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ABSTRACT

THE DIFFRACTION OF LINEARLY POLARIZED LIGHT

BY ULTRASONIC WAVES IN TRANSPARENT SOLIDS

by Myron Paul Hagelberg

Mueller [2. Kristallogr. A. , :92, 122 (1938)] has suggested two

methods for the determination of the ratio p/q of the strain-optical con-

stants of transparent, amorphous solids. These methods have been

used by Gates and Hiedemann [J. Acoust. Soc. Am. , _2_8, 1222 (1956)]

in studying the photo-elastic properties of a series of American optical

glasses and fused silica. Their investigation shows that one of Mueller‘s

methods, method "B, " is valid as described but that the second,

method ”C, " in conjunction with an experimental procedure suggested

by Bergmann [Naturwissenschaften, 23, 492 (1936)] gives inconclusive

results. The primary purpose of this study is to investigate the experi-

mental conditions under which these photo-elastic studies are made and

to determine whether or not Mueller's method "C" is valid. In addition,

the assumption of the coherence of the two polarized components is tested

directly. Theoretical arguments are given describing the change in the

observed results with variation in the experimental parameters. Values

of p/q obtained in this investigation are compared with those given by

Gates and Hiedemann for the same glasses to determine the effects of

aging.



Myron Paul Hagelberg

Since Bergmann's experimental setup and procedure may intro-

duce discrepancies through the use of the photographic method for light

intensity determinations and the use of the Wollaston double image prism,

method "C" is studied by means of experimental techniques which eliminate

both of these factors. Light intensity measurements are made by means

of a photomultiplier—microphotometer. The Wollaston prism is eliminated

by using a polarizer which may be rotated to permit readings of the light

intensity for various polarizations.

It is found that Mueller's method "C" gives results which are con-

sistent for each glass sample with the results obtained by method "B"

within the limits of the experimental error. The assumption of the

coherence of the two polarized components is found to be valid since the

variation of the intensity of the light in the first diffraction order with

the angle of polarization is as predicted on the basis of this assumption.

The deductions from Mueller's theory concerning the variation of the

observed results with changes in the experimental parameters are also

found to be valid in every case. This leads to the conclusion that the

results reported by Gates and Hiedemann using method “C" must result

from the use of the photographic method for measuring the light

intensities.
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I. Introduction

1. Basic Concepts of Photoelastic Theory.

Studies of the photoelastic behavior of transparent solids are generally

concerned with either or both of two problems. The first of these is the

phenomenological description of the optical effects produced in a light beam

which has traversed the solid by stresses and/or strains in the solid.

These effects are considered to be known when the strain-optical constants

and the elastic constants of the medium have been determined. The second

problem is that of relating the photoelastic behavior of a solid to the arrange-

ment of the atoms of which it is composed and to the nature of these atoms.

This latter problem will not be taken up in detail here.

In studies of amorphous solids, the strain-optical constants introduced

by Neumann1 may be used. These constants, defined in terms of a typical

strain 2 ,

z

1122

qZ

dn =n -n

z z

(1)

2

d : - : _nX nX n n pzZ

relate the strain to the change produced by it in the index of refraction

for light polarized parallel and normal, respectively, to the direction of

the strain. In the general case, the elasto-optical behavior may be

represented in terms of the thirty-six phenomenological constants

pij (i,j = 1, 2, . . . , 6) given by Pockels, 2 which relate the strain tensor to

the optical effects which accompany it. For amorphous solids, these con-

stants are found by symmetry considerations to be reduced to two, p11 and

pm. These two Pockels constants for isotropic media are related to the



Neumann constants by

p11: 2q/n and p12 2 2p/n. (2)

It is assumed that for the purposes of this investigation, the finely-

annealed optical glass is isotropic, and that therefore the Neumann strain-

optical constants may be used.

The optical effects discussed above may also be described in terms

of the stresses from which they result and, indeed, static determinations

of the photoelastic behavior of solids result in values of the stress-optical

3 . .

constants. Mueller suggests that the strain—optical constants have

greater theoretical interest than the stress-optical constants in relating

. . . 4 .
the optical effects to the structure of the medium. Filon and Jessop find

that when the elastic limit is exceeded, the change in index of refraction

is proportional to stress but not to strain. However, in the present

investigation, the stresses are small and it is assumed that Hooke's law

applies. Thus, stress and strain are related by the elastic constants and

are therefore equally significant.

Absolute determinations of the photoelastic constants of various

5

glasses by the application of static stresses have been made by Mach,

6 , 7 8 .

Pockels, Filon, Twyman and Perry and Schaefer and Nassenstein.

These static measurements are of two types: one, using a Babinet com-

pensator, measures the difference in the retardations of the ordinary and

extraordinary beams leading to a value for the difference p - q of the

Neumann constants. The second method requires difficult interferometric

measurements, but yields values for the constants themselves, although



the accuracy of the results is significantly less than for the compensator

measurements. The interferometric method requires large samples of

strain-free glass, which in some variations must have a specific shape.

Other variations require two "identical” samples. Coker and Filon1

point out that an additional complication is the possibility of relaxation or

plastic flow. A further complication arises in that the results are obtained

in terms of the stress-optical constants. Then, in order to determine the

strain-optical constants, a knowledge of the elastic constants is required.

Dynamic studies of the strain-optical constants are also possible.

With this technique, the strains are produced by ultrasonic waves in the

glass. It should be noted that these strains occur adiabatically. The

optical effects are observed in the diffraction of a beam of light which has

traversed the sound field. Measurements by these methods give directly

the ratios p/q of the strain-optical constants. A complete determination

of p and q by this method requires also a measurement of the sound

intensity; this is not feasible.

Mueller3 suggests that the values of p and q could be obtained by

a combination of the ultrasonic or dynamic method and the compensator

technique, which yields the value of p - q, thus replacing the difficult and

unreliable interferometric measurements. Such a determination assumes

that; the values of p and q which occur in the dynamic experiments are the

Same as those in the static experiments. Schaefer and Dransfeld11 used

a dynamic method to measure the ratio p/q of the strain-optical constants

Of the same set of glasses, numbering about 150, for which Schaefer and
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Nassenstein9 determined the values of p and q by static methods. Com-

parison of the values of p/q obtained by the dynamic method with those

obtained by the static techniques yielded an average difference of l. 5

percent, with the dynamic values averaging slightly higher. Since the

announced overall accuracy was 5 percent, this difference does not seem

to be significant. Thus the dynamic and static values appear to be

equivalent.

2. Theory and Techniques of the Dynamic Methods.

12 . . . 13 .

In 1932, Debye and Sears in America and Lucas and Biquard in

France, discovered that if a beam of light passes through an ultrasonic

field, a diffraction pattern is produced which is similar to that caused by

a ruled grating. The grating constant in this case corresponds to the

wavelength of the sound in the medium. A theory of this diffraction for

. . . . l4 ,

a sound field in a liquid has been developed by Raman and Nath. This

theory is based on the phase changes introduced in the light wave train by

the periodic variations of the index of refraction in the sound field. A

plane light wave front which impinges on the sound field is altered in

phase to produce a "corrugated" wave front. When this light is focused

by an objective lens, a diffraction pattern is produced. The analysis of

Raman and Nath leads to expressions for the direction of the diffraction

orders and their intensity and frequency. The deductions from this theory

. . . . . 15 , . 16
have been verified both qualitatively by Bar and quantitatively by Sanders;

. . l7 . .
more recently Miller and Hiedemann have reported quantitative agree-

ment over a rather wide range of frequencies and sound intensities. It

will be shown later that this theory is applicable to the conditions of this



study. The Raman and Nath elementary theory is particularly useful over

the range in which it is appropriate because of the simplicity of the

expressions which are derived from it.

Diffraction effects can also be produced when a light beam impinges

on ultrasonic waves in transparent solids, such as glass. Here the prob-

lem is somewhat more complex than in a liquid because of the elasticity

18 1

’ 9’ ZOused a point source of lightof the solid. Schaefer and Bergmann

to show diffraction by many sound waves traveling in different directions

simultaneously. This type of experiment produces a characteristic

pattern, the so-called Schaefer-Bergmann pattern, in which the diffraction

orders are circles concentric to the central, undeviated spot for waves in

an amorphous solid. A slit source was used by Hiedemann and Hoesch21’ 22' 23

to show diffraction by a single plane ultrasonic wave excited in a solid. The

slit is oriented parallel to the sound wave fronts and the diffraction pattern

is composed of a series of equally spaced images of the slit (if only longitudinal

waves are present). In practice, this line pattern is much more readily

obtained than the Schaefer—Bergmann pattern since the slit source is brighter

than the single “point" and since the sonic energy may be concentrated in a

single sound wave train. By this ease of obtaining the line pattern, dynamic

measurements of p/q are facilitated.

The Raman and Nath theory has been used by Mueller3’ 24 as a basis

for a theory of the diffraction of light by an ultrasonic field in a solid. In

this theory, the variations in the refractive indices for light polarized parallel

and normal to the sound wave fronts are evaluated in terms of the strain-optical



constants of the medium. This leads to expressions for the direction,

polarization, intensity and frequency of the light in the diffraction orders

in terms of the polarization of the incident light, the strain-optical con-

stants and the sound intensity. Many of the conclusions from this theory

. . . . 25, 26

have been verified experimentally by Hiedemann .

In his extension of the Raman and Nath theory, Mueller gives details

of three methods for evaluating experimentally ratios of the photoelastic

constants. Two of these methods apply to glasses and also to certain

crystals; the third method is applicable only to crystals.

Method "A, " which applies only to crystals, has been used by

. . . 27 28 .

Burstein, Smith and HenVis and by Galt. The results of these studies

. . 29 . .
have been compared With a theory, given by Mueller, which ascribes

the photoelastic behavior of these crystals to changes which occur in the

structure of the crystal and its atoms under the influence of an external

strain. Galt reports agreement with this theory, while Burstein and Smith

indicate the need for further consideration.

Method ”B, ” which, like method "C, " applies to isotropic solids as

well as to certain types of crystals, involves the measurement of the

. . . . 31, 32 , 3

polarization of the diffraction orders. Vedam and Gates and Hiedemann

34

used the line pattern in making measurements by this method. Ramavataram

11

and Schaefer and Dransfeld used the Schaefer-Bergmann pattern.

Ramavataram also measures the difference p - q by static methods and is

therefore able to give values for the individual strain-optical constants.

Method "C” requires measurement of the ratio of the intensities in the



first diffraction order of light polarized parallel and perpendicular to the

sound wave fronts. Bergmann and Fues used for such measurements

a Wollaston prism which splits the light beam entering a vibrating glass

sample into slightly divergent beams polarized perpendicularly to each

other. The diffraction orders of the two polarized beams of light are

recorded simultaneously on the same photographic plate. The intensities

are then determined by means of a densitometer.

These dynamic methods for the determination of the photoelastic

constants offer certain characteristic advantages over the static techniques:

(1) The results are obtained directly in terms of the strain-optical constants,

which according to Mueller, have greater theoretical importance than the

stress-optical constants. This eliminates the necessity of a knowledge

of the elastic constants. (2) The use of large, "identical, " and/or

specifically shaped samples is eliminated. The samples used in this

investigation were nearly all cubes approximately one inch on a side.

(3) Effects due to relaxation processes with time constants which are long

compared with the period of the sound as well as plastic flow or "creep"

are no longer a complicating factor.

A single significant disadvantage of these methods must also be

noted. Since most of the energy dissipated from the sound field is converted

into heat within the solid, the temperature within the block rises as long as

the sound field is maintained. This results in disturbances of the sound

field, particularly at higher sound intensities. According to Schaefer and

Dransfeld,11 the variation of p/q is small (less than 0. 5 percent/CO for the
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glasses which they tested); however, the standing wave system within the

block is disturbed by the changes in sound velocity and in the dimensions

of the block which accompany the heating. This means that measurements

can only be taken for short periods of time separated by periods of several

minutes during which the block returns toward thermal equilibrium.

Before another measurement is made, one must adjust the frequency of

the sound field to renew the standing wave system within the block.

The problem of correlating the observed photoelastic behavior of an

amorphous solid with the internal structure and composition of the sub-

stance has been considered by Mueller.36' 37 As mentioned previously,

Mueller29 has also treated this problem for the case of cubic crystals.

The theory which has been developed for amorphous solids ascribes this

photoelastic behavior to two effects. One of these effects depends on

elastic alterations in the Lorentz-Lorenz interactions between dipoles;

a second effect is due to the production of an artificial optical anisotropy

of the atoms. Under pressure the first results in positive birefringence,

the second in negative birefringence. These two effects seem to account

for the variation in the photoelastic constants between glasses of different

densities. In crystals, the effect of strains on the Coulomb fields of the

ions must also be considered. An effect due to alignment of optically

anisotropic molecules is discussed by Treloar38 and by Braybon. 39 This

latter effect, however, appears to be significant only for long-chain high-

polymers.

33

Gates and Hiedemann have determined, by Mueller's method "B,"



the ratio p/q of the strain-optical constants of a series of American

optical glasses and fused silica. In addition, an attempt was made to

show that method "C" gives the same results. The experimental set-up

used for method ”C" was essentially the same as that used by Bergmann. 35

The measurements gave results which are neither in agreement with

Mueller's theory nor with the data obtained by method "B. " Since both

methods "B" and "C" are based on the same theoretical assumptions, it

seems likely, as Gates and Hiedemann have suggested, that the lack of

agreement between the data obtained by method "C" and the theoretically

predicted result was because of some inadequacy in the experimental

arrangement or technique. The primary purpose of this investigation is

to demonstrate the validity of Mueller's method ”C" and to determine why

the measurements of Gates and Hiedemann by Bergmann's procedure were

inconclusive. The measurements of light intensity were made directly by

means of a photomultiplier - microphotometer rather than photographically,

thus eliminating the difficult densitometer measurements. In addition, the

Wollaston prism is no longer needed, thus removing another possible

difficulty in the experimental set—up.

A number of other studies were also undertaken in order to study

the sensitivity of the experiment to the several parameters which can be

varied experimentally. Since Mueller's theory assumes the light beam to

be incident at right angles to the sound field, it appears interesting from

both a theoretical and a practical standpoint to investigate the effect of

oblique incidence. The Wollaston prism used with Bergmann's experimental
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set-up causes a finite deviation from normal incidence if it is used to

split the light beam before it enters the vibrating glass. This study should

determine whether or not the use of a Wollaston prism is the cause of the

discrepancy between the results, by methods "B" and "C, " reported by

Gates and Hiedemann.

A study of the effect of a constant stress on the sample, in addition

to the dynamic stress produced by the sound field, was undertaken to

determine whether any systematic change in the measured value of R

occurs. In addition to the possibility of obtaining further information

concerning the photoelastic behavior of thevglass, this study should also

determine the sensitivity of these dynamic experiments to the way in

which the block is mounted.

The effect of placing the polarizer in method "B" at angles other

than that which makes the plane of polarization of the incident beam at

forty-five degrees to the sound wave fronts is also determined. The

results of these measurements may be compared with an extension of

Mueller's theory, discussed below, which pertains to this particular

problem. Further, this same study makes it possible to determine the

inaccuracy introduced because of any uncertainty in setting the polarizer

to the required angle.

Measurements of the light intensity, in method "C, " are made at

angles other than normal and parallel to the sound wave fronts. These

values are than compared with the values predicted by Mueller's theory.

Agreement of the experimental values with the theoretical prediction gives
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a direct check on the validity of one of the basic assumptions of Mueller's

theory. Such agreement would be, therefore, of considerable theoretical

importance.

Finally, since the same set of glasses which Gates and Hiedemann

used for their investigations was available and since a period of somewhat

over four years has elapsed since their measurements were made, deter-

minations of p/q for these glasses are repeated in order to determine

whether there is any significant aging effect over this period. Filon

and Harris‘]:1 have reported aging effects in their investigations made by

static methods. Filon's measurements were made after a period of three

years. The results reported by Harris involved a time lapse of sixteen,

and, in some cases, twenty years from the original measurements. It is

suggested in Harris' paper that change in the elasto-optical constants is

comparatively rapid in the years immediately following its casting and

tending toward a steady value.

Narasimhamurty 2 has recently developed a technique for measuring

the ratios of the strain-optical constants of certain crystals. Since this

method is also applicable to glasses, a discussion of the method and its

theoretical basis is included as an appendix. A second appendix gives a

discussion of the determination of the photoelastic constants of crystals

excited by ultrasonic waves. Appendix three is concerned with the varia-

tion of p/q with the density of the glass.
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II. Theoretical Considerations

Raman and Nath14 have given a theory for the diffraction of light

by ultrasonic waves in liquids. If a plane wave front impinges at right

angles on a medium whose index of refraction varies periodically, such

as a liquid in which ultrasonic waves are propagated, the wave front will

no longer be plane when it emerges. The Raman and Nath theory assumes

that there is no significant bending of the light in the sound field, but that

the light is altered in phase. Thus the wave front, on leaving the

medium, will be periodically corrugated. The assumption made above

is valid provided the light path in the sound field is not too great nor the

gradient of the index of refraction too large. A Fourier analysis of the

emerging wave front yields the diffraction effects observed when the

emergent light is focused with an objective lens. For progressive sound

waves, the intensity of the m order relative to the n diffraction order is

given by

J 2(V)/J 2(V) where v = 21mm). (3)
m n

and II is the maximum variation of the refractive index, L is the light

path in the sound field, x is the wavelength of the light, and J is the

Bessel function of the first kind of the order given by the subscript.

The conditions under which the assumptions mentioned above are

valid, may be stated mathematically as

ZNLXv/uoki‘z E N (4)

where u is the refractive index of the medium when the ultrasonic field

0
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is not present and )8“ is the wavelength of the sound in the medium. The

values of N which are on the order of one or two, have been suggested by

theoretical studies and experimentally. 45 In the work reported here,

L is about 2 cm. , k about 5 x 10—5 cm. , )8“ about 0. 04 cm. and v is never

significantly greater than one. This places the experiment well within

the limits set by the above criterion.

For standing waves, Raman and Nath predict that each line of the

diffraction pattern will be composed of subcomponents having different

frequencies. In this discussion, the diffraction orders are designated by

the index m. Thus, for the central order, m has the value zero while the

index one corresponds to the first order and so on. The subcomponents

are identified by the index r which may be zero or a positive integer.

The relative intensity of the r subcomponent of the m diffraction order is

given by

2 2 , _
Js_r (v/Z)JS +1 (v/Z), If m — 25 +1

+r

(5)
2 2 . _

JS_r (v/2)Js+r (v/Z), If m — 28

the light in the even orders is modulated at the frequency Zru’“, that in the

odd orders at (2r + l)L/*, where l/* is the frequency of the ultrasonic field.

The theory for the diffraction of light by ultrasonic waves in solids,

given by Mueller, 3 is an extension of the Raman and Nath theory for liquids.

Mueller's theory is valid for both progressive waves and standing waves in

solids. However, since it is difficult to produce traveling waves in solids,

because of the very low absorption, this discussion, as well as the
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experimental work described later, will be concerned solely with standing

waves. As only glasses are used in this study, the results of Mueller's

theory which apply to amorphous solids are of greatest interest.

As was mentioned earlier, the photoelastic behavior of a solid can

be charaCterized by the Neumann strain-optical constants p and q. These

constants relate a strain to the change produced by it in the index of re-

fraction for light polarized parallel and normal, respectively, to the

direction of the strain. Mueller's theory treats the case where dynamic

strains are produced by the ultrasonic field in the glass. Thus the refractive

indices in the plane normal to the light beam can no longer be described by

a circle, as in isotropic media, but by an ellipse. The axes of this

ellipse in amorphous solids, are parallel and normal to the direction of

sound propagation. The lengths of the axes of the ellipse vary periodically

at the frequency of the ultrasonic field. These lengths are related to the

elasto-optical constants p and q.

If the plane of polarization of the incident light is arbitrary, it may

be resolved into two components along the two axes of the index ellipse.

Denoting the amplitude vector of the incident light by E, the two components

will be EI for the axis normal to the strain and E1I for the axis parallel to

the strain. Each component will be diffracted with the amplitudes of the

subcomponents of the diffraction orders given by
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E ' :Js_r(vI/2)J (VI/2), if m 2s +1

E I =
s+r+1

r,m

E

. :

JS-r(
VI/2)

Js+r (VI/Z)
, If m 23

and

(6)

E

. :

E II : Js-r (VII/Z) JS+r+1(V
II/Z)'

1f m ZS +1

r,m

E ' =Js_r(vH/2)Js+r(vH/2), if m 28

h : 2 L d : .w ere VI TTHI /). an vII 2 pHL/X (7)

Here [.11 is the variation of the index of refraction for light polarized

normal to the strain and “II is the variation parallel to the strain. For

glasses, VI and VII may be written

2 2 2 2
v = 411 Lul qA/ii* and v = 4n Lpl pA/Mi’i‘ (8)
I II

where p and q are the strain—optical constants and A is the sound amplitude.

It is seen that VII/VI = p/q = R. Also to be noted is that the v's are directly

. . I II

proportional to the sound amplitude. The two components Er m and Er m

of the subcomponent r of the diffraction order m are deviated by the same

angle and have the same frequency. Since they originate from the same

light and are diffracted from the same elastic wave they must be in phase.

. I 11

Hence the two components are coherent and the amplitudes Er m and Er m

can be added vectorially.

These results may be interpreted physically to mean that for standing

sound waves the light in any subcomponent is plane polarized. Different

subcomponents of the same diffraction order have different planes of

polarization.
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Using equations (6) and the rules of vector addition, and taking into

account the algebraic signs of the Bessel functions, equation (9) is obtained.

 

 

I J (XII), (LII,

tan (9-0) s-r 2 s+r+l 2 , if m = 25 +1

J (VI J (VI

s-r 2 ) s+r+l 2 )

tan(9-I3r m) =< (9)

' v v

II II

Js-r(T)Js+r(—Z—)

tan (9-0) v v , if m = 25

I I

k Js-r(—2—)Js+r(_2_) 
These equations relate the intensity of light in the r subcomponent of the

m diffraction order to the angle a which the plane of polarization of the

incident light makes with the x-axis, the angle Br, m Which the plane Of

polarization of the light in this subcomponent makes with the x-axis and

the angle 9 between an axis of the index ellipse and the x-axis. Since only

differences between angles occur in the expressions, the choice of the

x-axis is arbitrary. If the incident light is assumed to have unit intensity,

then the intensity of light in the r subcomponent of the m diffraction order is

Z 2 Z
: 9-

Ir, m Js-r (VI/2)Js+r+l (VI/2) COS ( a)

+J 2( /2)J 2( /2) '2(9 a) 'f —2s+i
s+r VII s+r+l V11 81“ " ’ 1 m

(10)

2 2 2
: 8-Ir, m Js-r (VI/Z) Js+r (VI/Z) cos ( a)

Z 2 Z

Z ' 9- ' = 2+ Js-r (VII/2) Js r (VH/ ) Sin ( a), if m s
+

The justification for restricting this discussion to amorphous solids

is that finely annealed optical glass is very nearly homogeneous and isotropic.
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The glass samples used are good enough to permit almost complete

extinction when placed between crossed Nicols. Although it is possible

to propagate transverse waves as well as longitudinal waves in glass,

only the effects of longitudinal waves are considered in this study since

these permit the determination of p/q. The sound-producing transducer

is an X-cut quartz crystal. This is a thickness vibrator; hence, the

primary waves in the glass are longitudinal. Frequencies are chosen

at which the block exhibits a strong resonance for the longitudinal mode

but not for the transverse mode. In method "B, " the crossed position

of the polarizer and analyzer is at forty-five degrees to the sound wave

fronts. It has been shown by Hiedemann and Hoesch, 46 that this arrange-

ment eliminates the optical effects of the transverse waves. In other

positions of the polarizer and/or analyzer, the diffraction pattern due

to the shear waves, which has a different separation than the longitudinal

wave pattern, can be noted by the observer, if it is present. In method

"C, ” the different spacing of shear and compressional wave diffraction

patterns is used to determine the absence or presence of transverse

waves having a significant intensity.

The discussion which follows is concerned with the particular

conditions under which the two methods given by Mueller for the deter-

mination of the ratio p/q of the strain-optical constants of glass apply.

The arrangement for method "B” requires that the light beam be

perpendicular to the direction of sound propagation. The slit is parallel

to the sound wave fronts, the polarizer at an angle of forty-five degrees
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to the slit. For this setting 9 - a = -450. Only the r = 0 subcomponent

of the first diffraction order (m =1) is considered. Under these condi-

tions, equation (9) reduces to

RV

J (—)J (—)

+45°)=tane: 0‘2 12 (11)
,l V V

J0(2) J15)

RV

 tan (yo

making use of the fact that VII 2 RvI = Rv for glasses. Here YO,1 is the

angle by which the analyzer must be rotated from the ”crossed" position

in order to extinguish the r = O subcomponent of the first diffraction order.

This angle is the experimentally measured quantity in method "B. "

Method "C" again requires that the light beam be normal to the

direction of sound propagation. The slit is parallel to the sound wave

fronts. As in method "B, ” only the r = O subcomponent of the first

diffraction order is considered. For this method, measurements are made

P
O 1 , in this subcomponent when the light is polarizedof the light intensity, I

parallel to the slit, and I0 1n, when it is normal to the slit. For the first

polarization, 6 - a = -900; for the second setting, 6 - a = 0. With the

help of the first equation of (10) this gives

RV RV)

J (—)J (-
p _ _ (——_ O 2 l 2

\(Io,1 ‘ (130,1 “ B - (12)

 

J00? 31 (2)

The experimental quantities measured here are IO 1p and I0 1n.

It is seen by comparing equations (11) and (12), that

RV RV

<—,_—) J1<—2—)

(13) 

JO

tane 2 VB 3

V V

JO (3) J15)
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Thus two experimental quantities, which can be measured independently,

are given by the same analytical expression.

Since the parameter v which appears on the right hand side of

equation (13) contains quantities which can not be accurately determined,

such as the sound amplitude and sound field width, values of R can be

obtained most conveniently by means of an extrapolation. If the right

hand side of equation (13) is expanded in a series development, using

standard power series representations of the Bessel functions, equation

(14) is obtained.

RV RV

Jo(-2_) 31(7) 10(RZ+1) - 27 V4
4

3072 + (1 )

  

3 2 2 2

=R--—R(R-l)v +R(R -l)

v 32v

Jo(2) 31 (2)

It is seen that as v approaches zero, this quantity approaches the limiting

value R. Letting the subscript zero indicate limiting values, equation (13)

or (14) then reduces to

tan 9 = B = R. (15)

o o

It should also be noted, from equation (14), that the slope of the curve

. . . 2 .
obtained when tan 9 (or VB) is plotted against v depends on the Sign of

R. Four cases must be considered: (1) for R greater than one the slope

is negative, (2) when R is greater than zero but less than one the slope is

positive, (3) for R between zero and minus one the slope is again negative,

and (4) when R is less than minus one the slope is positive. When R: 1’1,

the slope is zero and the sign of R cannot be determined. Thus, the

magnitude of R = p/q is determined by the limiting value of tan 9 or VB
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and the sign by the slope of the curve obtained when these quantities are

plotted as functions of Va.

Figure l, drawn from equation (13) or (14), shows values of tan 9

and VB—for various values of v and R and the behavior of these functions

as v approaches zero. These quantities are plotted against the square of

v since this gives a relationship which is almost linear for small values

‘of v. The straight lines are drawn in the figure to show the departure

of the points from linearity as v increases. This shows that for v less

than one and R less than two, a straight line is, in fact, a suitable

approximation. For R equal to two, the "best" straight line, by the

criterion of least squares, 47 for the four points shown gives an intercept

of l. 989. The error is 0. 55 percent. The error introduced by the

assumption of linearity increases for R greater than two but becomes

even less than the value mentioned above for values of R which are less

than two. Since only one of the samples studied in this investigation,

fused silica, yielded a value of R greater than two (R = 2. 34), the error

introduced by the assumption of linearity alone is, with this single

exception, less than about one-half percent. Sources of error which

are experimental in nature will be discussed in a later section.

From equation (8) it is seen that the parameter v is proportional

to the sound amplitude. Thus a similar linear relationship exists between

VB—and tan 9 and the sound amplitude. The values of the quantity used

must correspond to acceptable values of V. The relationship between

values of v and the intensity of light in the diffraction orders is given in
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the case of solids by Mueller's theory. The dotted lines in figure 1 show

the approximate values of v for which the second and third diffraction

orders appear* for a glass having R = l. 5 and using method "B. " These

values are indicated in figure 3 of Mueller's paper and are due to

Hiedemann. In general, the values of v at which the diffraction orders

appear, decrease as R increases. Thus, the following conclusions may

be drawn. When the sound intensity is sufficiently small that the third

order diffraction line does not appear, this sound intensity corresponds

to a value of v such that the relationship between tan 9 (or‘VB—) and v2 is

essentially linear. Under these conditions, linear extrapolation is justified.

Since the determinations of R are based on measurements of only

the r = 0 subcomponent of the first diffraction order, it is necessary to

indicate under what conditions such measurements are valid. In method

"B, " when the sound intensity is so low that the third diffraction order

does not appear, the intensity of the r = l subcomponent of the first

diffraction order is less than three percent of the intensity of the r = O

subcomponent for R = 2 and less for smaller values of R. Thus a distinct

minimum occurs in the intensity of the line at a setting of the analyzer

which coincides almost exactly with that which produces extinction of

the r = 0 subcomponent. Method "C" requires a measurement of the

intensity of the same subcomponent (r = 0) of the same diffraction order.

A calculation of the square root of the ratio of the intensity of light polarized

*An arbitrary criterion for the appearance of a diffraction order is

an intensity in that order of approximately one percent of the intensity of

the central order.
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parallel to the wave fronts to that polarized normal to the wave fronts

for all subcomponents of the first order for R = 2 and v = l differs from

that obtained for the r = O subcomponent only by less than two percent.

This difference is smaller for R < 2 and v < l, the limits, with one ex-

ception, of the experimental work reported, and is considerably less than

the experimental accuracy for method "C. " Thus a measurement of the

intensity of the first diffraction order is equivalent to a determination of

the intensity of its r = O subcomponent.

These considerations show that for sound intensities which are not

sufficient to produce the third diffraction order, the conditions required

by Mueller's theory are certainly fulfilled. The use of higher sound

intensities presents certain experimental difficulties even though the

error introduced at somewhat higher intensities as a result of non-

linearity or inability to isolate the r = O subcomponent of the first order

is not significantly greater than the experimental error. Thus values of

v less than one permit the determination of the angle 9 at which the r = O

subcomponent of the first diffraction order is extinguished and permits

linear extrapolation; for method "C, " an intensity measurement of the

first order is essentially a determination of the intensity of the r = O

subcomponent of that order.

Because the functions tan 9 and flare extrapolated to zero sound

amplitude, it is not necessary to know the absolute values of the sound

amplitudes; it is sufficient to know the values of some quantity which is

48 . . .

proportional to the sound amplitude. Cady gives, as the relationship
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between the acoustic intensity J and the piezoelectric transducer current

I, the equation

J = IZRS/Z (16)

where RS is the (constant) series resistance of the transducer equivalent

network. Rs depends on the frequency, piezoelectric constants, dimen-

sions and the wave velocity. For a given transducer, coupled to a constant

load and driven at a constant frequency, sound amplitude is proportional

to transducer current. For this reason, the independent variable used

in this study is the transducer current.

Since Mueller's theory is based on the Raman and Nath theory, it is

possible to gain some insight into the behavior of the quantities tan 9 and

VB—for non-normal incidence by means of a generalization of the expres-

sions for the intensities given by that theory to include dependence on the

angle of incidence <1). The angle o is taken to be the angle between the

incoming light beam and the normal to the sound field. The expressions

obtained may then be compared with experimental results which are a

part of this study.

Nath49 has pointed out that the assumptions on which the Raman and

Nath elementary theory is based are not justified for the case of oblique

incidence. This theory introduces a new parameter v' for the variable

v found in the expressions for normal incidence. The quantity v' can be

expressed in the form v' = vk(<(>), where k(<)>) does not depend on the sound

amplitude. Substituting this variable for v in equation (13) gives
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RV RV

J [— k(¢)1J[— k(¢)1

tan9=VB= 02 12 (17)
V V

Jot,- km] J15 k (on

 

If this expression is carried to the limit of zero sound intensity, the

limiting value is again found to be R, the ratio of the elasto-optical

constants. It is found experimentally that this is not the case, but rather,

that as (it increases, the limiting value of tan 9 differs from R by a rather

small, but measurable amount.

A more general expression for the amplitude of the r = O subcom-

ponent of the first diffraction order can be written

I _ V V

E — EAI(V,<(>) JO [2 k(¢)] J1[-§ k(¢)1
0,1 ‘

(18)

H _ 333 EX150,1 — BAH (RV,<(>) JO[2 k(¢)1J1[ 2 1mm]

for light polarized normal and parallel, respectively, to the strain. An

expression can be obtained for tan 9 or E? l/Ei) 1 for a particular sound

intensity (i. e. a fixed value of V) by expanding the ratio in a power series

in 4) using Taylor's formula. It is noted that AII (RV, O) = AI(V, 0) = k(O) =1,

since for (I) = 0 these equations must reduce to the values given by equation

(6) for m = l, r = O. The expansion is given in equation (19)

   

 

 
 

II RV RV RV RV

E J (—) J 1") J (—l J (—)

tan9= 10,1: 02v 12V + Oi 1v2 AiI(RV,O)+

E0 1 JO (-2—) J1(~2-) J06) J1(E)

2 RV 2 RV 2 RV RV RV (19)

+[J01—2—l - J1 ('2') - RV Jo(7) J1(7)1—2‘k'(0)

V V

Jo(2) J1(2)

J (%3)J1(%1’) [Ji—‘Q-th‘zii-éJO(§)J1<§>]-‘§k'(0) 4>+...

I 0 v V Ai(v, O) + v v

JO(-2') J1('2') J05) Jll'z-I
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where the primes indicate partial derivatives with respect to o. It is

seen that for 4) = 0, this equation reduces to equation (13) as it must.

If one assumes k'(0) = O, which is certainly reasonable, or that at least

it is very small, the expression is simplified considerably to

 

II RV RV

E0,1 Jo(7) Ji('2_) /
tan9=——i—— = Q+[A' (RV,O)-A'(v,0)]¢+... (20)

E J (line) H 1
0,1 0 2 12

Equation (20) has the value R in the limit V :0 only if A'I(Rv, O) = Ai(v, 0).

Thus under the assumptions made in equation (18), an expression is

obtained which, when extrapolated to zero sound intensity, gives a value

for tan 90 which is different from R. However, since the functions

AH(RV,<(>) and AI(V, 4)) are not known, it is not possible to use equation

(20) to predict values of tan 90 for a given R and (p. The experimental

study which is reported in this paper may give some insight into this

problem.

Some conclusions can be drawn, however, from a qualitative

discussion of the general form of the expressions for the intensity at

oblique incidence. The effect of the function k(¢) on the diffraction pattern

is rather readily observed. Qualitatively, the effect of k(<(>) is that as 4)

increases, the sound amplitude must be steadily increased in order to

produce a diffraction pattern having a given intensity in, say, the first

order. This has an immediate consequence with regard to the validity

of the experimental setup used by Bergmann for method "C. " In this

arrangement, a Wollaston double image prism is inserted before the
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glass block, splitting the light into two beams which diverge at an angle

which is typically about 20 to 30 minutes. One of these beams is polarized

parallel to the sound wave fronts, the other normal to the wave fronts.

Two diffraction patterns are produced; the intensity of the first order

in the one is then compared to the intensity of the first order of the other.

The two beams are not normally incident on the sound field but make

angles ¢II' for light polarized parallel to the wave fronts, and cpl for

light polarized normal to the sound wave fronts, with the normal. These

angles are shown in figure 2, where they are drawn unequal. If cpl Zebu,

equation (12) is approximately valid. The difficulty arises because there

is no dependable method of determining the angle of incidence. This

means that one can not be sure that cpl and 4311 are equal in a particular

case. The experimental configuration is such that if (p1 and on are not

equal, then one will become larger and the other smaller, as shown in

figure 2, and, correspondingly, the changes in V' will be opposite; the

intensity of the first diffraction order for one polarization will increase,

while the intensity will decrease for the corresponding order with the

other polarization. Since the ratio of intensities is involved, even a

small discrepancy in the angles of incidence will yield values of VB;—

which differ from R by several percent. For this reason, Bergmann's

setup for method “C" is unreliable.

To determine the effects of setting the polarizer in method "B"

at an angle of other than forty-five degrees to the sound wave fronts,

the general equation
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Figure 2. Angles of incidence when two beams of light from Wollaston

prism impinge on glass block. The glass block is not nor-

mal to the original beam and the angles are greatly exaggerated.
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must be considered. In this equation, vI is the Raman and Nath argument

for variations in the refractive index in the direction parallel to the

strain, v

II

is the argument for changes normal to the strain, 9 is the

angle between the major axis of the index ellipse and the x-axis, and a

is the angle between the plane of oscillation of the E-vector of the incident

light and the x-axis. (Since only the difference 9 - a appears, the choice

of the x-axis is immaterial.) This investigation makes use of only the

r = 0 subcomponent of the

equation reduce s to

first diffraction order (m = 1), hence the

 

 

V v

I I

Jo(—2_) J11?)
tan (G-a) cot (G-a-y ) = (22)

0,1 V V

J (.11.) J (.11.)

o 2 l 2

For glasses, VII = RVI = Rv; letting g = -(9-a), equation (22) becomes

R R

Jo(—2_Y) Jl (21/)

tang cot(§+y ): (23)

0'1 J (1) J (3)
o 2 l 2

This equation has the same behavior as a function of v as does equation

(11) which was considered previously. Hence measurements made for

several values of v, or some quantity, for example, the piezoelectric
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transducer current, which is directly proportional to v, may be extra-

polated to zero sound intensity under the conditions prescribed for

equation (11). The limiting value of this extrapolation will again be R.

Thus, in terms of the limiting values R and V0, equation (23) becomes

tan 6, cot (F, + v0) = R (24)

Solving this equation for v0 in terms of g yields

yo = arc cot [R cot g] -§ (25)

This equation gives the limiting angle through which the plane of polari-

zation will be rotated for any given orientation of the incident plane of

polarization. The plane of polarization parallel to the sound wave fronts

corresponds to g = 0; when the plane of polarization is normal to the wave

fronts, g = 900. The usual setting for method "B" is E, = 450. Equation

(23) shows that for E, = O or «E, = 900, v0 vanishes for all values of v. This

is to be expected since, in this case the plane of polarization is parallel

to one or the other axes of the index ellipse. Hence no rotation is

possible. Also of interest is the value of g for which the limiting value

V0 of the rotation of the plane of polarization is a maximum. This is

obtained by differentiating equation (25) with respect to g and setting this

derivative equal to zero. The result is

sin é ZVR 1:1 (26)

Mueller's conclusion that the amplitude of the components of light

 

polarized along the axes of the index ellipse may be added vectorially can

be tested by determining the light intensity in the r = O subcomponent of
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the first diffraction order as a function of the angle 23., which the plane

of polarization makes with the sound wave fronts. This intensity is given

for the r subcomponent of the m diffraction order and for unit intensity in

equation (10). For the case r = O, m = 1 and incident intensity I . this

0

becomes

2 RV 2 RV Z 2 V Z V 2

I = I -— — _ _ '

0.1 0 Jo (2 ) J1(2 )COS g + I0J0 (2) J1 (2)51n § (27)

where as before g = -(O_a) and R is the ratio of the strain-optical

constants of the glass. Letting I = I d :0,letn 1p IOJO(Rv/2)J1(Rv/2),

I = 1 J (v/2) J (v/2) this becomes
n o o l

2 . 2
I — Ip cos 6, + In Sin § (28)

The quantities 1, 1p, In and gmay all be measured experimentally; hence

equation (28) serves as a check on Mueller's conclusion concerning the

vector addition of the amplitude components of the light. This conclusion

is based on the assumption that the two components are coherent; hence,

ultimately, the test is whether or not the two components of the light beam

are, infact, coherent.

The material discussed above forms the analytical basis for the

experimental work which is described in the following pages. Certain

of these topics are extensions of the work reported by Mueller but are

based on his theory. These extensions, if they agree with the experi-

mental results which correspond to them, should indicate further the

soundness of the basic theory.
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UL Experimental Techniques

This section is devoted to a discussion of the apparatus and experi-

mental techniques used in this study. A description of the apparatus and

techniques which are common to all aspects of the work is given first.

This is followed by an analysis of the individual experiments performed

and the procedures which are peculiar to each.

The sound producing transducer used in this work is a one inch

square X-cut quartz crystal having a fundamental frequency of approxi-

mately 15 mc/sec. This type of crystal cut is a thickness Vibrator;

therefore the primary sound waves are longitudinal waves as required

by Mueller's theory for the determination of the ratio p/q. The acoustic

coupling between transducer and glass block is accomplished by means

of a thin film of Dow-Corning Silicone Vacuum Grease. A thin aluminum

foil is used as the electrode on the side of the transducer which is

against the block; an aluminum plate, which is part of the glass block

holderr serves as the other electrode. The high-frequency power to

drive the transducer is supplied by a transmitter which is continuously

tunable from approximately 10 to 20 mc/sec. , and has a maximum plate

input power of about 175 watts. An approximate idea of the frequency

can be obtained with an ordinary frequency meter since accurate frequency

determinations are not required.

The glass block holder is mounted on a worm drive in order that

the angle between the light beam and sound field may be adjusted. In

addition, the scale on the worm drive can be calibrated, making possible
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a quantitative determination of changes in the angle between sound field

and light beam. The mounting permits adjustment in the other directions

as well. When the effect of a static stress is studied, a different holder

is used which permits the strain, of known magnitude, to be distributed

over the cross-section of the block.

The optical setup for method "B" is shown in figure 3a. Figure

3b shows the setup for method "C. " The light source used is a mercury

arc, with which a filter is used isolating the 5461 A line of the mercury

spectrum. An Ahrens prism is used as the polarizer; the analyzer, when

used, is a Glan-Thompson prism.

Both methods "B" and "C" require that the slit be parallel to the

sound wave fronts. This is accomplished with the aid of a low power micro-

scope equipped with cross-hairs. The cross-hairs of the microscope are

set so that one of them is parallel to the slit image formed by the objective

lens. The objective lens is then removed and the orientation of the glass

block is adjusted to bring the lines of the visibility pattern parallel to the

cross-hair.

In order to set the polarizer parallel or normal to the slit, a

Wollaston double image prism is used. After the Wollaston is inserted

in the light beam, it is rotated until the two images of the slit appear on

a single line. The prism which is to be used as the polarizer is then

inserted after the Wollaston and rotated until one slit image is extinguished;

the plane of polarization of the prism is then either parallel to or normal

to the slit, depending on which image was extinguished. A Nicol prism
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Figure 3b. Optical system for method "C"
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or some other polarizer of which the plane of polarization is known may

then be used to determine whether the orientation is parallel or normal.

An angular scale is used for setting the polarizer to other angles.

Method "B" uses the optical system shown in figure 3a and requires

that the polarizer be set at forty-five degrees to the slit. The light beam

is assumed to pass through the sound field at right angles to the direction

of propagation. The analyzer is originally set at the "crossed" position.

When the sound field is turned on, a diffraction pattern is formed in the

focal plane of the objective lens. The frequency of the oscillator is ad-

justed to produce resonant standing longitudinal waves in the glass but

not shear waves. Readings are than made of the angle at which extinction

(or a minimum for values of v approaching unity) of the first diffraction

order is obtained and of the transducer current. Ten settings are taken

for each value of the transducer current as well as for the "crossed"

position. This measurement is repeated for four different sound ampli-

tudes corresponding to four values of transducer current. These readings

are averaged to determine the angle. The maximum current used is at

least twice the minimum current but not sufficient to produce the third

diffraction order.

Since these conditions fulfill the requirements of Mueller's theory,

tan 9 may be computed as in equation (11). A linear extrapolation is

made, leading to a value for tan 90, which by equation (15) is R, the

ratio p/q of the strain-optical constants. The extrapolation is performed

analytically using the criterion of least squares.
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The optical setup for method "C" is shown in figure 3b. This

method requires that measurements be made of the light intensity in the

first diffraction order when the incident light is polarized normal to and

parallel to the wave fronts. The measurements of light intensity in this

study are made with an American Instrument Company photomultiplier-

microphotometer. The frequency is again adjusted to obtain resonant

standing longitudinal waves. The position of the slit of the photomultiplier-

microphotometer is adjusted to admit the first order of the diffraction

pattern. A reading is taken of the background light, the sound field is

turned on, and the light intensity and transducer current are recorded.

The intensity of light is, except for a scale factor, the reading with the

sound on minus the reading with the sound off. This procedure is repeated

with the polarizer normal to the slit if it was first parallel or vice versa.

Since only the ratio of intensities is needed, the value of the scale factor

is not required. These measurements are made for several values of the

transducer current. In the previous section, it was pointed out that the

difference between the value of the light intensity in the r = O subcomponent

of the first diffraction order and that of all subcomponents of the order is

less than three percent for R < 2 and v < 1. Thus, theoretically it is

possible to use method "C" for sound intensities corresponding to values

of v as great as one. However, there are certain experimental difficulties

which make it impractical to use values of V greater than about one-half.

(When v = 1/2, the second order is present but with a small intensity.)

The reason for using these low intensities is that at higher intensities,
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the heating of the glass block by energy dissipated from the sound field

makes it difficult to be certain that a change in the standing wave condition

in the block does not occur between the time the intensity reading is made

with one orientation of the polarizer and the time it is made at the other

position. At the low sound intensities used, this change occurs slowly

and it is felt that virtually no change in the standing wave condition occurs

between readings. A second problem which arises is that to extend the

range of sound intensities would require the use of a second sensitivity

range on the photomultiplier-microphotometer. Since this device is not

strictly linear under normal conditions, it seems likely that a change of

linearity would be introduced when switching from one sensitivity to another.

In one case, an effort was made to use method "C" for sound intensities

corresponding to approximately v = 1. Since these measurements are

made within the range of v values for which Mueller's theory is applicable,

VB—may be plotted according to equation (13) leading to the value R as

the sound intensity becomes vanishingly small. Readings of the light

intensity are also taken every ten degrees between the normal and parallel

positions of the polarizer for one particular sound intensity. These

readings can be compared with equation (28) as a check on the validity

of Mueller's assumption concerning the coherence of the amplitude

components of the incident light.

The technique for studying the effect of oblique incidence based

011 method "B" is now discussed. Since there is no way of determining

With certainty when the incident light beam is precisely normal to the
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sound field, only relative angles can be given. The glass block is ro-

tated about an axis perpendicular to the plane of the sound field and

light beam by means of the worm drive until the diffraction pattern

produced is too weak for making reliable measurements (i. e. only a

weak second order can be obtained). The direction of rotation is

reversed and the block rotated until a usable diffraction pattern is

again obtained. A measurement is made by the procedure outlined

above for method "B" and a value of tan 9 is obtained. The block is

then rotated by a known amount in the same direction as before and

another value of tan 90 is obtained. This is repeated for a number

of angles of incidence through the setting for normal incidence to

approximately the same angle on the other side of the normal. The

direction of travel of the work drive is not reversed at any time in

this series of readings in order that the backlash of the screw may

not affect the results. The setting at which the maximum diffraction

occurs for a given transducer current is noted since this is approxi-

mately normal incidence. The values of tan 9 are then plotted against

0

the relative angle.

An experimental study of the effect of setting the polarizer in

method "B" at an angle other than 450 to the slit is also undertaken.

In this study the angle Yo through which the plane of polarization of the

incident light is rotated by the sound field is of greatest interest

Since this can be compared directly with the result predicted by

eCination (25).
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IV. Experimental Data and Discussion

The measurements reported here are made on the same glasses

as were used by Gates and Hiedemann. 33 Of these glasses, nine are

samples of Bausch and Lomb optical glasses chosen from their catalog

to cover the range from the lightest to the most dense types, three are

samples of Eastman Kodak rare earth glasses and one is a fused silica

sample obtained by the Owens-Illinois Glass Company. The composition

by weight of these glasses as given by the respectiVe manufacturers (the

fused silica is assumed to be 100 percent SiOZ) and the nominal values

of the refractive index and dispersion of the Bausch. and Lomb glasses

are given in Tables I and II of the paper by Barnes and Hiedemann.

Tables III, IV, and V of this same paper give the values of the density,

elastic moduli and surface tension of the samples measured by these

investigators. The values of R = p/q obtained by Gates and Hiedemann

using Mueller's method "B" are found in Table I of their paper.

The study of primary importance in this investigation, as noted

previously, is the attempt to show that Mueller's method "C" gives

results which are consistent with method "B" and, if possible, to account

for the negative results reported by Gates and Hiedemann. The required

light intensity measurements are made electronically rather than photo-

graphically as did Gates and Hiedemann. In figures 4, 5 and 6 are

Plotted values of VIII/1.1. = 'VB_against the square of the transducer

Current for three typical glasses samples LF-l (R = l. 46), EK—llO

(R = 1. 54) and BSC-l (R = l. 92). The point marked on the vertical axis
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is, in each case, the value of R obtained by method "B" for the particular

glass used.

These figures show, for glasses of widely differing properties, the

variation of the measured value of 'VB—with the square of the transducer

current. The vertical lines through each point are drawn to give an

indication of the accuracy to which the point is determined. This indi-

cation is based primarily on the percent of non-linearity of the photo-

multiplier-microphotometer as indicated by its manufacturer for the

particular conditions of operation encountered here. This should be taken

as an indication of the relative error, admitting the possibility of a

systematic error which may apply to all points on the graph. It is seen,

that in each of these figures, the values of VB—obtained experimentally

for different transducer currents are compatible with the value of R for

each glass obtained by method "B, " and that the slope of the curves is

negative as is predicted by Mueller's theory. In addition, if figure 6,

for example, is compared with figure 7, which is the curve obtained for

the same glass by Gates and Hiedemann using the Bergmann setup for

method "C" and which appears as figure 7 in their paper, the completely

different character of these curves becomes apparent. Thus it is evident

that the experimental setup first used by Bergmann and later by Gates

and Hiedemann does not allow reliable measurements.

Curves similar to those in figures 4, 5 and 6 are obtained for each

0f the glass samples. Each curve gives a value which is in agreement

With the value obtained by method "B" and has the required negative
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slope. Although any one of these curves is not conclusive, the consis-

tency of the entire series of measurements demonstrates the validity of

Mueller's method "C. ”

Figure 8 shows the values ofVB—obtained when sound intensities

sufficient to produce the third order in the diffraction pattern are used.

Although not conclusive, the curve is compatible with the prediction that

the measured values of B remain approximately linear when plotted

against the square of the transducer current for sound intensities on the

order of v = l. The glass used in this particular study was DBF-l for

which the value of R measured by method "B, '.' is l. 37.

In these measurements involving rather high sound intensities,

the problems arising from heating within the block (which are present

even at low intensities) are particularly significant. For this reason,

the following procedure was adopted: An intensity reading was first

taken, for a particular transducer current, with the polarizer oriented,

say, parallel to the sound wave fronts; the polarizer was then rotated

ninety degrees making it normal to the sound wave fronts and an intensity

reading was again taken. The ratio of the first of these readings to the

second is then B, provided the standing wave system remained constant

throughout. As an indication of this constancy, the polarizer was rotated

back to its original setting and a third reading was taken. If this third

reading differed from the first by more than about two percent, it was

assumed that the standing wave system had been affected by internal

heating and consequently that the measurement was unreliable. The
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transducer current was also noted before and after the light intensity

measurements. Any change noted between the two readings was also

considered an indication of the unreliability of the measurement. In

either case, the block was allowed to cool for several minutes before

another measurement was attempted. This procedure was used for

measurements at both high and low sound intensities.

On the basis of the inherent non-linearity and instability of the

photomultiplier-microphotometer, and the consequences of the internal

heating of the block due to the dissipation of energy from the sound field,

it seems probable that the overall accuracy of the measurements made

in the course of this investigation by means of this particular instrument

is about ten percent. An additional factor, not previously mentioned,

is that the response of a photomultiplier tube may depend on the

polarization of the incident light. 51 However, because of the design of

the particular tube used in this instrument, it is doubtful that this

particular matter contributes significantly to the uncertainty of these

data. Since a great deal of this inaccuracy is caused by the properties

of the photomultiplier-photometer, it is very likely that the advent of

better instruments of this type may make it feasible to use method "C"

with an accuracy comparable to that of method Y'B. "

The effect of oblique incidence is studied by means of method "B."

Figure 9 shows values of tan 90, the limiting extinction angle, plotted

against the angle of incidence measured from some arbitrary reference

point. The glass used is DBF- 1. In this plot, the broken vertical line
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indicates the approximate angle corresponding to normal incidence; the

approximate relative error of each point is indicated. It is seen that,

over a range of angle of about two degrees in either direction from the

normal, the variation of tan 90 is only about three percent for this par-

ticular glass. The immediate consequence of these measurements is

that the error introduced by a small inaccuracy in setting the system

to normal incidence is negligible when an experimental method using

a single incident light beam is used.

The fact that there is actually a small change in tan 60, as the

angle between the light beam and the normal to the sound field increases,

has certain theoretical consequences. This means that one cannot find

a function k(<(>) such that the intensities of the diffraction orders may be

obtained by replacing the parameter V in the expressions for normal

incidence by a new argument v' = vk(¢). Instead, it is necessary to

write expressions such as those in equation (18) for the amplitudes of

the two components. These measurements, however, do not give enough

information to determine the form of the function A(v, (1)). It is seen that

the change in tan 90 is consistent with the prediction, from equation (20),

that it be linear with 9- Because of the magnitude of the uncertainty in the

values of tan 00, the nature of this relationship is not completely proved.

The measurements made using a static stress in addition to the

dynamic stresses produced by the sound field showed that the observed

values of tan 90 do not depend on a static stress. The only effect noted

Was that the birefringence produced by the static stress made the



48

determination of the minimum in the first diffraction order more difficult

to observe, since it became less sharply defined. No change was found in

the values of tan 90 when a static stress was applied. Two particular

points should be noted: Since the minimum in the intensity of the first

diffraction order cannot be determined as critically when a static stress

is applied because of the birefringence produced by it, a static stress

results in a reduction of the accuracy of method "B. " Secondly, these

measurements show that it is not necessary to exercise great care in

ascertaining that the mounting of the glass block introduces no static

stresses but only that the birefringence produced by these stresses does

not obscure the minimum in the first diffraction order. This would

appear to be true also for the case of birefringence in the block because

of strains "frozen in" when the glass was cast.

Determinations of the limiting angle V0 through which the plane of

polarization of the incident light is rotated by the sound field when the

orientation of this plane of polarization is varied were made for glass

samples BSC-l, LBC-Z and DBF-l. Figure 10 shows the values of V0

obtained for glass sample BSC-l plotted against the angle g which the

plane of polarization of the incident beam makes with the sound wave

fronts. The solid curve in the figure is that given theoretically by equation

(25) for R = l. 89. It is seen that the agreement between the experimen-

tally determined values and the theoretically predicted curve is very

close. The angle gm at which this curve reaches its maximum may be

compared with that predicted by equation (26). The value of the maximum
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given by equation (26) for R = l. 89 is indicated by the broken line in the

figure. Since this curve has a rather broad maximum, the comparison

with equation (26) is not completely definitive but within the limit of

experimental accuracy the experimental and theoretical maxima coincide.

The curves for the other two glasses studied are similar in form and

are in agreement with theory.

An experimental check of the validity of equation (28) is readily

obtained by making light intensity measurements at polarizer angles

between the setting parallel to the wave fronts and that normal to the

wave fronts. Figure 11 is a plot of the points obtained experimentally

for glass sample LBC-Z against the angle between the plane of polari-

zation of the incident light and the sound wave fronts. Readings were

taken at intervals of ten degrees. The solid curve indicates the values

predicted by equation (28) using the values Ip = 84 and In = 31; the inten-

sity units are arbitrary. Similar curves were obtained for each glass

sample, with each curve in comparable agreement with the theoretically

predicted values. This uniformity demonstrates, in a direct manner,

the validity of equation (28) which is obtained on the assumption, in

Mueller's theory, that the components of diffracted light polarized

parallel and normal to the wave fronts are coherent.

In order to determine any change which might have occurred in

the value of R for these glasses in the period of about four years between

the measurements of Gates and Hiedemann and the present investigation,

determinations of p/q were made by method ”B" for all glass samples.
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These values are listed in Table I along with the values obtained in

the investigation of Gates and Hiedemann. It is seen that in all cases

except one, the values of R obtained in this study are greater than those

reported previously by Gates and Hiedemann. However, the greatest

difference is only seven percent in the case of the rare earth type

EK-330, with a change of about five percent for type BSC-l; all other

samples show changes of less than five percent. Thus in most cases,

the difference in the measured values of R is on the order of the uncer-

tainty with which these values are obtained. It seems likely that the

one exception represents a fluctuation since the difference in that case

is less than one-half percent. The measurements indicate that the

aging of a glass sample has an effect on the ratio p/q of its photoelastic

constants and that this effect results in an increase in the value of this

ratio. However, these measurements do not permit one to determine

in what manner the constants themselves are changed. Mueller

suggests that this change is due to crystallization and points out that

such an effect increases the values of the photoelastic constants. If

this is the case, the present evidence indicates that the rate of change

of p is greater than that of q.

In this study it has been demonstrated that Mueller's method "C"

is a valid method for the measurement of the ratio p/q of the strain-

Optical constants of glass. However, the reason for the inconclusive

results of Gates and Hiedemann has not been directly determined. The

investigation of the way in which the experimental results depend on
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Table I: Values of R = p/q measured by Gates and Hiedemann and from

the present investigation. The density is included in this table since the

variation of R with density is discussed in Appendix III. The symbol

B 81 L designates Bausch and Lomb glasses, EK is for Eastman Kodak

and H for Hanovia, the manufacturer of the fused silica.

Manufacturer Type RGH RNOW 12:11::th Density

B & L BSC-l 1.82 1.92 +5.5# 2.4766

B & L C-l 1.82 1.87 +2.7 2.5268

B 8.: L CF-l 1.68 1.70 +1.1 2.6924

B & L LF-l 1.45 1.46 +0.7 3.1742

B & L LBC-2 1.62 1.61 -0.6 3.1424

B & L DBF-l 1.36 1.38 +1.5 3.6008

B 8.1 L DBC-2 1. 46 1. 50 +2. 7 3. 6441

B 81 L EDF-l 1. 28 l. 32 +3.1 3. 7813

B 81 L EDF-4 1.11 1.13 +1.8 4.7189

EK EK-llO 1.53 1.54 +0.7 4.1317

EK EK-33O 1. 60 1. 71 +6. 9 4. 5720

EK EK-450 l. 55 1. 62 +4. 5 4. 6293

H fused silica 2. 34 2. 34 O. 0 2. 2027

The sign designates the direction of the change in R; a plus sign means

that the value measured in this investigation is higher than that obtained

by Gates and Hiedemann and vice versa.



54

several of the parameters involved has eliminated the possibility that

uncontrolled variations in these parameters caused the observed discre-

pancy. The last reasonable source of experimental error lies in the photo-

graphic technique used for the measurement of the intensity of the first

diffraction orders for light polarized parallel and normal to the sound

wave fronts. The photographic method for determining light intensities

is particularly subject to error under conditions of low light intensity as

is the case in this study.

Consideration of the method by which a light intensity measure-

ment is made photographically makes it possible to see how curves such

as those given by Gates and Hiedemann for method "C" might be obtained.

This technique, as applied to this particular problem, requires that the

images of the diffraction orders be focused by an objective lens on a

photographic plate. Exposures of the diffraction patterns are then made

for several sound intensities, including no sound which gives the inten-

sity of the incident beam. Finally, an emulsion calibrating exposure is

made using a rotating step—wedge. This plate is developed and the light

intensities are then inferred from it by standard densitometer measure-

ments. The chief difficulty in this method is in determining and cor-

recting for the exposure of the film which is due to background light;

that is, stray light which impinges on the film at the position of the

diffraction orders. The correction for this is made by determining the

intensity of this background light and subtracting this from the total

measured intensity of the order to give the intensity of the diffraction
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order. In particular, if the correction made for the background is less

than the actual background, curves of the sort given by Gates and

Hiedemann may be obtained. For the higher sound intensities used,

this background will make little difference and the measured values of

VBwill not differ appreciably from the actual values. However, as the

sound intensity is decreased the background will have an intensity which

approaches the intensity of the diffraction orders themselves. Thus,

the measured ratio of the intensities will be lower than the actual value

for the particular sound intensity; in fact, for very low intensities the

measured ratio will approach the ratio of the difference in the actual

background minus the part subtracted as the correction term for the two

patterns. This will be one if the backgrounds and corrections are the

same for the first diffraction orders of both patterns; if they are not,

it seems reasonable to expect that these ratios will be on the order of

one. Inspection of the curves obtained by Gates and Hiedemann, see

figure 7, reveals that at the lowest sound intensities used by them, the

curves have values greater than one and decreasing. (The limiting

value cannot be determined since the nature of the curves does not

permit the necessary extrapolation.) This is substantially in agreement

with the suggestions made above. Further, the technique of Gates and

Hiedemann for evaluating the background intensity is likely to yield a

correction which is too small and hence will give just the effect discussed.

Their method required that the reading for the background be taken on

the plate near the diffraction line whose intensity was to be determined.
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This could mean that most or all of the exposure on that part of the

plate was needed to overcome the inertia of the emulsion whereas the

inertia of the emulsion at the diffraction line was overcome more quickly

because of the greater light intensity. In this latter case, the back-

ground light contributes to the exposure of the emulsion. This means

essentially that the assumption of the validity of the reciprocity relation

is not sound.

Although this argument does not prove that the inconclusive results

of Gates and Hiedemann are due to the use of the photographic method

for obtaining light intensities, it certainly demonstrates that this is a

plausible reason. Since the other likely factors have been eliminated by

the studies discussed previously, it seems almost certain that this is

indeed the source of the discrepancy.
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V. Summary and Conclusions

The primary purpose of this investigation is the demonstration of

the validity of Mueller's method ”C'' for the measurement of the ratio

R = p/q of the strain—optical constants of glass. In addition, a study is

made of the dependence of the experiment on the several parameters

involved in order to determine why the measurements of Gates and

Hiedemann by Bergmann's procedure were inconclusive. Measurements

are also made to check further deductions from the theory and to test

directly certain basic assumptions of the theory. Since the glass samples

used by Gates and Hiedemann are available, determinations of R are made

by Mueller's method "B” and compared with the values obtained by Gates

and Hiedemann using the same method in order to detect possible aging

effects on the ratio p/q.

The demonstration of the validity of Mueller's method "C" uses a

somewhat different experimental setup than that employed by previous

investigators. The Wollaston double image prism is eliminated and the

required light intensity measurements are made directly with a photo-

multiplier-microphotometer rather than by the photographic technique.

The results obtained are in agreement with those obtained by method

"B" and with the predictions of Mueller's theory. This supports the

suggestion by Gates and Hiedemann that their results were due to some

inadequacy of the experimental arrangement or technique.

A study of the effect of oblique incidence on the measured value

of p/q, using method "B, " shows that a slight increase occurs when the
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angle, <1), between the incident beam and the normal to the sound field is

varied. This change is the same, within experimental error, for

variations of 4) in either direction from the normal. The change is

sufficiently small that no significant error is introduced, if a small

uncertainty, i. e. less than about twenty minutes of arc, is present in

setting the system for normal incidence.

A theoretical analysis of the effect of oblique incidence on tan 90,

indicates that the results obtained cannot be explained in terms of an

expression for the amplitude of light in the r = 0 subcomponent of the

first diffraction orders which simply replaces the parameter V in the

expression for normal incidence by a new parameter v' = vk(¢). It is

shown that an additional multiplicative term must be used which gives

an expression of the form

530,1: EAIV.¢)JO[V1<(¢)1J1[kall (29)

for the amplitude of the light in the r = O subcomponent of the first

diffraction order. Because the change in tan 90 is only a few percent,

this experiment gives no further information concerning the quantity

AIV. <1)-

Measurements are made of the limiting angle V0 through which

the analyzer must be rotated from the "crossed" position to produce an

extinction (or a minimum for higher sound intensities) of the first order

for settings of the polarizer from parallel to the sound wave fronts to

normal to these wave fronts. These values are compared with values
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predicted from a theoretical expression for this angle deduced from

Mueller's theory. The measured values agree with the predicted values

to within the limit of the experimental error.

The intensity of light in the first diffraction order is measured for

polarization angles ranging from parallel to the sound wave fronts to

normal to the wave fronts. These measurements are made for one sound

intensity for each glass sample. The way in which the light intensity in

the first order varies with the angle between the plane of polarization

and the sound wave fronts is compared with that predicted by Mueller

on the assumption that the components of light polarized parallel and

normal to the sound wave fronts are coherent. The experimental varia-

tion is in very close agreement with the predicted values for all samples.

This shows directly that the important assumption of the coherence of

these components is valid.

Values of R are obtained for all glass samples for which such

determinations were made by Gates and Hiedemann. The values obtained

in the present investigation are, with but two exceptions, higher than

those reported by Gates and Hiedemann. Although the maximum in-

crease in R is only about seven percent, there are several cases in

which the change is greater than the experimental uncertainty. This

and the fact that nearly all samples show an increase indicates that

the ratio of the strain-optical constants tends to increase with the age

of the glass sample. Of the two cases in which an increase was not

found, one showed no change and for the other sample, R decreased by

less than one percent.
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Since the studies discussed above do not isolate the cause of the

inconclusive results obtained from method "C" using Bergmann's experi-

mental setup and photographic techniques for the light intensity measure-

ments, these results must be due to some shortcoming of the photographic

method for determining the very low light intensities involved. An analy-

sis of the photographic method is given which indicates how results such

as those reported by Gates and Hiedemann might arise from these inten-

sity measurements. Because of the results of the various studies reported

here and the unreliability of the photographic method, it is virtually cer-

tain that the inconclusive results of Gates and Hiedemann are due to the

use of the photographic method for light intensity measurements and not

to any weakness of Mueller's method "C. "
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Appendix 1. Theoretical Discussion of the Application of Narasimhamurty's

Method to the Determination of the Ratio p/q of the Photoelastic Constants

of Glasses.

Recently, Narasimhamurty42 has suggested a method for the deter-

mination of the various ratios of the strain-optical constants of uniaxial and

biaxial crystals. This method is also applicable to the measurement of p/q

for glasses. A discussion of the validity of this method and an analysis of

its reliability is now given.

The optical setup used by Narasimhamurty is shown in figure 12.

Light from the slit, collimated by lens L, is polarized by the polarizer

in a plane which is at forty-five degrees to the sound wave fronts. This

beam of polarized light then traverses the sound field after which it is

split into two beams by the Wollaston prism D. These two beams are

plane polarized and oriented so that the planes are parallel and normal to

the sound wave fronts. Since these beams diverge slightly, two diffraction

patterns are observed through the telescope T. Now, while observing

both patterns, the analyzer A is rotated from its initial position at forty-

five degrees to the sound wave fronts until the intensity of light in the

first diffraction orders of the two patterns is equal. Since this involves

estimating when two images, visible simultaneously, have the same

intensity, this adjustment can conceivably be made critically. If V is

the angle by which the analyzer must be rotated from the initial (450)

setting and if measurements of V are taken for a number of sound

intensities , then
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Figure 12. Experimental setup for Narasimhamurty's method.
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tan (VO + 450) = R (30)

where V0 is the rotation of the analyzer in the limit of zero sound inten-

sity and R is the ratio of the strain—optical constants.

The validity of equation (30) can be demonstrated readily from

Mueller's theory. The polarized beam which impinges on the sound field

may be resolved into two components of equal intensity which are parallel

and normal to the sound wave fronts. If E is the amplitude of either of

these components and if sound intensities sufficiently small that only

the r = 0 subcomponent of the first diffraction order is significant, then

according to Mueller the amplitude of this subcomponent is

E0,1 = E JO(vI/2) J1(vI/2) (31)

for the light polarized normal to the strain. Here v = zanL/i and 111

I

is the variation of the index of refraction for light polarized normal to

the strain. For light polarized parallel to the strain, the amplitude of

the component is

11
= 2 2 32

E0,1 EJo(V11/ ”1(V11/ ) ( )

where vII = anHL/i and [11115 the variation of the index of refraction

for light polarized parallel to the strain. For glasses VII/vI = p/q = R

If the analyzer is set at an angle 4; with the sound wave fronts, then the

amplitudes, after passing through the analyzer, are

E0I‘1(<I>)- EJOI/Z) J1(V1/2) COS ¢ (33)

E0114» =EJ01vI11v/21JH/21sint

For one particular angle these amplitudes are equal and for that angle
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one obtains R R

v v

0 Jo( 2 ) J1(2 )

tan 4) = tan(V + 45 ) = (34)

J (K) J (1’)
o 2 l 2

 

where VII = RVI = RV and V is defined from the equation o = V + 450. Thus,

if the analyzer is set at this angle 4:, the first orders of the two diffraction

patterns appear to have the same intensity. If this equation is extra-

polated to v = 0, it is seen that

tan (V0 + 450) = R

is obtained. Thus Narasimhamurty's method is seen to follow directly

from Mueller's theory and shares the same theoretical basis as Mueller's

methods "B" and "C. "

In this method, the polarizer is needed only to assure that the

intensities of the components of the incident beam polarized parallel and

normal to the sound wave fronts are equal. If the light source is completely

unpolarized this polarizer would not be needed. However, this property

of light sources cannot ordinarily be safely assumed and hence the

polarizer is used. It could, alternatively, be replaced by a depolarizer

since this achieves the same effect.

Narasimhamurty's method has certain features which are worth

noting. Although this method is probably not quite as accurate as Mueller's

method "B" for glasses and cubic crystals its accuracy does not decrease

when the medium is naturally birefringent as does the accuracy of method

"B. " It has the advantage over Mueller's method "C" in that the deter-

mination of the light intensity in the diffraction orders is not required.
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Narasimhamurty's placement of the Wollaston prism after the sound

field is a considerable improvement of the experimental setup since it

eliminates errors which may arise because of the fact that both light

beams cannot be perpendicular to the sound field when the Wollaston

prism is placed before the sound field, and in addition, because there

is no way of ascertaining that the angles which the two beams make with

the sound field are the same. This placement is most desirable when

one uses a Wollaston prism in applying Mueller's method ”C. "
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Appendix 11. Determination of the elasto-optical constants of crystals

by dynamic methods.

The principles discussed above with regard to the determination of

the ratio p/q of the strain-optical constants of glass may be applied to the

study of these constants for crystals. The case of cubic crystals has

been treated by Mueller. 3 Recently, Narasimhamurtyé‘2 has shown that

the dynamic techniques described by Mueller for glasses and cubic

crystals may be extended to the more complicated problem of uniaxial

and biaxial crystals.

In his paper, Mueller discusses in detail the determination of ratios

of the elasto-optical constants of cubic crystals. The description of the

photo-elastic properties of cubic crystals requires three independent

strain-optical constants. These are p11, p and p44, using the general

12

2

formulation of Pockels. Mueller's method "A, " which is not applicable

to glasses and which will be discussed in detail below, furnishes the

magnitude of the term 2p44/( ). The sign of this term may be

p11'p12

obtained with the aid of the elastic constants which may also be readily

obtained, to about one percent accuracy, from the same experimental

setup used for method ”A. " Method "B" or "C" may then be used to

determine the ratios R /p11 for longitudinal waves traveling in

001 2 p12

the [001] direction, and R 2 (p11 + p - 2p44)/(pll + p + p44) for

011 12 12

longitudinal waves traveling in the [011] direction.

Narasimhamurty has extended the methods developed by Mueller

to the study of uniaxial and biaxial crystals. In addition, experimental
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values are obtained for the uniaxial crystals quartz and calcite, and for

the biaxial crystal barite. If, in a uniaxial crystal for example, sound

is propagated along one of the crystal axes, the mechanical waves pro-

duced are, in general, a pure longitudinal wave and two pure transverse

waves polarized perpendicularly to one another. The existence of pure

longitudinal waves makes it possible to use the methods developed by

Mueller and extended by Narasimhamurty to determine the ratios of certain

of the strain-optical constants. In quartz and calcite, which belong to

the trigonal system, longitudinal waves propagated in the [100) direction

and observation along the [001] direction yield the ratio plZ/pll while for

the same sound wave, observation along the [010] direction yields

p31/p11. Sound propagation in the [001] direction with observation in

the [100] direction yields pl3/p33. The study of biaxial crystals proceeds

along these same lines. According to Narasimhamurty, for barite which

is orthorhombic, the following ratios may be obtained: p31/p11, p21/pll,

plZ/pZZ’ p32/p22, pZ3/p33 and pl3/p33. In the study of uniaxial and

biaxial crystals, which are optically active, certain complications arise.

These complications will be discussed below in conjunction with the

experimental techniques employed in these dynamic determinations.

Mueller's method "A, " which gives the magnitude of the quantity

2p44/(pll - p12) for cubic crystals, uses the Schaefer-Bergmann diffraction

pattern which is Viewed between crossed polarizer and analyzer. The

Schaefer-Bergmann pattern for crystals consists of two concentric con-

figurations of diffraction images of the point source. The inner pattern
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results from the diffraction of light on the longitudinal waves, the outer

is due to diffraction from the transverse waves. The crystal, which is

oriented so that the light enters along the [001] direction, is now rotated

until one diffraction spot, in the direction making an angle o with the

x-axis of the crystal, disappears. Suppose that at this position the x-

axis of the crystal makes the angle a with the plane of polarization of the

incident light. If 0 is the angle between the x-axis of the crystal and one

of the axes of the index ellipse, then either a = 9 or a = 9 + 900. Thus,

2p44/(p11- p12) = 2 tan 29L tan (o + w) (35)

if the spot is in the inner pattern, i. e. if it results from diffraction on

the longitudinal wave. If the spot is in the transverse wave pattern

2p44/(P11- p12) = -2 tan 261' tan (4; + w) (36)

In these equations, (0 is a function of (p and the elastic constants, and

therefore, if 0L and GT correspond to the same 4; they correspond to the

same (0 also. Thus, eliminating tan ((0 + 1p) from these two equations,

gives

2 2

- : - 0 20 374 p44 /(p11 p12) tan 2 L tan T ( )

The sign of 2p44/(p - p12) may be determined, if needed, from the

11

relationship between 4), ([1, and the elastic constants. The determination

of the ratios R /p11 and R011 = (pll + p12 —2p44)/(p11+ p12 + p44)

001 2 p12

may be made by either Mueller's method "B" or method "C. " The

choice between these methods for cubic crystals is based on the same

considerations as for glasses.
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The study of uniaxial and biaxial crystals by these dynamic tech-

niques is complicated by the fact that these crystals are optically active.

For this reason, either Narasimhamurty's method or Mueller's method

"C, " if the necessary apparatus for light intensity measurements is

available, appear most useful. Mueller's method "B" is still valid, but

because of the birefringence of the medium, it is difficult to set the

analyzer to the consequent broad minimum in the intensity of the first

diffraction order and therefore the accuracy of the method deteriorates.

Narasimhamurty's method, which requires setting the analyzer to the

position at which the first orders in the two diffraction patterns appear

equal, and Mueller's method "C, " which requires the measurement of

the light intensity of the first diffraction order for two polarizations,

maintain their reliability for these studies. A further complication in

the study of the strain-optical constants of uniaxial and biaxial crystals

is that, because of their optical activity, the ratio of the index of refraction

of the ordinary ray to that of the extraordinary ray, for the direction in

which the light is traveling, enters into the expressions for the ratios

to the third power. Thus, correction must be made for the effects of

optical activity in computing the ratios of the elasto-optical constants from

the raw data. This correction is discussed in detail by Vedam and

Ramachandran. 52 Finally, because of the nature of the experimental

setups, these methods fail entirely for dichroic crystals.

It is seen, that dynamic studies of the photo-elastic properties of

crystals yield values of certain ratios of the strain-optical constants or
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combinations of these constants. For cubic crystals, for example, these

measurements alone are sufficient to determine the crystal group to

which the sample belongs. These dynamic measurements may be com-

bined with compensator measurements, noting that the former are

adiabatic and the latter isothermal, to evaluate the individual constants.

Thus, the difficult and unreliable interferometric measurements required

for a complete, static determination of these constants are eliminated.
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Appendix III. The variation of the ratio p/q of the strain-optical con-

stants of glass with density.

Mueller36’ 37 has treated theoretically the problem of correlating

the observed photo-elastic effects in glass with the structure and compo-

sition of this material. This photo-elastic behavior is attributed to two

effects: a "lattice" effect which produces negative birefringence and an

atomic effect which results in positive birefringence. For light glasses

the atomic effect predominates and, since p and q are essentially positive,

the ratio p/q is greater than one. As the density of the glass increases,

the "lattice" effect becomes more important until for very heavy flints

the birefringence approaches zero and may even become negative. Thus,

for very dense glasses p/q should be on the order of one.

Values for the ratio p/q of the strain-optical constants of a large

o

number of glasses (about 150) are reported by Schaefer and Dransfeld.11

In their paper, a plot is made of the value of p/q for these glasses against

the density p. It is noted that, in general, the values of p/q decrease as

the density increases. On the assumption that the relation is linear, they

obtain the equation

p/q : 2. 267 — 0. 23% (38)

Since the density of the glasses studied in this investigation has

been determined in connection with the study by Barnes and Hiedemann, 50

a plot of p/q against p for these glasses is readily made. This graph is

shown in figure 13. It is seen, that for the Bausch and Lomb glasses,

p/q generally decreases with increasing density. Under the assumption
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that p/q and p are linearly related for these samples, the equation

p/q = 2. 67 - 0. 34p (39)

is obtained using the criterion of least-squares. Since the number of

glasses studied in this investigation is relatively small, these results

must be considered to be substantially in agreement with those of

Schaefer and Dransfeld.

The points representing the remaining four samples lie conspicu—

ously above the line obtained for the ordinary (i. e. Bausch and Lomb)

glasses. Fused silica, a glass having a comparatively low density,

probably represents a different situation than the rare earth samples,

which have densities on the order of those of the extra dense flint glasses,

even though in both cases the ratio of p/q is higher than for ordinary

glasses of similar density.

It seems reasonable that the explanation for the case of the rare

earth samples would involve either or both of two effects. From the

studies of Fajans and JoosS3 it is known that the refractivity of an ion

is not always the same but may vary somewhat depending on the size and

charge of the neighboring ions. Thus it is possible that when the neigh-

boring ions are ions of rare earth elements, the refractivity of the oxygen

ions is higher than in ordinary glasses of similar densities in which the

anions are primarily lead. It seems doubtful, however, that this difference

would be great enough to account for the entire observed difference in

p/q. Secondly, since anions as large as the rare earth ions would be

expected to have substantial refractivity, if the atomic effect due to both
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the cations, i. e. the oxygen ions, and the anions is added tOgether, this

effect may continue to dominate the lattice effect and thus maintain a

relatively high value for p/q whereas in an ordinary glass of similar

density, the magnitude of the lattice effect approaches that of the atomic

effect. This latter explanation seems better able to account for the

observed results than the former.

The case of fused silica can hardly be explained in terms of the

effects discussed above for the rare earth glasses. One would expect

p/q for fused silica to represent a limiting case of silica glasses generally

as the percent of oxides of other metals is reduced to zero. This is not

the case. Since Mueller's theory is, in part, based on the Lorentz-

Lorenz equation, it is possible that the assumption of the random arrange-

ment of the oxygen ions is not valid in fused silica and that therefore the

Lorentz-Lorenz equation does not apply. (The arrangement of the silicon

atoms is not a factor since the refractivity of the two oxygen ions in

silica is about 140 times that of the silicon ion. ) This would imply that

1

the non-repeating structure of glasses suggested by Warren is not

valid for the case of pure silica glass. Mueller has suggested that if

this structure does not apply, the calculation of the lattice effect must

be considerably modified.

Because of the close relationship between the photo-elastic con-

stants and the index of refraction, the results of this investigation should

correlate with the known properties of the various types of glass. Indeed,

in the case of the rare earth glasses this is true. The rare earth glasses
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are characterized by a high refractive index and, for these glasses, the

ratio p/q is correspondingly high. In the case of fused silica, the cor-

relation is lacking as the refractive index is about what one would expect

it to be on the basis of the limiting process suggested above. (For this

particular sample, the index of refraction measured for light from the

mercury green line is 1. 458 I 0. 005.) Vedam31 obtained the value

p/q = 2. 85 for a fused silica sample for which he quotes nD == 1. 4585 as

the refractive index for sodium light. This value of p/q is even higher

than that obtained in the present investigation but the value of the refrac-

tive index is about normal for fused silica. Thus, it appears that the

disagreement between the observed photo-elastic behavior of fused silica

and that predicted by Mueller's theory implies that there are large

crystalline groups in fused silica. This would also explain the difference

between the value of p/q found in the present investigation and that found

by Vedam since the number and size of the crystalline groups in the two

samples are most probably different.
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