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ABSTRACT

THE EFFECT OF ISOTOPIC COMPOSITION ON THE
ELECTRICAL RESISTANCE OF LITHIUM

by Richard Gordon Leffler

The electrical resistance of solid metallic lithium containing
varying proportions of lithium-6 and lithium-7 was measured between
4.2°K and 295°K. For the isotopically-pure substances, the main
features of the behavior agree with the predictions of the Bloch-
Grueneisen law, the characteristic temperature being inversely pro-
portional to the square root of the mass. The deviation in the details
is just that found for most other metals. This portion of the work
represents an extension and refinement of our earlier work, and a
confirmation of subsequent work by others. For the isotopic alloys,
the behavior of the resistance as a function of temperature can be
described just as that of an isétopically-pure substance with a mass
dependent on the isotopic composition. In fact, the temperature
dependence of resistance for all compositions, including the pure
isotopes, can be represented as a universal curve, by use of appro-
priate scaling factors. The temperature-scaling factor is determined
merely by some kind of average i.sotopic mass., For isotopic alloys
of lithium, there is very little numerical difference between the
arithmetic mean and the harmonic mean of the isotopic masses and
it is impossible to decide from the present experiments which average
is preferable and thereby choose between certain theoretical proposals

concerned with the effect of isotopes on lattice-vibration spectra.



Abstract ' Richard Gordon Leffler

‘On the other hand, the results show clearly that there is no need at
all to invoke a scattering mechanism that looks upon isotopes as
impurities in the lattice. The effect of the martensitic transition of

lithium at low temperatures is barely, if at all, discernible.
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INTRODUC TION

Over three decades ago Dirac could write ', . . The underlying
physical laws necessary for the mathematical theory for a large part
of physics and the whole of chemistry are thus completely known, and
the difficulty is only that the exact application of these laws leads to
equations much too complicated to be soluble. . . .'(1) In thatlarge
part of physics is included solid-state theory, which is almost always
concerned with Aénergy changes small compared with the rest energy.
The number of particles demanding simultaneous treatment is so
enormous that indeed direct solution of the quantum mechanical
equations appears hopelessly beyond reach. In the usual way, then,
models of varying degrees of crudeness have been developed to handle
different problems. For transport phenomena in crystals, specifically
for electronic conduction in metals, the standard treatment is to begin
with a model of a perfect crystal lattice on which the ion cores are
located, with a certain number of electrons unattached to specific
atoms and free to move about among the ion cores. Thermal energy
appears as vibrations of the lattice, and as kinetic energy of the
electrons, For mathematical treatment, the quantized vibrations are
considered as a phonon gas, and the electrons are represented by wave
packets. In this treatment the individual ion cores and the individual
electrons disappear, being replaced by collective models.

Even after this profound simplification, the mathematical dif-
ficulties in handling any realistic model remain insuperable. Further
approximations must be made, and it becomes important then to test
the predictions of the simplified theory to gain some idea of the over-

all soundness of the simplified theory and of its region of validity.



Quite soon after the birth of modern quantum theory, Bloch
(1930) (2) derived an expression for the temperature dependence of
the electrical resistance of a pure metal insofar as the resistance
arises from thermal vibrations of an otherwise perfect lattice. The
expression was decidedly successful, and with this splendid beginning,
one might have hoped for rapid progress in refining this Bloch-
Grueneisen formula, as it came to be called in view of Grueneisen's
study and explanation of it (3). However, the mathematics remained
intractable, and an absolute calculation could not be made. Hence we
must say that despite the generally satisfactory picture given in the
Bloch treatment, present theory does not permit an assessment of it
validity for the details of electronic conduction in metals. We need
to make use of experiment, therefore, to test various aspects of the
derivation.

The Bloch formula can be separated into a constant (calculable
from certain parameters of the metal), times a function of the
temperature and of another such constant usually written as a character-
istic temperature. When the form of the function is tested rough agree-
ment is obtained; but the function fails to describe the details of the
temperature variation of resistivity for a given metal. Of course such
behavior is to be expected, for, among other things, the lattice-
vibration frequency spectrum and the shape of the Fermi surface are
grossly simplified. Because of the complexity of this part of the
calculation, the deviations of the experimental results from the theo-
retical do not shed much light on the places where the derivation is
the most inadequate. In particular, we cannot be sure whether the
deviations are due to inadequacy of the model, or to the mathematical
simplifications necessary to effect calculation.

On the other hand, an investigation of the dependence of the

constants on the metal parameters can lead to more fruitful results.



Specifically, if the atomic mass is varied, all other parameters
remaining essentially the same, simple predictions are possible about
certain features of these constants. Mathematically, we are saying
simply that it is easier to study resistivity as a function of the atomic
mass rather than as a functional of the atomic field, lattice vibration
spectrum, and so on.

The present thesis is concerned with testing the validity of the
Bloch picture by using isotopic mass as a probe. The details of this
analysis are given in the theory section. In the first part we shall see
that in isotopically-pure crystals the effect of atomic mass is just as
would be predicted from the theoretical picture, and we are thereby
given additional confidence that the shortcomings in the form of the
function are due simply to over simplification in the mathematical
treatment. This result was foreshadowed by earlier work in our
laboratory (4), and recently by results of Dugdale and his collaborators
at the National Research Council at Ottawa (5).

In the second part we consider the effect of isotopic composition--
that is, the effect of varying the amount of one isotope of a given element
relative to that of another isotope of the same element. This problem
is much more complicated theoretically than the corresponding one
for an isotopically-pure substance. One scheme proposes that mass
imperfections (isotopes of different mass) act in much the same way as
field imperfections (that is, as chemical impurities, which give dif-
ferent atomic fields). The mass excess of each atom is considered as
a deviation from the average density of the solid, and acts as a
perturbation to give the basis for a correction formula. We find this
picture completely unconvincing. It seems to us that the only effect
of varying the isotopic mass is to change the lattice-vibration spectrum,
and not at all to introduce a new scattering mechanism. If our surmise

is correct, the resistivity of isotopic alloys of Li-6 and Li-7 should lie



between the resistivities of pure Li-6 and Li-7. If the other picture is
correct, the resistivity of isotopic alloys should always be higher than
those of the pure isotopes.

In the present experiments, a direct comparison of this sort is
not possible, since resistivities were never calculated, in view of the
difficulty in knowing the dimensions of the sample accurately. Never-
theless, the examination of the temperature dependence of the relative
resistivities failed to show any evidence of a new mechanism of scatter-
ing. Hence we conclude merely that the frequency spectrum of the
isotopic alloys is intermediate between those for the pure isotopes
making up the alloy. This conclusion is in keeping with the predictions
of Prigogine (6) and of Pirenne (7), who showed that to the first order
the frequency spectrum is modified only by scaling the frequency in
the ratio of the square root of the average mass. Prigogine takes the
direct mean of the masses, and Pirenne the harmonic mean. For Li-6
and Li-7, however, there is insufficient difference between the two
methods of averaging to permit a choice.

In summary, the present work first of all extends the range
and increases the precision of the measurements of Snyder on the
resistance of metals, and corroborates the measurements of Dugdale
et al. on the same subject. Thereby the qualitative soundness of the
Bloch-Grueneisen picture of electrical conductivity in metals is con-
firmed. Secondly, the present work shows that the effect of isotopic
composition can be explained by merely modifying the lattice-vibration
spectrum, in accordance with the theories of Prigogine and of Pirenne,
without introducing any scattering through the apparent disorder of a
random mixing of isotopes on lattice sites. If this interpretation is
correct, serious modification of the analysis of experiments on heat

conductivity may be required.



THEORETICAL CONSIDERA TIONS

To picture first in a simple way the origin of electrical resis-
tivity consider a perfect three-dimensional lattice with ions stationary
at the lattice sites. Valence electrons which are nearly free are
moving at random about the lattice ions, and it is seen from symmetry
that no net transport of charge takes place. If a uniform electric
field is applied, the free electrons will be accelerated and an arbitrarily
large current would flow if there were no forces to obstruct the
electrons. But if the ions are thermally agitated the deviation from
perfect periodicity will cause collisions to occur between the ions and
the electrons. The electrons are thus scattered and the current is
thereby limited.

Historically, Weber (8) attempted in 1875 to account for the
passage of electricity through metals by assuming that a molecule
was composed of a number of electrically-charged particles, some of
which would break away from the molecule and be captured by neighbor-
ing molecules. His goal was to account for the empirical evidence due
to Wiedemann and Franz (9) (1853) that the ratio of electrical and
thermal conductivities at a given temperature is the same for all
metals. No real progress could be made, however, until after the
discovery of the electron. Drude (10) (1900) was able to give a theo-
retical derivation of the Wiedemann-Franz law by means of the simple
Picture of an electron gas moving among fixed ions. The electrons,
upon acceleration by an external electric field, were considered to
collide with the ions with a certain relaxation time between collisions.

His expression for electrical conductivity is

& = ne’y/m



where & is the electrical conductivity, n is the number of charge
carriers, T is the relaxation time, and -e and m are the charge and
the mass of an electron respectively. Drude considered only average
velocities and average drift velocity., He predicted not merely the
form of the Wiedemann-Franz law, but also an excellent value for the
numerical constant. However, the observed dependence of & on
temperature could not be reconciled with the picture.

Lorentz (11) improved the calculation by introducing distribution
functions for the electrons. A full statistical treatment, following
Maxwell and Boltzmann, together with a generalization about the
dependence of relaxation time on velocity enables him to get the correct
temperature dependence for o; but only at the cost of good numerical
agreement., Later, another objection appeared. The Lorentz theory
required also that about one electron per atom be free to move about
within the metal; but these electrons should contribute to the specific
heat, and hence give to metals a much higher specific heat than to
insulators, in contradiction to the Law of Dulong and Petit (12). Not
until 1928 when Sommerfeld (13) applied the work of Pauli, Fermi,
and Dirac to transport phenomena, was this difficulty of the Drude-
Lorentz theory reconciled.

The problem was now on a quantum-mechanical basis, and Bloch
(1930) (2) made the next contribution by showing that electrons having
energies lying in certain bands can move through a perfect periodic
crystal lattice freely, and that it is imperfections in the lattice that
are responsible for electrical resistance. The effect of thermal motion
increases with temperature, of course. Impurities and lattice defects
of various other types give rise to stationary imperfections whose
effects are usually small. These effects are nearly independent of
temperature, and they provide the major contribution to electrical
resistivity at low temperatures, since the resistance due to thermal

motion falls off rapidly with temperature,



The temperature-dependent part of the electrical resistivity may
be approached as follows. Consider the behavior of free electrons in
a perfect lattice (thermal motion absent). Consider independently the
motion of ions about their lattice sites. Superpose these two models,
let them interact weakly, and determine transition probabilities; from
them find the scattering term in the Boltzmann equation. With the use
of appropriate statistics an expression for electrical conductivity is
obtained.

Let us consider this problem in more detail. To treat the
lattice vibrations, take a collective model. For the crystal write a
Hamiltonian which ignores electron coordinates, considering only the
atomic cores. The electrons are light particles and presumably
accommodate very quickly to the nuclear motion. This '"adiabatic
principle' enables the electronic states to be treated as a unique
function of the nuclear coordinates at any instant. To a first approxi-
mation this system may be analyzed into a set of independent normal
vibrational modes, each equivalent to a simple harmonic oscillator.

The energy is given by

E=2(nq+%—) ‘ﬁwq

the eigen states corresponding to traveling waves characterized by a
wave vector q. Because one is dealing with lattice waves and not with
a continuum dispersion exists; moreover the allowed values of q are
discrete and finite. The maximum value of g corresponds to a wave
length of twice the lattice spacing. Larger g's correspond to nothing
new physically. The transport of energy in one of the states turns out
to be proportional to the group velocity of the waves, in the same way
as in classical field theories. A quantum of lattice vibration may thus

be defined as a phonon--in analogy with the photon~-which travels through



the lattice with the group velocity of that mode. In a sense phonons
may be considered as particles, and they then satisfy Bose-Einstein
statistics. Two transverse modes and one longitudinal mode are
associated with each g vector. If there is more than one particle per
unit cell, additional branches may arise in the dispersion curve, a
feature of no interest for the present work.

We can define g(w)dw as the number of modes with frequencies
between w and wtdw. A good low temperature approximation is for
g(w)~w, The values of q are distributed with uniform density in
reciprocal space, and the number with wave constants lying in the
interval q and g + dgq would be proportional to g?dq in a continuum.

Then
q(w) € »?

It is convenient to define a new parameter 6 such that k8 is the
maximum allowed energy of a phonon.

For the electrons, let us consider in particular a monovalent
metal, and concern ourselves only with conduction electrons, For a
single atom it is assumed that the entire mass is associated with the
nucleus and that the inner closed shells of the electrons form a rigid
halo about the nucleus, the valence electrons moving independently in
the field of the core. When all the atoms are brought together to
form a metallic solid, the valence electrons move in the field of all the
ions combined, together with a smeared-out field due to all the other
valence electrons. The wave functions for such a system are not
localized, but spread out throughout the crystal field. The group of
valence electrons as a whole forms a pool from which the energy states
for a crystal as a whole may be filled.

At this stage of the argument assume that the lattice is perfect,
that is, the ions are at rest in their equilibrium positions. The

Hamiltonian for such a system contains a kinetic-energy term for the



electron, a potential-energy term for the ion-electron interaction,
and another potential-energy term for the electron-electron inter-
action. From the mathematical point of view the resulting Schroedinger
equation is hopelessly complicated. The simplest thin‘g to try is to

neglect all but the kinetic-energy term in the Hamiltonian. Then

E(k) = A*k*/2m

where k = 27 /% is the magnitude of the wave vector. The wave function
is a simple product function of plane waves not containing a spin function
and not antisymmetrized in the coordinates of the electrons. A func-
tion incorporating these features, such as that given by a Slater
determinant would be too hard to work with. A simple product function
is tractable, and is kept realistic by the stipulation that not more than
two of the single electron functions may be identical. This case amounts
to discussing free electrons and is essentially the Sommerfeld pre-
sentation. The surfaces of constant energy in k space are spheres.

This model serves as a general guide to the behavior of electrons in
metals, but to get any details of electron behavior, notably band
structure, the next term in the Hamiltonian must be taken into account.
Considering the potential term to act as a small perturbation on the

free electrons, one finds that there are values of k for which there may
be discontinuities in the energy. That is, gaps exist in the quasi-
continuous energy spectrum, and the energy is no longer proportional

to k. The regions of allowed energy separated by energy gaps are

called energy bands. The surfaces in k space mapped out by these

surfaces of energy discontinuity form the boundries of the Brillouin
zones of the reciprocal space. Surfaces of constant energy in k space
tend to be spheres for small values of k, but those surfaces which cross
zone boundaries must cross them at right angles, and hence must be

drastically distorted from spherical shape.
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The electronic states considered so far have been stationary
states, appropriate to equilibrium conditions. We are interested in
transport problems wherein a steady state--rather than an equilibrium
state--is attained under the influence of external driving forces of
some kind. For this purpose wave packets must be constructed from
the simple plane waves, the motion of which then corresponds to a
particle motion. In a dispersive medium wave packets travel with the
group velocity, given by

-1 _oE
ke T Z Tk '

The dynamics of such a wave packet may be quite different from that
of free classical particles. From now on we think of this wave packet
in the solid as an electron and associate with it the crystal"momentum®"'
hk. The velocity will approach zero at a zone boundary since @E/Qk
goes to zero then. In general k and vy are not parallel, as seen below.
The electric current associated with an electron in state k is evy-
A consequence of a theorem due to Wannier (14) is that ‘f1_1_<._ = eE
for a single non-overlapping band. This equation of motion says that
the electron is accelerated until it reaches the Bragg wavelength, at
which time it is reflected by the lattice, to be accelerated again,
The acceleration of the electron is given by

¢ = = RE F

— 4 gkak
where F is an external force, and the factor just preceding it is an
inverse mass tensor. This quantity may become negative and may
then be interpreted as a positive hole. A consequence of electrons obey-
ing Fermi-Dirac statistics is that, practically speaking, only the
electrons lying in a 'thermal layer' of the order of kT about the Fermi
surface can have their states altered. Thus the shape and area of the

Fermi surface are determining.
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Everything said so far has assumed that the phonons and
electrons are entirely independent. That is, excitations of one are
entirely independent of those of the other. With these simplified
models no transport properties can be predicted. To go further one
no longer neglects the anharmonicity of the lattice forces generating
the phonons, the coulomb-forces between electrons, or the complicated
forces which act on electrons due to thermal distortion of the lattice.
Real crystals contain also imperfections in the lattice due to vacancies,
dislocations, impurity sites, grain boundaries, and so on. The effect
of these properties is treated by including in the Hamiltonian terms
which allow for weak interactions between them, usually in the form
of perturbations of the harmonic independent-particle states, the
perturbations causing exchange of energy between the states. The
effect of the perturbing term in the Hamiltonian is to give the system
initially in the state | i>, of energy E;, a probability of finding the
system in a state | >, of energy E¢ after a time t. The time derivative

of this probability is called the transition probability. For the case of

electron-phonon interactions, one conceives of an electron in a particu-
lar eigenstate and a lattice vibration described by its eigenstate.
The phonon represents a lattice disturbance in which some of the atoms
are moved out of their ideal lattice sites. An electron is affected by
this disturbance and is liable to be scattered out of its eigenstate.

As shown by a direct calculation of the matrix elements, the
general condition for scattering is that the total wave vector cannot be

changed except by a reciprocal lattice vestor, i.e.
9=k-k'-g

where g is a reciprocal lattice vector. When g = 0 the process is

called a normal process. When g 7 0 the process is called an

Umklapp process.
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To take into account the other electrons, the adiabatic approxi-

mation or Born-Oppenheimer approximation is adopted, wherein the

motion of the ions is assumed to be so slow compared with that of
the electrons that the electron configuration is always the equilibrium
configuration for the particular positions of the ions at that instant,
This assumption enables the eigenfunctions for the total Hamiltonian
to be broken up into a product of two functions, one containing the
nuclear coordinates only, the other containing electronic coordinates
as variables with the nuclear coordinates entering merely as para-
meters. The adiabatic principle allows us to think of the electronic
state of the system as being almost independent of the lattice vibra-
tional state of the system. Each makes an independent contribution
to the total energy. This separation of energies is the most valuable
contribution of the principle.

The small cross term previously neglected in the Hamiltonian
is what gives such properties as electrical resistivity. The matrix
element calculated from this cross term does not vanish, and corres-
ponds to events in which both electronic and vibrational configurations
are altered, as in electrical resistance. The matrix element refers
to a process in which a phonon is absorbed or emitted, and an
electron is scattered. Examination of this matrix element shows that

in the scattering process energy must be conserved, i.e.

E, 6 =E

K +{1wq

k

The change in the phonon energy is usually very small, and it is
sometimes permissible to consider that the electron is scattered into
a state of essentially the same energy.

In evaluating the integrals in the expression for transition prob-

ability, the assumption of a Debye frequency spectrum is almost the
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only reasonable one to adopt and still be able to calculate. It turns
out that the electron-lattice interaction is mainly due to longitudinal
phonons.

The scattering term of the Boltzmann equation is now known in
principle. The final result for the ideal electrical conductivity, known
as the Bloch-Grueneisen equation is

1

5 a] -
% = [4A(3) ) (1)

where A is approximately constant, J; is a Debye integral, and ©
is a parameter for the electrical resistivity analogous to the Debye
temperature in the theory of specific heats. Define

= (% z 5 dz
T )= e (e )

No mention has been made of the term in the Hamiltonian for the
interaction of the conduction electrons. The question arises whether
electron-electron scattering contributes to electrical resistance. -

As before one may speak of normal and Umklapp scattering processes,
Normal processes correspond to the interchange of momentum between
the conduction electrons and do not contribute to resistance. Umklapp
processes do contribute a term which is proportional to T? at low
temperatures. For a monovalent metal this contribution is very
small, and while it is expected that this T? term should dominate the
resistance at very low temperatures this has never been observed.

The static imperfections of most interest here are isolated point
imperfections such as chemical impurities, vacancies, and inter-
stitials. To a first approximation the contributions of these to
electrical resistance are independent of each other, of temperature,
and of the temperature dependent contributions, because the scattering
mechanisms are assumed to be independent. Calculations (Sondheimer,

1950) (15) and experiment support this assumption. The additive
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aspect of the separate contributions to the resistivity was determined
experimentally by Matthiessen (1862) (16) and is known as the
Matthiessen rule. Thus for the total resistivity

P = tp

P lattice vibrations electron-electron

pimpuri‘cies

The adequacy of the functional form of equation (1) has been
extensively investigated for natural lithium in the papers of Kelly and
MacDonald (17). Results of this investigation will be discussed later.
The isotopic mass dependence of the parameter 6 in equation (1) should
be examined now to test the soundness of the underlying structure of
the theory. According to the Bloch formula, the conductivity at any
temperature T (after normalization through division by the conductivity
at some standard To) should be a universal function of T/8. How well
this prediction is verified will be treated in the Discussion of Results.

To study the effects of isotopic composition, we make use of
some work of Pirenne (7) on the change of frequency distribution when
isotopic impurities are introduced randomly in the lattice. His funda-
mental treatment for monatomic crystals shows that to first-order
terms in 6§ M/M, where M is the average atomic mass, and 6§ M is
the deviation from it for a given isotope, the frequency spectrum is
modified in proportion to the mass excess. (Actually Pirenne shows
that the harmonic mean is a better choice than the arithmetic mean,

a parameter proposed earlier by Prigogine (6) in a perturbation
treatment,) For 6§ M/M less than say 1/5 the difference between the
two means is insignificant, and it is impossible to decide between the

two representations in typical experiments.



SAMPLES

A. Procurement and Analysis

Stable isotopes of lithium having high chemical purity and high
isotopic enrichment have been made available by Oak Ridge National
Laboratory. All of the lithium samples used in this experiment were
made from Li-6 (99.3% Li-6; 0.7% Li-7), Li-7 (0.01% Li-6; 99.99%
Li-7), and natural lithium (7.52% Li-6; 92.48% Li-7).

The natural lithium was obtained from Lithium Corporation of
America, Minneapolis, as their low-sodium grade lithium, in rods of

3/8-inch diameter. The chemical specifications were the following:

Na 0.005%
K 0.01
Ca 0.02
N 0.06
Fe 0.001

The highly-enriched isotopes were distilled at Oak Ridge National
Laboratory to remove as much of the chemical impurity as possible.
The spectroscopic analyses before distillation are as follows:

Lot No. SS5(b)

Isotopic Analysis (atomic percent):
Li-6, 99.3 % 0.2%; Li-7, 0.7£0.1%
Spectrographic Analysis (element and weight percent, presumed

precision X 100%):

Al 01T Fe .05 Pb .01
Ba .01 K .01 Sn .01
Be .001 Mg .01 Sr .01
Ca .25 Mn .01 \Y% .01
Cr 01T Na .02 Zn .25
Cu .02 Ni .01

15
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Lot No. SS7(b)

Isotopic Analysis (atomic percent):
Li-6, 0.01£0.01%; Li-7, 99.99F 0.01%
Spectrographic Analysis (element and weight percent, presumed

precision X 100%):

Al .05 K .01 Rb .01
Ba .02 Mg 01T Si .05
Ca .02 Mn .02 Sn .05
Cr .05 Mo .05 Sr .2
Cu .01T Na .01 v .02
Fe .05 Ni .05

No chemical analysis was made after distillation. A comparison
with analyses before and after distillation on other lithium isotopes
(Lot No. SS5(a)) indicates that a substantial decrease in impurities
occurs in those elements which are present in amounts greater than
.01 atomic percent. (An exception is found in the case of strontium,
presumably because the vapor pressure curves for strontium and
lithium are very nearly identical.) It is therefore assumed that the
material actually used contained impurities in amounts less than these

of the above analyses.

B. Preparation

The samples consisted of wires of lithium about one millimeter
in diameter. They were extruded from a steel die in a dry-box
containing a carbon dioxide atmosphere. The samples remained in
this atmosphere within the dry-box during installation into the measuring
apparatus until the sample chamber was evacuated. This procedure
was necessary because of the chemical reactivity of lithium with the
nitrogen, oxygen, and water vapor in the air.

""Alloys' of the isotopes were prepared by melting weighed

amounts of the pure isotopes in mineral oil previously degassed by long
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o .
heating above 100 C. After thorough mixing, the molten material
was drawn into a rod suitable for insertion in the steel die, and the
samples of wire were extruded. Under the assumption of uniform

mixing, the isotopic concentrations of the samples used are as

follows:

Sample No. Li-6 Li-7
10-5 99.3 % .2% 0.7 +.2%
10.6 0.01 =+ .01 99.99 < .01
15-5 99.3 £.2 0.7 + .2
15-6 7.5 92.5
17-5 .01 +.01 99.99 .01
17-6 7.5 92.5
18-5 99.3 .2 0.7 + .2
18-6 .01 + .01 99.99 = .01
20-5 25 +1 75 +1
20-6 25 + 1 75 +1
21-5 50 +1 50 +1

21-6 75 + 1 25 + 1



APPARATUS

A, Measurement of Resistance

The resistance was measured potentiometrically. In this labor-
atory previous measurements down to liquid-air temperatures were
made with a Rubicon Standard Kelvin Bridge. For measurements down
to liquid-helium temperatures however, this method is no longer
practical, because the design of the bridge demands that one of the
current leads to the unknown sample have very small electrical re-
sistance and therefore correspondingly large heat conductance. The
large heat leak thereby introduced into the cryostat hinders cooling and
renders the achievement of thermal equilibrium impossible. Moreover,
even when the Kelvin bridge is in balance a small current flow in the
potential leads from the sample. Hence these leads cannot be of
arbitrarily small diameter. The potentiometric method, on the other
hand, allows use of both current and potential leads of small diameter,
and accurate results may be obtained with small currents., The choice
for the optimum lead sizes was made according to the suggestions of
McFee {18).

Figures 1, 2, and 3 are photographs of the experimental setup.
Figure 4 is a schematic diagram of the system. A potential of about 6
volts was supplied to the external circuit by a lead-acid storage battery.
A decade resistance box controlled the current. A reversing switch
was placed across the battery. The current, whose value was kept at
about .036 ampere for most of the measurements, was determined by
noting the potential drop across a ten-ohm standard resistor. This
drop was measured by a Leeds and Northrup K-3 Potentiometer used in

conjunction with a high-sensitivity d-c galvanometer (7 x 10°® v/mm).

18



Figure 1. Over-all view of apparatus. To the left of center is the metal
Dewar. From its mouth projects the top of the glass Dewar covered by
the brass top plate. In the center at the top is the control and switching
panel. Below it is the Speedomax recorder whose input consists of the
output from the d-c microvolt amplifier just beneath it. The Mueller
bridge is placed on a shelf in front of the amplifier. At the bottom are
the storage batteries and current-control circuit. On the table to the
right is the K-3 potentiometer with its galvanometer.
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Figure 2. View of internal parts of apparatus positioned in dry box and
ready for sample placement. At the top of the picture is the conduit
through the center of brass top plate. The conduit projects through the
balloonbuoyed up by carbon dioxide from the cylinder to the left.

Within the dry box may be seen in the foreground a vise holding the
extrusion apparatus, and at its end the aluminum radiation shield.
Behind the vise is the brass tank.
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Figure 3. Close-up view of the interior of the dry box. At the top is the
brass plate holding the aluminum doughnut with openings through which
the leads have been wrapped. Three Teflon stand-off insulators carry an
aluminum plate, which in turn supports the temperature-equalizing ring
around which the leads are wrapped several times. Beneath it is the
Teflon sample holder with the lithium samples (covered by polyethylene
envelopes) looping down from it. The aluminum radiation shield hangs
in the middle of picture, just in front of the extrusion apparatus.
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A precision of about 0.01% was attainable in the current measurement.
The potential drop across the lithium samples was measured with the

same arrangement.

B. Measurement of Temperature

The temperature of the sample in any given resistance measure-
ment should be known to within 1°K or better. Two copper-constantan
thermocouples were employed (constantan, Leeds and Northrup thermo-
couple wire, 30-gauge wire; copper, Leeds and Northrup thermocouple
wire, 30-gauge, matched for copper-constantan thermocouples.)

One thermocouple, at the top of the sample container, gave the tempera-
ture in the neighborhood of the samples. The other thermocouple was
wound around a dummy sample and gave the temperature of the lithium.
If the readings of these two thermocouples were nearly the same, it was
assumed that the temperature gradients in the lithium wires themselves
were quite small, Ih addition, a differential thermocouple detected
thermal gradients within the sample container. Manually-controlled
heaters helped eliminate these thermal gradients and thus ensured uni-
form temperature in the container surrounding the samples.

The thermocouple junctions were made with high-melting silver
solder. The reference junction was cemented to a piece of glass tubing
and immersed in an ice bath, where it was surrounded with crushed ice
made from distilled water. The temperature of the reference junction
was determined by a calibrated platinum resistance thermometer
immersed in the junction bath and in juxtaposition with the thermocouple
junction. The output from the thermocouples was fed into a Leeds and
Northrup d-c microvolt amplifier. A portion of this signal was backed
off with a potentiometer, and the net emf. was fed into a Leeds and

Northrup Speed-o-Max self-balancing recording potentiometer.
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Calibration points for the thermocouple were obtained in order to
determine the deviation from the copper-constantan thermocouple
tables. A certified platinum resistance thermometer was used as the
standard at all temperatures except 4. ZOK, the boiling point of helium
at atmospheric pressure. For the standardization the thermocouple
was wrapped around and cemented to the platinum resistance thermometer.
To get temperatures below that of liquid air, the platinum resistance
thermometer and the thermocouple were mounted on the end of a piece
of glass tubing and inserted into a liquid-helium Dewar flask at varying

levels above the surface of the liquid.

C. Cryostat and Sample Holder

The measurements of resistance were made in a cryostat shown
schematically in Figure 5, The sample holder, shown enlarged in
Figures 6 and 7, consisted of a flat ring of Teflon. Samples of lithium
wire were suspended at both ends of this ring, and were held in place by
copper bolts placed in the plate and serving as current contacts. Care
was taken not to deform the wire except at the bolt itself., Similar copper
bolts placed near the current contacts served as the base from which the
potential contacts were made. Springs were made from brass spring
wire in a hair-pin shape. A sharp point was put on one end of the wire,
and the other end was bent into a small circle in the plane of the hairpin.
The springs were fastened in place by copper bolts with copper nuts,
and acted as spring-loaded potential contacts. Figure 7 shows this con-
struction in detail. Current and potential leads were connected to the
copper bolts with copper nuts. The sample holder was suspended by its
lead wires from a flat aluminum ring around which all the current,
potential, and thermocouple leads were fastened. This ring, which

served as a heat exchanger, was in turn, suspended from the top plate
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of the sample container. The sample container was an aluminum
cylinder surrounding the sample holder and samples. The sides and
bottom of this cylinder were made from aluminum foil of dcuble thick-
ness, and the top plate was made from 1/8-inch aluminum plate.

A radiation shield of aluminum foil surrounded this cylinder. The assem-
bly was enclosed in a brass cylinder with side thickness of about 1/24
inch, a bottom plate about 1/8 inch thick, and a top plate consisting

of an outer brass ring soldered to a 1/16-inch brass disc. This ring is
1/8 inch thick, with outer diameter 5 inches and inner diameter about

4 inches, A similar ring is soldered to the top of the cylinder. Matching
holes were drilled in both rings, so that a vacuum seal could be formed
between the top plate and the rest of the cylinder by a lead fuse-wire
gasket. A stainless-steel tube, 1/2 inch outside diameter, and about

2 1/2 feet long, was soldered inside a 1/2 inch hole in the middle of the
top plate. This tube served both for evacuation of the cylinder and for
taking the electrical leads out of the cryostat. The leads were sealed at
the top of the stainless-steel tube by imbedding in a disc of cast plastic
1/2 inch thick and 2 inches in diameter (Liquid Casting Plastic, Castolite
Casting Company, Woodstock, Illinois). A vacuum seal could then be
obtained between the plastic and a small plate soldered to the stainless-
steel tube.

The assembly was placed in a.cylindrical glass Dewar flask of
height 24 inches and inside diameter 6 inches. The topmost five inches
of the Dewar consisted of glass pipe with a ground collar at the top.

This flat surface permitted a 3/8-inch brass plate to be clamped over

the top of the plate, to allow partial evacuation of this Dewar. The glass
Dewar itself was placed in a stainless-steel Dewar, as shown in Figure 5.
When measurments were being made below liquid-air temperature,

this outer Dewar permitted precooling samples, and served as a radiation

shield.
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D. The External Circuit

The electrical leads consisted of seven Teflon-covered No. 27
copper wires for the current leads to the six samples, seven Formvar-
covered No. 30 copper wires for potential leads to them, three Teflon-
covered No., 27 wires for two heaters, and the six thermocouple wires
mentioned earlier.

The leads enter the assembly through the plastic disc, descend
through the stainless-steel tube, and wind four times around an aluminum
torus serving as a heat exchanger. The torus is placed in good thermal
contact with the underside of the brass plate to which the tube is silver
soldered (that is, the top plate of the vacuum chamber). The leads are
fastened to the torus with insulating varnish. They then descend to the
top plate of the aluminum cylinder surrounding the sample holder, where
they are wrapped several times around spokes in the aluminum plate and
secured with varnish. The leads go next to the copper bolts on the
sample holder where they are secured with copper nuts. Thermal emf's
are minimized by making the circuit almost entirely of copper.

After leaving the cryostat, the potential leads and the thermocouple
wires go to a twelve-point thermal-free switch. The current leads to
to a rotary switch which connects each sample in turn with the external
circuit. The differential thermocouple wires go directly to a galvanometer.
Each heater circuit contains an ammeter, a 1000-ohm potential divider,

and a Heath-kit Battery Eliminator as a power supply.



EXPERIMENTAL PROCEDURE

Alloys of the isotopes were prepared by melting weighed quanti-
ties of the high-purity lithium isotopes in mineral oil. Before the lithium
was melted it was cleaned of all reaction products by scraping the surface
with a steel knife blade to remove the oxide and nitride coating. Cleaning,
as well as weighing, was done in a dry box with a dry carbon-dioxide
atmosphere. The two chunks of lithium were pressed together before
melting and stayed together during melting, to form a single globule of
molten metal floating in the oil. During the melting the surface of the
melted lithium did not stay shiny. Apparently a surface reaction had
taken place.to form a very thin surface layer. This layer actually
served as a protective surface, and was pliable enough that mixing by
mechanical deformation could be carried out. The globule was kneaded
by means of a stainless steel rod for several minutes to insure a homo-
geneous mixture. From this globule some of the metal was drawn up
into a glass tube coated with hot oil, and immediately extruded into a
beaker of cooler oil.

In preparation for extruding the lithium wires, the surface of the
alloy was again cleaned with a knife in the carbon-dioxide atmosphere.
The extruding device consisted of a steel barrel with a plunger threaded to
advance along threads tapped in the barrel. The plunger forced the
lithium through a 1-mm circular hole in a steel die screwed into the end
of the barrel.

The samples were extruded and placed in the sample holder while
kept in the dry box. Then the brass chamber and stainless-steel tube,
complete with all of the apparatus inside it, were placed in the dry box.

The samples were extruded from the die by placing it in a vise and turning

30
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the plunger with a wrench. Care was taken during the mounting not to
deform the wires in any way except where the wire was attached to the
current junctions. After the sample holder had been loaded, the potential
contacts were made, the sample container and radiation shield werhe put-
in place, and the brass cylinder was assembled with the lead gasket in
place. The double-Dewar apparatus containing the brass cylinder was
then evacuated, in order to prevent any surface reaction due to slight
amounts of impurities in the dry-box atmosphere, or to slow reaction
with the carbon dioxide.

- At temperatures below 80°K the apparatus was pre-cooled to liquid-
air temperature by introducing helium gas inside the glass Dewar and
into its vacuum jacket. The transfer tube from the helium liquefier was
put into place, the helium-gas return to the liquefier was connected,
and the vacuum jacket of the glass Dewar was then pumped out. Liquid
helium was then brought in from a Collins helium liquefier. Six to eight
liters introduced into the glass Dewar lowered the temperature to about
4. ZOK. The brass cylinder was evacuated, and the heaters were adjusted
manually so as to approach thermal equilibrium, as indicated by the
differential thermocouple. In several trial runs it was found that adjust-
ment of the heaters did not significantly affect the measurements.

Hence for most of the measurements between 4.2°K and liquid-air
temperature, natural warming, due to the normal leak of heat into the
sample container, was sufficiently gradual that near thermal equilibrium
was almost always achieved. The consistency of the experimental results,
as well as the agreement with the work of Kelly and MacDonald (17) lends
confidence to this assumption. Above 80°K, essentially the same pro-
cedure was followed, with liquid air replacing liquid helium as the cooling
medium.

As mentioned earlier, the thermocouple reference-junction

temperatures were monitored with a platinum resistance thermometer.
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Periodic checks were made on the reference-junction temperature.
Simultaneous readings of temperature and resistance were not possible,
but nearly continuous readings for temperature and resistance could

be obtained by sampling the two specimens and the two thermocouples
in order. The breaks in the curves on the recorder chart were then

filled in.



RESULTS

The direct experimental results for the resistance consist of
voltage readings which are translated into resistance values. Since
the dimensions of the specimens are not known precisely, the actual
values of resistance are of little interest, Instead we consider the
ratio of these resistances to that at some reference temperature, Ty,
taken as 293, loK. Moreover since we are concerned primarily with
the phonon-electron interaction, we need to subtract the temperature-
independent residual resistance due to chemical impurities and other
imperfections. At 4. 2°K the temperature-dependent part of the total
resistance is negligibly small. We compute then the ratio of net
resistance R(T) at temperature T, defined as the total resistance R'(T)-
R' (4. 20), divided by the net resistance R(T,) at reference temperature

To. The behavior of this normalized net resistance is shown schematic-

ally in Figure 8 for isotopically-pure Li-6 and Li-7. The numerical

values will be given later.

Residual Resistances

The actual values of the residual resistance give an excellent
indication of the chemical purity of the material. At room temperature
our samples had resistances of about 20 milohms, decreasing to about
30 microhms at liquid helium temperature, to give a ratio of about one
or two parts per thousand. These values are summarized in Table 1.
The results give confidence that possible failure of Matthiessen's rule
cannot affect the conclusions very much since the residual resistances
are small and of uniform magnitude for all samples. The values agree

very well with those found by Snyder and by Dugdale et al.

33
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Table 1. Residual and Normalizing Resistances for Lithium

Specimens
Total Total
Resistance Resistance
Sample at 4.2°K at 293.1°K R'(4.2)
Material Number R'(4.2) R'(293.1) R'(293.1)
"Li-6" 10-5 0412 mQ 23.63 m 1.74 x 1073
(99.3%)
TLi-T7" 10-6 .0350 23.44 1.49
(99.99%)
vli-6" 15-5 .0416 23.82 1.75
Li-Nat. 15-6 .0280 24.20 1.16
(92.5% Li-7)
Li-Nat. 17-5 .0233 23.29 1.00
"Li-T7" 17-6 .0318 23.68 1. 34
vli-6" 18-5 .0385 23.90 1.61
YLi-7" 18-6 .0206 16.37 1.26
25% “"Li-6" 20-5 .0355 15.94 2.23
75% “Li-7"
25% "Li-6" 20-6 .0345 15,03 2.30
75% "Li-7"
50% "Li-6" 21-5 .0350 19.44 1.80
50% "Li-7"
75% "Li-6" 21-6 .0378 21.70 1.74

25% "Li-7"
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For the isotopically-pure samples the residual resistivity is
somewhat higher than that of the natural lithium. This result is not
surprising in view of the techniques which must be used for preparation
of the separated isotopes in metallic form. Only small quantities of
starting material are available, and the distillation techrique is special.
For the isotopic alloys the residual resistivities are only a little higher
than those for the separated isotopes. This increase is to be expected,
for the manipulations involved in their preparation can only introduce
additional impurities. Nonetheless the smallness of the increase is
gratifying, and lends confidence to the assumption that no spurious‘

effects have been introduced.

Effect of Temperature

The effect of temperature on the normalized net resistance of
lithium metal of varying isotopic composition is presented in Tables
2, 3, 4, 5, 6, and 7. Graphical presentation of this body of data in full
is not feasible. To give an idea of the reproducibility of the data, Figure
9 shows a section of the data for lithium-6 and lithium-7 between the
temperatures 60°K and 80°K. The reproducibility from one sample to

another of the same material is usually better than one part per thousand.

Comparison with Other Workers

The present results, which are considerably more precise than
those of Snyder, are not in contradiction with his. Our values agree
well with those of Dugdale et al., who claim somewhat greater precision
than we do. To give an idea of the agreement, Figure 10 shows results
of calculation from a portion of the data, with the ratio of resistivities
for lithium-6 and lithium-natural plotted as a function of temperature
for our work and for that of Dugdale et al. Since the dimensional data

for our samples are not available we do not have direct knowledge of the



37

Table 2. Normalized Net Resistances, Run No. 10

Sample Number 5, Li®%; Sample Number 6, Li’

No. 5 . No. 6~ Temp. No. 5 No. 6 Temp.
,00000 .00000 4,2 . 04680 .05363 63.0
.000017 .000013 8.8 .04680 .05363 63.1
.000046 .000043 11.3 .05958 .06839 68.1
.00005 .00005 12.2 .05958 .06839 68.1
.000085 .000085 12.7 .07050 .08025 71.8
.00013 .00017 14.1 .07050 .08025 71.9
.00086 .00093 20.6 .08138 .09168 75.2
.00086 .00093 20.6 .08138 .09168 75.3
.0012 .0017 22.9 .08625 .09787 76.8
.00163 .00176 24.1 .08625 .09787 76.9
.00234 .00258 27.0 .3143 . 3304 133.2
.00362 .00402 30.4 . 3701 . 3856 145.7
.00431 .00483 31.9 . 3990 .4142 152.3
.00431 .00483 31.9 .4195 .4350 157.0
.00512 .00580 33.4 .4643 .4786 167.0
.00630 .00712 35.4 .6428 .6535 207.9
.00724 .00823 37.0 . 7541 .7633 233.8
.00944 .01088 39.7 .8003 .8108 245,2
.01198 .01378 42.3 .8567 .8672 258.7
.01198 .01378 42.3 . 9005 .9129 269.2
.01587 .01830 45.7 .9433 . 9590 279.4
.01587 .01830 45,7 . 9805 .9982 288.4
.02069 .02409 49.4 .9816 . 9828 288.7
.02069 .02409 49.6 1.0000 1.0000 293.15
.02818 .03310 54,2 1.0014 1.0015 293.5

.02818 .03310 54.2 1.0285 1.0263 299.9
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Table 3. Normalized Net Resistances, Run No. 15

Sample Number 5, LiNat; Sample Number 6, Li®

No. 5 No. 6 Temp. No. 5 No. 6 Temp.
.0000 .0000 4.2 .2523 .2361 115.6
.00004 .00004 11.0 .3090 . 2949 128.7
.00014 .00014 14.2 . 3451 .3318 136.8
.00036 .00036 17.2 . 3664 .3530 141.6
.00098 .00094 20.7 .4095 .3965 151.7
.00127 .00122 21.8 . 4304 L4171 156.6
.00182 .00174 24.3 . 4457 .4325 160.1
.00179 .00174 24.6 L4471 . 4345 160.1
.00221 .00213 26.0 L4744 .4630 166.5
.00289 .00277 28.0 .5145 .5030 176.2
.00326 .00303 29.1 .5256 .5147 178.2
.00379 .00348 30.1 .5521 .5416 184.4
.00464 .00428 31.9 .5661 .5567 187.8
.00531 .00477 32.9 .5767 .5663 190.5
.00672 .00603 35.1 .5835 .5739 191.8
.00917 .00812 38.5 .6091 .6003 197.9
.01254 .01100 41.7 .6413 .6322 205.8
.01477 .01295 43.5 . 6430 .6356 205.9
.01798 .01550 45.9 .6459 .6381 206.5
.02198 .01898 48.5 .6483 .6406 207.1
02561 .02235 50.7 .7298 .7238 226.8
.03486 .03027 55.3 . 7426 L7372 229.6
.04387 .03759 59.0 . 7554 . 7494 233.1
.05231 .04442 62.4 .7876 .7821 241.1
.06310 .05542 66.4 .8264 .8224 250.4
.06909 .06079 68.6 .8264 .8228 250.5
.07640 .06767 71.0 .8719 . 8690 261.8
.08417 .07464 73.3 .8913 .8883 266.4
.08876 .07884 74.8 . 9860 .9857 289.8
. 09645 .08631 77.0 .9909 .9908 291.2
. 10690 .09622 80.0 .9921 .9916 291.5
. 1315 .1203 86.7 . 9959 .9958 292.5
. 1784 .1653 98.5 1.0000 1.0000 293.15
. 2357 L2214 111.8 1.0054 1.0059 294.44

. 2355 . 2215 111.9

—
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Table 4. Normalized Net Resistances, Run No. 17

Sample Number 5, LiNat; Sample Number 6, Li’

No. 5 No. 6 Temp. No. 5 No. 6 Temp.
0.000073 0.000076 8.8 0.3731 0.3733 139.0
0.000056 0.000076 10.8 0.3982 0.3983 148.8
0.000322 0.000304 14.8 0.4500 0.4506 160.3
0.00128 0.00125 21.9 0.4581 0.4590 162.7
0.00248 0.00247 26.4 0.4848 0.4852 169.0
0.00833 0.00842 37.0 0.4899 0.4907 169.8
0.01114 0.01119 40.0 0.4968 0.4975 171.9
0.01458 0.01465 43,2 0.6028 0.6030 197.6
0.01832 0.01835 45.8 0.6556 0.6558 210.5
0.22117 0.02155 48.0 0.6690 0.6698 211.9
0.03922 0.03926 57.4 0.7316 0.7318 227.9
0.04873 0.04873 61.3 0.8922 0.8936 266.9
0.06123 0.06111 65.6 0.9133 0.9134 271.7
0.07097 0.07128 69.1 0.9506 0.9514 281.2
0.08162 0.08205 72.7 0.9584 0.9590 283.1
0.09004 0.09024 75.0 0.9785 0.9797 288.2
0.09906 0.09916 77.6 0.9742 0.9742 286.9
0.1069 0.1077 79.8 0.9863 0.9869 290.0
0.1663 0.1676 95.6 1.0008 1.0017 293.5
0.2481 0.2483 114.6 1.0030 1.0042 294.3

0.2797 0.2802 121.9 1.0232 1.0245 299.4
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Normalized Net Resistances, Run No. 18

Sample Number 5, Li%; Sample Number 6, Li’

No. 5 No. 6 Temp. No. 5 No. 6 Temp.
.000473 .000654 18.4 .08565 .09664 76.9

.000992 .00117 21.7 .0918 .1032 78.7

.00254 .00304 27.9 .09762 . 1094 80.4

. 00456 .00555 32.7 . 2655 .2833 122.5

.00595 .00712 35.1 .2972 . 3150 129.8

.00852 .01036 38.9 .3318 . 3494 137.9

.01172 .01410 42.4 .3729 .3892 146.7

.01492 .01809 45.3 .4003 .4165 152.8

.01907 .02267 48.8 . 4460 . 4625 162.9

.02286 .02716 50.9 .4753 .4917 169. 35
.02881 .03366 54.9 .5289 .5415 181.4

.03703 .04290 59.0 .5598 .5721 188.8

.04106 .04743 60.6 .5941 .6042 196.7

. 04837 .05558 63.8 .6448 .6536 208.6

.05490 .06286 66.3 . 8536 .8570 257.8

.06046 .06909 68.4 .9134 .9151 272.2

.06506 .07446 70.2 . 9481 . 9487 280.5

.07096 .08100 72.2 . 9762 .9768 287.4

. 08025 .09114 75.2

-t

23
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Table 6. Normalized Net Resistances, Run No. 20

Sample Number 5, 25% Li®, 75% Li’; Sample Number 6, 25% Li®%, 75%
Li’

No. 5 No. 6 Temp. No. 5 No. 6 Temp.
.000659 .000625 16.4 . 4747 .4740 166.9
.000922 .000858 18.3 . 4881 .4876 170.1
.00149 .00150 21.9 . 5065 .5059 174.4
.00315 .00327 27.6 .5356 .5323 180.5
.00529 .00536 32.1 .5524 .5506 185.2
.00756 .00767 35.7 .5681 .5675 188.9
.01093 .01092 39.6 .5792 .5782 191.8
.01347 .01347 41.9 .6065 .6054 198.5
.01792 .01796 45.7 .6306 .6296 204.5
.02264 .02271 48.17 . 6440 . 6423 207.8
.03136 .03137 53.5 .6582 .6568 211.1
.03871 .03852 57.1 6724 .6710 214.3
.04623 .04631 60.3 .6769 .6760 215.5
.05270 .05281 62.8 .6913 .6906 218.9
.06437 . 06454 67.1 . 7064 . 7052 222.5
.07089 .07106 71.2 . 7302 . 7285 227.9
.08375 .08343 73.4 . 7547 . 7545 233.9
.08940 .8922 75.1 . 7666 . 7665 236.6
.09586 . 09594 77.1 . 7735 .7738 238.4
. 1062 . 1062 80.0 . 7880 .7871 241.9
. 1144 .1142 82.2 . 8005 . 7997 244.9
.1421 . 1420 89.8 .8124 .8117 247.75
.2009 .2013 104.5 . 8237 .8230 250.5
.2261 .2263 110.1 . 8344 .8337 253.0
.2644 . 2649 118.65 . 8469 . 8463 256.0
. 2668 . 2666 119.6 . 8582 .8570 258.8
. 2845 . 2845 123.3 .8708 .8696 261.7
.3037 .3032 128.2 .8934 .8916 267.0
. 3458 . 3449 129.0 .9021 .9009 269.3
.3970 .3971 149.2 .9122 .9108 271.6
.4053 .4054 151.2 .9197 .9188 273.6
.4104 .4107 151.9 . 9348 . 9348 277.25
.4161 .4259 156.0 . 9467 . 9468 280.2
.4422 .4419 159.6 . 9768 L9767 287.55

-4553 .4548 162.6

——
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Table 7. Normalized Net Resistances, Run No. 21

Sample Number 5, 50% Li®, 50% Li’; Sample Number 6, 75% Li®, 25% Li’

No. 5 No. 6 Temp. No. 5 No. 6 Temp.
.00024 .00029 15.7 .3824 .3778 146.6

.00053 .00055 17.5 .4002 .3974 150.8

.00151 .00152 22.9 .4180 .4148 154.9

.00225 .00219 25.3 .4422 .4382 160. 2

.00335 .00335 28.2 .4565 .4530 163.5

.00407 .00416 30.2 .4814 .4780 169.6

.00558 .00551 32.8 . 4928 .4896 172.1

.00740 .00728 35.6 .4983 .4955 173.4

.00979 .00958 38.6 .5130 .5101 176.7

.01214 .01187 40.8 .5190 .5161 178.0

.01506 .01463 43.6 .5301 .5276 180.2

.01848 .01802 46.4 .5522 .5502 185.8

.02295 .02225 48.9 .6008 .5982 197.8

.02709 .02586 51.6 .6148 .6129 201.3

.03404 .03315 55.3 .6269 .6244 204.1

.04211 . 04030 59.1 .6349 . 6327 206.1

.05100 .04912 62.7 . 6560 .6553 211.4

.05928 .05705 65.8 .6700 .6687 214,35
. 06640 .06401 68.4 .6785 6774 216.45
.07237 .06982 70.4 .6921 .6903 219.6

.07979 .07687 72.8 . 7056 . 7037 222.8

.08571 .08276 74.7 . 7186 L7166 225.7

. 09413 .09097 77.3 .7312 . 7290 228.8

. 10005 .09696 78.9 . 7432 . 7419 231.6

.1058 . 1026 80.5 . 7548 . 7539 234.5

.1324 . 1298 88.1 . 7663 . 7654 237.2

. 1457 . 1422 91.6 . 7844 . 7839 241.6

1617 . 1581 95.8 . 8230 .8221 250.5

. 1801 1762 100. 4 . 8390 .8378 254,25
.1978 . 1943 104.8 .8516 . 8475 256.55
.2185 .2146 109.6 . 8796 .8788 264.15
. 2396 . 2357 114.5 . 8887 . 8876 266.25
. 2572 . 2537 118.6 . 8982 . 8972 268.55
. 2859 .2818 124.7 .9283 . 9286 276.0

. 3228 .3191 130.8 .9423 . 9424 279.35
- 3359 .3319 136.4 . 9669 . 9668 285.3

- 3474 . 3435 139.0 . 9809 .9811 288.6

- 3483 . 3442 139.2

. 3652 .3613 142.9

- 3696 . 3662 144, 2

————
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Figure 9. Portion of the data to illustrate sample-to-sample
reproducibility, (run-to-run) showing normalized net resistance
for lithium-6 and lithium-7 in the temperature range 60°-80°K.
The actual resistances are about 1 or 2 milohms, amounting to
5 to 10 percent of the room-temperature resistance.
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resistivity of our samples. We have therefore accepted the results of
Dugdale et al., and assumed in view of the identical sources and the
high purity that our samples have the same value of absolute resistiv-
ities at room temperature. A comparison with Dugdale et al. below
80°K is given in Table 8. His data represent a ratio of ideal resistiv-
ities

pi6 (1.074 T)

Nat
Py (T)

As will be explained later the constancy of this ratio is a measure in
part of the validity of the theory. For comparison our data are made

to correspond to his resistivities at 295°K.

Comparison with Theory--Separated Isotopes

The form of the function appearing in the Bloch-Grueneisen
formula has been extensively tested for natural lithium by Kelly and
MacDonald (17). To compare the theoretical predictions with the
experimental results, these workers computed at each temperature T
the value of the parameter 8 necessary to make the formula fit the
measured value of resistance. The departure of 6 from constancy is .
then a measure of the inadequacy of the theoretical expression. Kelly
and MacDonald found, as with most other metals, that the departure
is considerable, and that the formula can be considered only as a fairly
good first approximation, Dugdale et al. (5) have followed the same
procedure with the separated isotopes of lithium, with the same result.

Instead of repeating this type of presentation with our data--which
are in good agreement with theirs--we prefer a more direct though
less sensitive means of showing the nature of the agreement of our
results with the theory. Figure 11 shows (in percent) the excess over

unity of the ratio of the normalized net resistance of lithium-7 to that
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Table 8. Comparison of Data Below 80°K with Dugdale et al.
(See Text for Explanation)

= =
T Dugdale Present Data
80.0°K 1.07 1.08
75.5 1.07 1.06
70.0 1.07 1.07
65.0 1.08 1.06
59.5 1.07 1.08
55.4 1.06 1.08
50.4 1.07 1.09
46.7 1.07 1.08
43.2 1.07 1.10
40.0 1.07 1.11
37.0 1.06 1.09
34.3 1.05 1.06
31.7 1.05 1.11
27.0 1.06 1.15

25.0 1.07 1.19
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of lithium-6 at temperatures between 50°K and 300°K, The dashed

line represents our experimental data, the solid curves the predictions
of the Bloch-Grueneisen formula for two values of the parameter 6

for the heavier isotope. It is clear that adjustment of this parameter
cannot much improve the agreement over the temperature range shown.
At lower temperatures, the theoretical curve continues to rise, but
flattens off to approach the vertical axis at about 38 percent. The experi-
menté.l points begin to scatter badly, since the absolute values are only
a few percent of the room temperature values, and differences between
small quantities are involved. We believe that the scatter is due to
experimental uncertainties inherent in the present method and apparatus,
but we cannot rule out possible effects of the martensitic transition, or
even of departures from Matthiessen's rule.

With respect to the behavior of the parameters occurring in the
Bloch-Grueneisen formula, only the parameter 6 will yield much of
interest. All the other quantities appearing in the formula (lattice con-
stant, atomic field, and so on) are virtually identical between isotopes
of lithium (see, e.g., Covington and Montgomery, 1957) (19). In our
own experiments the lack of knowledge of the sample dimensions pre-
vents our verifying thesé identities; but the work of Dugdale and
collaborators however shows indeed that the limiting resistivities of the
two isotopes at high temperatures are the same.

So far as the behavior of the parameter 6 is concerned, it is
easier to describe the results for the isotopic alloys and the pure iso-

topes simultaneously. Accordingly we postpone this discussion.

Dependence on Isotopic Composition (including pure isotopes)

For the isotopically-pure metals, it is clear from the equations of
motion that the lattice-vibration frequency spectrum must be identical

between isotopes, after application to the frequency of a scaling factor
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proportional to the square root of the isotopic mass. For in the equation
of motion the mass of each particle is multiplied by the second derivative

! nor time appears elsewhere

with respect to time. Since neither mass
in the equations, the solutions can contain mass and frequency only in

the combination mass times frequency squared. A dimensional-analysis
argument next suggests that the only way the frequency can enter is
through the combinationw/ kT, where the characteristic frequency w is
proportional to the square root of some interatomic force constant
divided by the atomic mass. Now, as we have just seen, any frequency
appearing in the derivation will have this same dependence on mass.
Hence it is strongly indicated that a universal curve with abscissa T/8,
where 8 varies inversely as the square root of the atomic mass, will
describe the dependence of electrical resistance on temperature. The
arguments given in Dugdale et al. (5), based on derivations in Ziman (20),
amount to illustrations of this conclusion for specialized models. The
Bloch-Grueneisen equation itself is a very specific illustration of this
argument,

For the isotopic alloys it appears that the only effect of introducing
isotopes is to modify the frequency vibration spectrum. Prigogine (1954)
(6) has shown that to first-order perturbation terms the spectrum is
modified merely by scaling the frequency in inverse proportion to the
square root of the arithmetic mean of the mass; Pirenne (7) has shown
that the first order correction in an exact treatment gives a spectrum
modified merely by scaling the frequency in inverse proportion to the
square root of the harmonic mean. For isotopic alloys of lithium-6

and lithium-7 the difference between the two means is a few parts per

! The electron orbits are modified a small amount (actually about
one part in ten thousand) by the difference in reduced mass for electron-
nucleus between isotopes, so that the atomi¢ fields are not exactly
identical; but this difference may be ignored in the present work.
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thousand at most, and we need not differentiate between them in this
treatment. We shall try then to account for the effect of isotopic
composition, from 100 percent lithium-6 to 100 percent lithium-7,
simply by scaling the temperature in proportion to the square root of
the average mass of the isotopic mixture.

We arbitrarily take lithium-natural as the standard. Then the
normalized net resistance is adjusted by the scaling factors and divided
by that for natural lithium. If the theory is correct this ratio should be
unity. The results of this procedure are'given in Table 9. Each entry

in the table is of the form

W R, (T/y )/Rx(T,)
* RNat(T)/ RNat( To)

where x denotes the isotopic content of the sample, Ry (T)/Ry(Ty)

is the net normalized resistance of the sample %, y is defined as

N'M, /M., and Wy is defined as 1.0000 - (293.1 - 293. I M,/M_./) N,
where N (equal numerically to 0.00407) is the slope of the lithium-
natural curve at 293. IOK; MX is the average mass of the sample of
isotopic composition x. W_ is the scaling factor by which the point

R,(293.1/y)/R (293°K) on the Ry curve is made to lie on the R__, curve.

nat
In the range from 290°K to 80°K the disagreement is at most a
few parts per thousand. From 80°K to about 30°K the disagreement
is a few parts per hundred. Below 30°K the absolute resistances are
so small that the effects of any slight absolute errors are greatly
magnified, and the numerical comparison becomes meaningless. The
last rows in the table reflect the onset of this trend.
The agreement then is to be considered excellent, the variability
at low temperatures reflecting simply the difficulties in the experimental
work there. It is particularly significant that no strong trend appears

in the deviations of the ratios from unity. Thus it would seem that

there are no scattering mechanisms unaccounted for.
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Table 9. The Data Reduced to a Universal Curve
— —————————
T 100% Li-6  75% Li-6 50% Li-6 25% Li-6 0% Li-6
(°K) 0% Li-7  25% Li-7 50% Li-7 75% Li-7 100% Li-7
290.0 -- -- -- 1.001 1.001
280.0 1.001 1.001 1.000 1.006 1.001
270.0 0.999 0.998 0.999 0.998 1.000
260.0 1.001 1.000 0.994 0.999 1.002
250.0 0.999 0.997 1.001 0.997 1.006
240.0 1.000 0.998 0.997 0.996 1.007
230.0 0.996 0.993 0.992 0.993 1.004
220.0 0.998 0.995 0.994 0.993 1.002
210.0 0.997 0.990 0.990 0.988 1.001
200.0 1.010 1.004 1.004 1.003 1.003
190.0 1.000 0.994 0.995 0.996 1.003
180.0 0.997 0.997 0.997 0.999 1.004
170.0 1.002 1.000 0.998 1.001 1.004
160.0 0.998 0.996 0.999 0.997 1.004
150.0 1.000 0.998 0.999 0.999 1.004
140.0 1.000 1.000 0.996 1.007 0.997
130.0 1.004 0.998 1.001 0.996 1.002
120.0 0.997 0.997 1.000 0.995 1.000
110.0 0.992 0.992 0.994 1.000 1.001
100.0 1.009 0.998 0.998 1.009 1.001
90.0 1.003 1.002 1.008 1.004 1.001
80.0 1.008 1.018 1.015 1.009 1.008
70.0 0.988 1.016 1.025 1.022 1.019
60.0 0.988 1.014 1.018 1.005 0.971
50.0 1.029 1.069 1.072 1.048 1,003
40.0 1.012 1.135 1.101 1.042 0.994
30.0 1.088 1.069 1.133 1.208 1.008
20.0 1.355 1.171 1.013 1.290 0.960
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Effect of the Martensitic Transition

Although a transformation from one crystal structure to another
would be expected to affect the lattice-electron interaction, and thereby
the electrical 1;esistivity, we have been unable to locate definitely any
such change due to the well-known martensitic transformation of lithium
from its normal bcc structure to hcp at low temperatures. In all our
measurements the material was first cooled to liquid-helium temperatures,
and then kept there for some time before warming. Consequently we were
not in position to detect any hysteresis in the transition., Still, we should
have noticed any irregularity in the resistance curve when passing through
the transition region during warming. We have not yet scrutinized our
data specifically to locate this effect, but routine examination has failed
to pick it up. It is to be remembered that the resistances actually
measured are about 2 milohms, and that changes of only a few percent of
this value are to be expected. The slightest error in the measurement
of resistance or of temperature, or the introduction of any spurious effect,
would render detection of such irregularity very difficult.

As pointed out earlier, the data for temperatures much below 80°K
show considerable scatter. Although it is possible to attribute this
scatter to the martensitic transition, the absence of systematic trends

in this scatter works against this interpretation.



SUMMARY

1. A method was developed for measuring the resistance of small
samples of metallic lithium from room temperature (2950K) to liquid
helium temperature (4. ZOK).

2. Measurements were made on natural lithium, and on essentially
isotopically-pure lithium-6 and lithium-7. The low values of the residual
resistance, less than 2 x 1073 times the room temperature resistance,
showed that the samples were of high chemical purity. The course of
the temperature dependence of resistance was in good agreement with
results obtained earlier in work at our laboratory and elsewhere.

3. Measurements were made on isotopic alloys of lithium, prepared
in our laboratory from the same batches of separated isotopes used in
our other measurements. The low values of the residual resistance,
less than 3 x 10~3 times the room temperature resistance, showed that
only slight chemical impurity was introduced in the preparation. The
course of the temperature dependence of resistance was of the same type
as that obtained for the natural lithium and for the separated isotopes.

4. For all the specimens, the course of the temperature dependence
showed that the Bloch-Grueneisen formula is a good first approximation
to describe the variation of resistance with temperature, but that--as
with most metals--the formula fails in its details.

5. For all the specimens, the effect of isotopic mass on the para-
mater © appearing in the Bloch-Grueneisen formula could be treated
simply by scaling the resistance and the temperature by appropriate
factors derived from the theory. A universal curve can thus be used to

represent the behavior of lithium of any isotopic composition.

53
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6. From the previous finding it appears that the introduction of
isotopes may be explained simply by their effect on the lattice-vibration
frequency spectrum, and that no new mechanism of impurity scattering
need be invoked when an atom of a given atomic number and atomic
mass is replaced by one of the same atomic number but of different
atomic mass.

7. The low-temperature martensitic transition in lithium produces
little if any irregularity in the dependence of the electrical resistance

on temperature.
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