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ABSTRACT

OPTIMAL EXPERIMENT DESIGN AND SYSTEM IDENTIFICATION: HUMAN
TESTING APPLICATIONS

By

Martin Cody Priess

In this work, we demonstrate novel techniques for system identification and the optimiza-

tion of experimental input sequences. The goal of these techniques is to extend traditional

methods to the analysis of human motor control systems.

In Chapter 2, we demonstrate a Monte-Carlo technique for producing a robust optimal

experimental input design for identification of the human head-neck target tracking system.

In this technique, we use nonlinear least-squares fitting to match a nominal and noisy model

of the head-neck tracking system. Using Monte-Carlo simulation in combination with a

simultaneous min-max optimization technique, we find a parameterized experimental input

that guarantees a lower bound of parameter estimation performance for any subject in some

pre-defined population. We show that this technique produces better results for a worst-

case subject than an experiment optimized for an average subject from within the same

population.

In Chapter 3, we discuss our work on the development of an inverse LQR technique for

recovering underlying goals behind a given control design. In this technique, we use known

system state matrices and a known full-state feedback gain matrix K. We then “invert” the

LQR design procedure to find cost matrices Q and R that would generate K in the forward

LQR problem. When this problem is feasible, we show a convex Linear Matrix Inequality

(LMI) technique that will produce a unique solution. When the problem is infeasible, we

demonstrate a method using a Ricatti equation gradient for finding a local optimal solution.

We demonstrate this technique in the recovery of control goals for a single human subject,

and show that it produces results that are consistent with explicit goals given to the subject.



This technique is extended using inverse LQG techniques in Chapter 4. In this formu-

lation, we consider problems of the traditional controller-observer LQG form. From known

system state matrices, known full-state feedback gain matrix K, and known observer gain

L, we find noise covariance matrices W and V and control cost matrices Q and R. We

demonstrate the usefulness of this technique in several simulation examples.

In Chapter 5, we demonstrate a technique for performing time-domain optimal input

design for experimental parameter estimation. In this technique, we consider each point

in a discrete-time input signal to be a free variable, and locally maximize a measure of

the experiment’s Fischer Information Matrix. This optimization is subject to a number

of constraints on input amplitude, output amplitude, human control effort, and a unique

constraint on the signal’s autocorrelation so as to minimize signal predictability. By recasting

this quadratically-constrained quadratic program as a series of linearly constrained quadratic

programs, we are able to solve the problem efficiently and produce a maximally informative

input sequence. We demonstrate this technique experimentally and show that it reduces the

variance of parameters estimated from the experimental response of a single human subject.
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CHAPTER 1

INTRODUCTION

For many years, clinical assessment and classification of patients with motor control im-

pairments have been accomplished using subjective measures such as pain [46], degree of

mobility [45], self-reported scores [33], and other subjective clinical factors [25]. Because

these measures are subjective, it becomes challenging to quantitatively assess the differences

between patients with impairments and healthy controls. In fact, several studies have shown

that many such subjective measures are not evaluated reliably between different clinical

practitioners [34, 87, 89]. In particular, this subjectivity and lack of reliability makes it

difficult to determine the benefits that may occur following medical treatments. These sub-

jective measures may therefore cause challenges in the study and evaluation of new treatment

techniques.

In recent years, systems science has become a popular means for evaluating human mo-

tion control. By breaking down the specific motion control problem into a set of dynamic

systems, we are able to quantitatively assess a number of factors that may provide useful

clinical information. The application of systems identification techniques to human mo-

tor control problems has allowed researchers to determine physiological parameters, control

gains, and control bandwidth for a variety of motion tasks [32, 64, 80, 97]. The goal of

biomechanical researchers is often to determine differences which may exist between healthy

subjects and those suffering from pain or disease [1]. For example, the identification of

human control feedback gains can offer insight into underlying control strategies, and can

paint a quantitative picture of the differences that might exist before and after manipulative

treatments.

The MSU Center for Orthopeic Research (MSUCOR) has been using systems methods to

investigate characteristics of human postural control and head-neck target tracking control
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[70, 72–77, 81]. By forming simple phenomenological models of human control tasks, we have

been able to accurately fit experimental data while minimizing the number of parameters

we have to estimate. These models ignore details of underlying physiological/neurological

mechanisms, but incorporate functional details such as delays, controllers, actuator dynam-

ics, etc. Our primary goal has been to use system identification techniques to identify model

parameters that can give quantitative measures of human control strategies and performance.

These measures may then be used to both classify and assess healthy controls and subjects

with impairments.

Broadly speaking, system identification is the practice of using experimental or simulated

data to identify either the parametric or non-parametric features that describe a dynamic

system [49]. As such, it is an example of a so-called “inverse problem” [91], where instead

of trying to determine the experimental response from a known system model and input

sequence, we attempt to determine a system model from a known experimental input and

response. Many system identification objectives exist [49, 68], such as identification of non-

parametric frequency response characteristics, linear model parameters, or nonlinear model

parameters. However, for human systems, there are additional characteristics that may be of

interest. For example, while we can use traditional techniques to estimate the feedback law

being used by a human for a specific motion control task [80], if it were possible to determine

the specific objective behind the selection of that law, then subjects could be classified

according to their control objectives. This could give clinically relevant and quantitative

insight into the differences before and after treatments, or the differences between healthy

controls and those with impairments. However, an important consideration with any system

identification technique is the input sequence used to excite the system. Sufficiently rich

inputs are necessary in order to ensure accurate recovery of parameters or frequency-response

curves [49], and a large number of optimization strategies exist in order to try to maximize

the richness of inputs designed for identification tasks [56].

There are a number of specific challenges associated with the direct application of ex-
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perimental optimization techniques to human motor control identification. For example,

humans require short input sequences due to fatigue, and require signals that are unpre-

dictable if feedback mechanisms are to be identified. They have limits in both control and

motion amplitude that must be respected in order to prevent injury. Humans also have pa-

rameters which may be difficult to accurately estimate a priori, so optimization techniques

should ideally produce signals that are robust across populations or can be tuned to specific

subjects.

To address these specific issues, our research has made three primary contributions to

the development of system identification for human postural control:

1. The development of original experimental testing equipment for identification of human

lumbar postural control. This includes the development of a laser/computer-vision

based system for tracking human head/neck motion (Chapter 2), and the development

of a highly backdrivable actuated seat for postural control identification (Chapters 4

and 5).

2. The development of original methods to maximize the informativeness of experimen-

tal input sequences for postural control identification. This includes a very general

robust method utilizing monte-carlo simulation with simultaneous min-max optimiza-

tion (Chapter 2) as well as a time-domain technique that maximizes experimental

information from a specific subject (Chapter 5).

3. Novel system identification techniques for recovery of “hidden” underlying control goals

using inverse optimal control methods. This includes techniques for solving both fea-

sible and infeasible inverse LQR problems (Chapter 3) and techniques for solving the

more general inverse LQG problem (Chapter 4).

The rest of this document is organized as follows. In Chapter 2, we demonstrate a Monte-

Carlo technique for producing a robust optimal experimental design for identification of the

human head-neck tracking system. In Chapter 3, we discuss our work on the development

3



of inverse LQR techniques for recovering underlying goals behind a given control design.

This technique is extended using inverse LQG techniques in Chapter 4. In Chapter 5, we

demonstrate a technique for performing time-domain optimal input design for experimental

parameter estimation. Together, these techniques offer a significant, novel improvement to

existing methods for system identification and experimental optimization in human param-

eter estimation.
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CHAPTER 2

ROBUST OPTIMAL EXPERIMENTAL DESIGN FOR STUDY OF THE
HUMAN HEAD-NECK TRACKING RESPONSE1

2.1 Introduction

In recent years, techniques from systems and control theory have become a popular means

of investigating human motion control. Often the goal of these studies is to find best-fit

models for human physiological processes, so that clinicians have a basis for the design of

treatments. Our group is currently designing an experiment for the study of visual tracking

in the human head-neck system in order to study the mechanisms of manipulative medicine.

System identification requires well-designed input to the system in order to collect in-

formative input and output data [49]. Studies attempting to identify human systems have

used many types of inputs, with various justifications for each. Filtered white-noise inputs

are a common type [22], and offer the advantage of providing consistent input power over

a well-defined bandwidth. A very similar input type is the pseudorandom ternary sequence

(PRTS) [21], that has been used in studies of quiet standing as it approximates the spectral

characteristics of white noise [66]. A step response generated from a velocity Gaussian with

parameters found from natural yaw head movements during walking has been used in the

study of reflexive head motions [65]. A “Reduced power” input can be generated by apply-

ing uniform power at several low frequencies, with reduced power above some threshold [59].

This method has the advantage of still providing good correlation at high frequencies, and

making the identification of uncorrelated output easier. The “Reduced power” method has

also been used with success in the analysis of the lumbar postural control system [94]. Sev-

eral studies used inputs without explicit justification, including impulse [65] and sum-of-sines

1The work in this chapter was originally published and presented in the 2012 ASME
Dynamic Systems and Control Conference (DSCC 2012) [72].
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(SSN) [41].

As significant differences in the physiological characteristics between subjects are likely

to exist, an experimental configuration that offers robustness to model uncertainties is an

advantage. In our approach, we would like to optimally design the physical parameters and

parametrized input sequence of an experiment to minimize the worst-case performance cost

within the defined subject population. These goals can be achieved via robust optimization

of the experiment. Robust optimization procedures have been applied to a variety of systems,

primarily in engineering [11, 61, 82, 83], but also to biological systems [18]. An advantage

of robust optimization over other design techniques is that it guarantees a minimum level of

experimental performance, even in the presence of parameter uncertainties in the subjects.

Our contribution in this chapter is the application of a robust experimental optimization

technique to the design of an experimental configuration for model-based parameter estima-

tion of the human head-neck target tracking system. In particular, we have minimized a

performance cost over the feasible set of experimental configurations, while simultaneously

maximizing it over the feasible population of subject models with uncertainties. This pro-

cedure has produced an experiment that can guarantee a minimum performance cost for

subjects within a predefined population and its uncertainty set.

2.2 Methods

The goal of this chapter was to robustly optimize the experimental configuration for a set

of models that represent the head-neck target tracking systems of both healthy control sub-

jects and neck-pain patients with uncertainties. The experimental configuration consisted

of a parametrized input sequence as well as physical parameters related to the setup of the

experiment. We generated the head-neck models by finding a feasible population of subject

controller parameters as well as a set of model uncertainties. The model uncertainties in-

cluded muscle force variability and physiological parameter uncertainties in each subject. A

Monte-Carlo simulation was used to provide a statistical performance cost which quantified

6



Figure 2.1 Diagram of the laser target-tracking system to be used during experimental de-
termination of subject parameters.

the design performance. This performance cost consisted of the mean sum of normalized

parameter estimation errors plus limit excursion penalties. A gradient-based min-max opti-

mization scheme [96] was then applied in order to generate a robust optimal design.

2.2.1 Experimental Setup

We have constructed a physical experimental setup (Fig. 2.1) that is intended for identi-

fication of the human head-neck visual tracking system. Subjects were seated in front of

a projector screen with a laser attached to their head, projecting a dot on the screen in

front of them. They were tasked with applying corrective inputs to their head so as to have

the laser dot track as closely as possible to a reference dot being displayed on the screen

by a computer program. A non-parametric image-correction algorithm from [71] was used

to correct for distortion present in the image and to precisely map the laser location to a

coordinate inside the generated image.
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2.2.2 Experimental Modeling

In preliminary experimental investigation of the head-tracking system, we had subjects track

a target while it made a series of step movements in the horizontal and vertical planes. These

movements required subject motions in axial rotation and flexion/extension, respectively. An

example of the task and one subject’s response in axial rotation is shown in Fig. 2.2. It can

be seen that wide variability exists between subsequent transients in the subject’s response,

which we are unable to model. In order to reduce this variability and to find a suitable,

parametrized model for the head-neck tracking task, we averaged all 8 sets of time-series

data from our 4 subjects together to produce an average experimental response. When

compared to another model in literature [15], we were able to generate a better fit to this

response by applying a simple linear PID controller with a delayed reference input to a

second-order plant. This model structure is shown in Fig. 2.3. The block labelled “muscle

dynamics” comes from [15, 67], and is intended to capture the effects of muscle stretch and

short neuromuscular latencies in the control action. In the “plant” block, the parameters I,

b, and k describe the moment of inertia, rotational damping, and rotational stiffness about

the relevant axis (respectively). We do not include model uncertainties at this time as they

are incorporated via a different mechanism later in the process. Note that for this model,

we consider all inputs and motions to be resolved as angular displacements.

Each subject’s controller parameters were collected into the array θ ∈ Rp, which is

assumed to be contained in a population defined by the compact set Θ.

θ ∈ Θ =
{
α ∈ Rp | θi,min ≤ αi ≤ θi,max,∀i = 1, · · · , p

}
.

The population Θ of subject controller parameters was estimated from preliminary exper-

imental results using our target-tracking model. The parameters contained in Θ were the

input delay τ and the PID feedback gains Kp, Ki, and Kd. Thus, the parameters in α were

defined as

α =
[
Kp Kd Ki τ

]T
.
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Figure 2.2 Response of one subject to a multi-step input in axial rotation. The dashed line
is the target trajectory, while the solid line is the response of the subject.

Figure 2.3 A system model for the head target-tracking task.
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The minimum and maximum values in Θ for the flexion/extension and axial rotation cases

are listed in Tables 2.1 and 2.2, respectively.

Similarly, the adjustable experimental configuration parameters γ ∈ Rr are contained in

the compact set

γ ∈ Γ =
{
β ∈ Rr | γi,min ≤ βi ≤ γi,max,∀i = 1, · · · , r

}
.

The input sequence which was chosen for the robust optimization was a low-pass filtered

white noise signal. The low-pass filter was implemented as a digital realization of a but-

terworth filter, with pass-band edge frequency of fstop Hz, stop-band edge frequency of

fstop + 0.5 Hz, and stop-band attenuation of 40 dB. For this input, the parameters in β

were defined as

β =
[
fstop xw

]T
,

where xw is the the dimension of the projector screen (in meters) along the relevant axis.

The distance from the subject to the projector screen ds was fixed at 3 m so as to ensure

compatibility with our current experimental setup. We constrained the filtered white noise

signal rfilt(t) to the interval [−0.5, 0.5], and converted this to an angular input ρ(t) via the

relation

ρ(t) = atan2(xwrfilt(t), ds).

Finally, the resulting signal was scaled using a Tukey window such that the first 10% and

final 10% of the signal tapered to 0.

The subject’s intrinsic physiological parameter values φ ∈ Rm are contained in the com-

pact set

φ ∈ Φ =
{
σ ∈ Rm |σi,min ≤ σi ≤ σi,max, ∀i = 1, · · · ,m

}
.

The population Φ was estimated from literature, and was composed of the head inertia I,

damping b, and intrinsic stiffness k about the relevant axis. These values were significantly

different between flexion/extension and axial rotation due to the differences in biomechanics

between the two motions. For example, motions in axial rotation occurred about a vertical

10



line collinear with the vertebral column, while in flexion/extension, rotation was presumed

to occur approximately about the C4 vertebrae [26, 95]. Thus, the values in the parameter

vector σ are given as

σ = [I b k]T .

We defined Φ as the average values in Table 2.3 ±20%.

The nonlinearities assumed to be present in the experimental model (Fig. 2.4) were the

maximum neck strength (achievable torque) TM , the maximum angular region of linear

head motion ρM , and the maximum comfortable rotational acceleration of the head ρ̈M .

The model was also contaminated by the muscle noise w(t) in the neck, which was modelled

as uniform white noise with

w(t) ∼ U(−Tv, Tv),

where Tv is the quiescent torque noise magnitude estimated from our preliminary data.

Because the input sequence contained several waiting periods where the subject should not

be moving, Tv was estimated from the motion recorded during these periods, and can be

found in Table 2.4.

While TM and ρM were found in literature, both ρ̈M and w(t) were estimated from

our preliminary experimental trials. Subjects have been instructed to move their heads as

rapidly as possible during each trial, so ρ̈M was numerically estimated from the step response

transients. The most conservative estimates for all of these nonlinearities and disturbances

are given in Table 2.4.

There are two models which were evaluated during the optimization. We designated the

idealized system in Fig. 2.3 as the nominal human controller model. The data captured by

the camera system during the experiment is represented by the model with muscle noise

in Fig. 2.4, which also contains physiological nonlinearities such as limits on maximum

acceleration and head angle. This “experimental” model uses parameter values drawn from

the predefined population set during the optimization process.
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Figure 2.4 Model of the experimental human subject containing saturation and muscle noise.

2.2.3 Robust Optimization

Since the time-series experimental data were contaminated by noise and various parameter

uncertainties, a statistical measure was used to quantify the fit between the experimental and

nominal models. Unfortunately, since the experimental model contains several nonlinearities,

a standard analytic statistical technique could not be used. Instead, Monte-Carlo simulation

was used to provide a statistical metric to drive the optimization. For each of the j = 1 · · ·n

Monte-Carlo trials, a different noise vector wj(t) and set of subject physiological parameters

φj were realized for the experimental model. We then found the estimated subject parameters

θ̂j which produced the best fit between the response of the nominal model and the response of

the experimental model by minimizing the value of the nonlinear least-squares cost function

C(θ, θ̂j , γ)j =
T∑
t=0

{ŷj(t)− yj(t)}2,

where ŷj(t) and yj(t) are the time-series responses produced from the nominal model and

experimental model from t = 0 to t = T , respectively, for the jth Monte-Carlo trial. The

estimated parameter vector of the jth Monte-Carlo trial is given by

θ̂j = arg min
θ̂j∈Θ

C(θ, θ̂j , γ)j ,

which was efficiently computed using MATLAB’s fminsearchbnd algorithm.
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The robust optimization process utilized a variation of the simultaneous min-max opti-

mization method of Vincent et al (1992) [96] to find the worst-case scenario of actual subject

controller parameters θ while simultaneously finding the vector of experimental configuration

parameters γM that minimizes the worst-case cost function, i.e.,

γM = arg min
γ∈Γ

max
θ∈Θ

J(θ, γ).

The performance cost function J(θ, γ) consisted of both the mean sum of squared normalized

estimation errors as well as weighted penalties for excursions outside the saturation limits

in Table 2.4. This was necessary as the experimental model was implemented as a linear

model for speed, so an external cost was needed to prevent the limits from being exceeded.

This cost was found by computing the trial-wise estimated parameter errors

θ̃j = θ̂j − θ, ∀j ∈ 1, · · · , n,

then finding J(θ, γ) as the mean of the sum of squared normalized estimation errors plus

limit excursion penalties

J(θ, γ) =
We

n

n∑
j=1

p∑
i=1

(
θ̃
j
i

θi

)2

+ La + LT + Ln,

where We = 1 is a scalar weight, and the limit excursion penalties are given as

13



La =
Wa

ρ̈M

n∑
j=1

T∑
t=0

1Aρ̈

(
|ÿj(t)|

)
× |ÿj(t)− ρ̈M |,

Aρ̈ = {a > ρ̈M : a ∈ R} ,

LT =
WT

TM

n∑
j=1

T∑
t=0

1AT

(
|uj(t)|

)
× |uj(t)− TM |,

AT = {a > TM : a ∈ R} ,

Ln =
WN

ρM

n∑
j=1

T∑
t=0

1Aρ

(
|yj(t)|

)
× |yj(t)− ρM |,

Aρ = {a > ρM : a ∈ R} ,

where W• denotes a scalar weight, and 1 denotes the indicator function, i.e.

1A(X) =

 1 if X ∈ A

0 if X 6∈ A
.

We selected

Flexion/Extension Axial Rotation

Wa = 70 Wa = 59

WT = 63.6 WT = 63.6

Wn = 21.8 Wn = 87.2.

These weights were selected as they would result in a consistently weighted penalty for the

system response exceeding any limit in either axis.

The parameter update during optimization was performed using an adaptive-step gradi-

ent approach. At each iteration k, the directional derivative of each element in θ and γ was
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Table 2.1 Subject controller parameter population Θ in flexion/extension. Note that param-
eters labelled “Estimated” were estimated from our preliminary experimental data.

Parameter Min Max Units Reference
τ 0.237 0.307 s estimated
Kp 1.935 3.640 estimated
Ki 12.772 20.012 estimated
Kd 0.105 0.420 estimated

computed with respect to the cost function J(θ, γ)

∆J(θ, γ)θ =


J(θ1 + δv1 , θ2, · · · , θp, γ)− J(θ, γ)

...

J(θ1, θ2, · · · , θp + δvp , γ)− J(θ, γ)

 ,

∆J(θ, γ)γ =


J(θ, γ1 + δu1 , γ2, · · · , γr)− J(θ, γ)

...

J(θ, γ1, γ2, · · · , γr + δur )− J(θ, γ)

 .

The signs of these two vectors were computed as

Ĝu = sign(∆J(θ, γ)θ)

Ĝv = sign(∆J(θ, γ)γ).

The update law for each parameter in θ and γ was then calculated using the algorithm in

Appendix A. For both flexion/extension and axial rotation, the initial condition θ0 was the

parameter vector θA which generated the best fit to the average of the 8 sets of preliminary

experimental data, which was typically quite different from the element-wise averages of Θ.

2.3 Results

The robust optimal values γM for a filtered white noise input sequence are shown in Tab. 2.5.

An example input sequence generated using γM is shown in Fig. 2.5. The convergence of

both θ and γ during the robust optimization can been seen in Figures 2.6 and 2.7.
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Table 2.2 Subject controller parameter population Θ in axial rotation. Note that parameters
labelled “Estimated” were estimated from our preliminary experimental data.

Parameter Min Max Units Reference
τ 0.228 0.308 s estimated
Kp 1.410 2.555 estimated
Ki 2.465 3.983 estimated
Kd 0.003 0.220 estimated

Table 2.3 Subject physical parameters in flexion/extension and axial rotation.

Parameter Flexion/
Exten-
sion

Axial
Rota-
tion

Units Reference

k 2.75 0.605 Nm/rad [53, 54]
b 0.452 0.30 Nms/rad [26, 90]

I 0.0428 0.016 kgm2 [90, 95]

Table 2.4 Values of the experimental nonlinearities. Note that parameters labelled “Esti-
mated” were estimated from our preliminary experimental data.

Parameter Flexion/
Exten-
sion

Axial
Rota-
tion

Units Reference

Tv 0.16 0.08 Nm estimated
TM 7.87 5.9 Nm [26, 85, 95]
ρM 0.218 0.872 rad [53]

ρ̈M 6.36 6.51 rad/s2 estimated

Table 2.5 Robust optimized experimental configuration parameters γM .

Parameter Flexion/
Exten-
sion

Axial
Rota-
tion

Units

fstop 0.306 0.371 Hz
xw 0.571 2.40 m
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Figure 2.5 Upper plot showns an input trajectory in flexion/extension generated using pa-
rameters in Table 2.5. The lower plot is an axial rotation input sequence which was generated
the same way.
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Figure 2.6 Convergence of θ and γ during the optimization process in flexion/extension. The
variable k is the iteration number.
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Figure 2.7 Convergence of θ and γ during the optimization process in axial rotation. The
variable k is the iteration number.

2.4 Discussion

The robustly optimized values γM in Tab. 2.5 produced input sequences which only contained

very low-frequency content. We believe this was due to one or more of the limits in Tab. 2.4,

particularly ρ̈M , being very easy to exceed in the worst-case. However, the cost function value

J(θ, γ) for the worst-case subject subjected to this robust optimal experimental configuration

was 0.473 in flexion/extension and 0.122 in axial rotation.

We have previously performed a non-robust experimental optimization using the average

subject controller parameter vector θA, which was found by generating a best-fit to the

average of 8 sets of experimental data. A subject having parameters θA was considered to

be the “average subject”. The optimal experimental parameters in this case were as follows:

Flexion/Extension Axial Rotation

fstop = 1.275 Hz fstop = 0.594 Hz

xw = 0.559 m xw = 2.30 m
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Note that although the screen dimensions xw were very similar between the average subject’s

optimal experiment and the robust experiment, there was considerably higher frequency

content in the average subject’s experiment. The cost function value J(θ, γ) for the worst-

case subject when tasked with average subject’s optimal experimental configuration was

238.8 in flexion/extension and 1.51 × 105 in axial rotation, showing that performance is

significantly degraded in this case for the worst-case subject.

While other human system identification studies have used a wide variety of input types

with various physiological justifications, we have designed a robust optimal input using an

explicit cost-based metric. This metric, in our case, was the mean of the sum of squared

normalized parameter estimation errors plus excursion penalties, but could consist of any

computable cost basis, such as frequency response error or parameter estimation variance.

This approach can be taken with any experimental design procedure where some type of

parametric or nonparametric model for the subject’s response exists.

2.5 Conclusions

We have applied a min-max robust numerical optimization technique and produced a robust

optimal design procedure to generate an experimental configuration for a head-neck target

tracking study in both flexion/extension and axial rotation. Our design process produced

a set of experimental configuration parameters which guaranteed performance costs of no

more than 0.473 in flexion/extension and 0.122 in axial rotation for any subject within the

parameter populations Θ and Φ.
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CHAPTER 3

DETERMINING HUMAN CONTROL INTENT USING INVERSE LQR
SOLUTIONS2

3.1 Introduction

In the study of human motion control, the goal of biomechanical researchers is often to de-

termine differences which may exist between healthy subjects and those suffering from pain

or disease [1]. Even though these differences may be visible in the standard characteristics

accessible through system identification (plant parameters, feedback gains, etc), if one as-

sumes that the motion under analysis results from an optimal control method, it may be

possible to additionally determine a cost function that would generate that control in some

optimal sense [58]. These cost functions can offer additional relevant information about the

system- for example, how much weight does the controller put on the various states as com-

pared to the control effort? Several prior studies have attempted to determine optimality

criteria from human motion data in an effort to explain human motion goals [8, 10, 58, 63].

In contrast to the more general potential cost functions used in these studies, we propose the

use of a control theoretic method using the Linear Quadratic Regulator (LQR) framework.

In optimal control theory, the LQR problem [5] is to find the optimal infinite-horizon full

state-feedback control law for the continuous-time LTI system

dx(t)

dt
= Ax(t) +Bu(t) (3.1)

with respect to the cost function

J =

∫ ∞
0

x(t)

u(t)


T  Q S

ST R


x(t)

u(t)

 dt, (3.2)

2The work in this chapter was originally published and presented in the 2013 ASME
Dynamic Systems and Control Conference [73], and later in IEEE Transactions on Control
Systems Technology [76].
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where Q = MTM � 0 and R = RT � 0. Assume, for the moment, that S = 0. Then

assuming that (A,B) is controllable and (A,M) is detectable, the optimal stabilizing control

minimizing J is found as

u(t) = −Kx(t), (3.3)

where

K = R−1BTP, (3.4)

with P being the unique positive-semidefinite solution to the Algebraic Riccatti Equation

(ARE)

ATP + PA− PBR−1BTP +Q = 0. (3.5)

The typical use of the LQR problem in (3.1)-(3.5) is the forward result, i.e., to determine

the optimal control law K from a given set of weight matrices Q and R. However, the inverse

LQR problem has received some attention as well. In general, the inverse problem has been

defined by two sub-problems [29]. Given a stabilizing control law (3.3),

• P. 1 Determine what necessary and sufficient conditions exist on (K,A,B) such that

K is an optimal control law for a cost of the form in (3.2) with Q � 0 and R = I.

• P. 2 Determine all Q for some (K,A,B) that satisfy the conditions found in P. 1.

According to Fujii and Narazaki [29], Problem 1 was first addressed with Kalman’s inves-

tigation of the single-input case [39], which was later extended to the multi-input case by

Anderson [4]. A necessary and sufficient condition when K is not necessarily stabilizing and

R unknown was determined by Jameson and Kreindler [36], who also show an analytic solu-

tion for recovering R � 0 and Q = QT . However, a feasible Q recovered using this method

is not guaranteed to be positive-semidefinite even when the closed-loop system is stable [36].

While further results have been determined for potentially destabilizing controllers [29],

only stabilizing controllers are of interest when investigating engineered or biological systems.

Additionally, it has been found that when the cross-term S is included in the LQR cost
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function, then trivially any controller K is optimal for some cost function [44]. However,

we choose to exclude S from this chapter for a number of reasons- it is rarely used in the

design of LQR controllers for practical systems, and inverse results that include the cross-

term provide less salient information about the control goals than results which separate

control and state costs in a straightforward manner (e.g., principle of parsimony). As a

result, we will be restricting our focus in the rest of this chapter to the stable LQR problem

described in (3.1)-(3.5) (and later, its discrete-time counterpart) with S = 0. Molinari [57]

found a necessary and sufficient condition to Problem 1 for some Q � 0, R = I when the

admissible controls are in the class of control u(t) such that the corresponding state x(t)

satisfies limt→∞ x(t) = 0. This result from [57] is stated as follows.

Theorem 1. Assume that (A,B) from (3.1) is controllable. Then K will be optimal for

some Q � 0 if and only if

1. A−BK is Hurwitz, and

2. T ?(jw)T (jw)− I � 0, where T (s) = I +K(Is− A)−1B.

For a stabilizing controller K, a necessary and sufficient condition utilizing coprime ma-

trix fraction descriptions was derived in [43]. An approach utilizing convex optimization to

find a maximally diagonal Q � 0 describing a given stabilizing control law K was proposed

in [3]. While R = I in all of these results, if R � 0 is known, then any result found for R = I

can be determined by a simple coordinate transformation of B and K.

However, a more general case of the inverse LQR problem is still unanswered- if it exists,

what set (Q � 0, R � 0) generates a given stabilizing feedback law K? So far as we are

aware, there is no analytical solution to this more general problem, although forK stabilizing,

at least one convex optimization formulation exists for determining a feasible solution [13].

This problem is an interesting extension to conventional system identification theory, and

has potential uses in both the the reverse-engineering of black-box control systems as well as

in the analysis of biological control systems. For example, it may be possible to determine
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underlying motor control goals from analysis of a human subject’s feedback gains, which

would give clinical researchers an additional way to quantify and evaluate patients. The

objective of this chapter is to provide a methodology for determining an inverse LQR solution

in both continuous- and discrete-time cases, and, as an example, to apply this method to

recover a cost function from a human motor control task.

The contribution of this chapter is as follows. We present an LMI-based formulation

similar to that in [13] to determine whether or not for a given stabilizing feedback law K

that has been estimated from a set of experimental time-series data, there exists some set

(Q, R) for which K is the optimal feedback gain. If such a solution exists, then the LMIs

are solved for (Q, R) directly. Our first LMI formulation provides a unique solution when

it is feasible, which can be viewed as a regularization of the feasibility formulation given

in [13]. If the exact solution does not exist due to the infeasibility of the LMIs, we show

how to formulate a gradient descent algorithm based on the derivative of the ARE in order

to minimize the difference between the resulting best-fit and experimental feedback gains.

This new method is very useful in practice since the estimated gain matrix K from the

noisy experimental data could be perturbed by the estimation error, which may result in

the infeasibility of the LMIs. Since this minimization using the gradient descent algorithm

guarantees only the local optimality of the solution, finding a good initial starting point (or

initial guess) for the gradient descent algorithm becomes important. Hence, we also provide

an LMI minimization problem to find a good initial point for the minimization using the

gradient approach. We then provide examples to illustrate how to apply our approaches to

several different types of problems. One important contribution is to apply our proposed

technique to the biological data obtained from a seated balance test using a commercial

robot with a human subject. This test is designed to investigate the control mechanism of

the human subject on an actuated seat. A practical experimental result obtained in this

chapter shows a proof of concept in human cost function recovery for future clinical research

activities. Previous work [73] has appeared without human test data and analysis. The
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current chapter also augments previous work with an LMI formulation that provides a good

initial point for the gradient descent method.

The chapter is organized as follows. In Section 3.2, we formulate the LMI problem

describing the inverse LQR solution in both continuous- and discrete-time. In Section 3.2,

we formulate a gradient descent algorithm which can be applied to cases where the LMI

problem is infeasible, and show an LMI method for determining a good starting point for

this algorithm. In Section 3.3, we demonstrate the use of the LMI method for several feasible

example problems. In Section 3.4, we demonstrate the use of the gradient descent algorithm

to solve a problem where the LMI method is infeasible. In Section 3.5, we apply the method

to experimentally determine an LQR-type cost function in a human subject. Finally, in

Section 3.6, we offer some conclusions on the described inverse LQR methods.

3.2 Inverse LQR Problem

The inverse LQR problem has both the continuous-time formulation (3.1)-(3.5) and a for-

mulation for the discrete-time LTI system

xk+1 = Axk +Buk (3.6)

which minimizes the value of the cost function

J =
∞∑
k=0

xk
uk


T  Q S

ST R


xk
uk

 . (3.7)

Assuming, again, that S = 0, the optimal feedback control is

uk = −Kxk,

where

K = (BTPB +R)−1BTPA, (3.8)
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and P is the unique positive-semidefinite solution to the Discrete-time Algebraic Ricatti

Equation (DARE)

ATPA− P − (ATPB)(BTPB +R)−1BTPA+Q = 0. (3.9)

We additionally define an auxiliary notation for the solution K to the discrete-time LQR

problem as

K = DLQR(A,B,Q,R),

and one for the continuous-time LQR problem as

K = CLQR(A,B,Q,R).

In formal terms, for the continuous-time (respectively, discrete-time) case, our problem

is to determine the weighting matrices(
Q̂, R̂

)
such that

Q̂ � 0, R̂ � 0, K̂ = Ke,

K̂ = CLQR(A,B, Q̂, R̂),

[respectively, K̂ = DLQR(A,B, Q̂, R̂)],

(3.10)

where Ke is the full-state feedback gain matrix determined via a system identification method

from the experimental data.

3.2.1 Solution via Linear Matrix Inequalities (LMIs)

For the formulated inverse LQR problem in Sections 3.1 and 3.2, there is an associated

uniqueness issue; for example, if we multiply Q̂ and R̂ in (3.10) by the scalar β > 0 and find

the LQR solution, then the resulting controller gain matrix K̂ will be identical no matter

what the value of β. Consequently, we expect there to be a manifold of possible solutions

(Q,R) to the inverse problem defined in (3.10). Therefore, we define the additional criteria

that an optimal solution (Q̂, R̂) must minimize the condition number of the weighting matrix
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[ Q̂ 0

0 R̂

]
, which can be defined explicitly as

(
Q̂, R̂, α̂

)
= arg min

(Q,R)∈(Q,R),α
α2

such that I �

Q 0

0 R

 � αI.

(3.11)

Minimizing the condition number ensures the numerical stability for operations involv-

ing (Q̂, R̂) [17]. This will also lead us to obtain the unique solution to our problem (See

Remark 1). Note, however, that (3.11) will force Q � 0, which is more restrictive than the

Q � 0 requirement in (3.10) and is, in general, not a necessary condition for the defined LQR

problem. Additionally, forcing Q � 0 means that (A,M) (with Q = MTM) will trivially

satisfy the detectability requirement.

The problems defined in (3.10)-(3.11) can be written together as a convex optimization

problem subject to LMI constraints. For the continuous-time LQR from (3.1)-(3.5), the LMI

optimization can be written as follows.(
Q̂, R̂, P̂ , α̂

)
=arg min

Q,R,P,α
α2, such that

P � 0,

ATP + PA− PBKe +Q = 0,

BTP −RKe = 0,

I �

Q 0

0 R

 � αI.

(3.12)

26



For the discrete-time LQR defined in (3.6)-(3.9), the problem becomes(
Q̂, R̂, P̂ , α̂

)
=arg min

Q,R,P,α
α2, such that

P � 0,

ATPA− P − ATPBKe +Q = 0,

BTPA− (BTPB +R)Ke = 0,

I �

Q 0

0 R

 � αI.

(3.13)

Since one of the major applications of the inverse LQR solution presented here is to use

the recovered cost matrices to draw some broader conclusions from a control system, it is

important that any solution be unique. If multiple solutions to the inverse LQR problem

exist for a given system, then multiple cost functions give equivalent descriptions of the

controller and no useful conclusions can be found. In that regard, we make the following

statement:

Remark 1. (3.12) and (3.13) are convex optimization problems with strictly convex objec-

tives [14]. Therefore, if a feasible solution exists that minimizes the objective function, it

will be unique [14, 20]. Note that strict convexity of the objective is only a sufficient condi-

tion for uniqueness of the solution. Our approach used in (3.12) and (3.13) can be viewed

as a regularization of the feasibility formulation given in [13], providing a great utility to

inverse problem applications. Note also that (3.12) and (3.13) can be formulated and solved

as semi-definite programs (SDP) by adding the LMI constraint γ α

α 1

 � 0

and then minimize γ instead of α2.

The feasible solution to the problem in (3.12) (respectively, in (3.13)), will satisfy both

(3.10) and (3.11) simultaneously. Infeasibility implies that there is no solution to the LQR
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problem such that K̂ = Ke while satisfying all constraints.

Previous works [3, 29, 39, 43, 57] include results that a stabilizing K is optimal relative to

some Q � 0 for R known, while the inverse problem (3.10) involves both Q and R unknown.

We therefore make Remark 2.

Remark 2. If the LMI problem defined in (3.12) (respectively, (3.13)) is feasible, then at

least one exact solution to the inverse problem of (3.10) exists. If the problem is infeasible,

then no exact solution exists.

However, if no exact solution exists, then an approximation K̂ minimizing the residual

error between K̂ and Ke can be found via a gradient descent law, which is the main idea in

the following subsection.

3.2.2 Solution via Gradient Descent Algorithm

In accordance with Remark 2, if the solution to the LMI problem in (3.12) (respectively,

(3.13)) is infeasible, then we consider the following minimization problem

θ̂ = arg min
θ
‖K(θ)−Ke‖2F ,

K(θ) = CLQR (A,B,Q(θ), R(θ)) ,

[respectively, K(θ) = DLQR (A,B,Q(θ), R(θ))] ,

(3.14)

where ‖•‖F denotes the Frobenius norm, i.e., ‖A‖F :=
√

trace(ATA) (for A ∈ Ra×b),

and θ defines the upper-triangular entries of the symmetric weighting matrices Q ∈ Rn×n,

R ∈ Rm×m as

θ := [Q11, Q12, · · · , Qnn, R11, R12, · · · , Rmm]T .

We can find a local minimum to (3.14) by using the analytical gradient of the cost in (3.14).

For a concise presentation, we first vectorize K(θ) and Ke such that

Kv(θ) := vec(K(θ)), Kv
e := vec(Ke),
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where the vec(•) operator converts an arbitrary matrix A ∈ Cm×n into a column vector such

that

vec(A) = [a11, · · · , am1, a12, · · · , am2, · · · , a1n, · · · , amn]T ,

where aij is the (i, j)th element of A.

Let us define e := Kv(θ) −Kv
e , then we have eT e = ‖Kv(θ)−Kv

e ‖2 = ‖K(θ)−Ke‖2F .

We now present a gradient descent law that drives each element θi of θ such that the error

norm in (3.14) is decreased as follows.

dθi(t)

dt
= −λ

∂
(
eT (t)e(t)

)
∂θi(t)

= −λ
[
∂eT (t)

∂θi(t)
e(t) + eT (t)

∂e(t)

∂θi(t)

]
,

(3.15)

where λ is a positive constant that controls the convergence rate. Note that we need to

compute

∂e(t)

∂θi(t)
=
∂Kv(θ(t))

∂θi(t)
. (3.16)

To obtain the value in (3.16) analytically, we first introduce the notation

•′ :=
∂•

∂θi(t)
.

As it is clear that (Kv, Q, R) are functions of θ and t, we will drop the explicit dependencies

as in (Kv(θ(t)), Q(θ(t)), R(θ(t))).

Consider the continuous-time case for a representative presentation. The discrete-time

case follows similar steps. Now we have the following.

∂e

∂θi
= (Kv)′ = vec

(
(R−1)′BTP +R−1BTP ′

)
. (3.17)

The stabilizing solution P to the ARE in (3.5) is analytic in A,B,M [24], and can therefore

be differentiated implicitly with respect to θ. If we take the derivative of the ARE from (3.5)
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with respect to θi, we arrive at

0 =ATP ′ + P ′A

−
[
P ′BR−1BTP + PB(R−1)′BTP + PBR−1BTP ′

]
+Q′

=ĀTP ′ + P ′Ā+
[
−PB(R−1)′BTP +Q′

]
,

(3.18)

where Ā = A − BR−1BTP and P = PT � 0 is the solution to the original ARE in (3.5).

Equation (3.18) defines a Lyapunov equation that can be solved for P ′. By determining

(3.15) for all elements i of θi(t), we find a directional derivative that drives the elements in

θ(t) such that the norm of the error in (3.14) is minimized. For actual computation of θ(t),

we apply the preceding result in a discrete sense, i.e., we replace the continuous-time θi(t)

in (3.15) with the discrete-time equivalent θi(k) = θki ,

θk+1
i = θki − λ

∂
(
eT e
)

∂θki
, (3.19)

which is iterated for a desired number of iterations. Additionally, a projection rule for θ is

applied because Q must remain positive-semidefinite and R must remain positive-definite

for the LQR solution to exist.

The success of any gradient descent algorithm depends on the quality of the initial starting

point (or initial guess). We can exploit the fact that there always exists an exact solution

to the inverse LQR problem when S 6= 0 [44] to determine a “close” approximation for the

case when S = 0. To this end, we consider the following LMI problem.

(Qs, Ss, Rs, Ps) = arg min
Q,S,R,P

‖S‖F , such that

P � 0,

BTP + ST −RKe = 0,

ATP + PA− (PB + S)Ke +Q = 0, Q S

ST R

 � 0.

(3.20)
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Additional constraints on Q and R may be included in (3.20) to improve the quality of the

initial point.

Solving this set of LMIs for Qs, Rs, Ss yields an initial point (Qs, Rs) which is “nearly”

optimal in the sense that it is based on an exact solution minimizing S. Note that by

introducing an additional LMI constraint and decision variable, it would be possible to

reformulate (3.20) as a SDP which can be solved efficiently. Complete details of the algorithm

are given in Table 3.1.
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Table 3.1 Algorithm for the update of θ.

Input: (1) The known system matrices A ∈ Rn×n and B ∈ Rn×m.
(2) The estimated feedback gain vector Kv

e = vec(Ke) ∈ Rmn.

Output: (1) The optimal output parameter vector θ̂.

1: solve the set of LMIs in (3.20) for Qs and Rs.
2: let Q1 = Qs and R1 = Rs
3: form θ1 from Q1 and R1
4: for k = 1, · · · , kend do
5: compute Kv = vec (LQR(A,B,Qk, Rk))
6: compute P solving ATP + PA− PBR−1

k BTP +Qk = 0

7: for i = 1, · · · , n(n+1)
2 +

m(m+1)
2 do

8: compute Ā = A−BR−1
k BTP

9: compute P ′ solving ĀTP ′ + P ′Ā+
[
−PB(R−1

k )′BTP +Q′k
]

= 0

10: compute (Kv)′ = vec
(

(R−1
k )′BTP +R−1

k BTP ′
)

11: compute e = Kv −Kv
e

12: compute
∂
(
eT e

)
∂θki

=
[
(Kv)′T e+ eT (Kv)′

]
13: let the element θk+1

i = θki − λ
∂
(
eT e

)
∂θki

14: end for
15: form Qk+1 and Rk+1 from θk+1

16: if Qk+1 ≺ 0 then
17: let Qk+1 = Qk

18: let θk+1
i =θki , ∀i = 1, · · · , n(n+1)

2
19: end if
20: if Rk+1 � 0 then
21: let Rk+1 = Rk

22: let θk+1
i =θki , ∀i =

n(n+1)
2 + 1, · · · , n(n+1)

2 +
m(m+1)

2
23: end if
24: end for
25: let K̂ = LQR(A,B,Qkend+1, Rkend+1)

3.3 Illustrative Example with Feasible Solution

Consider the continuous-time LTI system

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t), (3.21)
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where

A =



0 1 7 9

4 −8 −5 −3

8 −7 7 −6

10 −5 −5 −5


, B =



2 2 5 −9

−1 1 5 −9

−3 9 −3 1

7 −4 1 6


,

C = I4.

(3.22)

In contrast to (3.1), we include an output equation so that measurement noise can be

considered later.

The system in (3.22) is unstable, with two eigenvalues in the open right-half plane.

However, the pair (A,B) is controllable, allowing us to design an LQR controller with weights

Q0 =



13.9 −1.32 3.9 2.65

−1.32 7.35 3.72 −2.27

3.9 3.72 5.28 0.373

2.65 −2.27 0.373 4.33


,

R0 =



10.6 0.302 6.56 −1.83

0.302 4.69 2.06 3.87

6.56 2.06 7.17 −0.266

−1.83 3.87 −0.266 6.88


.

(3.23)

The feedback gain matrix K0 resulting from the solution of the ARE in (3.4)-(3.5) with

(Q,R) = (Q0, R0) from (3.23) is

K0 =



2.362 −1.32 1.186 1.836

4.293 −0.8472 3.789 1.538

−2.252 1.339 −2.081 −1.312

−2.707 −0.06996 −2.062 −0.7263


.

Q0 and R0 in this case were chosen to minimize the condition number of the weighting

matrix used to produce K0. The closed-loop system is then

dx(t)

dt
= (A−BK0)x(t) +Br(t), y(t) = Cx(t), (3.24)
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i.e. u(t) = −K0x(t) + r(t). The system in (3.24) is simulated by computing the response

at a finite number of sampling points tk. The input r(t) is then computed as a zero-order

hold of a sampled input r(tk), which we realize as an identically distributed (i.i.d.) Gaussian

white noise process with r(tk) ∼ N (0, 10I4).

Suppose that a noisy version of the sampled state response of the “true” system A−BK0

is available and denoted by ỹ(tk) = y(tk) + w(tk), where w(tk) is the measurement noise

that is realized by the i.i.d. Gaussian white noise process w(tk) ∼ N (0,Σ) with Σ = I4. Let

y?(tk) be the sampled state response of the estimated system A−BK?, and T be the total

number of samples k in the measured responses. Then, if the system matrices (A,B,C)

are known, the feedback gain matrix can be estimated by a maximum-likelihood estimator

(MLE) via minimizing the least-squares error.

Ke = arg min
K?

J(K?),

J(K?) =
T−1∑
k=0

(y?(tk)− ỹ(tk))T Σ−1 (y?(tk)− ỹ(tk)) .

(3.25)

We apply MATLAB’s numerical optimization algorithm fminsearch to the problem of (3.25),

with A,B known and recover

Ke =



2.376 −1.328 1.188 1.847

4.294 −0.8621 3.77 1.509

−2.279 1.366 −2.067 −1.323

−2.7 −0.06092 −2.036 −0.7217


≈ K0.

Measurement noise and other disturbances may perturb the estimation Ke away from K0.

However, under the conditions we have specified, we make Remark 3.

Remark 3. In general, for a given set of system matrices (A,B,C), Ke minimizing the cost

function in (3.25) is the MLE of K0 [49], and under mild conditions (e.g., identifiability

[49]), has a limit of K0 w. p. 1, as the length of the experiment T goes to ∞ [35].

Once we have recovered Ke we can solve the convex LMI optimization problem defined

in (3.12) efficiently using the SeDuMi [69] package with the YALMIP modeling toolbox [51]
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in MATLAB. The optimal estimated weights (Q̂, R̂) are found to be

Q̂ =



13.63 −1.184 4.065 2.723

−1.184 7.334 3.497 −2.449

4.065 3.497 4.924 0.1462

2.723 −2.449 0.1462 4.395


,

R̂ =



10.55 0.3451 6.513 −1.717

0.3451 4.326 1.811 3.514

6.513 1.811 6.93 −0.4812

−1.717 3.514 −0.4812 6.555


.

Because the original weights Q0 and R0 were designed to minimize the condition number

of the overall weighting matrix, the recovered Q̂ and R̂ match the original weights closely.

In general, however, the condition number minimization in (3.12) and (3.13) means that the

recovered Q̂ and R̂ may not be numerically similar to Q0 and R0, but will produce an equiv-

alent controller in the forward LQR problem (assuming that Ke estimates K0 accurately).

3.4 Illustrative Example with Infeasible Solution

In the case when the LMI problem in (3.12) is infeasible, we apply the gradient descent

algorithm outlined in Table 3.1. Consider the system of (3.21) with

A =


100 0 −1

0 0.1 50

0.333 10 0

 , B =


−1 0 10

1 1 0

0.1 −20 4

 ,
C = I3.

Design a controller via pole-placement such that the closed-loop poles are λ1 = −90, λ2 =

−20, λ3 = −10. This results in the feedback gain matrix

K0 =


−3.69 20.1 49.3

3.69 0.00244 0.712

18.6 2.01 4.83

 .
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The closed-loop system is again simulated at a number of sampling points tk with an

additive i.i.d. measurement noise realization of w(tk) ∼ N (0, I) such that ỹ(tk) = y(tk) +

w(tk). If we again use a sampled input sequence which is a realization of the process r(tk) ∼
N (0, 10I3), the gain matrix Ke recovered via system identification with (A,B,C) known is

Ke =


−3.47 20.2 49.3

3.7 0.0519 0.714

18.7 2.21 4.83

 ≈ K0.

However, for this system, numerical computation shows that the solution to the LMI problem

in (3.12) is infeasible. Applying the gradient descent algorithm from (3.19) using the initial

point derived from a solution to (3.20)

Qs =


71.4 96.4 62.8

96.4 302 8.62

62.8 8.62 1550

 , Rs =


1.33 −1.49 −3.19

−1.49 387 −77

−3.19 −77 53.3

 ,
yields

K̂ =


−3.75 27.6 45.3

3.93 −0.276 −1.7

19.7 2.98 4.57

 ,
which has a residual cost of eT e = 77.24 after 5000 iterations (Figure 3.1). The final optimal

weighting matrices formed from θ̂ were

Q̂ =


71.4 96.4 62.7

96.4 302 8.76

62.7 8.76 1550

 , R̂ =


1 7.09 −5.05

7.09 388 −76.2

−5.05 −76.2 53.1

 .

Even though we were not able to recover K̂ = K0, the gradient descent algorithm has

produced a locally-optimal estimate minimizing the residual error eT e despite the imperfect

initial guess θ0.

36



10
0

10
1

10
2

10
3

10
4

0

200

400

600

800

1000

Iteration k

e
T
e

Figure 3.1 Convergence of the error norm during the gradient descent process.

3.5 Experimental Human Cost Function Recovery

We have developed an experimental setup for identification of the human response during an

upright seated balance task (Figure 3.2), and to which our inverse LQR solution method can

be applied. One subject volunteered for this portion of the experiment and the testing was

designated as Non-Regulated Research by the MSU Institutional Review Board (IRB). The

subject was seated on a hexapod robot (R-3000 Rotopod, Mikrolar Inc., Hampton, NH),

which was used to apply rigid position disturbances to the subject’s lower body about a lat-

eral bending axis centered on the L4/L5 spinal level. In order to calculate kinematics, LED

markers (Visualeyez Motion Capture System, Phoenix Technologies Inc., Burnaby Canada)

were attached to the subject (on the trunk and sacrum) and the robotic platform. Experi-

mental kinematic data were sampled at 100 samples/sec. During the trial, the subject was

given the goal of keeping the upper body as close to vertical as possible. We constructed

a rigid-body model of this task (Figure 3.3) similar to the seated balance model developed
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Figure 3.2 Example setup for seated balance testing using the Mikrolar R-3000 Rotopod.

by Reeves et al. [80], and having parameter values adapted from [80, 99]. In this model,

control authority from the spine muscles is represented by the torque, τ , acting about the

L4 vertebrae. The lower body has mass M1 at a distance l1 from the actuator pivot point,

and moment of inertia J1 about the center of mass. The pivot point at the L4 vertebrae is a

distance l12 from the actuator pivot. The upper body has mass M2 at a distance l2 from the

L4 pivot, with moment of inertia J2 about the center of mass. The spine has some intrinsic

stiffness kh and intrinsic damping ch. Because the actuator provides a rigid disturbance βi,

we have modeled the interaction of the seat and lower body through the soft gluteal tissues

which have stiffness kb and damping cb, which would be fitted to the experimental data later.

The nonlinear equations of motion were derived using Lagrange’s equation using a state-
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Figure 3.3 Seated-balance model of the human subject. The values of the given parameters
are adapted from [80, 99].

space representation x =
[
β1 β̇1 β2 β̇2

]T
, and linearized about the operating point x =[

0 0 0 0

]T
to form the plant model G. We assume that the sampled system outputs are

a noisy direct measure of the states, i.e. ỹ(tk) = Cy(tk) + w(tk), with C = I4 and w(tk)

a realization of the i.i.d. process w(tk) ∼ N (0,Σ) with Σ = σ2I4. We presumed the

existence of a full-state feedback controller K =

[
K1 K2 K3 K4

]
which would produce

the voluntary input torque τ via τ = −Ky.

We fit the 6 unknown model parameters ζ := [K1, · · · , K4, kb, cb]
T by using MATLAB’s

fminsearchbnd function to perform the minimization

ζe = arg min
ζ?

T−1∑
t=0

(y?(tk)− ỹ(tk))T W (y?(k)− ỹ(tk)) ,
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Table 3.2 Optimal estimated parameters ζe of the human subject.

Parameter Value

K1,e −1.8× 105

K2,e −5.573× 103

K3,e 2.295× 105

K4,e 7.37× 104

kb,e 2.958× 104 Nm/rad

cb,e 8.09× 103 Nms/rad
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Figure 3.4 Plot of the experimental and best-fit angular responses. The upper figure shows
the upper body angle vs. time, while the lower figure is the lower body angle vs. time.

where W = diag(1, 0, 1, 0), k is the sample index, T is the number of samples in the exper-

iment, y?(tk) is the sampled state response of the estimated system using ζ?, and ỹ(tk) is

the sampled response of the experimentally measurable system states. The resulting best-fit

and experimental responses for β1 and β2 are shown in Figure 3.4. The estimated pa-

rameters ζe are shown in Table 3.2. The estimated feedback controller Ke was formed as

Ke =
[
K1,e, · · · , K4,e

]
.

40



The values kb,e and cb,e were incorporated into the A matrix of the plant G to form

Ae, and the the columns of B associated with βi and β̇i were removed to form Be. The

inverse LQR procedure of (3.12) was then applied to determine Q̂ and R̂ such that Ke =

CLQR(Ae, Be, Q̂, R̂). In this case, a feasible solution to the LMI problem could not be found.

The gradient descent method of Algorithm 3.1 was applied, recovering

Q̂ = 1010 ×



1.693 0.2328 −0.1532 0.09889

0.2328 1.794 0.1507 0.571

−0.1532 0.1507 5.247 −0.0426

0.09889 0.571 −0.0426 0.5411


, R̂ = 1.00,

with residual cost
∥∥∥K̂ −Ke∥∥∥2

F
= 24.514.

This (Q̂, R̂) meets all the conditions defined in (3.12). Notice that the diagonal element

associated with the upper body angle (Q̂33) provides the largest single contribution to the

cost. Further, the relative weights of Q̂ and R̂ suggest that the system states are penalized

much more heavily than the control effort in the cost function. However, it is not immediately

clear from Q̂ whether linear combinations of the states may offer a more salient picture of

how the cost is distributed. Therefore, we apply a similarity transform to x and Q̂ such that

Q̃ is diagonal and operates on x̃, which is a vector of linear combinations of the elements

in x. If we let V be an orthogonal matrix whose columns are the eigenvectors of Q̂, and

Λ the square diagonal matrix whose diagonal elements are the corresponding eigenvalues

of Q̂, then Q̃ = Λ, and x̃ = V Tx. This similarity transformation will satisfy the equality

xT Q̂x = x̃T Q̃x̃. For the experimental Q̂ found above,

V =



−0.003621 −0.874 −0.4842 −0.04044

−0.362 0.4511 −0.8148 0.03988

0.01901 −0.05254 0.01132 0.9984

0.932 0.1729 −0.3186 −0.005035


,

Q̃ = 1010 × diag(0.3181, 1.544, 2.153, 5.259).

Note that the last column in V , which is the eigenvector of Q̂ that corresponds to the

largest eigenvalue in Q̃, will produce a coordinate in x̃ that is a linear combination of the
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body angles and rates (i.e. x̃4 = −0.04044β1 + 0.03988β̇1 + 0.9984β2 − 0.005035β̇2), with a

highest weight on the upper body angle β2. If we consider only the largest eigenvalue, x̃4 is

reasonably consistent with the motion goal given to the subject (minimize |β2|). However,

a quantitative clinical study would have to be performed to draw any scientific conclusions.

3.6 Conclusions

In this chapter, we described a comprehensive methodology for determining a cost function

to the time-invariant LQR problem in both continuous- and discrete-time cases. Our results

have potential application not only to the determination of human control cost, but also to

the reverse-engineering of black-box controllers, and offer a new dimension of information

(control design cost function) beyond that available using traditional system identification

techniques. A set of several numerical problems and an experimental result with a human

subject on a seated balance testing apparatus successfully demonstrate that our proposed

method is able to determine a salient measure of control performance weights from exper-

imental data. We plan to use this methodology in the future to more comprehensively

evaluate human postural control and determine if consistent features or control goals can be

extracted from the resulting cost functions.
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CHAPTER 4

DETERMINING HUMAN CONTROL INTENT USING INVERSE
SOLUTIONS TO THE PROBLEM OF LINEAR QUADRATIC GAUSSIAN

CONTROL3

4.1 Introduction

In modern human motion studies, biomechanical researchers are frequently interested in

using estimated characteristics from system identification to determine differences that may

exist between test subjects. We have previously developed an inverse Linear Quadratic

Regulator (ILQR) approach which is suitable for determining a control cost function for a

known system [76]. In this ILQR approach, given a full-state feedback controller K, we find

cost weight matrices Q and R (associated with the states and control, respectively) such that

K would be the controller computed using Q and R in the forward LQR problem. These

weight functions can offer additional relevant information about the system- for example,

how much weight does the controller put on the various states as compared to the control

effort? The downside of the ILQR approach to cost function analysis is that it is only

viable for deterministic systems which are assumed to use a full-state feedback control. For

stochastic, output-feedback control systems where the assumption of a full-state controller

cannot be justified, a different type of inverse problem formulation must be used.

In contrast to Linear Quadratic (LQ) control, Linear Quadratic Gaussian (LQG) control

is an optimal output-feedback control formulation, consisting of both a Linear Quadratic

Estimator (LQE, or Kalman filter) and an LQ controller. This structure allows an LQ con-

troller to estimate the system states, then apply control based on these estimates. Previous

studies on human subjects have attempted to use inverse optimal problems to determine hu-

man control intent [92, 93] based on the assumption that humans are applying control which

3The work in this chapter was originally published and presented in the 2014 ASME
Dynamic Systems and Control Conference [74].
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is optimal in some sense. Further studies have demonstrated that, at least for certain tasks,

humans may use state estimators to optimally fuse sensory and motor control information

for tracking tasks [23]. These findings demonstrate that LQG-type control may be a means

via which humans accomplish certain motion tasks, and that determining the weights used

in this LQG control may therefore offer valuable insight into human motion goals.

In this chapter, we extend our methodology from [76] to the inverse problem of LQG

control, which we will refer to as the ILQG problem. Roughly speaking, we define the

ILQG problem as follows. Given a known system with a time-invariant LQG controller,

(i.e., Kalman gain L and full-state feedback control gain K) can we find weighting matrices

Q,R and estimated noise intensities W,V such that the forward LQG control synthesis using

these weights recovers K and L uniquely? This extension allows us to investigate stochastic

systems under systematic and measurement noises where the assumption of output feedback

control is more appropriate than that of full-state feedback control.

However, the solution to the simple ILQG problem can be either not unique or nonex-

istent. Therefore, we utilize regularization to solve the problem uniquely when the solution

is not unique following the previous work in the ILQR problem [76]. In particular, we for-

mulate the regularized problem as a minimization problem subject to a set of Linear Matrix

Inequalities (LMIs). We show that this method is convex and possesses a unique solution

under a regularization condition, if feasible. Further, we derive a gradient descent algorithm

which can be applied in cases when the LMIs are infeasible. This method is useful when

ILQG is infeasible due to the estimation errors in the estimated L and K in practice. We

demonstrate the application of our techniques in several numerical example problems.

Standard notation will be used throughout this chapter. Let R denote the set of real

numbers. The operators of expectation and covariance matrix are denoted by E and Cov,

respectively. A (discrete) random vector x, which has a multivariate normal distribution of

mean vector µ and covariance matrix Σ, is denoted by x ∼ N (µ,Σ). An identity matrix of

size n×n is denoted as In. The vectorization of a matrix A is denoted by vec(A). The Dirac
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delta function of x is denoted as δ(x). Other notation will be explained as it is used.

4.2 LQG Control Synthesis

Consider the continuous-time, Linear Time-Invariant (LTI) system driven by stochastic pro-

cesses defined by

dx(t)

dt
= Ax(t) +Bu(t) + w(t),

y(t) = Cx(t) +Du(t) + v(t),

(4.1)

where x ∈ Rn, u ∈ Rm, y ∈ Rp, w(t) ∈ Rn and v(t) ∈ Rp. The zero-mean multivariate

Gaussian random processes w(t) and v(t) [40] are assumed to be independent, white, and

stationary, i.e.,

E


w(t)

v(t)


w(τ)

v(τ)


T
 =

W 0

0 V

 δ(t− τ), ∀t, τ

where W = GTG � 0 and V = V T � 0 are the intensity matrices of w(t) and v(t). Define

x̂(t) to be an estimate of the states x(t). The LQG control synthesis problem is the problem

of minimizing the expected quadratic performance cost [6]

J = E

∫ ∞
0

x(t)

u(t)


T  Q S

ST R


x(t)

u(t)

 dt

 , (4.2)

where Q = MTM � 0 and R = RT � 0. For the rest of this chapter, we consider

only the steady-state estimation and control gains L and K since constant gains (i.e., LTI

compensator) are often assumed when fitting to experimental data. The minimization of

(4.2) consists of the design of both an LQ controller and an LQ state estimator [9], where

the LQ control minimizes a deterministic version of the (steady-state) performance cost in

(4.2) (without the expectation operator). Due to the separation principle [9], the LQR and

LQE designs can be performed individually by solving two independent Algebraic Riccati

Equations (AREs).
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For the LQE design, if (A,G) stabilizable, (A,C) detectable, and the system output is

assumed to have converged to a stationary process [38], then the steady-state LQE is given

by

dx̂(t)

dt
= Ax̂(t) +Bu(t) + L(y(t)− Cx̂(t)−Du(t)), (4.3)

where the Kalman gain L is given by

L = HCTV −1, (4.4)

and H = HT is the unique positive semidefinite solution to the ARE

AH +HAT −HCTV −1CH +W = 0. (4.5)

The steady-state LQR design process is a dual problem to the LQE design problem. As

in [76], we assume S in (4.2) is a zero matrix for several reasons- S is rarely used in the design

of LQ controllers, and most importantly, omitting S cleanly separates the effects of state

and input on the resulting cost (e.g., principle of parsimony) in the cost function analysis

for biological systems. Then, assuming that (A,B) is controllable and (A,M) is detectable,

the (steady-state) optimal stabilizing control minimizing the deterministic version of (4.2)

is found as

u(t) = −Kx̂(t), (4.6)

where

K = R−1BTP, (4.7)

with P being the unique positive semidefinite solution to the ARE

ATP + PA− PBR−1BTP +Q = 0. (4.8)

For a concise presentation, we define an auxiliary notation for the solution K to LQR

problem in (4.7)-(4.8) as K = LQR(A,B,Q,R), and an additional notation for the solution

L to the LQE problem in (4.4)-(4.5) as L = LQE(A,C,W, V ).
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4.3 ILQG

The ILQG problem can be described as follows. Assume that the system matrices A,B,C,D

are known, and that an estimated feedback gain matrix Ke and an estimated Kalman gain

matrix Le have been determined from experimental output data. The ILQG problem is

then the problem of estimating suitable weighting matrices Q̂, R̂, Ŵ , V̂ such that Ke and

Le describe the solutions to the corresponding forward LQG synthesis problem. The ILQR

and inverse LQE (ILQE) procedures can be performed individually because the respective

Riccati Equations in (4.5) and (4.8) are independent. A set of weighting matrices Q̂ and R̂

can be found first via an ILQR method such as that illustrated in [76]. In formal terms, we

wish to find {
Q̂, R̂

}
such that Q̂ � 0, R̂ � 0, K̂ = Ke,

K̂ = LQR(A,B, Q̂, R̂),

(4.9)

where Ke is the state feedback gain matrix estimated from experimental data via system

identification. Similarly, for the inverse LQE procedure we wish to find{
Ŵ , V̂

}
such that Ŵ � 0, V̂ � 0, L̂ = Le,

L̂ = LQE(A,C, Ŵ , V̂ ),

(4.10)

where Le is the Kalman gain matrix again estimated via system identification. It is important

to note that Ŵ and V̂ recovered using this procedure may not correspond exactly to the true

intensity matrices W and V of the noise processes in the system. In practice, the Kalman

filter may be tuned using a perception of the noise intensities, and thus Ŵ and V̂ recovered

from the ILQG problem on a biological or engineering control system may correspond to

weights based on perceived noise intensities (i.e. Wp and Vp) instead of the true intensity

matrices W and V .

As in [76], we can reformulate both (4.9) and (4.10) as convex optimization problems

subject to LMI constraints. We introduce the auxiliary scalar variables α and β for regular-
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ization to obtain unique solutions. The ILQR problem is then described as{
Q̂, R̂, P̂ , α̂

}
=arg min

Q,R,P,α
α2, such that

P � 0,

ATP + PA− PBKe +Q = 0,

BTP −RKe = 0,

I �

Q 0

0 R

 � αI.

(4.11)

The final inequality in (4.11) will guarantee that the condition number of the weighting ma-

trix
[ Q̂ 0

0 R̂

]
is minimized [76], which will maximize the numerical precision of any subsequent

operations involving Q̂ and R̂. Most importantly, we use this minimization as regularization

to find a unique solution if the problem is feasible, because if a solution {Q,R} to ILQR

problem exists, then λ {Q,R} is also a solution for any constant λ > 0.

Similarly, the inverse LQE problem is described as{
Ŵ , V̂ , Ĥ, β̂

}
=arg min

W,V,H,β
β2, such that

H � 0,

AH +HAT − LeCH +W = 0,

HCT − LeV = 0,

I �

W 0

0 V

 � βI,

(4.12)

where the final inequality minimizes the condition number of the weighting matrix
[
Ŵ 0
0 V̂

]
,

which serves as regularization. As in the forward LQG problem described in (4.3)-(4.8),

these two problems can be solved independently.

We remark regarding the uniqueness of solutions for the complete ILQG problem defined

in (4.11) and (4.12):
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Table 4.1 ILQG Procedure for system (A,B,C,D).

1. Collect simulated or experimental output y
2. Determine Ke and Le using sysid
3. Numerically solve the optimization in (4.11)
4. Numerically solve the optimization in (4.12)

Remark 4. Both (4.11) and (4.12) are convex optimization problems with strictly convex

objectives [14]. Therefore, if a feasible solution exists that minimizes each objective function,

it will be unique [14, 20]. Note that strict convexity of the objective is a sufficient condition

for uniqueness of the solution.

If the LMIs in (4.11)-(4.12) are feasible, then the overall process of computing the solution

to the ILQG problem using experimental data is described in Table 4.1. Note that the choice

of whether to solve the optimization in (4.11) or (4.12) first is arbitrary. However, if the

LMIs in (4.11) or (4.12) are not feasible, then a gradient descent algorithm in Section 4.3.1

can be used to minimize the difference between Ke and K̂ if the LMIs in (4.11) are infeasible,

or the difference between Le and L̂ if the LMIs in (4.12) are infeasible.

4.3.1 Solution via Gradient Descent Algorithm

If the solution to one or both of the LMI problems in (4.11)-(4.12) is infeasible, then a

gradient descent algorithm can be used to find an approximate solution. In [76] we derived

such a descent algorithm for the ILQR problem. The descent algorithm for the ILQR problem

is reprinted here for convenience in Table 4.2. For the inverse LQE portion of the ILQG

problem, we consider a similar minimization problem

θ̂ = arg min
θ
‖L(θ)− Le‖2F ,

L(θ) = LQE (A,C,W (θ), V (θ)) ,

(4.13)

where ‖•‖F denotes the Frobenius norm, i.e., ‖A‖F :=
√

trace(ATA) (for real A), and

θ defines the upper-triangular entries of the symmetric covariance matrices W ∈ Rn×n,
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V ∈ Rp×p as

θ :=
[
W11,W12, · · · ,Wnn, V11, V12, · · · , Vpp

]T
.

We can find a local minimum to (4.13) by using the analytical gradient of the cost in (4.13).

For compact notation, we first vectorize L(θ) and Le such that

Lv(θ) := vec(L(θ)), Lve := vec(Le),

where the vec(•) operator converts an arbitrary matrix A ∈ Cm×n into a column vector such

that

vec(A) = [a11, · · · , a1n, · · · , amn]T ,

where aij is the (i, j)-th element of A.

Let us define e := Lv(θ)− Lve , then we have eT e = ‖Lv(θ)− Lve‖2 = ‖L(θ)− Le‖2F . We

now present a gradient descent law that drives each element θi of θ such that the error norm

in (4.13) is decreased as follows.

dθi(t)

dt
= −λ

∂
(
eT (t)e(t)

)
∂θi(t)

= −λ
[
∂eT (t)

∂θi(t)
e(t) + eT (t)

∂e(t)

∂θi(t)

]
,

(4.14)

where λ is a positive constant that controls the convergence rate. Note that we need to

compute

∂e(t)

∂θi(t)
=
∂Lv(θ(t))

∂θi(t)
. (4.15)

To obtain the value in (4.15) analytically, we first introduce the notation

•′ :=
∂•

∂θi(t)
.

As it is clear that (Lv, W, V ) are functions of θ and t, we will drop the explicit dependencies

as in (Lv(θ(t)),W (θ(t)), V (θ(t))).

Now we have the following.

∂e

∂θi
= (Lv)′ = vec

(
H ′CTV −1 +HCT (V −1)′

)
. (4.16)
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The stabilizing solution H to the ARE in (4.5) is analytic in A,CT , G [24] (via similarity

to the ARE in (4.8)) , and can therefore be differentiated implicitly with respect to θ. If we

take the derivative of the ARE from (4.5) with respect to θi, we arrive at

0 =AH ′ +H ′AT

−
[
H ′CTV −1CH +HCT (V −1)′CH

+ HCTV −1CH ′
]

+W ′

=ĀH ′ +H ′ĀT +
[
W ′ −HCT (V −1)′CH

]
,

(4.17)

where Ā = A−HCTV −1C and H = HT � 0 is the solution to the ARE in (4.5). Equation

(4.17) defines a Lyapunov equation that can be solved for H ′. By determining (4.14) for all

elements i of θi(t), we find a directional derivative that drives the elements in θ(t) such that

the norm of the error in (4.13) is minimized. For actual computation of θ(t), we apply the

preceding result in a discrete sense, i.e., we replace the continuous-time θi(t) in (4.14) with

the discrete-time equivalent θi(k) = θki ,

θk+1
i = θki − λ

∂
(
eT e
)

∂θki
, (4.18)

which is iterated for a desired number of iterations. Additionally, a projection rule for θ is

applied because W must remain positive semidefinite and V must remain positive definite

for the solution to exist. Complete details of the algorithm are given in Table 4.3.

4.4 Examples

51



Table 4.2 Algorithm for the update of θ in the ILQR problem (reprinted from [76]).

Input: (1) The known system matrices A ∈ Rn×n and B ∈ Rn×m.
(2) The estimated feedback gain vector Kv

e = vec(Ke) ∈ Rmn.

Output: (1) The optimal output parameter vector θ̂.

1: form an initial guess Q1 and R1
2: form θ1 from Q1 and R1
3: for k = 1, · · · , kend do
4: compute Kv = vec (LQR(A,B,Qk, Rk))
5: compute P solving ATP + PA− PBR−1

k BTP +Qk = 0

6: for i = 1, · · · , n(n+1)
2 +

m(m+1)
2 do

7: compute Ā = A−BR−1
k BTP

8: compute P ′ solving ĀTP ′ + P ′Ā+
[
−PB(R−1

k )′BTP +Q′k
]

= 0

9: compute (Kv)′ = vec
(

(R−1
k )′BTP +R−1

k BTP ′
)

10: compute e = Kv −Kv
e

11: compute
∂
(
eT e

)
∂θki

=
[
(Kv)′T e+ eT (Kv)′

]
12: let the element θk+1

i = θki − λ
∂
(
eT e

)
∂θki

13: end for
14: form Qk+1 and Rk+1 from θk+1

15: if Qk+1 ≺ 0 then
16: let Qk+1 = Qk

17: let θk+1
i =θki , ∀i = 1, · · · , n(n+1)

2
18: end if
19: if Rk+1 � 0 then
20: let Rk+1 = Rk

21: let θk+1
i =θki , ∀i =

n(n+1)
2 + 1, · · · , n(n+1)

2 +
m(m+1)

2
22: end if
23: end for
24: let K̂ = LQR(A,B,Qkend+1, Rkend+1)

4.4.1 Simulation Considerations

The closed-loop system described by (4.1), (4.3), and (4.6) is given asẋ
˙̂x

 =

 A −BK

LC A−BK − LC


x
x̂

+

I 0

0 L


w
v

 , y =

[
C −DK

]x
x̂

+ v. (4.19)
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Table 4.3 Algorithm for the update of θ in the inverse LQE problem.

Input: (1) The system matrices A ∈ Rn×n, C ∈ Rp×n.
(2) The estimated Kalman gain vector Lve = vec(Le) ∈ Rpn.

Output: (1) The optimal output parameter vector θ̂.

1: form an initial guess W1 and V1
2: form θ1 from W1 and V1
3: for k = 1, · · · , kend do
4: compute Lv = vec (LQE(A,C,Wk, Vk))
5: compute H solving AH +HAT −HCTV −1

k CH +Wk = 0

6: for i = 1, · · · , n(n+1)
2 +

p(p+1)
2 do

7: compute Ā = A−HCTV −1
k C

8: compute H ′ solving ĀH ′ +H ′ĀT +
[
W ′k −HCT (V −1

k )′CH
]

= 0

9: compute (Lv)′ = vec
(
H ′CTV −1

k +HCT (V −1
k )′

)
.

10: compute e = Lv − Lve
11: compute

∂
(
eT e

)
∂θki

=
[
(Lv)′T e+ eT (Lv)′

]
12: let the element θk+1

i = θki − λ
∂
(
eT e

)
∂θki

13: end for
14: form Wk+1 and Vk+1 from θk+1

15: if Wk+1 ≺ 0 then
16: let Wk+1 = Wk

17: let θk+1
i =θki , ∀i = 1, · · · , n(n+1)

2
18: end if
19: if Vk+1 � 0 then
20: let Vk+1 = Vk

21: let θk+1
i =θki , ∀i =

n(n+1)
2 + 1, · · · , n(n+1)

2 +
p(p+1)

2
22: end if
23: end for
24: let L̂ = LQE(A,C,Wkend+1, Vkend+1)

Because w(t) and v(t) are assumed to be white noise, special considerations must be made

when attempting to simulate the system in (4.19). The system in (4.19) can then be simulated

by discretizing with a sampling time T using the stochastic differential equation simulation

technique in [16] with the purely additive noise v(t) in y discretized according to the method

in [50].
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4.4.2 Feasible Example

Consider an LTI system as in (4.1) with

A =

 1 2

−3 1

 , B =

 0 1

−1 1

 ,
C =

[
1 0

]
, D =

[
0 0

]
.

(4.20)

The system is subject to additive white noise w(t) and v(t) as in (4.1) with W = 6I2 and

V = 0.001. Assume that the system uses an LQE with gain L0 designed using perceived

weights Wp = 4I2 and Vp = 0.5. The system in (4.20) is unstable. However, the system is

controllable, allowing us to design an LQ controller K0 using weights

Q =

3 0

0 4

 , R =

20 0

0 40

 .
The “experimental” system in (4.20) is put into the closed-loop form of (4.19) and sim-

ulated using the stochastic discretization technique from Chen [16] with a sampling time

T = 0.01. While a discussion of general parameter estimation is outside the scope of this

chapter, we are able to estimate L and K by performing a nonlinear curve-fit to a simulation

using the known random noise sequence w(t) but with v(t) set equal to zero (because it is

not experimentally measurable). In this case, we recover estimates Le and Ke such that

Le =

6.11

4.33

 , Ke =

−0.0764 −1.51

1.88 0.791

 .
Note that, in general, Le and Ke will only be locally optimal least-squares estimates for the

true values L0 and K0. We then apply the inverse LQG procedure of Table 4.1. In this

case, the LMIs associated with both the inverse LQE and ILQR problems are feasible, and
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we recover

Ŵ =

 7.8 −0.329

−0.329 8.3

 , V̂ = 1

Q̂ =

 2.11 0.844

0.844 1.64

 , R̂ =

 9.3 −0.0378

−0.0378 18.7

 .
Note that the recovered weights are not precisely equal to the original weights used in the

LQE and LQR designs. However, they are similar to the original weights
{
Wp, Vp

}
and

{Q,R} normalized by the smallest eigenvalue of
[Wp 0

0 Vp

]
and

[Q 0
0 R

]
(respectively), which

is the expected behaviour based on the condition number minimization in (4.11) and (4.12).

For comparison, these normalized weights are

Wp

λmin(Wp, Vp)
=

8 0

0 8

 , Vp
λmin(Wp, Vp)

= 1,

Q

λmin(Q,R)
=

1 0

0 1.33

 , R

λmin(Q,R)
=

6.66 0

0 13.33

 .
Despite the perturbed estimates Le and Ke, the recovered weighting matrices approximate

the relative weighting between the individual diagonal elements of {Q,R} and
{
Wp, Vp

}
.

4.4.3 Infeasible Example

Consider another LTI system as in (4.1) with

A =


1 2 −1

−0.5 1 2

1 1 1

 , B =


0 1

−1 1

0.5 0

 ,

C =

1 0 0

1 0 2

 , D =

0.5 0

0 0.5

 .
(4.21)

The system again is subject to additive white noise w(t) and v(t) with W = 6I3, V = 0.01I2.

Design a controllerK0 via pole-placement such that the eigenvalues ofA−BK0 are at−2, −1,
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and −0.2. Similarly, design the estimator gains via pole-placement such that the eigenvalues

of A− L0C are at −2, −1, and −0.5.

We simulate the closed-loop system as in the first example [16, 50] with T = 0.01 and

are again able to recover an Le and Ke such that

Le =


4 0.0464

−0.221 1.49

0.632 1.15

 , Ke =

2.17 2.88 7.35

1.82 3.94 6.08

 .
However, in this case the LMIs in (4.11)-(4.12) are infeasible. We therefore apply the gradient

algorithms in Tables 4.2 and 4.1 using an initial guess Q1 = I3, R1 = I2, W1 = I3, V1 = I2.

The convergence of the error norms
∥∥∥K̂ −Ke∥∥∥2

F
and

∥∥∥L̂− Le∥∥∥2

F
during the gradient descent

are shown in Fig. 4.1. The final weighting matrices after 3000 iterations with λ = 1× 10−4

are

Ŵ =


0.964 0.199 −0.0756

0.199 0.546 0.511

−0.0756 0.511 0.556

 , V̂ =

0.147 0.313

0.313 1.77



Q̂ =


0.547 0.613 −0.126

0.613 0.746 0.0927

−0.126 0.0927 0.96

 , R̂ =

 0.544 −0.737

−0.737 1.57

 .
The forward LQR and LQE problems using these weights generate

L̂ =


4.21 0.524

0.316 2.57

0.228 2.23

 , K̂ =

0.657 2.8 6.96

1.59 5.23 7.08

 ,
which are not exactly equal to Ke and Le, but are locally optimal estimates.

4.5 Conclusions

We have demonstrated an extension of our ILQR technique from [76] to the more general

inverse problem of continuous-time LQG control. In this method, we estimate gain matrices
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Figure 4.1 Convergence of the errors eT e during the gradient algorithm. The upper plot
shows eT e of the LQR gradient algorithm from Table 4.2, while the lower plot shows the
same measure for the LQE gradient algorithm from Table 4.3.

Ke and Le from experimental data and formulate an efficient convex optimization over

LMI’s to find feasible weighting matrices {Q,R,W, V } such that the forward LQG problem

using these weights recovers the gain matrices Ke and Le uniquely (when the LMI’s are

feasible). We additionally derived a gradient descent algorithm for the inverse LQE portion

of the ILQG problem that makes it possible to minimize the residual error in the estimated

Kalman gain matrix. We have demonstrated the utility of these methods through several

numerical examples. Once subject data is available, we intend to apply our ILQG method

to the problem of human seated postural control to recover weights that offer insight into

internal characteristics of the human controller. The ILQG method we describe is capable

of not only estimating the relative cost weights applied to different signals in the control

design, but also the internal weights of a steady-state Kalman filter. This method offers

a unique insight into internal system characteristics and is a novel extension to traditional
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system identification techniques.
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CHAPTER 5

TIME-DOMAIN OPTIMAL DESIGN OF EXPERIMENTAL INPUT
SEQUENCES4

5.1 Introduction

In recent years, clinical researchers have expanded the study of the human seated postural

control system through the application of control theoretic analysis techniques [80, 97]. These

studies often rely on accurate models of the underlying dynamics of the human in order to

make the analysis tractable. However, humans possess a number of characteristics which may

be impossible to measure accurately a priori, such as moments of inertia of body segments,

center of mass (COM) locations, or feedback control gains. These parameters may instead

be recoverable via examination of an experimental response. In the control sciences field,

the set of techniques for recovering unknown or partially unknown model parameters from

an experimental response are known as “system identification” techniques.

The design and optimization of system identification experiments is both a well-studied

and ongoing problem in the literature [12, 28, 30, 37, 42, 48, 56, 98]. Recent results in

experimental optimization tend to favor the technique of optimizing the spectrum of the input

signal [28, 30, 37, 98]. This technique poses a number of challenges for human experiments.

Human subjects tend to fatigue quickly during motor control testing, which limits the feasible

length of each trial. This issue makes frequency-domain techniques for optimal experimental

design difficult to use, because the time sequence may be too short to produce accurate

results at low frequency or may not maintain sufficient frequency resolution over the entire

spectrum. Thus, it would be preferable to design inputs in the time-domain (for short input

sequences). Additionally, it is difficult to adapt frequency-domain optimization techniques

4The work in this chapter was originally published in the 2014 IEEE American Control
Conference [75], and later in the ASME Journal of Dynamic Systems, Measurement, and
Control [77].
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to the number and variety of constraints within which an optimal solution for human testing

must remain. For example, while it is obviously crucial to never apply enough force to a

subject to cause injury, it is also important to make sure that the frequency characteristics of

the input do not cause the subject to switch control strategies [27] (depending on the study

goals). The input must not cause the subject’s motion amplitude to grow large enough to

cause injury. Finally, inputs given to human subjects must not become predictable enough for

the subject to adopt a feedforward-type control strategy when only the feedback mechanisms

are to be estimated, which is the case in this chapter.

In the time-domain, a problem which optimizes the information in an input sequence

while satisfying the preceding constraints can be most readily formulated as a nonconvex

Quadratically-Constrained Quadratic Program (QCQP), which tend to be NP-hard (Non-

deterministic Polynomial-time hard) for many non-trivial problems [52]. While complete

solutions to nonconvex QCQP’s are not yet available, current techniques for solving or ap-

proximately solving these problems tend to exploit some combination of semi-definite relax-

ation, linear relaxation, or randomization [19, 52].

Our contributions in this chapter are as follows. We formulate a time-domain Quadratic

Program (QP) designed to optimize the design of an experimental input for identification

of parameters in a Linear Time-Invariant (LTI) human seated postural control model. In

this approach, we maximize the trace of the experiment’s Fisher Information Matrix (FIM),

an objective known as T-optimality [79], while ensuring that the system does not violate

a number of input and state constraints. Maximizing a measure of the FIM will improve

the quality of the estimated parameters [49]. We formulate a novel quadratic constraint on

the input sequence’s autocorrelation function to ensure that the input is both unpredictable

to subjects and possesses the desired frequency characteristics. By computing an iterative

linear relaxation of this autocorrelation constraint, we are able to formulate the problem as a

tractable nonconvex QCQP which can be solved locally at each iteration. We show that this

iterative algorithm generates a convergent sub-optimal solution that guarantees monotonic
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non-increasing of the cost function while satisfying all constraints during iterations. Our

approach is applied to optimize the design of a human seated balance identification exper-

iment. We show simulation results for this design using model parameters derived from a

preliminary set of subject parameters, and apply the optimized input to an experimental

subject using a novel backdrivable robotic seat that we have developed. The experimental

results demonstrate that we are able to reduce the variance of parameters recovered from

an experiment using the optimized input versus parameters recovered from an experiment

using a preliminary input of similar difficulty. A preliminary version of this chapter without

statistical experimental data was presented at the 2014 American Control Conference [76].

The rest of this chapter is organized as follows: in Section 5.2, we present the dynamic

model for the seated balance task. In Section 5.3, we derive the QP formulation for the

experimental optimization and present the constraints under which the optimization will

operate. In Section 5.4, we show results from an input optimization for one subject, and

apply the optimized input to the subject. Finally, in Section 5.5, we offer some concluding

remarks.

Standard notation will be used throughout the chapter. Let R, R+, and B denote,

respectively, the sets of real, positive real, and binary (i.e. {0, 1}) numbers. The operators

of expectation and covariance matrix are denoted by E and Cov, respectively. A random

vector x, which has a multivariate normal distribution of mean vector µ and covariance

matrix Σ, is denoted by x ∼ N (µ,Σ). An identity matrix of size n × n is denoted as In.

A vector of zeros of length n is denoted as 0n. The Kronecker product is denoted by the

operator ⊗. The vectorization of a matrix A is denoted by vec(A). Other notation will be

explained as it is used.

5.2 Experimental Modeling

We have developed a highly backdrivable torque-control robot that we intend to use for this

and future studies on human seated postural control. This robot consists of a direct-drive
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backdrivable electric motor (CDDR C062C, Kollmorgen Inc.) coupled to a free-spinning

seat platform (Fig. 5.4), displacement sensors in the motor, and a real-time electronic con-

trol unit (cRIO-9022, National Instruments Inc.). The motor is capable of providing peak

torque inputs of up to 117 Nm. Since there is no gearbox or flexible coupling between

the motor and seat, we can safely control the torque applied to the seat in a feedforward

manner by specifying the motor current. This highly backdrivable configuration allows us

to easily generate haptic effects (virtual springs, dampers, and other force fields) in addition

to torque disturbances without needing direct torque measurements for feedback. Applying

these effects through a direct-drive motor means that both stability and disturbance charac-

teristics can be fine-tuned without physically reconfiguring the system and without needing

to compensate for complicated gearbox effects (stiction, backdrivability, etc.) in the control

algorithm. For safety purposes, the robot has mechanical stops at ±15 deg (±0.26 rad)

which prevent motions of the seat platform from exceeding this range. The combined seat

and actuator, along with control hardware, we refer to as the “backdrivable robot”. Design

details of this robot are given in Appendix C.

Using this robot, we have designed a seated balance experiment based on the one per-

formed in [80]. In the current experiment, the subject sits atop the backdrivable robotic seat

which is free to pivot about an axis perpendicular to the coronal plane (Figs. 5.3 and 5.4).

The angle of the lower body from vertical is α1 and the angle of the upper body from vertical

is α2. Similar to the convention in [80], the portion of the subject and seat below the fourth

lumbar (L4) vertebrae is lumped into a single rigid element with mass M1 and moment of

inertia (about the COM) of J1. The COM is at a distance l1 from the pivot point of the seat.

Similarly, the portion of the subject above the L4 vertebrae is lumped into a rigid element

with mass M2 and moment of inertia J2 about the COM. The COM of the upper body is a

distance l2 from the L4 vertebrae. The L4 vertebrae itself is at a distance l12 from the seat

pivot. The human can apply a control torque uh about the L4 vertebrae, and additionally

possesses an intrinsic rotational stiffness kh and intrinsic rotational damping ch about L4.
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Figure 5.1 Experimental robot system, including backdrivable actuator and subject seat
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Figure 5.2 Real-time controller and motor amplifier for the compliant robot

We apply (through feedback) a virtual stiffness kr and a virtual damping cr about the pivot

point, in addition to a torque disturbance u. The sum of these torques produce the total

robot torque ur about the pivot point, i.e. ur = u − krα1 − crα̇1. The resulting dynamics

can be determined by application of Lagrange’s equation to the model in Fig. 5.3, resulting

in the dynamic equations

ur − uh = α̈1(J1 +M1l
2
1 +M2l

2
12)

+ α̈2M2l12l2 cos (α1 − α2)

+ α̇2
2M2l12l2 sin (α1 − α2)

+ ch(α̇1 − α̇2) + kh(α1 − α2)−M1gl1 sinα1

−M2gl12 sinα1,

(5.1)
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Figure 5.3 Simplified mechanical diagram of the seated balance experiment

and

uh = α̈2(J2 +M2l
2
2)

+ α̈1M2l12l2 cos (α1 − α2)

− α̇2
1M2l12l2 sin (α1 − α2)

+ ch(α̇2 − α̇1) + kh(α2 − α1)−M2gl2 sinα2,

(5.2)

with g = 9.81 m/s2 the acceleration due to gravity.

We model the closed-loop dynamical structure of the coupled human/backdrivable robot

system as shown in Fig. 5.5. The plant model P represents the dynamics of the system

in Eqns. (5.1) and (5.2) linearized about the upright equilibrium point. The first output
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Figure 5.4 Subject on the backdrivable robot
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z =

[
α1 α̇1 α2 α̇2

]T
contains measurements of all the states of the system in Fig. 5.3

and is assumed to be exactly measurable by the human (via vestibular and proprioceptive

mechanisms). The second output zr =

[
α1 α̇1

]T
contains measurements of the subset of

states (seat angle and rate) that are measurable by the robot via its displacement sensors.

There is a feedback controller R utilizing zr such that the robot can simulate a desired

dynamical system (in this case, a spring-damper system). The purpose of this controller is

to slow the unstable poles of the closed-loop system enough for the system to be stabilizable

by a human subject. Other studies of unstable seated balance commonly employ similar

techniques, such as adding physical springs [47, 88] or having the seat balance on a hemi-

sphere instead of a point [80]. Our robot can additionally apply a torque disturbance u to

the seat which can be used as an excitation signal for system identification [49]. Both of

these signals are combined and converted into a torque through the robot motor M .

The model of the human has a feedback loop presumed to consist of a sensory delay e−τs

implemented as a 5th-order Padé approximation, i.e.

e−τs ≈ [30240− 15120τs+ 3360(τs)2 − 420(τs)3

+ 30(τs)4 − (τs)5]/[30240 + 15120τs

+ 3360(τs)2 + 420(τs)3 + 30(τs)4 + (τs)5],

and an output feedback controller K such that (if we ignore delays), the human control is

uh = Kz, where K =

[
−K1 −K2 −K3 −K4

]
. We also include an approximation of

muscle dynamics using a first-order filter with time constant Tω. This formulation of the

human feedback loop is similar to that used in other studies on postural control [80] and

muscle control [78].

A motion capture system using LED markers is used to capture the upper and lower body

angles for external processing (Visualeyez Motion Capture System, Phoenix Technologies

Inc., Burnaby Canada). However, the angular rates (α̇1, α̇2) are not directly measurable, so
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we reduce the plant output z to y =

[
α1 α2

]T
via the operator Dy, i.e.

y =

1 0 0 0

0 0 1 0

 z
= Dyz.

Additive white sensor noise w in the motion capture system is also presumed to exist.

A preliminary experiment was performed on a single subject in order to determine an

initial parameter vector estimate θ̂0 that could be used in subsequent optimizations. Because

it only involved a single subject, this testing was designated as non-regulated research by

the MSU Institutional Review Board (IRB). For this experiment, the virtual spring kr and

damper cr were empirically tuned so that the subject needed to apply feedback to stabilize

the seat, but did not tire excessively while maintaining upright balance. These values are

listed in Table 5.1. 10 trials of 30 seconds duration were performed. During each trial,

the subject was given an identical torque input u designed as a Pseudo-Random Binary

Sequence (PRBS) with significant power only below approximately 1 Hz. A PRBS sequence

was attractive for initial identification because it is in common use for system identification

[49], and has spectral characteristics similar to the “reduced-power” input method [60] that

has been used with success in human studies. The amplitude of this sequence was tuned

to 6 Nm, which was the maximum amplitude that the subject could consistently stabilize

for 30 seconds without the seat contacting the mechanical stops at ±0.26 rad. The subject

was given instructions to maintain stable upright posture on the seat while the perterbations

were being applied. For each trial, the resulting angles α1 and α2 were measured using the

motion capture system. “Successful” completion of a trial was defined as the subject being

able to complete the entire 30 second trial without contacting the mechanical stops.

We have determined a set of estimated model parameter values θ̂0 for the subject through

a combination of nonlinear least-squares fitting to this preliminary experiment, mean param-

eters fitted in a similar study [80], and tabulated data from subject height and weight [99]
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Figure 5.5 Block diagram of the seated balance experiment

with θ := [K1 K2 K3 K4 J1 J2 l1 l12 l2 τ Tω]T . The initial estimated values θ̂0 of these

parameters are listed above the double lines in Table 5.1, in addition to the fixed parameters

below the double lines, which we assume can be recovered or specified for the system a priori.

5.3 Experimental Optimization

5.3.1 Quadratic Program

Assume, for the moment, that the true parameter vector θ0 is known. Because all of the

subsystems are linear and rational-ordered, the closed-loop system in Fig. 5.5 with θ0 known

can be formulated as a discrete-time LTI state-space model of the form

xk+1 = A(θ0)xk +B(θ0)uk

yk = C(θ0)xk

ỹk = C(θ0)xk + wk,

(5.3)

with xk ∈ Rnx , uk ∈ R, yk ∈ Rny , wk ∼ N (0,Σ) ∈ Rny white and uncorrelated in time,

θ ∈ Rnθ , and some sampling time T . The true parameter vector θ0 is presumed to belong
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Table 5.1 Initial estimated subject parameters θ̂0 (above double lines) and fixed parameters
(below double lines). The source of each parameter is given via the following labels: “LSQ”
parameters were determined via least-squares fitting to the preliminary experiment, and are
the mean of the values fitted in each of the 10 trials. “TAB” parameters were determined via
applying the tables in [99]. Parameters labelled “SPEC” could be tuned and were specified
prior to the experiment.

Parameter Value Source
K1 143.55 LSQ
K2 105.86 LSQ
K3 677.98 LSQ
K4 242.17 LSQ

J1 2.026 kg −m2 LSQ

J2 2.988 kg −m2 LSQ
l1 0.0022 m LSQ
l12 0.245 m LSQ
l2 0.395 m LSQ
τ 0.0252 s LSQ
Tω 0.0989 LSQ

M1 55 kg TAB
M2 39.5 kg TAB
kr 100 Nm/rad SPEC
cr 2 Nms/rad SPEC
kh 13.15 Nm/rad [80]
ch 4.72 Nms/rad [80]

to a compact set Θ such that

θ0 ∈ Θ =
{
ρ ∈ Rnθ | ρi,min ≤ θ0,i ≤ ρi,max

}
,

∀i = 1, · · · , nθ.

If the parameter vector θ0 is known, then the matrices A(θ0), B(θ0), and C(θ0) of the closed-

loop model in (5.3) can be computed numerically using the MATLAB connect command (see

Appendix B). The system is defined over the time indices k ∈ K := {0, · · · , N} such that

tk = kT . We define the error ek between the nominal output yk and the noisy output ỹk for

a given time index k and the true parameter vector θ0 as

ek(θ0) := ỹk − yk

:= ỹk − C(θ0)A(θ0)xk−1 − C(θ0)B(θ0)uk−1.

(5.4)
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For the remainder of this chapter, we will drop the explicit notational dependence on θ in

A, B, and C.

Let us consider an experiment with an input sequence defined as u := [u0 · · ·uN−1]T .

Note that we can determine the system output yk at an arbitrary time index k ≥ 1 when the

input sequence [u0, u1, · · · , uk−1]T and initial state condition x0 are known. The complete

solution to the discrete-time state-space system given in Eqn. (5.3) is

yk = CAkx0 + C
k−1∑
i=0

Ak−i−1Bui.

Note that we can reconfigure this solution as a matrix operation:

y =



y1

y2

...

yN


=



CA CB · · · 0

CA2 CAB · · · 0

...
...

. . .
...

CAN CAN−1B · · · CB





x0

u0

...

uN−1


= GU.

We now have a non-recursive solution y ∈ RNny for all time k ≥ 1 given U ∈ RN+nx .

Note that the first element in U is x0. We can now define a vector form of the error

e = ỹ − y =

[
eT1 eT2 · · · eTN

]T
∈ RNny .

The log likelihood function for a data set ỹ :=

[
ỹT1 · · · ỹTN

]T
given the true parametriza-

tion θ0 is

ln p(ỹ|θ0) =
N∑
k=1

ln p(ỹk|θ0)

= −N
2

ln 2π − N

2
ln |Σ|

− 1

2

N∑
k=1

eTk (θ0)Σ−1ek(θ0).

The maximum likelihood estimator for θ0 is then given by

θ̂N = arg min
θ∈Θ

 1

N

N∑
k=1

eTk (θ)Σ−1ek(θ)

 ,

= arg min
θ∈Θ

JN (θ).
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Under mild conditions [35, 49], it can be shown that

lim
N→∞

θ̂N = θ0 = arg min
θ∈Θ

lim
N→∞

E {JN (θ)} w.p.1,

and that the prediction error converges in distribution to a normally distributed random

variable [2, 35, 49]
√
N
(
θ̂N − θ0

)
d→ N

(
0, I−1(u; θ0)

)
,

where I(u; θ0) is the FIM.

For a MIMO system, the FIM is an extension of the SISO case given in [31] and [84]:

I(u; θ0) = Eỹ|θ0

[(
∂ ln p(ỹ|θ)

∂θ

∣∣∣∣
θ=θ0

) (
∂ ln p(ỹ|θ)

∂θ

∣∣∣∣
θ=θ0

)T
=

 N∑
k=1

(
∂ek
∂θ

∣∣∣∣
θ=θ0

)T
Σ−1

(
∂ek
∂θ

∣∣∣∣
θ=θ0

) .
Taking the partial of ek with respect to the ith element of θ yields

∂ek
∂θi

= −∂yk
∂θi

, i = {1, · · · , nθ} .

Then, we have

∂e

∂θi

∣∣∣∣
θ=θ0

= − ∂y
∂θi

∣∣∣∣
θ=θ0

= −∂G
∂θi

∣∣∣∣
θ=θ0

U := −HiU.

We can combine these matrices Hi for each θi to form

H =

[
H1 H2 · · · Hnθ

]
∈ RNny×nθ(nx+N).

Additionally, we form

U = Inθ ⊗ U ∈ Rnθ(N+nx)×nθ .

We can then form the FIM for the system in Eqn. (5.3) as

I (u; θ0) = (HU)T
(
IN ⊗ Σ−1

)
(HU) ∈ Rnθ×nθ , (5.5)
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where all elements in H are assumed to be bounded, i.e., `h1 ≤ Hij ≤ `h2. Note that the

FIM is defined using the true parameter vector θ0 [49]. However, in reality an optimization

can only be performed based on the current best-estimate θ̂0 [49]. Therefore, we will proceed

from this point using θ̂0 in place of θ0.

Amongst a number of different optimality conditions [79], we choose the T-optimality

condition, which will maximize the trace of the FIM [7, 56, 62], and in turn provides an

objective that is quadratic in u. Because of the potentially large number of free variables in

u, choosing a cost function that is purely quadratic in u will allow us to efficiently solve the

problem using a QP algorithm later. We therefore use a cost J(u; θ̂0) defined by

J(u; θ̂0) = −trace
(
I(u; θ̂0)

)
. (5.6)

Note that both the FIM and J(u; θ̂0) are functions of the input sequence u, the initial con-

dition x0, and estimated parameters θ̂0 only. While the cost function J(u; θ̂0) is nonconvex

in u [56], a general quadratic programming solver can be used to perform the unconstrained

local minimization

u? = arg min
u
J(u; θ̂0). (5.7)

5.3.2 Design Constraints

In this chapter, the quadratic optimization in Eqns. (5.6)-(5.7) is subject to the following

constraints:

• Input Limits. Since the direct-drive motor should be restricted to only apply a safe

amount of torque, we apply a constraint such that

−um ≤ u ≤ um, um ∈ R+.

• Output Constraints. There is a finite angular range over which both the robot seat

platform and the human torso can move. We therefore apply the constraint

−1N ⊗ ym ≤ GU ≤ 1N ⊗ ym,
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where 1N is a vector of ones of length N , and ym ∈ Rp+ defines the maximum amplitude

of each output individually. Additionally, the angular difference α̃ = α2−α1 is limited

by both the structure and flexibility of the subject’s lower back. By reformulating

the closed-loop system in Fig. 5.5, we can form a structure Gδ similar to G where

u is the input and α̃ is the output. If θ̂0 is known, then this reformulation can be

performed numerically in MATLAB using connect (see Appendix B). We then apply

the constraint

−δα ≤ GδU ≤ δα, δα ∈ R+.

• Human Control Constraint. The human subject is only capable of generating a

finite amount of torque uh. We can again reformulate the closed-loop system in Fig. 5.5

to form a structure Gu similar to G where u is the input and uh is the output. Then,

we apply the constraint

−uhm ≤ GuU ≤ uhm, uhm ∈ R+.

• Autocorrelation Constraint. In addition to the preceding linear constraints, it

was desired to constrain the autocorrelation of the input sequence so as to reduce

predictability of the signal while maintaining desirable spectral characteristics. The

autocorrelation of a discrete real time sequence uk at lag j can be computed as

Ruu(u; j) =
∑
k

ukuk−j .

We can reformulate this as the quadratic matrix multiplication

Ruu(u; j) = uTQ(j)u, (5.8)

where Q(j) ∈ BN×N is a Toeplitz matrix containing ones on its jth upper off-diagonal
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and zeros everywhere else, e.g.

Ruu(u; 1) = uT



0 1 0 · · · 0

0 0 1 · · · 0

...
. . .

...

0 0 0 · · · 1

0 0 0 · · · 0


u.

We consider the term Ruu(u) (with j ommitted) to be the autocorrelation vector for

all lags j =
{

0, · · · , N2 − 1
}
.

We desired the normalized autocorrelation of the first N/2 lags of the optimal input

sequence autocorrelation to be within some region of our preliminary experiment’s

PRBS signal autocorrelation R?uu, i.e.

R?uu − β ≤
Ruu(u)

Ruu(u; 0)
≤ R?uu + β, (5.9)

where β > 0 is a scalar constant. The constraint in (5.9) is quadratic in u based on

the definition of Ruu(u; j) in (5.8).

Unfortunately, the optimization of J(θ0;u) subject to the constraints listed above is a

nonconvex QCQP, the solution of which is still an open research question. Therefore, we

propose an iterative linearization technique to find a good solution to Eqn. (5.7) in the next

section.

5.3.3 Proposed Iterative Descent Algorithm

Since we can not directly apply a quadratic constraint such as the one in Eqn. (5.9) to the

quadratic program, we propose to compute a linear relaxation of the autocorrelation about

a nominal vector û. This relaxation takes the form of a linearization based on a Taylor series

expansion about û, i.e.

R̂uu(û;u; j) = ûTQ(j)û+ ûT
(
Q(j) +QT (j)

)
(u− û) .
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This constraint is made slightly more conservative than the true quadratic constraint in Eqn.

(5.9) by shrinking the constraint boundary, i.e.

R?uu − β + γ ≤ R̂uu(û;u)

R̂0
uu

≤ R?uu + β − γ, (5.10)

where γ s.t. 0 < γ < β is a small constant. Note that we normalize R̂uu(û;u) by R̂0
uu, which

we define as R̂0
uu := Ruu(û; 0). Now, by ensuring that ũ = u− û is constrained to be small,

a local solution can be found that satisfies the linear constraint in Eqn. (5.10) but does not

violate the quadratic autocorrelation constraint Eqn. (5.9).

To ensure that the linearization in Eqn. (5.10) is both always valid and more conservative

than the true quadratic constraint Eqn. (5.9), we constrain the difference ũ = u − û such

that

−δu ≤ ũ ≤ δu, δu ∈ R+. (5.11)

Therefore, when we allow only a small change in u, we may solve the following optimiza-

tion:

u? = arg min
u
J(u; θ0), (5.12)

subject to the constraints

−um ≤ u ≤ um,

−1N ⊗ ym ≤ GU ≤ 1N ⊗ ym,

−δα ≤ GδU ≤ δα,

−uhm ≤ GuU ≤ uhm,

R?uu − β + γ ≤ R̂uu(û;u)

R̂0
uu

≤ R?uu + β − γ,

−δu ≤ ũ ≤ δu.

(5.13)

An overall solution is found by computing a series of successive solutions u?i to the

problem of Eqn. (5.12) subject to the constraints in Eqn. (5.13). For each iteration i, we

perform a local linearization Eqn. (5.10) of the quadratic autocorrelation constraint in Eqn.
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Table 5.2 Iterative descent algorithm for optimization of the input sequence u

Input: (1) The estimated parameter vector θ̂0
(2) The initial nominal input sequence û
(3) The desired relative stopping tolerance Estop

Output: (1) The optimal input vector u?

1: Build A, B, and C from θ̂0
2: Compute G, Gδ, Gu, H
3: Let E > Estop
4: Let i = 1
5: while E > Estop do

6: Compute R̂0
uu = Ruu(û, 0)

7: Assemble U =
[
xT0 u

T
]T

8: Assemble I
(
u; θ̂0

)
= (HU)T

(
IN ⊗ Σ−1

)
(HU)

9: Solve for u?i and J(u?i; θ̂0) from the QP in Eqn. (5.12), subject to the constraints
in Eqn. (5.13)

10: Let E =

∣∣∣∣J(u?i;θ̂0)−J(u?(i−1);θ̂0)

J(u?(i−1);θ̂0)

∣∣∣∣
11: Let û = u?i

12: Let i = i+ 1
13: end while
14: Let u? = u?i

(5.9) about û = u?(i−1) and solve for u?i. Each solution u?i becomes û in the next iteration

of the solution. This is done so as to allow u to traverse a wide range while not violating

the input linearization constraint in Eqn. (5.11) at any point during the optimization. Each

solution u?i is found using MATLAB’s quadprog general quadratic programming solver in

combination with the yalmip modeling toolbox. Details of the solution procedure are shown

in Table 5.2.

Note that we are computing the optimization based on the estimate θ̂0, instead of the

true parameter vector θ0. This is a common problem in system identification, and can be

dealt with via a number of methods, such as iterative system identification techniques [86].
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5.3.4 Convergence Analysis

In this section, we discuss the convergence properties of the proposed iterative descent algo-

rithm proposed in Table 5.2.

First note that J(u?i; θ̂0) ≥ J(u?i+1; θ̂0) by the construction. Next we show that J has a

lower bound. This can be shown by the fact that the FIM in Eqn. (5.5) has an upper bound

with an assumption that all elements in H are bounded, i.e., `h1 ≤ Hij ≤ `h2. This follows

from the fact that

trace
(
I
(
u; θ̂0

))
= trace

(
IN ⊗ Σ−1HUUTHT

)
=vec(IN ⊗ Σ−1)T vec(HUUTHT ) ≤ `T ,

(5.14)

since all elements in U are also bounded due to the input constraints in the constrained

optimization in Eqn. (5.12).

Since the value J has a lower bound which is −`T from Eqn. (5.14) and is monotonically

non-increasing during the iterations, it will converge to some value as iterations proceed.

Therefore, this iterative descent algorithm generates a convergent sub-optimal solution

that guarantees monotonic non-increasing of the cost function while satisfying all constraints

during iterations.

5.4 Case Study

We have performed a case study on a single subject to demonstrate our experimental opti-

mization. The goal of the optimization is to determine an experimental input sequence that

will minimize a measure of the covariance for the estimated parameters. This is achieved via

a maximization of the experiment’s FIM trace subject to constraints as described in (5.12)-

(5.13). Using parameters θ̂0 from Table 5.1, G, Gu, and Gδ from Sec. 5.3 were computed

numerically using MATLAB’s connect function (see Appendix B). The limits applied to the

optimization are listed, along with their sources, in Table 5.3. We let x0 =

[
0.01 0T9

]T
,

and since the sensor noise for both elements of yk were approximately equal and uncorre-
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Table 5.3 Limits used for the optimization procedure. The values of ym and δα are based
on the maximum simulated displacements that occurred during fitting to the preliminary
experiment. um is the maximum torque input level the subject found comfortable. uhm is
approximately half of the near-maximal lateral bending torque reported by male subjects in
[55]. β, γ, and δu were tuned.

Limit Value
um 20 Nm

ym

[
0.192
0.078

]
rad

δα 0.252 Nm
uhm 60 Nm
β 0.16
γ 0.08
δu 0.05 Nm

lated, we let Σ = I. The initial input û was the same PRBS signal given to the subject

in the preliminary experiment. Note that, in the preliminary experiment, the initial û was

challenging enough that the subject required considerable practice to complete the trials

successfully (defined as no contact occurring with the mechanical stops at α1 = ±0.26 rad

on the device.)

The descent algorithm in Algorithm 5.2 was applied using the initial parameter vector

θ̂0 from Table 5.1 and the initial PRBS input û. For an input sequence with length N = 300

and a sampling time of T = 0.1 seconds, we were able to converge to a local suboptimal

input sequence (Estop = 1× 10−3) in approximately 3.5 hours on a 2.2GHz Xeon server.

5.4.1 Optimization Results

The optimal input u? along with the change in the objective function with increasing i

are shown in Fig. 5.6. We simulate the system in Fig. 5.5 with u(t) = u? to produce the

corresponding outputs y and differential angle α̃ (Fig. 5.7). The final signal autocorrelation

R?uu and its constraints are also shown in Fig. 5.7. None of the other constraints for the

system were active. The solution u? produces an approximately 1.6 times improvement

relative to the initial û in the value of the objective function without violating any of the
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Figure 5.6 The upper plot shows the optimal input sequence u?. The lower plot shows the
change in the objective function J(u; θ̂0) with increasing iteration i.

listed constraints.

5.4.2 Experimental Application

To compare the variance of the parameters fitted using the optimal experiment, we per-

formed an experiment using the same subject tested in Sec. 5.2. This experiment was again

designated as non-regulated research by the MSU IRB. 10 trials of the 30 seconds length

using the optimal input u? were performed using an experimental setup otherwise identical

to that in Sec. 5.2. The subject was able to successfully complete the 10 trials of the exper-

iment (no mechanical stop contact), although the subjective difficulty of the the task was
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Figure 5.7 Simulated results using the optimal input u?. The upper plot shows the simulated
angles α1 and α2 versus time, along with their bounds. The center plot shows the differential
angle α̃ versus time along with its bounds. The bottom plot shows the optimal input signal
autocorrelation R?uu along with its bounds, and the original signal autocorrelation Ruu for
comparison. The constraints on uh were not active during simulation.
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Table 5.4 Mean best-fit parameters θ̂N based on the optimal experiment. Fixed parameters
are the same as those given in Table 5.1.

Parameter Value
K1 270.31
K2 130.64
K3 803.28
K4 224.30

J1 3.060 kg −m2

J2 2.925 kg −m2

l1 0.0104 m
l12 0.2501 m
l2 0.3684 m
τ 0.0368 s
Tω 0.0315

very high. The resulting mean best-fit parameters θ̂N are shown in Table 5.4, and in general

match well with the parameters found in Table 5.1.

In Table 5.5, we compare the variance across 10 trials of the parameters fitted in the

preliminary experiment done in Sec. 5.2 with the parameters fitted from the optimal exper-

iment. It can be seen that, for almost all parameters, the optimal experiment reduced the

variance of the resulting fitted parameters compared to the initial PRBS input while the

mean values from the two estimators are similar.

Because the sequence u? is only optimal for a parameter vector θ̂0, in theory, this tech-

nique could be employed as part of a broader iterative procedure [86]. After a u? is found,

a subject can be tested using u? as the input and the resulting experimental response fitted

to find θ̂N . The parameters θ̂N can then be fed back as θ̂0 in the next iteration of the input

optimization and the process repeated until a desired level of convergence is achieved [86].

5.5 Conclusions

In this chapter, we have demonstrated a QP technique for generating an optimal experimen-

tal input for a human seated postural control identification experiment. To this end, we have

formulated a quadratic objective function based on a measure of the FIM that will maximize
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Table 5.5 Variance of the parameters in θ̂0 vs the variance of the parameters in θ̂N .

Parameter θ̂0 Variance θ̂N Variance
K1 2727 2238
K2 2374 496.6

K3 5.306× 104 5840

K4 1.621× 104 1238
J1 1.031 0.2304
J2 0.228 0.298
l1 0.0007639 0.0005456
l12 0.0008781 0.001225
l2 0.004951 0.0009266
τ 0.0004225 0.000375
Tω 0.005771 0.0004575

the information present in the experiment for the proposed testing. This optimized input

was designed to minimize the variance of the parameters recovered from the human subject.

We have formulated a set of output, input, and control constraints, in addition to a unique

linearized autocorrelation constraint, such that the resulting input signal will be feasible for

the proposed testing. The resulting solution u? converged to a local solution without violat-

ing any of the prescribed constraints. We have additionally demonstrated an experimental

application of this input signal in conjunction with our backdrivable robot and shown that

the resulting recovered parameters from the subject have lower variance than those recovered

from a preliminary experiment, which is consistent with the goal of our optimization.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this dissertation, we have demonstrated a collection of novel techniques that extend and

adapt traditional system identification and experimental optimization methods to the specific

challenges of human motor control testing. These techniques allow biomechanical researchers

to investigate factors such as control design intent, or to easily optimize the informativeness

of input sequences for different motor control tasks. Together, these techniques make it

possible for these researchers to apply advanced engineering methods from systems and

control theory to their specific human motor control experiments.

6.1 Robust Optimal Experimental Design

Chapter 2 demonstrated a Monte-Carlo technique for producing a robust optimal experi-

mental input for identification of the human head-neck target tracking system. This input

sequence will guarantee a minimum level of estimation performance for any subject inside

some pre-defined population. While a number of robust optimization techniques have been

applied to mechanical systems, there has been little application of such techniques to bio-

logical systems.

Using our experimental laser/vision system developed previously [71], we collected pa-

rameters, approximate noise levels, and limits from a number of subjects. These values

defined the population used in the study. The goal of the algorithm was to minimize the

difference between parameters estimated using a nominal model and those used in a sim-

ulated experiment. While the nominal model was linear in our case, the technique can be

used without modification for nonlinear models.

We showed that this optimization technique generates input sequences that perform

better for a worst-case subject than an input sequence optimized using a more traditional
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method (optimized for an average subject). We would like to see this method applied to

more complex model structures and input sequence parametrizations, which would extend

its utility for biological input sequence design.

6.2 Inverse LQR Techniques

Chapter 3 demonstrated a set of inverse LQR techniques for recovering cost matrices Q and

R from known system state matrices and control gains. These cost matrices give insight

into the underlying goals of the control design, and can give a more complete picture of the

specific motion control objectives for a human subject.

We formulated the inverse LQR problem as a convex optimization problem subject to

Linear Matrix Inequality (LMI) constraints. When this problem is feasible, there exists an

exact unique solution that minimizes the condition number of the recovered cost matrices

Q and R. These matrices describe the relative importance placed by the subject on various

control goals, such as minimizing certain state values or minimizing control effort.

When the problem is infeasible, as can happen in practice due to perturbed measure-

ments, we demonstrated an approximate local solution method that uses a Ricatti equation

gradient to drive a local optimizer. In combination with an initial point algorithm we have

developed, this method is a computationally simple means of finding Q and R that approx-

imately solve the inverse LQR problem.

Together, these techniques provide a significant, original framework for practical applica-

tion of inverse LQR methods in biological motor control problems, which we demonstrated

successfully on a single human subject. We were able to show that, at least for this sin-

gle subject, the recovered cost matrices were consistent with the explicit motion goal that

was given for the test (minimize upper body angle). In future work, we intend to validate

this technique in quantitative clinical testing and verify that it consistently recovers explicit

motions goals.
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6.3 Inverse LQG Techniques

Chapter 4 demonstrated a set of inverse LQG techniques designed to extend the inverse

LQR formulation to systems where a full-state feedback assumption cannot be justified. In

the LQG formulation, the system contains both an observer (Kalman filter) and controller

(LQR). Using knowledge of the system state matrices, Kalman gains, and feedback gains,

we attempt to determine both noise covariance matrices and cost matrices that will generate

the Kalman gain and feedback gain in their respective forward problems.

As in the inverse LQR technique, we developed an exact LMI method for determining a

unique solution when the problem is feasible, as well as a local gradient-based method for

use when the problem is infeasible. We demonstrated the utility of these techniques with

several simulated examples, and showed that they are able to give sensible solutions to the

inverse LQG problem even with inexact recovery of the control and Kalman gains.

While the inversion techniques work well when the Kalman gains and feedback gains

are approximately known, there is some difficulty associated with determining both of these

matrices uniquely from experimental data. A possible direction for future research would be

to investigate means of regularizing the estimation problem so that unique gains could be

easily determined.

6.4 Time-Domain Optimal Experimental Design

Chapter 5 demonstrated a method for maximizing the informativeness of a time-domain

input sequence for parameter estimation. In this method, we attempt to maximize the

Fischer Information Matrix (FIM) of an input sequence by treating each discrete time point

of the input sequence as a free variable, and formulating the optimization problem as a

nonconvex quadratic program. We also formulated a quadratic autocorrelation constraint to

help minimize the predictability of the input sequence, and developed an iterative technique

for solving this quadratic program efficiently.
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We developed a seated-balance experiment using an original force-controlled actuated

seat robot. Using this experiment, we estimated physical and control parameters for a single

human subject. These parameters were used in the optimization process that we developed

in Chapter 5. We showed that, using an input sequence optimized in this manner, we

were able to reduce the variance of parameters recovered from the single subject. This is

exactly the characteristic the optimization was designed to minimize. The subject was able

to successfully maintain balance on the seat without exceeding limits during the optimized

experiment.

The major difficulty with this optimization technique is that it requires preliminary

parameter estimation for each subject who is to be tested. This causes practical difficulties

with the testing process, and is time consuming. We have therefore been investigating an

extension of the method into an MPC-like formulation. In this formulation, the objective

over each control horizon is to maximize the FIM over that horizon while obeying the same

constraints given in Chapter 5.
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APPENDIX A

MIN-MAX ALGORITHM

Table A.1 Algorithm for update of γ and θ.

Input: (1) The experimental parameter vector from the previous time step γ(k)
(2) The subject controller parameter vector from the previous time step
θ(k)
(3) The current set of relative tolerances Qv(k) and Qu(k)

Output: (1) The next experimental parameter vector γ(k + 1)
(2) The next subject controller parameter vector θ(k + 1)
(3) The next set of relative tolerances Qv(k + 1) and Qu(k + 1)

For each iteration k, the following operation are performed

1: for i = 1, · · · , r do
2: if γi(k) < γi,min and Ĝui (k) < 0 then
3: let the element γi(k + 1) = γi,min
4: else if γi(k) > γi,max and Ĝui (k) > 0 then
5: let the element γi(k + 1) = γi,max
6: else
7: let the element γi(k + 1) = γi(k)− δui (k)× Ĝui (k)
8: end if

9: let the element Eui (k) =
γi(k+1)−γi(k)

γi(k)

10: if Eui (k) < Qui (k) or Ĝui (k) 6= Ĝui (k − 1) then
11: let the element δui (k + 1) = δui (k)/2
12: let the element Qui (k + 1) = Qui (k)/5
13: end if
14: end for
15: for i = 1, · · · , p do
16: if θi(k) < θi,min and Ĝvi (k) > 0 then
17: let the element θi(k + 1) = θi,min
18: else if θi(k) > θi,max and Ĝvi (k) < 0 then
19: let the element θi(k + 1) = θi,max
20: else
21: let the element θi(k + 1) = θi(k) + δvi (k)× Ĝvi (k)
22: end if

23: let the element Evi (k) =
θi(k+1)−θi(k)

θi(k)

24: if Evi (k) < Qvi (k) or Ĝvi (k) 6= Ĝvi (k − 1) then
25: let the element δvi (k + 1) = δvi (k)/2
26: let the element Qvi (k + 1) = Qvi (k)/5
27: end if
28: end for
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APPENDIX B

SYSTEM CONNECTION CODE

function dsys0=bu i l d sy s ( params , f lag )

J1=params . J1 ;

J2=params . J2 ;

M1=params .M1;

M2=params .M2;

l 1=params . l 1 ;

l 12=params . l 12 ;

l 2=params . l 2 ;

kr=params . kr ;

c r=params . cr ;

g=params . g ;

kh=params . kh ;

ch=params . ch ;

K1=params .K1 ;

K2=params .K2 ;

K3=params .K3 ;

K4=params .K4 ;

de lay=params . de lay ;

tc=params . tc ;

T=params .T;

Ap=[ 0 , 1 , 0 , 0 ; . . .

−(J2∗kh + J2∗kr + M2∗kh∗ l 2 ˆ2 + M2∗kr∗ l 2 ˆ2 − M2ˆ2∗g∗ l 12 ∗ l 2 ˆ2 . . .

− J2∗M1∗g∗ l 1 − J2∗M2∗g∗ l 12 + M2∗kh∗ l 12 ∗ l 2 − M1∗M2∗g∗ l 1 ∗ l 2 ˆ 2 ) . . .

/(M1∗M2∗ l 1 ˆ2∗ l 2 ˆ2 + J2∗M1∗ l 1 ˆ2 + J2∗M2∗ l 12 ˆ2 + J1∗M2∗ l 2 ˆ2 + J1∗J2 ) , . . .

−(J2∗ch + J2∗ cr + M2∗ch∗ l 2 ˆ2 + M2∗ cr ∗ l 2 ˆ2 + M2∗ch∗ l 12 ∗ l 2 ) . . .

/(M1∗M2∗ l 1 ˆ2∗ l 2 ˆ2 + J2∗M1∗ l 1 ˆ2 + J2∗M2∗ l 12 ˆ2 + J1∗M2∗ l 2 ˆ2 + J1∗J2 ) , . . .

(− g∗ l 12 ∗M2ˆ2∗ l 2 ˆ2 + kh∗M2∗ l 2 ˆ2 + kh∗ l 12 ∗M2∗ l 2 + J2∗kh ) . . .
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/(M1∗M2∗ l 1 ˆ2∗ l 2 ˆ2 + J2∗M1∗ l 1 ˆ2 + J2∗M2∗ l 12 ˆ2 + J1∗M2∗ l 2 ˆ2 + J1∗J2 ) , . . .

(M2∗ch∗ l 2 ˆ2 + M2∗ch∗ l 12 ∗ l 2 + J2∗ch )/ (M1∗M2∗ l 1 ˆ2∗ l 2 ˆ2 + J2∗M1∗ l 1 ˆ2 . . .

+ J2∗M2∗ l 12 ˆ2 + J1∗M2∗ l 2 ˆ2 + J1∗J2 ) ; . . .

0 , 0 , 0 , 1 ; . . .

( J1∗kh + M1∗kh∗ l 1 ˆ2 + M2∗kh∗ l 12 ˆ2 − M2ˆ2∗g∗ l 12 ˆ2∗ l 2 + M2∗kh∗ l 12 ∗ l 2 . . .

+ M2∗kr∗ l 12 ∗ l 2 − M1∗M2∗g∗ l 1 ∗ l 12 ∗ l 2 ) . . .

/(M1∗M2∗ l 1 ˆ2∗ l 2 ˆ2 + J2∗M1∗ l 1 ˆ2 + J2∗M2∗ l 12 ˆ2 + J1∗M2∗ l 2 ˆ2 + J1∗J2 ) , . . .

( J1∗ch + M1∗ch∗ l 1 ˆ2 + M2∗ch∗ l 12 ˆ2 + M2∗ch∗ l 12 ∗ l 2 + M2∗ cr ∗ l 12 ∗ l 2 ) . . .

/(M1∗M2∗ l 1 ˆ2∗ l 2 ˆ2 + J2∗M1∗ l 1 ˆ2 + J2∗M2∗ l 12 ˆ2 + J1∗M2∗ l 2 ˆ2 + J1∗J2 ) , . . .

−(− g∗ l 2 ∗M2ˆ2∗ l 12 ˆ2 − M1∗g∗ l 2 ∗M2∗ l 1 ˆ2 + kh∗M2∗ l 12 ˆ2 + kh∗ l 2 ∗M2∗ l 12 . . .

− J1∗g∗ l 2 ∗M2 + M1∗kh∗ l 1 ˆ2 + J1∗kh ) . . .

/(M1∗M2∗ l 1 ˆ2∗ l 2 ˆ2 + J2∗M1∗ l 1 ˆ2 + J2∗M2∗ l 12 ˆ2 + J1∗M2∗ l 2 ˆ2 + J1∗J2 ) , . . .

−(M1∗ch∗ l 1 ˆ2 + M2∗ch∗ l 12 ˆ2 + M2∗ch∗ l 2 ∗ l 12 + J1∗ch )/ (M1∗M2∗ l 1 ˆ2∗ l 2 ˆ2 . . .

+ J2∗M1∗ l 1 ˆ2 + J2∗M2∗ l 12 ˆ2 + J1∗M2∗ l 2 ˆ2 + J1∗J2 ) ] ;

Bp=[ 0 , 0 ; . . .

(M2∗ l 2 ˆ2 + J2 )/ (M1∗M2∗ l 1 ˆ2∗ l 2 ˆ2 + J2∗M1∗ l 1 ˆ2 + . . .

J2∗M2∗ l 12 ˆ2 + J1∗M2∗ l 2 ˆ2 + J1∗J2 ) , . . .

−(M2∗ l 2 ˆ2 + M2∗ l 12 ∗ l 2 + J2 )/ (M1∗M2∗ l 1 ˆ2∗ l 2 ˆ2 + . . .

J2∗M1∗ l 1 ˆ2 + J2∗M2∗ l 12 ˆ2 + J1∗M2∗ l 2 ˆ2 + J1∗J2 ) ; . . .

0 , 0 ; . . .

−(M2∗ l 12 ∗ l 2 )/ (M1∗M2∗ l 1 ˆ2∗ l 2 ˆ2 + J2∗M1∗ l 1 ˆ2 + . . .

J2∗M2∗ l 12 ˆ2 + J1∗M2∗ l 2 ˆ2 + J1∗J2 ) , . . .

(M1∗ l 1 ˆ2 + M2∗ l 12 ˆ2 + M2∗ l 2 ∗ l 12 + J1 ) / . . .

(M1∗M2∗ l 1 ˆ2∗ l 2 ˆ2 + J2∗M1∗ l 1 ˆ2 + J2∗M2∗ l 12 ˆ2 + J1∗M2∗ l 2 ˆ2 + J1∗J2 ) ] ;

Cp=eye ( 4 ) ;

Dp=zeros ( 4 , 2 ) ;

Plant=s s (Ap,Bp ,Cp,Dp) ;

Plant . inputname={ ’ taur ’ , ’ tauh ’ } ;

Plant . outputname={ ’ y1 ’ , ’ y2 ’ , ’ y3 ’ , ’ y4 ’ } ;

Ksys=s s (0 , zeros (1 ,4) ,0 , − [K1 K2 K3 K4 ] ) ;

Ksys . inputname={ ’ y1 ’ , ’ y2 ’ , ’ y3 ’ , ’ y4 ’ } ;

Ksys . outputname=’Kout ’ ;

[ n , d]=pade ( delay , 5 ) ;

de l aysys=t f (n , d ) ;

de l aysys . inputname=’Kout ’ ;
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de laysys . outputname=’ de laytau ’ ;

mdyn=t f ( 1 , [ t c 1 ] ) ;

mdyn . inputname=’ de laytau ’ ;

mdyn . outputname=’ tauh ’ ;

i f strcmp ( flag , ’ output ’ )

sys0=connect ( Plant , Ksys , de laysys ,mdyn , ’ taur ’ ,{ ’ y1 ’ , ’ y3 ’ } ) ;

e l s e i f strcmp ( flag , ’ input ’ )

sys0=connect ( Plant , Ksys , de laysys ,mdyn , ’ taur ’ ,{ ’ tauh ’ } ) ;

e l s e i f strcmp ( flag , ’ d e l t a ’ )

subblock=sumblk ( ’ dy ’ , ’ y3 ’ , ’ y1 ’ , ’+− ’ ) ;

sys0=connect ( subblock , Plant , Ksys , de laysys ,mdyn , ’ taur ’ ,{ ’ dy ’ } ) ;

else

error ( ’Not a recogn i z ed system formulat ion ’ )

end

dsys0=c2d ( sys0 ,T) ;
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