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ABSTRACT

The Triple Differential Di-Jet Cross Section at \/§ = 1.8 TeV

By

Gian Giuseppe Di Loreto

The Measurement of the Triple Differential di-jet cross section at D0 is described.

The cross section is corrected for all known detector effects and compared to cur-

rently available theoretical predictions from the CTEQ and MRST groups. Of the

theories considered, the preliminary measurement favors the CTEQ4M and MRSTgT

parton distribution functions. The measurement combined with a detailed error

analysis shows considerable discriminatory power among the current theories.
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Chapter 1

Introduction

This thesis is a study of data taken at the Fermilab Tevatron, a high energy particle

accelerator located in Batavia, Illinois, a suburb of Chicago. The measurement is

specific to a process common during the type of collisions that occur at Fermilab.

Before getting into the details of the measurement, we present a very broad intro-

duction to particle physics, and then to the specifics of high energy physics. The

introduction is not meant for the scientist, it is for family and friends.

1.1 A Brief History of Particle Physics

How do we define intelligent life? One place to start is the notion of self awareness.

If something begins to wonder about the notion of itself, its surroundings, even its

own structure, one could argue that the criteria for intelligence have been satisfied.

One aspect of understanding ourselves and our surroundings involves asking

questions about from what are we and everything around us made. This first his-

torical instance of this question is usually associated with the Greek civilization.

1
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Two philosophies regarding the nature of matter were put forth: the first can be

called early atomic theory and the second continuity theory. The assumption in

atomic theory is that all matter can be divided in half a finite number of times,

after which, the matter will be small enough that it can not be divided again. The

word atom, in fact, is derived from the Greek word for a body which cannot be cut

in two. Conversely, continuity theory asserts that matter can be divided in two,

over and over again, without limit. As mentioned, the introduction of the idea of

the atom is usually ascribed to the Greek civilization, however the concept of the

granular or atomic nature of matter can be attributed to Indian philosophers as

early as 1200 BC.

The notion of the atom is, by now, universally accepted. It was put forth ~ 2400

years ago by a Greek named Leucippus and his pupil Democritus, and put to verse

in Latin by a Roman, Lucretius, in the first century BC. in his work, De Remm

Natura, On the Nature of Things. It is in this proud tradition that elementary

particle physics still tries to come to terms with the nature of matter today.

De Rerum Natura represented the status of knowledge of atomic theory until the

1800’s which saw the advent of the notion of atomic weight and the periodic table

of the elements. An English scientist, John Dalton, studied several experiments,

performed by contemporary scientists, involving the combination of known elements

to create other known elements. He was able to explain the mass of the initial

elements and their relationship to the mass of the resultant elements with, what

he called, the law of single and multiple proportions. One facet of this theory

involves assigning an atomic weight to each of the elements. The atomic weight was
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empirically determined by measuring the mass of a system before and after elements

were combined; it appeared to be consistent for each known element. Towards the

end of the nineteenth century Dmitri Mendeleev tabulated the known elements, their

atomic weights, and their chemical and physical properties in the periodic table of

the elements. This table implies that atoms of different elements have some similar

characteristics; that perhaps different elements are made up of the same thing.

After the advent of the periodic table and the tabulation of all the different known

elements, it was thought that the question posed years before had been answered.

The question now was, what is the nature of the atom? One model, usually called

the plum pudding model, put forth by J.J . Thomson, asserted that the atom was a

homogeneous blob of positive charge, with negatively charged electrons embedded in

it. The road to debunking this model began when an New Zealander scientist named

Ernest Rutherford, who was scattering alpha particles)r from various thin films of

heavy metals, discovered the nuclear structure of the atom. Scattering a charged

object off of a target and observing the angular distribution of the projectile after

the collision, is a way to learn about the distribution of charges within the target.

While looking at small angle scattering of positively charged alpha particles from a

gold target, Rutherford’s colleague, Hans Geiger, asked his student, Ernest Marsden

to look for large angle scattering, which he did not expect to see, but hoped it would

keep his student busy. They were very surprised to see there that were some particles

which scattered at very large angles. This gave rise to the current nuclear model of

the atom in which the positive charge is concentrated in the middle of the atom, or

the nucleus.

 

IAn alpha particle is another name for a helium nucleus.
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The electron was discovered in the late 1800’s by J .J . Thomson who was studying

radiation emitted by heated filaments. He discovered that these cathode rays could

be bent by a magnetic field. He calculated the charge to mass ratio for the particles

that made up the rays, and discovered that this ratio was not consistent with any

known particles. He further asserted that the electron was a fundamental constituent

of the atom.

The nuclear model of the atom has been refined within the last 100 years. The

nucleus of an atom is now believed to be made up of smaller particles, called pro—

tons and neutrons. In particular, the element hydrogen has been the subject of some

scrutiny. Hydrogen is the lightest and simplest of all elements, consisting of only one

proton and one orbiting electron. By studying the hydrogen atom, specifically the

energy levels of the orbiting electron, it became clear that these energy levels were

quantized, which eventually lead to the study of quantum mechanics. Quantum me-

chanics is a completely different, non-classical theory which describes particles and

their interactions and represented a new way of thinking for physicists in the early

twentieth century. The dramatic difference in philosophy between classical thinking

in physics and quantum theory involves a concept we’ll define as the superposition

of states. In pre—quantum mechanics times, a physical observable was thought to be

in either one state, or in another. For example, light was either a particle or a wave,

a cat in a box that you couldn’t see was either alive or dead. Quantum physics

supposes that an observable can exist simultaneously in any of its available states;

light, in quantum mechanics, is both a particle and a wave.

If one strips away the electron from a hydrogen atom, only a proton is left. The
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proton is a fundamental unit of matter; we will see that it contains the answer to

many of the modern physicist’s questions.

1.2 Modern Particle Physics

It could be argued that the beginning of modern particle physics was contemporary

with the introduction of the photon and the advent of quantum mechanics. The

discovery of the photon came in the beginning of the nineteenth century while

physicists were studying electro-magnetic radiation from hot objects. The photon,

as described by quantum mechanics, behaves as both a particle and a wave. This

duality presents a conceptual challenge to the student, but provides scientists with

a better understanding of matter and the forces acting on it.

In an attempt to explain how the nucleus of an atom stays together when only

positive charge exists there, Yukawa proposed that there is a force that holds the

nucleus togetheri. This field which defines this force was proposed to be quantized,

just as it was (and is) believed that the electromagnetic and gravitational fields are

quantized. Yukawa called the mediator of this field the meson. Particles which

looked liked mesons were discovered in cosmic rays in 1937, but there were some

problems with the model. The particles discovered in the cosmic rays didn’t interact

with the nucleus strongly enough to be the mediator Yukawa predicted, and the

measurements indicated that there were many mesons.

After a watershed of particle discoveries in the middle of the twentieth century,

modern particle physics was in an uncertain state. There were simply too many

 

1This force has come to be called the strong force.
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particles on record for any theory to describe them as the fundamental building

blocks of matter. Particle physics needed a modern periodic table.

In 1961, Murray Gell-Mann proposed the eightfold way of arranging known parti-

cles into geometric tables. This method of cataloging seemed again to indicate some

underlying structure. Murray Gell-Mann and G. Zweig proposed that all modern

particles are made up of elementary constituents which Gell-Mann called quarks. It

now appears that the quark model is consistent with all experimental observables,

and that the proton is indeed made up of quarks.

1.2.1 Forces

The notion of a force follows from a thought experiment involving touch. If, as you

read this, you press your finger down on the table, you’ll feel the table pressing

back against your finger. If you begin to think about this interaction at the particle

level, you may wonder, “what is happening to the atoms that make up my finger as

my finger approaches the table?”. “What does it mean for the particles that make

up my hand to touch the particles that make up the table?” The answer is that

when particles get close enough together, depending on the distance between and

the nature of the particles, a force keeps them apart or pulls them together. We are

all pulled towards the earth by gravity which acts on all particles. Magnets stick

to your refrigerator due to the electromagnetic force. There are at least two other

forces that have been measured: the strong and the weak force. In one theory, these

forces are all thought to be different manifestations of the same thing. This theory

is usually referred to as the Grand Unified Theory of Particle Physics.

6
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The strong force describes, among other things, how quarks interact within the

proton. The strong force has one distinctive difference from the more familiar gravi-

tational and electromagnetic forces. The force due to gravity acting on two objects is

inversely proportional to the square of the distance between them; it gets smaller the

further apart the objects are. The strong force between objects actually increases

as they get further apart. A consequence of this is that as the objects get very

close together, the strong force gets quite weak; the ramifications of this asymptotic

behavior will be discussed in Chapter 2.

All forces are mediated by a particle; in the more familiar electromagnetic case

the mediator is a photon, a quantized particle of light. In the case of the strong

force, the mediator is called the gluon, which like the photon, is massless. These

different forces and their mediators along with some other interesting quantities are

presented in Table 1.1.

 

 

 

 

 

 

Mediator Charge (e') Mass (MeV/c2) Lifetime Force

gluon 0 0 00 strong

photon 0 0 oo electromagnetic

Wi :1:1 81,800 unknown weak

Z0 0 92, 600 unknown weak

Graviton 0 not observed unknown gravity        
 

Table 1.1: Known forces and their mediators.

1.2.2 Modern Experimental Particle Physics

In the tradition of Rutherford’s gold foil experiment, modern particle physics usually

involves colliding particles together, either with both particles moving or one moving

7
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and one fixed, in order to determine what makes up one, or both. These interactions

can be studied by examining what is produced, and how often. The number of times

a certain outcome occurs, divided by the number of interactions, is referred to as

a cross section. This term refers to classical physics in which a cross section is the

surface area of an object subject to collision. Following this analogy, cross sections

in particle physics have units of area. Cross sections are usually presented in units

of barns, where 1 barn = 10‘24 cm2.

This thesis concerns data taken at an experiment in which protons and anti-

protons are collided at very high energies. One outcome of these collisions occurs

when a component of each proton is released and detected. These components are

referred to as quarks and gluons and will be discussed in detail in the following

chapters. The triple dz'flerential di-jet cross section refers to the measurement of

cross sections associated with this type of event§. The Triple Differential will be

shown to be sensitive to different theoretical predictions regarding the structure of

the proton. The goal of this analysis is a better understanding of proton structure.

1.2.3 Quantum Chromodynamics

In electrodynamics, the property that a particle has in order to interact via the

electromagnetic force has the familiar name of electric charge. In an interaction

involving the strong force, hereafter referred to as quantum Chromodynamics or

QCD, the analog of electric charge is called color. While there are only two charges

in electrodynamics, positive and negative, there are 3 colors in QCD, referred to

 

§From this point forward, the triple differential di-jet cross section will be referred to as the

Triple Differential.
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as red, blue, and green. This nomenclature is essentially arbitrary, however, one

feature of QCD is that all naturally occurring particles are colorless, that is there

are equal distributions of red, green, and blue color within. For a more thorough

treatment, the reader is directed to Chapter 2.

Modern particle physics requires large experimental apparati and complicated

theories to produce and describe experimental results. The next three chapters

introduce quantum Chromodynamics, collider physics, and the D® detector.
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Chapter 2

Quantum Chromodynamics

We present here an introduction; a pedestrian overview of quantum chromodynam-

ics.

Quantum Chromodynamics, or QCD, is a very complicated subject; we will

present here an experimentalist’s overview of the theory. The information presented

here is available in much more detail in any of many references[1, 2, 3] however, we

will endeavor to present QCD in a slightly distilled form.

QCD is a theory that describes how elementary particles interact. QCD doesn’t

describe how all particles interact, only particles that interact strongly such as

quarks and gluons. Other particles, such as electrons, don’t interact strongly, but

electromagnetically and are described by quantum electrodynamics or QED. Many

aspects of these two theories are very similar; QED has the advantage that it is

simple and more familiar. The student can enlist his understanding of classical

electrodynamics and QED to help him understand QCD.

In this chapter, we introduce some techniques in QCD and currently available

10



Monte Carlo event generators, and we motivate the measurement of the Triple Dif-

ferential.

2.1 The Golden Rule

If two particles come in some proximity to each other, their differential cross section,

that is their differential interaction area can be described by

27r 2

do = 7J|M| x (phase space). (2.1)

In Equation 2.1, h is a constant, and M is the amplitude, or matrix element for

the interaction. The amplitude contains all the dynamical information. It tells us,

for instance, what happens when a quark of type i interacts with a quark of type

j. Phase space refers to all of the kinematic information. For example, the relative

masses and momenta of the initial and final state particles and how likely it is for one

kind of initial state particle to produce some final state particle. A useful example

of this follows from mass considerations: it is more likely for a heavy particle to

produce two light ones, than the other way around; the phase space term accounts

for this. The cross section is differential in that in order to obtain the total cross

section, one must integrate over all phase space and sum over all initial and final

state particles. QCD manifests itself in the amplitude; the rest of the golden rule

is relatively easy to calculate. The amplitude tells us what to expect when two

strongly interacting particles hit each other; theorists need to flex all their muscles

to calculate M.

11
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2.1.1 Calculating Matrix Elements

The first thing we need in order to proceed with the calculation of the amplitude of

two (or more) quarks or gluonsl interacting is a cast of characters; the list of quarks

is presented in Table 2.1.

 

 

 

Name Electric Charge (6’) Mass (MeV/(:2)

down —1/3 7.5

up +2/3 4-2

strange — 1 /3 150

charm 2/3 1100

bottom — 1 /3 4200

top +2/3 180, 000   
 

Table 2.1: Quarks: masses and charges.

All of the quarks have been observed experimentally. The top quark was the

most elusive, it was discovered in 1995 at the Fermilab Tevatron[5, 6].

Now that we have a list of partons to consider we need to think about where these

partons come from. We can see from Table 2.1 that the quarks have fractional charge

which is something we haven’t seen before, this is indicative of a feature of partons

that is unique to them: partons do not exist alone. They only exist, held together

by the strong force, inside other particles. For example, a proton is a bound state of

two up quarks and a down quark in the same sense as the hydrogen atom is a bound

state of a proton and an electron. However, in the case of the hydrogen atom, the

electron and proton can be liberated and exist alone, the quarks cannot exist outside

the proton. However, at high enough energies and at very small distance scales, the

 

lQuarks and gluons are collectively called partons.
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partons can interact as if they are independent. This concept is called asymptotic

freedom, that is, the interacting partons act free if they are asymptotically close

together.

2.1.2 Parton Distribution Functions

Another aspect of QCD theory involves the probability of finding a specific quark

inside the proton. While we have said that a proton is made up of up and down

quarks, it is true that there are also smaller amounts of other quarks within the

proton. This is because in the proton, there are also gluons, which with some

probability will split into pairs of quarks for a small amount of time. These quarks

are called sea quarks and need to be considered in our calculations. Meanwhile, the

quarks that make up the proton, the ups and downs, are called valence quarks and

carry approximately half the momentum of a proton, while gluons and sea quarks

carry the other half.

In addition to the type of quarks (up, down etc.i), another quantity used to iden-

tify a particular parton in the proton is the fraction of the momentum of the proton

that the parton carries. This parton momentum fraction is usually denoted simply

by x. The number of each type of parton that exists in the proton is called a parton

distribution function and is usually represented by fa($), where a is the parton type

and a: is the momentum fraction. Parton distribution functions are not predictable

by QCD theory but are essential ingredients to understanding the structure of the

proton. They are, in fact, one of the unknowns in QCD theory that one can mea-

 

1This description of a quark is usually referred to as flavor.
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sure by looking at proton-antiproton§ collisions. In Figure 2.1, we include a current

set of parton distribution functions from the CTEQ group. CTEQ (Coordinated

Theoretical and Experimental QCD) is a group of theorists and experimentalists

which provides parton distribution functions by fitting data from many different ex-

periments around the world. In Figure 2.1, f (:13) is the parton distribution function;

we plot a: * f (:17) as this more closely corresponds to the momentum fraction of the

partons at each a: value.

 

§An antiproton is the anti-matter counterpart of the proton; it has the same mass and Opposite

charge. Every particle has a corresponding anti-particle, it is customary to refer to a proton as p

and an anti-proton as p .
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To be slightly more rigorous, a parton distribution function (pdf), fa(a:), is

actually better represented as fa(:1:,Q2), where Q2 has units of energy and is the

momentum exchanged during the partonic collision. The essence of this formalism

is that the structure of the hadron depends on how closely you look at it. More

energetic collisions allow better resolution such that what appears to be a single

quark at Q = Q0 may be a pair of gluons at Q = Q". Fortunately if one measures

fa(a:, (Q0)2), a set of equations allows the calculation of fa(a:, Q2) for any Q2. This

is referred to as Alterelli-Parisi (DGLAP) evolution.

We can see that the matrix element M is becoming very complicated. It involves

what will happen when two partons interact, but it must also reflect how many of

each type of parton is present. M can be broken into these two components thanks

to a feature of QCD called factorization.

Mi,j—+k,l : fi($aQ21MF)fj($aQ21MF)&(Zaj_> k) l) (2‘2)

In Equation 2.2, f is the parton distribution function described above and 6 is called

the hard scattering matrix element. It is the matrix element, or amplitude for the

parton-parton interaction assuming the partons are free. That we can factor M this

way reflects the fact that QCD is a factorizable theory. There is a price to pay for

this advantage, however, in order to separate the components of M as in Equation

2.2, one must introduce a parameter, usually referred to as the factorization scale,

,up. This is an arbitrary parameter, it represents no physical quantity; furthermore,

no physical oberservable can depend on it. It is usually assumed that up ~ Q2.

‘

”This assumes Q0 < Q’.
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Figure 2.2: A simple diagram for parton-parton scattering

One can think of up as a cutoff beyond which partons act as free particles, in that

it separates the pdf’s from the hard scatter matrix element. We will see this is not

the only scale necessary in QCD.

A graphical illustration of [7 is in order. In Figure 2.2, we present a diagram for

parton of type i interacting with a parton of type j and producing partons k and l.

The diagram represents the matrix element described above ([7). It is one of the

simplest diagrams for quark-quark scattering. There are many other diagrams that

contribute to the total hard scatter matrix element for quark-quark scattering. In

the picture, the straight lines correspond to quarks and the curly line to a gluon.

The rules of QCD dictate that two quarks can only couple to a gluon. At each vertex

in the diagram, where there is one parton incoming and two outgoing, or vice versa,

QCD can calculate the corresponding rate. This rate turns out to be proportional

to a parameter called the strong coupling constant, denoted by as. Each vertex

introduces another factor of as. The contributions from each of the two vertices in

Figure 2.2 are added together according to

WI2 = W2 + ll/Eel2

Where IV1| and |V2| are the amplitudes for each of the two vertices. There are rules
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for which partons can couple (interact) with which. These rules are derived from

gauge theories. For example, |V1| could be the amplitude for two quarks annihilating

to produce a gluon; QCD can predict the rate for such an interaction. In fact,

the diagram in Figure 2.2 is much more than a picture, it represents a complete

calculation. There also are rules that govern the complete calculation pictured in

Figure 2.2; these are called Feynman rules. The reader is again directed to the

references[1, 2, 3] for more detail.

The diagram in Figure 2.2 is called a leading order diagram; it represents only

one contribution to the total cross section from quark-antiquark scattering. There

are actually an infinite number of diagrams for any given QCD process.

In calculus, a function can be represented by a Taylor series which is a series

of smaller and smaller terms. A good approximation to the function can usually

be obtained by only considering the first few terms. In QCD jet production, the

calculation of all but the first one or two terms (diagrams) is prohibitively difficult.

We hope, therefore, that the series is well behaved enough that this will provide a

good approximation of the total matrix element. We will see that this in not always

the case, and we’ll discuss some of the tricks used to deal with this. In QCD jet

production, the expansion is actually in terms of the strong coupling constant as;

leading order calculations are of order dig, and next—to-leading order (NLO) are of

order or}.
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2.1.3 Radiative, Loop Corrections and Next to Leading Or-

der

The total matrix element for two quark to two quark scattering is a sum of many

contributions of which only one is illustrated in Figure 2.2. Just as in QED, where

an accelerating electron can radiate a photon, a quark in QCD can radiate a gluon.

This radiation gives rise to an additional diagram called a radiative correction. The

diagram in Figure 2.2 is a leading order diagram; if we were to include one of the

possible radiated gluons, we would introduce another factor of as. The result is

a next to leading order (NLO) calculation. Currently, theorists are only able to

calculate matrix elements to next to leading order. One of the next to leading order

diagrams for quark-antiquark annihilation is pictured below in Figure 2.3.

B C

Figure 2.3: An example of a radiative correction.

Another type of correction to a leading order diagram is called a loop correction.

This correction accounts for radiated gluons which are quickly re-absorbed. Two

diagrams for loop corrections appear in Figures 2.4.

It appears that each of the loop corrections contributes two additional factors of

as, so that the loop diagrams are actually next—to—next-to leading order. This is in

fact the case, but we will see that these diagrams, when combined with the leading
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Figure 2.4: Two examples of loop corrections.

order diagrams to produce a full matrix element contribute to the next to leading

order prediction.

2.1.4 Total Next to Leading Order Predictions

Each of the diagrams in Figures 2.2-2.4 represents a contribution to the amplitude

for quark-antiquark annihilation. We have seen that at NLO there are either two

or three final state partons. In order to calculate the total NLO amplitude for this

process we need to sum up all the possible diagrams and drop all terms of order

a: or higher. The sum proceeds as follows: assume we have only two diagrams

that contribute to the NLO amplitude, the leading order diagram, D1, and the loop

correction discussed above, Dg. The total amplitude squared is defined by:

Ill/II2 = (ID1l+lDzl)2 = lDll2 + lDzl2 + 2D1 X Dz (2-3)

In Equation 2.3, D1 is proportional to a3, D2 is proportional to a3, therefore

20





‘/(D1 x D2) is proportional to 05;. This cross term is important to consider. Indeed,

in this special case, the loop diagram contributes to the cross term to the order 02,

while by itself it does not make it into the NLO calculation.

All diagrams, to leading order, corresponding to two initial state partons are

included in Figure 2.5. Some next-to—leading order diagrams are included in Figure

2.6.

2.1.5 Loop Corrections and Renormalization

The loop correction introduces one of the more difficult aspects of QCD to digest.

Unlike the photon, the gluon can interact with itself. This self correction introduces

divergences into the calculations. Although the specific nature of these divergences

are beyond the scope of this discussion, we can agree that if QCD is to describe an

interaction in nature, it should predict only physically allowable results. To deal with

this, the theory is renormalized. This involves introducing a scale which cancels the

divergences introduced by the gluon self—correction. It essentially involves cutting off

the integrations in the calculations at some distance, defined by the renormalization

scale, ’13. Like up, m; is expected to be proportional to the momentum exchange.

In the scheme used in this analysis and corresponding theories, up = mg. Also, like

up, m; is an arbitrary parameter; any observable quantity cannot depend on the

renormalization scale.
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2.2 NLO QCD and the Triple Differential

The previous examples are some of the contributions to two and three final state

parton production from proton-antiproton collisions. We have not gone into detail

regarding the actual calculations of the individual matrix elements; the reader is

again directed to the references. However, even without a rigorous derivation we

can see some of the considerations necessary to predict at NLO how often we can

expect multi-parton final states in proton-antiproton collisions. We will now discuss

how final state partons evolve after the interaction to produce final state objects.

These final state objects are referred to as jets and are what are actually measured

during the experimental cross section calculation described in this thesis. The Triple

Differential is a measurement of a two jet final state cross section. The measurement

is sensitive to the partonic cross section; it is a test of our understanding of proton

structure.

2.2.1 Hadronization and Jets

As aforementioned, one cannot observe free partons. Within a very short time after

they are produced, the final state partons jOin up with other asymptotically free

particles to form stable hadrons. This process is called hadronization. There are

only empirical models for hadronization, it cannot currently be calculated explicitly.

In a detector, one can observe a collection of highly collimated particles coming from

a proton-antiproton collision. One assumes that all these stable particles came from

a single parton. This collection of stable final state particles is called a jet, and is

what is actually measured while studying QCD in a pp experiment. Some different
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methods for defining jets is the subject of a later discussion.

In Figure 2.5, we include all diagrams for two or more jet production at leading

order and in Figure 2.6, we include some diagrams at NLO. Additionally, a summary

of p‘p’ interactions involving jet production appears in Figure 2.7.

>..<

f
l

 

  >w< :: 3?:

2%: I 1'?” a:

Figure 2.5: Leading order diagrams for di-jet production.
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Figure 2.6: Higher order diagrams for di-jet production.
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In Figure 2.7, h and hg are the proton and the antiproton which contain par-

tons a and b with momentum fractions :51 and 1232 respectively. Additionally, the

probabilities of finding partons a and b in the proton are described by f (3:1) and

f (2:2), the parton distribution functions. The center of the diagram represents the

partonic interaction, 6, which depends on the strong coupling constant, as, and

the momentum exchanged during the interaction, Q2. Finally, the final state par-

tons c and d form a hadron ha, and a jet respectively. In this example, parton c

hadronizes immediately, while parton d showers into many partons, each of which

will eventually hadronize as well. Dhnk(z) is a hadronization model for parton c

to form hadron h3. Like hadronization, the development of parton showers is not

a process one can measure. Different models for parton showering currently exist,

among them string fragmentation, which assumes a color connection between two

partons. When the distance between the partons becomes large enough, two more

partons are created from the vacuum. In another model, independent fragmentation,

single quarks fragment into a qrj’l pair and a remainder quark ql. These new quarks

fragment as well until they no longer have enough energy to create quarks from the

vacuum.
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Figure 2.7: Summary of contributions to QCD jet production.
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The Triple Differential measures how often different configurations of two or

more jet final states are observed from pp collisions. The assumption is that this

corresponds to two or more final state partons. Armed with the previous consider-

ations of NLO QCD and parton distribution functions, one can expect the Triple

Differential to be sensitive to parton distribution functions as well the accuracy of

the NLO matrix element calculations.

2.3 The Triple Differential Di-Jet Cross Section

Before introducing the explicit form of the theoretical cross section, it is necessary

to introduce some of the variables used in jet physics. The jet rapidity, defined as

E—Pz)

E+Pz

 

1

y = 550“

is used to describe the position of the jet. The rapidity is used because it is invariant,

except for an additive factor, under Lorentz transformations along the z—axis. The

energy of the jet is defined as E, however the transverse energy, ET = Esin(6),

where 0 is the polar angle between the particle’s trajectory and the direction of the

beam, is usually used as it is also Lorentz invariant.

Explicitly, the lowest order Triple Differential takes the form:

830 1 aim) Wig-(21*)?
—8ET8y13y-z — EggfliifithlwlfifiWZa/LF) E5} cos/2431* '

 (2.4)

In Equation 2.4, y is the jet rapidity and y" = 31131-1. We can see from Equation 2.4

that the Triple Differential is sensitive to both the matrix elements (M,- ) and the
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y bin Topology Slice

0.0 — 0.5 SS 1

0.0 — 0.5 OS 1

0.5 — 1.0 SS 2

0.5 — 1.0 OS 2

1.0 — 1.5 SS 3

1.0 — 1.5 OS 3

1.5 - 2.0 SS 4

1.5 — 2.0 OS 4    
 

Table 2.2: Binning of the Triple Differential.

parton distribution functionsl.

2.3.1 Choice of Variables

The Triple Differential cross section as represented in Equation 2.4 is a four dimen-

sional object. In order to measure it, it is necessary to decide which variables to fix

and which to plot. This analysis defines the Triple Differential by fixing the angles

of the two jets and casting their ET distributions. Both jets are restricted to be

within the same rapidity bin; we define 4 bins between y = 0 and |y| = 2.0. We

also distinguish separately events in which both jets are on the same side of the

detector (SS) and both jets are on opposite sides of the detector (OS). To elaborate,

in the same side topology, yl z yg while for the opposite side case yl z —y2. In this

scheme there are eight cross sectionsf, they are listed in Table 2.2.

 

lIn Equation 2.4, fi($1,[1.p),i = (g,q, (7), is the parton distribution function evaluated at fac-

torization scale 11p.

tIn the proceeding chapters, an individual rapidity bin is referred to as a slice.
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2.3.2 1:1, 2:2 and the Triple Differential

The Triple Differential measurement described here depends on variables specific to

jets. A more illuminating measurement might be the number of events involving a

parton of momentum fraction 2:1 interacting with a parton of momentum fraction

2:2 as a function of the momentum exchanged between them. This differential cross

section would be expressed as

830'

(9:161 8.1320(0)?)

 (2.5)

where Q2 is the partonic momentum exchange. This representation has the advan-

tage that it is in the variables of partons distribution functions. Once the mea-

surement is made, the corresponding PDF could essentially be read from the plot.

However, the DO detector doesn’t measure parton momentum fractions; it is much

easier to cast the cross section in variables we measure. Fortunately, the mapping

from one space to the other is relatively straightforward, it takes the form

1

51:12 2 Z -——(eiy1 + 6*”). (2.6)

njets 3.
.

For our choice of cross sections, |y1| E |y2|, so we can easily transform our mea-

surement of the Triple Differential to the more theoretical variables. For example,

the SS cross section in the bin 1.5 g |y| g 2.0, pictured schematically in Figure

2.9, involves a large a: and a small a: partonic interaction. In the case of opposite

side cross sections, calculated at leading order, :51 = 272. This means each point

on the 3: axis of the OS Triple Differential, maps to a point on the $1,172 plane.

A representative opposite side cross section is also pictured schematically in Figure
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2.9. By solving§ Equation 2.6 for all the slices considered in this analysis, one can

calculate the region of a: space covered by the Triple Differential. The results of

these calculations appear in Table 2.3.

For further illustration of the :1: range covered by this analysis, we include Figure

2.8; the area in the x1 — r2 plane covered our definition of the Triple Differential.

We have calculated, for each of the 8 cross sections, :51 and .732 assuming two jets of

equal ET. We plot $1 and x2 for each of the cross sections, labeled accordingly in

the figure.

When we discuss results in Chapter 6, we will be able to see which :1: regions we

are probing and where in :1: space the theoretical predictions are capable of matching

the experimental data.

 

y bin Topology 22min 33mm,-

0.0 - 0.5 SS 0.05 0.57

0.0 — 0.5 OS 0.06 0.45

0.5 -— 1.0 SS 0.03 0.70

0.5 — 1.0 OS 0.08 0.43

1.0 — 1.5 SS 0.02 0.29

1.0 — 1.5 OS 0.13 0.54

1.5 — 2.0 SS 0.01 0.80

1.5 — 2.0 OS 0.19 0.52

 
 

      
 

Table 2.3: a: space covered by the Triple Differential via Equation 2.6 assuming two

jets of equal ET.

¥

§The calculations covered in this section are performed to leading order.
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Triple Differential X Coverage
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as so - 400 GeV jets — ss 400 GeV jets” 

SS 200 GeV jets

 

Figure 2.8: Graphical representation of a: coverage of all slices and topologies of the

Triple Differential.
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.28 .55 .83 1.10* X1 .06 .19 .32 .46

.01 .02 .03 .04 X2 -06 -19 32 .46

* not allowed

 

 

 

Figure 2.9: Representative slices of the Triple Differential and their a: coverage.

Notice the kinematic limit in the SS forward cross section at large ET.
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2.4 Implementation of QCD, Monte Carlo Pre-

dictions

The calculations discussed in this chapter are used with various Monte Carlo pack-

ages to produce predictions for the Triple Differential. Specifically, the packages

used are named Jetrad[8] and Herwig[7] and are described below.

2.4.1 Jetrad

Jetrad is a full next-to—leading order parton level Monte Carlo which produces a

cross section including loop and radiative corrections. The user can input a parton

distribution function as well as renormalization and factorization scales. Jetrad

doesn’t model any detector effects, additionally it assumes that each final state

parton contributes all of its energr to a jet. In the event of a three parton final

state, Jetrad uses a cone algorithmll to decide whether or not to cluster partons

together.

2.4.2 Herwig

Herwig is an event generator rather than a NLO cross section calculation. It gener-

ates a leading order partonic interaction, but it contains initial state radiation and

final state parton showers. It employs string fragmentation to model parton shower-

ing. Particles from Herwig output can be matched with test beam data to simulate

their behavior in the DO detector. Like Jetrad, Herwig can be adjusted based on

 

1fSee Chapter 3 for discussions regarding jet definitions.
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the user’s desire for a particular parton distribution function and factorization and

renormalization scale.

We will see the need for both of the Monte Carlos during the measurement of

the Triple Differential.

Having discussed the theoretical motivation for the measurement, we move on

to the experimental setup necessary to perform it.
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Chapter 3

The Tevatron, the DO Detector

and Jets

Now that there exists a motivation for observing jets, we’ll describe how a jet is

defined and produced. Before one can observe jets, one needs a mechanism for

creating them, that is a device which produces energetic beams of particles directed

to collide with each other. In this chapter, we introduce such a device as well as the

DO detector along with some general principles of jet physics.

3.1 The Fermilab Tevatron

What is desired is a narrow beam of protons and antiprotons which collide in a well

defined way. The Fermilab Tevatron is the largest and most energetic collider in

the world today. It produces proton-antiproton collisions of center of mass energy

\/§ = 1.8TeV. These collisions are achieved by coordinating several different large

and complicated accelerators together with many magnets, computers and people.
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In order to achieve such energetic collisions, several separate accelerators are needed,

each capable of taking particles from one energy to another. These machines, de-

scribed below, work together like gears in a car to take the particles from E = 0 to

E = 900 GeV.

The layout of the Fermilab Tevatron is pictured in Figure 3.1. The components

are listed in Table 3.1.
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Figure 3.1: Overview or the Fermilab Tevatron.

The process starts in the Pre-Accelerator where hydrogen ions are produced from

a surface-plasma magnetron. The ions are then accelerated to 750 KeV and injected

into the linear accelerator called the Linac.

The Linac is constructed from five steel drift tubes of increasing length, with a
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Name Type Beginning Energy (GeV) Final Energy (GeV)

Pre-Accelerator Linear 0 .00075

Linac Linear .00075 .4

Booster Circular .4 8

Main Ring Circular 8 150

Tevatron Circular 150 900       
 

Table 3.1: Major components of the Fermilab Tevatron.

gap between them. An electric potential is applied carefully such that while the ions

are in the gaps between the tubes, they are exposed to a negative potential so that

they speed up. While they are in the steel tubes, they are protected from the field

and they simply drift. A collection of focusing and de-focusing magnets keep the

ions on a linear trajectory. The ions leave the Linac with an energy of 400 MeV.

After the Linac, the hydrogen ions have their electrons stripped as they pass

through a carbon foil; what remains is a proton. These protons then pass into the

Booster Synchrotron. The Booster is the first circular accelerator in the chain. The

protons are bent into a roughly circular orbit and cavity resonators are used to

increase the energy of the beam. The magnetic fields are increased as the energy

increases to keep the proton beam, by now a beam of proton bunches, in the same

circular path. The bunches leave the Booster as “kicker” magnets bend them out

of their circular orbits and direct them into the next accelerator, the Main Ring.

The Main Ring lies directly over the Fermilab Tevatron, the final stage of the

acceleration process. The Main Ring, like the Booster, is a synchrotron; it takes the

proton bunches from 8 GeV to 150 GeV. With careful timing, the bunches are then

injected into the Tevatron below.
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The Tevatron is the world’s highest energy superconducting accelerator. Like

the Main Ring, the Tevatron is a synchrotron. The difference is in the strength

of the magnetic fields the two machines need to produce. In order to bend and

contain the high energy proton beams, the magnets must be very powerful, capable

of producing very large magnetic fields. To accommodate this need, the wires which

are wound to make up the magnets are cooled to ~ —450" F by liquid helium. The

Tevatron accelerates the proton bunches to their final energy of 900 GeV at which

point they are traveling ~ .9999x the speed of light.

We have described thus far the acceleration of protons in the Fermilab Tevatron,

however we recall that the Tevatron is a proton-antiproton collider so we’ll need

some place to get them from.

Antiprotons are produced by skimming some of the protons from the Main Ring

and directing them towards a nickel’r target. A shower of particles results, some

of which are antiprotons. These antiprotons are directed into the p Debuncher,

an accelerator in the shape of a rounded triangle with three straight legs. During

their time in the Debuncher, the antiprotons are collected into bunches with like

momenta by a process known as stochastic cooling. They are then transferred to the

Accumulator before being injected into the main ring, now moving in the opposite

direction as the protons. Along with the protons, the antiprotons are transferred

into the Tevatron and accelerated to 900 GeV. Additional information regarding

the Fermilab Tevatron can be found in [4].

During collider operation, six p and six p bunches occupy the Tevatron. Their

 

lOther metals are sometimes used, but nickel is the most common.
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orbits are slightly perturbed such that they collide at six distinct points in the ring.

The D0 detector exists around one of these points. During the data taking for the

data used in this analysis, collisions occurred with a frequency of (3.5,asec)‘1 and ran

for approximately 15 monthsf. Most collisions involved only soft§, “uninteresting”

collisions. The system for distinguishing these uninteresting interactions from the

interesting ones is called a trigger. The trigger, the rest of the data taking software

and hardware along with the DO detector itself is described in the next section.

3.2 The D0 Detector

D0 is an all-purpose detector which is used for many different kinds of physics.

It has excellent calorimetry, or measurement of hadronic particles, however, it has

no central magnetic field and the Main Ring accelerator runs through the detector.

These properties will present special challenges while interpreting data from the

detector. The detector is large, even by particle physics standards; it weighs 5500

tons and stands over 40 feet high. The DC detector is comprised of several different

sub-detectors, each used for measuring a certain type of particle. We will introduce

the device, concentrating on those detector sub-systems relevant to the Triple Dif-

ferential. For detailed descriptions of any of the sub-systems, or the detector as a

whole, the reader is directed to [13].

Before introducing the detector however, it is necessary to introduce the coor-

dinate system used to define the physical space covered by the detector, shown in

 

1This period of data taking is referred to as Run 18.

§Soft describes an interaction in which little momentum was transferred.
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Figure 3.2. The three quantities most commonly used to define an object in the DO

detector are the particle’s ET, pseudo-rapidity, or t), and azimuth, q). 17 is defined

by

17 = —log(tan(g)).

7) is used because in the high energy limit, 1) ~ y, where y is the rapidity, introduced

in Chapter 2,
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Figure 3.2: Coordinates used in the DO detector, the event vertex is at the

pp interaction point, which can be different from Z=0.
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3.2.1 Tracking

Charged particle tracking is accomplished at DO through the use of three detectors, a

central tracking chamber and two forward tracking chambers. A track, the trajectory

of a charged particle, is made up of many individual hits in one of the tracking

detectors. A hit occurs when a charged particle ionizes the gas in a tracking chamber

and produces a shower of charge.

3.2.2 The DO Muon System

It is necessary to distinguish particles from the interaction point from particles that

enter the detector from elsewhere. The largest component of this sort of contam-

ination is particles from cosmic showers which are primarily made up of muons.

Additionally, good measurement of muons that result from p15 interactions is also

useful. The DO muon system provides information about muon position and mo-

mentum. The muon system employs a toroidal magnet to deflect muons; the muon

position is measured before and after the bend, to determine the particle momentum.

3.2.3 Level Zero

The least complicated detector at DO is the Level Zero detector. This detector is

used to provide crude information about the vertex position of a pp interaction.

Furthermore, it is used to determine if an interaction occurred at all.

The beams are focused at DO in an effort to have them collide at the center of

the detector. However, it is possible that the interactions occur away from Z = 0,
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sometimes as far as Z = i100cm. In fact, the events in this analysis have a

vertex distribution of width oz x 30cm. The Level Zero detector employs two

scintillating hodoscopes surrounding the beampipe, on either side (north and south)

of the interaction point. If the remnant from the pp interaction, that is the proton

(or p) fragment, hits both the north and south Level Zero concurrently, it indicates

that an inelastic’l interaction took place. Additionally, by looking at the timing

information from the north and south detectors, it can be roughly determined where

the interaction took place. A Level Zero hit is a condition required on many types

of event selection at DO as will be discussed later. Level Zero can is also used to

estimate the intensity of the beam, called the Luminosity, the number of particles

in the beam, per unit area, per unit time.

3.2.4 Luminosity Calculation

Luminosity (L) at DO is measured in two incarnations, instantaneous and integrated.

Instantaneous refers to the number of pp crossings per second. Integrated is, as the

name suggests, integrated over time. The luminosity calculation hinges on a quan-

tity which represents the probability of a pp interaction and the probability of the

DO detector to observe the interaction. The quantity is referred to as the luminosity

monitor constant. Expressed as a”), it is calculated by combining measurements of

the world average pp cross section with measurements of the acceptance of the DO

Level Zero detector. The total pp cross section is determined by combining informa-

tion from many different experiments. This number is combined with a Monte Carlo

 

"lAn inelastic collision is one where the proton and/or p breaks up.

42



study which determines the acceptance of the DO detector; that is, what fraction

of the total pp cross section is visible to the DO detector. The luminosity monitor

constant for the data in this analysis was determined as a”) = 44.53 :l: 2.37 mb[14].

Once a“, is known, the luminosity(£) is calculated via:

c = — (3.1)

where R is the number of events seen per second by the Level O detector. The total

integrated luminosity seen by DO during run 1B data taking was z 92 pb'l.

3.2.5 The DO Calorimeter

The events in this analysis are measured primarily in the calorimeter, therefore it

will be given special attention. The calorimeter provides a measurement of hadron

position and energy, as far forward as |77| = 4.1.

Recall that a jet is largely made up of hadrons which deposit their energy primar-

ily in the calorimeter. The DO calorimeter is divided into three separate calorime-

ters, one central (CC) and two forward, endcap, calorimeters (EC). The calorimeter

is pictured in Figure 3.3. The calorimeters are composed of uranium, used as an

absorber, and liquid argon, the ionization medium. They are composed of thou-

sands of cells, one of which is pictured in Figure 3.4. As a particle passes through

a calorimeter cell, a shower of particles is created as the uncharged particle inter-

acts with the absorber plate. The shower then ionizes the liquid argon; an electric

potential draws these ions toward the pad. The resulting current is proportional to

the energy of the incident particle. To calibrate the cells, a test beam measurement
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was performed where hadrons of known energy were directed into a calorimeter cell.

In this way, the sampling calorimeter cells could be calibrated to measure hadron

energy.
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Figure 3.3: The DO liquid argon calorimeter.

The central calorimeter subtends a rapidity interval of [77] g 1.1. It has different

modules to measure different kinds of particles as one moves outward radially from

the interaction region. Closest to the center of the detector is the electromagnetic

(EM) calorimeter, used for measuring electromagnetic showers, which uses thinner

uranium plates. After the EM calorimeter, is the fine hadronic (FH) calorimeter

which uses thicker uranium plates and finally the coarse hadronic (CH) calorimeter

which uses copper or stainless steel as absorbing material. The EM calorimeter is

closer to the center of the detector because electromagnetic objects tend to develop

showers earlier than hadronic objects. Each cell in the CC has an area of 0.1 x 0.1
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Figure 3.4: A DO calorimeter cell.

    
 

in 17 — d space. The cells are stacked into towers which point back to the interaction

region. The forward calorimeters extend the coverage to |n| = 4.1 and with a few

exceptions are very similar to the CC. The calorimeter towers are seventeen cells

deep and number approximately 50, 000. A cross section of the calorimeter is shown

in Figure 3.5.

Calibrating the calorimeter to exactly measure the energy of a particle, or even-

tually a jet; determining the energy scale of the calorimeter, is a difficult challenge

which will be discussed in detail in later chapters.

In Figure 3.6, we present an event as seen by the DO detector. The various sub—

detectors are represented; energy is visible in the calorimeter. Two distinct regions

of energy deposition are in fact visible; this event finds its way into the same side

cross section in the bin 1.5 S |n| S 2.0, as two forward jets were found.
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Figure 3.5: A cross section of the DO calorimeter, the numbers have units of pseu-

dorapidity.

46



 

f
_
.

>
.

,
J
.

_
_
1
_
,

(
1
5
1
'

:
5

,
3

r
‘
D



 

 

 

  

 
 

 

00 Side View l-SEP-l998 17:45 l Run 86859 Event 629 ll3-DEC-l994 11:01

Max ET= 83.0 GeV

CAEH ET SUM= 453.9 GeV

Wit 11 Z: my —H a; ' a I:

1:] L - 'lf— 1f fl 17::l

f ' '
 

X
X

[
7

L

. 1 T

l I ll ll 1

 

  
 
 

   

    
 

("lN L
L] y a

1 F l 1 I

l a. t ”uni 11W i . .

l I ‘ I / [mesa-w. \lfl
To 7

  
  

L

      

 

                  

 

   
 

Figure 3.6: An event as seen by the DO detector. This event is part of the same

side forward cross section. The 2 axis defines left to right; the information has been

averaged in (b.
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3.3 Data Filtering and Reconstruction

The crossing time for pp bunches at the Fermilab Tevatron during the run in which

the data used in this analysis was taken was 3.5 usec. Relatively few of these bunch

crossings result in an interaction with considerable momentum exchange. A trigger

system was designed to reduce the event rate recorded by discarding uninteresting

events during data taking. Events are further streamed offline after data taking

during event reconstruction.

3.3.1 The DO Trigger System

The DO trigger system, pictured symbolically in Figure 37", consists of three dis-

tinct levels, level O, level 1 and level 2. Level O uses the previously described Level

Zero detector to determine only if an interaction took place. If level O determines

that there was an interaction, the event is passed on to level 1. Calorimeter towers

are 0.2 x 0.2 areas in 17 — (:5 space, directly linked to the level 1 system. Level 1 looks

at the energy detected in these towers to decide if a jet of appreciable energy may

exist. In this way, level 1 determines if any of the interactions detected by level O

produced anything interesting. What is interesting is determined by a. trigger list. A

trigger list for jet events, for example, might require only that one jet was detected

with energy above some threshold. Level 1 has very little time to reconstruct the

jet, so it doesn’t do a complete job. Level 1 simply determines a rough estimate

of the jet energy to see if it should be passed to level 2. For example, assume,

 

1in Figure 3.7, level 1.5 is an intermediate trigger used to reduce the rate of electron events, it

is not used in jet triggers.
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in constructing a trigger list, it is desired to measure 100 GeV jets. The trigger

list should be designed with a level 1 threshold lower than 100 GeV so that events

which. fluctuate below the cut are not lost. After full reconstruction, the jet energy

can be more accurately determined and the decision to keep the event can be made

again. If an event passes level 1, it is passed to level 2. Level 2 is a collection of 48

Digital processors running identical executables. Level 2 takes in information from

all detectors in an attempt to fully reconstruct the event. If, after study by level 2,

the event is still interesting, it is written to a disk buffer and eventually written to

tape. The information on the tape is usually referred to as raw data.

    

 

 

     
  

   
  

Processing Time 132 ns 900 ns 10—20 118 100 - 200 ms

From the Level Level 200 Hz Level » Tape

Detector 0 1 2

Level

Rate 300 kHz 50 kHz 10 kHz 1 5 100 Hz 1-2 Hz

  
 

Figure 3.7: Block diagram of the DO trigger system.

3.3.2 Offline Reconstruction

Raw data are taken, in tape form, to another physical location at Fermilab for

offline processing. A large and complicated reconstruction package runs though

the raw data and produces the final event lists. This package has access to test

beam information in addition to data taken during surveys of the DO detector.

Additionally, the reconstruction package allows each physics group to access the

interesting data without sorting through all the collider data taken during the run.

Usually, as in the case of this analysis, the data are compressed even further, so that
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only the events of interest to a particular analysis are kept.

3.3.3 Triggers

The combination of level O, level 1, and level 2 restrictions collectively define a

trigger list. One trigger list can have many different triggers, designed for different

physics analyses. The events in this analysis were taken using four QCD jet triggers,

named Jet_30, Jet_50, Jet_85, and Jet_ma:r. Jet_30, for example, is designed to

take events with at least one jet roughly at or above 30 GeV. Due to imperfect level 1

and level 2 energy resolution, jets are taken well below this cutoff. Additionally, due

to a preponderance of jet final states in the data relative to other sorts of physics, jet

triggers were subject to various levels of prescaling to reduce their rates. Prescaling

involves writing out a fraction of events which pass the triggers; jet events were

prescaled at level 2 depending on the luminosity at the time. See Table 3.2 for more

details on the triggers used in this analysis.

 

[l Name L1 Threshold (GeV) L2 Threshold (GeV)

 

Jet 30

Jet 50

Jet 85

Jet max   

15

35

60

60  

30

50

85

115
 

Table 3.2: Jet triggers used in the Triple Differential.

After reconstruction, when the jet energy is better understood, one can consider

the efficiency of the filters, that is the fraction of events which were read out by

the trigger system compared to the total number of events which occurred. In this

analysis, the triggers were used only where they were 100% efficient[9].
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Two additional triggers which should be introduced are the zero bias and the

minimum bias triggers. These triggers are used during the derivation of the energy

scale correction described in Chapter 4. The minimum bias trigger only requires

an interaction in order to read out the detector. It therefore does not usually

contain a hard partonic interaction, just a soft proton-antiproton collision. The

zero bias trigger essentially requires nothing except a bunch crossing. It reads out

the detector during running regardless of what else is going on at the time. As long

as timing information from the accelerator indicates that there is a beam crossing,

the detector is read out; it is not necessary for there to be a pp interaction to fire the

zero bias trigger. The zero bias trigger is useful to study electronic noise and other

effects which introduce energy into the detector not associated with the partonic

interaction.

3.4 Jet Definitions

As described above, a jet is a collection of highly collimated particles resulting from

a hard parton-parton scatter. In this analysis, as in particle physics in general, a jet

in not uniquely defined. During data taking, the position that a jet occupies in space

was determined using one jet definition, after the jet’s position was determined, its

quantities were re-calculated using a different jet definition. These definitions are

presented below.

There are two different algorithms for defining a jet that are relevant to this

analysis. The first is called the Snowmass Accord, as it was named during the

Summer Study on High Energy Physics, in Snowmass Colorado, in 1990. The
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second, is referred to as the DO algorithm. Each is defined below.

In both cases, one starts with a list of particles or calorimeter cells. Both algo-

rithms are referred to cone algorithms in that they draw a cone around some central

point to determine which particles in the list belong in the jet. In the Snowmass

Accord, a reasonably high energy particle is chosen as a beginning, usually called a

seed. A cone of radiqu R is drawn around the seed and the energy of each particle

or cell in this circle is considered in the following calculations:

 

 

ncells

ET = Z Era (3.2)

i=1

_ Elli-ills UiETt

ncells -E _

$2 21:], ¢2 T1. (34)

ET

A new jet axis is drawn and the procedure is repeated until a stable jet axis is

found. This ET weighting scheme is alleged to be the desired method for cone jet

definition[15].

The DO definition then takes the cells in the physical space defined by the

Snowmass Accord and recalculates ET, 1), and 45 according to

ncells

ET: 2 \/(P)2t,-+P12q)

i=1

. ET
0 — aszn(f)

7? = -l09(tan(0/2))

 

3R is in n — ¢ Space; the jets in this analysis have R = 0.7. That is, R = «(Ac/{>2 + A112) 3 0.7.
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(b = atan(f)—:).

To state the problem, there is a claim that this definition is not the best one to

use when comparing to theoretical predictions; this claim is the subject of a recent

theory paper[15].

The effect of this ambiguity on the Triple Differential will be discussed in Chap-

ter 4. The DO definition was the result of early Monte Carlo studies in which the

DO algorithm was seen to more closely reproduce the angles of the Monte Carlo jets

before detector simulation.

Now that the detector has been introduced and we have a good understanding

of the theory, we move on to the measurement of the Triple Differential itself.
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Chapter 4

The Data

In this chapter we introduce the experimental form of the measurement and the

methods necessary to calculate the raw cross section. The raw cross section has

been energy scale corrected and subject to different cuts and variable corrections.

It has not been completely corrected, the final steps are presented in Chapter 5.

4. 1 The Measurement

As discussed in Chapter 2, a cross section defines the space for a specific type

of initial and final state process. The Triple Differential is a measurement of the

ET and n distributions of 2 or more jet final states. The experimental differential

cross section is expressed as?r

030 _ AN (4 1)

877187726ET _ C C V AnlAThAETecut. .

 

IAnother useful representation is: pp —> 2 jets + anything.
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In Equation 4.1, N is the number of events that pass our cuts, A17 is the width of

pseudorapidity bin considered, AET is the width of the ET bin, C is the unsmearing

correction, L is the luminosity, V is the vertex resolution correction, and can is the

efficiency of all of our cuts. These cuts are defined below, the corrections are defined

in Chapter 5. We require each event to have at least two jets. The binning of the

cross sections is as defined in Chapter 2, each cross section is represented as a

one dimensional plot; the Triple Differential for a specific 17 bin vs ET. Cartoon

representations of two jet topologies for two slices of the Triple Differential appear

in Figure 4.1.

 2 same side, forward
 

same side central

  

Tl

\/ 7‘

opposite side, forward

 

 
 opposite side central

Figure 4.1: Cartoon representation of jets for two slices of the Triple Differential.
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This analysis uses the four jet triggers introduced in Chapter 3; Jet_30, Jet- 50,

Jet_85 and Jet_ma:r, with a total integrated luminosity of 0.339,4.61,54.7, 91.9

pb‘1 respectively. The triggers are used only where fully efficient in ET as defined

in [9] and discussed in Chapter 3.

The theoretical prediction to which we will eventually compare the cross sections

is pure in the sense that it doesn’t reflect any detector effects. We will correct the

measured cross sections for all known detector effects for eventual comparisons to

theory.

A jet, once defined, is by no means uniquely defined. In a complicated detector

many effects can falsely be reconstructed as a jet. Jet quality cuts are applied to the

data set to remove ill-defined jets from the sample. Additionally, bad events can

fool the trigger system; careful consideration of select variables can remove these

events from the sample as well.

4.2 Quality Cuts

Twe separate event quality cuts are considered in this analysis. Events must satisfy

a cut involving missing ET( ET) and vertex position.

4.2.1 Missing ET cut

Due to conservation of momentum, the total vector ET of an event equals zero in

an ideal case. In the event of a cosmic shower or other energy in the calorimeter

that is not a result of an interaction, the sum of vector ET can differ from zero.
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The missing ET (ET) is defined as the total unbalanced ET in the event and is

calculated from the vector sum ET of all calorimeter cells. Additionally, muon

energy is added to the total vector ET in the event. The quantity to which we apply

a cut is ET lead/ E71 1 which approaches one in the case of a cosmic shower. The cut

is chosen to require that missing ET is not greater than 70% of the leading jet ET.

In Figure 4.2, the ETlead/ ET distribution for the SS slice 1 is presented. Note the

bump at ETzead/ ET 2 1.0. Events must satisfy ETlead/ ET 2 1.43 in order to be

considered in the analysis. §
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Figure 4.2: ETlead/ ET for Same Side central jets.

The ET cut was designed for previous analyses of jet data, these analyses did not

necessarily require two jets in every event. With regard to the Triple Differential

therefore, the ET cut should be slightly rethought. Events in this analysis are defined

such that there are always at least two jets present. For this reason, it is unlikely

 

lEnead is the ET of the most energetic jet in the event.

§1/1.43 = 70%.
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that an event would be included in the sample which contained only one energetic

jet. It is worth considering within the context of this argument whether a ET cut is

needed at all. By looking at the ET lead/ ET distributions for each slice, (Figure 4.3)

it was decided to make a ET cut on only the SS slice 1 and 2 and the OS slice 1. All

other distributions are not subject to a ET cut.
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Figure 4.3: ETlead/ ET for all slices.

When making a cut that removes events from the data sample, care must be

taken to account for events that were cut out that did in fact belong in the data

set. That is, events which fluctuate below the cut, but are otherwise perfectly good.

A correction of this nature is called an efi‘lciency and is calculated, along with a

corresponding error, for all the cuts described here.

In the case of the ET cut, the efficiency is calculated by finding a function that

fits the ET distribution above the cut and extrapolating this function past the cut.
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The integral of this function over the entire ET space is compared to the integral

above the cut. The ratio of these two integrals is equal to the ratio of the events

included in the cross section measurement above the cut, to the total number of

events that belong in the sample; this is the efficiency of the ET cut. In practice, a

fit is performed not to the ET distribution, but to ETlead/ ET , as this highlights the

region of interest and is the variable we actually cut on. Furthermore, due to the

shape of the distribution, the function is fit to a subset of the entire distribution. The

integral over the entire ETlead/ ET space is determined by integrating the function

over the region of the fit, and adding to the integral the number of events contained

in the rest of the distribution. This formalism is presented schematically in Figure

4.4. Two fits are performed and integrated, one which extrapolates below the cut,

represented in Figure 4.4 by a solid line, and one which stops at the cut. We define

the integrals of this function 11 and [2 respectively. Beyond the dashed line, the

integrals are determined numerically. The efficiency of the cut is defined as 11 /Ig.

The error on the ,ET cut is conservatively estimated at i0.5%. The ET cut

efficiency results are presented in Table 4.1.

 

  

 

 

 

 

[Lrapidity range same side I opposite side I

0.0-0.5 0.99 0.99

0.5—1.0 0.99 1.0

1.0-1.5 1.0 1.0

1.5-2.0 1.0 1.0     
 

 

Table 4.1: ET efficiency for the 8 slices considered in the Triple Differential. The

entries 1.0 correspond to the slices where no ET cut is made.
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Figure 4.4: Schematic of the calculation of the efficiency associated with the ET cut.

4.2.2 Vertex Position

The vertex distribution along the z axis in the data set used for this analysis is

approximately Gaussian; for the events considered in this analysis the width is

approximately 30.0cm. Events with a vertex far from the center of the detector are

in principle completely usable. However, due to the projective nature of the D0

calorimeter, good jet reconstruction is difficult if the vertex is too far from Z = 0.

Therefore, events in this analysis are subject to the restriction |Z| g 50.0cm. As

stated above, all the events contained in the vertex distribution are usable events.

For this reason, the efficiency can be calculated without differentiation of events that
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failed the cut because they were ‘bad’ and events that failed due to some fluctuation.

All events in the vertex distribution are assumed to be ‘good’ events. They have, in

fact, passed all other good jet and event cuts. Therefore the vertex cut efficiency is

defined as the ratio of the total number of events with |Z| = i50.0cm to the total

number of events in each slice before the cut. Figure 4.5 is the vertex distribution

for two representative slices. No systematic differences in vertex distributions were

observed between same side and opposite side events. The error associated with the

vertex cut efficiency is assumed to be binomial and is defined as

 

 

(1 — Npass/N) =I< Npass/N

6Z6” 2 (N — 1)

where Z6” is the vertex cut efficiency, Npass is the number of events that satisfied

the vertex cut and N is the total number of events in the slice. The vertex efficiency

is determined separately for all 8 slices, the results are tabulated in Table 4.2.
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Figure 4.5: Vertex Distribution (before cuts) for two slices of the Triple Differential.

 

II rapidity range I same side I opposite side II
 

 

 

 

 

 

 

0.0-0.5 0.89 i 0.001 0.89 :1: 0.001

0.5-1.0 0.90 2!: 0.002 0.90 2!: 0.001

1.0-1.5 0.90 i 0.003 0.89 i 0.002

1.5-2.0 0.90 :l: 0.006 0.92 :l: 0.004    
Table 4.2: Vertex cut efficiency and errors for 8 slices of the Triple Differential.

An additional concern exists regarding vertexing at D0. The reconstruction

package applied to the raw data determines the longitudinal position of the inter-

action, usually referred to as Z. During high luminosity running, when the number

of protons and anti-protons in the bunches is large, there is likely to be additional

interactions, which could results in additional vertecies detected. The energy de-

posited by these additional interactions is usually small and corrected for by the
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energy scale correction described later in this chapter. However, the jet quantities,

ET and n, are calculated with respect to the vertex position. These quantities are

referred to as physics quantities as opposed to detector quantities as they are re-

ferred to when they are calculated with respect to Z = 0; physics ET and n are

used in measuring the Triple Differential. A mis—measurement of the vertex position

can affect the physics quantities. The reconstruction package usually chooses the

right vertex, however, a different algorithm for vertex selection in jet events is seen

to do better. The quantity If} is defined as the vector sum of the energy"I of each

calorimeter cell. This quantity is expected to be at a minimum when calculated

with respect to the correct vertex. This vertex selection method chooses the correct

vertex more often than the reconstruction package,“ therefore, in the event that

more than one vertex is found during reconstruction, the vertex is chosen with this

method.

4.2.3 Jet Quality Cuts

In addition to the event quality cuts, cuts are applied to the two leading jets in the

event, designed to remove spurious jets. These “unreal” jets, which due to some

fluctuations are included in our sample, are removed with these jet quality cuts

which have been studied exhaustively[10]. We include a brief description of the cuts

together with their efficiencies and errors below.

 

1In high energy jet physics masses are usually neglected; the assumption is made that E m P.

llThis conclusion is supported by event scanning.
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Electromagnetic Fraction Cut

Three separate quality cuts are applied to the jets in the data set used in this

analysis. The first is primarily designed to remove electromagnetic objects falsely

reconstructed as jets. As described in Chapter 3, the D9 calorimeter contains an

electromagnetic and then a hadronic calorimeter; jets are expected to deposit their

energy in both. The EM fraction (EMF) is the fraction of the total jet energy

deposited in the electromagnetic calorimeter. A cut on the jet EMF is applied as

defined in Table 4.3.

Coarse Hadronic Fraction Cut

The coarse hadronic calorimeter surrounds the main ring accelerator above the Teva-

tron. The main ring houses low energy proton and anti-proton bunches. These

bunches can interact and create a shower of energy in the coarse hadronic calorime-

ter which could be mis—interpreted as a jet. To protect against this, a cut is placed

on the fraction of the jet energy deposited in the coarse hadronic calorimeter (CHF).

This cut is also defined in Table 4.3.

Hot Cell Fraction Cut

The calorimeter is made up of many cells connected by complicated electronics. It

is possible that a single cell may light up’r due to an electronic fluctuation or other

noise. If a jet is found to contain one cell with much more energy than its immediate

neighbors, it is suspected to be a bad jet. A cut is placed on the hot cell fraction

 

Iappear to detect energy
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(HCF), the ratio of the next to most energetic (hottest) cell energy to the hottest

cell energy. This HCF cut is defined below in Table 4.3.

We include sample distributions in Figure 4.6 which contains the EM fraction

and CH fraction distributions (on a log scale) for the central same side cross section.

The complete set of distributions is presented in reference[10]. As can be seen in

Figure 4.6, the EM fraction and CH fraction cuts are very efficient; they do not

remove many jets from the data set.
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Figure 4.6: Representative electromagnetic and coarse hadronic fraction distribu-

tions.

The net efficiency of all the jet quality cuts is > 98% for all slices considered.

The errors on the efficiency corrections are corresponding small. In Figures 4.7-4.10,

we include the jet quality cut efficiencies for all slices along with the corresponding
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[I Cut name Cut value I Region applied

E—M fraction 0.00 < EMF < 0.95 ICR

E—M fraction 0.05 < EMF < 0.95 elsewhere

C-H fraction CHF < 0.6 ICR

C-H fraction CHF < 0.4 elsewhere

hot cell fraction HCF < 0.05 everywhere    
 

Table 4.3: Jet quality cuts applied in the Triple Differential. ICR refers to the

inter-cryostat region of the calorimeter defined by 1.0 S |17| S 1.4.

errors on the efficiency corrections. Additionally, we include the total jet + event

efficiency errors for completeness, as well.
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Figure 4.7: Jet and event quality cuts efficiencies and errors for slice 1 of the Triple

Differential.
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Figure 4.8: Jet and event quality cuts efficiencies and errors for slice 2 of the Triple

Differential.
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Figure 4.9: Jet and event quality cuts efficiencies and errors for slice 3 of the Triple

Differential.
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Figure 4.10: Jet and event quality cuts efficiencies and errors for slice 4 of the Triple

Differential.
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4.3 Corrections to the Data

The goal of this analysis is to report a cross section with all detector effects removed.

The detector effects we account for are: jet energy scale, jet energy resolution, vertex

position resolution, and the 17 bias. The 7] bias refers to the difference in position

of the fully reconstructed jet compared to the same jet at the particle level. The

jet energy scale corrects the measured jet energy back to the particle jet energy.

The jet energy resolution refers to the effect of imperfect energy measurement of

the DC calorimeter: if many particle jets all of energy E, are sampled by the D0

calorimeter, and all other effects are accounted for, a Gaussian distribution centered

on E will result. The mean of this distribution is equal to E so one might expect the

net effect of the imperfect energy resolution, on average, not to present a problem.

However due to the steeply falling nature of the energy distribution of jets from

pp collisions, the cross section is “smeared” as a result. We present, in Chapter 5, a

method of correcting for this effect, or unsmearing the cross section. Vertex position

resolution arises from the study of energy resolution, we will discuss the effect and

the corresponding correction in detail in Chapter 5 as well.

4.3.1 Jet 77 Definition

The position of a jet measured by the D0 detector is defined by two quantities:

n and d). In this analysis the cross sections are averaged in ¢ so jet 7] uniquely

determines the position of the jet. We consider two disparate effects with regard to

jet 17 definition.

In a Monte Carlo study it can be observed that the reconstructed jet is pref-
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erentially more central" than the corresponding particle jet. This 17 bias has been

studied previously[19, 20]. An additional complication arises because the jets in

this analysis have been reconstructed with the D0 jet algorithm. A claim has been

made that this algorithm is not completely desirable for comparison with QCD the-

oretical predictions[15]; instead the Snowmass Accord[16] is preferred§. These two

algorithms produce nearly identical values for jet energy and also for jet 17. Any

difference in jet 43 is not considered. The energy difference will be shown to be

small enough that it doesn’t warrant consideration. However, the difference in jet

17, though small, could produce reasonable differences in the final measured cross

sections. We use the Snowmass Accord while reconstructing jets in the NLO QCD

theory.

To study these two effects, we look at the difference between Herwig jets re-

constructed at the particle level with the Snowmass Accord and the same jets re-

constructed with the D9 algorithm at the fully simulated calorimeter level. If the

difference between particle jets constructed with the Snowmass Accord and calorime-

ter jets constructed with the D0 algorithm is well behaved, a correction to apply

to the jets in our cross section can be derived.

The quantity of interest is 175,? — 171323;”, where 175,? is the jet 17 as defined at the

calorimeter level by the D0 algorithm and 17523;” is the jet 17 at the particle jet level

as defined by the Snowmass Accord. This quantity will henceforth be referred to as

the total 17 bias. We study this quantity as a function of uncorrected jet energy and

D9 calorimeter jet 17. Figure 4.11 is the total 17 bias as a function of D0 jet 17 for

 

tTlparticle jet < ”calorimeter-jet-

§These jet clustering algorithms are described in Chapter 2.
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Herwig jets subject to a cut requiring ETZ 60.0 GeV as in the data. The ET and 17

distributions in Herwig are known be in good agreement with D0 data. From this

plot we can see that the effect of the total 17 bias for |17| < 1.5 is negligible. Therefore,

no 17 bias corrections are applied in this region. However, we can see a larger effect

in the most forward bin, and indeed it is here we apply a correction. The data

within |17| > 1.5 are fit to a straight line to derive the total 17 bias correction. This

procedure is followed for several different ET bins to derive a correction as a function

of ET and 17. However, no significant ET dependence is observed (Figure 4.12). For

this reason the correction is applied only as a function of D0 calorimeter jet 17. The

total 17 bias, before and after the correction is applied, is shown in Figure 4.13.

To estimate an uncertainty on the total 17 bias correction, the deviation of the

total corrected 17 bias from zero is used. An uncertainty on jet 17 of fi:0.005l is

assumed and the cross sections are re-derived with this uncertainty applied to jet 17.

This results in an error on the forward cross sections as demonstrated in Figure 4.14.

For completeness, an error due to the total 17 bias is applied to all slices, however the

effect becomes very small in the central region as observed also in Figure 4.14. The

total 17 bias correction error is on the order of 2 — 4% in the most forward bins and

becomes smaller in the central region. The errors are tabulated in Table 4.4. The

effect of the total 17 bias correction can be observed in Figure 4.15 which contains

the forward cross sections before and after the corrections are applied and a linear

comparison of the cross sections. These figures show a total effect of the correction

which depends on the specific ET bin considered, but is on the order of 5%.

 

”See Figure 4.13.
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Figure 4.11: Total 17 bias as measured in Herwig as a function of jet 17.

 

|| Slice I Topology I 17 bias error [I
 

 

 

 

 

 

 

 

    

1 SS < 1%

1 OS < 1%

2 SS 0 — 2%

2 OS 0.5 — 1%

3 SS 0 — 3.5%

3 OS 0 — 2%

4 SS 2 — 6%

4 SS 0.5 — 2% 
 

Table 4.4: Errors on the cross sections due to the total 17 bias.
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4.4 Jet Energy Scale Corrections

As described in Chapter 3, the energy of an object in the D0 calorimeter is not

necessarily exactly defined. As hadronic objects deposit energy in the calorimeter,

small charge deposits are detected in the individual calorimeter cells. The conversion

of this charge to particle energy is determined by enlisting test beam data How-

ever, this is not enough to accurately define the energy of a jet. Other effects not

modeled during test beam running can affect the measured jet energy. For example,

the test beam did not model the high luminosity environment which exists during

data taking. The calorimeter modules used during test beam data taking may not

exactly mimic the actual calorimeter. There are different levels of instrumentation

in different regions of rapidity not modeled during test beam running. Additionally,

during the test beam, single particle response was measured; there is no reason to

expect the exact same response for a jet as for a single particle.

The energy scale is a prescription for determining the energy of a jet given its

measured energy from the reconstruction package. It depends upon, among other

things, the type of jet algorithm applied. D0 has undertaken a significant effort to

understand the jet energy scale for cone jets; we will summarize the procedure and

the results below.

The jet energy scale correction applied in this analysis is referred to as CAFIX

5.1 and is described in extensive detail elsewhere[11]. The goal of the energy scale

correction is to provide a prescription to go from measured jet energy to the corre-

sponding particle jet energy. As described in Chapter 2, a particle jet is a collection

of particles in a jet cone, with all detector effects removed.
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The jet energy scale correction takes the form

cht 2 E313“ - 0(AR’ 7” L)

P“ R(AR,n,£,E)S(AR,n,£,E)
 (4.2)

In Equation 4.2, Eff; is the particle jet energy, Effe‘as is the measured jet energy,

0 is the offset correction, R is the calorimeter energy response, and S is the show-

ering correction, L and E are luminosity and energy, respectively. AR is the cone

size, 0.7 for the jets in this analysis. Each component is defined below.

4.4.1 The Offset Correction

The offset[12] corrects the measured jet energy for additional energy (energy 0]]-

set) due to additional interactions, electronic noise and energy introduced by zero

suppression which does not belong to the jet. Additionally, a correction is applied

to correct the measured jet energy for energy due to additional partonic interac-

tions that occur during the proton break-up; the so-called underlying event. These

corrections are explained below.

Zero Suppression

During data taking it is not efficient to read out all calorimeter cells. Cells that do

not contain any energy other than background electronic noise are not read out. In

order to determine a baseline for comparison, a calibration run is taken during which

the average energy, and the width of the energy distribution, for each calorimeter

cell is recorded. During the calibration run, no protons are in the Tevatron. During
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data taking, the energy in each cell is compared to the data from the calibration run

and if the energy is within 20 of its average value during the calibration run, the

cell is not read out. Unfortunately, the distribution of energy in a cell during the

calibration run is not symmetric“. Consequently, a 20 cut introduces some energy,

on average, into the jet (see Figure 4.16). In order to correct for this, special runs

which were not zero suppressed were studied. These runs were taken only with min

and zero bias triggers active; in order to determine how zero suppression affects jets,

more information is necessary. There is a small probability that a jet will exist in

an event that fired the min bias trigger, but clearly there are not very many jets of

this type present, and they are likely to be at low energy. Therefore, a correction for

zero suppression was derived by studying zero bias data, and a method for scaling

this correction to apply to jet events was derived. This scaling is necessary because

the amount of energy present in a jet due to zero suppression is a function of how

many cells in that jet were suppressed. In the extreme case, a jet with all cells

read out would have no zero suppression correction. We define the fraction of cells

read out in a jet as the occupancy. We additionally define the fraction of cells read

out in a eta slice of the calorimeter over the total number of cells in that slice as

the occupancy of a zero or min bias data set. These occupancies for zero bias, min

bias, and jet data are presented in Figure 4.17. We can see that jet events have

almost twice as many cells read out as the other data sets which implies that the

suppression correction for jet events is likely to be smaller than is measured in zero

or min bias data.

 

“The energy in a quiet calorimeter cell is caused by (among other things) uranium decay.
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To study the energy introduced due to zero suppression during zero bias data

taking, the quantity ET density is introduced. This is the energy measured in a

calorimeter tower divided by the area of the tower in 7} — (b space. We represent

ET density as D in this discussion. This quantity is studied for zero bias data which

has been zero suppressed and zero bias data which has not been zero suppressed.

The difference between these two quantities, is the energy introduced into a zero

bias data set due to zero suppression. This quantity is presented in Figure 4.18.

Notice that the effect of suppression is luminosity dependent, this is because more

cells, on average, are read out at higher luminosity.

Suppressed Zero Bias - Non-Suppressed Zero Bias
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Figure 4.18: Energy introduced into zero bias data due to zero suppression.

The offset correction, however, is applied to jets, so it is necessary to understand
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the effect of zero suppression on jet data. We define the following:

. _ supp _ non—supp

djet — Djet Djet

and,

_ supp _ non—supp

6287'0 — Dzero Dzero '

So 6th is the effect of zero suppression on jet data and likewise for 628,0. We have

observed that the following relationship holds for these data sets:

OCCZ6T0

6jet : 6zero( )

where occjet(zero) is the measured occupancy for jet (zero bias) data, as pictured

in Figure 4.17. We can use this observation to predict the suppression correction to

apply to jet data, measured from zero bias data. Recall that we cannot directly mea-

sure djet except for a small sub-set of data where jets are present in non—suppressed

form. This prediction, together with 63-8, measured from the small set of data where

it exists,(for comparison) is presented in Figure 4.19.

The zero suppression correction is derived and applied as a function of jet 1] and

luminosity.
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Now that the effect of zero suppression is understood and a mechanism exists for

deriving a correction from zero bias data and applying it to jet data, the properties

of zero bias data can be further exploited. During a zero bias run, the calorimeter

electronics are all active and beam is, in general, circulating; the energ due to

additional interactions is present in zero bias data as well. The average number of

additional interactions, other than the one that produced the jet in an event that

fires a jet trigger, at a given luminosity, is equal to the average number of events in

a zero bias data set at the same luminosity. The energy, therefore, in a jet event due

to additional interactions is equal to the energy in the calorimeter, appropriately

corrected for zero suppression, taken at the same luminosity. This concept is at the

core of the offset correction.

The total offset is measured by recording the ET density in the calorimeter, as

a function of n and luminosity during zero bias triggers. This density is corrected

by the suppression correction and then applied to jet data. The area of the jet is

determined and the correction takes the form:

Offset = (Dig: + supp_corr + Dpue) >< area. (4.3)

In Equation 4.3, supp_corr is the suppression correction defined above and Dpue

is the physics underlying event correction defined below.
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4.4.2 Physics Underlying Event Correction

To study physics underlying event, min bias data is studied. The assumption is

made that at sufficiently low luminosity, a min bias event is a soft p13 scatter which

roughly corresponds to the type of interaction associated with underlying event. The

energy density measured in this type of data also reflects electronic noise, although

low luminosity assures that most other types of noise are not present. In order that

the noise is not counted twice, it is subtracted from the underlying event data. The

noise is modeled in this case by low luminosity zero bias data. The ET density due

to physics underlying event in this model is presented in Figure 4.20. The measured

physics underlying event is not smooth with respect to jet 1) as one might expect.

This is due to the non-continuous nature of the D0 calorimeter, not the physics

process itself. However, this is effect of the physics underlying event as seen by the

D0 calorimeter, therefore it is the correction we wish to apply.

Figure 4.21 shows the total offset correction for the different luminosity bins

considered in its derivation. During actual data correction, the correction applied

to a jet is taken from the luminosity bin closest to the jet event. The fits shown are

used to facilitate implementation.
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Physics underlying event measured from min bias data
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Figure 4.20: Energy density due to physics underlying event.

Total offset correction applied to jet data
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4.4.3 Out of Cone Showering Correction

When a collimated stream of particles interacts with the calorimeter, some fraction

of them, near the boundary which defines the jet cone, can shower outside (or in-

side) the jet. In order to understand this effect, actual jet data were studied. The

energy between the 0.7 cone boundary and R = R’ (for R’ > R) is associated with,

among other things, out of cone showering. R’ is chosen carefully depending on the

n bin considered. The energy measured in this annulus is due to jet out of cone

showering and from particles from the jet that weren’t in the jet cone to begin with.

To determine the magnitude of the latter component, which has been called physics

out of cone, Herwig Monte Carlo data are studied. The energy in the same annulus

in Herwig is entirely due to physics out of cone because at the particle level, there

has been no interaction with the calorimeter. Once these measurements are made,

the out-of-cone showering is parameterized as a function of jet energy for different

rapidity regions. A generous error is associated with the showering correction, espe-

cially in the forward region where the physical space spanned by a R = 0.7 cone is

smaller than in the central region. More details regarding the showering correction

can be found in [11]. We present the results of the showering correction in Figure

4.22 in which we plot the out-of-cone showering energy correction factor (S) applied

to a cone jet with radius R = 0.7. The error band is the total error associated with

the correction. The correction has a larger effect in the forward region, with a larger

error. We present results for jets of pseudo-rapidity between 77 = 0 and |17| = 3.0,

though the jets in this analysis are all within |n| = 2.0, for completeness.
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Figure 4.22: The out-of-cone showering energy correction factors (S) and errors for

different 17 bins.

4.4.4 The Response Correction

The largest component of the energy scale correction is the response correction.

Test beam data were studied in order to provide a mapping between single particle

energies of known energy and the energy measured in the D0 calorimeter. The single

particle response therefore, is expected to be close to unity. The response for jets

however, can deviate from unity due to many effects. The average response for the

actual calorimeter is not necessarily the same as the cells used during the test beam,

or the jet could deposit its energy in a poorly instrumented region of the calorimeter.

In any event, one cannot assume jet response of unity. In order to measure the jet

response of the DC calorimeter, photon + jet events were studied. The photon

response of the D0 detector is quite good“; we make use of PT conservation in

photon-jet events to study jet response. However, in an actual photon+jet event,

 

”The photon energy scale is set by the Z mass.
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imperfect jet response is responsible for introducing missing ET into the event. To

properly account for this, the missing PT fraction (MPF) method, defined below, is

employed.

In an ideal detector, during a photon + one jet event, the vector sum of the

photon and the jet energy would be zero.

ET, + E3.“ = 0 (4.4)

However if imperfect response and the resulting ETis considered, Equation 4.4 takes

the form

RmET, + mafia.“ = as}. (4.5)

Where Rjet is the jet response and Rem is the electromagnetic response. Solving

Equation 4.5 for the jet response yieldsl'r

M (4.6)
Rjet Z 1 + ET7

The response error is correlated between ET points because the response is measured

at several different ET values, and is then fit with a function; the errors associated

with this fit are correlated among ET points. This correlation matrix is presented

in the Cafix 5.1 documentation[11]. The response was fit with a variety of functions

and the fits were studied to determine the error and the ET correlations of the

response correction. The response together with the nominal fit and error band is

presented in Figure 4.23. Response data are included from the central calorimeter

 

“After photon energy scale correction, Rem = 1.0

92



(CC) the end-cap calorimeters (EC) and inter-cryostat region (IC).

The different corrections and errors associated with the energy scale are applied

to the jets in this analysis; the net effect of the energy scale correction is to increase

the measured jet energy by 15 — 20%.
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Figure 4.23: The jet response for jets in the D0 calorimeters, the fits and error

bands are discussed in the text. The data are identical, the top plot has a log(:r)

axis to highlight the low ET region.

4.4.5 Energy Scale Closure Tests

To test the effectiveness of the energy scale correction, Herwig jet events are again

studied. The ratio of calorimeter jet energy, Ejet, to particle jet energy, Epart, is

93



studied as a function of particle jet 7). The entire energy scale correction is derived

from and re-applied to, the same Monte Carlo sample. The results, Figure 4.24,

show good closure and enforce the energy scale results to In] 2 2.5.
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Figure 4.24: Energy scale Monte Carlo closure test.

4.4.6 Energy Scale Error

A full treatment of the energy scale errors is left until Chapter 6. However, we

introduce the various sources of error associated with the energ scale correction

and present one method of estimating the magnitude of the total energy scale error

on the measured cross sections. Each component of the energy scale correction

introduces some error. The offset correction incorporates an error associated with

underlying event measurement and the effect of zero suppression on the data. The

94



showering correction has slightly larger error associated with it. Jets at DC are

required to have a minimum of 8 GeV ET, this requirement introduces a bias in

the measurement of the MPF (described earlier in this chapter) at low ET, this

introduces an error as well. Additionally, the MPF introduces other errors, an

error associated with the photon energy scale, an error associated with the photon

background subtraction, and additional systematic biases associated measurement

of the response. These errors are tabulated in Chapter 6 and described in detail in

the CAFIX 5.1 documentation[11]. We present a summary of the sources of error

associated with the energy scale correction in Tables 4.5 through 4.7.

 

 

 

 

 

 

 

[I source I magnitude 1 comment ]

offset correction .5 ——> 0% decreases with E7-

showering correction 1.0% essentially flat in ET

low ET bias 10 —> 0% zero above 20 Gev

photon selection+background .5 % flat in ET

response correction 2 — 3% largest at low and high ET    
Table 4.5: Sources of energy scale correction errors for central (77 ~ 0.0) jets. The

fractional errors are with respect to jet ET .

 

 

 

 

 

 

   

source magnitude comment

offset correction .5 —> 0% decreases with ET

showering correction 2.0% essentially flat in ET

low ET bias 10 ——> 0% zero above 20 Gev

photon selection+background .5 % flat in ET

response correction ~ 2% largest at low and high ET
 

Table 4.6: Sources of energy scale correction errors for central (77 ~ 1.2) jets. The

fractional errors are with respect to jet ET .
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[1 source I magnitude I comment ]
 

 

 

 

 

 

  

offset correction .5 —> 0% decreases with ET

showering correction 4.0% essentially flat in ET

low ET bias 10 —> 0% zero above 20 Gev

photon selection+background .5 % flat in ET

response correction 0 — 3% largest at high ET    
Table 4.7: Sources of energy scale correction errors for forward (17 ~ 2.0) jets. The

fractional errors are with respect to jet ET .
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We include the total energy scale jet energy correction factors and errors for

central (7) ~ 0.0), inter—cryostat, (1) ~ 1.2) and forward (17 ~ 2.0), jets in Figure

4.25. These errors are with respect to jet ET. The errors this introduces into the

c ross section is discussed next.
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4.4.7 Cross Section Energy Scale Error Estimation from

Data

VVe have presented the error associated with the energy scale correction on the energy

of a jet. For purposes of this analysis, the error on the cross section associated with

the energy scale is needed. One estimation of the error associated with the energy

scale corrections is defined by allowing each correction to deviate 10 up and down

from its nominal value. The cross sections are re-derived with these components

to define the total energy scale error on the cross section. We recast the Triple

Differential with these high and low energy scale corrections to determine the error

on the analysis associated with the energy scale. We fit the data points with a.

second degree polynomial in order to smooth the statistical fluctuations and ease

implementation. This approach assumes the components of the energy scale error

due to each individual correction are not correlated. We present the error on the

measurement of the Triple Differential associated with the energy scale derived in

this manner, along with the energy scale correction factors in Figures 4.26 and 4.27.

This result will be compared with the full treatment of the errors discussed in

Chapter 6.
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Now that we have an energy scale corrected collection of good jet events, we

proceed with measuring the cross sections. The next obstacle involves the imperfect

energy resolution of the D9 calorimeter and its effect on the measurement of the

cross sections. The jet energy scale correction assures that the average value for a

measured jet is equal to the energy of the particle jet. However, due to statistical

fl uctuations, the measured jet energy is sometimes higher or lower than the actual

value. If one were to look at the difference between the particle and calorimeter

jet energy after energy scale corrections, a Gaussian distribution, centered on zero,

would result. We refer to the fact that there are many more low energy jets than

high energy jets as a steeply falling characteristic of the jet cross section. Because

of‘ this steeply falling nature, it is not enough that the average measurement of the

energy produces the right result, the width of the ET distributions, the jet energy

resolutions, affects the measured cross sections. We present a method to correct the

measurement for this effect, based on a measurement of these resolutions, in the next

chapter. We will also see another detector effect while measuring the resolutions and

present a method to correct for that as well.

At this stage, we present the raw cross sections, Figure 4.28, which have been en-

ergy scale corrected, additionally the corrections derived thus far have been applied.
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Chapter 5

Resolutions and Unsmearing

As described in Chapter 4, imperfect jet energy resolution changes the shape of, or

smears, the measured cross section. In the cross sections measured here, there are

many more jets at low ET than at higher ET. Let us consider one bin of a cross

section at 39., called bin a, and the bin immediately to its right at Ejal, bin b. The

fact that the jet energy resolution of the D9 calorimeter is not perfect means that

some fraction of events in bin a will fall into bin b and vice-versa. However, because

of the steeply falling nature of jet cross sections, there are many more events in bin

a than in bin b. Therefore, though the fraction of each bin that falls into the other

is the same for both, many more events will migrate from bin 0. to b than the other

way around. The net effect is to increase, or smear up, the cross section in bin b.

Since every bin in a cross section has a bin to the left of itf, every bin is affected by

ET smearing.

 

 

1‘Here we assume E} > E}.

1This assumes that the bin at ET = 0 is not counted as part of the cross section, a valid

alSSuInption for the Triple Differential which begins counting events at ET = 60.0 GeV.
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In this chapter, we describe the process of correcting for this effect, referred to

as unsmearing.

5.1 Jet Energy Resolutions

The main experimental ingredient needed during the unsmearing procedure is an

understanding of the jet energy resolution. That is, the width of the distribution

defined by

(actual jet ET- measured jet ET),

which we define as GET, vs. measured jet ET. Historically, what is usually measured

are the fractional energy resolutions, defined as 13%).

This number is determined using the di-jet asymmetry method outlined in [17].

The asymmetry is measured from actual di-jet data and is defined as

ET} _ ET2

A = —————.

ET; + ET2

(5.1)

The jets in the sample used to define the asymmetry have been corrected using

Cafix 5.1.

A little algebra convinces us that we can use the asymmetry to get the jet energy

resolutions, that is that[17]

 ”ET = \féaA. (5.2)

ET

Where 0,, is the width of the asymmetry distribution and GET is the width of the jet
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energy resolution and we have assumed ET, 2 ET2. These asymmetries are studied

as a function of ET separately for all the pseudo-rapidity bins considered in this

analysis. We include one actual asymmetry distribution in Figure 5.1, overlaid with

a Gaussian fit, for illustration.
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Figure 5.1: An example of an asymmetry distribution, together with a Gaussian fit.

5.1.1 Soft Third Jet and Particle Out of Cone Corrections

The data from which the di-jet asymmetry is measured contain many events with

more than two jets. To deal with this, the asymmetry variable is calculated for a

variety of data sets with increasingly restrictive cuts on the ET of the third jet in

the event. The result is extrapolated to the ideal case in which the ET of the third

jet is equal to zero to measure the resolution of an ideal two jet system. Examples

of this extrapolation for four different ET bins are presented in Figure 5.2 in which
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the measured resolutions for the bin 1.0 < Inl < 1.5 are presented for 4 soft third

jet cuts together with the point extrapolated to ET3 = 0.

Because of particles not contained in the jet cone, 0A may be non-zero even at

the particle level. To remove this effect, the asymmetry variable is calculated for

particle level Monte Carlo jets as well; this number is then subtracted from the

calorimeter level asymmetry measured from jet data. In this manner, the method

is sensitive only to the detector energy resolution of the two jet system.
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Third Jet E1- Cut(GeV)

Figure 5.2: Example of the third jet cut extrapolation.

The resolutions before the particle corrections together with the measured parti-

cle jet resolutions are presented in Figures 5.3 and 5.4, for central and forward jets,

same and opposite side. The data are fit to a second order polynomial; the results

of these fits appear in the figures. The three fit parameters are historically called

0,5 and N.
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Figure 5.3: Fractional jet energy resolutions for two central slices, same and opposite

side, before the particle correction, together with the particle level resolutions (the

lower curve). The outer error bands define the systematic error due to closure, the

inner bands are due to fitting errors. These errors are discussed in detail later in

this chapter.
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Figure 5.4: Fractional jet energy resolutions for two forward slices, same and oppo-

site side, before the particle correction, together with the particle level resolutions

(the lower curve). The outer error bands define the systematic error due to closure,

the inner bands are due to fitting errors. These errors are discussed in detail later

in this chapter.
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These resolutions, shown in Figures 5.3 and 5.4, are studied as a function of

ET separately for all the pseudorapidity bins considered in this analysis. It should

be noted that the di-jet events used in the resolution study, like the events in the

triple differential cross section, can be divided into two classes: events with two jets

on the same side of the detector and events with two jets on opposite sides of the

detector. While measuring the asymmetry from di-jet events it was observed that the

asymmetry from the opposite side distributions was wider than the corresponding

same side resolutions. The asymmetry is sensitive to the jet energy resolution, but

it can, in principle be sensitive to other effects as well. The conclusion is that there

is another effect present.

5.1.2 Vertex Position Resolution and Di-Jet Asymmetry

It has been shown[21] that while measuring the resolution with the asymmetry from

a same side sample produces the correct relation between asymmetry and jet energy

resolution, the opposite side configuration is sensitive to the effect of vertex position

resolution as well. The D0 detector has vertex position resolution on the order

of lcm which is not large enough to account for the differences seen between the

same and opposite side asymmetries. However, for some events in the sample, the

reconstruction software finds more than one vertex. From the distributions of the

distance between the two vertices for the case when more than one is found (Figure

5.5) it can be observed that the difference is very rarely less than 100m. The

conclusion is that the D0 detector together with the D0 reconstruction software

cannot distinguish vertices if they are too close together. This leads to the idea of
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effective vertex position resolution; the effect observed in the measurement of the

di-jet asymmetries. In Table 5.1, we present the fraction of events with 1 vertex

found to all events in each slice. We can see as one moves forward, it is less likely

to find more than one vertex. However, there is no physics reason to expect more

events with only one vertex which produce jets in the forward region. This being

the case, it is expected that the effective vertex position resolution is worse in the

forward region as it is more likely that two different vertices are not resolved there.
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Figure 5.5: The difference between vertices in events where more than one is found,

for all slices of the Triple Differential.

Fortunately, the effect manifests itself in the measurement of the asymmetries in

a predictable way. We begin with the asymmetry:

eas eas

: Ea — Ea
eas eas '

ETnl + Ef‘h

 A (5.3)

In Equation 5.3, E5?“ is the measured jet energy which we can express as the true
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77 bin SS or OS fraction of single vertex events

0.0 — 0.5 SS 0.57

0.0 — 0.5 OS 0.57

0.5 — 1.0 SS 0.57

0.5 — 1.0 OS 0.57

1.0 — 1.5 SS 0.62

1.0 — 1.5 OS 0.59

1.5 — 2.0 SS 0.70

1.5 -— 2.0 OS 0.66  
 

Table 5.1: Fraction of single vertex events for all slices.

jet energy E?” affected by imperfect resolution. That is:

We now recall ET : E3in(6) so that

A:

Errrneas : Esrueu + GET )

E(1+7‘1)8

 

ET

in(61) — E(1 + r2)3in(02)
 

E(1+ T1)Sin(61) + E(1 + r2)sin(92)°

(5.4)

(5.5)

In Equation 5.5, 01 and 62 are the two jet angles and we have defined 7' = 05:1, the

jet energy resolution. If the vertex is now displaced by some small amount, 62:, 61

and 02 will be affected. We start with:

tanQT = R/Z (5.6)

where HT is the true angle, Z is the position of the jet along the z axis, and R is the

distance between the jet and Z axis.

For central jets, R is considered a constant; Rec z 91 cm§. For forward jets, the

 

§These variables are pictured in Figure 5.6.
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Jet

 

Figure 5.6: Variables used in the calculation of the effect of vertex resolution.

hypotenuse in the figure is a constant, equal to z 178 cm, however, RBC is not, it

depends on the jet angle.

Now if we modify Z by i6(Z), Equation 5.6 takes the form:

 

 

1

t 6 =—— 5.7

an M (30th — fifi ( )

for jets in the CC and:

1

t 6 = , 5.8

an“ man-g) ()

for jets in the BC. In Equations 5.7 and 5.8, 0M refers to the measured angle. If we
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solve for sin6 and expand in 572, we obtain”:

 

 

Z

sinOM z si'n6T(1 + (:0.<56T.9in€rp(;§2 )) (5.9)

and

. . 2 6Z
sinOM z 37.72670 + cos 6T(Re )). (5.10)

For the same side case, where 61 ~ 02 the asymmetry now reduces to[21]

(r1— 7'2)

(1 +r1)+(1+r2)

 A:

from which one can extract[17]

<A2 >---7:3 (511)
SS _ 2 °

In the case of opposite side jets, the algebra is much more complicated. If we

use Equation 5.10 and 5.9 for sinfi, we obtain,

2

< A203 >= % + (1:2 )200346 (5.12) 

for the jets in the EC and

Oz

Rec

 
( )2sin220 (5.13)

A
l
"

<A2 >—fi+
OS _2

for jets in the CC.

 

1iDifferent results are obtained in the central region and the forward region because R“ is a

constant with respect to the jet angle while Rcc is not.

113



In Equations 5.12 and 5.13, 0,, is the width of the effective vertex position res-

olution, it is not the vertex position resolution of the DO calorimeter. It is the

net effect of the inability of the DO reconstruction software to distinguish between

two vertices if they are sufficiently close together. It is essentially the effect of the

reconstruction package choosing the wrong vertex some fraction of the time, as seen

in Figure 5.5.

Fortunately, we will not need to take these results (Equations 5.11 - 5.13) at face

value, we can use this prediction together with a Monte Carlo study to introduce a

vertex position resolution into the Monte Carlo, where the vertex is known perfectly,

and attempt to extract the vertex position resolution via Equations 5.11 - 5.13. If

the input and output vertex position resolutions are in good agreement, it will check

the calculations and assumptions presented above.

Figures 5.7 - 5.8 show the fractional jet energy resolution measured, using the

asymmetry formalism, from SS and OS events for the four 17 bins defined in this

analysis. Figure 5.9 contains the SS and OS resolutions overlaid together with their

fit and systematic error bands. The systematic error band was obtained from another

Monte Carlo study using Herwig with DO zero bias data overlaid as discussed in

appendix A. oz is extracted by considering the difference between the two sets of

resolutions, and consideration of the relation

02 )200340 (5.14)
2 2

<A03>—<A35>:(

Zeal
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for the CC case and

 

1 z .

< A203 > — < 43;, >2 Z(I:W)23m26 (5.15)

for the EC case.

For the case of the central (0.0 g |17| g 0.5) region, the measured asymmetries are

not distinguishable. This does not imply that the effective vertex position resolution

is zero there, only that the asymmetry variable is not sensitive to it. In order to

estimate the effective vertex position resolution in the central bin, the results for

the effective vertex position resolution were studied as a function of n and the

measurement was extrapolated into the central bin. To estimate an error on this

central measurement, the error on the measurement of the effective vertex position

resolution from slice 2 is used. This result for the effective vertex position resolution

together with its error analysis is included for the four slices in Figure 5.10. The

effective vertex position is between 2 — 7.5 cm, increasing with pseudo-rapidity, with

errors of 2 -— 4 cm.
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Figure 5.8: Fractional jet energy resolutions for two forward slices, same and oppo-

site side with their total fit + systematic errors.
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Figure 5.10: Effective vertex position resolution for all slices. The inner error is due

to fitting and the outer errors are fit + systematic. The fits shown here are used

to implement the vertex position resolution and its error during derivation of the

Monte Carlo correction, described next.
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5.1.3 Monte Carlo Closure of the Vertex Position Resolu-

tion Measurement

The measurement of the effective vertex position resolution can be tested with a

Monte Carlo study. A Herwig sample of jet data overlaid with DO zero bias data

was studied. These data exist only in the central (lnl < 0.4) and forward (|7)| > 1.6)

regions. To test closure, the measured forward vertex position resolution was input

into the most forward 77 bin defined by 1.5 _<_ |77| g 2.0. After the vertex position

resolution was inserted into the Monte Carlo, the extraction described above was

performed to measure the effective vertex position resolution. The input and output

vertex resolutions are shown in Figure 5.11. These plots show excellent agreement

within the errors and lead us to believe we have a good handle on vertex position

resolution. In Figure 5.11, the forward closure plot is used as one source of error

on the measurement of the effective vertex resolution; an error band is defined to

accommodate the small disagreement in the closure, this error is applied to all slices.

The fact that the Herwig data with zero bias overlay only exist in the most

forward and central region has presented us with a small dilemma. We have decided

to apply the same closure error to all slices although this is probably an overestimate.

However, we will see that this closure error is not a significant source of error in the

Triple Differential so this small over-estimate is not problematic.
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5.1.4 The Plan

Now that the effective vertex position and its effect on the di-jet asymmetry are

understood, we proceed as follows. The effect of energy resolution on the cross sec-

tion (cross section smearing) is treated through use of only the resolutions measured

from a sample of data with both jets on the some side of the calorimeter because

this has been shown to be sensitive to only the energy resolution of the detector.

The measured effective vertex position resolution together with its error is inserted

into a Monte Carlo to derive a correction (and error) to apply to the data to account

for effective vertex position resolution. In the next section, we outline a procedure

for unsmearing the cross sections to correct them for the effect of the energy resolu-

tion of the DO calorimeter after which we will describe the derivation of the vertex

position resolution correction derived from Monte Carlo.
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5.2 Jet Energy Resolution Results

The measured jet energy resolutions for all n bins appear in Figures 5.7 and 5.8.

These are fully corrected for soft third jets and particle level resolutions as described

in [10] and above. We will proceed by using the same side resolutions to unsmear all

of the data as follows. The right hand side of Equation 5.16 is fit to the measured

resolutions in order to parameterize the resolution data. The errors on C, S, and N

together with the covariance matrix for these three parameters is recorded for later

use in defining the unsmearing error.

 

 — + — + C2 (5.16)

5.3 Unsmearing the Data

The procedure for unsmearing follows the method outlined in a previous DO analysis

of jet data[22]. This method assumes that the unsmeared cross section can be

parameterized via a functional form, or ansatz function. We further assume in this

analysis that this function is flexible enough to fit all eight of the ET distributions

that make up the Triple Differential. These assumptions are critical to this approach;

the validity of these assumptions will be quantified. For this analysis the ansatz used

is of the form

F(a, 6,7, 5, E7) = eaET5(1 + 7(72—§)ET)5. (5.17)

The ansatz function is convoluted with the measured resolution functions to
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determine the functional form of the smeared cross sections. This convolution takes

the form:

f(a) fl) 7167 ET’) 2 [C(ET’ _ ET)F(071617161ET)dET (518)

Here, C(ET’ — ET) is a Gaussian distribution with width equal to the width of

the measured jet energy resolutions for jets of transverse energy ET'. Finally, the

function f(a, B, 7, 6, ET' ) is fit to the measured cross sections. After a satisfactory

fit is obtained”, the smearing correction is defined as

_f(aafl77761ET’)

R_F(aafl17a61ET) (5.19)

 

The cross section is corrected, bin by bin, by this factor.

An error associated with the unsmearing method is derived using the relation

8R 8R

6R 2 = ——6i6 'M--. 5.20

In Equation 5.20, Mij is the correlation matrix for parameters i and j, R is the

unsmearing correction factor. The quantity 620j Mi,- is referred to as the covariance

matrix. The sum is over the four parameters that define the ansatz, a, 6, ”y and

6, and the three parameters that are used in the resolutions fits, C, S, and N. The

correlations between each set of parameters 04, fl, 7, 6 and C,S, and N are assumed

 

llThe fitting is done with a CERN library routine, Minuit, sufficient precision is required such

that fits have allowable x2. Minuit supplies the fits, errors, and correlations between the fit

parameters.
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to be zero. The correlations among 0:, fl, 7 and 6 and among C, S, and N are

determined by Minuit during fitting. The derivative of the correction factor with

respect to each of the parameters (at) is determined numerically by varying each
i

parameter, after fitting, by a sufficiently small number (6) and recalling:

df(x)

m

  
= limon

Additionally, the error on the unsmearing correction factors due to the system-

atic errors on the resolution measurement is also included. The resolution closure

plots discussed in Appendix A provide an error band on the resolution measure-

ment. This error can be propagated through the unsmearing correction factors by

parameterizing the resolutions in the following way. Let the parameterization of

0(ET) be amended to include its systematic error:

 

 

0(ET) \/ S2 N2 d2

= C2 — —— d — 5.22
m +m+mfl"+% ()

where d1 and d2 are the parameters which define the resolution closure. These

parameters can then be treated“ exactly as C, S, and N except that they are

nominally zero, with errors equal to the values defined in Appendix A.”

The unsmearing errors are presented in Table 5.2, notice the error due to the

resolution closure is the dominant error. This closure error is fully correlated among

ET points and is usually as large or larger than the other sources of error, which

may have varying degrees of correlation. Therefore the assumption is made that the

“Le. the sum in Equation 5.20 includes d1 and d2.

‘Hdl = .0024, d2 = 14.3.
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total unfolding error is correlated among ET points.

The unsmearing factors and their total systematic errors are included in Figure

5.12. The unsmearing correction factors are on the order of 15% and show a slight

ET and n dependence. The errors are quite small for most of the slices considered

with the possible exception of the opposite side bin between |n| = 1.0 and |17| = 1.5.

In this bin there is a large statistical fluctuation in the data which makes fitting a

smooth curve difficult. The larger fitting error accounts for this.

 

 

 

 

 

 

 

 

 

 

H 77 bin | SS or OS I errors - res. fit errors - ansatz fit errors - res. closure

0.0 — 0.5 SS 0.1 — 0.05% 0.2 — 0.7% 1.4 — 1.7%

0.0 — 0.5 OS 0.11 — .03% 0.6 — 0.2% 1.3 - 0.7%

0.5 — 1.0 SS 0.17 — 0.15% 0.3 — 0.7% 1.1 — 1.4%

0.5 — 1.0 OS 0.05 — 0.08% 0.2 — 0.6% 1.5 - 1.1%

1.0 — 1.5 SS 0.4 — 0.5% 1.6 -- 3.4% 1.8 — 4.0%

1.0 —- 1.5 OS 0.4 - 0.3% 6.0 — 5.0% 2.0 — 3.0%

1.5 — 2.0 SS 0.9 — 0.6% 0.9 — 3.0% 1.6 — 3.0%

1.5 -— 2.0 OS 0.8 — 0.9% 0.7 — 1.6% 0.9 — 1.4%     
 

Table 5.2: Sources and magnitudes of unfolding error.
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Figure 5.12: Unsmearing correction factors (R) and errors for all slices of the Triple

Differential.
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5.4 Derivation of Vertex Position Resolution Cor-

rection

5.4.1 Outline of Assumptions

To derive a method to correct the measured cross sections for the effective vertex

position resolution introduced above, a Monte Carlo study was performed. It is

not obvious when attempting to correct the measured cross sections for the effects

of vertex position resolution, at what stage to apply the correction. An argument

can be made for unsmearing the cross sections as described above, but with resolu-

tions which have been contaminated with the vertex position resolution, and in this

way correcting for the energy resolution of the calorimeter, and the vertex position

resolution simultaneously. It is not clear if this would work. However, it will be

shown that this approach is flawed for another reason. The energy resolution of the

calorimeter affects only the measured jet energy. Vertex position resolution affects

the jet pseudo-rapidity as well. In fact, if the vertex position is mis—measured such

that the jet ET increases, the angle will always get smaller, and vice-versa. This is

equivalent to the statement that as a jet moves further forward, its ET decreases.

In this way, these variables are highly, in fact completely anti-correlated, therefore

a correction for 17 and ET smearing must be derived simultaneously.

In order to investigate this effect, a cross section was generated from NLO jetrad

with no smearing effects. Additional cross sections were generated in which only the

jet ET was recalculated with respect to a vertex distribution of width oz = 100m,

and again with only the jet 77 recalculated. Finally, cross sections were recast with
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both 17 and ET recalculated together. The results of this study are presented in

Figures 5.13 and 5.14. In Figure 5.13 we present the ratio of the Jetrad cross sections

in which ET and 17 were recalculated separately. This study was performed only for

the same side and opposite side forward (1.5 g |77| g 2.0) bins. Observe that the

effect of ET smearing seems to dominate. If we were to try to de—couple these effects

and add them together, ignoring any correlations that may exist, we would grossly

over-estimate the effect. This is apparent in Figure 5.14 which contains the net

effect of vertex position resolution smearing assuming no and complete correlations.

Clearly, the effect is small when the correlations are properly accounted for. We

now proceed with the description of the Monte Carlo based derivation of the vertex

position resolution correction
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5.4.2 Correction Derivation and Implementation

Events in next-to-leading order Jetrad were subjected to vertex smearing based on

the vertex position resolutions presented in Figure 5.10. The energies and angles

of the jets in the events were recalculated with respect to the generated vertex and

the cross sections were calculated before and after the smearing. The ratio of the

unsmeared to the smeared cross section is then defined as the correction factor.

The smearing was done with the high, nominal, and low vertex position resolutions,

defined by the three curves in Figure 5.10. The ratio is fit to a second degree

polynomial and a full error analysis is performed on the fit in order to understand

any error introduced by fitting the correction factors in this way. The parameters,

their errors and correlations are combined with the derivative of the polynomial to

determine the error introduced by the fit. The error associated with the correction

is defined as the fit error added in quadrature with the difference between the high

and low corrections. In the end, the effect of the vertex position resolution appears

to be very small. The correction is of the order of 1% for all slices considered. The

correction introduces some small shape dependence as well. It may seem odd that

the effective vertex position resolution has such a small effect on the measurement

of the cross sections described here. It is believed that while ET smearing due to

effective vertex position resolution results in events smearing into the cross section,

77 smearing results in events smearing out. These two effects are very correlated, for

example if the ET of a jet increases due to vertex position resolution, the jet’s angle

will decrease”. It is believed that the relative effects of both smearings, together

 

11This can be verified by a simple two jet calculation in which the jet quantities are calculated

with respect to a vertex, and to Z = 0.
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with their correlations, are responsible for the relatively small correction needed to

account for effective vertex position resolution.

To assuage the fear that the correction could depend on the theory used to derive

it, the correction is derived from three different theories. A sample of leading order

jetrad with scale a 2 ET/2, an NLO sample with the same scale and a NLO sample

with ,u = E/2. The results of this study for the three theories together with the

errors are presented in Figures 5.15 and 5.16. The correction factors applied are

derived from the NLO sample with ,u = E/2 as it best represents the datal. All

Monte Carlo samples used to derive the vertex position resolution correction use the

CTEQ3M parton distribution function.

 

lSee Chapter 6.
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Chapter 6

Results, Error Analyses, and

Conclusions

In this chapter, the Triple Differential results and comparisons to theory are pre-

sented. The data and theory are presented on the same plot additionally, the frac-

tional differences between the data and theory are presented.

A X2 test, which provides a quantified comparison to theory is also performed.

In order to perform this test, the covariant error matrix for the Triple Differential

must be understood. We describe the mechanism for producing this matrix and

finally, quote a value for X2 for each of the theoretical predictions studied.

6.1 Graphical Comparisons to Theory

The error contributions for each of the eight slices are presented in Figures 6.1 and

6.2.

The fully corrected cross sections are presented in Figures 6.3 and 6.5. Addi-
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tionally, the fractional differences with regard to one theory are presented in Figures

6.4 and 6.6. The results are compared to NLO Jetrad with the CTEQ3M parton

distribution function with [L = E/2 in Figures 6.4 and 6.6. Figures 6.7 and 6.8 con-

tain the data-theory comparisons using the CTEQ4M parton distribution function.

Figures 6.9 and 6.10 compare the data to the CTEQ4HJ parton distribution func-

tion which predicts more jet production at high ET than CTEQ4M. Figures 6.11

through 6.16 compare the data to a recent analysis of global data by the MRST

group[23] called the MRST partons distribution functions. Figures 6.11 and 6.12

contain their nominal fit, Figures 6.13 and 6.14 contain a high fitl to the MRST

gluon distribution and Figures 6.15 and Figures 6.16 contain a low fit to the MRST

gluon distribution. All the predictions shown use factorization and renormalization

scales of ,u = E/2.

The components of the systematic error for each slice are presented in Figures 6.1

and 6.2 and numerically in Tables 6.1 and 6.2 . The energy scale error is the largest

component for all slices; the components of the energy scale error are itemized in

Chapter 4.

The data appear to be in very good agreement with the CTEQ3M family with

scale p = E/2. CTEQ4M appears to have a slightly different normalization, but

the data still agree for all slices considered. CTEQ3M and CTEQ4M differ in

that CTEQ4M contains collider jet data while CTEQ3M does not. CTEQ4HJ

brings down the slight excess in the OS central cross section, but produces some

disagreement in the rest of the slices.

 

lHere, high and low are ambiguous terms used to describe perturbations to the fit performed

to the MRST gluon distribution.
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MRST appears to be too high in the central region, but agrees well elsewhere.

The high gluon fit from the MRS group MRSTgT appears to be consistent with DC

data, while the low gluon fit, MRSTgl, shows considerable disagreement almost

everywhere.
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Table 6.1: Fractional (%) error components for slices 1 and 2 of the Triple Differen-

tial.

Table 6.2: Fractional (‘76) error components for slices 3 and 4 of the Triple Differen-

tial.

 

 

 

 

 

 

 

 

Slice 1 Slice 2

E scale 8 — 20 E scale 8 — 20

cut efficiency < 1.0 cut efficiency < 1.0

luminosity 6.8 — 5.4 luminosity 6.8 — 5.4

unfolding .2 — 4 unfolding .6 — 7

vertex corr. < 1.0 vertex corr. < 1.0

eta bias corr. ~ 1 eta bias corr. ~ 1       

 

 

 

 

  
 

 

       

Slice 3 Slice 4

E scale 10 —- 40 E scale 19 — 35

cut efficiency < 1.0 cut efficiency < 1.0

luminosity 6.8 — 5.4 luminosity 6.8 — 5.4

unfolding 2 — 5 unfolding 2 — 12

vertex corr. < 1.0 vertex corr. < 1.0

eta bias corr. 1 — 3 eta bias corr. 1 — 5
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Figure 6.1: Components of the error for slices 1 and 2.
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Figure 6.10: The fully corrected triple differential compared to NLO Jetrad,

CTEQ4HJ, u = %E for slices 3 and 4, (data - theory) /theory. The inner error

bars are statistical only, the outer are the sum of all errors, statistical + systematic.
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Figure 6.12: The fully corrected triple differential compared to NLO Jetrad, MRST,

p = %E for slices 3 and 4, (data - theory)/theory. The inner error bars are statistical
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Figure 6.13: The fully corrected triple differential compared to NLO Jetrad,

MRSTgT, [1 = é-E for slices 1 and 2, (data - theory)/theory. The inner error bars

are statistical only, the outer are the sum of all errors, statistical + systematic.
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Figure 6.14: The fully corrected triple differential compared to NLO Jetrad,

MRSTg’T, ,u = %E for slices 3 and 4, (data - theory) /theory. The inner error bars

are statistical only, the outer are the sum of all errors, statistical + systematic.
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Figure 6.16: The fully corrected triple differential compared to NLO Jetrad,

MRSTgl, 71 = %E for slices 3 and 4, (data - theory)/theory. The inner error bars

are statistical only, the outer are the sum of all errors, statistical + systematic.
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6.2 Quantitative Theory Comparisons

In order to quantify a comparison to a theoretical prediction, a more sophisticated

error analysis can be performed. The goal is to understand the correlations between

each data point’s error bar and the error associated with the other data points. This

is equivalent to the construction of the correlation matrix. If the elements of the

correlation matrix are multiplied by the errors of the corresponding data points, the

covariance matrix results. We will discuss the elements necessary to construct this

matrix for the Triple Differential.

The sources of error in the Measurement of the Triple Differential are presented

in Table 6.3, which describes each error contribution and its correlations to the other

data points in the cross section. Each error can be classified as either uncorrelated,

totally correlated, or partially correlated. In addition, totally and partially corre-

lated errors can be correlated across each slice (in ET), and not correlated with

other slices, or correlated across the entire Triple Differential.

 

 

 

  

 

 

 

  

error I] ETcorrelation cross section correlation

data statistical T uncorrelated uncorrelated

cut efficiency uncorrelated uncorrelated

luminosity correlated correlated

unsmearing correlated uncorrelated

vertex res. corr. correlated uncorrelated

eta bias corr. correlated uncorrelated

energy scale partially partially     
 

Table 6.3: Sources of error in the Triple Differential and their correlations

We first treat the errors not associated with the energy scale correction as they

are either totally correlated or completely uncorrelated. We then discuss the energy
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scale errors which have varying degrees of correlation.

6.2.1 Construction of the Covariance Matrix for Errors not

Associated with the Energy Scale Correction

We begin by defining the error associated with data point i as 6,; the index i runs

across each ET bin in each cross section. The cross sections are ordered (arbitrarily)

such that i = 1, 21 defines the same side central slice, i = 22, 42 covers the opposite

side central slice, i = 43, 63 spans the same side cross section in the bin 0.5 g |77| g

1.0 and so forth; i runs from 1 to 123 as there are 123 total bins in our measurement

of the Triple Differential.

We construct a matrix defined by Mm- = 6,6,- for each of the errors described

in Table 6.3. Next Mm- is multiplied by one of three matrices depending on the

degree of correlation, am- 2 Mid- x pm. am- is the covariance matrix for errors not

associated with the energy scale. PM is either a unit matrix for totally correlated

errors across the entire Triple Differential, a matrix defined by pm- 2 65;- where 5’"

is the Kronecker delta symboli, in the case of totally uncorrelated errors, or a block

diagonal matrix in the case of errors which are correlated between each ET bin in a

cross section, but uncorrelated between cross sections.

This formalism can be visualized by studying the correlation matrix, p,”- for

these errors, presented in Figure 6.17. The figure contains the correlation matrix

for all errors except errors associated with the energy scale. Although the inputs to

each component’s correlation are either 1.0 or 0.0, the net effect introduces partial

 

16:; = 1, iii 2 j, 0 otherwise.
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6.2.2 Construction of the Covariance Matrix for Errors As-

sociated with the Energy Scale Correction

The energy scale correction has different sources of error with different degrees of

correlation between ET bins. These errors are summarized in Table 6.4. Correlated

energy scale errors are considered to be correlated across all cross sections.

 

 

 

 

 

 

 

 

     

I] errors correlation

statistical uncorrelated

offset correlated

showering correlated

background correlated

systematic biases correlated

low ET bias correlated

response partially correlated
 

Table 6.4: Sources of energy scale error and their correlations.

The response correction is treated differently as its error is partially correlated

between ET bins. The response is a fit to many data points, this fit introduces

the partial correlation in the response error. This fit was studied, by varying each

data point and studying the change of the response correction for each of the other

data points. The correlation matrix for the response error is presented in[11]. Since

there isn’t enough data in the cross sections to adequately populate the energy scale

covariance matrix, a simple Monte Carlo was developed. In this toy Monte Carlo,

an event is generated and weighted by the measured cross section. This event is

then studied to determine the energy scale correction and error associated with

each component. This is repeated for many events and appropriately averaged to

populate the energy scale covariance matrix.
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We can test this formalism by exploiting the fact that the energy scale error

associated with each point is identical to the square root of the diagonal of the

energy scale covariance matrix:

escale

01.1 = 6i6jpz‘g‘

however, across the diagonal i = j which implies

escale

i,i
0' = 67.62pm

and

escale _ escale

.5, _ ,/a,,. .

This can be compared to the error obtained from the energy scale package during

execution to test the accuracy of the toy Monte Carlo. The results of this test are

presented in Figure 6.18.
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Figure 6.18: Comparison of energy scale errors from data and from the toy Monte

Carlo used to study the energy scale error correlations.
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Finally, the energy scale correlation matrix can be studied to assure reasonable

(within :l:1) correlations. This matrix is presented in Figure 6.19.

pm. - Energy Scale Erorrs

 
Figure 6.19: The correlation matrix for errors associated with the energy scale

correction.

6.2.3 X2 Tests

Now that we have the covariance matrix for the energy scale errors and for all other

errors we can add them together to create the covariance matrix for the Triple
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Differential. Once this matrix exists, a x2 test can be performed. This provides a

means to quantify the measured data’s agreement with theory. The variable takes

the form:

123 123

x2 = Z: ZED.- - T.)a,-jj1(Dj — T7). (6.1)

In Equation 6.1, D.(T,~) is the data(theory) point in bin 2', 0i,j is the covariance

matrix for the Triple Differential.

We present the results of the X2 test for the different theories in Table 6.5, the

probability presented in the table defines the likelihood that each theory describes

the data.

 

 

 

 

 

Theory x2 probability

CTEQ3M 71 = E/2 138.2 16.5%

CTEQ3M ,1 = E 153.1 3.4%

CTEQ3M ,1 = 2E 180.3 0.06%

CTEQ3M ,1 = E/4 160.4 1.3%
 

CTEQ3M p. = ET/2 140.8 13.1%
 

 

CTEQ4M 71 = E/2 119.8 56.4%

CTEQ4HJ ,1 = E/2 142.1 12.8%

MRST 11 = E/2 147.02 6.9%

MRSTgT [.1 = E/2 115.95 66.1%

MRSTgl [,1 = E/2 221.56 1.3 x 10-5%

 

 

 

      
 

Table 6.5: X2 test results for the Triple Differential, there are 123 degrees of freedom

in the measurement.

6.2.4 Conclusion

The Triple Differential has been measured in the region |n| g 2.0. We have argued

that the measurement should be sensitive to variations in the theoretical predictions.
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Observe, in Table 6.5, that the result appears to have considerable discriminatory

capability. We present the x2 test as an example of the power of the result. This

measurement would be better utilized as an input to a global parton distribution

function fit. This would represent a more accurate input than currently available

from any previous study of hadron-hadron jet data. As it stands alone, the Triple

Differential prefers the CTEQ4M and the MRSTg T parton distributions evaluated

at renormalization and factorization scales 71;, 7.1, = E/2.
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Appendix A

Resolution Monte Carlo Closure

This appendix describes the Monte Carlo closure test of the resolution measurement.

A.1 Zero Bias Overlay

Data are overlaid by a package which fills an imaginary calorimeter first with parti—

cles from the Herwig Monte Carlo event generator and then with the average energy

detected by the DO detector during a zero bias event. This is useful to more closely

model real data during taken running. This procedure is expected to provide a

good approximation to actual DO data but has the advantage that the energy of

the particle jets is known.

A.2 Closure Tests

To check the Di—jet asymmetry method of resolution measurement, the straight

resolutions are calculated. The straight resolutions are the actual transverse energy
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resolution of the DO detector modeled by Monte Carlo. A particle jet of known

energy is created and sent into the DO calorimeter. All detector effects are accounted

for and the jet energy is again measured at the calorimeter level. The quantity

ET ca, — ETpart is measured and defined as the straight or true resolution. ET“,

refers to the transverse energy of the calorimeter jet and ETpart to the corresponding

particle jet. The straight resolutions are compared to the resolutions obtained via

the di-jet asymmetry method from the same Monte Carlo data. Figure A.1 contains

the difference between the straight resolutions and the resolutions obtained from

the di-jet asymmetry method for the central and forward 77 regions. The upper and

lower curves define the closure error applied to the measured energy resolutions.

This curve is parameterized by 111/Er} + (12 where (11 = 14.3 and d2 = 0.0024. This

parameterization represents the 68% confidence interval for closure; if many data

points existed, 68% of them would be contained within this curve.

The data necessary to perform this study were only generated for the most

forward ([77] > 1.6) and the central (lnl < 0.4) pseudo-rapidity bins.
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Figure A.1: Monte Carlo closure of the di-jet asymmetry method for central (left)

and forward (right) jets.
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A.2.1 Vertex Position Resolution and Energy Resolution

Closure

As discussed in Chapter 5, in the presence of imperfect vertex position resolution,

the same side asymmetries are expected to represent the jet energy resolutions only

and the opposite side resolutions are expected to be sensitive to the effective vertex

resolution. In order to investigate this effect, the Monte Carlo was amended to model

the vertex resolution measured in the data. During this test, for the calorimeter jets

used in the asymmetry measurement, the jet quantities were calculated assuming

imperfect vertex position resolution. The energy resolutions were calculated for the

same and opposite side samples as well as for the combined sample. The results are

presented in Figure A.2 for the forward slice. One can observe good agreement in the

same side case, but not in the opposite side or the combined sample. This supports

the claim that the same side resolutions are the ones to use to correct for the finite

energy resolution of the DO calorimeter. The same side energy resolutions only are

used in this analysis to represent the energy resolution of the DO calorimeter.
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Figure A.2: Monte Carlo closure measurement with an input vertex resolution for

the combined sample (top left), the opposite side sample (top right) and the same

side sample (bottom left).
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Appendix B

Numerical Cross Sections

This appendix contains the numerical Triple Differential results.
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ET Cross Section error (stat) error(sys)

0.646E+02 0.947E+03 0.169E+02 0.980E+02

0.746E+02 0.422E+03 0.113E+02 O.425E+02

0.847E+02 O.209E+03 0.21 7E+01 O.196E+02

0.947E+02 0.114E+03 0.161E+01 0.110E+02

0.105E+03 0.655E+02 0.122E+01 0.628E+01

0.115E+03 0.407E+02 0.965E+00 O.408E+01

0.125E+03 0.222E+02 0.714E+OO 0.205E+01

O.135E+03 0.142E+02 0.166E+00 0.122E+01

0.145E+O3 0.933E+01 0.135E+00 0.837E+00

0.155E+03 0.625E+01 0.110E+00 0.558E+00

0.165E+03 0.405E+01 0.888E—01 0.363E+00

0.175E+03 0.296E+01 0.760E—01 0.291E+00

0.189E+03 0.173E+01 0.317E—01 0.172E+00

0.209E+03 0.924E+00 0.231E—Ol 0.106E+00

0.229E+03 0.482E+00 0. 167153-01 059413-01

0.249E+03 0.243E+00 0.118E—01 0.298E—01

0.27OE+03 0.149E+00 0.926E—02 0.225E-01

0.290E+03 0.931 E—Ol 0.729E—02 0.172E—01

0.310E+03 0.427E—01 0.491E-02 0.707E—02

0.330E+03 0.153E—01 0.292E—02 0.191 E—02

0.371E+03 0.418E-02 0.719E—03 0.628E—03   

 

  
 

Table 31: The DO Triple Differential for same side events, |17| g 0.5. Units on the

cross section and errors are picobarns, ET is in GeV.
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ET Cross Section error (stat) error(sys)

0.646E+02 0.865E+03 O.151E+02 0.101E+03 H

0.746E+02 0.375E+03 0.996E+01 0.425E+02 I]

0.847E+02 0.183E+03 0.698E+01 0.199E+02

0.947E+02 0.968E+02 0.138E+01 0.109E+02 H

0.105E+03 0.540E+02 0.103E+01 0.626E+01

0.115E+03 0.298E+02 0.764E+00 0.338E+01

0.125E+03 0.167E+02 0.572E+00 0.185E+01

0.135E+03 0.108E+02 0.134E+00 0.126E+01

0.145E+03 0.658E+01 0.104E+00 0.781 E+00

0.155E+03 0.403E+01 0.812E—01 0.468E+00

0.165E+O3 0.262E+01 0.652E—01 0.317E+OO

0.175E+03 0.170E+01 0.404E—01 0.222E+00

O.185E+03 0.104E+01 0.315E—01 0.133E+00

0.195E+03 0.766E+00 0.269E—01 0.110E+00

0.205E+03 0.485E+00 0.212E—01 0.754E—01

0.215E+03 0.309E+00 0.169E—01 0.446E—01

0.225E+03 0.193E+00 0.132E—01 0.285E—01

0.235E+03 0.174E+00 0.124E-01 0.361E—01

0.261E+03 0.464E—01 0.279E—O2 0.856E—02

0.310E+03 0.558E-02 0.870E—03 0.146E—02    
 

Table B2: The DO Triple Differential for same side events, 0.5 S |n| S 1.0 Units

on the cross section and errors are picobarns, ET is in GeV.
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ET Cross Section error (stat) error(sys) ||

0.646E-i-02 0.566E+03 0.120E+02 0.631E+02

0.746E+02 0.255E+03 0.813E+01 0.330E+02 H

0.847E+02 0.998E+02 0.138E+01 0.114E+02 [I

0.947E-i-02 0.515E+02 0.992E-1-00 0.629E+01

0.105E+03 0.241 E+02 0.677E+00 0.305E+01

0.115E+03 0.131E+02 0.498E+00 0.181E+01

0.125E+03 0.627E+01 0.342E+00 0.945E+OO

0.135E+03 0.322E+01 0.706E—01 0.493E+00

0.145E+03 0.185E+01 0.529E-01 0.316E+00

0.155E+03 0.939E+00 0.372E—01 0.165E+00

0.165E+03 0.510E+00 0.270E—01 0.931 E—Ol

0.183E+03 0.132E+00 0.589E—02 0.262E01

0.215E+03 0.145E—01 0.152E—02 O.48413-02

0.301 E+03 0.366E—03 0.948E—04 0.73513-03 
  
 

Table B.3: The DO Triple Differential for same side events 1.0 S |17| _<_ 1.5. Units

on the cross section and errors are picobarns, ET is in GeV.

 

 

 

 

 

 

 

 

  

ET Cross Section error (stat) error(sys)

0.645E+02 0.261E+03 0.828E+01 0.522E+02 H

0.745E+02 0.892E+02 0.482E+01 0.167E+02

0.845E+02 O.291E+02 0.739E+00 0.537E+01

0.946E+02 0.106E+02 0.440E+00 0.197E-i-01

0.105E+O3 0.348E+01 0.246E+00 0.662E+00 ||

0.115E+03 0.104E+01 0.378E-01 0.215E+00

0.124E+03 0.359E-l-00 0.211E—01 0.903E—01 H

0.138E+03 0.592E—01 0.541E-02 0.135E—01 "
     
 

Table B4: The DO Triple Differential for same side events, 1.5 g |17| g 2.0. Units

on the cross section and errors are picobarns, ET is in GeV.
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ET Cross Section error (stat) error(sys)

0.646E+02 0.960E+03 0.171E+02 0.982E+02

0.746E+02 0.453E+03 0.118E+02 0.450E+02

0.847E+02 0.227E+03 0.838E+01 0.237E+02

0.947E+02 0.119E+03 0.165E+01 0.111E+O2

0.105E+03 0.659E+02 0.123E+01 0.624E+01

0.115E+03 0.388E+02 0.943E+00 0.357E+01

0.125E+03 0.234E+02 0.213E+00 0.198E+01

0.135E+03 0.153E+02 0.173E+00 0.136E+01

0.145E+03 0.101E+02 0.140E+00 0.908E+00

0.155E+03 0.624E+01 0.110E+00 0.554E+00

0.169E+03 0.379E+01 0.469E—01 0.362E+00

0.189E+03 0.182E+01 0.326E-01 O.179E+00

0.209E+03 0.903E+00 0.229E—01 0.940E—01

0.229E+03 0.499E+00 0.170E—01 0.572E—01

0.249E+03 0.244E+00 0.119E—01 0.276E—01

0.270E+03 0.144E+00 0.912E-O2 0.184E-01 |]

0.290E+03 0.877E—01 0.711E—02 0.129E—01

0.310E+03 0.552E—01 0.564E—02 0.988E-02

0.330E+03 0.334E-01 0.438E—02 0.587E—02

0.350E+03 0.140E—01 0.283E—02 0.244E—02

0.390E+03 0.745E—02 0.110E—02 0.220E—02  

 

 

 

Table BS: The DO Triple Differential for opposite side events, |17| g 0.5. Units on

the cross section and errors are picobarns, ET is in GeV.
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ET Cross Section error (stat) error(sys)

0.646E+02 0.885E+03 0.154E-l-02 0.100E+03

0.746E+02 0.427E+03 0.107E+02 0.513E+02

0.847E-i-02 0.205E+03 0.743E+01 0.235E+02

0.947E-l-02 0.108E-l-03 0.538E+01 0.122E+02

0.105E+03 0.591 E+02 0.108E+01 0.663E+01

0.115E+03 0.348E+02 0.830E+00 0.408E+01

0.125E+03 0.199E+02 0.627E+00 0.221E+01

0.135E+03 0.116E+02 0.480E+00 0.128E+01

0.145E+03 0.759E+01 0.387E+00 0.860E+00

0.155E+03 0.487E+01 0.899E-01 0.557E+00

0.165E+03 0.334E+01 0.743E—01 0.397E+00

0.179E+03 0.189E+01 0.304E—01 0.235E+00

0.199E+03 0.917E-l-00 0.211E—01 0.128E+00

0.219E+03 0.427E+00 0.143E—01 0.610E—01

0.239E+03 0.227E+00 0. 104153-01 037313—01

0.259E+03 0.112E+00 0.723E—02 0.191E—01

0.279E+03 0.383E—01 0.421 E—02 0.473E—02

0.308E+03 019813-01 021113-02 036713-02

0.358E+03 061513-02 086013-03 0.235E—02   
 

 

Table B6: The DO Triple Differential for opposite side events, 0.5 g |17| _<_ 1.0.

Units on the cross section and errors are picobarns, ET is in GeV.
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ET Cross Section error (stat) error(sys) l]

0.046E+02 0.470E+03 0.111E-l-02 0.640E+02 [I

0.746E+02 0.205E+03 0.734E-l-01 0.275E+02 “

0.847E+02 0.100E+03 0.530E+01 0.164E+02

0.947E+02 0.443E+02 0.932E+00 0.569E+01

0.105E-l-03 0.250E+02 0.700E-l-00 0.350E-l-01

0.115E+03 0.138E+02 0.521E+00 0.207E+01

0.125E+03 0.771 E+01 0.389E-l-00 0.124E+01

0.135E+03 0.437E+01 0.849E—01 0.686E-l-00

0.145E-l-03 0.263E-l-01 0.656E—01 0.424E+00j

0.155E+03 0.153E+01 0.500E—01 0.278E+00

0.165E+03 0.908E-l-00 0.383E—01 0.167E+00

0.183E+03 0.372E+00 0.108E—01 0.740E—01

0.213E-l-03 0.813E—01 0.495E—02 0.186E—01

. 0.255E+03 0.912E—02 0.103E—02 0.252E—02    
 

Table B7: The DO Triple Differential for opposite side events, 1.0 g |77| g 1.5.

Units on the cross section and errors are picobarns, ET is in GeV.

 

 

 

 

 

 

 

  
 

 

   

ET Cross Section error (stat) error(sys)

0.645E+02 0.159E+03 0.652E+01 0.224E+02

0.746E+02 0.584E+02 0.397E+01 0.784E+01

0.846E+02 0.266E+02 0.730E+00 0.488E+01

0.947E+02 0.105E+02 0.459E+00 0.192E+01

0.105E+03 0.485E+01 0.312E+00 0.890E+00

0.115E+03 0.238E-l-01 0.218E+00 0.533E+00

0.125E+03 0.112E+01 0.149E+00 0.277E+00 H

0.135E+03 0.549E+00 0.298E—01 0.157E+00 "

0.145E+03 0.252E+00 0.196E—01 0.733E—01

L0.163E+03 0.581E—01 0.490E—02 0.207E-01 H  
 

 

 

Table B8: The DO Triple Differential for opposite side events, 1.5 g |77| g 2.0.

Units on the cross section and errors are picobarns, ET is in GeV.
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