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ABSTRACT

SOME EFFECTS OF PROGRESSIVE ULTRASONIC WAVES

ON LIGHT BEAMS OF ARBITRARY WIDTH

by Logan E. Hargrove, Jr.

If light is passed through a plane progressive ultrasonic wave nor-
mal to the direction of sound propagation, various diffraction phenomena
may be observed. Except for a scale factor which depends on the ultra-
sonic frequency and the medium, the observed diffraction effects, in a
limited but useful range, depend in a theoretically predicted manner only
on the ultrasonic waveform (pressure amplitude and harmonic structure),
the ratio of light beam width to ultrasonic wavelength, and the sound field
configuration. This study attempts to experimentally verify certain pre-
dictions of the existing theories which have not previously received
sufficient examination.

Quantitative experimental verifications of the theory developed by
Zankel (1) were obtained at 1. 0 mc in water for sinusoidal ultrasonic
waves and narrow light beams. This theory was also confirmed for
distorted finite amplitude ultrasonic waves and wide and narrow light
beams at 3. 0 mc in water. Some qualitative features of the dependence
of diffraction on the relative phase between two adjacent ultrasonic waves
of frequency 3.0 and 6. 0 mc in water were experimentally shown to be
correctly given by the theory of Rao (2), Murty (3), and Mertens (4) for

simultaneous diffraction and by the theory of Mertens (5) for successive
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diffraction. Simultaneous and successive diffraction are indistinguishable
in a limited range. Quantitative measurements showed that the succes-
sive diffraction theory of Mertens must be applied in the range of exper-

imental parameters investigated.
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CHAPTER I
INTRODUCTION

A. General

The diffraction of light by ultrasonic waves has been investigated
experimentally and theoretically since the discovery of the effect in 1932
(1, 2). A periodic change in index of refraction results from the periodic
variation of pressure in an ultrasonic wave. The medium then acts as
an optical phase grating. It was recognized that such a "grating" has the
same periodicity in space as the ultrasonic wave. Thus the usual equation
for diffraction by a grating having spacing equal to the ultrasonic wave-
length gives the observed angular separation between discrete diffraction
orders. Raman and Nath (3, 4) developed a theory explaining the diffrac-
tion of light by sound for the case of an infinitely wide plane wave of
light passing through a plane sinusoidal ultrasonic wave at normal inci-
dence. This theory predicted not only the correct angular separation of
discrete diffraction orders but also predicted in closed form the light
intensity distribution over the diffraction orders in a limited but practical
range of experimental conditions. The fundamental assumption in the
Raman-Nath theory is that a plane light wavefront becomes modulated in
phase (but not in intensity) on passing through the ultrasonic wave. This
assumption limits the applicability of the theory because gradients in the
index of refraction can give rise to significant deflections of light which

will result in amplitude modulation of the light wavefront. Lucas and
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Biquard (2) developed a theory based on geometrical optics which considers
the bending of the light caused by gradients in the index of refraction.
This theory did not give the light intensity distribution over the diffraction
orders.

The infinite light beam width assumed in the Raman-Nath theory is
not necessary in order to obtain experimental results which agree with
predictions of the theory. In practice light beam widths of only a few
ultrasonic wavelengths give satisfactory results. However, the use of
light beam widths the order of an ultrasonic wavelength or smaller gives
rise to a continuous light distribution. With light beam widths between
one-half an ultrasonic wavelength and the several ultrasonic wavelengths
required to obtain discrete diffraction orders one observes a "poorly
resolved" diffraction spectrum. With light beam widths less than one-
half an ultrasonic wavelength one observes a rather smooth continuous
light distribution which is an envelope of the discrete diffraction orders
only in a very general sense. Early explanations of the narrow light
beam cases were based on geometrical optics and the bending of the light
caused by gradients in the index of refraction.

In the past few years it has been realized that distorted finite
amplitude ultrasonic waves produce asymmetric diffraction effects. That
light diffraction might be applicable to the study of finite amplitude ultra-
sonic waves was first suggested by Fubini-Ghiron (5) in 1935. Recent
interpretations of the observed asymmetry have been based on both the
concept of phase modulation and on the concept of bending of the light

caused by gradients in the index of refraction.



B. Description of the Observed Phenomena

If light is passed through a plane progressive ultrasonic wave nor-
mal to the direction of sound propagation, different diffraction phenomena
may be observed. The factor giving rise to the difference in appearance
is the width of the light beam. Figure 1l(a) shows the source slit image

(image of SL_ in the schematic diagram of the experimental apparatus)

1
for a wide light beam and no ultrasound. Figure l(b) shows the image
observed when the light beam width is limited by another slit to one-
quarter of a sound wavelength at 1. 0 mc in water, with no ultrasound
present. The limiting slit diffraction causes the broadening of theimage;
orders greater than zero are not intense enough to show in the photograph.
Figures l(c) and 1(d) are typical time-average light intensities observed
with ultrasound. Figure 1l(c) is for the wide light beam. In this case a
width of approximately seven ultrasonic wavelengths was used which is
sufficient to obtain discrete diffraction orders. Figure 1(d) is for the
light beam width limited to one-quarter of an ultrasonic wavelength at

1.0 mc in water. The frequency and sound pressure were the same for

Figs. .l(c) and 1(d).

C. Diffraction of a Wide Light Beam

Raman and Nath (3, 4) developed a theory explaining the diffraction
of light by sound for the case of an infinitely wide plane wave of light
passing through a plane sinusoidal ultrasonic wave at normal incidence.

The theory confirmed the experimental observations (1, 2) that the light
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Figure 1. Photographs of typical images observed for (a) wide light
beam without sound, (b) narrow light beam without sound,
(c) wide light beam with sound, and (d) narrow light beam
with sound.



is diffracted at discrete angles en given by¥*

sin en = -n\/\x, (1)
where n is zero or a positive or negative integer, N\ is the wavelength of
light, and N* is the wavelength of sound. Equation (1) is valid for any
periodic plane sound wave. The Raman-Nath theory predicts that for a
progressive sinusoidal plane ultrasonic wave the normalized intensity Irl

in the nth order of diffraction as defined by Eq. (1) is
2
I =J (v), (2)

where the Raman-Nath parameter v is approximately proportional to the.
sound pressure amplitude and given by

v = ZTI'}J.L/)\, (3)
p is the maximum change in index of refraction of the medium caused
by the sound pressure, and L is the distance the light travels in the sound
field. Equation (2) is valid when the deviation of the light beam within the
sound field is small enough that a given ray will not be affected by signi-
ficantly different pressures. This means that one can then consider the
light to be changed in relative phase but not in amplitude as it passes
through the sound field. This assumption is justified for conditions under
which (6, 7)

(2nLAv) / (po)\* 2) <N, (4)
where (5 is the index of refraction of the undisturbed medium and

1 < N < 4, depending on the accuracy required.

" The usual sign convention that negative diffraction orders and posi-
tive diffraction angles are those in the direction of sound propagation is
used throughout.



Sanders (8) experimentally verified the theory of Raman and Nath.
Since it is assumed that p is proportional to the sound pressure, the
Raman-Nath theory has been used for absorption measurements and has
been suggested for pressure measurements (9). Sanders, and later
Miller and Hiedemann (10), noted discrepancies between the Raman-

Nath theory and experimental results. Later, Zankel and Hiedemann

(11) extended the Raman-Nath theory to include finite amplitude distortion
of the ultrasonic waveform. They showed that asymmetry of the diffraction
orders is caused by finite amplitude distortion under experimental con-
ditions of sufficient pressure and propagation distance. They measured
the amount of distortion. It was also shown that small deviations from the
theoretical predictions are caused by inhomogeneities of the ultrasonic
beam.

Investigators in the U.S.S.R. (12, 13, 14, 15) have developed approx-
imate methods for waveform determination using the overall intensity
distribution of the diffraction spectrum. Their interpretation is based on
physical optics and considers the distorted finite amplitude ultrasonic wave
to act as a blazed transmission grating with sawtooth shape.

Cook (16) developed a method for determining the harmonic structure
from measurements of the light intensities in all the orders of diffraction.
Although this method is suitable only for calculation using high speed
computer methods, it has the distinct advantage of being a direct method
in the sense that one can obtain the harmonic structure from the diffraction

order intensities rather than from fitting data to calculated intensities for



various harmonic structures. The method is applicable only to the special
case of waveforms which are odd functions, i.e., waveforms expressible

by a Fourier sine series.

D. Diffraction of a Narrow Light Beam

Lucas and Biquard (2) noted that if the light beam width is less than
one-half of the ultrasonic wavelength, a distinct diffraction spectrum is
not observed. When the source slit image is focused on a screen broadened
images occur, as in Figs. 1(b) and 1(d). This has been called "refraction"
and the following explanation based on geometrical optics was given by
Lucas (17). A light beam having a width much smaller than the ultrasonic
wavelength was considered as being deflected by an amount proportional
to the gradient of index of refraction resulting from the ultrasonic wave.
This approach gives, for the sine of the angle of deflection,

sin © = - (vN /\%) cos wkt, (5)
whéfe w* is the angular frequency of the sound. The maximum deflection
is then given by

3 0 = B
sin® vA/NE, (6)

Equation (6) was used as a basis for absorption measurements by Hueter
and Pohlman (18). However, in their work, they used a light beam width
of approximately one sound wavelength. They did this because the wider
slit width gave more clearly defined image edges from which they could

make measurements. Their extrapolated pressure measurements did not

go through the origin but this was of no serious consequence in their
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measurements. Breazeale and Hiedemann (19) used the half-width of
the broadened image rather than the peak separation and found that their
measurements then extrapolated through the origin.

Loeber and Hiedemann (20) studied the intensity at the center of
the broadened image using standing waves. Their analysis was based
on assumptions similar to those of Lucas (17) but took into account dif-
fraction of light by the slit which limits the light beam width. The
analysis showed the possibility of determining ultrasonic waveforms and
sound pressure amplitudes. Experimental results suggested a distortion
of ultrasonic waves during propagation.

Breazeale and Hiedemann (21) adapted the method used by Loeber
and Hiedemann to the study of progressive waves. It was noticed that
the light intensity distribution over the broadened images was asymmetric
under certain experimental conditions. It was pointed out that this asym-
metry was caused by finite amplitude distortion of the ultrasonic wave-
form. The observed increase in asymmetry with increase in propagation
distance and initial ultrasonic pressure amplitude was in agreement with
the expected increase in waveform distortion with these parameters.

Breazeale, Cook, and Hiedemann (22) proposed measuring the
position of the deflected narrow light beam as a function of time and thereby
obtaining the ultrasonic pressure gradient waveform from a harmonic
analysis of such data. Their interpretation was based on the Lucas theory.

Zankel (23) developed a theory based on the Raman-Nath assumption

of only phase modulation of the light wavefront which included arbitrary
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light beam widths and ultrasonic waveforms expressible by a Fourier
sine series, which is probably the case for distorted finite amplitude
waves. This analysis, based on physical optics, predicts the light inten-
sity distributions over the discrete diffraction orders, as given earlier
by Zankel and Hiedemann (11), and over the broadened images. Details

of this theory are given in Chapter II.

E. Scope of the Present Study

The present study is concerned with experimentally testing the
validity of some predictions of the theory developed by Zankel whichhave
not already received sufficient verification. In particular, it is concerned
with the case of a sinusoidal ultrasonic wave and a narrow light beam and
the cases of a distorted finite amplitude ultrasonic wave and wide and
narrow light beams.

The ultrasonic waveforms considered in the development of the
theory by Zankel are only those expressible by a Fourier sine series.
Theoretical results have been given by Rao (24), Murty (25), and Mertens
(26) for diffraction of a wide light beam by an ultrasonic wave consisting
of two commensurate frequencies with arbitrary relative phase. These
theoretical results are for simultaneous diffraction of light by the different
frequency components contained in the same ultrasonic beam.

Mertens (27) recently pointed out that although Murty and Rao (28)
got good agreement between their theory and their experimental results
obtained using successive diffraction by two separate adjacent ultrasonic

beams, simultaneous and successive diffraction are not the same.
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Mertens obtained expressions for the amplitudes of light diffracted by
two adjacent ultrasonic waves and compared the predictions with those
from simultaneous diffraction theory. In a limited but useful range the
diffraction spectra are indistinguishable. The diffraction effects of two
adjacent ultrasonic waves of the same frequency have been used (29, 30)
to investigate finite amplitude distortion. In a single finite amplitude
ultrasonic wave the relative phases of the Fourier components are fixed.
Therefore the dependence of diffraction effects on the relative phase
between two ultrasonic waves is investigated here for both wide and
narrow light beams. It is shown how one uses the theoretical results of
Murty, Rao, and Mertens for arbitrary light beam widths.

All experimental results were obtained using progressive ultra-

sonic waves in water,



CHAPTER 1I

THEORY

A. Statement of Problem and Assumptions

Zankel* obtained a solution to the problem of diffraction of a light
beam of arbitrary width by plane progressive ultrasonic waves of
moderate frequency and amplitude. Normal incidence of collimated
monochromatic light is assumed. The approximations used by Raman
and Nath are used. At low frequencies, where narrow light beam widths
have usually been considered, these do not impose a serious limitation
as can be seen from Eq. (4). These results should include almost allthe
experimental work at normal incidence except for wide beam diffraction
at high ultrasonic frequencies and/or large ultrasonic pressure amplitudes
where the Raman-Nath assumptions are not valid. The high frequency
cases have been considered by Extermann and Wannier (6) and by Wagner
(31). The problem here can be stated as consisting of light having a
certain phase distribution emerging from a slit. It is assumed that the
ultrasonic wave can be expressed by its Fourier components** and there-

fore the index of refraction can be written as

*The theoretical results derived in this chapter are those obtained
by Zankel. Some errors which appeared in the original publication
[reference (23)] have been corrected.

*%The assumption of a sine series is justified for finite amplitude
waves if the mechanism giving rise to the finite amplitude distortion is
considered and the Fourier coefficients calculated in the absence of
dissipation in the medium. This is also true in the presence of dissipation.
See references 5, 32, and 33.

11
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(o'}
> .
(x,t) = - . sin f, 7
plx, t) = p_ i=1 % i (7)
where
.= a, 8
By = age (8)
and
£ = j(2mx /N6 - wit), (9)

x is the distance in the direction of sound propagation, p is the maximum
change in index of refraction of the medium that would occur if only the
fundamental pressure component were present, and aj is the (positive)

ratio of the pressure of the jth harmonic to that of the fundamental.

B. Derivation of the Principal Equations

The light amplitude at some angle © is given by the diffractionintegral

A = cj exp {2171,(x+ = p.JL 51nf]/ (10)

where C is a constant to be determined by normalization, 2d = D, the

width of the light beam, and { = sin 8. Equation (10) may be written as

+d
o
A=C f exp [iufx] II exp [iajv sin fj] dx, (11)
j=l
-d

where u = 2r/\ and v = 2ruL/\ is the Raman-Nath parameter. Using

+00
exp [ila,vsinf ]| = Z J (a.v) exp (irf)), (12)
p [ia, J] P 2 Jp(av) exp (irf,
Eq. (11) becomes
+d
+ o
A=Cj T =z " ZT J (av)...J (av)...
r., oy «.. ==00 1. 1 r. J
d 1 2 1 j

(times) exp [iufx + i(r1 + ... ~l-jrj +...)(bx - w*t)]dx (13)
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where b = 2n/\*. Let

r1+...+jrj+...=n. (14)
Then
td  +oo
= > 1 -1 ’x
A Cfd o q:n exp [i(uf + nb)x - inw*t]dx, (15)
where
Z Z o o o +m (
¢ = __Z J ) ) _ v)
n kz,k3,...- (e} n2]r<2 3k3...
(times) sz(azv) Jk3(a3v) e (16)

¢n is the amplitude of light in the nth order of diffraction as found by
Zankel and Hiedemann (11) for an "infinite' light beam width. On perfor-

ming the integration one finds

tco sin (u{ + nb)d
n=-c0 'n (uf + nb)

exp (-inw¥*t), (17)

To normalize it is assumed that the amplitude is exp (iwt) at 6 = 0 and
v = 0 (central intensity with no sound equal to unity), where wis the

angular frequency of the light. This gives

+00
A= 2 ¢

P W exp [i(wt - nw*t)], (18)
n=-o n

n

where
sin (u{ + nb)d
= 1
wn (ul +nb)d (19)
The real part of Eq. (18) is
+0o
a=_ 2 ¢ W cos(wt-nw¥t). (20)
n=-0c0 'n n

This may be put in the form
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2 2
a =r1 sinz(a + wt), (21)
where
2 o to .
r =1I(t) = ne m oo ¢n¢mwnwm cos [(n-m)w*t] (22)
and
+00 +00
a = Z PR3 3 3% .
tan D2 ¢an Cos nw t) / N =Z-oo q>an sin nw (23)

Since the q>n's fall off for higher n and since w*<<w, a varies slowly
compared with wt., Therefore, the light intensity one can measure is given
by Eq.(22). In many cases the time-average light intensity is observed.
To obtain an expression for the time-average light intensity I one must
integrate a2 as given by eq.(20) by squaring and then divide by the total

time, By performing this integration one obtains

(27/w*)
2
(w*/2m) a dt =
0
+00 +00 : - : *_
> > 60 - sin 2m(m-n) , sin 2n[ 2w /w* - (n+m)] . (24)
n=-00 M=-00 nNn'm n m 4m(m-n) 4m[ 2w /w* -(n+m)]
Since w*<<w, Eq.(24) reduces and normalizes to give
+00
I= X ¢2W2. (25)
n=-c0 n n -
For a wide light beam, i.e., if d>>NX*, Eq.(25) is the same as that
obtained by Raman and Nath for a sinusoidal wave and by Zankel and
Hiedemann for a distorted finite amplitude wave.
For narrow light beams Wn can be put in the form
W - sin mG(H + n) (26)

n  7wG(H +n)
where

G = D/ Nk, (27)
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Thus G is the ratio of the light beam width D to the ultrasonic wavelength.
H measures distance across the image in terms of separation of discrete
diffraction orders, were they present. From Eq.(l) it is seen that H is
defined in a manner similar to that of n, i.e.,

sin 8 = H(\/\*). (28)
In this way calculations based on Eq. (25) depend only on the Raman-Nath
parameter v, the ratio of light beam width to sound wavelength G, and
the ultrasonic waveform. [ is then measured in units H of spacing be-
tween discrete diffraction orders, had these occurred. For a sinusoidal
wave ¢n reduces to the Bessel function ¢, " Jn(v) of the Raman-Nath
theory.

Equation (25) can be interpreted in the following manner. ¢j is the
intensity In of the nth diffraction order, whether given by Eq. (2) for a
sinusoidal wave, by the more complicated Eq. (16) for a wave consisting
of Fourier sine components, or by other expressions for other cases such
as those to be considered in Chapter III. It can be seen that as G becomes
large in Eq. (26), the value of anis significant only when (H + n) vanishes.
Since negative n corresponds to positive H, the significant light intensities
given by Eq. (25) are those corresponding to the locations of discrete
diffraction orders as predicted by Eq. (1), i.e., discrete diffraction orders
result for a light beam much wider than an ultrasonic wavelength. An
equivalent statement is that the "spreading' of the orders caused by
diffraction by the limiting aperture is negligible compared with the

spacing between the orders. This statement is better understood if one
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. 2. . . . .
recognizes that the factor Wn is an expression for the light intensity
distribution for slit diffraction by the limiting aperture, written so that
it is centered about the location of the nth diffraction order, if it occurs.
Therefore Wn distributes the nth diffraction order intensity over a slit
diffraction distribution. In the case of narrow light beams the spreading
is not negligible compared with the separation of diffraction orders, had
they occurred. Therefore the narrow beam continuous light distribution
can be thought of as a blending of diffraction orders resulting from
distributing the diffraction orders over a slit diffraction distribution.
The arithmetic addition of intensity contributions from various "orders"
indicated by the summation in Eq. (25) is justified because each "order"
consists of slightly different light wavelengths. This can be seen in

Eq. (20).

C. Relations to Previous Work

The results of Loeber and Hiedemann (20) can be adapted to pro-

gressive waves to give the central light intensity as

1(0) ='(Tr2G2v2 - 0. 23.2)'1/‘2 (29)

for Gv > . Similarly it can be shown from the work of Loeber and

Hiedemann that

2n
_ @ _(-1%(Gv)
HO) = = atl)nl(n+l)!

(30)

which is useful for smaller values of Gv. In Fig. 2, I(0) is shown as
calculated from Egq.(25) for G = 1/8 and compared with values of I(0)

calculated from Eq. (30) for G = 1/8, It is seen that the two equations
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Figure 2. Central light intensity vs the Raman-Nath parameter as given
by Eq. (25) for G = 1/8 and as given by Eq. (30) for G = 1/8.
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Figure 3. Distance from the center of the broadened image to the outer-
most peak in units H of diffraction order spacing vs the Raman-
Nath parameter as given by Eq. (25) for G = 1/4 and G = 1/8.
"Lucas" refers to the maximum deflection calculated from the
simplified theory of Lucas, Eq. (6).
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give very nearly the same results. The Loeber and Hiedemann expressions
assume that G <<1 while Eq. (25) contains no such assumption. It was
found that values calculated from Eqgs. (25), (29), and (30) using G as
large as 1/2 are in fair agreement,

Figure 3 shows the distance H, to the outermost peak of the

M
broadened image as a function of the Raman-Nath parameter v as calcu-
lated from Eq. (25). The solid line passing through the origin is calculated
from Egq. (6) obtained by Lucas (17). It can be seen that the results
obtained from Egq. (25) do not extrapolate through the origin. This
indicates why the half-width used by Breazeale and Hiedemann (19) gave

better values for the sound pressure amplitudes than the peak separation

used by Hueter and Pohlman (18).



CHAPTER III

EXPERIMENTAL

A. General Apparatus and Procedure

A special tank was constructed to obtain progressive waves. De-
sign features and major dimensions are shown in Fig. 4. The tank is
6 x 6 inches in cross section. Sound from the transducer travels along
the tank and strikes the oblique reflecting end wall. After reflection, the
beam passes through a very thin plastic membrane and enters castor oil.
The acoustic impedance match between water and castor oil is very good.
Note that any sound reflected from the membrane strikes the end wall at
normal incidence and is reflected back into the castor oil. After traveling
the "zig-zag" path down and up the castor oil, the sound beam strikes the
end wall at normal incidence and retraces the path in the castor oil. The
total path length in castor oil is 244 cm. Using 2 x 10-2 cm-l for the absorption
coefficient at 1. 0 mc (a conservative value by as much as a factor of four¥*),
this path length reduces the sound to about 0. 8% of the original pressure,
or about 0. 006% of the original intensity,

A schematic diagram of the experimental apparatus is shown in Fig.
5. Light from the Hg arc source S illuminates the source slit SLl. Light
is collimated by lens LZ' When a wide beam of light is desired to observe

discrete diffraction orders with SL2 removed, the square aperture A limits

*F, Dunn, Biophysical Research Laboratory, University of Illinois,
Urbana, private communication.
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the light beam to cover a section of the sound beam. A also serves to
limit the vertical height of the light beam when slit SL‘2 is in place. The
transducer ¢ is an X-cut, air backed quartz. SI_,‘2 is the slit which deter-
mines the effective light beam width. This slit is referred to as the
limiting slit. It appears from simple arguments and from observations
that in the region studied it makes little difference whether the limiting
slit is placed before or after the sound in the optical path. The width of
the limiting slit in terms of sound wavelengths was determined by comparing
the separation of zeros of slit diffraction without sound with the separation
of the discrete diffraction orders observed with the limiting slit removed
and the sound on. Figure 6 shows the slit diffraction pattern observed
with no sound present. When the first zero of this diffraction pattern is
at H = Ho the value of G is l/HO. Since one unit of H is one diffraction
order spacing, the H scale was established on a recorder trace by scanning
a discrete diffraction spectrum and noting the spacing of the orders. The
need for direct wavelength measurement or accurate velocity and frequency
measurements was thereby eliminated. The magnification of the image
may be any convenient magnitude. This method of slit width determination
gave settings which were reproducible to about 2%. With special care,
absolute accuracy of 0. 5% was obtained. The lens L_ produces an image

3

of the source slit in the plane of the photomultiplier slit SL3‘ A 5461 &
optical filter is located inside the photomultiplier housing P. The photo-

multiplier microphotometer and slit S.L,3 can be moved across

the image by a synchronous motor and precision screw at a rate of 5 mm



Figure 6. Slit diffraction pattern caused by the limiting slit SL
observed with no sound. The first zero of this diffraction
pattern at Ho indicates that G = I/Ho.
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per minute, The microphotometer output can be recorded with a chart

speed of 2 inches per minute.

B. The Case of a Sinusoidal Ultrasonic
Wave and Narrow Light Beams

The basic experimental arrangement was that described in the
previous section. The aperture A limited the light beam width to cover
a l x 1 cm section of the sound beam. The transducer Q was a 2 x 2 inch,
X-cut, air backed quartz. The measurements described in this section
were made near the transducer.to avoid finite amplitude effects encoun-
tered at greater distances. The magnification of the optical system was
adjusted to give a scanning rate of 7.5 sec per diffraction order at 1. 0 mc
in water.

To compare the experimental values with values calculated from
Eq. (25) it was necessary to determine the Raman-Nath parameter v. This
was determined as a linear function of quartz voltage by observing the
discrete diffraction orders and measuring the light intensity in the first
of these orders. The quartz voltages corresponding to minima and maxima
of light intensity predicted by Eq. (2) were used in this determination. A
more detailed description of this method for determining values of the
Raman-Nath parameter has been given elsewhere (9). Final selection of
the quartz voltages corresponding to values of v used in calculations were
made by very small adjustments of the values determined above such that

closest possible agreement was attained for the data shown in Fig. 7.
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These voltages were not readjusted in subsequent measurements, Details
of shape of the G = 1 curves in Fig. 7 are quite sensitive to small changes
in v,

The experimental results are shown in Figs. 7 through 11. The
points represent values calculated from Eq. (25). The solid curves were
traced from recorder charts. Only one side of the symmetric curves is
shown. Noise and minor irregularities, when they occurred, have been
smoothed out. All measurements shown are for 1. 0 mc in water. Some
measurements have been made at 800 kc and also show good agreement.
The time-average intensity I is plotted vs distance in units of H. The
light intensity is normalized such that the central intensity in the diffraction
pattern caused by the limiting slit is unity. The effective light beam
width is indicated in the figures by G. Experimental curves and calcu-
lated points are shown for G =1, 1/2, 1/3, 1/4, and 1/8 and for v = 2, 4,
6, and 8, Approximately, the peak ultrasonic pressure amplitude was
P=vx 10-1 atmospheres for the transducer dimension used here.

There is fairly detailed agreement between the theoretical points
and the observed curves. It therefore appears that the considerations
used to derive the theoretical results are based on experimentally
achievable conditions. While the agreement is not exact, some amount
of deviation can be explained as being caused by several minor differences
between the ideal situation and the actual experimental conditions. It is
difficult to align the transducer for normal incidence of sound and light.
The source slit, the sound wavefronts, the limiting slit, and the photo-

multiplier slit must all be aligned parallel to each other. The sound field
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is not homogeneous since one is definitely working in the Fresnel region
of the transducer. The photomultiplier microphotometer is not perfectly
linear in response and is subject to some drift in sensitivity during the
5 to 7 minutes required to scan the images. The response time of the
microphotometer-recorder combination introduces some error, parti-
cularly when the light intensity variations are rapid. These experimental
limitations apply to other measurements to be described. It has been
shown elsewhere (34) that the data shown in Fig. 10 (G = 1/4) give values
of v which are in good agreement when interpreted on the bases of central
light intensity I(0), the parameter HM shown in Fig. 3, and the first
diffraction order minima and maxima as previously described.

C. The Cases of a Distorted Finite Amplitude
Ultrasonic Wave and Wide and Narrow Light Beams

In this section some results of an investigation of the diffraction
of light passing through an ultrasonic wave of finite amplitude are given.
For sake of simplicity, the third and higher harmonics of the distorted
wave were neglected. As the harmonics fall off in magnitude rather
rapidly with harmonic number even in the absence of dissipation (33)and
more rapidly in a dissipative medium, the fundamental and second har-
monic components should be a fairly good approximation in the range of
frequency and pressure considered here.

For an ultrasonic wave consisting of the fundamental and the
second harmonic, the intensity In in the nth diffraction order is found

from Eq. (.16) to be
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2 too 2
R [k Z o Incadv) vy (31)

where vy is the Raman-Nath parameter for the fundamental and v, is

the same parameter for the second harmonic. For a narrow light beam
the continuous light distribution I ;nay be calculated using ¢§ given by Eq.
(31) in Eq. (25).

Calculations were made for vy T 2.4 and various percentages of vy
relative to vy This value of v, was selected because (a) the intensity of
the zeroth order is approximately zero, making the approximate range
easy to determine, (b) finite amplitude distortion is appreciable but not
excessive, and (c) the difference in (%) first order light intensity is
approximately proportional to v, over a useful range of v, and the average
(f) first order light intensity is approximately independent of v, over the
same range. Calculated intensities of first and second orders are shown
in Fig. 12. All intensities calculated are tabulated in Table 1. Note that
the previously asserted properties of the difference and average of first
order light intensities are clearly shown in Fig. 12. It should therefore
be possible to ascertain experimentally that v1 = 2.4 from the average
first order intensity and the relative amount of second harmonic fromthe
difference in intensity, provided the effect of higher harmonics is negligible.

To test the theoretical predictions outlined in the previous para-
graph, experime.ntal measurements were obtained in the following way.
The basic optical arrangement shown in Fig. 5 was used. In this case

the transducer was a 1 x 1 inch, 3.0 mc, X-cut, air backed quartz. The

light beam was limited by the square aperture A to cover a 5 x 5 mm



Table 1. Calculated intensities of diffraction orders for various percen-
tages of second harmonic (v)) relative to a fixed fundamental
(vi # 2. 4) for a finite amplitude ultrasonic wave, neglecting
harmonics higher than the second, calculated from Eq. (31).

Order No. 0% 5% 10% 15% 20%
0 . 0000 . 0000 . 0000 . 0000 . 0000
+1 . 2706 . 2256 . 1813 . 1394 . 1011
-1 . 2706 . 3148 . 3564 . 3942 .4264
+2 . 1858 . 1819 . 1769 .1708 . 1637
-2 . 1858 . 1883 . 1895 . 1892 . 1869
+3 . 0392 .0514 .0632 .0742 . 0836
-3 . 0392 .0276 .0173 . 0089 . 0030
+4 . 0041 . 0080 .0131 .0192 . 0260
-4 . 0041 .0017 . 0002 . 0002 . 0016
+5 . 0003 . 0008 . 0019 . 0034 . 0056
-5 . 0003 . 0000 . 0000 . 0001 . 0002
+6 . 0000 . 0001 . 0002 . 0005 . 0009
-6 . 0000 . 0000 . 0000 . 0000 . 0000
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Figure 12.
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Percent Second Harmonic

Calculated intensities of the first and second diffraction
orders for v| = 2.4 and various percentages of v, relative

to vy obtained from Eq. (31).

30



31
section of the sound beam. At various distances from the transducer to
the light beam different amounts of distortion were present. At suitable
distances the transducer voltage was adjusted to give the average intensity
in the first diffraction orders predicted for Vi = 2. 4. The amount of second
harmonic was then inferred from the difference in intensity of these two
orders. The diffraction order intensities were measured. Then, having
established that vl = 2.4 and the relative amount of second harmonic, the

limiting slit SL._ was placed in position and the narrow beam diffraction

2
for G = 1/2 was observed. The resulting measurements of discrete dif-
fraction order intensities and broadened images for 5, 10, and 15 percent
second harmonic are shown in Figs. 13 through 15. Calculated valuesare
also indicated in the figures. The calculations for G = 1/2 were made
using the previously calculated diffraction order intensities in Eq. (25).

As a further check on the amount of second harmonic, a filter plate
was used to transmit the second harmonic and reflect the fundamental.
The intensity in the first order of diffraction resulting from the transmitted
second harmonic was used to determine a value for v, using Eq.(2). The
values obtained from filter plate measurements for 10 and 15 percent
second harmonic are noted inthe figures. It was not possible to make a
reliable filter plate measurement for the 5 percent case because the small
separation between the transducer and the filter plate allowed disturbing

reflections between the plate and the transducer. Where filter plate

measurements were possible, the values are in good agreement.




+4 +2 +1 0 -1 -2 -3

Order Number

Figure 13.

(No Filter Plate Measurement)

Diffraction order light intensities and time-average light
intensity for G = 1/2 for an ultrasonic wave containing 5
percent second harmonic and v; = 2. 4. Calculated diffraction
order intensities are indicated by vertical lines, experimental
values by circles. Calculated intensities in the broadened
image are indicated by circles, experimental values by the
line.
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Order Number

(11 Percent Second Harmonic by Filter Plate Measurement)

Diffraction order light intensities and time-average light
intensity for G = 1/2 for an ultrasonic wave containing 10
percent second harmonic and v] = 2. 4. Calculateddiffraction
order intensities are indicated by vertical lines, experimental
Calculated intensities in the broadened
experimental values by the

Figure 14.

values by circles.
image are indicated by circles,

line.
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H

(15 Percent Second Harmonic by Filter Plate Measurement)

Figure 15. Diffraction order light intensities and time-average light
intensity for G = 1/2 for an ultrasonic wave containing 15
percent second harmonic and v; = 2. 4. Calculateddiffraction
order intensities are indicated by vertical lines, experimental
values by circles. Calculated intensities in the broadened
image are indicated by circles, experimental values by the
line,
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The results in Figs. 13 through 15 demonstrate reasonable agree-
ment between theory and experiment. Some deviation is to be expected
because of sound beam inhomogenieties and the higher harmonics which
were neglected. It appears that it is possible to make a fairly good
determination from the discrete diffraction orders of the Raman-Nath
parameters pertaining to the fundamental and second harmonics if one
can neglect the higher harmonics. Higher harmonics can be included in
the calculations but the problem becomes much more complicated as the
number of variables is increased.

Some general features of the broadened images shown in Figs. 13
through 15 have been pointed out by Breazeale and Hiedemann (21). The
asymmetry of the light distributions increases with increase in waveform
distortion. This asymmetry corresponds to that of the diffraction orders;
the continuous distribution is very approximately an envelope of the
diffraction spectrum, lacking details such as the deep minimum which
might correspond to the approximately zero central order.

D. Diffraction of Light Passing Through Two
Adjacent Ultrasonic Waves of Different Frequency

Fi;lite amplitude investigations have brought about increased
interest in the diffraction of light by non-sinusoidal ultrasonic waves.
As previously discussed, the simpler approach is to neglect the effects
of higher harmonics and consider only the fundamental and second har-
monic components of a distorted ultrasonic wave. There are some
aspects of the theory of diffraction of light by such "two-component"

waves that do not manifest themselves in finite amplitude investigations
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because the relative phases between the harmonic components are fixed.
Rao (24), Murty (25), and Mertens (26) have considered variable phase
between two frequency components in a single ultrasonic beam. Murty
and Rao (28) reported measurements which showed '"striking" agreement
between calculated and measured intensities, using two separate ultra-
sonic beams. Mertens (27) has recently pointed out that successive
(separate beams) and simultaneous (single beam) diffraction are not the
same. However, for the range of experimental parameters used by
Murty and Rao the difference is small. The present investigation was
carried out for experimental parameters which give a significant difference
between simultaneous and successive diffraction.

The intensity of light in the nth diffraction order resulting from a
single ultrasonic wave consisting of fundamental and second harmonic

frequency components is

+oo

In - kf:-oo Jn-Zk

(vl) Jk(VZ) exp (-ikA) 2 (32)
where A is the relative phase between the two components. The form
given here is that given by Zankel and Hiedemann (11), specialized to the
second harmonic. Since In = ¢r21' calculations can be made from Eqgs. (32)
and (25) for arbitrary light beam widths.

Mertens (27) obtained the light amplitudes in diffraction orders
caused by the passage of light through two adjacent ultrasonic beams

with frequency ratio 1:M where M is an integer. Results were given for

the light beam passing through either ultrasonic beam first. For light
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first passing the Mth harmonic (the case to be considered here), Mertens

gave for the light amplitude in the nth diffraction order

¢! = +§O J v——Ls' -ﬂ—-Lta 6
n k=.o0 Nn-Mk \1L sin eMk MmN en Mk

~

(times) Jk(vl\/? exp (im(Mk-n)(L/\*) tan eMk} exp (-ikA), (33)

where

sin GP = -P(x/pox*). (34)

L is the width of the second ultrasonic beam (the fundamental in this case),
assuming the beams adjacent. The index of refraction My of the undisturbed
medium appears in Eq. (34) becaus-e the appropriate diffraction angles are
those occurring in the medium as the light emerges from the first sound
beam. Using the approximations sin ® ¥8 ~tan 6, Eq.(33) may be
expressed in a simpler form which is valid for small 8, Carrying out
these approximations and specializing Eq. (33) to the frequency ratio 1:2

one obtains the intensities

+oo i 2
el 2 I Ty 5 () exp{[k(n-Zk)Q-kA]} , (35)
=-00
where
Q= (2an/pox* 2). (36)

Comparing Eq. (32) with Eq. (35), one finds that the forms of the equations
are similar. Equation (35) may be interpreted as expressing reduction of
i by the factor (sin kQ) /(kQ) to give an effective vl(k) which is different

for each kth contribution to the sum. Similarly, each kA in the exponential
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term undergoes an effective phase shift of k(n-2k)Q. Mertens' condition
(27) that

(TML /\%)

sin ep| <<1 (37)

for the difference between simultaneous and successive diffraction to be
negligible is equivalent to requiring in Eq. (35) that

(sin kQ) / (kQ) =1 and k(n-2k)Q =~ 0. (38)

Experimental measurements were obtained using the basic optical
arrangement shown in Fig. 5 with the following exceptions. Two ultra-
sonic waves were produced in the manner shown in Fig. 16. Two 3.0 mc
quartz transducers were driven fromthe same 3 mc oscillator. The
filter plate was tuned to pass the 6. 0 mc component of the ultrasonic
wave which had become quite distorted when it arrived at the plate. Thus
the finite amplitude effects served as a frequency doubler. The relative
phase between the two components passing the light beam was varied by
moving the variable transducer slightly in the direction of sound propa-
gation by means of a precision screw. The relative amplitude of the
second harmonic component was varied by moving the variable transducer
over a range of approximately 50 cm.

There are some qualitative features common to simultaneous and
successive diffraction. Both theories predict that the intensity of the
central diffraction order oscillates with change in relative phase between
the two frequency components. This is shown experimentally for
successive diffraction in Fig. 17(a). These oscillations serve as an

indicator of relative phase. The maxima correspond (theoretically) to
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Figure 17.

(a) (b)

Observed oscillations of central order light intensity with
change in relative phase between the 3. 0 mc ultrasonic
wave from the fixed transducer and the wave transmitted
by the filter plate. (a) No fundamental passed by the filter
plate. (b) Small amount of fundamental passed by the
filter plate.
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a * cosine second harmonic (A = ¥17/2) and the minima correspond to a 1
sine second harmonic (A = 0 or 7w), relative to a sinusoidal fundamental.
Figure 17(b) shows the effect of a small amount of fundamental coming
from the variable transducer because of an improperly adjusted filter
plate. The alternation of peak amplitudes in Fig. 17(b) was caused by
this extraneous fundamental as it interfered with the fixed fundamental
component. The regularity of the oscillations in Fig. 17(a) indicates that
the fundamental was effectively eliminated by the plate. From the known
distance required to move the variable transducer to produce these cyclic
variations in light intensity, a calculation of the sound velocity gave good
agreement with the accepted value. -

Both theories also predict that the light intensity distributions are
symmetric for ¥ cosine second harmonic and asymmetric for 1 sine second
harmonic, for either wide or narrow light beams. Using the intensity of
the central order as an indicator of relative phase, the results shown in
Fig. 18 were obtained. It can be seen that the theoretical predictions
regarding symmetry and asymmetry are experimentally confirmed. The
narrow beam diffraction patterns are for G = 1/2. The fundamental
Raman-Nath parameter v1 was approximately 3.8 and v2 was approximately
0.5 for the measurements in Fig. 18.

Calculations were made from Eq. (32) and from Eq. (35) for vi = 2.4
and various amounts of second harmonic with different relative phases.

This choice of i permits use of and comparison with calculations and

experimental results obtained for the case of a distorted finite amplitude
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ultrasonic wave and a wide light beam. In calculations made using Eq.
(35) (successive diffraction) an effective L was used. The equation was
derived for the two ultrasonic beams adjacent, i.e., no space between the
beams. In order to approximately account for the unavoidable separation
of the beams in the actual experimental arrangement, an effective L was
chosen equal to the actual beam width plus the width of the space between
the two beams. This approximation is somewhat justified because the L
involved in the theory is the distance the light travels between emergence
from the first beam and emergence from the second beam. For the
experimental arrangement used, the effective L was 5 cm. Figure 19
shows the calculated extremes of light intensity (which correspond to X
sine second harmonic) for the first diffraction orders. The extremes for
simultaneous diffraction are precisely those first order intensities pre-
viously calculated and verified for distorted finite amplitude waves,
neglecting harmonics higher than the second. | The results in Fig. 19
show that there is a significant difference between theoretical values for
simultaneous and successive diffraction for the experimental parameters

considered here (3.0 and 6.0 mc in water and v, = 2.4). In either case

1
it can be seen that there is an approximately linear relationship between
the differences of extremes of first order light intensity and the amount
of second harmonic. Also, as before, the average of the extremes is
approximately constant, independent of the amount of second harmonic.

In order to qualitatively check the theoretical predictions described

in the previous paragraph the extremes of light intensity in the first



Light Intensity

Figure 19.

Percent Second Harmonic

Calculated extremes of light intensity in the first diffraction
orders for v, = 2.4 with change in relative phase of various
amounts of second harmonic for (a) simultaneous diffraction
and (b) successive diffraction with LL = 5 cm.
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diffraction orders were observed for varied amounts of second harmonic.
The measured extremes are shown in Fig. 20. The two extremes
observed for a given amount of second harmonic are plotted vs the
corresponding difference in intensity. The actual amount of second
harmonic was not determined for these measurements. The results
verify the theoretical prediction that the average intensities are approx-
imately independent of the amount of second harmonic.

In the measurements described in the previous paragraph, some
discrepancies between results obtained from opposite first orders were
observed. This may be caused by a small amount of distortion (second
harmonic) in the fixed transducer beam. This interpretation is supported
by the fact that a small amount of asymmetry was observed in the
diffraction spectrum resulting from the fixed transducer beam only.
Since second harmonic in the fixed beam is fixed in relative phase with
respect to the fundamental in the same beam, one should be able to
observe a sum and difference effect as the two sources of second har-
monic are varied in relative phase. This effect is shown in Fig. 21
which is to be interpreted as follows. When the two second harmonic
contributions interfere constructively they are both in the same relative
phase with the fundamental. When they interfere destructively the
resultant is in opposite relative phase with the fundamental. Thus when
the variable second harmonic is varied in relative phase the observed
extremes in first order light intensity should coincide with a theoretical

value at only the maximum or a minimum extreme of light intensity,
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Figure 20. Observed extremes of light intensity in the first diffraction
order for v) = 2.4 with change in relative phase of various
amounts of second harmonic vs the corresponding difference
in light intensity showing that the average intensity is
approximately independent of the amount of second harmonic.
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Figure 21.

Percent Second Harmonic

The influence of second harmonic in the fixed transducer
beam on the observed oscillation of the first order light

intensities as the relative phase of the variable second
harmonic is varied.
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depending on which (f) order is observed. Note that the magnitude of
the oscillation in intensity of a given first order corresponds to the
amount of second harmonic in the variable beam, even though values at
the extremes may deviate from the theoretical ones at one extreme or
the other. The recorder trace in Fig. 21 verifies that this actually
occurs. This curve shows the effect enhanced because it was observed
at a greater than normal distance from the fixed transducer where a
greater amount of finite amplitude distortion was present.

The approximately linear relationship between the amount of
second harmonic and the amplitude of oscillation in the first diffraction
order intensity, like the asymmetry in the investigation of distorted
finite amplitude waves, suggests another means for measuring the second
harmonic content of a distorted ultrasonic wave of arbitrary amplitude.
A filter plate might be used to pass the second harmonic component of
the distorted wave and the magnitude of this component measured by
observing the amplitude of oscillation in the first diffraction orders when
the fixed transducer is radiating at the fundamental frequency with v T 2.4.
Using such a procedure one measures a larger effect than the diffraction
produced by the second harmonic alone. In contrast to the method used
to determine the second harmonic content of a distorted finite amplitude
wave using a fixed local value of the fundamental component aﬁd neglecting
higher harmonics, this procedure permits an arbitrary fundamental com-
ponent. Thus the second harmonic content may be determined as a

function of propagation distance for a fixed initial fundamental ultrasonic

pressure amplitude.
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The procedure outlined in the previous paragraph was followed
for various propagation distances between the variable transducer and
the filter plate. The indicated amounts of second harmonic as obtained
basing the interpretation on (a) simultaneous diffraction [Eq.(32)], and
(b) successive diffraction [Eq. (35)] are shown in Fig. 22. Also shown
in the figure are (c) measurements of the second harmonic made by
measuring the first order of diffraction caused by only the second har-
monic which passes the filter plate. The difference between indications
from simultaneous and successive diffraction theory is greater than
experimental error. However, within the estimated experimental
error, the interpretation based on successive diffraction theory by
Mertens agrees with the filter platg measurements. This result indicates
the validity of Mertens' theory. Experimental limitations may be respon-
sible for some of the lack of agreement. Phase and amplitude difference
over the field of observation (usually about 5 x 5 mm) would tend to reduce
the extremes of light intensity because of averaging over the field. Such
differences over the field might arise from beam inhomogeneity, filter
plate irregularities, or failure to achieve perfect alignment of the two

ultrasonic wavefronts.
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CHAPTER 1V

SUMMARY

Experimental confirmation has been obtained from some predictions
of the theory developed by Zankel to explain various aspects of diffraction
of light by progressive ultrasonic waves. This theory was developed for
the range of moderate frequencies and amplitudes where the Raman-Nath
approximations are valid. Theoretical results have been cited which in-
clude arbitrary light beam width, ultrasonic waveforms expressible by a
Fourier sine series, and ultrasonic waveforms consisting of fundamental
and second harmonic components combined with arbitrary relative phase.
It has been shown that these theoretical results are compatible with
several previous results, both theoretical and experimental.

Good quantitative experimental confirmations of the theory have
been obtained for sinusoidal ultrasonic waves and narrow light beams.
The theory has also been confirmed for distorted finite amplitude ultra-
sonic waves and wide and narrow light beams. Some qualitative features
of the dependence of diffraction on the relative phase between two adjacent
ultrasonic waves with frequency ratio 1:2 have been experimentally shown
to be correctly given by either the theory of Murty, Rao, and Mertens for
simultaneous diffraction or by the theory of Mertens for successive dif-
fraction. Quantitative measurements have shown that the theory of Mertens
must be applied for successive diffraction in the range of experimental
parameters investigated here. All measurements were carried out using
progressive ultrasonic waves in water.
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Further work of the type described herein is in progress in the

ultrasonics laboratory at Michigan State University.
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