Pfease Note:
Not original copy.; Indistinct type
on several pages. Filmed as re-
celved. University Microfilms, Inc._
mymm m WYmm-mm as war: him an
1%!ng
I 3333 23 Wit
.Nm
LATTICE DYNAMICS OF PERFECT AND IMPERFECT
CRYSTALS OF NaCl STRUCTURE
BY
Sitaram S. Jaswal
AN ABSTRACT OF A THESIS
Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of
DOC TOR OF PHILOSOPHY
Department of Physics and Astronomy
1964
ABSTRACT
LATTICE DYNAMICS OF PERFECT AND IMPERFECT
CRYSTALS OF NaCl STRUCTURE
by Sitaram S. Jaswal
In the atomic theory of solids, both the equilibrium properties
and the transport properties of crystals are influenced by vibrations
of the crystal lattice into which the atoms are built. The primary
concern of the present study is the computation and the application
of eigenfrequencies and eigenvectors of normal vibrational modes
resulting from the harmonic-approximation treatment of ionic crystals
having the NaCl structure. The treatment takes into account short—
range overlap forces and long-range Coulomb forces. First the
dimensionless Coulomb coupling coefficients for the NaCl structure
are evaluated for a moderately fine division of E-space (px/ZO, etc. ).
Next eigenfrequencies and eigenvectors for NaCl and KCl are com-
puted on both the rigid-ion model and a deformation-dipole model.
Since the eigenvectors describe the actual motion of each ion, they
have permitted us to classify the normal modes with respect to
transversality or longitudinality. The eigenvectors and eigenvalues
of the perfect lattice are useful, moreover, in various perturbation
calculations for slightly imperfect lattices. We have used the values
in a Green's-function computation for the frequencies of local modes
and the corresponding amplitudes of impurity-atom vibrations that
result from point-mass defects in NaCl and KCl. Finally our results
for the frequencies of local modes due to U-centers (substitutional H"
and D- ions) in NaCl and KCl are compared with experimental find-
ings and with theoretical results by others.
LATTICE DYNAMICS OF PERFECT AND IMPERFECT
CRYSTALS OF NaCI STRUCTURE
BY
Sitaram S . Jaswal
A THESIS
Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of
DOCTOR OF PHILOSOPHY
Department of Physics and Astronomy
1964
ACKNOWLEDGMENTS
I am grateful to Professor D. J. Montgomery,
who guided and advised me during the course of this work.
I am thankful for the cooperation and assistance of
Professor L. W. Von Tersch, Director of the Computer
Laboratory, and his staff. Finally, Iwish to express my
thanks to the Solid State Science Division, Air Force
Office of Scientific Research, United States Air Force,
and to the Metallurgy and Materials Branch, Division of
Research, United States Atomic Energy Commission, for
financial support during the investigation.
I, ’1; ‘I, | ‘I, \l; J; I; ~l» \‘ l; '1 ‘1 s‘a \‘r \"
)Is P pp )6 ,.\ I.‘ if >I‘ a" ¢.< >I‘ )'s >l‘ 1p ’1‘ II.
ii
TABLE OF CONTENTS
CHAPTER Page
I. INTRODUCTION . . . . . . . . ....... . . . . 1
II. THEORY .............. . . . . ..... 7
A. Perfect Lattice ...... . . . . . . . . . . 7
l. Rigid-Ion Model ..... . . . . . . 10
Z. Deformation-Dipole Model. . . . . . 16
B. Imperfect Lattice . . . . . . . . . . . . . . 19
III. COMPUTATION AND RESULTS. . . . . . . . . . . 22
A. Coulomb Coupling Coefficients. . . . . . . . 23
B. Eigenvectors and Eigenfrequencies of 23
Vibrations for the Perfect Lattice . . . .
C. Impurity Modes ......... . ..... 41
IV. DISCUSSION 0 O O O O O ..... O O O O O O O O O O 68
REFERENCES . . .......... . . . . . . . . . . . . . 7O
v
LIST OF TABLES
TABLE Page
1. Wave vectors for subdivision (px/ZO, py/ZO, pz/ZO)
of first Brillouin zone and their weights. . . . . . . . 23
II. (a) Coulomb coupling coefficients of the form c (0(4)! 3474') 27
(b) Coulomb coupling coefficients of the form c (dd/N 31.) 33
III. Input data for calculations . . . . . . . . . . ..... 39
IV. NaCl lattice-vibration eigenvectors for wave propa-
gation along the symmetry direction [10, 0, 0]/10 44
V. NaCl lattice-vibration eigenvectors for wave prOpaga-
tion along the non—symmetry direction [9, 5, l]/10 . . 45
VI. Properties of lattice-vibration eigenvectors for NaCl
onrigid-ionmodel................... 46
VII. Angular frequencies (in 1013 rad/sec) for impurity
vibrations in NaCl and KCl 63
VIII. Coulomb coupling coefficients in matrix form for
various wave vectors (px, py,pz) . . . . . . . . . . . 73
IX. Wave vectors for subdivision (p /10, p /10, p /10)
of first Brillouin zone and their weight . . . .z. . . . 111
iv
LIST OF FIGURES
FIGURE
1.
Frequency of local modes in NaCl as a function of
€C1' on the basis of RI and DD models. . . . . . . .
2. Frequencies of local modes in KCl as a function of
€C1’ on the basis of RI and DD models. . . . . . . .
. Amplitude of vibration of impurity atom in NaCl, in
terms of MC DC (f, 0) I 2, as a function of e Cl’ on
the basis of and DD models ...... . . .....
. Amplitude of vibration of impurity atom in KCI, in
terms of MC 'Y (f, 0)| 7‘, as a function of E‘Cl’ on
thebasisof IandDDmodels. . . . . . . . . . . . .
Page
64
65
66
67
APPENDIX
A.
LIST OF APPENDICES
Page
Table VIII - Coulomb coupling coefficients in
matrixform............... ..... 73
Table IX - Wave vectors for subdivision (px/lO,
py/IO, pz/IO) of first Brillouin zone and their
weights...................... 111
vi
CHAPTER I
INTRODUC TION
Just two centuries ago Lagrange (1) presented the,general
theory of small oscillations of a dynamical system with a finite
number of degrees of freedom (1762-65). Half a century ago Born
and von Karman (2) applied the theory to the vibrations of the atoms
that form a crystal lattice (1912), basing their treatment on quasi-
elastic forces between nearest neighbors. * Subsequent develop-
ments in the theory, insofar as they concern perfect ionic crystals
in the harmonic approximation, are summarized in the section
Perfect Lattices.
The effect of changing the masses or the spring constants in
an array of coupled particles was studied by Routh (4) in 1877 and
by Rayleigh (5) in 1878. The subsequent extension of their ideas to
disordered lattices, especially with respect to the effect of substi-
tutional defects on infrared absorption, is described in the section
Imperfect Lattices .
Perfect Lattices
To use the atomistic theory one needs to know the nature of
forces between the particles of the system. The crystals simplest
*In the same year Debye proposed his continuum theory for the
vibrations of a solid. His model was so successful that little attention
was paid to the work of Born and von Karman until 1935, when Blackman
(3) made a systematic investigation of dispersion curves and frequency
spectra of two- and three-dimensional lattices. He showed that sub-
stantial deviations from Debye's theory should occur, especially at very
low temperatures, and provided impetus for a renewed attack on lattice
vibrations Xi_a_ the atomistic approach.
1
to deal with are ionic crystals, for which the interaction forces
between ions were first given by Born (6). The central-force power-
law model due to Born works fairly well for ionic crystals. Later
an exponential version of short-range forces was given by Born and
Mayer (7).
For the Coulomb forces, which are of long range, direct sum-
mation over all points is impossible. Born and Thompson (8) using
a method developed by Ewald (9), suggested a way of transforming
these sums into more rapidly convergent expressions. Thompson (10)
gave the final expressions, but he made a slight error in the definition
of coefficients. Broch (11) gave the sums for one-dimensional
lattices.
Lyddane and Herzfeld (12) extended Madelung's method (13).
Their formulas are so complicated that they cannot be used for the
whole frequency spectrum, but only for waves propagated along
directions of symmetry. They took into account also the free-ion
polarizability due to Pauling (14), which gave imaginary frequencies
and hence an unstable lattice.
Kellermann (15) used Ewald's method in a new form (16). This
modification gave comparatively simple and rapidly converging
expressions for the long-range Coulomb terms. Kellermann con-
sidered nearest—neighbor short-range forces only. His work put the
rigid-ion model in its final form. This model described the elastic
constants and the specific—heat data pretty well. The theory is,
however, inconsistent with the dielectric properties of the alkali
halides, because it neglects the polarizability of the ions. Kellermann's
method was extended to other ionic crystals of NaCl structure by
Sayre and Beaver (17) and by Karo (18).
Szigeti, in his study of dielectric properties of ionic crystals
(19), derived relations connecting empirical static and optical-frequency
dielectric constants to the compressibilities and restrahlen fre-
* on an ion, instead
quencies. He found that the apparent charge e
of being an electronic charge e, is less than it (e* = 0.74e for NaCl).
Since he took into account the electronic polarization, he attributed
the discrepancy to distortion of ions due to overlap forces. Born
and Huang (20) used this idea to determine the distortion dipoles due
to the overlap forces between nearest neighbors.
Instead of free-ion polarizabilities, Hardy (21) chose the crystal
polarizabilities due to Tessman e_t a_l. (22) for the study of lattice
dynamics of NaCl. He found the frequencies to be real, but the re-
sults were worse than with the rigid-ion model. Therefore further
modifications would be necessary.
Szigeti's idea of the distortion of ions (19), as exploited by Born
and Huang (20), was adapted by Hardy and Karo (23) for NaCl, and
by Hardy (24) for KCl. For NaCl only negative ions were considered
to be polarizable owing to short-range forces; good agreement was
obtained between experiment and theory. For KCl, Hardy tried two
models: deformation of negative ions only, and deformation of both
kinds of ions. In the latter model he assumed the ratio of the dis-
tortion dipoles of the two kinds of ions, m_(r)/m+(r), to be equal to
the ratio of the square of the corresponding Zachariasen ionic radii,
Rz_/RZ+. With this choice, though, the results were not so good as
with the former model, which did give much improvement over the
rigid- ion model.
The connection between the polarization of the ions and the re-
pulsive forces between them has been considered by Yarnashita and
Kurosawa (25), by Dick and Overhauser (26), and by Hanlon and
Lawson (27). The second and third pairs of authors have suggested a
shell model for ions having closed- shell electron configurations.
A shell model has been used by Cochran (28) to explain inelastic neutron
scattering for NaI and Ge. The Chalk River group (29) first took
the shell model in its simplest form, where only negative ions are
polarizable and only nearest-neighbor short-range forces are con-
sidered, in order to explain their neutron-scattering results for
NaI. Later (30) they tried more complicated models involving the
distortion of both kinds of ions, and including next-nearest-neighbor
short-range interactions. They determined the parameters involved
by fitting the theory to their neutron-scattering results. Tolpygo (31)
took the deformations into account by expressing the perturbation
energy as a quadratic function of nuclear displacements and atomic
dipole moments, in a way somewhat similar to Hardy's. Maskevich
and Tolpygo (31) gave wave-mechanical justification of this treatment
by use of the tight-binding approximation. The Chalk River group
have compared their simple shell model with the model of Hardy and
of Tolpygo. Hardy's method neglects the short-range interaction
between an ion and neighboring dipoles; Tolpygo's method neglects
short—range dipole-dipole forces.
In the present work the Coulomb coupling coefficients have been
computed for a subdivision (px/ZO etc.) of k- space by summing series
given by Kellermann,(15). Using Kellermann's subdivision of k-space
as well as our own, we have computed the eigenfrequencies and the
associated eigenvectors in NaCl and KCl on the rigid-ion model due
to Kellermann, and on the deformation-dipole model due to Hardy.
The eigenvectors have been used to classify the normal modes, and
to calculate properties of local modes.
Defects
The earliest studies of defects in atomic-lattice vibrations are
those of Lifshitz and his collaborators (32). Most of his work went
unnoticed by subsequent workers. Montroll and his collaborators (33)
carried out a parallel program at the University of Maryland.
Other work in this area is that of Litzman (34). Dyson (35) did work
on the frequency spectrum of a randomly-disordered linear chain.
Emphasis in these calculations has been on choosing models
simple enough that qualitative as well as quantitative answers to
certain specific problems can be obtained. Most of the work that has
been done is of qualitative nature. Owing to the large number of
unknowns involved in the general disordered lattice, it is quite hard
to give rigorous quantitative treatment of any realistic problem.
Consequently, most of the work has been confined to isotopic impuri-
ties where the only parameter that is changed is the mass, though a
little work has been done on change of force constants (33). Some
study has been made on thermodynamic properties of disordered
lattices (33, 36-38).
We are interested in the effect of substitutional defects on
infrared absorption. Among the various changes originating from
defects, the one that can be treated precisely is change in mass.
Accordingly subsequent discussion is limited to this type of defect.
Rosenstock e_t a}. (39) considered a single substitutional mass
impurity in a linear monatomic chain with nearest-neighbor short—
range forces only, and computed the frequency of the local or out-of-
band mode. They showed, moreover, that this mode is optically
active. Wallis gt a}. (40) considered one- and three-dimensional
cases with nearest-neighbor central and non-central forces. Some
analysis of optical absorption has been given by Maradudin (38).
A general three-dimensional treatment of the problem has been
outlined by Maradudin (38) and by Dawber and Elliott (41). They used
a Green's—function method originally due to Lifshitz (32).
Based on the theory outlined in references 38 and 41, we have
computed the frequencies of local or out-of—band modes which lie above
the longitudinal optical branch, as well as the corresponding ampli-
tudes of vibration of the impurity atom, as functions of mass of
the impurity in crystals of NaCl structure. We have compared our
results with experimental findings (42) and with theoretical calcu-
lations by others (39, 40). The present work is finot directly
conclirned with dispersion curves of frequency versus wave numbers
for materials studied. Such information is given for the rigid-ion
model in reference 18, and for the deformation-dipole model in
reference 43.
CHAPTER II
THEORY
A. PERFECT LATTICE
In the harmonic approximation (1) the equation of motion of
a periodic lattice may be written as
.- 2 zz' Q)
MXUO‘(R) = z, 'le(xxt) U'ot'CX'): (1.18.)
IN“
where M), is the mass of the X-th particle in the unit cell
(X = 1, . . s, where s is the number of particles in the unit cell);
( g ) is the d—th component of the displacement from equilibrium
Ha
of the y-th particle in the Z-th cell (o(= 1,2,3; 1?: 1, . . . N,
where N is the total number of cells in the crystal), and where
9.2.1.6511) [Wawa‘iwuwcéb 1, ,m gs
being the potential energy of the system.
With solutions of the form
—| . o
110,613) = M; (10,00 exp E- wdt +277Lé-25 (£3 3 (1.2a)
we get
wzu“(y):;v Dea'GF/(X') u“, ()6), (1.3a)
7
where the modified dynamical matrix Dam! ( ZR—‘R' )
is given by
-.L /
DWI (of-x9 =-(M)< Mx’) 5?: géot’ git x
€xpf—277LK-{L<(>€>—z(£:)]]. (1.4a)
In general, I_) is hermitian, and by virtue of the geometric symmetry
of the rock-salt structure it is real as well, and hence is symmetric.
For non-trivial solutions of Eqn. (1. 3a) to exist, we must have
(;_w:/ =0 (1.5a)
For the rock-salt structure, this equation is of sixth degree in (4)2.
Its roots give the eigenfrequencies of normal vibrational modes for a
given wavevector If. These modes correspond to six branches of
dispersion curves, which are labeled by j: , . . . 6.
With 2 evaluated under the assumption of rigid-ion model, and
nearest-neighbor short-range interactions, Kellermann (15) solved
Eqn. (1.5a) for NaCl. As mentioned in the introduction, other authors
(l7, 18) applied the same method to some other ionic crystals having
the NaCl structure, and later workers (24, 29-31) made similar
calculations with models more realistic than the rigid-ion one.
For a given wavevector, corresponding to each branch we can
find a vector 11 whose components satisfy the equation
@ZQDWO, (De/f) = ga'Qd’GéX') Nd,(3e'/J-(‘), (1.6a)
These equations determine w within a constant factor. The arbi-
trariness in w can be removed by orthonormality conditions:
* .
A .. ,
E; nape/5;) “£10900 - (g ,
A * , _ Cf 1
;%(XIJ)Wa'(X/f) "' dot/(£31, ('7a)
This orthonormal set of 31's is the set of eigenvectors with which
we are concerned here.
In matrix form, equation (1.6a) can be written as
he. =§efi
°r Cigar—ea
where the columns of S are the eigenvectors, and (£42 is a diagonal
matrix with the eigenvalues as the diagonal elements. Since 2 is
real and symmetric, it can be diagonalized by an orthogonal matrix S.
The general motion of the lattice is given by a superposition
of the elementary solutions (1. 2a):
Leaf) = Ni: M: worm 5o Q do x
is}
7\prEC@v(B)6+Z7TZ_/g 3g; (36)].
(1.8a)
To compute the dynamical matrix we have used two models,
the rigid-ion model (RI) due to Kellermann (15), the deformation-
dipole (DD) model due to Hardy (24).
10
1. Rigid- ion model
In this model the ions are treated as point-charges. The inter-
action potential consists of a short-range central potential between
the nearest neighbors, and a long-range Coulomb potential.
The coupling coefficients, which are the elements of the dynamic-
al matrix, are of two kinds: those associated with the motion of the
ion under consideration, and those associated with the motion of the
rest of the lattice. The coefficients of the first and second kind are
given respectively by
Edd’Nk‘J == ’2, gé‘dg()efl)e') (1.9a)
[IR
and
(dot'ae 32') = g: CZiwé‘Exoex/szfllg oxygja, (1. 10a)
Q o
where T981“ 3 25. (Dd) —->£(D€’)o
Coupling coefficients due to Coulomb potential
Owing to the symmetry of the NaCl-structure, the contribution
to eq. (1. 9a) due to the Coulomb terms is zero. The Coulomb part
of eq. (1. 10a) is given
C (dd'aep') = g: [92(8)< egg/l Ifx:/D/
auxa‘iwuare’io] expézm'A-zigp. 11a)
II
This series as it stands is notabsolutely convergent. It was
evaluated by Kellermann with Ewald's formula for the Theta-function
transformation
, a
2 if? ; @905?an a!) +2 7741- Of]
= All ;% ex/DEF7J?é/,+ft)z+2”5(éh+(1)7], (1.12a)
where Va" is the volume of unit cell. This transformation makes
the series quickly convergent, and maintains the cell neutrality.
Next the summation and the differentiation ige eq. (1. 2112a) are
interchanged. Then 1/ Ir] is replaced by 27T<> 2y Old.
With this substitution in eq. (1. 11a), the Ewald transformation can
be applied. From eq. (1. 12a) we note that the left-hand side convdrges
rapidly for large values of J , whereas the right-hand side converges
rapidly for small values of Cf”. Hence we break the integration into
two parts of: 05f +5] , and use the apprOpriate integrand
from eq. (1. 12a).
After integration over J , differentiation is performed. Going
through these mathematical details, Kellermann obtained the final
form of the dimensionless coupling coefficients for the NaCl-structure as
// 2
C(Xgfl) = %2C(xg//) =—G;y +HX§+,§—l7 J (£34 (1.13a)
/2
Cay/2) =%z COW/2) = 6X3 - ng, (1.14a)
where
12
= (Ax +x 633* 4-
4”; (n+5): ”lg/#7:“ 3)]
6;; =47: (II? 182%??? 3;) exp[—7§2/g,+_z)2]x
C057(6x+4&_+/:2)
H5: 2 ;[ {Mt-C fwgfl) %]cmrg._g
{(E- —(2//7r) 6/222 + :VT(M)
3-[224- fig ear J2 2
{if 3e _, six/Egg)
W0
/
__ _. (5,92,)
2 442+ 651293
Here (h, hy ,h z) are sets of 61 ther all odd or all even integers,
(j, fly, I) are sets of integers such that Z): Q = even, except
the(0, Dy 0) set, which is excluded; and (mx, my, ,m:) are all sets
of integers for which gm): = odd. The conditions on these integers
arise from the NaCl structure as represented in Cartesian coordinates.
These equations hold only for k 752. In this case, the ‘potential'
satisfies Laplace's equation, which gives the condition
C xxxx') + C(yygeae ') + C(zz )2 12'): O.
13
In performing the summation in equations (1. 13a) and (1. 14a),
Kellermann took 0(2 1. We also took = 1 for our finer subdivision
of _l_<_-space.
For k = 2, the 'potential' satisfies Poisson's equation which,
in case of cubic symmetry, gives
c(dd3zx')=-477/3 , c.(o(oL>e)e)=47T/3
and c(otoL'ae)e)=c(e
z>a')=0
The coupling coefficients corresponding to longitudinal modes are
affected by the polarization on faces of the crystal perpendicular to
the direction of motion of the ions; thus there arises an additional
contribution of either +4 77 or -477 .
Short- range repulsive forc e s
The coupling coefficients in this case are given by
FRI-310(52):?) = —; ;’ [QZUC/IRiI/D/aaueg) 3%!(362721‘ 15a)
RW-‘RRQ: —; [a 27(/_J:et/)/aau(3<) 3“ “’(x’ )ZX
expEzm'A 152,], <1- 16a)
With nearest-neighbor interaction in the NaCl structure,
RI: J Z [72‘ ” "(’2 J7: 2/6 a
x H =- ’ ’X’ + X I , a
3 §17U —-2—*£
__ Xm’ 21.29] , (MM)
(77303
14
where 1?": %¥)] _ 7 etc.
-— e
In Kellermann' s notation,
’__7:€z . II 82
where 7’, is the distance between nearest neighbors.
, p a
WW] = "£- 5; f; 2;, [A We; )2’ +
1 fl
Ecchiflx‘a‘m" 12(55):] - (1. 18a)
With near est-neighbor interactions,
REXXII] = - (,4 +25) ; chyIZJ = O. (1.193)
Similarly eq. (1. 16a) gives
RCXH'Z> : o ,- "(Ta/ea R(x>2) =ACas 777,,
+5CCQ577’X#+60577'X&,), (1.20a)
Now the first Brillouin zone for NaCl structure is defined by the faces
3x13311372 = 13/2. ; gx::/ 1' 3‘3in 33:14 .
15
If we limit ourselves to the values of _q given by 04; qzé: qy é qx“ 1 and
qx + qy + qz 4; 3/2, all other points. in the zone can be generated by
symmetry operations. For actual calculations, one needs to have some
kind of subdivision of _k- space such as qx = pX/lO, etc.
To determine the A and B involved in short-range coupling co-
efficients, one uses the lattice parameter rO and the compressibility
fl . The energy per unit cell is given by
¢0=-0(é22/73 + 627(5) ) (1.213)
where ()4 is the Madelung constant, equal to l. 7476 for the NaCl
structure. Using the. condition of equilibrium, we find
2
d¢o/O/Yo : o : O( 97%, + 5 y’(;g). (1.22a)
Introducing B in (1.22a), we get
B: -2 O3= -l.165. (1.23a)
The compressibility is given by
/ :4. 2-0/2. / 2
fl 917017" 3%». =75); 33:
2.
c
#5520“? +3- 2492/1531]
or A :é—Z—g: + 4&0“ (1.24a)
Finally, the elements of the dynamical matrix are the sum of Coulomb
and short-range coupling coefficients:
16
{dot '36 )9? = - 0WD< MXID-k[C{O(O(/.D€>e "g +Rfo¢o< 382?]
where C5} '3 CE] +C[) etc. (1.25a)
2 . Deformation-Dipole model
In addition to the terms considered in the rigiduion model,
here the crystal polarizabilities and deformation dipoles due to short-
range overlap forces are taken into account. We consider only the
negative ion polarizable owing to overlap forces. Also, we consider
only the distortions occurring between nearest neighbors. Let m(r)
be the deformation dipole moment between a positive ion and a nega-
tive ion. It is a function of their separation r, and the sign is taken
as positive if the moment is directed from the negative towards the
positive ion.
To determine the deformation dipole moment to the first order
in the displacement, the treatment is parallel to that of the short-
range potential considered in part 1. Thus motion of the ion under
consideration gives rise to the distortion term (3(32) =2(72’+2 Tana) ,
where Zée = [dmx(Y)/dy_7y and 23¢ = 072),.(Ya)/70
The distortion due to the motiorai of neighboring ions is given by
Qfifix) = a [7,: C05 73% + 733 (Cos 77'5" +Cos 7736)]
For the ion ( 3a ), the virtual work involving the field due to the dis-
placement (_,_,L( Dog) is given by
A W = -[ex~b(>e>J_£(a"e)-.L_L(e°e)—Z firs/.4: , “W
o
where E ( 3g ) is the field at ( 9.3 ).
17
The second term corresponds to the deformation induced on the nearest
0 a
neighbor by the displacement of ( 2Q ). The field _E ( 3e ) is given
by the lattice of dipoles:
’ ’ 'l/Z. I ~I
B (,5) =[ex,u/, (>2) M2, + fi(9<’)+afl(><)ufl(5)MS/z
_yz, . *
-b(3<*’) ufl flab/Va] ex/JZEH’Lf'If] . (1.2b)
I
Here/”75(DQ) is the component of dipole moment resulting from the
crystal polarizability.
Hence the field is given by
awr- —:
o I —/
prfZ ”(AL-£21.] C (dot Sex')[ao,l(>< )Mx’
23X :5 i“ 3%, 9::
+f4a’ (xQ/exi+é,§% 40,1(369— 5(X9Qq/wAZ-ffjfl. 3b)
We can substitute this value of _E_ in the expression for AW . Then
the Coulomb part of the force is given by
1372:) =-9AW/aue (3:) (1.4b)
After going through various manipulations, Hardy put eq. (1.4b) in
matrix form. Adding to the Coulomb part the short-range part,
which is the same as that adopted by Kellermann, he arrived at the
~
D=-=_>S[h +1495
final form of the dynamical matrix:
_ _..... e39: +Q+§QDX
fiQQ—Ifl +§Qfig§j=x (1.51))
where
18
"X
" pfdd'RX; + Cfaol’seae’},
”(n
=—b(92) 0;“: Canal + Qd(-32’) Cofw.’ (/_J
2229'),
"C
CgU’JIXD?’ , if = C(dol’aexb,
l|><
I
Iii-x 9
>3"
)6
C; = 1 —- g4 UH U ,
:08? g
322’ -——(crystal polarizabilities).
The distortion dipoles are computed from a relation given by
Born and Huang (20):
e*- e=2(7{: + 2 7.). (1.6b)
*
where the effective charge e is obtained from the second Szigeti
::<
relation (19). If we write e 5 se, sis given by
__ I
3: a), (60477 &)y2é2+2)(M€@)/22 “-79
with M, the reduced mass; Ea , the static dielectric constant; E”
the high-frequency dielectric constant; and we: the infrared dis-
per sion frequency.
19
B. IMPERFECT LATTICE
We may write the equation of motion for an imperfect lattice
as
.__AM (£)LZ(£)+; 11¢ng (ya (36) (2.1)
if we consider only substitutional defects. The first term on the right
hand side contains the change in mass due to impurity, AM”, and the
second term contains the change in force constants, A ¢°<°fi . If we
express u“ ( f.) as the superposition of the amplitudes X of normal
modes of imperfect lattice eq. (2.1) becomes
31: .x 1
Mf , 1 +2
De’d’g’QM,(XX) Xa (De/1)
2:},6 a! uiéQXwCXI/é’), (2.2)
Md
“(Xi') = _ AMx(j) (d2 otu’ 0;}, 5”"; Aéwgi’g’)
where
The normal modes of the imperfect lattice have been labeled by f,
which takes 3sN values.
Eq. (2.2) can be solved by a Green's—function method. The
Green' 3 function for this equation is given by
,4"
an goal/16531 “0+2, $.61? {Daw' i 0)
._—_ om” J22” 092”. (2.3)
20
If we expand gold, .1." by bilinear expansion in terms of the
amplitudes of the normal modes of the perfect lattice, we get
I /2-
1 (4.; a) =_N. __ , “1.0” 45) W: 1(2/ 4),,
301.1(sz ) (Mme/2 EN QJZ(B)— (AP-(71')
‘9 XP[2)TL'[ - (2; (fl) -_>$ (3):] (214)
The amplitudes of the normal modes of the imperfect lattice are given
x/f )= Z ? )
Xd( «,2 dot 3“) X
Cow ’3?“ 390; .(38 /:§ ) (Z. 5)
Eq. (2.5) gives the eigenvalue equation
by
loge, 93101161355; 63)C;(1 11631311”) “a“; 11 cg)?“ 501"]: 0.(2.6)
If we consider a single isotopic impurity, then A ¢ . , is zero,
I 1'
and we have Cad (iin) = _ M21621 wcho‘a’ JMJ.‘ J; I;
With €11 5(Mx‘A4)/MD< .
With this value of Cod)!" eq. (2.6) reduces to
(M,e E), 49230“, (323,1 3 ca) + 02.011 52 391/: o. (2.7)
For a diatomic cubic crystal, eq. (2.7) gives us a triply-
deg ene rate equation
21
1: € 2&4): /fl(x/J/f)/Z. (2.8)
w’KfJ—wjd)
If we apply the normalization condition to the amplitudes of
impurity modes and use eq. (2. 5), the amplitude of the impurity atom
is given by
‘F 2.
Mxlch/aj = 4 / 31/ _,
e: ___c_.)___(f) 21/021
1:299; 2“)me €212.19)
Eq. (2.8), when solved for d 2(f), gives the frequencies of
normal modes of the imperfect lattice.
’22
CHAPTER III
COMPUTATION AND RESULTS
A. COULOMB COUPLING COEFFICIENTS
From eqs. (1. 13a) and (1. 14a) we have computed the Coulomb
terms c (otd' 3g 1') with a finer subdivision of _l_<_- space (qxsz/ZO
etc.) than Kellermann used. This finer subdivision gives 262
distinct points in the first zone, which by symmetry operations
generate 8000 points in the first Brillouin zone. These points along
with their weights are listed in Table I. The weight is determined by
considering whether the point lies inside the zone, on the face, on
the edge, or on the corner of the Brillouin zone. If the point lies
inside the zone, the weight is given by the total number of permu-
tations which are performed on the sets of p's generated by changing
the sign of one of them at a time, two of them at a time, and three of
them at a time (including, of course, the original set). For other
cases, one has to take into account the neighboring cells. Computed
dimensionless Coulomb coupling coefficients have been listed in
Tables II (a) and II (b), and in matrix form in Table VIII (Appendix A).
B. EIGENVECTORS AND EIGENFREQUENCIES OF
VIBRATIONS FOR THE PERFECT LATTICE
For NaCl and KCl we have made calculations on both the rigid-
ion model (RI) and the deformation-dipole (DD) model. Most of the
input data for these salts are given in Table III.
23
Table I Wavevectors for subdivision (px/ZO, Ry/ZO, pz/ZO)
of first Brillouin zone and their weight.
Wave Vector Weight Wave Vector Weight
Px P), Pz PX Py Pz
0.0 0.0 0.0 l 8.0 8.0 4.0 24
2.0 0.0 0.0 6 8.0 6.0 6.0 24
2.0 2.0 0.0 12 8.0 8.0 6.0 24
2.0 2.0 2.0 8 8.0 8.0 8.0 8
4.0 0.0 0.0 ’ 6 10.0 0.0 0.0
4.0 2.0 0.0 24 10.0 2.0 0.0 24
4.0 4.0 0.0 12 10.0 4.0 0.0 24
4.0 2.0 2.0 24 10.0 6.0 0.0 24
4.0 4.0 2.0 24 10.0 8.0 0.0 24
4.0 4.0 4.0 8 10.0 10.0 0.0 12
6.0 0.0 0.0 10.0 2.0 2.0 24
6.0 2.0 0.0 24 10.0 4.0 2.0 48
6.0 4.0 0.0 24 10.0 6.0 2.0 48
6.0 6.0 0.0 12 10.0 8.0 2.0 48
6.0 2.0 2.0 24 10.0 10.0 2.0 24
6.0 4.0 2.0 48 10.0 4.0 4.0 24
6.0 6.0 2.0 24 10.0 6.0 4.0 48
6.0 4.0 4.0 24 10.0 8.0 4.0 48
6.0 6.0 4.0 24 10.0 10.0 4.0 24
6.0 6.0 6.0 8 10.0 6.0 6.0 24
8.0 0.0 0.0 6 10.0 8.0 6.0 48
8.0 2.0 0.0 24 10.0 10.0 6.0 24
8.0 4.0 0.0 24 10.0 8.0 8.0 24
8.0 6.0 0.0 24 10.0 10.0 8.0 24
8.0 8.0 0.0 12 10.0 10.0 10.0 74
8.0 2.0 2.0 24 12.0 0.0 0.0 6
8.0 4.0 2.0 48 12.0 2.0 0.0 24
8.0 6.0 2.0 48 12.0 4.0 0.0 24
8.0 8.0 2.0 24 12.0 6.0 0.0 24
8.0 4.0 4.0 24 12.0 8.0 0.0 24
8.0 6.0 4.0 48 12.0 1020 0.0 24
P
12.0
12.0
12.0
12.0
12.0
12.0
12.0
12.0
12.0
12.0
12.0
12.0
12.0
12.0
12.0
12.0
12.0
12.0
14.0
14.0
14.0
14.0
14.0
14.0
14.0
14.0
14.0
14.0
14.0
14.0
14.0
14.0
14.0
14.0
Wave Vector
F?
12.0
2.0
4.0
6.0
8.0
10.0
12.0
4.0
6.0
8.0
10.0
12.0
6.0
8.0
10.0
12.0
8.0
10.0
.0.0
2.0
4.0
6.0
8.0
10.0
12.0
14.0
2.0
4.0
6.0
8.0
10.0
12.0
14.0
4.0
0.0
2.0
2.0
2.0
2.0
2.0
2.0
4.0
4.0
4.0
4.0
4.0
6.0
6.0
6.0
6.0
8.0
8.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
4.0
Weight
12
24
48
48
48
24
24
48
48
48
24
24
48
48
12
24
24
24
24
24
24
24
24
12
24
48
48
48
48
48
12
24
24
14.0
14.0
14.0
14.0
14.0
14.0
14.0
14.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
18.0
18.0
18.0
18.0
18.0
18.0
Wave Vector
py
6.0
8.0
10.0
12.0
6.0
8.0
10.0
8.0
0.0
2.0
4.0
6.0
8.0
10.0
12.0
14.0
2.0
4.0
6.0
8.0
10.0
12.0
4.0
6.0
8.0
10.0
6.0
8.0
0.0
2.0
4.0
6.0
8.0
10.0
OOOOOOOOOOOOOOOOOOCOOOOOOOOOOOOOOO
N
Weight
48
48
48
24
24
48
24
12
24
24
24
24
24
24
24
48
48
48
48
24
24
48
48
24
24
24
24
24
24
24
24
Wave Vector
P
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
1.0
3.0
3.0
3.0
5.0
5.0
5.0
5.0
5.0
5.0
7.0
py
12.0
2.0
4.0
6.0
8.0
10.0
4.0
6.0
8.0
6.0
0.0
2.0
4.0
6.0
8.0
10.0
2.0
4.0
6.0
8.0
4.0
6.0
1.0
1.0
3.0
3.0
1.0
3.0
5.0
3.0
5.0
5.0
1.0
0.0
2.0
2.0
2.0
2.0
2.0
4.0
4.0
4.0
6.0
0.0
0.0
0.0
0.0
0.0
0.0
2.0
2.0
2.0
2.0
4.0
4.0
1.0
1.0
1.0
3.0
1.0
1.0
1.0
3.0
3.0
5.0
1.0
Weight
24
48
48
48
24
24
48
24
12
12
12
12
12
12
24
24
16
12
16
24
24
24
48
24
24
24
24
25
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
Wave Vector
py
3.0
5.0
7.0
3.0
5.0
7.0
5.0
7.0
7.0
1.0
3.0
5.0
7.0
9.0
3.0
5.0
7.0
9.0
5.0
7.0
9.0
7.0
9.0
9.0
1.0
3.0
5.0
7.0
9.0
1110
3.0
5.0
7.0
"U
pa 9: p: r1 r1 H‘ r1 r1 H‘ m> \1 \1 U1 U1 U1 U) UJ-U2 U) H‘ P‘ P‘ #1 P‘ \1 U1 U1 0: U) U: #1 h‘ h‘
Weight
48
48
24
24
48
24
24
24
24
48
48
48
24
24
48
48
24
24
48
24
24
24
24
48
48
48
48
24
24
48
48
P
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
15.0
15.0
15.0
15.0
15.0
Wave Vector
py
9.0
11.0
5.0
7.0
9.0
11.0
7.0
9.0
11.0
9.0
1.0
3.0
5.0
7.0
9.0
11.0
13.0
3.0
5.0
7.0
9.0
11.0'
13.0
5.0
7.0
9.0
11.0
7.0
9.0
1.0
3.0
5.0
7.0
9.0
3.0
3.0
5.0
5.0
5.0
5.0
7.0
7.0
7.0
9.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
3.0
3.0
3.0
3.0
3.0
3.0
5.0
5.0
5.0
5.0
7.0
7.0
1.0
1.0
1.0
1.0
1.0
Weight
26
15.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
Wave Vector
FY
11.
0
13.
KO '\J U1 DJ H \l \o \l U1 H \O \l U1 w
o o o o o o o o o o o o o o
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
ll.
MNUTUJKDNU’Wr-‘VU'IKONUIUJ
0
Weight
48
48
24
48
48
48
48
24
48
48
24
24
48
48
48
48
48
24
48
48
48
24
48
24
48
48
48
48
24
A8
48
24
ml
1
I
Fx
.4;
1;) 1 k)
D
’-.I
D
[A
.L\
U<)H)
.-
U?D
O O
O C) 1-1.11
x
0:.
-
00000
1'
Q 0
O
1001m-—1~.bn)m
@LfiUTULfiU‘
JO
..
-
'3‘
_) 1'
I
'J
‘3 x
f
.0.
OOO
1.)
(:1
C105}
0
O
o
'3‘
o
3;:\
:‘Y1
1.4
o o
onemmm
000000
01
o
O
“J .4
p.
O
O
”J
u
0
0
Z)
(
.4
DI.
o
"‘1‘
O
.0
00000
!
\l U101 Lu (.1) U
o
O C)
h m
)0
.1 x.
l
1
1‘1,“
9
27
Fae 3‘ II (a)
COULUMS Cfafi%lnw3 .QiCFIC!
OF THE FORMc (o(o<)<)<
c(xxll) c(yy11) C(zzll) c(xx12) c(yy12) C(2212)
“8037-1753 “.1588 4.1858 89.2776 “4.18833 “-41.185313
00000 00000 00000 00000 00000 00033
“802846 491423 401423 31315351 ~~408t576 ‘1‘ .2575:-
“200470 “200470 (600940 9.2.1741} 291.740 “(J-03479"
00000 00000 00000 00000 90000 oClCC’C’
$509078 2.9539 211.9539 5.1 31351 ~3.1:.’T"1Er3 -.’3¢?:TEF¥
”1.6676 “1.61376? 3.3353 1 , 99231 I "'3 7
00000 00000 013000 si'JQC‘O .3000 .0305“
C
L
A 1
I.» L3
L1!
3-0
_..4
"'8 o 0132 4 o 0065) 4 o 0066 (9:11. 51"} 37 ~- it o (AC-’09 _. '5’ 11 f (9361“?
”'50 5427 1 a 51939 7 3 o 9530 ’5 a 111.2548 " 1 4- 88:31.3 “-2 ‘21 ’11’1:’_ {‘7
“108981 *1 0151981 307953 2305711531 904151 “"4 9173:3211.)
‘- .3 o 91 18 1 o 9559 10 9559 a e '51) "3.1.12". 153111395 I, ‘" , ~0- f :2“ ‘~
108.499 "1.23499 23 913998 1 110.3511." 1053.911“ "‘61)! 1" ‘7': ’
00000 .0000 .0000 .3090 .0000 .W1mc
~6.9066 3.4533 3.4533 8.33%? «4.179- ~fi. *1
«$03285 .8523 3.4462 5¢543Y "loggga daan Q:
#106702 “106702 303403 20453” ?¢4539 “0:917?
~207471 1.3736 1.3736 3.7Zfib "1.5633 *ltfifiif
-o‘9373 ‘09373 1.8746: 19 .5373 1045373 “301351"? .7
00000 .0000 .0000 .0000 .LCUO .gu”j
”7.3855 3.792153 (3.7958 (9.7125 --’+ obi-C13 ‘4' 1’ ’
”5036538 2.6362. 3.7306 (3.38410 ”3.43549 “(411 1‘ 3
.JJ
1.
t
.
\
~17 o 1:565:24 . 3196) 3 .5357 5’.) 9 565-4” --. 7. 1’41
~T .6304 *1.6304 3.. 2607 7.8235 2.1.1911.
411.8783 2.6891 2.61891 7.2825 —f’».
"('1'o21918 .5374 .?5545 «11.6.3659 «a
'A) L).
1 b
w v—-
1.» (Y “2 1' .‘
I
1 1
4— _.J
9 o
a)
1
v
" x
\a
N
d 31
i1
1
“'103530 ”1.353C 207061 204071 2047'?) "1’10"
~109985 9999.3 .9993 30.2131 -' 311.5". 55- “la-"‘ 1
”agar? -.6987 1.3975 1.3453 1, . 31’ 5‘13 “1?. .i: ‘
.3000 00000 «0000 .0000 0C? O 01" F -
-H5
*1 (5
also {-1)
,.
1.4L)
.1
1
O
1
1
~e.saee 3.4243 3.4243 9.6220 -4,3
~E.dfill 1.9567 3.3344 7.8467 ~E.an . .
~-.1906 .0779 3.1228 5.3573 .rwea «6.051"
3
6
)
.
. c5
.
II)
in...
k1
— l 0 36315758 “103958 2 o 7915 «57.30611 311133151 r1 "'3 ' : .1
.1312) 2.0557 2.055?
m
p.
e (1‘ i362 -1 711 1:23 of *1 73’: a- 1k” 2}...” Z
101419193 03593 2.1.30O (41.154097 "9‘46””? .
~ ,1 0631/4123 "-1.0403 8:10.306 21 3671 T? a..L;‘c.‘;'}'l (1 .7 71 1'11 ‘
-1.4h©4 07338 07332 209119 wigéufifl ’lc“%c‘
“ 1‘13-10’36) “050616) 1 g 0132 J ,1 £84 3 . , $5,143 2.2 ' 111.1..‘11'.
000.00 00000- 00000 00000 .ijw'fsC1 11
~7093€31 3.5190 3:53.90 lilo-.6263 - ‘ "
—-fzo3391‘5 2.8838 3.40.157 948198 ”I .-1
0.54o3 1.4155 3.2305 7.8509 ma. 335 ~a.?1?x
*207837 “.1057 2985.94 5.5.5.3833 .o’;1<1c5 «6'1.» 1
—10223;J~5 ~-1.22.36 2.447(5) ..3a.-1’41') 18 '0 ' .
*5-7047 2.8524 8.85n4 H.394; -q,ag71 —:.«;#1
9
5‘11
{ ‘.
I‘ 17
a
1...?
31—.
.4.
'0‘.
1
n
9
‘
,1
~;
J)
1?
.
1
’~'
0,
1
I
a
I
M
_v
l~~
J.
\‘x
«oxoqoquoqmwxoqmwwmmmu
I‘-
I
C) O 1.3)
Ch
00000
O ()0
OO
O O
O C) C)
o-q\4m(xuuwtnLJu-~1-—»1m
COOL)
mm
p...
OOOOOOOO
OOJCDDR)O
O
p...
RJO(DC)C
has;
000
b
O
A
\J
1
h
0
J
‘v-
y... p.
55
O
O
l
O
Q
In.
00
28
p2 C(xxll) C(yyll) C(zzll) C(xx12)
f. — : a (EC-1- 1 .1- '—’+"::.‘:; -:. A; ~ 1‘ ’71 .1" ;;:“_"_-J"-,;.;,"
T *' (”_-. 9"'\.‘1‘ - c / 17.7
, 1"} J;"'.:‘.‘f 1.11114 ‘ “ ,‘e - “
- fl '1. 7 (ff-1‘ ‘ .. ‘ W , ‘ s x
r 05.73“". I {j 7' 1
-1 .7747)” ,, 7’5. )H . 4* ' ‘
; - 01-559 ‘. ’1. {Li "1 ’ L.’ ’
.. 0.711433 -. (11.3.1 7 - a
a? 93000 .CQOL . 7- s~ .
.3 v.4446 3.?d2J ‘.9: 3 11.‘w+7
o" 0‘3193 2.;3/1‘13 .7\' C;\L“’r’:
0‘3 "-30E1517 1.C‘.7)75 C’..7"‘.}-‘~' 77 7767';
0:) ‘2’08641 “012.08 2035‘" ‘n’ny‘
.C -.7404 ~.9404 1.8M? ”"
. - , .15 .748 2. 21.5741 '4)... ’1 1”: ‘7‘ 3 ‘ 75
-..', «111650 1.1.1530
" ’_ . "9(7z7b .011be
.702Z
'2. ,'.’...?.’.;39 1.1619 1
.2092 1
“-0‘4-1 1'99 -.479‘;9 .Q‘SQC)‘ 5’¢.3"¥” 1’
0.73354 0
*.1976 .3952 I 471’];
.COCO 00000 ~.=“17‘.
3.2099 3.23099 1 ? ““1297
2.8337 3.1230 7. .1"
1.9000 (.870? ’,*?31
O . O . .
1
O
r}.
N
1
9.. h-o v—o t—a N
.
’DW .2)
1J5 ’ "l‘
h
7‘
I
A
_T
\
7‘
.
U.)
U1
’3
$5
‘1‘
‘
\
r
u
3
1.. q 0\
n:u
O
1
O
p
i
0
0000000000
1
O
\u
0‘
o o
O O
. 1 1
H U D U! G
o . . .
J r 45‘ 1".
w '__3_ F ,
r ern
.0 ~ .2311 '81.: a.ao55 ‘.*:rn
.o - .5533 —.0566 1.9419
.0 -.cb“3 —.669? 3.5384 ’1.’~{
2.0 - .“?hl 2.7661 (.7661 1 m
as; 1.8749 ¢.5q1a 7. a-
1‘0
.
O
1
H U 5 U]
o
o
'\
(j.
a
‘3
J
4
oOth .8335
7 ‘3 ".0391
2.0 *C:¢ ~.6026 3.;5
7 7' 1.7527 ’o76fl7
.8588 ‘eWWQ‘ :n'
Ojifig .0733 {$3796 “,fl 3
”.4310 2W519 fi~
a—Oh
0‘
xi“
LT.
9
l
p
3
J
m
“a. , ‘4»
1
O
(K
‘\
t.
O
O
2
- N
O
b
1..
g
6.0 -1.‘fi a .8303 1&153 y._;
.r‘
O C“
.u‘
p...
H...
1.0 «b.9flb'
(30000
“a.
p.—
59 .1799 @5999 ”1‘ _
(3 3 3 “0224.3 -~"é £15.") 75‘ 1.7' ' '
80C: -0 4196— 9 2098 -. “1’ 5.7.198 .77 :J
CCIJ‘ --~.O()13 .3132?) 1.3;) 1""
0.0 0:090 00000 9711:7160 a"? ,7
x Q (”.9527 a“,"'f.3(:77=-7 1 3. 0‘3 7
1.0 "501.814 Lie-4069 «it-77.7445 1110:1777}! "
l O O “3 0 91‘5ch if 1 o 554 9 .c,‘ . 11‘. .3} :7 _'_4, c, o 3. ‘1 _,V
"0 ‘2°6326 ~6996 1.932. 7.9,
p.
O
1.0 “1.3734 .0481 1 93335)} «3.573’71c'»
I
._.)
bu-C
1*“
P A g...- Q- ,:
. .u
b0 M ‘_ .;
J
L
“.5
Oh—‘O-JMF‘fi-d pd .:
‘mNp—trmpqwu»t...—.I-.~g—.....4-.
»A
-1
'C~Jq-QL7VL
0
Ct)‘
O
C>Qt3
O
. \
‘-.J
~\
0
O
.0
8.0
2.0
2.0
3.0
2.0
2.0
4.0
4.0
4.0
4.0
4.0
6.0
6.0
6.0
5.0
5.0
8.0
1.0
1.0
1.0
1.0
1.0
1.0
3.0
3.0
3.0
43.0
3.0
chx11)
*.3254
~4.5501
”3.4966
*2.2995
“1.1755
~.2388
"2.6772
“1.7345
-.8422
-.O998
“1.0817
”.4689
.0250
~.1447
”5.7894
“5.4581
“4.5685
~3.3642
“3.0964
_.9405
.0149
“5.1462
“'4 . 3065
“3.1661
*1.9616
~.8606
.0501
“3.5978
“2.6274
“1.5943
*.6457
.1355
”1.5539
*1008U2
-.3594
.2342
*.5533
~0C835
*5.3430
“4.7919
*3.8325
~2.6738
W1.5066
_.4007
.3953
*4.2934
”3.4323
~2o3654
-l.2965
—.3365
c(yy11)
".3284
2.2750
1.4930
.6989
.0978
“.2388
.6619
.1568
*.9998
.5408
.1654
.0250
.0724
2.8947
2.6634
2.0677
1.3325
.6777
.2298
.0149
2.5731
2.0015
1.2956
.6676
.2435
.0501
.7989
1.1732
.6221
.2672
.1386
.9419
.5045
.2572
.2342
.2766
.1610
2.6715
2.3285
1.7738
1.1920
.7332
.4695
.3953
2.1467
1.6350
1.1017
.6913
.4753
y...
29
c(zzll)
.6568
2.2750
2.0359
1.6U06
1.0776
.4776
1.3356
1.0785
.6é34
.1997
.5408
.3035
" .0500
.0724
2.8947
2.7947
2.5008
2.0314
1.4157
.7106
“.0298
5.5731
2.3050
1.8705
1.2940
.6171
*leO3
1.7989
1.4542
.9722
.3784
“.2772
.9419
.5837
91C32
“.4683
.2756
“.0805
2.6715
2.4634
8.0586
1.4818
.7734
“00089
‘.7906
3.1467
1.7873
1.2637
.6052
“.1358
C(xx12)
4.5093
10.2713
8.9089
7.2780
5.63C1
4.1255
7.7404
6.3035
4.8078
3.4323
5.C641
3.7539
2.4147
2.5007
12.6846
12.8802
11.2005
9 . {TV-BE) 7
5.9419
6.4101
5.0000
11.9349
10.8626
9.4016
7.7850
6.2153
4.8227
9.9313
8.6072
7.1154
5.6400
4.3075
7.4536
6.1193
.5005
.9298
..6749
1 .9980
12.3592
11.1435
9.65386
8.1218
6.6671
5.4126
11.7355
1C.5931
9.1974
7.7191
6.3149
n b!
\ I
C(yy12)
4.5093
“5.1356
“3.2296
~.8524
1.6781
4.1255
~3.B702
*1.5653
.9342
3.4023
”2.5321
~.O734
2.4147
*1.2504
~6.3423
*5.8165
~4.357o
“2.2497
.1840
2.6708
5.0000
“5.9525
*4.5132
“2.4264
-.0045
2.4825
4.8227
-4.9656
~2.9365
-.5493
1.9366
4.3075
~3.7268
"1.3946
1.0856
3.5005
*2.4649
.500?
“6.4999
“5.562.
*3.8586
~1.653&
.7H02
3.2022
5.4126
“5.8527
*4.1819
~2.0353
. 4234
2.8555
H
C(2212)
‘900157
“5.1356
~5.6793
-6.4255
“7.3061
“8.8509
"3.8 7O?
~4.7352
“4.6255
“1.2594
“6.3423
”6.6698
~6.5435
57.4371
~8.£C59
«9.:579
‘WaCPfl
/\
\
d “U1
L)U'Cf\-
\ ‘\ V‘
V J
,,
fl
:0 “' +-
1
£13 ‘*1 {3\ {1‘ 111
o.
W ~“1U
0
u
m
I
U
.
J‘\
"b
W'S
”Mg
.9
I
b .‘u
.V
.67C1
”‘5 . 5 66;“
"7.5767
~8o~6 1‘31
“3.7263
~ao7248
~5.8472
.0011
.dfiaq
1
m
It
w-J
i
G
fi
\0 ‘4
- b
l
0‘ U? C) '0 (I) m -J (1‘ '7‘.“ u)
f
‘
‘J .-
O
c33:u D3
ml?-
:_, v-
-2¢=‘
O
in .0
Oéflf‘wifi
,0 PM
.1
I
|—-' I d I 4 he ‘.4 '._.
v
". )
g...
m. b)
C
o 5
DO
&?U O~J”\O~J
oooooooo
C)OO<3
D'VCDG30
0
0000000
7
v
.
|—¢ .4
‘H 3;) :7 #-
0 O C Q
,::rvo:3£>
1‘
0
8.0
lOof
E3ofi
103
3.
5.
7.0
9.0
11.0
13.0
3.9
5.0
7.0
900
11.0
5.0
7.0
9.0
700
.0
200
4.0
OO
“O
N
o
(3
. I, ‘
k .n \L.‘
O
tj‘ '
O
O
3'
‘ I
~1o
o
C
o
C)
O
I
00 0'00 0
000000
2.0
£00
2.0
2.0
2.0
.O
.0
.0
4.0
4.0
4.0
4.0
6.0
600
6.0
$.0
1.0
1.0
1.0
1.0
1.0
1.0
1.3
R;
LR
3.3
L300
300
3.0
5.0
5.0
5.0
700
0C
QC
.0
C(xxll)
.4458
~207016
“108216
~09276
“01252
“103561
_.4652
"f'cfiogg
*409‘522
*402400
~302264
“20’3910
“09800
—o3145
07655
-.-'"+ o 7:35
“400.33d
“30011-305
“logbbd
*05949
0C"'}1:'
o .7‘-i'(:.i3
“3042d0
*205512
”105911
-06428
01916
"108578
*IOOGZD
-o...8f.)b
-.4605
-40B4QO
-403891
-305777
-205516
-104681
-o4329
“3.97:3."
“302355)
‘202590
“102408
”02774
“205615
”107292
-08407
“100537
-407427
-4.5Zb9
-309162
C(yyll)
: ”I“ ."J
1.3533
(3 ' 1.
Q . 4‘4
0 {NZ} 3,5
-. "4.511153
gftlf"
2 o {)5 6) ‘9
1.3169
100700
09757
102507
100070
.8399
.5268
2.3713
ch783
2.3323
30
c(zzll)
“ 4a ‘2'?" ’7
1.3233
~F\h N
o
n
P
C
e‘ 59
.«wg9
a >58
0 ‘ ‘iCuIC
r.‘ p. “v _1'.):)
L: 6: l ’53???
1.73?6
. \ 4'4".
V.
A
v 1.)
l;f. 7
i - ‘
.,
l b L, 3 "
:15.
v -
‘ .. 3‘,
n g 3":(3
m 1"} 71"? O
C(xx12)
,‘ ,5.'
_‘o 3 . ”1),! '
90 6'3‘38
)
.345
6 )97L‘6
506488
7°8134
52.; o 90'. 1:?
3.0581
3e319d
2.4577
1e9088
9.7715
8.3857
o (3054
m9fi75
e 0199
.1537
@9680
95642
«1458
9 .UQ-‘Ly‘g
but [a (v.4 lb:
x}
J]
LA)
)
0 -— bun! u—o
/“'l N -
'7“ VT: :0
'J?
17”} r’i
l , o " l (:13
10 3675
6.0727
745(86
E? .35594
9;(. {ff-4
("ken-(513.
E.‘ o 3 .2 I» '-
7¢$§11
1‘115L‘Cfll3é)
130 4713 5
12.; 1 731‘0
llollf’7
go 347:)
8‘ ~’-. 1 Mrs,
10‘7~53
r‘
1
t H) ”J
O O
\0 «- f .L
H J: "3' ~
D t
ingu
(db-d
O
1
n b"
4‘
\1
In '
I
J
H
1
C“
O
rJfl ‘
‘V
o 3 “755'
:’_" E-.f')‘*5
. ..- .h 3f" 7
I .
U) "‘ ~ b)
.
.. J!
I
1
fi
9
\ A
N .
’
‘305-‘(37
~6.9473
“601157)
~14 0")13f‘1‘5
“2 g 5}: 1:135)
*‘O 191...”)
2 0190.7
4.49%?
~4fig‘l?éf‘
— Lt , C) .‘ 0
‘ 1.9915439}
-- o S) 300
1.8039
"5.5313
“30%.319
10"13 9
~—4.47<‘>‘)
‘70 191'?
- 607884
“-82.! {5.7.
“'1 U1 UT L‘ D 3“ 0 U7 [D CD CD
u“ 3
J
32301
-s«=w
J in \3 “l
:0 ‘f\‘ ~1 t‘ h)
ficthJ'
ca.
‘3.
.r‘ "Q ('1)
px
1600
1600
1600
1600
16.0
1600
1500
15.0
1600
1600
16.0
1600
16.0
1600
1600
1600
16.0
1700
17.0
17.0
17.0
1700
17.0
17.0
1700
1700
17.0
1700
17.0
18.0
18.0
18.0
18.0
18.0
1800
1800
1800
18.0
18.0
1800
1800
18.0
18.0
1800
18.0
1900
19.0
19.0
1900
1900
4Lfl®~4U7U*‘O‘4U1U*‘m
o o 00 o oo 01’. oo o oo o 00
H Hod
®~JU1U**O‘m()#>O(DO‘bFVhJO(DO‘le
o 0:00 o 00 o«uo o o
OOOOOOOCDC>OOO
.0
.0
00
00
00
2.0
2.0
2.0
2.0
200
2.0
400
400
400
400
6.0
6.0
100
100
1.0
1.0
1.0
1.0
3.0
300
3.0
3.0
5.0
500
00
00
.0
00
00
.0
00
2.0
2.0
2.0
12.0
2.0
4.0
4.0
4.0
6.0
1.0
1.0
1.0
1.0
1.0
C(xxll)
”300204
“109759
-09146
00577
08675
~4o3161
“307258
“208578
*108444
-08137
01312
‘301894
-203986
“104727
-05289
-107196
~09226
-404649
‘400679
~303405
‘203945
‘103568
-03434
-306931
-300054
-201097
”101252
-203895
-105849
-4.4392
“402431
-306862
‘208534
‘108601
“.8258
01445
~400521
-305094
“206973
-107279
-0717?
“300066
“202529
‘103511
-105850
-402642
“308912
“302016
-202927
‘102799
C(yyll)
1.7206
1.4428
102746
102440
1.3286
2.1580
1.9223
1.6257
1.3675
1.2229
102199
105947
103395
101353
100579
08598
07311
2.2324
2.0875
1.8513
1.6074
104362
103854
108465
1.6315
1.4184
102876
101947
100345
2.2196
201540
109821
1.7678
1.5879
1.5031
1.5364
2.0260
1.8616
1.6596
1.4972
104354
105033
1.3345
102199
07925
201321
200212
108424
1.6645
1.5550
31
C(zzll)
102999
05330
“03600
103017
~201961
2.1580
1.8035
102321
04769
~¢4092
-lo3511
1.5947
100591
03374
*05289
.8598
01916
892324
109804
1.4692
.7871
4.0794
“100420
108465
1.3739
.6913
“01524
1.1947
.5504
2.2196
8.0891
107041
100857
02722
“06773
-106809
2.0260
1.6477
1.0377
.2307
“07177
105033
09184
01312
07925
2.1321
1.8701
1.3592
.6283
*02750
c(xx12)
1203435
1100802
9.7728
8.5502
7.5109
1308814
1301794
1201357
1008977
906135
804098
12.5236
1105441
1003754
9.1549
10.6544
9.5826
14.5462
14.0854
1302360
12.1208
"10.8820
9.6546
13.6445
12.8303
1107585
10.5641
1200786
11.0841
14.8722
14.6479
14.0091
13.0484
11.8930
10.6779
9.5256
14.4283
13.8027
12.8610
1107273
1005335
1302139
12.3254
11.2523
11.5142
14.8893
14.4654
13.6789
1206364
1104662
C(yy12)
"308637
“106875
.6748
300007
500800
“609407
*507910
~“4.0322
*108606
.5046
2.8424
“6.2618
~405289
“2.3724
.0000
*503272
”3.2003
“708731
*605072
*500651
“301109
-08441
105151
*608222
-503962
-3.4531
-101875
“600393
~401234
“704361
“700569
~5;9591
-402652
“2.1540
.1692
204836
-702142
‘601232
”203274
00000
*606069
“409410
”208424
-507571
~7g4446
”607070
*503113
~304028
“101710
f
C(2212)
“804798
“903927
1004476
1105510
1205910
‘609407
”703884
-801035
“900370
1001181
1102522
“602618
‘700152
-800031
“901549
“503272
*6038d4
'702731
“705781
‘801698
‘900099
1000379
1101697
‘608222
*704341
“803054
’903767
“600393
’509607
“704361
“705918
‘800500
“807822
*907390
1008472
1200092
*792142
“7.6795
~8.4244
“993999
1005334
“606069
”’70 3841‘
“804093
"5.7571
“7.4445
"7.7584
"803676
*9.2337
—10.2952
19.0
19.0
19.0
19.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
‘ V
O
0.9tn<»:>n>o a,o alv Ln~auwu:.u
O 0 O O O O
OOC30O¢DC>OOCD
P
3.0
3.0
3.0
5.0
.0
.0
.0
.0
.0
.0
2.C)
2.0
2.0
2.0
4.0
4.0
c(xx11)
“3.5359
*2.8783
‘2.0105
-2.2791
”4.3340
~4.1442
’3.6035
*2.7904
‘1.8134
-.7880
~3.9589
*3.4308
-2.6363
~1o6808
~2.9383
‘2.1961
C(yyll)
1.7680
1.6069
1.4564
1.1395
2.1670
2.1102
1.9619
1.7793
1.6321
1.5761
1.9794
1.8379
1.6667
1.5364
1.4692
1.3286
32
c(zzll)
1.7660
1.2714
.5541
1.1395
2.1670
2.0340
1.6417
1.0112
.1813
-.7880
1.9794
1.5930
.9696
.1445
1.4692
.8675
C(xx12)
14.0584
13.3023
12.2986
12.6013
15.0411
14.8264
14.2135
13.2879
12.1691
10.9863
14.6160
14.0153
13.1075
12.0093
13.4487
12.5910
C(YYIZ)
"7.0292
“5.6462
“3.7476
“6.3007
“7.5205
*7.1478
“6.0699
‘4.4008
”2.3097
.0000
“7.3080
*6.2356
“4.5723
“2.4836
“6.7243
*5.0800
C(2212)
“7.0292
”7.6561
“8.5509
”6.3007
—7.5205
“7.6786
-8.1435
”8.8871
*9.8593
10.9862
.‘7.3080
‘7.7797
“8.5352
-9.5256
-6.724?
‘7.5109
. . . .. .
OOOOOOOOOOOOOO
01001000010011.1711:
...... .
O
. .
()0
. . .
GOOD
4 0 a q~q q u 0 u q 0 a
O
.3)
0
O (.1,
P
[3.0
1.0
.0
2.0
2.0
1.0
3.0
6.0
2.0
4.0
6.0
q 4 m 4 w u
0 O 0 O O O O O O
o 0.0 o o o«o o 0 Que 0
0311101910
.
4.0
1.0
3.0
3.0
3.0
5.0
5.0
7.0
.0
.0
.0
.0
. '3'
COULOMB C0
C(xyll)
.0000
”4.1740
.0000
wé.2346
34.1335
“3.3836
-5.bib7
~4oC1‘ 39:)
.OUOU
.9052
.0331
.Q739
.3477
.9892
.2505
.1585
.7571
.1742
.9604
'7 9004
.0000
“3.5774
—fi.4057
“1.6687
"3.2441
w;afi100
~f.3649
3;,1545
”3.6351
—J.6120
—3.5103
.0,1849
"3.6591
~€95524
-.".: . 1):"(1 7
I I
flmb
l
l
fx.
0-
a
U“:
‘1‘
1
Ni»
1
ill
# FU;W
1
0
“4.75137
*4.@@?2
“Q-erlé
“‘5‘" .3451)
“‘3 . 7:12.34
00003
”2.6801
(.9, {A .15, (9
73
O\
H".
’.a".'
| '3‘:
x
R
0
U s") t“
7
N
.U 1
9-. ....
33
UPL
II (b)
11‘1"} UE 7' T C I z: 5.11".“ S
/
OFTHEFORMc (o(o<3 K)
c(lel)
.0000
"4.1746
0 0000
.00 CO
~4.1335
'30303*‘
*1.9455
~4.0695
.0000
.0000
.0000
"‘4 .0739
«2.6969
“3.9892
"2.2508
_1.7269
~3.l794
“‘3 .1742
»320321
“'3. 91.304
9 0000
a 7000
. 17000
e (FOOD
~3.2441
~21. 35-5-7376
~z.a7aa
”11.1 1." 4 5
~391961
~3.8380
“1 . ff) 1. 1:13
“1 a :3- QC) 742
~ianvna
*‘ 0-1‘).3¢.:‘,'.L.-‘
“f3 .657’8
-....(711;Pn"x
“2.3341
~4.0310
«302843
-3‘7594
. O (301‘;
.HQOH
. 301.0
00000
c 00135?"
I: r» :)_-l--.
“'10-'31. ' a
C(yzll)
.0000
~4 .1746
.0000
.0UC D
“‘4 31.; 17:75 3
"1 .129"!
“1.9455
“"1 .0599;
0000
.0000
90000
.3469
.6969
"1.3 0196392
+.4561
~1.Q481
-7,
"1.1 7'34
mrw
~2.6396
*3 . {3.321
“3 51:7!)1134
. 1.35.1130
. 9:7! 1:. [1 O
. 00 C10
01"){100
“1.1139
-1.737&
~1.970#
"2.8157
“3 . 1961
-3.8180
“.2416
“.6839
” . 5‘“ '1 ‘7 (:7
~.8365
*“ 1 . 6313:",
“2.1760
"8 o 3:14 1
“2.9957
—3.2843
“3,7324
. 0.0110
. 00010
. 0000
9 000-0
0 0000
“96898
C(xy12)
.0000
4 .1402
.0000
7.71“: (:5)
C) t -34 '1
.0300
4 . 648-52
5;) off—3&3
5.0871
3.6773
41:17:15)
3.0.057
.0000
3.2391
4.7174
4 a 706-?
2.8722
4.2950
4.3640
3.3.3.07
3.5179
2.5095
1.4076
3.5319
4.3327
2.9842
3.7454
3.6557
2.8453
2.8491
1.429464
.0000
9.3513
3.6403
4.0132
Sr. 7007
2.0621
C(x212)
.0000
4.1402
.0000
.0000
3.9950
3.2831
1 .8378
3.7549
.0000
.0000
.0000
00000
. 0000
2.8722
m'u
O 9
"-WV")
' a m
p
M
53~"
.5453
.91 33:1
99/164
a :"\I\'(‘§r‘l
.1111100
95:13:713'3
.135:.'()23
01.11,:1103
r. -. ). .
c." 93 LAC) 1.
c(y212)
.0000
4.1402
.0000
.0000
3.9950
1.093
1.8378
3.7549
.0000
.0000
.0000
1.3962
.1" 0.313
4234
.414“)
.9262)
.Q9535)ES
2. ,1 5133
2.4570.
3.flQb?
00*J3C
.0000
.0000
.OCSC
.9371
1.3939
1.3073
2.1643
8.2739
2.5098
.1935
'11-) iv
. 4 BE. {1).
.0000
. 0 00C:
.0003
9 Q Q 0 L?
at: 48.3 -7
*6
U
. .. . .. .'.. . ..|.
OC)O<3C)O(DC>OC)O(3C)OCDO<3C)O<3C>OCDC>O()O(D{)0
y—J PH 3 a
O O O O O O O O O O O O
p.‘
O
OCDO®\0()®\O()@\O()®\O(¥®\O(D®(I03@CDUJQ(I'
.
8.0
0\0\10~4U10-4U1U\0\3m(»*‘m
. .‘.. . .. .
p.
...
m11c>m¢>¥>0(DO‘bP00(DO\blv
fl
.
OOOOOOCDC>O(DC>OO
P
2.0
2.0
2.0
4.0
4.0
4.0
6.0
6.0
8.0
1.0
1.0
1.0
1.0
1.0
3.0
3.0
3.0
3.0
5.0
5.0
5.0
7.0
7.0
9.0
.0
.0
.O
.0
.0
.0
2.0
2.0
2.0
2.0
2.0
4.0
4.0
4.0
4.0
6.0
6.0
6.0
8.0
8.0
10.0
1.0
1.0
1.0
1.0
1.0
C(xyll)
~4.2489
~4.9694
~4.9395
~3.7201
-4.4710
-4.5611
*3.8729
-4.0932
“3.6695
’1.2022
“3.2437
-4.4648
-4.8672
-4.6797
-2.9807
-4.1597
~4.6038
~4.4901
“3.6828
-4.1836
*4.1851
“3.7461
-3.8693
-3.6292
.0000
'2.0384
“3.5721
-4.3886
~4.5596
-4.2651
*1.9626
‘3.4547
~4.2697
“4.4639
-4.2003
-3.1543
“3.9622
~4.2153
~4.0335
-3.5791
"3.9058
-3.8328
“3.6314
“3.6747
“3.6153
-.9073
-2.5153
—3.6142
~4.1245
-4.1290
C(lel)
*2.1641
”1.7613
“1.4285
”3.7201
*3.1116
-2.5914
‘3.8729
-3.3421
-3.6695
—1.2022
‘1.0952
“.9348
‘.7781
“.6556
-2.9807
‘2.5794
-2.1803
‘1.8642
-3.6828
-3.1958
~2.8039
“3.7461
-3.3946
-3.6292
.0000
.0000
.0000
.0000
.0000
.0000
‘1.9626
”1.7706
“1.5379
‘1.3287
‘1.1739
*3.1543
”2.7850
“2.4494
“2.2021
“3.5791
*3.2300
-2.9800
“3.6314
"3.4561
*3.6153
”.9073
“.8530
“.7663
“.6755
”.60C5
34
c(yzll)
"2.0391
”i.4895
“2.5914
«3.1256
~3.3421
~3.fi€95
-.1b28
~.4169
“.BHGB
“.6563
“.6b56
”1.1459
“1.6299
-1.8523
-1.8642
“2.3611
-2.7368
‘2.8039
—3.2437
“3.5946
-3.6292
.0000
.0000
.0000
.0000
.0000
.0000
’.4527
“.8639
‘1.1022
-1.1963
~1.1739
-1.E677
“2.0200
—2.2197
“2.2321
-2.6454
~2.9567
‘2.9800
'3.3670
~3.4561
-3.6l53
“.1104
“.3108
“.4597
“.5462
”.5735
C(xy12)
3.3913
3.7672
3.4931
2.76QC
A.“
:3 c 1 (113.3
R
3.5037
3.1312
2.2365
3.0121
3.1227
2.8004
2.3619
2.4677
2.2120
1.6823
1.4715
.6742
.0000
1.5783
2.6867
3.1479
3.0672
2.6551
1.4837
2.5323
2.9745
2.9029
2.5119
2.1212
2.5051
2.4477
2.1075
1.8535
1.7930
1.5056
.1. 0390
.7010
.0000
.5732
1.83C2
2.5391
2.7281
2.5401
C(x212)
1.6685
1.1844
.7428
2.7640
1.9944
1.2572
2.2912
1.4399
1.3291
.9720
.8479
.6520
.4438
.2563
2.2565
1.7496
1.1962
.6847
2.3619
..6202
.9031
e 682 3
.8611
.6742
.0000
.0000
.0000
.0000
.0000
.0000
.4537
No!
b.
H
sud re
9
Ha
O O
(\uin
mi»
“J7
00000
.6732
.5998
.4753
.3293
.11341
5‘ H’ H «an. P. r
H
tn.
3‘
.0000
.0000
.0000
.0000
.0000
.0000
L\
b
lfiflw‘
P
TFUJ
O
m-.
w
0 O O
OfoJb(Jh)
RJNtyxiwLJD
UWW1NU‘O
(h
6 O
b{)\1
(7" run u
6
b
9..
_.I
.7892
06661
.4346
.5204
.2655
.0000
.0443
.1162
.1482
.1383
.1002
[_..
.
C) (.3 O (.3 O
C
Q
l ‘ I _: ... . . .
0
N .. ' \
{.J '...' .1
'—
0 O O
r—‘ {a '-
U ...J
[>4 P1 5.... n—A n-I s—0 P“ 0-4
0
L10
N m m m H F‘ H H l... t...‘ r -4
O O
OiDCDOZD£)Q(J
t...‘ [ed 1‘
two :1 A 9.4
‘ ‘RZN
O O O 0
0‘3
. . .. é“
OOCDOfiDCDOtDC)O(DC)O
(}-0~4MLO~QLn_-O-4Lnb1~
O O O O D O 0 0 O O O O
O
..
OCDC)Oh£>bfVR3NFUhJN
.
OCDC)O<3O£DC>OO<3CDC>O
wow
0 O
C)O
c(xy11)
“3.7615
~203756
~3.4411
—3.9658
~Q.OI13
-3.5905
*3.1617
“3.7098
*3.8250
~3o5858
*3.4438
*3.6437
~3o5060
*3.5341
.0000
*§.5366
*2.7697
“3.5291
*3o8018
~306690
—3.2346
”1.4977
~E.7068
~3o4621
“3.7464
~3.6323
~3.2164
“2.5423
*3.é576
”3.6035
~3.5Q1O
*3.17b7
“3.Q658
“3.4311
*3.4441
*3.1553
$3.395O
—30‘%301
~.6709
—1.&bd&
“-2 . 7’t531
~3.8704
“-3 9 .3664
-‘ 3 . 1.:19915
“*2 . 535.594
*1.8158
—&.fiQOa
~3.1840
~3onQ3
“3.1079
C(lel)
“.5495
“2.3756
~2.1517
~1.9160
-1.7d18
~l.5921
~~3.1617
~2.8671
~Z.6284
~2.4791
~3.4438
«3.2414
w3.1406
03.534]
.0000
.0000
.0000
.0000
.3009
.0000
.0000
rlg4977
~1.3961
-1.2677
—1.1478
“1.0588
*1.3073
~2.5423
~24 . 334:;
-2.1421
”2.0007
“1.954a
~3.0b5d
w2.8741
~2o7506
~2.71¢2
w3.2950
“3.8538
“.6?09
~.6a30
«.5974
“.5483
“.5075
~.4d13
-- . 459‘)
~1.8lbi
~1.5957
~1.5680
“leaéaa
“10QU18
35
C(yzll)
“.5495
“.8778
—1.3062
“1.5626
“1.5517
”1.5951
*1.9633
“2.3768
’Zo5430
“0.4791
"8.9201
”3.1733
.-3 .1406
w3.5083
.0000
.0000
.0000
.0000
.0000
.0000
.0000
“.3764
“.6973
“.9267
w1.0528
“1.0774
"1.0073
“1.2961
~1.7377
“1.9900
‘C.0533
”1.9344
~Z.7242
“8.5462
w2.7142
*3.2934
$3.4300
~.O&91
“.25é5
".3992
“.4818
“.3256
“.5213
».4699
“.7341
“1.1253
“1.3954
“1.5300
C(xyIZ)
2.1275
1.6336
2.2634
2.4426
2.2689
1.8884
1.7977
1.9321
1.7724
1.4404
1.2553
1.1203
.8309
.3824
.0000
1.0900
1.9098
2.3224
2.3480
2.0976
1.5976
1.0321
1.8093
2.2003
2.22321
1.9796
1.5945
1. 532714
1.8599
1.8652
1.6410
lod949
1.3646
1.3345
1.1217
.8227
.6935
.4703
.4554
1.2575
1.7340
1.9815
1.8959
1.6855
1.263?
1.1d99
1.6311
1.7723
1.6351
C(x212)
.0525
1.6336
1.2957
.8950
.4890
.1149
1.7977
1.2272
.6326
.0679
1.8853
.5843
“.1089
.3824
.0000
.0000
.0000
.0000
.0000
.0009
.0000
1.0321
.8741
.6527
.4065
.1644
".0554
1.5334
1.1355
.6920
.2456
~.17EE
1.3646
.7869
.1EY77
“.3866
.693?
.0900
.4554
.4094
.3275
.2251
.1163
.0113
”.0823
1.1299
.9020
.6136
.3036
@0000
C(y212)
.0525
.3045
.3871
.3567
.BQHQ
.11“?
.4856
.4393
.2670
. 0 f.) 7 9
.3407
.1337
*.1080
“.1104
OOCDC
.0000
.0000
.0000
.0000
.OQHO
.0000
.OQ67
.1597
.149?
.0961
.0177
“.Cfififi
.2364
.2154
.11C2
“.0365
“.1782
.1658
.0006
“.8020
"l. O :.1 {D} (4‘ F}
“.ZC?Q
“.4703
.0136
.0325
.0333
.0110
“.03?7
“.059?
”.0833
.0763
.067}
.0000
“.1030
“.2073
13.0
1300
1300
13.0
1300
1300
1300
1400
1400
1400
1400
1400
1400
1400
1400
1400
1400
1400
1400
1400
1400
1400
14.0
1400
1400
14.0
1400
1400
1400
1400
1400
1500
1500
1500
1500
1500
1500
1500
1500
1500
15.0
1500
15.0
15.0
1500
15.0
1500
16.0
16.0
1600
13
‘<
.— o-o
O-QF‘O-JUWw
O O O O O O O
O
OOOOOOOOOOOOOOOOOOO
Fit-‘0‘
030-thbIVC>m()£>m
O
N
Q'QLnUIULnLJ v
C . O O O C .
O‘DCDOCDCDOCD
o o o.
OCDCDO
0 0‘0. 0 0 0‘00 0 oo
OCDC)OOO(DC)O¢.9hJNth3N,‘
O
p-o
C
O-‘O-O
O 0
0(3
H
O
O
c(xy11)
-206635
~205392
“300469
"302134
*300719
“209130
‘301413
00000
”101107
*200350
“206514
-209246
-208842
-205887
”201002
’100910
’200026
“206167
“208966
‘208677
”205841
“201042
-109177
“205269
-208266
-208314
‘205821
-204180
‘207512
-208095
“207142
-04649
*103200
’109754
-203641
-204784
’203495
-200240
‘102838
-109295
“203228
-204524
-203427
“108561
-202608
-204210
-202108
00000
~07248
‘103406
C(lel)
-103812
*205398
‘203814
-2.2616
~202045
’209130
“208317
00000
00000
00000
00000
00000
.0000
.0000
00000
”100910
*100390
“09725
“.9111
'08635
*0 8500
”08520
“109177
’108105
“107154
-106505
-106434
-204183
'203316
’202989
‘207142
“04649
'04518
“04285
“.4043
”03853
‘03752
“03745
“102838
“102247
-101629
~101169
“100975
-108561
-107840
‘107401
“202108
00000
00000
00000
36
C(yzll)
“103812
“1.7360
-C¢I707
—Z.40&5
ӣ04161
”5.7445
“3.0775
.0000
00000
OOOCK)
00090
00000
00003
00000
00000
‘03217
-.6079
‘08313
“09746
‘100284
-09878
'08520
”101528
-1.5842
“108689
-109859
“109213
-201941
-206142
’208095
“301553
-00784
‘02273
’03542
”04483
-.5021
“05102
“04695
“06600
“100313
“103100
-1.4733
*1.5041
~106194
“200711
~203489
“206750
00000
00000
00000
C(xy12)
l
1
1
l
1
l
1
l
1
1
1
1
1
1
1
00925
02700
03878
02579
005C“
.8786
07475
00000
07238
02894
06039
06606
05153
02472
99272
.6871
.2232
05193
.5683
.4243
01641
.8580
00369
.2788
.3035
01596
.9198
.8955
.7433
.3866
.2911
oé31€38
.1679
. 046".)
01750
o}339
0971C
08216
09C3Q
08414
05335
OQCOO
.--s,—- ~-
v‘
I". ‘ ‘
a ... -..‘ .t, I
7 l" t ‘ 5‘.
O '3 '_
C(x212)
“02733
102700
oaajj
.3737
m.n9¢9
.57flé
0300?
90030
0 000:)
oOOCO
0000:
.0000
o 0006
00300
OOCDQ
06571
C(y212)
.—
H
.2733
.0275
00936
".3654
u.-
0 0.
(DC):
b.J
U
.4383
02789
05200
000C¢
.OGQH
.000;
00003
0000C
0033?
00033
00007
.0957
000$an
O
'n‘
to
bvaLDRJN-
b'fid1b
a“ m i~ . -;
1‘ ‘ .1.) }
0
Q.
«)J
fl
0
{J {U
fl
0
:"x
K.
" '1 H
\ "~
9
('1) I”
o
LP3)J
4
O
m
’3h)b
'\
“JP. ; I“
C
- s}. 5’"
. ' flu
l
,
3“,
. (3
. J .
;
’
I.“
o
’3
fl
ollfifl
~a1$7f
~.1597
3 c
“00:“
A .-
Iafi’
"3 L.._ i.“ J"
«3737
_.a(n:
.2987
«.aeaé
"<
,OflDC)O(DC)OCDC)OOOCDC>OO<3C>Om<) u
.:.. . .. . .. o o. . .. . .. . ..>. .. .
N
O
b
. .. . ..
C)O(3CDC)O
@CDO‘9C3030
O<3
€-
0 O O
P.
u.)
1C~JULJ~
O‘JCDO
P
3.0
UEWLJUJU
. . . .
.
(DC)O(3C)O
h‘NTERJWFV
.
.
C)O(DC)O(D
¢~b
. .
CvO
6.0
1.0
1.0
1.0
1.0
1.0
C(xyll)
*1o7700
—l.9812
“1.9813
~1.7998
-l.4741
”.7154
“1.3252
*1.7539
*1.9693
*1.9765
“1.8023
—l.2954
*1.7136
”1.9421
“1.9705
“1.6687
“1.9213
~02744
“.7828
“1.1816
“1.4293
“1.5150
“1.4508
_.7668
—1.161d
“1.4128
“1.5074
“1.1315
*1.3909
00000
w.3585
~.6663
“.8860
-.9997
"1.0076
—.9217
“.3548
—.6604
~.8901
~.9959
#100073
4.6453
—.8658
—.9985
—.5590
“.0908
~.2596
*.3934
”.4762
a "‘
".4090
”F‘HHHh-l!
C(lel)
uh-
I
f
v.-
E
f
t
_...
«no
u.
‘-
~—
u..—
.—
5.
than
‘+
.0000
.0000
.0000
.QCOO
.3300
.7154
.6908
.6597
.6326
.617!
.6163
.2554
.2369
.1982
.1835
.6687
.6434
.2744
.2683
.2583
.2480
.2408
.2357
.7668
.7415
.7158
.7003
“1.1315
~l.1053
.0000
.0000
.0000
.0000
.0000
.0000
.0000
. 3554cj
. 3453
.3336
.3243
.3207
.6453
.6279
.6163
.8550
.0908
.0591
.0863
“.0536
37
C(yzll)
w
‘_
u...-
--
-1
l
I
-1
l
C
‘2
I
l
.0000
.0000
.0000
.0000
.0000
.P945
.5635
.7842
.9382
.0104
”.9885
.0869
-.5107
.8176
.9705
4.1261
. 572530
.0732
.2135
.3372
.4332
.4928
".BCBS
I
Nani-owl
t
)
f
i
2
.6249
o 9576.)
.2729
.4542
.5077
_.0336
.0000
.0009
.0000
.0000
.0000
.0000
.3000
.9654
3:439
.7543
.9247
.0073
.0499
o ‘3 {‘2‘ 4‘. L).
‘1’; I) 1 ‘f1(‘:)
.0712
‘.2056
.3307
.4277
.4903
C(xy12)
.9965
1.0456
.9677
.8049
.5028
.4173
.7495
.9423
.9855
.9053
.7463
.6324
.7667
.8081
.7821
.5474
.5302
.1614
.4517
.0552
.7498
.7380
.6475
.4054
.5003
.6638
.6447
.4541
.5003
.0000
.7071
.3743
.4751
.5027
.4681
.3915
.1965
.3545
. 4 ‘56 «([35
04722
.4363
.2976
.3715
c3528
Q?5}7
.Qfiifi
.14Q8
.2111
.2423
.3396
C(x212)
.0000
.0000
.0000
.0000
.0000
.4173
.3541
.2590
.1439
.0204
.1009
.6324
.4549
.2373
.0000
.5474
.2078
.1614
.1452
.1150
.C749
.0291
.0182
.4054
.3190
.2031
.0696
.4541
.2745
.0000
.0000
.9000
.0000
.0000
.0000
.0000
.1965
01561
.1197
.0525
.0000
.2976
.2101
.1009
.?517
.9516
.0464
.0365
.0233
.0050
C(y212)
.0000
.0000
.0000
.0000
.0000
*.0517
“.1133
“.1884
-.2701
*o3422
*.3828
”.2453
“.4085
.5721
‘o7221
“.6520
*.9198
*.0171
”.003,1
~., .‘. (1
a. .‘l.’ .)l;‘.
t
~.13UE
*.1794
“.208?
~.l€51
“.2920
“.4274
”.5947
$.51}
w.7470
.0003
.0035
.0000
.0060
.0000
.0000
00000
“.0839
“.1731
“.2550
“.3511
‘04767
“.3569
~.5529
.7463
“.BRGC
““ 0 (3:34:30;
I
—-.O‘fi90
~.1179
“.1673
“.2110
[alsll lllll l i I I! II II II ‘llul .II. III I
38
px py pz C(xyll) C(lel) C(yzll) C(xy12) C(x212) c(y212)
’0? 300 3.0 ~025b8 “0235C *0illd aidgfi 21597 —02108
2900 500 300 “03801 -02483 “-0‘3'71-3 01051} 010!“ ”03602
1900 700 300 ~04742 “02418 ~102604 02138 00630 *05118
1900 500 500 -03803 *03803 “105498 01444 01444 "06167
2000 00 00 00000 00000 00000 00000 00000 00300
2000 200 00 00000 00000 00000 00000 00000 00000
2000 400 00 00000 00000 00000 00000 00000 00000
2000 600 00 00000 00000 00000 00000 00000 00000
2000 800 00 00000 00000 00000 00000 00000 00000
2000 000 00 00000 00000 00000 00000 00000 00000
2000 200 200 00000 00000 ‘02790 00000 00000 ’00943
2000 400 200 00000 00000 “05385 00000 00000 ‘01925
3000 600 200 00000 00000 “07590 00000 00000 “02943
3000 800 200 00000 00000 “09216 00000 00000 "03915
4000 400 400 00000 00000 —}0Oa16 00000 00000 -03936
9000 600 400 00000 00000 ”104741 00000 00000 “06028
39
Table III. Input Data for Calculations
Effective Lattice Crystal Polariz-
Compressibility Charge Constant abilities
(IO-lzdynes/cmz) >2 (10-8 cm) (10-24 (CHIP)
B e /e rO 06' DC"
NaCl 4.27 0.74 2.814 0.255 2.974
KCl 5.63 0.80 3.139 1.20 2.97
For the RI model, we need only fl and r0. For the DD model,
we need as well e*/e, the effective charge ratio, and D(+ and 04’,
the crystal polarizabilities of the two ions involved. The short-range
‘ coupling coefficients are computed with eqs. (1. 19a) and (1. 20a). To
form the dynamical matrix, eq. (1. 25a) is used for the RI model, and
eq. (1. 5b) for the DD model.
The dynamical matrix has been taken in the following form:
1
{an}
{xvii}
flei?
{nu}
{xylzf
§x212}
§xy11}
{W113
gyz11}
{xylz}
gyylzg
gy2123
{ml 1}
iyzll}
{zzl 1}
{ma}
fyzlz}
Ezle}
{xxiz}
w;
{xz 12}
We?
{ma-2;
{xzzzf
ExylZ}
gyyi z}
{yzlz}
{was
gyyzzf
{yzZZ}
glez}
{yziz}
{zzlz}
{xzzz}
{yzzzg
{zzzz} I
Once we have the dynamical matrix on either model, our next
step is to find the matrix g which diagonalises the dynamical matrix
to give the diagonal “13”ng 7‘. Diagonalization has been performed
on the CDC-3600 computer at Michigan State University, with an
adaptation of 704-709 Fortran program number 664, 00-OP ID: F4
UCSD 1 EIGEN. This subroutine is based on the Jacobi method to
40
diagonalize real symmetric matrices. In this method the largest
off-diagonal element is selected, and rotation is performed on the
dynamical matrix so that that element becomes zero. This process
is repeated successively till all the off-diagonal elements are
smaller than a chosen limit. At the same time, the matrices which
perform the rotation are multiplied together to give the final diagonaliz-
ing matrix :_S_ . Thus in the end we get both the eigenvalues 6J2 and
the eigenvector matrix g, with each column of § representing the
eigenvector corresponding to its appropriate eigenvalue.
We have done calculations with our subdivision of k-space as
well as Kellermann's. His subdivision amounts to considering 48
points in the first zone in _k-space. These 48 points generate in all
1000 points by symmetry operations in the NaCl structure. In order
to give examples of the eigenvectors and to illustrate their application
in classification of normal modes, we give in this section the results
for Kellermann's subdivision for the rigid-ion model.
To see what typical eigenvectors look like, we have chosen two
wavevectors for NaCl, one in a direction of symmetry and the other
in a general direction, and have presented the corresponding eigen-
vectors in Table IV and Table V, respectively. These eigenvectors,
when normalized through division by (NMX )%-, give the amplitudes
of vibration for the two kinds of ions in a given mode. Each column
gives the eigenvectors for a given mode (whose frequency is indicated
at the top), the first three elements correSponding to the Cartesian
components of displacement of one kind of ion, and the last three of
those of the other.
For all the NaCl eigenvectors we have computed the ratio of the
amplitudes of vibration for the two kinds of ions. We have calculated
also the angle (Na, Cl) between the directions of motion for the two
kinds of ions, and the angles (Na, _k) and (C1, _1_<_) between the directions
41
of motion for each kind of ion and the direction of propagation of the
wave. The results are given in Table VI.
For _l_<_ = 2, the ratio of the amplitudes of lighter to heavier atom
is inversely proportional to their masses, in the optical branch; in
general it increases with increasing 5. The corresponding ratio in
the acoustical branch is equal to unity; it decreases with increasing _l_<_.
Then, by continuity, we can classify the normal modes into various
branches, and state their character as to longitudinality, transversality,
or neither. The results for NaCl are shown in Table VI. We see that
for _15 along [100], [110], and [111], the waves are purely transverse
or longitudinal, and the direction of vibration of both kinds of ions is
the same, as is apparent from the symmetry of the crystal structure.
Also, in certain directions of somewhat lower symmetry, viz. , either
when one of the components of wavevector is zero, or when two com-
ponents are equal, there exists a pair of transverse waves, one optical
and one acoustic. In all other cases, the waves are neither transverse
nor longitudinal, and the directions of vibrations of two ions are
different.
C . Impurity Mode S
A substitutional impurity in an otherwise perfect lattice changes
the normal mode of vibration. The new modes are of two kinds, i_n_-
band modes, and out-of-band or local modes. An in-band mode
corresponds to a frequency which is shifted up or down from the
frequency of perfect lattice by no more than the separation of con-
secutive frequencies on either side. Out-of—band or local mode fre-
quencies lie in gaps or regions forbidden in the perfect lattice.
The impurity modes of concern here are the local modes which
lie above the longitudinal optical branch, and which are optically active.
42
They have been observed experimentally by infrared absorption in
alkali halides containing U-centers. We consider a substitutional
impurity for a Cl- ion in NaCl and KCl. Examination of eq. (2.8)
shows that it has solutions for 4J(f))£(JL, the largest frequency of
the perfect lattice, for positive values of e Cl which are above a
certain critical value é critical. To solve eq. (2.8) for these modes,
one needs to know the eigenvectors and eigenfrequencies of the perfect
lattice. These were obtained as indicated in part B. We have solved
eq. (2. 8) numerically in the case of NaCl and KCl for the values of
eCl lying between 0 and 1 with proper consideration of the weight of
each point in k- space. Weights for Kellermann's subdivision of
k-space are given in Table IX (Appendix B). We have solved this
equation on both 10 and 20-fold subdivisions of k-space; the results
are essentially the same. The frequencies of local mode _\_r_s_ é CI
for NaCl and KCl are shown in Figs. 1 and 2 respectively. On the
graphs are shown also the experimental findings (42) for U-centers,
and results of theoretical calculations by others (39, 40) who treated
U-centers as isotopic impurities.
Knowledge of the frequency of the local mode has been used in
eq. (2. 9) to find the amplitude of the impurity atom in that mode.
Results for the amplitude of vibration of the impurity atom in a local
mode, as a function of€c1, for NaCl and KCl are shown in Figs. 3
and 4 respectively.
With respect to our own results, we note first from Figs. 1 and
2 that the RI model gives somewhat higher frequencies for the local
modes than the DD model, as would be expected. Next we see that
there are critical values of €Cl for local modes to occur above the
longitudinal optical branch in both crystals. Table VII gives the
results from our calculations for the frequencies of local modes, and
their ratio, corresponding to 6C1 equal to 0. 972 and 0. 943, the
_ . In...“
43
values for H- and D-, respectively. It contains as well the experi—
mental results for the absorption frequencies observed for H- and D-
in NaCl and KCl. The ratio given by our calculations is about the
same as that of Wallis and Maradudin (40), i. e. ,~,/2—. . It is seen
that experimental values are far lower than the calculated values
on both models and for both crystals. On the other hand, the experi-
mental ratio, available only for KCl, does agree quite well with the
theory.
Amplitude of vibration of impurity atom, given by Figs. 3 and
4, increases with the decrease of mass of the impurity as expected.
Since the DD model gives good results for the perfect lattice,
the poor agreement between our results and the experimental findings
for U-centers indicates that the U—center cannot be treated as a
simple isotopic impurity. The changes in force constants, polari-
zation, and effective charge are large enough to have significant
effect on the frequencies of defect modes. Unfortunately it would be
extremely complicated to take these changes into account.
um” ‘
Table IV
44
NaCl lattice-vibration eigenvectors for
wave prOpagation along the symmetry direction [10,0,0]/10
j 1 2 3 4 5 6
035 (1013/sec) 4.198 3.099 3.093 - 3.093 1.776 1.776
x -O.9284 -0.3716 0 0 0 0
Na+ y 0 0 -0.8435 0 0 -0.5372
2 0 0 0 -O.8435 -0.5372 0
x 0.3716 -0.9284 0 0 0 0
01 y 0 0 0.5372 0 0 -0.8435
2 0 o 0 0.5372 —O.8435 0
mm.
45
Table V7. NaCl lattice~vibration eigenvectors for
wave propagation along the non—symmetry direction [9,5,l]/10
j ' 1 2 3 4 5 6
0351013/566) 3.596‘ ‘3.356 2.896 2.882 2.596 2 229—_
-0.6435 -0.7022_ -0.0052 -o.2421_ -0.1651 -0.0830_
Na+ -0.4145 0 0 0.7465 0.5206 0
~0.6435 'f0.7022 0.0052 -0.2421 -0.1652 -0.0830
-0.0024 -0.0291 -O.664l -0.4035 0.5807 0.2902
01’ 0 0.1101 -0.4125 0 0 -0.9044
-o.0032 -0.0291 -0.6441 0.2902
0.4034 -0.5807
46
.Table 'VI. Properties of lattice-vibration eigenvectors
for NaCl on rigid-ion model.
Wavevector Eigenfreq. Angle (degrees) Na/Cl Hod. Class.*
px py pz ,wjuo’isec) _(Na, 01) (Na, k) (01, k) Arnpl. Rat.
10 4 0 36.27 0 21.80 21.80 . 11.49 ’ 0
32.83 0 90 00 90.00 4.060 c 0
29.46 , 0 68.20 68.20 4.391 9 to
29.06 0 21.80 g 21.80 0.134 a
' 25.24 0 ' 90.00 90.00 0.380 c ' a
22.81 0 ' 68.20 68.20 0.351 p a
10 2 2 38.78 0 15.79 15.79 4.564 p 0
32.54 0 74.21 74.21 3.447 - 0
30.13 ' .0 15.79 15.79 0.338 a
29.36 0 90.00 90.00 ' 2.097 c 0
24.49 0 74.21 74.21 0.447 a
18.24 0 . 90.00 90.00 0.735 t a
.9 .I‘ III‘ II I .6“
'Uavcvector
.PK
10
10
p
Y
2
P
2
0
Eigenfreq.
40.32
31.34
30.59
30.55
20.16
19.58
41.98
30.99
30.93
30.93
17.76
l7.76‘
35.96
33.56
28.96
"28.82
25.96
22.29
Angle (degreeS)
0
82.98
90.00
‘ 89 98
'90.00
‘90.00
90.00
11.31
90.00
11.31
' 78.69
90.00
78.69
90.00
, 90.00
90.00
90.00
34.67
56.85
56.87
81.12..
.80.72
56.85
11.31
90.00
11.31
78.69
90.00
78.69
90.00
90.00
90.00
90.00
77.69
34.70
56.84
80.93
Na/Cl Mod.
P.)
0.
313.
10.
cl>j(1o*7sec) (Na, Cl) (Na, k) (6;, k) ' Ampl. Rat.
.645
.192
.423
.181
.703
.707
.102
.497
.950
.950
791
.791
49
.009
.787
.863
.147 '
Class.*
Wavevector
P P
K Y
9 3 3
9 3 1
9 1 1
Eigenfreq.
37.86
33.21
30.21.
'27.50
26.58
18.75
38.96
32.10
.30.16
29.00
24.16
19.84
41.67
31.27
30.47
30.47
19.58
17.66
48
Angle (degrees)
21.01
65.04
57.03
30.95
7.621
28.66
73.33
57.28
12.06
28.00
2.728
48.61
56.53
0.922~q
16.
74.
40.
90.
75.
90.
87.
65.
75.
80.
80.
82
90.
37.
82.
90.
08
82
97
00
00
.838
49
58
86
25
46
.806
.17
00
97
88
00
4.926
40.14
16.06
90.00
73.49
90.00
4.252
66.87
11.45
47.39
84.22
81.99
0.077
49.22
90.00
18.55
83.80
90.00
Na/C] Mod.
10.
L»)
P; w36109.66) (Na, 01) (Na, k) (Cl.k) Amp1.Rac.
35
£629
.256
.421
.107
.637
.986
.217
.771
.586
.426
.650
.642
.726
.785
Class.*
0
o
a
C O
a
t a
o
,o
a
o
a
a
o
o
t _ O
a
a
t a
Wavevector
X Y
P
z
pfiigenfreq.
OJ
j(10n7sec)
35.22
35.20
28.65
28.36
27.47
20.036.
39.72.
31.73
30.62
27.61
24.28
19.73
39.35
32.37
29.79
26.92
24.25
21.61
Angle (degrees)
(Na, C1)
0
29.45
70.43
55.62
3.466
8.703
78.09
69.73
68.15
11.04
' 7.961
50.38
68.55
20:49
I
\
Na, R)
90.00
0.982
85.25
90.00
84.40
85.33
15.15
86.20
58.50
88.98
84.27
78.98
0.233
90.00
81.39
90.00
V 63.44
(01, k)
90.00
28.47
14.81
90.00
28.78
88.80
7.555
15.63
22.18
73.89
83.60
8.194
90.00
2.555
30.06
90.00
83.93
Na/Cl Nod.
Amp). Rat.
75.
13.
0.
68
.816
.020
.391
.521
.926
.573
.050
.538
530
.188
.350
.793
.469
.460
.266
Class.*
1‘. O
o
a
t a
o
a
o
o
a
o
a
a
o
L O
a
o
t a
a
Wavevector
'Eigenfreq.
UJj(10I2/sec)
41.77
30.91
29.62
29.17
22.99
17.52
42.56
31.07
29.99
28.15
19.21
16.92
43.83
30.69.
30.69
29.89
16.85
16.85
Angle (degrees)
50
(Na, Cl)
3.462
70.08
64.25
5.586
4.076
81.83
7.6.94
2.1.85
(Na, k)
4.503
72.90
51.55.
90.00
83.14
90.00
0.471
90.00
61.39
65.98
90.00
80.75
90.00
90.00
90.00
90.00
C
cl. k)
7.964
37.02.
12.70
90.00
88.72
90.00
4.547
90.00
20.43
90.00
82.93
90.00
90.00
90.00
90.00
Na/Cl Mod.
-Ampl. Rat.
2.
to
0.
0.
724
.268
739
.769
Class.*
0
o
a
C O
a
t a
o
t o
a
o
| t a
a
43 o
t O
t 0
11 a
t a
t a
Wavevector
Eigenfreq.
L"JjOOIZ/sec)
37.95
»33.29
30.25
27.39
26-66.
18.74
42.27
34.24
28.14
25.81
21.52
19.63
40.41
32.31
30.02
26.31
23.99
20.39
Angle (degrees)
(Na, Cl)
21.32
70.16
57.94
39.85
89:99
90.00
90.00
90.00
90.00
90.00
7.310
59.77
53.20
64.45
64.02
37.36
kn
1
(Na, k)
l\
to
84.
90.
18.
71
71
88.
82.
.48
.00
15
00
11
.91
.91
98
81
.91
.27
.36
.12
.93
.55
(C1. k)
(.11
b)
71
18.
48.
71.
71.
87.
0\
28.
24.
80.
68.
89.
.79
.71
.04
.00
.00
.93
09
52
93
97
61
Na/Cl Mod.
Ampl.
19.
0.
Rat.
.764
.438
.273
.440
.094
.632-
73
268
.024
.339
.246
.105
.587
.969
.892
.207
Class.*
\Javcvcctor
PX {Y P
7 3 3
7 3 l
7 1 l
Eigenfreq.
wj (l 0'1/sec)
43.25
31.75
28.37
27.22
22.87
17.78
43.95
30.73
29.14
27.21
21.55
18.30
45.63
30.21
30.05
28.29.
17.66
15.98
52
Angle (degrees) Na/Cl Mod.
(Na, 01) (Na, k) (Cl, k). Ampl. Rat.
2.898 10.44 7.539 2 983
21.93. 34.65 12.72 0.564
. 70.71 75.90 33.40 7.279
0 90.00 90 00 2.241
29.44 48.07 77.51 0.085
0 90.00 90.00 0.688
'2.669 5.195 7.084 2.252
7.707 85.81 86.96 2.373
41.62 36.55 5.404 0.889
49.09 82.62 51.66 2.002
13.97 88.17 88.46 0.514
4.836 82.04 84.54 0.670
1.787 2.577 4.364 2.092
26.72 79.85 73.43 1.998
0 90 00 90.00 1.855
27.07 15.65 11.42 ' 0.728
1.329 84.82 86.15 0.780
0 990.00 90.00 0.831
lass.*
o
.a
o
C 0
a
t a
o
o
a
o
a
a
O
o
t O
a
a
C a
Wavevector
x y
P
2
2
Eigenfreq.
“j (10%...)
41.73
33.29
29.61
25.29
22.90
19.33
40.46
33.04
28.94
25.85
25.38
19.59
44.72
35.05
25.35
25.09
20.43
18.62
Angle (degrees)
(Na, Cl)
17.71
61.31
~49.79
10.24
7.856
20.98
62.39
37.69 .
(Na, k)
16.57
77.42
70.07
90.00
57.56
90.00
90.00
90.00
90.00
8.237
30.90
80.29
90.00
61.40
90.00
Cl, k)
60.14
90.00.
67.80
90.00
90.00
90.00
90.00
0.382
9.919
17.89
90.00
90.00
Ampl.
5.
Na/Cl Mod.
Rat.
401
.560
.347
.862
.414
.399
.742
.030
.562
.306
.364
.985
.330
.41
.177
.078
.485
Class.*
0
a
o
t O
a
t a
4L 0
L O
.8 a
t 3
t O
t a
o
a
o
t 0
a
C a
Wavevector‘ Eigenfreq.
X Y
6 4
P .
Z
wj (l On/sec)
45.23
30.54
29.24
25.15
20.70
19.25
45.40
31.35'
27.71
24.93
21.29
19.34
47.67
28.67
28.28 .
27.43
19.37
15.53
54
Angle (degrees)
(N5, 01)
2.353
53.03
54.68
36.65
40.34
19.86
1.490
23.04
39.82
. 8.484
0.635
37.18
34.10
1.645 _
(Na, k) ‘(Cl. k)
6.416
50.96
'70.72
85.74
75.57
80.70
2.464
90.00
23.22
85.65
90.00
78.93
5.556
90.00
75.06
27.52
89.42
‘90.00
4.
54.
88.
79.
86.
90.
54.
90.
87
90.
67.
O\
87.
90.
02
58
03
.955
00
.188
52
00
.41
.190
00
76
.589
77
00
Na/Cl Mod.
Amp] 0
r.)
Rat.
.326
.942
.699
.956
.424
.504
.043
.400
.835
.327
.642
.955
.875
.304
.830
.629
Class.*
O
a
o
o
a
a
o
C 0
a
o
t a
a
o
‘1'. O
o
a
a
C a
Wavevector
Eigenfreq.
OJj(10n/sec)
48.11
30.41
28.31
26.25
16.47
16.22
48.74
30.10
30.10
25.93
14.24
14.24
45.22
36.42
23.97
23.97
19.30
19.30
Angle (degrees)
55
(Na, CI)
1.397
28.51
28.41
1 .' 724
(Na. 8)
3.150
90.00
78.30
14.55
90.00
83.03
90.00
90.00
90.00
‘ 90.00
90.00
90.00
’—
(c1, k)
Ln
L\
4.
90.00
73.19
13.86
90.00
84.76
90.00
90.00
90.00
90.00
90.00
90.00
Na/C1 Mod.
Rat.
.880'
.875
.008
.794
.856
.762
.762
.831
.875
.875
Class.*
0
t .0
o
a.
t a
a
46 , o
t O
t O
L a
t a
t a
it o
2 a
t o
t 0
C a
t a
‘Wavevector
Eigenfreq.
b“j (10’7sec)
'45.92
33.60
26.72_
24.04
19.27
19.13
46.07
30.82
28.36
24.12
20.88
19.19
49.08
29.48
26.81
25.71
18.60 '
16.09
56
Angle (degrees)
(Na, C1) (Na, k) (C1, k)
1 4.137 _ 6.676 2.542
16.50 I 25.21 8.716
15.27 81.46 83.27
0 90.00 90.00
0 _ 90.00 90.00
‘ 3.459. 74.64 79.09
1.903 ' 4'575, f 2.673
28.78 87.56 63.66
.28.04 8.049 19.99
0 90 00 90 00
3.429 73.76 77.19
0.726 4.521 3.795
8.670 14.38 5.706
0 90.00 90.00
11.66 - 83.13 85.21
2.068 80.81 82.88
NA/Cl Mod.
Aupl. Rat.
2.935
0.551
2.599.
12.34
0.125
0.568
2.074
2.444
0.727
7.603
0.647
0.203
2.023
0.773
2.024
2.780
0.543
0.762
Class.*
0
a
o
t O
1: £1
a
o
o
a
t 0
a
C a
o
a
C ' O
o
a
t a
wavevector
q a
Ligenfre
50.08
29.77
26.04
25.25
17.45
15.74
51-43
30.23
28.28
23.35
15.68
10.77
48.59
32.17
24.97
24.97
17.66'
17.66
q.
‘93 (109566)
57
Angle (degrees)
(Na, Cl)
0.628
4.104
43.19
40.72
4.820
3.104
0.280
3.133
0.629
(Na, 1()
3.483
88.97
74.93
27.33
88.05
83.74
2.341
90.00
86.58
1.020
88.30
90.00
90.00
90.00
89.97
90.00
(C1, k)
3.729
85.32
p...
U!
N
O
87.62
84.99
2.621
90.00
89.71
2.340
88.93
90.00
90.00
89.97
90.00
Na/Cl Mod.
Ampl.
r—D
p—A
Rat.
.805
.915
.070
.894
.712
.798
.737
.647
.673
.650
.650
.582
.582
Class.*
0-
O
o
a
a
a
o
to
o
a
8
ca
£0
46.
CO
to
ta
ta
Wavevectors
P P
Y
P
2
2
Eigenfreq.
"8 j (1 O’z/sec)
50.66
28.29
27‘. 06
24.90
16.84
16.21
50.93
30.35
~24.88
23.92 .
16.89
16.48
53.45
28.10
27.04
22.62
14.57
12.72
58
Angle (degrees)
(Na, 01) _(Na, k) (01, k)
0.845
31.57
31.24
1.091
0.047
0.675
0.719
0.116
3.146
83.56
13.51
90.00
90.00
80.72
90.00
90. 00
90.00
90.00
2.761
90.00
87.00
2.547
88.02
90.00
2.301
64.87
17.73
90.00
90.00
81.81
90.00
90.00
90.00
90.00
2.807
90.00
87.68
1.828
87.90
90.00
Ampl.
Na/Cl Mod.
1.861
1.935
0.834"
2.382
0.647
0.792
1.757
1.907
2.293
0.877
0.809
0.673
1.704
1.736
1.869
0.905
0.825
0.888
Rat.
Class.*
0
o
a
t o
t a
a
K, o
t O
t O
8 a
t a
t a
o
t O
o
a
a-
t a
U:
9
0
p)
in
Eigenfreq. Angle (degrees) Na/CI Mod.
Ldj (1012/5061) (Na, Cl) (Na, k) (Cl, k) Ampl. Rat.
53.93 0.338 1.94 2.287 1.662
29.65 0 90.00 90.00 1.700
27.31 “3.136 86.85 89.99 1.762
20.40 3.428 ~2.428 5.856 0.921
12.70 0.689 84.87 85.56 0.882
12.42 '0 90.00 90 00 0.907
54.38 0 0 0 1.642
29.40 0 90 00 90.00 1.642
29.40 0 90 00 90.00 1.642
18.98 '0 0 0 0.939
10.27 0 90.00 90.00 ‘ 0.939
10.27 0 90.00 90.00 0.939
53.34 0 0 0 1.751
26.47 0 90 00 90.00 1.867
26.47 0 90.00 90.00 1.867
24.78‘ 0 0 0 0.881
14.23 0 90.00 90.00 0.826
14.23 0, V 89.97 89.97 0.826
a
wavevectors
P P P
x y z
3 3 1
Eigenfreq.
wjflO’z/sec)
54.84
.9...
2....
20.10
12.96
12.32
56.69
28.77-
'28.28 .
" 15.94
9.642
8.886
57.08
27.66
27.66
16.71
9.948
9.948
60
Angie (degrees)
(Na, C1)
0.156
0.899
0.973
.0.214
.0.115
0.693
"0.783'
0.211
(Na. k)
1.176
89.20
90.00
3.233
90.00
86.02
1.426
90.00
88.28
2.578
86.80
90.00
90.00
90.00
-90.00
90.00
(Cl, k)
1.020
88.30
90.00
4.206
90.00
86.21
1.541
90.00
88.97
87.01
90.00
90.00
90.00
90.00
90.00
Na/Cl Mod.
Ampl. Rat.
1.654
1.706
1.790
0.931
0.862
0.904
1.602
1.617
1.638
0.961
0.942
0.954
1.608
1.649,
0.959
0.935
0.935
Class.*
0
o
C O
a
t a
a
o
t o
o
a
a
t a
.2 o
t. O
t 0
I; a
t a
L a
Navevectors
P P
y z
2 0
0 0
1 1
Eigenfreq.
j(10’7sec)
57.86
29.07
27.49
13.45
8.537
7.844
58.69
28.85
28.85
10.13
5.376
5.376
59.43
28.38
28.38
8.396
5.109
5.109
61
Angle (degrees)
(Na, Cl)
(Na, k)
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
89.99
89.96
90.00
(C1. k)
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
89.99
89.96
90.00
Na/Cl Mod.
Ampl. Rat.
1.582
1.597
1.618
0.975
0.953
0.965
1.563
1.567
0.986
0.984
0.984
1.556
1.565
1.565
0.991
0.985
0.985
Class.*
2, o
t O
‘C 0
1’. a
t a
C a
80
t O
C O
1". .1
t a
t a
a.
t O
t O
(,6
t a
t a
62
Navevectors Eigenfre . Angle (degrees) Na/Cl Mod. Class.*
<1
P P P wj (10’7sec) (Na, Cl) ' (Na, k) (C1, k) Ampl. Rat.
0 0 0 60.2 1.542 8. 0
28.61 - . 1.542 c 0
28.61 . 1.542 c o
0 1.000 -6 a
0 1.000 c ‘a
0 . 1.000 c 8
*Classification: 0, optical; a, acoustic; t, transverse; Z , longitudinal
ON
'30
Table VII. Angular frequencies (in 10 3 rad/sec)
for impurity vibrations in NaCl and KCl.
' Calculated Eigenfrequencies U-Center Absorption
NaCl KCI NaCl KCl
Impurity . 8 RI DD RI DD Impur- ,
. Mass 601 00(1) 00(1) 00(1) 05(1) ity Ion w. 00.
1.009 0.972 15.9 15.177. 14.2 13.5 H" 10.52 9.36
2.015 ' 0.943 11.2 ,_ 10.6 10.1 9.4 0' - 6.73
1.42 _ 1.42 1.41 1.43 p 1.39
Ratio _.
20 9< 103551;"
-———-THIS WORK: R1
'51=_TH'S WORK: 00
NaCl
/
-—-EXPTL: SCHAEFER (1960)
—-THEOR: WALLIS ET AL.(|960)
10- —-—
/ I
// I
—————— — -—-;/-—(wg)=6.02xm‘3-—--§- --—-
/ RI 1 ‘
a/I . }
55...._—¢;::2:::' ________ .Q) = .8, §“_4.__:::'
( (2)061 9X16 (
1 i
0.6 0.8 1.0
501
Fig. 1. Frequency of local modes in NaCl as a function of
the basis of RI and DD models.
65
KCl
15 ~X10'38E0",
--,--THlS WORK, H: R1
—-L THIS WORK,H: 00
_..—01an., H: WALLIS ET AL. (1960)
--THEOR., H: ROSENSTOCK ET AL. (1980)
,0 :_:--THlS WORK, 0: RI
_/ THIS WORK, 0: 00
EXPTL, H: SCHAEFER (1961)
~--- EXPTL.,.D: MlTSUlSHl ET AL. (1962)
+—_——-—n.‘”u————~—~——_——-”—- ———_——’——_—_-—-—_—___—.~_
51" 5”, .4
- ------------- ;; 7’—-——-————(w£)R- =458Xl03 -- | ---~
“figf’ . I
“'*“"=: ““““““““ CU =3.87XIOB “- "-—
( 2100 !r‘
J J ! 1
05 0.7 0.9
6'
Cl
. . . a ’ ~ ., . ,. .r Y! "1 I ‘ .t‘.“v‘ .. .' O '- I' a
Fig 2. Fre1u=neies of Local msdes in 131 as a Laaaeion or 6:31, On
.5
the basis or RF mi in models
66
'50 L 1 1 1
NaCl
40 —- 4
N___ 301- ‘
5..
3:
2S
5
2 20- -
10 =- -
. O
0.6 LO
.6
Cl.
Fig. 3. Amplitude of vibration of impurity atom in NaCl, in terms
of MCl(X(f, O)‘ 2, as a function of 6C1’ on the basis of RI and
DD models .
so - -
4o - -~
N—
ES.
2
20 -— ..
105- _.
o
05
Fig. 4. Amplitude of vibration of impurity atom in K61, in terms of
MCI IX“, O)|2, as a function of 661’ or; the basis of R1 and D3 models.
68
CHAPTER IV
DISCUSSION
We have seen that for wavevectors directed along axes of
symmetry in the perfect rock- salt structure, the lattice vibration
waves are either purely transverse or purely longitudinal. For
directions of somewhat lower symmetry, viz. , when either one
component of the wavevector is zero or two of them are equal, there
is‘a pair of transverse waves. But for all other wavevectors , the
waves are neither transverse nor longitudinal. We have seen also
that when isotopic impurities are introduced in the rock-salt lattice,
local modes will appear above the optical branches for mass differences
beyond a certain critical value.
From earlier theoretical calculations based on simplified models,
it appeared as if U-centers in NaCl and KCI behave quite like isotopic
impurities. But evidently it is inadequate to treat them as simple
isotopic impurities harmonically coupled to the lattice, without con-
sidering changes in force constants, polarization, and effective
charge. Unfortunately there is no way to introduce these quantities
explicitly, One can, however, take the frequency of the local mode
as a known! parameter, and make some estimate of the change in
short-range force constants between nearest neighbors. One can
assume that r0 remains unchanged, and hence that the first derivative
of the short-range potential is unchanged from that given by eq. (1 . 23a).
If we assume that there is partial compensation among some of these
quantities, and that changes in short-range potential absorb some of
them, the only parameter which changes is the quantity A given by
eq. (1. 24a). With these simplifying assumptions, it is possible to
69
I
write a Coax, ( )5 ”I ) which would include change in mass and in A.
In general this quantity would be a 21x21 matrix, with the only unknown
the change in A. Thereby one can find the change in A, and get some
idea of the change in force constants produced by the impurity. The
computations involved are not prohibitive, but neither are they brief:
they are probably worth undertaking.
l
2.
3.
6.
7.
8.
10.
11.
12.
13.
14.
15.
16.
70
REFERENCES
. J.'L. de Lagrange, Oeuvres, v. 1, p. 520, 2nd ed., 1867.
M. Born and V. Karman, Phys. Z. _13, 297 (1912).
M. Blackman, Proc. Roy. Soc. (London) A148, 385 (1935); A149,
117, 126 (1935).
. E. J. Routh, Dynamics of a System of Rigid Bodies. Reprint,
Dover, New York, 1955.
. Lord Rayleigh, Theory of Sound Vol. 1, Reprint, Dover, New
York, 1945.
M. Born, Atom Theorie Des Festen Zustandes 1923, 2nd ed. ,
Leipzig and Berlin.
M. Born and M. Goeppert-Mayer, Handbuch der Physik, 2nd ed. ,
24, part 2, p. 623, Berlin.
M. Born and J. H. C. Thompson, Proc. Roy. Soc. (London)
A147, 594 (1934).
. P. P. Ewald, Ann. Phys., Lpz., [4], 93» 253 (1921).
J. H. C. Thompson, Proc. Roy. Soc. (London) _Afl, 487 (1935).
E. Broch, Proc. Camb. Phil. Soc. 23, 485 (1937).
R. H. Lyddane and K. F. Herzfeld, Phys. Rev. 51, 846 (1938).
E. Madelung, Phys. Z. 12, 524 (1918).
L. Pauling, Z. Krist. 61, 377 (1928).
E. W. Kellermann, Phil. Trans. Roy. Soc. (London) A238, 513
(1940).
P. P. Ewald, Nachr. Ges. Wiss. Goettingen, N. F. II, 3, 55 (1938).
gr I _—
_——_—-—
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
71
E. V. Sayre and J. J. Beaver, J. Chem. Phys. _l_8_, 584 (1950).
A. M. Karo, J. Chem. Phys. __3__1_, 1489 (1959); g, 7 (1960).
B. Szigeti. Trans. Faraday Soc. _4_5_, 155 (1949); Proc. Roy. Soc.
(London) A204, 51 (1950).
M. Born and K. Huang, Dynamical Theory of Crystal Lattices,
Oxford, Clarendon Press, 1954.
J. R. Hardy, Phil. Mag. 4, 1278 (1959).
J. R. Tessman, A. H. Kahn, and W. Shockley, Phys. Rev. 22,
.890 (1953).
J. R. Hardy and A. M. Karo, Phil. Mag. 2, 859 (1960).
J. R. Hardy, Phil. Mag. _6_, 27 (1961); 1, 315 (1962).
J. Yamashita and J. Kurosawa, J. Phys. Soc. Japanlfzfl, 610 (1955).
B. G. Dick and A. W. Overhauser, Phys. Rev. _l__li, 90 (1958).
J. E. Hanlon and A. W. Lawson, Phys. Rev. 113, 472 (1959).
W. Cochran, Phil. Mag. 4, 1082 (1959); Proc. Roy. Soc. (London)
A253, 260 (1959).
A. D. B. Woods, W. Cochran, B. N. Brockhouse, Phys. Rev.
119, 980 (1960).
A. D. B. Woods, B. N. Brockhouse, R. A. Cowley, and W. Cochran,
Phys. Rev. 131, 1025 (1963); R. A. Cowley, W. Cochran, B. N.
Brockhouse, and A. D. B. Woods, Phys. Rev. 131, 1030 (1963).
K. B. Tolpygo, Zhur. Eksp. iTeoret. Fiz. 22, 497 (1950); V. S.
Mashkevich and K. B. Tolpygo, Soviet Physics JETP _5_, 435 (1957).
I. M. Lifshitz, J. Phys. (USSR) 1, 211, 249 (I943); Doklady Akad.
Nauk. USSR :8, 83 (1945); Zhur. Eksp. iTeoret. Fiz. _l_7_, 1017,
1076 (1947); _l__8_, 293 (1948); Nuovo Cimento Suppl. [10], _3_, 716 (1956).
E. W. Montroll and R. B. Potts, Phys. Rev. 102, 72 (1956); Phys.
Rev. 100, 525 (1955); Paul Mazur, E. W. Montroll, and R. B.
Potts, J. Washington Acad. Sci. :16, 2 (1956).
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
72
O. Litzman, Czechoslov, J. Phys. 7, 410, 690 (1957); 8, 521,
633 (1958); 9, 692 (1959); G. SchaefEr, J. Phys. Chem.— Solids
12. 233 (196-0); A. Mitsuishi and H. Yoshinaga, Suppl. Prog.
Theor. Phys., 1962, p. 241. ‘
F. J. Dyson, Phys. Rev. 22, 1331 (1953).
Suppl. Prog. Theor. Physics (Japan1,,No. 23 (1962) "Lattice
Vibrations of Imperfect Cgstals. " ~—
A. A. Maradudin, E. W. Montroll, and G. H. Weiss,
"Theory of Lattice Dynamics in the Harmonic Approximation,"
Solid State Physics Suppl. T(1963).
Astr0physics and the Many—Body Problem, Brandeis Lectures
I96TVOT. 2, W. A. Benjamin Inc. ,1 NEW York.
H. B. Rosenstock and C. C. Klick, Phys. Rev. 119, 1198 (1960).
R. F. Wallis and A. A. Maradudin, Prog. Theor. Phys. 24,
1055 (I960). _—
P. G. Dawber and R. J. Elliott, Proc. Roy. Soc. (London)
A273, 222 (1963).
G. Schaefer, J. Phys. Chem. Solids 12, 233 (1960); A. Mitsuishi
and H. Yoshinaga, Suppl. Prog. Theor. Phys., 241(1962).
A. M. Karo and J. R. Hardy, Phys. Rev. 129, 2024 (1963).
0.0
2.0
2.0
4.0
COULOMB COUPLING COEFFICIENTS IN
0.0 0.0
«8.3776
.0000
.0000
8.3776
.0000
.0000
.0 .0
«8.2846
.0000
.0000
8.5351
.0000
.0000
2.0 .0
-2.047O
~6.2246
.0000
2.1740
6.0909
.0000
2.0 2.0
.0000
-4.I335
~4.1335
.0000
3.9950
3.9950
.0 .0
~8.0i33
.C000
.0000
8.9937
.0000
.0000
2.0 .0
«5.5427
”4.9053
.0000
6.4048
4.6486
.0000
4.0 00
~I.8981
~6.0331
.0000
2.4151
5.5403
.0000
Appendix A
.0000
4.1888
.0000
.0000
“4.1888
00000
.0000
4.1423
.0000
.0000
*4.2676
.0000
-6.2246
”2.0470
.0000
6.0909
2.1740
00000
-4.1335
.0000
-4.1335
3.9950
.0000
3.9950
00000
4.0066
00000
.0000
’4.4969
.0000
*4.9052
1.5897
.0000
4.6486
~1.8228
00000
‘6.0331
“1.8981
.0000
5.5403
2.4151
.0000
73
TABLE
.0000
.0000
4.1888
.0000
.0000
*4.1888
.0000
.0000
4.1423
.0000
.0000
*4 o 2676
.0000
.0000
4.0940
.0000
.0000
-4.3479
~4.1335
-4.1335
.0000
3.9950
3.9950
.0000
.0000
.0000
4.0066
.0000
.0000
“4 . 4969
.0000
.0000
3.9530
.0000
.0000
“4.5820
.0000
.0000
3.7963
.0000
.0000
w4.8303
VIII
8.3776
.0000
.0000
~8.3776
.0000
.0000
8.5351
.0000
.0000
“8.2846
.0000
.0000
2.1740
6.0909
.0000
”2.0470
~6.2246
.0000
.0000
3.9950
3.9950
.0000
~4.1335
~4.1335
8.9937
.0000
.0000
-8.0132
.0000
.0000
6.4048
4.6486
.0000
*5.5427
-4.9052
.0000
2.4151
5.5403
.0000
”1.8981
-6.0331
.0000
MATRIX FORM
.0000
*401888
.0000
.0000
4.1888
.0000
.0000
"4.2676
.0000
.0000
4.1423
.0000
6.0909
2.1740
.0000
~6.2246
—2.0470
.0000
3.9950
.0000
3.9950
44.1335
.0000
-4.1335
.0000
-4.4969
.0000
.0000
4.0066
.0000
4.6486
-1.8228
.0000
-4.9052
1.5897
.0000
5.5403
2.4151
.0000
~6.0331
-l.8981
.0000
.0000
.0000
”4.1888
.0000
.0000
4.1888
.0000
.0000
-4.2676
.0000
.0000
4.1423
.0000
.0000
~4.3479
.0000
.0000
4.0940
3.9950
3.9950
.0000
—4.l335
~4.1335
.0000
.0000
.0000
~4.4969
.0000
.0000
4.0066
.0000
.0000
-4.5820
.0000
.0000
3.9530
.0000
.0000
-4.8303
.0000
.0000
3.7963
74
s . -5 1 i i? ~ '9 e (3.7 I§C§ “" v - 7 '7”’ ’ ’1“ '?1 1 {7 0 37'\' J? . fi 3 7’03
~54 a. f'f 733.3 . 956‘...) - Q; o i: 5: 27:3 :L g L’ 0 .5 Cw? . 325.2 3.. :- . 8 962
“9.0739 *2.0489 1.9639 3.5079 1.8962 “2.3261
4.6522 3.6079 3.8079 -.-3.':;}115”.5 ~400739 "4.0739
3.8079 *2.3261 1.8962 ~4.0739 1.9559 “2.0489
3.8079 1.8962 ‘2.3261 ‘4.0739 ~290489 1.9559
4.0 4.0 4.0
“1.2499 *5.3477 “2.6969 1.6350 4.8365 2.4030
~5.3477 *1.2499 *2.6969 4.8365 1.6350 2.4030
“2.6969 “2.6969 2.4998 2.4030 2.4030 “3.2701
1.6353 4.8365 2.4030 “1.2499 —5a3477 “2.6969
4.8365 1.6350 2.4030 "5.3477 *1.2499 ’2.6969
2.4030 2.4030 “3.2701 “2.6969 ~2.6969 2.4998
4.3 4.0 4.0
.0000 -3.9892 "3.9892 .0000 3.4234 3.4234
~3.9892 .0000 *3.Q892 3.4234 .0000 3.4234
"3.98923, ~3.9392 .0000 3.42334 3.42351 .0000
00000 3.4234 3.4234 .0000 ~3c95‘392 -‘ .13.".5‘t‘f9‘2
3.4234 .0000 3.4234 “3.9892 .0000 - .3.’:.45':$'_.32
3.4234 3.4234 .0000 ‘3.9892 “3.989? .0600
6.0 .0 .0
“7.5855 .0000 .0000 9.7125 .0000 .0000
.3000 3.7928 .0000 .0000 ~4.8563 .0000
.0000 00000 3.7928 .0000 .0000 ‘9.8563
9.7125 .0000 .0000 “7.5855 .0000 .0000
.0000 -4.8563 .0000 .0000 3.7928 .0000
.00 I .0000 “4.8563 .0000 .0000 3.7928
6.0 2.3 .0
*L’.366{3 “3.5774 .0000 8.3840 3.2191 .0000
“3.5774 2.6362 .0000 \.2191 "3.4349 .0000
.0000 00000 3.7306 .0000 .0000 “4.9492
8.3840 3.2191 .0000 “6.36158 23.5774; .-’Ji’j0£)
3.2191 “3.4349 .0000 “3.5774 2.6362 .0000
.0000 .0000 "4.9492 .0000 .0000 3.7303
0.0 4.0 .0
*3.8684 "5.4057 .0000 5.5654 4.7174 0&0?
~5.4057 .3196 .0000 4.717“ ‘03452 '"NV
.0000 00000 3.5487 .0000 .0000
5.5654 4.7174 .0000 *3.8684 ~5.4067
9.7174 ".3452 .0000 ”5.4057 .3196
00000 00000 ”5.2203 .0000 .0000
0 0 6.0 .0
*1.6304 ~5.66d7 .0000 2.8235 4.7062
*5.6687 “1.6304 .0000 4.7062 3.6235
.0000 .0000 3.2607 .0000 .0000
2.8235 4.7062 .0000 “1.6304 ~5.6687
4.7002 2.8235 .0000 ~'5.6687 ~1.6304
.0000 00000 “5.6470 .0000 .0000
6.0
0.0
m
.
D
8.C
2.0 2.0
~5.3783
—3.2441
-3.2441
7.2825
2.8722
2.8722
.0 2.0
~3.2918
—5.0100
-2.5376
4.8659
4.2950
2.1256
.0 2.0
-1.3530
-5.3649
~1.8744
2.4071
4.3640
1.3973
.0 4.0
-1.9985
-4.1145
~4.1145
3.2131
3.3207
3.3207
6.0 4.0
-.6987
-4.6331
-3.1961
1.3453
3.5179
2.2739
6.0 6.0
.0000
~3.8120
—3.8120
.0000
2.5098
2.5098
.0 .0
-7.0381
.0000
.0000
10.6263
.0000
.0000
~3.2441
2.6891
“1.1128
2.8722
*3.6412
.9371
-5.0100
.5374
-1.7308
4.2950
-.7111
1.3919
~5.3649
‘1.3530
-1.8744
4.3640
2.4071
1.3973
~4.1145
.9993
-2.8187
3.3207
-1.6065
2.1643
-4.6331
-.6987
*3.1961
3.5179
1.3453
2.2739
-3.8120
.0000
-3.8120
2.5098
.0000
2.5098
.0000
3.5190
.0000
.0000
“5.3131
.0000
75
—3.2441
‘1.1128
2.6891
2.8722
.9371
~3.6412
-2.5376
-1.7308
2.7545
2.1256
1.3919
-4.1546
—1.8744
-l.8744
2.7061
1.3973
1.3973
—4.8142
—4.1145
-2.8187
.9993
3.3207
2.1643
-1.6065
—3.l961
-3.1961
1.3975
2.2739
2.2739
~2.6907
-3.8120
-3.8120
.0000
2.5098
2.5098
.0000
.0000
.0000
3.5190
.0000
.0000
~5.3131
7.2825
2.8722
2.8722
~5.3783
-3.2441
-3.2441
4.8659
4.2950
2.1256
‘3.2918
-5.0100
“2.5376
2.4071
4.3640
1.3973
“1.3530
-5.3649
-1.8744
3.2131
3.3207
3.3207
‘1.9985
-4.1145
-4.1145
1.3453
3.5179
2.2739
-.6987
-4.6331
-3.1961
.0000
2.5098
2.5098
.0000
”3.8120
‘3.8120
10.6263
.0000
.0000
-7.0381
.0000
.0000
2.8722
—3.6412
.9371
~3.2441
2.6891
-1.1128
4.2950
”.7111
1.3919
'-5.0100
.5374
‘1.7308
4.3640
2.4071
1.3973
~5.3649
-1.3530
-l.8744
3.3207
41.6065
2.1643
-4.1145
.9993
-2.8187
3.5179
1.3453
2.2739
-4.6331
-.6987
-3.1961
2.5098
.0000
2.5098
-3.8120
.0000
~3.8120
.0000
-5.3131
.0000
.0000
3.5190
.0000
2.8722
.9371
-3.6412
-3.2441
-1.1128
2.6891
2.1256
1.3919
-4.1548
“2.5376
“1.7308
2.7545
1.3973
1.3973
~4.8142
‘1.8744
‘1.8744
2.7061
3.3207
2.1643
-1.6065
-4.1145
—2.8187
.9993
2.2739
2.2739
-2.6907
-3.1961
-3.1961
1.3975
2.5098
2.5098
.0000
-3.8120
-3.8120
.0000
.0000
.0000
-5.3131
.0000
.0000
3.5190
”‘1
.
3.0
(I)
.
0
CD
9
C)
8.0
4.0 .0
"4.6463
~4.4649
.0000
7.8509
3.6403
.COQO
é.-: .c
"2.7837
~5.1673
.0000
5.5382
4.0132
.0000
-‘
~2.5277
«R . ”39377
9.0941
2.0821
2.0821
4.0 2.0
~4.2049
~4.2489
~2ol641
7.2992
3.3913
1 .615685
5.0 2.0
-2.5199
~4.9694
*1.7613
5.1487
3.7672
1.1844
'2.6801
2.8838
.0000
2.2513
“4.4036
.0000
”4.4649
1.4155
.0000
3.6403
"2.1335
.0000
“5.1673
~.1057
.0000
4.0132
.6548
.0000
“5.0866
“1.2238
.0000
3.7007
3.4018
.0000
-2.5277
2.8524
".6898
2.0821
“4 .5471
.4837
-4.2489
1.4655
“1.1744
3.3913
“2.3533
.7738
~4.9694
.0037
“1.4013
3.7672
.3848
.8374
76
.0000
.0000
3.4457
.0000
.0000
-5.4162
.0000
.0000
3.2308
.0000
.0000
”5.7174
.0000
.0000
2.8894
.0000
.0000
“6.1929
.0000
.0000
2.4476
.0000
.0000
~6.8037
"2.5277
".8898
2.8524
2.0821
.4837
"4.5471
“2.1641
“1.1744
2.7394
1.6685
.7756
-4 . 9459
”1.7613
“1.4013
2.5162
1.1844
.8374
~5.5335
9.8198
2.2513
.0000
“6.3295
“2.5801
.0000
7.8509
3.6403
.0000
*4.6463
*4 . 464 C)
.0000
5.5382
4.0132
.0000
”2.7837
“5.1673
.0000
3.4018
3.7007
.0000
“1.2238
“5.0866
.0000
9.0941
2.0821
2.0821
“5.7047
~2.5277
*2.5277
7.2992
3.3913
1.6685
“4.2049
”4.2489
"2.1641
5.1487
3.7672
1.1844
”2.5199
"4 . 9694
”1.7613
2.2513
“4.4036
.0000
~2.6807
2.8838
.0000
3.6403
-2.1335
.0000
”4.4649
1.4155
.0000
4.0132
.6548
.0000
-5.1673
”.1057
.0000
3.7007
3.4018
.0000
~5.0866
~1.2238
.0000
2.0821
*4.5471
.4837
*295277
2.8524
-.6898
3.3913
~2.3533
.7756
«4.2489
1.4655
~1.1744
3.7672
n 384.“
.8374
”4.9694
.0037
"1.4313
.0000
.0000
*5.4162
.0000
.0000
3.4457
.0000
.0000
-5.7174
.0000
.0000
3.2308
.0000
.0000
”6.1929
.0000
.0000
2.8894
.0000
.0000
“6.8037
.0000
.0000
2.4476
2.0821
.4837
—4.E’)471
—2.5277
-.éd98
2.8524
1 . 6685‘»
.7756
“4.9459
*2.1641
"1.1744
2.7394
1.1844
.8374
~5.533:
”1.7613
”1.4013
2.5162
Qmmr-u
8.0
8.0
8.0
8.0
8.0 2.0
~1.0898
-4.9395
-1.4288
3.1215
3.4931
.7428
4.0 4.0
-3.1189
—3.7201
-3.7201
5.8903
2.7640
2.7640
6.0 4.0
~1.8550
~4g4710
—3.1116
4.1151
3.1253
1.9944
8.0 4.0
*.7498
-4.5611
-2.5914
2.3505
2.9333
1.2572
6.0 6.0
-1.0559
—3.8729
—3.8729
2.7287
2.2912
2.2912
8.0 6.0
-.3433
-4.o932
-3.3421
1.2524
2.1650
1.4399
8.0 8.0
.0000
—3.6695
~3.6695
.0000
1.3291
1.3291
-4.9395
“1.0898
‘1.4288
3.4931
3.1215
.7428
-3.7201
1.5595
-2.0391
2.7640
-2.9452
1.2666
-4.4710
.2627
~2.4896
3.1253
-.3462
1.3955
-4.5611
-.7498
-2.5914
2.9333
2.3505
1.2572
-3.8729
.5279
-3.1266
2.2912
-1.3644
1.5725
-4.0932
-.3433
-3.3421
2.1650
1.2524
1.4399
-3.6695
.0000
-3.6695
1.3291
.0000
1.3291
77
-l.4288
-l.4288
2.1795
.7428
.7428
-6.2430
“3.7201
~2.0391
1.5595
2.7640
1.2666
”2.9452
-3.1116
-2.4896
1.5923
1.9944
1.3955
~3.7689
-2.5914
-2.5914
1.4996
1.2572
1.2572
*4.7009
-3.8729
-3.1266
.5279
2.2912
1.5725
‘1.3644
-3.3421
-3.3421
.6867
1.4399
1.4399
”2.5049
-3.6695
-3.6695
.0000
1.3291
1.3291
.0000
3.1215
3.4931
.7428
-1.0898
-4.9395
-l.4288
5.8903
2.7640
2.7640
43.1189
~3.7201
-3.7201
4.1151
3.1253
1.9944
*1.8550
“4.4710
-3.1116
2.3505
2.9333
1.2572
-.7498
-4.5611
*2.5914
2.7287
2.2912
2.2912
-1.0559
-3.8729
-3.8729
1.2524
2.1650
1.4399
”.3433
-4.0932
~3.3421
.0000
1.3291
1.3291
.0000
”3.6695
-3.6695
3.4931
3.1215
.7428
-4.9395
-l.0898
-1.4288
2.7640
-2.9452
1.2666
-3.7201
1.5595
~2.0391
3.1253
-.3462
1.3955
~4g4710
.2627
-2.4896
2.9333
2.3505
1.2572
-4.5611
-.7498
-2.5914
2.2912
-1.3644
1.5725
~3.8729
.5279
-3.1266
2.1650
1.2524
1.4399
-4go932
*.3433
-3.3421
1.3291
.0000
1.3291
-3.6695
.0000
-3.6695
.7428
.7428
-6.2430
”1.4288
-1.4288
2.1795
2.7640
1.2666
-2.9452
-3.7201
-2.0391
1.5595
1.9944
1.3955
-3.7689
-3.1116
-2.4896
1.5923
1.2572
1.2572
-4.7009
-2.5914
-2.5914
1.4996
2.2912
1.5725
-1.3644
-3.8729
-3.1266
.5279
1.4399
1.4399
-2.5049
-3.3421
-3.3421
.6867
1.3291
1.3291
.0000
'3.6695
“3.6695
.0000
t ' f '0‘ 3 ..._I‘ C .."
.7- 'j “ 1., 1 ';J
.0000
.0000
11.6497
.0000
.0000
u 1 ,\ f. (N '1
‘ - a .' c 0 ‘.
.€.9573
i
I";
.038&
.0000
.1039
.5783
.0000
1.0.0 33.0 CO
""11 . 77 :32.
-?.5721
.0000
9.6736
2.6867
.0000
10.0 6.0 .0
w5.2831
“4.3880
. :C‘OQ
7.8328
3.1479
.0000
10.0 8.0 .0
~1.9§53
~4o§§96
.3000
2.8830
3.:672
D‘
e C: 0 {7:} C}
,3 . 2. 0'99
.0000
.0000
"5.8249
.0000
“3.0384
2.8357
.0000
1.5783
-5.1642
.0000
“3.5721
1.9000
.0000
2.5867
“3.3973
.0000
”4.3886
.5310")
.0000
3.1479
".9937
.0000
”4.5596
~.0866
.0000
3.0672
1.6132
00000
~4.26b1
«.6698
r
0000(
“1.9686
2.7661
*.4827
1.4537
”5.8964
.5409
78
I. } ‘..\ J' I {'1‘
W
. 0 Cl C F;
3.2099
.0000
.0000
wfi.82&0
.0000
.0000
3.1236
.0000
.0000
. m . Q39»?
. 0 0 {-10-
.0000
2 . 8702
.0000
.0000
“6 . 376.9
. 0 0 n C
. “'0' C) 5;." (3
2 . 612‘.) {T 5.5
. 0 0 0 O
.OCNWj
~6.0370
.0000
.0000
1.9419
.0000
.0000
’7.4908
.0000
.000?
1.33““
.0000
.0000
‘8.27Q0
“1.96Kfi
“.48d7
2.7601
1.4837
.kiQOQ
~5.290@
.1 V
‘GJ
.0000
.0000
~5.4198
.0000
.0000
on
p.15
1-
3
12.1039
.fi783
.0000
%.9573
.0384
.0000
p...-
(2?
I
w
*9gf37[*fx
3.58t7
.0000
“0.7702
”3.5721
.0000
7.53088
‘ 1479
013000
“3.2931
”4.3996
. 0000
-1.
5.8830
3.06?2
. QC 1743 (:1
"1.8553
“4.5596
.0000
[1. .1311“)
9.5% 1
.000
10.39f. :’
1.4837
1.4857
“5.53K1
“1.9630
“1.96Cfi
.1 000'“
"5 .834?”
.0000
.0000
3.2099
.0000
.0000
2.0867
w3.39.7.3-
.0000
*3.5721
1.9000
.0000
3.1479
“.993?
.0000
~4o3886
.8165
.0000
3.0672
1.6132
.0000
~4.5596
“.0866
.0000
2.6551
4.1398
.0000
*4 .2551
“.6592
.0000
1.4837
*5.2964
.2409
“1.9625
3.7661
”.4827
.0000
.0000
~5.8249
.0000
.0000
3.3099
.0000
.0000
-5.9398
.0000
.0000
3.1236
.0000
.0000
“6.2762
.0000
.0000
2.8702
.0000
.0000
*6.8090
.0000
.0000
2.4665
.0000
.0000
“7.0962
.0000
.0000
1.9419
.0000
.0000
“0.2796
.0000
.OTOO
1.3386
1.4837
.2409
~5.2964
“1.9626
*.4527
5.7661
10.0 4.0 2.0
—4.4361
«3.4547
-1.7706
9.2452
2.5323
1.2359
10.0 6.0 2.0
~3.0536
—4.2697
—1.5379
7.4654
2.9748
.9117
10.0 8.0 2.0
-1.7175
«4.4639
-1.3287
5.6186
2.9029
.5790
10.010.C 2.0
".6026
”4.2003
~1.1739
3.9238
2.5119
.2758
10.0 4.0 4.0
—3.5653
-3.1543
—3.1543
8.0982
2.1212
2.1212
10.0 6.0 4.0
—2.4487
—3.9622
—2.7850
6.5432
2.5051
1.5701
10.0 8.0 4.0
-1.3529
-4.2153
-2.4494
4.8802
2.4477
.9875
-3.4547
1.8749
-.8659
2.5323
“3.5675
.3965
-4.2697
.8338
“1.1022
2.9748
*1.1972
.4354
—4.4639
—.0391
-1.1963
2.9029
1.3944
.3802
-4.2003
“.6026
-1.1739
2.5119
3.9238
.2758
—3.1543
1.7827
-1.5677
2.1212
~4.0491
.6556
“3.9622
.8582
-2.0200
2.5051
‘1.7707
.7213
—4.2153
.0733
-2.2197
2.4477
.7753
.6251
79
»1.7705
-.8659
2.5612
1.2359
.3965
—5.6777
“1.5379
-1.1022
2.2198
.9117
.4354
-6.2682
‘1.3287
”1.1963
1.7565
.5790
.3802
-7.0131
-1.1739
'1.1739
1.2052
.2758
.2758
“7.8477
-3.1543
-1.5677
1.7827
2.1212
.6556
-4.0491
-2.7850
-2.0200
1.5904
1.5701
.7213
‘4.7725
-2.4494
~2.2197
1.2796
.9875
.6251
*5.6555
9.2452
2.5323
1.2359
-4.4361
-3.4547
-1.7706
7.4654
2.9748
.9117
‘3.0536
-4.2697
“1.5379
5.6186
2.9029
.5790
“1.7175
‘4.4639
-1.3287
3.9238
2.5119
.2758
~.6026
-4.2003
*1.1739
8.0982
2.1212
2.1212
-3.5653
-3.1543
-3.1543
6.5432
2.5051
1.5701
“2.4487
-3.9622
-2.7850
4.8802
2.4477
.9875
“1.3529
-4.2153
“2.4494
2.5323
-3.5675
.3965
-3.4547
1.8749
-.8659
2.9748
-1.1972
.4354
-4.2697
.8338
-1.1022
2.9029
1.3944
.3802
~4.4639
‘.0391
-l.1963
2.5119
3.9238
.2758
*4.2003
-.6026
-1.1739
2.1212
-4.0491
.6556
-3.1543
1.7827
“1.5677
2.5051
-1.7707
.7213
~3.9622
.8582
~2.0200
2.4477
.7753
.6251
-4.2153
.0733
-2.2197
1.2359
.3965
-5.6777
-1.7706
-.8659
2.5612
.9117
.4354
-6.2682
-1.5379
-1.1022
2.2198
.5790
.3802
‘7.0131
-1.3287
-1.1963
1.7565
.2758
.2758
-7.8477
-1.1739
’1.1739
1.2052
2.1212
.6556
-4.0491
-3.1543
-1.5677
1.7827
1.5701
.7213
-4.7725
-2.7850
-2.0200
1.5904
.9875
.6251
-5.6555
-2.4494
-2.2197
1.2796
10.010.0 4.0
10.C
10.010.3
IO
N
n
v
“.4310
~4.0335
#202031
3.3085
2.1075
.4410
6.0 6.0
8
«1.6606
~3.5791
~3.5791
~3.2300
3.8030
1.7930
1.1361
6.0
—.2243
~3.8328
~2.9800
2.3782
1.5056
.4346
.0 8.0
“.4196
‘3.6314
—3.6314
2.5437
1.0390
1.0390
10.010.0 8.0
“.0913
~3.5747
- ,, 4
“-J' .4136 ._
10.010.010.0
.0000
“3.6153
-3.6153
.0000
.C000
.0000
~4.(H335
“.4310
*ancal
2.1075
3.3085
.4410
*3.5791
.8303
—2.6454
1.8535
~2.6240
.7892
‘309058
.1799
—2.9567
1.7930
-.1511
.6651
*3.8328
~.2243
’2.9800
1.5056
2.3782
.4346
-3.6314
.2098
“3.3670
1.0390
*1.2718
.5204
*3.6747
-.0613
“3.4561
.7610
1.2397
.2655
‘3.6153
.0000
*3.6153
.0000
.0000
00000
”3.2300
’2.9567
.6990
1.1361
.6661
“3.fi519
*2.9800
“2.9800
.4485
.4346
.4346
“4.7564
”3.6314
-3.367C
.2098
1.0390
.520“
-1.2718
“3.4561
“3.4561
.1226
.2655
.2655
-2.4794
*3.6153
“3.6153
.0000
.0000
.0000
.0000
3.3055
2.1075
.4410
~.4310
“4.0335
*2.2021
5.2480
1.8535
1.8535
“1.6606
“3.5791
“3.5791
3.8030
1.7930
1.1361
“3.9058
“3.2320
2.3782
1.5056
.4346
*o2243
“3.8328
“2.9800
2.5437
1.0390
1.0390
«.4196
“3.6314
*3.6314
1.2397
.7810
.2655
".0613
”3.6747
—3.4561
.0000
.0000
.0000
. 0000
"3.6153
~3.6153
2.1075
3.3085
.4410
“4.0335
—.4310
~2.2C21
1.8535
~2.6240
.7892
—3.5791
.8303
~2.6454
1.7930
-.1511
.6661
~3.9058
.1799
42.9567
1.5056
2.3782
.4346
-3.8328
*.2243
~2.9800
1.0390
~1.2718
.5204
-3.6314
.2098
—3.3670
.7810
1.2397
.2655
~3.6747
“.0613
43.4561
.0000
.0000
.0000
‘3.6153
.0000
”3.6153
.4410
“6.6171
“2.2021
“2.2021
.8619
1.8535
.7892
“2.6240
-3.5791
“2.6454
.8303
1.1361
.6661
-3.6519
~3.2300
*2.9567
.6990
.4346
.4346
-4.7564
“2.9800
-2.9800
.4485
1.0390
.5204
“1.2718
“3.6314
“3.3670
.2098
.2655
.2655
“2.4794
~3.4561
—3.4561
.1226
.0000
.0000
.0000
-3.6153
-3.6153
.0000
.‘ A
.7 i. 9 1 O n O 1:»
~5e789L
.000:
:0ffi39
12.6846
.0000
.0000
12.0 2.0 .0
“' ‘* . ~6181
“1.5368
.0300
12.2862
1.0900
.0000
12.0 4.0 .0
“4.5685
“2.7697
.CCfX:
11.2305
1.9098
.0000
12.0 6.0 .0
“3.3642
“3.5291
.0000
9.6867
2 . 31‘2"!
.0900
25.0 8.0 .3
“2.0964
“3.8018
.0000
8.0219
2.3480
.0000
12.010.0 .0
“.9408
“3 .6690
.0000
6.4161
2.0976
.0000
12.012.0 .0
.0149
“3.2346
.0003
€1.00CK}
1.6976
.0000
. '53 '3 Q (1'
3.8997
0 (1:11C3 (3
00000
“6.3423
09000
“1.538C
,-
. es -:-, . s a
00000
100900
“5.8165
00000
“3.5291
1.3328
00000
2.3224
“2.2497
. 0000
“3.8018
.6777
.0000
2.3480
.1840
.0000
~3.6690
.2298
.0000
2.0976
2.6708
.0000
“3.2346
.0149
00000
3.8976
500000
.0000
81
.0000
.8083
2.8947
.0000
.0000
“6.3423
. [p , -\
a". .
4' .x- i I .I
“~nn
.JWg,
2.7947
.0000
.0000
—6.4698
.0000
.0000
2.5038
.OOUQ
.0003
”6.8485
.0000
.0000
2.0314
.0000
.0000
“7.4371
.0000
.0000
1.4187
.0000
.0000
“8.2059
.0000
.0000
.7106
.0000
.0000
“9.0870
.0000
12.6846
.{V300
. 451)()()
“5.7894
.0000
.0000
“1.5366
.0000
11.2005
1.9098
.0000
“4.5685
“2.7697
.0000
9.6867
2.3224
.0000
“3.3642
“3.5291
.0000
8.0219
2.3480
.0000
“2.0964
”3.8018
.0000
8.4161
2.0976
.0000
“.9405
“3.6690
.0000
5.0000
1.6976
.0000
.0119
“3.2300
.003C
.0000
“8.3423
.0000
.0000
2.8947
.0000
1.0900
“5.8165
.0000
“1.5366
2.6634
.0000
1.9098
~4.357O
.0000
—2.7697
2.0677
.0000
2.3224
—2.2497
.0000
—3.5291
1.3328
.0000
2.3480
.1840
.0000
“3.8018
.6777
.0000
8.0976
2.6!?08
.3000
“3.6690
.2298
.0000
1.6976
5.0000
.0000
“5.2346
.0149
. 0 0 0 (.1
.0000
.0000
“6.3423
.0000
.0000
2.8947
.0000
.0000
“6.4698
.0000
.0000
2.7947
.0000
.0000
“6.8435
.0000
.0000
2.5008
.0000
.0000
“7.4371
.0000
.0000
2.0314
.0000
.UCHJQ
“8.2359
.0000
.0000
1.4187
.0000
.0300
“9.0870
.0538
.0900
.7136
.0000
.0000
“10.0901
00000
.3000
“.0298
12.0 2.0 2.0
«5.1462
“1.4977
“1.4977
11.9049
1.0321
1.0321
12.0 4.0 2.0
—4.3065
~2.7068
-1.3961
10.8626
1.8093
.8741
12.0 6.0 2.0
“3.1661
~3.4621
-1.2677
9.4018
2.2003
.6527
12.0 8.0 2.0
-1.9616
—3.7464
-1.1478
7.7850
2.2221
.4065
12.010.0 2.0
“.8606
—3.6323
“1.0588
6.2153
1.9796
.1644
12.012.0 2.0
.0501
“3.2164
“1.0073
4.8227
1.5945
“.0554
12.0 4.0 4.0
-3.5978
-2.5423
—2.5423
9.9313
1.5324
1.5324
“1.4977
2.5731
1.0321
“5.9525
.0967
“2.7065
2.0015
-.6973
1.8093
“4.5132
.1527
“3.4621
1.2956
4.9267
2.2003
“2.4264
.1497
“3.7464
.6676
“1.0528
2.2221
-.OO45
.0961
“3.6323
.2435
“1.0774
1.9796
2.4825
.0177
“3.2164
.0501
“1.0073
1.5945
4.8227
-.0554
“2.5423
1.7989
“1.2981
1.5324
-4.9656
.2364
82
”1.4977
“.3764
2.5731
1.0321
.0967
“5.9525
“1.3961
“.6973
2.3050
.8741
.1527
“6.3494
“1.2677
“.9267
1.8705
.6527
.1497
“6.9754
“1.1478
“1.0528
1.2940
.4065
.0961
“7.7805
“1.0588
“1.0774
.6171
.1644
.0177
“6.6978
«1.0073
-1.0073
-.1003
—.0554
—.0554
-9.6453
“2.5423
“1.2981
1.7989
1.5324
.2364
-4.9656
11.9349
1.0321
1.0321
“5.1462
'104977
“1.4977
10.6626
1.8093
.8741
“4.3065
“2.7068
“1.3961
9.4018
2.2003
.6527
-3.1661
*3.4621
-1.2677
7.7850
2.2221
.4065
“1.9616
“3.7464
“1.1478
6.2153
1.9796
.1644
“.8606
“3.6323
“1.0588
4.8227
1.5945
-.0554
.0501
“3.2164
“1.0073
9.9313
1.6324
1.5324
-3.6978
-2.5423
“2.5423
1.0321
~5.9525
.0967
“1.4977
2.5731
“.3764
1.8093
—4.5132
.1527
—2.7068
2.0015
-.6973
2.2003
-2.4264
.1497
-3.4621
1.2956
“.9267
2.2221
—.0045
.0961
-3.7464
.6676
-1.0528
1.9796
2.4825
.0177
“3.632
.2435
“1.0774
1.5945
4.8227
—.0554
-3.2164
.0501
-1.0073
1.5324
~4.9656
.2364
“2.5423
1.7989
—1.2961
1.0321
.0967
“5.9525
“1.4977
“.3764
2.5731
.8741
.1527
“6.3494
“1.3961
“.6973
2.3050
.6527
.1497
“6.9754
“1.2677
“.9267
1.8705
.4065
.0961
-7.7805
*1.1478
-1.0528
1.2940
.1644
.0177
-8.6978
-1.0588
-1.0774
.6171
O
b
O
C)O(D
QLPUEU
b
5
5
4‘3
“1. 0 3
“1.0073
“ 1003
1.5324
.2364
—4.9656
—2.5423
-1.2981
1.7989
o...
R
6
(J
6.0 4.0
“2.6274
-3.2876
“2.3342
8.6072
1.8599
1.1385
.0 4.0
“1.5943
-3.6035
—2.1421
7.1154
1.8662
.6920
12.010.0 4.0
“.6457
“3.5410
“2.0047
5.6400
1.6410
.2436
12.012.o 4.0
.1386
-3.1767
“1.9344
4.3075
1.2949
“.1722
12.0 6.0 6.0
“1.8839
~3.0688
-3.0688
7.4536
1.3646
1.3646
113.0 8.0 6.0
“1.0882
“3.4311
-2.8741
6.1193
1.3348
.7869
12.010.0 6.0
“.3594
-3.4441
-2.7506
4.7616
1.1217
.1877
“3.2876
1.1732
“1.7377
1.8599
“2.9365
.2184
-3.6035
.6221
“1.9900
1.8662
-.5493
.1122
“3.5410
.2672
“2.0533
1.6410
1.9368
“.0365
“3.1767
.1386
“1.9344
1.2949
4.3075
“.1722
“3.0688
.9419
“2.3504
1.3646
“3.7268
.1658
“3.4311
.5045
“2.7242
1.3348
“1.3946
.0066
“3.4441
.2572
“2.8462
1.1217
1.0856
“.2024
83
“2.3342
“1.7377
1.4542
1.1385
.2184
-5.6707
-2.1421
“1.9900
.9722
.6920
.1122
—6.5662
“2.0047
“2.0533
.3784
.2436
“.0365
“7.5767
“1.9344
“1.9344
“.2772
“.1722
“.1722
“8.6151
“3.0688
“2.3504
.9419
1.3646
.1658
“3.7268
“2.8741'
“2.7242
.5837
.7869
.0066
“4.7248
-2.7506
-2.8462
.1022
.1877
-.2024
-5.8472
8.6072
1.8599
1.1385
“2.6274
“3.2876
“2.3342
7.1154
1.8662
.6920
“1.5943
“3.6035
“2.1421
5.6400
1.6410
.2436
“.6457
“3.5410
“2.0047
4.3075
1.2949
“.1722
.1386
“3.1767
“1.9344
7.4536
1.3646
1.3646
“1.8839
“3.0688
“3.0688
6.1193
1.3348
.7869
“1.0882
“3.4311
“2.8741
4.7616
1.1217
.1877
-.3594
“3.4441
“2.7506
1.8599
“2.9365
.2184
“3.2876
1.1732
“1.7377
1.8662
“.5493
.1122
-3.6035
.6221
“1.9900
1.6410
1.9368
“.0365
“3.5410
.2672
“2.0533
1.2949
4.3075
“.1722
“3.1767
.1386
“1.9344
1.3646
“3.7268
.1658
“3.0688
.9419
-2.3504
1.3348
“1.3946
.0066
“3.4311
.5045
“2.7242
1.1217
1.0856
“.2024
“3.4441
.2572
“2.8462
1.1385
.2184
“5.6707
“2.3342
“1.7377
1.4542
.6920
.1122
-6.5662
-2.1421
“1.9900
.9722
.2436
“.0365
“7.5767
“2.0047
“2.0533
.3784
“.1722
“.1722
“8.6151
“1.9344
“1.9344
“.2772
1.3646
.1658
“3.7268
“3.0688
“2.3504
.9419
.7869
.0066
-4.7248
—2.8741
-2.7242
.5837
.1877
“.2024
“5.8472
“2.7506
“2.8462
.1022
-3.2950
~3.2950
4.9298
.6930
.6930
12.010.0 8.0
14.0
“.0805
-3.4001
“3.2438
3.6749
.4703
.0000
.0 .0
“5.2099
.0000
.0000
13.6281
.0000
.0000
14.0 2.0 .0
14.0
-4.9522
“1.1107
.0000
13.3192
.7238
.0000
4.0 .0
“4.2400
“2.0350
.0000
12.4577
1.2894
.0000
14.0 6.0 .0
“3.2264
“2.6514
.0000
11.2088
1.6039
.0000
“3.1553
.2342
“2.7142
.8227
3.5005
“.3866
“3.2950
.2766
“3.2C34
.6930
“2.4649
“.2078
“3.4001
.1610
“3.4000
.4703
.0000
“.4703
.0000
2.6050
.0000
.0000
“6.8141
.0000
“1.1107
2.4601
00000
.7238
“6.3658
.0000
“2.0350
2.0802
00000
1.2894
“5.0952
.0000
“2.6514
1.5986
.0000
1.6039
“3.1945
.0000
84
«2.7142
“2.7142
“.4683
"" O 38 C) (2'
“.3866
“7.0011
—3.2950
-3.2034
.2766
.6930
~.2078
~2.4649
“3.2438
“3.4000
“.0805
.0000
“.4703
“3.6749
.0000
.0000
2.6050
.0000
.0000
“6.8141
.0000
.0000
2.4921
.0000
.0000
“6.9534
.0000
.0000
2.1598
.0000
.0000
“7.3626
.0000
.0000
1.6278
.0000
.0000
“8.0142
3.
'9:&
Foo
m:o
“qty
i
I
“.3 0
.2342
“3.1553
“2.7142
4.9298
.6930
.6930
~.5533
~3.a950
—3.2950
3.6749
.4703
.0000
“.0805
“3.4001
“3.2438
13.6281
.0000
.0000
“5.2099
.0000
.0000
13.3192
.7238
.0000
“4.9522
“1.1107
.0000
12.4577
1.2894
.0000
“4.2400
“2.0350
.0000
11.2088
1.6039
.0000
“3.2264
“2.6514
.0000
.8227
3.5005
“.3866
~3.1553
.2342
“2.7142
.6930
—2.4649
“.2078
—3.2950
.2766
“3.2034
.4703
.0000
“.4703
“3.4001
.1610
“3.4000
.0000
“6.8141
.0000
.0000
2.6053
.0000
.7238
“6.3658
.0000
“1.1107
2.4601
.0000
1.2894
“5.0952
.0000
“2.0350
2.0802
.0000
1.6039
“3.1945
.0000
“2.6514
1.5986
.0000
“.3866
“.3866
“7.0011
“2.7142
“2.7142
“.4683
.6930
“.2078
“2.4649
“3.2950
“3.2034
.2766
.0000
“.4703
“3.6749
“3.2438
“3.4000
“.0805
.0000
.0000
“6.8141
.0000
.0000
2.6050
.0000
.0000
“6.9534
.0000
.0000
2.4921
.0000
.0000
“7.3626
.0000
.0000
2.1598
.0000
.0000
“8.0142
.0000
.0000
1.6278
if: r', fiz‘
x.» 0 ~-' . '-'
“2 .0910
“2 .9246
.0000
9.7718
1.6606
.0000
79.010.0 .0
“.9850
-2.8842
.0000
8.3257
1.5153
.0000
14.312.0 .0
14.3
14.2
“.0146
“2.5887
.0000
7.0054
1.2472
.0000
1"114.0 .0
.7656
“2.1002
.0000
5.9035
.9272
.0000
2.0 2.0
“4.7055
“1.0910
“1.0910
13.0199
.6871
.6871
4.0 2.0
-4.0232
--£.’.CO26
“1.0390
12.1837
1.2232
.5843
6.0 2.0
~3.0505
“.9725
10.9680
1.5193
.4338
“2 .9346
1.1599
00000
1.6606
“.9102
.0000
“2.8842
.8636
.0000
1.5153
1.5113
.0000
“2.5887
.7418
.0000
1.2472
3.8477
.0000
“2.1002
.7656
.0000
.9272
5.9035
00000
“1.0910
2.3527
-.3217
.6871
“6.5099
.0057
“2.0026
1.9877
—.6C79
1.2232
“5.2511
“.9387
—2.6167
1.5265
—.8313
,1.5193
—3.3632
—.0521
85
. 0 O ":1." 01
.0000
.9311
.0000
.0000
“8.8616
.0000
.0000
.1224
.0000
.0000
“9.8370
.0000
.0000
“.7272
.0000
.0000
“10.8531
.0000
.0000
“1.5311
.0000
.0000
“11.8071
“1.0910
“.3217
2.3527
.6871
.0057
“6.5099
“1.0390
“.6079
2.0355
.5843
“.0087
“6.9327
“.9725
“.8313
1.5240
.4338
“.0521
“7.6048
9.7718
1.6606
.0000
“2 . 0910
“2.9246
.0000
8.3257
1.5153
.0000
“.9860
“2.8842
.0000
7.0054
1.2472
.0000
“.0146
“2.5887
.0000
5.9035
.9272
.0000
.7656
“2.1002
.0000
13.0199
.6871
.6871
“4.7055
“1.0910
“1.0910
12.1837
1.2232
.5843
“4.0232
“2.0026
“1.0390
10.9680
1.5193
.4338
“3.0505
“2.6167
“.9725
1.6606
“.9102
.0000
“2.9246
1.1599
.0000
1.5153
1.5113
.0000
«2.8842
.8636
.0000
1.2472
3.8477
.0000
“2.5887
.7418
.0000
.9272
5.9035
.0000
“2.1002
.7656
.0000
.6871
“6.5099
.0057
“1.0910
2.3527
“.3217
1.2232
“5.2511
“.0087
“2.0026
1.9877
“.6079
1.5193
43.3632
-.0521
«2.6167
1.5265
-.8313
.0000
.0000
“8.8616
.0000
.0000
.9311
.0000
.0000
“9.8370
.0000
.0000
.1224
.0000
.0000
“10.8531
.0000
.0000
“.7272
.0000
.0000
“11.8071
.0000
.0000
“1.5311
.6871
.0057
“6.5099
“1.0910
“.3217
2.3527
.5843
“.0087
“6.9327
“1.0390
“.6079
2.0355
.4338
“.0521
“7.6048
“.9725
“.8313
1.5240
14.0 8.0 2.0
“1.9588
-2.8966
“.9111
9.5642
1.5683
.2575
14.010.0 2.0
“.8949
-2.8677
”.8685
8.1458
1.4243
.0748
14.012.0 2.0
.0410
—2.5841
‘oBSOO
6.8459
1.1641
-.0992
14.014.0 2.0
.7925
~2.1042
-.8520
5.7571
.8580
~.2517
14.0 4.0 4.0
-3.4220
-1.9177
"1.9177
11.4148
1.0369
1.0369
14.0 6.0 4.0
«2.5612
”2.5269
—1.8106
10.2878
1.2788
.7611
14.0 3.0 4.0
-1.5911
~2.8266
-1.7154
3.9727
1.3035
.4333
*2.8966
1.1106
-.9746
1.5683
‘1o0865
—.1165
'2.8677
.8386
-1.0284
1.4243
1.3363
-.1895
'205841
.7425
~.9878
1.1641
3.6833
-.2410
-2.1042
.7925
-.8520
.8580
5.7571
—.2517
“1.9177
1.7110
*101528
1.0369
-5.7074
-.0528
~2m5269
1.3063
“1.5842
1.d768
“3.5566
-.1488
-2.8266'
.9543
‘1o8689
1.3035
“1.6030
-.2856
86
-.9111
-.974b
.8482
.2573
-.1185
-8.4776
‘.8685
“1.0284
.0563
.0748
“.1895
“9.4821
-.8500
-.9878
-.7835
~.0992
-.2410
~10.5292
—.8520
~.8520
‘1.5850
~.2517
-.2517
-11.5142
-1.9177
-1.1528
1.7110
1.0369
~.0528
-5.7o74
“1.8106
“1.5848
1.2538
.7511
“.1468
'6.4312
‘1.7154
‘1.8689
.5368
.4333
*.2856
~7.3697
9.5642
1.5683
.2575
"1.9588
“2.8966
*.9111
8.1458
1.4243
.0748
“.8949
“2.8677
“.8685
6.8459
1.1641
-.0992
.0410
*2.5841
”.8500
5.7571
.8580
“.2517
.7925
“2.1042
-.8520
11.4148
1.0369
1.0369
-3.4220
-1.9177
-1.9177
10.2878
1.2788
.7611
-2.5612
“2.5269
“1.8106
8.9727
1.3035
.4333
”1.5911
”2.8260
“1.7124
1.5653
~1.0BOS
_.1185
“(.8966
1.1106
”.9746
1.4243
1.3363
“.1895
-2.8677
.8386
-1.0284
1.1641
3.6833
’.2410
“2.5841
.7425
-.9878
.8580
5.7571
-.2517
«2.1042
.7925
-.8520
1.0369
“5.7074
-.0528
-1.9177
1.7110
-1.1528
1.2788
~3.8566
“.1488
“2.5869
1.3060
'1.5842
1.3035
-1.6030
-.2856
-2.8266
.9543
~1.8659
.2575
-.1185
-8.4776
-.9111
”.9746
.8482
.0748
-.1895
-9.4821
-.8685
-1.0284
.0563
-.O992
-.2410
10.5292
-.8500
-.9878
-.7835
-.2517
-.2517
11.5142
-.8520
-.8520
-1.5850
1.0369
’.0528
‘5.7074
”1.9177
”1.1528
1.7110
.7611
”.1488
—6.4312
-1.8106
-l.5842
1.2552
.4333
-.2856
-7.3697
~1.7154
-1.8689
.6358
14.01000 4.0
“.6428
-2.8314
“1.6566
7.6286
1.1596
.0875
14.012.0 4.0
.1916
-2.5821
“1.6434
6.3824
.9198
“.2478
14.0 6.0 6.0
-1.8578
-2.4180
-2.4180
9.2784
.9172
.9172
14.0 8.0 6.0
-1.0625
-2.7512
-2.3316
8.0812
.8966
.4772
14.010.0 600
“.2858
-2.8095
—2.2989
6.8347
.7432
.0000
14.0 8.0 8.0
16.0
“.4683
-2.7142
“2.7142
7.0011
.3866
.3866
.0 .0
—4.7427
.0000
.0000
14.3837
.0000
.0000
“2.8314
.7519
“1.9859
1.1596
.8222
“.4284
“2.5821
.7311
“1.9213
.9198
3.2002
“.5302
“2.4180
.9289
“2.1941
.9172
“4.6392
“.3114
-2.7512
.6695
“2.6142
.8966
“2.4251
-.5254
“2.8095
.5715
“2.8095
.7432
.0000
“.7432
“2.7142
.2342
“3.1553
.3866
“3.5005
“.8227
.0000
2.3713
.0000
.0000
-7.1919
.0000
87
“1.6566
“1.9859
“.1091
.0875
“.4284
“8.4508
“1.6434
“1.9213
“.9226
“.2478
“.5302
“9.5826
“2.4180
“2.1941
.9289
.9172
“.3114
“4.6392
“2.3316
“2.6142
.3929
.4772
“.5254
“5.6562
“2.2989
“2.8095
“.2858
.0000
“.7432
“6.8347
“2.7142
“3.1553
.2342
.3866
“.8227
“3.5005
.0000
.0000
2.3713
.0000
.0000
“7.1919
7.6286
1.1596
.0875
“.6428
“2.8314
“1.6566
6.3824
.9198
“.2478
.1916
“2.5821
“1.6434
9.2784
.9172
.9172
“1.8578
“2.4180
“2.4180
8.0812
.8966
.4772
“1.0625
“2.7512
“2.3316
6.8347
.7432
.0000
“.2858
”2.8095
“2.2989
7.0011
.3866
.3866
“.4683
“2.7142
“2.7142
14.3837
.0000
.0000
“4.7427
.0000
.0000
1.1596
.8222
“.4284
“2.8314
.7519
“1.9859
.9198
3.2002
“.5302
«2.5821
.7311
—1.9213
.9172
“4.6392
“.3114
“2.4180
.9289
“2.1941
.8966
-2.4251
“.5254
-2.7512
.6695
-2.6142
.7432
.0000
“.7432
42.8095
.5715
—2.8095
.3866
“3.5005
“.8227
“2.7142
.2342
“3.1553
.0000
“7.1919
.0000
.0000
2.3713
.0000
.0875
“.4284
“8.4508
“1.6566
“1.9859
“.1091
“.2478
“.5302
-9.5826
“1.6434
“1.9213
“.9226
.9172
“.3114
“4.6392
“2.4180
“2.1941
.9289
.4772
“.5254
~5.6562
-2.3316
“2.6142
.3929
.0000
“.7432
“6.8347
“2.2989
“2.8095
“.2858
.3866
“.8227
“3.5005
“2.7142
“3.1053
.2342
.0000
.0000
“7.1919
.0000
.0000
2.3713
16.0 2.0 .0
~4o5259
“.7248
.0000
14.1295
.4395
.0000
16.0 4.0 .0
“3.9162
“1.3406
.0000
13.4106
.7905
.0000
16.0 6.0 .0
“3.0204
“1.7700
.0000
12.3435
.9965
.0000
16.0 8.0 .0
“1.9759
“1.9812
.0000
11.0802
1.0466
.0000
10.010.0 .0
“.9146
“1.9813
.0000
9.7728
.9677
.0000
16.012.0 .0
.0577
“1.7998
.0000
8.5502
.8049
.0000
16.014.0 .O
.8675
“1.4741
.0000
7.5109
.6028
.0000
“.7248
2.2780
.0000
.4395
“6.7884
.0000
“1.3406
2.0323
.0000
.7905
“5.6310
.0000
“1.7700
1.7206
.0000
.9965
“3.8637
.0000
“1.9812
1.4428
.0000
1.0466
“1.6875
.0000
“1.9813
1.2746
.0000
.9677
.6748
.0000
“1.7998
1.2440
.0000
.8049
3.0007
.0000
“1.4741
1.3286
.0000
.6028
5.0800
.0000
88
.0000
.0000
2.2478
.0000
.0000
“7.3411
.0000
.0000
1.8838
.0000
.0000
“7.7797
.0000
.0000
1.2999
.0000
.0000
“8.4798
.0000
.0000
.5330
.0000
.0000
“9.3927
.0000
.0000
“.3600
.0000
.0000
“10.4476
.0000
.0000
“1.3017
.0000
.0000
“11.5510
.0000
.0000
“2.1961
.0000
.0000
“12.5910
14.1295
.4395
.0000
-4.5259
“.7248
.0000
13.4106
.7905
.0000
“3.9162
“1.3406
.0000
12.3435
.9965
.0000
“3.0204
“1.7700
.0000
11.0802
1.0466
.0000
“1.9759
“1.9812
.0000
9.7728
.9677
.0000
—.9146
“1.9813
.0000
8.5502
.8049
.0000
.0577
“1.7998
.0000
7.5109
.6028
.0000
.8675
“1.4741
.0000
.4395
“6.7884
.0000
“.7248
2.2780
.0000
.7905
“5.6310
.0000
“1.3406
2.0323
.0000
.9965
“3.8637
.0000
“1.7700
1.7206
.0000
1.0466
“1.6875
.0000
“1.9812
1.4428
.0000
.9677
.6748
.0000
“1.9813
1.2746
.0000
.8049
3.0007
.0000
“1.7998
1.2440
.0000
.6028
5.0800
.0000
“1.4741
1.3286
.0000
.0000
.0000
“7.3411
.0000
.0000
2.2478
.0000
.0000
“7.7797
.0000
.0000
1.8838
.0000
.0000
“8.4798
.0000
.0300
1.2999
.0000
.0000
—9.3927
.0000
.0000
.5330
.0000
.0000
“10.4476
.0000
.0000
“.3600
.0000
.0000
“11.5510
.0000
.0000
“1.3017
.0000
.0000
“12.5910
.0000
.0000
“2.2961
‘n.—
f .
_~_._.
_.....“ ..
. .. 5.13:?-
..
..
VF
llllllilll.‘llll‘ll
2.0 2.0
“.7154
“.7154
13.8814
.4173
.4173
16.0 4.0 2.0
“1.3252
“.6908
13.1794
.7495
.3541
16.0 6.0 2.0
“2.8578
“1.7539
“.6597
12.1357
.9423
,..-
‘1
0
()
.2590-
16.0 8.0 2.0
“1.8444
“1.9693
“.6326
10.8977
.9855
.1439
16.010.0 2.0
“.8137
“1.9765
“.6171
9.6135
.9053
.0204
16.012.0 2.0
.1312
“1.8023
“.6163
8.4098
.7463
“.1009
16.0 4.0 4.0
—3.1894
“1.2854
“1.2854
12.5236
.6324
.6324
“.7154
2.1580
“.2945
.4173
“6.9407
“.0517
“1.3252
1.9223
-.5635
.7495
“5.7910
“.1133
“1.7539
1.6257
“.7842
.9423
“4.0322
“.1884
“1.9693
1.3675
“.9382
.9855
“1.8606
“.2701
“1.9765
'1.2229
“1.0104
.9053
.5046
“.3422
“1.8023
1.2199
“.9885
.7463
2.8424
“.3828
“1.2854
1.5947
“1.0809
.6324
“6.2618
“.2453
89
“.7154
“.2945
2.1580
.4173
“.0517
“6.9407
“.6908
“.5635
1.8035
.3541
“.1133
“7.3884
“.6597
“.7842
1.2321
.2590
“.1884
“8.1035
“.6326
“.9382
.4769
.1439
“.2701
“9.0370
“.6171
“1.0104
“.4092.
.0204
“.3422
10.1181
“.6163
“.9885
“1.3511
“.1009
“.3828
11.2522
“1.2854
“1.0809
1.5947
.6324
“.2453
“6.2618
13.8814
.4173
.4173
“4.3161
“.7154
“.7154
13.1794
.7495
.3541
“3.7258
“1.3252
“.6908
12.1357
.9423
.2590
“2.8578
“1.7539
“.6597
10.8977
.9855
.1439
“1.8444
“1.9693
“.6326
9.6135
.9053
.0204
“.8137
“1.9765
“.6171
8.4098
.7463
“.1009
.1312
“1.8023
“.6163
12.5236
.6324
16324
“3.1894
“1.2854
“1.2854
.4173
“6.9407
“.0517
“.7154
2.1580
“.2945
.7495
“5.7910
“.1133
“1.3252
1.9223
“.5635
.9423
-4.0322
“.1884
“1.7539
1.6257
“.7842
.9855
“1.8606
“.2701
-1.9693
1.3675
“.9382
.9053
.5046
“.3422
“1.9765
1.2229
“1.0104
.7463
2.8424
“.3828
-1.8023
1.2199
“.9885
.6324
-6.2618
“.2453
“1.2854
1.5947
“1.0809
.4173
“.0517
“6.9407
“.7154
“.2945
2.1580
.3541
“.1133
“7.3884
“.6908
“.5635
1.8035
.2590
“.1884
“8.1035
“.6597
“.7842
1.2321
.1439
“.2701
“9.0370
“.5326
“.9382
.4769
.0204
“.3422
“10.1181
“.6171
“1.0104
“.4092
-.1:09
“.3828
“11.2522
“.6163
—.9355
“1.3511
16.0 6.0 4.0
“2.3986
“c.7136
“1.2369
11.5441
.7867
.4549
16.0 8.0 4.0
“1.4727
“1.9421
“1.1982
10.3754
.8081
.2373
16.010.0 4.0
“.5289
“1.9705
“1.1835
9.1549
.7221
.0000
115.0 6.0 6.0
“1.7196
“1.6687
“1.6687
10.6544
.5474
.5474
8.0 6.0
“.9226
“1.9213
“1.6434
9.5826
.5302
.2478
18.0 .0 .0
.0000
.0000
14.8722
.0000
.0000
18.0 2.0 .0
“4.2431
“.3585
.0000
14.6479
.2071
.0000
16.
O
“1.7136
1.3395
“1.5107
.7867
“4.5289
“.4025
“1.9421
1.1353
“1.8176
.8081
“2.3724
“.5721
“1.9705
1.0579
“1.9705
.7221
.0000
“.7221
“1.6687
.8598
“2.1261
.5474
-5.3272
-.6520
“1.9213
.7311
“2.5820
.5302
“3.2003
“.9198
.0000
2.2196
.0000
.0000
“7.4361
.0000
“.3585
2.1540
.0000
.2071
“7.0560
.0000
90
“1.2369
“1.5107
1.0591
.4549
—.4025
“7.0152
“1.1982
“1.8176
.3374
.2373
“.5721
“8.0031
“1.1835
“1.9705
“.5289
.0000
“.7221
“9.1549
“1.6687
“2.1261
.8598
.5474
“.6520
“5.3272
“1.6434
“2.5820
.1916
.2478
“.9198
“6.3824
.0000
.0000
2.2196
.0000
.0000
“7.4361
.0000
.0000
2.0891
.0000
.0000
“7.5918
11.5441
.7867
.4549
“2 .3986
“1.7136
“1.2369
10.3754
.8081
.2373
~1.4727
«1.94a1
“1.1982
9.1549
.7221
.0000
“.5289
“1.9705
“1.1835
10.6544
.6474
.5474
“1.7196
“1.6687
“1. 6687
9.5826
.5302
.2478
“.9226
“1.9213
“1.6434
14.8722
.0000
.0000
“4.4392
.0000
.0000
1496479
.2071
.0000
“4.2431
“.3585
.0000
.7867
“4.5289
“.4C25
“1.7136
1.3395
“1.5107
.8081
“2.3724
“.5721
“1.9421
1.1353
“1.8176
.7221
.0000
“.7221
“1.9705
1.0579
“1.9705
.5474
-5.3272
“.6520
«1.6687
.8598
“2.1261
.5302
“3.2003
“.9198
-1.9213
.7311
“2.5820
.0000
“7.4361
.0000
.0000
2.2196
.0000
.2071
“7.0560
.0000
“.3585
2.1540
.0000
.4549
“.4025
“7.0152
“1.2369
“1.5107
1.0591
.2373
“.5721
“6.0031
“1.1982
“1.8176
.3374
.0000
“.7221
“9.1549
“1.1835
“1.9705
“.5289
.2478.
“.9198
“6.3824
“1.6434
“2.5820
.1916
.0000
.0000
“7.4361
.0000
.0000
2.2196
0
Q
0‘
d
. ‘.H«
.0 0
“7.5918
.0000
.0000
2.0891
01)
W‘— “.1-
4.0 .0
45.6362
“.6663
.0000
14.0091
.3743
.0000
6.0 .0
—2.8634
‘.8860
.0000
13.0484
.4751
.0000
8.0 .0
*1.8601
”.9997
.0000
11.8930
.5027
.0000
113.0 .0
*.8258
—1.0076
.0000
10.6779
.4681
.0000
712.0 00
.1445
~.9217
.0000
9.5256
.3915
.0000
2.0 2.0
~400521
-.3548
»~.3548
14.4283
.1965
.1965
4.0 2.0
—3.6094
-.6604
“.3453
13.8027
.3545
.1661
-.6663
1.9821
.0000
.3743
“5.9591
.0000
-.8860
1.7678
.0000
.4751
‘4.2662
.0000
-.9997
1.5879
.0000
.5027
~2.1540
.0000
‘1o0076
1.5031
.0000
.4681
.1692
00000
-.9217
1.5364
.0000
.3915
2.4836
.0000
2.0260
-.2824
.1965
-7.2142
*.0839
-.6004
1.8616
*.54J9
.3545
“6.1252
-.1731
91
.0000
.0000
.7041
.0000
.0000
~8.0SOO
rd
.0000
.0000
1.0857
.0000
.0000
*8.7822
.0000
.0000
.2722
.0000
.0000
“9.7390
.0000
.0000
~.6773
.0000
.0000
“1C.8472
.0000
.0000
-1.6809
.0000
.0000
*12.0092
-.3548
“.2824
2.0260
.1965
“.0839
—7.2142
~.34b3
"' 054.19
1.6477
.1661
-.1731
“7.0795
14.0091
.3743
.0000
w3.6862
“.6663
.0000
13.0484
.4751
.0000
“'8. .8534
-.8860
.0000
11.8930
.5027
.0000
“1.5601
".9997
.0000
10.6779
.4681
.0000
-.8258
“1.0076
.0000
9.5256
.3915
.0000
.1445
‘.9217
.0000
14.4283
.1965
.1965
*4.0521
“.3548
“.3648
13.8027
.3545
.1661
“3.5094
“.6604
“.3453
.3743
*5.9591
.0000
~.6663
1.9821
.0000
.4751
—4.2562
.0000
-.8860
1.7678
.0000
.5027
«2.1540
.0000
".9997
1.5879
.0000
.4681
.1692
.0000
-1.0076
1.5031
.0000
.3915
2.4836
.0000
“.9217
1.5364
.0000
.1965
~7.2142
-.0839
-.3548
2.0260
“.2824
l
H: rm
0...
Lumen—~41;
4.00qu;
mwouup
CO‘J—‘Nh"!
.0000
.0000
-8.0500
.0000
.0000
1.7041
.0000
.0000
-8.7822
.0000
.0000
1.0857
.0000
.0000
-9.7390
.0000
.0000
.2722
.0000
.0000
”10.8472
.0000
.0000
-.6773
.0000
.0000
-12.0092
.0000
.0000
‘106809
.1965
”.0839
-7.2142
-.3548
-.2824
2.0260
.1661
-.1731
~7.6795
".3453
".5439
1.6477
lll'lllll {I It I. 1"
ll . ‘I
I I'll-
r“
. k.) _.. é J
4 A.“
“‘l. 0 Z’ J’
“.3336
12.8610
.4485
.1197
‘5.3 8.0 2.0
.' ‘-
x “.
. ‘—-‘ . x"
p—_d
5.0
pd
u
6
«1.7279
—.9959
”.3243
1.7273
.4722
.0625
up.’
L.3 2.0
“.7177
'1 .00773
~.3207
3.5335
.4363
.0000
.3 9.0
~3.336é
“.6453
“.0453
3.2139
.2976
5‘
,Q‘
.0 9.0
~.OSD1
1.5596
—.7643
.4455
“4.4367
“.2660
-.9959
1.4972
“.9247
.4722
“2.3274
-.3611
“1.0073
1.4354
“1.0073
.4363
00000
*.4363
_.6453
1.5033
“1.0499
.2976
“6.6069
-.3569
-.8658
1.3345
“1.4814
.3715
~4.9410
-.5528
~.9885
1.2199
*1.8022
.3828
~2.8424
-.7463
~.852O
.7925
“2.1042
.2517
"5.7571
«.8580
92
~~.‘i3->u
“.7643
1.0377
.1197
“.2660
~8.4244
“.3243
“.9247
.2307
.0625
“.3611
“9.3999
“.3207
“1.0073
“.7177
.0000
“.4363
“10.5334
“.6453
“1.0499
1.5033
.2976
“.3569
“6.6069
“.6279
“1.4814
.9184
“.5528
“7.3844
-.6163
“1.8022
.1312
.1009
“.7463
—8.4098
“.8520
“2.1042
.7925
.2517
“.8580
“5.7571
licobifi
.4455
.1197
FVUH73
ughdml
.' _.- ,.
~ . \J..‘ ~)O
1;..-7L373
.4742
.3623
“1.7279
“.9959
“.3243
10.5335
.4363
.0000
“.7177
“1.0073
“.3207
13.2139
.2976
.2976
“3.0066
“.6453
“.6453
12.3254
.3715
.2101
~2.2529
«.5658
*.0279
11.2523
.3825
.1009
”1.3511
c.9885
“.6163
11.5142
.2517
.2517
“1.5850
—.8520
~.8520
.4453
~4.43c7
“.2603
“.6801
1.6595
- . '7t?-44 ‘3
.472;
“C . 3%.} 73')
“.3691
~95fl3579
1.a972
r‘ r) .I' 3‘
“.VL+.
.4363
.0000
“.4363
“1.0073
1.43:4
“1.0073
.2976
~~ ’3 . 6t) 69
-.3569
“.6a53
1.5933
~L.0499
.3715
‘1 . E;¢Z 1 C}
“cbcéd
”.5665
1.3345
"1.4514
1
.1197
“.2680
“8.4244
“.3336
“.7643
1.0377
“1.0499
1.5033
”.5528
~7.3844
”.6279
~1.4814
.9184
.1009
“.7463
“804098
“.5163
”1.8022
.1312
.2517
“.8580
«5.7571
“.8520
-2.1042
.7985
£000 .0 .0
«4.3343
.0000
.0000
15.0411
.0000
.0000
20.0 2.0 00
-4.1442
.0000
.0000
14.8264
.0000
.0000
20.0 4.0 .0
-3.6035
.0000
.0000
14.2135
.0000
.0000
20.0 6.0 .0
~2.7904
.0000
.0000
13.2879
.0000
.0000
20.0 8.0 .0
-1.8134
.0000
.0000
12.1691
.0000
.0000
20.010.0 .0
".7880
.0000
.0000
10.9863
.0000
.0000
20.0 2.0 2.0
-3.9589
.0000
.0000
14.6160
.0000
.0000
00000
2.1670
.0000
.0000
-7.5205
.0000
.0000
2.1102
.0000
00000
“7.1478
.0000
.0000
1.9619
.0000
.0000
-600699
.0000
.0000
1.7793
.0000
00000
“4.4008
.0000
.0000
1.6321
.0000
.0000
-2.3097
.0000
.0000
1.5761
.0000
.0000
.0000
.0000
.0000
1.9794
-.2790
.0000
“7.3080
-.O943
93
.0000
.0000
2.1670
.0000
.0000
-7.5205
.0000
.0000
2.0340
.0000
.0000
‘7.6786
.0000
.0000
1.6417
.0000
.0000
-8.1435
.0000
.0000
1.0112
.0000
.0000
-8.8871
.0000
.0000
.1813
.0000
.0000
“9.8593
.0000
.0000
".7880
.0000
.0000
-10.9862
.0000
“.2790
1.9794
.0000
“.0943
’7.3080
16.0411
.0000
.0000
"4.3340
.0000
.0000
14.8264
.0000
.0000
~4.1442
.0000
.0000
14.2135
.0000
.0000
”3.6035
.0000
.0000
13.2879
.0000
.0000
'2.7904
.0000
.0000
12.1691
.0000
.0000
“1.8134
.0000
.0000
10.9863
.0000
.0000
-.7880
.0000
.0000
14.6160
.0000
.0000
‘3.9589
.0000
.0000
.0000
“7.5205
.0000
.0000
2.1670
.0000
.0000
-7.1478
.0000
.0000
2.1102
.0000
.0000
—6.0699
.0000
.0000
1.9619
.0000
.0000
~4g4008
.0000
.0000
1.7793
.0000
.0000
-2.3097
.0000
.0000
1.6321
.0000
.0000
.0000
.0000
.0000
1.5761
.0000
.0000
*7.3080
-.O943
.0000
1.9794
'.2790
.0000
.0000
-7.5205
.0000
.0000
2.1670
.0000
.0000
'7.6785
.0000
.0000
2.0340
.0000
.0000
-8.1435
.0000
.0000
1.6417
.0000
.0000
-8.8871
.0000
.0000
1.0112
.0000
.0000
-9.8593
.0000
.0000
.1813
.0000
00000
”10.9862
.0000
.0000
-.7880
.0000
“.0943
"7.3080
.0000
‘.2790
1.9794
p)
;-,
I"
L—..
m
0
.
O
0.0
L0
0
’\
g.3 2.0
«3.4308
.0000
.0000
14.0153
.0000
.0000
6.0 200
«2.6363
.0000
.0000
13.1075
.0000
.0000
8.0 200
«1.6808
.0000
.0000
12.0093
.0000
.0000
4.0 4'0
—2.9383
.0000
.0000
13.4487
.0000
.0000
6.0 4.0
“2.1961
.0000
.0000
12.5910
.0000
.0000
1.0
.0000
~4.1746
~4.1746
.0000
4.1402
1.0 100
«‘7' . 9C; 7 8
.5.3836
~3.3836
6.4051
5.2831
3.2831
1.0
.0000
1.8379
-.5385
.0000
*6.2356
-.1925
.0000
1.6667
-.7590
.0000
-4.5723
-.2943
.0000
1.5364
-.9216
.0000
*2.4836
-.3915
.0000
1.4692
-I.O416
.0000
~6.7243
-.3936
.0000
1.3286
-l.4741
.0000
"5.0800
—.6028
-4.1746
.0000
—4.1746
4.1402
.0000
4.1402
”3.3836
2.9539
*1.1299
3.2831
*3.2026
1.0931
94
.0000
-.5353
1.5930
.0000
—.1925
-7.7797
.0000
~.7590
.9696
.0000
‘.2943
-8.5352
.0000
~.9216
.1445
.0000
-.3915
“9.5256
.0000
“1.0416
1.4692
.0000
“.3936
~6.7243
.0000
-1.4741
.8675
.0000
”.6028
«7.5109
-4.1746
-4.1746
.0000
4.1402
4.1402
. CU JO
—3.3836
-1.1299
2.9539
3.2831
1.0931
.3.2026
10.9133
.0000
.0000
~3.4308
.0000
.0000
13.1075
.0000
.0000
“3.6363
.0000
.0000
12.0093
.0000
.0000
*1 . 735108
.0000
.0000
13.4487
.0000
12.5910
.0000
.0000
”2.1961
.0000
.0000
.0000
4.1402
4.1402
.0000
“4.1746
«1'1. .1746
6.4051
3.2831
3.2631
“5.9078
—3.3836
—3.3836
.0000
~6.2356
—.1925
.0000
1.8379
-.5385
.0000
~4.5723
“.2943
.0000
1.6667
~.7590
.0000
~2.4836
.0000
1.5364
-.9216
.0000
~6.7243
*.3936
.0000
1.4692
—1.O416
.0000
~5.0800
-.6028
.0000
1.3286
«1.4741
4.1402
.0000
4.1402
~a.1746
.0000
«4.1746
332831
m3.2026
1.0931
~3.3836
2.9539
~191299
.0000
-.1925
-7.7797
.0000
“.5385
1.5930
.0000
“.2943
“8.5352
.0000
‘.7590
.9696
.0000
".3915
~935256
.0000
“.9216
.1445
.0000
‘.3936
“6.7243
.0000
“1.0416
1.4692
.0000
_.6028
—7.5109
.0000
-1.4741
4.1402
4.1402
.0000
~4.1746
-a.1746
.0000
.
R
w
deompwww
O
.1“
V
(1
v
h)m()g
0
N
O’N‘ 9.4 *4
1
I
n;HLku;w(»
O
O
a
0
Q ta {‘1
®\00‘
W
3.0
5.0
5.0
5.0
:1 . ."
3.0 1.0
-1 '. . 1.16 76
~5.8167
“1.9455
1.9231
5.5252
1.8378
3.0 3.0
.0000
-4.0695
~4.0695
.0000
3.7549
3.7549
.0 1.0
“6.9066
“2.2508
“2.2508
8.3560
2.0925
3.0 1.0
-4.3285
“5.1525
“1.7269
5.5497
4.6898
1.5570
.0 1.0
'“1.6702
“5.7571
“1.1794
2.4539
5.0271
.9868
'.0 3.0
“2.7471
-4.1742
“4.1742
3.7266
3.6773
3.6773
5.0 3.0
“.9373
-4.9604
-3.0321
1.4530
4.1749
2.4679
~5.8167
“1.6676
“1.9455
5.5252
1.9231
1.8378
“4.0695
.0000
“4.0695
3.7549
.0000
3.7549
“2.2508
3.4533
“.4561
2.0925
“4.1780
.4146
“5.1525
.8823
“1.0481
4.6898
“1.0902
.9265
“5.7571
“1.6702
“1.1794
5.0271
2.4539
.9868
“4.1742
1.3736
“2.5396
3.6773
“1.8633
2.1835
“4.9604
“.9373
“3.0321
4.1749
1.4530
2.4679
95
“1.9455
“1.9455
3.3353
1.8378
1. (1.37115
“3.6462
“4.0695
“4 . 0695
.0000
3.7549
3.7549
.0000
“2.2508
“.4561
3.4533
2.0925
.4146
“4.1780
“1.7269
“1.0481
3.4462
1.5570
.9265
“4.4595
“1.1794
“1.1794
3.3403
.9868
.9868
“4.9077
“4.1742
“2.5396
1.3736
3.6773
2.1835
“1.8633
“3.0321
“3.0321
1.8746
2.4679
2.4679
“2.9060
1.9231
5.5252
1.8378
“1.6676
“5.8187
~3.9455
.0000
3.7549
3.7549
.0000
“4.0695
~4.3695
8.3560
2.0925
2.0925
“6.9066
“2.2508
“2.2508
5.5497
4.6898
1.5570
“4.3285
“5.1525
“1.7269
2.4539
5.0271
.9868
“1.6702
“5.7571
“1.1794
3.7266
3.6773
3.6773
“2.7471
“4.1742
“4.1742
1.4530
4.1749
2.4679
“.9373
“4.9604
“3.0321
5.5252
1.9231
1.8378
“5.8187
“1.6676
“1.9455
3.7549
.0000
3.7549
~4.0695
.OOOO
~4.0695
2.0925
“4.1780
.4146
“2.2508
3.4533
“.4561
4.6898
“1.0902
.9265
“5.1525
.8823
“1.0481
5.0271
2.4539
.9868
—5.7571
—1.6702
—1.1794
3.6773
~1.8633
2.1835
—4.1742
1.3736
“8.5396
4.1749
1.4530
2.4679
“4.9604
“.9373
“3.0321
1.8378
1.8378
“3.8462
“1.9455
“1.9455
3.3353
3.7549
3.7549
.0000
“4.0695
“4.0695
.0000
2.0925
.4146
“4.1780
“2.2508
“.4561
3.4533
1.5570
.9265
“4.4595
“1.7269
“1.0481
3.4462
.9868
.9868
“4.9077
“1.1794
“1.1794
3.3403
3.6773
2.1835
“1.8633
“4.1742
“2.5396
1.3736
2.4679
2.4679
-2.9060
“3.0321
-3.0321
1.8746
l .llllllll' Ila-1':
I III
m
o
O
7.0
7.0
7.0
7.0
7.0
7.0
5.0 5.0
.0000
‘3.9004
~309004
.0000
3.0057
3.0057
.0 1.0
~6.8486
~1.6103
—1.6103
9.6220
1.4075
1.4075
3.0 1.0
—5.2811
—4.1249
~1.3572
7.8467
3.5319
1.1690
5.0 1.0
-3.1906
*5.2691
~100902
5.3573
4.3327
.8419
7.0 1.0
_lo3958
~5.3524
’o8365
3.0061
4.1498
.5447
3.0 3.0
—4.1115
~306227
~3.62&7
6.4562
2.9842
2.9842
5.0 3.0
~8.4893
—4.7557
-8.9260
4.4097
3.7454
2.1982
y...
"3.9004
.0000
~309004
3.0057
.0000
3.0057
-1.6103
3.4243
-.Zle
1.4075
“4.8110
.1935
~401249
1.9567
-.6239
3.5319
-208092
.4822
—5.2691
.0779
-.8079
4.3327
.0964
.5827
-5.3524
“1.3958
“.8365
4.1498
300061
.5447
-3.6227
2.0557
“1.6390
2.9642
~3o2251
1.2232
-4.7557
.3b93
-2.1760
3.7434
~04912
1.5148
96
"3.9004
“3.9004
.0000
3.0057
3.0057
.0000
‘106103
“.2418
3.4243
1.4075
.1935
~408110
“1.3872
“.0239
3.3244
1.1690
.4822
~5.0375
~1.0902
“.8079
3.1128
.8419
.5827
-5.4537
“.8365
*objbb
2.7913
.5447
.5447
-600122
-3.6227
-1.6390
2.0537
2.964C
1.2252
~3.2281
-2.9260
“2.1760
2.1300
Zolgbfi
1.5146
~3.9185
.0000
3.0057
3.0057
.0000
”3.9004
“3.9004
9.6220
1.4075
1.4075
‘6.8486
”1.6103
”1.6103
7.8467
3.5319
1.1690
~5.2811
-4.1249
-1.3872
5.3573
4.3327
.5419
“3.1906
~5.2691
-100902
3.0061
4.1498
.5447
"1.3958
’503524
-.8365
6.4562
2.9842
2.9842
“4.1115
-3.6227
~3.6227
4.4097
3.7454
2.1982
~2.4893
—4.7Sb7
-2.9260
3.005?
.0000
3.0057
“3.9004
.0000
-3.9OC4
1.4075
-4.8110
.1935
~1.6103
3.4243
-.2418
3.5319
~5.5092
.4822
~4.1249
1.9567
-.6239
4.3327
.0964
.5827
-5.2691
.0779
“.8079
4.1498
3.0061
.8447
~5.3524
-l.3958
‘.8365
2.9842
~J.2281
1.2232
—J.6227
2.0557
”1.6390
3.7454
”.4912
1.8148
"4.7857
.3593
~2.1760
3.0057
3.0057
.0000
"3.9004
-3o9OC4
00000
1.4075
.1935
-4.8110
~1.6103
3.4243
1.1690
.4622
“5.0375
*1.3d72
*o6239
3.3244
.3419
.5827
-5.4537
“103902
*38379
3.1128
.5447
.5447
“C? o 9122
”08305
-.8365
2.7915
2.9842
1.2232
-3.2281
-3.6227
~1.(fi393
2.0557
2.1932
1.5148
"3.9135
”3.9803
*io1700
2.1000
7.0
7.0
7.0
9.0
7.0 3.0
”1.0403
~4.9572
-2.3041
2.3671
3.6557
1.4465
5.0 5.0
-1.4664
44.0016
“4.0016
2.9119
2.8453
2.8453
7.0 5.0
”.5066
-4.3469
—3.2843
1.2843
2.8491
1.9150
7.0 7.0
.0000
—3.7324
~3.7324
.0000
1.9464
1.9464
1.0 1.0
~6.4446
-1.2022
-1.2022
10.7947
.9728
.9728
3.0 1.0
~5.4193
-3.2437
-1.0952
9.5880
2.5730
.8479
5.0 1.0
-3.8517
—4.4648
”.9348
7.6721
3.4046
.6520
*4.9572
”1.0403
”2.3041
3.6557
2.3671
1.4465
”4.0016
.7332
”2.9957
2.8453
”1.4560
1.9425
”4.3469
~.5066
”3.2843
2.8491
1.2843
1.9150
”3.7324
.0000
”3.7324
1.9464
.0000
1.9464
”1.2022
3.2223
-.1528
.9728
-5.3974
.0961
”3.2437
2.3413
-.4169
2.5730
”3.9621
.2502
”4.4648
1.0578
*.5862
3.4046
”1.6111
.3203
97
”2.3041
”2.3041
2.5606
1.4465
1.4465
”4.7341
~4.0016
~2.9957
.7332
2.8453
1.9455
-l.4560
”3.2843
”3 . 2843
1.0132
1 .91250
1.9150
”'2 . 1363C)3
~3.7324
”3.7324
.0000
1.9464
1.9464
.0000
”1.2022
”.1528
3.2223
.9728
.0961
”5.3974
”1.0952
”.4169
3.0760
.8479
.2502
~5.6260
-.9348
”.5862
2.7939
.6520
.0203
”6.0610
2.3671
3.6557
1.4405
1 . (1903
~a.9572
“‘ ’ . 3041
2.9119
2.8453
2.6453
”1.4664
”4.0016
“(11.3016
1.2843
2.8491
3.9150
”.6066
«4.3469
~3.2843
.0000
1.9464
1.9464
.0000
”3.7324
”3.7324
1C.7947
.9728
.9728
"6 . 4446
”1.20d2
“1.6022
”0.41fl3
«1.0952
\..
3.6557
2.3671
1.4465
~4.9572
-1.0403
—2.3041
2.8453
“1.4560
1.9425
”4.0016
.7332
~C.9957
2.8491
1.2843
1.9150
“4.3469
«.5066
«3.2843
1.9464
.0000
1.9464
”3 . 7.324
. 01.100
"3.7324
1.4465
1.4465
-4.7341
-2.3041
”2.3041
2.0806
2.8453
1.9425
—1.4560
~4.0016
-2.9957
.7332
1.9150
1.9150
”2.5685
”3.2843
”3.2843
1.0132
1.9464
1.9464
.0000
”3.7324
”3.7324
.0000
.9728
.0961
”5.3974
“1.2022
-.1528
3.2223
.8479
.2502
”5.6260
”1.0952
”.4169
3.0780
.6520
.3203
—6.0610
“.9348
-.5862
2.7939
r
9.0
9.0
9.0
9.0
9.0
9.0
7.0 1.0
-a.264l
—4.8672
”.7781
5.5978
J.5037
.4438
9.0 1.0
”.9404
-4.6797
”.6556
3.6908
3.1312
.2563
:3ng .300
~4.b748
”C.9007
-d.9807
8.5503
2.2565
2.2865
5.0 3.0
”3.2620
“2.5794
6.8657
3.0181
1.7496
7.0 3.0
”1.9075
—4.6038
-2 .1803
4.9899
3.1227
1.1962
9.0 3.0
”.7622
_4.4901
—l.8642
3.2166
8.8004
.6847
5.0 5.0
~2.3239
-3.6828
~3.6828
5.5089
2.3619
2.3619
”4.8672
”.1208
”.6583
3.5037
1.0656
.3180
”4.6797
”.9404
”.6556
3.1312
3.6908
.2663
”2.9807
2.6874
”1.1439
2.2565
”4.2751
.6666
”4.1697
1.1160
”1.6299
3.0121
”2.0221
.8473
”4.6038
.0156
”1.8583
3.1227
.5984
.8314
”4.4901
”.7622
”1.8642
2.8004
3.2168
.6847
”3.6828
1.1619
”2.3611
2.3619
”2.7544
1.1088
98
”.7781
”.6583
2.3850
.4438
.J1CQ
”6.6635
”.6556
”.6556
1.8808
.2563
.2563
”7.3816
”2.9807
”1.1459
2.2874
2.2565
.6558
”4.2751
”2.5794
”1.6299
2.1470
1.7496
.8473
”4.8436
”2.1803
”1.8523
1.8919
1.1962
.8314
”5.5883
”1.8642
”1.8642
1.5244
.6847
.6847
”6.4335
”3.6828
~2.3611
1.1619
2.3619
1.1088
”2.7544
5.6978
3.5037
.4438
”2.2641
”4.6678
”.7781
3.6908
3.1312
.2563
”.9404
~4.6797
”.6556
8.0503
2.4565
2.2565
”4.5748
”2.9807
”2.9807
6.6667
_.Clcl
1.7496
”3.6680
~4.1597
”2.5794
4.9899
3.1227
1.1962
-1.9375
”4.6038
”2.1803
3.8168
2.0004
.6847
”.7682
”4.4901
”1.8642
5.6089
2.3619
2.3619
”2.3 39
”3.6828
”3.6828
3.5037
1.0656
.3120
~4.8672
”.1208
” a 658.3
3.1312
3.6908
.2563
”4.6797
”.9404
”.6656
”4.3701
.6568
”2.9807
2.2874
”1.1459
3.0181
~2.0EZI
.8473
-4.1597
1.1150
”1.6299
3.1227
.5984
.8314
~4.6038
.0156
—1.8523
2.8004
3.2168
.6847
—4.4901
”.7622
”1.8642
2.3619
”2.7544
1.1088
—3.6828
1.1619
-d.36ll
.4438
.3120
”6.6635
”.7781
.6583
2.3850
.2563
.2563
”7.3816
”.6556
”.6556
1.8808
8.2565
.6558
—4.2751
”2.9807
”1.1459
2.2874
1.7496
.8473
”4.8436
”2.5794
”1.6299
2.1470
1.1962
.8314
”5.5883
”2.1803
”1.8523
1.8919
.6847
.6847
”6.4335
”1.8642
”1.8642
1.5244
2.3619
1.1088
—2.7544
”3.6828
”2.3611
1.1619
F"
AJ
“I
7.0 5.0
~1.3316
«4.1836
«3.1958
3.9255
2.4677
1.6202
9.0 5.0
-.4799
*4.1851
—2.8039
2.3557
2.2120
.9031
7.0 7.0
-.7167
«3.7461
“3.7461
2.6149
1.6823
1.6823
9.0 7.0
«.1976
-J.8693
~3.3946
1.2395
3.4715
.8811
9.0 900
.0000
~3.6292
~j.6292
.0000
.6742
.6742
1.0 1.0
~3.9054
—.9073
~.9073
11.9374
.6732
.6732
3.0 1.0
—D.1814
~2.5153
-.8530
11.0629
1.8302
.5998
~4.1836
.2092
-2.7368
2.4677
-.2368
1.0980
-4.1851
-.4799
"2.8039
2.2120
2.3557
.9031
-3.7461
.3584
”3.2437
1.6823
-l.3074
1.0894
”3.8693
*.1976
*3.3946
1.4715
1.2395
.8811
~3.6292
.0000
”3.6292
.6742
.0000
.6742
-.9073
2.9527
-.1104
.6732
-5.9687
.0443
-2.5153
2.4069
-.3108
1.8302
~4.8480
.1162
99
~3.19Db
“2.7368
1.1224
1.6202
1.0960
~3.6867
~2.8039
«2.8039
.9599
.9031
.9031
~4.7114
-3.7461
“3.2437
.3584
1.6823
1.0894
“1.3074
~3.3946
~3.3946
.3952
.8811
.8811
~2o4791
~3.6292
”3.6292
.0000
.6742
.6742
.0000
“.9073
-.1104
2.9527
.6732
.0443
-D.9687
“.8530
-.3108
2.7744
.5998
.1162
-é.2149
3.9255
2.4677
1.6202
“1.3316
~4.1836
-3.1958
2.3557
2.2120
.9031
".4799
“4.1851
“2.6039
2.6149
1.6823
1.6823
”.7167
“3.7461
“3.7461
1.2395
1.4715
.8811
*.1976
~3.8693
“3.3946
.0000
.6742
.6742
.0000
‘3.6292
*3.6292
11.9374
.6732
.6732
“5.9054
‘.9073
*.9073
11.0629
1.8302
.5998
*5.1814
“2.5153
“.8530
2.4677
-.2388
1.0980
—4.1836
A] “(a 1)
2.2320
2.3557
.9031
-4.1851
“.4799
"d.8U38
1.6823
-1.3074
1.0894
~3.7461
.3584
~3.2437
1.4715
1.2395
.8811
~3.8693
-.1976
~3.3946
.6742
.0000
.6742
«3.6292
.0000
43.6292
.6732
*5.9687
.0443
“.9073
2.9527
".1104
1.8302
*4.8480
.1162
-2.5153
2.4069
“.3108
1.6202
1.3980
~3.6867
~3.1958
~2.7368
1.1224
.9031
.9031
~4.7114
~2.8039
“2.8039
.9599
1.6823
1.0894
”1.3074
'3.7461
—3.2437
.3584
.8811
.8811
~2.4791
~3.3946
~3.3946
.3952
.6742
.6742
.0000
~3.6292
-3.6292
.3000
.5732
.3443
”5.9687
*99273
W.1104
2.9527
.5998
.1162
“6.2149
- Qfififi
O '-- .3 ~ v
“.3108
2.7744
0, ‘
.‘
| lll‘l.l III 1 I 1‘
:1.3 5.0 1.0
—3.9822
«3.6142
-.7663
9.5748
2.5301
.4753
7.0 1.0
—2.6320
~4.1245
*.6755
7.8205
2.7281
.3293
1.0
.3734
.1290
.6005
.0768
.5401
.1841
1.0
.3284
.7615
.5495
4.5093
2.1275
.0525
0 3.0
"4.5501
~2.3756
~2.3756
15.2713
1.5336
1.6336
1
9'“O
N()1
.
O
i
U!
1
6.0 3.0
-:.4966
w3.4411
~1.1517
3.9089
3.2634
_.2967
393 3.0
-3.?995
—s.?658
”1.9160
7.2780
2.4426
.8950
“3.6142
1.5549
*.4597
2.3301
*2.8865
.1482
~4.1245
.6996
-.5462
2.7281
-.4684
.1383
‘4.1290
.0481
-.5735
2.5401
2.0753
.1002
-3.7615
-.3284
—.5495
2.1275
4.5093
.0525
—2.3756
2.2750
-.8778
1.6336
‘5.1356
.3045
-3.4411
1.4906
”1.3062
2.2634
-3.2296
.3871
‘3.9658
.6989
-l.5626
2.4426
-.8524
.3567
100
“.7663
~.4597
2.4273
.4753
.1482
”6.6884
‘.6755
’.5462
1.9324
.3293
.1383
“7.3521
*.6005
“.5735
1.3253
.1841
.1002
“8.1521
-.5495
“.5495
.6568
.0525
.0525
‘9.0187
-2.3756
-.8778
2.2750
1.6336
.3045
-5.1356
-2.1517
-1.3062
2.0059
1.2967
.3871
-5.6793
”1.9160
-1.5626
1.6006
.8950
.3567
~6.4255
9.5748
2.5301
.4753
~3.9822
“3.6142
-.7663
7.8205
2.7281
.3293
“2.6320
~4.1245
-.6755
6.0768
2.5401
.1841
‘1.3734
—4.1290
-.6005
4.5093
2.1275
.0525
“.3284
*3.7615
“.5495
10.2713
1.6336
1.6336
-4.5501
-2.3756
-2.3756
8.9089
2 .2634
1.2967
”3.4906
“3.4411
”2.1517
7.2780
2.4426
.8950
”2.2995
—3.9658
“1.9160
4.5301
~2.8865
.1482
‘J.b142
1.5349
_.4597
2.7281
“.4684
.1383
“4.1245
.6996
“.5462
2.5401
2.0753
.1002
~4.1290
.0481
—.5735
2.1275
4.5093
.0525
~3.7615
*.3284
“.5495
1.6336
-5.1356
.3045
-2.3756
2.2750
-.8778
2.2634
-3.2296
.3871
~3.4411
1.4906
~1.3062
2.4426
".8524
.3567
“3.9658
.6989
-1.5626
.4753
.1482
*6.6884
“.7663
“.4597
2.4273
.3293
.1383
-7.3521
-.6755
-.5462
1.9324
.1841
.1002
-8.1521
“.6005
*.5735
1.3253
.0525
.0525
-9.0187
".5495
‘.5495
.6568
1.6336
.3045
-5.1356
-2.3756
-.8778
2.2750
1.2967
.3871
-5.6793
-2.1517
-1.3062
2.0059
.8950
.3567
~6.4255
—1.9160
“1.5626
1.6006
w“
11.0 9.0 300
—1.1755
~4.0113
91.7218
5.6301
2.2689
.4890
11.011.0 3.0
“.2388
-3.6905
~1.5921
4.1255
1.8884
.1149
11.0 5.0 5.0
~2.6772
”3.1617
-3.1617
7.7404
1.7977
1.7977
11.0 7.0 5.0
-1.7345
‘3.7098
-2.8671
6.3035
1.9321
1.2272
11.0 9.0 5.0
“.8422
~3.8250
-2.6284
4.8078
1.7724
.6326
11.011.0 5.0
. ”.0998
—3.5858
-2.4791
3.4023
1.4404,
.0679
11.0 7.0 7.0
“1.0817
~3.4438
—3.4438
5.0641
1.2853
2.2853.
~4.C113
.0978
*106517
2.2689
1.6781
.2489
*3.6905
-.2388
‘1.5921
1.8884
4.1255
.1149
-3.1617
1.3386
-1.9633
1.7977
-3.8702
.4856
-3.7098
.6619
-2.3768
1.9321
-l.5682
.4303
“3.8250
.1568
“2.5430
1.7724
.9342
.2670
’3.5858
-.0998
-2.4791
1.4404
3.4023
.0679
-3.4438
.5408
‘2.9201
1.2853
-2.5321
.3407
101
~1.7218
~1.6517
1.0776
.4890
.2489
“7.3081
-1.5921
«1.5921
.4776
.1149
.1149
~8.2509
-3.1617
-1.9633
1.3386
1.7977
.4856
«3.8702
~2.8671
«2.3768
1.0725
1.2272
.4303
«4.7352
~2o6284
”2.5430
.6854
.6326
.2670
“5.7420
~2.4791
~2.4791
.1997
.0679
.0679
~6.8045
-3.4438
~2.9201
.5408
1.2853
.3407
”2.5321
5.6301
2.2689
.4890
“1.1755
«4.0113
~1.7218
4.1255
1.8884
.1149
".2388
“3.6905
”1.5921
7.7404
1.7977
1.7977
-2.6772
~3.1617
“3.1617
6.3035
1.9321
1.2272
-l.7345
-3.7098
-2.8671
4.8078
1.7724
.6326
”.8422
“3.8250
*2.6284
3.4023
1.4404
.0679
-.0998
—3.5858
~2.4791
5.0641
1.2853
1.2853
‘1.0817
—3.4438
-3.4438
2.2689
1.6781
.2489
~4.0113
.0978
-1.6517
1.8884
4.1255
.1149
-3.6905
".2388
-1.5921
1.7977
-3.8702
.4856
-3.l617
1.3386
~1.9633
1.9321
‘1.5682
.4303
-3.7098
.6619
—2.3768
1.7724
.9342
.2670
-3.8250
.1568
-2.5430
1.4404
3.4023
.0679
-3.5858
‘00998
-2.4791
1.2853
~2.5321
.3407
~3.4438
.5408
~2.9201
.4890
.2489
«7.3081
-1.7218
-1.6517
1.0776
.1149
.1149
—8.2509
-1.5921
-1.5921
.4776
1.7977
.4856
—3.8702
-3.1617
-l.9633
1.3386
1.2272
.4303
-4.7352
-2.8671
-2.3768
1.0725
.6326
.2670
—5.7420
-2.6284
-2.5430
.6854
.0679
.0679
-6.8046
-2.4791
-2.4791
.1997
1.2853
.3407
-2.5321
-3.4438
-2.9201
.5408
‘ 1
11.C11
d
a .S.‘
9.0 7.0
“.4689
-3.6437
—3.2414
3.7239
1.1203
.5843
.0 7.0
.025
-3.5060
~3.1406
2.4147
.8309
“.1589
11.0 9.0 9.0
'1
1“)
O
.0
.
O
“.1447
~3.534l
~3.5341
2.5007
. 13824
.3824
1.0 1.0
-5.3430
-.6709
-.5709
12.9980
. 554
.4554
3.0 1.0
-4.7919
~1.8882
“.6430
12.3292
1.2575
.4094
5.0 1.0
~3.8325
“2.7831
“.5974
11.1435
1.7840
.3275
7.0 1.0
«2.6738
~3.2704
“.5482
9.6686
1.1%315
.2251
“3.6437
.1654
~3.1733
1.1203
«.0734
.1337
“3.5060
.0250
“3.1406
.8309
2.4147
“.1069
“3.5341
.0724
“3.5083
.3824
“1.2504
“.1104
“.6709
2.6715
“.0891
.4554
“6.4990
.0136
“1.8882
2.3285
—.2555
1.2575
“5.5621
.0327
“2.7831
1.7738
“.3902
1.7840
“3.8586
.0324
“3.2704
1.1920
“.4818
1.9815
“1.6532
.0110
102
“3.2414
“3.1733
.3035
.3541
.1337
“3.6505
“3.1406
“3.1406
“.0500
“.1089
.1089
“4.8295
3.5341
“3.5083
.0724
.3824
.1104
.2504
I
l
f—O
.6709
.0891
.6715
.4554
.0136
.4990
N
1
O
.6430
.8555
.4634
.4094
.0327
~6.767l
N
.5974
—.3902
.0586
.3275
.032a
“7.2850
N
“.5482
“.4818
1.4818
.2251
.0110
“8.0154
3.7239
1.1203
.5843
“.4689
“3.6437
“3.2414
2.4147
.8309
“.1089
.0250
“3.5060
—3.1406
2.5007
.3824
.3824
“.1447
“3.5341
“3.5341
12.9980
.4554
.4554
“5.3430
—.6709
-.6709
12.3292
1.2575
.4094
“4.7919
“1.8882
“.6430
11.1435
1.7840
.3275
“3.8325
“2.7831
“.5974
9.6686
1.9815
.2251
“2.6738
“3.2704
.-.5482
1.1203
«.0734
.1337
43.6437
.1654
~3.1733
.8309
2.4147
“.1089
“3.5060
.0250
“3.1406
.3824
“1.2504
“.1104
~3.5341
.0724
“3.5083
.4554
“6.4990
.0136
“.6709
2.6715
“.0891
1.2575
“5.5621
.0327
“1.8882
2.3285
“.2555
1.7840
“3.8586
.0324
“2.7831
1.7738
“.3902
1.9815
“1.6532
.0110
—3.2704
1.1920
“.4818
.5843
.1337
—3.6505
~3.2414
~3.1733
.3035
“.1089
“.1089
“4.8295
“3.1406
“3.1406
“.0500
.3824
“.1104
“1.2504
“3.5341
“3.5083
.0724
.4554
.0136
“6.4990
“.6709
“.0891
2.6715
.4094
.0327
“6.7671
“.6430
“.2555
2.4634
.3275
.0324
“7.2850
“.5974
“.3902
2.0586
.2251
.0110
“8.0154
-.5482
“.4818
1.4818
fit
|_4 1‘“_‘
v-
13.0
i.
0C)
0
.
migtflw
0(3-
N13
{n1
1
“~40
p
.f-
A
1"“
,‘rd
. L. .E
1.8939
.1163
13.011.0 1.0
13.013.0
13.0
“.4607
—3.1398
“.4813
6.6671
1.6255
.0113
1.0
.3953
-2.6694
“.4699
5.4126
1.2630
“.0823
3.0 3.0
-4.2934
“1.8152
“1.8152
11.7055
1.1299
1.1299
5.0 3.0
~J.4223
~2.6902
“1.6957
10.5931
1.6011
.9020
.0 3.0
-2.3654
“3.1840
“1.5680
9.1974
1.7723
.6138
.0 3.0
«1.2965
“3.3043
“1.4644
7.7191
1.6851
.3036
4
m
“3.3664
.7332
“.5256
1.8969
.7802
~- . 0237
“3.1398
.4695
“.5213
1.6255
3.2022
“.0591
“2.6694
.3953
“.4699
1.2530
5.4126
n.0823
“1.8152
2.1467
-.7341
1.1299
“5.8527
.0765
“2.6932
1.6350
“1.1253
1.6311
“4.1819
.0671
“3.1840
1.1017
“1.3954
1.7723
“2.0033
.0000
“3.3043
.6913
“1.5300
1.6851
.4204
—.1036
103
1
.
m
w
l
O C O
'3“*41fi
.W‘QPOO
~ J ‘3‘ :41 (J‘s \J
O'fiLJD~O
I
m P
O
.C 1.
C M
m
“.4813
“.5213
.0089
.0113
.0591
“9.8693
.4699
“.4699
“.7900
“.0823
“.0823
0.8253
fi—D
“1.8152
“.7341
2.1467
1.1299
.0765
“5.8527
-1.6957
—1.1253
1.7873
.9024
.0671
-6.4112
“1.5680
“1.3954
1.2637
.6138
.0000
“7.1940
“1.4644
“1.5300
.6052
.3036
“.1036
“8.1395
8.1218
1.8969
.1163
~1.5066
“3.3664
“.5075
6.6671
1.6255
.0113
“.4607
“3.1398
“.4813
5.4126
1.2630
-.0823
.3953
”2.6694
“.4699
11.7055
1.1299
1.1299
“4.2934
“1.8152
“1.8152
10.5931
1.6011
.9020
“3.4223
“2.6902
“1.6957
9.1974
1.7723
.6138
-2.3654
“3.1840
“1.5680
7.7191
1.6851
.3036
“1.2965
”3.3043
“1.4644
1.8969
.7802
“.0237
“3.3664
.7332
“.5256
1.6255
3.2022
“.0591
-3.1398
.4695
“.5213
1.2630
5.4126
“.0823
~2.6694
.3953
“.4699
1.1299
—5.8527
.0765
“1.8152
2.1467
“.7341
1.6011
“4.1819
.0671
“2 . 6902
1.6360
“1.1253
1.7723
“2.0033
.0000
~3.1840
1.1017
~1.3954
1.6851
.4204
“.1036
“3.3043
.6913
“1.5300
.1163
“.0237
“8.9020
“.5075
“.5256
.7734
.0113
“.0591
“9.8693
“.4813
“.5213
“.0089
“.0823
“.0823
“10.8253
“.4699
“.4699
“.7906
1.1299
.0765
—5.8527
“1.8152
“.7341
2.1467
.9020
.0671
“6.4112
“1.6957
“1.1253
1.7873
.6138
.0000
“7.1940
“1.5680
“1.3954
1.2637
.3036
“.1036
“8.1395
“1.4644
“1.5300
.6052
13.011
13.013
13.0 5
3.0 7
rd
111.0 9
13.011
13.0 7
.0 3.0
“.3365
-3.1079
“1.4018
6.3149
1.4280
.0000
.0 3.0
.4488
~2.6635
-1.3812
5.0927
1.0925
“.2733
.0 5.0
-2.7016
-2.5392
-2.5392
9.6008
1.2700
1.2700
.0 5.0
-1.8216
-3.C469
-2.3814
8.3356
1.3872
.8435
.0 5.0
“.9276
~3.2124
-2.2616
6.9706
1.2879
.3737
.0 5.0
“.1252
—3.0719
-2.2045
5.6488
1.0504
“.0969
.0 7.0
~1.1561
-2.9130
-2.9130
7.2134
.8786
.8786
“3.1079
.4753
“1.5250
1.4280
2.8535
“.2073
“2.6635
.4488
“1.3812
1.0925
5.0927
-.2733
“2.5392
1.3508
“1.7360
1.2700
“4.8004
.0275
“3.0469
.9044
“2.1707
1.3872
“2.6727
-.0936
“3.2124
.5833
“2.4025
1.2879
—.2694
-.2654
“3.0719
.4586
“2.4181
1.0504
2.1827
~.4323
“2.9130
.5780
“2.7446
.8786
—3.6067
—.2789
104
-1.4018
“1.5253
“.1388
.0000
-.2073
-9.1684
“1.3812
“1.3812
“.8977
“.2733
“.2733
10.1854
~2.5392
-l.7360
1.3508
1.2700
.0275
—4.8004
“2.3814
“2.1707
.9171
.8435
“.0936
“5.6629
“2.2616
“2.4025
.3443
.3737
“.2654
“6.7012
“2.2045
“2.4181
“.3333
“.0969
“.4323
“7.8316
-2.9130
-2.7446
.5780
.8786
-.2789
-3.6067
6.3149
1.4280
.0000
-.3365
-3.1079
-1.4018
5.0927
1.0925
“.2733
.4488
“2.6635
“1.3812
9.6008
1.2700
1.2700
“2.7016
‘2.5392
“2.5392
8.3356
1.3872
.8435
“1.8216
“3.0469
“2.3814
6.9706
1.2879
.3737
“.9276
“3.2124
“2.2616
5.6488
1.0504
“.0969
“.1252
“3.0719
“2.2045
7.2134
.8786
.8786
-l.1561
-2.9130
-2.9130
1.4280
2.8535
“.2073
~3.1079
.4753
“1.5250
1.0925
5.0927
“.2733
“2.6635
.4488
“1.3812
1.2700
~4.8004
.0275
“2.5392
1.3508
“1.7360
1.3872
“2.6727
“.0936
-3.0469
.9044
-2.1707
1.2879
“.2694
“.2654
—3.2124
.5833
-2.4025
1.0504
2.1827
“.4323
-3.0719
.4586
-2.4181
.8786
-3.6067
“.2789
-2.9130
.5780
-2.7446
.0000
“.2073
-9.1684
-1.4018
-1.5250
-.1388
-.2733
-.2733
10.1854
-l.3812
-l.3812
-.8977
1.2700
.0275
“4.8004
“2.5392
“1.7360
1.3508
.8435
“.0936
-5.6629
-2.3814
-2.1707
.9171
.3737
“.2654
-6.7012
-2.2616
-2.4025
.3443
“.0969
“.4323
“7.8316
“2.2045
-2.4181
“.3333
.8786
“.2789
“3.6067
-2.9130
“2.7446
.5780
h
.“A"=-J_
“if???”
«If:
1-0
15.
m
.
v (*
1 s
L -1 O
1'“
_...
O
f“
V
D
0
5.7 7.0
“.4832
“3.1413
“2.8317
5.9712
.7475
.3002
1.0 1.0
~4.8406
“.4649
“.4649
3.8946
.2911
.2911
1.0
.3891
—;.3200
“.4512
3.3558
.8108
.2621
5.9 1.0
“3.5777
1.9754
“.4285
12.3766
.1679
.2092
1.0
.5516
.3641
-.4Q43
'.1167
1.3209
.1403
1.0
.4621
.4784
.3853
'.7475
1.2871
.3638
3 1.0
“.4329
~2.3495
“.3752
8.4180
1.1195
“.0132
w
L
0
4 £1; (’)
p—‘
I
5.. -
h;m13
p...
‘o.
J
I!
l\) *“‘ (J
o
1
“’1
-
“3.1413
.3721
“3.0775
.7475
“1.2367
“.5200
-.4649
2.4203
“.0784
.2911
“6.9473
—.0056
«1.3200
2.2022
-.2273
.8108
-5.1195
-.0203
“1.9754
1.8451
“.3542
1.1679
“4.5808
“.0454
“2.3641
1.4675
“.4483
1.3209
“2.5286
“.0795
“2.4784
1.1765
“.5021
1.2871
“.1928
“.1168
“2.3495
1.0319
“.5102
1.1195
2.1967
“.1471
105
“2.8317
“3.0775
.1110
.30C2
“.5200
“4.7345
“.4649
“.0784
2.4203
.2911
“.0056
“6.9473
“.4512
“.2273
2.1869
.2621
“.0208
“7.2363
“.4285
“.3542
1.7326
.2092
“.0454
“7.7958
“.4043
“.4483
1.0841
.1403
“.0795
“8.5882
“.3853
“.5021
.2857
.0638
“.1168
“9.5547
“.3752
“.5102
“.5990
“.0132
“.1471
“10.6148
5.9712
.7415
.3002
“.4832
“3.1413
“2.8317
13.8946
.2911
.2911
“4.8406
“.4649
“.4649
13.3558
.8108
.2621
“4.3891
“1.3200
“.4512
12.3766
1.1679
.2092
“3.5777
“1.9754
“.4285
11.1167
1.3209
.1403
“2.5516
“2.3641
-.4043
9.7475
2.2871
.0638
“1.4621
“2.4784
“.3853
8.4180
1.1195
“.0132
“.4329
“2.3495
“.3752
.7475
“1.2367
“.5200
“3.1413
.3721
“3.0775
.2911
“6.9473
“.0056
“.4649
2.4203
“.0784
.8108
—6.1195
“.0208
“1.3200
2.2022
“.2273
1.1679
-4.5808
-.oa54
-1.9754
1.0451
-.3542
1.3209
“2.5286
“2.3641
1.4675
“.4483
1.2871
“.1928
“.1168
“2.4784
1.1765
“.5021
1.1195
2.1967
“.1471
“2.3495
1.0319
“.5102
.3002
“.5200
“4.7345
—2.8317
“3.0775
.1110
.2911
‘.0056
“6.9473
“.4649
“.0784
2.4203
.2621
“.0208
“7.2363
4.4512
“.2273
2.1869
.2092
“.0454
“7.7958
“.4285
“.3542
1.7326
.1403
“.0795
“8.5882
“.4043
“.4483
1.0841
.0638
“.1168
“9.5547
“.3853
“.5021
.2857
“.0132
“.1471
“10.6148
“.3752
“.5102
“.5990
g...
w
0
15.013.':) 1.0
.4511
“2.0240
“.3745
7.2424
.8795
“.0844
3.0 3.0
~3.9702
“1.2838
“1.2838
12.8447
.7290
.7290
5.0 3.0
«3.2156
“1.9295
“1.2247
1.9130
1.0465
.5790
.0 3.0
—2.2590
-2.3228
.1629
“J
Q
l.
' O
m
I
0
“1.1169
9.3914
1.1339
.1610
.0 3.0
“.2774
“2.3427
“1.0975
8.1051
.9710
“.0639
5.0 5.0
—2.5615
“1.8561
“1.8561
11.0625
.8216
.8216
H
“2.0240
1.0353
“.4695
.8795
4.4257
“.1590
“1.2838
1.9851
-.6600
.7290
-6.4223
-.O733
“1.9295
1.6569
“1.0313
1.0465
“4.9045
“.1524
“2.3228
1.3169
-1.3100
1.1760
“2.8697
~.2580
“2.4524
1.0700
“1.4733
1.1339
“.5388
“.3722
“2.3427
.9767
“1.5041
.9710
1.8639
“.4644
“1.8561
1.2807
“1.6194
.8216
“5.5313
“.2989
106
“.3745
“.4695
“1.4863
“.0844
“.1590
11.6681
“1.2838
“.6600
1.9851
.7290
“.0733
“6.4223
“1.2247
“1.0313
1.5587
.5790
“.1524
“7.0055
“1.1629
“1.3100
.9421
.3820
“.2580
“7.8386
“1.1169
“1.4733
.1708
.1610
“.3722
“8.8527
“1.0975
“1.5041
“.6983
“.0639
“.4644
“9.9690
-l.8561
—l.6194
.8216
-.2989
-5.5313
7.2424
.8795
“.0844
.4511
“2.0240
“.3745
12.8447
.7290
.7290
“3.9702
“1.2838
“1.2838
11.9130
1.0465
.5790
“3.2156
“1.9295
“1.2247
10.7083
1.1760
.3820
“2.2590
“2.3228
“1.1629
9.3914
1.1339
.1610
“1.2408
“2.4524
“1.1169
8.1051
.9710
“.0639
“.2774
“2.3427
“1.0975
11.0625
.8216
.8216
“2.5615
“1.8561
“1.8561
.8795
“.1590
“2.0240
1.0353
“.4695
.7290
“6.4223
“.0733
“1.2838
1.9851
“.6600
1.0465
“4.9045
“.1524
“1.9295
1.6569
“1.0313
1.1760
-2.8697
“.2580
~2.3228
1.3169
“1.3100
1.1339
“.5388
“.3722
—2.4524
1.07C0
“1.4733
.9710
1.8639
“.4644
“2.3427
.9757
“1.5041
.8216
“5.5313
“.2989
“1.8561
1.2807
“1.6194
“.0844
“.1590
“11.6681
“.3745
“.4695
“1.4863
.7290
“.0733
—6.4223
“1.2838
“.6600
1.9851
.5790
“.1524
“7.0085
“1.2247
“1.0313
1.5587
.3820
“.2580
“7.8386
“1.1629
“1.3100
.9421
.1610
“.3722
“8.8527
“1.1169
“1.4733
.1708
“.0639
“.4644
-9.9690
“1.0975
“1.5041
“.6983
.8216
“.2989
“5.5313
“1.8561
“1.6194
1.2807
U
.
Q
5-
m
0
0
17.0
17.0
17.0
7.0 5.0
“1.7292
«2.2608
“1.7840
9.9527
.9339
.5218
9.0 5.0
~.8407
~2.421O
“1.7401
8.7259
.8414
.1786
7.0 7.0
~1.0537
~2.2108
—2.2108
8.9538
.5335
.5335
1.0 1.0
“4.4649
“.2744
“.2744.
14.5462
.1614
.1614
3.0 1.0
~4.0679
“.7828
“.2683
14.0854
.4517
.1452
5.0 1.0
“3.3405
“1.1816
“.2583
13.2360
.6562
.1150
7.0 1.0
«2.3945
“1.4293
“.2480
12.1208
.7498
.0749
“2.2608
1.0070
“2.0711
.9039
“3.5319
“.4846
-2.4210
.8399
-2.3489
.8414
“1.2129
«.6821
“2.2108
.5268
“2.6750
.5335
“4.4769
“.7603
«.2744
2.2324
~-.O732
.1614
-7.2631
—.0171
“.7828
2.0875
-.2138
.4517
“8.5072
—.0534
“1.1816
1.8513
—.3372
.6562
-5.0661
~.0942
“1.4293
1.6074
“.4332
.7498
“3.1109
“.1382
107
“1.7840
“2.0711
.7222
.5218
“.4846
“6.4208
~1.7401
~2.3aao
.0000
.1786
—.6821
-7.5130
“2.21C8
“2.6750
.5268
.5335
“.7603
~4.4769
“.2744
“.0738
2.2324
.1614
“.0171
“7.2731
“.2683
“.2138
1.9884
.1452
“.0534
“7.5781
“.2583
—.3372
1.4892
.1150
—.0942
—8.1698
“.2480
“.4332
.7871
.0749
“.1382
“9.0099
9.9527
.9039
.5218
“1.7292
“2.2608
“1.7840
8.7259
.8414
.1786
“.8407
“2.4210
“1.7401
8.9538
.5335
.5335
“1.0537
-2.2108
“2.2108
14.5462
.1614
.1614
“4.4649
“.2744
“.2744
14.0854
.4517
.1452
“4.0679
“.7828
“.2683
13.2360
.6562
.1150
“3.3405
“1.1816
“.2583
12.1208
.7498
.0749
“2.3945
“1.4293
“.2480
.9039
“3.5319
“.4846
“2.2608
1.0070
“2.0711
.8414
“1.2129
“.6821
“2.4210
.8399
“2.3489
.5335
“4.4769
“.7603
-2.2108
.5268
~2.6750
.1614
“7.2731
“.0171
“.2744
2.2324
“.0732
.4517
-6.5072
-.0534
“.7828
2.0875
-.2138
.6562
“5.0661
“.0942
“1.1816
1.8513
“.3372
.7498
“3.1109
“.1382
“1.4293
1.6074
“.4332
.5218
“.4846
“6.4208
“1.7840
“2.0711
.7222
.1786
“.6821
“7.5130
“1.7401
“2.3489
.0000
.5335
“.7603
“4.4769
“2.2108
“2.6750
.5268
.1614
“.0171
“7.2731
“.2744
“.0732
2.2324
.1452
“.0534
“7.5781
“.2683
“.2138
1.9804
.1150
“.0942
“8.1698
“.2583
“.3372
1.4892
.0749
“.1382
“9.0099
“.2480
“.4332
.7871
9.0 1.0
“1.3568
~1.5150
“.2408
10.8820
.7380
.0291
17.011.0 1.0
“.3434
-1.4508
“.2387
9.6546
.6475
“.0182
17.C 3.0 3.0
“3.6931
“.7668
“.7668
13.6445
.4054
.4054
17.0 5.0 3.0
-3.0054
-1.1618
“.7412
12.8303
.5860
.3190
17.0 7.0 3.0
~2.1097
-1.4128
“.7158
11.7585
.6638
.2031
17.0 9.0 3.0
-1.1252
“1.5074
“.7003
10.5641
.6447
.0696
17.0 5.0 5.0
~2.3895
-1.1315
“1.1315
12.0786
.4541
.4541
3.4
‘- J
O
L)
“1.5150
1.4362
-.4928
.7380
“.8441
“.1794
-1.4508
1.3854
—.5085
.6475
1.5151
-.2082
“.7668
1.8465
“.6249
.4054
“6.8222
-.1661
-1.1618
1.6315
—.9876
.5860
-5.3962
-.2920
“1.4128
1.4184
“1.2729
.6638
-3.4531
—.4274
“1.5074
1.2876
“1.4542
.6447
“1.1875
—.5547
“1.1315
1.1947
“1.5677
.4541
“6.0393
“.5113
108
“.2408
“.4928
“.0794
.0291
“.1794
“10.0379
-.2387
-.5085
-1.0420
-.0182
-.2082
~11.1697
“.7668
“.6249
1.8465
.4054
“.1661
“6.8222
—.7412
-.9876
1.3739
.3190
-.2920
—7.4341
-.7158
-1.2729
.6913
.2031
-.4274
-8.3054
“.7003
“1.4542
“.1624
.0696
“.5547
“9.3767
“1.1315
“1.5677
1.1947
.4541
“.5113
“6.0393
10.8820
.7380
.0291
“1.3568
“1.5150
“.2408
9.6546
.6475
“.0182
“.3434
“1.4508
“.2387
13.6445
.4054
.4054
“3.6931
“.7668
“.7668
12.8303
.5860
.3190
“3.0054
“1.1618
~.7412
11.7585
.6638
.2031
“2.1097
“1.4128
“.7158
10.5641
.6447
.0696
“1.1252
“1.5074
“.7003
12.0786
.4541
.4541
-2.3895
“1.1315
-1.1315
.7380
“.8441
“.1794
“1.5150
1.4362
“.4928
.6475
1.5151
“.2082
“1.4508
1.3854
“.5085
.4054
-6.8222
-.1661
“.7668
1.8465
“.6249
.5860
—5.3962
“.2920
-1.1618
1.6315
“.9876
.6638
-3.4531
“.4274
-1.4128
1.4184
-1.2729
.6447
-1.1875
“.5547
“1.5074
1.2876
“1.4542
.4541
-6.0393
“.5113
-1.1315
1.1947
—1.5677
.0291
“.1794
“10.0379
“.2408
“.4928
“.0794
-.0182
“.2082
~11.1697
“.2387
“.5085
-1.0420
.4054
-.1661
-6.8222
“.7668
“.6249
1.8465
.3190
-.2920
“7.4341
“.7412
“.9876
1.3739
.2031
“.4274
“8.3054
“.7158
“1.2729
.6913
.0696
“.5547
“9.3767
“.7003
“1.4542
“.1624
.4541
“.5113
-6.0393
-1.1315
-1.5677
1.1947
17.
O
19.0
19.0
(4
0
I
O
1?).0
19.3
7.0 5.0
“1.5849
“1.3909
“1.1053
11.0841
.5003
.2745
1.0 1.0
—4.2642
“.0908
“.0908
14.8893
.0516
.0516
3.0 1.0
“3.8912
“.2596
“.0891
14.4654
.1448
.0464
5.0 1.0
~3.2016
“.3934
“.0863
13.6789
.2111
.0365
7.0 1.0
“2.2927
“.4782
“.0836
12.6364
.2423
.0233
9.0 1.0
“1.2799
“.5096
“.0820
11.4662
.2396
.0080
3.0 3.0
“3.5359
“.2552
“.2552
14.0584
.1297
.1297
“1.3909
1.0345
“2.0336
.5003
“4.1234
“.7470
“.0998
2.1321
“.0712
.0516
“7.4446
“.0226
“.2596
2.0212
“.2086
.1448
“6.7070
“.0690
“.3934
1.8424
“.3307
.2111
“5.3113
“.1179
-.4782
1.6645
-.4277
.2423
“3.4028
“.1673
—.5096
1.5550
-.4903
.2396
“1.1710
-.2110
-.2552
1.7680
-.6113
.1297
“7.0292
“.2108
109
“1.1053
“2.0336
.5504
.2745
“.7470
“6.9607
“.0908
“.0712
2.1321
.0516
“.0226
“7.4446
“.0891
“.2086
1.8701
.0464
“.0690
“7.7584
“.0863
“.3307
1.3592
.0365
“.1179
“8.3676
“.0836
“.4277
.6283
.0233
“.1673
-9.2337
“.0820
“.4903
“.2750
.0080
“.2110
10.2952
“.2552
“.6113
1.7680
.1297
“.2108
“7.0292
11.0841
.5003
.2745
“1.5849
-1.3909
-1.1053
14.8893
.0516
.0516
“4.2642
“.0908
“.0908
14.4654
.1448
.0464
-3.8912
“.2596
-.0891
13.6789
.2111
.0365
“3.2016
“.3934
“.0863
12.6364
.2423
.0233
“2.2927
“.4782
“00836
11.4662
.2396
.0080
“1.2799
“.5096
“.0820
14.0584
.1297
.1297
“3.5359
“.2552
“.2552
.5003
“4.1234
“.7470
“1.3909
1.0345
“2.0336
.0516
“7.4446
“.0226
“.0908
2.1321
“.0712
.1448
“6.7070
“.0690
“.2596
2.0212
“.2086
.2111
“5.3113
“.1179
“.3934
1.8424
“.3307
.2423
“3.4028
“.1673
“.4782
1.6645
“.4277
.2396
“1.1710
“.2110
“.5096
1.5550
“.4903
.1297
“7.0292
“.2108
“.2552
1.7680
“.6113
.2745
“.7470
“6.9607
“1.1053
“2.0336
.5504
.0516
“.0226
“7.4446
“.0908
“.0712
2.1321
.0464
“.0690
“7.7584
“.0891
“.2086
1.8701
.0365
“.1179
“8.3676
“.0863
“.3307
1.3592
.0233
“.1673
“9.2337
“.0836
“.4277
.6283
.0080
“.2110
“10.2952
“.0820
“.4903
“.2750
.1297
“.2108
—7.0292
“.2552
“.6113
1.7680
L37
19.0 5.0 3.0
“2.8783
“.3881
“.2483
13.3023
.1880
.1014
19.0 7.0 3.0
“2.0105
“.4742
“.2418
12.2986
.2138
.0630
19.0 5.0 5.0
“2.2791
“.3803
“.3803
12.6013
.1444
.1444
“.3881
1.6069
“.9713
.1880
“5.6462
“.3602
“.4742
1.4564
“1.2604
.2138
“3.7476
“.5118
“.3803
1.1395
“1.5498
.1444
“6.3007
“.6167
110
“.2483
“.9713
1.2714
.1014
“.3602
“7.6561
“.2418
“1.2604
.5541
.0630
“.5118
“8.5509
“.3803
“1.5498
1.1395
.1444
“.6167
“6.3007
13.3023
.1880
.1014
“2.8783
“.3881
“.2483
12.2986
.2138
.0630
“2.0105
“.4742
“.2418
12.6013
.1444
.1444
“2.2791
“.3803
“.3803
.1880
“5.6462
“.3602
“.3881
1.6069
“.9713
.2138
«3.7476
-.5118
~.4742
1.4564
‘1.2604
.1444
“6.3007
“.6167
“.3803
1.1395
“1.5498
.1014
“.3602
“7.6561
“.2483
“.9713
1.2714
.0630
“.5118
“8.5509
“.2418
“1.2604
.5541
.1444
“.6167
“6.3007
“.3803
“1.5498
1.1395
“Ala!
A
111
Appendix B
'Table’IX
Z
/10, py/IO, P /10) of first
Brillouin zone and their weights.
X
Wavevectors for subdivision (p
WEIGHT
WAVEVECTOR
WEIGHT
WAVEVECTOR
24
24
24
12
12
12
10
10
10
10
24
12
48
24
24
24
48
24
24
48
24
24
24
24
24
12
24
24
12
24
48
24
24
24
48
24
24
12
24
48
12
r: ”an - V .-
. H.i1|'..!lpl\.a. IIDILi EEufv’sv L I. . ..