-orbit coup--
ling constants for the metal 4 and halogen p orbitals,
respectively. The S terms which appear in the expres-
sions for gll and gl are the group overlap integrals. 1In
the equation for Agz,only the contributions from the un-
occupied orbital of bl symmetry are included. P

and Q In the above equations are defined as
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= -3.M
P = gegyBeBy <r 34

O
[}

R<nsl§%l np > (K =x, y or z),

where R 1s the distance between the metal and halogen
atoms and ns, np are Slater type atomic orbitals.

The major difference in the expressions for gll,
gl, A?| and AT between our treatment and that of DeArmond,
et al. arises from the fact that the molecular orbitals we
have used in deriving the equations take into account all
possible contributions from various atoms. The inclusion
of halogen contributions in orbitals of e symmetry makes
gl dependent on the ligand spin-orbit coupling constant
AL‘ In deriving these equations we have retained all
the overlap integrals. The contribution from any low
lying occupled by orbital to g|| can be calculated using
expressions very similar to that for All(bl)' The expres-
sion for Al(e2) which is not given in the above set of
equations, 1s very similar to that for Al(el). The same
set of equations can be used to compute the g and A tensor
components for hexacoordinated transitlion metal oxohalo
complexes by adding a term involving the overlap between
the metal atom and the axial halogen atom to the expres-

sion for gl.
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F. Evaluation of g and A Tensor Components

In the SCF-MS-Xa method the population analysis is
done by expanding the nonatomic part of the wavefunction
about the atoms and thus the calculation corresponds to
a zero-overlap model. Hence we have used the following
expressions, obtained by neglecting the terms involving

overlap integrals, to compute g and A tensor components

Al| = Be = 8g33 Al = 8e T Bxx

2(Bl€1AM‘uB2€3xL)(281€1‘u62€3)

All(bl) = (9)
AE(b, + bq)
2(2B- eI Ay +UB LA ) (2B e1+UB L)
All(bi) - 1514M7 P23 L 15177253 (10)
AE(bi -+ b2)
2(04 B Ay+201 ABAAT ) (ayB 4204 ABS)
Al(e) - 3P1AMT %1 9P2A L/ A3P1 TR 0P (11)
AE(b2 + e)
2(2B-€qAy=4BsE~AT VB E
All(bl) - —P[?Bf + 181 M~ "P2E32L /P18
AE(by + bq)
5B Ay +20, ABSA)
623717 M7 10270 <] (12)

7 AE(b2 + e)

11 (@381 Ay*+2270A0A )
AE(b2 d e)

2,2
A_L = _P[— 761 + a381 + K] . (13)
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where A|l(b1) includes only the contribution from the
empty b1 orbital. The contribution from other orbitals
of b1 symmetry to All can be included by adding terms
similar to the second term in the expression for All.

To take into account the charge in the outer sphere
region we have distributed the outer sphere charges as-
soclated with the molecular orbitals needed for computing
g and A tensor components among the ligand atoms in the
ratios of their atomic numbers. The additional charge was
further partitioned into s and p portions for each atom
in the ratio of net s and p populations. In the SCF-MS-
Xa model the square of the molecular orbital coefficilents
in Equations (9)-(13) has been identified with the frac-
tional charge associated with the corresponding partial
wave27.

The computation of gll, gl, A]I and Al requires the
magnitudes for Ay, A, <r~3539 214 the electronic excita-
tion energiles, in addition to the molecular orbital co-
efficients. There 1s no obviously "correct" value of the
spin orbit coupling constant of the metal or the chlorine
to use in'evaluating the ESR parameters. In most analyses
of EPR data the spin-orbit coupling constants are assigned
values based on assumed values of the charges on the atoms,
or on some other empirical procedureuu. This methed of
assigning values for AM doesn't make any significant dif-

ference in results if the variation of AM with charge on
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Table 7. Chromium spin orbit coupling constants

and <r-3>39 values.
Spin orbit coupling
«r=3534 (au) constant (A3%) em™t
Config- Hartree
uration Charge Xa Fock Xa Expt.
33°usl 0 2.910 246.80 185
3d° 1 3.011  2.974 255,21 190
3a" 2 3.530  3.453 301.75 230
343 3 4,063 3.961 351.03 275
34° l 4,609 4,482 402.85 325
3at 5 5.170  4.993 457.58 380
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the metal 1s not drastic, as in the case of copper where
Aoy Varies only from 817 em™ 1 for Cu(3d’4s?) to 828 cm~t
for cu®t(3a%). on the other hand, for metals like chrom-
ium for which the spin-orbit coupling constant varies
from 185 em™1 for cr(3d24sl) to 380 em™! for Cr'S"'(3dl)u5
such assignments are difficult to make since gll and gl
are critically dependent on the choice of the value for
XM' This makes it difficult to interpret the observed
trends in measured ESR parameters.

The value of <r=3534

M
components 1s generally taken from the <r'3>5’[d values

required to calculate A tensor

calculated using the atomic Hartree-Fock wavefunctilons.
The spin-orbit coupling constant ACr for the varilous ox-
idation states of chromium were computed using the Xaowave-

function and the single particle approximation for

4
32, L.e.,
3d » e%n® 1 d4V. _ e°n° ., _ -3
A% >3 ‘Far .. - 23 2% T 73q.
T op%c T 3d  2m 1

where z' 1s the effectlive nuclear charge; the values are

given in Table 7. Even though this simple approximation
doesn't correctly take into account the exchange ef-
fectsu6, the relative values and the varilations are com-
parable to the experimental numbersuS. The Agg and

<r-3>83 required to calculate the ESR parameters were

calculated for the formal valence configuration of Cr
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in [CrOClu]l- of 351'96“ 3p5-786 3qh4-453 y40.334 yp0-505,

3
c

<r-3>gg = 3.390 au for the valence configuration of chrom-
1.964 3p5.786 3du.453 uSO.33U 4p

1

By this procedure we obtained A S = 289.36 cm — and

ium 3s 0.505 for geometry

1 of [CrOClujl' and ng = 288.51 cm™t and <r"3>gg =

3.382 au for the valence configuration of chromium

3g1-975 3,5.861 544.359 4,0.338 upo'“9° for geometry

2 of [Croc1,]l”. We had used for the ligand spin orbit

1

coupling constant (A;) a value of 667.05 em” — obtained

from an Xa calculation on the chlorine atom.

We consider first the calculation of gll,which is

determined by mixing of 2B1 exclted states into the 252

ground state (Equation (9)). Using the electronic excita-
tion energy for the transition 2b2 - ubl (Table 6), and
computed spin-orbit coupling constants, we obtained a value
of 1.9793 for g|| which 1s not in agreement with the exper-
imental value gll = 2.006. The fact that the experi- .

mental gll is greater than the free-electron g value indi-

cates that the contributions from low-lying 2B1 states

arising from the promotion of an electron from a doubly
occupiled b1 orbital to the singly-occupied 2b2 orbital
should be important. We had calculated (Equation (10))
the contribution to g]l from two such states, namely the

one arising from the excitatilon 3bl > 2b, with the excita-

1

tion energy of 15,350 cm - and the one from 2b, » 2b,

with the excitation energy 28,530 cm-l. On adding the
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contributions from all the three states we get a value

of 2.040 for gl],which is greater than the free electron

g value and in fairly good agreement with the experimental

value. If g|| is computed including only the contribu-

tion from the chromium from all the three states the value

is 1.980. This indicates the importance of including

the ligand contribution in evaluating g tensor components.
The magnitude of gl 1s determined primarily by the

contribution from the low-lying empty orbital of e sym-

metry16

. The value obtained for gl using the excitation
energy of 13,830 em™1 for the transition 2b2 + Te and the
calculated spin-orbit coupling constants is 1.978, in
excellent agreement with the experimental value of 1.979.
In the spin-restricted molecular orbital approximation
in which we had done all the calculations, the Ferml con-

tact interaction parameter k vanishes. So k was determined

using the following equation

AO = - KP - (ge-g)P ,

where Ao 1s the isotropic hyperfine coupling constant,

g . 1s the free-electron g value and g the experimental

e
average g value for the complex. The values of gll’

gl, A?T and Air calculated using SCF-MS-Xa wavefunctions
and computed spin-orbit coupling constants, along with

the results of ab initio studies16 and available
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Table 9. Estimated chromium spin-orbit coupling constants

(A3d) and <r=3534,
Charge on Spin-orbit coupling <r'3>3d
Method chromium? constant (cm'l) (au)
Geometry 1
Method 1 0.364 177.20 2.877
2 0.206 170.77 2.808
3 1.222 212.13 3.249
Geometry 2
Method 1 0.366 177.28 2.878
2 0.212 171.01 2.811
3 1.196 211.07 3.238

8prom extended Hiickel calculations.
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3d
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Figure 2. Plot of spin orbit coupling constant (A )

versus charge on chromium (Qc ).
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Figure 3. Plot of spin orbit coupling constant (Agg)
versus <r_3>gg.
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experimental results, are given in Table 8.

In the extended Hlckel model for calculating g and A

tensor components one has no choilce but to guess the

Agg and <r'3>gg values based on the formal charge on
chromium obtained from the molecular orbital calculation.
The Agg values were therefore obtained from a plot (Figure
2) of Agg for the various oxidation states versus the cor-
responding charges on chromium, assuming a linear rela-

tionship of Agg with the charge on chromium (Table 8).

The <r-3>gg values were obtained from a plot Agg versus

<r-3>gg Hartree-Fock values'! for the various oxidation
states of chromium (Figure 3) again assuming a linear de-
pendence of Agg on <r-3>gg. Using this procedure for a
charge of +0.364 on chromium in [CrOClujl', we obtain from

d _ -1. -3.34
r 177.20 em —; the value of «<r Cp

responding to this value of Agg from Figure 3 1s 2.877

> cor-

Figure 2, Ag
au. The spln-orbit coupling constant obtained by this
method turns out to be lower than the value for the neu-
tral chromium (3d5Msl) atom. We had used the set of
numbers for Agg given in Table 9 for our calculations as
there doesn't seem to be any other systematic way to assign
the values for Agg. For the chlorine spin orbit coupling
constant we used a value of 587 em™ 1.8 The results for
the g- and A-tensor components (Equations (4-8)), using

the extended Hiickel wavefunctions obtained by the three

d1ifferent methods we have described earlier, are given in
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Table 10. Extended Hlckel results for g and A tensor
components2.
Cr Hyperfine coupling
constantsb (xloucm'l)
Method g|| gl AI' Al
Geometry 1
Method 1 2.091 1.971 26.11 10.11
2 2.088 1.977 27.07 9.44
3 2.057 1.985 32.34 10.28
Geometry 2
Method 1 2.084 1.931 26.88 11.20
2 2.072 1.934 27.12 10.51
3 2.055 1.936 32.36 11.52

8The contributions from two occupied orbitals of bl sym-
metry also 1included.

b

K = 0.524 was estimated from experimental data.
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Table 10.

From the results in Table 8 it is clear that gl cal-
culated for geometry 2 of [CrOClu]I_ i1s lower than the
experimental number. This dependence of the gl value on
geometry can be explained based on the fact that the
2b2 + 7e transition energy required to calculate gl is
critically dependent on geometry.

The glI values calculated from the extended Hilickel
methods 1 and 2 are greater than the free-electron g
value even when only the contribution from the low-lying
empty orbital of bl symmetry 1is included. This problem
can be taken care of by using Agg values greater than 204.0
<:m-1, which corresponds to a charge of greater than +1.0
on chromium. This type of dependence of computed g-tensor
c omponents on spin-orbit coupling constant makes the cal-
culation of ESR parameters involving empirically de-
termined values for spin-orbit coupling constants un-

Teliable.

We have shown the importance of including the contribu-
Ttions to g tensor components from occupled orbitals. It
becomes practically impossible, without making too many
a ssumptions, to determine the molecular orbital coef-

T icients from the expressions for g and A tensor com-
Ponents if the contributions from occupled orbitals are
Included. Thus, even in the case of molecules with fairly

hignh symmetry, the first approach to study the bonding
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< haracteristics of transition metal complexes in which

o ne estimates MO coefficients from ESR data appears to be

o0 difficult.

(3. Conclusions

We conclude from this study that reasonably good esti-
mates of the g tensor components can be obtained from
SCF-MS-Xa wavefunctions and the required spin orbit coup-
ding constants calculated for the appropriate valence
configuration of the atom on which the unpaired electron
A s centered using atomic Xa wavefunctions. Another con-
< lusion that we have reached 1s that the ligand contribu-
tion to g tensor shift 1s important in addition to the
contributions to g tensor components from occupled or-
bitals. We think the difficulties involved in calculating
£ tensor components using extended Hickel wavefunctions and
empirical values for spiln orbilt coupling constants have

b een clearly demonstrated.
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CHAPTER VI

AN SCF-MS-Xo STUDY OF d' TRANSITION METAL

OXOHALO COMPLEXES

A . Introduction

The elements at the beginning of the transition metal

S eriles have a remarkable abillity to form oxycatlons with

Tt he general formula M0n+. Most of these oxycatlons, even
Tt hough not stable, form a wide variety of complexes, the

mMmost extensively studied being those of vanadium, niobium,

< hromium, molybdenum and tungsten. The electronic struc-

T ures of the halogen complexes of these oxycations have

B een the subject of detalled experimental studies for the

1-14

1 a st several years , especially since the ploneering

€ X tended Huckel molecular orbital studies on V02+ complexes

O £ Ballhausen and Gra.y.15 Their work has been followed by

16,17 and, more recently, by studles

11,12

2 few similar ones
Smploylng ab initio methods In spite of this ac-
T 1vity, there are still many ambiguities in the interpre-
Tation of experimental spectroscopic results. We have
Therefore undertaken a fairly detailed study of the elec-

tronic structure of the transition metal oxohalo complexes

118
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o £ the type tmoxnjm‘, where M = V, Nb, Cr, Mo, W and X = F,
C 1, Br (n =4 and 5), in the hope of understanding the
> asic features of bonding and therefore providing a sound
O asis for Interpreting the experimental results for this
< lass of compounds.

The relatively small number of ab initio studies of
T he electronlc structure of systems as large as the one
rander investigation here 1s primarily because of the
e normous computational effort required for such studies.
We have chosen to carry out our studies in the Xa approxi-

18-20

mation , which was developed from the beginning with

T he transition metal systems in mind and has been used
Numerous times with considerable success19'21. The goals
OFf this study are four-fold: first, to understand the
S Imilarities and differences 1in bonding characteristics

+ oxycation complexes;

O * the penta- and hexacoordinated d
S econd, to explaln the observed trends in g and metal-hyper-
"1 ne interaction tensor components, and thus to resolve

Tt he existing ambiguities in the interpretation of electron
S pin resonance parameters; third, to use computed d-d

T xrransition energiles to perhaps resolve the ambiguities in

Tt he assignment of bands in the electronic spectra; and
Fourth, to test the capablility of SCF-MS-Xa method to

I*eproduce the observed trends accurately.
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B. Methods

In this section a brief description of the SCF-MS-

Xo method and the computational details are given.

(1) The SCF-MS-Xa Method

The SCF-MS-Xq method 1s a technique used to approxi-
mate the solutions to the Hartree Fock equations for many
electron systems. Its underlying assumptions, procedures
and results for many systems are available 1n the litera-

ture18—2o,

The two characteristic approximations of the
method are the use of the Xa approximation for the exchange
potentilal and the muffimtin approximation for the poten-
tial. In this latter approximation, the most severe of
the two, the molecule 1s partitioned into three fundamental
types of reglons; atomilc, interatomic and extramolecular; the
latter is the region outside a sphere which encloses the
"entire" molecule. The potential in the atomic and extra-
molecular region 1s spherically averaged while a constant
potential 1s used in the interatomic region. The one-
electron equations are solved numerically in each of these
regions and the resulting wavefunctions and their first
derivatives are Joined contilnuously throughout the varilous
regions.

The use of the Xa approximation for the exchange po-

tential makes the interpretation of one-electron eigen-

values different from those of the Hartree-Fock
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Table 1. Geometrical data? for [MOXn]m— complexes.
M-0 M-X M-X <0-=-M=X
_ eq ax eq

(mox_1" (%) (R) (%) (°)
[VOF,, ]2‘ 1.63 1.97 98.50
[V001u3 1.63 2.42 98.5
[VOF, 13- 1.63 1.97 2.16 90
[v0015]3 1.63 2.42 2.67 90
[CrOFu] 1.519 1.79 104.5
[CrOClu] 1.519 2.240 104.5
[CrOFs] 1.519 1.79 2.01 90
[Cr0015] 1.519 2.24 2.389 90
[MoOFujl‘ 1.610 1.88 105.2
[Mo0C1,] 1.610 2.333 105.2
[MoOBru] 1.610 2.47 105.2
[MoOF 12 1.610 1.88 2.08 90
[M00015]2 1.610 2.333 2.600 90
EWOFMJ 1.63 1.90 106
[w001u] 1.63 2.35 106
[woaru] 1.63 2.49 106
[NbOFuj 1.68 1.84 99
[NbOF 13- 1.68 1.84 2.06 90

8Some of these values are experimental and others have been
estimated; see text.
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elgenvalues. The correspondence between the SCF-MS-Xa
elgenvalues and the Hartree-Fock eigenvalues has been

established22’23.

In the SCF-MS-Xa calculation the molec-
ular orbitals are characterized by the charge associated
with each atomic sphere, and the region outside the outer-
sphere, 1n terms of the percentage of s, p, d, etc. charac-
ter and the charge in the intersphere region. The total
charge assoclated with each atom in a molecule 1s taken to
be the sum of the charge inside the atomic sphere around
the atom and a fraction of the intersphere charge. The
latter has been obtailned by the scheme of Case and

24 in which the intersphere charge 1s partitioned

Karplus
among the basls functions centered on the various atoms

in proportion to the average charge density at the surface
of each atomic sphere, multiplied by the area of that sur-
face bordering the lntersphere region. Thus the per-

centage s, p, d, etc. character of the contribution of

each atom to the molecular orbital can be calculated.

(11) Computational Details

We have carried out SCF-MS-Xo calculations with over-
lapping spheres for the transitlon metal oxohalc complexes
of the type [MOXn]m- in Cuv symmetry for geometrical data
glven in Table 1. Desvite the fact that this class

of compounds has been the subject of detailled studies,

there are very few compounds for which crystallographic
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data are avallable. The atomic arrangements for [VOClujz—,z5
[CrOClu]l-,lu and [MoOClujl-lu were obtained from the
crystallographic data, while for [NbOF5]3' the geometry
of [NbOF5]2-26 was used. Since the available geometrical
data show that the metal atom 1s above the plane formed
by the halogen atoms 1in the case of pentacoordinated com-
plexes our calculations on pentacoordinated species em=
ployed a similar distorted square pyramidal geometry. For
all hexacoordinated complexes the calculations were done

with the metal in the plane formed by the equatorial halo-

5]2‘.26 The

geometrical data for complexes for which no structural

gen atoms, based on the structure of [NbOF

data are avallable were estimated based on the structure

of related systems.

The values for the atomic o parameter (Table 2) for
all complexes, with the exception of tungsten complexes,
were taken from Schwartz27. For all atoms in the tungsten
complexes we had used the theoretical o values of Gopina-
than et g;.zs, since the Schwartz o value is not available
for tungsten. In the intersphere and the outersphere
regions welghted averages of the atomic ¢ values were used.
The sphere radii were taken to be 90% of the atomic number
radii, following the suggestion of Norman29, and are given
in Table 2. Although the sphere radii were not variled to
obtain the correct values of the virial ratios, fairly good

results were obtained for the virialratios (Table 2).

The outer sphere, with origin at the center of nuclear
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charge of the molecule, was chosen to touch the halogen
sphere and serve as a Watson sphere30 with a positive
charge equal in magnitude to that of the anion, in order to
simulate the stabllizing effect of the environment on the
ion. In order to get a converged solution for [NbOFu]2-
and [NbOFSJB-,the charge on the Watson sphere had to be
increased to +3 and +4, respectively,.

The partlal wave éxpansions were truncated at 2 = U
for the outer sphere, £ = 2 for the metals except tungsten
and 2 = 1 for oxygen and the halogens. The core energy
levels, for example ls, 2s, 2p on chlorine, were calculated
in each 1teration using only the surrounding potentials.

In the case of tungsten complexes the completely filled
tungsten 4f orbitals were not treated as core orbitals be-
cause they had an energy higher than the 5s orbitals. All
the calculations were carried out self consistently,with

the convergence criterion that the maximum relative change

in potential between two consecutlve 1terations was lower

than lO'u.

C. Electronic Structures

The SCF-MS-Xa calculations of the ground electronic
states of all the penta- and hexacoordinated complexes
predict the ground state to be 282 in agreement with the

11312315"17

earlier molecular orbital studiles and the

avallable spectroscopic data. In these complexes, where
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1 configuration, the unpaired

the metal atoms have a formal 4
electron 1s in an orbital of b2 symmetry which 1s primarily
a metal dxy orbital. The occupied molecular orbitals and
orbital energies for [VOFujz-, [VOClu]2', [VOF5]3' and
[VOCls]3', which are representative examples of this class
of molecules, are given in Tables 3, 4, 5 and 6, respec-
tively; the fractional charges were obtalned by the charge
partitioning scheme of Case and Karplus2u. The molecular
orbitals of the remalning complexes are given in Appendix
1.

The molecular orbitals of the pentacoordinated com-
plexes (Tables 3 and 4) can be divided into four groups.
The first set of orbitals are the three lowest-lying
virual orbitals, plus the orbital of b, symmetry containing
the unpaired electron, each with a substantial metal 4
contribution. The occupied orbitals which follow this
set are essentially non-bonding in nature and are halogen
p type orbiltals. These are followed by an orbital of bl
symmetry which accounts for the bonding between the metal
and the halogen atoms. The next two lower-energy orbitals
contribute to the metal oxygen bonding a ¢ and a pair of
m bonds. The orbitals still lower 1n energy are the non-
bonding oxygen 2s, halogen s type orbilitals and the low-
lying metal s and p type orbitals.

The hexacoordinated complexes (Tables 5 and 6) have

four more occupied molecular orbitals in addition to those
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Figure 1. Percentage 4 contribution to M-O ¢ and ™ bonds
in MOn+ and [MOXm]n_ where M = V, Cr, Mo,
X =PF, ClL and m = 4 and 5.
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descriped for the pentacoordinated complexes. Of these
three, two of e symmetry and one of al symmetry are higher
in energy than the equatorlal-halogen p orbitals. The
orbiltal of al symmetry corresponds to a rather weak o bond
between the metal and the axial halogen atom and involves
the lowest unoccupied metal p type orbital and the halogen
p-type orbital. An interesting feature of this metal-
axlal halogen bonding is that 1t does not involve any
contribution from metal 4 orbitals.

There are some common features of the bonding in the
penta- and hexacoordinated complexes. The metal-oxygen
bonding involves both o and m type bonding and is sig-
nificantly stronger than the metal equatorial halogen bond-
ing and the metal-axlal halogen bonding 1in hexacoordinated
complexes. In order to understand the metal-oxygen bond-
ing in these complexes we have carried out SCF-MS-Xq cal-
culations on the corresponding metal oxycations.31 As
expected, in the oxycatlons there is multiple bonding
between the metal and oxygen, a o and a pair of m bonds,
but there are differences compared to the corresponding
complexes. The variation in the metal d orbital contribu-
tilon to the metal-oxygen bonding orbitals in vanadium,
chromium and molybdenum complexes and the corresponding
oxycations are 1llustrated in Figure 1. The metal d

orbital contribution to both the ¢ and v bonding orbitals

follows the sequence Cr>Mo>W and in the case of both



134

Table 7. Charge distribution in [MOXn]m_ complexes.

Complex Metal Oxygen Halogen(Eq) Halogen(Ax)

vo?* 1.814  +0.186

[VoF,1°" 1.056  -0.480 -0.6414

[V001u%f— 0.807  -0.331 -0.619

[VOF] 1.059  -0.543 -0.688 -0.766
[vocigl3™  0.830  -0.358 -0.673 -0.780
Nbo2* 2.176  -0.176

[NbOF, 1%  1.522  -0.847 ~0.669

cro3*t 2.380 0.620

[cror, 1™  1.319  -0.235 -0.521

[croc1,It™  0.957  -0.156 ~0.450

[CrOFSJZ- 1.316  =0.317 -0.578 ~0.688
[Croc15]2‘ 0.994  -0.182 -0.537 -0.661
Moo3* 2.673 0.327

[MoOF, 11T 1.639  -0.419 ~0.556

[MoOClu]i_ 1.222  -0.198 ~0.506

[MoOBr, ] T 1.096 -0.813 ~-0.478

[MoOF1®”  1.660  -0.489 -0.616 ~0.708
[MoOC15]%™  1.245  -0.240 -0.567 ~0.735
wo3*t 2.676 0.323

[wor, 1%~ 1.364  -0.377 ~0.498

[woc1, 1™ 0.989  -0.153 -0.459

[woBr,1'~  0.881  -0.132 -0. 447
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vanadium and niobium complexes the metal contributions are
lower than those in molybdenum complexes. In the fluoro
complexes the metal-oxygen 0 bonding orbitals have a
larger contribution from the metal d orbitals than they
have in the corresponding chloro and bromo complexes.

On the other hand, the extent of metal-oxygen m bonding

is sensitive to the nature of the ligand atoms. The
molecular orbital which represents the m bonding between
metal and oxygen in the fluoro complexes has a significant
contribution from a fluorine p type orbital (3e orbitals
of Table 3 and 4). The metal participation in the metal-
oxygen ¢ bonding 1n the fluoro,chloro and bromo complexes
is lower than in the corresponding metal oxycation. The
metal-halogen bonding, though weaker than the metal-oxygen
bonding, increases in strength in the sequence F<Cl<Br, as
would be anticipated based on the electronegativity of the
ligands.

A few general trends in the nature of bonding in this
class of mclecules can be obtained from the charge distribu-
tion (Table 7) and the electron distribution on the metal
atoms (Table 8). In the fluoro complexes the metal atoms have
larger positive charge compared to the corresponding chloro
and bromo complexes, reflecting the greater ionic character
of the fluoro complexes. The charge on the metal variles
by a very small amount on going from a pentacoordinated

complex to the corresponding hexaccordinated complex,
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Table 9. Electronic transition (d-d) energies? (cm'l)

in [MOXn]m- complexes.
Complex E(dxy*dxz,yz) E(dxy»dx2_y2) Ref.P
[v0F4]2' 7350 15470
[voc1,]%” 9220 (11750) 12950 (13500) 32
[VoFg13” 6150 (13660) 15580 (18200) 34
[v0015]3' 8230 (15500) 13060 (16400) 33
[CrOFujl' 11960 23480
[croc1, 1t 13830 (13100) 19980 (18100)° 12
[CrOF5]2' 7350 (8350) 24800 (22330)° 10,11
ECr0015]2‘ 12320 (12380) 20740 (18530) 10
[MoOF, 1%~ 15360 32040
[Mo0C1,1%" 17450 (14300) 25240 (22600)C 14
[MoOBr ), 11~ 17560 (14810) 24140 (22730) 35
[MooF5]2‘ 8890 (12700) 34460 (21600) 35
[M00015]2‘ 12290 (13700) 26670 (22400) 35,11
[woF, 11~ 15800 32590
[woc1,1%™ 17890 26120
[woBr, %" 18000 24580

@The numbers in parentheses are the experimental d-d

transitio
b

CThese absorption bands were not assigned to the d

n energies.

dx2_y2 transition in the experimental work.

The references given are for the experimental number.

->

Xy
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indicating a rather weak metal-axial halogen bonding. The
low occupatlon numbers of the low-lylng unoccupled metal

s and p type orbitals indicate that these metal orbitals
don't have a significant role in the bonding of these

complexes.

D. Electronic Excitatlion Energies

The three lowest-lying virtual orbitals of both the
penta- and hexacoordinated complexes have a large metal d
character and the relative energies of these metal 4 or-

bitals follow the sequence d in agreement

,yz ; z2’

with the order generally used1 -10 15 1 as the basis for

interpretation of the electronlc spectra of this class of
compounds. The SCF-MS-Xa results for the d-d transition
energlies calculated by the transition-state procedurels'zo
are given in Table 9, along with available experimental
results.

The lowest energy absorption maximum in the electronic
spectra of thils class of molecule 1s assigned according to
the experimental, as well as the molecular orbital studles,
to the excitation of the unpaired electron in the molecular
orbital of b, symmetry to the lowest-energy unoccupled or-
bital of e symmetry, which has a large metal 4 orbital con-

tribution. Our calculated excitation energies for this

transition (Table 9) are in fairly good agreement with
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experiment for a large number of molecules. As we had
shownul, the lowest energy excitation energy 1s dependent
on the angle between the metal-oxygen and metal-halogen
bond and on the metal-oxygen distance. It 1s therefore not
really surprising to note that for some complexes the com-
puted dxy -+ dxz,yz transition energy doesn't agree with the
experimentally observed value as well as for other com-
plexes, since the geometries of quite a few of these com-
plexes were guessed based on the avallable data for similar
complexes. The lowest d-d transition energies follow the
sequence X = F<Cl<Br for [M0X,]"", and [MOX,]"" >
[Moxsj(n+1)' for any halogen (Figures 2, 3, and 4).

The varilations 1n the second d-d transition dx ->

y
dxz-y2 are essentlally the same as those for the dxy >
d transition energy. Recently, the two lowest-energy

XZ,y2
bands in the electronic spectra of [CrOClujl', [CrOF5]2‘

and [MoOClujl' had been assigned differently from the gen-

erally used identification of the first and the second-lowest

energy absorption bands to the dxy > dxz,yz and dxy +
dx2-y2 transitions based on single-crystal polarized spectra
11-14

and ab initio studies The first absorption band in

1-
[CrOCluj was assigned to the usual dxy - dxz,yz transi-
tion while the second band was assigned to Cr-O(mw) =
Cr-O(o*)lz. According to the SCF-MS-Xq results the transi-
tion Cr-0(w) + Cr-O(oc*) corresponds to an energy greater

than 80,000 cm-l, while the computed d-d transition ener-

gies are in good agreement with the two lowest energy
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1-

bands in the electronic spectra of [CrOClu] .ul For

[CrOFSJE- our computed d-d transition energies are in agree-

ment with the electronlc spectral assignments of Ziebarth

et gl.lo In the case of [MoOClujl°, the SCF-MS-Xa value for

the transition energy Mo-O(w) + Mo-O(og*) assigned by Garner

14

et al. to the band at 22,600 em™ L 1s greater than 70,000

cm'l, while the computed d-d transition energies seem to be
in falr agreement with the two lowest-energy absorption bands

in the electronic spectra (Table 9).

E. Evaluation of g and Hyperfine Interaction Tensor

Components

The principal components of the g and the hyperfine
interaction (A) tensors which characterize the electron
spln resonance spectra of transition metal complexes have
been used widely to study the nature of bonding in these com-
plexes and the changes in bonding within a class of compounds.
The two approaches generally used in utillizing the measured
ESR spectral parameters to investigate the bonding are: (1)
the coefficlents of the atomic orbitals in the molecular
orbital containing the unpaired electron and in a few low-
lying virtual orbitals, are determined using the experimental
values of the g and A tensor components;3-5’8’9’36 (11)
secondly, one computes the principal components of the g and
hyperfine interaction tensors using the molecular orbitals

obtained by one of the (usually semi-empirical) molecular
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orbital methods and compares them with the experimental
values. When the two sets agree the orbitals used in the
computation are assumed to give a good description of the
bonding in the compound under investigation37-uo. Even
for molecules with as high a symmetry as the penta- and
hexacoordinated transition metal oxohalo complexes, the
first approach requires more experimental data than one
has, while the second method is critically dependent on
the molecular orbitals used. Note however, as we have
shown earlierul, that the latter is clearly the most
objectlve approach and so is the one used in this study.
Both the procedures depend heavily on the choice of values
for parameters such as the spin-orbit coupling constants

3

and <r °> values.

There are some interesting similarities and differences
in the experimental values of the principal components of
the g and A tensors of the penta- and hexacoordinated
transition metal oxohalo complexes of vanadium, chromium,
molybdenum and tungsten. For all vanadyl complexes the
value of g|l i1s less than that of gl, while g|| is greater
than gl for the chloro- and bromo-complexes of chromium
and molybdenum. In addition some of the chromium and
molybdenum complexes have a gll greater than the free-
electron g value of 2.0023. It has been suggested by

Kon et gl.z that for chromium complexes the contribution

from the low-lying occupied orbital of b1 symmetry should
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be included in evaluating gll, while Manoharan et al.u

included the ligand contribution to gll to account

for the above-mentloned difference in the principal compon-
ents of theg tensor for this class of compounds. We have
investigated the relative merits of both suggestions

using g and A tensor components calculated from the SCF-

MS-Xa wavefunctions.

The following equations whichhave been discussed

earlieru% were used in the computation of gll, gl, A?l
M
and A:
1
BI| = 8e = Bzzi 8] = Be - Bxx
2(2B €7 Ay=YBoe2A7 ) (2B1e7-UB5seES)
All(bl) - 1%1*M 2-3"L 1°1 2°3 (1)
al (o1 = -2(2B e Aytir ed2 ) (2816 +4B,e]) (2)
2(04BAy+20q ABsAT ) (@4 By +207 4B5)
8 Ce) = 3812201 gBoA ) (@3B +2a; 985 (3)
AE(b2 + e)
2(2B1€  Ay=UBAESAT)
M
Azz(bl) - -P[;Bi + 1°1"M 2-3"L Breq +
AE(b2 -+ bl)
(a4 B Ay +20, ABAAT )
? 3°1"™M 10F2"L u381 + k] (4

AE(b2 + e)
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11 (e3BiAy+2ay gBorr)
7 AE(b2 -+ e)

AL, = A = -P[- %Bi +

XX VY \!331 + K],

(5)

- -3.,nd
P = g.EyBeBy<r >y

where Bl and 82 are the coefficients of the metal d and

halogen p,  _-type orbitals in the molecular orbital (b,)

X,y
containing the unpaired electron, €1 and €3 the correspond-

ing coefficients for the low-lying unoccupied orbital of

bl symmetry and a3 and a9 are the metal 4 and halogen

X2,y2

P, orbital coefficients of the low-lying unoccupied orbital

A

of e symmetry; e; and €3 are the coefficients of the metal

d and halogen p orbitals of the occupiled orbital of b1

X,y
symmetry; Ay and A; are the one-electron spin-orbit coupling

constants for the metal 4 and halogen p orbitals, respec-

tively, k takes into account the Fermi contact interaction,

and the appropriate excitation energiles are denoted by AE.
The contribution from any occupied orbital of b1

symmetry to g|| can be calculated using expressions very

M

similar to that for All(bl). In the equation for Azz(bl)

only the contribution from the unoccupied orbital of bl

symmetry 1s 1ncluded. The contributions from the occupied

orbital of bl symmetry to A can be included by adding

zZ
terms similar to the second term in the expression for

M
Azz(bl)‘

In order to take 1nto account the charge in the outer
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sphere region,we have distributed the outer sphere charge
assoclated with the molecular orbitals needed for computing
g and A tensopr components among the ligand atoms in the
ratio of atomic number. The additional charge was further
partitioned into s and p fractions for each atom in the
ratio of the net s and p populations. In the SCF-MS-Xa
model the squares of the molecular orbital coefficients in
Equations (1-5) have been identified with the fractional
charges assoclated with the corresponding partial waves.

The computation of gll’ gl, AII and Al requires
knowledge of the magnitude of Xy, A, <r-3>M and of the
electronic excitation energles, In addition to the molecular
orbital coefficients. The required electronic exciltation
energles were calculated by the transition-state pro-
cedure18'20. The magnitude of computed ESR parameters
depends critically on the values assigned for AM, AL and
<r'3>M. ‘The spin orbit coupling constants (}y) and values of
<I‘-3>M for the metal d orbital are sensitive function of
the valence electron configuration of the metalul. This
makes the choice of values for these parameters, from those
avallable for the various oxidation states and configura-
tions, very difficult in any systematic manner. The spin
orbit coupling constants AM were computed for the formal
valence configurations of the metals (Table 8), using the
atomic Xa wavefunction for the appropriate configuration

and the single-particle approximation for AM, i.e.,
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Table 10. Computed values of Aﬁd, <r -3 If,}d and Pﬁd.
Complex Aﬁd (em™1) <r"3>1f,[ld (au) P{,}d (xlOLl em™ 1)

[VOFujz- 220 2.762 129.43
[voc1, 12" 209 2.625 123.00
[VOF, 13- 221 2.774 129.99
[V0015]3 210 2.639 123.66
[CrOFu]l 308 3.594 ~36.13
[CrOClu] 289 3.382 -34.00
[CrOFSJ 309 3.609 ~36.28
[CrOCl5] 292 3.414 -34.32
[MoOFu] 895 4,851 -56.24
10001, 1 1- 835 4.532 -52.55
[MoOBru] 820 4,453 -51.63
[MoOF5] 902 4.890 -56.70
[MoOClSJ 842 4,572 -53.00
[WOFu] 3254 8.919

[w001u] 3170 8.694

[WoBr, ]t~ 3158 8.650
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L dV, _eh gl -3,

where z' 1s the effective nuclear charge; these are given
in Table 10. The ligand spln orbit coupling constants

Agp were calculated for the neutral atoms 1n a similar
manner (Table 10). The <r'_3>M values used in computing

the A tensor components were also calculated for the formal
valence configurations of the metals in the complexes (Table
10). Note that for tungsten valence electron configurations
given in Table 8, since we couldn't locate the 5f orbital
which 1s very high in energy, the Aaq were computed for two
configurations where the 5f population was added to the 6s
and 6p orbitals, respectively. The Aad computed for these

1 and we used

configurations differ only by about 30 cm~
the higher Aad value 1n evaluating the ESR parameters for
the tungsten complexes.

The values of g||’ which are determined by mixing of
281 exclted states into the 232 ground state (Equation (1)),
have been calculated using the computed AM values (Table
10) and electronic excitation energies (Table 9). We first
consider the evaluation of gll for the vanadium complexes.
In this case, since the 281 states arising from the promo-
tion of an electron from the occupied molecular orbitals

of b1 symmetry to the orbital containing the unpaired

electron had very large electronlc excitation energles and
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thus make only negligible contribution to gll, only the
contribution from the lowest unoccupied orbital of bl

symmetry was 1ncluded. For [VOCIMJQ' gll calculated includ-

ing the ligand contribution is 1.948, which is in very
good agreement with the experimental value of 1.9480. If

the ligand contribution 1s neglected, however, g'| has

a value of 1.9201 indicating the importance of the ligand

contribution 1in calculating gll (see Table 11). The g'l

values for the fluoro complexes of chromium (Table 11) and

molybdenum (Table 11) were calculated by including only

contributions from the lowest-lying unoccupied orbital of

bl symmetry, just as in the case of the vanadium complexes.
For the evaluation of g for [CrOCl5]2', [MoOClujl',

[M00015]2' and [MoOBru]l', it was found necessary to include

the contributions from the occupled orbitals of bl sym-

metry, as shown earllier for [CrOClujl'fl'in order to account

for the fact that for these complexes gll has a value
greater than gl. For all the chloro complexes of chromium
and molybdenum, as well as for IMoOBrujl', there are two

2Bl states which arise from the occupled orbitals of b1

symmetry having electronic excitation energies comparable

2

to the B1 state from the lowest-energy unoccupied

orbital of by symmetry. Thus, for example, for [MoOClujl-
the computed gll is 1.9963, including the contributions

from all the three 281 states, while the corresponding

2

value including only the contribution from Bl state
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arising from the lowest unoccupled orbital is 1.9112.
This latter value 1s smaller than the computed gl value

of 1.9462. For [MoOClujl

~, though the computed gl value

of 1.9963 1is not in very good agreement with the experimental
value of 1.965, the experimental observation that gll

S gl is predicted correctly. If g|| for [MoOClu]1° i1s com-
puted neglecting the ligand contribution but including all
the three 2Bl states, the value is 1.9261 which is again
lower than gl. This 1ndicates the importance of includ-

ing the ligand contributions as well as the contributions
from both the 231 states arising from the occupied orbitals
of b1 symmetry. The values of gll for all the chloro

and bromo complexes of chromium and molybdenum given in
Table 11 were computed 1ncluding the contributions from

all the three 2B states mentioned above. The magnitude

1
of gl?which is primarily determined by the low-lying un-

occupled orbital of e symmetry12 was computed for all the
complexes (Table 11).

For all the tungsten complexes, only the contributions
to gll from the 2B1 state arising from the lowest-lying
unoccupled b; orbital was included, since the other 2B1
states were found to be rather high in energy. We note
however, that for the tungsten complexes relativistic ef-
fects, which were not included 1in the present study, may
be important 1n determining the relative energiles of

various excited states. The computed principal components
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of the g tensor of [woxu]l‘ X = F, Cl, Br) are compared
with the corresponding values for the hexacoordinated
specles since there are no experimental results available
for the pentacoordinated complexes. For [WOFHJI' and
[WOBrujl' the computed gll value 1s less than gl, as ob-

served experimentally for IWOFSJZ' and [WOBr 2-.8 For

5]
[w001u31‘ the computed gll is less than gl and for
[w0015]2‘ gll is found experimentally to be greater than
Sl-

The Ferml contact 1interaction parameter k¢ in the ex-
pressions for the principal components of the A tensor,
vanishes in the spin-restricted molecular orbital approxi-

mation in which we had carried out all the calculatiohns.

k was determined using the following equation:

Ay = -xP - (ge-g) P,
where Ao 1s the isotropic hyperfine coupling constant, €e
is the free-electron g value and g the experimental average
g value for the complex. The values of P, which was de-
fined earlier, and of the experimental isotropic hyperfine
coupling constant used 1n evaluating «k are given in Table
10. The computed values of the principal components of

the A tensors for vanadium, chromium and molybdenum com-
plexes are given 1n Table 12. For the chloro complexes

of chromium and molybdenum, as well as for [MoOBru]l-,
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the contrlibutions from all the three 2

B1 states to A||
were included. All the computed All values are smaller
than the experimental values, whille the Al values are
larger than the corresponding experimental values. Even
then the experimental trends are reproduced fairly well
(Table 12).

The computed principal components of the g tensor
reproduce the experimental trends very well, even though
the numerical values for some complexes are not as good as

2= the calculated

for others. For [CrOF5]2' and IMoOF5]
relative values of gll and gl are the reverse of the experi-
mental values. This could be due to the inaccuracies in

the geometrical data used in the calculation, since the
magnitude of gl has been shown"ll to depend on the angle

between the metal-oxygen and metal-halogen boncs.

F. Conclusion

We conclude from this study that there are many
similarities in the electronic structure and properties
of the halide complexes of the d1 oxycations of vanadium,
niobium, chromium, molybdenum and tungsten. The one
major difference between the vanadium oxohalide complexes
and those of chromium and molybdenum is that for both the
fluoro and chloro complexes of vanadium, the 281 excited

states arlsing from the occupied orbitals of b1 symmetry

are much higher 1n energy than those of the corresponding
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chromium and molybdenum complexes. This accounts for the
observation that for all vanadyl complexes gll values are
lower than gl. We have also shown that it 1s again the
rather high energy of the 2Bl exclted states arising from
occupied bl orbitals of fluoro complexes of chromium and
molybdenum that makes the significant differences in the
ESR spectra of these complexes compared to the correspond-
ing chloro and bromo complexes. The importance of includ-
ing the ligand contributions in computing the g tensor
components has been clearly demonstrated. We agree with the

conclusions of Garner et al.l]"ll4

that i1t 1is not possible
to assume that the two lowest-energy absorption bands in
the electronic spectra are d-d transitions for all the oxo-
halco complexes of vanadium, chromium and molybdenum. In
splte of the numerous limitations of the SCF-MS-Xqp method,
the trends 1n the principal components of the g and A
tensors of this class of complexes have been calculated to
a surprisingly high degree of accuracy. The SCF-MS-Xa
model thus appears to be a useful theoretical model for

systems as large as those studied here, which are not

readily amenable to ab initio studies.
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CHAPTER VII

EPR STUDIES OF [vopu]2’, [MoOFujl’

and [Mooc1,]%"

The transition metal oxohalo complexes of the type
[MOX5]n', where M = V, Nb, Cr, Mo, W and X = F, Cl, Br
and I, have been the subject of detailed EPR studies.l-zo
The g, metal hyperfilne, and ligand hyperfine tensors have
been used to investigate the nature of bonding in these
compounds. On the other hand very little work has been
done on the corresponding pentacoordinated oxohalo com-

plexes21’22.

Since EPR spectroscopy provides a very
sensitive probe for the detection and measurement of the
effects of small changes in bonding, we have undertaken
a failrly detailed study of the single-crystal EPR spectra
of [VOF,]%", [MoOF, 1%~ and [Mo0C1,]'" in the hope of
getting a better understanding of the differences in the
bondlng between the penta- and hexacoordinated transition
metal oxohalo complexes.

The pentacoordinated transition metal complexes form
a class of compounds of considerable interest with the

structures possessing a diversity of forms between the

two limiting symmetries of trigonal bipyramidal (D31,1

162



163

22-24 The

symmetry) and square pyramidal (Cuv symmetry).
energy barrier between these two structures is pre-
dicted25 to be small for species with five equivalent
ligands, and examples are observed to occur in both sym-
metry classes.26’27 On the other hand, complexes having
an axial ligand different from the other four tend to

24

form square pyramidal complexes. The pentacoordinated

oxohalo complexes under investigation here fall in the
latter category.

21

5 and

28have been found to provide penta-

2+ 3+

and Cr

ESR studies of VO in (NHu)zstl

Fe3* 1n (NH), ) ,SbF,
coordinated species [VOC1,127, [MooF,]1%~ and [FeF5]2‘,
respectively, while for Cr3+ in Kzst5 the species which
predominates®’ is trigonally distorted [CrF6]3'. ESR
spectra of [MoOClu]l-have been studied in solution3l

as well as in a diluted single crystal of [AsPhu][Nb001u].32
We have carrilied out the ESR studies of the fluoro complexes
of VO2+ and M003+ in ammonium pentafluorocantimonate(III)

and the chloro complex of MoO3+ in ammonium pentachloro-
antimonate(III). The ligand hyperfine interactions have
been observed for the fluoro complexes at room temperature
and for the chloro complex at low temperature. We have
used the results from our earlier SCF-MS-Xa studles on this

class of compounds32 to interpret the observed g and metal

hyperfine interaction tensors.
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A. Experimental

Ammonium pentafluoroantimonate(III) was made by evap-
orating a solution of 3 moles of NHuF and 1 mole of SbF3
in distilled water. Ammonium pentachloroantimonate(III)
was made by evaporation of a solution containing SbCl3
and NH,Cl in the molar ratio 3:4 in dilute hydrochloric
acid.3q The single crystals of (NHu)zst5 containing
about 1% by weight of VO2+ were obtalned by slow evapora-
tion of a solution of (NH,_‘)2SbF5 and NHyF in the molar
ratio of 1:1 with about 1-2% by weight of VOSOu-7H2O.

The single crystals of CNHM)ZSbF5 contalning [MoOFqu'
were made by dissolving (NHH)zstS and NH)F in water in
mole proportion of 1l:1, adding a solution of ammonium
molybdate in hydrofluoric acid reduced with metalic tin
and allowing the solution to evaporate slowly. The single
crystals of (NHM)ZSbC15 containing [MoOClujl' were made by
dissolving SbCl3 and NHyCl 1in dilute hydrochloric acid

in the molar ratio of 3:4, adding a solution of ammonium
molybdate in hydrochloric acid reduced with mettalic

tin and allowing the solutlion to evaporate slowly.

EPR spectra were recorded for the single crystals
using a Varian E-4 X-band spectrometer. The powder measure-

ments were made using powdered samples of the single

crystals.
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Figure 1. Crystal structure of (NHH)2SbF5 with inter-
nuclear distances given in Angstrom units.
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B. Results

1. Tetrafluoro Complexes of Oxovanadium(IV) and

Oxomolybdenum (V)

The diamagnetic host lattice used in single-crystal
studlies of fluoro complexes has ammonium pentafluorocanti-
monate. This forms orthorhombic crystals with each anti-
mony 1lon at the center of a distorted octahedron in which
five of the vertices are fluoride ions and the sixth 1is
the sterically-active lone pair associated with trivalent
antimony.31 The detalls of the structure are shown in
Figure 1, where 1t may be noted that the axial-fluoride-
Sb-lone pair direction 1s parallel to the b-axils of the
crystai (Sb=F_, = 1.916 ) with the antimony lon displaced
0.382 R from the center of the rectangle formed by the four
axial fluorines (Sb-F = 2.075 &) towards the lone pair. Two
classes of antimony sites related by a center of inversion,
and magnetically equivalent, are defined in this way
(Figure 1).

The vanadyl (V02+) and molybdenyl (Mo03%) 1ons can
replace either sb3* or [Sb-F]2+ of the [SbFSJZ' ions 1in
(NHM)2SbF5 to form either the hexa- or the pentacoordinated
complex, or a mixture of both. The ESR study of the single

crystals of both the systems, VO2+

3+
in (NHy),SbFg and MoO
in <NHM)2SbF5’ shows intense resonances associated wilth
only one site of a magnetic species. The angular varia-

tion of the ESR spectra for each system was studied by
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T N

Figure 2. Coordinate system for the analysis of g and A
tensors of pentacoordinated transition metal
oxohalo complexes.
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recording the spectra at room temperature for every 10°
rotation about the crystal a, b and ¢ axes. For both the
systems, the rotation study about the crystal b-axls shows
spectra which are independent of the rotation angle. This
shows that Vo2t anda Moo3* replace either sb3* or [Sb-FaxJ2+

2=

of the [SbFs] ion and that the metal-oxygen bond is either

along the b-axis or directed on the surface of a cone
making a fixed angle to the b-axls. Since the EPR spectra
are 1ndependent of the angle 1n the ac plane one can

further conclude that both the systems are axially sym-

metric.

(1) Tetrafluoro oxovanadate(IV) Ion - The Zeeman and

metal hyperfine lnteractlon tensors are considered to
originate at the metal nuclel and a coordinate system 1s
chosen with the z-axls along the metal-oxygen bond and the
x and y axes in the equatorial plane formed by the four
halide ligands (Figure 2). The origin for each halogen
hyperfine interaction tensor 1s the halogen atom and the
coordinate system has the z axis parallel to the metal-
oxygen bond, the x-axls along the metal-halogen bond and
the y axis chosen to form a right-handed coordinate
system (Figure 2).

The electronlic Zeeman and metal hyperfine tensors

obey the relationships
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g = (gicosge+g§sin26cosz¢+g§SinZGSin2¢)1/2 (1)

and

2_ 2

2
xZx

gall = (Agggcosee+A sin ecosz¢+A§g§sin2esin2¢)1/2 s

(2)
where the angle 6 and ¢ relate the external magnetic field
vector BO to the z and x axes, respectively (Figure 2).
The ESR spectrum for 8 = 0° corresponds to g, and AZ
while that for g = 90° and ¢ = 0° corresponds to gy
and A, and that for 6 = 90° and ¢ = 90° corresponds to
g_and A_. In the case of VO2+ in (NHU)zstS’ it was

y y

found that gy = and Ax = A ,since the spectra are

&y y

angle i1ndependent for rotations about the b axis, as

would be expected for an axially symmetric system. The
angular variation of g and AV for rotations about the

crystal a and c axes are given in Figures 3, 4, 5 and 6,
respectively. In the plot of g versus the rotation angle

for rotations about the crystal a and c axes (Figures 3 and
5) there are two maxima separated by about 30°. The values of
GII’ Gl’ A|| and Al were determined from the measured
magnetic field values for the various my transitions by

a least-squares fitting procedure using the following

equations, which are correct to second order:

[I(I+1) - m%]

2
B = B(m,) + A, m_ + A 6=0°
o T M T AN T Ty T



Table 1. Single-crystal
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ESR parameters of [VOFu]

o=

Rotation Axis gl | g_l. AI ] A.L
a 1.9318 1.9718 -199.61 -74.36
b 1.9728 -72.95
Cc lo 9325 1-97“2 '198.41 —73011
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[I(1+1)-m§1

hB(mI) (e=900)

- 2 1.2
B, = B(mg) + AlmI + (Al l+A_L)

B, = hv/g8
The values of g|l’ gl, All and Al determined 1n this way
from angular varlation studlies in ab and bc planes are
glven 1in Table 1l,along with the values of gl and Al
determined from b-axis rotation studies. The spin-Hamil-
tonian parameters determined from different planes agree
within experimental error.

We have observed the fluorine hyperfine interaction at
room temperature. When'the applied magnetic field is
along the crystal b axis each of the vanadium hyperfine
lines 1is split into five lines with a separation of 10 G
and intensity ratios of approximately 1l:U4:6:4:1. The
fluorine hyperfine interactlion was not observed at any
other orientation of the crystal with respect to the ap-
plied magnetic fileld at room temperature. We have assign-

ed the observed ESR spectra to the speciles [VOFHJZ-

based on the observed fluorine hyperfine interaction and
the fact that one would have observed ten fluorine hyper-
fine lines had the species been IVOF5]3-.16

The EPR spectra at low temperatures were too complex
to analyze,as we could not follow the angular variatlons

of the many different sets of vanadium hyperfine lines

that appear at low temperatures.
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Figure 8.

177

Simulated ESR spectrum of polycrvstalline sample
o-
of [VOF,] in (NHu)zstS.
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The analysis of the ESR spectra of the powder sample

(Figure 7) gave spin Hamiltonlan parameter values close

to those obtained from the single crystal studies. The

powder spectrumwas simulated using the spin Hamiltonian

parameter values obtained from single crystal studies

(Figure 8).

(11) Tetrafluoro oxymolybdate(IV) Ion - The molybdenyl

(MoO3+) ion 1n single crystals of (NHM)ZSbFS is a system
very similar to that of V02t in (NHy) ,SbFs. For the
axially symmetric Mo03* 1n (NHM)ZSbF5 system, the coor-
dinate axes of Figure 2were used in the analysis. ESR
spectra were recorded for every 10° rotation in the
crystal be, ac and ab planes. Even though fairly well
resolved spectra were obtained at room temperature, the
molybdenum hyperfine lines were observed only at certain
orientations of the crystal with respect to the applied
magnetic fleld because of the large fluorine hyperfine
interaction.

The varlation of g with angle in the crystal bc and
ab planes 1s given in Figures 9 and 10. In the bc plane
g remains a constant from 6 = 80° to 6 = 100°. So gl

and gl were determined by fitting the experimental g2

values to the equation

g2 = a + Bcos28 + ysin?26
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Table 2. Single-crystal ESR parameters of [MoOFu]l'.

Rotation Axis gll sl A?l Al
a 1.8948 1.9253 95.5
b 1.9256
c 1.8945 1.9254 95.5

dHyperfine coupling constants are in gauss.
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where 6 1s the angle the applied magnetic field makes with
the crystal b axis. Uslng the a, B and y values deter-

2 values were com-

mined by the least-squares procedure,g
puted for all angles and were found to have the minimum

at 8 = 0°and the maximum at 6 = 90° corresponding to gll

and gl, respectively. The same procedure was carried
out for data in the ab plane and the minimum and maximum

2 were found to ocecur again at ¢ = ®Pand ¢ = 90°,

in g
The gll and gl values so obtained from rotation studies
in the two different planes agree within experimental
error and are given 1n Table 2. The g value for rotation .
about the crystal b axls was found to be invariant to the
rotation angle and 1s equal to the gl value determined
from the be and ab planes (Table 2), For 6 = 0°the molyb-
denum hyperfine interaction could be measured in both the
ab and bc planes and was found to be 95.5°. This value
was assigned to AII' The Al value could not be measured
from the single-crystal studles as very intense fluorine
hyperfine lines mask the relatively weak molybdenum hyper-
fine lines.

For 6 = 0°and ¢ = 03 no fluorine hyperfine inter-
action was observed (Figure 11) thus indicating that
A, (19F) was smaller than the linewidth of the spectrum.
For 6 = 90°and ¢ = ®Por 90°the fluorine hyperfine struc-
ture on the molybdenum I = 0 line consists of a nine
line pattern (Figure 12). For the case L (19F) # Ay

(lgF) # 0 one expects nine fluorine hyperfine lines with



Figure 13. ESR spectrum of polycrystalline sample of
1-
[MoOF,]1°" 1in (NH, ) ,SbFg at 77° K.
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relative intensity ratios 1:2:1:2:4:2:1:2:1, which 1is ap-
proximately what was observed (Figure 12). From these
data A, (19F) and Ay (19F) were assigned the values
-15Gand 55 G, respectively.

The ESR spectrum of the powder sample (Figure 13) is
not well enough resolved to do a complete analvsis. The
spectrum could not be analyzed by simulation as the simu-
lation program avallable does not properly take 1into

account the ligand hyperfine interaction.

2. Tetrachlorooxomolybdate(V) Ton

Ammonium pentachlorocantimonate forms monoclinic
crystals with the b axis coinciding with the needle axis.
Each antimony 1s at the center of an approximately octa-
hedral configuration of ligands in which five vertices are
occupied by chloride ions and one vertex is occupied by
the lone pair of electrons associated with antimony in
a 3+ oxldation state. Antimony ilons, surrounded by four
chlorine ligands (Sb-Cl; = 2.62 § 1 = 1-4), 1ie 1in sheets
with the fifth chloride (Sb—Cl5 = 2.36 k) either above
or below the sheet as shown in Figure 14. Antimony
sites are equivalent, with the b axis parallel to the
longer side of the rectangle formed by four chloride
ligands and the Sb-Cl5 axls parallel to an axis U40°

from a in the ac plane. If no distortion occurs upon

substitution of paramagnetic ions into antimony sites,
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Table 3. Single crystal ESR parameters of [MoOClujl-.

Bex = 1.9461
AI] = 83.19G

gyy = 1.9474
A = .T75G
1 37.75

= 1.9650
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the sites should be indistinguishable by ESR, as was
observed experimentally.

ESR spectra were recorded every 10° for rotation of
the single crystal about the a, b and c¥* axes. The spectra
in all the crystal planes indicated the presence of only
one magnetic site. ESR spectra at all the crystal orienta-
tions with respect to the applied magnetic field consisted
of a central intense line corresponding to the molybdenum
I = 0 nucleus and three relatively weak hyperfine lines

on elther side of the central line arising from M095’97

2

(I = 5/2). The measured g“ values in each planewere least-

squares fitted to the equation

g2 = a + Bcos286 + ysinZ2é

2 values were determined.

and the maximum and minimum g
The g2 tensor was dlagonallzed using Schonland's method
to obtain the principal components of the g tensor (Table
3). The 8yx and gyy values determined by Schonland's
method are 1.9461 and 1.9474, respectively. Since the

differences between 8xx and g are small, MoO3+ in

vy
(NHu)28b015 is to a first approximation, an axially sym-
metric system, The angular variation of g and A in the
crystal bc¥*, ac* and ab planes 1is given in Figures 15, 16, 17,
18, 19 and 20. The g value in the ac plane has a maximum

at U0° from the a axis corresponding to gll indicating
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that the Mo-0 axis is oriented along Sb-—Cl5 axis. The All
and Al values were determined by fitting the measured g2A2
values from the ac¥* plane to the equation

g2A2

= o + Bcos20 + ysin26
and are given 1in Table 3.

The ligand hyperfine interaction even though observed
at low temperature could not be analyzed, as all the lines
were not well resolved. According to Boorman et gl.32
the g,y values of [MoOClu]l-, [MoOClu(H2O)]1- and [M00015]2"
are 1.951, 1.947 and 1.940, respectively. Our measured g,
value of 1.9528 indicates that the magnetic speciles is
[MoOClu]l' in the present case.

C. Discussion

The interpretation of the ESR spin Hamliltonlan
parameters of transition metal oxohalo complexes of the
type [MOanm-, where M = V, Nb, Cr, Mo, W and X = F, C1,
Br, I (n =4 or 5) 1s generally based on the discussion
of the electronic structure of vanadyl complexes by Ball-
hausen and Gray33, and similar studies on chromyl and
molybdenyl complexes by Gray et gl.3u’35, all based on
extended Hlickel calculations. For deriving expressions

relating the spin-Hamiltonlan parameters to the molecular
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orbitals of the system, it was generally assumed that the
complexes have Cy  symmetry and that the unpaired electrons
are in orbitals of b, symmetry. The molecular orbitals

necessary for the discussion are then written as
|B2> = B2|dxy> - 5é|°b2>

1B,> = 8y ldp2_ 0> + Bi|°bl>

|E> = ¢|d -e'|o__,0

>
xz’dyz ex?’ ey ?

where the ligand orbitals ¢ are group orbitals of approp-
rilate symmetry. These molecular orbitals are used to
derive expressions for gll, gl, AII and Al using the
standard second-order perturbation theory treatment of

Abragam and Pryce39. For the transition metal oxohalo

6

complexes, DeArmond et al.~ have derived the requilred

expressions. The expresslons for gll, gl, A|| and Al

are functions of metal and ligand spin-orbit coupling
constants and <r”3> values, in addition to the molecular
orbital coefficients. It 1s customary in using these
expressions to solve for the molecular orbital coefficients
using experimental values of spin-Hamiltonian parameters
and assumed values for spin-orbit coupling constants and
<r-3> values. The molecular orbital coefficients so

obtalined depend critically on the choice of values for
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spin-orbit coupling constants and <r~3> values. In addi-
tlon to this 1t was found necessary to include contribu-
tions from occupled orbitals of b1 symmetry to account for
the observed g tensor components of chloro and bromo
complexes of chromium and molybdenum (Chapter VI). It
becomes practically impossible, without making too many
assumptions, to solve for the molecular orbital coeffic-
lents from the expressions forg- and A-tensor components
1f the contributions from occupied orbitals are included.
The derivation of the expressions for spin Hamiltonian
parameters and the methods used 1n the computations, are
discussed in Chapters V and VI. The molecular orbital co-
efficients Bo, By and e computed from experimentalg- and
A tensor components of vanadyl and molybdenyl complexes
are glven along with those obtained from SCF-MS-Xa cal-
culations for comparison in Tables 4 and 5. The molecular
orbital coefficients estimated from experimental data are
larger than the values obtained from the SCF-MS-Xqg

method. The coefficient of the metal dx orbital 62

y
in the molecular orbital containing the unpaired electron
is larger for the hexacoordinated vanadium complexes than
for the pentacoordinated vanadium complexes and the
reverse order is observed for molybdenum complexes (Tables
4 and 5). Another interesting observation is that By

is larger for vanadium complexes than for molybdenum

complexes.
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Table 6. Spin Hamiltonian parameters for vanadyl complexes.

Complex 8| | g| ATI Ai Ref.
[VO(H2O)5]2+ 1.9331  1.9813 182.8 72.0 33
[VOF,1°" 1.932  1.973  182.0 66.7  This work
[voc1,1°” 1.9478  1.9793 168.8  62.8 21
[voFg13" 1.937  1.977  178.5 64.05 15
[v0015]3‘ 1.9450  1.9847 173.0  63.8 6

aHyperfine coupling constants are given in 10‘” cm'l.
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Table 7. Spin Hamiltonian parameters for molybdenyl
complexes.
gl | gl Al I A_I_ Ref.
[MoOFujl- 1.895  1.925  85.38 This work
[Mo0C1,]%" 1.9650 1.9468 75.85 3u4.42 This work
[MoOstz‘ 1.874  1.911  92.93 45,13 16
[M00015]2‘ 1.9632 1.940  T74.7  32.6 16
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For all vanadium oxohalo complexes g|| is less than
gl while gll is greater than gl for the chloro complexes of
molybdenum. There have been two proposals to account for
thilis observation. Kon and Sharpless were of the opinion
that g|| was greater than gl because for chloro complexes
there 1s more than one 2Bl state which makes contribution
to gll while Manoharan and Rogers proposed that it was
the large chlorine spin-orbit coupling constant that
caused this reversal of the relative magnitudes of gll

and gl. From our SCF-MS-Xa studies we conclude that the
chloro complexes of molybdenum have more than one 2Bl
state that contributes to the gl! value, while for vanadium
complexes only one 281 state arising from a low-1lying
virtual orbital of b, symmetry was observed. It was

found necessary to take into account the ligand contribu-
tions to the g-=tensor components to explain the observed
trends. A detailled discussion of these factors is given

in Chapter VI.

There 1s only a very slight difference between the
spin-Hamiltonian parameters of penta- and hexacoordinated
vanadium complexes. The A-tensor components of the tetra-
fluorooxovanadium complex are larger than those of the
pentafluorooxovanadium complex while for the chloro com-
plexes the reverse is observed (Tables 6 and 7). For

molybdenum complexes the g-tensor components are larger

for the penta- than for the hexacoordinated complexes.
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