,4 ' PHYSICS {15.7 ABSTRACT ROTATION-VIBRATION SPECTRA OF AXIALLY SYMMETRIC MOLECULES WITH L0 CALIZED PERTURBATIONS by Hillian.Errol Blass The developnent ot the molecular rotation-vibration Haniltonian.is reviewed especially as it applies to sole- cules belonging to the point group 03'. Problens involved in the analysis or the large nunber of observable transitions in one (or sore) rotationdvibration bands are discussed. A.generalised expression which sinul- taneously represents all observed unperturbed transitions of a particular nolecule is given, and the application or this expression to the nunerical analysis or rotation-vibra- tion spectra is discussed in considerable detail. the general- ised expression is applied in the analysis of a perpendicular band, v3 + v4, of 033?. In.addition. an expression.is given which sinultaneously represents all observable ground-state oonbination.di£terenoes or a particular solecule. this expression was applied to v) . v1. or on}: at 4058a", v1 + v2 of can3 at 5134“". and v2 + v, o: CHBD at 3500ca7‘, to obtatn'values of Bo' DoJ and D041. Sinilar expressions for upper-state conbination differences are also discussed. The work of Dr. G. Anat of the university of Paris on an orderly seni-quantitative approach to perturbations in infrared spectra is reviewed. Additional considerations r’ L."- “Q.“ 1191 1 rm} % {'2 the dc reacm William Errol Blass which nay facilitate the experinentalist's analysis of local- ised perturbations in the spectra of axially synetric sole- cules are presented. Several well-substantiated perturbations were found in v3 4- v‘ of 0331?. the nest cospletely substan- tiated perturbations are a Coriolis resonance which lifts the degeneracy of the K' = l = *1 levels. and an accidental resonance affecting the K' 2 i=2, 1 = 1:1 and the K' = *2, s = 1:1 levels. the analysis of these perturbations was carried as far as currently possible. ROTATION-VIBRATION SPECTRA OF AXIALLY SYMRETRIC MOLECULES WITH LOCALIZED PERTURBATIONS BY William Errol Blass A THESIS Submitted to Michigan State University . in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Department of Physics and Astronomy 1963 81% 39 MAMA TO MY WIFE 1205mm ACKNOWLEDGEMENT I wish to thank Dr. T. Harvey Edwards for the many helpful suggestions and discussions and for his continuing patience and encouragement in the direction of my work. I also wish to thank Dr. Gilbert Amat of the University of Paris for several helpful discussions and for a helpful set of unpublished lecture notes and other information given to us in the course of this work. I should like to thank a fellow graduate student, Dr. John Boyd, for many interesting discussions and acknowledge that the computer program DAEA‘ was written in collaboration with Dr. Boyd. I also wish to thank Dr. Paul M. Parker, Dr. C.D. Hause and fellow graduate students Dr. Ronald A. Hill, Mr. Joseph Auble and Mr. Melvin Olman for many stimulating discussions during the time this work was in progress. I also wish to express my gratitude to the Woodrow Wilson Foundation and the National Science Foundation whose generous support by fellowships made this work possible. I would also like to thank the National Science Foundation for the indirect support by grants to Dr. Edwards which made the experimental aspects of this work possible. I also thank the staff of the'hichigan State University Computer Center for their help and patience in the numerical analysis of data. In addition I am grateful to Miss Mary Douglas and Mr. Stephen Parker for the prepara- tion of many of the tables and figures in the thesis. I am deeply indebted to my wife for the four years of patience and encouragement during which this work was in iii progress and thank her for the typing and assistance in the preparation of this thesis. iv TABLE OF CONTENTS ACKNO‘qI‘EDGEMNT O O C C O O O C -. C O 0 LIST OF TABLES . . . . . . . . . . . . LIST OF FIGURES . . . . . . . . . . . . LIST OF APPENDICES O O O O O O O O O O 0 INTRODUCTION 0 O O O O O O O O O O O 0 Chapter 1. 2. 3. ROTATION-VIBRATION ENERGY OF THE AXIALLY SHMETRIC MOILECULE O O O O O O O 0 Summary of the Development of the Rotation-Vibration Hamiltonian . . Rotation-Vibration Energy Through Fourth order s e Discussion of the Orders of Magnitude of Contributions to EVRO . . . . SYMMETRY PROPERTIES AND SELECTION RULES . Selection Rules on Infrared Rotation- Vibration TranBitiom e e e e e Selection Rules on fi‘t‘ . . . . . GENERALIZED EXPRESSION FOR THE SIMULTANEOUS REPRESENTATION OF ALL TRANSITION FREQUENCIES OF AN AXIALLY SYMMETRIC MOLECULE . . . COI‘IBINATION DIFFERENCES e e o e a e Definition of Ground State Combination Differences. . . . Simultaneous Representation of all "Nine" Types of Ground State Combination Differences. . . Calculated Ground State Combination Differences for Use in the Assignment Of Transitions e e e 0 av e e e Simultaneous Representation.of Upper State Combination Differences. . . iii viii xii 13 21 23 23 26 46 47 53 54 Chapter 5. 6. 7. Page ANALYSIS OF ROTATIONAVIBRATION SPECTRA OF AXIALLY SYMMETRIC MOLECULES USING A COMPUTER PROGRAMMED ANALYSIS SCHEME. . . 57 Analysis Scheme and Computer Program . 59 Method of Analysis and Generalized Transition Frequency Expression Suitable for Analysis. . . . . . 65 PERTURBATIONS IN THE SPECTRA OF AXIALLI SYMMETRIC MOLECULES . . . . . . . . 73 Origin of Anomalies in Observed Spectra 74 Previous Work on Perturbed Spectra . . 74 Review of the Approach to Analysis of Perturbed Spectra . . 75 Systematic Approach to the Analysis of: Perturbed Spectra . . 78 Rules That Determine Which.:Levels May Perturb One Another . . 82 Method of Determining if a Particular Perturbation Element Exists in.h+. . 83 Expression for the Separation of Unperturbed Energy Levels . . . . 89 Accidental Resonances . . 93 Systematic Approach to Perturbation Couplings. e e e 94 Hypothetical Example of an Accidental Resonance. e e e e 100 Intensities in Perturbations "Borrowed Inten81ty " e e e e e e 102 Essential ReSOanCQSe e e e e e e 106 Summary e e e e e e e e e e 107 EXPERIMENTAL DETAILS AND CALIBRATION OF RECORDS O O O O O O O O O O O O 108 SPGCtrometer e e e e e e e e e '08 Calibration Of CH F Bands e e e e e 109 Calibration Of CH3 0 a e e e e 115 Calibration 0f CH 3 e e e e e e e 1'5 Sample Preparatlo CH Fe 0 e e e e 115 CHD3 and CH3D Samples e e e e e e 122 PERTURBED PERPENDICULAR BAND 9} + v4 0F CHBF O C O C . O C O O C O 0 121‘ General Features and Vibrational Assignment of the Observed Spectrum . 124 Assignment of Transitions . . . 125 Analysis of Ground State Combination Differences e e e e e e e e e 146 vi Chapter Search for Possible Perturbations. . . Analysis of the Unperturbed Transitions' Of V + V4 e e e e e e e e e e Coriolis Resonance. . . . Additional Observed Perturbations. . . Accidentally Strong Resonance Affecting the K' = :2, A = :1 and = *2. ‘ =IF1 Levels e e e Perturbation of Levels with High J find Low K. e e e Weak Coriolis Resonance in the negative Subbands . . . . Perturbation Affecting the +5 Subband e e e e e e e .e -e conCIusion e 0 e e e e e e e e 0 SIMULTANEOUS ANALYSIS OF COMBINATION DIFFERENCES APPLIED TO V1 + V2 0F CHD3 AND V2 + V3 OF 033D. e e e e e e e e e V1 + V2 Of CHDBe e e e e e e e e Ground State Combination Differences 0f V‘ + V2 e e e e e e e e v2 + v3 of CH3D. . . . . . . . . Ground State Combination Differences Of V2+92 Of CH3D e e e e e e J Analysis of Upper State Combination Differences and Unperturbed Transitions of v2+v3. . . . . Conclusion . . . . . . . . . . 10. CONCLUSION . . . . . . . . . . . LIST OF PLEFERENCLS I O I I O O O O O O O APPENDICES O O O O O O O O O O O O O 0 vii 148 154 156 186 186 204 213 218 218 221 221 228 230 231 234 1‘.) \J a] PO to LL h) L‘- (3 246 Table 1.1 1.2 1.8 2.1 3.1 3.2 3.3 3-4 3-5 3.6 3.8 LIST OF TABLES Symmetric top transformed Hamiltonians and energy a o o o e o e o o 0 List of symbols from Table 1.1 with -deacr1pt10n. o e o o o o o o 0 Contribution to symmetric top energy from h; e o o o o o o o e o 0 Fourth order transformed Hamiltonian . . Description of contributions of terms in h4 t0 EVE o o o o o o o o o 0 List of symbols from Table 1.3 with descriptions o o o o o o o o 0 Approximate magnitude of the formal orders. or magnitude 0 o o o o o o o 0 Order of magnitude of constants. . . . seleCtion Rules on ‘t o o o o e o o Generalized transition frequency expression Description of symbols found in Table 3.1 Formal order of magnitude of the contribution to the transition frequency of terms a,b,c,d,e in Table 3.1 forvSa/A Order of magnitude of terms for AK = 0, AJ ='1, 1.6., QPK(J)O o o o o o 0 Order of magnitude of terms for AK = 0, AJ: 0, 103., QPK(J)0 o o e o o 0 Order of magnituds Of terms for AK = O, R AJ = *1, 1030, K(J) o o o o o 0 Order of magnitude of terms for AK = 1, AJ =’1, 1090, RPK(J)o o o o o o 0 Order of magnitude of terms for AK: 1, AJ = 0, 1.80. RQK(J)- o o o o o 0 viii 10 12 14 15 16 18 2O 24 28 31. 35 37 38 39 40 Table 3.9 3.10 3.11 3.12 5.1 5.2 5.3 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 7.1 7.2 7.3 Order of magnitude of terms for AK =1, AJ = +1. i.e., RRKU). . . . In Order of magnitude of terms for AK = 1' AJ = -1, 1080’ PPK(J)O O O o 42 Order of magnitude of terms for AK = -1, AJ = o, i.e., PQK(J). . . . 43 Order of magnitude of terms for AK = -‘, AJ = *1, 10°C, PRK(J) O O O 44 Normal equations for Eq.(5.1) (all sums over 1 from 1 to n) a o. o- 0- 0- o 0 6O Generalized transition frequency expression suitable for the least squares analysis of vn+vt . . . . . 67 First approximation of the expression in Table 5.2 for the preliminary analysis of Vn+vto o o o o o o o o o o 7‘ Matrix elements for the one dimensional harmonic OSCillator o o o o o o o 84 Matrix elements (v,£lflv',i) for the two dimensional harmonic oscillator . . . 85 Matrix elements of Pa and PQF . . . . 87 Generic form of elements in h+ capable of producing an accidental resonance . . 9O Perturbation couplings for p >/ 3. P1551 . 96 Perturbation couplings for p) 2, pt=1 . 97 Perturbation couplings for p=2,pt=2 . . 98 o \i \O Perturbation couplings for p=2, pt=O . 2 Calibration of Fabry-Perot fringes of V3+V4 CH3F Chart II o o o o o o o 110 Calibration of CH F Chart II vs.frequencies of absorption lines from Chart I. . . 111 Calibration of CH F Chart II vs.frequeneies of absorption 1 es from Chart II . . 113 ix fiLA-v -' « Table 7.4 7.5 7.6 7.7 7.8 7.9 7.10 8.1 8.2 8.4 8.5 8.6 8.7 Experimental conditions for records of V3+V4 Of CH3F at 20$}! 0 o o o 0 Calibration of Fabry-Perot fringes of CHD3 Chart I vs. Neon emission lines. Calibration of Fabry-Perot fringes of CHD3 Chart II vs. Neon emission lines Experimental conditions for records of V1+V2 0f CED} o o o o o o o 0 Calibration of Fabry-Perot fringes of 033D Chart I vs. HCN absorption line. Calibration of CH D Chart II vs. frequencies of bsorption lines from Chart I O O O O O O O O O 0 Experimental conditions for records of V2+V3 Of C33D o o o o o o o a Results of simultaneous analysis of all observed ground state combination differences from v +v and v +v of 3 4 1 3 CH3F O O O O O O 0 O O O 0 Summary of rotation-vibration constants from references (58). (101), (102), and (103). a o o o e o o o e Overtone and combination levels as sums of fundamentals in the vicinity of V3+V4 . o o o o o o o o o 0 Principal perturbation couplings between levels near V3+V4 o o o o o o 0 Results of a simultaneous least squares analysis of,y +v4 of CHBF including transitions om the -3,- ,-1,0,+1,+2, +3,+4,+6,+7,+8, and +9 subbands (in cm- -. '0 O O O O O -. O O 0 Results of a simultaneous least s uares analysis of RRO(J). RPow) and Q0(J) tran31t10n8 Of V3+V4 o o o o o o (é-Ev)forK'=i2,£-:t1 and K. g *1, t = ¥ 1 levels a o o o o I 114 116 117 118 119 120 121 147 149 151 152 185 198 ad- 1" . .wa . AU: 0 RV. Au: Table 8.8 8.9 8.10 8.11 8.12 8.13 9.1 9.2 9.3 9.4 Page Summary of the results of the analysis of the perturbation affecting the K' = 12, z = :1, and the K' .-.-. :2, ‘= #:1 levels or V3+v40 o o o o o 200 P(AJ) (J) frequencies in the region of ree'onance o e o e o o o o o o 206 PQ (J) frequencies in the region of esonance e o o o o o o o o o 207 Summary of results of the analysis of the perturbations affecting the - K'.=:h2,£ =t1, andK' =u, z==F1 levels of V3+V4 o o o e o o o o 212 Subband origin analysis results (cm’1) . 216 Subband analysis resultafl(cm-1)e o o o 217 Ground State Conatants Of CED} e e o o 229 Comparison of available results for CED} ground state constants . . . . 231 Molecular constants for CH3D (in cm") - 235 Comparison of ground state constants for CHBD (in Cm-1) e o o o o o o 236 xi Figure 4.1 6.1 6.2 7.1 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.10 8.11 LIST OF FIGURES Page Ground state combination differences. . 49 Two level perturbation relations . . . 91 Hypothetical perturbation with coupled levels indicated by dashed lines . . 101 Position of the Q branches for unperturbed v4(solid lines) and v +v¢ (dashed lines) and the resul s ectrum observed (hypothetical) due to a perturbation of type I . . . . 103 Laboratory set up for the production of CHBFO O 0 O O O O 0 O 0 0 0 ‘23 ‘ Spectrum of v3+v4 and v‘+v3 of CHBF . . 126 v 3+v4 and v of C Fwith assignment 3of the principa Fsitions. . . . 133 Perturbation couplings near 4100cm". . 153 Observed minus calculated frequencies from entire band analysis for P(AJ)9 (J) 157 . Observed minus calculated frequegcies9 from entire band analysis for (AJ)8(J) 158 Observed minus calculated frequegcies from entire band analysis for (AJ)7(J) 159 Observed minus calculated frequeBcies from entire band analysis for (AJ)6(J) 160 Observed minus calculated frequegcies from entire band analysis for (AJ)5 (J) 161 Observed minus calculated frequencies from entire band analysis for P(AJ)4(J) 162 Observed minus calculated frequegcies from entire band analysis for (AJ)3(J) 163 Observed minus calculated frequencies from entire band analysis for (AJ)2(J) 164 xii Figure 8.1: 14 811’ 5.1 'V. Figure 8.12 8.13 8.14 8.15 8.16 8.17 8.18 8.19 8.20 8.21 ‘ 8.22 8.23 8.24 8.25 8.26 8.27 8.28 Observed minus calculated frequegcies from entire band analysis for (AJ)1(J) Observed minus calculated frequencies from entire band analysis for R(AJ)0(J) Observed minus calculated frequencies from entire band analysis for R(AJ)1(J) Observed minus calculated frequencies from entire band analysis for R(AJ)2(J) Observed minus calculated frequencies from entire band analysis.for R(AJ)3(J) Observed minus calculated frequeficies from entire band analysis for (AJ)4(J) Observed minus calculated frequencies from entire band analysis for R(AJ)5(J) Observed minus calculated frequencies from entire band analysis for R(AJ)5(J) Observed minus calculated frequeficies from entire band analysis for (AJ)7(J) Observed minus calculated frequencies from entire band analysis for R(AJ)8(J) Observed minus calculated frequencies from entire band analysis for R(AJ)9(J) Secular equation for the K'=t=a1 levels . Factored secular equation. . . . . . Level structure for R(AJ)O(J) transitions e e e e e e e e e e K=0 AK=+1 observed minus calculated ground state combination differences . Expanded graph of R0 (J). RR (J). 3P01J) indicating the eff ct of C riolis resonance . Observed transitions of Ho (J) indicating the effect of the pertur ation . . . xiii Page 165 166 170 171 172 173 174 175 177 178 180 183 184 187 Figure 8.29 8.30 8.31 8.32 8.33 8.34 8.35 8.36 8.37 8.38 8.39 9.1 9.2 Observed transitions of Po (J) indicating the effect of the perturgation . . . R0 (J) transitions vs. J'(J'+1) indicating the effect of an accidental resonance . P (J) + 0.01 J'(J'+1)cn" vs. J'(J'+1) indicating the effect of an accidental resonance 0 e e e e e e e e e Perturbation hyperbole for the K'=i2, ‘=*1 137.1Be e e e e e e e e e Perturbation hyperbole for the K'=i2, ‘=:F‘ levels e e e e e e e e e An hyperbole with its center at the coordinate origin. . . . . . . . Level structure of J=0 levels for the perturbation of the K'=a2, 1:11 and K.=t2,l=¥1 levels or V3+v4e e e e e RQ (J) transitions vs. J'(J'+1) indicating the effects of two accidental resonances PQ (J) transitions va. J'(J'+1) indicating ghe effect of an accidental resonance . .Perturbation hyperbole for the K'=a2, 13*1 IOVQlfie e e e e e e e e e Perturbation hyperbole for the K'=t1, l=$1 levelse e e e e e e e e e V1+V2 0f CED}. e e e e e e e e e V2+V3 0f CHBD. e e e e e e e e e xiv Page 188 189 191 195 196 199 202 208 209 '210 211 222 232 Appendix . I. II. III. IV. V. VI. VII. VIII. IX. XI. XII. XIII. XIV. XV. LIST OF APPENDICES Page SYMMETRY SPECIES OF ROTATION-VIBRATION LEVELS OF MOLECULES BELONGING TO THE POINT GROUP C3V' . . . . . . . . 246 LIST OF CALCULATED GROUND STATE COMBINATION DIFFERENCES FOR CH3F . . . . . . . 249 LIST OF CALCULATED GROUND STATE COMBINATION DIFFERENCES FOR CHD3 . . . . . . . 265 LIST OF CALCULATED GROUND STATE COMBINATION DIFFERENCES FOR CH3D . . . . . . . 281 LIST OF ASSIGNMENTS AND FREQUENCIES OF OBSERVED TRANSITIONS FOR v3+v4 0F CH3F . 297 LIST OF OBSERVED GROUND STATE COMBINATION DIFFERENCES FOR V3+V4 0F CHBF e e e e 313 LIST OF ASSIGNMENTS AND FREQUENCIES 0F OBSERVED TRANSITIONS FOR v1+v3 0F CH3F . 32S LIST OF OBSERVED COMBINATION DIFFERENCES FOR V +V 0F CH F e o e e e e e e 330 1 3 3 COMPARISON OF THE OBSERVED AND CALCULATED FREQUENCIES OF V3+V4 OF CHBF . . . . 334 COMPARISON OF THE OBSERVED AND CALCULATED FREQUENCIES OF K"=0 SERIES OF v3+v4 OF CHBFe e e e e e e e e e e e e 350 LIST OF ASSIGNMENTS AND FREQUENCIES OF -OBSERVED TRANSITIONS FOR v1+v2 OF 0RD3 . 352 COMPARISON OF THE OBSERVED AND CALCULATED GROUND STATE COMBINATION DIFFERENCES OF V1+V2 0F CHD} e e e e e e e e e 356 COMPARISON OF THE OBSERVED AND CALCULATED GROUND STATE COMBINATION DIFFERENCES OF 92+V3 OF CHBD e e e e e e e e e 359 COMPARISON OF THE OBSERVED AND CALCULATED. UPPER STATE COMBINATION DIFFERENCES OF V2+V3 OF CH3D e e e e e . e e e 363 COMPARISON OF THE OBSERVED AND CALCULATED TRANSITION FREQUENCIES OF v2+v3 OF CH3D. 367 IV INTRODUCTION During the past ten years the spectroscopy of small molecules in the near infrared region has advanced to such an extent that smaller and smaller effects are being observed in ever-increasing detail. Attendant with this advance in the experimental aspect of the art, the number of anomalies which are observed in spectra has increased rapidly (1-11). In fact, many of the effects deemed unimportant or listed as unobserved by Herzberg (12) in 1951 are now of great interest or have at least by now been observed. Furthermore, with the improvement of resolution and pre- cieion of infrared spectrometers a single rotation-vibration band may exhibit up to a thousand observed transitions. Meaningful values for many molecular parameters may be obtain- ed. Together these two facts make the problem of data analy- sis in molecular spectroscopy quite formidable, and lead quite naturally to the use of an electronic computer in the analysis of spectra. We have written and regularly used pro- grams which obtain values of the molecular parameters and also give statistical information on the accuracy of the xnolecular parameters obtained. In Chapter 1 we review Amat and Nielsen's (13-21) develop- ment of the Hamiltonian of the molecular vibrating-rotor while attempting to cast the results into a form immediately usable by the experimentalist in the analysis of axially symmetric molecules. In Chapter 2 we comment briefly on the symmetry of rotation-vibration wave functions, and set down several selection rules which are useful in the anaLysis of spectra. The simultaneous representation of all infrared transi- tions of a particular molecule is discussed in Chapter 3 and some of the ramifications of such a representation are dis- cussed. Another data analysis consideration makes up Chapter 4, i.e., the simultaneous analysis of all observed ground state combination differences. This method, to our knowledge, has not specifically been used before, whereas it appears to be the method to use to obtain the statistically most favorable values of 30’ DoJ and DoJK from infrared data. -It is especial- ly valuable when applied to the many molecules whose micro- wave pure rotation spectra has not been observed. Chapter 5 contains a "how to do it"'discussion of the data analysis problem. In Chapter 6 we have gathered together much of the work of Dr. G. Amat on the orderly semi-quantitative analysis of perturbed spectra. We have attempted to embellish the dis- cussion with several additions to extend its usefulness for the experimentalist. The experimental details regarding the collection and calibration of the spectra of v} + v4 of CHEF, v1 + v2 of ‘ and v2 + v3 of CHBD makes up Chapter 7. CHD3 The application of the first six chapters to v3 + v4 of CH F is presented in Chapter 8. This perpendicular band 3 contains several interesting perturbations. Especially in- teresting is an accidentally strong resonance affecting the +1 and -3 subbands and a Coriolis resonance which lifts the degeneracy of the K' = t = *1 upper state levels. For both the Coriolis resonance and the accidentally strong resonance affecting the K’: :2, t = *1 levels, we believe that we have one of the most detailed and substantiated examples for both types of resonances since we have in almost every instance found the three individual transitions to each perturbed upper state level. In Chapter 9 we have applied the results of Chapter 4 on ground state combination differences to a parallel band of CHD and a parallel band of CH3D to obtain values of 30’ JK DO 3 DoJ and . This is especially interesting since the microwave spectra of CH3D and CHD3 has not been observed and J and DoJK represent a valuable as a result our values of BO,Do addition to the spectroscopic data on CH3D and CHD}. In summary, existing theory and procedures for analysis are reviewed and original contributions are made to the analy- sis by line frequency, by combination differences and in the analysis of perturbed spectra. These methods are applied in the analysis of bands of CHBF, CHBD and CHD}. Even so, the complexity of the situation,especially in the case of CH3F, has not permitted a complete solution at this time. CHAPTER 1 ROTATION-VIBRATION ENERGY OF THE AXIALLI SIMMETRIC MOLECULE In this work, Amat and Nielsen's development of the rotation-vibration Hamiltonian is used. We have attempted to use this formalism especially as it applies to the analy- sis of rotation-vibration spectra of axially symmetric mole- cules belonging to the symmetry group 03v’ Summagy of the Deyelopment of the Rotation-Vibration Hamiltonian Briefly, one begins with a classical Hamiltonian and converts it into a quantum mechanical Hamiltonian (22,23,24). Then, this Hamiltonian is expanded in a power series in the normal coordinates (13) and the resulting terms are grouped according to the estimated order Of magnitude of the contri- bution to the energy of rotation-vibration. The expanded Hamiltonian is diagonal with respect to J and H but may con- tain terms Off-diagonal with respect to vs, ts, ms, and K. 1 ‘One defines the following symbols: J: quantum number associated with the total angular momentum. M: quantum number of the projection of the total angular momentum on a space-fixed axis. K: quantum number of the projection of the total angular momentum on the body-fixed symmetry axis of the molecule. quantum number of the s-th normal vibration. second quantum number of doubly degenerate normal vibrations (associated with internal angular momentum) third quantum number of threefold degenerate normal vibrations (not needed for axially symmetric molecules). 4 a4 mm B At this point a contact transformation (25,26,27) is made on the Hamiltonian (14) R.-=Ro +111 +H2+... (1.1) such that the resulting Hamiltonian h' = Ho + h'1 + h'2 + h' +... (1.2) is diagonal, through h'I' with respect to all quantum numbers for axially symmetric molecules. (This is valid only in the absence of accidental resonances. In the event of such re- sonances a special transformation must be performed on H to preserve the contact transformation (19).) For axially symmetric molecules, since HO and h'1 are diagonal, and as the first non-diagonal terms occur in h'2, the energy of any particular level is given through third order by the diagonal elements of He + h" + h'2 + h'3 (21), i.e., in the absence of accidental resonances, off-diagonal terms of h'2 will not contribute to the energy before fourth order. Amat and Nielsen performed a second contact transforma- tion (15) which diagonalized h' through second order with respect to the vibrational quantum number vs. For axially symmetric molecules the twice transformed Hamiltonian hi = Ho + h'1 + h; + h; + hZ't... is diagonal with respect to the vibrational quantum numbers VS through h§. However, hi has off-diagonal terms with respect to K and 2.8. In addition hg, hf“... have terms off-diagonal with respect to v 8. X8 and K. For symmetric tOps, i.e., axially symmetric molecules, the twice transformed Hamiltonian, h+, yields energies good through third order since the terms in h§ which are off diagonal in K and R s do not in general contribute before the fourth order. Since h+ is diagonal with respect to vS through hg, terms off—diagonal with respect to vS in h; will not contribute to the energy before sixth order. Rotationefiibration Energy Through Fourth Order The twice transformed Hamiltonian h+ = Ho + h'1 + h§ + h; + n: + ... (1.3) may be used to obtain the rotation-vibration energy of axially symmetric molecules by solving the secular equation det [ v W + a; .mwm oWuEWo . N m>N mam ....a have nunoN a cone £1 533 x ..w Aeeefeeesafieestev w A; v: N23 .6: have Ic+32~ tees. .l m s so A smeeme a: . e a r e w mm a w efeee hem: sesseteseww . mNQe a . ... 1:1,: x .oleliesesau we Ewerisaeew .5 .i. L o a scan .500: e. no a N x en E. e + {Ewe Am+e3e3e 8 «c m 3N mm ”W Auc+b~nmv MK Irlp . or a «4 o J u N e; m- 721,: m Ewe. 355 .2322). .25 .2230 .335 can mcoEoEEoI 36.820: a2 oEoEEinm _ ._ «BE. . )uwmvT . a . cone 6 v. flam+m3n .?W+ «i «MW + cahodeaecua... uauUeUerHA coeelmeev ..oWw W... e... . . own a an ex t. «N. eafieaeauaea+eaeaeaocv4Acoeerfiev vewwrme W . no x5125 3qu an. ma ea Accession: servinime VW M 38cm 23322 .23 .2230 .eesereee ... as: third order but, in so far as diagonal terms are concerned, it changes slightly the interpretation of spectroscopic constants in terms of the basic molecular constants Ida 30,": , 5:5, , and the force constants, the ks1sg"'sm (14), of the molecule. Table 1.2 gives a list of symbols found_ in Table 1.1 with appropriate definitions. From these tables the energy of rotation-vibration to any desired order through the third may be obtained. In addition, a partial fourth order correction to the energy is given in Table 1.3. However, it is necessary that one be cognizant of the fact that this is a partial correction and that an added correction may come from the off-diagonal terms of hg, and also from other terms in h4 which are diagonal in J, K, 2's and vs. Specifically, the off-diago- nal lines (Tabletyj) which can contribute to fourth order are: 21’ K-type resonance and doublingo(31); hég, rotation- al X-type resonance and doubling (28); and héj, vibrational L-type doubling and resonance (28). hi also contains operators which may contribute further to fourth order. No results of any study of these terms has been published for the case of an axially symmetric molecule.2 ‘— 2Chung and Parker (32) have studied the terms of h;3 for the asymmetric top case. In addition Benedict (33) found it useful to gee a lumped sixth power cogrection of2 the form -1.0 x 10- {C J(J+1)-R2J 3 + J(J+1) K [J(J+1)-K J} to fit an NH overtone band.. Ramadier and Amat (34) have studied the Sixth power terms of hi} in the special case Of a linear molecule. 10 Table 1.2 List of symbols from Table 1.1 with description. Symbol a Description x,y,z (likewise for fl andl') (body-fixed) index for the normal vibration index for specifically non-degenerate normal vibration index for specifically 2-fold degenerate vibration dummy index for s ordering index for the two components of a degenerate vibration constant coefficients (generally complicated) of the transformed Hamiltonians rotational angular momentum Operator normal coordinate operator momentum operator conjugate to q8 principal equilibrium moment of inertia about the d axis 2 h/(aTT ax). 1x ..- 1y 2 . : h/(STT ch) IZ is unique 12% Ix = I Y harmonic frequency (cm'I) of sth normal mode : (27Tcw )2 s degeneracy of the sth normal mode Coriolis coupling constant - a function of molecular geometry m : J,K,JK: equilibrium centrifugal distortion constant correction to Be due to vibration correction to Ae due to vibration 11, Table 1.2 Continued. Symbol Description XSSI,X&‘9 anharmonic vibrational constants tt’ 7 'It,m m = J,K,S or nothing: third order constants 12 .59 5.: Eo: cozaetecoo 0 9:39. 030 mecoemcoo sweep t: N m m m TE ; 34 w I. e . ..w ..m Name .5 me; $3 .W iRemit.3...; ..w . w — .Jx —« “WM. N m N m .mm ...»me «X A h3<<+ ..d x (\A N + HWIO+>HZHdW+ >H (\A v a. 7.x J .lm. .mmwm +c . . .mm + ANxITIthVASHm 4+ J a. ex W + QthTNmUL ex v m .m N m m m N m m ... ... .eehw..:_+asehirsmw ..Tihmirhw .e 3.20 2.8205. .23 .He ES» 385 no. 023883 2 cozaetecoo m._ Bee» 15 However as Maes pointed out in his study of third order terms (29), from the point of view of spectral analysis, it is the quantum dependence which is important from third order on since there seems to be no simple connection between the constant coefficients of these high order terms and the molecular parameters. The constants are in general complicated combinations of molecular parameters and force constants. Table 1.4 lists the operators found in hz (16) which we subdivide into five parts: ' ‘39 n; = n31 + hag + hz3 + n14 + h: (1.5) such that n1“ contains only terms off-diagonal in v8 (16) and in the absence of accidental resonances is able to contribute to the energy only in the eighth or higher orders. Table 1.5 gives a description of the contribution of the various terms of h; to EVR’ Table 1.3 presents the contri- bution of hi1, hZ2 and hZ4 to EVE (35). Table 1.6 is a description of the constants used in Table 1.3. The contribution of hZB cannot yet be given since no results of a systematic study of its contribution to EVR have been published for the case of an axially symmetric molecule. Biscussion of the Orders of Magnitude of Contribution: ‘tg EVE— The expansion of the Hamiltonian is effected with an assumed expansion parameter on the order of 1/30. It is assumed that a zero order contribution to the energy is approximately IOOOcm". One should realize that order of 14 sWs no fisssseNi +ossseNi w + Tsosssssosostsosssossssess sosans; cor— .wowwwuwsws .wowsswwwsws + Assosssssaostsosssossssgwoososdi w + TossaosssssoososswstsosssosssssnsoeNi w Fwwkmd mt: foams :dnd a NEETQW + swsoolmws ndsd Nins+ losssssosorssossssgws ossNgns W + . «3.. swoowwws as + u o o c u n a vase . T ass ssossNE s+ s s s s Nsnsgs “ms Ww nlo ..v. no .v ma :dmdaflsasansNimesss scsassNmest W W + c .2230 .co..:o:_.EoI ucEnfimco: nacho 5.50“. v._ ~30... 15 Table 1.5 Description of contributions of terms in h: to EVR' Diagonal Contribution to EVR hZ1 correction to centrifugal distortion; due to vibration hie second correction to inverse moments of inertia; due to vibration hZB correction to centrifugal distortion; due to rotation h:4 . additional anharmonic contributions to vibrational energy 16 Table 1.6 List of symbols from Table 1.3 with descriptions. Description m = J,K,JK; correction to D 21 ‘due to vibration correction to Be due to vibration correction to Ae due to vibration anharmonic vibrational constants "correction" to Be and Ae which has exactly the same quantum dependence as Be and Ae "correction" to a: which has exactly the same quantum Sependence as we 17 magnitude considerations are approximations and are not to be taken too literallfi and therefore,they should serve as a helpful guide rather than as restrictions in the analysis of spectra. For convenience Table 1.7 lists the eXpected approximate magnitude of a contribution to the energy of terms of order m. In the following, the orders of magnitude of only the diagonal contributions to the energy are discussed. For a further discussion of this case and of the order of magnitude of off-diagonal contributions the work of Amat and Nielsen (18) is fundamental. At this point it is useful to use simpler notation by following the convention (18) that operators in the Hamil— tonian having the forms qaqb, papb or qapb be called r 2,. etc., that Pa, 1?,3 P, be called P3, etc., and that the sub- and superscripts on the Y's and 2’s be dropped. Thus hi2 = (2)Yr2P2. The order of magnitude expansion of the Hamiltonian is valid for J :3 K 2: 30. For other values of J and K a term may be demoted or promoted from its present formal order to a different order which we would then call the "true" order of magnitude of its contribution. A relatively simple approach to the problem leads us to discuss first the order of magnitude of a given constant appearing in hE. Consider the generic term (mJZrnPs Which is a term (from the m-th order transformed Hamiltonian) 18 Table 1.7 Approximate magnitude of the formal orders of magnitude. Order Magnitude in cm" In 0 1000 1 30 2 1 3 3 x 10"2 4 1 x 10"3 5 3 x 10'5 6 1 x 10'5 7 3 x 10-8 8 1 x 10‘9 9 3 x 10"11 1o-‘2 d O N 19 with the constant coefficient (£132, a product of n vibrational operators and s rotational operators. The order of magnitude of the constant mm is m + s. For example D: is of order 6 since m = 2 and s = 4. Table 1.8 lists the order of magnitude of the constants in h"' from Tables 1.1 and 1.3. The computation of the "true" order of magnitude of the contribution of steam in EVR may be carried out with the aid of Tables 1.1, 1.3, 1.7, and 1.8 by substituting the values of J and K in question into the contribution of the term to EVR in Tables 1.1 or 1.3 using the approximate magnitude of the constant from Table 1.8 and comparing the answer with the list in Table 1.7. For example, from Table 1.8, D"; is of order 6 but the term from Table 1.1, of which 132 is the constant coefficient) is of order 2 for J z 20, Km 0 or K x 30. At times a more meaningful order of magnitude of the contribution of a term to EVE may be comPuted if one has available the actual value of the constant inVOlved. Some applications of these concepts will be found in the following chapters. 20 Table 1.8 Order of magnitude of constants. + Order of Approximate hm Operator Constant t ' Magnitude Cons an at Constant (0)sz ws O 1000 cm"' Ho 101x132 Ae , Be 2 I h .' erZP 2A,Z§,‘£. 2 | t '6 ha: (212 P‘ a: .13.“: a,K e 1 x 10 112; 12)Zr2P2 as“ , 053 4 I x IO'3 ha; (2)Zr‘ xss', x 1111' 2 - I (3)2r2P3 77.3 6 I X 10’6 h; s12r2P’ 77:“ 6 IX 10" 13)Zr“P “’71 , 771.15 4 1 x lo". J JK k _ h...’ 14)Zr2P‘ BS , BS , BS 8 I x IO” 2 A a A e '5 14)Zr“P yss. ,yss. '71,£,~'7£,1,- 6 IX IO ho; 2 _6 (4)219 AA, , AB, 6 | x 10 “)er Yss's" 1 Ysltlr‘ 4 ‘ix '0‘3 + h“ _3 (MD2 A0); 4 I x 10 CHAPTER 2 SYLR‘JIETRY PROPERTIES AND SELECTION RULES In this chapter we comment briefly on the symmetry species in: which a given energy level may belong and tabulate selection rnxles on the quantum number i in infrared absorption spectra. At the time this work was in progress no complete treat- ment of the symmetry species of the molecular wave functions was available. Scattered through the literature one finds nxunerous partial treatments of the problem (36-47). However, the problem has not been fully resolved and many subtle consi- derations enter into the full treatment (48). The specific Problem applied to XYZ3 molecules which belong to the point group 03v is the problem of classifying. the full molecular wave function including vibration, inversion, rotation and nuclear apiai according the species A1,A2 or E1. If the rotational functions only are considered, they may be classified according to the rotational subgroup C3 which has species A or E. For the work which we have done, it is sufficient to know the symmetry species of the levels according to the rotational subgroup 03. These may be found for the rotational wave func- 1319118 in reference 12. Very simply, the species in a pure rotational state or an A1 vibrational state are given by K = 3p: species A (2.1) K # 3p: species E 21 22 where p = 0,1,2, .... In the case of degenerate vibrational statesthe problem is more complex. A very simple method of finding the result is given in Appendix I. We find that for all rotation- vibration levels of 03v molecules, if K - Kit 2 $3p (2.2) the levels are of species A under the point group C3 (i.e., an A1A2 pair according to the 03v point group), whereas if K - th = i(3p t 1) (2.3) the levels are of species E1. In Eqs (2.2) and (2.3) p takes the values 0,1,2,...as in Eq (2.1). He do know, however, that the total overall symmetry 012‘ the molecular wave function including the electronic, vibrational, rotational, and nuclear spin contribution must be A? for Elm?) molecules or A1 for 2X33 molecules for those energy levels which can be populated (38,39,40).3 Due to the restrictions on the overall symmetry of the molecular wave functions, there is a well-known effect observed in the spectra of ZXY3 molecules. For ZXH:5 m(ll-eczules, the effect is the 2:1 intensity enhancement 01‘ transitions originating from ground states in which 3These restrictions arise from the fact that the ZXH3 molecules obey Fermi-Dirac statistics whereas the '7 «X33 molecules obey Bose-Einstein statistics. 23 [f z,- jp, p = O, 1, 2 ... over those which originate from states where K ;E 3p. For 2X33, the effect is the same but the en- hancement is only 11:8 (12), Selection Rules on Infrared Rotation-Vibration Transitions There are a number of selection rules which are well known in the study of absorption spectra of axially symmetric molecules (12). These are the symmetry selection rules on molecular energy level symmetries apart from nuclear spin under the rotational subgroup C3 A<-A,:E«~vcx ...; ”WWVHW ...an ...._H..1wnulllo.e.mo.o.oi.nmw+..>x.ml+. m>ZdNI.+ m>:w..m.mm ..HWNV w»; . + ..«Jw: “AWN Va Vw ..del 121+. Ed]. is. ...x xWW + Ao3<+o3vo> W nous. H x .....i 21>: ..>...._+c>.:> 3 E 3&1 s q 60.30.98 3:33: 5:55.: me=Eoco0 _.m sass 29 1. o m o _ m m _ m on o .333: > on w n + Taoiézsfssxxsim > ohm. w - m s . + 7Q41+3o§<+efi>mm W o o p c . , Jessie «saw . a p c +Q<+_+bzs<+§x<+xc «as. w . ..w. ....qé... m N so ooooooo E + T353:Ab+.o o>+. > 3.m»AN+ >mUW1.._ ..w. . a u 3a; .: N N m m mm .mm m - m _ + 73.43:: a. a 4% W iflf o >+. > 3 .ax W+ Knew; x + To. 1.52;; “a- _ + risesx lasiézsfs «32;; swoon _ + rc+bv~bnugdi+3«34+vath1 L .ooaczcoo _.m «.32. 30 complete (in the absence of accidental resonances) through the contributions of h; 8; Table 3.1 also contains a partial contribution of hi.9 The definitions given in Eqs. (3.5) identify some of the constants appearing in Table 3.1 with those found in the literature and in papers on analysis of spectra. BO=B.mBe-§(gs/2)a§+§ g, (gs/4) XESHABe s\< s' B ng . V lg B .. I- - Bv-B ...Bo §V8a8+§ §.'(v8v81++ Pig—fl) ray-r ass B g £1 X‘t‘t"t‘t' tst' A‘ ao=A"=se-§(s,/2)a§+g gt.(gs/4)Iss'+AAe (3.5) sss V g 1 V 1g _ u- _ A s s s s A Av—A —A {Weds-1%: §.'(VBVB+T +T) yssH' sss A p23. 7‘ ‘ .ttlt ’0 t t tst' m m .' p‘gngfle-gmB/a )Is 8 m=J ,h ,JK m_n'_ m- m ‘ _ " :Dv—um—Do EVSFS . ma-oJ.I\,JK Table 3.2 contains descriptions of symbols found in Table 3.1 but not defined in Table 1.2 or Table 1.6. ‘ 80f. Table 1010 9cf. Table 1.5. 31 Table 3.2 Description of Symbols found in Table 3.1. Symbo l . De scrip tion Bo ground state constant corresponding to Be cg, a. 2 coefficients of the correction to Ae and Be,res1:activelyJ due to vibration 115.1%ng ground state centrifugal distortion . constants s refers generically to any vibrational mode n refers specifically to non-degenerate vibrations t refers specifically to two-fold degenerate vibrations V8 vibrational quantum number for the sth mode, e.g., if three quanta of Y4 are excited, V4 = 3 ‘1; internal angular momentum quantum number associated with two-fold degenerate vibrations where it may take on values vtsvt-2g vt"4,oooo or I J total angular momentum quantum number K quantum number associated with the ’ projection of J on the symmetry axis of the molecule M change in J in the transition being considered, i.e., if st-JI, thenAJ: J2-J1 AK similarily, for Ker-K1, AK = K2-K1 32° There is an important restriction to be observed regard- 111g the expression in Table 3.1. The quantum number K may properly take the values thI . However, in Table 3.1, one need only take +IK| values into account, and in fact,if one desires to retain simplicity in selection rules, only +IK| should be used. Returning to the significance of the general transition frequency expression of Table 3.1, it is important to note .that simply by specifying, for a given transition, v1,v2...vn, Vt ’ Vt...‘ ' Q . .‘t"t+1’AvI’Av2 ’ O O .Avn’AVt,A‘t ,AVt+1’A‘t+1O 0 OJ, AJ ,K , and AK as independent variables , the transition fre- quency stands, in relation to these , as the dependent variable. Thus , a simultaneous least squares analysis of all unperturbed transitions of a given molecule may be obtained. Quite often this is impractical especially if any of the levels involved are perturbed but the fact remains that it is OtherWise possible. Of course, any subset of transitions believed to be unperturbed may be analyzed using an appron Priate modification of the generalized expression of Table 3.1 . 10 For example, the sum of the purely vibrational °°ntributions in Table 3.1 may be called v0, and all the 8P6 ctral lines of a given rotation-vibration band may be Simultaneously analyzed. An example of this may be found in ‘ 10One must of course be careful to avoid linear depen- dence in the expression used in the actual analysis. This 18 further discussed in Chapter 5. 33 Chapter 8. Another case, where both parallel and perpendi- cular components of a first overtone of an axially symmetric molecule were analyzed simultaneously, may be found in a thesis by Boyd (50). In the particular case of some diatomic molecules it appears quite feasible to analyze simultaneously all observed bands of a particular molecule since the addi- tion of each band requires only the inclusion of a single new term, the vibrational frequency of the added band.2O Another consideration in the analysis of spectra involves the expected order of magnitude of the contribution of any Particular term found in Table 1.1 and Table 1.3 to the vibra- tion-rotation energy. However, since the transition frequency results from the difference of El'IR and EGR, certain of the 15911113 in the transition frequency expression are demoted to a higher order of magnitude than they had in the energy exPression. Furthermore, as mentioned in Chapter 1, the for“Isl order of magnitude of some contributions to the energy are "correct" only for Max:530. For J¢3O or K¢ 30 various tame are demoted or promoted from their formal order of m‘Etel'iitude to a higher order or lower .order. The importance of the order of magnitude of various terms in the transition frequency expression is discussed in Chapter 5. The basic idea is that one does not wish to ex- clude terms which should make larger contributions than ‘ 20Olman, Hause, and HoNe s (51) are simultaneously analyzing bands of 1311-0 and N 0 in this manner. 34 others which have been included. Table 3.3 indicates the theoretical order of magnitude of"the five terms in the transition frequency expression of Table 3.1 which are independent of J, K, AJ and AK. Tables 3.1: 'to 3.12 present the theoretical magnitude and order of magnitude of the terms in Table 3.1 which do depend on J, SKI, AJ and AK for the transition AK = 0, AJ = -1, 0, +1; AK == (+1, AJ = -1, 0, +1; and AK = -1, AJ 2 -1, 0, +1 for several values of J and K. These tables were constructed by substituting the theoretical magnitude of the molecular constants from Table 1.8 and the values of J and K indicated in Tables 3.4 to 3.12 into the individual terms in Table 3.1 anti (:alculating the approximate magnitude of the contribution 0f 'tllat term to EVR‘ The order for the various values of. J anarltx was obtained using this calculated magnitude and Table 1.7. 3 These tables may be used by spectroscopists in deter- mining which terms from Table 3.1 contribute sufficiently t0 the transition frequency to be used in an analysis. Hm”Fever, it is necessary to take two factors into account; itriis necessary to consider the accuracy and reproducibility ofr‘the spectral data involved,and it should be noted that 13°? a given band, promotion or demotion of one order of magnitude is not unusual. In this respect, we would expect that terms whose laggest contribution to any of the transi- tions used in the analysis is less than the accuracy and reproducibility of the data would be statistically and 35 Table 3.3 Formal order of magnitude of the contribution to the transition frequency of terms a,b,c,d,e in Table 3.1 for vsz1. Coefficient Table 3.1 Order Approximate Descriptive Index J any Magnitude of Term K any (cm’ ) ‘08 a 1 30 x33, b 2 1 Kick, c 2 1 yes, 3,, d 4 1.1: 10-3 rut!“ e 4 1 x 10-3 36 s-o_x_ m .-o_x_ m .7032 m ...o.xw e a am. a \ s.0 :3 m to _x¢ s o 8 .-o _ xm s .. can a s-o_x_ m s-o_x_ o o 8 70.x» a a an o 8 O 8 O 8 o 8 d on? o 8 o 8 c 8 o 8 c we. . . o ...o_xm m .-o_xv m s.o_x_ a «.038 m E so 70:: n 70:: o a.25 a 70:8 m _ as o 9 o 8 o 8 o 8 x no 9.036? .V onO_X¢ m onO.XN @ «no-X0 m _ v.chD roses m = roses m :93 m __ 70:: m _ .mo 0 s _ o s o s __ o s a mod _, ov _ os _ N m = on _ = s or o 8 o 8 o 8 = o 8 a s4 A Eu. 0.»; A Eu. 2%. .763 .8: .783 onus. .83: 88» co, ousficooz Oman 3.552.. ouRb conscooz Ian asazcoo: . Oman ..n 323.33 Sosa—sons“? cacao anaesthesia SEQ 22:28.23 330 cauelxoaddg condo .oEE. 220530 1 t condo in oEE. 82de ..m._._1ub< .ouxq coo. mana co sentence .6 37 .ABVAGO ..3 .oubq .01.qu ..8 3:2 Ac muazcm nu.o_x_ m .725 m. 9.0.x. m :26 ¢ m “m ..o_x¢ m b.25“ A. . ..o:& m ..o_xm c . 2mm .95 m ..o:& m .-o_xm m ..o_xm v a. E o 8 o 8 o 8 o 8 a he. 0 9 o e o 8 o 9 c ”AA 70.x», m = 7033 m. n.o_xm ¢ ~.o_xm m E m8 70:: m = ”.03: v n..o_x_ c 7035 N _ «a o e o 9 o e o 8 x no 0 8 o 8 o 8 o.. 8 A at O 8 o 8 o 8 = o 8 A mo 0 8 O 8 o 8 = o 8 5 M84 0 8 o 8 o. 8 __ o 8 0 am 0 8 = o 8 o 8 o 8 A 04 A Eu. o_Rv;_ A763 ARV. A788 ..«x A763 09%. 3?: 6.3. Ac evaficooz ONRb 83:30: ounab 33232 _Rn ova—Eon: . Oman A.» 03.3.33 2852833 o xo a 3:23 22: 3:34. Fllllllf EEO EE- Aqqd 3on A . < EEO A 330 030.? 2.222000 i as 3 BBQ on .833 38 .70. x. .m 9.0.x. m e.OAx_ m o.o_xm A.» m ..Q o-o_xm m ...o_xm m .-o_xw w To_xm w . xmm. ..o_xm m. ..o_x~ m $9.8 N. n.o_x_ v 8 mm. o 8 O 8 o 8 o 8 a “AA. 0 8 O 8 o 8 o 8 c MA... .-OAXAV m .-o_xm N n-o_xm AV «.038 m E mu .-o_x_ m n.0_x_ AV 70.x. AV .-OAXm N _ “a O 8 O 9 O 8 O 8 x no n.o_ .3 e ..o_ xc .0 $033 w $9.8 m A be v9.3 m «.033 m .638 m 70:: m _ mo 0 8 o 8 o 8 o 8 5 m3 NV _ .mw _ AV N mm _ 0 cm 0 8 o 8 o 8 o 8 w J A 83 0.»; A Eu. Ia: A763 Sax A783 Ome x85 5.3. Ac 2:...sz 8.45 8.583.. 3.3.. 822.82 .3. $3232 . Sub ..n 02.3.3.3 285.83: 205.832 383.832 285.333. _ _ !!!! :30 320 SEC EL 2%» 23.0.58 M_ . M65 mm. .835 AB mo .3 :Hubq .ouxq .5.— mESA nAo onstcmoE Ao 39 ..o. x _ w __ ..o_xN N. ..o_xN n $2.8 ¢ 8 “m ..o_ xm m __ ..o_ xN w o 8 $038 w . ..Mm. .-o_ x. m ..o_ x _ m o 8 $9.2. 8 8 mm. A ..o. x _ 8 ..o.xw 8 $98 8 N.o_xm n a ..A. A n.o. .2. v $9.8 w o 8 .-o_xm m c .p m ..o_ xm m ..o. .3 m ”.95. ¢ .-o_xm m E 88 .-o. x_ m ..o_ .3 w ..o. .3 e _ N _ “a .-o. xm 8 ..o_.xN m .-o_xN .o. _ 79.2 m .. no .70. xm ¢ 79.: ¢ ..0_ xN o 8.0. x. 8. A ..mo N.032. m N.25.. m 0.95. m 79.2 m _ mo 0. N N N N N on _ g m... ow _ ov _ m N oN_ _ o . cm. 8 _ m N m N om _ . 0< A ES orax A ES ..«x A783 .3. ATE“: 0m»... .82: 6.2. ..o ounficoofi oNHb mgr-Eco: Omuh ouaAEooE . Ann 83:50.2 . Oan ..n ozatomoo 2.8.833 2858.84 2083.32 222.832. 1!!! .35 .35 :80 F SEQ _ 2%... 222288 !A!!r! t..- NM 832. .5an ..2 {.2 .32 .8 2:2 .0 2.3888 .0 SEQ _4O 0.0. x_ w ..o.xm h. .-o_xm N. 30.x» v m ..m. n.2 xm m .-2 N m ..2xm m ....2xm, ¢ . ..Mm .-2 .N m .-2 .N m $038 w .-2xm v a bum . ".9 x. ¢ ..o. xm w ..o. xm w «.0. xm m a ..P . ”.2 xm w $2.8 ... $2.2. m N.2xm m c .8 m ..2 xm m ..2 .2. n 72 .N 8 N2.; m 8 ma ..2 x. m n.25. .8 72.3 .V _ N ._ “8 v2.8 8 .-2xN m ..2xN m .72.: m ._ no 82.8 w ."2.: v .-2xN w uv2.3. m _ ......o O 8 O 8 O 8 O 8 _ mo 1' 2 N N N N N _m _ c .3 ON _ m N m. N a _ m cm 0N _ m N m N 5 _ . 0< A 83 o_ Rx A E3 _Rv_ A 88 Sax .. -Eu. . on»... .89: E3» .0 . . _. . a as: 03.. 3 2.3.8.3 OBI—coo: ONRb OULSCOOE ONuh oust—.302 rah ) B._H.3.QQ< 2o§x2qq< 330 205183“; .030 206383.: .330 Lot. 330 03¢... EPGEoou .5on ..3 .0“: .32 a. 2:2 ,6 2.2238 .o 820 mm 033 41 0.2 x. w .-2 x N N. .-2 x N N. .-2 x8. 8 8 ..Q m .-2 x m m .-2 x N m .-2 x N N ..2 x _ 8 . .am. a ..2xN m .-2xN 0 ..2x8 N .72.: 8 8 an . ~ 72.: 8 ..2xm w ..2 xm 8 N2.; m a ..p . 72.8 8 ..2 xm 8 .-2 x. m N.2xm n ... hp ..2xm m T2.8 N n.2xN 8 u72.2.“ m E m8 .-2 x_ m .72 x8 8 n.2 x8 8 _ N _ “8 8-2.6 8 ..2xN m ..2 .N a 72.2 m ._ “a «.2 x_ 8 .72 x_ 8 ..2 x. m ..2 x_ m _ ..mo .-2x8 m :28 m ..2 xm m ..2x. m _ mo 0. N N N N N F. _ 5 ”.04 ON _. 08 _ _ N _ N m cm 8 _ n N m N _m _ . ..< a Eu. O_Hx A E0. .32 ATE": .Rv. ATE”: Omnx x32: E58. *0 mgficgi oNRh ouhmcoofi ONRh ovarcooz ...«b 82:53.. . Oan ..n 323830 Boa—.832 .35 288.823.» 285 2862833. .35 836.332 830 038. E20503 .Exmm ..3 ..Ibq ._ "v2 .8 2:2 ..o 83:68:. 85 $20 an 835 42 .-2 x m m o 8 o. 8 ..2 x m 8 m “m ..o. x m m o _ 8 o 8 ..o_ x N. 8 . 8mm «.2 x _ m ..2xN m o 8 ..2xm 8 8 mm . ..2 x m 8 o 8 o 8 «.2 x N m a ..8 n.0..me 8 o 8 o 8. «.o_xm m c .mo. 70. xm m 79.28 m o 8 «.038 m E ma «.2 x w m o 8 o . 8 .-2 x m N _ “a !!! o ..2 x8 8 ..2 x. m ..2 x_ w .-2 x_ m x ..o «.2xN m ..2x8 m ..2xN 8 72.2 m A ..mo «.2 x8 n «.2x8 m ..2 x8 w .-2x. m _ mo 2 N o 8 o 8 on _ c 8.8 8 _ . o8 _ _ N 0N_ _ m cm 0N _ _ N _ N om _ . .4 A Eu. crux A 63 . I“: ATE": .Rx ATE": 0m»... .83: 6.3 .o ......mcoo: 8»... 825:8: 33. 2.2282 in 2.2.522 . onus ..m 2:35.25 .5... .A ,,_. m 2:22. ... a . A 295 A85 Boa—Ea: EEO * . < \ EEO .. . . < 3.30 938. 296589 . x . ..ll .2. Emma “AA. SEQ Q... 8n. .3 ....3 ..-..2 a. 2:2 8 .... .. 43 .-o_xm .w o 8 o 8 ..o_xw 8. m mm. ..o. x m m o 8 o 8 ..o. x m 8 . XE «.o.xN m ..o_xN m ..o_xm m ..o_xm 8 8 mm .-o. x w 8 o 8 o 8 «-o_xN m a up «.0. x8 8 o 8 o 8 «.o_ xm m : mp ..o. x8 m ..o_x8 m n.o_x8 8 «-o_xm m e m8 «.o_xm m 0 8 o 8 ..o_xm N _ “a -f o «.9 x 8 8 ..o. x. o ..o. x. m ..o. x _ m 8. v.0 - «-0. x m 8 to. x8 9 .-o_ xN m «.o_ x m m _ «me o 8 o 8 o 8 o 8 _ mo 0. N o 8 o 8 on _ 5 US ON _ . _ N _ N om _ o ON ON _ _ N I! _ N om _ N «4 A .ES 0.»; A723 Sax $-53 .Hx .723 09%. .83: 53.— .o «1:32.. 83” «82282.. ONE» «82282 in 82:33.. . onah 3 223.38 :EE_ona< BE 28§§3Q< 3:5 Ensign? .35 2253.34 .35 8388. .E 3:33 .Exoa ..andan . -32 3,. 2:2 .6 2.3235 «o 585 __.m 28.8 44 .-o_xm o o 8 o. 8, 8.0.xm 8 m “m. .-o_ x 8 m o 8 o 8 ..o. x m 8 _ mm. In--. m «-o_ xN m .-o_xN m ..o_x8 N «.0.x. 8 8 «Q .-o. xm 8 o 8 o 8 «-o_xN .m a V? n.o_ x8 8 o 8 o 8 «.o_xm m 8 mp 70. x8 m .-o_xm N «.o_xw 8 .-o_xN m E m8 «.o_xm m o 8 o 8 .-o_xm N _ “8 Ill... 0 n.o_x8 8 .-o_x_ w .-o_x_ w ..o_x_ m 8. go «-o_ xm m «.0. x8 m ..o. xN w «.o_xm 8 _ 1mg , -«-o_x8 m «-o_x8 n ..o_x m m ..o. x_ m _ mo - o. N o 8 o 8 on _ 5 US - - om _ 08 _ m N 0N. _ - a 5 ON _ _ N _ N om _ 8 88 A 63 Eng A 23 .3: ATE”: Sax ATE": Omfix "8?: ES... .0 .3538: ONRb Sumac: ONE” «325.82 tan 82288... , Oman 3 223339 ......M....:.S.xa, o 253:: 3053228. 8.65128 . A 35 A . < .85 55 < ‘ Etc E.E . Ab xx ..o._ ._+nb<._..nv_< .5“. 3:2 «6 oustcooE No EEO N_.m & a 838. 45 perhaps physically insignificant or meaningless. One should remember especially that order of magnitude considerations are a guide, and at times only a rather approximate guide. None the less, order of magnitude considerations serve as a starting point and often can be time and effort saving if properly applied. In Chapter 5 some of these considerations are discussed in more detail. CHAPTER 4 COMBINATION DIFFEREN CES Combination differences are a powerful analytical tool available to the spectroscopist (12). In this chapter various uses of combination differences in the analysis of axially symmetric molecules (symmetric due to a three-fold or higher axis of symmetry) are considered. Perhaps the most significant development is that all ground state combina- tion differences can be described by a single analytical function of the ground state quantum numbers and the changes in the quantum numbers for the transition involved, 1.8., in terms of J, K, AJ and AK. As a result,a relatively Simple least squares analysis of all observed ground state combination differences for a given molecule provides statis- tically favorable values of 30’ Di and Dix for the molecule. However, in so far as the other ground state constants A0. DOK,... are concerned, the spectroscopist must still rely on analysis of spectral lines or other means in order t0 obtain values of these constants as they cannot be obtained from "true" combination differences. In the event that good values of Bo’ DoJ and DoJK are aJuneady available from analysis of microwave spectra of Pure rotation transitions, or from a good analysis of infra- red data, numerical values of the ground state combination C1ifferences can be calculated and used as an invaluable aid in the assignment or verification of assignment of transitions 46 1+7 in infrared spectra. Where a molecule has only at best a small permanent dipole moment, and the pure rotation spectra is not observed, the method of simultaneous analysis of all available ground state combination differences can provide the statistically most favorable values of 30' Dc,J and D'JK available. CH3D and CDBH fall into this category, and application of the method of this chapter to these molecules is discussed in Chapter 9. It is also possible to represent simultaneously all observed upper state combination differences from an indivi- dual parallel band or from a perpendicular band.11 However, the expressions obtained are applicable only in the absence 01’ Perturbations . Definition of Gro (1 St t8 Lombination Differences Consider a generic binary combination of transitions with. a common upper state: AK AK 'AJ, (J,-AJ,)- 2AJ2 (J2-AJ2) K1 K2 where in order that the two transitions have a common upper 81581:8 it is necessary that K1 = K2. AK1 = 15sz With J, = J2, and with AJ1 and AJ2 standing in relation to each other \ 11For a parallel band the expression is simple and quite similar to the ground state combination difference e3KDression. For a perpendicular band the expression is mOre complicated. 48 as (+1,-1), (O,-1), (+1,C). That these provide the conditions required for a common upperstate in the absence of perturba- tion is evident since: AK AK AJ1K(J-J1)- AJ2K(J-J2) = F'(K+AK,J)-F"(K,J-AJ1)-F'(K+AK,J)+F"(K,J-AJ2) (4.1) F"(K,J»AJ2)-F"(K,J-AJ,), where F" is the ground state term value and F' is the upper state term value. If one refers to Fig.4.1 where examples of each type of allowed transition for parallel and perpen- dicular bands are shown, one can see that the conditions given above insure that the binary combination of Eq.(4.1) does have a common upper state and is therefore a true ground state combination difference. Some care must be exercised in the event that the transition terminateson an (A1A2) degenerate upper level. Since it is possible that a perturbation may split the upper level, the various transitions terminating on the degenerate (A1A2) level might now terminate on two different (energy- wise) levels.12 An example of this occurrence is found in Chapter 8 where a Coriolis resonance splits the KézziI upper levels.13 1airmen possible one modifies the expression for the ground state combination differences to take such a perturba- tion of known form into account. 13For details in this instance refer to Chapter 8. 49 Fig. 4.| Ground stole combination differences. K1. KE K1. _ " - K+l ...< < Perplndlculor K'H ' + + Bond Levels + A ll - K C - K K o + C 1 %+ + - K-I< '4'. K-|< + you.) O K+| Parallel Bond Levels 0 K ‘i 1; 0 1i K-l \ " Rn J-I) F K‘ Ro (J) / K PP (3+1) Vo(ll) PRKGI-I) K p on”) °PK(J+i) RPKGH'I) QR (J-l) 0K”) K K-H 0 l l Ground ' K.” Stole Levels K O K K K-l O -| K-I K J-l 3' (PH 50 Furthermore, when a molecule has a non-zero inversion splitting, the ground state combination differences associat- ed with the + inversion vibrational ground state only (or the - inversion ground statel,should be fit simultaneously since effectively the B°,DoJ and DoJK are different in the + and - inversion ground states. In the event that the "ground state" is the lower level of a hot band (12),care must be exercised since the .ex- pressione relative to ground state combination differences in this chapter apply, strictly, only to the case where the ground state is the vibrational ground state, the so called "zero vibrational state". Sim it eou R 8 ant tion of 1 Nine Zypes of Ground State Combinat on Differgncgs _ In the literature one generally finds distinct indivi- dual expressions for the "different" ground state combination differences given,e.g. as AKRK(J)-AKQK(J+1) = 2(J+ll-4D3(J+"3 (4'23) AKQK(J)-.AKPK(J+1) = 2(Bo-K2DgK)(J+1)-4D2(J+ll3 (“'2”) AK AK _ 2 JK J J 3 PK(J-1) PK(J+1) _ [4(Bo-K Do )-6D01(J+%)-8D°(J+§24.26) On the surface it appears that one has at least two irreconcilable expressions,and that if one had,for example, ten combination differences represented by Eq.(4.2a) and 51 two represented by Eq.(4.2c), the two represented by Bq.(4.2c) could not be combined with the other ten. Or in another instance, if one had data for ground state combination differences from two bands, one of which yields' data repre- sented by Eq.(4.2a) and the other represented by Eq.(4.20) it would seem that there was no way, other than by averaging the resulting values for the constants, of combining the data to get the best ground state constants. A different mistake is sometimes made regarding ground state combination differences, i.e., one might think that since (R-P) = (R-Q) + (Q-P) (for appropriate J values), no new information is contained in the third possible difference (e.g. Q-P, where R-P and E-Q are also known). This neglects to take into account the manner in which the data is fit, i.e., the way in which the three members enter into the normal equations involved in the least squares fitting of the data. We have been able to write a single expression which represents simultaneously all possible ground state combina- tion differences. This relation is given by: AK A" J in either the lower or upper state is an aid to unequivocal assignment of the quantum numbers of the observed transitions (12). Relative inten- sities also provide an aid to assignment (12); however, they cannot be considered to be of the same quality as considerations relative to missing lines since intensity anomalies are not a rarity. A great aid to assignment is the use of grounSKstate Sombination differences. If good values for B , Do and D are available, the various ground state combination differences can be calculated. Then, if one transition of the binary pairs in qu.(4.5) and (4.6) has been identified, the frequency of the second member of the pair may be calculated. 18The transition frequency is assumed to be a linear function of the molecular parameters, an assumption borne out in all the expressions we have used. .- .-—~ “...—- -- m. I I' . -. “...—V a1 sis Scheme d Computer Pregrap In this section we assume that a specific transition frequency has been selected. 8.8.. ' I v=a+b(JAJ)+c(J+AJ)2+d(KAK) (5.1) where a, b, c, and d are molecular constantsisuch as 30' D3, etc.) or combination of molecular constants. Further- more, we have n sets of data labeled {K1, J1, AKi, AJ1, v1} (5.2) for. the n observed transitions of frequency v1. The mechanics of the analysis scheme involves comput- ing the normal equations (50) given in Table 5.1 for a least squares analysis based on Eq. (5.1) (or whatever equation is to be used). Then, the normal equations must be solved ‘9 for the numerical values of the constant coefficients (e.g., a, b, c, d in Eq. (5.1)). In the process of the solu- tion of the normal equations it is valuable to find the inverse of the normal equation matrix (50) since the inverse is utilized in the statistical interpretation of the results. The numerical values of the constants obtained from the least squares analysis (e.g., a, b, c, d in Eq. (5.1) ) are used in the line frequency expression (e.g., Eq. (5.1) ) to CalCfilate a value for each observation, viobs' The calculat- ed value 13 called vicalc’ and the difference ‘9 The normal e uations for a frequency expression used to find p constants e.g., a, b, c, d in Eq.(5.l)) form a set of p simultaneous linear equations. 6O Ag}; SW u «A 6 8+5 a w _b<_b_sw u - SW n «33;: N e + A_v.<_5«A_b<+..3 N o + rainbow N a + .82; No Axexeafew 8 + agatewo + «12.8225? + «eatewo Afflxzeqeew e + «A_b<+_BA_.2_3W o + «EVEN h + ..bqb We ._x<_x W e + NAH<+§W o + HQHW a + AWo L .A: 2 _ Eat _ .26 2:3 =3.A_.mv.aw .8 9.2833 .2502 _.m 29o... 61 A1(o-c) = v, -v, (5.3) obs calc is computed. The sum of the squares of the A1(o-c) is also formed for use in statistical analysis.20 If n observations v1 are used, and p constants determined, then = Elmo-e12 n-p A2 (5.4) is an unbiased estimator of the variance of the parent statistical distribution of the errors in the observations (50)e We 0811 (Ci-0)] 2 e P E f. n- the standard deviation of the points, i.e., of the obser- vations v1. In addition, if the generic constant determined is b3. then the corresponding diagonal element of the inverse of the normal equation matrix, 113?, is related to the Standard deviation of the constants determined as (50) Aha: $2N351 (5-6) and the simultaneous confidence interval (50) for the "true" value F 3 of the constant estimated by b: with a k 20The statistical considerations described in this ghepter have been taken from a recent Doctoral thesis by 62 confidence coefficient (50) of (l—o) is given by where s = pFa(p,n-p) (5.8) p is the number of constants determined, n is the number of observations used, and Fa(p,n-p) are tabulated values of the F distribution (62, 63, 64). One interpretation which may be made regarding the confidence interval b3 i Shh is that if we consider the data used, 1.8. a particular spectrum, to be a sampling of an infinite sample population, i.e., all conceivable records of the spectrum obtained by whatever observer, wherever, whenever, the probability that b: :tSA-D will contain the "true" value of the constant /8 3 for our, data is (l-a). 21 Furthermore, Doyd (50) points out that the test to determine whether a particular b, is significant in the fit Of the data, i.e., whether the data depends significantly “Pm the term of which a particular b: is the coefficient, is Performed by comparing the ratio lb3 l/Ab with S. If , b El > She significant b") (5.9) [1535' ( 13$ not significant 1 21Boyd (50) presents a more detailed discussion of the use Of simultaneous confidence interVals in the analysis of SDi:ctral data. then a term is found to be significant it is of course retained in the fit. If it is insignificant it should be dropped from the fit.22 In this case there are two possible interpretations. They are, that no such term should be in the expression used or that the data used is not sufficient to determine the constant coefficient of the term. The foregoing analysis scheme has been programmed for the Michigan State University digital computer, MISTIC (65). The program DAEA embodies a flexible symmetric top analysis scheme patterned after the above discussion. Data is punched on IBM cards as AK AJ K,J frequency Av weight E Q 0,5 0000.0000 .0000 00.00 where weighting (50) may be effected using either the weight or the Av taken, of course, from the appropriate card columns. The latter is assumed to be related to the weight w as .1» 2 w = ill-3% (5.10) Equation (5.10) implies the assumption that the errors in the observations, i.e., in the v1, are statistically random- 1y distributed and all removable or known biases removed. The N‘orm simply allows one to. obtain an average weight of l regardless of the quality of observations used in a least I3(mares fit. E 22"For a derivation of these results as well as a more detailed discussion, of. Boyd (50). 64 The polynomial to which the data is to be fit is specified by the program user. For example, Eq. (5.1) may be specified with punched tape input to the computer as FO.= 1. F1 = 3x5. F2 = 3x3+3x5+315+5x5. (5.11) F} = 2x4. N = 6. where the indices 1,2,3,4,5,6 refer to 1,K,J,AK,AJ,v, respe ctively. Upon input of the polynomial specification tape and the data cards, the computer executes a least squares fit of the data, and outputs the least squares estimators of the constant coefficients,23 the standard deviations of the constants, i.e., the Ab 's, the calculated v and the observ- ed V for each point fit,‘ the A1(o-c) for each point fit, and the standard deviation of the points, i.e., the A. In addition, provision is made to compare other observa- tions not included in the least squares fit and also to calculate additional transition frequencies. The use of the computer programmed analysis scheme allows the spectroscopist to take advantage of the generalized * 23The program employs double-precision floating point erlthmetic which is equivalent to approximately 20 decimal d1Sits. Solution of the normal equations is accomplished by a Grant reduction (66) and round-off error for a well conditioned set of equations has been found to be insignifi- cent for a 13x13 normal equation matrix. . 65 transition frequency expression in Table 3.1 to analyze simultaneously, for example, all transitions observed in a single Perpendicular band. In general, if one were forced to rely on a desk calculator, it would not be feasible to attempt to simultaneouslyenalyze all transitions of a given band, determining for example nine constants from 315 transitions as was done by Boyd (50) in a simultaneous analysis of both'the parallel and perpendicular components of 2v), of CD31. In addition, as was pointed out in Chapter 3, simultaneous analysis insures consistency of analysis since it prevents one from obtaining and using several values (however nearly equal these may be) for the same constant, as happens when one analyzes one subband at a time (4). Method of awsig apd ggneraiizgd Tr sition Ire uenc 83- Suitable {or Emel- We shall outline the approach we use in the analysis °f a Perpendicular band vn + Vt of an axially symmetric m°leeule of the form ZXY3. The very same approach may be used for a parallel band or a combination of bands. The first point to consider is the question of linear independence of the terms to be fit to the date.“ Essen- tially, linear dependence, which makes the solution of the normal equations impossible or meaningless, results when —._ 24For a detailed discussion of linear independence in reference to 2V4 ll and J. of CD31 cf. Boyd (50). Ire-.- nob-M—~ all "y 66 a given quantum dependence of a constant to be determined is a. linear combination of any of the quantum dependences of the other constants to be determined. For example, because of linear dependence it is not possible to determine individually A0, aA, Ci, v0, r13: and D0K from a single per- pendicular band of the type Vn + Vt. One can only obtain linear combinations of these constants from such an analysis. Using the generalized transition frequency expression from Table 3.1, taking care to avoid linear dependence, the most general transition frequency expression suitable for analysis of Vn + Vt is given in Table 5.2. The selection rule Al. :AK, from Table 2.1, is incorporated in the expres- sion given in Table 5.2. In addition, all sums appearing in Table 3.1 except the one involving ntfi are written out explicitly. Using the expression in Table 5.2 it is possible to perform a least squares analysis of the assigned transitions and frequencies of the band Vn + Vt. We have found that an efficient way to proceed is to fit the data to a first approximation to the expression of Table 5.2 to check assign- ments and measurements of frequencies. The reasoning is that a "low order fit" of the data will indicate errors of this sort since there are only a few variables available to the least squares fit to be adjusted to best represent the data. On the other hand, if the full expression of Table 5.2 is used in preliminary analyses, there are so many Variables to be adjusted that errors in assignment or measure- 67 +7 2+3N b+ Ab<+.+.2 A2753 .5 LAISBba x + Abni+bxh<+3~§<+xv f + Tb<+_+BAb<+bT=:maxs“ex? “Km- “Knmnws LAN x<+x3£E=2a 2: .8 No 232. s 5.33..qu 2: no 3.58??qu Ame... men rich Eqs.(5.9)28 and the most significant term (largest ijl /1lb ) added to the expression of Table 5.3. Assume that d wasjthe most significant new term and call the expression of Table 5.3 plus d from Table 5.2, Eq.(x). The process is now repeated fitting Eq.(x) plus e, Eq.(x) plus 3, etc. Then e,J,k,l are tested for significance, adding the most significant term to Eq.(x), and repeat the process uurtil no new significant terms remain after the last fit performed. When all significant terms have been included in the analysis, we may assume that we have gone as far as we can if the spectrum is unperturbed. In the case of perturbations, the best procedure to follow is not as straightforward and will be discussed in the following chapters. At the termination of the analysis one has the estima- tors of the molecular constants, their simultaneous confi- dence intervals, the standard deviation of the points 1Jicluded in the analysis, and a table of the calculated and obsorved frequencies and the difference A1(obs-calc). One of the advantages of proceeding as outlined lies in the fact that a consistent analysis will be obtained in a BYstematic fashion and that the confidence intervals for the molecular parameters are obtained in a systematic,- Statistically based, reproducible manner. __ A__‘_ 28Note that as each new term is added to the fit, p in Eq.(5.8) increases by 1 and thus the value of S changes. CHAPTER 6 PERTURBATIONS IN THE SPECTRA OF AXIALLY SYMITETRIC MOLECULES With the advent of higher and higher resolution of infrared spectrometers, more and more anomalies have been noticed in the near infrared spectra of small molecules. Particularly in the region from about 3000cm"1 up, in which overtone and combination bands normally occur (12), many pexrturbations giving rise to anomalous spectra have been seen (1). A major cause of these anomalies appears to be accidental resonances between overtone and combination levels. Since, for the most part, accurate anharmonic constants are not available for ZSXY3 molecules, and since in general each of these molecules have several.low lying fundamentals on the order of lOOOcm"1 or less, the a priori calculations needed to sort out unambiguously the possible resonances, are at best difficult to perform satisfactorily. As a result, one desires a systematic approach to the PrOblem of anomalous spectra which will allow the maximum 1111‘ ormation about the form and cause of the perturbation which has to be obtained from the meager amount of a priori infor- mation which is, available. In this chapter a brief review of rigorous perturbation treatments applied to axially symmetric molecules is presented, followed by a description of the method due to Amat (7) of systematically treating the anomalous, i.e., perturbed, spectra which are observed. 73. Origin of Anomalies in Observed Spectra These anomalies are due in general to essential or acci- dental resonances between energy levels of the molecule. An essential resonance is a resonance between energy levels of a molecule due to the symmetry of the molecule. Essential resonances only occur within a single rotation-vibration band, i.e., 2: “’5 = o for the matrix element Causing the perturbations. For example, lo-type rotational resonance 29 between the K'=:I:1, t=i1 levels of a doubly-degenerate funda- mental of a 2X!3 molecule is an essential resonance. This resonance can exist for all ZXY3 molecules due to symmetry, independent of the character of the constituent atoms. An accidental resonance, on the other hand, is a resonance between energy levels of the molecule due to the fortuitous cOmbination of molecular parameters. For example, the Fermi resonance between v1 and 2v5 of some ZXY3 molecules is an aJ-“Z‘idental resonance. Accidental resonance may occur within a Single rotation-vibration band or more commonly between two or more different rotation-vibration bands. ‘2? evious flop]: on Perturbed Spectra There have been many perturbed spectra found and some have been analyzed in the past. In the spectra of C3w,mele- cules, one of the more striking perturbations, due to a Coriolis resonance, has been illustrated by the work of 29This is generally called t-type doubling. 75 Nielsen and his ce-workers on XY} molecules (8-11,67-69). Nielsen and co-workers have lately referred to this effect as giant L-type doubling since it is similar to A-type doubling observed for linear molecules. The effect manifests itself in a shift of the RR‘,(J) and RP°(J) lines relative to the Room) lines. An example of this splitting in the K'=t=ii levels of v3 4- v4 of CHEF is discussed in Chapter 8.. Other work on rotational resonances has been done by Benedict and co-workers on the NH3 molecule (33,70,71,72). In addition,considerable other work. has been done on perturba- tions both theoretical and in the interpretation of spectra (7 , 1 8-21,24,28-31 .73-84). Reziew of the Approach to Analysis of Perturbed Spectra The general problem of perturbed spectra is complex and, although the theory is relatively straightforward, the application in particular cases is often discouragingly Cu~1'ficult. At this point we review the general problem of mOlecular spectra and show in general how one arrives at and t”Pests perturbations in spectra. Recall that we began with a classical Hamiltonian (22,23) of the non-rigid vibrating I'O‘tor developed from a model of nuclear point masses in an anharmonic potential field due to the atomic electrons. The classical Hamiltonian was then transformed into a quantum mechanical Hamiltonian and subsequently expanded in a power series of the normal coordinates of the harmonic vibrator ( 13 ) . ’3 Ct Then, after collecting terms of the same order of magni- tude, the Hamiltonian of Eq.(1.1) results. As pointed out in Chapter 1, this Hamiltonian is diagonal with respect to J and M but may have elements which are off- diagonal in vs, ‘8’ m8, and K. However, H0 in Bq.(1.1) is diagonal with respect to all quantum numbers. The first contact transforma- tion performed on Eq.(1.1) results in Eq.(1.2) such that the first order Hamiltonian is now diagonal with respect to v8. The second contact transformation performed on Eq.(1.2) results in Eq.(1.3) such that the twice transformed Hamil- tonian h" is diagonal with respect to vs through terms of the second order of magnitude. As pointed out in Chapter 1, terms in h; which are off—diagonal will not be expected to contribute before sixth order, etc. Thus in the absence of essential or accidental resonances, the diagonal elements of the twice transformed Hamiltonian give a good representa- tion of EVR through third order. For axially symmetric molecules, h; and h; are diagonal with respect to all quantum numbers. ha, however, may have elements which are off-diagonal with respect to K and ‘s (16) While higher order Hamiltonians h; may have elements which are off—diagonal with respect to vs"s and K. Since the first part of the twice transformed Hamiltonian in which off-diago- nal elements occur is h; (as indicated in Chapter 1), the lowest order to which these may contribute in the absence of essential or accidental resonances is the fourth order (21). Thus, in the. unperturbed case, i.e., in the absence of 77 essential or accidental resonances, the diagonal elements of h+ are a good representation of EVR through third order. However in the event of essential or accidental resonances this is no longer the case, so that the secular equation given by Eq.(1.5) must be solved. There is, however, an important point to consider. In performing the contact transformation, certain resonance denominators appear in the transformed Hamiltonian (19,20,24). These are of the form 1/(CUS-'aé.) and in the event that any cosaeco§.,-the transformed Hamiltonian "becomes infinite". In these instances, Nielsen has shown (19,20,24) that the transformation function used in the contact transformation may be modified to eliminate the resonance denominator and preserve the contact transformation. In many other instances however, these resonance denominators are not the problem and a resonance results not from we ”ws' but from EVR(v8,£s,...J,K)2$EVR(vsytac,...J,K+AK). (6.1) In the latter instance, the secular equation of Eq.(1.5) may be solved without using a special transformation function to preserve the contact transformation. A detailed resume of the exact treatment of accidental or essential resonances is beyond the scope of this work and reference is made to the work of Nielsen, Amat and co-workers (8,11,18-20,24,28-31,67-69,73-77). The exact treatment is very complex and quite often requires the solution of secular equations of order three and higher. 78 In these instances it is not generally possible to solve the secular equation in closed form. One may either substitute approximate (or "guessed") values of the required constant coefficients into the secular equation and solve it numerically, and then perform iterative solutions, or as is possible in some cases, obtain approximate solutions in closed form by neglecting certain terms in the secular equation which are assumed to be small. In general, the best that can be done is to demonstrate that a given off-diagonal element(s) could produce the effect seen,and an approximate form of the perturbation may sometimes be found. One notable exception is the case of a first order Coriolis resonance which will be discussed in detail in Chapter 8. S te tic A 0 ch h l o Pertur ed Spectra In 1962 at the Symposium on Molecular Structure and Spectra, Professor G. Amat presented a systematized approach to the treatment of perturbed spectra (7) which, while not possessing the complete rigor of some approaches, makes it possible to attack the problem of anomalies in the observed spectra of axially symmetric molecules 30 in an orderly manner. However, while approaching the problem in this orderly manner does not guarantee a complete solution of a perturbed spectrum, it does provide a good method which will F 3°Parts of the following discussion are the result of several discussions with G. Amat,and much of thds chapter follows rather closely an invited paper by c. Amat. (7) 79 enable an investigator to proceed as far as the available data will allow. Ior ZXY3 molecules, the lack of good an- harmonic constants makes a complete solution of a perturbed spectrum at best a very difficult task. Consider two energy levels which perturb each other, viz. 621 6b where E3 and Eb are the unperturbed energies, and 6&3 and 6b are the resulting energies of levels a and b when the perturbation is taken into account. In order for a perturba- tion to exist, there must be some matrix element of h+ coupling the two states a and b such that E: # 0, (6.2) Thus, the resulting secular equation, giving the perturbed energies is a . __—--_ o (6.3) “s, Eb "’ é which has the solution in closed form. 1 313' 13-352 6 :: a bi: \/(a b) +112 (6'4) 2 2 . As yet unexplored are considerations regarding the possible 80 states a,b,c... which may be coupled by a perturbation, as well as the form of W as a function.of the quantum numbers of the levels coupled by the perturbation, and any possible analytical expression for Ea'Eb as a function of the molecular constants and the quantum numbers of levels Ba and Eb’ In the following, it will be found that from a knowledge of the form of the unperturbed energy levels, as presented in Chapter I, a relatively simple expression, as a function of the relevant quantum numbers, can be given for the separa- tion of the unperturbed energy levels, i.e., Ea-Eb. A prac- tical problem.arises, even though the expression is relatively simple, since at the present time, very Often the molecular constants involved in the expression Ea-Eb are not known with sufficient accuracy. Furthermore, the large number of accidental resonances possible in the 3000-6000cm" region complicates the matter further since this means that we do not know the position of the unperturbed levels and makes the extraction of the "unperturbed" molecular constants difficult if not impossible. The possible couplings of levels which may enter into a perturbation will be explored so that all those disallowed by symmetry considerations may be eliminated. This is especially helpful since without these rules many couplings would also be considered which in fact are identically zero due to the symmetry of the molecule. The possible forms of K as a function of the quantum numbers are also presented according to the scheme of Amat (70,and an orderly approach .Ivllv..l.-‘ vvt,ob|.'ln.4w.v.l‘.b ‘ e. >. , . ..w. u .‘ PFH \ L I. 81 for obtaining information about perturbed spectra is indicated. It should be noted, however, that the problem is so complex, and so many considerations are involved, that each perturbed spectrum is somewhat of a special case,and that proceeding in the manner outlined in this chapter does not guarantee a complete solution. If [Ea-Ebl << lWI,the resonance is said to be a strong resonance, whereas if IEa-Eb|)>[WLthe resonance is said to be a weak resonance. The order of magnitude of W is said to be the order of the resonance.* However, the order of magni- tude of w is not necessarily the order of the Hamiltonian h; in which the perturbation matrix element occurs (7). Considerations regarding the order of magnitude of a perturba- tion are rather intricate and reference is made to the paper of Amat and Nielsen (18) for a clear presentation of these considerations. As mentioned above however, an estimate of the magnitude of the perturbation may be obtained by consider- ing the magnitudes of 'Ea'Ebl and le in Eq.(6.4). In the event that three energy levels perturb one another, the secular equation is more complex, with no simple solution. Let the levels a,b,c be involved in the perturba- tion. Then, it is possible that the coupling elements are (a |h+| b) I: II (a |h+| C) (6-5) W = (b If” c) 82 which results in the secular equation Ea—é 3:1 B2 w] Eb-e w} = 0. (6.6) W2 W3 EC‘E This case will not be pursued further at this time. Rules Thgt Determine Which Levels ng Perturb One Another An important consideration is the question of a parti- cular coupling of energy levels. For example, if E8 and Eb are the two levels in question, under what conditions is a perturbation possible? First, only levels of the same J value may perturb each other, since h+ (and in fact H and h') is diagonal in J, i.e., 3/1f13 [v(v-1 ) (v-2 )/8] % v-1 q3,p3/ih3 3[v/2]3/2 v+1 q3,-p3/ih3 3[(v+1)/2]3/2 W3 q3,p3/1e3 [(v+1)(v.2>(v+3)/8]* v q9.p4/54 [3/2(v+%)2+3/83 v p2q2 . can? to (we )2-3/ 83112 8‘From N. Shaeffer, Revs. Mod. Phys. bFor simplicity the index s (from vs) is omitted throughout the table o Table 6.2 Matrix elements harmonic oscillator.a (v,llflv;t') for the two-dimensional Operator f v' ) t' q1 Q2 1),/h pZ/fi l {m m emf-2% engage wily-W «27¢ Fv+‘1 21...: efl'mfi’ e (v-M )1 f G = {FEW-+1. )(v-l. 3% n = 1/8[(v-A-2)(v-1.)]% J = 1/e[(v+z-2) le Ken xi 112 (Ken (Ir-mun y 8772 (K lePyl KM) = “81):? K Vf-K(K=t1) (K lele K11) = 513—2 K [If-K(Ki1) (K 'PxPy' K11) = 817:2 (K11) Vf-K(Ki1) (K lPxPy+Pny| K12) = “513;? Vf-K(K=h1) Vf-(Ki1)(K:t2) 2 | = L n (K lePz-q-PzPy Kit) $18772 (21m) Vt mm) 2 _ (K lePz+PzPyl KM) .-.- 3%; (21m) Var-mun 89 the elements of h+ in the generic form used in Chapter 1 is given in Table 6.4. From Tables 6.1-6.4 it is possible to ascertain whether a given coupling is possible as regards the existence of an appropriate element in h*. Thus, combining the information contained in Eqs.(6.8) and (6.9) and the information con- tained in Tables 6.1-6.4,it is possible to determine whether a given coupling may possibly produce a perturbation in the spectra. Egpregsion for the Se tion of Unperturbed Energy Levels Recall again the case of two levels Ba and Eb coupled by some matrix element (a lh+| b) = N such that Ea Eb \\\ E ’b where the secular equation, Eq.(6.3), has roots E +E 2 .. .32.); S .2 where ea is 6 using the + sign, 6 b is G using the - sign and 8.2-z. Ee’Eb (6.11) is the separation of the unperturbed levels. Fig. 6.1 illustrates the effect of the perturbation W on the levels Ba and Eb and indicates certain magnitudes of shifts which 90 Table 6.4 Generic form of elements in h+ an accidental resonance. Capable °f PTOdu01ng 4.. hm OPerator h+ 4 h; r r3P r2?2 h; r5 r4? r3P2 r2P3 h+ r6 5 4 2 91 e N (e N3+1lml .l. Qm+0m .I m // N v / la.) ~3+~1m1 / pm llllllll Fl LI l1 l1 / aw v N 1 N ~3+wd1\. .ml1nMIow 1| N .w w , am+ow v N N ~3+~dl lwln nwlow ow )))))))) .71 1L) 1) I.) \ ow \\ 1m11 «aim. \\ v N 10 A \ N3+mlwl\ 1T Qwrfcw I m .8286. 3:09:23 .96. 03... ..m .2... KO F0 will prove useful in the following. It may be shown by considering the differences of the unperturbed energy levels given (in Chapter 1) as a function of the several quantum numbers, that through third order contributions, for Jz 20, K2510, 5 may be expressed as S =.a+bK+cK2+dJ(J+1) (6.12) where,for most cases which we will consider,the term cK2 may be neglected.32 The term dJ(J+1) may be important especially in cases where (a2 - mg) is of the sale order of magnitude as the resolution of the spectrometer used. This will become apparent in Chapter 8 where the term dJ(J+1) plays an important role in the perturbations observed. As mentioned above, Eq.(6.12) may be obtained as the difference between the two levels in question, i.e., S = Ea(v8‘80ongKa) " Eb(v3"s"°°J’Kb) . (6o13) for which a particular example is given in Chapter 8. Note however that since E3 and Eb are functions of the molecular constants and the quantum.numbers K and J, the differences will obviously be a function of K,J and the molecular con- stants. A practical difficulty arises however5because the molecular constants involved in S are often not known with A— 32For a AK = 0 coupling, the term 0K2 is negligible in nearly all cases. For a AK 2 $1 or greater coupling, CK2 may occassionally be important. sufficient accuracy to be useful, so that the required a priori calculations are very difficult (if not impossible) to perform effectively. At this time we shall consider only the form of Eq.(6.12) simplified by neglecting the term 0K2, i.e., S: a + bK + dJ(J+1). (5.14) Up to this point we have given the rules needed to ascertain the possible existence of a given perturbation coupling, the method of ascertaining whether an appropriate term exists in 11+ to provide the perturbation element(s), and the form of the separation of two levels involved in a perturbation. Accidental Resonances First, we consider the problem of accidental resonances between the energy levels of two different vibration-rotation bands. Subsequently we shall consider the problem of essen- tial resonances, since in so far as the approach used is concerned, essential resonances appear as a special case. If we again consider two levels E8 and Eb, belonging to the same J value, with E8 having v8,v8'... excited whereas Eb has vs 3 Possible couplings exist between Ba and Eb’ we find the u,v nu...excited, and seek to ascertain what answer given by Amat (7). Considering only the vibrational portion of the problem, if the vibrational coupling is expressed as (vn,...vt,... |h+| Vn+AVn,...Vt+AVt,...> (6o15) .b..-. 1 O 94 let us call g lAvnl = pn (6.16) and § lAvtl = Pt (6.17) and pt + pn = p (6.18) so that p is the total number of (differences of ) vibra- tional quanta involved in the resonance, pn the total number of non-degenerate quanta,and pt the total number of doubly- degenerate quanta involved in the resonance. For example,if we are considering a resonance between v1 + 2v3 + v4 and v2 + v} + v5 + V6 of CHEF 33 thenlAv1l- = 1, Iszl = 1, )Av3l = 1, [Av4l = 1, IAvSI = 1 andIAv6] = 1 so that p=6.pn=3.pt=3. S st ti A ch t P tu b t n Cou 1 Using the approach discussed in the beginning of this chapter, Tarrago and Amat (87) have found the possible couplings for several values of p,pn and pt. The possible types of couplings are (7,87): I W I' w + w'J(J+1) + w"K2 :1 w V?(J+1)-K(Ke1) A 335For the numbering of the fundamentals of xrz molecules we follow Herzberg (12) where v , v , and v3 are nog-degenerate and v , v5 and V6 two-fold degenerage, each3 in order of decreasing frequency. 4wri...' a .. 1.1.. I. 19.11. 11 III wK . 111 w VE(J+1)-K(Kr1) (/J(J+1)-(Ks1)(Ke2) v w VJ(J+1)-K(Kr1) fi(J+1)-(Ks1)(Ks2) x V5(J+1)-(Ki2)(Ki3) where W is a constant coefficient for terms in h+ through rnP3 terms. These include all terms through those contained in h; (14-17). Tables 6.5-6.8 give the principal coupling34 of each type for several values of p,pn,pt (87). The tables are self-explanatory except for the subscript on the w, i.e., h(n),which indicates the estimated order of the perturbation for J25K251. The column entitled "Order of Magnitude" gives the order of the perturbation for JszSO unless otherwise indicated. AK is simply the required difference in K Values between the perturbing levels; §A£t is the sum of Alt for the degenerate modes involved in the perturbation, i.e., for those modes which have a Avt f C; the Z'AL is the sum of I t t Alt for those degenerate modes not involved in the perturba- tion, i.e., those for which Avt = O. In those instances for which §Att or E'Alt, is given as 0*, the notation indicates z 2111' 1. z = . that the §IA tl or tI t.l¢ 0 but the EA t or %.A t. o The heavy box lines enclose the largest effects. In summary, up‘to this point we have found how to deter- mine whether or not a particular perturbation coupling is a —— g 34The author is indebted to G. Tarrago and G. Amat for these tables. (87) , +..!” 1““. n’.|lvtn ‘ 1 hi P. ,- 96 Table 6.5 Perturbation couplings for 623, p'ail. Order of p Matrix elemems AK 2A1) 2A2. Cplng Mogmtude ' - 1 1' ' p=3 p=4 p=5 0 WW2,” o o I 1 2 3 w o 0* o I 1 2 3 (1,2,3) w(“)~/J(J+I)-K(1erturbed positions. Eq.(6.30) also indicates that as the Shduft goes to zero, so does the intensity sharing. - war 1J6 It is apparent then that in a perturbation, transitions normally not observed may borrow intensity from the transi- tions which they perturb. In Chapter 8 an example of this intensity borrowing will be seen in several instances. In the event that both levels involved in the perturba- tion have non-zero intensities in the unperturbed case, the problem is even more complex and the intensity sharing is not easily described. However, when applicable, the calcula- tions using Eqs.(6.16) and (6.17) are straight-forward. Essential Resonances Although essential resonances have not been treated in (detail in this chapter, they can be important in the inter- pretation of spectra. In an essential resonance, the resonance occurs between levels in the same rotation-vibration band. It is necessary to be clear about the term "same rotation-vibration band" since it is used here in a broad sense. By the same rotation- vibration band we mean the entire band which has the same Vibrtitional quantum numbers. For example, for ZXY3 molecules, the same rotation-vibration band is taken to mean the entire complex for which v‘,v2,...v6 are identical. However, 1.4, £5 axui ‘6 may be different, e.g., an essential resonance may occur between the parallel and perpendicular components 01’ 2V4 of a ZXY3 molecule. III treating essential resonances the same considerations °f thits chapter apply with the restriction that the perturba- t1°n matrix elements satisfy the rule ElAvSIE 0' C) '\] Summary In general, there are several points which should be systematically considered when analysing perturbed spectra. These are: 1) the order of magnitude of W 2) the type of coupling (I,II...) 3) the number of auanta involved in the resonance, i.e., p, pn, pt 4) the order of magnitude of a,b,c,d (Eq.(6.12)) 5) the number of resonating levels 6) observed intensities. {the appearance of the perturbation is governed by considera- ‘ticumt,2,4,5, and 6 while 3 presents a systematic approach tn) the consideration of the couplings possible. In Chapter 8, these considerations are applied to v3 + v4 of CHBF. 55' .,—_ —...—T.--—. CHAPTER 7 EXPERIMENTAL DETAILS AND CALIBRATION OF RECORDS Spectrometer The spectra of CHBF, CHD3 and CH3D were obtained with a high resolution vacuum recording spectrometer employing an f/ 5 Pfund-Littrow monochromator of focal length 1 meter (89-91) and one of two Bausch and Lomb "certified precision" echelette gratings, a 600 line/mm, 212x158mm, grating blazed at 1.6;1 and a 300 line/mm, 254x128mm, grating blazed at §/¢. The gas samples were contained in a White type multiple traverse cell (92,93). Two entrance optics arrangements were used, one em- ‘ploying three calcium fluoride lenses and several front surface zrluminized mirrors, the other employing an all mirror system. The infrared energy was detected using Eastman-Kodak leaui sulfide detectors, type P and type N. The detectors were cocfiled to one of two temperatures, -50°C by a circulating dry leer-acetone mixture and -175°C by a pressure driven liquid aix' cooling system. The infrared beam was chopped at 90 cycles pex~ second and the lead sulfide detector outputs amplified by a Tektronix Type 122 preamplifier followed by a phase sen- sitive amplifier. The amplifier output was recorded by a Leeds and Northrup Model G two-pen recorder. Cadibration was effected by interpolation between the V1~81bll.e fringes from a Fabry-Perot interferometer following the method of Douglas and Sharma (94). The Fabry-Perot 108 ‘vw" fringes which are equally spaced on the chart with respect to frequency are calibrated by a least squares fit of the fringe position of well known standard lines versus their frequency in cm". The standard lines are normally recorded simultaneously with the infrared absorption record. Several types of standard lines are used in the calibration of the fringes. The best standards available for calibration of infrared absorption spectra are the carefully measured ab- sorption lines of CO, N02, HCl and HCN measured by Rank and co-workers(95-97). These standards are recorded simultaneously 'with the spectra by including the calibration gas with the sanple gas in the multiple traverse cell. In addition, well lanown Argon emission lines (98) due to the Argon carrier gas 331 the 300 watt Zirconium arc, which we use as an infra- :reCI source, provide another source of standards; and an end- on.]Neon lamp inserted in the entrance optic train by a movxible mirror also provides a source of standard lines (98). Calibration 9f CHEF Bands The v; + v4 band of CHBF discussed in Chapter 8 was calibrated using secondary infrared standards as follows. Sevexl CO lines (95), one Argon emission line (98) and one Neon emission line (98) were recorded simultaneously with 15116 best infrared absorption lines of v} + v4. Subsequently the Fabry-Perot fringes of the record CH3F Chart I were calibrated using these standard lines. The results of this linear least squares fit are given in Table 7.1. Table 7.1 _u E -.-." '3- HO Table 7.1 Calibration of Fabry-Perot.fringes of V} 4’ V4 CH3F Chart I. Std. Fringe Position Freguency Calculated Hts A1(?-c) cm- of Standard 'cm’ Frequency cm' Ne ~134.1973 3903.8008 .7992 2 +0.0016 P(22) 661.2890 4159.5609 .5603 1 +0.0006 P(21) 677.7175 4164.8423 .8423 1 0.0000 P(18) 725.7604 4180.284} .2889 1 -0.0046 P(17 741.3288 4185.2971 .2943 1 +0.0028 P(16 756.7080 4190.2424 .2390 1 +0.0034 P(14 786.8532 4199.9298 .9311 1 -0.0013 P(12) 816.1305 4209.3454 .3442 1 +0.0013 V : a + b(f#) a = 3946.94567cm'1 b = 0.3215154em-1 s :.-.’c0.0026cm--'1 Std. dev. of points 111 Table 7.2 Calibration of CH F Chart II vs frequencies Fringe Position Chart II 211.503 212.112 278.657 279.522 280.302 301.133 302.053 306.272 347.422 348.453 349.378 350.230 352.275 352.826 416.372 419.225 420.075 514u786 515.324 515.995 Standard Fr Chart I cm' 4014.9496 4015.142} 4036.5384 4036.8182 4037.0704 4043.772? 4044.0705 4045.1620 4045.3114 4045.4187 4058.6532 4058.9814 4059.2782 4059.552} 4060.2131 4060.3869 4080.8260 4081.7442 4082.0153 _ 4112.4689 4112.6414 4113.1838 v a b a ‘1‘1' a + b(f#) 3946.93827cm'1 0.3215543cm-1 $0.0032cm-1 of absorption lin s from Chart 1. Calculated Freq. Chart II cm-1 .9480 .1438 .5416 .8198 .0706 .7689 .0647 .1554 .3085 .4214 .6533 .9848 .2823 .5562 .2138 .3910 .8245 .7419 .0152 .4699 .6429 .1803 $11-91“) +0 .0016 -0.0015 -0.0032 -0.0016 -0.0002 +0.0038 +0.0058 +0.0066 +0.0029 -0.0001 -0 00034 -0.0041 “000039 -0.0007 +0.0015 +0.0023 +0.0001 -0.0010 -0.0015 + .0035 Std.dew of points 112 presents the intemal calibration of CH3}? Chart II against the frequencies of infrared absorption lines obtained from CH3F Chart I. The initial analysis was carried out using Chart II. Subsequently, the resolution of the spectrometer was improved by cooling the PbS detectors to -175°C. The CH3F was rerun in the double pass configuration of the Pfund-Littrow mono- chromator. A difficulty arose, however, since the Fabry-Perot fringes were single passed. As a result of the different dis- persion at which the infrared and fringes were obtained on Chart III, it was found that a quadratic fit of the fringe position of the best lines on Chart III vs the frequencies of these same lines from Chart II was required to obtain a good calibration of Chart III. The results are given in Table 7.3. . Secondary internal calibration was used on these records due to the difficulty of using primary standards in this region. As is apparent from Table 7.1, there is a lack of accurate and observable standards in this region and since the internal calibrationfits were as good as they turned out to be, secondary internal calibration was used. The Principal effect of this approach would be to introduce a small error in absolute accuracy of frequencies. However, the relative accuracy should be extremely good. Table 7.4 presents a summary of experimental conditions . f°r all usable records of V} + v4 for CHBF which were run. Unfortunately, the last three records listed in Table 7.4 ..‘r‘ik‘ U- .1" s: '1' .1 1.1.1 .I. 1.. .... I. ...... LI Vsiiflh Table 7.3 Calibration of CH F Chart III vs.frequencies of absorption lin s from Chart I. Fringe Position Standard Fre . Calculated Freq. A.{€-c) Chart III Chart 11 cm- Chart III cn-1 s; 158.219 3989.8449 .8437 +0.0012 200.099 3995.5406 .5437 -0.0031 215.684 4003.0261 .0223 +0.0038 231.132 4010.4369 .4362 +0.0007 265.710 4027.0310 .0348 -0.0038 277.953 4032.9120 .9131 -0.0011 291.014 4039.1807 .1848 -0.0041 300.564 4043.7696 .7711 -0.0015 315.877 4051.1280 .1258 +0.0022 326.836 4056.3899 .3900 -0.0001 335.160 4060.3946 .3887 +0.0059 345.477 4065.3513 .3453 +0.0060 366.376 4075.3857 .3872 -0.0015 372.535 4078.3466 .3470 -0.0004 416.574 4099.5142 .5150 -0.0008 442.455 4111.9603 .9590 +0.0013 4530489 411702560 .2652 +OOOOOB 474.552 4127.4023 .3957 +0.0066 1485.544 4132.6861 .6833 +0.0028 v = a + me!) + c7177)? 3 : 3899.61773cm' b.= 0.1‘1>7896060111"‘l c = 0.0000021 9cm-1 3 :zt.0040cm' Std.dev;of points .1 .‘~ 114 :8 =28 cod 0. mt: 2.95 22.8 N 00m m on m 3:0 :28 No.0 0. mil z-mna 205m N 00m m cm n :28 .8 some .825 No.0 0. 9.... 2-2a 29am _ o8 m to w snoaénoa oz new: use . 8.882 No o 0. mt: 2-2a assoc _ ooo o v m w E com: 2.6 v0.0 0.001 mums.“— o_o:_m _ Com m. 0N. in RP 02832 v0.0 0. Col a-mnm EoEm _ 00w VN o m 3H 8:228 «00 0. own an... 295 _ com n. mm. m H ToEta :16”: m... 0 ac. ....o 2.: £23 239363 on . .m m. EE\mocj .A . v 0: EE 3252 28668 t _.m .2880 .o 235.6; 593.. . .2028 $20 3:90 238i vacuum .2368 2950 End , n v n .im.m B a :o no S+ A no monoomn ..8 mcomtbcoo BEmEtqum VN NEE 1‘15 proved to be impossible to calibrate since satisfactory Fabry-Perot fringes were not obtained. Cglibrgtion of CHD; Three high resolution records of v1 + v2 of CHD} were calibrated and measured. Later, several other records were run for details not obtainable on a calibrated run. CHD3 charts I and II were calibrated against Neon emission lines (98) recorded intermittently with the absorption spectrum while fringes were recorded continuously. The results of the calibration fits are given in Tables 7.5 and 7.6. Chart III was internally calibrated against average frequencies of infrared lines from Charts I and II with a standard devia- tion for 11 points fit of $0.0014cm’1. C ibr tion H Two records of we + v3 of CHBD were run. CH3D Chart I Was run for a primary calibration against HCN standards (95). 0331) Chart II is a second high resolution run for second mea- surement of lines and was internally calibrated against absorption lines contained on Charts I and II. Table 7.8 preGents the calibration fit of Chart I vs. HCN standards. Table 7.9 presents the calibration fit of Chart II vs. absorp- t1011 line frequencies from Chart I. Table 7.10 lists the eKPeximental conditions for the two ‘records. 3.213233 Preparation 01132 The CHEF was prepared by transferring 97.6g (0.524 mole) '\ 3' 116 Table 7.5 Calibration of Fabry-Perot fringes of CHD} Neon Line Fringe Position Chart I 9.157 80.810 230.051 357.120 616.086 655.142 Standard Calculate Freq.cm-1 Freq. cm’ 4961.132 .131 4989.930 .930 5049.912 .913- 5100.984 .985 5205.071 .070 5220.768 .768 1’: a + b(f¢*) a = 4957. 450cm-1 b = 0. 4019239 3‘ :10. 001cm" Chart I vs. Neon emission lines. Al£0-0) 031 +0.001 0.000 -00001 -00001 +0.001 0.000 m’ 1 Std. dev of points “...-am (‘1’; g: p. 117 Table 7. 6 Calibration of Fabry-Perot:fringes of CHD} Neon Line Fringe Position 9.212 80.864 230.098 616.164 655.228 Chart II vs. Neon emission lines. Standard Calculated 81(0-0) Freq.cm-1 Freq.cm‘ 0111‘1 4961.132 .134 +0.002 4989.930 .931 +0.001 5049.912 .909 -0.003 5220.768 .770 . +0.002 v = a + b(f#) a = 4957. 431cm"1 b = 0. .4019036Cm s =i0. 002cm" Std. dev. of points 118 8.0 0. 9:1 2.02 2050 _ 000 0 0.0 0v B 3.0 0.00 1 alga 2050 . _ 000 0. 00. or, a 2.00 0.001 aimed 2°50 _ 000 e0 0 8 H Area 50.; 0.20.0050p 000.... 035m m. 3.20:: 0... EE 80:52 Em. . 6.0200 .0 00:20 0.0200..— 5000.. . 020200 000.0 20002.“. 0.000". .9880 £30 £8 . u . . 09.6 20 A + A *0 0980.. .6; 30528 EEmEtqum k N NEQ. 119 Table 7.8 Calibration of Fabry-Perot fringes of CHBD Chart I vs.HCN absorption lines. HON Line Standard Calculated 4; (o-c) Fringe Position Freq. cm"1 Freq. cm" on"1 R(9) 770.899 3339.8843 .8817 +0.0026 12(10) 779.385 3342.6077 .6108 -0.0031 12(18; 844.672 3363.6134 .6065 +0.0069 R(19 852.562 3366.1405 .1438 -o.0033 R(20) 860.350 3368,6455 .6484 -0.0029 R221 ) 868.042 3371.1283 .1221 +0.0062 a 23; 883.332 3376.0271 .0392 -0.o121 M25 898.252 3380.8366 .8373 -o.0007 M26) 905.619 3383.207? .2065 +0.0012 M27) 912.910 3385.5563 .5512 +0.0051 v = a + b(f#) a = 3091.9675em-‘ b = 0.3215911on-1 s ==to.oo6ocm-1 Table 7.9 Calibration of CH D Chart II vs. frequencies of absorption lines Erom Chart I. Fringe position Standard Freq. Calculated Freq. 81(0-0) Chart II Chart I cm" Chart II cm" cm“ 937'.191 .3393.339 .327 +0.012 945 - 347 3395.942 .951 -0.009 9463.173 3396.213 .217 -0.004 952 . 794 3398.345 .346 -0.001 980 . 529 3407.284 .265 +0.019 1012.551 - 3417.559 .565 -0.006 1022. 952 3420.909 .909 0.000 1025 . 281 3421.669 .658 +0.011 1059 .052 3432.511 .519 -0.008 1146.345 3460.576 .593 -o.017 1248.465 3492.459 .437 +0.022 1264.519 3498.602 .600 +0.002 1265.531 3498.926 .925 +0.001 1379 . 838 3535 . 682 . 687 -0 .005 1396.580 3541.066 .071 -0.005 1398.879 3541.814 .811 +0.003 1417.119 3547.687 .677 +0.010 1434.659 3553.311 .318 -0.007 1437. 801 3554. 326 . 328 -0.002 '44 1 . 840 3555. 628 . 627 +0.001 1454.526 3559.719 .707 +0.012 495.721 3572.945 .956 -0.011 1497.845 3573. 644 .639 +0.005 )) = a + b(f#) a = 3091.91889 cm-1 b = 0.321610337 cm-1 s = a. 0.0096 cm" IiivI . :1. .. 121 No.0 0.2... anon 22a _ 000 0 e0 2. n 00.0 0. as... sans 2050 _ 000 0 so he a 318.0. 22200th 000a 0.00% m. “0.225 0: EE 03:52 5“” 00.0200 ..0 00:05 30206:. 5000... . .2023 0020 05002.2 2003“ .020on 03000 50a .onro 00 as + «a *0 2:82 .2 00050000 _2:06:00xm 0; Each of methyl p-toluenesulfonate and 62.7g (1.08 mole) of dehy- drated potassium fluoride into a flask. The pressure was reduced to 500mm Hg and the temperature raised to 250°C over a period of 1% hours and maintained at 250°C for 3 hours. The reaction product was passed through a dry ice - acetone cooled trap to remove any water present and subsequently collected in a liquid air cooled trap. Fig. 7.1 illustrates the apparatus set-up used for the production of CHEF. Yields were on the order of 85% with a small amount CO2 contamina- tion. CHD3 32d CH3D Samples The samples of CHD3 and CHDD were obtained from Volk Padiochemical Co. and used without further purification. 123 9:2. 5:3? 2 a f 7 3 ‘30332 388 3.08 .6 2:3. ‘3: 5:02.00 3.08 :0 232. 7’3: .38; 3.03 8. Eunocosoo .mmmo> COT—0005 3:55 ago comm: 3.52:3 2.2-: \\ 33695.: new coco .ufo no 8:385 2: .8 3.25 32233 836065.: E. .9“. CHAPTER 8 A PEFTURBED PERPENDICULAR BAND v3+v4 OF CHEF In the past, the infrared spectrum of CH3F has been investigated in several laboratories. Bennet and Meyer first reported the spectrum of CH3F (99). Subsequently Yates and Nielsen analyzed the fundamental bands with resolution 2:0.3cm"(100). The bands v1, v3, v4 and 2v5 were examined by Pickworth and Thompson with somewhat higher resolution 250.1cm"(101). Smith and Mills have recently re-analyzed the rotational structure of v3 and V6 with resolution 230.2cm"(102). A low resolution (2:1.5cm") study of all perpendicular fundamentals was performed by Andersen, Bak, and Brodersen (103) who found the G: constants from the zeta sum rule (12) and thus also obtained a value for A0. The microwave spectra of CH3F has been reported (52.53.58), J JK and excellent values of B0, Do and D0 are available. Warm A 1 ent of th Ob e ed S r In the region from 3900 - 4500 cm“ the infrared absorp- tion spectrum of CHBF is very complex, with a number of overlapping bands. The subject of this chapter is a perpen- dicular band at 4058cm'1 which we have assigned to v3+v4. We have also found, overlapping the low wave number and of v3+v4, numerous transitions belonging to the parallel band v1+v at 4011cm’1. Another parallel band which may be 3 2V2 + v is observed at 3905cm". We also observe several 3 124 I-’Ael . '| ;k h r: . at! k! I..-Ll..v.\ . '4. . . 125 Q branches of a perpendicular band near 4138cm'1 which may belong to v1+v5. The band v3+v4 spans approximately 230cm‘1 and we have measured approximately 1000 absorption lines in this region. About 700 have been assigned to v3+v4 and about 200 have been assigned to v1+v3. v3+v4 is particularly interesting since individual transitions of the types RRK(J), RPK(J), RQK(J), PRK(J), PPK(J), and PQK(J) have been resolved.35 Fig. 8.1 is a slow speed "slave" recording of a high resolu- tion record of the spectrum of v3+v4. The resolution limit of the spectrometer in this region isz 0.04on'1 and CHBF Chart III (of. Chapter 7) was obtained with this high resolution. Charts I and II were obtained earlier with an apparent resolution of R: 0.06cm’1. The working records were approximately 17 meters long and the Fabry-Perot fringes were separated by 95 0.32m"1 which is x 25mm of chart so that 1cm‘1avs 7.5cm of chart. W The assignment of rotational quantum numbers to indivi- dual lines was complicated by the large number of transitions observed, the relatively large rotational spacing (23:51.7cm'1) and the rapid quadratic convergence and divergence of A 35in the perpendicular bands of the other members of he methyl halide family we have not seen Q branches, i.e., and QK lines, resolved into individual J transitions. 1| e n-‘A-u- I it [1.1,]. u ....i— l. E .l _. a all _ R, Page ..E s 0.0 0 ¢ 760 or m m ....nro as + . a u: o S .... a no E E 8QO ..m .o E a .III ...IIII. _~. ca Soon Exec 5 ca _ 3;, .- ...... ...—£3— .- “'fi ..- - W - 2” 1. 1...; .. ”a... ”2;. z 3 n i _ :7; _ . ...Eu ONO? 750 3.003 '— 4.2, ~ ~ "0 fl - no .eogsoo a .2... flaunts... .x .21.... -........ n . a)... flu: ,- .. .lfl. ‘ 128 — _ Emoa TR a; T... ._ .... __ a.— _ L8 osos _ 63528 ..m an “l1 .3 129 2. _ 15 09¢ a _ atom 1|IIIIIIIIII. lance . TEu omov 3:528 ..m .9... «a... A.” k i Fig. 8.! Continued. 130 4.4%-; ‘ ...... - 'Q‘OI. series of lines of fixed K. The latter effect is due to the large (:3 ($80.01cm") in this band. Making use of calculated intensities of the six possible types of transitions and the criterion of missing lines for J . a n .a ... ’ is .... lam . _ .a _ rL _ _ a _ . ABeen. n. 2. a. m. 8 files onN ona soFF sift rains . AC: &0 =3 10 AN: QC An: n—O AV: Q0 6: ..Eu o_mmm ...Eu mmmm mm .9“. 134 -.od‘l.-. ~_. a — ... a m o. :Esaa .... a Sada («w m. a: a 4 n _ . 5 mm m. on a Emma 4 _ 7 a- ._ \ . >1 J) . .. l . _ . . g . a. .a u a . . . . . a ”3001 m 0. N. .exaoaw m Exact», Esao sagas~u a avast. a _ _ TEu 000v 7&0 8mm .eosazaoo ms er. 135 n m _ n x. 5 aa a. _ _ ... a o n. Scam a x ... (T... _ n. _. _ n. v. a Sada _ _ ... .. a. a a _ (1|: _ N n _ o. 5 aa .... _ .....aa 7 _ a. n. n TLLI—LL _ _ PIP _ . RENO N. S . 5.00. a . .a o. a. Amy...om... a x i EL 10 2.100 N n m o. m. .9 m0 Avvxmoo N «5.00 m. w 0_ O. . 7.50 05¢ . _ TEo noov .Umaczcoo Nm .9... ll 136 .A. ... .... a .... .... O s .. ._ .. .. .. a . c 41 l s .. . .. .... .. m s .. .... .. .. .... .. N .... a... ... .. .... .... aa .. _ a . a . z . .. . . . a 63.0% a Samoa ~ marrow » .axroxw 311%. w Ear .sxro%+ ...xroaz. _ ..so 83 .8328 N... .9. I. 3.1%.... .. II. a » 5:4? 1%. - .. . a ..\u|...l4~ah 137 n. fi 50 w. a. P am! .1 c. 5r. q o. _ t m |._. a. d w. .1 ow _ _ w n v .N a 5 «a W b5 an. . m . q _ n. o. A + a _ w 5 an. a w. u. . o. . n. _ : d 3 4 « !— “- __ _ P _ V p I . a. was... __ M n. :9 J. sq. ....fi. 0m o n x x Game x L_____ c... mo 0 a: m an $.me Er x E. 56.. o o 2 m1: ...5 cc o a; mo 5.3on a} E... x .3... E _ ...5 08¢ mo 138 a. 5.8 8 — w. a. ...." -“ M“— 1" Q Cd MOQ nr'r—u ~m=KmOoinPN 8:me “vi—M _ 7.5 03¢ .umaczcoo Nm .9“... .... . . . -. 3.4 3&5... 3x: . (I... 32.. 152$qu 31.31:? ... . . . . .. . ~“s 139 m. m J. _ o s m 5 ma .... . ¢ n m a d _ _ _ _ a A ~__ : o. m a s 5 an. _ _ _ _ 1 n o + m a m we 5 5 mm m o F a m o. _ _ fl _ _ _ _ 5 am a o. : m. n. 2 Sun. _ d _. 41 A _ m n_. .... m. o. t o. n fl _ _ 5 am _ u m 3 .2 an. 2 _ . _ , _ z _. 3 t L _ _ _ _ _ _ _ r I _ _ _ _ _ _ _ p . _ _ TELL; $4 0 4% o. 8. n .0 1: Q w. o. _ 5 cm . _ . V n. _ TEu 000v L5 mnO¢ 7.5 08¢ 3:528 Nm .2... 140 o__ m. w A. w w, w . o. ... n. a. __ o. 5 mm a _ _ q _ _ ~ _ J. 5.. 2 5 ma _ n I] m ... m h A2 an. o — _ q 5 mm + _ o. __ u . 2.0an 1f a — _ J _ 5 mm .v n u o _ _ JSomm . _ . ._ . _ 8 Smom 8 8 fl _ _ ..Eo o~b¢ Essa mm 8. 141 A. o. s. o. 9 x n. u. ._ n. _ u a _ _ _ _ _ 5.3+ 4 o. ”J 5mm: o a v n u _ n. .8 ... 0‘. m4 a d s _ 56¢ o _ _ _ fi _ A q Agomm _ m: , J. ,. r fl u. ¢:o_ .tm_m___o__ _ o_~ um ~ nEC.m_bL_~_ L _ m._ _. 5 cm _ 5 cm _ :8 omoc ......“v mnov SEES mm at . 142 A. n n _ _ J n N. : o. a 5 mm n w n v _ _ _ _ _ _ d w _ .2 t m. n. z n. w. = o. ..m o. 5 mm m A _ q _ a _ a _ _ I _ 5.x _ ow m. o. t m. n. m 2 _ _ _ _ _ _ Eomm A]. 2 _ _ r _ _ _ _ . __ _ _ _ _ _ _ . _ V. 0- Ahvnom0_ Asfiom D O N- V. _ _ _ ...S .83 18 83 ...EU n00? Esta mm .8. 1#) A. m . ... o. 5 mad 0 u o o v v s . . . . _ . . n. c. n. N. .. o. a 5 mm o s . . \Jfll\ . . _ . . .Bnmc . .m . . ... m. n c. n. . ow T 1&1 . . . . 4 . N A3 mm a). . . or. s. mm P m . o_~ _ u." _ nu {r m w m. m. .... cm 5 cm 5 cm _ ...5 mo... 1.5 co; 33......8 Mm ...... if; 144 '[L E .3 Saom 8.510.... ~_ _ _.Eu oN_v 18 9:... :5 9;. $3538 Nm .9...” £75173. ...... ... I. I -.1!|.,. ..1,.,v“ “1.. .... 145 . 780 on? 32.28 Nm .2... 146 number. The observed ground state combination differences are listed in Appendix VI. This list presents the combina- tion difference assignment in the notation of Eqs.(4.6), the observed combination difference, the combination difference calculated from microwave values of B0, DoJ and DoJK from Table 8.1, the Av and the A1 (obs-calc). All assigned transitions from v1+v3 are listed in Appendix VII,and the observed and calculated combination differences are listed in Appendix VIII. AE§%§§l§12£.§£2%EQ_§Ea£2 Com at on Dif egenceg All of the ground state combination differences which were observed for v3+v4 and v‘+v3 and which received a non-zero weight 37 were simultaneously analyzed by the method of least squares using the method described in Chapter 4. A single exception is the ground state combina- tion differences for the zero subband, i.e., the Rcow) - RPO(J+1) and the RRO(J-1) - RQO(J) combination differences. These were not included in the simultaneous analysis since the K' = L = *1 upper levels have had their degeneracy removed by a Coriolis resonance and the combina- tion differences mentioned are not "true" ground state 37The ground state combination differences were weight- ed by using the square root of the sum of the squares of the AV's assigned to the individual lines as_the Av for the combination difference. 147 .89 02.389. Set :32 0.6 9.8on 3:29 32.. no mcozotcmno 26392.: lo 3.33. o 750 WNOOAV N mC030>hmmnO 0.: *0 c0_~O_>QU pats—3m a mar—Ea 85:3 .32 9: E amuse... $05..ch ..o_EcBEou some $0. x t0... o.0_ x30... 510000 + ATE”: 30322:. 2.5:. {03 £5. m-0_ xmm. .70. xmv. . mmtmmo $-53 03.3mm. 26329.3. o.0_ x m_.0.+. o-0_ X MNO H $000000 .+. $-63 22:2... 852280 m-0_ x m_.N .70. x mm; 0¢m_mm.0 $-63 .....mroco 335.56% o h.o ESmcoo ... 9.35 no «3.... A can t a... ma So... 305336 5:25:80 22m. .2590 3233 :o no mazoco maomcozsgm no 3531 _.m mach of"? combination differences in that they do not go to upper levels of equal energy. This will be discussed in a later section. ° The results of the simultaneous analysis are given in Table 8.1 together with a comparison with the microwave results (58). A detailed listing of the observed minus calculated value of each combination difference fit is not included in this work since the equivalent data is listed in Appendices VIII and X and we feel the microwave results are likely to be more accurate. 38 8 ch 0 Possible P b t on When it became apparent that the band was perturbed, it was necessary to investigate the possible perturbation couplings with'nearby rotation-vibration levels as dis- cussed in Chapter 6, and to investigate the possible essen- tial resonances. Before one begins to look for possible perturbation couplings it is almost imperative that the results of any available investigations be gathered for reference since a search for possible couplings depends largely on a priori calculation of nearby rotation~vibration levels. Table 8.2 presents a summary of past work on CHBF from a paper by Smith and Mills (102). A; 38The difference between our calculated value of B0 and the microwave value may lie in the calibration of the spectral record of v3w 4and v ‘+v3. Some difficulty was encountered due to a lack of suitable calibration standards over a large portion of these bands. See note added in proof, p.220. 149 Table 8.2 Summary of rotation-vibration constants from references (58), (101), (102) and (103). .A3381gno 2v2(?) , w p- II M Vibration Symmetry 500810m-1 0.8517930m"1 1.98 x 10"6cm”1 1.48 x 10"5cm"1 Ref. (101) (103) (102) (101) (103) (102) (102) (101) (102) (100) (101) -1 vocm 2964.54 1464 1048.60. 3005.8 1466.5 1182.35 1032.76 2081.42 2222.6 2818 2863.22 (103) (58) (58) (58) B s a cm"1 -o.o017 aAcm" s (not analyzed) +0.0113 +OOO‘1 +0.00& (not analyzed) +0.0043 +qu223 +000047 -0001} +00091 '00290 +0.284 150 Using the information in Table 8.2, the sums of funda- mentals were formed forall possible overtone and combina- tion bands in this region. These frequencies are not very accurate because they neglect anharmonicity, the effects of which may be quite large. However, the anharmonic constants are not available except for a few special cases, so that we had to use the sums of fundamentals. Table 8.3 lists all nearby rotation-vibration levels as sums of funda- mentals. Then using Tables 6.5-6.8 a compilation of the principal perturbation couplings between all of these levels may be built up. Such a table- is presented in Table 8.4. Listed in the table are: the formal order of magnitude of the coupling, the type of coupling described in Chapter 6. Fig. 8.3 has the levels from Table 8.3 drawn to scale, and the perturbation couplings of expected order of magni- tude 1 indicated in the left and right hand columns. The two. center columns indicate the principal couplings of tYDe I and type II between v3+v4 and the nearby bands. There is some overlap in the information shown in two outer columns and the two inner columns. Examination of Fig. 8.3 leads to the conclusion that insufficient vibrational information is available to make pos- ‘a‘ible a rigorous treatment at the present time. However, the possible couplings are indicatediand some correlation With observation is possible. We shall return to the Perturbation considerations a number of times in the to llowing dis cussion. W -‘9— ‘7 m‘ ‘mmfi-fl 151 Table 8.3 Overtone and combination levels as sums of fundamentals in the vicinity of v3+v4. Level Sum of Fundamentals (cm"1 ) 4v3 ' = 4194.40 v4 + v6 = 4188.15 v1 + v5 = 4146.84 2v5 + v6 = 4115.35 v2 + v5 + v6 = 4112.85 2v2 + V6 = 4110.35 V3 4 V4 = 4054.40 v1 + v} = 4013.14 v} + 2v5 = 3981.6 v2 + v3 + v5 = 3979.1 V3 '1' 2V = 3976.6 152 Fig. 8.3 Perturbation couplings near 4|OOcm-'. cm" 4200—- 4V3 V44” V6 V|+V6 —_———1L__———.o——-—— . 2 V5 +116 112+ V5+ V6 2 212 + V6 4100-— —_——i—.Hp—_——_- _p———_-—-—4p——_ V 3+ V4 ___._._L_....___ V|+V3 4000 y3+2 V5 112+ 213+ V5 2112+ V3 l __ .g_____-_+______ 153 AN+A mA+nA+Nx~ HH H walks HH H H m -mfifl H H HH m 13H. H «in; HH H H H H H HH m 19+me .H m H m H H H m HH - M1 isswsswws HH H H m H m H m H H H a 1&1?ku HH H IH m H m H m HH m HH. m x H iiwA+S H H HH m H H H m HH H H m H- m H M £1: HH H H HiH H H 1m HH-...H. H m H m H m H m msvxxHxxxxxxxmememeHm fl )\ i i . 4.5V. I. .- .C 1... unit..-» iv. 53.5.. 11...: «4.1.! ... F Analysis of the Unperturbed Transitions of vjflh Once the majority of the perturbed transitions were found and excluded from the data, the remaining lines, which are assumed to be either unperturbed or only slightly per- turbed, were simultaneously analyzed, following the proce- dure outlined in Chapter 5. The equation ! ‘ {(AK)(AJ)K.(J)}°bs-Bo[(J+AJ) (J+1+AJ) - J(J+1 )1. DOJ [(J+AJ)2(J+1+AJ)2 -J2(J+1)2] + DOJK [(K+AK)2(J+AJ)(J+1+AJ) -K2J(J+1)] = (Vo‘Ae C42 'i‘Q4K) + (Ac-A9 CZ 812410 [2111111 + (11102] + ((1311 + (1411 _ (133 _ “4B _(3/2),24K) [41945102] + (QB+aB‘= 3 z, 1 [-(J+AJ) (J+1+AJ)] + (DOK fling) [-(K+AK)4 + K4] + (r241?) [(11.1.1) (mm) (11.11:) ax] (8.1) was, found to represent the data adequately, and no other terms were found to be significant. The results of the 81multaneous least squares analysis of 156 transitions are Presented in Table 8.5 with their simultaneous confidence 1,11 1J1 Table 8.5 Results of a simultaneous least squares analysis of V} + v4 of CHBF including transitions from the -3, -2, -1, 0, +1, +2. '1’}, M. +6’ +7, +8 and +9 subbands (in cm’1). 4057.2074 t 0.0074 2 K Vo -Aec4 ”knit 4.6684 i 0.0018 K A 'Aeclzi ““14 0 A A B K -2 -2 (13 + 0.4 - 0'3 - 0.2 -(3/2)’24 10390110 * 0.097110 B 3 a, + a2 = 1.08161c10”2 a 0.0980x1o‘2 DOK - irZ4K = 4.46::10"4 s 0.21xic"4 J 5 4-7x10" t 1.2x10-5 r:S 4:- ll Std. dev. of observations included in the analysis $0.01 1cm"1 1" 156 intervals (discussed in Chapter 5). The computer output is contained in Appendix IX which consists of three sections; the first is a summary of the observed and the calculated frequencies, the Av (Weight = (Norm)2/(Av)2), and the A1(obs-calc) discussed in Chapter 5. The second section is a similar listing for lines which were not included in the analysis because of perturbations, while the third section is the same type of listing for all zero weighted lines (usually badly overlapped with other lines). Figs. 8.4 - 8.22 are graphs of the observed minus the calculated frequencies39 based on the results in Appendix IX. In principle each would be a horizontal straight line if no perturbations were present. From Figs. 8.4 - 8.22 it is possible to obtain a qualitative idea of the nature of several perturbations which are present in this band. In the following sections we discuss these perturbations and our analysis of some of the pertur- bations o W An interesting perturbation affects the zero subband of v3+v4. The effect of the perturbation.may be seen in .Fig. 8.13. The perturbation is ascribed to a first order -chiolis resonance between v3+v4 and v3+v3, although an appropriate coupling with another vibration band of L 39110 distinction in Figs. 8.4 - 8.22 is made between AJ = +1, 0, -1 transitions since this information is contain- ed in detail in Appendix IX. 14,831... ... .. 5 HBHV h< +6 ow m. w. v. N. o. m w v N o _ H H H H _ H H H H H H H H H _ H H H H ..o- lllllllllllllllxlllllllllio 3 x x u C l _ O 8 x 1 No 0 x 1 no x o m 190 m o 0 1mo . imd x o . 1N0 m OHHS €33.05. .0: o o 08.363205. .8 x _ . 1m.o 9.3.05 5. census. 0 ad .3235 n. .8 £326 .23 2:5 Eot 86533: 88328 SEE vamBO 1mg”. ,JU'O u! peiolnoloo snugw paAJasqo .,1..1.~\ 158 ON C. no 3 + H. m. m. ... u. o. O 10 V N o "..., €322. .2 o o w ..3 levees... .8 x 3320 S. 33.2.. o ABE}: n. 8H mazes neon 2:5 So: 365:3: 38.328 35.8 Homimmno Om. 0.0- 1nd I_u.1o u! peiolnoloo snugw pauasqo .:'. “314‘ I'IL‘H- 159 rHuHH<+H ON 0. w. v. N. O. m w v N O H T H H H H H H H H H H H H. H H H H H H n6. is? 1nd. 1N0- . l_.O1 lillllilllilililllllllllliio x x x m x o o 1.0 w o x e x 0 1N6 x o x O Ind o ".... €822. .8 o 00.1...) €35.05. .0: x l¢.O 9.326 c. census 0 nd €12.an Ho. 3296 uses 2:5 So: 368:3: 0323.8 356 Homtmmno Qm .2“. km: u; paiolnoioo snugw paAJesqo in". .7. . 1a! s 160 0m 0. w. v. N. 0. m w v 0 H H H H H T H H J H H H H H H H H _ H no a x 1 ed . m x x a 1 m0 x 1 0.0 x 1 NO x l 0.0 a 1 mo . 1 0.. x . 1 _ _ 0 M ..363205. .0... o o w .... .330... .2. x 1 N._ x 322.0 ... 025.0... 0 m. .5033 n. .8 £3.96 0:2. 2:5 ES. 865:3... 8.23.8 2.5.5 totemno hm Hem. ..wo U1 peiolnoloo snuiw pamesqo 161 £71.. “0+6 ON 0. w. v. N. o. o m c N o H H H H H H H H H H H H H H H H H H no. v.0. no. No- .01. l I III III I I I I III I I I I I III II o w o a ..0 w o m a o N0 0 O x no M m 0 H...» 6822... .2. o o w ..3 €822... .2. x to 3:80 2 88.2.. e m a 1 no .5 33 n. .o. 2308 88 8:8 60.. 8.2.2.8.. 8.28.8 SEE 8.830 0.0 .2... ,_wo 111 peiolnoloo snugw pauesqo 8.1..-. 162 ....1. 3+» ON 0. o. c. N. o. m o v N o H H H H H H H H H H H H H H H H H H H H no- 1V0. 1 nd. 1 No- X 1. _.01 a . . . x o x Illillllllllxilllimlw-l I..Ill|l1 o x x x o 1.0 1N0 Jnd o u... 6.32.. .2 o o .3: 6328. .8 x 1 to 23.2.0 ... 88.2.. o no .5163 a .8 232.0 9.2. 958 so... 8.2.2.8.. 2228.8 SEE 82830 0.0 om. 1-“’° u! peiolnmoo snugw pauesqo 163 ON Han. 21. m. w. v. N. o. m w v N o H H fl H H H H H . H H 1 H H H H H . H H n6- 1 v.0. @ 0 w m 1 no: 0 x m 0 O x 1 NO- 0 x x 1 ..o- H m o 1 ..o 1 «.0 1 nd 0 N...» 6322... .9. o o a. ..x 6828. .2. x 1 «.0 0 £222... 5 v2.30... 0 1 nd .3me3 n. .8 $3.25 2.2. 8:5 50.. 3.2.2.3.. 2.8.3.8 SEE 82390 9.0 9.1. ,_w:> u; pasolnaloo snugw pauasqo a») “ n ' t n, a: 164 ....u. 3:. ON m. w. 3 N. o. o o c N O H H H fi H H H H H H H 1H H H H H H . H H ad. 0 ed. no. w W No- 0 m . 1 H _.o w x Ia . u o o M m o m o o O a ..o Nd md on... 62.22.. .8 o o x ..., 62.28.. .2. x «.0 £323 ... 33.2.. o .HENRS a .2 £3.05 neon 8.2.8 50.. 3.2.2.3.. 38.3.3 m......E 3222.0 ...w .9... md I311: 111 pamnoloo snugw pauasqo 165 LWI. I.t:l.‘ l! 1 L rnu.H<+b ON a. w. v. N. o. m w v N o H H H H fi . . H H H H 1H . H . . H H H n6- v.0. no. Ne. w a o a .01 x a .l .l 1| I1 alolalu 1.1 ..l.|..|.. ..I .l 1|.I. d1 o . ..o . Nd md on... 62.22.. .2 o o u ..s 6828. .2. x v.0 3:23 ... v2.3.0... 0 ad .556. m .8 ameocc 3.2. 955 o 50.. 8.05:3... v0.0.3.8 SEE 3292.0 N..m .2“. .4119 u! pawlnmoo snugw pauasqo 166 ON m. m. ran.5<+0 0. N. o. w v N o r .M H . H H H H H H H H H H H H H nd- 0.0. x no. x x No- x x x . ..o- o x x x x x m X m m m O . O I x ..0 N6 Md 0 "...... €000.00. .9. 0 0 ... ..z .838. .2 x 1 0.0 32000 ... 0000.0... 0 m0 .. 30.3. m .o. 3.3.... 9.8 0...... 8.... 3.05%... 8.23.8 8...... 8....on m8 ...... 'JMO u! pamlnoloo snugw pauasqo 167 ON 0. w. ....u. 3+0 “— .5 :03”. .0. 0.3.9.0 0:9. 0.2.0 0.0.. 3.9.3002. 02.0.3.8 2.0.8 02.330 3.0 .9“. \ v. N. 0. . H H . H H x x x .... o x. a O. 0 n...» .0822... .2. o 0 «...: .0828. .8 x 33.9.0 0. 00029.. 0 1 Nd nd «.0 0.0 hum u! pamnomo snugw pauasqo in. 3+... ON m. m. S N. O. m w ¢ N O _ _ d . _ 4 _ a _ _ _ . _ q . _ q . . n6- 1 «.0. 1 no. I Nd- x l . u o .0 w Ilel I I III III '0 I II II XIIIEIIOI I1 x o O o o x x x x o W x . ... ..O 1 N6 1 nd on...» 68205 .2 o . 0 u ..s 6828. .2. u 1 «.0 32000 ... 00032.. O 0.0. .SNRSm .0. 062000 0:00 0.25 80.. 03000000.. 00.03200 35:. 0020000 n3 .9“. .-wo u! pamlnoloo snugw pauasqo 169 ON .... n... ..d +.. . . 0. 0. z m. 0. 0 0 v N O 1 m6 0 "is 6000.0... .0: 0 0 1...; .0822... .0.. x .. «.0 0.3000 0.. 0000.00. 0 . . 100 gangs”. .0. 0.02000 0000 0.0.0.. 0.0.. 00.000002. 00.0.3.0... 000.... 0020000 26 .0.... 'J»: u! pamlnomo snugw pa/uasqo 170 ON r0u.0<+0 m. w. v. N. O. m m V N O lllllfldlolllllo 1 Md 0 "...... 6000.00. .00 0 0 u .3 6000.2... .9. x 1 0.0 0.00.000 0. 0000.0... 0 . 100 .5303 m .0. 0.00.000 0000 0...:0 60.. 00.000000: 0000.00.00 000.0. 0020000 ....m .0.... ,,wo u! pamlnoloo snugw pauasqo '— 17! ON XX 0. m. c. N. O. m w v N O 1 NO .1 no 0 n.0, €000.00. .2 o 0 x .0.. 6000.00. .2 x 1 0.0 0.00.000 0. 0000.00. 0 nd Agata... .0. 0.00.000 0000 0...:0 0.0.. 00.000000: 00.0.0060 000.6 00>.000O m3 0...”. ,_wo u! pagolnogoo snugw pa/uasqo 172 .... u. 06 ... .. 00 0. 0. z 0. 0. 0 0 v 0 0 o o I alml.» L .0.. .I...|.0 . 1 md o ".... 6000.00. .00 0 0 fl ..3 600200.. .2 u 1 0.0 0.00.000 0. 0000.00. 0 100 030.030. .0. 0.00.000 0000 0.000 0.0.. 00.000000: 00.0.0200 000.0. 0020000 m3 .0.... ._wo u! pagolnomo snugw pauasqo 173 ...0u. 3+0 ON m. m. v. N. O. m w v N O 0 0 . _ . _ _ _ . . _ 0 . 0 . 0 _ 0 _ 0 _ 0.0. I #6. 1 010. 1 N01 . 1 ..0- o o Illllullll oll ulm'l'lllllllno O O a O O '1‘ I‘ll O o m l ..O 1 N.O l Md 0 H0; €000.00. .2 o 0 u ..3 6000.00. .2. x 1 0.0 0.00.000 0. 0000.00. 0 nd 00.0.0.3 m .0. 0.00.000 0000. 0.000 50.. 00000000.. 00.0.0200 000.0. 000.0000 ON.m .0.“. ._wo u! pawlm'oo snugw pauasqo ‘7. 0. 174 ....H. 001.... ON 0. 0. v. N. O. 0 0 v N O . 0 . 0 . _ _ 0 . . 0 _ _ _ fl . 0 _ 0 . 0.01 1 0.0. 1. n01 .1 N01 ... ..O. o 0 III llllolluollolo.1o|o|10.l1. lulllllllllno x x a x O x x . 1. ..0 . 1 0.0 11nd 0 "..., 6000.00. .00 o 0 0...: 6000.8. .2. x 1 00 0.00.000 0. 0000.00. 0 0.0 .5203 m. .0. 0.00.000 0000 0...:0 0.0.. 02000000.. 00.0.0200 000.0. 0020000 .Nd éw ,_wa u! pasolnoloo snugw pauasqo .'. -.--.3 r0u.0<+0 ON 0. 0. v. N. O. m 0 0. N O 0 . _ 0 . _ 0 _ _ 0 . 0 . 0 . _ 0 4 0 _ A 0.0- 1 0.0. I. ”.0! 1 N01 1 ..01 I I I 11 9'1 I“ I0. 1011 ”I I I I I I I I l O a .w 0 a o a 1 ..O . 1 NO . And 0 "..., 6000.00. .00 0 0 00 .3 6.00200. .00 x 1 0.0 0.00.000 0. 0000.00. 0 n0 00.0.03 m. .0. 0.00.000 0000 0.000 0.0...00.000000.. 00.0.0200 00000 0020000 de db ,_wo u! pamlnoloo snu1u1 paAJasqo 176 symmetry species A1 would cause a similar effect. The Coriolis resonance splits the K' = £ 0 :1 levels in v3+v4, i.e., the resonance lifts the degeneracy of the K' =.£ = *1 levels. The effect on the observed spectrum will be discussed below. Nielsen has studied extensively the first order Corio- lis resonance especially as applied to XY3 molecules of the ammonia type (8-11.67-69). We shall use the results of these investigations in the following as well as the results from Chapters 2 and 6. From the work of Nielsen (as well as from the considera- tions of Chapter 6) the secular equation for the Coriolis resonance is given in Fig. 8.23 where X = aim From the work of Nielsen, assuming that the perturbing band is v1+v3, a = 2(c1§)2382. (8.2) By using a symmetrized set of wave functions the secular equation in Fig. 8.24 results. Thus the levels corresponding to the wave function . Y 1 +1 -1] ——- Y - Y 0L1 are unaffected by the Coriolis resonance while the energy levels described by the wave function _1__ 1+1 +Y-1] ._._. Y+ VE' +1‘ -1 are affected by the perturbation as are the YJ’ levels of 177 .10 0 .- 0 w 1m. x .0., .0 ... 1.. m. ... U0 ”.7 ... NV) 0 11...?) _H¢> _ Hn> _ um) .Nn) OH.) _ H.) 0".) 0.0.0. .0070. 00. .0. 03.0000 .0.000m mud .0.... IDIII) 178 01.. 0 0. 0. 0 00 0 0 o. . 00 0 ..0 o. . 0 ml» 0.00....“ . . 1N.I\. .1...» .00...“ . 1.0 .100 1.0% w 0100 agium n> 0..., o In :00 .0 H... mm» On .0.. .0 0 0 179 v1+v3. The resulting solutions of the secular equation thus are 1 6 = E1 (803’) e = E11 + E00 1%“ " E9°)2 + 2a(J(J+1)) (8.4) 2 4 where, in the event of a weak resonance, an approximate solution corresponding to Eq.(8.4) may be used. In the event that the parallel band is at a lower frequency than the perpendicular band (as is the case for v3+v4_and v‘+v3), the approximate solutions corresponding to Eq.(8.4) are 60 E0 OJ ° ° 3.130 (8.5) and 1 _ '1 2aJ§J+1l 6‘ ”E1 U: ° (8.6) where 611 is a function of J, as are 1311 and E00. Although, as mentioned in Chapter 2, the complete symmetry classification of the rotation-vibration levels for C3v molecules has not been worked out (48),it has been found that the Rcow) transitions terminate on the 1" levels while the RR0(J) and RPO(J) transitions terminate on the Y+ levels. This leads immediately to the level structure shown in Fig. 8.25 (8.9.11). Only levels of overall symmetry A2 are shown since these are the only levels which may be populated due to the fact that the 180 Fig. 8.25 Level structure for R(AJ)0(J') transitions. J \P’ 3‘ \II' 5 + 5 .. 4 _ 4 + 3 + 3 _ 2 .. 2 + I + I _. K'=.t| R 2 =01 Rom R0013) R1313) R R0012) R012) R1312) 5 + 4 ._ 3 + 2 _ | + O _ ’38: three identical H atoms sbey Fermi-Dirac statistics~ (38, 39.40). The + and - indicate the overall inversion symmetry. Due to the + 0—0 - selection rule and the existence of levels of either (but not both) + or - inversion symmetry for each K”: 0 level of different J, no doubling of transi- tions is observed.40 Thus in a Coriolis resonance, the RQO(J) lines are unaffected while the energy of the RRON) and BPO”) upper states is given by Eq.(8.6). This is in contrast to E-type doubling in which both upper levels are shifted by the per- turbation. Immediately one may deduce that the observed ground state combination differences are now given by“ [Reorr-r) - 315000)] c .-. [ReorJ-r) - RPO(J+1)] (8.7) [R11 1.1-1) - RQ m] = [RR 1.1-1) - HQ (“1001“,; <8 8) o O c O 0 ° [Reom - Rp01J0)]c = [Rqom - RPO(J+1)]-2qJ(J+1). (8.9) 4OK”: 0 levels are a special case in this respect since for all other K values each J level has both + and - inver- sion components. It is interesting to note that even though inversion doubling is me 11 ible, i.e., the levels are still degenerate, for CH3F F??? the inversion symmetry still plays an important r013 41Equations of the same form also apply for the 1. -type doubling case . 182 Iieferring to Appendix-VI it is evident that Eq.(8.7) is ssatisfied. Fig. 8.26 is a plot of the observed Coriolis (sombination difference minus the calculated value taken :from.Appendix II. The resulting function should be 2qJ'(J'+1). It is apparent that through J' = 15 the expected result is found. The added curvature above J' = 15 Inay be due to a J6 perturbation discussed in a later sec- tion. Fig. 8.2? shows an expanded effective Q branch plot 'vs.J'(J'+1) for the zero subband. The splitting of the li' =.£ = *1 levels is apparent as a difference between the <2 branch curve and the R and P branch curve. The rapid (livergence of both curves to low wave numbers as J exceeds 6 perturbation discussed below. 10 is due to the J A simultaneous least squares analysis was made on the IRRO(J), RQO(J) and RPO(J) to the equation given as follows: R(AJ)O(J) - Bo(2J+1+AJ) AJ + DOJK(J+AJ) (J+1+AJ) + DOJ [{(JwJHJ-o-HAH} 2 - {J(J+1)} 2] = Vsub + (8.20) B (a3 +a4B)(J+AJ)(J+1+AJ) + 2q (AJ)2(J+AJ)(J+1+AJ) + f:[(J+AJ) (J+1+AJ)] 3 Where q is the Coriolis resonance constant and f is the constant coefficient of a J6 perturbation discussed below. Table 8.6 presents the results of this simultaneous analysis 7) 18 $35. "seasozgsm .. Boos .. Md! 0 o a 21% cm £28.23 50cm licomm . / O I. N.O.l / 1.0/7: 1 _.O l 9+be L. 0.0 LM.O+ .moocmamtE 52025800 89...... 9:65 85328 35.: swimmno _+ "Va 03. mmw .9... Ann. - 184 2+th m. .mococomS $250 no 833 2: 05.8065 Seam TE.U b.0 QO+A _+.Qb _0.0+: +.Boam D .-EehdomI:+Eb_o.o+:n2.m a 1». .Eom _ m a 152+be 5.0 + 5.0m o ..e. e , . '0. D c o . . .. H Thermos .Eoom s :85 828$ Rams: A A L1”) T'I Table 8.6 Results of a simultanefius least squares analysis of 1now), RPO(J) and 00(J) transitions of V3+V4. ' 4060.987 a 0.014 em" sub 03B + a B = 0.01057 a 0.0016 em“ q = 2.75 x 10"4 a 0.57 x 10'4 cm" 5:: 1.06 x 10'8 a 0.10 x 10"8 on" S 0.015 cm“1 std. dev. where q is the.Coriolis resonance constant, f is constant coefficient of [J'(J'+1)J 3 4v:- ..'1I.lfl ..IuM? ...dv:.u.. ..fl! . I ...hvhl .....kfl with their simultaneous confidence intervals (of. chapter 5) and Appendix X contains the computer output from the analysis. Additional Observed Perturbations Accidentally Strong Resonance Affecting the K'=i2, 121:1 and K':=h2, £=$1 Levels The perturbation which affects the K'ziZ, Eztt and the K'=:1:2, 1:31 levels42 is interesting since it is an ‘example of a localized perturbation involving a single, fixed K' value and showing up as a J dependent shift of the levels for this particular K. Fig. 8.28 shows a relatively high resolution record of the RQfiJ) lines. Included in the figure are a calculated (unperturbed) spect- rum, and an observed spectrum. The shift of the various lines from their unperturbed positions is indicated. (The tails of the arrows mark the unperturbed positions of the lines, while the heads of the arrows indicate the observed Position of the line.) Fig. 8.29 presents the same results for 1DQ3(J). The double transitions, i.e., transitions for which J has the same value in either one figure or the other result from the "mixing" of wave functions of the Observed band and the perturbing band as discussed in Chapter 6. Fig. 8.30 is a graph of the R(21(J) transitions Vs. J' (J'+l) after modifying the RQ,I (J) frequencies by M L p 42These are the terminal levels of the R(AJ)1(J) and (AJ )3(J) transitions. ...... ....-.;.3..av....._?y....JT...,Ayl. i 187 Fig. 8.28 Observed transitions of RQ.(J) indicating the effect of the perturbation. I am" Observed positions 10 0 LL L 17 1 1 I 12 1 11 IO 3 7 s 5432 .—--—'Q O-Q O O O I. 5% _: . 3 f : vo-O 0‘ o Calculated positions 1 i L (unperturbed) 20 19 $ ' 11 s 1 11 4 188 Fig. 8.29 Observed transitions of P030) indicating the effect of the perturbation. ‘ lcm" Observed positions 20 19 1e 17 IS 15 L 1 1 1 1 fits! T l 141 13 12,11 109976543 0 0 CU ... 0‘ C————‘Q 0-1 .0 ‘ Calculated positions _L 1 1 1 1 1 L 1 1 1 1 1111111 (unperturbed) * 20 19 1s r7 is 15 1413 12 "109016643 gunhaflalle . ...1.u.....¢. ...l- 1w,” «In... 2.1-2* 4069.0 4068.0 R0,(J)+0.01.I‘(.1'+11 in cm“' 4067.0 efllJl l l l l 189 Fig. 8.30 RQIU) transitions vs. J'(J'+l) indicating the effect of an accidental resonance. +— ”Eav" @234 5 6 7 8 9 l0 ll l2 l3 l4 l5 l6 J'(J'+1) adding 0.01 J'(J'+1)om"1 to each transltlon‘B in order to expand the scale of the graph. Fig. 8.31 is a similar graph for the PQ3(J) lines. The assignments which we have made are fairly certain since for most transitions among those included, AKPK(J) and AKRK(J) lines were found which give good agreement with the calculated ground state combination differences in Appendix II . If we now assume that the perturbation involves two levels, as in Chapter 6, then Eq.(6.3) is the secular equa- tion and Eq.(6.10), the solution of the secular equation. Plotting the unperturbed energy levels of two bands assumed to be in resonance, we have Ea Energy Eb J(J+l) ‘43rhe AKQK(J) frequencies are equivalent to an expanded set or upper state energy levels as may be seen by compar- ing the Q branch line position expression with the upper 8tate energy level. expression. Since that is the case we Shall speak of energy levels and Q branch frequencies inter- Chang e ably . F’<.131ar1+o.01 JiJ'+11 in cm ' Fig. 8.3I PQ,(J)+0.01J'(J'+1) cm" vs. J'(J'+1) indicating the resonance. effect of an accidental i.— 'rou'etn'm 1 4039.0 — io'u'a'm'm'q'ooio T a - 4038.0 substances: 4037.0 booths 191 is}: where the slope of the lines is the unperturbed value of Bo-gagvs if the energy levels themselves are plotted or —§a§vs if the Q(J) line frequencies are plotted. Since the two cases are equivalent we shall assume that it is the Q(J) frequencies which are plotted as is the case in Figs. 8.30 and 8.31. Below, the levels are redrawn with the corresponding solution of the secular equation from EQe(6e1O)9 10809 E: = Ea"'Eb :t ¢ea-Eb)2+ W2 q 2 01‘ G = Eav :i: “82/4 + W2 where Eav is the average energy of the two unperturbed sets of levels whose individual separations from Eav are given by 8/2 = (8/2). + (b/2)J(J+1). Energy 313+!) In the diagram above, y is the energy separation of Rev and either leg of the hyperbola and is given by =|e~ Eavl" V32/21 . we (8.21) while x is equivalent to y but is equal to it only at the point of exact resonance44'where X = W (8022) since at this point 5.: 0. That 6 describes an hyperbola may be shown as follows. Consider the case of a type II coupling (cf.Chapter 6) where the perturbing matrix element has the form w VJ(J+1)-K(Kt1). Then, in order to simplify the following, we assume without loss of generality, that we have transformed coordinates such that saw = 0 and is parallel to the J(J+1) axis (identi- _ 45 cal to the J(J+J) axis since Eav _ 0% Then ‘ 2 l 2 n2 .2 6 = ‘(a+bJ(J+1)) +h J(J+1)-h K(K+1) where (8.23) S =.a + bJ(J+1) 44As we shall see below, this figure must not be taken too literally, since E and Eb are not always the asymptotes of the hyperbolae and thus, 8 = 0 does not occur exactly at the intersection of Ba, Eb and Eav' 4SIn the event that Bay is not a straight line vs. J(J+1) we take the J(J+1) axis to be the tangent to Eav at exact resonance. which may be written as 2 _ [£(J-1-1) + (a/b)+ 2112/11?- 32 = ‘ (8.2M .5. D (4/b2)D where D = w?- [( 412/112) -K(K+1) - a/b] Eq.(8.24) is the equation of an hyperbola with its origin at -(a/b + Fee/be), 0 and asymptotes whose slope is b/2. For a type I coupling (i.e., w = constant) the center is at -(a/b), 0 so that for a type II coupling the asymptotes are not exactly equal to the unperturbed energy whereas for a type I coupling they are equal to the unperturbed energy. For a type IV coupling, i.e., w {J(J+1) -K(K=l:1) Wan) - (K:H)(K:t2) the asymptotes have a different slope as well as a different Origin from that of the unperturbed energy levels. From the expanded version of the graphs in Figs. 8.30 and 8.31 we have obtained values of ( E - Eav) for several Values of J(J+1). Using these values, the hyperbolae in Figs. 8.32 and 8.33 were constructed.46 h—h 46The existence of two points for each J value in Figs. 8.32 and 8.33 does not imply that two lines were actual- 1y observed in all cases. However, from Eq.(8.24) it is 8J’Parent that the branches of an hyperbola are symmetric about the major axis and those in Figs. 8.32 and 8.33 were 8 0 c one tructe d . E-EW in cm" 195 Fig. 8.32 Perturbation hyperbola for the K'=:t:2, .Q=:I:i levels. N o - . ommhmooo'mxrooro'soooomc'mooo T N 7 s 9 1o 11 12 13 J'(J'+1) 196 Fig. 8.33 Perturbation hyperbola for the K'=:t:2, 1:411 levels. N 6-Eav in cm" 0 . Omwbmo'mmb'mblvlb'm'm'ombmmo I N 65.363 197 The data used to plot Figs. 8.32 and 8.33 is presented in Table 8.7. Figure 8.34 shows an hyperbola in its principal axis system; the equation of such an hyperbola is given by l 6 _ f 1H1]2 .. ._2 $1.32.)... ..1 (8.25) c where c and d are the lengths of the semi-axes of the hyperbola which has its origin at (x(x+1), 6 ) = (0,0). In Fig. 8.34) x(x+1) is equivalent to J(J+1) but is measured from the J(J+1) value at exact resonance, i.e., x(x+1) = 0 at exact resonance. As shown in Fig. 8.34, the equation of the asymptotes is given by e = i (c/d) x (1+1). (8.26) From Figs. 8.32 and 8.33. the value of 0 may be obtained immediately since it is a well defined quantity. Then using Eq.(8.25) written as E; -1 = (1/d2) [x(x+1)] 2 (8.27) the value of 11 may be found from a least squares analysis 01' several points on the hyperbola. Thus, the asymptotes 01’ the hyperbola are well defined when the perturbation data is reduced in this fashion. 0n the other hand, the asymptotes are not well defined in any suple way in Figs. 8.30 and 8.31. From Figs. 8.32 and 8.33, using the results of the above cu~8<2ussion, we find the results given in Table 8.8, where 198 Table 8.7 (E-Eav) for Kfzee, t=e1 and K'=i2, 1:;1 levels. K'ziQ, £=i1 levels J' 6 -an(cm") 1.38 1.14 9 0.88 10 0.72 11 0.79 12 1.04 13 1.44 lit-J2, 1.1-«i=1 levels J' 6 -Eav(cm") 16 1.40 17 ’ 0.96 18 0.61 19 0.54 20 1.50 22 2.09 199 Fig. 8.34 An hyperbola with its center at the coordinate ought 6 o—asymptote 6 = fi- x (x+ I) (0,C) (-d,01 (d,0) x(x+D (O,-Cl 200 Table 8.8 Summary of results of the analysis of the perturbation affecting the K'=:i 2, L = i 1, and the K' = t 2, t =<¥ 1 levels of v3 + v4. Equation of the perturbation hyperbola %:-zi§§1l=1 x(x+1) = 0 at resonance For H': :2, t = 11 levels J'(J'+1) = 117 at resonance C = 0e62 01n-1 d = 30 - -1 easym _ ¢0.0206 x (x+1) cm (asymptotes) 3:.- 4.82-0.0412 J'(J'+1) on"1 For K’: 22, L :1? 1 levels J'(J'+1) = 207 at resonance c = 0.50 cm"1 I d = 24 6 = $0.0206 x (x+1) cm"1 (asymptotes) asym 8: 8.52-0.0412 J'(J'+1) c111’1 c and d are the semi-axes of the hyperbolae, 5 = :1: (c/d) x (x+1) is the equation of the asymptotes, and 5 is the resulting equation for the separation of the two perturbing levels in each case. Using the information in Tables 8.5 and 8.8 we obtain the relative energy level positions of the 22+ and 2" lines of v3+v4 and the perturbing levels.47 These results are given schematically in Fig. 8.35 and include the symmetry species of the levels under the rotational subgroup C3 (of. Chapter 2). The question of the assignment of the perturbing band is a perplexing one since there are so many possible resonances between nearby bands, as depicted in part by Fig. 8.3 and Table 8.4, so that in this instance we are not certain of the location of the levels of the unobserved bands. In fact, as mentioned earlier, for most molecules at present the anharmonic constants are unknown and thus accurate Placement of even the unperturbed rotation-vibration levels is nearly impossible in a majority of the cases. We have investigated the possibility of the perturbing levels belonging to the overtone and combination levels believed to be in the vicinity of VB“:4 (of. Table 8.3). It is indeed unfortunate as well as frustrating that We have not been able to find a complete explanation for the Observed data. Several levels have provided interesting ¥ A 47For brevity, the K': :2, L = 11 levels are designated as 2+ levels and the K': :2, 1: :4” levels as 2" levels. 202 Fig. 835 Level structure of J =0 levels for the perturbation of the K'=:t2,f=rl and K'=12, £==Fl levels of 113+ 14 . V3.11- 14 Perturbing levels _ ... T) ______ A 8.52 cm" 7.00 cm"I E A 2 - 4.82 cm" 3.30 cm" E 2+ ( ______ _ .lL. _ __ Jug...» .. - h) 0 Ln! possibilities but have not separately been able to account for the perturbations in the K': 12, l = i1 and the K': 1:2, I = 11 levels without giving rise to apparent con- tradictions. From the results of our study of the possible perturbing levels, it is quite likely that the perturbations observed in \13-w4 are the result of an interaction between v3+v and two or more overtone or combination levels. This is quite plausible since although we do not know the anhar- monic constants and thus cannot place the vibrational origins 0f the other nearby levels accurately, we can calculate the =0 levels for the various K values in a given set of combination or overtone levels quite accurately (to within 7:5 :h 2cm”) if they are unperturbed. Even so, by making the most favorable assumptions about the vibrational origin (1 -e., the J=0, K=0 level), we still cannot arrive at a consistent explanation based on a single perturbing overtone or combination level. However, a mutual interaction between V3+v4 and two or more other overtone or combination levels c(Duld easily invalidate the considerations which we have meuie while considering one perturbing overtone or combina- tion level at a time. However, with the current data avail- able on the anharmonic constants for CH3F, the problem of a resonance involving two or more unobserved overtone or coInbination levels with V3+V4 is nearly impossible to solve '5 ati sfactorily . At this point we shall describe several other perturba- t1011:5 we have observed and whose effects may be seen in the Gian . . 1 observed minus calculated graphs in Figs. 8.4-5.2; O Perturbation of Levels With High J and Low K In Figs. 8.11-8.17 for the -2 through the +4 subbands the effect of a perturbation on the high J levels is apparent. We have examined two possible interpretations of this per- turbation. The first is that an accidental resonance involv- ing a coupling of type V, i.e., a v; {Tram «(new 51.1.1) -1xe111xa2) 7mm -(Kt2)(Kt3) coupling, with nearby overtone or combination levels causes the rapid divergence to low wave numbers with high J values. If this is the proper interpretation, it appears that in 151118 case there is no crossing of levels in contrast to the Situation for the K'=2 levels described in the previous Section. Under these assumptions, one would expect the lfielding term of the second order non-degenerate perturbation eXpansion to be a (J+l!iJ)3(J~1»1+AJ)3 term. A least squares analysis of the subband lines for the -2,-1,0,+2,+4 subbands including such a term resulted in a good fit of the lines 13 or each subband analyzed. The coefficients of the (J~t-A.J)3(J+1+AJ)3 term ranged. from 4x10'9 to 11x10'9cm". An example of the "goodness of fit" is given in Appendix X for the K"=O subband which was mentioned previously in the Seetion dealing with Coriolis resonance. A second possible interpretation is that the rapid divergence to low wave numbers is caused by a crossing of m 0 \j‘l unperturbed energy levels in the same manner as for the K'-:t2,£ = i1 and L = :1 levels discussed in the preceding section. In these cases the crossing must be for a value of J above 15. Indeed, we have been able to find partial sets of lines for the +1 and the -2 subbands which might represent such an effect. However, since these occur at such high J values where the lines are very weak, we cannot be certain that the lines observed actually belong to the subbands in question. However we present the data here for the sake of completeness and with an eye to further work on this band. It should be noted that the +1 subband involves the K' = 12, 1. .-..- :1 levels where we observed another, more certain, crossing of unperturbed energy levels. This portion of the discussion was not mentioned at that point because 'of its speculative nature. Tables 8.9 and 8.10 list the Q(J) (and corresponding R(J-1) and P(J+1) where found) transition frequencies in the region of resonance. Those marked with an asterisk are of uncertain assignment and are not included in Appendix V. Figures 8.36 and 8.37 Present the Q(J) frequencies vs. (J+AJ)(J+1+AJ) for the +1 and -2 subbands respectively. In Figs. 8.38 and 8.39 the perturbation IWperbolae for the +1 and -2 subbands are reproduced and Table 8.11 presents the results of an analysis of these hyperbolae. Although we have not been able to find the corresponding transitions for the -1,0,+2,+3 and +4 subbands, we feel that 206 Lower Frequency Brancha Assignment R01m 16 17 18 19 20 Frequency 4065.76 4065.34 4064.82 4064.44 4063.97 Higher Frequency Branch Assignment R01(18) R121(17) RP,(19) F121(19) R31(18) R191(20) RQ,(2o) R12,09) R13(21) RQ,(21) RQ,(22) RQ‘(23) a Corresponding RR1(J) and RP1(J) lines are found in Appendix V Frequency 4066.05* 4096.69* 4033.76* 4065.08* 4097.41* 4030.99* 4064.52* 4098.54* 4028.77* 4064.01“ 4063.51* 4063.16* Table 8.9 R(AJ)1(J) frequencies in the region of resonance. Line 536 563 531 527 520A Line 5383 6T4 376 532A 677A 362’. 529A 681A 3503 527A 525A 521A 207 Table 8.10 PQ2(J) frequencies in the region of resonance. .P 02(J) 1:2 125 144 155 1(5 1'? 153 1S? 2%) 221 222 223 a Higher Freq. Branch Frequency 4044.79* 4044.49* 4044.07* 4043.57* 4043.12* 4042.62* 4041.14« 4041.67* 4041.20* aoa'o.76* 4040.24* 4039.72* Appendix V. Line 430 428 426 \ 424A 4223 419 .417 414A 412A 4103 408A 406* lower Freq. Frequency 4044.06 4043.77 4043.44 4043.09 4042.71 4042.28 4041.84 4041.38 4040.76 4040.08 4039.39 Brancha Line 426 425 423A 422A 420 417B 415 413 410B 407C 404A Corresponding PR2(J) and PP2(J) lines are found in Ids-1... ... ism-shenafllawqasaz. shone 208 2+.3 .5 VN MN NN _N ON 9 0. h. w. n. S m. N. Z O. m m N w m @mNa _ _ . _ _ _ _ _ q _ .n.__fi___n:w. / .. .. I ONmO¢ 1 N. I. V. J m. J o. l Od¢0¢ L N. o o o o 1 c. Q m. I... m. l O.m@OV 1 N. I c. 1 w. noses. 320208 2: no use: 2. 3.8.2 23% .2 uses: 3.? one .5 ..wo U! (l+,f‘),1‘|0'0+(1‘)'03 §.W)r. ,. fill; and”. ‘vanln: «We: adult-l ". 209 2+.va ¢N mm mm .N ON m. m. t w. o. v. m_ N. : O. m m N w memgo a n _ _ _ __44_4444:4¢. 1 m. 1 w. s. m. m. omvov _. N. m. e. m. m. s. m. m. onooo _. N. l m. m o. .8588. .25280 no ho 83$ 9: 056205 A538 .m> mcozfico: ENoa mm. .. .Ew ‘ ..wo U! (l+,f‘),I‘IO'O +(r)zod 210 2.1.28 _N ON m. m. t w_ 1 w L ¢. -w . .... . 0.. 1 m. 1 w. . a. a 3 1 N. D A a . as m. . N. 3 . n n. . m. . o._ .o . N. r V. . w. .326. fine. .Nfluw. of .0. 0.3.8.... 8:35th mm.m .9... 211 ON 23.2%, m_ m. ... n. n. v. n. 1?. O 3 >0 0 O . N. .o .... Law. .326. .4 q .3 .0.. 23.3.3 5:35th QMQ .31.. 212 Table 8.11 Summary of results of the analysis of the perturbations affecting the K = i2, 1 = i1, and K' = i1, 1 = ¥ 1 levels of v3+v4. Equation of the perturbation hyperbola 2 5 x x+ _ For K': i2, A = t1levels J'(J'+1) = 363 at resonance c = 0.44cm'1 d = )3 easym : i0.0136x(x+1) (asymptotes) 8‘ = 9.081 - 0.0272 J'(J'+1)cm"1 For K'- *1, A = ¥=1 levels J'(J'+1) = 313 c = 0.1550m"1 d = 66 easym = 10.0023x(x«1-1)cm"1 (asymptotes) 09 n 1.44 - 0.0046 J'(J'+1)cm'1 2. \N this second interpretation of the high J low K perturbation is made plausible by the transitions found for the +1 and -2 subbands. In either case, we cannot.at the present time decide between the two possible interpretations. Weak Coriolis Resonance in the Negative Subbands Figures 8.4»8.8 indicate the presence of a weak Coriolis I type resonance, quite likely of the form W V3(J+1)-K(Kt1) 1 which if the separation of the perturbing levels is large enough will give rise to an added term in EVR for the upper state, of the form 6 ,_. 11'2J'(J'+1) ~112(K'(K'a1)l (8.28) where, as before, 8' is the energy separation of the per- turbing levels. In general 8 is a function of J and K as discussed in Chapter 6. From our analysis it is possible to obtain approximate values of (112/8 ). We find: subband (112/8 )(cm-1 ) (K"AK) -9 +0.0021 a 0.0001 -8 +0.0012 a 0.0003 -7 +0.0008 a 0.0001 -5 40.0018 a 0.0004 -4 -0.0002 t 0.0001 -‘ SHEA ll .- 214 The uncertainties indicated above are the simultaneous confidence intervals of the type discussed in Chapter 5. In the list above, no results are given for the -6 subband since it is perturbed quite strongly and the coef- ficient of (J'(J'+1) is not well defined. This is easily verified by noting the form of the perturbation of -6 subband lines in Fig. 8.7. It appears quite likely that the -6 subband is perturbed by the same form of perturbation as the other negative subbands discussed above but the resonance is probably accidentally strong so that the 1 energy levels have the added correction here of 6’ = Eav .tW82/4)+112[J'(J'+1)-K'(K'a1)] (8.30) where S is very small. At this point we interject a word of caution concerning the analysis of subband origins. For the purpose of comparison, the -9 to +9 subband origins were obtained graphically from expanded graphs of effective Q branch lines vs.J'(J'+1) (cf. Fig.8.27, for example). The subband origins were also obtained by a computer analysis of the individual subband lines using the equation (for a fixed K and AK): {AK(AJ)K(J)}°bs-Bo[(J+AJ)(J+1+AJ)-J(J+1)]+ DJ[(J+AJ)2(J+1+AJ)2-J2(J+1)2]+ ° (8.31) DgK[(K+AK)2(J+AJ)(J+1+AJ)-K2J(J+1I]: vsub(K)-[a 2+0, E-QiM-MKMK] (J+AJ)(J+1+AJ), 215 J JK is where the dependence of the lines on B0, Do , and Do subtracted off using microwave values of B0,.DoJ and DOJK (58). In both cases the obviously perturbed high J lines were ignored (graphical method) or not fit (computer method). The subband origins (Vsub) obtained in the two methods agreed to 0.01cm'1. These subband origins were further analyzed graphically and those which were thought to be perturbed (+5,+1,-3,-4, -5,-6,-7,-8,-9) were not included in the subsequent least squares analysis. The results of a least squares analysis of the subband origins to the equation Vsub = a + bKAK + cK2 + dK3AK (8.32) are given in Table 8.12 where the coefficients a,b,c,d (assuming that the subband origins included in the analysis are unperturbed) are interpreted in that order in the table. Table 8.13 lists the results of the analysis for each subband origin. Those points enclosed in parenthesis were not included in the analysis since they were thought to be perturbed. We notice particularly that from -4 to -9 there appears to be a K dependent perturbation of the subbands. In this respect, remember that the sub- band origins used here are actually appggent subband origins obtained from an analysis based on Eq.(8.31). However Figs. 8.4-8.9 indicate that the low J lines (J’a‘! K) in the .4 to -9 subbands do indeed appear near their calculated values. The apparent discrepancy is due to the use of 216 Table 8.12 Subband origin analysis V O 2(110 -Aeg -B° Std. dev. - - - A 2AeC +Ao B0 a +0 B K K +rl4 “Do ’QA + 0B) +3'1E 1‘- 1: +0“ +3114 -63K 0 K K --4Do +04 of observations results (cm'I). 4060.99 i 7.5954 t -0.0110 i -0.0089 a 0.0062 0.015 0.0067 0.0029 0.0027 217 Table 8.13 Subband analysis results (cm'1). Vsub(obs) vsub(calc) (obs-calc) 4127.80 .80 0.00 4113.31 .31 +0.00 4105.98 .97 +0.01 (4098.11) .58 {-0.47) 4091.14 .14 0.00 4083. 65 .66 “0.0‘ 4076.14 .13 +0.01 (4068.57) .58 (-0.01) 4053.39 .39 0.00 4045.76 .76 0.00 (4022.69) .85 (-0.16) (not defined) 4015.22 (3999.48) .98 (-0.50) (3991.64) 2.40 (-0.76) .. "01.. ~ , 4"! 218 extrapolated subband origins in the -4 to -9 subbands. However, there is no other way of obtaining the subband origins "accurately" on the basis of an analysis of lines only from a particular subband. Thus, there is the additiion- a1 effect of a perturbation of the type W VJ(J+1)-K(Kt1) which leads one to false subband'origins, by changing the coefficient of the J'(J'+1) term in the upper state energy expression. Perturbation Affecting the +5 Subband The final major perturbation affects the +5 subband as indicated in Fig. 8.18. Its principal effect is a shift of the subband lines to lower wave numbers by about 0.55cm"1 at the subband origin, plus a small change in the coefficient of J'(J'+1) in the upper state energy expression. The first effect is probably due to a perturbation of type I or III, i.e., a coupling of the form W or WK while the second is probably due to a coupling of type II, i.e., 1: 1511.1) -K(Ki1). genslssian we have obtained, under high resolution (€50.04cm'1), a perpendicular band which has, in addition to the usual RR, RP, PR, and PP “fine structure", numerous resolved RQK(J) and PoK(J) transitions. In fact, this is the first example of such‘highly resolved structure in the molecules of the methyl halide_family_of which we are aware. We have ‘ ‘99» ...—1g: Fania-11’ '31.!- I .-.... .1311... , 3.4913545.th 219 simultaneously analyzed 207 ground state combination differences according to the method of Chapter 4 and 156 "unperturbed” transitions according to the method described in Chapter 5 to find the molecular parameters for this rotation-vibration band. In addition, we have observed several perturbations in this band. he have identified one as a Coriolis resonance which lifts the degeneracy of the K'=n£=ri1 levels. Our ob- servations are somewhat unique since we have here resolved the individual RQO(J) as well as the RRO(J) and RPO(J) transi- tions making possible a full analysis of this perturbation. Another interesting perturbation is the accidental resonance which shows up as a crossing of the K': 12, 1 = a1 and K‘: :2, 4 ==F1 unperturbed energy levels of 93+v4 with those of another band. Due to our observation of the Q(J) lines involved in these resonances as well as the R(J) and P(J) lines, we have well substantiated data on these resonances. Using the method of Chapter 6 we have searched for a complete quantitative solution to the perturbation. However, we have not been able to assign the perturbing levels to a single rotation-vibration band and have reason to believe that the actual perturbation may involve the levels of two or more rotation-vibration bands. We have not been able to.investigate this possibility due to the non-availability of.anharm0nic constants for CHBF. We have however obtained some quantitative results because of the manner in which we 4.1 ,FEUFFMLVJJa 220 have treated the data from our observations of these perturb- ed transitions. Several other perturbations were also observed and some information obtained from our observations. We have treated this band according to the methods outlined in the first six chapters of this work and have carried the analysis as far as we believe it may be readily taken at the present time. The analysis of unperturbed spectra itself is a complex problem when treated properly as described in Chapters 3,4 and 5,due in part to the huge volume of data one observes and the small effects which must be taken into account .5 (conservatively, as small as 0.050m"1 or'2=6.2x10 electron- volts). When one steps into the realm of perturbed spectra the problem is several times more complex, a point which is borne out by the large number of perturbed spectra which have been observed and the very few which have been complete- ly solved. Note added in 2:99; - We have been able to recalibrate v3 +-v4 against 17 Neon lines using the 300 li/mm grating. The results of this calibration indicate that the frequencies should be corrected according to the formula: ”new = «10.2989 + 0.9999193 Vold' For the ground state con- stants, this leaves DoJ and DoJK unchanged and gives the -va1ue 0.851872cm'“1 for Bo which differs from the microwave results by 0.0000780111"1 which lies within our simultaneous confidence interval of a0.000087cm". - Jessi. ti- .. CHAPTER 9 SIMULTANEOUS ANALYSIS OF COMBINATION DIFFERENCES APPLIED TO v1+v2 OF CHD3 AND v2+v3 OF CH3D The high resolution spectra of two parallel bands, v1+v2 of CEID:6 and v2+v3 of CHBD, were obtained as described in Chapter 7. Upon investigation both were found to be perturbed and we shall discuss this briefly in this chapter. However, the principal reason for this chapter is to illus- trate the application of the results of Chapter 4 to two molecules whose pure rotation spectra have not been observed by microwave stpectroscopists because of the extremely small permanent dipole moments which these molecules possess. As a result of our work we have found good values for Bo, DoJ and DoJK for both molecules, even though the upper levels are perturbed. v14~2 of CHD1 The observed spectrum of CHD:5 which we have assigned to v1+v2 is shown in Fig. 9.1, with assignment of the principal transitions indicated. The QQK(J) transitions, :hn particular, are well resolved on the high resolution ‘woakdng records. Appendix XI lists the observed transitions :for v1+v2. We observed, upon attempting to analyze the spectrum, that it is perturbed and have not definitely found spay large subset of apparently unperturbed lines (as was the «case for v3+v4 of CHBF in Chapter 8). The first striking suspect of'the perturbation, apart from an apparent J 221 222 __--._—___- .160 O_~.Om n «3 8. 0". 1&0 ...Eu OmOm . 53332.3: .95 .0 .....s 3.9.“... 223 ..Eo O_mOn . .160 0.00m .. .- .... - ... FLIE... .ILIFLE ._ _ r ... e 2.20 Exec. n a e 3.0 Exec s o a v mu 0 @an .voaczcoo ..m .9“. . - -- . .-....— £24 .1642... I... Exec .160 O.— .0 E nu .6 31m O .150 0.9m lid Exec 62.5200 .. --__.-..._J ..o a... 411.1 : . 1186'. Al. I. 225 TF8 0.! m .Qemo .160 o.n_m . ...Eo o.N.m ... _. a... wig _ 0.. H... 4 ...e.~.zao . . 82.28 ..m .2... _ . .EA 125. , ..s... 0.03 ...S 0.9.... .. 226 _. Tie Exmo Id 8.me .o 3me . 82.28 ..m a... .... .M\ .iJ -3.) .— 227 .]:Frfiis $.me .160 0.5.0 ...}...s: E v nu...o *9me ....me Ii... .eoaczcoo _.m .9... 228 dependent perturbation, is that the J':K' levels in the upper state appear to be displaced from their expected position (on the basis of other levels of the same J) by a nearly constant amount (68 O.2Ocm"’1 higher than expected). If one assumes that the K'zJ' transitions are perturbed, while the others are not as strongly perturbed, then v04: 5135.04cm" whereas if one assumes the K'aJ' are unperturbed, then ”a” 5134.84cm"'. In addition, an apparent J dependent perturbation shows up when one attempts to analyze a single K subband. We have not been able to find an explanation for the perturbation at this time. Ground State Combination Differences of v1+v2 The ground state combination differences of v +v 1 2 were, however, analyzed simultaneously following the method described in Chapter 4. The perturbation affects only the upper state of v1+v2 and therefore the ground state combina- tion differences give good values for Bo' DOJ, and DOJK. Table 9.1 lists the results of this simultaneous analysis with the simultaneous confidence intervals 48 for each constant (cf.Chapter 5) from an analysis of 54 ground state 48The more meaningful simultaneous confidence intervals used throughout differ by the factor S =[pFa(p, n -p)J'/"‘£rem +11.“ usually quoted (e.g.reference 107). In this work S ranged from 2.5 to 3.5. An a of 0.05 was used throughout this work. a...” . .. u. 229 Table 9.1 Ground state constants of CIID3 Bo : 3.27944 1 0.00062cm"1 DOJK: -4.8 x 10’5 a 1.4 x 10"'5cm-1 'DOJ = 5.22 x 10'5 a 0.61 x 10'5cm" s = 0.010c1m"1 std. dev. 230 combination differences. The comparison of observed and calculated combination differences is given in Appendix XII. Table 9.2 compares the results of this study with results of analyses of several other infrared bands (2,3,104,105). We believe our values to be the best presently available for this molecule. v2+v3 of CH D 3 The observed spectrum of v2+v3 of CHBD is shown in Fig. 9.2. The structure of the band is similar to that of v1+v2 of CHD3 due in part to the similarity of B0 between the two bands and particularly due to the large a5 and dB in both bands. We find that v2+v3 is also perturbed,particularly for J > 10 or 12 and K >’6 or 7. Part Of the perturbation shows up as a divergence to high wave numbers with large K and J.49 Ground State Combination Differences of V2+v3 of CHBD As with v1+v2 of CHD3 we have simultaneously analyzed all observed ground state combination differences of v2+v3 of CHBD following the method presented in Chapter 4. The 49W.B. Olson (6) of the National Bureau of Standards (105) has communicated the information that v2+v3 also shows a perturbation in the K":O and 1 series of lines. He adds that the probable perturbing levels belong to 396, a band which is too weak to be observed. 231 Table 9.2 Comparison of available results for CHD3 ground state constant3°(cm") Bo DoJK DoJ v0 v1+v2(a) 3.2794 -4.8r10"5 5.2x1o'5 513:;84 * 5135.04b 2v (C) -3.2777 -4 x10'5 3.91m"5 5865.02 3v'(d) 3.2784 5 210-5 8623.31 4v,(d) 3.2787 -3.5x10'5 4.6x10'5 11266.94 v1(e) 3.2792 4.6x10'5 2992.3 2v5(f) 3.278 . 1+ x1o'5 2592.6 a This Study. b of. text ‘ c From an analysis of transitions (2). d From an analysis From an analysis f From an analysis of combination of combination of combination differences (104), differences (3). differences (105). ‘33.!2u 232 .160 OOmm ”it Q“- _.b A m; L—v -- 1—.‘ m. - --.-fl -w' 5.1 ". "' - -0 . '- _. —.—~— mut-— ' A3 v.00 .. .. .. ...... .._.......w . .... .. . . x. ... ANVXQO Ann-mo . .._ ... _._ . .. 5.... .8an ... v— \u‘ ‘7--. Exa 0 EU “Wit:— ’ma _ _ , . . . . _ _. . . .. _ . . _ . m. . ._ . $.xoo 6.me .txn. 0 demo —-—. 8.an .e .3... «mam. 233 "- - «g ..., ’- “4...... - ”J'- .-.‘_.,- -..”...fi... . .IL , ? ...» - . s. - one...‘ not. -- a--- s—W ‘.‘ L'flsl—a 211"!" ~9- - . - .-..‘.. , ...—“h-“ .... ”WU-fir "" .. . - . _. .... . .. '.- w J». . . a-.. -o¢_rc—n -..——-» -- ~~_...-.r._.., ‘b-e EL. .9120 m~c~un~-"- __ ____ .-..--_ owx" .‘t o-"- In.» cue- ~— ._ . -. w.. —-——-»u- -—v .- mum. »< -. -- .. .. v. Exec a. mo ow— w*-~-"'-ffl"n A ‘5 cu ~‘ ‘r-m .... ... .. ...... H. . m n . m-“— —. “THO-v wo' 4'.- ...-... ”fi.--1 _. ... - at v.10 .9me 59me ,__ ‘ ... -(-—-p—--———’- ~———.—.—-—. Wr—rw ". am—fl iv... o .8me . “'1~ ‘ 8&0 $me 32.23 590m. 0 s... , 234 The results of our analysis of 108 ground state combination differences for we“):5 are given with their simultaneous The confidence intervals (cf.Chapter 5) in Table 9.3. comparison of observed and calculated combination differences is given in Appendix XIII. Table 9.4 compares our results with two other studies of CHBD, one infrared absorption study (105) and one Raman study (107). Analysis of Upper State Combination Differences and Unperturbed Transitions of vew3 For those upper state levels which are not measureably perturbed, we have simultaneously analyzed 83 upper state The method combination differences involving these levels. of analysis is described in Chapter 4. The results are listed, with their simultaneous confidence intervals The comparison of the observ- (of. Chapter 5). in Table 9.3. ed and calculated upper state combination differences are listed in Appendix XIV. JK J Using the values of B0, DOJ, and DC from Table 9.3) 99 "unperturbed" transitions of vew3 were malyzed using the expression: AKAJK (J)}obs-Bo [(J+AJ) (J+1+AJ)-J(J+1 )] +- 0‘ 3+ Q§)(J+AJ)(J+1+AJ) + Di [(J+AJ)2(J+1+AJ)2-J2(J+,)2] +‘ 'KIKQUMJ>wmwwwwww O) C)\003~JO‘UIJ>UJI\J .-.--.OOOO \lxl .- 9.4 "\0 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 89 9 8910 8912 8911 8913 8914 8915 8916 1\) U1 U1 CRL TED ( nC nr' A 0 ‘5 x K 1 5492229 5598995 5795755 5992499 6099226 6295936 6492628 6599303 6795959 1396130 1593134 1790134 1897129 2094119 2291103 2398081 2595053 2792017 2898974 3095923 3292863 3399794 3596716 3793628 3990533 4097420 4294300 4491167 4598022 4794864 4991694 5098509 5295310 5492097 5598868 5795624 5992364 6099087 6295793 6492481 6599152 6795804 1593094 1790089 2094065 1897080 229 045 2398019 2594986 2791946 .53. ASSIGN‘ .‘4 E N T R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 .9934 9935 [\J UT 0‘ CALCULATED GSCD 2898898 3095843 3292779 3399705 3596623 3793530 3990427 4097313 4294188 4491051 4597902 4794740 4991564 5098375 5295172 5491954 5598721 5795473 5992208 6098926 6295628 6492312 6598978 6795626 1790039 1897024 2094005 2290980 2397948 2594910 2791865 2898813 3095752 3292683 3399604 3596517 3793419 3990311 4097192 4294062 4490920 4597766 4794599 4991418 5098224 5295016 5491793 5598555 5795301 5992031 ASSIGN- FflEPJT 257 CALCULATED GSCD R0 .90 R0 R0 80 RP RP RP RP RP RP RP RP RP RP RP RP RP RD RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP 9936 9937 9938 9939 9 09 09 09 O9 09 09 09 09 09 09 0910 0911 0912 0913 0914 0915 0916 3917 0918 0919 {3,20 0921 0922 0923 0924 0925 0926 0927 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 09490 19 1 19 2 19 3 19 4 o 4} .3 \Om'xlO‘WbWNHC); 6998745 6295441 6492121 6598782 6795424 197036 591107 895176 1199243 1593307 1897367 2291421 2595470 2899511 3293544 3597568 3991582 4295586 4599577 4993556 5297521 5691471 5995436 6299324 6693225 6997107 7390970 7694812 7998633 8392432 8696208 8999960 9393686 9697387 10091061 10394706 10698323 11091910 11395466 11698991 12092483 12395941 12699365 13092753 13396105 13699420 591106 895175 1199241 1593305 ASSIGN- MENT RP 19 RP 19 RP 19 RP 19 RR 19 RR 1910 RP 1912 RP 1913 RP 1914 RP 1915 RP 1916 RP 1917 RP 1918 RP 1919 RP 1920 RP 1921 RP 1922 RP 1923 RP 1924 RP 1925 RP 1926 RP 1927 RP 1928 RP 1929 RP 1930 RP 1931 RP 1932 RP 1933 RP 1934 RR 1935 RR 1936 RP 1937 RP 1938 RP 1939 RP 1940 RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP \OUJKJO‘UT 258 CALCULATED 1 1 1 1 1 1 1 1 1 GSCD 1897364 2291417 2595465 2899506 3293538 3597562 4295578 4599569 4993547 5297512 5691461 5995396 6299313 6693213 6997095 7390957 7694799 7998619 8392418 8696193 8999944 9393670 9697370 0091043 0394688 0698304 1091891 1395446 1698970 2092462 2395920 2699343 13092731 1 1 3396082 3699396 895170 1199235 1593297 1897354 2291406 2595452 2899491 3293521 3597543 3991555 4295556 4599545 4993521 5297484 5691432 ASSIGN- MENT RP RD RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 39 39 39 39 39 39 39 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 00049099169» 25 C C / ALCULATED GSCD 5995364 6299280 6693178 6997058 7390919 7694759 7998578 8392374 8696148 8999897 9393621 9697319 19090991 13394634 10698248 11091833 11395387 11698909 12092399 12395855 12699276 13092662 13396011 13699324 1199225 1593283 1897338 2291387 2595430 2899465 3293493 3597512 3991521 4295519 4599505 4993478 5297438 5691383 5995312 6299225 6693121 6996997 7390855 7694692 7998508 8392302 8696072 8999818 9393539 9697235 ASSIGN- MENT (P (7 CALCULATED GSCD RP RP RD RP RP RD RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 49 49 49 49 49 49 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 59 5 \OCDNO‘W-P 10090903 10394543 10698155 11091736 11395287 11698807 12092293 12395746 12699165 13092548 13395894 13699203 1593265 1897315 2291360 2595398 2899430 3293454 3597468 3991473 4295467 4599449 4993418 5297374 5691314 5995240 6299148 6693040 6996912 7390766 7694599 7998410 8392200 8695966 8999708 9393425 9697116 10090780 10394417 10698324 11091601 11395148 11698663 12092146 12395595 12699009 13092388 13395730 13699035 1897285 ASSIGN- MENT RP 59 RP 59 RP 59. RP 59 RP 5910 RP 5911 RP 5912 RP 5913 RP 5914 RP 5915 RP 5916 RP 5917 RP 5918 RP 5919 RP 5920 RP 5921 RP 5922 RP 5923 RP 5924 RP 5925 RP 5926 RP 5927 RP 5928 RP 5929 RP 5930 RP 5931 RP 5932 RP 5933 RP 5934 RP 5935 RP 5936 RP 5937 RP 5938 RP 5939 RP 5940 RP 69 6 RP 69 7 RP 69 8 RP 69 9 RP 6910 RP 6911 RP 6912 RP 6913 RP 6914 RP 6915 RP 6916 RP 6917 RP 6918 RP 6919 RP 6920 \O(D\l() 261 CALCULATED 1 GSCD 2291325 2595358 2899385 3293403 3597412 3991412 4295400 4599377 4993341 5297291 5691226 5995146 6299050 6692935 6996803 7390651 7694478 7998285 8392069 8695830 8999567 9393278 9696964 0090623 10394254 13697856 11091428 1 1 1 1394969 1698479 2091956 12395400 12698809 13092182 1 1 3395519 3698819 2291282 2595309 2899329 3293341 3597344 3991337 4295318 4599289 4993246 5297190 5691119 5995032 6298929 6692808 6996669 mwuruw= ASSIGN- MENT 262 CALCULATED GSCD RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP 6921 6922 6923 6924 6925 6926 6927 6928 6929 5930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 79 7 79 8 79 9 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7390510 7694331 7998131 8391909 8695663 8999394 9393099 9696778 13090430 10394354 13697650 11091216 11394750 11698254 12091724 12395161 12698564 13091931 13395261 13698554 2595251 2899264 3293268 3597263 3991248 4295222 4599184 4993134 5297070 5690991 5994897 6298786 6692658 6996511 7390344 7694158 7997950 8391720 8695466 8999189 9392887 9696558 13090203 19393819 13697407 11090965 11394492 11697987 12091450 12394880 ASSIGN- MENT RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP 7937 7938 7939 7940 89 8 89 9 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 99 9 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 CALCULATED GSCD 12698274 13091634 13394956 13698242 2899188 3293183 3597169 3991145 4295111 4599064 4993005 5296932 5690844 5994741 6298621 6692484 6996328 7390153 7693957 7997741 8391502 8695239 8998953 9392642 9696304 9999940 10393548 10697126 11090675 11394194 11697680 12091134 12394555 12697940 13091291 13394605 13697881 3293087 3597063 3991029 4294985 4598928 4992859 5296776 5690678 5994564 6298435 6692287 6996121 7299936 264 ASSIGR- CALCULATED MENT GSCD RP 9922 7693730 RP 9923 7997504 RP 9924 8391254 RP 9925 8694982 RP 9926 8998686 RP 9927 9392364 RP 9928 9696317 RP 9929 9999642 RP 9930 10393243 RP 9931 13696809 RP 9932 11090347 RP 9933 11393856 RP 9934 11697332 RP 9935 12090776 RP 9936 12394186 RP 9937 12697562 RP 9938 13090902 RP 9939 13394206 RP 9940 13697473 or -19.. «. APPENDIX III LIST OF CALCULATED GROUND STATE COMBINATION DIFFERENCES FOR CHD} The following pages contain calculated ground state combination differences (in cm") computed on the Michigan State University Digital Computer, MISTIC. The values of the constants used are (in cm“): B0 = 3027944 pi = 5.22 x 10'5 These constants were obtained from an analysis of v1+v2 of CHD3 discussed in Chapter 9. In order to use the tables one should note that the designation of the combination.dif£erences in this appendix is that used in Chapter 4. Note also that QRK,J = RQK,J+1. 265 gil- ...9. J“!fhuwtllr I .mgck u. 99. u‘ ASSIGN- MENT R0 09 R0 09 R0 09 R0 09 R0 09 R0 09 R0 09 R0 09 R0 09 R0 0910 R0 0911 R0 0912 R0 0913 R0 0914 R0 0915 R0 0916 R0 0917 R0 0918 R0 0919 R0 0920 R0 0921 R0 0922 R0 0923 R0 0924 R0 0925 R0 0926 R0 0927 R0 0928 R0 0929 R0 0930 R0 0931 R0 0932 R0 0933 R0 0934 R0 0935 R0 0936 R0 0937 R0 0938 R0 0939 R0 0940 R0 19 2 R0 19 3 R0 19 4 R0 19 5 R0 19 6 7 8 9 \OfiD-xlO‘U‘ImeH R0 19 R0 19 R0 19 R0 1910 R0 1911 266 CALCULATED GSCD 695587 1391161 1996710 2692222 3297683 3993082 4598406 5293642 5898777 6593801 7198699 7893459 8498069 9192516 9796788 10490871 11094755 11698426 12391871 12995078 13598035 14290729 14893147 15495278 16097107 16698624 17299815 17990668 18591171 19191310 19791073 20390449 23899423 21497984 22096120 22693817 23291063 23797846 24394154 24899972 1391163 1996713 2692225 3297688 3993088 4598412 5293649 5898786 6593810 7198709 v1 267 ASSIGN- CALCULATED MENT 65C R0 1912 7893470 R0 1913 8498081 R0 1914 9192529 R0 1915 9796802 R0 1916 13490887 R0 1917 11094771 R0 1918 11698443 RC 1919 12391889 R0 1920 12995098 R0 1921 13598055 R0 1922 14290750 R0 1923 14893170 R0 1924 15495301 R0 1925 16097132 R0 1926 16698649 R0 1927 17299841 R0 1928 17990695 R0 1929 18591199 R0 1930 19191339 R0 1931 19791103 R0 1932 20390480 R0 1933 20899455 R0 1934 21498017 R0 1935 22096154 R0 1936 22693852 R0 1937 23291099 R0 1938 23797883 R0 1939 24394191 R0 1940 24990011 R0 29 3 1996722 R0 29 4 2692237 R0 29 5 3297702 R0 29 6 3993105 R0 29 7 4598433 R0 29 8 5293673 R0 29 9 5898812 R0 2910 6593839 R0 2911 7198741 R0 2912 7893505 R0 2913 8498119 R0 2914 9192570 RD 2915 9796846 R0 2916 10490933 R0 2917 11094821 R0 2918 11698495 R0 2919 12391945 R0 2920 12995156 R0 2921 13598116 R0 2922 14290814 R0 2923 14893236 ASSIGN- HE N T R0 2924 R0 2925 R0 2926 R0 2927 R0 2928 R0 2929 R0 2930 R0 2931 R0 2932 R0 2933 R0 2934 R0 2935 R0 2936 R0 2937 R0 2938 R0 2939 R0 2940 R0 39 R0 39 R0 39 R0 39 R0 39 R0 39 R0 3910 R0 3911 R0 3912 R0 3913 R0 3914 R0 3915 R0 3916 R0 3917 R0 3918 R0 3919 R0 3920 R0 3921 R0 3922 R0 3923 R0 3924 R0 3925 R0 3926 R0 3927 R0 3928 R0 3929 R0 3930 R0 3931 R0 3932 R0 3933 R0 3934 R0 3935 R0 3936 \OCDflO‘U'b 268 CALCULATED GSCD 15495371 16097204 16698725 17299920 17990777 18591283 19191426 19791193 23390573 23899551 21498116 22096255 22693957 23291207 23797994 24394305 24990127 2692256 3297727 3993134 4598467 5293711 5898856 6593888 7198794 7893563 8498182 9192638 9796918 13491011 11094903 11698583 12392037 12995253 13598218 14290921 14893348 15495487 16097325 16698851 17390051 17990912 18591423 19191571 19791344 23390728 20899711 21498281 22096425 22694131 269 ASSIGR- CALCULATED MENT GSCD R0 3937 23291386 R0 3938 23798178 R0 3939 24394494 R0 3940 24990321 R0 49 5 3297761 R0 49 6 3993175 R0 49 7 4598514 R0 4’ 8 52.03766 R0 49 9 5898917 R0 4910 6593956 R0 4911 7198869 R0 4912 7893645 R0 4913 8498270 R0 4914 9192733 R0 4915 9797020 R0 4916 10491119 R0 4917 11095019 R0 4918 11698705 R0 4919 12392165 R0 4920 12995388 R0 4921 13598361 R0 4922 14291070 R0 4923 14893504 R0 4924 15495650 R0 4925 16097495 R0 4926 16699027 R0 4927 17390234 R0 4928 17991102 R0 4929 18591620 R0 4930 19191775 R0 4931 19791554 R0 4932 20390945 R0 4933 20899935 R0 4934 21498511 R0 4935 22096662 R0 4936 22694375 R0 4937 23291637 R0 4938 23798435 R0 4939 24394758 R0 4940 24990592 R0 59 6 3993227 R0 59 7 4598575 R0 59 8 5293835 R0 59 9 5898995 R0 5910 6594043 R0 5911 7198965 R0 5912 7893749 R0 5913 8498384 R0 5914 9192855 R0 5915 9797151 270 ASSIGM- C4LCULATED MENT GSCD R0 5916 10491259 R0 5917 11095167 R0 5918 11698862 R0 5919 12392331 R0 5920 12995563 R0 5921 13598544 R0 5922 14291262 R0 5923 14893704 R0 5924 15495859 R0 5925 16097713 R0 5926 16699254 R0 5927 17390469 R0 5928 17991346 R0 5929 18591873 R0 5930 19192036 R0 5931 19791824 R0 5932 20391224 R0 5933 23990222 R0 5934 21498808 R0 5935 22096968 R0 5936 22694689 R0 5937 23291960 R0 5938 23798767 R0 5939 24395098 R0 5940 24990941 R0 69 7 4598650 R0 69 8 5293921 R0 69 9 5899091 R0 6910 6594149 R0 6911 7199082 R0 6912 7893877 R0 6913 8498522 R0 6914 9193004 R0 6915 9797311 R0 6916 10491429 R0 6917 11095348 R0 6918 11699053 R0 6919 12392534 R0 6920 12995776 R0 6921 13598768 R0 6922 14291496 R0 6923 14893950 R0 6924 15496115 R0 6925 16097979 R0 6926 16699531 R0 6927 17390757 R0 6928 17991645 R0 6929 18592182 R0 6930 19192356 R0 6931 19792155 271 ASSIGN- CALCULATED MENT GSCD R0 6932 23391565 R0 5933 269.0574 R0 6934 21499170 R0 6935 22097341 R0 6936 22695073 R0 6937 23292354 R0 6938 23799172 R0 6939 24395514 R0 6940 24991367 R0 79 8 5294021 R0 79 9 5899205 R0 7910 6594275 \0 7911 7199221 R0 7912 7894028 R0 7913 8498686 R0 7914 9193180 R0 7915 9797500 R0 7916 10491631 R0 7917 11095562 R0 7918 11699280 R0 7919 12392773 R0 7920 12996028 R0 7921 13599032 R0 7922 14291773 R0 7923 14894239 R0 7924 15496417 R0 7925 16098294 R0 7926 16699858 R0 7927 17391097 R0 7928 17991998 R0 7929 18592547 R0 7930 19192734 R0 7931 19792545 R0 7932 20391968 R0 7933 20990990 R0 7934 21499598 R0 7935 22097781 R0 7936 22695526 R0 7937 23292820 R0 7938 23799650 R0 7939 24396005 R0 7940 24991871 R0 89 9 5899336 R0 8910 6594421 R0 8912 7894203 R0 8911 7199381 R0 8913 8498875 R0 8914 9193384 R0 8915 9797718 80 8916 13491864 272 ASSIGN- CALCULATED mENT GSCD R0 8917 11095809 R0 8918 11699542 R0 8919 12393049 R0 8920 12996318 R0 8921 13599337 R0 8922 14292093 R0 8923 14894573 R0 8924 15496766 R0 8925 16098658 R0 8926 16790236 R0 8927 17391489 R0 8928 17992404 R0 8929 18592969 R0 8930 19193170 R0 8931 19792995 R0 8932 20392433 R0 8933 20991469 R0 8934 21590093 R0 8935 22098290 R0 8936 22696049 R0 8937 23293358 R0 8938 23890203 R0 8939 24396572 R0 8940 24992453 R0 9910 6594585 R0 9911 7199562 R0 9912 7894400 R0 9913 8499089 R0 9914 9193614 R0 9915 9797965 R0 9916 10492127 R0 9917 11096089 R0 9918 11699838 R0 9919 12393362 R0 9920 12996648 R0 9921 13599683 R0 9922 14292455 R0 9923 14894952 R0 9924 15497161 R0 9925 16099069 R0 9926 16790665 R0 9927 17391934 R0 9928 17992866 R0 9929 18593446 R0 9930 19193664 R0 9931 19793506 R0 9932 20392960 R0 9933 20992013 R0 9934 21590653 R0 9935 22098867 ASSIGN- MENT R0 R0 PQ R0 R0 PP PP PP PP PP PP PP PP PP PP PP PP PP PP PP PP RD PP RD PP PP PP PP PP PP PP PP PP PP PP PP PP RP ' RD RP RR ‘ PP PP PP PP RD RD PP PP PP 9936 9937 9938 9939 9940 O9 O9 O9 O9 O9 O9 \OCDNIO‘U‘bUJNIv-‘O 273 CALCULATED GSCD 22696642 23293967 23890829 24397214 24993111 695587 1996748 3297871 4598932 5899905 7290765 8591487 9892047 11192419 12492578 13792499 15092157 16391527 17690584 18899303 20197659 21495626 22793181 24090297 25296949 26593113 27798764 29093876 30298425 31592385 32795732 33998439 35290484 36491839 37692480 38892383 40091522 41199872 42397407 43594104 44699937 45894880 46998910 48192000 49294126 50395262 1996750 3297876 4598938 5899913 274 ASSIGN- CALCULATED MFNT GSCD RR 19 5 7290776 RP 19 6 8591500 RD 19 7 9892062 RP 19 8 11192436 RP 19 9 12492597 RP 1910 13792520 RR 1912 16391552 RP 1913 17690611 PP 1914 18899331 RP 1915 23197689 RP 1916 21495658 RP 1917 22793215 RP 1918 24090332 RP 1919 25296987 RP 1920 26593153 RP 1921 27798806 RP 1922 29093920 RR 1923 30298471 RP 1924 31592433 RR 1925 32795781 RP 1926 33998491 RR 1927 35290537 RP 1928 36491894 RP 1929 37692538 RP 1930 38892442 RP 1931 40091583 RP 1932 41199935 RP 1933 42397472 RP 1934 43594171 RP 1935 44790006 RP 1936 45894951 RP 1937 46998982 RP 1938 48192075 RD 1930 49294202 RP 1940 50395341 RP 29 2 3297890 RP 29 3 4598959 RP 29 4 5899939 RP 29 5 7290807 RP 29 6 8591538 RP 29 7 9892105 RP 29 8 11192485 RP 29 9 12492652 RP 7910 13792581 RP 2911 15092246 RP 2912 16391624 RP 2913 17690689 RP 2914 18899416 RP 2915 20197779 RP 2916 21495754 [\J \1 U1 ASSIGN- CALCULATED mng GSCD RP 2917 22793316 RD 2918 24090440 80 2919 25297109 RR 2920 26593272 RP 2921 27798931 89 2922 29094051 89 2923 30298607 RP 2924 31592575 RP 2925 32795929 RP 2926 33998645 RP 2927 35290697 RP 2928 36492060 RD 2929 37692709 RP 2930 38892619 RP 2931 40091766 RP 2932 41290124 RP 2933 42397667 RP 2934 43594372 RP 2935 44790212 RP 2936 45895163 RP 2937 46999200 RP 2938 48192298 RP 2939 49294432 89 2940 50395576 RP 39 3 4598993 RP 39 4 5899983 RP 39 5 7290861 RP 39 6 8591601 RP 39 7 9892178 RP 39 8 11192567 RP 39 9 12492744 RP 3910 13792682 RP 3911 15092358 RP 3912 16391745 RP 3913 17690820 RP 3914 18899556 RP 3915 20197929 RP 3916 21495914 RP 3917 22793486 RP 3918 24090619 RP 3919 25297289 RP 3920 26593471 RP 3921 27799139 RP 3922 29094269 RP 3923 30298835 RP 3924 31592812 RP 3925 32796176 RP 3926 33998902 RP 3927 35290963 (9- 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 [‘0 O‘ CALCULATFD GSCD 36492336 37692995 38892915 40092071 41290438 42397992 43594706 44790556 45895517 46999564 48192671 49294815 50395969 5990044 7290935 8591689 9892280 11192683 12492873 13792825 15092514 16391915 17691303 18899753 20198139 21496138 22793723 24090870 25297554 26593749 27799431 -9094574 33299154 31593145 32796522 33999261 35291336 36492722 37693395 38893329 40092498 41290879 42398446 43595174 44791037 45896012 47090072 48193194 49295350 50396518 ASSIGN- MENT RP 5 RP 5 RP 6 .903 PD 5 RP 5910 RP 5911 RP 5912 RP 5913 RP 3914 RP 5915 RP 5916 RP 5917 PP 5918 RP 5919 RP 5920 RR 5921 RP 5922 RP 5923 RP 5924 RP 5925 RP 5926 RP 5927 RR 5928 RP 5929 RD 5930 RP 5931 RP 5932 RP 5933 RP 5934 RP 5935 RP 5936 RP 5937 RP 5938 RP 5939 RP 5940 RP 69 6 RP 69 7 RP 69 8 RP 69 9 RP 6910 RP 6911 RP 6912 RP 6913 RP 6914 RP 6915 RP 6916 RP 6917 RP 6918 RP 6919 277 CALCULATED GSCD 7291031 8591802 989241"1 11192831 12493038 13793008 15092714 16392133 17691238 18990006 20198410 21496426 22794028 24091193 25297894 26594106 27799896 29094966 39299563 31593572 32796967 33999723 35291816 36493219 37693909 38893861 43093048 41291446 42399030 43595775 44791657 45896649 47090726 48193865 49296039 50397224 8591941 9892570 11193012 12493241 13793232 15092960 16392399 17691526 18990315 20198740 21496777 22794401 24091587 25298309 278 ASSIGN- CALCULATED MENT GSCD RP 6920 26594543 RP 6921 27890264 RP 6922 29095446 RP 6923 30390064 RP 6924 31594094 RP 6925 32797510 RP 6926 34090288 RP 6927 35292402 RP 6928 36493827 RP 6929 37694538 RP 6930 38894511 RP 6931 40093719 RP 6932 41292139 RP 6933 42399744 RP 6934 43596511 RP 6935 44792413 RP 6936 45897427 RP 6937 47091526 RP 6938 48194686 RP 6939 4929683 RP 6943 50398087 RP 79 7 9892759 RP 79 8 11193226 RP 79 9 12493480 RP 7910 13793496 RP 7911 15093249 RP 7912 16392714 RP 7913 17691866 RP 7914 18990680 RP 7915 20199131 RP 7916 21497193 RP 7917 22794842 RP 7918 24092053 RP 7919 25298801 RP 7920 26595060 RP 7921 27890805 RP 7922 29096013 RP 7923 30390656 RP 7924 31594711 RP 7925 32798153 RP 7926 34090956 RP 7927 35293095 RP 7928 36494545 RP 7929 37695281 RP 7930 38895279 RP 7931 40094513 RP 7932 41292957 RP 7933 42490588 RP 7934 43597380 RP 7935 44793308 279 ASSIGN- CALCULATED MENT GSCD RP 7936 45898346 RP 7.37 473.2470 RP 7938 48195655 RP 7939 49297876 RP 7940 50399108 RP 89 8 11193473 RP 89 9 12493756 RP 8910 13793801 RP 8911 15093583 RP 8912 16393078 RP 8913 17692259 RP 8914 18991101 RP 8915 20199581 RP 8916 21497673 RP 8917 22795351 RP 8918 24092591 RP 8919 25299367 RP 8920 26595656 RP 8921 27891430 RP 8922 29096667 RP 8923 30391339 RP 8924 31595423 RP 8925 32798894 RP 8926 34091726 RP 8927 35293894 RP 8928 36495373 RP 8929 37696139 RP 8930 38896165 RP 8931 40095428 RP 8932 41293902 RP 8933 42491562 RP 8934 43598383 RP 8935 44794339 RP 8936 45899407 RP 8937 47093560 RP 8938 48196774 RP 8939 49299024 RP 8940 50490285 RP 99 9 12494069 RP 9910 13794147 RP 9911 15093962 RP 9912 16393489 RP 9913 17692703 RP 9914 18991579 RP 9915 20290092 RP 9916 21498216 RP 9917 22795927 RP 9918 24093200 RP 9919 25390010 RP 9920 26596331 f\) (O ") ASSIGN- CALCULATED MENT GSCD RP 9921 27892139 RP 9922 29097408 RP 9923 30392113 RP 9924 31596231 RP 9925 32799734 RP 9926 34092599 RP 9927 35294800 RP 9928 36496312 RP 9929 37697111 RP 9930 38897170 RP 9931 40096466 RP 9932 41294973 RP 9933 42492665 RP 9934 43599519 RP 9935 44795509 RP 9936 45990609 RP 9937 47094796 RP 9938 48198043 RP 9939 49390325 RP 9940 53491619 APPENDIX IV LIST OF CALCULATED GROUND STATE COMBINATION DIFFERENCES FOR CH3D The following pages contain calculated ground state combination differences (in cm'1) computed on the Michigan State University Digital Computer, MISTIC. The values of the constants used are B 3.88107 0 DgK = 1.192 x 10’4 pi 5.28 x 10'5 These constants were obtained from an analysis of v2+v3 of 0333 discussed in Chapter 9. In order to use the tables one should note that the designation of the combination differences in this appendix is that used in Chapter 4. Note also that QPK,J = RQK,J+19 281 ASSIGN- M. E M T R0 09 R0 09 R0 09 R0 09 R0 09 R0 09 R0 09 R0 09 R0 09 R0 0910 R0 0911 R0 0912 R0 0913 R0 0914 R0 0915 R0 0916 R0 0917 R0 0918 R0 0919 R0 0920 R0 0921 R0 0922 R0 0923 R0 0924 R0 0925 R0 0926 R0 0927 R0 0928 R0 0929 R0 0930 R0 0931 R0 0932 R0 0933 R0 0934 R0 0935 R0 0936 R0 0937 R0 0938 R0 0939 R0 0940 R0 19 2 R0 19 3 R0 19 4 R0 19 5 R0 19 6 7 8 9 \omxlmmbmmn—a R0 19 R0 19 R0 19 ‘ R0 1910 R0 1911 f\) (D CALCULATED GSCD 797619 1595226 2392807 3190350 3897843 4695272 5492624- 6199888 6997051 7794099 8591020 9297802 10094432 10890896 11597183 12393279 13099173 13894850 14690300 15395508 16190462 16895150 17599559 18393676 19097488 19890983 20594148 21296970 21999437 22791536 23493255 24194580 24895499 25595999 26296067 26995692 27694859 28393558 29091773 29699494 1595221 2392800 3190341 3897831 4695257 5492608 6199869 6997029 7794075 8590994 283 ASSIGN- CALCULATED MRNT GSCD R0 1912 9297773 R0 1913 10094401 R0 1914 10890863 80 1915 11597147 R0 1916 12393241 R0 1917 13099132 R0 1918 13894808 R0 1919 14690254 R0 1920 15395460 R0 1921 16190412 R0 1922 16895098 R0 1923 17599504 R0 1924 18393618 R0 1925 19097428 R0 1926 19890921 R0 1927 20594083 R0 1928 21296903 R0 1929 21999368 R0 1930 22791465 R0 1931 23493181 R0 1932 24194503 R0 1933 24895420 R0 1934 25595918 R0 1935 26295984 R0 1936 26995606 R0 1937 27694771 R0 1938 28393467 R0 1939 29091680 R0 1940 29699399 R0 29 3 2392779 R0 29 4 3190312 R0 29 5 3897795 R0 29 6 4695214 R0 29 7 5492558 R0 29 8 6199812 R0 29 9 6996965 R0 2910 7794004 R0 2911 8590915 R0 2912 9297688 R0 2913 10094308 R0 2914 10890763 R0 2915 11597040 R0 2916 12393127 R0 2917 13099011 R0 2918 13894679 R0 2919 14690119 R0 2920 15395317 R0 2921 16190262 R0 2922 16894940 R0 2923 17599339 ASSIGN- MENT R0 2924 R0 2925 R0 2926 R0 2927 R0 2928 R0 2929 R0 2930 R0 2931 R0 2932 R0 2933 R0 2934 R0 2935 R0 2936 R0 2937 R0 2938 R0 2939 R0 2940 R0 39 R0 39 R0 39 R0 39 R0 39 R0 39 R0 3910 R0 3911 R0 3912 R0 3913 R0 3914 R0 3915 R0 3916 R0 3917 R0 3918 R0 3919 R0 3920 R0 3921 R0 3922 R0 3923 R0 3924 R0 3925 R0 3926 R0 3927 R0 3928 R0 3929 R0 3935 R0 3931 R0 3932 R0 3933 R0 3934 R0 3935 R0 3936 \OmxlO‘U1F 284 CALCULATED GSCD 18393447 19097249 19890735 23593890 21296703 21999161 22791250 23492959 24194275 24895184 25595675 26295734 26995349 27694507 28393195 29091402 29699113 3190264 3897735 4695143 5492474 6199717 6996858 7793885 8590784 9297545 10094153 10890596 11596861 12392936 13098808 13894464 14599892 15395079 16190012 16894678 17599065 18393161 19096952 19890425 20593569 21296370 21998815 22790893 23492590 24193893 24894791 25595269 26295317 26994920 ASSIGN- MENT 285 CALCULATED GSCD R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 3937 3938 3939 3940 49 5 49 6 49 7 49 8 49 9 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 59 6 59 7 59 8 59 9 5910 5911 5912 5913 5914 5915 27694066 28392742 29090937 29698636 3897652 4695043 5492357 6199583 6996708 7793718 8590601 9297344 10093936 10890362 11596611 12392669 13098524 13894164 14599575 15394745 16099661 16894311 17598682 18392760 19096534 19799991 20593118 21295903 21998331 22790392 23492073 24193359 24894249 25594702 26294733 26994319 27693449 28392109 29090286 29697969 4694914 5492207 6199412 6996515 7793503 8590365 9297087 10093657 13890062 11596289 286 ASSIGN- CALCULATED MENT 60CD R0 5916 12392326 R0 5917 13098160 R0 5918 13893778 R0 5919 14599168 R0 5920 15394316 R0 5921 16099211 R0 5922 16893839 R0 5923 17598188 R0 5924 18392246 R0 5925 19095998 R0 5926 19799434 R0 5927 23592539 R0 5928 21295302 R0 5929 21997709 R0 5930 22699749 R0 5931 23491408 R0 5932 24192673 R0 5933 24893532 R0 5934 25593973 R0 5935 26293982 R0 5936 26993547 R0 5937 27692655 R0 5938 28391294 R0 5939 28999450 R0 5940 29697111 R0 69 7 5492024 R0 69 8 6199202 R0 69 9 6996279 R0 6918 7793241 R0 6911 8590077 R0 6912 9296773 R0 6913 10093316 R0 6914 10799695 R0 6915 11595896 R0 6916 12391907 R0 6917 13097714 R0 6918 13893306 R0 6919 14598670 R0 6920 15393792 R0 6921 16098660 R0 6922 16893263 R0 6923 17597585 R0 6924 18391616 R0 6925 19095343 R0 6926 19798752 R0 6927 20591831 R0 6928 21294568 R0 6929 21996949 R0 6930 22698963 R0 6931 23490595 287 ASSIGN- CALCULATED MENT GSCD R0 6932 24191834 R0 6933 24892667 R0 6934 25593082 R0 6935 26293064 R0 6936 26992603 R0 6937 27691685 R0 6938 28390297 R0 6939 28998427 R0 6940 29696063 R0 79 8 6198954 R0 79 9 6996000 R0 7910 7792931 R0 7911 8499736 R0 7912 9296401 R0 7913 10092913 R0 7914 10799261 R0 7915 11595431 R0 7916 12391411 R0 7917 13097188 R0 7918 13892748 R0 7919 14598081 R0 7920 15393172 R0 7921 16098010 R0 7922 16892581 R0 7923 17596873 R0 7924 18390873 R0 7925 19094568 R0 7926 19797947 R0 7927 20590995 R0 7928 21293700 R0 7929 21996051 R0 7930 22698033 R0 7931 23399635 R0 7932 24190843 R0 7933 24891645 R0 7934 _25592028 R0 7935 26291980 R0 7936 26991488 R0 7937 27690539 R0 7938 28299120 R0 7939 28997219 R0 7940 29694823 R0 89 9 6995678 R0 8910 7792574 R0 8912 9295972 R0 8911 8499343 R0 8013 10092449 R0 8914 10798761 R0 8915 11594895 R0 8916 12390839 288 ASSIGN- CALCULATED MENT GSCD R0 8917 13096583 R0 8918 13892105 R0 8919 14597402 R0 8920 15392457 R0 8921 16097259 R0 8922 16891795 R0 8923 17596051 R0 8924 18390015 R0 8925 19093675 ‘ R0 8926 19797017 80 8927 20590030 R0 8928 21292700 R0 8929 21995014 R0 8930 22696961 R0 8931 23398526 R0 8932 24099699 80 8933 24890465 R0 8934 25590813 R0 8935 26290729 R0 8936 26990201 R0 8937 27599216 R0 8938 28297762 R0 8939 28995825 R0 8940 29693393 R0 9910 7792169 R0 9911 8498897 R0 9912 9295486 R0 9913 10091922 R0 9914 10798193 R0 9915 11594287 R0 9916 12390191 R0 9917 13695891 R0 9918 13891376 R0 9919 14596632 R0 9920 15391647 R0 9921 16096408 R0 9922 16890903 R0 9923 17595119 R0 9924 18299043 R0 9925 19092662 R0 9926 19795964 R0 9927 20498936 R0 9928 21291565 R0 9929 21993839 R0 9930 22695745 R0 9931 23397271 R0 9932 24098402 R0 9933 24799128 R0 9934 25499435 R0 9935 26199311 289 ASSIGN- CALCULATED MENT GSCD R0 9936 26898742 R0 9937 27597717 R0 9938 28296222 R0 9939 28994245 R0 9940 29691773 RP 09 0 797619 RP 09 1 2392845 RP 09 2 3898033 RP 09 3 5493157 RP 09 4 6998193 RP 09 5 8593114 RP 09 6 10097896 RP 09 7 11692513 RP 09 8 13196939 RP 09 9 14791150 RP 0910 16295119 RP 0911 17798822 RR 0912 19392234 RP 0913 25895328 RP 0914 22398079 RP 0915 23990462 RR 0916 25492452 RP 0917 26994023 RP 0918 28495150 RP 0919 29995808 RP 0920 31495970 RP 0921 32995612 RP 0.22 34494799 RR 0923 35993234 RP 0924 37491163 RP 0925 38898471 RP 0926 43395131 RP 0927 41891118 RP 0928 43296407 RP 0929 44790974 RP 0930 46194791 RP 0931 47597834 RP 0932 49090078 RP 0933 50491497 RP 0934 51892066 RP 0935 53291759 RP 0936 54690551 RP 0937 55998417 RP 0938 57395331 RP 0939 58791268 RP 0940 60096202 RP 19 1 2392838 RP 19 2 3898021 RP 19 3 5493141 RR 19 4 6998171 N \1’) () ASSIGN- CALCULATED MENT GSCD RP 19 5 8593088 RR 19 6 13097865 RP 19 7 11692477 RP 19 8 13196899 RP 19 9 14791104 RP 1910 16295069 RP 1912 19392174 RP 1913 20895263 RP 1914 22398010 RP 1915 23990388 RP 1916 25492373 RP 1917 26993940 RP 1918 28495062 RP 1919 29995715 RP 1920 31495872 RP 1921 32995510 RP 1922 34494602 RP 1923 35993122 RP 1924 37491047 RP 1925 38898349 RP 1926 40395004 RP 1927 41890987 RP 1928 43296272 RP 1929 44790833 RP 1930 46194646 RP 1931 47597684 RP 1932 48999923 RP 1933 50491338 RP 1934 51891902 RP 1935 53291590 RP 1936 54690377 RP 1937 55998233 RP 1938 57395147 RP 1939 58791080 RP 1940 60096009 RP 29 2 3897985 RP 29 3 5493091 RP 29 4 6998107 RP 29 5 8593009 RP 29 6 10097772 RP 29 7 11692370 RP 29 8 13196777 RP 29 9 14790969 RP 2910 16294919 RP 2911 17798603 RP 2912 19391995 RP 2913 20895070 RP 2914 22397802 RP 2915 23990167 291 ASSIGN- CALCULATED MENT GSCD R 2916 25492137 RP 2917 26993689 RP 2918 28494797 RP 2919 29995436 RP 2920 31495579 RP 2921 32995202 RR 2922 34494283 RP 2923 35992786 RP 2924 37490696 RP 2925 38897984 RP 2926 43394625 RP 2927 41890594 RP 2928 43295864 RP 2929 44790411 RP 2930 46194210 RP 2931 47597234 RP 2932 48999459 RP 2933 50490859 RR 2934 51891408 RP 2935 53291082 RP 2936 54599855 RP 2937 55997702 RP 2938 57394597 RP 2939 58790515 RP 2940 60095430 RP 39 3 5493007 RP 39 4 6998300 RP 39 5 8592878 RP 39 6 13097617 RP 39 7 11692191 RP 39 8 13196574 RP 39 9 14790742 RP 3910 16294669 RP 3911 17798329 RP 3912 19391697 RP 3913 20894748 RP 3914 22397457 RP 3915 23899797 RP 3916 25491744 RP 3917 26993272 RP 3918 28494356 RP 3919 29994971 RP 3923 31495091 RP 3921 32994690 RP 3922 34493744 RP 3923 35992226 RP 3924 37490112 RP 3925 38897377 RP 3926 40393994 RP 3927 41799938 292 ASSIGN- CALCULATED MENT GSCD RP 3928 43295185 RP 3929 44699708 RP 3930 46193483 RP 3931 47596483 RP 3932 48998684 RP 3933 50490060 RP 3934 51890586 RP 3935 53290236 RP 3936 54598985 RP 3937 55996808 RP 3938 57393679 RP 3939 58699573 RP 3940 60094465 RP 49 4 6997850 RP 49 5 8592695 RP 49 6 10097400 RP 49 7 11691941 RP 49 8 13196291 RP 49 9 14790425 RP 4910 16294319 RP 4911 17797945 RP 4912 19391280 RP 4913 20894298 RP 4914 22396973 RP 4915 23899280 RP 4916 25491194 RP 4917 26992689 RP 4918 28493739 RP 4919 29994320 RP 4920 31494407 RP 4921 32993973 RP 4922 34492993 RP 4923 35991442 RP 4924 37399295 RP 4925 38896526 RP 4926 4C393110 RP 4927 41799021 RP 4928 43294234 RP 4929 44698724 RP 4930 46192465 RP.4931 47595432 RP 4932 48997600 RP 4933 50398942 RP 4934 51799435 RP 4935 53199052 RP 4936 54597768 RP 4937 55995557 RP 4938 57392395 RP 4939 58698255 RP 4940 63093113 ASSIGN- ME N T R P 59 5 RP 59 6 RP 59 7 RP 59 8 RP 59 9 RP 5910 RP 5911 RP 5912 PP 5913 RP 5914 RP 5915 RP 5916 RP 5917 RP 5918 RP 5919 RP 5920 RP 5921 RP 5922 RP 5923 RP 5924 RP 5925 RP 5926 RP 5927 RP 5928 RP 5929 RP 5930 RP 5931 RP 5932 RP 5933 RP 5934 RP 5935 RP 5936 RP 5937 RP 5938 RP 5939 RP 5940 RP 69 6 RP 69 7 RP 69 8 RP 69 9 RP 6910 RP 6911 RP 6912 RP 6913 RP 6914 RP 6915 RP 6916 RP 6917 RP 6918 RP 6919 293 CALCULATED GSCD 8592459 10097121 11691619 13195926 14790018 16293868 17797452 19390744 23893719 22396351 23898615 25493486 26991938 28492946 29993484 31493527 32993050 34492028 35990434 37398244 38895432 43391973 41797841 43293011 44697458 46191157 47594081 48996206 53397505 51797955 53197529 54596202 55993948 57390743 58696561 60091376 10096781 11691226 13195481 14699520 16293318 17796849 19390089 23893011 22395591 23897802 25399621 26991020 28491976 29992462 ASSIGN- MENT RP 6920 PP 6921 RP 6922 RP 6923 RP 6924 RP 6925 RP 6926 RP 6927 RP 6928 RP 6929 RP 6930 RP 6931 RP 6932 RP 6933 RP 6934 RP 6935 RP 6936 RP 6937 RP 6938 RP 6939 RP 6940 RP 79 7 RP 79 8 RP 79 9 RP 7910 RP 7911 RP 7912 RP 7913 RP 7914 RP 7915 RP 7916 RP 7917 RP 7918 RP 7919 RP 7920 RD 7921 RP 7922 RP 7923 RP 7924 RP 7925 RP 7926 RP 7927 RP 7928 RP 7929 RP 7930 RP 7931 RP 7932 RP 7933 RP 7934 RP 7935 294 CALCULATED GSCD 31492452 32991923 34490848 35899202 37396959 38894095 40390583 41796399 43291517 44695912 46099558 47592429 48994502 53395749 51796146 53195668 54594288 55991982 57298725 58694490 59999253 11690761 13194954 14698931 16292667 17796137 19299314 20892175 22394692 23896842 25398598 26899936 28490829 29991253 31491182 32990591 34399454 35897746 37395441 38892515 40298941 41794695 43199751 44694084 46097668 47590477 48992488 53393673 51794008 53193468 ASSIGN- 9.]. mE RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP NT 7936 7937 7938 7939 7940 89 8 89 9 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 99 9 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 295 CALCULATED GSCD 54592027 55899659 57296339 58692042 59996743 13194346 14698252 16291916 17795314 19298420 20891209 22393656 23895734 25397419 26898685 28399507 29899859 31399717 32899054 34397845 35896066 37393690 38890692 40297047 41792729 43197714 44691975 46095487 47498225 48990164 50391278 51791542 53190930 54499417 55896978 57293587 58599218 59993848 14697482 16291066 17794383 19297408 20890115 22392481 23894478 25396082 26897267 28398008 29898279 31398055 1720 RP QD no 96 60 RP RP RP PP DP 90 60 60 RP 60 60 pa po \- I) \O ~O \O \J) ‘4’.) w \J I1 w) ‘0 '0 KO ‘0 x0 9 N 0 32897312 3439692? 35894161 37391794 38798626 (90294900 41790501 43195404 44599584 46093016 47495673 48897531 59398564 51698746 53098053 54¢;961159 55893939 57290467 58596018 59990565 APPENDIX V LIST OF ASSIGNMENTS AND FREQUENCIES 0F OBSERVED TRANSITIONS FOR v3+v4 OF CH3F The following pages contain a list of the observed transitions of v3+v4 of CH3F. The columns of the list, left to right, are: the assignment (AK,AJ.K,J); the observed frequency (in cm"); the observed fringe number (from which the frequency may be calculated - of. Chapter 7); the Av (weight = (NORM)2/(Av)2); the weight; observed line height; and the line number. 297 ASSIGN- MENT PP 99 9 PP 9910 PP 9911 PP 9912 PP 9913 PP 9914 PP 9915 PP 9916 PP 9917 PD 9918 PP 9919 PP 9920 PP 9921 P0 99 9 P0 9912 PO 9913 PO 9915 P0 9916 P0 9917 PO 9918 P0 9919 P0 9920 PR 99 9 PR 9910 PR 9911 PR 9915 PR 9916 PR 9919 PP 89 8 PP 89 8 PP 89 9 PP 8910 PP 8911 PP 8912 PP 8913 PP 8914 PP 8915 PP 8916 PP 8917 P0 89 8 P0 89 9 P0 8910 PG 8912 P0 8913 PO 8913 P0 8914 PR 89 8 PR 8912 PR 8913 PR 8914 OBSERVED FREQUENCY 397597390 397399180 397290460 397091670 396892650 396693600 396494370 396295090 396095590 395895740 395696220 395496280 395296370 399099020 399093650 399091840 398997250 398994280 398991880 398898710 398896090 398893020 400797510 400992680 401097750 401696630 401890390 402292300 398593710 398594280 398395320 398196630 397997830 397798700 397599650 397490370 397291070 397091670 396891290 399898380 399896570 399894980 399890590 399798610 399798190 399795970 401398630 401999400 402193310 402298340 298 FRINGE NUMEER 8996480 8399030 7890310 7292410 6693250 6094010 5494200 4394220 4293600 3691870 3091153 2399150 1797230 13697210 13590540 13494910 13390610 13291390 13193910 13094050 12995930 12896370 13991220 19398380 19895260 21698370 22191160 23491490 11995230 11997000 11398020 10799890 10291430 9691930 9092710 8492750 7892270 7292410 6599020 16194020 16098410 16093460 15899790 15893640 15892340 15795420 20891280 22790290 23193550 23690270 DELTA NU 90140 90200 90140 90140 90140 90200 90140 90140 90140 90140 .0200 90200 90200 99999 90200 90200 99999 99999 99999 99999 90200 .0200 90200 99999 99999 99999 99999 99999 90200 90200 90200 90100 90140 90140 90200 90140 90200 90200 99999 99999 99999 99999 90200 99999 99999 99999 99999 99999 99999 99999 WEIGHT 950 925 950 950 950 925 950 950 950 950 925 925 925 900 925 925 900 900 900 900 925 925 925 900 900 900 900 900 925 925 925 1900 950 950 925 950 925 925 900 900 900 900 925 900 900 900 .00 900 900 900 INT HfidPJH m-b£~b 943m 9.9 C ~ooau 9.9 H 9...: R)H ocruam—40~®O bLoub 0 w - o o \J (D C) U! U1 H \J 00 k» u) 1.“) Q ‘ ’ \J (1‘ D 610) UN 01 U.) m 1) \O o o o. .0.... o co UINC) (.10 LfitDG‘N' O\ C) (7) C) C) O C.) (D C) (D C) (3 f) b-) «L‘ 0‘ C) P‘DJ>b-P#\P£>PJ>$~PJ>P~PJ>£~DJ>P~D \OfilJ‘fiP-‘t—JN C) Q Q L) g) Q Q N 01 O\ I) C) CD . U) C) l—‘ FRINGE NUM8ER 23392780 22793210 221927C0 21590920 20897430 20295660 18690670 19895260 1839763C 177945O 173971~ 16490< 157954-” 28390340 28297830 23294550 2829038: 281953:0 99640 , \ 1 J) J C) 1-4 \ C) C ('7 \ I U‘ ) \ L N m '\1 (D 1') L.) C) O U) H ) ( \ .\.. \fi _. C) Q. 9 m \l \J p m 0 O m 17m :1) 0" Q 41 m l-‘ .u m 0‘ a) 09 N \1 0‘ O "J“ j-) l—--‘ ‘N \0 m ‘r. -.i_‘.: O C.) )N \1 )("J- o ‘1 _I (“h (’7) ) (.:_) ('1‘) \ CL) \ _ O 1’) U) ("3 1; \DH L‘ I“\ ‘_) O\ 013 m \J 1),) \ O U.) 1‘ ()\1\) 27192 N 0‘ '1) \O . \ «J \3 O-—‘ \’ Kn (2C) J L“ \(_. C) C.) Q 9) ) J) O K I \ U) Q (X) o \J U) H W O (‘) (,3 (I TU \Q \j1 {\J ‘xl '1» K O 0‘ CHD 4‘ 0161mm 019-4 #0 0‘ NUWHOMv (331»: u b—‘ J) O. OwJ‘V' DJ 0 .L‘ ) \19—9 \j! C) O O C) C) (-)('_> U') U! D C) -U ~J m U.) I\) ~41 O“ 43‘ U) u) xx) (f) \O l\) -‘ ' - C) C) C) N N U) U) '~.)) \_1) U.) U) U) U3 0) \O \l \l I\) D) C) 0‘9 U“! (1) h) C) Oommp \lU‘ \d 925 95 950 900 900 .00 .00 900 950 925 900 900 900 925 950 950 925 950 A 950 1900 950 900 900 900 900 900 900 900 F'. 017‘ 925 925 900 950 900 900 925 950 950 953 .00 925 900 .00 925 925 925 900 900 925 1900 14 ...—99.9 101‘!) H m: UJOODO\»()W(DO\fl\) Hl—JH 9—9 (DwOO LO \0 \O Dynasm \O \O ‘0 \1) \L') (I) (D 1 KQKJJKNWUJUJUJWUJUJWUJWWW "D 3>> ('DLUxOxliD U1'ZDO\O)J> 410009—an .. 3) WW 0303 F—‘N .L‘ 3783 376 373A 4298 4384 445 453 461 469 477 484 490 497 525A 531 5385 544 410 402 ASSIGN- MENT PP PP PP PP PP PP PP PP PP PP pa PP PP PP PQ PQ PQ P0 P0 PQ P0 P0 P9 PG P0 P0 P0 PQ P0 PQ P0 P0 29 29 29 29 8 29 9 2910 2911 2912 2913 2914 2915 2916 2917 2918 29 29 29 29 29 29 29 29 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 \IO‘U) (DNO‘U‘L‘UJN \0 PR 29 PR 29 PR 29 PR 29 PR 29 PR 29 2 3 4 5 6 9 PR PR PR PR PR PR PR PR 2910 2911 2912 2913 2914 2915 2916 2917 PP 19 PP 19 PP 19 PP 19 2 3 4 5 OPSERVED FREQUENCY 403790240 403592120 403394083 403195420 402996390 402797610 402598330 402398900 402199530 40199940 40179722 40159875 4013.799\ 4011.6668 4045.7000 404596510 404595450 404594280 404593070 404591510 404499740 404497899 404495630 404493210 404490670 404397710 404394370 4043.0900 404296880 404292870 404198060 404192050 405097960 405293450 405490640 405595200 405790800 4061.5950 406390570 4064949CO 406598990 406792860 406896260 406999360 407192160 407294280 404999580 404892090 404694413 404496240 (J C.) L) Q 302 FRINGE NUMBER 28091570 27495220 26899110 26391080 25791910 25193500 245.3540 23993130 23392780 22790290 22397523 21493350 20799290 20192960 307.1400 30699863 30696563 30692930 30599160 30594360 30498800 30493043 30396040 30298490 30290600 30191400 300.1000 29990230 29797730 29695230 29590290 29391590 32299870 32798050 33391513 33796770 34295300 35695710 36191170 36595750 36999560 37492700 37894370 38295100 38694900 39092590 32093790 31499430 309.A470 30397950 DELTA NU 99999 99999 90200 99999 99999 .0200 90130 90140 99999 .0200 .0100 99999 90140 90200 99999 99999 90140 90100 99999 90200 .0100 .0200 .0140 .0100 90200 .0140 99999 .0140 99999 99999 .0100 99999 99999 99999 99999 90200 .0140 90200 90200 99999 .0140 90200 90200 99999 .0200 99999 90200 90140 99999 .0200 WEIGHT .00 900 925 .00 900 925 1.00 950 900 925 1900 .00 950 925 .00 900 950 1900 .00 925 1900 925 950 1900 925 950 900 950 900 900 1.03 900 .00 .00 .00 925 950 925 925 900 950 925 925 900 925 900 925 950 .00 925 INT LINE NO 391A 3838 374A 365 3558 344 334 323A 314 304 295 286 274 253 436A 436 435 434 433 432 4314 430 429 427 426 425 423A 422A 420 4173 415 412A 460 4688 4788 485 453 516 522A 529 537 544 553 559 563 568A 4568 448 439A 429A ASSIGN- MENT PP 19 6 PP l9 7 PP 19 8 PP 19 9 PP 1910 PP 1911 PP 1912 PP 1913 PP 1914 PP 1915 PP 1916 PP 1917 PP 1918 PP 1919 PP 1923 PP 1921 P0 19 1 PG 19 2 PG 19 3 PG 19 5 PG 19 6 PG 19 7 P0 19 8 PG 19 9 C 1910 PG 1911 PO 1912 PO 1913 PO 1914 P0 1915 P0 1916 PO 1917 PO 1918 PO 1919 PO 1920 PR 19 4 PR 19 5 PR 19 6 PR 19 7 PR 19 8 PR 19 9 PR 1912 PP 1913 PR 1914 PR 1915 PR 1916 PR 1917 PR 1918 PP 1919 99 09 3 oNl OBSERVED FREQUENCY 404298460 4C419C140 403991840 403796050 4C3594300 403394880 4C3195420 402995890 402796020 402595990 402395780 402195930 401994299 401793010 401591410 401299550 405393733 4053932l+0 30257v 39473'3 299400 297963 29626 294190 29208C 199790 19 7190 19 4330 191260 DJ-‘b U‘Wk) Pb D C) C) C) C) (_) (u (3 DL‘ m \J1\J1\J1 \I \J: U1 \fi Ln \fi 7 I 1 l - . C) (7) C) C) () . .4 ‘OI U (.- 09435 £‘b-DF‘D

® a] U) 0‘ .“\17L7\\JU)O) C)i\JD HG‘\O \f) \JNKflU‘WKHUHAUJN-QC)RLPKH$‘W\» C) (:1 O (f) O C7 (.5 C.) C) O (3 C.) 1.; \J \O \I') \- \O D (54> \O r" 1. v. 177 9—9 (3 HT 900 900 900 900 925 900 900 900 925 925 900 1900 900 900 900 925 900 950 950 1900 1900 950 950 925 925 1900 19 00 19 00 950 19 00 900 1900 953 950 930 925 925 14 LIME NO 421 411 403 393 385 375 365 355 343A 332 321 312 301 292 282 658 475A 475 474A 473 472 471 470 459 468 467 465 454 462 460 459 457 455 452 450A 516 523 530 539 547 555A 571 576 566 592 596 603 606 612 487 ASSIGN- MENT RP 09 RP 09 RP 09 RP 09 RP 09 RP 0910 RP 0911 RP 0912 RP 0913 RP 0914 RP 0915 RP 0916 RP 0917 RP 0918 RP 0919 RP 0920 RP 0921 RP 0922 RP 0922 RP 0923 RQ 09 R0 09 R0 09 R0 09 (3 R0 09 R0 09 R0 09 R0 0’ .7 R0 0910 R0 0911 R0 0912 R0 0913 R0 0914 R0 0915 R0 0916 R0 0917 R0 0918 R0 0919 R0 0920 R0 0921 RR 09 RR 09 RR 09 RR 09 RR 09 RR 09 RR 09 RR 09 xomxlO‘lfi-F‘ OCDxJOLflbWfinJH \JOLflk‘mPUP‘O OBSERVED FREQUENCY 405491170 405292620 405094670 404896530 404697950 40449924-O 4043.0230 404191330 403991840 403792290 403592440 403392500 403191990 402991570 402790120 402499160 402296290 402092660 401797510 451797510 401591410 406099780 406099320 406098640 406097830 406096730 4060.5440 406093893 406092170 406090320 405998000 405995520 405992880 405399960 405896650 405893040 405799020 405794660 405699640 405693900 405597240 405499590 406296880 406493420 406599860 406796000 406992100 407097860 407293550 407398920 m+-4w C) UJUJUJUJUJ (DHHNNW p ...... Q\fixnd)wmfl QJKJDIuchfi‘H 0:) u) \1 1.31 Lu 1;) \1 U1 U) I . .J C)OC)C)C)CJC)O MN ‘00 N0) . 01) U) 28693770 28097960 27496200 26894190 26290420 25596910 24990200 24295010 23593890 22890410 22092190 22392190 21291020 35496520 354.5090 35492970 35490450 97040 93010 ,1 N L0 H \O L MP0” 0 O C.) C.) C) “1 11:) i—«d I\) N U) h.) \f) I—fi U) H (“17 DJ UJUJ DJUJUOUJ kUU) UL) I\) \O 3~bkfiu1mxnu1wk p @CDwa-qup - (D 4L) (J .99. oa»o:-o 0 DJ 6 W C HKJOU) KL) 6 4 00 0‘ m m m m U1 |\ 'I" 61» P.P uwo O .1 D.) p m A \) OCJOOC)OO p C C u 3 3389313 33599320 35999700 36591140 37092260 37592460 380.2520 38591520 39090340 39498120 )p(nq)b\n O DELTA N0 .0200 90140 90200 99999 90200 .0100 90140 90200 90140 .0200 99999 99999 90200 90200 90140 99999 90140 90140 90140 9C140 99999 90140 90100 .0100 .0100 90100 90100 90070 .0070 99999 90140 90140 .0130 .0100 90140 90140 90200 90100 90140 90100 90100 .0100 90200 90100 .0140 90200 .0200 99999 99999 90200 WE 1 0H 7 1900 950 925 900 925 1900 950 925 950 925 .00 .00 925 925 950 900 953 950 950 950 900 950 1.00 1.00 1900 1900 1.00 2900 2900 900 950 950 1900 1.00 950 950 925 1900 950 1900 1900 1900 925 1900 950 925 925 900 .00 925 INT 16 21 24 19 18 17 15 23 19 17 27 22 20 19 17 19 11 16 19 1o 11 16 13 20 21 21 21 20 22 25 23 20 25 21 24 21 29 19 18 19 19 14 14 18 16 19 20 24 LINE 479 468A 459A 450 441 431 422 412 403 392A 384 373 363A 353 340 328 317 306 294 282 514A 514 513 512 511 510 509 508 507 505 504 503 501 500 499 496 495 492 489 486 483 521 528 538 546 555 561 568 572 ASSIGN- MENT RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 09 8 09 9 09 9 0910 0911 0912 0913 0914 0915 0916 0917 0918 0919 0920 19 19 19 19 19 19 19 1910 1911 1912 1913 1911 1912 1913 1914 1915 1917 1918 1919 1920 1921 \OCDxIO‘U‘i-L‘U) ....9 O ~00)4(bu1bLnk9 OBSERVED FREQUENCY 407593920 407698840 407698840 407893470 407997990 4C8192070 408296070 408399640 405592930 408695860 408798150 408899520 408999720 409098480 406393910 406498580 405998680 405890260 405691960 405493270 405294190 405094670 404893710 404599480 404299430 404996190 404790840 404499740 404299433 404099630 403698240 403497350 403294990 402992970 402698500 406895160 406894550 406893630 406892570 406891170 406799460 406797490 406795110 406791180 406693630 406590520 406893630 406795110 406791180 406697890 305 P .— I ~ '2 F“ C) X1 m 1 \' R Uu—w I'ID Z 39994790 40491180 40491180 40896670 41391540 41795620 42199150 42691360 43092690 43492910 43891110 44196490 44498200 44795450 36291550 35697180 35192000 34594730 33997970 33399690 32890350 32199630 31594460 30799110 29895640 31993260 31194440 30498300 29895640 29294080 27995350 27390400 26690860 25892390 24895180 37890950 37799030 37796170 37792380 37698520 37693220 37597100 37499700 37397450 37193970 36793210 37796170 374.9700 37397450 37297240 DELTA NU 90200 90140 90140 99999 90140 .0200 90140 90100 90140 .0100 .0140 90200 90100 .0100 99999 99999 99999 90140 99999 99999 99999 99999 90200 90200 90200 .0140 99999 .0230 90200 90200 99999 99999 99999 99999 .0290 99999 90200 90200 90200 90200 90140 .Gl/LO 90200 90200 90200 99999 99999 90200 90200 99999 WEIGHT 925 950 950 .00 950 925 950 1900 950 1900 950 925 1900 1900 900 900 .00 950 .00 900 .00 900 925 925 925 950 900 925 925 925 900 .00 900 900 925 900 925 ’75; 94/ 925 925 950 950 925 925 925 900 900 925 925 900 LINE N0 579 589 594 599 600A 611 619 624 630 635 642 646 552 524 516A 506 497 488 480 469 459A 449 437A 4213 455 442 431A 4218 410E 391 381A 3703 357 339 552A 552 551 550 549 548 547 545 543 540 532 551 545 543 542 ASSIGN- MENT R0 R0 R0 R0 R0 R0 R0 RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RP RP RP RP RP RR RP RP RP RP RP RP RP RP RP RP R0 R0 R0 R0 R0 R0 1914 1915 1916 1917 1918 1919 1920 19 19 19 19 19 19 19 19 19 1911 19 9 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 29 4 29 5 29 7 29 8 2910 2911 2912 2913 2915 2916 2917 2918 2920 2921 2922 2924 29 29 29 29 29 29 w>m~40~uupuamn~ mxlO‘U19Lx) OFSERVED FREQUENCY 406694960 406691400 406597590 406593440 406498150 406399680 406295260 407199250 407395730 407591820 407697700 407893470 407998720 408193830 408298250 40849 260 408594920 408594150 408692530 408795540 408899520 409492750 409594380 409692860 409695320 406992090 406794080 406397640 406199170 405891590 405692010 405493270 405293450 404893710 404693620 404493210 404292120 403799490 403597380 403395220 402990100 4076.0200 4075.9250 407598190 407596900 407595460 407593920 306 FRINGE JUMBER 37198130 37097060 36995200 36392280 36695850 36399490 35994670 38896950 39398200 39898240 40397640 40896670 41394100 41891100 42295930 42696390 43098870 43096490 43392450 43792990 44196490 44599080 45990320 45492160 45892020 46198180 464.4400 46592220 38092520 37496490 36393160 35795720 34598850 33997970 33399690 32798050 31594460 30992000 30298490 26992910 28390340 27691590 26992650 25592340 401.4300 40191360 400.8070 43094290 39999560 39994790 DELTA NU .0140 90140 90140 90140 .0140 90200 99999 90100 90100 90200 90140 99999 90200 90200 90140 90140 90200 99999 90200 .0140 .0140 .0140 90100 .0200 .0200 90140 90200 99999 99999 99999 90200 .8148' 99999 99999 90200 90200 90140 90200 99999 90200 99999 99999 99999 90200 99999 90140 AHAQ / 9999 .0100 .0140 99999 WEIGHT 950 950 950 950 950 925 900 1900 1900 925 950 900 925 925 950 950 925 900 925 950 950 950 1900 925 925 950 925 900 900 900 925 950 900 900 925 925 950 925 900 925 900 900 .00 925 .00 950 .00 1900 950 900 INT LINE NO 541 538C 536 533 531 527 5204 566 571 578 588 594 600 6058 6128 620 626 625 628 634 642 647 655 659 663 668 6718 673 555 5448 526 518 498 488 480 4683 449 439 427 417A 397 386 375A 352 584 583 582 581 580 579 ASSIGN- MENT R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR 29 9 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 29 29 29 29 29 29 29 2910 2911 2912 2913 2914 2915 2916 2917 2918 2920 2921 39 39 39 39 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 \OxlO‘U‘J-‘UJN «J U1 \0 CD OBSERVED FREQUENCY 407501823 407409500 407407530 407404910 407402060 407308920 407305730 407302250 407208260 407203710 407109250 407104210 407008930 407003470 406907930 408101510 408207390 408403340 408509180 408704740 408809970 409109640 409304790 409409150 409603370 409707360 409901060 410004460 410107460 410209980 4104.2330 410605833 410707360 407409500 406705500 406506880 406307640 406108270 405908630 405709020 405509240 405309170 405108960 404908850 404707390 404506510 404304770 404101340 307 FRINGE NUMBER 39808240 39801040 39704950 39606740 39507900 39408120 34308200 39207370 39104960 39000340 38806950 38701290 38504870 38307370 38200650 41703880 42203250 42702870 43202000 43700500 44107880 45100150 45507260 46001910 46406140 46809650 47302250 47703730 48104350 48503280 8901690 49604780 50000650 39801040 U3 U.) DJ \J (Y) (:0 \fl (2) Ch . C O C) \ (“ LL) b) O \O o 9 U) ' 1)) (1* <1) \() 4" 9 1 L) C) C) (L) o N C) C) '1. " . U.) U) U) U1 U! 0‘ 9—9 - w o o i\) U :C)\.OI~—JC)OOI> _) U’UJ U)? -U1 .. \OLL) LOU.) U14} CO CO 4} 0‘ (A) DELTA NU 00200 09999 00140 00200 00140 09999 09999 00100 00140 09999 00100 00200 00200 00200 00200 09999 00200 00100 00140 00140 00140 00140 00140 00200 00140 00140 00140 00200 .0140 00200 09999 00200 09999 09999 00200 00200 09999 09999 00200 00140 09999 09999 00140 09999 00140 09999 00140 09999 09999 09999 025 000 050 025 050 000 000 1000 050 000 1000 025 025 025 025 000 025 1000 050 050 050 050 050 025 050 050 050 025 050 025 000 025 000 000 025 025 000 000 025 050 .00 000 050 000 050 000 050 000 000 000 LINE N0 578 576 575 574 573 572 571 570 569 568A 566 564 562 560 558A 605 612A 621 627 633 642A 656A 661A 6655 672 676 663 689 695 699 704A 714 7193 576 5635 556 543A 535 526 517 506 496 487A 478 466 456A 444 436 424 412 ASSIGN- MENT R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RP RP RP RP RP RP 39 39 39 39 39 39 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 39 3 39 4 39 39 39 39 39 3910 3911 3913 3914 3915 3916 3917 3918 3920 49 9 4911 4913 4914 4916 4917 \OG)Q(FU‘9 0(D\JOKfi R0 49 R0 49 R0 49 R0 49 6 7 8 9 R0 R0 R0 R0 R0 4910 4911 4912 4913 4914 OBSERVED FREQUENCY 408394400 408393370 408392120 408390620 408298880 408297013 408294910 408292630 408290120 408197330 408194630 408191510 408098200 408095000 408090870 407996560 407991700 407895310 407794940 409092563 409198650 409394320 409499790 409695320 409890350 409995150 410099910 410294710 410502760 410696720 410890440 410994260 411096690 411199590 411492250 407590540 407192530 406793400 406593440 406191420 405990920 409096900 409095400 409093740 409091840 408999720 408997250 408994620 408991630 408898140 308 FRINGE NUMEER 42495050 42491860 42397960 42393290 42297900 42292090 42195540 42098470 42090660 41991970 41893570 41793880 41693590 41593630 41490790 41297380 41192260 40992390 40690140 44597030 45097080 45595810 46093920 46592220 46998940 47494970 47990870 48396890 49294150 49697550 50190213 50593200 50991860 51391970 52092430 39894250 38696050 37494360 36892280 35591630 34897870 44790530 44695850 44690700 44594800 44498200 464.0530 44392330 44293030 44192200 DELTA NU 90140 90140 90140 90100 90100 90140 90140 90140 90140 90140 99999 90200 90100 99999 99999 90140 90140 99999 99999 90100 90200 90100 90100 90200 99999 90140 90100 99999 90100 90140 90140 99999 99999 90100 .0100 99999 99999 90200 99999 99999 90140 90140 99999 90140 90140 90200 90200 99999 90140 90100 950 950 950 1900 1900 950 950 950 950 950 900 925 1900 900 900 950 950 900 900 1900 925 1900 1900 925 900 950 1900 900 1900 950 950 900 900 1900 1900 900 900 925 900 900 950 950 900 950 950 925 925 900 950 1900 WEIGHT INT 10 14 17 17 21 25 19 18 19 19 23 25 8 14 15 16 13 12 p 9 20 21 20 24 24 23 21 22 30 19 16 16 21 15 14 12 11 6 8 14 4 7 7 15 14 13 16 9 12 13 10 LINE N0 617 616 615 614 613 612 610 609 608 607 606 605 604 603 601A 598 597 595 591 648 656 661 666 673 679 686 692 697 710 715 721 728 732 737 745 577 563A 544A 533 515 502 651 650A 649A 647 646 645 644 643 641 ASSIGN- MENT R0 4915 R0 4916 RR 49 4 RR 49 5 RR 49 6 RR 49 7 RR 49 8 RR 49 9 RR 4910 RR 4911 RR 4912 RR 4913 RR 4914 RR 4915 RR 59 6 RR 59 7 RR 59 8 RR 59 9 RR 5910 RR 5911 RR 5912 RR 5913 RR 5914 RR 5915 RR 5916 RR 5917 RR 5918 RR 5919 R0 59 8 R0 59 9 R0 5910 R0 5911 R0 5912 R0 5913 R0 5914 R0 5915 R0 5916 R0 5917 R0 5918 R0 5919 R0 5920 RP 5915 RP 5917 RP 5919 RP 69 8 RP 6910 RP 6914 RP 6916 RP 6919 RP 6920 OBSERVED FREQUENCY 408893560 408799690 409993470 410099090 410294710 410399910 410595020 410699950 410894590 410999120 411192920 411296440 411398760 411591990 410994260 411099730 411294850 411399420 411594130 411698490 411892710 411996610 412190440 412293890 412397350 412590390 412693030 412796060 407993670 409791410 409699250 409696380 409694300 409691480 409598480 409595290 409591800 409498040 409494170 409490060 409395730 407093470 406692560 406291060 409197300 408799690 408090870 407690200 406997930 406796600 309 FRINGE NUMBER 43997930 43895920 47399740 47898340 48396890 45394160 49391163 49797590 50293110 50698320 51191240 593260 A D d J k 0 O N,“ rv~Jm Cypu OC)(. k.) C.) ’ ) ‘09 C) Ulw\" ......- -D¢)w(nh0w Wkns C) U) UHfianlmkfikfiU1mx px09>w () C) C) C) wl‘urQHr—er 33109-49 I\) G.) U.) o w M \l C 53791500 54194490 54596330 54998200 55398730 55798060 56198560 46798180 46791140 46694440 46597050 46499030 46490270 46390950 46291030 46190170 45998480 45896430 45793640 45690180 38397870 37190670 35891600 45092860 43895920 41490790 40194300 38390650 37594310 90140 90100 90140 .0100 99999 .0140 90100 90100 90100 90140 90100 90200 90200 90140 99999 .0200 99999 90140 99999 90140 90100 90200 99999 90200 99999 99999 90200 90200 90200 99999 90140 90140 90200 90140 90200 90140 90200 90200 90140 90200 90200 99999 99999 99999 90200 90200 99999 99999 99999 99999 925 950 925 925 900 900 900 925 925 900 900 900 900 INT 10 21 LINE NO 638 636 685 691 697 703 711 716 723 729 734 740 744 748 728 733 739 744A 749 753 758 762 766 769 773 780 785 788 677 676 675 674 672A 671 670 669 667 665 664 662 661A 560 539 519 655A 636 601A 584 558A 546A ASSIGN- MENT RP RP RP RR R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RP RP RP RR RR RR RR 6921 6922 6925 6926 69 7 69 8 69 9 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 69 6 69 7 69 8 69 9 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 7910 7915 7920 79 7 79 8 79 9 7910 0 F Him m IT) < 2'. HI 0 U ,1,)1) Y K) 406595300 406393910 405697530 405495010 410592760 410591660 413499613 413497340 410494750 413491993 410398990 410395810 410 392450 413 298 933 41020471.) 413293893 410196620 410192170 413097460 410092510 409997380 409992040 409896500 408990350 409794120 41179265- 411897770 412092740 412197540 412391930 412496180 412690240 412793960 412897570 413390860 413194050 413296840 413399530 413591940 413694190 413796220 413897920 413999490 409592740 408594150 407590540 412691120 412796060 412990850 413095300 49294150 49290700 49194340 43-3.7230 g9.07§© Ahwonfi‘q 48591330 43791430 486909 60 485'9OC 403968 43295 48191 47997 47893 476978 475919 4739629 471.9 000 46998943 46799560 52996990 53493990 53990570 54396590 54891340 55295650 55699380 56192040 56594380 56995710 5739673‘3 57796500 58195970 58594550 58992640 59390060 59696460 60092430 46193 070 43096490 39894250 55792100 56198560 56694580 57099500 A) NO‘JC) 9—4:JO\9-—00\1—J ()1 (J(‘LWLU 99999 90200 90140 90200 99999 99999 .0100 90100 .0140 90200 WEIGHT 900 900 900 900 900 50 O .2 ' 1900 925 950 950 900 1900 1900 950 900 1900 925 950 925 900 950 :9 .JV 950 900 900 2900 950 1900 2900 1900 1900 950 1900 925 1903 950 950 1900 1900 950 900 925 950 925 900 900 1900 1900 950 925 A Fay—9 N \O'.p\1\1WL5C NN \JU) Hrka -QC)qur HHr—JH \IO‘NNO 9.4 \I‘ H F‘HFJFJ \ONxOJ-‘NJ-‘D 11 13 16 11 13 LINE N0 534 524 491 481 710 709 708 707 706 704 702 701 700 698 697 696 694 693 690 688 6873 534 682 679 677A 755 760 754 768 771 778 733 737 789 792 795 798 800 803 806A 808 311A 314 625 525 577 784 788 790 793 311 ASSIGN- OESER VED FRINCE DELTA WEIGHT INT LINE MENT FREOU 'EHJC NUMBER N0 N0 RR 7911 413199590 57593943 90140 950 12 797 RR 7912 413393620 57997590 90140 950 13 799 RR 7913 413497433 58490540 90200 925 11 801 RR 7914 413501340 595.2850 .9999 .00 13 835 RR 7915 413794263 59293963 90140 950 10 807 RR 7916 413897380 59694780 90200 925 10 811 RR 7917 414090223 6039471‘3 90230 925 8 8144 RR 7918 414192980 60494393 90200 925 6 817 RR 7919 414295433 60893090 99999 900 10 821 R0 79 8 411294850 21498330 99999 900 8 739 R0 79 9 411293310 51492610 .999 900 7 738 R0 7910 411293620 31395163 925 5 7374 R0 7911 411198150 51297503 950 5 7365 R0 7912 411195550 5119940J 925 10 735 R0 7915 411096010 50899747 950 11 7314 80 7916 411092263 50798070 925 8 7304 R0 7919 4109.0090 50490.24J .00 5 7254 R0 7923 413894910 50294110 900 10 7234 R0 7922 410795890 49996060 950 7 709 R0 7923 410699953 49797590 900 16 716 RP 8915 409296760 453923C3 900 4 6580 RP 8917 408896500 44097090 950 5 640 R0 8911 411990940 53593570 900 5 7614 R0 8915 411798610 53195520 925 4 7573 R0 8916 411795 040 53092740 900 5 756 R0 8917 411791250 52992640 900 7 754 R0 8918 411697110 52799740 925 8 752 R0 8919 411692940 52696780 900 7 751 R0 8920 411598263 5259223'3 925 5 7508 RR 89 8 413498760 58494680 1900 - 802 RR 89 9 413693510 58990540 1900 806 RR 8910 413797980 59395530 1900 809 RR 8911 413992270 59799980 950 11 812 RR 8912 414096273 60293510 925 7 815 RR 8913 414290020 60696290 925 8 820 RR 8914 414393600 61J98520 1900 7 823 RR 8915 414497080 61590430 900 7 825 RR 8916 414599970 61990520 925 5 828 RR 8917 414793220 62391710 925 4 833 RR 8’21 415291250 63891C80 925 9 838 RP 9914 410199630 48496260 900 3 6958 RR 9918 409397350 45695210 900 4 6618 RP 9920 408995160 44394C’30 900 8 6446 R0 9910 412695370 55895330 950 8 786 R0 9911 412693030 5579,060 925 10 785 R0 9912- 412690240 55699380 900 19 783 R0 9913 412597300 55690233 925 4 7823 R0 9914 _412594200 55590600 900 5 782 R0 9915 4125906 60 55399590 900 12 7804 R0 9916 412496860 5529776C 900 11 779 ASSIGN- MENT R0 9917 R0 9018 R9 9019 R0 9022 RD 9023 R0 9924 R0 9926 R0 9927 R0 9929 RR 90 9 RR 9910 RR 9011 RR 9912 RR 9013 RR 9914 RR 9915 RR 9916 CBSERVED FREQUENCY 412403190 412309040 412304713 412200370 412104950 412009660 411907980 411902383 411709110 414305510 41450OC40 414604203 414708213 414901993 415005463 415108883 415301893 312 FRINGE NUMBER (Jr-I O) O O F.) C.) C.) O C)4>\J OWL» «)bw m a,» C) 0) 0.) m m \o -p m (g) d1 +..- r-I U) \l a-‘ N L‘ q) 4') \l \1 U" m 0.) U) x0 m 0‘ _'\ nob 00.000.000.000... 0‘ 0‘0“ 0‘ 0‘0‘ (P UT U1 U! U1 U‘ U1 U“ \B U‘ D\))r—‘O\lw \l \O (0) {\J (3‘ 0‘ £~wwmmm~v—amwwppppmm 0)H\1\L)U1\]\u (,1) (f) C) '1') (T) (_') C) (_'_) (") (’) (3 O\ HxlUJ H 025 000 025 000 000 000 000 000 025 .50 1030 1030 1000 050 025 050 025 INT ._0 H \OC)!—‘\))U)|—‘(T‘ wbwooxcbo‘omt—o ...:HHHHHH LINE NO 776 774 772 768A 7678 765A 763 7618 757C w N p 07(DCDUJOJ l} kpg) xJVu r\_){\) Oxlul-L‘N\OO‘ 0') (l) APPENDIX VI LIST OF OBSERVED GROUND STATE COMBINATION DIFFERENCES FOR v3+v4 OF CH3F The following pages contain a list of the observed ground state combination differences for v3+v4 of CHBF. The columns of the list, left to right, are: the assignment (cf.Chapter 4); the calculated combination difference (in cm'1) from Appendix II; the observed combination difference (in cm"); the Av (weight = (NORM)2/(Av)2); and the observed minus the calculated difference. 313 ASSIGN- MENT R0 9012 R0 9016 R0 9017 R0 9020 RP 9010 RP 9011 RP 9012 RP 9016 RP 9017 RP 9020 GP 90 9 GP 9012 GP 9013 GP 9015 GP 9016 OR 9017 GP 9018 GP 9019 GP 9020 RP 8013 RP 8014 RP 8015 R0 8013 R0 8014 GP 80 8 GP 80 9 GP 8010 GP 8012 GP 8013 0P 8014 RP 70 9 RP 7011 R0 7011 GP 70 7 GP 70 8 GP 7010 GP 7011 GP 7012 GP 7013 GP 7014 GP 7015 R0 60 8 R0 60 9 R0 6012 R0 6016 R0 6017 RP 60 8 RP 60 9 RP 6012 RP 6016 CALCULATED GSCD 200401 270187 280881 330960 350706 390103 420499 560068 590456 690612 170039 220098 230795 270187 280881 300575 320268 330960 350652 450906 490300 520693 220105 230802 150309 170009 180708 220104 230802 250499 320327 390125 180713 130613 150313 180713 200412 220110 230808 250505 270202 130616 150317 200416 270208 280904 280933 320334 420532 560112 314 OBSERVED GSCD 2004100 2702350 808510 3309280 3507050 3901010 4205100 5601040 5904650 6905930 1608940 2200800 2308240 2702160 2808690 3006140 3202490 3309810 3506650 4509030 4902240 . 5206670 2201210 2307340 1503060 1609940 1807150 2200940 2308240 2504900 3203150 3901380 1807280 1306210 1503180 1807170 2004100 2200960 2308050 2505040 2702150 1306080 1503410 2004160 2702040 2809060 2809270 3203610 4205260 5601140 DELTA NU 09999 09999 09999 09999 00245 09999 09999 09999 09999 09999 09999 00245 00283 09999 09999 09999 09999 00283 00283 09999 09999 09999 09999 09999 09999 09999 09999 00283 09999 09999 09999 00245 09999 09999 09999 09999 09999 09999 09999 09999 09999 09999 09999 09999 09999 00283 09999 09999 09999 09999 085- CALC 0009 0048 “0030 ‘0032 ‘0001 -0002 0011 0036 0009 -0019 ‘0055 ‘0018 0029 0029 “0012 0039 -0019 0021 0013 '0003 -0076 -0026 0016 -0068 -0003 ‘0015 0007 '0010 0022 ‘0009 -0012 0013 0015 0008 0005 0004 -0002 '0014 “0003 ‘0001 0013 -0008 0024 0000 -.004 0002 -0006 0027 ‘0006 0002 ASSIGN- MENT RP 0P 0P 0P 0P 0P OP 0P 0P 0P 0P 0P 0P 0P 0P 0P 0P 0P 0P 0P QP RP RP RP RP RP R0 R0 R0 R0 R0 R0 R0 R0 RP RP RP RP OP 0P 0P 0P 0P OP 0P OP 0P 0P OP GP 6017 60 6 60 8 60 9 6010 6012 6013 6014 6015 6016 6017 6018 6019 6020 50 5 50 6 50 8 50 9 5010 5012 5013 50 7 50 8 50 9 5010 5013 50 8 50 9 5010 5013 40 7 40 8 4011 4013 40 7 40 8 4011 4013 40 6 40 7 40 8 4013 30 3 30 4 30 5 30 6 30 7 30 8 30 9 3010 CALCULATED GSCD 590503 110915 150317 170017 180717 220115 230813 250511 270208 280904 300599 320294 330987 350680 100215 110917 150320 170020 180721 220120 230818 250536 280938 320340 350741 450938 130619 150320 170021 220120 110919 130621 180724 220123 250540 280943 390147 450945 110919 130621 150322 230822 60813 80516 100218 110921 130623 150324 170025 180726 315 OBSERVED GSCD 5905060 1109220 1503190 1700200 1807130 2201100 2308090 2505080 2702010 2809100 3006000 3203050 3309760 3506830 1002120 1109060 1503370 1700140 1807210 2201300 2308410 2506350 2809310 3203610 3507530 4509310 1305940 1503470 1700320 2200900 1109570 1306550 1808250 2201770 2505660 2809480 3901920 4509700 1108870 1306090 1502930 2307930 608100 805170 1002160 1109260 1306230 1503330 1700420 1807350 DELTA NU .0283 .0173 00173 00224 00224 00173 00141 00173 00245 .0200 00283 00245 09999 00245 09999 09999 09999 09999 09999 09999 09999 09999 09999 09999 09999 09999 09999 09999 09999 09999 09999 09999 09999 00283 00245 09999 09999 00283 09999 09999 09999 00283 00283 00173 00200 00245 00173 00245 00173 00200 085- CALC 0003 0007 0002 0003 -0004 '0005 '0004 '0003 '0007 0006 0001 0011 ~0011 0003 ~0003 ~0011 0017 ‘0006 0000 0010 0023 0099 ‘0007 0021 0012 '0007 ‘0025 0027 0011 “0030 0038 0034 0101 0054 0026 0005 0045 0025 ‘0032 -0012 “0029 -0029 -0003 0001 ‘0002 0005 0000 0009 0017 0009 ASSIGN- MENT 0P 3011 GP 3012 GP 3013 0P 3014 GP 3015 GP 3016 GP 3017 GP 3018 OR 3019 OR 3020 R0 30 R0 30 R0 30 R0 30 R0 30 R0 30 R0 3010 R0 3011 R0 3012 R0 3013 R0 3017 R0 3018 R0 3019 R0 3020 RP 30 RP 30 RP 30 RP 30 RP 30 RP 30 RP 3010 RP 3011 RP 3012 RP 3013 RP 3017 RP 3018 RP 3019 RP 3020 OR 20 GP 20 OP 20 OP 20 GP 20 GP 20 OP 20 OP 20 GP 2010 GP 2011 OR 2012 0P 2013 ocn~00\n£~ \OGDQCFU‘? mnn~00xn$~wrv CALCULATED GSCD 200426 220126 230825 250523 270221 280918 300614 320309 340003 350697 60813 80517 100218 110920 130622 150324 170025 180726 200426 220126 280918 300614 320309 340003 150328 180734 220139 250543 280947 320349 350751 390152 420552 450951 590531 620923 660312 690700 50110 60813 80516 100219 110922 130945 150325 170027 180728 200428 220128 230827 316 OBSERVED GSCD 2004240 2201300 2308260 2507720 2702170 2809070 3005950 3203280 3400570 3507030 607930 805090 1002110 1109230 1306260 1503430 1700159 1807270 2004180 2201270 2809150 3006330 3202980 3309860 1503100 1807250 2201370 2505460 2809590 3203850 3507500 3901510 4205480 4509530 5905100 6209610 6603550 6906890 501060 607890 805210 1002160 1109330 1309300 1503350 1700280 1807310 2004460 2201330 2308310 DELTA NU 09999 09999 09999 09999 09999 .0245 00283 09999 09999 09999 09999 00245 00245 00200 00173 09999 .0245 09999 09999 09999 00283 09999 09999 09999 09999 00245 00200 00173 00245 09999 00245 09999 09999 00283 00283 09999 09999 09999 09999 09999 09999 09999 09999 09999 09999 00283 00173 00173 09999 .0245 085- CALC -0002 0004 0001 0249 -0004 -0011 ‘0019 0019 0054 0006 -0020 -0008 ‘0007 .003 0004 0019 "0010 0001 ‘0008 0001 -0003 0019 “0011 ‘0017 “0018 -0009 -0002 0003 0012 0036 -0001 -0001 ‘0004 0002 -0021 0038 0043 -0011 ‘0005 ‘0024 0005 '0003 0012 '0015 0010 0001 0003 0018 0005 0004 ASSIGN- MENT OR 2014 OR 2015 0P 2016 GP 2017 R0 20 3 R0 20 4 R0 20 5 R0 20 6 R0 20 7 R0 2010 R0 2011 R0 2013 R0 2014 R0 2015 R0 2016 R0 2017 R0 2018 RP 20 3 RP 20 4 RP 20 5 RP 20 6 RP 20 7 RP 2010 RP 2011 RP 2012 RP 2013 RP 2014 RP 2015 RR 2016 RR 2017 R0 10 5 R0 10 6 R0 10 7 R0 10 8 R0 10 9 R0 1010 R0 1013 R0 1014 R0 1015 R0 1016 R0 1017 R0 1018 R0 1019 R0 1020 0P 10 0P 10 OR 10 OR 10 0P 10 0P 10 OLD$>mtha CALCULATED GSCD 250525 270223 280920 300616 50110 60813 80516 100219 110922 170027 180728 220128 230827 250525 270223 280920 300616 110924 150330 180735 220141 250545 350754 390156 420556 450955 490352 520748 '560143 590536 80517 100220 110922 130624 150326 170028 220129 230828 250527 270224 280922 300618 320313 340008 30407 50110 60814 80517 100219 110922 317 OBSERVED GSCD 2505150 2702160 2808900 3006210 501450 608010 806360 1002130 1109300 1700320 1807360 2201280 2308500 2505360 2702480 2809290 3006220 1109340 1503210 1808520 2201460 2505380 3507620 3901670 4205410 4509590 4903640 5207520 5601370 5905500 805220 1002230 1109250 1306290 1503300 1700300 2201400 2308250 2505330 2702420 2809180 3006260 3203090 3400020 304150 501160 608140 805230 1002270 1109240 DELTA NU 09999 09999 09999 09999 09999 09999 09999 09999 00245 00245 00224 .0200 09999 00245 09999 09999 09999 09999 09999 09999 00283 09999 00224 00245 09999 00245 00224 09999 09999 00283 00224 00173 .0245 .0245 09999 09999 09999 09999 00173 09999 00173 09999 09999 09999 09999 00200 09999 09999 09999 09999 OBS- CALC -0010 '0007 -0030 .005 0035 “0013 0120 -0006 0008 0004 0009 0000 0023 0011 0024 0009 0005 0010 ‘0008 0117 0005 -0007 0008 0011 “0015 0004 0012 0004 ‘0006 0014 0005 0003 0003 0005 .004 0002 0011 -0003 0006 0018 ‘0004 0008 ~0004 0012 0008 0006 0000 0006 0008 0002 ASSIGN' MENT OP OP OP OP OP OP OP OP OP OP OP OP OP OP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP OP OP 10 7 10 8 10 9 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 10 5 10 6 10 7 10 8 10 9 1010 1013 1014 1015 1016 1017 1018 1019 1020 00 00 O0 00 00 00 O0 00 0010 0011 0012 0013 0014 0015 0016 0017 0018 0019 0020 0021 10 2 10 3 0CD~JOthwxn0 CALCULATED GSCD 130624 150005 170028 180729 200429 220129 230828 250527 270224 280922 300618 320313 340008 350702 180736 220142 250547 280629 320354 350756 450957 490354 520751 560146 590540 620960 660322 690709 80518 110924 150331 180737 220142 250547 280951 320354 350757 390158 420559 450958 490356 520752 560147 590541 620932 660323 690711 730097 50110 60814 318 OBSERVED GSCD 1306110 1500210 1609890 1807210 2004380 2201300 2308310 2505300 2702160 2809320 3006140 3203160 3400130 3507240 1807490 2201470 2505370 2806500 3203190 3507530 4509700 4903520 5207430 5601580 5905320 6209410 6603220 6907460 804910 1108690 1503380 1807430 2201330 2505600 2809680 3203640 3507510 3901630 4205610 4509630 4903570 5207650 5601360 5905740 6208990 6603230 6907060 7300970 501250 605970 DELTA NU 09999 09999 00283 09999 09999 09999 00224 00245 09999 09999 09999 09999 09999 09999 09999 09999 09999 09999 09999 09999 09999 09999 09999 00141 09999 09999 09999 09999 00224 00173 00245 00283 09999 09999 00224 00283 00245 09999 00245 09999 09999 00224 00245 .0173 09999 00245 00173 .0173 09999 09999 085- CALC ‘0013 0016 '0039 ‘0008 0009 0001 0003 0003 -0008 0010 0004 0003 0005 0022 0013 0005 ‘0010 0021 '0035 -0003 -0013 -0002 "0008 0012 ‘0008 -0019 0000 0037 -0027 ‘0055 0007 0006 '0009 0013 0017 0010 ‘0006 0005 0002 0005 0001 0013 ‘0011 0033 -0033 0000 -0005 0000 0015 “0217 ASSIGN- MENT QD OP OP OP QD OP 0P 0P 0P OP OP 0P OP OP OP OP OP OP QD RP RP RP RP RP RD RP RP RP RP RP RP RP RP RP RP RP RP RP RO RO R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 10 10 10 10 10 10 1010 1011 1012 1010 1011 1012 1013 1014 1016 1017 1018 1019 1020 10 10 10 10 10 10 10 10 1010 1012 1010 1012 1013 1014 1016 1017 1018 1019 1020 10 10 10 10 10 10 10 10 1010 1012 1010 1011 1012 \omqombwm 0 \ (DNIO‘U‘P \OGJQCFUTPKHRJ CALCULATED GSCD 80517 100220 110922 130624 150326 170028 180729 200429 220129 180729 200429 220129 230828 250527 280922 300618 320313 340008 350701 80518 110924 150330 180736 220142 250546 280951 320354 350756 420558 350756 420558 450957 490355 560146 590540 620931 660321 690710 30407 50110 60814 80517 100220 110922 130624 150326 170028 200429 170028 180729 200429 319 OBSERVED GSCD 804950 1002310 1109160 1306190 1503300 1700440 1807470 2004150 2201090 1807440 2004270 2201440 2308460 2505330 2809350 3006090 3203160 3404700 3506760 805340 1107150 1503140 1807440 2201460 2505450 2809640 3203580 3507550 4205490 3507960 4205800 4600090 4903590 5601690 5905400 6209390 6607820 6906820 304090 501180 608190 805130 1002300 1109260 1306340 1503140 1700080 20044C0 1700520 1807390 2004360 DELTA NU 09999 .0245 09999 09999 09999 09999 00283 00283 09999 09999 09999 00283 09999 00245 09999 09999 09999 09999 09999 09999 09999 09999 00200 09999 09999 09999 09999 00245 00283 09999 00245 00245 00245 09999 09999 09999 09999 09999 09999 00224 00283 00245 09999 00245 00245 00245 00245 09999 09999 00283 00245 085- CALC -0022 0011 '0006 ‘0005 0004 0016 0018 -0014 '0020 0015 -0002 0015 0018 0006 0013 -0009 0003 0462 ‘0025 0016 '0209 ‘0016 0008 0004 ~0001 0013 0004 ‘0001 ‘0009 0040 0022 0052 0004 0023 0000 0008 0461 ‘0028 .002 0008 0005 ‘0004 0010 0004 0010 ~0012 -0020 0011 0024 0010 0007 ASSIGN‘ MENT R0 1013 R0 1014 R0 1015 R0 1016 R0 1017 R0 1018 R0 1019 R0 1020 RP 20 3 RP 20 4 RP 20 6 RP 20 7 RP 2010 RP 2011 RP 2012 RP 2014 RP 2015 RR 2016 RP 2017 RP 2019 RR 2021 GP 20 3 OR 20 4 OR 20 6 OR 20 7 OR 20 9 OR 2010 0P 2011 OR 2012 OR 2014 OR 2015 OR 2016 GP 2017 OP 2019 0P 2020 OP 2021 OR 2023 R0 20 R0 20 R0 20 R0 20 R0 20 R0 20 8 R0 2010 R0 2011 R0 2012 R0 2013 R0 2014 R0 2015 R0 2016 \IO‘Ui-bw CALCULATED GSCD 220129 230828 250527 270225 280922 300618 320313 340008 110924 150330 220141 250545 350754 390156 420556 490352 520748 560143 590536 660318 730092 60813 80516 110922 130624 170027 180406 200428 220128 250525 270223 280920 300616 340006 350700 370392 400783 50110 60813 80516 100219 110922 130624 170027 180728 200428 220128 230827 250525 270223 320 OBSERVED GSCD 2201630 2308260 2505240 2702340 2809310 3006230 3203120 3400060 1109410 1503290 2201500 2505560 3507630 3901510 4205690 4903650 5207430 5601190 5905340 6602840 300610 608100 805170 1109340 1306290 1700230 1804270 2004270 2201450 2505200 2702100 809040 3006140 3309760 3506830 3703720 4007830 501310 608120 805150 1002160 1109280 1306050 1700140 1807240 2004240 2201310 2308440 2505330 2702150 DELTA NU 09999 00200 00173 .0245 00245 00200 00283 09999 09999 09999 00245 00200 09999 00245 00283 00200 00245 09999 00245 09999 09999 09999 09999 00224 00200 09999 09999 00245 00283 09999 09999 09999 .0245 09999 09999 09999 00283 09999 00245 09999 00173 .0200 09999 09999 00200 00283 00200 09999 09999 00224 OBS- CALC 0034 ~0002 '0003 0009 0009 .005 '0001 -.002 0017 “0001 0009 0011 0009 -0005 0013 0013 -.005 -0024 -0002 '0034 ‘0031 -.003 0001 0012 0005 ‘0004 '0021 ‘0001 0017 ‘0005 '0013 “0016 '0002 -0030 ‘0017 -0020 0000 0021 ‘0001 ‘0001 ‘0003 .006 -0019 -0013 -.004 ‘0004 0003 0017 0008 ‘0008 ASSIGN- MENT R0 2017 R0 2018 R0 2019 R0 2021 R0 2022 RP 30 4 RP 30 6 RP 30 7 RP 30 8 RP 30 9 RP 3010 RP 3011 RP 3012 RP 3014 RP 3015 RP 3016 RP 3017 RP 3018 RP 3019 RP 3021 R0 30 4 R0 30 5 R0 30 6 R0 30 7 R0 30 8 R0 30 9 R0 3010 R0 3011 R0 3012 R0 3014 R0 3015 R0 3016 R0 3017 R0 3018 R0 3019 R0 3021 OR 30 4 OP 30 6 OR 30 7 OP 30 8 OP 30 9 OR 3010 OR 3011 OR 3012 OR 3013 OR 3014 OR 3015 OR 3016 GP 3017 OR 3018 CALCULATED GSCD 280920 300616 320312 350700 370392 150328 220139 250543 280947 320349 350751 390152 420552 490348 520744 560138 590531 620923 660312 730085 60813 80516 100218 110921 130623 150324 170025 180726 200426 230825 250523 270221 280918 300614 320309 350697 80516 110921 130623 150324 170025 180726 200426 220126 230825 250523 270221 280918 300614 320309 321 OBSERVED GSCD 2809200 3006420 3203080 3506900 3703900 1503060 2202480 2505470 2809830 3203460 3507510 3901630 4206020 4903520 5207550 5601490 5905410 6209300 6603080 7300910 608160 805280 1002210 1109180 1306440 1503330 1700240 1807270 2004580 2308140 2505210 2702233 2809260 3006070 3203030 3506940 804890 1109270 1306290 1503380 1700130 1807270 2004360 2201440 2308310 2505380 2702340 2809260 3006160 3203230 DELTA NU 00200 09999 09999 00283 09999 09999 00224 00224 09999 09999 00245 00173 09999 00173 09999 .0200 09999 09999 09999 09999 00173 00245 00173 .0141 00224 09999 00200 00173 09999 09999 00245 00173 09999 09999 00173 09999 09999 00245 00224 09999 09999 00245 00200 09999 09999 09999 09999 00173 09999 09999 OBS- CALC 0000 0026 -0004 '0010 ‘0002 -0022 0009 0004 0036 ~0003 0000 0011 0050 0004 0011 0011 0010 0007 ‘0004 0006 0003 0012 0003 ‘0003 0021 0009 -0001 0001 0032 ‘0011 ‘0002 0002 0008 -.007 -0006 -.003 ‘0027 0006 0006 0014 -0012 0001 0010 0018 0006 0015 0013 0008 0002 0014 ‘0 10‘ .I. . 0.‘ ASSIGN- MENT GP 3019 GP 3020 0P 3022 0P 40 8 GP 4010 GP 4012 GP 4013 0P 4015 GP 4016 R0 40 6 R0 40 7 R0 40 8 R0 40 9 R0 4010 R0 4011 R0 4012 R0 4013 R0 4014 R0 4015 R0 4016 RP 40 8 RP 4010 RP 4012 RP 4013 RP 4015 RP 4016 R0 50 8 R0 50 9 R0 5010 R0 5011 R0 5012 R0 5013 R0 5014 R0 5015 R0 5016 R0 5017 R0 5018 R0 5019 R0 5020 RP 5014 RP 5016 RP 5018 GP 5014 GP 5016 0P 5018 R0 60 7 R0 60 8 R0 60 9 R0 6010 R0 6011 CALCULATED GSCD 340003 350697 370389 150322 180724 220123 230822 270217 280914 100217 110919 130621 150322 170023 180724 200424 220123 230822 250520 270217 280943 350747 420547 450945 520737 560131 130619 150320 170020 180721 200420 220120 230818 250516 270213 280910 300605 320300 330994 490334 560123 620905 250516 280910 320300 110915 130616 150317 170017 180717 322 OBSERVED GSCD 3400050 3506930 3703970 1503200 1807190 2201220 2308190 2702140 2808770 1002190 1202320 1306170 1503180 1700230 1807340 2004500 2201290 2308300 2505200 2702300 2809370 3507420 4205720 4509480 5207340 5601070 1306060 1503440 1700170 1807250 2004190 2201230 2308130 2505150 2702090 2809310 3006220 3202970 3400330 4903140 5601330 6209330 2505010 2809240 3109000 1109890 1306110 1503130 1700200 1807170 DELTA NU 09999 09999 09999 09999 09999 09999 09999 09999 00173 00173 09999 00200 00173 00224 00224 09999 00173 00224 00245 00173 09999 09999 00245 09999 09999 00200 00283 09999 00200 09999 00245 00173 00283 09999 00283 09999 09999 00283 00283 09999 09999 09999 09999 09999 09999 09999 00200 00141 00212 00173 085- CALC 0002 ‘0004 0008 -0002 ‘0005 -0001 -0003 ‘0003 '0037 0002 0113 ‘0004 ~0004 0000 0010 0026 0006 0008 0000 0013 ‘0006 “0005 0025 0003 -0003 '0024 ‘0013 0024 '0003 0004 ‘0001 0003 -0005 -0001 -0004 0021 0017 ‘0003 0039 “0020 0010 0028 '0015 0014 -0400 0074 -0005 ‘0004 0003 0000 ASSIGN- MENT R0 6012 R0 6013 R0 6014 R0 6015 R0 6016 R0 6017 R0 6018 R0 6019 R0 6020 R0 6021 R0 6022 R0 6023 R0 6024 GP 60 7 GP 60 9 OR 6013 GP 6015 OR 6018 GP 6019 GP 6020 0P 6021 OR 6024 OR 6025 RP 60 7 RP 60 9 RP 6013 RP 6015 RP 6018 RP 6019 RP 6020 RP 6021 RP 6024 R0 70 8 R0 70 9 R0 7010 R0 7011 R0 7012 R0 7015 R0 7016 R0 7019 R0 7020 0P 70 9 OP 7019 RP 70 9 RP 7014 RP 7019 R0 8011 R0 8015 R0 8016 R0 8017 CALCULATED GSCD 200417 220115 230814 250511 270208 280904 300599 320294 330987 350680 370371 390062 400751 130616 170017 230814 270208 320294 330987 350680 370371 420440 440127 250531 320334 450929 520719 620893 660281 690667 730051 830191 130613 150313 170013 180713 200412 250505 270202 320286 330979 170013 330979 320327 490313 660266 180708 250499 270195 280890 323 OBSERVED GSCD 2004190 2201250 2308150 2505120 2701930 2809340 3005950 3202910 3309770 3506730 3703710 3900540 4007450 1305460‘ 1609920 2308120 2702250 3202960 3400020 3506870 3703550 4204510 4401490 2505350 3203050 4509370 5207370 6208910 6602930 6906640 7300280 8301960 1306270 1503050 1700230 1807150 2004040 2505030 2702000 3202890 3400520 1700270 3309550 3203320 4903280 6602440 1808900 2504990 2702040 2808720 DELTA NU 00173 09999 00141 00224 00173 09999 00173 00224 00173 00245 09999 00245 00200 09999 00224 09999 09999 09999 09999 09999 09999 09999 09999 00212 00224 09999 09999 09999 09999 09999 09999 09999 09999 09999 00245 00245 00245 09999 00245 09999 09999 09999 09999 00224 09999 09999 09999 00224 09999 09999 085- CALC 0002 0010 0001 0001 -0015 0030 ‘0004 ‘0003 '0010 -0007 0000 ‘0008 '0006 ‘0070 ~0025 -0002 0017 0002 0015 0007 ‘0016 0011 0022 0004 -0029 0008 0018 '0002 0012 -0003 ‘0023 0005 0014 -0008 0010 0002 -0008 ~0002 -0002 0003 0073 0014 “0024 0005 0015 '0022 0182 0000 0009 ”0018 ASSIGN- MENT R0 R0 RP RP 0P 0P 0P 0P RP RP R0 R0 R0 R0 R0 R0 R0 R0 8018 8019 8014 8016 8016 9013 9017 9019 9013 9017 9010 9011 9012 9013 9014 9015 9016 9017 CALCULATED GSCD 300584 320278 490301 560084 280890 230795 300575 330960 450893 590456 170004 180702 200400 220098 230795 250491 270187 280881 324 OBSERVED GSCD 3006110 3202550 4903260 5600580 2808540 2307670 3005840 3309550 4508580 5904540 1700140 1807010 2003960 2200910 2307790 2504800 2702020 2808700 DELTA NU 09999 09999 09999 09999 09999 09999 09999 09999 09999 09999 .0200 00224 09999 00224 09999 09999 09999 00283 OBS- CALC 0027 ‘0023 0025 -0026 -0036 -0028 0009 ~0005 -0035 ‘0002 0010 “0001 ‘0004 “0007 -0016 -0011 0015 -0011 APPENDIX VII LIST OF ASSIGNMENTS AND FREQUENCIES OF OBSERVED TRANSITIONS FOR v1+v3 OF CH3? The following pages contain a list of the observed transitions of v1+v3 of CHBF. The columns of the list, left to right, are: the assignment (AK,AJ,K,J); the observed frequency (in cm"); the observed fringe number (from which the frequency may be calculated - of. Chapter 7); the Av (weight = (NORM)2/(Av)2); the weight; the observed line height; and the line number. 325 ASSIGN- MENT 0P 0R 0R 0R 0R 0R OR OR 0R OR (:30 co 0P op 0P 0p 0p op op 0P 0P on 0P O0 O0 00 O0 00 O0 00 O0 ._0 OVDm-JOFUI#PUh0 0011 0012 0013 0014 0015 0016 0017 0018 0020 0021 00 n 09 00 00 00 00 O0 O0 00 00 0010 0011 0012 0013 0014 0015 0017 0019 10 10 10 10 10 10 10 1010 1011 1012 1013 1014 1015 @(D‘QO‘U'PK»RJH‘O ©CD~JO‘U1va OBSERVED FREQUENCY 400902680 400705650 400400010 400202030 400003890 399805380 399606720 399407840 399208760 399009460 398809940 398700340 398500230 398300270 398100120 397809620 397608330 397205540 397004390 401206790 401402960 401509220 401705410 401901240 402006770 402202300 402307410 402502410 402607060 402801500 402905890 403009940 403203770 403307560 403500740 403706290 404000850 400705400 400309570 400201670 400003480 399804980 399606720 399407480 399208380 399009020 398809380 398609620 398409590 398209280 326 FRINGE NUMBER 19308380 18805440 17704590 17108670 16602260 16004710 15406660 14807940 14208620 13608580 13007900 12406940 11804410 11202330 10509670 9905900 9209700 7906620 7300860 20404480 20904730 21405310 21905670 22404890 22903210 23401490 23808480 24305120 24800690 25205610 25700360 26104030 26507050 26909950 27400920 28200380 28906800 18804650 17703220 17107550 16600980 16003460 15406660 14806820 14207420 13607210 13006150 12404690 11802390 11109250 DELTA NU 09999 00200 00200 00200 .0200 09999 09999 00140 00200 09999 09999 09999 .0200 .0200 09999 .0200 09999 .0200 09999 00140 00100 09999 00200 00200 09999 09999 00200 00140 00140 00140 09999 00140 00140 00200 00140 00200 09999 09999 09999 00200 00200 09999 09999 00140 00200 09999 00200 00200 09999 09999 WEIGHT .00 025 025 025 025 000 000 050 025 000 000 000 025 025 000 025 000 025 000 050 1000 000 025 025 000 000 025 050 050 050 000 050 050 025 050 025 000 000 .00 025 025 000 .00 050 025 000 025 025 .00 000 INT LINE NO 244 235A 220A 212A 206 198A 190 181A 173A 167 158A 148 138 128 116 106 94A 77 70 259 277 286A 293 300A 308 316 322A 330A 338A 348 355 362 370 376 383 395 407C 135 220 212 205A 198 190 181 173 166A 158 147 137A 127 ASSIGN- MENT QD 1016 OR 1017 QP 1018 QR 1019 QP 1020 QR 1021 QR 1022 QQ 10 3 00 10 4 00 10 6 00 10 8 00 1010 00 1016 QR 10 QR 10 QR 10 QR 10 ("D 1, “J1\ QR 10 QR 10 QR 10 OR 10 OR 1010 QR 1011 QR 1012 QR 1013 QR 1014 QR 1015 QR 1017 QR 1018 QR 1019 QR 102C QR 1021 0R 20 0R 20 QR 20 QR 20 QR 20 OR 20 QR 20 QR 20 QR QR 2011 OR 2012 QR 2014 QR 2015 OR 2016 QR 2017 QR 2018 QR 2019 \OCD-xlO‘UT-L‘UJNH 0...: O\OG)NCPU1b\»KJ N 0. 0858RVED FREQUENCY 398008700 397808030 397607030 397406080 397204560 397003050 396801290 401007750 401007150 401004360 401000960 400906240 400707140 401402570 401508760 401705020 401900920 402006440 402202300 402306970 402501940 402606530 402800990 402905130 403009130 403202990 403306240 403409350 403705290 403807750 403909930 404102040 404203770 401507550 401703660 401809660 402005220 402200630 402305780 402500830 402605710 402709860 402904020 403008140 403305220 403408540 403601900 403704650 403806920 403909200 327 FRINGE NUMBER 10505230 9900970 9205650 8600490 7903560 7206670 6509020 19805260 19803390 19704720 19604130 19409460 18900060 20903540 21403850 21904450 22403900 22902170 23401490 23807110 24303680 24709050 25204020 25607980 26101520 26504640 26905830 27306600 28107280 28506070 28903950 29301590 29608070 21400140 21900230 22309980 22808380 23306290 23803430 24300210 24706490 25200500 25604550 26008460 26902650 27304080 27705630 28105300 28503480 28901670 DELTA NU 09999 09999 09999 09999 00200 09999 09999 00200 00200 09999 00200 09999 00200 09999 09999 09999 00200 09999 09999 00130 00100 00140 00200 00200 00200 00200 .0140 00200 00140 0999 09999 09999 09999 00200 09999 00200 00200 00200 00200 00140 09999 09999 00100 00100 0020 09999 09999 09999 00200 09999 WEIGHT .00 000 000 000 025 .00 .00 025 025 000 025 000 025 000 000 000 025 000 000 1000 1000 050 025 025 025 025 050 025 050 .00 000 000 000 025 .00 025 025 025 025 050 000 000 1000 1000 025 000 .00 000 025 000 INT HH N ~JO-4U1®(T~JP‘OO‘O 0—0 H DO‘D NrdkathhdH ha FJH k-Nrdhawrdkawodh4kwv0d N\fi~JH\fiF‘HChH‘D\OO‘N\fi4>h*HCDFJNP‘U’WCDKJW::O\: 0.00—0 \OH N ._0 K1) 0 HFHK) H190) LINE N0 115 105 93A 66 76c 69 61 252A 252 251 2491 246A 236 276A 286 2925 300 307C 316 322 330 338 347 2546 361 369 3756 382A 394A 401 4078 412A 418A 285 292A 299 307A 314A 321 329 337 346 354A 360 375A 382 388 394 400 407A ASSIGN- MENT GP 29 3 GP 29 4 GP 29 5 GP 29 7 GP 29 8 GP 29 9 GP 2910 GP 2911 GP 2912 GP 2913 GP 2914 GP 2915 GP 2916 GP 2917 GP 2918 GP 2920 00 29 2 00 29 5 00 29 8 00 29 9 00 2911 00 2912 GO 2914 GP 39 4 GP 39 5 Q? 39 6 GP 39 7 GP 39 8 GP 39 9 OD 3910 09 3911 GP 3912 GP 3913 GP 3914 GP 3915 GP 3916 GP 3917 09 3918 GP 3920 OP 3921 GP 3922 00 39 3 00 39 4 Q 39 5 OO 39 6 Q 39 7 00 39 8 00 39 9 00 3912 00 3913 OBSERVED FREQUENCY 400505980 400308190 400200530 399803820 399605180 399406230 399207250 399007860 398808300 393608580 398408540 389208330 398007860 397807240 397606310 397204030 401007150 401004360 400909480 400907670 400902680 400809980 400803400 400306290 409108540 400000240 39980193‘0 3996 03410 399404620 399205161LO 399006419 398807030 398607400 398407610 398207770 398007500 397807240 397606310 397204560 397003050 396801290 401004360 401003610 401002360 401000960 400909480 LC0907670 400905800 400808410 400805470 328 FRINGE NUMBER 1820425 0 1760 893 9 1710 4025' 15909860 15401870 14802940 12401450 11709140 11106290 10502629 9808260 9203400 7901940 19803390 19704720 19509550 19503909 1Q _JI 38 19209990 19009540 17603029 17007810 16500910 15903980 15306370 14707950 14108920 3509110 12908830 12307808 1170:6260 11104' 10501 a f'} KO 0' p )C)OK)C)O(DC3 O 30 o J \) / J 92034 79035- 720 66 6509 1970472K 19702370 19608480 19604130 9509550 19503900 19408380 19205110 19105960 ) m9qm k DELTA 1U 09999 0999 09999 09999 09999 00140 00140 :ogo9 H9 9 00200 00140 nanfi .thw 00200 00200 09999 09999 00233 09999 09999 09999 09999 09999 0020 0 00200 09999 00200 00140 09999 00140 00100 09999 00140 09999 00140 09999 00200 00200 09999 00230 09999 .gQQQ 09999 00200 00200 00200 09999 09999 09999 09999 09999 WEIGHT 000 000 000 000 000 050 050 000 000 025 050 025 025 025 000 000 025 000 000 000 000 000 025 025 000 025 an 02»- 000 050 1000 000 050 000 050 000 025 025 000 025 000 000 000 025 025 025 000 000 000 000 000 INT 0.0 H h» in kJHfd HrAkJ N\fiRJ©(DKJNCDPJOFJU1HdeJm(DFJfl\fi\Jm 9494 H OO-NINOON HH 0.0..—0 hJHtAPJH KOC)O L» L» L» \M L» L» LU Lu 1 (1) CO \I) NDUOC) . (F O \D 01 <60)m<- U C p N m p 07513 J1 . D.) \J ....- .L‘ w m U) W ' \O \O \O C) ~O \0 \3 CO H O O\ ‘ ‘ 0‘ [\J 0‘ DELTA NU 00100 00100 00140 00200 00140 00200 FROM LEAST SQUARES ANALYSIS DUE 00140 00200 00140 00140 00140 00200 .0140 00140 00140 00140 00200 00200 00200 00200 00200 00200 00200 00200 00200 00200 00200 00100 00140 00140 00200 00140 00200 00200 00200 00140 00140 00200 00200 00140 088- INT CALC ‘00077 11 -0OO3O 13 00016 13 ‘00008 11 00161 10 00161 9 00092 00443 00745 01188 01584 02153 02735 03459 04173 04726 05799 06655 07731 01605 02443 06863 07864 00737 00320 00889 00565 00716 00962 01073 01473 01835 02228 03019 01361 00772 00883 01017 01205 01252 9—99—99—49—9 w4>$‘b H H 9.00.4 ...—0 mNmflNpU’NNO‘QO‘O(D\fi\IO‘w-¥>D-Dpflmom-QOQCD H LINE NO 829 832 834 835 837 840 TO PERTURBATIONS 90 83 75 68 62 54 46 Q J 32 26 19 15 164 163A 155 154 236A 139 139A 130 119 109 100 91 84 754 68 195C 182 174 168 160 150 ASSIGN- MENT PP PP PP PP PP PR PP PP PP PP PP PP PP PP PP PP PP PP PP P0 P0 P0 P0 P0 P0 PC PC) P0 P0 .923) P0 P0 PP PP PP PP PP PP P0 PP PP PP PP PP PP PP PP PQ P0 P0 7912 7913 7914 7915 7916 7910 69 7 69 8 69 9 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 69 6 69 8 69 9 6910 6912 6913 6914 6915 6916 6917 6918 6919 6920 6916 59 6 59 9 5911 5912 5914 59 6 49 6 49 7 49 8 49 9 4910 4912 4913 4914 49 9 4911 4913 CALCULATED FREQUE NCY 398504749 398305283 398105616 397905749 397705683 402405997 400206222 400007752 399809077 399700198 399501116 399301830 399102342 398902652 398702760 398502666 398302372 398101878 397901184 401405372 401402246 401400371 401308288 401303496 401300787 401207870 401204745 401201412 401107870 4C1104120 401100161 401005994 40 4J06909 401201589 490606136 401908373 401800283 401601785 401403080 401204168 400805723 400606192 400406456 402904400 402809963 402804674 339 OBSERVED FREQUENCY 398506181 398307055 398107925 397907828 397708696 402407557 400300222 400101707 399903012 399704220 399505438 399306511 399107527 398908436 398709339 398500300 398401216 398202340 398003738 401409438 401406203 401404422 401402570 401308628 401306534 401304418 401302312 401300 319 [LC '12.;8 344+ 401206794 401205399 401204479 404107415 401202113 400607689 400300222 403101707 399703130 402203425 401908559 401800391 401601744 401402953 401203881 400805468 400606130 400‘406075 DELTA NU 00140 00200 00140 00200 00200 00200 .0100 00140 00140 00200 00100 .0140 00140 00100 00100 00200 00140 00200 00200 00140 00100 ,0100 00200 00100 00100 .0140 00140 00140 00200 00140 00140 00140 00200 00200 0200 .0130 0C140 00200 00200 00140 00200 00140 00100 00140 00200 00200 00200 00100 00200 00200 085- CALC 01432 01772 02309 02079 03013 01560 04000 03955 03934 04022 04322 04681 05185 05784 6579 07633 08843 100462 102554 04067 3957 04051 04282 05132 05747 06548 07567 08907 100474 102675 105233 108435 100506 00524 01553 02083 02873 03520 00942 “00014 00108 “00041 ‘00128 “00286 ‘00255 "00062 "00381 ‘00374 ‘00822 ‘00675 INT \»()O\OO‘© N WUJNO‘W LINE N0 140 131 120 109 100 327 216 208 201 193 184 176 169 162 151 142 134 123 112 281 279 278 276A 275 273 272 271 270 260 259 258 257 414A 256 231 216 208 192 316A 303 295A 288 277 256A 240A 230A 222 354A 351 349 ASSIGN- MENT PR PR PR PR PR PR PR PR PC) P0 P0 P0 P0 P0 P0 PQ PP PP PP PP PP PP A0 6 4912 39 6 39 7 39 9 3912 3916 3017 30 7 39 8 39 9 3010 3915 3016 3917 3019 30 8 39 9 3910 3011 3917 3918 EXCUDED PR PR PR PR PC P9 P0 PP PP PP PP PP PP PP PR PR P0 P0 2012 2013 2014 2016 2913 2015 2918 29 3 20 4 20 7 2914 2015 2917 2918 1915 1916 1917 1013 CALCULATED FREQUENCY 404107184 405005905 404904023 405009339 405309321 405302659 406307374 406500301 403704818 403703114 403701198 403609068 403505226 403501819 403408199 403400319 402308593 402109873 402000945 401801809 400602644 400402363 406509216 406703204 406806971 407103841 404307939 404301719 404200779 404505712 403808037 403303733 401909671 401709683 401309086 401108478 407706773 407900072 405000856 404906968 340 ORSERVED FREQUENCY 404107415 405005772 404903584 405009090 405308394 405300266 406305107 406408153 403704655 403702835 403700761 403608240 403504304 403409349 403405959 403307564 402308425 402109499 402000344 401800886 600600281 400400010 FROM LEAST SQUARES ANALYSI' 406508993 406702864 406806264 407102158 404307712 404300904 404108062 404005949 403308617 403304078 401909405 401709221 401307988 401106659 407706611 407809608 405000428 404906170 DELTA NU 00200 .0200 00140 00140 00200 00200 00200 00200 00140 00140 00100 00140 00140 00200 00200 00140 00100 .0200 00140 00140 00140 .0200 (J) U C. [11 00140 00200 00200 0C200 00140 00140 00100 00200 00100 00200 00200 00100 .0140 00200 00100 00140 00100 .0140 ‘00223 “00340 "00708 ‘01682 -00227 ‘00814 -02718 00236 00580 00340 -00266 ~00462 '01099 ‘01819 ‘00163 '00464 ‘00429 ‘00798 LINE N0 414A 4598 453 461 477 497 525A 531 394 393 392 391 385 382A 381 376 323 314 305 296 228 220A TO PERTURBATIONS 537 544 553 563 425 422A 415 410 402 374A 304 295 274 253 592 596 457 455 ASSIGN- MENT PQ RP RP RP RP RD RP RP RP RP RP RP RP RP R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 RR RR RR RR RR RR RR RR RR RR RR RR RR RR RP RP RP RP RP RP RP RP RP R0 1919 09 4 00 9 0910 0911 0012 0913 0016 0017 0018 0920 0921 0922 0922 0013 0911 0012 0,13 0014 0015 0016 0917 0018 0019 0020 0021 00 7 O9 8 O0 9 00 9 0911 0012 0913 0014 0015 0016 0917 0018 0019 0920 19 6 1011 1912 1013 1011 1013 1014 1015 1021 10 6 CALCULATED FREQUENCY 404902863 405400656 404409002 404100844 403901447 403701837 403101742 402901290 402700628 402208678 402007391 401805896 401805896 405908133 405905740 405903129 405900301 405807255 405803992 405800511 405706812 405702896 405608762 405604411 405509842 407308513 407503574 407608413 407608413 407907423 408101593. 408205540 408309262 408502760 408606032 408709079 408901900 409004494 409106861 405800512 404806658 404607244 404407616 404806658 404407616 404207776 404007723 402802970 406801393 341 OBSERVED FREQUENCY 404901533 405401172 404409246 404300293 404101338 403901848 403702295 403101990 402901568 402700118 402206287 402002659 401707507 401707507 405907997 405905518 405902884 405809865 405806652 405803038 405709016 405704658 405609639 405603902 405507243 405409587 407308918 407503925 407608842 407608842 407907898 408102072 408206069 408309642 408502932 408605865 408708148 408809524 408909721 409008483 405800266 404803713 404509484 404209428 404906190 404409738 404209428 404009634 402608503 406801167 DELTA NU 00140 00200 00100 .0140 00200 00140 00200 00200 00200 001.40 00140 00140 00140 00140 00140 00140 .0100 00100 00140 .0140 00200 00100 00140 00100 00100 00100 00200 .0200 00140 00140 00140 00200 00140 00100 00140 00100 00140 00200 00100 00100 00140 00200 00200 00200 00140 00200 00200 00200 00200 00200 085- CALC ‘01330 00516 00244 00264 00494 00402 00458 00248 00278 ‘00511 ‘02392 ‘04732 ‘08390 '08390 ‘00136 -00222 -00245 ‘00436 -00603 ‘00953 ‘01495 -02153 ‘03257 ‘04860 -07168 ”100255 00405 00351 00429 00429 00475 00479 00529 00380 00172 ‘00168 '00931 -02376 '04773 ‘08378 -00245 -02945 ‘07760 ‘108188 09531 02122 01653 01911 ‘104466 -00226 INT 20 10 LINE N0 452 479 431 422 412 403 392A 363A 353 340 317 306 294 505 504 503 501 500 499 496 495 492 489 486 483 572 579 589 599 600A 611 619 624 630 635 642 646 552 497 449 437A 4218 455 431A 4218 4105 339 549 ASSIGN- MENT R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RP RP R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 RR RR RR RR 19 7 l9 8 19 9 1910 1911 1911 1912 1914 1915 1916 1917 1918 1919 19 19 19 19 19 19 1911 1910 1911 1912 1913 1914 1915 1916 1917 1918 2912 2913 2915 2916 2918 2924 29 4 2911 2912 2913 2916 2917 2919 2920 2921 2922 2923 29 3 29 4 2910 2911 \oooxlmbr—a CALCULATED FREQUENCY 406709860 406708107 406706135 406703944 406701534 406701534 406608905 406602989 406509702 406506197 406502472 406408528 406404365 407109408 407607876 407909081 408104351 408209397 408404220 408703194 408508820 408703194 408807345 409001269 409104968 409208441 409401687 409504706 409607498 405402718 405203072 404803139 404602852 404201639 402902926 407509353 407406997 407404349 407401481 407301552 407207801 407109638 407105225 407100592 407005738 407000663 408207486 408403413 409304273 409408629 342 OBSERVED FREQUENCY 406709463 406707495 406705115 406701176 406603626 406705115 406701176 406604964 406601404 406507591 406503436 406408153 406309677 407109249 407607704 407908721 408103834 408208249 408401259 408504919 408602501 408705537 408809524 409003219 409106641 409209934 409402751 409504379 409602810 405403275 405203454 404803713 404603629 403305300 402900099 407509253 407407545 407404905 407402063 407302246 407208255 407109249 407104213 407008933 407003306 406907930 408207387 408403343 409304790 409409147 DELTA NU 00140 00140 00200 00200 00200 00200 00200 00140 00140 00140 .0140 00140 00200 00100 00140 00200 0020 00140 00140 00230 .0200 00140 00140 .0140 .0100 00200 00200 00140 00200 00200 00200 00143-0 00200 085- CALC '00397 "00612 ‘01020 '02768 ‘07908 03582 02272 01975 01702 01394 00964 -00375 “04688 ‘00159 ’00172 -00361 ‘00517 “01148 “02961 ‘108276 03632 02342 02180 01950 01673 01493 01064 -0O328 ‘04688 00557 00382 00574 00777 “806339 ~02827 “00099 00548 00556 00582 00694 00454 "00389 '01012 ‘01659 ‘02432 '02733 -90099 ‘00070 00517 00519 INT 18 21 22 24 12 22 24 13 14 15 14 13 10 11 15 13 13 14 10 16 19 13 12 10 11 11 12 12 16 13 13 11 14 11 m~4© q C 13 21 16 LINE NO 548 547 545 543 540 545 543 541 538C 536 333 531 527 566 588 600 6050 6123 620 626 628 534 642 547 55 659 663 668 6718 480 4688 499 A39 417A 352 583 575 574 573 570 559 566 564 562 560 558A 612A 621 661A 6658 ASSIGN- MENT RR RR RR RR RR RR RR RP RP RP RP RP RR RR RR RR RR RR RR RR RR RR R0 R0 R0 R0 R0 R0 R0 R0 R0 RR RR RR RR RR RR RR R0 R0 R0 R0 R0 R0 R0 RP RP RR RR RR 2912 2913 2914 2915 2916 2917 2920 39,8 3912 3915 3917 3919 39 3 39 4 39 7 39 9 3910 3913 3914 3915 3918 3920 39 4 3911 3910 3912 3913 3915 3916 3919 3920 49 9 4910 4911 4912 4913 4914 4915 49 9 4910 4911 4913 4914 4915 4916 4913 4917 59 7 59 9 5911 CALCULATED FREQUENCY 409692758 409796660 409990335 410093783 410197002 413299992 410697586 406994312 406197833 405598199 405197367 404795679 409092664 409198582 409694985 409994791 410099354 410591677 410695328 410798749 411197633 411492400 408394536 408292095 408294539 408109429 408196540 408190097 408096542 407994545 407990102 410699485 410894029 410998344 411192430 411296286 411399911 411593306 409091490 408999253 408996792 408991199 408898067 408894712 408891132 406792877 405991992 411193998 411493737 411792556 I" U‘ Din 15CY ”er (I Q! U 11C) ‘A‘I'D 409693369 409797360 409991058 406198274 405599243 405198962 404797392 409092560 409198654 409695324 409995149 410099908 410592765 413696723 410890438 411199590 411492247 408394397 408292635 408294908 408290123 408197329 408191512 408098203 407996560 407991698 410699949 410894586 410999123 411192924 411296436 411398758 411591993 (09091843 408999721 408997255 408991627 408398145 408893556 408799695 406793398 405990923 411099728 411399420 411698469 DELTA NU 90140 9015790 90140 90200 90140 .0200 90200 .0200 .0140 90140 90140 90140 90109 90290 90200 90140 90100 90100 90140 90140 90100 90100 90140 90140 .0140 90140 90140 90200 90100 90140 90140 90100 90100 90140 90100 .0230 .0200 90140 90140 90200 90200 90140 90100 90140 90100 90200 90140 90200 90140 90140 OE) S“ CALC 90612 90700 90723 90614 90456 -90016 ‘91757 ‘90630 90441 91044 91595 91713 -90104 90072 9340 90357 90554 91087 91392 91689 91958 -90153 “90139 90540 90370 90695 90789 91415 91661 92015 91596 90464 90557 90779 90495 90150 ‘91153 ”91313 90353 90468 90463 90428 L078 ‘91155 -91438 90521 -91069 ‘94270 ‘94317 "94067 2 .1 IX! HHD—J 9.9 D—‘H Hoxlr—Jr-JxOO‘xjmv-IOHHO‘ NNhJIV H4? HN Dix) 9—99—49—99—2 “9990‘ 9.4 L) t—‘D—‘HH Nb—‘l—‘HH WCJ‘WLDLDUI‘O“L‘)‘OU‘) 16 14 12 15 13 16 13 10 10 10 l (g. 10 LINE NO 672 678 683 689 695 699 714 556 517 487A 466 444 648 656 673 686 692 710 715 721 737 745 617 609 610 608 607 605 604 598 597 716 723 729 734 740 744 748 647 646 645 643 641 638 636 544A 502 733 744A 753 J: ‘4... . :1 3n! illil ASSIGN- MENT RR RR RR RR RR R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 . A RU R0 R0 RP R0 R0 RP RP R0 R0 RR RR RR R0 R0 EXCUDED P0 P0 P0 P0 P0 PR PR PR PR PR 5912 5913 5015 5918 5019 5910 5011 5012 5013 5014 5015 5916 5017 5018 5019 5020 6024 6925 6910 7012 7022 7920 8017 8018 8020 8915 8017 8921 9917 9929 FROM CALCULATED FREQUENCY 411806619 412000453 412207417 412606121 412708554 409703532 40970 354 409608351 409605423 409602269 409508899 4C9505287 409501457 409407403 409403123 4C9308618 409901778 4C9806103 408709435 4111.5392 410705435 407500326 4C8805889 411606742 411507778 414400734 414702585 415201423 412402917 411707664 398806770 398803102 4170901520 401006056 401602099 401705583 402104761 344 OBSERVED FREQUEch 411802711 411906612 412203890 412603032 whu£~b q . IN OCDC)O 409404169 409400357 409305729 409902353 4093065C5 403709595 411105548 414703216 415201247 412403139 411709113 LEAST SQUARES ANALYST 399009015 398907246 3989.4282 398901575 398808706 40C902577 401007752 401606632 401800391 402202299 DELTA NU 00100 .0200 .0200 00200 .0200 .0140 .0140 00200 .0140 .0230 00140 .0230 .0230 .Clqo .0200 .C_OO .0140 00140 .0230 .0200 00140 U) C) C: 111 055- INT CALC -03907 13 -.3833 10 -03528 1 -03088 10 -.2495 16 -.4278 10 -.4176 9 ‘04052 12 -.3941 12 -03734 9 -03595 9 ‘03483 11 “03413 9 ~03233 7 -03065 5 -02390 10 00580 7 00397 7 00250 8 00157 10 00452 7 00510 11 00613 5 .0354 3 .0482 5 00347 7 00631 4 -.0175 9 00273 11 01449 4 00242 12 03753 4 04048 12 05107 4 .5504 10 01157 5 01696 5 04533 4 .4308 15 .7533 22 TO ZERO WEIGHT 166A 161 160 159 157A 244 252A 289 295A 316 0 .11 . .II'3ll ASSIGN- !IENT PP P0 P0 P0 P0 P0 P0 PR PP PR PR P0 P0 P0 P0 P0 P0 P0 P0 PR PP PP PR PR PR PR PP PP PP PP P0 P0 P0 P0 P0 P0 P0 PP PR PR PR PR P6 P0 P0 P3) P0 PR PR PR 8017 80 8 80 9 8010 8013 8013 8014 80 8 8012 8013 8014 70 7 70 8 7010 7011 7012 7013 7014 7015 70 8 6020 6021 60 7 60 8 6011 6015 50 7 50 8 5010 5013 50 5 40 8 4010 4012 40 7 4010 30 3 CALCULATED FREQUENCY 396708422 399807847 399806000 399803947 399706557 399706557 399703684 401309094 401907603 402101703 402205591 400606727 400605072 400601143 400508868 400506386 400503698 403503802 400407700 402106345 397700291 397409198 402708407 402903540 403307661 403903491 401003311 400804827 400407240 399809324 402203742 402201014 402109335 402107446 402105347 402100520 402007791 403400186 403505522 403700644 403805552 404208987 402909474 402907994 402906302 402902235 402807423 404302511 404707197 404406779 U) J} u1 OBSERVED FREQUENCY 396801294 399808378 399806574 399804983 399708609 399708191 399705966 401308628 401909405 402103315 402208338 400607689 400606130 400602432 400600281 400508014 403505978 433502872 400500850 402107428 397805645 397607647 402802285 402907829 ,,‘\ A . 4010.43 LU ‘ O\ \J \00 402107428 402103315 402101543 403401818 403506998 403702295 403307765 404302454 402909260 4029075 4029058' 4029015 402806739 404302454 404707392 404406609 C)“ \I) fx) 0) m \0 \O ") ‘ {J ‘1') ‘O \0 ~13) ‘0 ‘ \O \U \0 \O I ‘0 KL) \O \L \O \L, \O ‘43 \O\£)\O \I.)\1J\U\O\O\’)\Q\O " \U \Q \1’.) 0 \D \L) \1’) \L) \O \U \L) \O \O \O \0 xi) 0 k') u) a") \O u) ‘0 \O \O \O \f) \O \I) \O \O ‘0 \f) \O \O *0 \O \0 KO \0 \O \O \O \O \C! u \ V.) '0 x!) \O \L‘) \O \O \O O \U \0 KC ‘0 \0‘0 \U \L) \L) \0 O 00 0-0 m m p \L) m ‘0 wankfibu) N004 01 CD L0 \O n) ‘31 \J U) 0) \1 .p ‘U\O\-$> O O L 7' ()\(1J D.) O ...-...: 0—40—0 m-pUJO-ph4mCDUJQ‘OO‘WCDU1WKNFJO'N~JP(DO‘® H Hb—J LINE N0 61 200 199 198 195A 195 194 275A 304 311A 318 231 230A 229A 228 227 226A 225 224 313 103 94 3484 356 379A 408A 251 241 223A 201 3168 316 315 314 313 311A 310 3783 385A 3924 Lu£‘b \J'I NO (I Udlv—I 3‘2 D-Puawkyua DPVUIW\BU1 Pkg()m\n0\\ p 429 ASSIGN- MENT PR PP PR PR PR P0 P0 P0 P0 P0 PO P0 P0 P0 PP PP PP PP PP PP [32) PP PP PR PR PR PR PR P0 P0 P0 P0 P0 P0 P0 PP PP PP PP PP PP PP. PR PR PP PR PR PP P0 P0 30 8 3010 3011 3018 3019 3011 3012 3013 3014 3015 3013 3014 3018 3020 3012 3013 3014 3016 3015 3019 3020 3021 20 2 20 3 20 4 2011 2015 2017 20 2 20 3 20 6 2014 2016 2017 2019 20 5 206 20 8 20 9 2013 2016 10 8 10 9 1012 1013 1017 1018 1019 10 1 1016 CALCULATED FREQUENCY 405204439 405503986 405608432 406603407 406706090 403606726 403604170 403601402 403508421 403505226 403601402 403508421 403404365 403306060 401602464 401402913 401203154 400803019 401003190 400201278 400000289 399709097 4 5007273 405203446 405309404 406405006 407000517 407206942 404506814 404506171 404502953 404304936 404208287 404204640 404106704 403700149 403502049 403105215 402906482 402109450 401509488 406707450 406902304 407305538 407409506 408003146 408105996 408208620 405303693 405004529 346 a ".0 .- '\‘ CD )1 (_fl «1m CXJ n1< 710 E0 NCY 405204194 405502529 405606076 406600536 406702864 403605262 403601899 403508998 409905544 403309863 403707954 403605471 403401818 403303004 401601021 401400605 401200743 400607689 401007752 400108537 399906989 399705966 405007962 405203454 405400644 406404905 406909360 407204278 404507005 404506510 404503069 404304368 404206385 404202866 404102048 403700240 403502120 403105418 402906392 402109499 401508747 406707495 406902405 407305728 \00 J. J \0 \O U ~L \I) \() \O \L) x[) x") . . . \O \O L) \1) ‘0 \U \D \O ‘O R") \O ‘0 ‘1) \C) *1) \O V .40. o «Dwxo x!) \L) \0 =0 ‘0 \1’) \L) \D r\fi f‘ UC,‘ 3" CALC -00245 -01456 "02356 ‘02871 ‘03226 ‘01463 ”02271 '02403 6307124 ”105353 106552 07051 ‘02548 ‘03056 ‘01444 '02308 ‘02412 “105330 04562 ‘02741 -03300 -03130 00689 00008 01241 “00101 “01157 ‘02664 00191 00339 00116 ‘00568 -01402 '01775 ‘04656 00091 00071 00203 -00090 00048 ‘00741 00045 00102 00190 ‘00003 ”00715 “01363 '01606 00035 '00175 INT 23 13 9 n 7 10 19 30 10 27 7 17 18 4 19 17 H N 0.00—.0de 0.00—00.4.0.0 NIdPJHrd Lu J> \fi CP ~J 4> \fi ha ha C) F4 \fi C) C) no kn Ch 4> no \fi co 1: C\ NH N |\)0—0|\)0—0 Hub—INK“ QFJH o£>b h L Nr—a f\) deU1 C) (3 \J ‘J Ul @xnkjoprwAUl L‘L‘U‘O‘U‘U‘IU‘U' 1) Unfit-a ASSIGN- MENT PP PP PP PP PP PP PP PP PP PP PP PP PP PP PP PP PP PP PP PP PP PP R0 R0 R0 Po R0 PP PP PP PP PP PP PP PP PP PP PP PP PP R0 Po R0 R0 R0 R0 R0 PP PP PP 1920 09 7 0914 0915 0919 0923 O9 9 O9 5 O9 6 0910 19 19 19 19 19 19 1910 1912 1917 1918 1919 1920 19 2 1912 1910 1913 1920 19 5 19 9 1919 29 4 29 5 29 7 29 8 2910 2911 2917 2920 2921 2922 29 3 29 5 29 8 2910 2914 2915 2918 29 2 2918 2921 oarq\fi4>w CALCULATE 0 F9500: éCY 404898543 404896307 403592016 403391984 402499758 401694194 406090309 407097729 407293231 407893029 406394233 406196543 405998636 405692172 405493616 405294844 405095858 404697244 403696981 403496294 403295396 403094287 406895337 4066989C5 406793944 406696056 406399983 407893590 408494220 4C9890061 406992102 406794189 406397710 406199144 405891363 405692148 404492352 403799578 403598230 403396672 407690235 407598249 4075 93616 407499424 407398392 407395082 407293839 408191337 410492753 410799657 347 710 AND HIm n3< ED NCY (.70 E 0 404896791 404896533 403592436~ 403392496 402499155 401591406 406090 325 407097856 407293554 40789 3469 406393908 406196425 405998682 405692015 405493275 405294194 405094669 404790845 403698240 403497355 403294994 402999762 406895164 406590520 406893627 406697893 406295265 407893469 408594154 Z C05 .5324 406992100 406794083 406397641 406199171 405391591 410.20.20.15 404493207 403799491 403597384 403395216 40'7690199 DELTA OBS- NU CALC 99999 ‘91752 99999 90227 99999 90419 99999 90511 .9,99 ‘90602 99999 ‘192763 99999 90016 99999 90127 99999 90323 99999 90440 99999 ‘90325 99999 ‘90117 99999 90046 99999 -90157 99999 -00341 99999 '90651 99999 ‘91139 99999 93601 99999 91259 99999 91061 99999 ”90402 09999 ‘94526 99999 ‘90173 99999 “198385 99999 99683 99999 91837 99999 ‘194718 99999 '90120 99999 99933 99999 ”194736 99999 ‘90002 99999 ‘90106 90200 “90069 90140 90027 9999' 90223 99999 ‘90133 99999 90355 99999 -90087 99999 -00346 99999 ‘91456 99999 -90037 099540 "OOO'JQ' 99999 90309 99999 90080 99999 90526 99999‘1690131 99999 -90276 99999 90175 99999 '90426 09999 ‘92294 INT 0) HM F—‘H N IUNH H H‘N \JJCNO‘J-‘xjwDU‘OQDF-‘k-‘CI‘CI‘WC‘4-‘kdh-‘(DK7‘C‘U3 H ‘OI'\J‘O\1(D\IO HN H.) \l qrrUt xlxld \op\jwnjp_.amos )9 HC)()O\ CUP 4 ASSIGN- 99"- :VII‘ RP RP RP RP RP RP RP RP RP RP RR RR RR RR R0 R0 R0 RQ R0 RR RQ R0 RP RP RP RP RR RR RR RR RR RR RP RP RP R0 R0 R0 R0 R0 RC R0 R0 RR RP RP RP RP RP NT 39 5 39 9 3910 3913 3914 3916 3918 3920 3921 3922 39 8 3911 3916 3917 3914 3917 3918 3921 3922 49 6 49 7 4912 49 9 4911 4914 4916 59 6 59 8 5910 5914 5916 5917 5915 5917 5919 59 8 59 9 69 7 6913 6917 6922 6926 6927 6921 6914 6916 6919 6920 6921 6922 CALCULATED FREQUENCY 407499380 406795519 406596508 405998171 405798293 405397891 404996630 404594515 404393138 404191549 409890091 410293690 410991941 411094902 408193430 408092765 407998766 407895436 407890548 410294484 409095293 408994127 407590281 407192016 406592981 406192533 410998785 411298982 411598261 412194050 412490552 412593453 407097110 406696192 406294405 409797811 409795784 410593463 410399176 410295115 410092437 409890212 409794089 413796148 408091040 407690523 406998097 406796854 406595393 406393715 348 OBSERVED FREQUENCY 407499504 406795498 406596883 405998682 405799016 405399175 404998849 404596510 404394766 404191338 409890348 410294706 410994261 411096693 408194628 408095001 408090872 407895309 40779493 410294706 409095396 408994618 407590536 407192528 406593436 406191425 410994261 411294351 411594132 412190436 412397353 412590386 407093467 406692565 406291062 409793672 409791408 410592765 410398986 410294706 410092512 409590348 409794116 413796219 408090872 407690199 407091145 406796598 406595301 406393908 DELTA NU O O O O O O O O \O \O \0 \0 x0 \0 ‘0 \O \1) \D \L) ‘1') *0 ~L)~4) 1) u; u) d} u) no \Ouaxooxoxoxoxom o O ‘0 \O \I'.) \O ‘O \O \O ‘0 \U \U \D \O \C \O \O \O \O \O NO \0 m ‘0 ‘0 ‘0 \D '0 ‘0 KO ‘4') ‘0 KO \1) ‘4) \O \U \0 \0 \LJ \0 \L') \i’) (-3 \1') ‘4) \O \O ‘1) Xx”) ‘0 \LJ \1) \0 ‘0 ‘1‘) C) \O \O \O\O ‘£)\O\O ‘43 \D \O k0 \O \O \0 ‘0 \O \O C) \0 ‘0 ‘0 ‘1) \O \O \O ‘4) \C \0 ‘-O O \ 0 KO \0 \O \O ‘O \0 KO \0 \U \0 \L) \O \O \O f‘x) \O \O \O ‘0 \O ‘0 ‘0 \1) \0 ...-.....ooooocooooooo....... 1) ‘.O\L)\O\O 430’) ‘1) \O \O ‘(J \O ‘0 CBS“ CALC 90123 “90021 90376 90511 90723 91284 92219 91995 91628 “90211 90346 91016 92321 91791 91198 92235 92106 “90127 “95609 90222 90103 90510 90255 90512 90455 “91113 “94524 “94132 “94130 “93614 “93199 “93063 “93643 “93627 “93343 “94139 “94376 “90698 “90190 “90409 90076 90136 90027 90072 “90168 “90322 93048 “90256 “90092 90193 IN \Jl—JHHNHl—‘HI—l N(D()()U < P l N 00.) L I) ks) 9...; HNU) HO N WU“ ...—99...; U19 H HHt—I fi‘QraRmeuuwm }—-J N 1 hjwri-J 070" UJU1~JU‘\O\OUJO(‘)O‘\C)CO 9—4 -.’> CO 1 ‘1) ~J ME RP RP RR RR R0 R0 R0 R0 R0 RP R0 R0 R0 R0 RP RP RP R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 NT 6925 6926 7914 7919 79 8 79 9 7919 7920 7923 8915 8911 8916 8917 8919 9914 9918 9920 9912 9914 9915 9916 9918 9922 9923 9924 9926 9927 CALCULATED FREQUENCY 405697385 405494845 413690855 414295047 411294981 411292926 410899820 410895253 410790184 409296927 411990877 411794787 411790880 411692375 410199314 409397165 408994751 412690271 412594024 412590553 412496850 412398752 412199777 412194455 412098902 411997101 411990853 405697526 405495014 413691039 414295427 411294851 411293012 410990094 410894907 410699949 409296764 411990943 411794502 411791254 411692939 410297719 409397346 408995165 412690241 412594202 412590662 412496858 412399038 412290369 412194947 412099661 411997982 411992078 DELTA NU 99999 99999 99999 C { x0490 \o u) w) \o \o \o -~o \o \o ®\O%)® \O \O \O \O ‘0 \O \i) \0 IL) ‘0 \O \O x!) \L') \O \0 00.000.00.00 \O\O \O \O \O \O \0 t0 \0 \O \O \1’) \O ‘0 ‘0 \0 \O ‘0 \C \O ‘~O x!) .0. \OO '04) 0430\0 \O\O\C o \O ‘0 7 1) 99999 99999 99999 086- CALC 90141 90169 90184 90380 “90130 90085 90274 “90346 “90236 “90163 90066 “90285 90374 90564 98405 90181 90413 “90030 90179 90109 90008 90286 90591 90492 90759 90881 91225 INT 9.49... 9.49.9 {y—D 9—9H wOO~O\O~Ufir—4me0mbwxlxlwmhoxomqooowwb H LINE N0 491 481 805 821 739 738 725A 723A 716 6580 7614 756 754 751 6958 6618 6448 783 782 7804 779 774 768A 7678 765A 763 7618 APPENDIX X COMPARISON OF THE OBSERVED AND CALCULATED FREQUENCIES OF K"=0 SERIES OF v3+v4 OF CH3F The following page contains a comparison of the observed and calculated RRO(J), RQO(J), and RP°(J) transitions. The analysis of this subband including a Coriolis resonance constant q. and a J6 term whose coefficient is f resulted in the constants (in cm"): sub = 4060.987 ag+ag = 0.01057 q = 2973 x 10""4 y = 1.06 x 10-8 S (std. dev.): 0.015 cm"1 The columns of the list. left to right, are the assignment (AK,AJ,K,J); the calculated frequency (in cm"); the observed frequency (in cm'1); the Av (weight = (NORM)2/(AV)2), the observed minus the calculated frequency; the observed line height; and the line number. 350 ASSIGN- MENT RP RP RP RP RR RR RR RP R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 RR RR RR RR RR RR RR RR RR RR RR RR RR 09 6 O9 8 09 9 0910 0911 0912 0913 0916 0917 09 1 O9 O9 09 O9 0920 CALCULATED FREQUENCY 405094655 404697980 404499333 404390474 404191392 403992075 403792507 403192049 402991194 406099656 406099233 406098597 406097750 406096689 406095414 406093921 406092206 405998081 405995649 405992949 405899959 405896651 405892989 405798931 405794425 405699406 405693801 405597523 406296703 406493337 406599768 406992022 407398845 407594018 407698960 407698960 407998093 408192243 408296080 408399568 408592664 351 OBSERVED FREQUENCY 405094669 404697954 404499246 404390293 404191338 403991848 403792295 403191990 402991568 406099782 406099322 406098640 406097830 406096734 406095438 406093888 405997997 405995518 405992884 405899865 405396652 405893038 405799016 405794658 405699639 405693902 405597243 406296582 406493423 406599861 406992100 407398918 407593925 407698842 407698842 407997898 408192072 403296069 408399642 408592932 24 18 17 15 23 19 17 20 19 16 18 20 21 21 21 20 22 23 20 25 21 24 21 29 19 18 19 19 14 16 24 21 58 18 19 23 18 16 15 LINE N0 459A 441 431 422 412 403 3924 3634 353 514A 514 513 J‘IUIU‘IUTU'U‘ 00(2)?)wa D\POJO(:PJN -bU1m\nuw (3 0 9..) (3 H k» a ‘42)“)‘(90 _ O‘ HO i\) U7 0‘ \O U.) i\) N 0) 1'1) \ON‘JiGDLnf-d \fiUMoxnunfiUMfikfi£mD$>b -4~UJ DUO ‘OKO APPENDIX XI LIST OF ASSIGNMENTS AND FREQUENCIES OF OBSERVED TRANSITIONS FOR v1+v2 OF CHD3 The following pages contain a list of the observed frequency (in cm"), together with the assignment (AK,AJ,K,J,) and weight, of the observed transitions of v1+v2 of CHD}. 352 ASSIGN- MENT 0P 0P 0P GP 09 op QD OR OR OR OR QR 0P 0P 0P 0P 0P OR OR 0P 0P 0P 0P 0P 0P 0P 0P 0P OR OR 0P 0P 0P 0P 0P QR OR 0P 0P 0P OR OR 0P 0P 0P 0P 00 6910 7910 8910 9910 O9 19 29 39 49 59 69 79 89 O9 29 39 49 59 69 79 O9 29 39 49 59 69 09 19 29 39 49 59 O9 19 29 39 49 O9 19 29 39 09 19 29 O9 19 9912 mmwmm - {>915PWU‘WU‘U‘O‘O‘O‘O‘O‘O‘NQ-fiflflflmcommmmCDOQQ\OO\O 000 0016916 00 7911 0010912 353 OBSERVED FREQUENCY 506396030 506494700 506592130 506692700 506992690 506993980 506997000 507092030 507097540 507192970 507198270 507294500 507393890 507799340 507891150 507893680 507896670 507990900 507996190 508094650 508596320 508597610 508599900 508692950 508697430 508794660 509390640 509390640 509392160 509394420 509398320 509493760 510093970 510093970 510095580 510098560 510193810 510796150 510796150 510798350 510892130 511496830 511497630 511590170 512197680 512197680 512598610 512690100 512696180 512697200 WEIGHT 950 950. 950 925 925 950 950 950 950 950 950 925 900 900 950 1900 950 950 925 912 .00 950 1900 950 950 925 .00 .00 950 1900 950 912 900 900 1900 1900 912 .00 .00 1900 950 925 950 925 .00 .00 925 925 925 925 ASSIGN- MENT 0015915 00 8911 00 6910 0014914 00 7910 OP O9 1 0013913 0010911 00 69 9 0012912 00 59 8 0011911 00 89 9 00 69 8 0010910 00 79 00 29 00 59 00 99 00 29 00 39 00 69 00 49 00 89 00 59 00 79 00 39 00 49 00 39 00 69 00 19 00 59 00 29 00 49 00 39 00 29 00 19 OR 09 0R 09 OR 19 OR 09 OR 19 OR 29 OR 09 0R 19 OR 29 0R 39 OR 09 OR 19 OR 29 bmb£>w\»UJwranmnakaorJAJmmbUme»O\b\fiunq($330-QO~O~O~JQCD 354 OBSERVED FREQUENCY 512699250 512791190 512796580 512798510 512892540 512895050 512897600 512990450 512992630 512995980 513091940 513093500 513096560 513097270 513190660 513193700 513094790 513194580 513197170 513196200 513198220 513290190 513291580 513293150 513296080 513298540 513297680 513391570 513396340 513393310 513398750 513397260 513490769 513491640 513494390 513590890 513498770 514194250 514794800 514795410 515395120 515395120 515397360 515993850 515993850 515995480 515998570 516591490 516591490 516592980 WEIGHT 950 950 .00 950 925 950 925 912 925 925 925 1900 950 950 1900 950 912 925 1900 910 925 1900 950 1900 950 950 950 950 950 1900 912 950 925 950 1900 950 925 912 925 925 900 900 912 900 900 925 925 900 900 950 355 ASSIGN- OBSERVED WEIGHT MENT FREQUENCY OR 39 4 516595340 950 OR 49 4 516599220 950 OR 09 5 517097840 900 OR 19 5 517097840 900 OR 29 5 517099380 950 OR 39 5 517191460 1900 OR 49 5 517194700 1900 0R 59 5 517199090 925 OR 09 6 517691420 900 OR 19 6 517691420 900 0R 29 6 517693290 950 OR 39 6 517695850 1900 OR 49 6 517699000 925 OR 59 6 517793230 950 GR 69 6 517798770 950 OR 09 7 518095270 925 OR 19 7 518096400 925 OR 29 7 518099590 912 OR 39 7 518194610 1900 OR 49 7 518290250 1900 OR 59 7 518295780 1900 0R 69 7 518391180 1900 OR 79 7 518397630 950 OR 59 8 518696640 912 OR 69 8 518799060 925 OR 79 8 518898660 912 OR 89 8 518996230 912 APPENDIX XII COMPARISON OF THE OBSERVED AND CALCULATED GROUND STATE COMBINATION DIFFERENCES OF v1+v2 0F CHD} The following pages contain a comparison of the observed and calculated ground state combination differences of v‘+v2 of these ground state combination differences. The constants of CHBD from a simultaneous least squares analysis determined are (in cm"): B0 = 3.27944 DgK =-4.8 x 10-5 pg = 5.22 x 10'5 The columns, left to right, are the assignment (of. Chapter 4); the calculated combination difference (in cm"); the observed combination difference (in cm"): the Av (weight = (NORM)2/(Av)2); and the observed minus the cal- culated combination difference. 356 ASSIGN- MENT 0P 0P 0P 0.0 RP RP RP RD RP QP 0P 0.9 GP RP RP RD RD RD R0 R0 R0 PP RP RP RD 0o 0.0 0.0 R0 Po PP RP RP 0P 0P QP R0 R0 PP PP RP 00 fiD do RE) R0 RP RP GP 09 29 29 29 29 29 29 29 29 29 39 39 39 39 39 39 39 39 39 39 39 39 49 49 49 49 49 49 49 49 49 59 59 59 59 59 59 59 59 69 69 69 69 69 69 69 69 79 79 79 79 mfl‘ommflm40‘*0(n\lmflmflO‘mNO‘O‘UTO‘U!I-‘U)\JGWO‘kfibmflO‘m-DO‘U‘J-‘wmflkfiJ—‘UQNO‘UJN CALCULATED GSCD 1996722 2692237 4598433 5293673 4598959 5899939 7290807 9892105 11192485 2692256 3297727 3993134 4598467 5899983 7290861 8591601 9892178 11192567 2692256 3297727 3993134 7290935 8591689 9892280 11192683 3297761 3993175 4598514 3297761 3993175 8591802 9892410 11192831 4598575 5293835 5898995 4598575 5293835 9892570 11193012 12493241 4598650 5293921 5899091 4598650 5293921 11193226 12493480 5294021 5899205 357 OBSERVED GSCD 1996702 2692412 4598595 5293638 4599017 5899896 7290814 9892145 11192590 2692255 3297777 3993254 4598318 5990008 7290923 8591556 9892165 11192574 2692231 3297668 3993238 7290907 8591745 9892330 11192714 3297833 3993254 4598631 3297652 3993114 8591657 9892330 11192807 4598651 5293683 5898971 4598647 5293835 9892575 11192915 12493030 4598651 5293996 5899003 4598579 5293912 11193124 12493958 5293892 5899192 DELTA NU 90245 90224 90316 90316 90300 90224 90200 90200 90316 90173 90173 90173 90224 90224 90173 90140 90140 90173 90245 90200 90224 90200 90173 90245 90173 90316 90200 90200 90200 90173 90245 90200 90173 90200 90245 90245 90245 90224 90245 90173 90245 90224 90224 90200 90173 90173 90245 90316 90316 90245 085- CALC '90020 90175 90162 “90034 90059 -90044 90007 90040 90105 -90001 90050 90120 "90149 90025 90062 "90045 ‘90013 90006 ‘90025 -90058 90104 -90029 90056 90050 90032 90073 90080 90117 ”90108 -90061 -90146 -90080 '90024 90076 ‘90153 -90024 90072 90000 90005 -90097 ‘90211 90002 90076 ‘90088 '90071 '90009 -90102 90478 ‘90130 ‘90012 ASSIGN- MENT 90 RP 90 GP 79 89 89 99 \O\O\OCD CALCULATED GSCD 5294021 12493756 5899336 6594585 358 OBSERVED GSCD 5293932 12494107 5899675 6594477 DELTA NU 90200 90316 90316 90224 055- CALC '90090 90351 90339 '90109 APPENDIX XIII COMPAFISON OF THE OBSERVED AND CALCULATED GROUND STATE COMBINATION DIFFERENCES OF v2+v3 OF CHDD The following pages contain a comparison of the observed and calculated ground state combination differences of 9924-v3 of CHBD from a simultaneous least squares analysis of these ground state combination differences. The constants determined are (in cm"): B0 = 3.88107 DgK = 1.192 x 10"4 D3 = 5.28 x 10'”5 The columns, left to right, are: the assignment (of. Chapter 4); the calculated combination differences (in cm"); the observed combination difference (in cm“); the Av (weight = (NORM)2/(Av)2); and the observed minus the calculated combination difference. 559 ASSIGN- MENT RR 29 RP 29 RP 29 RP 29 RP 29 RP 29 RD 29 RR 291 R0 29 R0 29 80 29 80 29 80 29 R0 29 R0 291 OR 29 OR 29 OR 29 OR 29 OR 29 OR 29 RP 39 RP 39 RP 39 RP 39 RP 39 RR 39 \Omxlkfi-Pwrdfl'mflOKfi-L‘W C.) \OCDaIO‘U‘J-‘xOCDQUI-L‘w RP 3911 RP 3912 R0 39 R0 39 R0 39 R0 39 a, 7 8 9 R0 3910 R0 3912 GP 39 OR 39 OR 39 OR 39 4 7 8 9 OR 3912 RP 49 RR 49 RP 49 RR 49 5 6 7 9 RP RP RR 4910 4911 4912 R0 49 R0 49 0P 49 6 9 6 CALCULATED GSCD 5493091 6998107 8593009 10097772 11692370 13196777 14790969 19391995 2392779 3190312 3897795 5492558 6199812 6996965 7794004 3190312 3897795 4695214 6199812 6996965 7794004 6998000 8592878 10097617 11692191 13196574 14790742 17798329 19391697 3190264 5492474 . 6199717 6996858 7793885 9297545 3897735 6199717 6996858 7793885 10094153 8592695 10097400 11691941 14790425 16294319 17797945 19391280 4695043 6996708 5492357 360 OBSERVED GSCD 5493210 6998068 8593030 10097837 11692351 13196792 14790972 19392103 2392878 3190454 3897733 5492605 6199508 6997161 794039 3190331 3897614 4695296 6199746 6997283 7793811 6998039 8592888 10097641 11692052 13196602 14790891 17798232 19391749 3190418 5492409 6199721 6996901 7793962 9297434 3897621 6199643 6996881 7793991 10094315 8592846 10097551 11691817 14790399 16294631 17797418 19391174 4695100 6996576 5492451 DELTA NU 90122 90122 90122 90122 90100 90100 90212 90292 90122 90300 90212 90212 90212 90292 90346 90100 90292 90224 90212 90158 90346 90141 90141 90122 90122 90122 90158 90212 90300 90173 90141 90173 90100 90173 90173 90173 90122 90158 90158 90316 90122 90122 90100 90212 90292 90300 90245 90158 90122 90173 085- CALC 90119 ‘90039 90020 90065 ‘90018 90015 90003 90108 90100 90142 ‘90062 90047 '90304 90196 90035 90019 '90181 90082 '90066 90318 ‘90193 90039 90010 90023 ‘90139 90028 90149 ‘90097 90052 90154 -90066 90004 90043 90077 '90111 ‘90115 ~9OO73 90024 90106 90162 90152 90150 -90123 ‘90026 90312 “90527 -90107 90057 "90132 90093 ASSIGN- MENT 09 49 R0 59 R0 59 R0 59 R0 59 R0 5910 R0 5911 R0 5912 R0 5914 RR 59 6 RP 59 7 RP 59 8 RP 59 9 RP 5910 RP 5911 QR 59 6 OR 59 7 GP 59 8 CR 59 9 09 5910 0P 5911 RP 69 7 RP 69 8 RP 6910 RR 6911 RR 6912 R0 69 7 R0 69 8 R0 6910 R0 6913 GP 69 7 GP 69 8 OR 69 9 OR 6910 RP 79 8 RP 79 9 RP 7910 RP 7911 RP 7912 R0 79 8 R0 79 9 R0 7910 R0 7911 R0 7912 OR 79 8 0P 79 9 00 7910 OR 7911 GP 7912 RP 8910 \OWNO‘KO CALCULATED GSCD 7793718 4694914 5492207 6199412 6996515 7793503 8590365 9297087 10890062 10097121 11691619 13195926 1479 018 16293868 17797452 5492207 6199412 6996515 7793503 8590365 9297087 11691226 13195481 16293318 1779 849 19390089 5492024 6199202 7793241 10093316 6199202 6996279 7793241 8590077 13194954 14698931 16292667 17796137 19299314 6198954 6996000 7792931 8499736 9296401 6996000 7792931 8499736 9296401 10092913 16291916 OBSERVED GSCD 7793823 4694901 5492270 6199306 6996518 7793399 8590296 9297039 10890296 10097071 11691615 13195817 14790023 16293872 17797450 5492171 6199344 6996512 7793505 8590473 9297154 11691190 13195409 16293286 17796881 19299607 5491830 6199158 7793122 10093530 6199360 6996251 7793396 8590164 13194885 14698997 16292778 17796299 19298906 6198904 6996039 7793090 .8499785 9296479 6995981 7792958 8499688 9296514 10092427 16291762 DELTA NU 90224 90158 90122 90100 90292 90122 90200 90158 90316 90122 90122 90212 90122 90292 90200 90173 90141 90212 90300 90300 90200 90158 90173 90245 90173 90300 90212 90346 90158 90245 90245 90300 90224 90212 90173 90173 90173 90200 90346 90224 90158 90224 90173 90283 90245 90122 90283 90173 .0346 90212 085- CALC 90106 -90013 90063 -90106 90003 -90104 “90069 ‘90049 90234 -90050 ‘90004 '90109 90005 90004 ‘90002 -90037 “90067 ‘90003 90002 90108 90067 ‘90036 -90072 “90031 90032 ‘90481 -90194 -90044 ‘90119 90214 90158 “90028 90155 90087 -90069 90066 90111 90162 “90408 “90050 90039 90159 90049 90078 *90019 90027 ‘90048 90114 ‘90486 ‘90154 ASSIGN- MENT RP R0 R0 0P RP RP fl 2.?! R0 OR 8911 8911 8912 8911 9910 9913 9911 9913 9913 CALCULATED GSCD 17795314 8499343 9295972 9295972 16291066 20890115 8498897 10091922 10798193 u: (h {\J OBSERVED GSCD 17795292 8499389 9295964 9295903 16291064 20890710 8498730 10092562 10798147 DELTA NU 90283 90224 90200 90224 90212 90346 90141 90346 90400 085- CALC ‘90022 90046 ‘90007 ‘90068 -90001 90594 -90167 90640 “90046 EXCLUDED FROM LEAST SQUARES ANALYSIS DUE TO ZERO WEIGHT RP R0 QD RP R0 0P 0P RP R0 R0 R0 R0 0P 0P OR OR RP 09 R0 0P RP 0P RP RP R0 R0 0P 0P R0 2910 2912 2910 3910 39 6 39 6 3910 49 8 49 5 49 7 4910 4912 49 5 49 7 4910 4912 5912 5912 6911 6914 6911 8912 8912 9911 9912 9912 9915 9911 9912 7915 16294919 9297688 8590915 16294669 4695143 5492474 8590784 13196291 3897652 5492357 7793718 9297344 4695043 6199583 8590601 10093936 19390744 10093657 8590077 10799695 9296773 19298420 10092449 17794383 19297408 9295486 11594287 9295486 10091922 11595431 16294808 9298949 8590769 16294656 4694901 5492746 8590695 13196441 3897624 5492209 7793061 9297090 4695222 6199608 8591570 10094084 19391084 10094045 8590318 10799598 9295984 19298524 10092559 17794353 19297774 9295476 11593356 9295624 10092299 11593562 99999 99999 9999 99999 99999 99999 99999 99999 99999 99999 99999 99999 99999 99999 99999 99999 99999 99999 99999 99999 99999 99999 99999 99999 99999 99999 99999 99999 99999 90346 '90112 91261 -90147 -90012 ‘90242 90272 “90090 90150 '90028 -90148 ‘90656 ‘90254 90179 90025 90969 90148 90339 90388 90242 ‘90097 ‘90789 90103 90110 -90029 90367 -90010 -90931 90138 90377 ‘91870 APPENDIX XIV COMPARISON OF THE OBSERVED AND CALCULATED UPPER STATE COMBINATION DIFFERENCES OF 924-93 0F 083D The following pages contain a comparison of the observed and calculated upper state combination differences of v2+v3 of CHD3 from a simultaneous least squares analysis of these upper state combination differences. The constants determined are (in cm"): Bv = 3.74260 ngK = 2.51 x 10'“+ D3 =—1.5 x 10-5 The columns, left to right, are: the assignment (of. Chapter 4); the calculated combination differences (in cm“); the observed combination difference (in cm"); the Av (weight = (NORM)2/(Av)2); and the observed minus the calculated combination difference. 36} ASSIGN- MENT RP 29 RP 29 RP 29 RP 29 RP 29 RP 29 RP 29 R0 29 R0 29 R0 29 R0 29 R0 29 R0 29 0? 29 GP 29 GP 29 OR 29 GP 29 QR 29 0P 291 RP 39 RP 39 RP 39 RP 39 RP 39 RP 39 . RP 391 RQ 39 R0 39 80 39 R0 39 R0 3910 GP 39 4 0P 39 7 OR 39 8 GP 39 9 OR 3910 0P 3912 RP 49 5 RP 49 6 RP 49 7 RP 49 8 RP 4910 RP 4911 OR 49 6 R0 49 6 R0 49 9 RP 59 6 7 8 000:)40mboomxlkj1bUJ~00)\jmpmxom~JO~mpw \Omfl-D RP 59 RP 59 CALCULATED USCD 5293879 6793603 8293360 9793157 11293001 12792900 14292861 2999367 3794236 4499124 5998968 6793932 7498929 2294512 2999367 3794236 5294333 5998963 6793932 7498929 6793377 8293084 9792830 11292624 12792473 14292384 15792365 3794111 5998767 6793706 7498678 8293687 2999267 5293857 5998767 6793706 7498678 8998735 8292697 9792373 11292097 12791876 15791627 17291614 4498762 5293611 7498327 9791786 11291420 12791108 364 OBSERVED USCD 5293688 6793616 8293458 9793206 11292964 12792963 14292881 2999348 3794390 4499187 5999031 6793693 7499066 '2294339 2999226 3794271 5293932 5999269 6793815 7498838 6793311 8293094 9792788 11292719 12792451 14292351 15792388 3794235 5998819 6793709 7498661 8293699 2998995 5293900 5998742 6793690 7498690 8998814 8292583 9792315 11292198 12791885 15791591 17291702 4498688 5293627 7498294 9791678 11291301 12791146 DELTA NU 90122 90100 90100 90122 90122 90100 90212 90122 90292 90212 90212 90158 90346 90100 90292 90212 90224 90158 90292 90346 90141 90121 90141 90141 90100 90121 90158 90173 90141 90158 90122 90158 90173 90141 90158 90100 90200 90245 90122 90121 90121 90100 90224 90316 90173 90158 90122 90100 90122 90122 088- CALC '90192 90013 90098 90049 "90037 90063 90020 -90019 90154 90063 90064 -90239 90137 ‘90173 ‘90141 90035 '90101 90302 -90117 '90092 '90067 90010 -90043 90095 '90022 -90034 90023 90125 90052 90003 '90018 90012 '90272 90043 '90025 “90016 90011 90079 -90114 “90059 90101 90009 -90036 90089 '90074 90015 -90033 ‘90108 '90119 90038 ASSIGN- MENT RP 59 9 RP 5910 RP 5911 RP 5912 R0 59 6 R0 59 7 R0 59 8 R0 59 9 R0 5910 R0 5911 R0 5912 R0 5914 0P 59 6 OP 59 7 OP 59 8 0P 59 9 OP 5910 0P 5911 0P 5912 RP 69 7 RP 69 9 RP 6910 RP 6911 R0 69 7 R0 69 9 R0 6910 R0 6913 R0 6914 OR 69 7 0P 69 8 OP 69 9 GP 6910 0P 6913 CALCULATED USCD 14290858 15790678 17290575 18790555 5293295 5998125 6792983 7497875 8292803 8997772 9792784 11292955 4498491 5293295 5998125 6792983 7497875 8292803 8997772 11290591 14199809 15699518 17199305 5997683 7497323 8292196 10497071 11292126 5292908 5997683 6792486 7497323 9792066 365 OBSERVED USCD 14290871 15790767 17290667 18790605 5293302 5998073 6793008 7497869 8292792 8997698 9792791 11292153 4498376 5293202 5998137 6793002 7497976 8292969 8997814 11290333 14199897 15699841 17199660 5997478 7497249 8292319 10496793 11291815 5292855 5997681 6792648 7497522 9791742 DELTA NU 90212 90173 90292 90158 90158 90122 .0100 90292 90173 90158 90158 90400 90158 90141 90122 90346 90141 90316 90200 90200 90173 90224 90224 90245 90173 90122 90173 90200 90245 90316 90141 90212 90346 OBS- CALC 90013 90089 90092 90049 90007 '90052 90025 -90005 "90011 ‘90073 90007 ‘90801 '90115 ‘90093 90013 90019 90101 90166 90042 ‘90258 90088 90323 90356 ‘90205 ‘90074 90123 ~90277 -90311 -90054 -90002 90162 90199 ‘90324 EXCLUDED FROM LEAST SQUARES ANALYSIS DUE TO PERTURBATIONS OR ZERO WEIGHT OR BOTH RP 2911 RP 2912 RP 2913 RP 3911 RP 4912 RP 49 9 RP 3913 17292999 18793191 20293474 17292422 18791685 14291717 20292796 17292400 18792624 20291466 17292249 18790598 14291949 20291321 99999 99999 99999 99999 99999 99999 90245 ‘90599 '90566 -92008 ‘90173 ‘91087 90232 -91475 ASSIGN- MENT RP 3912 0P 39 6 R0 39 6 R0 3912 RP 4913 GP 49 5 OR 49 7 OP 49 8 0P 49 9 0P 4910 OR 4911 OR 4912 R0 49 5 R0 49 7 R0 49 8 R0 4910 R0 4911 R0 4912 RP 5913 R0 6911 R0 6912 GP 6911 0P 6912 RP 6912 RR 6913 CALCULATED USCD 18792563 4498973 5293857 9793828 20291847 3793935 5293611 998486 6793390 7498327 8293300 8998314 4498762 5998486 6793390 8293300 8998314 9793371 20290627 8997109 9792066 8292196 8997109 18699175 29199136 366 OBSERVED USCD 18791666 4499225 5293562 9793141 20291540 3794017 5293813 5998134 6793655 7499056 8293104 9090242 4498566 5998488 6793751 8292535 8998599 9792672 20290437 8997495 9792373 8292165 8997248 18699724 20198536 DELTA NU 90212 99999 99999 90158 99999 99999 99999 99999 99999 99999 99999 99999 99999 99999 99999 99999 99999 99999 99999 99999 99999 99999 99999 90200 90224 OBS- CALC '90897 90252 ”90295 '90687 “90308 90082 90202 '90352 90265 90729 “90196 91928 -90196 90002 90361 ~90766 90285 '90699 ‘90191 90387 90307 '90031 90139 90549 '90601 APPENDIX XV COMPARISON OF THE OBSERVED AND CALCULATED TRANSITION FREQUENCIES 0F v2+v3 OF CH3D The following pages contain a comparison of the observed and calculated transition frequencies of v2+v3_of CH3D from a simultaneous least squares analysis of these transition frequencies. The constants determined (of. Chapter 9) are (in cm"): v0 3499.6291 as +d§ -ag -a§ = 0.15718 The first set of transitions are those which were included in the least squares analysis. The second set contains those excluded due to perturbations or zero weight, (i.e., Ava 0.9999). The columns, left to right, are: the assignment (AK,AJ,K,J); the calculated transition frequency (in cm"); the observed transition frequency (in cm"); the Av (weight = (NORM)2/(Av)2); and the observed minus the calculated frequency. 367 ‘ASSIGN- MENT OR 29 OR 29 0P 29 GP 29 GP 29 OR 29 OR 29 OR 29 OR 29 OR 39 GP 39 0P 39 OR 39 0P 39 0P 39 H O~0m\IO‘U‘-DU~) 12 \OOONO‘UT-D GP 3910 OR 49 OR 49 OR 49 0P 49 0P 49 6 7 8 10 OR 4911 0P 4913 GP S9 GP 59 OR 59 OR 59 6 7 8 9 0P 0P 0P 5910 5911 5912 QR 69 GP 69 0P 69 7 8 9 0P 0P 0P 00 00 00 00 00 00 00 00 6910 6911 6912 29 29 29 29 29 29 2910 39 4 @004me 00 39 00 39 00 39 7 8 9 00 3910 00 00 3912 49 6 CALCULATED FREQUENCY 347691485 346795685 345897257 344996278 344092844 343097064 342099067 341098995 339093282 346893513 345995044 345094011 344190510 343194650 342196559 341196380 346095945 345194837 344291242 343295269 341296719 340294445 338194777 345298757 344395040 343398923 342490533 341490013 340397522 339393238 344591905 343595611 342597015 341596260 340593506 339498929 349895997 349795052 349691492 349296876 349096031 348892997 348597922 349892779 349394366 349193416 348990263 348695056 348099147 349693599 368 OBSERVED FREQUENCY 347691674 346795681 345897293 344996268 344092937 343097122 342099108 341099113 339092932 346893580 345995034 345094003 344190482 343194738 342196599 341196298 346095972 345194767 344291108 343295210 341296696 340294182 338194711 345298789 344394995 343398852 342490478 341399975 340397478 339393292 344592053 343595547 342596977 341596229 340593587 339499189 349896013 349794908 349691564 349296869 349096392 348892924 348597951 349892655 349394382 349193480 348990289 348694988 348098979 349693455 DELTA NU 90070 90070 90070 90010 90100 90070 90070 90100 90200 90100 90100 90100 90100 90070 90070 90140 90100 90100 90100 90070 90200 90283 90200 90070 90100 90100 90200 90100 90283 90140 90140 90140 90100 90200 90200 90140 90700 90283 90200 90200 90140 90283 90283 90140 90100 90140 90070 90140 90140 90140 OBS- CALC 90189 "90004 90036 “90010 90093 90058 90042 90119 -90350 90067 -90009 “90009 “90028 90088 90040 ‘90082 90027 “90071 '90134 ‘90060 -90024 ‘90262 '90066 90032 -90046 '90071 '90055 “90038 ‘90045 90054 90148 “90064 -90038 '90031 90081 90260 90016 ‘90144 90072 -90007 90361 “90073 90029 -90124 90016 90064 90025 ‘90068 ‘90168 "90144 ASSIGN- MENT QQ QQ QQ 00 00 QQ QQ QQ QQ QQ 00 00 QR QR QR QR QR QR QR QR QR QR QR QR QR QR QR QR QR QR QR QR QR QR QR QR QR QR QR QR QR QR QR QR QR QR QR QR QR 49 59 59 59 59 5910 5911 5912 69 7 69 8 69 9 000400 0‘ C 5.9 N o \OWQOK”DW\OLD\IO‘W&WN(D 5910 5911 5912 69 6 69 7 69 9 6910 CALCULATED FREQUENCY 349090436 349797247 349598334 349397047 349193515 348897886 348690323 348391007 349794813 349593293 349299500 349093581 352198775 352895364 353499287 354190615 354699433 355295842 355799961 356391924 352993043 353596889 354198126 354796840 355393132 355897120 356398940 356898740 357396690 353697532 354298641 354897209 355493337 355997143 356498761 356998342 357496053 354492161 355090541 355596458 356190028 356691388 357190687 357598092 358093787 355196836 355792494 356796821 357295775 369 OBSERVED FREQUENCY 349090519 349797165 349598197 349396990 349193480 348897951 348690447 348391106 349794908 349593228 349299625 349093751 352198891 352895361 353499297 354190751 354699474 355295900 355890085 356391990 352993074 353596891 354198129 354796790 355393201 355897189 356398949 356898686 357396413 353697613 354298555 354897027 355493306 355997095 356498813 356998286 357495885 354492066 355090467 355596296 356099998 356691350 357190742 357598145 358093897 355196737 355792386 356796874 357296070 DELTA NU 90100 90140 90100 90700 90283 90100 90140 90140 90200 90283 90100 90070 90100 90100 90700 90070 90070 90070 90070 90200 90100 90100 90070 .0100 90100 90070 90100 90070 90100 90070 90070 90070 90070 90070 90070 90100 90140 90070 90070 90070 90070 90070 90140 90070 90070 90070 90140 90140 90100 088- CALC 90083 *90082 -90138 -90057 ‘90035 90065 90123 90099 90095 '90065 90125 90170 90115 ‘90002 90010 90136 90041 90058 90124 90065 90030 90002 90002 -9OOSO 90069 90069 90010 -90054 ‘90276 90081 ‘90086 “90182 -90031 ‘90048 90053 ‘90055 -90168 '90095 -90074 ”90162 ‘90030 “90038 90056 90053 90110 -90098 '90109 90053 90296 EASSIGR‘ MENT CALCULATED FREQUENCY 370 OBSERVED FREQUENCY DELTA NU OBS- CALC EXCLUDED FROM LEAST SQUARES ANALYSIS DUE TO OR OR QP QP QR QR QP QP QP QP QP QP OR OR QP QP QP QP OR OR OR OR QR OR OR OR OP QQ 00 00 GO QQ 00 00 00 QQ Q0 00 00 00 00 PERTURBATIONS OR ZERO WEIGHT OR 80TH 2913 4912 6913 O9 09 09 O9 09 09 09 O9 0910 0912 2911 3911 49 9 5913 79 8 79 9 7910 7911 7912 7913 8911 8912 8913 9911 39 6 49 7 49 8 4912 5914 6911 6913 6914 79 8 79 9 7910 7911 7912 7913 ‘OCDQO‘U‘IJ-‘UJN 337998010 339290400 338492721 348398299 347595201 346699423 345891027 344990092 343996711 343090996 342093073 341093086 338997576 340097008 340194273 342297047 338297352 343795334 342796495 341795462 340792396 339697473 338690885 340994192 339898870 338891844 341198895 349592983 349494852 349293754 348198711 347697913 348795700 348194784 347892158 349792493 349498392 349292130 348993872 348693796 348392099 337997479 339290868 338493640 348399249 347596229 346790381 345891964 344991045 343997588 343091838 342093770 341093524 338997728 340097182 340194293 342296865 338297061 343795838 342796788 341795658 340792678 339698029 338692560 340994921 339899931 338893388 341290289 349593228 349494818 349293344 348198795 347697202 348795752 348195382 347892578 349792769 349498616 349292366 348994544 348694988 348393409 90283 90283 90283 99999 90200 90140 90140 90140 90200 90140 90140 90140 90200 99999 99999 99999 99999 90200 90140 90100 90140 90140 90283 90200 90200 99999 90200 99999 99999 99999 99999 90283 99999 90200 90140 90200 90070 90200 90100 90200 90283 -90531 90469 90919 90950 91028 90959 90937 90953 90877 90842 90697 90437 90152 90174 90020 '90183 -90291 90504 90294 90196 90282 90556 91675 90728 91061 91544 91394 90244 ‘90034 -90410 90084 ‘90711 90052 90599 90420 90276 90224 90236 90672 91192 91309 ASSIGN- MENT 00 00 QQ Q0 00 00 00 Q0 00 00 00 QR QR QR QR QR QR QR QR QR QR OR OR QR QR QR QR QR QR QR QR QR QR QR QR QR QR QR QR OR OR QR QR QR QR QR QR QR OR OR 7915 89 9 8910 8911 8912 8913 8914 9911 9912 CALCULATED FREQUENCY 347694709 349790190 349493533 349194840 348894289 348592079 348198420 349398603 349097515 348794722 348794722 351493233 352192580 352799220 353493206 354094606 354693508 355290011 355794234 356296312 356796396 357294651 357791263 358196430 358690368 357390002 357796467 357892971 358297785 358791346 357992078 358799884 359292114 358497972 358990862 359392691 357792806 358198098 358691850 359094280 359495618 355991447 356494391 356995060 357493606 357990195 358395010 358798252 359290136 359690896 371 OBSERVED FREQUENCY 347694298 349792769 349494818 349195834 348895947 348594600 348198795 349399916 349097955 348795752 348890380 351494313 352193571 352890174 353494232 354095653 354694434 355290767 355794598 356296345 356796874 357296070 357791636 358195423 358597255 357299582 357795557 357892121 358295985 358697939 357991467 358797678 359197860 358497498 358899355 359299354 357793247 358198913 358692176 359094394 359494595 355991673 356494655 356995456 357494328 357991467 358396251 358890012 359197866 359690740 DELTA NU 90200 90200 90140 90100 90100 90140 90283 90100 90140 99999 90200 .0140 90140 90140 90140 90140 90140 90140 90140 .0200 90140 90200 90200 90200 99999 90070 90200 90070 90200 90140 99999 90140 90200 90140 90283 90200 90130 90140 99999 90140 90140 90100 90140 90100 90140 90200 99999 .0140 90283 90200 085- CALC ‘90411 92579 91285 90995 91658 92521 90375 91313 90439 91030 95658 91079 90991 90954 91026 91047 90926 90756 90364 90033 90478 91419 90374 -91006 -93113 -90419 ‘90910 *90851 '91800 -93407 ‘90611 ‘92207 ‘94255 “90474 “91507 “93337 90442 90815 90326 90114 “91023 90226 90264 90396 90722 91272 91241 91760 ‘92270 -90156 ASSIGN- MENT QR QR QR QR QR QR QR QR QR QR QR QR QR 89 8 89 9 8910 8911 8914 8915 99 9 9910 9911 9912 9913 9914 9915 CALCULATED FREQUENCY 356695867 357196105 357694180 358190259 359398433 359798524 357399957 357897498 358392998 358796641 359198626 359599169 359998502 372 TIC) may n1m O m [71 < 4. I” R D U PCY 6697341 7196683 7695223 3 8191911 359492604 359891625 357491353 357898646 358393430 358892942 359197860 359692335 360094852 \JJ U) U) U1 U] U1 U1 DELTA NU 90200 90070 90200 .0140 90200 90283 90070 90100 90140 90200 90200 90140 90140 “111111117111“