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ABSTRACT

SOME EFFECTS OF PROGRESSIVE ULTRASONIC WAVES

ON LIGHT BEAMS OF ARBITRARY WIDTH

by Logan E. Hargrove, Jr.

If light is passed through a plane progressive ultrasonic wave nor-

mal to the direction of sound propagation, various diffraction phenomena

may be observed. Except for a scale factor which depends on the ultra—

sonic frequency and the medium, the observed diffraction effects, in a

limited but useful range, depend in a theoretically predicted manner only

on the ultrasonic waveform (pressure amplitude and harmonic structure),

the ratio of light beam width to ultrasonic wavelength, and the sound field

configuration. This study attempts to experimentally verify certain pre-

dictions of the existing theories which have not previously received

sufficient examination.

Quantitative experimental verifications of the theory developed by

Zankel (1) were obtained at l. O mc in water for sinusoidal ultrasonic

waves and narrow light beams. This theory was also confirmed for

distorted finite amplitude ultrasonic waves and wide and narrow light

beams at 3. O mc in water. Some qualitative features of the dependence

of diffraction on the relative phase between two adjacent ultrasonic waves

of frequency 3. O and 6. 0 me in water were experimentally shown to be

correctly given by the theory of Rao (2), Murty (3), and Mertens (4) for

simultaneous diffraction and by the theory of Mertens (5) for successive
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diffraction. Simultaneous and successive diffraction are indistinguishable

in a limited range. Quantitative measurements showed that the succes-

sive diffraction theory of Mertens must be applied in the range of exper-

imental parameters inve stigated.
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CHAPTER I

INTRODUCTION

A. General
 

The diffraction of light by ultrasonic waves has been investigated

experimentally and theoretically since the discovery of the effect in 1932

(l, 2). A periodic change in index of refraction results from the periodic

variation of pressure in an ultrasonic wave. The medium then acts as

an optical phase grating. It was recognized that such a "grating" has the

same periodicity in space as the ultrasonic wave. Thus the usual equation

for diffraction by a grating having spacing equal to the ultrasonic wave-

length gives the observed angular separation between discrete diffraction

orders. Raman and Nath (3, 4) developed a theory explaining the diffrac-

tion of light by sound for the case of an infinitely wide plane wave of

light passing through a plane sinusoidal ultrasonic wave at normal inci-

dence. This theory predicted not only the correct angular separation of

discrete diffraction orders but also predicted in closed form the light

intensity distribution over the diffraction orders in a limited but practical

range of experimental conditions. The fundamental assumption in the

Raman-Nath theory is that a plane light wavefront becomes modulated in

phase (but not in intensity) on passing through the ultrasonic wave. This

assumption limits the applicability of the theory because gradients in the

index of refraction can give rise to significant deflections of light which

will result in amplitude modulation of the light wavefront. Lucas and
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Biquard (2) developed a theory based on geometrical optics which considers

the bending of the light caused by gradients in the index of refraction.

This theory did not give the light intensity distribution over the diffraction

orders.

The infinite light beam width assumed in the Raman-Nath theory is

not necessary in order to obtain experimental results which agree with

predictions of the theory. In practice light beam widths of only a few

ultrasonic wavelengths give satisfactory results. However, the use of

light beam widths the order of an ultrasonic wavelength or smaller gives

rise to a continuous light distribution. With light beam widths between

one-half an ultrasonic wavelength and the several ultrasonic wavelengths

required to obtain discrete diffraction orders one observes a "poorly

resolved" diffraction spectrum. With light beam widths less than one-

half an ultrasonic wavelength one observes a rather smooth continuous

light distribution which is an envelope of the discrete diffraction orders

only in a very general sense. Early explanations of the narrow light

beam cases were based on geometrical optics and the bending of the light

caused by gradients in the index of refraction.

In the past few years it has been realized that distorted finite

amplitude ultrasonic waves produce asymmetric diffraction effects. That

light diffraction might be applicable to the study of finite amplitude ultra-

sonic waves was first suggested by Fubini-Ghiron (5) in 1935. Recent

interpretations of the observed asymmetry have been based on both the

concept of phase modulation and on the concept of bending of the light

caused by gradients in the index of refraction.



B. Description of the Observed Phenomena
 

If light is passed through a plane progressive ultrasonic wave nor—

mal to the direction of sound propagation, different diffraction phenomena

may be observed. The factor giving rise to the difference in appearance

is the width of the light beam. Figure 1(a) shows the source slit image

(image of SL in the schematic diagram of the experimental apparatus)

1

for a wide light beam and no ultrasound. Figure 1(b) shows the image

observed when the light beam width is limited by another slit to one-

quarter of a sound wavelength at l. 0 me in water, with no ultrasound

present. The limiting slit diffraction causes the broadening of the image;

orders greater than zero are not intense enough to show in the photograph.

Figures 1(c) and 1(d) are typical time-average light intensities observed

with ultrasound. Figure 1(c) is for the wide light beam. In this case a

width of approximately seven ultrasonic wavelengths was used which is

sufficient to obtain discrete diffraction orders. Figure 1(d) is for the

light beam width limited to one-quarter of an ultrasonic wavelength at

1. 0 me in water. The frequency and sound pressure were the same for

Figs. 1(c) and 1(d).

C. Diffraction of a Wide Light Beam

Raman and Nath (3, 4) developed a theory explaining the diffraction

of light by sound for the case of an infinitely wide plane wave of light

passing through a plane sinusoidal ultrasonic wave at normal incidence.

The theory confirmed the experimental observations (1, 2) that the light
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Figure 1. Photographs of typical images observed for (a) wide light

beam without sound, (b) narrow light beam without sound,

(c) wide light beam with sound, and (d) narrow light beam

with sound.

 



is diffracted at discrete angles 6n given by*

sin 9n = -n)\/)\*, (1)

where n is zero or a positive or negative integer, k is the wavelength of

light, and 15‘ is the wavelength of sound. Equation (1) is valid for any

periodic plane sound wave. The Raman-Nath theory predicts that for a

progressive sinusoidal plane ultrasonic wave the normalized intensity In

in the nth order of diffraction as defined by Eq. (1) is

2

I 2 J (V). (2)
n

where the Raman-Nath parameter v is approximately proportional to the.

sound pressure amplitude and given by

v : zan/x, (3)

(.1 is the maximum change in index of refraction of the medium caused

by the sound pressure, and L is the distance the light travels in the sound

field. Equation (2) is valid when the deviation of the light beam within the

sound field is small enough that a given ray will not be affected by signi-

ficantly different pressures. This means that one can then consider the

light to be changed in relative phase but not in amplitude as it passes

through the sound field. This assumption is justified for conditions under

which (6, 7)

(ZWLXV) / (1.101632) 5 N, (4)

where “0 is the index of refraction of the undisturbed medium and

l < N < 4, depending on the accuracy required.

 

'PThe usual sign convention that negative diffraction orders and posi-

tive diffraction angles are those in the direction of sound propagation is

used throughout.
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Sanders (8) experimentally verified the theory of Raman and Nath.

Since it is assumed that p is proportional to the sound pressure, the

Raman-Nath theory has been used for absorption measurements and has

been suggested for pressure measurements (9). Sanders, and later

Miller and Hiedemann (10), noted discrepancies between the Raman-

Nath theory and experimental results. Later, Zankel and Hiedemann

(11) extended the Raman-Nath theory to include finite amplitude distortion

of the ultrasonic waveform. They showed that asymmetry of the diffraction

orders is caused by finite amplitude distortion under experimental con-

ditions of sufficient pressure and propagation distance. They measured

the amount of distortion. It was also shown that small deviations from the

theoretical predictions are caused by inhomogeneities of the ultrasonic

beam.

Investigators in the U. S. S. R. (12, 13, 14, 15) have developed approx-

imate methods for waveform determination using the overall intensity

distribution of the diffraction spectrum. Their interpretation is based on

physical optics and considers the distorted finite amplitude ultrasonic wave

to act as a blazed transmission grating with sawtooth shape.

Cook (16) developed a method for determining the harmonic structure

from measurements of the light intensities in all the orders of diffraction.

Although this method is suitable only for calculation using high speed

computer methods, it has the distinct advantage of being a direct method

in the sense that one can obtain the harmonic structure from the diffraction

order intensities rather than from fitting data to calculated intensities for



various harmonic structures. The method is applicable only to the special

case of waveforms which are odd functions, i. e. , waveforms expressible

by a Fourier sine series.

D. Diffraction of a Narrow Light Beam
 

Lucas and Biquard (2) noted that if the light beam width is less than

one-half of the ultrasonic wavelength, a distinct diffraction spectrum is

not observed. When the source slit image is focused on a screen broadened

images occur, as in Figs. 1(b) and 1(d). This has been called "refraction"

and the following explanation based on geometrical optics was given by

Lucas (17). A light beam having a width much smaller than the ultrasonic

wavelength was considered as being deflected by an amount proportional

to the gradient of index of refraction resulting from the ultrasonic wave.

This approach gives, for the sine of the angle of deflection,

sin 9 = - (v). /)\*) cos wi‘t, (5)

where w‘I‘ is the angular frequency of the sound. The maximum deflection

is then given by

sin e : vk/A’i‘. (6)

max

Equation (6) was used as a basis for absorption measurements by Hueter

and Pohlman (18). However, in their work, they used a light beam width

of approximately one sound wavelength. They did this because the wider

slit width gave more clearly defined image edges from which they could

make measurements. Their extrapolated pressure measurements did not

go through the origin but this was of no serious consequence in their



measurements. Breazeale and Hiedemann (19) used the half-width of

the broadened image rather than the peak separation and found that their

measurements then extrapolated through the origin.

Loeber and Hiedemann (20) studied the intensity at the center of

the broadened image using standing waves. Their analysis was based

on assumptions similar to those of Lucas (17) but took into account dif-

fraction of light by the slit which limits the light beam width. The

analysis showed the possibility of determining ultrasonic waveforms and

sound pressure amplitudes. Experimental results suggested a distortion

of ultrasonic waves during propagation.

Breazeale and Hiedemann (21) adapted the method used by Loeber

and Hiedemann to the study of progressive waves. It was noticed that

the light intensity distribution over the broadened images was asymmetric

under certain experimental conditions. It was pointed out that this asym-

metry was caused by finite amplitude distortion ofthe ultrasonic wave-

form. The observed increase in asymmetry with increase in propagation

distance and initial ultrasonic pressure amplitude was in agreement with

the expected increase in waveform distortion with these parameters.

Breazeale, Cook, and Hiedemann (22) proposed measuring the

position of the deflected narrow light beam as a function of time and thereby

obtaining the ultrasonic pressure gradient waveform from a harmonic

analysis of such data. Their interpretation was based on the Lucas theory.

Zankel (23) developed a theory based on the Raman-Nath assumption

of only phase modulation of the light wavefront which included arbitrary
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light beam widths and ultrasonic waveforms expressible by a Fourier

sine series, which is probably the case for distorted finite amplitude

waves. This analysis, based on physical optics, predicts the light inten-

sity distributions over the discrete diffraction orders, as given earlier

by Zankel and Hiedemann (11), and over the broadened images. Details

of this theory are given in Chapter II.

E. Scope of the Present Study
 

The present study is concerned with experimentally testing the

validity of some predictions of the theory developed by Zankel which have

not already received sufficient verification. In particular, it is concerned

with the case of a sinusoidal ultrasonic wave and a narrow light beam and

the cases of a distorted finite amplitude ultrasonic wave and wide and

narrow light beams.

The ultrasonic waveforms considered in the development of the

theory by Zankel are only those expressible by a Fourier sine series.

Theoretical results have been given by Rao (24), Murty (25), and Mertens

(26) for diffraction of a wide light beam by an ultrasonic wave consisting

of two commensurate frequencies with arbitrary relative phase. These

theoretical results are for simultaneous diffraction of light by the different

frequency components contained in the same ultrasonic beam.

Mertens (27) recently pointed out that although Murty and Rao (28)

got good agreement between their theory and their experimental results

obtained using successive diffraction by two separate adjacent ultrasonic

beams, simultaneous and successive diffraction are not the same.
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Mertens obtained expressions for the amplitudes of light diffracted by

two adjacent ultrasonic waves and compared the predictions with those

from simultaneous diffraction theory. In a limited but useful range the

diffraction spectra are indistinguishable. The diffraction effects of two

adjacent ultrasonic waves of the same frequency have been used (29, 30)

to investigate finite amplitude distortion. In a single finite amplitude

ultrasonic wave the relative phases of the Fourier components are fixed.

Therefore the dependence of diffraction effects on the relative phase

between two ultrasonic waves is investigated here for both wide and

narrow light beams. It is shown how one uses the theoretical results of

Murty, Rao, and Mertens for arbitrary light beam widths.

All experimental results were obtained using progressive ultra-

sonic waves in water.



CHAPTER II

THEORY

A. Statement of Problem and Assumptions
 

Zankel’i‘ obtained a solution to the problem of diffraction of a light

beam of arbitrary width by plane progressive ultrasonic waves of

moderate frequency and amplitude. Normal incidence of collimated

monochromatic light is assumed. The approximations used by Raman

and Nath are used. At low frequencies, where narrow light beam widths

have usually been considered, these do not impose a serious limitation

as can be seen from Eq. (4). These results should include almost all the

experimental work at normal incidence except for wide beam diffraction

at high ultrasonic frequencies and/or large ultrasonic pressure amplitudes

where the Raman-Nath assumptions are not valid. The high frequency

cases have been considered by Extermann and Wannier (6) and by Wagner

(31). The problem here can be stated as consisting of light having a

certain phase distribution emerging from a slit. It is assumed that the

ultrasonic wave can be expressed by its Fourier components** and there-

fore the index of refraction can be written as

 

*The theoretical results derived in this chapter are those obtained

by Zankel. Some errors which appeared in the original publication

[reference (23)] have been corrected.

** The assumption of a sine series is justified for finite amplitude

waves if the mechanism giving rise to the finite amplitude distortion is

considered and the Fourier coefficients calculated in the absence of

dissipation in the medium. This is also true in the presence of dissipation.

See references 5, 32, and 33.

ll
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00

z, .

(x, t) = - . .51n f, 7
1* HO F115 J ( I

where

. = a. 813 JP ( )

and

fj = j(21Tx/).* - w’I‘t). (9)

x is the distance in the direction of sound propagation, H is the maximum

change in index of refraction of the medium that would occur if only the

fundamental pressure component were present, and a, is the (positive)

J

ratio of the pressure of the jth harmonic to that of the fundamental.

B. Derivation of the Principal Equations
 

The light amplitude at some angle 9 is given by the diffraction integral

A: Cf exp{ZTTi[,(x+jOZ:HpLsinfj]/}dx (10)

where C is a constant to be determined by normalization, 2d = D, the

width of the light beam, and ,( = sin 9. Equation (10) may be written as

+d

00

A = C I exp [iu,(x] H exp [iajv sin fj] dx, (ll)

1:1
-d

where u = 211/). and v = ZnuL/x is the Raman-Nath parameter. Using

+oo

exp [ia,v sin f,] = 23 J (a,v) exp (irf,), (12)

J J 1‘: 00 1' J J

Eq. (11) becomes

+d

+oo

A=Cf Z Z _Z J (av)...J (a_v)...

r,r,...--oorl r.)

d l 2 l j

(times) exp [iu,(x + i(r1+ . . . +jrj + . . . ) (bx - w’i‘t)]dx (l3)
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where b = 211/)«*. Let

r1+...+jrj+...=n. (14)

Then

+d +oo

: z ' _ ' ’1‘A Cfd n : -00 (In exp [1(u,( + nb)x into t] dx, (15)

where

E Z 0 O O +m (

4) = __Z J _ _ _ v)

n k2,k3,...— oo n2k2 3k3...

(times) Jk2(a2v) Jk3(a3v) . . . . (16)

on is the amplitude of light in the nth order of diffraction as found by

Zankel and Hiedemann (11) for an "infinite” light beam width. On perfor-

ming the integration one finds

+00 sin (u,( + nb)d

n 2 -00 n (u,( + nb)

 

exp (-inw*t). (17)

To normalize it is assumed that the amplitude is exp (iwt) at 9 = 0 and

v = 0 (central intensity with no sound equal to unity), where w is the

angular frequency of the light. This gives

 

+oo

A = 2 ((1 W exp [i(wt - nw*t)], (18)

n = -00 n n

where

sin (u,( + nb)d

= l

Wn (u,( +nb)d ( 9)

The real part of Eq. (18) is

+00

3, = E (I) W COS (wt -nw*t). (20)

n =-oo n n

This may be put in the form



l4

2 2 2

a = r sin (a + wt), (21)

where

2 +§° I? w w ~ 22
r —I(t) _n:_oo mz-oo ¢n¢m n mCOS [(n-m)w~t] ( )

and

+00 +00

a : z, >:< ' ::< . 2tan : -oo 4)an cos n00 t) / n =Z-oo <1)an Sln nw ( 3)

Since the ¢n's fall off for higher n and since 00*<< w, a varies slowly

compared with wt. Therefore, the light intensity one can measure is given

by Eq. (22). In many cases the time-average light intensity is observed.

To obtain an expression for the time-average light intensity I one must

integrate a2 as given by eq. (20) by squaring and then divide by the total

time. By performing this integration one obtains

  

 

(Zn/W)
2

(w*/2n) a dt =

0

+00 +00 - _ - *_
Z) Z (I) (I) W W 8111 21T(m n) + $111 ZHEw/jo (n+m)l . (24)

n=-oo mI-oo n m n m 411(m-n) 4n[2w/w'-‘-(n+m)]

Since w=i<<< (11, Eq. (24) reduces and normalizes to give

+0)

2

I = Z cpZW . (25)

n=-oo n n

For a wide light beam, i. e. , if d>>).*, Eq. (25) is the same as that

obtained by Raman and Nath for a sinusoidal wave and by Zankel and

Hiedemann for a distorted finite amplitude wave.

For narrow light beams Wn can be put in the form

Sin TrG(H + n)
= 26

Wn nG(H + n)
( )

where

G = D/>.*. (27)
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Thus G is the ratio of the light beam width D to the ultrasonic wavelength.

H measures distance across the image in terms of separation of discrete

diffraction orders, were they present. From Eq. (1) it is seen that H is

defined in a manner similar to that of n, i. e. ,

sin e = H(>./>.*). (28)

In this way calculations based on Eq. (25) depend only on the Raman-Nath

parameter v, the ratio of light beam width to sound wavelength G, and

the ultrasonic waveform. ,( is then measured in units H of spacing be-

tween discrete diffraction orders, had these occurred. For a sinusoidal

wave (In reduces to the Bessel function on = Jn(v) of the Raman-Nath

theory.

Equation (25) can be interpreted in the following manner. (I): is the

intensity In of the nth diffraction order, whether given by Eq. (2) for a

sinusoidal wave, by the more complicated Eq. (16) for a wave consisting

of Fourier sine components, or by other expressions for other cases such

as those to be considered in Chapter 111. It can be seen that as G becomes

large in Eq. (26), the value of anis significant only when (H + n) vanishes.

Since negative n corresponds to positive H, the significant light intensities

given by Eq. (25) are those corresponding to the locations of discrete

diffraction orders as predicted by Eq. (1), i. e. , discrete diffraction orders

result for a light beam much wider than an ultrasonic wavelength. An

equivalent statement is that the ”spreading" of the orders caused by

diffraction by the limiting aperture is negligible compared with the

spacing between the orders. This statement is better understood if one



 

(l6

. Z . . . . .
recognizes that the factor Wn is an expreSSion for the light intenSity

distribution for slit diffraction by the limiting aperture, written so that

it is centered about the location of the nth diffraction order, if it occurs.

Therefore Wn distributes the nth diffraction order intenSity over a slit

diffraction distribution. In the case of narrow light beams the spreading

is not negligible compared with the separation of diffraction orders, had

they occurred. Therefore the narrow beam continuous light distribution

can be thought of as a blending of diffraction orders resulting from

distributing the diffraction orders over a slit diffraction distribution.

The arithmetic addition of intensity contributions from various "orders"

indicated by the summation in Eq. (25) is justified because each "order"

consists of slightly different light wavelengths. This can be seen in

Eq. (20).

C. Relations to Previous Work
 

The results of Loeber and Hiedemann (20) can be adapted to pro-

gressive waves to give the central light intensity as

2 2 2 -l 2

1(0) 2(11 G v - O. 232) / (29)

for Gv > 11’. Similarly it can be shown from the work of Loeber and

Hiedemann that

n 2n

1(0) : Ci? (-1) (CV)
 

which is useful for smaller values of CV. In Fig. 2, 1(0) is shown as

calculated from Eq. (25) for G = 1/8 and compared with values of 1(0)

calculated from Eq. (30) for G = 1/8, It is seen that the two equations



1.061943%),$ 0 Eq. (30)

{I} + Eq- (25)
¢

6 - £9

1(0) $$

4 . 9%
69$?)

‘Pe

  o l i l n

4 8 12 16

V

Figure 2. Central light intensity XE the Raman-Nath parameter as given

by Eq. (25) for G = 1/8 and as given by Eq. (30) for G = 1/8.

D II

< 0
0

D II

< .
p

  
1 1

O 5 10 15

V

Figure 3. Distance from the center of the broadened image to the outer-

most peak in units H of diffraction order spacing vs the Raman-

Nath parameter as given by Eq. (25) for G = 1/4 an—d G = 1/8.

”Lucas" refers to the maximum deflection calculated from the

simplified theory of Lucas, Eq. (6).
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give very nearly the same results. The Loeber and Hiedemann expressions

assume that G <<1 while Eq. (25) contains no such assumption. It was

found that values calculated from Eqs. (25), (29), and (30) using G as

large as 1/2 are in fair agreement.

Figure 3 shows the distance H to the outermost peak of the

M

broadened image as a function of the Raman-Nath parameter v as calcu-

lated from Eq. (25). The solid line passing through the origin is calculated

from Eq. (6) obtained by Lucas (17). It can be seen that the results

obtained from Eq. (25) do not extrapolate through the origin. This

indicates why the half-width used by Breazeale and Hiedemannl(19) gave

better values for the sound pressure amplitudes than the peak separation

used by Hueter and Pohlman (18).



CHAPTER III

EXPERIMENTAL

A. General Apparatus and Procedure
 

A special tank was constructed to obtain progressive waves. De-

sign features and major dimensions are shown in Fig. 4. The tank is

6 x 6 inches in cross section. Sound from the transducer travels along

the tank and strikes the oblique reflecting end wall. After reflection, the

beam passes through a very thin plastic membrane and enters castor oil.

The acoustic impedance match between water and castor oil is very good.

Note that any sound reflected from the membrane strikes the end wall at

normal incidence and is reflected back into the castor oil. After traveling

the "zig-zag" path down and up the castor oil, the sound beam strikes the

end wall at normal incidence and retraces the path in the castor oil. The

total path length in castor oil is 244 cm. Using 2 x 10-2 cm.1 for the absorption

coefficient at 1. 0 mc (a conservative value by as much as a factor of four"),

this path length reduces the sound to about 0. 8% of the original pressure,

or about 0. 006% of the original intensity.

A schematic diagram of the experimental apparatus is shown in Fig.

5. Light from the Hg arc source S illuminates the source slit SL1. Light

is collimated by lens L2. When a wide beam of light is desired to observe

discrete diffraction orders with SL2 removed, the square aperture Alimits

 

*F. Dunn, Biophysical Research Laboratory, University of Illinois,

Urbana, private communication.
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the light beam to cover a section of the sound beam. A also serves to

limit the vertical height of the light beam when slit SL2 is in place. The

transducer Q is an X-cut, air backed quartz. SLZ is the slit which deter-

mines the effective light beam width. This slit is referred to as the

limiting slit. It appears from simple arguments and from observations

that in the region studied it makes little difference whether the limiting

slit is placed before or after the sound in the optical path. The width of

the limiting slit in terms of sound wavelengths was determined by comparing

the separation of zeros of slit diffraction without sound with the separation

of the discrete diffraction orders observed with the limiting slit removed

and the sound on. Figure 6 shows the slit diffraction pattern observed

with no sound present. When the first zero of this diffraction pattern is

at H = HO the value of G is l/HO. Since one unit of H is one diffraction

order spacing, the H scale was established on a recorder trace by scanning

a discrete diffraction spectrum and noting the spacing of the orders. The

need for direct wavelength measurement or accurate velocity and frequency

measurements was thereby eliminated. The magnification of the image

may be any convenient magnitude. This method of slit width determination

gave settings which were reproducible to about 2%. With special care,

absolute accuracy of 0. 5% was obtained. The lens L produces an image
3

of the source slit in the plane of the photomultiplier slit SL3 - A 5461 81

optical filter is located inside the photomultiplier housing P. The photo-

multiplier microphotometer and slit SL3 can be moved across

the image by a synchronous motor and precision screw at a rate of 5 mm



 
 

  

Figure 6. Slit diffraction pattern caused by the limiting slit SL

observed with no sound. The first zero of this diffraction

pattern at HO indicates that G = l/HO.
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per minute. The microphotometer output can be recorded with a chart

speed of 2 inches per minute.

B. The Case of a Sinusoidal Ultrasonic

Wave and Narrow Light Beams

 

 

The basic experimental arrangement was that described in the

previous section. The aperture A limited the light beam width to cover

a 1 x 1 cm section of the sound beam. The transducer Q was a 2 x 2 inch,

X-cut, air backed quartz. The measurements described in this section

were made near the transducerito avoid finite amplitude effects encoun-

tered at greater distances. The magnification of the optical system was

adjusted to give a scanning rate of 7. 5 sec per diffraction order at 1. 0 mc

in water.

To compare the experimental values with values calculated from

Eq. (25) it was necessary to determine the Raman-Nath parameter v. This

was determined as a linear function of quartz voltage by observing the

discrete diffraction orders and measuring the light intensity in the first

of these orders. The quartz voltages corresponding to minima and maxima

of light intensity predicted by Eq. (2) were used in this determination. A

more detailed description of this method for determining values of the

Raman-Nath parameter has been given elsewhere (9). Final selection of

the quartz voltages corresponding to values of v used in calculations were

made by very small adjustments of the values determined above such that

closest possible agreement was attained for the data shown in Fig. 7.
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These voltages were not readjusted in subsequent measurements. Details

of shape of the G = 1 curves in Fig. 7 are quite sensitive to small changes

in v.

The experimental results are shown in Figs. 7 through 11. The

points represent values calculated from Eq. (25). The solid curves were

traced from recorder charts. Only one side of the symmetric curves is

shown. Noise and minor irregularities, when they occurred, have been

smoothed out. All measurements shown are for 1. 0 mc in water. Some

measurements have been made at 800 kc and also show good agreement.

The time-average intensity I is plotted _\_1_s_ distance in units of H. The

light intensity is normalized such that the central intensity in the diffraction

pattern caused by the limiting slit is unity. The effective light beam

width is indicated in the figures by G. Experimental curves and calcu-

lated points are shown for G = 1, 1/2, 1/3, 1/4, and 1/8 and for v = 2, 4,

6, and 8. Approximately, the peak ultrasonic pressure amplitude was

P = v x 10-1 atmospheres for the transducer dimension used here.

There is fairly detailed agreement between the theoretical points

and the observed curves. It therefore appears that the considerations

used to derive the theoretical results are based on experimentally

achievable conditions. While the agreement is not exact, some amount

of deviation can be explained as being caused by several minor differences

between the ideal situation and the actual experimental conditions. It is

difficult to align the transducer for normal incidence of sound and light.

The source slit, the sound wavefronts, the limiting slit, and the photo-

multiplier slit must all be aligned parallel to each other. The sound field



27

is not homOgeneous since one is definitely working in the Fresnel region

of the transducer. The photomultiplier microphotometer is not perfectly

linear in response and is subject to some drift in sensitivity during the

5 to 7 minutes required to scan the images. The response time of the

microphotometer-recorder combination introduces some error, parti-

cularly when the light intensity variations are rapid. These experimental

limitations apply to other measurements to be described. It has been

shown elsewhere (34) that the data shown in Fig. 10 (G = 1/4) give values

of v which are in good agreement when interpreted on the bases of central

light intensity 1(0), the parameter HM shown in Fig. 3, and the first

diffraction order minima and maxima as previously described.

C. The Cases of a Distorted Finite Amplitude

Ultrasonic Wave and Wide and Narrow Light Beams

 

 

In this section some results of an investigation of the diffraction

of light passing through an ultrasonic wave of finite amplitude are given.

For sake of simplicity, the third and higher harmonics of the distorted

wave were neglected. As the harmonics fall off in magnitude rather

rapidly with harmonic number even in the absence of dissipation (33) and

more rapidly in a dissipative medium, the fundamental and second har-

monic components should be a fairly good approximation in the range of

frequency and pressure considered here.

For an ultrasonic wave consisting of the fundamental and the

second harmonic, the intensity In in the nth diffraction order is found

from Eq. (.16) to be
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- 2 _ +00 2

I ” ‘I’ " [k 300 Jn—2k(vl) kaz) (31)

where V1 is the Raman-Nath parameter for the fundamental and v2 is

the same parameter for the second harmonic. For a narrow light beam

the continuous light distribution I may be calculated usingicp: given by Eq.

(31) in Eq. (25).

Calculations were made for v1 = 2. 4 and various percentages of v‘2

relative to v1. This value of VI was selected because (a) the intensity of

the zeroth order is approximately zero, making the approximate range

easy to determine, (b) finite amplitude distortion is appreciable but not

excessive, and (c) the difference in (i) first order light intensity is

approximately proportional to v2 over a useful range of v2 and the average

(i) first order light intensity is approximately independent of V2 over the

same range. Calculated intensities of first and second orders are shown

in Fig. 12. All intensities calculated are tabulated in Table 1. Note that

the previously asserted properties of the difference and average of first

order light intensities are clearly shown in Fig. 12. It should therefore

be possible to ascertain experimentally that v1 = 2. 4 from the average

first order intensity and the relative amount of second harmonic from the

difference in intensity, provided the effect of higher harmonics is negligible.

To test the theoretical predictions outlined in the previous para-

graph, experimeintal measurements were obtained in the following way.

The basic optical arrangement shown in Fig. 5 was used. In this case

the transducer was a l x 1 inch, 3. 0 mc, X-cut, air backed quartz. The

light beam was limited by the square aperture A to cover a 5 x 5 mm



Table 1. Calculated intensities of diffraction orders for various percen-

tages of second harmonic (v2) relative to a fixed fundamental

(v1 F?- 2. 4) for a finite amplitude ultrasonic wave, neglecting

harmonics higher than the second, calculated from Eq. (31).

Order NO. 0% 5% 10% 15% 20%

0 .0000 .0000 .0000 .0000 .0000

+1 .2706 .2256 .1813 .1394 .1011

-1 .2706 .3148 .3564 .3942 .4264

+2 .1858 .1819 .1769 .1708 .1637

-2 .1858 .1883 .1895 .1892 .1869

+3 .0392 .0514 .0632 .0742 .0836

-3 .0392 .0276 .0173 .0089 .0030

+4 .0041 .0080 .0131 .0192 .0260

-4 .0041 .0017 .0002 .0002 .0016

+5 .0003 .0008 .0019 .0034 .0056

-5 .0003 .0000 .0000 .0001 .0002

+6 .0000 .0001 .0002 .0005 .0009

-6 .0000 .0000 .0000 .0000 .0000
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Calculated intensities of the first and second diffraction

orders for v1 = 2. 4 and various percentages of Va relative

to v Obtained from Eq. (31).
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section of the sound beam. At various distances from the transducer to

the light beam different amounts of distortion were present. At suitable

distances the transducer voltage was adjusted to give the average intensity

in the first diffraction orders predicted for v1 = 2. 4. The amount of second

harmonic was then inferred from the difference in intensity of these two

orders. The diffraction order intensities were measured. Then, having

established that v1 = 2. 4 and the relative amount of second harmonic, the

limiting slit SL was placed in position and the narrow beam diffraction

2

for G = 1/2 was observed. The resulting measurements of discrete dif—

fraction order intensities and broadened images for 5, 10, and 15 percent

second harmonic are shown in Figs. 13 through 15. Calculated values are

also indicated in the figures. The calculations for G = 1/2 were made

using the previously calculated diffraction order intensities in Eq. (25).

As a further check on the amount of second harmonic, a filter plate

was used to transmit the second harmonic and reflect the fundamental.

The intensity in the first order of diffraction resulting from the transmitted

second harmonic was used to determine a value for v2 using Eq. (2). The

values obtained from filter plate measurements for 10 and 15 percent

second harmonic are noted in the figures. It was not possible to make a

reliable filter plate measurement for the 5 percent case because the small

separation between the transducer and the filter plate allowed disturbing

reflections between the plate and the transducer. Where filter plate

measurements were possible, the values are in good agreement.
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Order Number

 

 

Figure 13.

(No Filter Plate Measurement)

Diffraction order light intensities and time-average light

intensity for G = 1/2 for an ultrasonic wave containing 5

percent second harmonic and v1 = 2. 4. Calculated diffraction

order intensities are indicated by vertical lines, experimental

values by circles. Calculated intensities in the broadened

image are indicated by circles, experimental values by the

line.
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Diffraction order light intensities and time-average light

intensity for G = 1/2 for an ultrasonic wave containing 10

percent second harmonic and v1: 2. 4. Calculated diffraction

order intensities are indicated by vertical lines, experimental

Calculated intensities in the broadened

experimental values by the

Figure 14.

values by circles.

image are indicated by circles,
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Figure 15. Diffraction order light intensities and time-average light

intensity for G = 1/2 for an ultrasonic wave containing 15

percent second'harmonic and v1 = 2. 4. Calculated diffraction

order intensities are indicated by vertical lines, experimental

values by circles. Calculated intensities in the broadened

image are indicated by circles, experimental values by the

line.
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The results in Figs. 13 through 15 demonstrate reasonable agree-

ment between theory and experiment. Some deviation is to be expected

because of sound beam inhomogenieties and the higher harmonics which

were neglected. It appears that it is possible to make a fairly good

determination from the discrete diffraction orders of the Raman-Nath

parameters pertaining to the fundamental and second harmonics if one

can neglect the higher harmonics. Higher harmonics can be included in

the calculations but the problem becomes much more complicated as the

number of variables is increased.

Some general features of the broadened images shown in Figs. 13

through 15 have been pointed out by Breazeale and Hiedemann (21). The

9 asymmetry of the light distributions increases with increase in waveform

distortion. This asymmetry corresponds to that of the diffraction orders;

the continuous distribution is very approximately an envelope of the

diffraction spectrum, lacking details such as the deep minimum which

might correspond to the approximately zero central order.

D. Diffraction of Light Passing Through Two

Adjacent Ultrasonic Waves of Different Frequency

 

 

Finite amplitude investigations have brought about increased

interest in the diffraction of light by non-sinusoidal ultrasonic waves.

As previously discussed, the simpler approach is to neglect the effects

of higher harmonics and consider only the fundamental and second har-

monic components of a distorted ultrasonic wave. There are some

aspects of the theory of diffraction of light by such "two-component"

waves that do not manifest themselves in finite amplitude investigations
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because the relative phases between the harmonic components are fixed.

Rao (24), Murty (25), and Mertens (26) have considered variable phase

between two frequency components in a single ultrasonic beam. Murty

and Rao (28) reported measurements which showed "striking" agreement

between calculated and measured intensities, using two separate ultra-

sonic beams. Mertens (27) has recently pointed out that successive

(separate beams) and simultaneous (single beam) diffraction are not the

same. However, for the range of experimental parameters used by

Murty and Rao the difference is small. The present investigation was

carried out for experimental parameters which give a significant difference

between simultaneous and successive diffraction.

The intensity of light in the nth diffraction order resulting from a

single ultrasonic wave consisting of fundamental and second harmonic

frequency components is

+00
2

In : k 5-00 Jn-2k(vl) Jk(vz) exp (-ikA) (32)

where A is the relative phase between the two components. The form

given here is that given by Zankel and Hiedemann (ll), specialized to the

second harmonic. Since In = 4):, calculations can be made from Eqs. (32)

and (25) for arbitrary light beam widths.

Mertens (27) obtained the light amplitudes in diffraction orders

caused by the passage of light through two adjacent ultrasonic beams

with frequency ratio 1:M where M is an integer. Results were given for

the light beam passing through either ultrasonic beam first. For light
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first passing the Mth harmonic (the case to be considered here), Mertens

gave for the light amplitude in the nth diffraction order

 

(I)I : +290 J V )9: sin LLtan 9

n k : -oo n-Mk 1L sin 9 1* Mk
Mk

. . - ,1: e -.

(times) Jk(VM) exp 111(Mk n)(L/)\ ) tan Mk} exp ( ikA), (33)

where

. e : -P >§= .
4

Sin P (ls/1.10). ) (3 )

L is the width of the second ultrasonic beam (the fundamental in this case),

assuming the beams adjacent. The index of refraction 1.10 of the undisturbed

medium appears in Eq. (34) because the appropriate diffraction angles are

those occurring in the medium as the light emerges from the first sound

beam. Using the approximations sin 9 = 9 2 tan 9, Eq. (33) may be

expressed in a simpler form which is valid for small 9. Carrying out

these approximations and specializing Eq. (33) to the frequency ratio 1:2

one obtains the intensities

 

+oo - 2

11:1 2 k E Jn_2k(v1§1—:§9) Jk(V2) exp£[k(n-2k)Q - kAD , (35)

= -00

where

Q = (zen/1101* 2). (36)

Comparing Eq. (32) with Eq. (35), one finds that the forms of the equations

are similar. Equation (35) may be interpreted as expressing reduction of

v1 by the factor (sin kQ) /(kQ) to give an effective v1(k) which is different

for each kth contribution to the sum. Similarly, each kA in the exponential
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term undergoes an effective phase shift of k(n-2k)Q. Mertens' condition

(27) that

(«ML />.*) lsin epl «1 (37)

for the difference between simultaneous and successive diffraction to be

negligible is equivalent to requiring in Eq. (35) that

(sin kQ) /(kQ) =1 and k(n-2k)Q 2* o. (38)

Experimental measurements were obtained using the basic optical

arrangement shown in Fig. 5 with the following exceptions. Two ultra-

sonic waves were produced in the manner shown in Fig. 16. Two 3. 0 mc

quartz transducers were driven from the same 3 mc oscillator. The

filter plate was tuned to pass the 6. 0 mc component of the ultrasonic

wave which had become quite distorted when it arrived at the plate. Thus

the finite amplitude effects served as a frequency doubler. The relative

phase between the two components passing the light beam was varied by

moving the variable transducer slightly in the direction of sound propa-

gation by means of a precision screw. The relative amplitude of the

second harmonic component was varied by moving the variable transducer

over a range of approximately 50 cm.

There are some qualitative features common to simultaneous and

successive diffraction. Both theories predict that the intensity of the

central diffraction order oscillates with change in relative phase between

the two frequency components. This is shown experimentally for

successive diffraction in Fig. 17(a). These oscillations serve as an

indicator of relative phase. The maxima correspond (theoretically) to
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Figure 17.

(a) (b)

Observed oscillations of central order light intensity with

change in relative phase between the 3. 0 mc ultrasonic

wave from the fixed transducer and the wave transmitted

by the filter plate. (a) No fundamental passed by the filter

plate. (b) Small amount of fundamental passed by the

filter plate.
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a i cosine second harmonic (A = iii/2) and the minima correspond to a i

sine second harmonic (A = 0 or T1), relative to a sinusoidal fundamental.

Figure 17(b) shows the effect of a small amount of fundamental coming

from the variable transducer because of an improperly adjusted filter

plate. The alternation of peak amplitudes in Fig. 17(b) was caused by

this extraneous fundamental as it interfered with the fixed fundamental

component. The regularity of the oscillations in Fig. 17(a) indicates that

the fundamental was effectively eliminated by the plate. From the known

distance required to move the variable transducer to produce these cyclic

variations in light intensity, a calculation of the sound velocity gave good

agreement with the accepted value.

Both theories also predict that the light intensity distributions are

symmetric for i cosine second harmonic and asymmetric for i sine second

harmonic, for either wide or narrow light beams. Using the intensity of

the central order as an indicator of relative phase, the results shown in

Fig. 18 were obtained. It can be seen that the theoretical predictions

regarding symmetry and asymmetry are experimentally confirmed. The

narrow beam diffraction patterns are for G = 1/2. The fundamental

Raman-Nath parameter VI was approximately 3. 8 and v.Z was approximately

0. 5 for the measurements in Fig. 18.

Calculations were made from Eq. (32) and from Eq. (35) for v1: 2.4

and various amounts of second harmonic with different relative phases.

This choice of v1 permits use of and comparison with calculations and

experimental results obtained for the case of a distorted finite amplitude
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ultrasonic wave and a wide light beam. In calculations made using Eq.

(35) (successive diffraction) an effective L was used. The equation was

derived for the two ultrasonic beams adjacent, i. e. , no space between the

beams. In order to approximately account for the unavoidable separation

of the beams in the actual experimental arrangement, an effective L was

chosen equal to the actual beam width plus the width of the space between

the two beams. This approximation is somewhat justified because the L

involved in the theory is the distance the light travels between emergence

from the first beam and emergence from the second beam. For the

experimental arrangement used, the effective L was 5 cm. Figure 19

shows the calculated extremes of light intensity (which correspond to i

sine second harmonic) for the first diffraction orders. The extremes for

simultaneous diffraction are precisely those first order intensities pre-

viously calculated and verified for distorted finite amplitude waves,

neglecting harmonics higher than the second. i The results in Fig. 19

show that there is a significant difference between theoretical values for

simultaneous and successive diffraction for the experimental parameters

considered here (3. 0 and 6. 0 mc in water and v = 2. 4). In either case

1

it can be seen that there is an approximately linear relationship between

the differences of extremes of first order light intensity and the amount

of second harmonic. Also, as before, the average of the extremes is

approximately constant, independent of the amount of second harmonic.

In order to qualitatively check the theoretical predictions described

in the previous paragraph the extremes of light intensity in the first
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diffraction orders were observed for varied amounts of second harmonic.

The measured extremes are shown in Fig. 20. The two extremes

observed for a given amount of second harmonic are plotted is the

corresponding difference in intensity. The actual amount of second

harmonic was not determined for these measurements. The results

verify the theoretical prediction that the average intensities are approx-

imately independent of the amount of second harmonic.

In the measurements described in the previous paragraph, some

discrepancies between results obtained from opposite first orders were

observed. This may be caused by a small amount of distortion (second

harmonic) in the fixed transducer beam. This interpretation is supported

by the fact that a small amount of asymmetry was observed in the

diffraction spectrum resulting from the fixed transducer beam only.

Since second harmonic in the fixed beam is fixed in relative phase with

respect to the fundamental in the same beam, one should be able to

observe a sum and difference effect as the two sources of second har-

monic are varied in relative phase. This effect is shown in Fig. 21

which is to be interpreted as follows. When the two second harmonic

contributions interfere constructively they are both in the same relative

phase with the fundamental. When they interfere destructively the

resultant is in opposite relative phase with the fundamental. Thus when

the variable second harmonic is varied in relative phase the observed

extremes in first order light intensity should coincide with a theoretical

value at only the maximum or a minimum extreme of light intensity,
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Figure 20.

 

 
Light Intensity Difference

Observed extremes of light intensity in the first diffraction

order for v1 = 2. 4 with change in relative phase of various

amounts of second harmonic 1.93. the corresponding difference

in light intensity showing that the average intensity is

approximately independent of the amount of second harmonic.
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depending on which (I) order is observed. Note that the magnitude of

the oscillation in intensity of a given first order corresponds to the

amount of second harmonic in the variable beam, even though values at

the extremes may deviate from the theoretical ones at one extreme or

the other. The recorder trace in Fig. 21verifies that this actually

occurs. This curve shows the effect enhanced because it was observed

at a greater than normal distance from the fixed transducer where a

greater amount of finite amplitude distortion was present.

The approximately linear relationship between the amount of

second harmonic and the amplitude of oscillation in the first diffraction

order intensity, like the asymmetry in the investigation of distorted

finite amplitude waves, suggests another means for measuring the second

harmonic content of a distorted ultrasonic wave of arbitrary amplitude.

A filter plate might be used to pass the second harmonic component of

the distorted wave and the magnitude of this component measured by

observing the amplitude of oscillation in the first diffraction orders when

the fixed transducer is radiating at the fundamental frequency with v1 = 2.4.

Using such a procedure one measures a larger effect than the diffraction

produced by the second harmonic alone. In contrast to the method used

to determine the second harmonic content of a distorted finite amplitude

wave using a fixed local value of the fundamental component and neglecting

higher harmonics, this procedure permits an arbitrary fundamental com-

ponent. Thus the second harmonic content may be determined as a

function of propagation distance for a fixed initial fundamental ultrasonic

pre 3 sure amplitude.
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The procedure outlined in the previous paragraph was followed

for various propagation distances between the variable transducer and

the filter plate. The indicated amounts of second harmonic as obtained

basing the interpretation on (a) simultaneous diffraction [Eq. (32)], and

(b) successive diffraction [Eq. (35)] are shown in Fig. 22.. Also shown

in the figure are (c) measurements of the second harmonic made by

measuring the first order of diffraction caused by only the second har-

monic which passes the filter plate. The difference between indications

from simultaneous and successive diffraction theory is greater than

experimental error. However, within the estimated experimental

error, the interpretation based on successive diffraction theory by

Mertens agrees with the filter plate, measurements. This result indicates

the validity of Mertens' theory. Experimental limitations may be respon-

sible for some of the lack of agreement. Phase and amplitude difference

over the field of observation (usually about 5 x 5 mm) would tend to reduce

the extremes of light intensity because of averaging over the field. Such

differences over the field might arise from beam inhomogeneity, filter

plate irregularities, or failure to achieve perfect alignment of the two

ultrasonic wavefronts.
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CHAPTER IV

SUMMARY

Experimental confirmation has been obtained from some predictions

of the theory developed by Zankel to explain various aspects of diffraction

of light by progressive ultrasonic waves. This theory was developed for

the range of moderate frequencies and amplitudes where the Raman-Nath

approximations are valid. Theoretical results have been cited which in-

clude arbitrary light beam width, ultrasonic waveforms expressible by a

Fourier sine series, and ultrasonic waveforms consisting of fundamental

and second harmonic components combined with arbitrary relative phase.

It has been shown that these theoretical results are compatible with

several previous results, both theoretical and experimental.

Good quantitative experimental confirmations of the theory have

been obtained for sinusoidal ultrasonic waves and narrow light beams.

The theory has also been confirmed for distorted finite amplitude ultra-

sonic waves and wide and narrow light beams. Some qualitative features

of the dependence of diffraction on the relative phase between two adjacent

ultrasonic waves with frequency ratio 1:2 have been experimentally shown

to be correctly given by either the theory of Murty, Rao, and Mertens for

simultaneous diffraction or by the theory of Mertens for successive dif-

fraction. Quantitative measurements have shown that the theory of Mertens

must be applied for successive diffraction in the range of experimental

parameters investigated here. All measurements were carried out using

progressive ultrasonic waves in water.
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Further work of the type described herein is in progress in the

ultrasonics laboratory at Michigan State University.
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