CONNECTING  PEOPLE  WITH  RIVERS  TO  IMPROVE  WATER  QUALITY  AT  RIO   GRANDE  DE  AÑASCO  WATERSHED,  PUERTO  RICO   By   Marielle  Peschiera                     A  THESIS   Submitted  to   Michigan  State  University   in  partial  fulfillment  of  the  requirements     for  the  degree  of     Fisheries  and  Wildlife-­‐Master  of  Science     2014             ABSTRACT   CONNECTING  PEOPLE  WITH  RIVERS  TO  IMPROVE  WATER  QUALITY  AT  RIO  GRANDE  DE  ANASCO   WATERSHED,  PUERTO  RICO     By   Marielle  Peschiera     Puerto  Rico’s  water  quality  is  currently  in  relatively  poor  conditions.  Because  many  of   these  impacts  are  anthropogenic  in  nature,  we  need  to  couple  social  and  natural  systems  in   order  to  make  improvements  in  land  and  water  use.  In  this  research,  I  address  the  nature  of   water  quality  issues  at  a  western  watershed  in  Puerto  Rico  through  understanding  farmers’   behaviors.  Specifically,  I  assessed,  using  a  survey,  what  motivates  local  farmers  to  engage  in   conservation  practices.  The  survey  was  implemented  in  two  municipalities  (Añasco  and  Las   Marias)  of  the  Rio  Grande  de  Añasco  watershed  to  31  farmers.  The  survey  demonstrated  that   farmers  at  Las  Marias  have  a  significantly  greater  place  attachment  than  those  in  Añasco.   However,  the  analysis  did  not  depict  that  there  was  a  significant  relationship  between  “place   attachment”  and    “environmental  behaviors”  (Spearman  correlation  (rs)=-­‐0.06  p-­‐value=0.74).   There  was  a  statistical  significance  between  “social  bonding”  and  “pro-­‐environmental   behaviors”  (rs=0.32  p=0.08)  and  between  “general  connection  to  nature”  and  “behavioral   intentions”  (rs=0.21  p=0.09).  To  improve  the  water  quality  in  Puerto  Rico  in  these   predominately  farming  communities,  management  agencies  should  focus  on  strengthening  the   social  attachments  between  citizens  and  educate  them  about  how  their  actions  while  farming   influences  the  water  quality  in  nearby  rivers;  which  serves  as  their  primary  source  of  drinking   water.    Such  actions  will  likely  promote  peoples  motivation  to  participate  in  pro-­‐environmental   behaviors  and  therefore  enhance  water  quality  in  the  watershed.                                         This  thesis  is  dedicated  to  my  parents  Carlos  and  Lillian.  This  would  have  not  been   possible  without  the  constant  support  from  my  mother,  thanks  for  being  a  great  field  partner,   and  the  moral  and  loving  support  of  my  father.     …..  and  to  my  daughter,  Lara  Sofia,  which  has  and  will  always  be  my  focus  and  motivation.       Los  amo!                         iii   ACKNOWLEDGMENTS     I  would  first  like  to  thank  my  advisor,  Dr.  William  Taylor,  for  his  guidance  and  support  through   my  master’s  degree  and  his  belief  in  me.  Thanks  for  making  this  journey  a  great  experience  and   helping  me  grow  professionally  and  personally.  I  would  also  like  to  acknowledge  every  person  I   met  along  the  way  who  made  this  experience  even  greater,  I  will  cherish  every  moment   forever.  Thanks  to  every  member  of  my  committee  for  their  comments  and  availability.  A   special  thanks  to  Doug  Beard  and  Michelle  Staudinger  from  the  USGS  for  their  help  and  support   during  my  masters  degree.    I  will  also  like  to  genuinely  thank  every  member  of  the  CSIS’s  lab   that  helped  and  guided  me  through  this  process,  for  their  support,  and  comments.  I  want  to   especially  thank  Dr.  Christine  Vogt  from  the  CARRS  department  at  Michigan  State  University,  for   her  guidance  in  writing  the  survey.  In  Puerto  Rico,  I  would  like  to  thank  the  Agricultural   Extension  Añasco  Region  for  their  collaboration.  A  special  thanks  to  all  the  farmers  that   collaborated  with  this  study,  without  them  this  work  would  have  not  been  possible.  Lastly  but   not  least,  I  would  like  to  thanks  my  partner  Irvin  Diaz,  family  members,  and  friends  that  gave   not  only  moral  support  but  made  time  to  help  me  during  different  stages  of  this  process.                     iv   TABLE  OF  CONTENTS     LIST  OF  TABLES…………………………………………………………………........………………………………….…………  vii   LIST  OF  FIGURES…………………………………………………………………………………………………………………….  viii     INTRODUCTION  ………………………………………………………………………………………………………….…………..1   CHAPTER  I:  Puerto  Rico’s  general  land  use  and  water  quality  background  ………………………………3   1.1  Puerto  Rico’s  general  land  use  background  information…………………………………..….……….  5       1.2  Puerto  Rico’s  water  quality  …………………………………………………………………………….…….……..  8   1.3  Puerto  Rico’s  water  management  ……………………………………………………….……………………...  14     1.4  Rio  Grande  de  Añasco  watershed  background  and  land  use  information…..…………………  16     1.5  Rio  Grande  de  Añasco  Water  Quality  …………………………………………..…………..………….………  21     1.6  Non  point  sources  pollution  and  agriculture  ……..…………………………………………………………  29     1.7  USDA-­‐NRCS  and  land  practices  to  reduce  impacts  to  waterways………………………….……...  32     CHAPTER  II:  Evaluating  the  possibilities  to  increase  farmer’s  participation  in  conservation   practices,  based  on  a  “place  attachment  perspective”…………………………..………………………………..35   2.1  Theoretical  foundation;  Place  attachment  ………………………………………..…………………………  38     2.2  Methodology……………………………………………………………………………………..…………………………  43     I. General  connection  to  nature……………………………………………………………………………………..    44     II. Place  attachment.………………………………………………………………………..…………..…………..46   III. Attitude:  Environmental  concern.……………………………………………………..…….………..….  47   IV. Environmental  behaviors  and  willingness  to  participate  in  conservation     practices  or  pro-­‐environmental  behaviors……………………………………..………………….….47         Farmers’  selection…………………………………………………………………….….…..…………………………  48         Sample  size……………………………………………………………………………..………..……..…………….…...48     2.3  Data  Analysis………………………………………………………………………………………………..………………  50   2.4  Results……………………………………………………………………………………………………….………………...  50   Descriptive  statistics……………………………………………………………………………….………………...  50   I.  General  connection  to  nature  …………………………………………………………………..,…………..50   II.  Place  attachment  ……………………………………………….......……………………………….…………..54   III.  Environmental  concern  ………………………………………….……………………………….……………59   IV.  Behaviors………….…………………………………………………….……………………………….…………..60   V.  Behavioral  intentions……………………………………………….……………………………….…………..62   VI.  Participation  in  NRCS……………..……………………………….……………………………….…………..63   Testing  the  model………..……………..……………………………….……………………………….…………..65   2.5  Discussion………………………………………………………………………………………………….………….……..  66     2.6  Conclusion…………………………………………………………………………………………….…….……………….  72     APPENDIX…………………………………………………………………………………………………………………….………….75     v   BIBLIOGRAPHY…………………………………………………………………………………………………..…………….…....  85                                                 vi   LIST  OF  TABLES     Table  1.  Description  of  designated  used  by  the  Environmental  Quality  Board…………………….….  9     Table  2.  2012  Agriculture  census  information…………………………………………………………..…………….  21   Table  3.  Designated  uses  in  Rio  Grande  de  Añasco  and  it’s  2012  status……………………….…………  23   Table  4.  Turbidity  at  USGS  gaging  stations………………………………………….…………………………………..  27   Table  5.  Dissolved  oxygen  data  from  synoptic  study  at  Rio  Grande  de  Añasco…….……………….…  28   Table  6.  Examples  of  agricultural  activity’s  impacts  on  water............……….........…..............…..…  30     Table  7.    Response  rate  of  farmers  from  Añasco  and  Las  Marias  to  survey  instrument  on  farmers   and  environmental  behaviors  …………………………………………….………………………………..………………..  50   Table  8.  Percent  distribution  of  Agree  and  Strongly  agree  of  each  statement  on     general  connection  to  nature  for  both  municipalities………………………………………………………..……  53                             vii   LIST  OF  FIGURES     Figure  1.  Localization  of  Puerto  Rico  in  the  Caribbean………………………………………….…………………..  6   Figure  2.  Coastal  and  mountain  population  growth  from  1950’s  to  2000……………….…………………  7   Figure  3.  Puerto  Rico’s  land  use  map  1997-­‐1978  and  land  use  map  1991-­‐1992  (Lopez  and   Villanueva  2006)…………………………………………………………………………………………………………………….…8   Figure  4.  Puerto  Rico’s  general  river  and  streams  water  quality  conditions  in  2012..………………  12   Figure  5.  Causes  of  water  quality  impairments  (miles)  on  rivers  and  streams  assesses  in  Puerto   Rico  (PREQB  2012)  …………………………………………………………………………………………………….…………..  12   Figure  6.  Sources  of  impairment  (miles)  on  rivers  and  streams  assessed  in  Puerto  Rico(PREQB   2012)……………………………………………………………………………………………………………………….………….…..13     Figure  7.    Puerto  Rico’s  general  coastal  water  quality  conditions  in  2012.……………………..………..14   Figure  8.  Municipalities  at  Rio  Grande  de  Añasco  Watershed  ………………………………………………….17   Figure  9.  Elevations  at  Rio  Grande  de  Añasco  watershed.  We  can  observe  that  Añasco     has  a  plain  area,  while  the  rest  of  the  watershed  has  different  and  higher  elevations.…………….18     Figure  10.  Rio  Grande  de  Añasco  Watershed  Land  Use  in  2001.…………………………………………..….19   Figure  11.  Main  river  at  Rio  Grande  de  Añasco  Watershed………………………………………………………22   Figure  12.  Water  Quality  Gaging  Stations  at  Rio  Grande  de  Añasco  watershed.  Blue     dot:  Station  50146000,  Red  dot:  station  50144000,  Green  dot:  50143000……………………………….24   Figure  13.  Phosphorous  concentration  (mg/L)  at  USGS  gaging  station  #5014400  at     RGA………………………………………………………………………………………………………………………..……………….  25     Figure  14.  Phosphorous  concentration  (mg/L)  at  USGS  gaging  station  #5014300  at     RGA……………………………………………………………………………………………………..………………………………….  25     Figure  15.  Phosphorous  concentration  (mg/L)  at  USGS  gaging  station  #5014600  at     RGA……….……….……………………………………………………………………………………………………………………….  25     Figure  16.  Dissolved  oxygen  concentration  (mg/L)  at  USGS  gaging  station  #5014400  at     RGA…………………………………………………………………………..…………………………………………………………….  26     viii     Figure  17.  Dissolved  oxygen  concentration  (mg/L)  at  USGS  gaging  station  #5014300  at     RGA…………………………………………………………………………………………………………………………………………  26     Figure  18.  Dissolved  oxygen  concentration  (mg/L)  at  USGS  gaging  station  #5014600  at     RGA…………………………………………………………………………………………………………………………………………  26     Figure  19.  Rio  Grande  de  Añasco  river  mouth,  sediment  input  to  Mayaguez  bay     detected  by  AVIRIS  sensor  (Gilbes  et  al  2002)……………………………………………………..……………….…  28     Figure  20.  Phytoplankton  biomass  in  the  rainy  season,  shown  by  presence  of     Chlorophyll-­‐a  wish  causes  higher  fluorescence  (green)  (Gilbes  et  al  2002)……………………………..  29     Figure  21.  Cognitive  hierarchy  pyramid,  which  shows  values  as  the  base  of  the   pyramid………………………………………………….…………………………………………….……………………...…..……  37   Figure  22.  Diagram  the  Cognitive  hierarchy  model  used  in  the  study  of  farmers  in  Rio     Grande  de  Añasco  watershed,  Puerto  Rio  to  assess  how  their  general  connection  to     nature  and  place  attachment  influences  the  farming  communities  environmental     concern  and  how  that  influences  their  behavioral  intentions  and  behaviors.…..……………….…….  37     Figure  23.  Factors  affecting  the  development  of  place  attachment………………………………………..  40   Figure  24.  Overall  index  on  section  about  farmer’s  general  connection  to  nature.  ………………..  51   Figure  25.  Frequency  distribution  for  statements  on  farmer’s  general  connection     to  nature.  …………………………………………….…………………………………………….…………………………………..  52     Figure  26.  Frequency  distribution  for  statements  on  farmer’s  general  connection     to  nature.  …………………………………………….…………………………………………….………………………………..…52     Figure  27.  Frequency  distribution  for  statements  on  farmer’s  place  dependence  to   nature…………………………………………….…………………………………………….………………………………...………55     Figure  28.  Frequency  distribution  for  statements  on  farmer’s  place  identity.  ………………….……..56   Figure  29.  Frequency  distribution  for  statements  on  farmer’s  bonds  to  nature.  …………………….  57   Figure  30.  Frequency  distribution  for  statements  on  farmer’s  family  bonding.  ……………....……..58   Figure  31.  Frequency  distribution  for  statements  on  farmer’s  friend  bonding.  ……………….……..  59   Figure  32.  Frequency  distribution  for  statements  on  farmer’s  concern  about     water  quality.………………………..…………….…………………………………………….……………………………….……60     ix     Figure  33.  Percent  of  farmers  that  participated  in  different  amount  of  behaviors.……………..……61   Figure  34.  Frequency  distribution  for  questions  on  farmer’s  participation  in     conservation  practices.  ……………………………………………………………………………………….……………….…62     Figure  35.  Frequency  distribution  for  questions  on  farmer’s  willingness  to  engage     in  conservation  practices.  ………………………………………………………………….………………………………,…,,63     Figure  36.  Frequency  distribution  for  questions  on  farmer’s  friend  bonding.  …………………..……..64   Figure  37.  Model  diagram  with  correlation  between  variables……………………………………..……..….65   Figure  38.  Watershed  description……………………………………………………….……………………………………77     Figure  39.  Watershed  location  and  municipalities………………………………….…………..……………………77                           x     INTRODUCTION   Water  is  an  importance  source  of  life,  and  with  current  anthropogenic  stressors  many  of   our  surface  waters  are  being  threatened  for  human  use  and  aquatic  life.    Puerto  Rico’s  water   are  no  exception,  with  the  305(b)/303(d)  2012  Integrated  Report  (PREQB  2012)  stating  that   many  of  the  island’s  surface  water  (52%)  do  not  meet  at  least  one  of  the  Commonwealth’s   water  quality  standard.  In  this  research,  I  focus  on  Rio  Grande  de  Añasco  watershed,  a   watershed  located  in  western  Puerto  Rico,  which  had  been  found  to  not  meet  turbidity  and   dissolved  oxygen  standards  regulations  in  2010  and  2011.  This  watershed  has  been  describe  by   the  Puerto  Rico  Environmental  Quality  Board  to  be  1)  high  priority  due  to  its  impairments  2)  an   important  source  of  potable  water  for  the  area,  and  3)  as  it  discharges  into  the  Mayaguez  bay  is   influencing  the  near  shore  marine  water  quality.     The  USDA  NRCS  implemented  an  initiative,  National  Water  Quality  Initiative   (http://www.pr.nrcs.usda.gov/programs/pubs/CB_NWQI_FactSheet.pdf),  which  attempts  to   engage  farmers  and  landowners  in  conservation  practices  in  order  to  reduce  water  quality   stressors  on  high  priority  rivers  in  United  States  and  its  territories.  Due  to  Rio  Grande  de  Añasco   watershed  degraded  surface  water’s  characteristics,  this  river  was  selected  for  inclusion  in  this   initiative.  In  this  research,  I  assessed,  through  a  model  created  using  past  research,  whether   place  attachment,  general  connection  to  nature,  and  concern  about  water  quality  motivates   farmers  to  engage  in  conservation  practices  that  would  improve  the  watersheds  water  quality.     This  thesis  is  composed  of  two  primary  chapters.    In  chapter  one,  I  describe  water   quality  in  Puerto  Rico  emphasizing  in  Rio  Grande  de     1      Añasco  watershed,  how  agricultural  practices  could  impacts  these  waters,  and  discuss   the  NRCS  USDA  Water  Quality  Initiative.    In  second  chapter,  I  focus  on  my  findings  of  the   stewardship  behavior  of  the  local  farmers  in  the  watershed  and  what  are  the  factors  that  could   motivate  people  to  participate  in  pro-­‐environmental  behaviors,  which  may  improve  the  water   quality  of  rivers  in  Puerto  Rico.                                         2   CHAPTER  I   Puerto  Rico’s  general  land  use  and  water  quality  background     “We  abuse  land  because  we  see  it  as  a  commodity  belonging  to  us.  When  we  see  land  as  a   community  to  which  we  belong,  we  may  begin  to  use  it  with  love  and  respect”  –  Aldo  Leopold   (1949)   Water  is  an  important  resource,  not  only  for  ecosystems,  but  also  for  humans  and  other   organisms.  Increase  human  population  numbers  and  human  consumption  patterns,  coupled   with  landuse  and  climate  change  are  major  influences  on  health  of  these  ecosystems.   Worldwide,  water  availability  is  currently  threatened  not  only  due  to  its  scarcity  (Vörösmarty,   Lévêque,  and  Revenga  2005)  but  also  due  to  pollution  (Vörösmarty  et  al.  2010,  Vörösmarty  et   al.  2005).  The  reduction  in  water  quantity  and  quality  thus  not  only  threaten  direct  human   water  use,  but  also  the  ecosystem  services  that  freshwater  provides,  such  as  recreation,   fisheries,  aesthetic,  transportation,  biodiversity,  and  spirituality  (Vörösmarty  et  al.  2005).     Many  current  water  threats  are  caused  by  anthropogenic  activities,  such  as   development  and  agriculture.    As  such,  conservation  approaches  need  to  not  only  be   understood  in  relationship  to  the  direct  impacts  that  these  activities  have  on  water,  but  also  on   how  humans  perceive,  relate  to,  and  value  their  ecosystems  and  ecosystem  services.   Understanding  how  humans  relate  to  and  value  their  ecosystems  will  assist  conservation  and   management  programs  better  engage  citizens  on  the  management  of  their  natural  resources   and  address  environmental  problems  (McKinley  and  Fletcher  2012).  Such  understanding  may   shift  behavioral  intentions  to  more  environmentally  responsible  behaviors  (Kollmuss  and     3   Agyeman  2002;  Shofoluwe  and  Sam  2012)  leading  to  the  adoption  of  practices  that  will  have   reduce  impact  on  the  environment  (Kollmuss  and  Agyeman  2002).     With  increase  threats  to  water  there  is  an  interest  to  reduce  future  impairments  to   water  resources  by  incorporating  change  in  land  use  activities.  Protecting  water  quality  in   agricultural  watersheds  is  a  major  concern  due  to  impairments  caused,  for  example,  from  high   nutrient  input  from  fertilizers  (Sharpley,  Foy,  and  Whiters  2000,  Larsen  and  Web  2008)  and   sedimentation  (Larsen  and  Webb  2009).  The  reduction  of  water  stresses  from  agricultural   activities  is  generally  in  the  “hands”  of  farmers  and  the  way  they  manage  their  land  (Ryan,   Erickson,  and  Young  2003).  Because  of  this,  federal  and  commonwealth  agencies  have  an   interest  on  engaging  farmers  in  conservation  practices.  For  example,  in  2012  the  United  States   Department  of  Agriculture’  Natural  Resource  Conservation  Service  (USDA  NRCS)  implemented  a   new  initiative  named  the  National  Water  Quality  Initiative.  This  Initiative  aims  to  help   landowners,  farmers,  and  ranchers  participate  in  conservation  efforts,  such  as  providing   filtering  strips  and  creating  terraces  which  hopefully  shifts  behaviors  to  more  sustainable  land   use  practices,  and  improves  water  quality  in  their  nearby  aquatic  ecosystems.  The  focus  of   these  programs  is  in  watersheds  that  are  considered  “impaired”  (e.g.  do  not  meet  at  water   quality  standards  for  a  designated  use)  or  a  “priority”  (identified  as  priority  by  local  partners   and  state  water  quality  agencies)  in  the  United  States  or  Puerto  Rico  (USDA  n.d.).  The  initiative   shares  conservation  practices  installation  costs  after  visiting  the  farm  and  selecting  the  best   conservation  practices  for  that  particular  farm.  In  order  for  this  initiative  to  be  successful,   individuals  living  in  the  watershed  need  to  be  willing  to  adopt  new  conservation  practices  that   ultimately  should  improve  land  and  water  conservation.       4   The  focus  of  my  research  takes  place  in  Puerto  Rico,  where  there  are  many  factors   negatively  impacting  water  quality,  such  as  non-­‐existent  or  damage  septic  tanks,  sanitary  sewer   overflows,  urban  runoffs,  industrial  point  sources  pollution,  animal  feeding  operations,  and   agriculture  run  off.  The  specific  objectives  of  this  study  were  to  (1)  describe  the  agricultural   impacts  of  nutrient  input  to  waterways  Puerto  Rico,  and  (2)  assess  farmer’s  place  attachment   and  their  willingness  to  participate  in  conservation  practices  in  a  selected  watershed  in  the   western  side  of  Puerto  Rico,  where  the  major  river  has  been  consider  to  be  impaired  by  the   USDA  and  Puerto  Rico  Environmental  quality  board.  This,  in  order  to  address  water  quality   issues  through  understanding  human  behavior     1.1  Puerto  Rico’s  general  land  use  background  information     Puerto  Rico  is  the  smallest  island  of  the  Greater  Antilles  (Figure  1),  measuring  100  x  35   miles.  The  human  population  on  the  island  is  relatively  high,  3.973  million  people  as   determined  in  the  2010  US  census.  Most  of  the  human  population  on  the  island  (70%)  lives  in   coastal  municipalities  (US  Census  Bureau  2010).   The  topography  of  Puerto  Rico  is  characterized  by  having  steep  and  narrow  valleys,   relatively  short  stream  lengths,  and  high  channel  gradients  (Lopez  and  Villanueva  2006,  Larsen   and  Webb  2009).  These  characteristics  when  coupled  with  the  intense  rainfall  that  occurs  on   the  island  and  the  land  use  changes  due  to  the  growing  populations,  promotes  sediment  and   nutrients  to  runoff  from  the  land  into  rivers  and  streams  (Larsen  and  Webb  2009).       5     Figure  1.  Localization  of  Puerto  Rico  in  the  Caribbean.       Up  until  late  1950’s  Puerto  Rico’s  economy  was  primarily  based  on  crop  based   agriculture  (such  as  sugar  cane,  coffee,  and  tobacco)(Lopez  and  Villanueva  2006)  whose  growth   caused  extensive  deforestations  on  the  island.  Puerto  Rico  up  to  this  time  had  gone  through   intense  deforestation  leading  the  island  to  have  only  6%  of  its  initial  forest  still  standing,  the   lowest  percent  of  forest  cover  that  has  had  ever  been  recorded  for  Puerto  Rico  (Lopez  and   Villanueva  2006).  This  trend  of  deforestation  and  increased  agriculture  lands  decreased  after   1950’s,  when  “operation  bootstrap”,  a  United  States  of  America  program  design  to  enhance   Puerto  Rico’s  economy,  shifted  the  agricultural  based  economy  to  an  industrialize  and     6     manufacturing  based  economy  (Zetterstrand  2001,  Hunter  and  Arbona1995).    Relatively  cheap   labor  coupled  with  tax  exemptions  and  other  economic  incentives  promoted  by  the  new   initiative,  coupled  with  relatively  low  enforcement  of  environmental  protection,  were  amongst   the  things  that  attracted  industries  to  the  island  (Zetterstrand  2001,  Hunter  and  Arbona1995).   In  turn,  the  shift  from  agriculture  to  an  industrialized  economy,  promoted  the  migration  of   individuals  from  the  rural  areas  of  the  island  to  the  developing  municipalities  (Hunter  and   Arbona  1995).  Coastal  urbanization  increased  rapidly  after  the  1950’s  (Figure  2).  A  result  of  this   urbanization  of  Puerto  Rico  has  been  an  increased  reforestation  rate  in  the  once  agricultural   lands  that  were  abandoned    (Lopez  and  Villanueva  2006).  As  such,  Puerto  Rico  has  seen  almost   60  years  of  forest  regeneration.  Nevertheless,  urban  sprawl  has  provided  a  new  threat  to  forest   cover  in  the  island  by  promoting  forest  fragmentation    (Lopez  and  Villanueva  2006).     Figure  2.  Coastal  and  mountain  population  growth  from  1950’s  to  2000     Land  use  maps  (Figure  3)  show  the  increase  of  both  reforestation  and  urbanization  on   the  island  (Lopez  and  Villanueva  2006).  In  2012,  compared  to  1940  and  1950’s,  Puerto  Rico   depends  mostly  on  manufacturing  (such  as  pharmaceuticals,  chemicals,  machinery,  and     7   electronics)  as  opposed  to  agriculture  (predominant  in  the  1940’s)  followed  by  the  financial,   insurance  and  real  estate  sectors,  (20.6%),  service  sectors  (12.5%)  government  sector  (8.2%),   trade  (7.6%)    transportation  and  other  public  services  (2.7%)  construction  and  mining  (1.5%)   and  finally  agriculture  with  0.8%  total  net  income  (Puerto  Rico  Planning  Board  2012).   Land  use  map  1977-­‐1978     Crops   Pasture   Forest  and  shrubs   Mangroves   Wetlands  and  salt  marshes   Urban   Water             Land  use  map  1991-­‐1992     Crops   Pasture   Forest  and  shrubs   Mangroves   Wetlands  and  salt  marshes   Urban   Water             Figure  3.  Puerto  Rico’s  land  use  map  1997-­‐1978  and  land  use  map  1991-­‐1992  (Lopez  and   Villanueva  2006)     1.2  Puerto  Rico’s  water  quality     Puerto  Rico’s  Water  Quality  Standards  Regulations  (WQSR)  provides  the  mechanism  to   maintain,  preserve,  and  increase  the  water  quality  in  the  island  in  order  to  meet  the   requirements  established  by  the  Federal  Water  Pollution  Control  Act  (commonly  known  as   Clean  Water  Act).  This  WQSR  establishes  Puerto  Rico’s  water  designated  uses  that  should  be     8   maintained  and  protected  and  the  standards  that  needs  to  be  met  for  every  designated  use   (Table  1).   Table  1.  Description  of  designated  used  by  the  Environmental  Quality  Board   Designated  use   Standards     Primary  contact   Primary  contact  recreation  is  considered  where  human  contact  is   recreation  (Direct   prolonged  and  direct  contact  with  water,  such  as  swimming  and  surfing   Contact)   (EPA  1994).  To  determine  if  the  assessed  waters  fulfill  the  requirements   for  this  designated,  Fecal  Coliform  has  to  be  less  or  equal  to  200   colonies/100mL  and  20%  of  the  individual  samples  cannot  exceed  the   value  of  400  colonies/100mL.    If  it  doesn’t  fulfill  these  requirements   then  is  considered  to  be  impaired  for  the  designated  use  (Puerto  Rico   Environmental  Quality  Board  (PREQB)  2012)   Secondary  contact   Second  contact  recreation  is  considered  to  be  any  recreational  activity,   recreation  (Indirect   or  other  use,  where  contact  is  indirect  (Eyes,  nose,  and  ears  are  not   Contact)   immersed  in  the  water),  such  as  fishing  or  boating  (EPA  1994,  PREQB   2012).  To  assess  if  this  waters  fulfill  the  requirements  for  this   designated  use,  total  coliform  bacteria  is  measured  and  has  to  be  less   or  equal  to  10,000  colonies/100mL  or  200  colonies/100mL  of  fecal   coliforms,  and  not  more  than  20%  of  the  samples  shall  exceed  400   colonies/100mL  of  Fecal  Coliforms.  If  the  water  does  not  fulfill  the   requirements  then  is  considered  to  be  impaired  for  secondary  contact   recreation  (PREQB  2012).       9   Table  1 (cont’d)   Designated  use   Aquatic  life     Standards     Aquatic  Life  Support  is  the  physical/chemical  characteristics  needed  to   support  aquatic  life.    To  assess  this,  various  toxic  parameters  are  taken   in  consideration,  such  as  lead,  copper,  zinc,  ammonia,  pesticides,   cyanide,  amongst  others  harmful  chemicals.  The  conventional   parameters  used  for  the  assessment  of  aquatic  life  support  were,   dissolved  oxygen,  temperature,  pH,  and  turbidity.  For  these   parameters,  a  single  violation  of  the  standard  was  is  enough  to  classify   the  segment  as  non-­‐support  for  the  aquatic  life  (PREQB  2012)   Raw  source  of   To  asses  this,  various  toxic  parameters  where  measure  such  as,  arsenic,   potable  water   chlorides,  mercury,  nitrates  +  nitrites  (NO3  +  NO  2),  total  phosphorous,   turbidity,  amongst  others  water  quality  indicators  (PREQB  2012)     The  WQRS  also  classifies  Puerto  Rico’s  waters  in  the  following  classes  (PREQB  2012):   1) Class  SA:  Coastal  and  estuarine  waters  of  high  quality  for  ecological  or  recreational   values.  The  conditions  present  in  these  waters  should  be  protected  and  preserved.   2) Class  SB:  Coastal  and  estuarine  waters  with  primary  and  secondary  designated  uses,  and   aquatic  life.    Waters  that  are  not  Class  SA  or  SC  are  considered  Class  SB.   3) Class  SC:  Segments  of  coastal  waters  designated  for  aquatic  life,  primary  contact   recreation  from  the  zone  of  mean  sea  level  to  3  miles  seaward,  and  secondary  contact   recreation  from  3  miles  seaward  to  10.35  miles  seaward.       10   4) Class  SD:  Surface  waters  designated  as  raw  source  of  potable  water,  aquatic  life,  and   primary  and  secondary  contact  recreation.     5) Class  SE:  Surface  water  and  wetlands  with  high  ecological  value.  The  conditions  present   in  these  waters  should  be  protected  and  preserved.   Puerto  Rico  has  96  major  basins  for  which  twenty-­‐two  are  constantly  monitored  by  stations   operated  by  the  United  States  Geological  Survey.  These  stations  assess  key  water  quality  and   quantity  parameters  such  as  temperature,  flow,  pH,  dissolve  oxygen,  nutrients,  among  others   water  quality  parameters.  The  data  is  collected  in  order  to  monitor  the  changes  in  water  quality   conditions  on  the  island  and  evaluate  current  pollution  control  approaches  (PREQB  2012).     Every  two  years  the  EPA,  in  collaboration  with  the  Puerto  Rico  Environmental  Quality  Board   (PREQB),  publishes  a  document  entitled  305(b)/303(d)  Integrated  Report,  where  Puerto  Rico’s   water  quality  is  assessed  (PREQB  2012).  The  2012  report  states  that  52%  of  5,052.8  miles  of   rivers  and  streams  assessed  failed  to  meet  at  least  one  of  the  quality  standards  established  for   designated  uses,  while  only  6%  of  streams  and  rivers  assessed  met  all  the  quality  standards  for   all  designated  uses  (PREQB  2012)  (Figure  4).  This  means  that  many  rivers  do  not  meet  the   conditions  to  support  primary  contact  such  as  swimming,  and  do  not  meet  the  optimal  physical   or  chemical  conditions  needed  for  aquatic  organism’s  survival  or  growth  (PREQB  2012).   According  to  this  document,  these  impairments  are  due  primarily  to;  turbidity,  fecal  coliforms,   and  low  dissolve  oxygen    (Figure  5).  The  sources  for  these  impairments  are  mostly  due  to   damaged  or  non-­‐existence  septic  tanks  in  the  local  communities,  run  off  from  animal  feeding   operations,  urban  runoffs,  industrial  point  source  pollution,  run  off  from  agriculture  lands,   sanitary  sewer  overflows,  and  municipal  point  sources  (Figure  6)(PREQB  2012).       11   Puerto  Rico's  rivers  and  streams  water  quality  (USA  EPA  2012)   %  of  the  rivers  and  streams  that  meet  water   quality  srandards  for  all  designated  uses.   6%   6%   34%   52%   %  of  the  rivers  and  streams  that  do  not  meet  at   least  one  of  the  water  quality  standards  and  its   necessary  to  implement  a  TMDL  for  the   parameters.   %  of  the  rivers  and  streams  where  the  state  has   established  a  TMDL  or  has  been  approved  or   established  by  EPA.   %  of  rivers  and  streams  where  information   available  is  not  enough     Figure  4.  Puerto  Rico’s  general  river  and  streams  water  quality  conditions  in  2012.   Causes  of  impairments  on  rivers  and  streams  in  Puerto  Rico  (USA   EPA  2012)     2,000   Miles  impaired     1,800   1,600   1,400   1,200   1,000   800   600   400   200   0   Causes  of  impairment     Figure  5.  Causes  of  water  quality  impairments  (miles)  on  rivers  and  streams  assesses  in  Puerto   Rico  (PREQB  2012)     12     Sources  of  impairment  on  rivers  and  streams  in  Puerto  Rico     6000   Miles  impaired   5000   4000   3000   2000   1000   0   Sources  of  imapirment       Figure  6.  Sources  of  impairment  (miles)  on  rivers  and  streams  assessed  in  Puerto  Rico  (PREQB   2012)     For  coastal  waters,  the  2012  Water  Quality  Assessment  Report  states  that  from  546.63   miles  of  coastal  water  4.45%  are  designated  for  all  uses,  while  44.21%    have  insufficient  data  to   make  any  determination  for  at  least  one  of  the  designated  uses,  and    51.34  %  are  considered  to   be  impaired  (Figure  7).  The  report  also  stated  that  the  impairments  for  designated  use  of   primary  contact  recreation  in  coastal  waters  was  due  to  violation  to  water  quality  standards  of   fecal  coliform  and  enterococcus.  The  impairment  for  the  designated  use  of  aquatic  life  are  due   to  low  dissolved  oxygen,  turbidity,  pH,  and  temperature  (PREQB  2012).   13   Puerto  Rico's  coastal  water  quality   %  of  waters  that  meet  water  quality  srandards  for   all  designated  uses.   4%   24%   21%   %  of  waters  that  do  not  meet  at  least  one  of  the   water  quality  standards  and  its  necessary  to   implement  a  TMDL  for  the  parameters.   51%   %  of  waters  that  meet  water  quality  standards  for   some  of  the  designated  uses,  but  there  is  not   enough  information  to  determine  if  it  meets  the   rest  of  the  designated  uses     %  water  where  information  available  is  not   enough      Figure  7.    Puerto  Rico’s  general  coastal  water  quality  conditions  in  2012.   1.3  Puerto  Rico’s  water  management     Puerto  Rico’s  water  management  is  overseen  by  various  agencies  with  different  and   sometimes  overlapping  responsibilities.  The  large  number  of  different  agencies,  engaging  in  the   island’s  water  management,  sometimes,  creates  difficulties  when  interagency  cooperation  is   needed.  The  Puerto  Rican  Department  of  Natural  Resources  and  the  Environment  (DNRE),   established  in  1972,  is  in  charge  of  the  management  and  conservation  of  the  island’s  water   (rainwater  and  runoff,  superficial  water,  ground  water,  coastal  and  estuaries),  through  the   Water  Law  #136  of  1976(Law  for  the  conservation,  development,  and  use  of  Puerto  Rico’s   water  resources)  and  the  Integral  Water  Plan  (DRNA  2007).  Although  the  DNRE  is  in  charge  of   overseeing  the  island’s  water  resources,  there  are  other  local  and  federal  agencies  and  laws     14   that  intervene  in  the  management,  use,  and  conservation  of  the  island’s  water.  Some  of  them   include:     • The  Environmental  Quality  Board  (EQB)  (1970)  whose  main  function,  through  Law  #146   of  2004,  is  to  “protect  and  conserve  the  environment  using,  wisely  and  judiciously,  the   necessary  resources  to  prevent  and  eliminate  what  may  affect  it,  maintaining  a  balance   between  the  environment  and  economic  development”.  This  agency  is  responsible  of   seeking  the  attainment  of  designated  uses  established  in  the  Puerto  Rico’s  Water   Quality  Standards  Regulations.  In  collaboration  with  the  United  States  Environmental   Protection  Agency  (USEPA),  they  establish  laws  and  regulations  to  control  waste  and   substance  loads  that  alter  water  quality  (EQB  2014).   • The  Aqueduct  and  Sewer  Authority  (ASA),  established  in  1945  through  law  #40  of  1945,   is  a  public  corporation  whose  role  is  to  provide  Puerto  Rican  communities  potable  water   and  sanitary  sewer  (AAA  2014).  They  served  97%  of  the  island  population.  Most  of  the   water  produced  by  the  ASA  comes  from  reservoirs.  (AAA  2014)     • The  Electric  Energy  Authority  (EEA),  established  in  1941,  manages  the  reservoirs  and   irrigation  systems  under  their  jurisdiction  (AEE  2014).  By  year  2013  they  operated  11   reservoirs  (DRNE  2004)  where  neither  the  ASA  nor  the  DNRE  can  intervene.   • The  Health  Department  (HD)  oversees  potable  water  through  delegation  of  the  EPA  and   Federal  Law  of  Secure  Potable  Water  (1970)  and  Law  #  5  of  1977.  They  are  in  charge  to   establish  and  monitor  the  maximum  levels  of  contaminants  that  potable  water  can   contain  (AAA  2014)     15   • Army  Corps  of  Engineer  was  established  in  Puerto  Rico  in  1905.  This  agency  is  in  charge   of  the  design,  construction,  and  operations  of  reservoirs,  canals,  and  coastal  zone   improvements  related  to  erosion  control  and  navigation  in  the  island.  Jointly  with  the   DRNE  they  regulate  and  provide  permits  related  to  the  Clean  Water  Act  (Torres  2004).   • United  States  Environmental  Protection  Agency  (USEPA),  is  the  agency  responsible  to   ensure  that  water  quality  meets  the  regulation  stated  by  the  Water  Clean  Act  of  1977.   The  agency  also  overlooks  the  disposition  of  solid  waste,  toxic  and  dangerous   substances,  and  others.   • Nature  Resources  Conservation  Services  (NRCS),  previously  known  as  Soil  Conservation   Service,  is  part  of  the  US  Department  of  Agriculture.  This  agency  is  in  charge  of  providing   assistance  to  land  users  to  deal  with  natural  resource  challenges  such  as  erosion  control,   sedimentation,  and  flooding,  and  help  them  in  maintaining  and  improving  their   economic  viability.  (USDA  2014)   • The  United  States  Fish  and  Wildlife  Service  (USFWS)  and  United  States  Forest  Service   (USFS)  also  have  indirect  measure  for  the  management  of  water  in  Puerto  Rico,  for   example;  in  national  reserves  such  as  el  Yunque  the  USFS  regulates  the  use  of  the   waters.     • The  United  States  Geological  Survey  (USGS)  is  in  charge  of  operating  the  long-­‐term   water  monitoring  stations  through  the  island  (PREQB  2012).   1.4  Rio  Grande  de  Añasco  watershed  background  and  land  use  information     Rio  Grande  de  Añasco  (RGA)  watershed,  which  occupies  an  area  of  181  mi2  (488.6  miles)   (PREQB  2012),  is  located  in  central  and  western  Puerto  Rico  within  the  municipalities  of  Lares,     16   Las  Marias,  Maricao,  Mayaguez,  Adjuntas,  Yauco  ,  San  Sebastian,  and  Añasco  (Figure  8).  The   highest  elevation  on  the  RGA  watershed  is  1,200  meters  above  sea  level,  while  the  lowest  is  the   river’s  outlet  (DRNE  2010).  The  watershed  is  composed  of  90%  mountainous  areas  with  the   remaining  terrain  being  at  sea  level  (Federal  Emergency  Management  Agency  2012)(Figure  9).   As  is  true  for  the  rest  of  the  island,  most  rainfall  in  RGA  watershed  occurs  between  August  and   December.  Annual  precipitation  in  this  watershed  varies  between  108  inches  in  the   mountainous  area  to  66  inches  on  the  coastal  valley.                               Figure  8.  Municipalities  at  Rio  Grande  de  Añasco  Watershed               17                                 Figure  9.  Elevations  at  Rio  Grande  de  Añasco  watershed.  We  can  observe  that  Añasco  has  a   valley  area,  while  the  rest  of  the  watershed  has  different  and  higher  elevations.       The  watershed  is  the  5th  largest  watershed  on  the  island  measuring  488.6  miles  (Figure   10)  and  consisting  of  269,207  inhabitants  between  the  8  municipalities  (Census  2010).   Mayaguez  has  the  largest  population  with  89,080  inhabitants,  while  Maricao  has  the  smallest   population  with  6,276  inhabitants  (Census  2010).  As  stated  in  the  2010  Puerto  Rico’s  Census   report,  the  human  population  in  most  of  the  municipalities  in  this  watershed  has  decrease  since   2000,  except  with  a  slight  increase  of  200  people  in  Adjuntas  and  an  approximately  1,000   increase  in  Añasco  municipality  (census  2010).     Agriculture  in  this  watershed  is  diverse.  In  the  coastal  municipalities  of  Mayaguez  and   Añasco,  plantain  agriculture  is  the  common  crop.  Meanwhile,  in  the  mountainous  areas  we  can   find  gourmet  coffee  plantations,  oranges,  small  plantain  farms,  amongst  other  small  crops.     18     Figure  10.  Rio  Grande  de  Añasco  Watershed  Land  Use  in  2001.     In  this  research,  I  focused  on  two  municipalities  from  the  Rio  Grande  de  Añasco   watershed;  Añasco  and  Las  Marias.  We  selected  these  two  municipalities  because  these  are  the   only  two  municipalities  that  are  completely  within  the  RGA  watershed.     Añasco  is  the  coastal/valley  municipality  of  the  Rio  Grande  de  Añasco  watershed,  which   has  the  outlet  of  the  Rio  Grande  de  Añasco  to  the  Mayaguez  bay.  This  municipality  has   approximately  29,261  inhabitants  (Census  2010),  an  increase  of  1,000  people  compared  to  data   reported  from  the  census  in  2000.  The  same  trend  is  seen  in  the  agriculture  census,  where   there  was  a  slight  increase  in  number  of  farms.  The  Agriculture  Census  of  2012  stated  that   there  were  166  farms  in  2012  and  146  farms  in  2007,  this  represents  a  12.82%  increase  of  farms     19   in  this  municipality.  The  average  farm  sizes  in  the  coastal  valley  municipality  was  58  acres,  with   a  total  of  9,635  acres  being  farmed  in  2012.  From  the  9,635  acres  planted  in  Añasco  in  2012,   there  were,  for  example,  473  acres  of  plantain  crops  compared  to  610  acres  in  2007,  and  38   acres  are  of  oranges  crops;  a  decrease  from  107  acres  in  2007.    On  the  other  hand,  coffee   plantations  have  increase  from  140  acres  in  2007  to  214  acres  in  2012  (Census  2012).     Las  Marias  municipality,  with  city  slogan  “the  city  of  the  sweet  orange”,  is  located  in  the   mountainous  area  of  the  Rio  Grande  de  Añasco  watershed.  The  2010  Census  states  that  this   municipality  has  approximately  9,881  inhabitants,  compared  to  11,061  in  2000,  a  decrease  of   approximately  2,000  people.  The  same  trend  is  seen  in  the  agricultural  census,  with  a  decrease   from  404  farms  in  2007  to  299  farms  in  2012;  a  29.87%  decrease  of  farms.  The  average  farm   size  in  this  municipality  was  25  acres,  with  a  total  of  7,347  acres  in  2012.  Coffee  plantations   make  up  most  of  the  land  farmed  at  Las  Marias,  although  it  has  decrease  from  2,204  acres  in   2007  to  1,512  acres  in  2012,  plantain  crops  was  next  most  farmed  with  470  acres  in  2012  while   oranges  crop  farm  land  increased  from  478  acres  in  2007  to  756  acres  in  2012  (Agricultural   Census  2012)  (Table  2).                   20   Table  2.  2012  Agriculture  census  information       Añasco     Las  Marias     2007   2012   2007   2012   Total  farms   146   166   404   299   Total  acres     6,492   9,635   7,734   7,347   Acres  planted  with   coffee   Acres  planted  with   plantain   Acres  planted  with   oranges   140   214   2,204   1,512   610   473   346   470   107   38   756   478     1.5  Rio  Grande  de  Añasco  Water  Quality   The  main  river  in  the  watershed  is  named  “Río  Grande  de  Añasco”  (RGA)  (Figure  11),   which  drains  into  the  Mayaguez  Bay  and  has  a  strong  influence  on  its  water  quality.  The  river  is   126  miles  long  and  has  10  major  tributaries  (Río  Humata,  Río  Arenas,  Río  Casey,  Río  Blanco,  Río   Mayaguecillo,  Río  Cañas,  Río  Guaba,  Río  Prieto,  Río  Guilarte,  and  Río  Guayo)  ranging  from  13.3   to  79.9  miles  long  (PREQB  2012).  The  NRCS  states  that  this  watershed  has  impaired  waters  due   to  many  pollutants  that  are  related  to  agricultural  activities,  such  as  fertilizers,  pesticides,   manure,  and  pasture  lands  (NRCS  2012).             21         Figure  11.  Main  river  at  Rio  Grande  de  Añasco  Watershed       In  the  2012  303(d)/305(b)  Water  Quality  Report,  the  Rio  Grande  de  Añasco  was   considered  of  high  priority  due  to  its  impairments  on  primary  and  secondary  contact  recreation   and  aquatic  life  (Table  3).  This  river  is  consider  Class  SD,  which  means  any  surface  water  used  as   a  raw  source  of  public  water  supply,  also  waters  that  are  important  for  the  propagation  and   preservation  of  desirable  species(including  threatened  and  endangered  species),  and  for   primary  and  secondary  contact  recreation.  In  order  to  meet  the  Puerto  Rico  Water  Quality   standards  for  all  the  designated  uses  in  Class  SD  waters,  the  river  must  meet  the  fallowing   criteria  (1)  Not  contain  less  than  5.0mg/L  of  Dissolved  Oxygen,  (2)  Coliforms  must  not  exceed   10,00  colonies/100mL  of  total  coliforms  or  200colonies/100mL  of  fecal  coliforms,  (3)  pH  should   always  be  between  6.0  and  9.0  standard  pH  units,  (4)  Color  should  not  exceed  15  units   according  to  the  colorimetric  platinum  cobalt  standard,  (5)  Turbidity  should  not  exceed  50   nephelometric  turbidity  units  (NTU),  (6)  Total  Dissolved  Solids  should  not  exceed  500mg/L  and   (7)  Total  Phosphorous  should  not  exceed  1ppm  (mg/L)  (PREQB  2010).  One  single  violation  of     22   the  standard  is  enough  to  classify  the  waters  as  impaired  due  to  the  specific  parameter   violated.   Table  3.  Designated  uses  in  Rio  Grande  de  Añasco  and  it’s  2012  status.       Designated  uses     Secondary   Primary  contact   contact   recreation     recreation     Aquatic   life   Raw  source  of   potable  water   Rio  Grande  de  Añasco   4a   5   5   4a   4a:  State  has  established  a  TMDL  or  has  been  approved  or  established  by  EPA.   5:  Do  not  meet  at  least  one  of  the  water  quality  standards  and  its  necessary  to  implement  a  TMDL  for  the   parameters.       The  data  used  by  the  Environmental  Quality  Board  to  create  the  Water  Quality   Assessment  Report  is  based  not  only  on  the  USGS  gaging  stations  located  in  the  watershed   under  study,  but  also  any  other  information  and  data  available  about  water  quality  in  the   watershed,  such  as  studies  done  by  Universities,  and  other  water  related  agencies.       In  the  most  recent  Water  Quality  Assessment  Report  (2012)  the  Puerto  Rico   Environmental  Quality  Board  and  USDA  stated  that  the  principal  sources  of  contamination  to   the  Rio  Grande  de  Añasco,  which  were  causing  its  impairments,  were  agricultural  runoff,  animal   confinements  runoff,  major  municipal  point  sources  pollution,  small  industrial  point  source   pollution,  non-­‐existent  septic  tanks,  and  urban  runoffs.  In  the  Report  they  state  that  the  result   of  these  impairments  were  low  dissolve  oxygen  and  unacceptable  levels  of  turbidity.       In  order  to  evaluate  the  water  quality  impairments  at  Rio  Grande  de  Añasco  watershed,   I  examined  the  water  quality  data  from  the  three  USGS  gaging  stations  (50143000,  50144000,   50146000),  located  in  the  Rio  Grande  de  Añasco  Watershed    (Figure  12),    to  see  the  changes  in   nutrient  load  and  dissolve  oxygen  from  approximately  1980  to  2013.       23   • Station  “50143000”  is  located  near  Lares  at  Lat  18º  15’  26”,  long  66º  55’  00”,  at  bridge   on  Highway  124.     • Station  50144000  is  located  near  San  Sebastián  at  Lat  18º  17’  05”,  long  67º  03’  05”,  on   left  bank,  at  downstream  side  of  bridge  on  Highway  108.     • Station  50146000  is  located  near  Añasco  at  Lat  18º  16’  00”,  long  67º  08’  05”,  at  bridge   on  Highway  430.         Figure  12.  Water  Quality  Gaging  Stations  at  Rio  Grande  de  Añasco  watershed.  Blue  dot:  Station   50146000,  Red  dot:  station  50144000,  Green  dot:  50143000       From  the  data  obtain  from  all  three  USGS  gaging  station  we  observed  that  the   phosphorous  measurements  has  been  steady  since  1980  (Figure  13,  14,  and  15)  as  was  the   dissolved  oxygen  levels  (Figure  16,  17,  and  18).           24   Phosphorous  at  gaging  station  #50144000    Phosphorous  mg/L   0.5   0.45   0.4   0.35   0.3   0.25   0.2   0.15   0.1   0.05   0   1979   1984   1989   1994   1999   Years     2004   2009   2014   Figure  13.  Phosphorous  concentration  (mg/L)  at  USGS  gaging  station  #5014400  at  RGA     Phosphorous  mg/L     Phosphorous  at  gaging  station  #5014300   1.2   1   0.8   0.6   0.4   0.2   0   1988   1990   1992   1994   1996   1998   2000   2002   2004   2006   2008   2010   2012   Years   Figure  14.  Phosphorous  concentration  (mg/L)  at  USGS  gaging  station  #5014300  at  RGA   Phosphorous  mg/L   Phosphorous  at  gaging  station  #50146000     0.5   0.45   0.4   0.35   0.3   0.25   0.2   0.15   0.1   0.05   0   1979   1984   1989   1994   1999   2004   2009   Years   Figure  15.  Phosphorous  concentration  (mg/L)  at  USGS  gaging  station  #5014600  at  RGA     25   2014   Dissolved  Oxygen  at  gaging  station  #5014400   Dissolved  Oxygen  mg/L     12   11   10   9   8   7   6   5   4   1979   1984   1989   1994   1999   2004   2009   2014   Years   Dissolved  Oxygen  mg/L     Figure  16.  Dissolved  oxygen  concentration  (mg/L)  at  USGS  gaging  station  #5014400  at  RGA.       Dissolved  Oxygen  at  gaging  station  #50143000     16   14   12   10   8   6   4   2   0   1979   1984   1989   1994   Years   1999   2004   2009   2014   Figure  17.  Dissolved  oxygen  concentration  (mg/L)  at  USGS  gaging  station  #5014300  at  RGA.     Dissolved  Oxygen  at  gaging  station  #50146000     Dissolved  Oxygen    mg/L   12   10   8   6   4   1979   1984   1989   1994   1999   Years   2004   2009   2014   Figure  18.  Dissolved  oxygen  concentration  (mg/L)  at  USGS  gaging  station  #5014600  at  RGA.         26     Turbidity,  meanwhile,  violated  the  standard  regulation  (0.03  NTU)  at  least  once  in  all  three   USGS  gaging  stations  (50143000,  50144000,  50146000)  during  the  study  period  as  seen  in  Table   4.  Therefore,  Rio  Grande  de  Añasco  was  determined  to  be  impaired  due  to  its  turbidity  levels.     Table  4.  Turbidity  at  USGS  gaging  stations     Gaging  Station   Turbidity  (NTU)   Year   50143000   2010   2   50143000   2010   8.52   50143000   2010   14.8   50143000   2010   11.1   50143000   2011   2   50143000   2011   1174   50143000   2011   36.8   50144000   2010   5.76   50144000   2010   5.29   50144000   2010   16.8   50144000   2010   2.6   50144000   2011   2.33   50144000   2011   176   50144000   2011   83.3   50146000   2010   15.1   50146000   2010   12.6   50146000   2010   32.4   50146000   2010   7.77   50146000   2011   3.03   50146000   2011   252   50146000   2011   136   Apart  from  the  USGS  gaging  stations  the  EQB  used,  for  the  2012  water  quality   assessment  report,  data  from  a  2011  synoptic  study  was  used.  In  this  study  surface  waters  in   the  south  east  and  west  side  of  the  island  were  monitored.  In  this  synoptic  study  they  collected   data  during  the  rainy  and  dry  season  for  additional  water  quality  parameters  (fecal  coliforms   surfactants,  pH,  temperature,  dissolved  oxygen,  specific  conductivity,  flow,  metal  traces,   pesticides,  and  nutrients).  Rio  Grande  de  Añasco  was  included  in  this  study  and  13  monitors   stations  where  established  along  the  river.  In  this  synoptic  study  it  was  determined  that     27   dissolved  oxygen  did  not  meet  standard  regulation  (Table  5)  in  gaging  station  50146120  and   therefore  Rio  Grande  de  Añasco  was  impaired  not  only  due  to  turbidity,  but  also  due  to  low   dissolved  oxygen.     Table  5.  Dissolved  oxygen  data  from  synoptic  study  at  Rio  Grande  de  Añasco           Gaging   Dissolved   Year   Station   50146120   50146120   Oxygen    (mg/L)   2010   2011   1.95   2.02       In  addition  to  these  impairments  affecting  inland  fresh  waters  it  also  had  an  impact  on  near   shore  coastal  ones,  such  as  the  Mayaguez  Bay.(Rodriguez  2002,  Gilbes  et  al  2002).  For  instance,   Mayaguez  bay,  which  encloses  an  area  of  47  km2,  is  a  semi-­‐enclosed  bay  with  large  sediment   input  (Gilbes  et  al  2002)(Figure19).  This  bay  is  an  example  of  how  the  impact  of  inland  activity   affects  different  coastal  characteristics,  such  as  sediment  input  (Rodriguez  2002,  Gilbes  et  al   2002),  and  phytoplankton  presence  (Figure  20)  (Gilbes  et  al  2002).       Figure  19.  Rio  Grande  de  Añasco  river  mouth,  sediment  input  to  Mayaguez  bay  detected  by   AVIRIS  sensor  (Gilbes  et  al  2002)     28         Figure  20.  Phytoplankton  biomass  in  the  rainy  season,  shown  by  presence  of  Chlorophyll-­‐a,   which  causes  higher  fluorescence  (green)  (Gilbes  et  al  2002)     1.6  Non  point  sources  pollution  and  agriculture     With  85%  of  the  food  consumed  in  Puerto  Rico  being  imported  (USDA  2014)  there  is   increased  interest  from  Puerto  Rican  government  to  purchase  of  locally  grown  foods  (Caribbean   Journal  2013).  This  increased  interest  on  local  agriculture  production  should  come  with  an   increased  interest  on  practices  that  do  not  further  influence  or  stress  water  quality  in  rivers,   streams,  and  coastal  ecosystems  in  the  island.  Agricultural  practices  and  cattle  ranching,  while   necessary  to  feed  an  increasing  human  population,  can  increase  nutrient  and  sediment  loading   to  Puerto  Rico’s  waterways.  This  increase  loading  leads  to  different  impacts  such  as   eutrophication,  which  can  increases  algae  and  aquatic  weeds  growth  and  reduces  dissolved   oxygen  due  to  algae  death  and  decomposition  (Sharpley,  Foy,  and  Whiters  2000).  This  type  of   runoff,  not  only  impairs  water  availability  for  drinking,  but  also  impacts  other  ecosystems   characteristics  that  provide  services  for  the  human  such  as  fisheries  or  recreation  (Sharpley  et     29   al.  2000).     Non-­‐point  sources  of  pollution  are  those  that  come  from  extensive  areas  and  not  a   particular  place  (NRCS  2000),  making  this  source  of  pollution  difficult  to  measure  and  control.  In   non-­‐point  sources  of  pollution,  contaminants  are  transported  from  the  soil  by  rainwater  into   the  river,  streams,  lakes,  and  eventually  the  coast  and  oceans.  Some  examples  of  non-­‐point   sources  of  pollution  are  agriculture  lands,  construction  sites,  and  runoff  from  urban  areas   (NRCS  2000).   Agriculture  and  many  of  its  practices  are  a  major  source  of  non-­‐point  pollution  (Table  6)   as  farming  practices  often  result  in  runoffs  these  lands  increasing  the  chemical  and  nutrient   inputs  to  the  waters  such  as:  phosphorous,  nitrogen,  metals,  pathogens,  pesticides,  salts,   sediments,  and  trace  elements  such  as  selenium  (Ongley  1996)     Table  6.  Examples  of  agricultural  activity’s  impacts  on  water  (Ongley  1996)   Agricultural   activity   Surface  water   Tillage/ploughing       Tillage  is  the  agricultural  preparation  of  soil  by  mechanical  agitation,  such   as  digging,  stirring,  and  overturning.  This  type  of  practice  not  only  affect   the  sediments,  but  also  every  land  where  the  water  runoff/discharge  too   (NRCS  2000).       This  practice  causes  siltation,  which  at  the  same  time  could  also  carry   nutrients  and  chemicals  embedded  in  the  sediment  particles  that  runoff  to   the  nearby  waterways.  This  result  on  river  beds  impact  and  loss  of  habitat,   spawning  ground,  decreases  of  dissolve  oxygen  and  others  (Ongley  1996).           30   Table  6  (cont’d)   Agricultural   activity   Surface  water   Commercial   Excessive  use  of  fertilizers  promotes  runoff  of  nutrients,  phosphorus  and   Fertilizing  and   nitrogen,  leading  to  eutrophication  which  is  knows  as  fertilization  of   Organic   surface  waters.     fertilizing   Eutrophication  causes  explosive  growth  of  algae  which  causes  disruptive   changes  to  the  biological  equilibrium  to  inland  waters  and  coastal  waters,   by  reducing  dissolved  oxygen  in  the  water  body.  This  decrease  in  oxygen   leads  to  suffocation  of  fish  and  other  aquatic  species.  (Ongley  2006,   Weiderholt  2005)     Pesticides   Pesticides  are  substances  or  chemicals  (insecticides,  herbicides,   rodenticides,  fungicides)  used  to  prevent,  destroy,  or  repel  pests  including   diseases,  insects,  and  weeds.     Excessive  use  of  pesticides  leads  to  contamination  of  surface  water  and   biota  (Onlgey  1996)     Agricultural  major  nutrient  inputs  to  surface  water  are  Nitrogen  and  Phosphorous.  The   addition  of  these  nutrients  in  water  can  cause  major  impairments  altering  the  biological  life  of   waterways..  After  rains,  runoffs  of  these  agricultural  lands  could  result  in  excess  inputs  of  these   nutrients  to  surface  water.  Increase  amount  of  nitrogen  and  especially  phosphorous  leads  to   algae  growth  and  eventually  decrease  in  dissolved  oxygen  (Ongley  1996).  This  results  from   algae  dying  and  decomposing,  which  is  a  process  that  consumes  dissolved  oxygen.  When     31   dissolve  oxygen  levels  decrease  dramatically,  it  often  impacts  aquatic  life.  This  is  further   aggravated  due  to  combine  wastewater  treatment  failures  and  non-­‐existent  septic  tanks,   common  situation  around  the  island.   Sediment  runoff  to  the  waterways,  due  to  erosion,  is  a  major  source  of  water   impairment.  Sedimentation  is  a  bigger  problem  in  places,  like  Puerto  Rico,  where  steep   elevation  due  to  mountainous  and  hilly  terrain  are  common.  This  type  of  contaminant   decreases  rivers  and  lakes  capacity  to  store  water,  impacts  aquatic  life  habitats,  and  increases   the  cost  of  processing  potable  water  (NRCS  2000).  High  turbidity  from  either  soil  particles,   algae,  plankton,  microbes,  and  other  substances,  increases  water  temperature  due  to  the   absorption  of  more  heat  from  the  suspended  sediments.    Warmer  waters  lead  to  less  dissolve   oxygen  (DO)  in  the  waterways.  Moreover,  the  decrease  of  light  penetration  reduces   photosynthesis  activity  and  therefore  production  of  DO.  Direct  impact  to  aquatic  life  occurs  due   to  these  suspended  sediments,  such  as  clogging  of  fish  gills,  reducing  resistance  to  disease  in   fish,  lowering  grow  rates,  and  affecting  egg  and  larval  development  and  survival   These  activities  and  inputs  are  not  only  having  direct  impact  on  freshwater  ecosystems   and  local  drinking  waters,  but  are  also  extending  to  other  ecosystems  and  ecosystems  services   such  as  coastal  habitats  and  coastal  fisheries  (Larsen  and  Webb  2009).  This  is  a  major  concern,   since  coastal  habitats  in  Puerto  Rico  are  big  contributors  to  local  economy  by  promoting   tourism.   1.7  USDA-­‐NRCS  and  land  practices  to  reduce  impacts  to  waterways   Most  of  pollutants  on  Rio  Grande  Añasco  comes  from  land  management  practices,  and   could  be  reduce  if  this  is  controlled  or  mitigated  via  land  conservation  practices.  There  are  a     32   number  of  agricultural  practices  that  could  be  employed  by  local  farmers  to  reduce   contamination  to  nearby  waterways  and,  such  as  crop  rotation,  conservation  tillage  and  the  use   of  terraces  (USDA  2000).     In  order  to  improve  water  quality,  many  initiatives  have  been  created  in  order  to   promote  people’s  awareness  and  participation  in  these  conservation  practices.  Because  the   main  focus  in  this  research  is  agricultural  nonpoint  sources  of  pollution,  I  focused  on  an   initiative  created  by  the  U.S.  Department  of  Agriculture’s  Natural  Resource  Conservation   Service  in  2012,  which  focuses  on  improving  farmers  agricultural  land  management  practices  to   reduce  erosion  and  pollution  to  local  waterways.  The  ultimate  goal  of  the  initiative  is  to  remove   streams  and  other  water  bodies  from  the  303(d)  list.  This  relatively  new  initiative  aims  to  help   farmers,  ranchers  and  forest  landowners  improve  water  quality  and  aquatic  habitats  in   impaired  streams  in  priority  watersheds.    Considered  priority  due  to  its  water  quality   impairments,  and  for  being  a  source  of  potable  water.  This  is  accomplished  by  helping  people   implement  conservation  and  management  practices  that  prevent  nutrient,  sediment,  and   manure  loading  to  nearby  freshwater  ecosystem  (United  States  Department  of  Agriculture  n.d).   People  that  qualify  for  this  program  obtain  economic  help,  primarily  from  the  EQIP   (Environmental  Quality  Incentive  Program)  funds  and  state  conservationists,  to  engage  in  the   best  conservation  practice  that  will  lead  to  healthier  water  quality  through  improved  land   management  practices  (USDA  n.d).  Some  of  these  practices  include  a  comprehensive  nutrient   management  program,  use  of  appropriate  cover  crops,  filter  strips,  terraces  and  other  land   based  conservations  practices  which  reduces  the  flow  of  sediments  and  land  based  pollutants   to  the  waterways  (USDA  n.d).     33     The  priority  watersheds  are  selected  with  help  of  local  partnerships  and  state  water   quality  agencies  providing  the  needed  financial  assistance  and  guidance  needed  for  the  success   of  this  initiative  (USDA  n.d).  This  overall  goal  of  this  initiative  was  to  create  a  better   understanding  by  local  agriculture  producers  that  well  managed  farms  limit  pollution  from   runoff,  benefiting  not  only  the  ecosystems  and  organisms  that  depend  on  them,  but  also  their   future  profitability  and  community  health  by  creating  land  that  will  remain  productive  into  the   future  and  providing  clean  water  for  other  numerous  ecosystem  services  (USDA  n.d)     For  FY  2012,  157  watersheds  were  selected  within  the  50  states  and  Puerto  Rico  with   one  of  these  watersheds  being  the  Rio  Grande  de  Añasco;  one  of  the  largest  watersheds  on  the   island.                               34   CHAPTER  II   Evaluating  the  possibilities  to  increase  farmer’s  participation  in  conservation  practices,  based   on  a  “place  attachment  perspective”   With  increased  urban  sprawl,  agriculture,  and  other  anthropogenic  influences  on  the  landscape,   Puerto  Rico’s  inland  surface  waters  are  generally  in  poor  quality.      Although  agricultural   activities  on  the  island  are  relative  small,  the  Rio  Grande  de  Añasco  watershed  is  consider  to  be   an  agricultural  watershed  and  a  region  where  sediment  runoff  from  land  use  practices  are   relatively  high.  In  order  to  enhance  water  quality  in  this  watershed,  farmers  need  to  be  willing   to  engage  in  conservation  practices,  which  will  reduce  surface  runoff.  In  this  research,  I  assess   farmers  willingness  to  adopt  better  stewardship  behaviors  in  order  to  reduce  local  water   stresses,  using  a  “place  attachment”  theory.       Previous  researchers  have  found  that  the  willingness  of  people  to  engage  in   conservation  practices  or  in  pro-­‐environmental  behavior  may  be  influenced  by  a  range  of   physical,  psychological  factors  such  as  locus  of  control  or  your  belief  on  you  ability  to  bring   change,  ideological  world  views,  perceive  risks  of  change,  individuals  sense  of  responsibility   amongst  others  (Gifford  2011,  Kollmuss  and  Agyeman  2002).  While  farmers  have  been   observed  to  engage  in  behaviors  to  increase  profitability,  they  have  also  been  noted  to  adopt   conservation  practices  based  on  a  more  personal  relationship  with  the  land  and  others  in  the   community  (De  Young  1996).  One  of  these  factors  is  known  by  researchers  as  “place   attachment”,  or  the  functional  and  emotional  bond  a  person  has  with  a  place  (Payton,  Fulton,   and  Anderson  2005,  Halpenny  2007).  For  Example,  a  person’s  feeling  toward  a  place  influences   their  environmental  concern  (Vining  et  al.  2008),  and  environmental  concern  or  attitude     35   increase  peoples  participation  on  conservation  practices.    An  example  of  this  behavior  was   shown  by  Schrader  (1995)  in  a  study  where  farmers  who  acknowledge  that  riparian   management  was  important  for  environmental  quality  were  more  prone  to  participate  on   conservation  practices  than  those  farmers  that  saw  riparian  management  solely  for  the   economic  benefit.    Thus,  in  order  to  increase  conservation  support,  we  need  to  understand  not   only  economic  aspect  but  also  the  non-­‐economic  motivation  of  people  to  adopt  conservation   practices.     In  this  research  I  attempt  to  answer  the  specific  research  question  of  how  the  farming   communities  place  attachment,  general  view  of  nature,  and  environmental  concern  influences   their  willingness  to  participate  in  current  pro-­‐environmental  behaviors  The  research  question   was  based  on  the  cognitive  hierarchy  model  (figure  21)  or  value-­‐attitude  model,  which  indicates   that  attitudes  and  norms  influence  behaviors,  and  these  attitudes  are  linked  to  a  more  basic   value  system.  I  therefore,  used  place  attachment  to  assess  people’s  feelings  and  connection  to   their  watershed,  and  how  it  influences  their  environmental  concern,  and  willingness  to  protect   or  participate  in  pro-­‐environmental  behaviors  that  would  improves  water  quality  (Figure  22).   The  answers  to  this  question  would  benefit  conservation  initiatives,  such  as  the  NRCS  initiative,   in  understanding  community’s  values  towards  the  watershed,  and  to  target  specific  areas  that   would  help  the  program  to  be  more  successful  on  motivating  farmers  to  engage  in  conservation   practices,  moving  toward  achieving  the  goal  of  better  water  quality  in  this  watershed.     36       Behaviors     Behavioral  intentions       Attitudes  and  Norms                         Higher  Order  Beliefs     Value  Orientations  (Basic   Beliefs)   Values     Figure  21.  Cognitive  hierarchy  pyramid,  which  shows  values  as  the  base  of  the  pyramid.     Place     Attachment       Behaviors   Concern   about  water   quality     General   connection  to   nature     Behavioral   Intentions         Figure  22.  Diagram  the  Cognitive  hierarchy  model  used  in  the  study  of  farmers  in  Rio  Grande  de   Añasco  watershed,  Puerto  Rio  to  assess  how  their  general  connection  to  nature  and  place   attachment  influences  the  farming  communities  environmental  concern  and  how  that   influences  their  behavioral  intentions  and  behaviors.             37   The  goals  of  this  research  were  (1)  to  inform  local  farmers  of  the  connection  between   their  activities  and  the  health  of  nearby  waters,  (2)  increase  stewardship  behavior  of  local   people  to  promote  land  use  practices  which  decrease  degradation  of  water  quality,  and  (3)   enhance  success  of  conservation  programs  through  culturally  sensitive  outreach  approaches   that  increase  local  community  understanding  of  the  impact  of  land-­‐based  actions  on  water   resources.     2.1  Theoretical  foundation;  Place  attachment   There  is  an  increasing  desire  to  promote  pro-­‐environmental  behaviors  and  stewardship   within  communities,  worldwide,  in  order  to  achieve  conservation  goals  (Shofoluwe  and  Sam   2012)  by  reducing  anthropogenic  stressors  to  the  environment.  While  many  efforts  focus  on   increasing  awareness,  some  studies  find  that  increasing  environmental  awareness  while  it  can   change  people’s  attitudes  does  not  necessarily  influence  people’s  behaviors  (Kollmuss  and   Agyeman  2002,  Hungerford  and  Volk  1990).  I  focus  on  better  understanding  the  role  of  place   attachment  in  behavioral  change  related  to  the  environment,  since  previous  studies  show  that   an  individual’s  place  attachment  has  a  strong  influence  on  their  performance  of   environmentally  responsible  behavior  (Vaske  and  Kobrin  2001,  Scannell  and  Gifford  2010,   Payton  et  al.  2005,  Halpenny  2007).  This  influence  is  thought  to  be  due  to  a  relationship   between  a  close  relationship  to  the  land  and  a  sense  of  belonging,  ownership,  and  pride  that   makes  a  person  feel  responsible  of  their  behaviors  and  the  health  of  their  local  environment   (Vaske  and  Kobrin  2001).  Other  researchers  (Scannell  and  Gifford  2010)  state  that  individuals   with  a  strong  place  attachment  tend  to  have  positive  emotions  such  as  love  and  respect,   toward  a  place,  which  promotes  and  influences  their  willingness  to  protect  the  place.  Similarly,     38   Stedman  (2002)  found  that  people  that  are  more  place  attached  were  more  willing  to   participate  in  place-­‐protective  behaviors  toward  that  particular  place.  Understanding  how  a   person’s  place  attachment  mediates  the  values  that  lead  to  pro-­‐environmental  behavioral   intentions  is  a  step  toward  engaging  them  in  being  stewards  of  their  resources  and  achieving   conservation  goals.     For  this  research  I  used  Payton  et  al.’s  (2005)  definition  of  “Place  attachment”,  which   state  that  place  attachment  is  the  physical  and  emotional  bond  of  a  person  with  a  place.  There   are  numerous  theories  on  the  different  bonds  that  promote  attachment  to  a  place.  Some   researchers  state  that  place  attachment  develops  due  to  individual’s  place  identity  bond,  which   are  the  physical  and  symbolic  connections  that  define  who  we  are,  or  a  result  of  an  individual’s   place  dependence  bond,  which  identifies  a  place  attributes  for  a  specific  use  or  need  (Williams   &  Vaske,  2003,  Vaske  and  Kobrin  2001,  Raymond  et  al  2010).  Others  researchers  have  further   more  specific  classifications  that  take  into  consideration  a  variety  of  factors  including  social  and   physical  relationships  between  and  individual  and  their  environment  (Leweika  2011).  For  the   purpose  of  this  study  I  use  Raymond’s  et  al.  (2010)  research  to  classify  and  measure  place   attachment  of  the  farming  community  on  the  watershed  under  study.    Based  on  his  findings,   place  attachment  can  be  divided  into  place  identity,  place  dependence,  nature  bonding,  friend   bonding,  and  family  bonding  (figure  23).    All  of  these  interact  to  create  place  attachment  that   can  influence  individual  behaviors     39   Figure  23.  Factors  affecting  the  development  of  place  attachment.                                 Place  attachment  studies  have  been  done  in  many  parts  of  the  world  and  within   different  communities,  trying  to  understand  the  link  between  it  and  certain  behavior  attributes.   For  example,  researchers  have  looked  at  how  place  attachment  influences  the  attribution  of   non-­‐economic  values  (Brown  2005,  Brown  et  al  2002),  and  how  it  influences  environmental   concern  (Brehm  et  al.  2006,  Vorkinn  and  Riese  2001).  The  direct  influence  of  place  attachment   on  behavioral  intention  has  also  been  studied  with  the  findings  that  it  has  a  positive   relationship  (Vaske  and  Kobrin  2001,  Scannell  and  Gifford  2010,  Payton  et  al.  2005;  Halpenny   2007).  It  has  also  been  reported  that  communities  with  higher  place  attachment  are  more   cohesive,  and  tend  to  have  higher  values  to  the  land  and  a  higher  number  of  special  places   (Brown  et  al.  2002).  Studies  on  the  influence  of  place  attachment  on  environmental  concern   also  show  this  positive  relationship,  finding  that  a  higher  environmental  and  social  attachment   to  a  place  increases  environmental  concern  (Brehm  et  al.  2006).   Studying  place  attachment’s  influence  on  farmers’  decisions  to  engage  in  conservation   practices  is  interesting  due  to  farmers’  relationship  with  the  land.  It  has  been  seen  that  farmers’     40   relationship  with  the  land  and  the  time  spent  on  the  place  promotes  a  sense  of  place  amongst   them  (Curry,  2000)  ,  which  motivates  their  interest  toward  making  decisions  base  on  the  non-­‐ economic  value  of  their  land.    For  example,  Gosling  and  Williams  (2010)  found  that  higher  place   attachment  amongst  farmers  tend  to  increase  their  participation  in  conservation  activities.   Understanding  how  place  attachment  may  influence  farmers’  decision  on  how  to  behave   environmentally  is  important    and  understanding  whether  this  relationship  influences  their   social  institution  towards  conservation.    Social  institution  are  the  way  people  coordinate   (informal  or  formally)  to  use  information  and  environmental  resources  cooperatively  (Hanna   and  Jentoft  1996,  Vatn  2009).  As  such  studying  the  role  of  place  attachment  on  social   institutions  is  an  important  aspect  to  integrate  in  the  understanding  of  peoples’  motivations  to   adopt  conservation  practices.   It  is  important  to  acknowledge  that  while  place  attachment  can  be  a  strong  predictor  of   pro-­‐environmental  behavioral  intentions  and  an  important  aspect  on  the  development  of  social   institutions,  there  are  many  variables  (cultural,  social,  and  economic)  that  act  as  barriers   preventing  people  from  participating  or  willing  to  adopt  certain  practices.  Fujisaka  (1994)   describes  how  farmers  do  not  easily  participate  in  new  technologies  aimed  to  increasing   agricultural  sustainability  due  to  several  reasons,  such  as  1)  the  new  technology  does  not   address  the  issues  important  to  their  success,  2)  the  farmers  already  engage  in  practices  that   address  the  issue  attempting  to  be  solved,  3)  the  new  technology  creates  new  issues  4)  the   information  doesn’t  easily  transfer  or  it  was  targeted  to  the  wrong  groups  of  people  or  farmers,   5)  the  new  technology  is  to  costly  economically  and  time  wise,  and  6)  social  factors  issues  such   as  insecure  tenure,  could  influence  their  interest  on  engaging  on  a  new  activity  or  behavior..       41   Some  researchers  talk  about  how  economic  benefits,  such  as  an  increase  in  land  value   or  crop  value,  are  one  of  the  predictors  of  conservation  practices  adoption  (Barbier  1990,  Sain   and  Barreto  1996).  Others  talk  about  how  physical  characteristics  of  the  land,  such  as  the  size  of   the  farm,  and  steepness  of  a  slope,  have  also  been  found  to  affect  farmers  decision  on   participating  in  different  conservations  practices  (Barbier,  1990;  Huszar  and  Cochrane  1990),   predicated  on  the  time  or  effort  cost  compared  to  the  benefits  or  gains  in  engaging  on  the   practice  that  the  farmer  perceives.  Community  cohesion  and  social  norms  are  another   important  factor  influencing  people’s  decision  to  adopt  a  new  practice.  Relationship  with  other   members  of  the  community  or  other  farmers  could  be  either  positive  or  a  negative.  While   positive  relationships  between  community  members  could  promote  adoption  in  conservation   practice,  a  negative  relationship  or  a  lack  of  communication  or  trust  could  decrease  their   interest  in  participating  in  conservation  practices.  For  example,  Burton  (et  al  1999)  mentions   that  individuals’  participation  in  community  groups  increases  the  probability  of  individual  to   engage  in  new  practices.  On  the  other  hand,  examples  of  “the  prisoners  dilemma”  demonstrate   that  individuals  that  do  not  trust  others  and  which  do  not  communicate  with  others  will  likely   behave  solely  based  on  individual  interest  (Vatn  2009).     Knowledge  about  an  ecosystem  has  to  be  coupled  with  knowledge  about  the  social   institutions  and  economic  aspects  that  promote  the  use  and  abuse  to  the  ecosystem.   Understanding  how  place  attachment  influences  cooperation  and  how  it  motivates  peoples’   interest  and  willingness  to  participate  in  pro-­‐environmental  behaviors  is  one  step  toward   achieving  conservation  goals.  Managers  and  decision  makers  need  to  be  able  to  not  only   understand  how  the  resource  behaves  but  also  how  humans  use  the  resource  and  value  it  in     42   order  to  be  able  to  better  design  and  target  conservation  messages  and  promote  effective   stewardship  behaviors.   2.2  Methodology   In  order  to  answer  my  research  question,  I  conducted  face-­‐to-­‐face  surveys  from  August   2013  to  January  2014,  where  farmers  from  the  Rio  Grande  de  Añasco  watershed  in  Puerto  Rico     were  approached  with  the  survey  and  were  asked  to  either  take  it  using  face  to  face  interview   techniques  or  to  complete  the  survey  and  return  it  to  me  within  a  week  .  Face-­‐to  Face  survey   methodology  was  the  preferred  method  due  to  suggestion  by  the  director  of  the  NRCS  initiative   and  concerns  about  mailing  facilities  and  literacy  of  the  respondents.          Farmers  were  surveyed  in  two  municipalities  of  Rio  Grande  de  Añasco  watershed;  Las   Marias  municipality  and  Añasco  municipality.  Before  providing  the  surveys  to  farmers  on  the   municipalities  selected,  I  conducted  a  “pilot”  project  in  a  farmer’s  market  in  western  Puerto   Rico,  Rincon  municipality.  A  total  of  6  farmers  participated  in  the  pilot  study  and  were   requested  to  write  down  what  they  did  not  understand.    This  pilot  study  provided  me  with   insight  into  how  much  time  farmers  would  need  to  take  to  answer  the  survey,  and  to  clarify   sentences  intent  and  make  needed  wording  changes  for  clarity  of  survey  questions.  The  pilot   study  participants  were  included  with  survey  respondents  on  the  $300  drawing  to  be   conducted  at  random  at  the  end  of  the  research  period.  The  pilot  participants  were  between   age  27-­‐45  and  consisted  of  5  men  and  1  woman.   The  final  version  of  the  survey  (Appendix  A)  was  approved  in  2013  by  Michigan  State   University  Social  Science/Behavioral/Education  Institutional  Review  Board  (IRB  #  i043721).  The   survey  was  developed  around  4  main  topics,  assessing  variables  about  each  respondent  to  such     43   things  as  their  1)  general  connection  to  nature,  2)  place  attachment,  3)  environmental  concern,   and  4)  and  environmental  behaviors.    These  sections  are  distributed  in  a  nine-­‐page  survey  (see   Appendix  A).  The  first  page  of  the  survey  titled  “Living  at  Rio  Grande  de  Añasco  watershed”  had   my  and  my  advisor’s  contact  information,  and  brief  introduction  to  the  survey  being  completely   voluntary  and  anonymous.  Second  page  gave  a  brief  summary  explaining  what  is  a  watershed   and  Rio  Grande  de  Añasco  watershed’s  localization.    In  a  separate  page  a  consent  form  was   provided,  approved  by  the  IRB  in  2013,  which  let  the  farmers  know  about  the  research,  the   time  it  would  take  to  complete  the  survey,  and  that  the  survey  was  completely  voluntary  and   anonymous.     The  survey  was  targeted  individuals  older  than  18  and  focused  especially  on  those  that   made  decision  related  to  land  management  practices  on  their  farms.     The  survey,  consisted  of  questions  related  to  the  following  general  areas:       I. General  connection  to  nature     People’s  general  connection  to  nature  is  a  measure  of  environmental  attitude,  which   influences  peoples  environmental  concern  (Brehm  et  al.  2006)  and  desire  to  protect  the   environment  (Scanell  and  Gifford  2010,  Dunlap  et  al  2000).  The  more  people  value  or  have  a   deeper  connection  to  nature  the  more  concerned  and  willing  they  would  be  to  protect  it.  In   order  to  measure  farmer’s  general  connection  to  nature,  I  used  the  New  Ecological  Paradigm   (NEP)  measurement.  NEP  measures  a  general  belief  about  human-­‐nature  interaction  which   influences  environmental  attitudes,  beliefs  and  behaviors  (Stern  et  al  1995).  There  are  several   group  of  questions  used  to  measure  NEP;  in  this  research  I  used  the  original  15  questions   developed  by  Dunlap  and  van  Liere  in  1978  (Dunlap  et  al  2000).    These  questions  are  measured     44   using  a  Likert  scale  that  ranged  from  totally  disagree  =1,  disagree=  2,  unsure=3,  agree=4,  to   totally  agree  =5.     I  chose  to  work  with  the  New  Ecological  Paradigm  because  1)  it  is  believed  that  your   worldview  influences  attitudes  and  beliefs  toward  more  specific  environmental  issues  (Dalton   et  al  1999),  2)  the  NEP  uses  different  questions  to  assess  how  you  attribute  value  to  nature,   which  helped  me  assess  if  it  influenced  the  way  people  are  connected  to  their  surroundings   (place  attachment)  and  3)  has  been  subjected  to  many  field  trials  and  thus  has  considerable   validity  (Dunlap  et  al  2000).     In  order  to  measure  general  connection  to  nature  I  requested  farmers  to  think  about  the   relationship  between  humans  and  nature  and  classify  if  they  agree  or  disagree  with  a  given   statements  (Section  1  in  survey).  The  questions  were  divided  in  two  groups;  1)  questions   supporting  the  endorsement  of  the  NEP  and  2)  questions  supporting  the  Dominant  Social   Paradigm  (DSP).  Some  people  have  a  more  ecocentric  view  of  nature,  where  they  perceive   themselves  as  part  of  nature  and  value  nature  by  itself.  These  people  would  support  the  NEP.   Meanwhile,  other  people  have  more  of  an  anthropocentric  view,  where  they  see  themselves   apart  from  nature  or  that  nature  exist  for  human  use  and  has  no  value  by  itself.  People  with  the   latter  belief  /view  would  support  the  Dominant  Social  Paradigm  (DSP),  where  humans  and   nature  are  separated  (Dunlap  et  al.  2000).     I  hypothesized  that  farmer’s  who  are  more  connected  to  nature  or  who  support  the  NEP   would  be  more  place  attached  and  more  concern  about  water  quality  at  Rio  Grande  de  Añasco   watershed  than  those  that  had  a  different  value  system.         45   II. Place  attachment       Place  attachment  can  be  attributed  to  either  or  both  physical  and  social  attributes.  For     example,  a  physical  cause  of  place  attachment  is  enjoying  the  beauty  of  their  surrounding,  or   doing  certain  recreation  activity  in  the  watershed.  A  more  social  influence  on  place  attachment   is  the  relationship  with  neighbors,  and  sense  of  community.  In  this  research,  I  focused  on   understanding  how  physical  and  social  attributes  influence  the  relationship  toward  the   watershed,  and  how  this  may  influence  their  concern  toward  water  quality  and  their   participation  or  willingness  to  participate  in  conservation  practices.  Also,  I  assessed  if  general   connection  to  nature  has  any  influence  on  how  farmers  relate  to  their  surroundings.     In  the  survey,  place  attachment  was  measured  by  asking  farmers  to  think  about  their   physical,  social,  and  nature  connection  to  the  watershed  and  classify  if  they  agree  or  disagree   with  the  premise  presented  in  each  question  (Section  2  in  survey).  The  questions  were  based  on   past  research,  where  William  and  Vaske  (2003)  state  that  asking  questions  on  the  social,   physical,  identity,  and  dependence  bonding  will  assess  people’s  general  place  attachment  on   the  watershed  under  study.  I  therefore  assessed  physical  attachment  by  asking  questions  on   and  individuals  bonds  to  nature,  social  bonding  (by  asking  questions  on  family  and  friend   bonding),  place  identification  (by  asking  emotional  and  personal  bonding),  and  place   dependence  (by  asking  utilitarian  questions  or  ways  you  use  the  resource)     I  hypothesized  that  farmers  who  are  more  prone  to  participate  in  conservation  practices   would  have  a  stronger  place  attachment  than  farmers  who  are  less  place  attached.           46   III. Attitude:  Environmental  concern   My  research  is  based  on  the  Cognitive  Hierarchy  Model,  for  which  I  assessed  how  values   influence  attitudes  and  willingness  to  participate  in  pro-­‐environmental  behaviors.  I  focused  on   environmental  concern  as  an  attitude,  which  would  likely  influence  their  environmental   behaviors  (actual  or  willingness).     I  measure  environmental  concern  by  asking  farmers  to  reflect  on  their  opinions  about   water  and  water  quality  (See  section  3  in  survey).  Based  on  Xiao  and  Dunlap’s  (2007)  model,  I   used  different  facets  to  assess  concern  toward  water  quality;  1)  water  quality  conditions  at  a   watershed,  island  and  global  level,  2)  importance  of  water  quality  to  themself,  and  3)  policy   support.  In  their  study,  Xiao  and  Dunlap  (2007)  used  willingness  to  pay,  which  I  address  in  my   research  as  behavioral  intentions  (willingness  to  behave  pro-­‐environmentally),  and  behaviors   (participation  on  pro-­‐environmental  behaviors).   I  hypothesized  that  farmers  who  are  more  willing  to  participate  in  conservation   practices  would  have  more  concern  towards  water  quality  than  farmers  that  were  less  willing  to   engage  in  conservation  practices.     IV. Environmental  behaviors  and  willingness  to  participate  in  conservation  practices   or  pro-­‐environmental  behaviors.     In  this  section  I  asks  farmers  to  respond  to  statement  related  to  conservation  practices  and   other  pro-­‐environmental  behaviors  (See  section  4  in  survey).  To  measure  environmental   behaviors,  I  used  the  Likert-­‐type  scale  of  past  behaviors,  where  I  ask  if  they  agree  or  disagree   that  they  had  participated  in  the  last  12  months  in  behaviors  such  as  recycling,  water   conservation,  participation  in  pro-­‐environmental  organizations  and  others  environmentally     47   related  questions.  Also,  I  asked  about  their  willingness  to  participate  in  specific  pro-­‐ environmental  behaviors.     Due  to  my  focus  on  the  NRCS  National  Water  Quality  Initiative,  I  asked  specific  questions   regarding  their  participation  or  willingness  to  participate  in  the  initiative  (See  section  5  in   survey).     Farmers’  selection       In  order  to  assess  my  model,  I  decided  to  give  the  survey  only  to  farm  owners,  who   made  the  ultimate  decisions  on  land  conservation  practices  on  their  farm.  To  give  the  survey  to   the  farmer,  I  needed  to  contact  the  farmers  and  be  able  to  meet  with  them.  In  order  to  do  this,   I  requested  a  list  of  farmers  from  the  State  Department  of  Agriculture  office,  in  charge  of  the   municipalities  that  were  the  subjects  of  this  research  program.  I  also  approached  the  University   Agricultural  Extension’s  Agronomist  for  an  up-­‐to-­‐date  list  of  all  farmers  in  these  municipalities.     For  Añasco  municipality  we  were  able  to  obtain  an  up-­‐to-­‐date  list  of  all  farmers,  which   allowed  us  to  contact  each  farmers  and  establish  their  prefer  method  of  meeting.  I  did  not  have   the  same  success  for  Las  Marias  municipality.    When  we  noticed  the  difficulties  at  obtaining  an   up  to  date  list  from  Extension  Agronomist  for  this  municipality,  we  tried  to  drop-­‐in  at  farms   houses  in  Las  Marias.  Drop-­‐ins  were  unsuccessful  due  to  differences  on  working  hours  between   farmers  and  myself;  I  had  to  travel  3  hours  to  get  to  the  watershed  arriving  around  8-­‐9  am  and   heading  back  at  4-­‐5pm,  which  could  have  conflicted  with  their  working  hours.     Sample  size:     Añasco  farmers,  compared  to  Las  Marias’  farmers,  are  considered  to  be  more   commercial,  have  bigger  farms  (average  of  58  acres),  and  generally  do  not  live  on  the  farm.     48   Most  of  the  farmers  were  males  (163),  while  there  were  only  few  female  farmers  (8).  At  Anasco   26  of  the  farmers  had  an  elementary  education,  21  some  secondary  education,  38  a  high  school   diploma,  21  some  collage  education,  39  a  bachelors  degree,  and  21  had  a  Master’s  or  PhD.  On   my  sampled  population  I  had  17  males  and  3  females.  From  the  20  individuals  sampled  1  had   secondary  education,  7  had  high  school  diploma,  4  had  some  collage,  6  had  bachelor’s  degree,   and  2  had  a  Master’s.     The  2012  agricultural  census  reports  that  there  are  171  farmers  in  Añasco.  We  gather  a   list  of  31  farmer’s  phone  numbers  from  the  Department  of  Agriculture,  which  was  later   updated  by  the  University  agricultural  extension’s  agronomist  comprising  a  final  list  of  48   farmers  phone  numbers  plus  3  additional  farmers  that  I  contacted  onsite  for  a  total  of  51   farmers.    From  these  51  farmers,  34  answered  the  phone,  30  accepted  to  participate,  27   actually  participated,  and  20  completed  surveys  (39%)  (table  1).     Las  Marias  farmers  have  smaller  farms  (average  of  25  acres),  and  do  not  only  live  on  the   farms,  but  generally  have  had  families  that  have  lived  on  the  farm  for  several  generations.  Most   of  the  farmers  in  this  municipality  were  males  (270),  while  only  a  few  are  female  (14).  From  this   population  we  found  that  12  farmers  had  no  formal  education,  77  had  some  elementary   education,  78  had  some  secondary  education,  53  had  a  high  school  diploma,  44  had  some   college  education,  27  had  a  bachelor’s  degree,  and  8  had  a  Master’s  or  PhD.  On  my  sampled   population  I  had  11  males  and  no  females.  From  the  11  participants  4  had  some  elementary   education,  1  had  some  secondary  education,  1  had  a  high  school  diploma,  2  had  some  collage   education,  2  had  a  bachelors,  1  Master’s  or  PhD.    From  the  2012  agricultural  census  they  estimated  that  there  were  284  farmers  in  Las     49   Marias.  From  the  Department  of  Agriculture  we  obtained  a  list  of  59  farmers’  phone  numbers;   but  we  were  unable  to  receive  a  listing  of  current  phone  numbers  from  the  local  agronomist,   making  contacting  these  farmers  very  difficult.  Apart  from  the  farmers  on  the  list  I  contacted  4   other  farmers  onsite.  From  the  total  of  63  farmers  listed,    22  answered  the  phone  ,  21  accepted   to  participate,  19  actually  participated,  and  11  completed  surveys  17%  (table  1).     Table  7.    Response  rate  of  farmers  from  Añasco  and  Las  Marias  to  survey  instrument  on  farmers   and  environmental  behaviors     Total  farmers   %  Farmers  answered   %  Farmers   %  Actually   %  Farmers   on  the  list   the  phone  from  the   accepted  to   participate completed  the   total  list   participate   d  from  the   survey  from   from  the   total  list   the  total   total  list   list(response   rate)   Añasco   51   67%   59%   53%   39%   Las  Marias   63   35%   33%   30%   17%     2.3  Data  Analysis       Descriptive  analysis  were  performed  on  each  variable.  This  was  done  by  first  coding  the   data  on  an  excel  sheet.  A  single  or  global  measure  for  each  section  was  created  in  those   questions  that  allowed  it.  After  coding  all  the  questions  and  having  a  single  measure  per   individual  in  each  question,  I  use  this  to  see  if  a  relationship  existed  between  the  variables  using   correlation  analysis  in  the  R  statistical  program.     2.4  Results       Descriptive  statistics     I. General  connection  to  nature     To  measure  farmer’s  general  connection  to  nature  I  asked  question  measuring  New   Ecological  Paradigm  (NEP)  (odd  numbers)  and  questions  measuring  Dominant  Social  Paradigm   (DSP)  (even  numbers).       50   From  this  section  I  found  that  79%  of  farmers  agree  or  strongly  agree  with  NEP  views,  while   32%  agree  or  strongly  agree  with  DSP  views.  At  Las  Marias  municipality  we  observed  a  similar   trend  with  farmers  having  a  stronger  NEP  view  (89%)  than  a  DSP  view  (46%)(Figure  24).     Overall  index  General  Connection  to  Nature   79   Overall  index  NEP   89   32   Overall  index  DSP     Anasco   0   Las  Marias   46   20   40   60   Percent  of  agreement   80   100     Figure  24.  Overall  index  on  section  about  farmer’s  general  connection  to  nature  at  Añasco  and   Las  Marias     When  I  closely  evaluated  the  different  statements  I  gathered  during  the  survey,  I  noted,  a   high  percent  of  Añasco  farmers  agree  or  strongly  agreed  that  humans  are  not  only  abusing  the   environment  (95%)  but  that  also  they  believed  that  when  they  modify  the  environment  it   produced  disastrous  consequences  (85%),  while  only  55%  of  farmers  agreed  or  strongly  agreed   that  the  environment  could  be  easily  destroyed.  We  found  that  all  farmers  at  Las  Marias  also   agreed  or  strongly  agreed  that  humans  are  abusing  the  environment  and  91%  that  when  they   intervene  it  produces  disastrous  consequences.  All  Añasco  farmers  believed  that  the   environment  could  be  easily  destroyed(Figure  25).       51   General  connection  to  nature  statements        When  humans  modify  the  environment  it  often   produces  disastrous  consequences     85   91   95   100   Humans  are  severely  abusing  the  environment     55   The  environment  could  be  easily  destroyed   Anasco   0   Las  Marias   20   40   100   60   80   100   Percent  of  agreement     Figure  25.  Frequency  distribution  for  some  statements  on  farmer’s  general  connection  to   nature.     While  in  both  municipalities  farmers  believe  that  earth  is  like  a  spaceship  with  limited   room  and  resources,  they  also  agreed  or  strongly  agreed  that  there  are  plenty  of  resources  and   what  we  need  is  to  learn  how  to  develop  them.  A  relatively  low  percent  of  farmers  in    Añasco   believe  that  humans  have  the  right  to  modify  the  natural  environment  to  suit  their  needs,  while   at  Las  Marias  a  much  higher  percent  of  farmers  believe  humans  have  this  right  (Figure  26).   General  connection  to  nature  statements         35    Humans  have  the  right  to  modify  the  natural   environment  to  suit  their  needs   73   95   100   The  earth  has  plenty  of  natural  resources  if  we   learn  how  to  develop  them     74   73   The  earth  is  like  a  spaceship  with  very  limited   room  and  resources   0   Anasco   20   40   60   80   100   Percent  of  agreement   Las  Marias       Figure  26.  Frequency  distribution  for  some  statements  on  farmer’s  general  connection  to   nature.     When  I  statistically  compared  each  NEP  statement  between  municipalities  we  see  that   there  is  no  statistical  difference  between  them,  except  for  statement  “the  environment  could     52   be  easily  destroyed”  were  p=0.004  (Table  3).     When  we  compare  each  DSP  statement  between  municipalities  we  found  that  there  was   no  statistically  significant  differences  between  them,  expect  for  statement  “Humans  have  the   right  to  modify  the  natural  environment  to  suit  their  needs”  (p=0.044  )(Table  2).   Table  8.  Percent  distribution  of  Agree  and  Strongly  agree  of  each  statement  on  general   connection  to  nature  for  both  municipalities.   View   Statement   %  Distribution    (Agree  +  Strongly  Agree)   Municipality   NEP   NEP   NEP   NEP   NEP   NEP   NEP   NEP   DSP     DSP   DSP   DSP   DSP   DSP   DSP   We  are  approaching  the  limit  of  the  number  of  people   the  earth  can  support   When  humans  modify  the  environment  it  often   produces  disastrous  consequences     Humans  are  severely  abusing  the  environment     Plants  and  animals  have  as  much  right  as  humans  to   exist   Despite  our  special  abilities  humans  are  still  subject  to   the  laws  of  nature   The  earth  is  like  a  spaceship  with  very  limited  room  and   resources   The  environment  could  be  easily  destroyed   If  things  continue  on  their  present  course,  we  will  soon   experience  a  major  environmental  catastrophe   Humans  have  the  right  to  modify  the  natural   environment  to  suit  their  needs   Human  ingenuity  will  insure  that  we  do  NOT  make  the   earth  unlivable     The  earth  has  plenty  of  natural  resources  if  we  learn   how  to  develop  them     The  environment  is  strong  enough  to  cope  with  the   impacts  of  modern  industrial  nations.   The  so-­‐called  “environmental  crisis”  facing  humankind   has  been  greatly  exaggerated   Humans  were  meant  to  rule  over  the  rest  of  nature     Humans  will  eventually  learn  enough  about  how  nature   works  to  be  able  to  control  it   ˚  p<0.05       53   Anasco   Las   Marias   58   50   85   90   95   100   95   100   85   100   74   73   55   100˚   85   100   35   73˚   32   27   95   100   0   18   25   40   10   27   30   36     The  overall  NEP  mean  score  for  Anasco  and  Las  Marias  was  3.96(SD=  0.46)  and  4.28   (SD=0.51),  respectively.  As  the  score  is  out  of  a  scale  of  5,  the  results  indicate  a  relatively  strong   NEP  view  for  both  municipalities.  The  overall  DSP  mean  score  was  3.39(SD=0.86)  for  Anasco   and  3.13(SD=0.93)  for  Las  Marias.  This  DSP  score  was  inverted  in  order  to  have  “disagreeing”   with  DSP  statement  mean  there  was  a  stronger  connection  to  nature  (closer  to  5).  When  I   statistically  compare  NEP  overall  mean  score  between  municipalities  I  found  that  there  was  no   significant  difference  between  municipalities  (t(13.86  )=1.32,  p=0.2098  ),  with  regards  to  their     DSP  view  (t(11.914  )=0.5368,  p=0.6013)   II. Place  attachment     Place  attachment  was  measured  through  4  types  of  attachment;  1)  place  dependence,  2)   place  identity,  3)  bonds  to  nature,  and  4)  social  bonding  (family  bonding  and  friend  bonding).     Place  dependence  is  feeling  that  the  place  you  live  is  the  best  place  for  the  activities  you  do.   In  order  to  measure  place  dependence  three  statements  were  asked  (Figure  27).  From  the   three  statements  we  gathered  (overall  index  =  sum  %  agree  of  all  three  statements/3)+  (sum  %   of  strongly  agree  of  all  three  statements/3.))  The  majority  of  farmers  (62.7%)  in  Añasco  felt  that   the  watershed  they  lived  in  was  the  best  place  for  the  activities  they  perform  (Figure  27),  while   at  Las  Marias  73.9%  of  the  farmers  felt  their  watershed  was  the  best  place  for  the  activities  they   perform.     54   Place  Dependence     I  would  not  choose  another  watershed   over  the  Rio  Grande  de  Añasco  watershed   due  to  the  activities  I  do  here.     65   70   Doing  my  activities  in  the  Río  Grande  de   Añasco  watershed  is  more  important  to   me  than  doing  them  in  any  other  place.   60   70   63   The  Río  Grande  de  Añasco  is  the  best  place   for  the  activities  I  like  to  do.   82   63   Overall  Index     74   0   Anasco   20   40   60   80   100   Percent  of  agreement     Las  Marias     Figure  27.  Frequency  distribution  for  statements  on  farmer’s  place  dependence  to  nature.     When  I  statistically  compared  each  statement  between  municipalities,  I  found  that  there   was  no  statistical  difference  between  them.  However,  when  I  statistically  compare  Place   Dependence  overall  between  municipalities  I  found  there  was  a  statistic  difference  (t(2.013)=  -­‐ 8.2922,  p=  0.01396)   Place  identity  is  feeling  identified  with  the  watershed  that  makes  one  believe  that  the   place  is  special  for  them    or  a  part  of  their  identity.    Six  statements  were  used  in  order  to   measure  place  identity.  When  I  calculated  the  overall  index  from  these  six  statements  I    found   that  72.3%  of  farmers  feel  their  watershed  was  special  for  them  and  that  they  feel  its  part  of   them  while  only  13.4%  felt  that    it  was  not  (Figure  28).  At  Las  Marias  I  found  that  81.8%  farmers   agreed  or  strongly  agreed  with  the  statements  related  to  place  identity  while  only  7.6%  did  not   agree  (Figure  28).         55   Place  Identity   The  Río  Grande  de  Añasco  watershed  is   very  special  to  me     80   82   I  am  very  attached  to  the  Río  Grande  de   Añasco  watershed   70   I  identify  strongly  with  the  Río  Grande  de   Añasco  watershed     65   Living  in  the  Río  Grande  de  Añasco   watershed  says  a  lot  about  who  I  am     60   73   73   I  feel  the  Río  Grande  de  Añasco   watershed  is  a  part  of  me   80   82   The  Río  Grande  de  Añasco  watershed   means  a  lot  to  me     79   72   Overall  Index     Anasco   Las  Marias   82   0   20   40   60   100   82   80   100   Percent  of  agreement       Figure  28.  Frequency  distribution  for  statements  on  farmer’s  place  identity.     When  I  statistically  compared  each  statement  between  municipalities,  I  found  there  was   no  statistical  difference  between  them.  However,  when  I  statistically  compared  overall  place   identity  between  municipalities  I  found  that  there  was  statistical  difference  between   municipalities  (t(7.504)  =  -­‐2.1225,  p=  0.06883),  being  Las  Marias  farmer’s  more  place  identified   than  Añasco  farmers.   Bonds  to  nature  is  another  measure  of  place  attachment,  which  is  the  level  of  connection   people  have  with  nature  where  they  live.  Six  statements  were  used  to  measure  farmers  bonds   to  nature.  From  the  results  of  this  study  I  found  that  there  was  a  stronger  and  more  stable   bonds  to  nature  in  Las  Marias  than  in  Añasco  farmers.    I  noted  that  farmers  in  Añasco  exhibited   high  variability  responses  to  different  statements  ranging  from  55%  to  91%  agreement  (Figure   29).       56   Figure  29.  Frequency  distribution  statements  on  farmer’s  bonds  to  nature.   Bonds  to  nature     When  I  spend  time  in  the  natural  environment  in   Río  Grande  de  Añasco  watershed,  I  feel  a  deep   connection  with  the  natural  environment     I  would  feel  less  attached  to  the  Río  Grande  de   Añasco  watershed  if  the  native  plants  and   animals  that  live  here  disappeared   65   91   I  learn  a  lot  about  myself  when  spending  time  in   the  natural  environment  in  the  Río  Grande  de   Añasco  Watershed     75   80   No  other  place  can  compare  to  Río  Grande  de   Añasco  watershed     55   91   I  am  very  attached  to  the  natural  environment  in   the  Río  Grande     74   72   Overall  Index     Anasco   Las  Marias     90   73   0   20   40   60   100   87   80   100   Percent  of  agreement       When  I  statistically  compared  the  statements  between  municipalities  I  found  that  three   of  the  statements  were  not  statistically  different  between  the  farming  communities  I  studied,   while  the  following  three  were  statistically  different  between  municipalities:    1)  No  other  place  compares  to  Rio  Grande  de  Anasco  watershed  (t(27.818)=2.8743,   P=0.01)     2)  I  am  very  attached  to  the  natural  environment  in  Rio  Grande  de  Anasco  watershed   (t(26.965)=2.2203,  p=0.03),  and     3)  I  would  feel  less  attached  to  the  Rio  Grande  de  Anasco  if  the  native  plats  and  animals   that  live  here  disappeared  (t(28.734)=2.5925,p=0.01)     When  I  compare  bonds  to  nature  overall  mean  between  municipalities  we  found  that  there     57   was  a  statistical  difference  between  them  (t(7.199)  =  -­‐2.8832,  p=  0.02284)   Social  bonding  is  another  measure  of  place  attachment,  which  was  divided  into  family  and   friend  bonding.  Each  was  measured  with  three  statements.    The  social  bonding  responses   showed  the  lowest  levels  of  agreement  of  all  the  place  attachment  items  by  farmers  in  both   municipalities.  At  Anasco  48.3%  felt  attached  to  the  watershed  due  to  family  bonding  while   36.7%  did  not  feel  attached  due  to  family  (Figure  30).  I  also  found  that  friendship  bonding  was   relatively  not  important,  with  43.3%  of  farmers  being  attached  due  to  friendship  bonding,  while   35.0%  did  not  felt  attached  to  their  place  due  to  friendships  (Figure  10).     At  Las  Marias  social  bonding  was  also  observed  to  be  relatively  low,  but  when  compared  to   farmers  values  in  Añasco  it  was  higher,  with  66.6%  feeling  attached  to  the  watershed  due  to   family  bonding  (Figure  31)  and  48.8%  due  to  friend  bonding  (Figure  31).         Family  bonding   40   I  live  in  the  Río  Grande  de  Añasco   watershed  because  my  family  is  here   64   My  relationships  with  family  in  the  Río   Grande  de  Añasco  watershed  are  very   special  to  me   75   91   Without  my  relationships  with  family  in   the  Río  Grande  de  Añasco  watershed,  I   would  probably  move   30   46   48   Overall  Index       67   0   20   Anasco   Las  Marias     40   60   100   Percent  of  agreement     Figure  30.  Frequency  distribution  for  statements  on  farmer’s  family  bonding.       80   58     Friend  bonding   Belonging  to  volunteer  groups  in  the  Río   Grande  de  Añasco  watershed  is  very   important  to  me   55   73   The  friendships  developed  by  doing  various   community  activities  strongly  connects  me   to  the  Río  Grande  de  Añasco  watershed   60   56   Without  my  relationships  with  friends  in   the  Río  Grande  de  Añasco  watershed,  I   would  probably  move.   15   18   43   Overall  Index     Anasco   Las  Marias     49   0   20   40   60   80   100   Percent  of  agreement     Figure  31.  Frequency  distribution  for  statements  on  farmer’s  friend  bonding.     When  I  statistically  compared  each  statement  between  municipalities,  for  both  family   bonding  and  friend  bonding,  I  found  that  there  was  no  statistical  difference  between   municipalities.  When  I  statistically  compare  social  bonding  between  municipalities  I  also  found   no  statistical  difference  (  t(9.971)=  -­‐1.0183,  p  =  0.3326)  between  the  farming  community   respondents.   The  overall  mean  score  of  place  attachment  (sum  mean  of  each  statement/20  statements)   at  Añasco  was  3.58  and  at  Las  Marias  was  3.99.  When  I  statistically  compared  means  of  both   municipalities  I  found  that  there  was  a  statistical  difference  between  municipalities   (t(462.472)=-­‐4.3039,  p=2.05e-­‐05),  with  the  Las  Marias’  farmers  being  more  attached  than   Anasco’s  farmers  to  their  watersheds.     III. Environmental  concern   Concern  about  water  quality  was  measured  by  asking  farmers  1)  how  important  “Water   quality  at  Rio  Grande  de  Anasco  watershed”  and  “Water  quality  overall”  was  for  them,  and  if     59     they    were  in  2)  support  of  water  quality  policies.     The  same  results  were  found  in  both  municipalities  on  water  quality  importance,  with   anoverall  of  95%  of  the  farmers  at  Añasco  and  100%  of  the  farmers    at  Las  Marias  feeling  water   quality  was  important  for  them    (Figure  32)   Concern  about  water  quality     Water  quality  overall   95   100   Water  quality  at  Rio  Grande  de  Anasco   watershed     95   100   Overall  Index   95   100   Anasco   Las  Marias   0   20   40   60   Percent  of  concern     80   100   Figure  32.  Frequency  distribution  for  questions  on  farmer’s  concern  about  water  quality.     When  I  compared  water  quality  importance  between  both  municipalities,  I  found  that   there  was  no  statistical  difference  between  municipalities  (t(13.9)=  0.077  ,  P=0.94).       I  also  measured  farmers’  support  for  water  quality  policies  and  found  that  95%  of   farmers  at  Anasco  support  to  strongly  support  policies,  while  81%  of  Las  Marias  farmers   support  and  strongly  support  policies  to  protect  water  quality.     When  I  compared  concern  about  water  quality  overall  means  between  municipalities  I   found  that  there  was  no  statistical  difference  between  these  two  farming  communities   (t(7.854)=0.7385,  p-­‐value=0.4817)   IV. Behaviors   Behaviors  were  measured  in  my  research  by  asking  farmers  if  they  participated  in  6  pro-­‐ environmental  behaviors  (1)  participating  in  any  environmental  group,  organization  and/or     60   program,  (2)  recycle,  (3)  store  rainwater,  (4)  have  solar  panels,  (5)  have  bathing  rules,  and  (6)   perform  conservation  practices  in  the  land.   From  the  survey,  provided  to  farmers  at  Añasco  municipality,  I  found  that  there  were  5%  of   the  farmers  in  this  region  that  did  not  participate  in  any  environmental  behavior,  35%  who   participated  in  two  behaviors,  10%  engaged  in  5  behaviors,  while  5%  participated  in  all  six   behaviors  (Figure  33).  Overall  most  of  the  farmers  (75%)  in  this  region  were  currently  engaged   in  some  conservation  practices  on  their  farms  (Figure  34).   At  Las  Marias  I  found  that  9%  of  the  farmers  were  not  participating  in  any  conservation   behaviors,  9%  participated  in  one  behavior,  18%  participated  in  two  behaviors,  55%   participated  in  three  behaviors,  and  9%  participated  in  four  behaviors;  none  said  that  they     participated  in  five  or  six  behaviors  (Figure  33).  Overall  most  of  the  farmers  (73%)  in  this  region   were  currently  engaged  in  some  conservation  practices  on  their  farms  (Figure  34).   Percent  of  farmer's  participation      0  behavior   5   1  behavior   9   9    2  behavior   15    3  behavior   18   15   4  behavior   15   9   10    5  behavior    6  behavior   Anasco   35   55   5   0   Las  Marias   20   40   60   80   Percentage  of  farmers   Figure  33.  Percent  of  farmers  that  participated  in  different  amount  of  behaviors.       61   100     Farmers'  participation  in  conservation  practices   Participation  in  any  environmental   groups,  organizations,  and/or  programs   60   18   Recycle   60   45   40   Gather  Rainwater   55   5   Haiving  solar  panels   10   30   Bathing  bath  rule   45   75   Conservation  practices  in  your  farm   Anasco   Las  Marias   73   0   20   40   60   Percent  participation     80   100   Figure  34.  Frequency  distribution  for  questions  on  farmer’s  participation  in  conservation   practices.         When  I  statistically  compared  farmer’s  participation  in  the  different  behaviors  I  found     that  only  “participation  in  any  environmental  group,  organization,  and/or  program”  was   statistical  significant  difference  (t(24.787)=2.5214,  p-­‐value=0.02)   The  mean  value  of  participation  at  Añasco  was  2.70  while  it  was  2.45  at  Las  Marias,   Farmers,  thus,  currently  engage  in  2  to  3  pro-­‐environmental  practices  in  each  of  these   municipalities.       V. Behavioral  intentions     Behavioral  intentions  were  measured  in  my  research  by  asking  farmers  their  willingness  to   engage  in  6  conservation  practices  during  the  next  12  months:  (1)  participating  in  any   environmental  group,  organization  and/or  program,  (2)  recycling,  (3)  store  rainwater,  (4)  install   solar  panels,  (5)  have  bathing  rules,  or  (6)  implement  conservation  practices  in  the  land.  From   Añasco  farmers  I  found  that  90%  of  farmers  said  that  they  will  likely  or  very  likely  participate  in   at  least  one  conservation  practices  with  80%  indicating  that  they  will  likely  or  very  likely  recycle,     62   (Figure  35)     At  Las  Marias  municipality  72.7%  of  farmers  said  that  they  will  likely  to  very  likely   engage  in  conservation  practices  on  their  land,  while  81.8%  will  store  rainwater,  and  54.6%  said   they  will  likely  to  very  likely  recycle  (Figure  35).   Farmer's  willingness  to  engage  in  conservation  practices  at  Anasco   Participation  in  any  environmental  groups,   organizations,  and/or  programs   Recycle   55   Gather  Rainwater   55   30   Haiving  solar  panels   82   45   45   Conservation  practices  in  your  farm   Las  Marias   80   45   Bathing  bath  rule   Anasco     60   45   73   0   20   40   90   60   80   Percent  willingness     100   Figure  15.  Frequency  distribution  for  questions  on  farmer’s  willingness  to  engage  in   conservation  practices.       When  statistically  comparing  the  means  of  both  municipalities  I  found  that  there  was  no   significant  difference  (t(9.86)=1.0622,  p=0.3135)  between  these  farming  communities  and  thus   concluded  that  farmers  from  both  municipalities  on  average  have  the  same  willingness  to   engage  in  conservation  practices.     VI. Participation  in  the  NRCS     Participation  in  the  NRCS  water  quality  initiative  is  another  measures  of  behavior  that  I  used   in  my  research  to  gauge  stewardship  engagement  by  farmers  in  these  municipalities.    I  chose   this  because  this  initiative  aims  to  engage  farmers  in  conservation  practices  in  order  to  reduce   water  quality  stressors.  One  single  question  was  used  to  measure  farmers  participation  in  NRCS     63     initiative:  Are  you  currently  participating  in  the  NRCS  National  Water  Quality  Initiative?   At  both  municipalities,  most  surveyed  farmers’    do  not  participate  in  NRCS  initiative.  At     Añasco  only  10%  out  of    20  were  participating  in  the  NRCS  initiative  while  20%  out  of  10  were   participating  in  Las  Marias.     At  Añasco  most  of  the  farmers  do  not  participate  due  to  the  fact  that  they  already  are   participating  in  conservation  practices,  while  at  Las  Marias  most  of  the  farmers  do  not   participate  because  they  have  little  to  no  information  on  conservation  practices  (Figure  36).         What  has  InWluenced  farmers  not  to  participate  of  NRCS'  Water   Qualtity  Inititative     39   Little  information  about  conservation  practices     75   17   Do  not  trustgoverment  agencies   50   6   I  am  not  impacting  with  my  crop   50   Will  take  too  much  of  my  productive  land     29   28   Incentives  are  not  enough     Already  inconservation  practice  in  my  land   50   61   29   39   38   Lack  of  labor  help   22   25   Time  consumption   39   38   Have  not  heard  from  the  Inititative     0   10   20   30   40   50   60   70   80   Percentage   Anasco     Las  Marias     Figure  36.  Frequency  distribution  for  reasons  farmers  did  not  participated  in  NRCS  initiative               64     Testing  the  model     In  this  research  I  created  a  model  (Figure  37),  from  past  research,  to  assess  if  different   variables  influenced  behavioral  intentions  and  behaviors.  In  the  model,  general  connection  to   nature  can  influence  and  be  influenced  by  place  attachment.  Additionally  this  relationship  can   influence  degree  of  concern  about  the  environment  (water  quality),  an  individual’s  behavioral   intentions,  and  actual  behaviors.  Place  attachment  can  also  influence  concern  about  the   environment,  behavioral  intentions,  and  behaviors.  Concern  about  the  environment  can  also   influence  behavioral  intentions  and  behaviors.  In  order  to  test  this  model  I  conducted  a   correlation  analysis  between  the  different  variables  of  the  model.    From  the  correlation  analysis   we  found  that  there  was  a  statistical  significant  positive  correlation  between  “place   attachment”  and  “water  quality  concern”(rs=0.31  p=0.09),    “behavioral  intentions”  (willingness   to  behave)  and  “behaviors”  (rs=0.43  p=0.01),  and  “general  connection  to  nature”  and   “behavioral  intentions”  (rs=0.21  p=0.09)  for  the  farming  communities  studied  in  Puerto  Rico.     Place     Attachment   rs=0.22  p=0.23   rs  =0.31  p=0.09  *   Concern  about   water  quality       rs=-­‐0.06  p=0.74   rs=-­‐0.13   p=0.49   General   connection  to   nature     rs=  0.13  p=0.50   Behaviors   rs=0.43   p=0.01  *   rs=0.00  p=0.99   rs=0.02  p=0.92   rs=0.18  p=0.32   rs=0.31  p=0.09  *     Behavioral   Intentions     Figure  37.  Model  diagram  with  correlation  coefficients  between  variables.  *statistical   significant       I  also  analyzed  the  data  to  see  how  the  different  measurements  of  “place  attachment”     65   influenced  other  variables.  I  found  that  there  was  a  strong  and  significant  relationship  between   “social  bonding”  and  “behaviors”  (rs=0.32  p=0.08).   2.5  Discussion   In  “general  connection  to  nature”  part  of  my  survey  (Section  1),  the  more  a  person  agreed   with  statements  that  support  the  New  Ecological  Paradigm  the  greater  their  concern  about  the   environment,  while  when  a  person  supports  the  Dominant  Social  Paradigm  they  do  not.  In  my   research,  when  I  looked  at  general  connection  I  found  that  farmers,  at  both  municipalities,   overall  have  more  of  an  NEP  view  than  a  DSP  view.  For  example,  farmers  from  both   municipalities  agree  to  statements  such  as  “humans  are  abusing  the  environment”  or  “when   humans  modify  the  environment  it  often  produces  disastrous  consequences”.  From  these   results  it  appears  that  1)  farmers  believe  they  can  produce  disastrous  consequences  while   farming  2)  they  are  unaware  that  farmers  modify  the  environment,  or  3)  they  are  thinking  of  a   more  global  and  not  local  issues.     A  contradictory  result  found  in  this  section,  in  both  municipalities,  is  the  agreement  with   the  statement  “earth  is  like  a  spaceship  with  limited  room  and  resources”  versus  “the  earth  has   plenty  of  resources  and  what  we  need  to  do  is  learn  how  to  develop  them”.  This  could  be   because  farmers,  even  though  they  believe  there  are  limited  resources  on  Earth,  if  they  use   them  wisely  it  will  not  be  limited.  This  is  a  type  of  belief  that  is  generally  consistent  with  a  view   of  local  versus  global  environments.    I  believe  farmers  in  these  two  municipalities  think  that   globally  there  are  many  resources,  but  in  terms  of  them  using  it  (locally)  they  have  plenty  if   they  know  how  to  use  them.       In  this  same  section  I  found  two  statements  with  statistical  difference  between   66   municipalities;  1)  “Humans  have  the  right  to  modify  the  natural  environment  to  suit  their   needs”,  and  2)  “The  environment  could  be  easily  destroyed”.  For  the  statement  “the   environment  could  be  easily  destroyed”  55%  of  Añasco’s  farmers  agreed,  as  opposed  to  100%   of  farmers  at  Las  Marias.  From  my  observations,  when  visiting  the  farms  and  interviewing  the   farmers,  I  found  this  results  because  mostly  farmers  at  Las  Marias  1)  are  generally  small   scale/subsistence  farmers  2)  live  on  the  land,  and  3)  have  lived  on  the  land  for  many   generations,  while  Añasco’s  farmers  are  1)  more  commercial  in  scale  2)  the  farmers  generally   do  not  generally  live  on  the  land,  and  3)  most  have  only  been  linked  to  this  area  for  only  one  or   two  generations.  These  differences  could  influence  farmers’  perspective  due  to  difference  in   experiences  living  in  the  area.     At  Añasco  35%  of  farmers  agreed  to  the  statement  “Humans  have  the  right  to  modify  the   natural  environment  to  suit  their  needs”,  while  at  Las  Marias  73%  agreed.  Thus,  while  all   farmers  at  Las  Marias  believe  that  “the  environment  could  be  easily  destroyed”,  73%  believe   they  “have  the  right  to  modify  the  environment  to  suit  their  needs”.  I  could  be  getting  this   results  due  to  the  fact  that  farmers  at  Las  Marias  usually  are  small  scale  farmers  and   subsistence  farmers  and  they  could  believe  that  while  the  environment  could  be  easily   destroyed  they  know  how  to  modify  it  in  a  way  that  it  would  not  be  threatening  and  would  be   useful  in  order  to  suit  their  needs.  The  fact  that  they  depend  on  their  land  makes  them  believe   they  have  the  right  to  take  advantage  of  it,  but  because  they  know  it  could  be  easily  destroyed   they  do  it  in  a  way  that  would  not  only  not  harm  it  but  would  not  jeopardize  future  production.   When  I  evaluated  the  answers  to  the  statement  “when  humans  modify  the  environment  it   often  produces  disastrous  consequences”  it  may  be    that  the  farmers  were  externalizing  it  and     67   not  necessarily  thinking  about  their  own  actions.     General  connection  to  nature  has  been  shown  to  influence  people’s  concern  about  their   environment  (Brehm  et  al  2006)  and  their  environmental  behaviors  (Stern  et  al  1995,  Scanell   and  Grifford  2010).    In  this  study,  although  farmers  have  more  of  an  ecological  view,  I  found  in   that  there  was  no  relationship  between  “general  connection”  to  nature  and  actual  “behaviors”.   I  did  find  however  a  strong  relationship  between  “general  connection”  and  “behavioral   intentions”.  This  means  that  while  general  connection  influences  peoples  behavioral  intentions   it  does  not  necessarily  influence  their  actual  behaviors,  likely  because  there  are  other  behaviors   that  are  more  influential  For  example,  the  results  I  found  might  be  observed  because  compared   to  past  research  behaviors,  my  research  options  were  generally  more  time  consuming  or  costly   which  can  makes  the  relationship  between  attitudinal  factors  weaker.  Behaviors  measured  in   past  research  (recycling,  turning  lights  off)  are  less  time  consuming  and  less  costly  than   behaviors  measured  in  my  research  (buying  solar  planes,  collecting  rain  water,  or  participating   in  any  environmental  group,  organization  or  program),  which  would  explain  the  lack  of   relationship  between  general  connection  to  nature  and  behavioral  that  I  observed.     I  also  found  no  relationship  between  general  connection  and  environmental  concern   contrary  to  what  Gosling  and  Williams  (2010)  found  in  their  study.  This  could  be  do  to  the  fact   that  environmental  concern  was  more  specific  and  not  general.  Also,  people  might  have  a   strong  general  view  on  human/nature  relationship,  but  not  necessary  mean  that  this  would   translate  to  local  water  quality  concern.  In  other  words,  a  general  view  on  how  human  and   nature  relate  does  not  translate  to  your  specific  feeling  about  a  certain  local  issue   When  I  evaluated  the  results  of  the  place  attachment  section    (section  2  in  the  survey)  I     68   found  that  the  only  measure  that  was  statistically  different  between  municipalities  was  the   section  related  to  “bonds  to  nature”.  Here  three  out  of  six  statements  presented  statistically   significant  difference.  From  this  three,  the  statement  “No  other  place  can  compare  to  Rio   Grande  de  Añasco  watershed”  was  the  biggest  difference  between  municipalities.  This  is  likely  a   function  that  most  farmers  at  Añasco  did  not  live  on  the  land,  while  most  of  farmers  at  Las   Marias  did  and  past  generations  of  their  relatives  had  farmed  the  same  lands.  I  found  that   farmers  at  Las  Marias  had  a  stronger  bond  to  nature  than  Añasco’s  farmers  with  an  overall   index  of  agreement  of  87%  compared  to  72%  at  Añasco.     When  I  assessed  place  attachment  overall  between  municipalities  I  found  that  there  was  a   statistical  difference,  with  farmers  at  Las  Marias  being  more”  place  attached”  than  farmers  at   Añasco.  I  expected  to  see  this  results  since  farmers  at  Las  Marias  are  small-­‐scale,  mostly   subsistence  farmers,  that  had  lived  in  the  watershed  for  several  generations.  Meanwhile   Añasco  farmers  were  more  commercial  in  nature,  do  not  live  near  the  farm  (rent  or  have   another  house  somewhere  else),  nor  have  been  member  of  the  watershed  and  their   communities  for  several  generations.     When  evaluating  the  overall  results,  the  model  I  developed  demonstrated  that  there  was  a   statistical  significant  relationship  between  “place  attachment”  and  “concern  about  water   quality”.  This  means  that  people  that  are  more  attached  have  a  stronger  concern  toward  water   quality  than  people  that  are  not  attached.    When  we  look  at  the  model  with  municipalities   separated  we  can  see  that  there  is  a  stronger  relationship  between  Las  Marias  farmer’s  place   attachment  and  concern  about  water  quality  than  the  farmers  in  Añasco.     When  I  evaluated  the  model  to  determine  how  the  different  measurements  of  place     69   attachment  (Place  identity,  place  dependence,  bonds  to  nature,  social  bonding)  influenced  the   other  variables,  I  found  that  “social  bonding”  had  a  strong  and  meaningful  relationship  with   “behaviors”  (rs=0.32  p=0.08).  Thus,  the  strong  relationship  between  social  bonding  and   behaviors  could  demonstrate  that  people’s  connection  to  other  people  motivates  their   participations.  The  relationship  between  social  bonds  to  nature  and  environmental  quality   concern  is  logical  since  a  stronger  relationship  with  the  natural  place  in  the  watershed  likely   increases  people’s  interest  in  protecting  it.     Farmer’s  concern  about  the  environment  (Section  3  of  survey)  in  both  municipalities  was   seen  to  be  very  high  (95  and  100%  concern),  but  there  is  no  relationship  between  “concern   about  the  environment”  and  “actual  behavior”  or  “behavioral  intentions”.  The  lack  of   relationship  between  environmental  concern  and  behavioral  intentions  or  behaviors  tells  me   that  there  are  other  things,  such  as  the  behavior  being  too  costly  or  time  consuming,  or  that   people  are  more  concern  on  land  productivity  than  environmental  problems,  thereby   diminishing  the  farmers  interest  to  participate  in  pro-­‐environmental  behaviors.     From  this  research,  I  also  found  that  although  there  is  a  high  water  quality  concern  this  is   inconsistent  with  people’s  knowledge  of  current  water  quality  conditions.  At  Añasco  40%  of   farmers  believed  that  water  quality  at  Rio  Grande  de  Añasco  is  average,  the  same  trend  is  seen   in  Las  Marias  with  45%  believing  is  average.  Importantly,  at  Las  Marias  a  relatively  high  number   (25%)  admitted  not  knowing  the  water  quality’s  condition  in  their  watershed,  while  at  Añasco   only  5%  said  they  did  not  know.    Interestingly,  15%  and  18%  of  farmers  at  Añasco  and  Las   Marias,  respectively,  said  water  quality  at  Añasco  is  excellent.  This  inconsistency  between   concern  about  water  quality  and  actual  knowledge  of  the  status  of  their  water  quality  could  be     70   due  to  that  farmers  are  not  being  informed  of  the  current  status  of  their  water  quality  and   reasons  for  its  degradation.      I  found  that  a  relatively  high  number  of  farmers  are  and  are  willing  to  participate  in   conservation  practices  in  their  land  (section  4  and  5  in  survey)  in  both  municipalities,  but  only   10%  in  Añasco  and  20%  in  Las  Marias  were  participating  in  the  National  Water  Quality  Initiative   from  the  NRCS  (Section  6  in  survey).  Farmers  at  Las  Marias  (75%)  were  not  participating  and   stated  that  they  do  not  participate  as  they  have  little  information  about  conservation  practices,   while  at  Añasco  61%  of  those  that  are  not  participating  in  NRCS  initiative  are  not  participating   due  to  the  fact  that  they  are  already  participating  in  other  conservation  practices  on  their  lands.   The  high  number  of  people  not  participating  in  the  NRCS  initiative  could  be  due  to  a  lack  of   communication  and  interactions  between  farmers  and  the  NRCS  regarding  possible   conservation  programs  available  to  them.   Due  to  lack  of  an  updated  list  of  farmers  and  the  relatively  low  numbers  of  farmers  that   participated  in  this  research  I  had  a  limited  sample  of  the  demographic  make  up  of  the  farming   community.    As  such,  I  chose,  to  eliminate  demographic  analysis  from  further  analysis.         Participants  phone  numbers  was  gathered  from  a  list  of  the  state  Department  of  Agriculture   and  the  list  of  Agricultural  Extension’s  agronomist.    This  may  have  promoted  us  to  have   collected  biased  data  due  to  a  selected  interview  pool  of  farmers  in  each  region.  The  fact  all  of   the  farmers  at  Añasco  and  most  of  the  farmers  at  Las  Marias  were  selected  from  this  list  could   have  biased  our  selection  to  people  that  already  were1)  more  willing  to  participate  in  different   practices  and  the  survey  2)  trust  government  agencies  3)  already  engage  in  conservation   practices  promoted  by  the  department  or  Agricultural  Extension,  among  others.  For  future     71   research  there  should  be  from  a  more  representative  pool  of  the  farming  community  in  each   municipality.   2.6  Conclusion         Surface  water  quality  in  Puerto  Rico  is  in  relatively  poor  conditions  due  to  levels  of   impairments  such  as  turbidity,  fecal  coliforms,  and  low  dissolve  oxygen  (PREQB  2012).  There   are  several  sources  of  impairment,  but  for  this  researched  we  focused  on  the  impact  of     agricultural  communities  on  water  quality.  In  western  Puerto  Rico,  Rio  Grande  de  Añasco   watershed  is  considered  mostly  agricultural  and  ranked  as  high  priority  watershed  for   conservation  practices  to  be  undertaken  by  the  USDA  due  to  its  water  quality  impairments.  This   was  thus  an  ideal  study  site  for  evaluation  of  conservation  behaviors  and  the  agricultural   community  and  further  was  emphasized  by  the  USDA  NRCS  having  a  new  initiative  that  aimed   to  engage  farmers  in  conservation  practices  to  reduce  water  quality  impacts  in  this  watershed.     Water  resource  in  the  island  is  managed,  regulated,  and  conserved  by  different   agencies.  Due  to  its  numerous  agencies  managing  water  quality  in  Puerto  Rico  it’s  a  challenge   that  not  only  needs  inter  agency  communication  but  citizen  involvement.  In  order  for  citizen  to   be  stewards,  they  need  first  to  acknowledge  current  water  quality  conditions  and  understand   the  causes  for  its  degradation,  in  order  to  engage  in  pro-­‐environmental  behaviors  to  reduce   stressors  to  water  quality.    In  this  research  I  selected  a  group  of  citizens,  farmers,  in  westerner  Puerto  Rico  in  order   to  assess  how  their  connection  to  the  land  (place  attachment)  influence  their  interest  in   participating  in  environmental  behaviors.  From  my  results  I  found  that  farmers  at  Las  Marias   have  greater  place  attachment  than  Añasco’s  farmers,  this  might  be  due  to  owning  and  living     72   for  more  than  one  generation  on  the  municipality.  I  did  find  statistical  significance  between   overall  “place  attachment”  and  “environmental  concern”  but  no  significant  relationship  with   environmental  behaviors.  Moreover,  I  did  find  a  statistical  significance  between  “social   bonding”  and  “pro-­‐environmental  behaviors”,  and  between  “bonds  to  nature”  and  “concern   about  water  quality”  .  I  also  found  a  statistical  significance  relationship  between  “general   connection”  and  “behavioral  intentions”  (rs=0.32,  p=0.08)  and  a  strong  and  significant   relationship  between  “behavioral  intentions”  and  “behaviors”.       From  my  experience  in  the  field  and  trying  to  contact  the  farmers,  there  is  a  need  to  be   able  to  send  information  to  farmers  in  a  better  way.  The  lack  of  cooperation  and  sometimes-­‐ conflicting  information  from  several  federal  and  commonwealth  agencies  with  the  farmers   makes  getting  to  the  goal  of  environmental  stewardship  behavior  difficult  at  the  local  level.     For  future  research  a  larger,  more  representative  group  of  individuals  from  the  Puerto   Rican  population  should  be  surveyed.  For  future  research  I  also  believe  that  increasing  the   quantity  of  behaviors  and  making  it  a  broader  scope  would  be  more  meaningful  in  the   correlation  with  other  variables.  In  my  research,  environmental  concern  was  measured  as   “concern  towards  water  quality”(specific  issue).    For  future  research  I  recommend  that  one   have  a  bigger  scope  of  environmental  issues,  making  it  not  only  relevant  on  local  issues  but  also   global  ones;  allowing  for  great  comparisons  with  the  rest  of  the  world.     Farmers  represent  a  small  segment  of  the  Puerto  Rican  population,  but  this  survey  could   be  used  as  a  guide  for  future,  more  extensive  and  inclusive  research.  Due  to  the  farmer’s   current  engagement  in  conservation  practices  and  interest  in  future  participation  we   recommend  that  other  questions,  that  could  be  promoting  their  engagement,  should  be     73   included  in  the  survey,  such  as  economic  benefits  and  cost  and  time  allocation.     Understanding  citizen’s  motivation  to  engage  in  pro-­‐environmental  behaviors  is  a   key  aspect  of  natural  resource  conservation  and  protection.  This  research  aimed  to  identify   how  emotional  bonds  to  nature  and  the  place  they  live  influences  their  interest  in   participating  in  certain  conservation  oriented  practices.  I  believe  that  by  engaging  farmers   in  conservation  practices,  we  will  be  able  to  promote  healthier  waters  by  reducing  water   pollution.  This  increase  in  healthy  waters  will  enhance  ecosystems  not  only  for  aquatic  life   in  the  local  regions  but  for  all  ecosystems  services  which  humans  benefit  from  that  are   effected  from  the  deterioration  of  the  waterways  in  Puerto  Rico  (eg,  coastal  ecosystems)  .                                                             74                                     APPENDIX                                                             75   A  Survey  of  Farmers  in  the  Río  Grande  de  Añasco  Watershed   About         Living  in  Río  Grande  de  Añasco  watershed         ENTER  TO  WIN  $300!   By  participating  your  name  will  be  collected  to  participate  on  the  drawn           YOUR  RIGHTS  AS  A  PARTICIPANT   Your  participation  is  completely  voluntary.   You  may  choose  not  to  participate  at  all,  refuse  to  answer  some  questions,  or  stop  at  any  time.     You  will  remain  anonymous.   You  will  not  be  identified  by  name,  address,  or  any  other  unique  characteristic  in  any  written   document  that  results  from  this  research.  While  your  privacy  will  be  protected  to  the  maximum   extent  allowable  by  law,  there  is  always  the  possibility  of  unforeseeable  risks.     Follow-­‐up  questions/comments?   Contact  me  (Marielle  Peschiera)  at  (787)  528-­‐2828  or  email:  peschie2@msu.edu   or  my  academic  advisor  Dr.  William  W.  Taylor  at  (517)  353-­‐3048  or  email:  Taylorw@msu.edu     Questions/concerns  regarding  your  right  as  a  study  participant?   Dissatisfied  at  any  time  with  any  aspect  of  this  study?   Contact  Harry  McGee  Director  of  the  Human  Research  Protection  Program  by  phone:  (517)  355-­‐2180,  email:   irb@msu.edu,  or  mail:  202  Olds  Hall,  East  Lansing,  MI  48824                     By  completing  this  survey  you  indicate  your  voluntary  agree  to  participate  in   this  research  and  have  your  answers  included  in  the  anonymous  dataset     76   Thank  you  for  agreeing  to  complete  this  survey  about  place  attachment  and  water  quality.  Please   read  each  question  carefully  before  responding.  Your  responses  will  help  in  the  fulfillment  of  a  local   students  Master’s  thesis  research.  Before  you  begin  the  survey  we  want  to  offer  the  fallowing   definitions:     Watershed:  A  watershed  is  the  area  of  land  where  all  of  the  water  that  is  under  it  or  drains  off  of  it   goes  to  the  same  place.   Figure  38.  Watershed  description       Río  Grande  de  Añasco  watershed:  This  is  where  you  live!  Río  Grande  de  Añasco  watershed   occupies  an  area  of  181  mi2  in  central  and  western  Puerto  Rico,  including  the  municipalities  of   Lares,  Adjuntas,  Yauco,  Las  Marias,  Maricao,  San  Sebastian,  Añasco  y  Mayaguez.  The  primary  river  is   Río  Grande  de  Añasco  where  all  the  other  tributaries  drains  to.                                   Figure  39.  Watershed  location  and  municipalities     Face  to    face_____  Left________     77   Section  1.    In  this  section  think  about  the  relationship  between  human  and  nature  and  rate   how  much  you  agree  or  disagree  with  the  statement       Strongly   disagree   Disagree   Agree   Strongly   agree   I’m   not   sure   We  are  approaching  the  limit  of  the   number  of  people  the  earth  can  support   □   □   □   □   □   Humans  have  the  right  to  modify  the   natural  environment  to  suit  their  needs   □   □   □   □   □   When  humans  modify  the  environment  it   often  produces  disastrous  consequences     □   □   □   □   □   Human  ingenuity  will  insure  that  we  do   NOT  make  the  earth  unlivable     □   □   □   □   □   Humans  are  severely  abusing  the   environment     □   □   □   □   □   The  earth  has  plenty  of  natural  resources   if  we  learn  how  to  develop  them     □   □   □   □   □   Plants  and  animals  have  as  much  right  as   humans  to  exist   □   □   □   □   □   The  environment  is  strong  enough  to  cope   with  the  impacts  of  modern  industrial   nations.   □   □   □   □   □   Despite  our  special  abilities  humans  are   still  subject  to  the  laws  of  nature   □   □   □   □   □   The  so-­‐called  “environmental  crisis”   facing  humankind  has  been  greatly   exaggerated   □   □   □   □   □   The  earth  is  like  a  spaceship  with  very   limited  room  and  resources   □   □   □   □   □   Humans  were  meant  to  rule  over  the  rest   of  nature     □   □   □   □   □   The  environment  could  be  easily   destroyed   □   □   □   □   □   Humans  will  eventually  learn  enough   about  how  nature  works  to  be  able  to   control  it   If  things  continue  on  their  present  course,   we  will  soon  experience  a  major   environmental  catastrophe   □   □   □   □   □   □   □   □   □   □     78   Section  2.  In  this  section  think  about  your  physical,  social,  and  nature  connections  with   your  watershed  and  answer  if  you  agree  or  disagree  with  the  statement     Strongly   Disagree   agree   I  would  not  choose  another  watershed  over  the   Rio  Grande  de  Añasco  watershed  due  to  the   activities  I  do  here.     Without  my  relationships  with  friends  in  the  Río   Grande  de  Añasco  watershed,  I  would  probably   move.   I  feel  the  Río  Grande  de  Añasco  watershed  is  a   part  of  me   The  Río  Grande  de  Añasco  watershed  is  very   special  to  me     The  Río  Grande  de  Añasco  is  the  best  place  for  the   activities  I  like  to  do.   I  am  very  attached  to  the  Río  Grande  de  Añasco   watershed   Belonging  to  volunteer  groups  in  the  Río  Grande   de  Añasco  watershed  is  very  important  to  me   Living  in  the  Río  Grande  de  Añasco  watershed   says  a  lot  about  who  I  am     Without  my  relationships  with  family  in  the  Río   Grande  de  Añasco  watershed,  I  would  probably   move   When  I  spend  time  in  the  natural  environment  in   Río  Grande  de  Añasco  watershed,  I  feel  a  deep   connection  with  the  natural  environment     I  identify  strongly  with  the  Río  Grande  de  Añasco   watershed     I  learn  a  lot  about  myself  when  spending  time  in   the  natural  environment  in  the  Río  Grande  de   Añasco  Watershed     No  other  place  can  compare  to  Río  Grande  de   Añasco  watershed     I  am  very  attached  to  the  natural  environment  in   the  Río  Grande     de  Añasco  watershed     I  live  in  the  Río  Grande  de  Añasco  watershed   because  my  family  is  here   My  relationships  with  family  in  the  Río  Grande  de   Añasco  watershed  are  very  special  to  me   The  Río  Grande  de  Añasco  watershed  means  a  lot   to  me     I  would  feel  less  attached  to  the  Río  Grande  de   Añasco  watershed  if  the  native  plants  and  animals   that  live  here  disappeared   The  friendships  developed  by  doing  various   community  activities  strongly  connects  me  to  the   Río  Grande  de  Añasco  watershed   Doing  my  activities  in  the  Río  Grande  de  Añasco   watershed  is  more  important  to  me  than  doing   them  in  any  other  place.     79   Agree   Strongly   agree   I’m  not   sure   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   Section  3.      In  this  section  think  about  water  and  water  quality   Based  on  your  knowledge,  in  the  fallowing  statements  please  rate  water  quality  from  poor  to   excellent.     Poor   Below   Average   Above   Excellent   I’m  not     average   Average   sure   Current  water  quality   conditions  at  Río  Grande  de   Añasco  watershed   Current  water  quality   conditions  in  Puerto  Rico   Current  water  quality   conditions  globally   Future  water  quality   conditions  at  Río  Grande  de   Añasco  watershed   Future  water  quality   conditions  at  Puerto  Rico       Future  water  quality   conditions  globally   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □     Please  rate  how  important  or  unimportant  is  for  you  the  following  statements         Very   Unimportant   Important   Very   unimportant   Important   Water  quality  overall     Water  quality  in  Río  Grande  de   Añasco  watershed   Environmental  problems     I’m  not   sure   □   □   □   □ □   □   □   □   □   □   □   □   □   □     □   Please  state  if  you  oppose  or  support  what  the  following  statements  say             There  is  a  need  for  stronger   environmental  protection   laws  for  business  and  industry     Laws  requiring  that  all  citizens   conserve  resources  and   reduce  water  pollution   Support  for  scientific  research   to  help  find  new  ways  to   control  water  pollution     Strongly   opposed   Opposed   Very   supportive   □   □   □   □   □   □   □   □   □   □   □   □         80   □   I’m  not   sure   □               Support   □   Section  4.  In  this  section  think  about  conservation  practices  and  other   pro-­‐environmental  activities     Please  indicate  in  the  activities  you  have  engaged  in  the  following  activities  in  the  last  12  months       Yes   No   Participated  in  any  environmental   groups,  organizations  and/or  programs     Recycled       □   □   Gathered  rainwater     □   □   □   □   □   □   □   □   □   □   □   □   □   □   Have  solar  panels     Bathing  time  rule     Clean  your  car  more  than  once  in  a  month     Do  you  have  a  filled  pool  on  the  house   Conservation  practices  in  your  farm  such   as  creating  terraces  or  covering  crops       To  what  extent  has  each  of  the  following  influenced  your  household’s  actions  to  NOT    participate  in   conservation  practices  in  your  land?       Not         Influenced   influenced   Don’t  believe  is  necessary       1   2   3   4   5   Its  expensive  to  participate  in  conservation   1   2   3   4   5   practices   Do  not  have  information  on  how  to  start     1   2   3   4   5   Do  not  know  the  cost  of  participating  in   1   2   3   4   5   conservation  practices.     Do  not  know  what  conservation  practices   1   2   3   4   5   are   Do  not  how  where  to  go  in  order  to  start   1   2   3   4   5   conservation  practices   I  have  little  time  in  this  land     1   2   3   4   5   My  land  is  too  small  to  engage  in   1   2   3   4   5   conservation  practices     Please  respond  how  likely  or  not  likely  you  are  to  participate  in  the  following  activities  in  the  next  12   months?       Not  likely   Somewhat   Likely   Very   I’m  not   likely   likely   sure   Conservation  practices  in  your  farm  such   □   □   □   □   □   as  creating  terraces  or  covering  crops     Be  part  of  and  environmental  group,   □   □   □   □   □   program  and/or  organization   Recycle     □   □   □   □   □   Have  solar  panels     Build  a  pool     Gathered  rainwater     Time  rule  for  bathing?     Clean  your  car  more  than  once  in  a  month         □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   81   Section  5.  NRCS  National  Water  Quality  Initiative                 Are  you  participating  of  the  NRCS  National  Water  Initiative?      Yes  /  No          (Please  circle  one)               If  you  are  NOT  currently  participating  of  the  NRCS  Initiative  how  likely  or  not  likely  the   fallowing  influenced  your  decision  not  to  participate     Not  likely   Somewhat   Likely   Very  likely   I'm  not   likely   sure   Have  not  heard  about  it   Time  consumption     Lack  of  labor  help   Already  have  conservation  practice     in  the  land     Incentives  are  not  enough     Will  take  too  much  of  my  productive   land     I  am  not  impacting  water  quality  with   my  crop     Do  not  trust  government  agencies   Little  information  of  impacts  of   participating  in  conservation  practice   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □       If  you  are  currently  participating  of  the  NRCS  initiative  how  likely  one  of  this  influenced  your   decision  to  participate   Not  likely   Somewhat   Likely   Very  likely   I'm  not   likely   sure   Incentive  to  participate     Reduce  impact  to  water  ways   Neighbor  already  participating     Reduce  impact  to  other  ecosystem   services     Would  not  lose  anything  by   participating     □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □   □                   82   Section  6.  In  this  section  please  provide  personal  background  information  by  selecting  the  option  that   best  describes  you   What  is  your  gender?        Female  /  Male   How  long  have  you  lived  in  the  Río  Grande  de  Añasco  watershed?  ___________________________   Do  you  own  or  rent  the  farm?  __________________________   What  is  your  approximate  annual  gross  household  income  (before  taxes)  (please  check  one  response)   □ Less  than  10,000   □ 10,000-­‐29,999   □ 30,000-­‐  49,999   □ 50,000-­‐79,999   □ 80,000-­‐99,999   □ 100,000-­‐ormore   □ No  answer   Name  the  sources  of  your  income  (please  type  all  that  apply)   _________________________________________________________________________________________________________________   Percent  of  income  earn  from  farming  (please  check  one  response)   □ Less  than  25  percent   □ 25  to  49  percent   □ 50  to  74  percent   □ 75  percent  or  more   □ No  answer   Highest  grade?  (please  check  one  response)   □ None   □ Elementary  school   □ Secondary  school   □ High  school  diploma  or  GED   □ Some  college   □ College  Bachelor’s  degree   □ Master’s  or  PhD   □ No  answer   Years  operating  the  farm  (please  check  one  response)   □ Less  than  2  years   □ 2  to  4  years   □ 5  to  9  years   □ 10  years  or  more   □ No  answer       83   ¿Do  you  live  at  Rio  Grande  de  Añasco  watershed?  ¿Which  municipality?   ______________________________________________________________________________________________________________________________ _______________________________________   ¿Which  crops  do  you    have  in  your  farm?   __________________________________________________________________________________________   Size  of  your  farm  ________________________________________   Age  group  (please  check  one  response)   □ Under  25  years  old   □ 25  to  34  years  old   □ 35  to  44  years  old   □ 45  to  54  years  old   □ 55  to  64  years  old   □ 65  years  old  and  over   □ No  answer   Hispanic  origin   □ Not  of  Hispanic  origin  or  Latino  origin   □ Of  Hispanic  or  Latino  origin   □ No  answer     Any  comments?   __________________________________________________  ____________________________   ______________________________  ________________________________________________   _____________________________  _________________________________  ________________   ____________________  __________________________________________________________           Thanks  for  participating  and  stay  alert  for  the  drawn  prize  winner!                             84                                           BIBLIOGRAPHY                                                     85   BIBLIOGRAPHY   Autoridad  Acueductos  y  Alcantarillados  2014.  “Leyes  y  reglamentos.”  Retrieve  from   http://www.acueductospr.com   Autoridad  Acueductos  y  Alcantarillados  2014.  “Vision  y  metas.”  Retrieve  from   http://www.acueductospr.com   Autoridad  Acueductos  y  Alcantarillados  2014.  “Agua  Potable  .”  Retrieve  from   http://www.acueductospr.com/COMUNICACIONES/agua_potable.htm   Barbier,  E.B.1990.  “The  farm-­‐level  Economics  of  Soil  Conservation:  the  uplands  of  Java.”  Land   Economics,  66:  199–211.   Brehm,  J.  M.,  B.  W.  Eisenhauer,  and  R.  S.  Krannich.  2006.  “Community  attachments  as   predictors  of  local  environmental  concern:  The  case  for  multiple  dimensions  of  attachment.”   American  Behavior  Scientist,  50(2):142–165.   Burton,  M.,  D.,  Rigby,  and  T.  Young.  1999.  “Analysis  of  the  determinants  of  adoption  of  organic   horticultural  techniques  in  the  UK.”  Journal  of  Agricultural  Economics,  50:  47–63.   Brown,  G.  2005.  “Mapping  spatial  attributes  in  survey  research  for  natural  resource   management:  Methods  and  applications.”  Society  and  Natural  Resources,  18  (1):  1-­‐23.   Brown,  G.,  P.  Reed,  and  C.  Harris.  2002.  “Testing  a  place-­‐based  theory  for  environmental   evaluation:  An  Alaska  case  study.”  Applied  Geography,  22  (1):  49–77.   Caribbean  Journal.  2013.  “Puerto  Rico’s  Government  Looks  to  Emphasize  Local  Produce.”   Retrieve  from  http://www.caribjournal.com/2013/04/05/puerto-­‐ricos-­‐government-­‐looks-­‐to-­‐ emphasize-­‐local-­‐produce/   Cordano,  M.,  Welcomer,  S.  A.,  &  R.  F.  Scherer.  2003.  “An  analysis  of  the  predictive  validity  of   the  New  Ecological  Paradigm  scale.”  Journal  of  Environmental  Education,  34(3),  22–28.   Curry,  J.  M.  2000.  “Community  worldview  and  rural  systems:  A  study  of  five  communities  in   Iowa.”  Annals  of  the  Association  of  American  Geographers,  90(4):  693-­‐712.     86   De  Young,  R.  1996.  “Some  Psychological  Aspects  of  Reduced  Consumption  Behavior:  The  Role   of  Intrinsic  Satisfaction  and  Competence  Motivation.”  Environment  and  Behavior,  28:  358-­‐ 409.   Department  of  Natural  Resources  and  the  Environment  (DRNE).  2007.  “Declaracion  de  Impacto   Ambiental  Estrategica  Actualizada;  Plan  Integral  de  Recursos  de  Agua  de  Puerto  Rico.”  San   Juan  Puerto  Rico   Department  of  Natural  Resources  and  the  Environment  (DRNE).  2004.  “Inventario  de  Recursos   de  Agua  de  Puerto  Rico.  Capitulo  7.  Produccion  y  Uso  Historico  de  Agua  1960-­‐2002.”   Retrieve  fromhttp://www.drna.gobierno.pr/oficinas/saux/secretaria-­‐auxiliar-­‐de-­‐ planificacion-­‐integral/planagua/inventario-­‐recursos-­‐de-­‐agua/inventario-­‐de-­‐recursos-­‐de-­‐ agua-­‐de-­‐puerto-­‐rico/Capitulo%207%20USO%20DE%20AGUA.pdf   Department  of  Natural  Resources  and  the  Environment  (DRNE).    2010.  Cuenca  del  Rio  Grande   de  Anasco  2010.  Retrieve  from  http://www.drna.gobierno.pr/oficinas/saux/secretaria-­‐ auxiliar-­‐de-­‐planificacion-­‐integral/planagua/inventario-­‐recursos-­‐de-­‐agua/cuencas-­‐ hidrograficas/Cuenca%20del%20Rio%20Grande%20Anasco.pdf   Dunlap  R.E  ,  K.D.  Van  Liere,  A.G.  Mertig,  and  R.E.  Jones.  2000.  “Measuring  Endorsement  of  the   New  Ecological  Paradigm:  A  Revised  NEP  Scale.”     Environmental  Protection  Agency  .1994.  “Water  Quality  Standard  Handbook,  second  edition.”   Washington  DC.     EPA  2010.    “Section  319  Nonpoint  source  program  success  story  Puerto  Rico.”    Office  of  Qater   Washington  DC.  EPA  841-­‐F-­‐10-­‐001V   Federal  Emergency  Management  Agency.  2012.  “Flood  Insurance  Study.”  Commonwealth  of   Puerto  Rico  and  municipalities,  Volume  1  (32)   Fujisaka,  S.  1994.  “Learning  from  six  reasons  why  farmers  do  not  adopt  innovations  intended  to   improve  sustainability  of  upland  agriculture.”  Agricultural  Systems,  46(4):  409–425.   Gilbes,  F.,  Armstrong,  R.  A.,  Miller,  R.  L.,  Del  Castillo,  C.  E.,  Rosado,  M.,  and  Ramirez,  N.,  2002.   “Bio-­‐optical  evidence  of  land-­‐sea  interactions  in  the  western  coast  of  Puerto  Rico”,  in   Proceedings,  Ocean  Optics  XVI  Conference,  Santa  Fe:  Mexico   Gifford,  R.  2011.  “The  dragons  of  inaction:  Psychological  barriers  that  limit  climate  change   mitigation  and  adaptation.”  American  Psychology,  66:  290–302       87   Gosling,  E.,  and  K.J.  Williams.  2010.  “Connectedness  to  nature,  place  attachment  and   conservation  behaviour:  testing  connectedness  theory  among  farmers”  Journal   Environmental  Psychology,  30:  298–304   Halpenny,  E.  2007.  “Examining  the  relationship  of  place  attachment  with  pro-­‐environmental   intentions.”  in  Proceedings  of  the  2006  Northeastern  Recreation  Research  Symposium,   edited  by  R.  Burns  and  K.  Robinson,  63–6.  Newtown  Square,  PA:  Department  of  Agriculture,   Forest  Service,  Northern  Research  Station.   Hanna,  S.  and  S.  Jentoft.  1996.  “Human  Use  of  the  Natural  Environment:  An  Overview  of  Social   and  Economic  Dimensions”  in  Hanna  S,  Falke  C,  &  Maler  K  (eds)  Rights  to  Nature:  Ecological,   Economic,  Cultural,  and  Political  Principles  of  Institutions  for  the  Environment.  Washington:   Island  Press  42-­‐43.   Hunter,  J.  M.;  Arbona.  S.  I.  1995.”Paradise  Lost:  An  Introduction  to  the  Geography  of  Water   Pollution  in  Puerto  Rico.”  Social  Sci.  Med.  1995,  40  (10),  1331-­‐1355.   Hungerford,  H.R.,  and  T.L.  Volk.1990.  “Changing  learner  behavior  through  environmental   education.”  The  Journal  of  Environmental  Education,  21(3):  8–21.   Huszar,  P.C.,  and  H.C.,  Cochrane.1990.  “Constraint  to  conservation  farming  in  Java’s  uplands.”   Journal  of  Soil  and  Water  Conservation,  45:  420–423.   Kollmuss,  A.,  and  J.  Agyeman.  2002.  “Mind  the  Gap:  why  do  people  act  environmentally  and   what  are  the  barriers  to  pro-­‐environmental  behaviour?”  Environmental  Education  Research,   8(3);  239–260.   Kundzewicz,  Z.W.,  L.J.  Mata,  N.W.  Arnell,  P.  Döll,  P.  Kabat,  B.  Jiménez,  K.A.  Miller,  T.  Oki,  Z.  Sen   and  I.A.  Shiklomanov.  2007.  “Freshwater  resources  and  their  management.”  in  Climate   Change  2007:  Impacts,  Adaptation  and  Vulnerability.  Contribution  of  Working  Group  II  to  the   Fourth  Assessment  Report  of  the  Intergovernmental  Panel  on  Climate  Change  edited  by  M.L.   Parry,  O.F.  Canziani,  J.P.  Palutikof,  P.J.  van  der  Linden  and  C.E.  Hanson.  Cambridge  University   Press,  Cambridge,  UK,  173-­‐210.   Larsen,  M.  C.,  and  M.  T.  Webb.  2009.  “Potential  effects  of  runoff,  fluvial  sediment,  and  nutrient   discharge  on  the  coral  reefs  of  Puerto  Rico.”  Journal  of  Coastal  Research,  25(1):189–208.   Leopold,  A.  1949.  “A  Sand  County  Almanac.”  Oxford  University  Press,  Inc.     Lewicka,  M.  2011.  “Place  attachment:  How  far  have  we  come  in  the  last  40  years?”  Journal  of     88   Environmental  Psychology,  31:  2007-­‐  230   López,  T.  and  N.  Villanueva.  2006.  “Atlas  Ambiental  de  Puerto  Rico.”  University  of  Puerto  Rico   Press,  San  Juan.   Massol,  A.,  E.  González,  A.  Massol,  T.  Deyá,  and  T.  Geoghegan.  2005.  “Transforming  Forest   Policy  From  The  Bottom  Up:  Lessons  From  The  Creation  Of  Bosque  Del  Pueblo,  Puerto  Rico.”   CANARI  Technical  Report  No.  335.   McKinley,  E.,  and  S.  Fletcher.  2012.  “Improving  marine  environmental  health  through  marine   citizenship:  a  call  for  debate”.  Marine  Policy,  36(3):839-­‐843.   Mimura,  N.,  L.  Nurse,  R.F.  McLean,  J.  Agard,  L.  Briguglio,  P.  Lefale,  R.  Payet,  and  G.  Sem.  2007.   “Small  islands”.  Climate  Change  2007:  Impacts,  Adaptation  and  Vulnerability.”    Contribution   of  Working  Group  II  to  the  Fourth  Assessment  Report  of  the  Intergovernmental  Panel  on   Climate  Change  edited  by  M.L.  Parry,  O.F.  Canziani,  J.P.  Palutikof,  P.J.  van  der  Linden,  and   C.E.  Hanson.  Cambridge  University  Press,  Cambridge,  UK,  687-­‐716.   Natural  Resource  Conservation  Service.  2010.  “Puerto  Rico  Water  Quality  Standard   Regulations.”   Natural  Resource  Conservation  Service.  2000.  “Manual  de  Conservacion  de  Recursos  Naturales;   Enfoque  Ambiental  de  la  Agricultura.”   Natural  Resource  Conservation  Service  2012.  National  Water  Quality  Initiative  [Fact  Sheet].   Retrieve  from  http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs141p2_037104.pdf   Nicholls,  R.J.,  P.P.  Wong,  V.R.  Burkett,  J.O.  Codignotto,  J.E.  Hay,  R.F.  McLean,  S.  Ragoonaden   and  C.D.  Woodroffe.  2007.  “Coastal  systems  and  low-­‐lying  areas.”  in  Climate  Change  2007:   Impacts,  Adaptation  and  Vulnerability.  Contribution  of  Working  Group  II  to  the  Fourth   Assessment  Report  of  the  Intergovernmental  Panel  on  Climate  Change  edited  by  M.L.  Parry,   O.F.  Canziani,  J.P.  Palutikof,  P.J.  van  der  Linden  and  C.E.  Hanson,  Eds.,  Cambridge  University   Press,  Cambridge,  UK,  315-­‐356.   Ongley,  E.  D.  1996.  “Control  of  water  pollution  from  agriculture”  (No.  55).  Food  &  Agriculture   Organization.   Puerto  Rico  Planning  Board.  2012.  “Economic  Report  to  the  Governor.”  Centro  Gubernamental   Roberto  Sánchez  Vilella,  San  Juan,  Puerto  Rico.       89   Payton,  M.  A.,  D.  C.  Fulton,  and  D.  H.  Anderson.  2005.  “Influence  of  place  attachment  and  trust   on  civic  action:  A  study  at  Sherburne  National  Wildlife  Refuge.”  Society  Nat.  Resources  18:   511–528.   Puerto  Rico  Environmental  Quality  Board.  2012.  “Puerto  Rico  305(b)/303(d)  Integrated  report   for  fiscal  year  2012.”     Puerto  Rico  Environmental  Quality  Board.  2014.  “Que  es  la  Junta  de  Calida  Ambiental?”   Retrieve  from  http://www.jca.pr.gov   Rodriguez  L  .M.  2002.  “Spatial  and  temporal  variability  of  suspended  sediments  and  their   correlation  with  optical  measurements  in  the  Mayaguez  Bay,  Puerto  Rico  .”  University  of   Puerto  Rico,  Department  of  Geology.     Raymond,  C.M.,  G.  Brown,  and  D.  Weber.  2010.  “The  measurement  of  place  attachment:   personal,  community  and  environmental  connections.”  Journal  of  Environmental  Psychology,   30  (4):  422–434.   Ryan,  R.L.,  D.L.  Erickson,  and  R.  De  Young.  2003.  “Farmers’  motivations  for  adopting   conservation  practices  along  riparian  zones  in  a  Mid-­‐western  agricultural  watershed.”   Journal  Environmental  Planning  Management,  46(1):  19–37.   Sharpley  A.,  B.  Foy,  and  P.  Whiters.  2000.  “Practical  and  innovative  measures  for  control  of   agricultural  phosphorus  losses  to  water:  an  overview.”  Journal  of  Environmental  Quality,   29:1–9.   Scannell,  L.,  and  R.  Gifford.  2010.  “The  relations  between  natural  and  civic  place  attachment   and  pro-­‐environmental  behavior.”  Journal  of  Environmental  Psychology,  30(3):  289  -­‐  297.     Schrader  C.  1995.  “Rural  greenway  planning:  the  role  of  stream  land  perception  in  landowner   acceptance  of  land  management  strategies.”  Landscape  Urban  Planning,  33:375–390.   Shofoluwe,  M.,  and  P.  Sam.    2012.  “The  need  for  environmental  citizenship  education  and   awareness  in  Nigeria.”  Journal  of  Sustainable  Development  and  Environmental  Protection,   2(1).     Stedman,  R.  C.  2002.  “Toward  a  social  psychology  of  place:  Predicting  behavior  from  placebased   cognitions,  attitude,  and  identity.”  Environment  and  Behavior,  34(5):  405–425   Stern,  PC,  T.  Dietz,  and  G.  A.  Guagnano.  1995.  “The  new  Ecological  Paradigm  in  social  –   90   psychological  context.”  Enviroment  and  Behavior  27,  723-­‐743   Torres  Rivera  J.  2004.  “Cuerpo  de  Ingenieros  de  los  EE.UU.”    Retrieve  from   http://www.puertadetierra.info   United  States  Department  of  Agricultural  Natural  Resources  Conservation  Service.  “National   Water  Quality  Initiative  Fact  Sheet  Puerto  Rico”.  Retrieved  from   http://www.pr.nrcs.usda.gov/programs/pubs/CB_NWQI_FactSheet.pdf   USDA  2014.  “Bringing  New  Markets  to  Puerto  Rico’s  Producers.”  Retrieve  on  August  2014  from   http://blogs.usda.gov/2014/01/08/bringing-­‐new-­‐markets-­‐to-­‐puerto-­‐ricos-­‐producers/   USDA  2014.  “Natural  Resource  Conservation  Service;  Caribbean  Area,  About  us.”  Retrieve  from   http://www.nrcs.usda.gov/wps/portal/nrcs/main/pr/about/   U.S.  Census  Bureau.  2010.  “Data  for  Puerto  Rico.”  Retrieved  from   http://2010.census.gov/news/releases/operations/cb11-­‐cn120.html     Vaske,  J.  J.,  and  K.C.  Kobrin  .2001.  “Place  attachment  and  environmentally  responsible   behavior.”  Journal  of  Environmental  Education,  32:16-­‐21.   Vatn,  A.  2009.  “Cooperative  behavior  and  institutions.”  Journal  of  Socio-­‐Economics,  38:188– 196.   Vorkinn,  M.  and  H.  Riese.  2001.  “Environmental  concern  in  a  local  context:  The  significance  of   place  attachment.”  Environmental  Behavior,  33(2):  249–263.   Vörösmarty,  Charles  J.,  C.  Lévêque,  and  C.  Revenga.  2005.  “Freshwater”.  Pp.  165–207  in   Ecosystems  and  Human  Well-­‐Being:  Current  State  and  Trends.  Findings  of  the  Condition  and   Trends  Working  Group.  Millennium  Ecosystem  Assessment,  edited  by  R.  Hassan,  and  R   Scholes.  Volume  1.  Washington,  DC:  Island.   Vörösmarty,  Charles  J.,  P.  B.  McIntyre,  M.  O.  Gessner,  D.  Dudgeon,  A.  Prusevich,  P.  Green,  S.   Glidden,  S.  E.  Bunn,  C.  A.  Sullivan,  C.  Reidy  Liermann  &  P.  M.  Davies.  2010.  "Global  threats  to   human  water  security  and  river  biodiversity."  Nature,  467(7315):  555-­‐561.   Wiederholt  R.  and  B.  Jhonson.  2005.  “United  Impacts  of  Fertilizers  Manure  Mismanagement   and  Natural  Resources”.  North  Dakota  State  Uniiversity,  Extension  Services,  North  Dakota.       91   Williams,  D.  R.,  and  J.  J.  Vaske.  2003.  “The  measurement  of  place  attachment:  validity  and   generalizability  of  a  psychometric  approach.”  Forest  Science,  49:  830–840.   Xiao  C.,  E.D  Riley.  2007.  “Validating  a  comprehensive  model  of  environmental  concern  cross-­‐ nationally:  A  U.S.-­‐  Canadian  comparison.”   Zetterstrand,  N.  B.  2001.  “The  Globalization  Of  The  Pharmaceutical  Industry  In  Puerto  Rico.”   Theses.  Paper  148       92