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ABSTRACT

IDENTIFICATION AND ANALYSIS OF NON-CODING RNAS IN LARGE SCALE
GENOMIC DATA

By

Rujira Achawanantakun

The high-throughput sequencing technologies have created the opportunity of large-scale tran-

scriptome analyses and intensified attention on the study of non-coding RNAs (ncRNAs). NcRNAs

pay important roles in many cellular processes. For example, transfer RNAs and ribosomal RNAs

are involved in protein translation process; micro RNAs regulate gene expression; long ncRNAs

are found to associate with many human diseases ranging from autism to cancer. Many ncRNAs

function through both their sequences and secondary structures. Thus, accurate secondary struc-

ture prediction provides important information to understand the tertiary structures and thus the

functions of ncRNAs.

The state-of-the-art ncRNA identification tools are mainly based on two approaches. The first

approach is a comparative structure analysis, which determines the consensus structure from ho-

mologous ncRNAs. Structure prediction is a costly process, because the size of a set of putative

structures increases exponentially with the sequence length [1]. Thus it is not practical for very

long ncRNAs such as lncRNAs. The accuracy of current structure prediction tools is still not sat-

isfactory, especially on sequences containing pseudoknots. An alternative identification approach

that has been increasingly popular is sequence based expression analysis, which relies on next gen-

eration sequencing (NGS) technologies for quantifying gene expression on a genome-wide scale.

The specific expression patterns are used to identify the type of ncRNAs. This method therefore is

limited to ncRNAs that have medium to high expression levels and have unique expression patterns

that are different from other ncRNAs.



In this work, we address the challenges presented in ncRNA identification using different ap-

proaches. To be specific, we have proposed four tools, grammar-string based alignment, Knot-

Shape, KnotStructure, and LncRNA-ID. Grammar-string is a novel ncRNA secondary structure

representation that encodes an ncRNA’s sequence and secondary structure in the parameter space

of a context-free grammar and a full RNA grammar including pseudoknots. It simplifies a com-

plicated structure alignment to a simple grammar string-based alignment. Also, grammar-string-

based alignment incorporates both sequence and structure into multiple sequence alignment. Thus,

we can then enhance the speed of alignment and achieve an accurate consensus structure. Knot-

Shape and KnotStructure focus on reducing the size of the structure search space to enhance the

speed of a structure prediction process. KnotShape predicts the best shape by grouping simi-

lar structures together and applying SVM classification to select the best representative shape.

KnotStructure improve the performance of structure prediction by using grammar-string based-

alignment and the predicted shape output by KnotShape. LncRNA-ID is specially designed for

lncRNA identification. It incorporates balanced random forest learning to construct a classifica-

tion model to distinguish lncRNA from protein-coding sequences. The major advantage is that it

can maintain a good predictive performance under limited or imbalanced training data.
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Chapter 1

Introduction

1.1 Non-coding RNAs (ncRNAs)

It has been suggested that less than 2% of the human genome codes for proteins [2]. A recent study

found only one-fifth of transcription across the human genome is associated with protein-coding

genes [3]. This indicates that the majority of the transcriptom is non-coding RNAs [4], which

are not translated into protein but function directly as RNAs [5, 6]. NcRNAs have been identified

as potential regulatory molecules that play diverse and important roles in many biochemical pro-

cesses. For instance, two typical house keeping ncRNAs, tRNA and rRNA, are key components

for protein synthesis. MicroRNAs (miRNAs) play critical regulatory roles via interactions with

specific target mRNAs in many organisms [7, 8].

The most recently discovered class of ncRNAs is long non-coding RNAs (lncRNAs), which

are generally defined as non-coding transcripts of 200 nucleotides [9, 10, 11]. Increasing evidence

has shown that lncRNAs play important and diverse biological functions. For example, lncRNAs

ANRIL and HOTAIR bind to chromatin-remodeling complexes PRC1 and PRC2 to alter chromatin

and transcription. GAS5 lncRNA acts as a decoy for the GR transcription factor and prevents

GR from binding to DNA and transcriptional activation. MALAT1 RNA binds to SR proteins

to regulate mRNA alternative splicing, whereas BACE-1AS RNA binds to the complementary

BACE-1 mRNA to regulate BACE-1 translation [12]. As a result, the dysfunctions of lncRNAs are
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associated with a wide range of diseases ranging from neurodegeneration to cancer [13].

1.2 Functional ncRNA identification

The functions of many types of ncRNA are determined not only by their sequences but also by

their secondary structures. Thus, comparative ncRNA identification must exploit both sequence

and structural conservations.

Many types of ncRNAs function through both sequences and secondary structures, which de-

scribe base pair interactions in ncRNA sequences. For example, the cloverleaf structure and the

stem-loop structure are prominent features of tRNAs and pre-miRNAs, respectively. Thus, ncR-

NAs’ structural annotation is an important component in their functional annotation.

Many computational methods have been used to determine the native structures of ncRNAs.

A native structure is a structure that forms conformationally folding in native state before forming

the tertiary structure.

In computational ncRNA prediction, secondary structural stability provides the characteristic

signal for distinguishing real RNA sequences from non-functional transcripts [14]. Two fundamen-

tal approaches to structure prediction are ab initio and comparative folding. The ab initio method

predicts a structure from a single sequence. The majority of them [15, 16, 17, 18, 19] search for

putative structures with the minimum free energy (MFE) using an experimental number of derived

energy parameters. However, the gap between the free energy of the stable native state and the less

stable non-native structures is often small [20]. Thus, misfolded conformations can form with high

probabilities [21].

The more accurate strategy is based on a homology detection using alignment methods [22]. A

homologous alignment relies on conservation testimony of multiple sequences that have a common

2



ancestor. The similarity between sequences provides more information yielding to higher accuracy

in structure prediction. Although there are promising progresses, finding the native secondary

structure is still difficult. In particular, identifying the pseudoknot, an important structural motif

in many types of ncRNAs, poses a great challenge for existing methods. Predicting the minimum

free energy secondary structure that includes pseudoknots has been proven to be NP-hard [23].

Despite promising output by existing alignment tools, many existing secondary structure repre-

sentations are highly complicated, incurring high computational cost during alignment. Even with

various heuristics or pruning techniques to reduce the time complexity, ncRNA structural align-

ment is still more computationally intensive than pure sequence alignment and scale poorly with

the number and length of input sequences. Therefore, it remains important to develop an efficient

and accurate structure prediction method for ncRNAs.

1.3 Long non-coding RNA identification

Homologous alignment is an effective method to identify functional ncRNAs that exhibit similar

functionality between species. However, the primary limitation of both sequence and structure

based homologous alignment is that it might not yield a satisfactory result for sequences with low

conservation like lncRNAs. LncRNAs are found to have low sequence similarity [24], but are

functionally conserved [25, 26]. Although there exist functionally related structures of lncRNAs,

predicting structures of lncRNAs is computational expensive because they are generally long with

several hundred to thousand nucleotides. The size of the folding space of an ncRNA sequence in-

creases exponentially with the sequence length [1]. Thus homology based functional identification

is not practical for lncRNAs.

A numbers of studies have integrated high-throughput genomic technologies such as microar-
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rays and next-generation sequencing (NGS) to identify functional ncRNAs in past decades [27].

These technologies have explored the ability of scientists to detect various types of ncRNAs in-

cluding lncRNAs. Nevertheless, lncRNAs are generally expressed at a low level [28] and are less

conserved [10], which have impeded their discovery and functional studies. Moreover, lncRNAs

share similarities with protein coding transcripts, in which they resemble messenger RNAs (mR-

NAs) with respect to transcript length and splicing structure [29]. Many lncRNAs are found to have

coding potential. For instance, H19, Xist, Mirg, Gtl2, and KcnqOT1 all have putative ORFs greater

100 amino acids, but have been characterized as functional ncRNAs [30]. These challenges pose

great challenges to lncRNA identification. Therefore, accurately distinguishing long non-coding

from protein coding transcripts is a critical first step towards comprehensive biogenesis assessment

for the understanding of genetic information underneath.

To address the challenges in ncRNA identification, we have proposed three tools: grammar-

string, KnotShape and KnotStructure, and LncRNA-ID. Grammar-string is a novel secondary

structure representation based on a context free grammar. By encoding secondary structures in

grammar strings, ncRNA structural alignment is projected to a simple sequence alignment. We can

then predict the secondary structures of ncRNAs with less computational complexity. KnotShape

and KnotStructure use shapes of secondary structures to optimize the search space of structure

prediction. It classify similar structures to the same group based on a topology of each structure.

The number of shapes is much smaller than the number of initial structures. With a small poten-

tial structure set, a multiple sequence alignment therefore becomes more practical and efficient

especially for structures with pseudoknots. LncRNA-ID is designed to identify lncRNAs from

protein-coding transcripts. It applies balanced random forest learning to construct a classification

model. Thus, LncRNA-ID has a great competency to maintain steady performance with imbal-

anced training data, where the number of protein coding transcripts and lncRNAs are intrinsically

4



greatly different [10].
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Chapter 2

Grammar string: a novel ncRNA secondary

structure representation

2.1 Background

Comparative ncRNA identification, which searches for ncRNAs through evidence of evolution-

ary conservation, is the state-of-the-art methodology for ncRNA finding. Stochastic context-free

grammar (SCFG) [31] provides a powerful way to encode both the sequence and structural con-

servations. A successful application of SCFG is ncRNA classification, which classifies query

sequences into annotated ncRNA families such as tRNA, rRNA, riboswitch families. Other sec-

ondary structure modeling representations such as base pair probability matrices [32, 33, 34], tree

profiles [35, 36], stem graphs [37] etc. have been used in RNA alignment, an important step in

novel ncRNA detection. These alignment methods first infer the possible structures of each input

sequence and then conduct structural alignment, whose accuracy and efficiently are highly depen-

dent on structural representations. Despite promising output by existing alignment tools, many

existing secondary structure representations are highly complicated, incurring high computational

cost during alignment. Even with various heuristics or pruning techniques to reduce the time com-

plexity, ncRNA structural alignment are still more computationally intensive than pure sequence

alignment and scale poorly with the number and length of input sequences. Therefore, it remains
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important to develop an efficient and accurate structural modeling and comparison method.

In this work, we design a novel secondary structure representation and show its application

in consensus structure derivation through multiple ncRNA alignment. The two contributions are

listed below. First, we design and implement grammar string, a novel ncRNA secondary structure

representation. A grammar string is defined on a special alphabet constructed from a carefully

chosen context free grammar (CFG). It encodes how this CFG generates an ncRNA sequence and

its secondary structure. Compared to other secondary structure representations, grammar strings

are simple and can take advantage of well-developed algorithms on sequences or strings. For ex-

ample, grammar strings can convert ncRNA alignment into sequence alignment without losing any

structural conservation, rendering highly efficient RNA alignment algorithm. In addition, support-

ing theories for sequence alignment such as score table design and Karlin-Altschul statistics [38]

can be applied to grammar string alignment. Beyond alignment, grammar strings have potential

for applications such as ncRNA sequence database indexing, ncRNA clustering, profile HMM-

based ncRNA classification etc. It is worth mentioning that other string-based secondary structure

representations [39, 40, 41] exit. However, those methods focus on deriving ncRNAs’ similar-

ities without resorting to alignment and thus cannot be directly applied for consensus structure

derivation from homologous ncRNAs.

The second contribution is that we develop an effective method to exclude errors introduced by

ab initio structure prediction. Many ncRNA alignment programs [35, 36, 32, 33, 34, 37] align pre-

dicted structured output by RNA folding tools. However, optimal prediction may not be the native

structure [42], creating a need for choosing plausible structures as input to multiple alignment. In

this work, we propose an efficient pattern matching method to pre-select predicted structures that

are highly likely to be the true structure. This pre-screening can be used to reduce errors introduced

by ab initio structure prediction and to remove contaminated sequences that are not homologous to
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others.

Existing ncRNA alignment methods can be roughly classified into three basic types. The first

type aligns and folds simultaneously. The most accurate algorithm of this type was developed by

Sankoff [43]. However, it is prohibitively expensive with time complexity O(L3N) and memory

complexity O(L2N), where L and N are the length and number of input sequences, respectively.

Variants of the Sankoff algorithm have been proposed to reduce the computational time of multi-

ple alignment, such as Stemloc [44], Consan [45], MARNA [46]. The second type of methods first

builds a sequence alignment and then folds the alignment [47, 48, 22, 22, 49]. They infer struc-

tures from pre-aligned sequences generated using MULTIZ [50], ClustalW [51], or other available

sequence alignment programs. The accuracy of these tools is largely affected by the alignment

quality. In particular, when homologous ncRNA sequences only share structural similarity, build-

ing a meaningful sequence alignment becomes difficult. The third type of methods folds input

sequences and then conducts structural alignment, yielding higher accuracy. Different tools in this

category differ by different secondary structure modeling methods. Although some of them used

restricted Sankoff algorithm in their implementations, we classify them into “fold and then align"

category because they apply structure prediction in the first step. As our grammar string based

alignment belongs to the third category, we discuss related “fold and then align" tools below, fo-

cusing on their secondary structure representations.

Several programs encode secondary structure using base pair probability matrices derived from

McCastkill’s approach [18, 52]. NcRNA alignment is then converted into base pair probabil-

ity matrix alignment. However, base pair probability matrix comparison is highly resource de-

manding. For example, pmcomp [32] takes O(n4) memory and O(n6) operations for aligning

a pair of sequences with length n. More recent implementations such as LocARNA [33] and

FOLDALIGNM [34] applied various restrictions or pruning techniques to reduce the time com-
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plexity. But they are still much more expensive than sequence alignment.
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Figure 2.1 Two tRNA sequences from the human genome and the alignment of their grammar
strings.The stars below the alignment denote exact matches.

RNAforester [35, 36] used tree profiles to represent secondary structures. Algorithms on tree

alignment are applied for pairwise and multiple alignment computation. The asymptotic efficiency

depends on the node number of the tree representation and the maximum degree d of a tree node.

For n structures of average size s, their pairwise algorithm has time complexity O(s2d2) and space

complexity O(s2d). RNAforester can achieve higher efficiency than base pair probability matrix

comparison. However, it is reported [33] that they tend to produce many alignment columns that
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contain mostly gap characters in the multiple alignment mode. Carnac [37] used stem graphs

to represent secondary structures. However, their program cannot accept more than 15 input se-

quences, limiting its practical usage.

2.2 Method

Inspired by Jaakkola and Haussler’s discriminative classification method [53], we introduce gram-

mar string, a representation of an ncRNA sequence in the parameter space of context-free gram-

mar (CFG). Specifically, each ncRNA sequence and its secondary structure are transformed into

a string defined on a new alphabet, where each character corresponds to a production rule in a

CFG. We first introduce an unambiguous CFG for ncRNA sequence generation. Using the chosen

CFG as an example, we formally define grammar strings for modeling an ncRNA sequence and its

secondary structure.

2.2.1 An unambiguous CFG for ncRNA generation

NcRNA structures without pseudo-knots can be derived by CFGs [31]. A CFG is defined by a set

of nonterminals, a set of terminals, a start nonterminal, and a set of production rules of the form

V → α . V is a single nonterminal symbol, and α is a string of terminals and/or nonterminals.

By recursively replacing nonterminals on the right hand side of each production rule, an ncRNA

sequence and its secondary structure can be derived from a CFG. In this work, all our ncRNA se-

quences and their structures will be generated from G4, a light-weight CFG introduced by Dowell

and Eddy [54], using leftmost derivation. Following the general definition of a CFG, G4 has a fi-

nite set of nonterminal symbols V = {S ,T }, a finite set of terminal symbols T = {A,C,G,U,ε},

and a finite set of production rules defined as below:
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• S → aS |T |ε

• T →T a|aS â|T aS â

where a ∈ {A,C,G,U} and â ∈ {A,C,G,U}. a and â form complementary base pairs such as A-U

and G-C. In order to generate the unstructured single strand ‘C’ at 3’ end and the two outmost

base pairs in sequence tRNA_1 in Figure 2.1, the following production rules from G4 are called:

S →T , T →T C, T →G S C, S →T , T →U S A. Continuing to replace S by correctly

chosen production rules, we can derive tRNA_1. The sequence of production rules used for ncRNA

structure generation is called a derivation.

Using the leftmost derivation, an unambiguous CFG can guarantee a unique derivation for

a given ncRNA sequence and its secondary structure. For example, by using the unambiguous

grammar G4, we have only one choice when choosing a production rule to derive tRNA_1 sec-

ondary structure in Figure 2.1. For a more detailed introduction about unambiguous CFGs, we

refer readers to the review by Dowell and Eddy [54], where several light-weight unambiguous

CFGs including G4 are discussed.

2.2.2 Grammar string generation algorithm

Each ncRNA secondary structure has a unique leftmost derivation from an unambiguous CFG,

producing a one-to-one mapping between a structure and a production rule sequence. Intuitively,

homologous ncRNAs with similar structures will share similar derivations. This motivates us to

represent an ncRNA sequence and its secondary structure in the parameter space of a CFG. Thus,

ncRNA structural comparison is converted to the comparison of their derivations.

In order to represent an ncRNA structure using its derivation, we introduce a new alphabet,

where each character corresponds to a production rule in a CFG. One example alphabet derived
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from G4 is defined below.

• Use upper case character of a to represent production rule S → aS . For example, use A to

represent S → AS .

• Use | to represent S → ε .

• Use lower case character of a to represent production rule T → T a. For example, use c to

represent T →T C.

• Use P to represent base pair emission T → aS â.

• Use a special character # to indicate branching T →T aS â.

• No character is needed for production rule S →T .

Thus, the new alphabet is A = { A,C,G,U, a, c, g, u, P, |, #}. If these production rules are

used on DNA sequences, we can simply replace U(u) with T (t). For brevity, we name a string

defined on the above alphabet a grammar string. As an example, the derivation for generating

the unstructured single strand ‘C’ at 3’ end and the two outmost base pairs in sequence tRNA_1 of

Figure 2.1 is: S →T , T →T C, T →G S C, S →T , T →U S A. Thus, the corresponding

grammar string is “cPP" using the alphabet A . Note that we don’t distinguish different base

pairs (i.e. A-U, G-C, and G-U if allowed) in a grammar string. All base pairs are represented

as ’P’ in order to maximize the alignment score between homologous ncRNAs that share high

structural similarity but low sequence similarity. Figure 2.1 shows the utility of grammar strings in

detecting structural similarity between two tRNA sequences from the human genome. Because of

low sequence similarity, BLAST [55] fails to align them. However, their structural similarity yields

a meaningful global alignment between their corresponding grammar strings with 69% identity.
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void parse(i, j) 

{ 

if i >= j 

 print '|'; 

 return; 

else if Xi is a single stranded base 

 print uppercase of Xi; 

 i++; 

 parse(i,j); 

else if  Xj is a single stranded base 

 print lowercase of  Xj; 

 j--; 

 parse(i,j); 

else if  Xi and Xj form a base pair 

 print 'P'; 

 i++ and j--; 

 parse(i,j); 

else 

 print '#'; 

 k = the position that forms a base pair with Xj; 

 parse(i,k-1); 

 parse(k,j); 

}  

Figure 2.2 Algorithm for generating a grammar string for substring Xi.. j.

In theory, our grammar string generation process consists of two steps. First, write the pro-

duction rule sequence for an ncRNA sequence and its secondary structure. Second, transform the

sequence of production rules into a grammar string according to the definition of grammar string

alphabet. In practice, we use an efficient dynamic programming algorithm to design a grammar

string for an ncRNA structure directly, skipping the step of parsing an ncRNA sequence using a

CFG. The algorithm has time complexity O(L2), where L is the length of the ncRNA sequence.

Let X be an ncRNA sequence with its predicted or annotated secondary structure. i and j are

indexes in X . Xi is the base at position i. Figure 2.2 sketches the dynamic programming algorithm

generating a grammar string for substring Xi.. j. In order to generate the complete grammar string

for sequence X , one should call parse(1, L).
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2.2.3 Grammar pattern for encoding stem structures

The number of stems and their relationship largely define the basic “shape" of a secondary struc-

ture. For example, the cloverleaf structure of a tRNA sequence consists of four stems: acceptor

stem, D stem, anticodon stem, and TΨCG stem. The precursor structure of a miRNA usually con-

tains only one stem. According to the definition of grammar strings, three characters P,#, and |

encode the number and relative positions of all stems in an ncRNA secondary structure. If we sim-

ply remove all single stranded regions (i.e. substrings only consisting of A,C,G,U, a, c, g, u) from

a grammar string, we can use a simplified grammar string to represent the abstract stem structure

for an ncRNA sequence. For brevity, we name a simplified grammar string a grammar pattern,

which is a string defined on a reduced alphabet {P,#, |}. A grammar string can be converted into a

grammar pattern in two steps: 1) remove all substrings representing single stranded regions, and 2)

reduce every substring consisting of only Ps as a single P. Thus, the grammar pattern for sequence

tRNA_1 in Figure 2.1 is P##P|P|P|, where each P denotes a stem. There are four Ps, denoting four

stems. The end of each stem is marked by |. Number of # defines the number of bifurcations.

Different distributions of the same number of stems can yield highly different secondary struc-

tures. Figure 2.3 shows how grammar patterns can account for different structures with the same

number of stems. Note that all these grammar patterns are generated using G4 as the chosen CFG.

If other unambiguous CFGs are used to generate grammar strings for the same structures, different

sets of grammar patterns might be produced.

Ignoring all single stranded regions and length of each stem, grammar patterns only provide

a coarse-grained description of ncRNA secondary structures. However, because of the high effi-

ciency of pattern matching, grammar patterns can be used to speed up grammar string comparison.

For example, we do not expect significant structural similarities between a tRNA and a miRNA
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sequence. Instead of using Needleman-Wunsch [56] like alignment algorithm between their gram-

mar strings, a constant time grammar pattern matching program can be applied as a filtration step.

This filtration is particularly important when we aim to derive the consensus structure of multiple

putatively homologous ncRNAs. Although these sequences are expected to be sequenced from the

same gene family, it is possible that some of the sequences are from other regions. Thus, we can

use the grammar pattern matching technique to exclude contaminated sequences, ensuring a mul-

tiple sequence alignment with good quality. The same technique can be used to remove possible

errors introduced by MFE-based secondary structure prediction tools.

2.3 Using grammar strings for multiple ncRNA structural align-

ment

In this work, we show the utility of grammar strings in deriving consensus structure through multi-

ple ncRNA alignment, which has wide applications in both known ncRNA classification and novel

ncRNA search.

2.3.1 Score table design for grammar string alignment

Pairwise alignment is a fundamental step to multiple alignment and clustering. Existing alignment

algorithms such as Needleman-Wunsch [56] can be directly applied to grammar strings when a

score table defined on grammar strings’ alphabet is imported. Following the common practice in

score table design, we use maximum-likelihood ratio to derive the score between every pair of

characters in grammar strings’ alphabet A . For each pair of characters a,b in A , the score be-

tween a,b is s(a,b) = log Pr(a,b)
Pr0(a,b)

. Pr(a,b) is the target probability of a,b in a set of true alignments
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and Pr0(a,b) is the background probability that a and b are aligned. Assuming that a and b are

independent in the background model, we get Pr0(a,b) = Pr0(a)×Pr0(b). Because the ncRNA

family database Rfam [57] provides a large number of annotated ncRNA sequences, their align-

ments, and their associated secondary structures, we obtain both the target and the background

probabilities from Rfam. In summary, we present following steps of designing a score table for

grammar string alignment.

1. Build an alignment training set by randomly picking a large number of pairwise ncRNA

alignment from Rfam 9.1’s seed alignments. Some criteria are applied to select alignments

with reasonably high quality. For example, if a pairwise alignment contains too many gaps,

it will not be included in the training set. After applying the selection criteria, we had 18487

pairwise alignments in the training set.

2. Transform each pair of ncRNA sequence alignment into an alignment between grammar

strings using the given secondary structure annotations by Rfam.

3. Compute the target probability Pr(a,b) for each pair of aligned characters a,b in the above

grammar string alignments.

4. Generate grammar strings for a large number of ncRNA sequences that are randomly picked

from full families of Rfam 9.1. Compute the background probabilities Pr0(a) and Pr0(b)

from these grammar strings.

The complete score table for grammar string alignment can be found at our website1. All exact

matches have big positive scores. And bifurcation starting character # and stem ending character |

can only be aligned with themselves or cause a gap. This is consistent with our intuition because

it is not meaningful to align a bifurcation character with a base pair or a single stranded base.

1http://www.cse.msu.edu/∼yannisun/grammar-string
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Figure 2.3 Four different stem structures and their grammar patterns. The left column shows the
2D representation of an ncRNA folding. The right column shows the distributions of stems along
an ncRNA sequence. All grammar patterns are generated using G4 (our chosen unambiguous
context-free grammar).

Insertions or deletions of ‘P’ or single stranded characters correspond to insertions or deletions

of a base pair or single stranded bases in the ncRNA sequence alignment. Empirical experiments

are conducted to choose default values for their gap opening and extension costs. The default gap

opening score is slightly smaller than the lowest number in the grammar string’s score table. The

default gap extension cost is set as 1/10 of the opening cost. We assign bigger gap penalties for

structural characters # and | in order to force corresponding stems or single stranded regions to be

aligned together.

2.3.2 Multiple ncRNA alignment using grammar strings

Major steps of aligning multiple ncRNA sequences are sketched below.

1. Use an ab initio secondary structure prediction tool to predict both the optimal and sub-
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optimal structures of each input sequence.

2. Generate a grammar string for each predicted secondary structure. If an ncRNA sequence

has more than one structure predicted, multiple grammar strings will be generated.

3. Transform each grammar string into a grammar pattern. Use a voting mechanism to choose

the most popular grammar pattern that mostly likely represents the native stem structure

shared by the input sequences. All grammar strings that are not consistent with the chosen

grammar pattern will be discarded.

4. Apply a progressive multiple sequence alignment method on remaining grammar strings.

5. Derive the consensus secondary structure from multiple grammar string alignment. Trans-

form grammar string alignment into ncRNA sequence alignment using the ncRNA sequences

and their predicted structures as references.

2.3.2.1 Structure prediction

Various tools exist to predict the secondary structures of a single input sequence. A majority

of them search for structures with the minimum free energy (MFE) using a large number of ex-

perimentally derived energy parameters. The representative implementations include Mfold [15],

RNAstructure [16, 17], McCaskill’s base pairing probability computation [18], etc. MFE-based

methods can also be combined with other probabilistic models such as conditional log-linear mod-

els (CLLMs) in ContraFold [58] for structure prediction. In our experiments, we choose MFE

based tool UNAFold [59, 60] for structure prediction because of the following reasons. 1) It has

a user-friendly interface for both web-site based and standalone tools. 2) It can generate both the

optimal and suboptimal structures. It is shown that a suboptimal prediction rather than the optimal

one could be the “correct" structure [42]. Thus, being able to output suboptimal structure increases
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the chance of correct structure prediction for each input sequence. Empirically, we also tested

other folding tools such as ContraFold on our test sequences. However, no clear advantage was

observed.

2.3.2.2 Multiple grammar string alignment

We apply progressive alignment to multiple grammar strings. In the first stage, a guide tree is built

based on all-against-all pairwise similarities and unweighted pair group method with arithmetic

mean (UPGMA). In the second stage, the multiple sequence alignment is grown using the guide

tree. Sum-of-pairs score is used to evaluate the similarity between a character and a column in an

alignment or between two columns from two alignments. When we build the guide tree, several

methods are used to convert an alignment score to sequence distance. The first distance definition

comes from Feng and Doolittle [61]: D = − ln Sreal(i j)−Srand(i j)
Siden(i j)−Srand(i j) , where Sreal is the observed align-

ment score between sequences i and j. Siden is the average of the two scores of the two sequences

comparing with themselves. Srand is the alignment score between two random sequences with the

same length and composition as i and j. We applied shuffling to sequence i and j to obtain Srand .

Besides the Feng and Doolittle distance conversion method, we also evaluated several other simple

distance definitions. The “Simple Distance" model defines D = 1/(Sread(i j)/L), where L is the

alignment length. “No-random FD" model defines D = − ln Sreal(i j)
Siden(i j) . Our empirical experimental

results show that both “Simple Distance" and “No-random FD" generate better alignment than

more complicated Feng and Doolittle distance.
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2.3.3 Using grammar patterns to reduce errors caused by ab initio structure

prediction

The predicted structures for the same ncRNA sequence can differ significantly. It is important to

align only structures that are likely to be consistent with the native structure of the homologous

sequences. UNAFold [59] allows users to control the number of produced suboptimal structures

by specifying a range of allowed thermodynamic energy values ∆G. Suboptimal structures can

be highly different from the optimal structure for some ncRNA sequences. For example, tRNAs,

which have functional cloverleaf structures, can be folded in different ways with reasonably small

∆Gs. Figure 2.4 shows four different structures output by UNAFold for one tRNA sequence. Even

worse, the true structure may not always be the optimal prediction with the minimum ∆G. Thus,

it is not plausible to only keep the optimal prediction as correct structures may come from the

sub-optimal predictions. In this section, a grammar pattern based screening approach is introduced

to remove the contamination of wrong predictions before alignment.

As MFE-based ab initio structure prediction has limited accuracy, we increase structural pre-

diction accuracy by using both the MFE and sub-optimal predictions. As a result, multiple gram-

mar strings are derived for a single ncRNA. However, only one grammar string from each ncRNA

should be used for alignment. We thus choose a set of grammar strings so that the sum of their

pairwise similarity is maximized. Let m be the size of input ncRNA set S. For each ncRNA si,

Ni structures and their associated thermodynamic energy values ∆Gs are predicted for si. Each

predicted structure is converted into a grammar string. Thus, the output of the ab initio structure

prediction is a set of grammar strings and their associated ∆G: {(s1
1, ∆G1

1), (s2
1, ∆G2

1),..., (sN1
1 ,

∆GN1
1 ), ..., (sNm

m , ∆GNm
m ) }. s j

i is the grammar string derived from the jth structure prediction for si.

∆G j
i is the associated thermodynamic energy value. The goal is to choose a grammar string xi for
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tRNA:
UCCUCAGUAGCUCAGUGGUAGAGCGGUCGGCUGUUAACUGA

CUGGUCGUAGGUUCAAAUCCUACUUGGGGAG

-23.7

-22.6

-23.3

-23.5

Figure 2.4 Four highly different structures predicted by UNAFold for the tRNA sequence shown at
the bottom. The numbers beside each structure is their ∆G. The cloverleaf structure has a bigger
∆G than other predictions.

each ncRNA si so that the following function is satisfied:

argmax{x1,x2,...,xm} ∑
i, j∈S,i6= j

sim(sxi
i ,s

x j
j ) (2.1)

where sim(sxi
i ,s

x j
j ) is the similarity between two grammar strings derived from different ncRNAs.
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sim(sxi
i ,s

x j
j ) is minus infinity when i == j. Solving the above equation takes exponential running

time. Thus, we propose two heuristics to reduce the time complexity. First, based on the obser-

vation that predicted structures for the same ncRNA can have highly different topologies (refer

to Figure 2.4), we first determine the abstract shape using grammar pattern matching. Grammar

strings that can be converted into the chosen grammar pattern constitute the popular string set.

Others are discarded. Second, we apply an approximation algorithm on the popular string set to

solve the above equation.

We first describe the algorithm of using the most popular grammar pattern as the representative

abstract shape.

1. Denote the grammar pattern of grammar string sx
i as ox

i . Thus, for m ncRNAs, we have a set

of grammar patterns and their associated free energy values ∆Gs: {(o1
1, ∆G1

1), (o2
1, ∆G2

1),...,

(oN1
1 , ∆GN1

1 ), ..., (oNm
m , ∆GNm

m ) }. Usually ∆G < 0.

2. Choose a grammar pattern that is shared by most input sequences. For each different gram-

mar pattern o derived from the previous step, compute function:

f (o) = ∑
i=1..m

min
x=1..Ni

{∆Gx
i |ox

i == o} (2.2)

When the set {∆Gx
i |ox

i == o} is empty, min( /0) = 0. The grammar pattern o with the smallest

f (o) is the preferred structure of input ncRNA sequences. Denote this chosen grammar

pattern as o∗.

3. Of multiple grammar strings generated for each ncRNA sequence, only grammar strings that

can be converted to o∗ are kept in the popular string set for further processing.

For m input sequences, there are Ntotal = ∑1≤i≤m Ni structures predicted. Choosing the most pop-
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ular grammar pattern has linear time complexity O(Ntotal).

Table 2.1 Structure predictions for three tRNA sequences. Multiple structure predictions are out-
put for each sequence. For each prediction, column named “stems" displays its stem structure
denoted by brackets. The corresponding grammar pattern and ∆G are listed in columns 3 and 4,
respectively.

ID stems grammar pattern ∆G
seq 1 (()()()) P##P|P|P| -38.7 *

(()()()) P##P|P|P| -37
seq 2 (()()()) P##P|P|P| -32.6 *

(()()()) P##P|P|P| -32
(()()()) P##P|P|P| -31.6

seq 3 () P -23.6
(()()) P#P|P| -23

Once we have the popular string set, we choose m grammar strings from it to solve Eqn. (1).

We apply an approximation algorithm based on guide tree building to choose xi. Essentially, we

build a guide tree from the popular string set until the tree contains a subtree with m leaves. As the

similarity between grammar strings derived from the same ncRNA sequence is minus infinity, the

first subtree with m leaves contains m grammar strings from m inputs with relatively small sum of

all-pairs similarity. In order to build the tree, we need to conduct all-against-all comparison, which

takes time complexity N2
total . And, suppose there are d internal nodes in the tree when it finishes,

the total running time is O(N2
total +d Ntotal).

An example of choosing grammar pattern and building popular string set for tRNAs is shown

in Table 2.1. There are three different grammar patterns in Table 2.1: P##P|P|P|, P#P|P|, and P.

Following the definition of f (o) in Eqn. 2, f(P##P|P|P|) is the sum of ∆Gs of grammar patterns

denoted with *. Thus, f(P##P|P|P|) = -71.3, which is smaller than f(P) and f(P#P|P|). Therefore,

P##P|P|P| is the chosen abstract shape for the three tRNAs. Note that no grammar string is chosen

from “seq 3" because none of them can be converted to the chosen grammar pattern. Thus, the

popular string set has size 5. we will build a guide tree from the five grammar strings which
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are derived from “seq 1" and “seq 2". The guide tree stops at the first step because a subtree

containing two leaves is formed. As a result, an alignment will only be conducted between two

grammar strings with ∆G = -38.7 and -32.6.

Applying the same method to 20 tRNA sequences, we found the cloverleaf structure with

four stems is the consensus structure shared by a majority of tRNA sequences. We repeated our

experiments using different energy parameters. The dominant structure remains the cloverleaf

structure although the second most popular structure alternates between a long hairpin and a three-

stem structure (i.e. “(()())"). After discarding grammar strings that are not consistent with the

chosen structure, we align remaining grammar strings using progressive alignment method.

2.4 Results

First, we conducted multiple sequence alignment for 20 tRNA sequences, which were used as

an example of handling errors introduced by structure prediction programs in Section 2.3.3. Fig-

ure 2.5 shows the consensus secondary structure derived from aligning grammar strings of given

tRNAs. We also tested other structural alignment programs including pmmulti [32], Murlet [62],

RNAforester [35, 36], MARNA [46], and LocARNA [33]. Figure 2.5 shows that the grammar

string alignment and Murlet both generate the best consensus structure for tRNA sequences.

Second, we use grammar strings to generate multiple ncRNA alignments for 452 families that

are randomly chosen from BRAliBase 2.1, an enhanced RNA alignment benchmark [63]. This

data set contains a diverse set of ncRNA families with different average sequence identity, length,

and structural conservation. Each family contains 15 ncRNA sequences. Suboptimal structures

with minimum-free energy values at most 10% higher than the optimal structure are predicted

using UNAFold [59, 60] on over 6700 sequences from these 452 families. The average number of
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XXXXXXXUAXXXXAGUUGGUAxxxxRXXXXXYUNANAAxxxxxNGUCXXXXXUUCRAAUxxxxxUxxxxxxxa
(((((((..((((........)))).(((((.......)))))....(((((.......))))).))))))).

Consensus sequence and secondary structure

aPPPPPPPUAu#cugn#rPPPPAGUUGGUA|PPPPPYUNANAA|PPPPPUUCRAAU|

Consensus grammar string using IUPAC code

Grammar
string LocARNA RNAforester

pmmulti murlet
marna

Figure 2.5 The consensus grammar string of tRNA alignment and the consensus secondary struc-
ture derived from the grammar string. X and x represent complementary base pairs. They can be
easily translated into nucleotide bases using input tRNA sequences. All other structural alignment
tools were tested under their default parameters except MARNA. For MARNA, using default struc-
ture prediction option RNAfold (from Vienna RNA package) generated no base pair in the con-
sensus structure. Thus we used RNAsubopt, which yielded a few more base pairs in the consensus
structure. The structure plotted by pmmmulti was generated from their consensus sequence and
structure, which only included a very small number of base pairs. However, their multiple align-
ment seemed to contain more base pairs. RNAforester detected less number of complementary
mutations and included several inconsistent base pairs such as U-U. LocARNA missed one base
pair in one stem. Murlet generated the same structure as our grammar string alignment method.

suboptimal structure for each sequence is 20. For longer ncRNA sequences (length around 300),

the number of suboptimal structures is close to 50. For short ones (length < 50), there are only a
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couple of suboptimal structures predicted.
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Figure 2.6 The differences of the reference structures (from Rfam) and the predicted consensus
structures from grammar string and Murlet alignments are plotted and compared. Lower numbers
indicate higher similarity between the predicted structure and the reference structure.

As Murlet [62], a Sankoff-based algorithm competes favorably in consensus structure quality

with other ncRNA alignment tools, we compare the accuracy of consensus structures predicted

from grammar string alignments and Murlet alignments. Since BRAliBase 2.1 only provides the

alignments for each family of ncRNA sequences, but not their secondary structures, we extracted

their reference structures from Rfam 9.1. In order to extract the consensus structure from a gram-

mar string alignment, a consensus grammar string is first generated from the alignment (one exam-

ple consensus grammar string is shown in Figure 2.5). And then this consensus grammar string is

translated into a secondary structure using a reversed protocol to the one described in Figure 2.2.

Murlet outputs the consensus structure along with each alignment. We compare the predicted sec-
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ondary structures with the reference structures using RNAdistance from Vienna RNA package.

Small distance indicates high similarity. The difference between predicted structures and the refer-

ence structures for both grammar string and Murlet alignments are summarized in Figure 2.6. Of

452 families, grammar string-based alignment produces consensus structures closer to the refer-

ence structures in 216 families and Murlet produces more accurate structure in 206 families. They

generate the same consensus structures for 30 families. Some families pose hard cases for both

methods, such as IRES_HCV and IRES_Picorna.

Figure 2.7 Consensus structures are derived for multiple families of each type of ncRNA, resulting
a RNAdistance output vector. For each type of ncRNA, the average RNAdistance output for Murlet
and grammar string alignment is compared.

Figure 2.8 compares the running time between Murlet and grammar string-based structure

prediction. The running time of grammar string alignment largely depends on the size of popular

string set, from which a set of strings are chosen as input to multiple alignment.

In order to analyze how grammar string and Murlet perform on each type of ncRNA, Figure 2.7

compares the average RNAdistance output for 25 types of ncRNAs, each of which contains mul-

tiple families in BRAliBase 2.1. The figure shows that grammar string-based methods produces
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Figure 2.8 Running time comparison between grammar string and Murlet. The running time of
grammar string is largely decided by the popular string set size. As Murlet uses over 2000 seconds
for the family gcvT, we did not include this family in this figure in order to keep the fine scale of
Y-axis.

more accurate consensus structures than Murlet for 13 types of ncRNAs: 5S_rRNA, Entero_OriR,

gcvT, Hammerhead_3, HCV_SLIV, HepC_CRE, Intron_gpII, S_box, SECIS, SPR_bact, THI,

tRNA, and yybP-ykoY. Murlet performs better for 10 types of ncRNAs: Entero_5_CRE, En-

tero_CRE, HCV_SLVII, HIV_FE, HIV|_GSL3, HIV_PBS, IRES_HCV, IRES_Picorna, Retrovi-

ral_psi, and U2. Thus, grammar string performs slightly better than Murlet in consensus structure

derivation.

The major cause for the high structural difference for some families is the inaccuracy of the

ab initio structure prediction program. Our alignment quality relies on the accuracy of structure

prediction program. The prescreening algorithm can choose structures with the same number

of stems and bifurcations. However, some predicted structures of homologous ncRNAs contain

highly different numbers of base pairs for a pair of homologous sequences, causing low similarity

between the derived grammar strings. Instead of using pure ab initio structure prediction tools,
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we plan to use variants of Sankoff algorithm to generate consensus structures between a pair of

sequences and then use these structures to derive grammar strings.

2.5 Discussion and conclusion

We have described the grammar string, a novel and simple ncRNA secondary structure repre-

sentation. By encoding secondary structures in grammar strings, ncRNA structural alignment is

transformed into sequence alignment. When there is no structural information available for ncRNA

sequences, ab initio or other structure prediction tools are used to derive secondary structure infor-

mation, which is needed for grammar string generation. Thus, grammar string alignment quality

relies on the accuracy of structure prediction. When the structure prediction is reasonably accurate,

grammar string alignment can be highly accurate and efficient for homologous ncRNA consensus

structure derivation. Besides building ncRNA structural alignment, grammar string can be used to

encode characterized ncRNA structures, comparing different structures, and searching for common

structural motifs.

In the current grammar string generation algorithm, we don’t distinguish different base pairs

(G-C, A-U, and U-G if allowed) in order to maximize alignment score of homologous ncRNA

sequences that share strong structural similarity rather than sequence similarity. However, it is

worth testing whether an expanded alphabet can increase alignment accuracy. Thus we plan to : 1)

distinguish different base pairs in an expanded grammar string alphabet, and 2) use a set of high

quality pairwise ncRNA alignments to train the new substitution score table for the new alphabet.

In addition, we will evaluate how different alignment methods (such as interactive vs. progressive)

and different gap penalties in stems and single stranded regions affect the final alignment quality.
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Chapter 3

Secondary structure prediction of ncRNAs

including pseudoknots

3.1 Background

As knowing the secondary structure provides important information to understanding the tertiary

structures and thus the functions of ncRNAs, deriving the secondary structures of ncRNAs remains

an important research topic in RNA informatics. Pseudoknot is an important structural motif in

secondary structures of many types of ncRNAs. Formally, a pseudoknot occurs when an RNA has

two base pairs, i− j and i′− j′, such that i < i′ < j < j′. Psuedoknots are known to play important

functions in telomerase RNA, tmRNA, rRNA, some riboswitch, some protein-biding RNA, Viral

ribosomal frameshifting signals, etc [64].

There are two types of structure prediction methods. One is ab initio folding tools. A majority

of them [15, 16, 17, 18, 19] search for structures with the minimum free energy (MFE) using a

large number of experimentally derived energy parameters. Despite promising progress in the ab

initio structure prediction methods, their accuracy is still limited. The predicted structure with the

MFE may not be the native structure of an ncRNA.

More accurate structure prediction methods are based on comparative ncRNA analysis, which

aligns homologous ncRNAs and derives their consensus structure. A number of ncRNA alignment
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and structure derivation tools exist. The most accurate tool developed by Sankoff [43] aligns and

folds ncRNAs simultaneously. However, this method is prohibitively expensive. Even with various

heuristics or pruning techniques, ncRNA structural alignment tools are still computationally inten-

sive and scale poorly with the number and length of input sequences. In addition, most existing

tools do not allow pseudoknots, an important structural motif in RNAs. Thus, there is a need for an

efficient and accurate comparative structure derivation tool that can handle any secondary structure

including pseudoknots.

In this work, we introduce a consensus structure derivation approach based on grammar string,

a novel ncRNA secondary structure representation that encodes an ncRNA’s sequence and sec-

ondary structure in the parameter space of a context-free grammar (CFG) and a full RNA grammar

including pseudoknots. The main components of our method include:

• A novel ncRNA secondary structure representation named grammar string, which is defined

on a special alphabet constructed from production rules in a formal grammar such as context

free grammar (CFG) [31]. It encodes how this grammar generates an ncRNA sequence

and its secondary structure. Grammar strings are simple and can take advantage of well-

developed algorithms on sequences or strings.

• A systematic method to exclude errors introduced by ab initio structure prediction. As the

optimal structure output by existing tools may not be the native structure, we design an

algorithm to choose correct structures using both the optimal and sub-optimal predictions.

• A general method that can be applied to any structural alignment as long as there is a formal

grammar describing the structure. We have extended grammar strings to handle pseudoknots

using the full RNA grammar introduced by Rivas and Eddy [65].
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3.2 Method

3.2.1 Grammar string and grammar pattern

Inspired by Jaakkola and Haussler’s discriminative classification method [53], we introduce gram-

mar string, a representation of an ncRNA sequence and its structure in the parameter space of a

grammar. In this method, each ncRNA sequence and its secondary structure are transformed into

a string defined on a new alphabet, where each character corresponds to a production rule in a

grammar. We use two grammars in this work. For secondary structures without pseudoknots, a

context-free grammar (CFG) is sufficient. For secondary structures containing pseudoknots, we

choose the full ncRNA grammar introduced by Rivas and Eddy [65].

3.2.2 Grammar strings for ncRNAs with pseudoknots

Pseudoknot is an important structural motif for ncRNAs. Two helical segments are either parallel

or nested for pseudoknot-free structures. But they can form crossover pseudoknot as shown in

Figure 3.1.(A). Describing the language of pseudoknots is beyond the ability of CFG. Recently,

Rivas and Eddy [65] presented a full RNA grammar for ncRNAs with pseudoknots. This grammar

adopted a small number of auxiliary symbols instead of general context-sensitive grammar to parse

sequences with pseudoknots in polynomial time. In this work, to distinguish it from G4 in the

previous chapter, we name the full grammar “RE-pseudo".

RE-pseudo has a bigger set of nonterminal symbols V={W , WB, V ab, WH , V abcd
H , IS1, IS2 }

than G4, where WH and V abcd
H are used to generate pseudoknots. There are 43 different production

rules in this grammar and thus we define grammar strings on an alphabet of size 43. The full list of

production rules is not given here due to the space limitation. We refer readers to the original paper

by Rivas and Eddy. We only list three production rules which will be used to generate the prefix
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Figure 3.1 (A) An example of pseudoknot with the most common topology. (B) The dot-bracket
representation for the pesudoknot in (A). <> and Aa are used to distinguish base pairs from two
helical segments in the pseudoknot. (C) Three production rules from RE-pseudo. The diagrams
are reproduced from Rivas and Eddy’s original description of this grammar. (D) The first five steps
in (A)’s derivation using the grammar RE-pseudo.

of a grammar string for the simple pseudoknot in Figure 3.1.(A). The three rules, their diagrams,

meanings, and the assigned characters can be found in Figure 3.1.(C). Based on these conventions,

the prefix for the H-ytpe pseudoknot in Figure 3.1.(A) is AA%PP. We can also replace P with

different characters to distinguish different base pairs.

In the previous chapter, we use the pseudoknot-free grammar G4 as an example to introduce

grammar pattern. The same idea can be applied to RE-pseudo. We can transform grammar strings

for RE-pseudo into grammar patterns using a similar strategy. Although this grammar can replace
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G4 for any ncRNA secondary structure derivation, it is much more complicated than G4. Thus, we

keep G4 for ncRNAs without pseudoknots. The pseudocode for generating grammar string based

on RE-pseudo parsing can be found on htt p : //www.cse.msu.edu/ achawana/grammar− string.

3.2.3 Consensus structure derivation through multiple grammar string align-

ment

In this section, we sketch the major steps of consensus structure derivation using grammar string

alignment.

1. Choose an ab initio secondary structure prediction tool to predict both the optimal and sub-

optimal structures for each input sequence.

2. Generate a grammar string for each predicted secondary structure. If an ncRNA sequence

has more than one structure predicted, multiple grammar strings will be generated.

3. Based on the assumption that the correct structure should be shared by a majority of input

sequences, we choose one grammar string from each input ncRNA so that the sum of their

pairwise similarity is maximized. This step is used to remove possibly wrong predictions

from previous ab initio structure prediction. Detailed algorithms can be found in the next

section.

4. Apply progressive multiple sequence alignment on chosen grammar strings from the previ-

ous step and derive the consensus secondary structure.

Various tools [15, 16, 17, 18] exist to predict the secondary structures of a single input sequence. A

majority of them search for structures with the minimum free energy (MFE) using a large number

of experimentally derived energy parameters. For structure prediction without pseudoknots, we
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choose UNAFold [59, 60] because: 1) it has been tested extensively; 2) it is easy to apply on large-

scale experiments; 3) it can generate both the optimal and suboptimal structures. Empirically,

we also tested other folding tools such as ContraFold [58] on our test sequences. However, no

clear advantage was observed. For similar reasons, we choose Hotknots 2.0 [19] for pseudoknot

prediction.

To derive the consensus secondary structure we conduct progressive multiple alignment on

grammar strings using a guide tree, which is built based on all-against-all pairwise similarities and

unweighted pair group method with arithmetic mean (UPGMA).

3.3 Results

Table 3.1 Comparison of grammar string and RNASampler on pseudoknot derivation

RfamID name average grammar RNA- grammar RNA-
length string Sampler string Sampler

accuracy accuracy running time (s) running time (s)
RF00165 Corona_pk3 62 4 8 2.96 2.59
RF00381 Antizyme_FSE 57 0 11 3.07 5.2
RF00505 RydC 64 0 3 2.78 0.32
RF00176 Tombus_3_IV 91 30 1.46 12.45
RF00233 Tymo_tRNA-like 82 11 1.21 6.7
RF00499 Parecho_CRE 111 29 2.22 2.77
RF00507 Corona_FSE 82 20 1.34 5.56
RF00523 Prion_pknot 41 4 0.51 0.82

Accuracy is defined as the base pair difference between the reference structure and the predicted structure.
RNASampler outputs errors or structures that do not have the same abstract shape as the reference structure
for five families. Thus their accuracy is not measured.

The current version of Rfam contains 71 families with pseudoknots. 25 of them are published

rather than being computationally predicted. We focus on testing grammar strings on the 25 fam-

ilies. For each family, we first apply HotKnots [19] to predict secondary structures. Both the

optimal and sub-optimal predictions are kept. As these predictions show great variance in their
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Figure 3.2 Illustration of the reference structures and predicted structures by grammar string-based
alignment (denoted as GS) and RNASampler (denoted as RS) on 8 families. Note that if RNASam-
pler fails to output a structure containing pseudoknots or outputs errors, their predictions are not
displayed.

topology, we use the method described in Section 2.3.3 to choose a grammar pattern that is shared

by a majority of input sequences. Only grammar strings that can be converted into the chosen

grammar pattern are candidates for multiple alignment. For 17 families, we fail to obtain a gram-

mar pattern that is shared by at least 2 input sequences. Thus, we can only conduct multiple ncRNA

alignment for 8 families. For each family, if the number of available grammar strings is less than

10, we align all of them. Otherwise, at most 10 grammar strings are aligned. To compare our tool

with existing ones that do not require an alignment as input, we apply RNASampler [66] on the
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25 families. RNASampler outputs errors or structures without pseudoknots for 14 families. And

for other three families, the predicted structures are not as accurate as grammar string alignment.

ILM [67] can also predict pseudoknots without requiring an alignment as input. However, we are

not able to run their program on our input. We summarize properties of the eight families, the

structure derivation results of grammar string alignment and RNASampler in Table 3.1. We also

plot the reference structures and the predicted structures from grammar strings and RNASampler in

Figure 3.2. The results show that pseudoknot prediction is a highly challenging problem, especially

for long ncRNAs (> 100 nt). Hotknots becomes less accurate with the increase of inputs’ sizes.

Both our program and RNASampler are not able to handle long ncRNAs with pseudoknots. The

commands, parameters, and alignment results of RNASampler and our tool can be downloaded

from our website.

3.4 Discussion and conclusion

By encoding secondary structures in grammar strings, ncRNA structural alignment is transformed

into sequence alignment. We have shown the utility of grammar string alignment in consensus

structure derivation for ncRNAs including pseudoknots. Being a type of “fold and align" tool,

grammar strings’ performance relies on the quality of the ab initio structure prediction tools. In

the worst case, there is no grammar pattern that can be shared by at least two input sequences,

rendering low accuracy of structure derivation. Thus, grammar string-based alignment works best

when a few input sequences have consistent structure predictions.

One future direction is to reduce the running time of grammar string comparison. In particular,

we need to have a more efficient algorithm to choose input to multiple sequence alignment from

hundreds of sub-optimal structures. Second, we need to improve the quality of grammar string
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alignment when the ab initio structure prediction tools have poor accuracy. One alternative method

is to apply simplified SanKoff algorithms to conduct pairwise structure derivation. Then we will

use these structures instead of output of existing MFE-based tools as input to grammar string

construction.
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Chapter 4

Shape and secondary structure prediction

for ncRNAs including pseudoknots based on

linear SVM

4.1 Background

There are 26,704 sequences in 71 ncRNA seed families of Rfam 10.0[68] containing pseudoknots.

With advances in sequencing technologies and structure prediction, more pseudoknot structures

are expected to be disclosed.

Many computational methods have been used to determine the native structure of ncRNAs. A

native structure is a structure that forms conformationally folding in native state before forming

the tertiary structure. The gap between the free energy of the native state and other non-native

structures is often small[20]. Thus, misfolded conformations can form with high probabilities[21].

For a review of available tools, please see[69, 70].

Although there is promising progress, finding the native secondary structure is still difficult.

In particular, identifying the pseudoknot, an important structural motif in many types of ncRNAs,

poses a great challenge for existing methods. Predicting the minimum free energy secondary

structure that includes pseudoknots has been proven to be NP-hard [23]. One recent attempt is

39



to first predict the abstract shapes (or shapes for short), which retain adjacency and nesting of

structural features but disregard the length details of helix and loop regions [71]. The predicted

shape will then be used to guide structure prediction. The idea of abstract shapes has long been

used to characterize different types of structures. For example, most tRNAs have the clover-leaf

structure; most pre-miRNAs have the stem-loop structure; many types of pseudoknots have an

H-type structure.

While the size of the folding space of an RNA sequence increases exponentially with the se-

quence length [1], many possible folding only differ in the details of the loop and helix regions and

hence have the same abstract shape. Previous analysis shows that the space of the abstract shapes

is significantly smaller than the complete folding space [72]. Knowing the abstract shape can

significantly reduce the search space for structure prediction tools and improves the accuracy of

structure prediction [71, 73]. The utilities of abstract shapes have been demonstrated in a number

of recent publications. The Giegerich group used abstract shapes in comparative structure predic-

tion in pseudoknot-free sequences [73]. People use shapes to aid miRNA precursor prediction in

large-scale studies [74, 75]. Furthermore, shapes are used to index fast-expanding ncRNA families

in Rfam [68] and lead to efficient known ncRNA search [76].

Previous work focused on shape derivation and usage for pseudoknot-free ncRNAs. There is a

lack of studies of the usage of shapes in pseudoknot structure prediction. In this work, we predict

the consensus shape of a group of homologous ncRNAs that may contain pseudoknots. In addition,

we develop a program that uses the consensus shape for consensus pseudoknot structure prediction.

A majority of existing pseudoknot structure prediction tools often have topology restrictions such

as H-type, recursive H-type [77, 78, 79, 80], kissing hairpin, or complexity levels of pseudoknot

using genus numbers [81]. Therefore, using the predicted abstract shapes of input sequences can

help remove the topology restriction and leads to more general and practical pseudoknot structure

40



prediction tools. Compared with existing tools, our tool has the following properties:

• While most existing shape prediction tools use a single sequence as input, we conduct com-

parative shape prediction on homologous ncRNAs that might contain pseudoknots. Exper-

iments show that comparative structure or shape prediction, which derives the consensus

structure or shape from a group of homologous sequences, can achieve better accuracy than

using a single sequence [69, 73, 82].

• We can predict the abstract shapes of both pseudoknot-free and pseudoknot-containing se-

quences.

• Current tools use the shape probability [83] or the sum of energies of structures to rank

shapes. We use multiple features by combining well-studied feature ranking methods and

the support vector machine (SVM) method.

• We demonstrate the usage of the shape by applying it to pseudoknot structure prediction.

The whole software package can be directly used to derive the consensus secondary struc-

ture of homologous ncRNAs. The consensus shape prediction tool named KnotShape and

the corresponding consensus pseudoknot prediction tool named KnotStructure are publicly

available at our website.

We tested our software on hundreds of RNA sequence sets. The experimental results show that

we can achieve 18% higher accuracy than the state-of-the-art consensus shape prediction tools on

pseudoknot free sequences. For pseudoknot-containing sequences, we achieve approximate 29%

higher sensitivity and 10% higher positive predictive value in structure prediction than similar

tools.
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4.2 Related work

Computational structure prediction can be divided into de novo structure prediction and compara-

tive structure prediction, which derive structures from a single sequence and multiple homologous

ncRNAs respectively. As our method is to derive the consensus shape and structure of homologous

ncRNAs, we briefly introduce related work in comparative ncRNA structure derivation. There are

three general approaches for structure derivation from multiple sequences: simultaneously align

and fold, align-then-fold, and fold-then-align. It is computationally expensive to simultaneously

align and fold pseudoknot structures. The performance of the align-then-fold pseudoknot pre-

diction heavily depends on the quality of the alignment. Usually multiple sequence alignment

(MSA) tools such as ClustalW [51] are used to generate the alignment as the input to the folding

tool. However, common structures can be missed due to misalignment between sequences lacking

significant similarity [63]. In this work, we design a pseudoknot prediction tool using the fold-

then-align strategy that does not require an alignment as input. Tools based on fold-then-align use

a de novo folding tool to construct a small but representative sample of the folding space, which

consists of the predicted optimal and sub-optimal structures. Structures from the folding space are

chosen to maximize the structural and sequence similarity.

A number of software packages exist to predict the abstract shape for a single sequence. The

sum of energies or the accumulated Boltzmann probabilities of all structures within a shape have

been used as main features for shape prediction. The latter is often referred to as the shape proba-

bility. Usually the shapes with small sum of energies or high shape probabilities are more likely to

be the correct shapes. It is claimed in RapidShapes [83] that using shape probabilities has superior

performance over free energy-based approach because of its independence on sequence length and

base composition. However, exact computation of the shape probability incurs exponential com-
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putational cost to the sequence length [83]. Thus, various heuristics or restrictions [84, 85] have

been adopted for fast shape probability computation.

RNAcast [73] derives the consensus shape from homologous pseudoknot-free sequences based

on the fold-then-align strategy. Structures are grouped based on their shapes and shapes are ranked

by sum of free energies of structures within the shape in ascending order. The first-ranked shape is

presented as the consensus shape. The consensus structure is derived from the lowest free energy

structures of each sequence within the shape.

4.3 Methods

4.3.1 RNA structures and their representations

4.3.1.1 RNA structures and pseudoknots

RNA molecules fold into complex three dimensional structures by nitrogenous bases that are con-

nected via hydrogen bonds [86] (Figure 1a). The secondary structure of an ncRNA is defined by

the interacting base pairs. Some RNA molecules fold into pseudoknot structures by paring bases

in loop regions with bases outside the stem loop (Figure 1b).

In this work, two types of ncRNA secondary structure representations are used. The first type

is the arc-based representation, where nucleotides and hydrogen bonds are represented by vertices

and arcs, respectively (Figure 1c). For pseudoknot-free secondary structures, all arcs are either

nested or in parallel. Crossover arcs indicate pseudoknots. The second type is based on dot-

bracket notation, where ‘.’ represents unpaired bases and matching parenthesis ‘(’ and ‘)’ indicate

base-pairing nucleotides. Following the annotation of Rfam [68], we use an extended dot-bracket

notation to represent pseudoknot structures. The base-pairing nucleotides forming pseudoknots
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are represented by upper-lower case character pairs, such as A..a or B..b, as shown in Figure 1d.

Figure 4.1 Structure of an RNA pseudoknot. (a-d) show the three-dimensional structure, sec-
ondary structure, arc-based representation, and dot-bracket notation of mouse mammary tumor
virus (MMTV) H-type pseudoknot with PDB code 1RNK. The bases in stacking regions are col-
ored with red and blue while the unpaired bases are colored with green and brown.

4.3.1.2 Abstract shapes

Abstract shapes were formally introduced by Giegerich et al [71]. The folding space of a given

RNA sequence is partitioned into different classes of structures, by means of abstracting from

structural details. These classes are called abstract shapes, or shapes for short. An RNA secondary

structure can be mapped to an abstract shape with different levels of abstraction [73]. In the

abstract shape, details about the lengths of the loop and stacking regions are removed (see Figure 1

for examples of stacking and loop regions). Stacking regions are represented by pairs of brackets

and unpaired regions are represented by underscores.

Pseudoknots are represented by pairs of upper-lower case characters. Figure 2 presents exam-

ples of the abstract shapes of level 1, 3, and 5 of a pseudoknot-free structure and a pseudoknot.

Level 5 represents the strongest abstraction and ignores all bulges, internal loops, and single-

stranded regions. Level 3 adds the helix interruptions caused by bulges or internal loops. Level 1

only abstracts from loop and stack lengths while retains all single-stranded regions.
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AUCGGCGCACAGGACAUCCUAGGUACAAGGCCGCCCGUU

..(((.((..(((....))).(((.....))))))))..

L1: _[_[_[_]_[]]]_

L3: [[[][]]]

L5: [[][]]

(a) (b) GGCGCAGUGGGCUAGCGCCACUCAAAAGGCCCAU

(((((..AAAAAA.)))))........aaa.aaa

L1: [_AA_]_a_a

L3: [AA]aa

L5: [A]a

Figure 4.2 Examples of abstract shapes in level 1, 3 and 5. (a) The abstract shapes of a pseudoknot-
free structure. (b) The abstract shapes of a structure with a pseudoknot.

4.3.2 Shape prediction

In this section we describe KnotShape, a comparative shape prediction tool for homologous ncRNA

sequences that allows pseudoknots. The task of shape prediction is to select the best representative

shape for given homologous sequences. In order to identify the best shape, various features such

as shape probability [83], sum of energies of all structures in this shape [73], and the rank sum

score [73] are evaluated to rank shapes. It has not been systematically assessed whether combina-

tions of multiple features can lead to better shape prediction. In this work, we incorporate Support

Vector Machine (SVM)[87] and feature selection techniques to determine important features for

shape identification. In addition, we adopted a machine learning-based scoring function to evaluate

the qualities of shapes.

The method contains two important components. The first one is the consensus shape predic-

tion (KnotShape) and the second one is structure prediction using predicted shape as input (Knot-

Structure). We will first describe KnotShape, focusing on the feature construction and selection

strategy. Then we will describe how to derive the consensus structure given the consensus shape.

4.3.2.1 Notation

Figure 4.3 illustrates the mapping between sequences, structures, and shapes. The input is a set of

homologous ncRNAs and the output is the predicted consensus shape. Notations used in this paper

correspond to this mapping.
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Figure 4.3 The relationship between sequences, structures, and shapes.

• The N homologous ncRNAs constitute the input sequence space. Xi represents the ith se-

quence.

• Each sequence can be folded into different secondary structures. Let Si represent the set of

folded structures of the ith sequence Xi. The set of structures predicted from all N input

sequences is the union of Si: S = S1∪S2∪ . . .∪SN .

• Si
j is the jth structure in the folding space of Xi. Its free energy is denoted by ∆G(Si

j). For a

sequence Xi, the minimum free energy MFE(Xi) is the lowest free energy among the energies

of all predicted structures of Xi, i.e. MFE(Xi) = min1≤ j≤|Si|∆G(Si
j).

• All structures in S can be classified into a set of abstract shapes. For a shape P, we record its

associated sequences and structures. P.LX denotes the set of associated sequences, each of

which can fold into a structure with shape P. P.LS denotes all structures with shape P.

• P̂ is the predicted shape of the given homologous sequences X1,X2, ..,XN .
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In order to explore the large folding space of multiple homologous sequences, we use a de novo

folding tool to output the optimal and sub-optimal structures within a given energy cutoff. This

heuristic does not allow us to explore the complete folding space. Given the observation that the

correct structure is usually close to the optimal structure, this heuristic works well in practice [88].

4.3.2.2 Feature construction and selection

Intuitively, the correct shape tends to possess the following properties. The correct shape should

have high shape probability, meaning that a large number of structures can be classified into this

shape. When we have multiple homologous sequences as input, the correct shape should be well-

represented by all or a majority of the input sequences. Also, the ranking of the structure with

the correct shape in the folding space of each sequence should be high. In addition, some struc-

tures with the correct shape have low thermodynamic energies. For the energy-related properties,

various measurements can be introduced. For example, instead of using the sum of the energies

of all structures within a shape, one can use the smallest energy. Furthermore, more complicated

properties such as the sequence similarity for all sequences associated with a shape P and the struc-

tural similarity of structures associated with a shape P might contribute to the shape prediction too.

These similarities can be quantified using different methods such as k-mers profiles, multiple se-

quence alignment scores, variation of base pairs and so on.

It is not trivial to decide whether a single property is enough to choose the correct shape. If not,

which combination of these properties can lead to the best shape prediction performance. In order

to systematically choose a set of features (i.e. properties) for shape prediction, we use F-score

[89] to measure the discrimination between a feature and its label. Given the feature vector xk,
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k = 1, ..,m, the F-score of the ith feature is defined as:

F(i)≡
(x̄(+)

i − x̄i)
2 +(x̄(−)i − x̄i)

2

1
n+−1 ∑

n+
i=1(x

(+)
k,i − x̄(+)

i )2 + 1
n−−1 ∑

n−
i=1(x

(−)
k,i − x̄(−)i )2

where n+ and n− are the numbers of positive and negative instances respectively. x̄i, x̄(+)
i , and x̄(−)i

are the average values of the ith feature of the whole, positive labeled, and negative labeled data.

x+k,i and x−k,i are the values of ith feature of the kth positive and negative instances respectively.

F-score reflects the discrimination of the features. The higher the F-score, the more discrimina-

tive the feature is. F-score is known to have a disadvantage in that it does not carry out the mutual

information between features as it considers each feature separately. However, F-score is simple

and quite effective in practice.

Feature selection searches for the optimal subset of features [90]. There exist different methods

for feature selection. In this work, we adopt sequential forward search (SFS) [91] because of its

simplicity and effectiveness. Starting with an empty set, we iteratively select one feature at a time

and add it to the current feature set. Features are selected in a descending order of the discriminative

power determined by the F-score. The feature added is the one that gives the highest accuracy.

Based on the properties that might be relevant to consensus shape prediction, we construct

17 features and compute the F-score for each of them. The accuracy is evaluated using a linear

SVM method. The standard grid search approach is used to find an optimal SVM parameter. The

performance of a feature set is evaluated using 5-fold cross validation. Prediction accuracy is

the average value of all cross validation sets. The feature set that achieves the highest accuracy

includes the following four features.

• F1: the contribution of sequences. We capture the contribution of sequences using the num-

ber of sequences mapped to the shape. This feature reveals how the shape is shared among
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the homologous sequences. F1 = |P.LX |.

• F2: the contribution of structures. This feature represents the abundance of structures

mapped to the shape. F2 = |P.LS|

• F3: the average free energy. Energy model is commonly used to determine the stability of

predicted structures. The basic idea behind this feature is that a stable shape is expected to

be derived from a group of stable structures. F3 = ∑S∈P.LS ∆G(S)
|P.LS| .

• F4: the average of minimal free energy. This feature is different from F3 in that it con-

siders only the minimal free energy among all predicted structures of each sequence. F4 =

∑X∈P.LX MFE(X)
|P.LX | .

4.3.2.3 Shape ranking using a simple scoring function

Once the features are determined, they are used together with a trained linear SVM for shape la-

beling. Multiple shapes might be labeled as “true". In order to rank these candidate shapes for

the final shape selection, we evaluate each candidate shape using a score named sc, which is pro-

portional to the signed distance between the candidate shape to the classification hyperplane [92].

Specifically, sc = w · x+ b, where · denotes the dot product, w is the weight vector, and x is the

instance vector. w is trained on the optimization function in the linear SVM. The larger |w j| is, the

more important the jth feature is. This is restricted to w in a linear SVM model.

4.3.2.4 Time complexity of shape prediction

For N input sequences, there are S predicted structures. These structure can be grouped into P′

shapes. As we use the de novo folding tools to output near-optimal structures within a given energy

range (e.g. 5%), we found that N : S : P′≈ 1 : 10 : 1.375. Mapping structures to shapes takes O(SL),
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where L is the sequence length. As sorting shapes according to their features takes P′log(P′) and

P′ ≤ 2N and S≤ 11N, the procedure of shape prediction has time complexity O(NL+NlogN).

4.3.3 Consensus structure prediction given a shape

Once we determine the shape, we will predict the structure in the shape class for the given homolo-

gous ncRNAs. Structures corresponding to the same shape can differ significantly in the details of

the loop and stacking regions. A strategy is needed to choose the correct structure inside the shape

class for each input sequence. The simplest strategy is to output the MFE structure for the chosen

shape, which has been used in previous work [73]. However, the MFE structure in a shape may not

be the native structure. In particular, the accuracy of the MFE prediction for ncRNAs containing

pseudoknots is low.

In this section we describe KnotStructure, a comparative structure prediction method for ho-

mologous sequences given the shape. The rationale behind comparative structure prediction is that

the secondary structures and sequences are conserved during evolution. Thus, finding the structures

to maximize both the sequence and the secondary structure similarity among homologous ncRNAs

provides the basis for comparative structure prediction. Various methods for evaluating structural

and sequence similarity exist. The major challenge is to efficiently select |P̂.LX | representative

structures to achieve the highest structural and sequence similarity.

As we already derived the consensus shape P̂ using KnotShape, only structures with shape P̂

will be allowed. In addition, for each sequence Xi ∈ P̂.LX , only one structure with shape P̂ can

be selected. The total number of combinations of structures for measuring the similarity is thus

Πi=1 to |P̂.LX ||P̂.LS
⋂

Si|, where P̂.LS
⋂

Si contains structures with shape P̂ for a sequence Xi. Al-

though efficient heuristics exist to measure the similarity among multiple structures and sequences,

the sheer amount of combinations poses a great computational challenge.
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Procedure 1 Representative structures selection

Input: P̂, P̂.LX , P̂.LS
Output: The representative structures

1. Initialization
for Every two structures Sx

i and Sy
j do

//only evaluate similarity of structures from different sequences
if x 6= y then

Evaluate the similarity of Sx
i and Sy

j
else

Sx
i and Sy

j has similarity −∞

end if
end for
2. Select the set of representative structures using hierarchical clustering
//Each structure is a cluster by itself
repeat

Combine a pair of clusters with the highest similarity
For any structure Sx

i added to the cluster, remove all other structures Sx
j for j 6= i

Re-evaluate the similarity between clusters
until the cluster has size |P̂.LX|

In order to efficiently select representative structures, we use a similar method to Unweighted

Pair Group Method with Arithmetic Mean (UPGMA), an agglomerative hierarchical clustering

technique [93]. Each object (i.e. secondary structure) starts in its own cluster. The closest pair of

clusters is selected and merged into a single cluster as one moves up the hierarchy. The distance

between clusters is measured using arithmetic mean defined in UPGMA. Compared to the stan-

dard clustering procedure, we have constraints on the objects that can be selected into the same

cluster. Given the shape, only structures that have shape P̂ and come from different ncRNAs can

be combined in the same cluster. The detailed clustering process is described in Procedure 1.

During clustering, the structural and sequence similarity is evaluated using grammar string-

based approach [94, 95]. Grammar strings encode both secondary structure and sequence infor-

mation for an ncRNA sequence. Grammar string alignment score can accurately quantify the

structural and sequence similarity of two ncRNAs. In addition, grammar string can encode pseu-

doknot structures [94, 95]. For a sequence Xi and one structure Si
j in the folding space of Xi, Xi
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and Si
j are encoded in a grammar string gsi

j. We measure the similarity between any two grammar

strings using the normalized grammar string-based alignment score over the alignment length. The

similarity between groups of grammar strings is measured by arithmetic mean in UPGMA.

Figure 4.4 sketches the representative structure selection based on clustering procedure. Let

gsi
j be a grammar string converted from Xi and Si

j, Xi ∈ P.LX . Once gsi
j is selected, all the other

grammar strings derived from the folding space of Xi will be removed from further processing.

gs1
1 gs2

1 gs3
1 gs4

1 gs1
2 gs2

2 gs3
2 gs1

3 gs2
3 gs3

3 gs4
3 gs1

4 gs2
4 gs1

5 gs2
5

X1 X2 X3 X4 X5 Xk

S4
1 S1

3 S3
3S2

3S1
2 S3

2S2
2 S4

3 S1
4 S2

4 S1
5 S2

5S3
1S2

1S1
1

Figure 4.4 An example of structure selection based on hierarchical clustering. For each structure
Si

j in the folding space of sequence Xi, the grammar string encoding the structure and the sequence
is denoted as gsi

j. All sequences and their associated structures are converted into grammar strings
before clustering. The highlighted rectangles indicate grammar strings that are selected as repre-
sentative structures.

The progressive MSA is performed on the set of representative structures using the clustering

path as a guide tree. We then derive the consensus secondary structure from the alignment. The

consensus structure can be mapped to each aligned sequence to accomplish the predicted structure

of an individual sequence.

4.3.3.1 Running time of structure prediction

Converting a sequence and an associated secondary structure into a GS (grammar string) takes

O(L2), where L is the length of the sequence. Let the number of structures in P̂.LS be m. It

takes O(L2m) to encode all structures with shape P̂. In the first step of hierarchical clustering, we
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measure the similarity between GSs of different ncRNAs by conducting all-against-all comparison.

Conducting pairwise GS alignment takes O(l2), where l is the length of the GS sequence and l ≤ L.

By using the default energy cutoff (5%) for sub-optimal structure generation, we observed that

m ≤ 11N. Thus, the all-against-all similarity measure has time complexity O(L2N2). The guide

tree generated using the clustering procedure contains at most N representative structures. Thus,

the total running time for clustering is O(L2N3), which is the leading time complexity term for the

consensus structure prediction algorithm.

4.4 Results

4.4.1 Data sets

The training data set is the K10 from BaliBASE [40]. It contains 845 sequence sets, each of which

has 10 homologous ncRNAs. There are two test data sets. The first one is the K15 from BaliBASE.

K15 contains 503 sequence sets, each of which has 15 homologous ncRNAs. As existing shape

prediction tools are not designed for handling pseudoknots, we use the pseudoknot-free sequence

sets in K15 to compare the performance of shape prediction. After removing the sets containing

pseudoknots, we have 452 sequence sets left. To test the performance of pseudoknot prediction, we

constructed the second test set R15 from psuedoknot families of Rfam [68]. In Rfam 10.0, there are

71 families containing pseudoknots. 25 of them have published structures. Of the 25 families, only

families with at least 15 seed sequences are used for testing our tools. For each chosen family, sets

of 15 sequences are chosen randomly to construct the test sets. Finally R15 contains 160 test sets.

The average pairwise sequence identities range from 60-93%. For all sequence sets, the reference

shapes were derived from Rfam [68].
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4.4.2 SVM training

For both the training and testing data sets, we need to apply de novo folding tools to the sequences.

We choose a folding tool using the following criteria. First, this tool is able to output both the

optimal and sub-optimal structures. Second, this tool has high accuracy and can be efficiently

applied to a large number of ncRNAs. Finally, if the target sequences contain pseudoknots, this

tool should be able to output pseudoknot structures. As a result, we chose TT2NE [81]. Different

from many other pseudoknot prediction tools that have constraints on the type of the pseudoknot,

TT2NE is more flexible about the types of the target sequences. However, when it was applied to

K10, TT2NE failed to output structures for some sequences due to the length limit (200 nt) and

also existence of IUPAC characters in some sequences. Thus, for the training data set K10, we

applied quikfold [15] because K10 rarely contains pseudoknots. Although it is ideal to use the

same folding tool to the training and testing data set to achieve optimal classification performance,

the complexity of the training and test data sets together with the performance of de novo folding

tools lead to the current combination. In the Discussion Section we will briefly discuss how de

novo folding tools affect the performance.

We employed the SVM model implemented by LIBSVM tool [96] for classification. For each

sequence in K10, we applied quikfold with the energy range 5% to obtain both optimal and sub-

optimal structures of each sequence. The predicted structures were grouped based on their corre-

sponding shapes. Associated features were extracted and enclosed with each shape. We normalized

feature values to fit the different properties of test sets to the same scale.

To label shapes, we used the shapes extracted from the consensus structures in Rfam [68] as

the reference. Shapes are labeled according to their correctness. We label a shape as 1 if it is as

same as the reference shape. Otherwise, it is labeled as -1.
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4.4.3 Shape prediction comparison

We compared KnotShape with RNAcast [73], which is part of RNAshapes package [84]. RNAcast

takes the sequences as the input and predicts the consensus shape shared by all sequences. As it is

not designed for pseudoknot structures, we only applied RNAcast to 452 test sets of K15, which are

pseudoknot-free. TT2NE is applied to the test set using the default parameters. For each sequence,

the optimal structure and 10 sub-optimal structures are kept as the sample of the folding space for

each sequence. We compared our predicted shapes and the first-ranked shapes output by RNAcast

with the reference shapes derived from Rfam [68]. The comparison is presented in Table 4.1. Note

that RNAcast cannot output the shapes containing pseudoknots and thus is left blank for R15 in

Table 4.1. The accuracy of KnotShape is 18% higher than RNAshapes.

Table 4.1 Accuracy of shape predictions

K15 R15
Testset Correct shapes %Accuracy Testset Correct shapes %Accuracy

KnotShape 452 311 68.81 160 107 66.88
RNAcast 452 232 51.33 - - -

4.4.4 Structure prediction comparison

We applied the predicted shapes to pseudoknot structure prediction and compared the structure

prediction performance with IPknot [80], HxMatch [97], and TurboKnot [82], which are chosen

because of their popularity, availability, and easy usage on large number of sequences. Sequence

alignments were generated using ClustalW and entered as the input to IPknot and HxMatch. For

IPknot, we chose the appropriate levels of prediction according to the test sets. We ran Hxmatch

with the default parameters. We used the parameters suggested in [82] to run TurboKnot. Sensi-
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tivity and the Positive Predicted Value (PPV) are used to evaluate the performance:

Sensitivity =
T P

T P+FN
,PPV =

T P
T P+FP

TP is the number of correctly predicted base pairs. FN is the number of base pairs that are in the

reference structure but not in the predicted structure. FP is the number of base pairs that are in the

predicted structure but not in the reference structure. Figure 4.5 is the boxplot of the sensitivity and

KnotStructureIPknot TurboKnot Hxmatch KnotStructureIPknot TurboKnot Hxmatch
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Figure 4.5 Comparison of the sensitivity and PPV of different tools.

PPV over all 160 test sets. KnotStructure has the best overall performance on the whole data set.

The median values of sensitivity and PPV are 54.55% and 46.15% for KnotStructure. Hxmatch

has the next highest sensitivity and PPV (42.11% and 42.86% respectively). The abstract shapes of

these families are shown in Table 4.2. Three families contain simple H-type pseudoknots while the

other three families contain more complicated pseudoknots. In order to show the effect of shape

prediction in structure prediction, we predicted the structures of R15 using 10 randomly selected

shapes. The average sensitivity and PPV of predicted structures with the predicted shapes are

higher than those using random shapes as shown in Table 4.3. Table 4.4 and 4.5 show the average

sensitivity and PPV over all sequences of each family compared to other tools. The average running

time of KnotStructure on each family compared to other tools is shown in Table 4.6.
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Table 4.2 Abstract shapes of ncRNA families in R15

RNA Type Shape Level 5 Shape Level 3
HDV_ribozyme [A[B]]b[]a [AA[B]]b[[[[[[]]]]]]aa
Alpha_RBS [ABC]bac [[[ABC]]]bac
Tombus_3_IV [[]A][][]a [[[]A]][][]a
Tymo_tRNA-like [][][]A[a] [][][[]]AA[aa]
Corona_FSE [A]a [AA]aa
Prion_pknot [A]a [A]a

Table 4.3 Sensitivity and PPV of predicted structures using the predicted shapes and randomly
selected shapes

Predicted Randomly selected shape
shape 1 2 3 4 5 6 7 8 9 10

SEN 79.00 45.68 58.41 53.09 58.06 55.74 45.88 44.75 56.12 61.08 46.54
PPV 67.10 38.81 50.92 42.82 49.15 46.24 40.29 36.33 45.75 52.80 38.53

Table 4.4 Sensitivity for different ncRNA families

Sensitivity
RNA Type Len⊕ T S∗ KnotStructure IPknot TurboKnot Hxmatch
HDV_ribozyme 89.70 12 82.52 50.66 36.47 23.51
Alpha_RBS 110.99 18 74.36 46.59 46.24 24.49
Tombus_3_IV 91.61 4 84.00 65.91 72.00 80.00
Tymo_tRNA-like 85.12 3 96.79 76.41 83.52 75.09
Corona_FSE 82.91 9 96.14 56.55 56.55 73.27
Prion_pknot 40.46 114 40.17 13.70 2.96 30.26

Bold number and underlined number indicate the highest and the second highest sensitivity for each family.
⊕ Average sequence length. ∗ The number of test sets.

Table 4.5 PPV for different ncRNA families

PPV
RNA Type Len⊕ T S∗ KnotStructure IPknot TurboKnot Hxmatch
HDV_ribozyme 89.70 12 80.13 59.24 39.28 39.77
Alpha_RBS 110.99 18 40.59 25.34 23.70 22.19
Tombus_3_IV 91.61 4 83.14 78.02 73.47 90.91
Tymo_tRNA-like 85.12 3 90.25 73.62 86.85 90.11
Corona_FSE 82.91 9 75.65 60.51 42.19 92.30
Prion_pknot 40.46 114 32.85 15.71 3.03 28.86

Bold number and underlined number indicate the highest and the second highest PPV for each family. ⊕

Average sequence length. ∗ The number of test sets.
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Table 4.6 Running time for different ncRNA families (seconds)

RNA Type KnotStructure IPknot TurboKnot Hxmatch
HDV_ribozyme 1.55 0.35 28.22 0.41
Alpha_RBS 1.93 0.49 37.25 0.55
Tombus_3_IV 1.80 0.37 13.66 0.42
Tymo_tRNA-like 1.78 0.24 12.24 0.28
Corona_FSE 1.51 0.30 12.75 0.35
Prion_pknot 1.07 0.10 4.23 0.12

4.5 Discussion and conclusion

Based on the fold-then-align strategy, choice of folding tools can play an important role in the

performance of the shape and structure prediction. For the test set, we tested two folding tools:

HotKnots [98] and TT2NE. We used them in three different ways: Hotknots, TT2NE, and both of

them. We ran HotKnots and TT2NE with default parameters. The experimental results show that

using TT2NE alone achieves the best performance in consensus structure prediction. It is likely

that other folding tools exist to yield better performance than TT2NE. However, as the performance

of those tools also depends on the input data and the parameters, a systematic study is needed to

choose the best tool.

For TT2NE, we currently only use 10 sub-optimal structures. Increasing this number moder-

ately does not affect the performance significantly. It indicates that the correct structures have

high rankings in the folding space. There are more pseudoknot-free structures available than

pseudoknot-containing structures. To achieve a reliable SVM model, more training data is de-

sired. We used K10 for feature selection. This may cause KnotShape to have slightly lower pre-

dictive performance on pseudoknot-containing than pseudoknot-free sequences. Nonetheless, the

features used in KnotShape does not heavily rely on the free energy value, which is different be-

tween pseudoknot-free and pseudoknot-containing structures. Instead, the feature set is based on

multiple RNA properties shared among homologous sequences.
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Extensive analysis of RNA properties based on SVM allows us to identify important features

related to abstract shapes. The combination of mass data analysis and SVM-based feature ranking

makes KnotShape a promising tool for shape prediction. By combining the predicted shapes and

the multiple structural alignment strategy, KnotStructure demonstrates higher accuracy in pseudo-

knot structure prediction.
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Chapter 5

LncRNA-ID: Long non-coding RNA

IDentification using balanced random forest

classification

5.1 Background

Recent study indicates that there are at least four time lncRNA transcripts more than protein-coding

transcripts [3]. The majority of lncRNAs are transcribed in the sense and antisense directions and

some of those overlap with protein-coding genes. Unlike other ncRNAs such as miRNAs or snoR-

NAs that are strong conserved across diverse species [99], lncRNAs are poorly conserved [100].

The poor conservation of ncRNAs may be the result of recent and rapid adaptive selection, as

evidenced by the existence of many lineage specific ncRNAs, such as Xist or Air [101].

LncRNAs exist in many species such as Arabidopsis [102], Zea mays [103], honey bee [104],

chicken [105], zebrafish [106], etc. In recent years, a large number of lncRNAs have been identi-

fied. GENCODE [10] comprises 9,277 manually annotated lncRNA genes in the human genome.

The LncRNADisease database [107] contains 1,564 human lncRNAs that are likely to be associ-

ated with diseases. Thus, given the functional importance and ubiquity of lncRNAs, it is important

to annotate them on a genome scale in various species. With the advances of the next-generation
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sequencing technologies, the transcriptomes of a large number of organisms have been sequenced,

providing us a unique opportunity to mine lncRNAs. The assembled transcripts contain different

types of functional elements such as small ncRNAs, lncRNAs, and protein coding genes. As lncR-

NAs are usually much longer than small ncRNAs, lncRNAs can be effectively distinguished from

small ncRNAs using size as the main criteria. However, lncRNAs have similar splicing structures

as protein coding transcripts and tend to encode putative open reading frames (ORFs). Thus, a

major challenge for lncRNA identification is to distinguish lncRNAs from protein coding genes,

especially in non-model organisms lacking comprehensive protein coding gene annotation.

5.2 Related work

Many efforts have been made to distinguish between lncRNA and protein-coding transcripts, rang-

ing from applying a threshold for a single feature to more complicated supervised machine learning

methods. One commonly used feature is the length of the ORF. For example, a simple approach

is to classify a transcript containing an ORF of length above 100 amino acids as protein-coding

gene [108]. This criteria is arbitrary and is not always correct [109]. By using this simple criteria,

the mouse Xist RNA gene [110], which encodes a putative ORF of 298 amino acids (aa), was

mis-classified as a protein-coding gene when it was first discovered [111].

More accurate approaches for identifying lncRNAs use supervised machine learning methods

by formulating lncRNA discovery as a binary classification problem. These approaches can be

further divided into two types. One relies on sequence alignments and the other is alignment-

free. Representative examples of alignment-based methods include Coding-Potential Calculator

(CPC) [112] and Phylogenetic Codon Substitution Frequencies (PhyloCSF) [113]. CPC aligns

transcripts against known protein databases while PhyloCSF uses multiple sequence alignments.
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As homologous protein-coding genes tend to share higher sequence conservation than lncRNAs,

the alignment score or its statistical significance provides useful information to differentiate these

two types of transcripts [114, 115, 116]. However, alignment-based methods usually require high

quality alignments [117], which are not trivial to produce and can incur high computational cost.

An alternative and faster approach is alignment-free methods such as CPAT [118], which in-

tegrates linguistic features of transcript sequences into a logistic regression model for lncRNA

prediction. In addition, rather than using the pre-built models, CPAT allows users to create a

model with their own data. This option, which is not present in CPC and PhyloCSF, is very useful

for lncRNA identification in different species.

Despite the promising progress for lncRNA identification, there is still a need for better ap-

proaches and tools. In particular, existing machine learning-based tools do not carefully handle

the imbalanced training data, in which one class has far more instances than the other. The issue

of imbalanced training data is particularly pronounced for lncRNA identification when it is for-

mulated as a binary classification problem in existing tools. For example, due to poor annotation

of lncRNAs, many species have far less characterized lncRNAs than protein-coding genes. As

a result, a classifier tends to over-predict query transcripts as the major class [119]. In addition,

many existing tools need users to provide a score threshold for lncRNA identification, which is

not always obvious from users’ perspective. For example, PhyloCSF and CPAT do not suggest

the specific type of an input transcript, but only output a coding potential score. The predefined

score cutoffs of PhyloCSF and CPC vary from species to species. PhyloCSF’s score cutoffs of 50

and 300 were used for mouse [120] and Zebrafish [121], respectively. CPAT suggests the score

cutoffs of 0.364 and 0.44 for human and mouse, respectively. These specific score cutoffs cannot

be immediately applied to other species. Even worse, not every tool can be trained on different

species to provide users necessary information for choosing an appropriate score cutoff.
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In this paper, we present LncRNA-ID, a lncRNA identification tool, which applies random

forest (RF) classification [122] to distinguish lncRNAs from protein-coding genes. RF is a classi-

fication model aggregating multiple classification trees generated from boot-strap samples and has

been successfully applied in bioinformatics [123, 124, 125]. LncRNA-ID has several advantages

over existing tools. First, it still takes advantage of alignment-based features, which have strong

discriminative power. However, instead of using genome-scale multiple sequence alignments or

pairwise alignments against all existing protein sequences, LncRNA-ID employs profile hidden

Markov model (profile HMM) based alignments, rendering more sensitive homology search and

shorter running time than existing alignment-based lncRNA identification tools. Second, LncRNA-

ID is easy to use as it does not require users to provide a score cutoff. It automatically determines

the type of a query transcript as well as providing a coding potential score. Third, LncRNA-ID

can be applied to various species by providing an option to train the classifier for different data.

Fourth, LncRNA-ID does not require a large number of training data of neither protein-coding

transcripts or lncRNAs to construct a classifier and can handle imbalanced classes in the training

data. In our experiments, we evaluated the performance of LncRNA-ID on two different species,

human and mouse. It achieved the highest sensitivity and specificity compared with CPC, CPAT

and PhyloCSF on both species.

5.3 Methods

In this section, we first talk about the features used in LncRNA-ID and then describe the method

we use to construct our classification model. The features used in LncRNA-ID are derived from

three different groups: open reading frame (ORF), ribosome interaction, and protein conservation.

Each feature is selected either based on the literatures or the empirical observations. Using multiple
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features can significantly improve the performance of classification.

5.3.1 ORF features

ORF is one of the most commonly used criteria to distinguish a lncRNA from a coding transcript.

A true protein-coding transcript tends to have longer ORFs than those in lncRNAs. We derive two

ORF-related features: ORF length and ORF coverage. The ORF length is defined as the length

of the longest reading frame identified in three forward frames. The ORF coverage is defined as

the ratio of the length of the chosen ORF to the length of the transcript. From our observation,

lncRNAs tend to have shorter ORF and lower ORF coverage than protein-coding transcripts.

5.3.2 Ribosome interaction features

These features are based on the interaction mechanism between the ribosome and mRNAs during

protein translation [126]. Ribosomes consist of two parts, a large subunit where two tRNA binding

sites are located and a small subunit where the mRNA binding site is located. The translation is

initiated when the small ribosomal subunit attaches to the mRNA at a start codon. The ribosome

starts to translate the mRNA towards 3’ end until it encounters a stop codon. At the end of the

protein translation, termination factors release the synthesized protein for use in the cell and the

ribosome splits back into large and small subunits [127]. Many studies have successfully applied

ribosome footprint to identify functional proteins [128, 129, 130, 131]. In particular, ribosome

profiling [129], which sequences mRNA fragments bound to ribosomes, provide a quantitative

snapshot of protein translation. However, the availability of ribosome profiling data is still limited.

Thus, in this work, we design computational features to quantify the main attributes related to

ribosome interaction with mRNAs. We define the features according to these interaction states:
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initiation, translation, and termination.

5.3.2.1 Initiation:

The initiation interaction features are derived from the Kozak motif. The Kozak consensus is

a favorable motif for a ribosome scanning pattern and initiates translation. It greatly impacts

protein translation efficiency [132, 133, 134]. Kozak motif has the consensus GCCRCCAUGG (R

represents purine) and is located in the region around the initiator codon of an ORF. In the Kozak

determining experiment, single base mutants are preformed on mRNAs and the protein productions

of the mutant sequences are measured. It has been demonstrated that nearly all ribosomes will

initiate at the start codon [135], AUG. The highly conserved nucleotides at positions -3 and +4 (the

A of AUG is +1) and -2 and -1 play a major role in the initiation of the translation process.

We thus derive two features from Kazak motif: the nucleotides at the position {-3, +4} and {-2,

-1}. The Kozak features determine the potency of a starting site. A strong starting site, which en-

hances the translation efficiency, occurs when nucleotides at these positions are conserved, whereas

a less conservation indicates a weak starting site [135, 136].

5.3.2.2 Translation:

The interaction between the 3’ end of rRNAs and mRNA transcripts exhibits changes of binding

energy along the transcript. The binding energy consists of the free energy needed to open the

binding site and the energy gained from hybridization. We use RNAup [137] to compute thermo-

dynamics of the interaction between the 3’ end of 18S rRNA and a transcript.

In order to capture the change of the binding energy, we calculated a series of binding energies

between the 3’ end of 18S rRNA and a transcript by moving the 3’ end of 18S rRNA toward 3’

direction of a transcript one nucleotide at a time. Let δi be the free energy at position i. Let Ni
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denote the number of Watson-Crick base pairs of an interaction starting at position i. The ribosome

coverage is thus defined as:

Ribosome coverage =
L

∑
i=1
{Ni|δi < 0},

where L is the sequence length. The ribosome coverages were computed on three regions: the

whole transcript, ORF, and 3’UTR. These three features illustrate the level of ribosome occupancy

on a sequence. For protein coding transcripts, we expect to see higher ribosome coverage on the

whole transcript and the ORF region.

5.3.2.3 Termination:

We define the ribosome release score (RRS) to capture a termination signal of ribosomes. The

RRS takes advantage of the fact that ribosomes are released when reaching a stop codon. As a

result, a sharp drop in ribosome occupancy is seen at the start of the 3’ UTR of coding transcripts.

In contrast, translational termination should not occur in non-coding transcripts [29, 138].

The RRS is laboratorially measured using the quantitative sequences from a deep sequencing of

ribosome-protected mRNA fragments called ribosome profiling[129]. Although ribosome profil-

ing is high quality, but it requires experimental data. Therefore, it is currently not widely available.

However, it is expected to become more widely available with the demand from research commu-

nities and the progress in cost-effective sequencing technologies.

In the absence of a ribosome profiling data, we estimate RRS as the ratio of ribosome coverage

in the putative ORF to ribosome coverage in the corresponding 3’ UTR.

RRS =
Ribosome coverage of ORF/length(ORF)

Ribosome coverage of 3′UTR/length(3′UTR)

RRS indicates the relative degree of ribosome occupancy bias at the terminal binding site in a
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sequence. True protein coding transcripts are expected to have larger RRS than non-coding tran-

scripts.

5.3.3 Protein conservation features

True protein coding transcripts tend to show better conservation against characterized proteins.

We measure the conservation using profile hidden Markov model (profile HMM)-based alignment

scores. In particular, we chose HMMER [139] to align a transcript against all available protein

families, such as the ones in Pfam [140]. Applying profile-based homology search has several

advantages, compared with pairwise alignment methodologies [141]. First, the number of gene

families is significantly smaller than the number of sequences, rendering a much smaller search

space. For example, there are only about 14,000 manually curated protein families in Pfam [140].

But they cover nearly 80% of the UniProt Knowledgebase [142] and the coverage is increasing ev-

ery year as enough information becomes available to form new families [140]. As the profile-based

homology search tool HMMER is as fast as BLAST [143], using profile-based search provides a

shorter search time. In addition, alignments of query sequences against each protein family are

independent from each other and thus can be naturally parallelized on high performance comput-

ing platforms. Second, previous work [31] has shown that using family information can improve

the sensitivity of remote protein homology search [144]. For the transcriptomes of non-model

organism, sensitive remote homology search is especially important for identifying possibly new

homologs.

Specifically, each transcript is aligned to all protein families using HMMER. We use 0.1 as the

E-value cutoff for HMMER. When more than one alignment is generated for a query sequence, the

alignment with the best E-value is used. For the chosen alignment for a transcript, we derive the

following three features: (i) the score, (ii) the length of the alignment on the profile, and (iii) the
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length of the alignment on the query sequence. A true protein-coding transcript is likely to produce

an alignment with higher score and longer alignments than lncRNAs.

In total, we extract 11 features: ORF length, ORF coverage, two Kozak-motif related fea-

tures, ribosome coverage on three regions: transcript, ORF, and 3’UTR, ribosome release score,

alignment score, alignment length on the profile HMM and alignment length on the transcript.

It is apparent that although each feature exhibits different value distribution for the two types of

transcripts, none of the single feature is able to fully distinguish lncRNAs from coding transcripts.

Thus, it is important to combine multiple features to maximize discriminative power. We formalize

this problem as a binary classification problem where lncRNAs are defined as the positive class and

protein-coding transcripts are defined as the negative class. All these features will be incorporated

into the chosen classification model: balanced random forest, which we will describe below.

5.3.4 Balanced random forest

A decision tree is a commonly used classification model in machine learning. Random forest (RF)

consists of multiple decision trees. Each decision tree is built from a bootstrap sample, which is

a random sample drawn from the training data. During prediction, RF outputs the class agreed by

most of the individual trees. We select the RF for the following reasons:

1. It is able to effectively handle missing data, which is common in lncRNA identification. For

example, lncRNA transcripts are not likely to have protein conservation and the features

such as alignment score or alignment length could be missing.

2. It natively supports categorical features without requiring any transformation. The typi-

cal conversion for categorical data is to create dummy binary variables to represent each

category value. However, this may decrease the predictive power of the features and is time-
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consuming because of the potentially large number of dummy features. With RF, we are able

to directly use Kozak motif features without the need for any conversion.

Inspired by Chen et al. [145], we extended RF to balanced random forest (BRF), which contains

multiple RFs where each RF is built from a subset of the training data. BRF provides LncRNA-ID

with the major advantage that it can learn from the imbalanced training data where the numbers of

lncRNA and protein coding samples are highly different. Imbalanced training data is common for

lncRNA identification. A recent study found that lncRNAs are at least four times more than protein

coding genes in the human genome [3]. In practice, the majority class in the training data is protein-

coding transcript because there are more protein coding gene annotation than lncRNA annotation

for most organisms. For example, in the GENCODE database [10], there are 12,526 annotated

lncRNAs and 95,099 annotated coding transcripts in the human genome. For the mouse genome,

there are 6,053 annotated lncRNAs and 47,394 annotated coding transcripts in GENCODE. Thus,

there is a need for a classification method that can effectively learn from imbalanced training data

where one of the two classes has more samples (majority) than the other class (minority).

When learning from imbalanced training data, there is a high possibility that a bootstrap sample

contains very few or even none of the entities in the minority class, resulting in a classification tree

with poor performance for predicting the minority class. A naive solution is to either conduct prior

over-sampling of the minority class or prior down-sampling of the majority class. Down-sampling

usually has a better performance over over-sampling [146]. However, a prior down-sampling of

the majority class may result in loss of information, as a large part of the majority class is not used.

In contrast, LncRNA-ID employed BRF which ensembles multiple RFs. Each RF was trained

by a subset of the majority class and a full set of the minority class. This allows us to achieve

better classification performance by maximizing the benefits of using abundant protein-coding and

deficient lncRNA data.
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Our BRF is different from [145] in that instead of creating balanced training subsets using

random drawings, we divide the majority class into equal subsets according to the imbalanced

ratio, which is the ration of the size of the majority class to the size of the minority class. The

purpose is to maximize the predictive power by ensuring that all training data are incorporated

in constructing the classification model. The balanced random forest learning algorithm is shown

below:

Procedure 2 Balanced random forest learning
Input: lncRNAs (P) and protein-coding transcripts (N)
Output: a BRF classifier

k = |N||P|
Create k non-overlapping subsets, n1,n2, ..,nk, from N
for i=1 to k do

Train a classifier RFi to discriminate P against ni
end for
Return an ensemble of ∀k

i=1RFi

To create a balanced training data, down-sampling is performed on protein-coding transcripts,

creating approximately an equal number of protein-coding and lncRNA transcripts in each subset

pi. Each training subset is then used to create an individual RF. Finally, we integrate all constructed

RF classifiers into the BRF. The BRF classifier is then used to predict the type of a query transcript

by aggregating the prediction results of ensemble classifiers.

Integrated with balanced random forest methodology using different types of features, LncRNA-

ID has the following advantages: (i) can effectively handle limited or imbalanced learning data,

which are commonly found in most species; (ii) incorporates different types of features, mini-

mizing bias from a particular group of features. We employ the random forest classification imple-

mented in Weka [147] software package to construct our classification model. The optimal number

of trees used in the random forest classification is determined based on the best performance ob-

tained by 10-fold cross validation.
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5.4 Results

LncRNA-ID can be applied to different species, and can achieve robust classification performance

with imbalanced training data, which is a commonly seen problem for lncRNA classification. To

evaluate the performance of LncRNA-ID, we used two data sets from the human genome and one

data set from the mouse genome. The first human data set (H1) and the mouse data set (M) were

generated from GENCODE consortium [10] within the framework of the ENCODE project. GEN-

CODE is known to have the most comprehensive annotation of long noncoding RNAs available

to date. The second human data set (H2) is CPAT’s original data set generated from multiple re-

sources: RefSeq [148], a human lncRNA catalog [149], and GENCODE. We further conducted

four additional experiments simulating different imbalanced ratios in the training data to demon-

strate that LncRNA-ID was able to maintain robust performance with imbalanced training data.

To quantify the classification performance, we used five standard metrics: sensitivity, speci-

ficity, accuracy, false positive rate (FPR), and F-score, which are defined as follows:

Sensitivity =
T P

T P+FN
, Specificity =

T N
T N +FP

, Accuracy =
T P+T N

P+N
, FPR =

FP
FP+T N

F− score =
2 ·Sensitivity ·Specificity
Sensitivity+Specificity

LncRNAs are regraded as the positive class and protein coding transcripts are regarded as

the negative class. TP is the number of correctly classified lncRNAs and TN is the number of

correctly classified protein coding transcripts. Sensitivity is the proportion of correctly classified

lncRNAs in the set of all lncRNAs. Specificity is the proportion of correctly classified protein-

coding transcripts in the set of all protein coding transcripts. Accuracy (a.k.a. positive predictive

value) is the ratio of correctly classified transcripts in all predictions. False positive rate (FPR)

refers to the portion of falsely classified lnRNAs among all protein coding transcripts. F-score
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is the harmonic mean of sensitivity and PPV and hence can be used as a single measure for the

overall classification performance.

5.4.1 Performance of different groups of features

Before we evaluated the classification performance of LncRNA-ID, we first evaluated the discrim-

inative power of different types of features. We constructed this experiment using the human data

set (H1). The detail about this data set can be found in the next section. We created the classifi-

cation models with the training data using each individual group of features and the combination

of different groups. The performance of each classification model was then evaluated with the

test data. The overall performance was measured by the area under ROC curve (AUC). AUC is

a commonly used method to evaluates performances at all cutoff points, giving better insight into

how well the classifier is able to separate the two classes. The greater the AUC is, the better overall

classification performance the classifier achieves. The optimal performance is the best FPR and

sensitivity that maximizes the F-score.

Figure 5.1 shows the performance of LncRNA-ID using a single group of features versus mul-

tiple groups of features. The three groups of features exhibit highly different performance. The

ribosome interaction features have the best discriminative power because they are designed based

on the protein translation mechanism. According to Figure 5.1, combination of multiple groups of

features leads to better performance than using a single group of features. The best performance

comes from the combination of three groups of features, which are thus used in all our experiments.

We compared the performance of LncRNA-ID with three state-of-the-art coding-potential pre-

diction tools: CPC, CPAT, and PhyloCSF. These tools output the coding-potential of a transcript

and can be used to classify a query transcript into coding or non-coding sequences. Below we

present the experimental results of applying LncRNA-ID and the benchmark tools on three data
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sets. For each data set, we introduce the training data, test data, and the important parameters

used for each tool. We re-train the classification model in CPAT for different data set to optimize

its performance. As CPC and PhyloCSF does not provide the re-training option, we use pre-built

models. It is worth noting that there is no intersection between the training data and test data.
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Figure 5.1 Performance comparison among feature groups: ORF features (ORF), ribosome inter-
action features (ribo), protein conservation features (protein), and the combined feature sets.

5.4.2 The human data set (H1)

This data set contains randomly selected transcripts from GENCODE [10]. The training data

contains 48,600 protein-coding transcripts and 8,300 lncRNAs. The test data contains 4,000 coding

transcript and 4,000 lncRNAs.

We ran CPC using UniRef90 [150] as the reference protein database, which is a relatively

comprehensive protein database suggested by CPC. We created the classification model of CPAT
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from the training data using the script provided in CPAT’s software package. The created classifier

was then used to predict the transcripts in the test data and the performance was evaluated using

the CPAT’s suggested optimal score cutoff.

A multiple sequence alignment of 45 vertebrate genomes, including the human genome, was

downloaded from the UCSC Genome Browser and was used as the input alignment for PhyloCSF.

We specified the option that allowed PhyloCSF to search all three reading frames and report the best

result as suggested in the PhyloCSF website [151]. We used the default score cutoff of PhyloCSF

to generate the classification results.

Table 5.1 shows the comparison of classification performance of all tools on H1. LncRNA-ID

had the best sensitivity and accuracy among all tools. Although CPC had the highest specificity, its

sensitivity and accuracy were much lower than those of LncRNA-ID. CPC’s classifier is based on

six features. Three of them are ORF-related features and the others are derived from the alignments

of a query sequence against existing protein sequences. These features could cause a bias toward

protein-coding transcripts if a lncRNA contains an ORF sharing similarity with existing protein se-

quences. This might be a major reason behind the low sensitivity of CPC. LncRNA-ID also had the

highest F-score and classification accuracy among all tools. Therefore, LncRNA-ID demonstrated

the best overall performance in distinguishing protein coding transcripts from lncRNAs among all

tools.

The values of AUC for all ROC curves can be found in Figure 5.2. LncRNA-ID also had the

best AUC among all the tools. In addition, we gave the sensitivity and FPR corresponding to the

optimal F-score for each tool in Figure 5.2. With the best F-score of 0.9717, LncRNA-ID had the

best sensitivity of 0.9660 and the FPR of 0.0225.

The optimal performance of CPAT and CPC was much better than that based on their default

score cutoffs, showing that their default score cutoffs are data dependent and may not provide users
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with satisfactory classification performance. The optimal performance and AUC of PhyloCSF was

much worse than the other tools.

Table 5.1 Performance comparison on H1.

LncRNA-ID CPC CPAT PhyloCSF
Sensitivity 96.73 66.48 86.25 77.08
Specificity 95.40 99.97 99.42 85.08

F-score 96.06 79.85 92.37 80.89
Accuracy 96.06 83.22 92.84 81.34

CPC, CPAT and PhyloCSF were evaluated using default score cutoffs. Bold numbers indicate the highest
value of the metrics.
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Figure 5.2 ROC curves of different tools on H1. The AUCs, and the sensitivity and FPR corre-
sponding the optimal F-score were indicated in the legend.

5.4.3 The mouse data set (M)

LncRNA-ID can be trained for any species with some characterized protein coding and lncRNA

genes. If no such training data is available, pre-built model can be used. In this experiment, we

applied LncRNA-ID to the mouse data set to show its application to a different species. This data

set consists of randomly selected transcripts from GENCODE. The training data contains 44,300
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protein-coding transcripts and 4,000 lncRNAs. The test data contains 2,000 coding transcript and

2,000 lncRNAs. The number of lncRNAs in this data set is only half of that contained in H1

because of limited lncRNA annotation in the mouse genome.

A multiple sequence alignment of 30 genomes, including the mouse genome, was downloaded

from the UCSC Genome Browser and used as the input alignment to PhyloCSF. The score cutoff of

50, which was shown to accurately separate known protein-coding genes from known non-coding

sequences [130, 120], was used to generate the classification results for PhyloCSF.

Table 5.2 shows the performance comparison of different tools on the mouse data set under their

default parameters. LncRNA-ID had the best sensitivity and accuracy among all tools. Although

CPC and CPAT had slightly higher specificity than LncRNA-ID, their sensitivity and accuracy

were much lower than those of LncRNA-ID. LncRNA-ID had the highest F-score among all tools,

showing its best overall classification performance. The sensitivity, F-score, and accuracy of the

tools on the mouse data set were lower than those on H1 for all except for CPC, largely due to the

smaller training data set. Note that as we used CPC’s pre-built classifier to evaluate the test data,

there might be some overlapping samples between CPC’s training data and this test data, giving an

advantage to CPC’s classifier over the other tools.

Figure 5.3 shows the ROC curves of different tools. When the sensitivity was lower than

0.834, CPC had lower false positive rate than the other tools. However, its optimal sensitivity

was much lower than that of LncRNA-ID and CPAT. Same as on the experimental on human data

set H1, LncRNA-ID had the best optimal performance and AUC. CPAT had the second highest

optimal performance and AUC. At the point with the optimal F-score, CPAT’s sensitivity was

2.6% lower than LncRNA-ID and its false positive rate was 0.6% lower than that of LncRNA-

ID. The performance of CPAT under its default score cutoff was much lower than its optimal

performance when its score cutoff was changed. CPC had slightly lower false positive rate than
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LncRNA-ID when its optimal performance was achieved. However, its sensitivity was much lower

than LncRNA-ID. PhyloCSF had significantly poorer performance than the other tools.

Table 5.2 Performance comparison on the mouse data set.

LncRNA-ID CPC CPAT PhyloCSF
Sensitivity 94.65 76.55 44.55 24.50
Specificity 92.20 98.75 98.75 55.70

F-score 93.41 86.24 61.40 34.02
Accuracy 93.43 87.65 71.65 41.43

CPC, CPAT and PhyloCSF were evaluated using default score cutoffs. Bold numbers indicate the highest
value of the metrics.
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Figure 5.3 ROC curves of different tools on the mouse data set. The AUCs, and the sensitivity and
FPR corresponding the optimal F-score were indicated in the legend.

5.4.4 CPAT’s human data set (H2)

In this experiment, we evaluated the performance of LncRNA-ID on the human data set used by

CPAT [118]. The training set was originally claimed to contain 10,000 coding transcripts selected

from the RefSeq database and 10,000 randomly selected non-coding transcripts from GENCODE.

However, some transcripts no longer exist in the databases. They might have been removed be-
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cause of the duplication with the existing ones, non-qualification as new evidence has emerged,

etc. As a result, the final training set contains 9,929 coding transcripts and 9,066 non-coding tran-

scripts. The test set is the same as CPAT’s original data. It contains 4,000 coding transcripts from

RefSeq database and 4,000 lncRNAs from a human lncRNA catalog. The performance of CPC

and PhyloCSF had been benchmarked on this data set in [118] and were used in our experiment.

We created the classification model of CPAT from the training transcripts using the script provided

in CPAT’s software package. The created classifier was then used to predict the transcripts in the

test data set and the performance was evaluated using the CPAT’s suggested optimal score cutoff.

The first three columns of Table 5.3 shows the performance comparison between LncRNA-ID

and CPC. LncRNA-ID (sensitivity: 93.65%, specificity: 96.15%, F-score: 94.88%) achieved a bet-

ter overall performance compared with CPAT (sensitivity: 87.58%, specificity: 97.32%, F-score:

92.20%), CPC (sensitivity: 73.75%, specificity: 99.9%, F-score: 84.85%), and PhyloCSF (F-

score: 74.05%, sensitivity: 62.8%, specificity: 90.2%). Please note that we used the performances

of CPC and PhyloCSF which were benchmarked on the same test data in [118].

Table 5.3 Performance comparison on H2

LncRNA-ID CPAT LncRNA-ID CPAT
Original data S2 S3 S6 S8 S2 S3 S6 S8

Sensitivity 93.65 87.58 93.43 93.54 92.72 92.73 79.51 73.01 60.32 54.46
Specificity 96.15 97.32 95.41 95.23 95.47 95.38 98.14 98.50 99.29 99.42

F-score 94.88 92.20 94.41 94.38 94.08 94.03 87.84 83.85 75.03 70.32
Accuracy 94.90 92.45 94.42 94.38 94.10 94.06 88.82 85.75 79.81 76.94

Bold numbers indicate the highest values of the metrics.

5.4.5 Imbalanced training data

Using H2 data set, we evaluated how imbalanced training data affects the classification perfor-

mance of LncRNA-ID and CPAT, which are the two best tools according to previous experimental
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results. We constructed four data sets, S2, S3, S6, and S8, from the original training set simulat-

ing the condition of imbalanced training data. In S2, lncRNAs in the training set were randomly

divided into two subsets. Each lncRNA subset was combined with coding transcripts in the orig-

inal training set, generating two training subsets in total. We created the classification models of

LncRNA-ID and CPAT using each of the two training subsets and evaluated their performance

using the same test set. The experiments on S3, S6, and S8 were conducted in the same manner

except that lncRNAs were divided into three, six, and eight subsets, respectively.

LncRNA-ID had the higher average sensitivity than CPAT in all four experiments (Table 5.3).

The performance of CPAT’s classifiers trained with the subsets significantly decreased compared

with that trained with the full training set. This shows that limited learning data led to less discrim-

inative power of CPAT’s classifier. In contrast, LncRNA-ID, which implements balanced random

forest learning, was able to maintain stable performance in all data sets with different ratios of

imbalance.

The average specificity of LncRNA-ID was 3.46% lower than CPAT. However, the average sen-

sitivity of CPAT was 26.28% lower than that of LncRNA-ID. The average accuracy and F-score of

LncRNA-ID were also much higher than those of CPC, showing better overall classification perfor-

mance. CPAT’s sensitivities dramatically dropped by 9.21-37.81% while LncRNA-ID’s sensitivity

decreased by less than 1% compared with those trained with the full training set. This shows that

CPAT suffered not only from the limited learning data but also the impact of imbalanced training

data.

5.4.6 Running time

We measured the running time of LncRNA-ID compared to CPC, CPAT, and PhyloCSF on the H1

test set, which is the largest test set. All tools were ran on the same high performance computing
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node that has 64 bits CPU with Linux operating system. CPC, CPAT, and PhyloCSF took 86.51h,

35.36s and 15,097.60h to process the data. Note that the running time of PhyloCSF did not include

the time used for preparing the input multiple sequence alignments, which can be computationally

expensive. LncRNA-ID took 65.36s to process the data. Its speed was comparable to CPAT, and

much faster than CPC and PhyloCSF.

5.5 Discussion and conclusion

We have proposed LncRNA-ID, an accurate lncRNA identification using balanced random forest

classification. LncRNA-ID ensembles multiple forest classifiers induced from balanced down-

sampled data and thus is able to maintain steady performance with different ratios of imbalance

and limited learning data. The results in both human and mouse genome demonstrates that the

features used by LncRNA-ID have powerful discriminative power in distinguishing lncRNAs from

protein-coding transcripts. Our empirical experiment shows that the ribosome interaction features

are the most discriminating features.

Among all classification tools, PhyloCSF had the worst performance. The explanation of this

result is that in the human data set, PhyloCSF could not determine the coding status of a decent

amount of lncRNAs (16.97%) and some coding transcripts (0.03%). This is because they either

are non-conserved transcripts or do not have sufficient long ORFs.

If ribosome profiling data (Ribo-Seq) and mRNA-Seq data are available, a more accurate ribo-

some release signal could be measured using the numbers of mapped reads on ORF and 3’UTR.

The RRS is then defined as the ratio of the two normalized ratios of mapped reads on these

two regions, RRS = (rORF/r3′UT R)Ribo−Seq/(rORF/r3′UT R)mRNA−Seq [129], where r is a number

of mapped reads on a sequence.
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LncRNA-ID achieved the highest overall performances on both human and mouse compared

with other tools. The performance of LncRNA-ID is even more pronounced when learning with

imbalanced data set. The imbalanced learning data is essentially found in most species, in which

there are a large amount of functional annotation of proteins while validated annotation of lncR-

NAs are far less. The ability to maintain steady performance of LncRNA-ID on limited and im-

balanced data results from applying balanced random forest learning. LncRNA-ID employs the

down-sampling technique to create multiple balanced learning data sets from the original imbal-

anced data. A balanced learning data prevents a classifier from being biased to the majority class.

Moreover, LncRNA-ID uses all learning data in classification by integrating down-sampled data

into multiple classifiers and thus prevents loss of information.
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Chapter 6

Conclusion and future work

Next Generation Sequencing (NGS) technologies have greatly extended the abilities of researchers

to intensively study gene expression and discover new coding and non-coding genes on a genome-

wide scale. NcNRAs have gained significant increasing interest as many evidences have revealed

their critical roles in various biological processes. Nevertheless, NGS has identified many tran-

scripts whose functions and significance are unclear [152]. In support of the growing attention in

ncRNAs identification, we have proposed four tools: grammar-string based alignment, KnotShape,

KnotStructure, and LncRNA-ID.

We proposed the grammar-string, a novel secondary structure representation and showed its

application in consensus structure derivation through multiple ncRNA alignment. Compared with

existing structure prediction tools, it had better sensitivity with high positive predictive value. We

also showed the utility of grammar string alignment in consensus structure derivation for ncRNAs

including pseudoknots. Besides constructing ncRNA structural alignment, grammar string can

be used to encode characterized ncRNA structures (such as those from Rfam), compare different

structures, and search for common structural motifs. We plan to explore these utilities of grammar

strings.

KnotShape and KnotStructure were designed specifically to decrease the searching space of

putative structures of homologous RNA sequences. The combination of mass data analysis and

SVM-based feature ranking makes KnotShape a promising tool for shape prediction. By combin-
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ing the predicted shapes and the multiple structural alignment strategy, KnotStructure demonstrates

higher accuracy in pseudoknot structure prediction. There are some improvements that could be

made to further increase the sensitivity of the shape ranking step. In shape ranking, there were a

few input sequence sets for which the energies of correct structures are not near-optimal. Thus, en-

larging the sample folding space will likely increase the sensitivity. However, using a large number

of sub-optimal structures can increase the computational cost. Thus, a better algorithm is needed

to achieve a better tradeoff between sensitivity and running time.

LncRNA-ID was specifically designed to identify lncRNAs, which are different from other

ncRNAs in that they are: i)longer than 200 nucleotides; ii) lack of strong sequence conserva-

tion across species; iii) usually have low to medium expression levels with no specific pattern;

iv) found to have ORFs as long as those found in protein-coding transcripts. LncRNA-ID is the

lncRNA classification using balanced random forest based on eleven biological coherent features.

LncRNA-ID focused on distinguishing lncRNAs from protein-coding transcript, which is the first

critical step for understanding the underneath biological roles. LncRNA-ID ensembles multiple

forest classifiers induced from balanced down-sampled data and thus is able to maintain the steady

performance with different imbalance ratio and limited learning data. In our experiments, we fo-

cused on the ribosome interaction in eukaryotes where more annotated lncRNAs are publicly avail-

able. Although LncRNA-ID showed great classification performance in two important eukaryotes,

human and mouse, it has not been tested on prokaryotes. The difference between eukaryotes and

prokaryotes is that in eukaryotes, a small 40S ribosomal subunit contains 18S rRNA whereas in

prokaryotes a small 30S ribosomal subunit contains 16S rRNA. Thus, further study is needed to

investigate whether the similar ribosome signal could be captured with 16S rRNA as with 18S

rRNA. The running time of protein-conservation feature extraction is the bottleneck of lncRNAs,

especially for large numbers of transcripts. As we used the profile HMM-based methods to reflect
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the protein-conservation of transcripts, this can be naturally parallelized. This methodology has

greatly improved the scalability of the analysis of large-scale data.
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