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ABSTRACT

ACCURACY OF SOIL PROPERTY MAPS

FOR SITE-SPECIFIC MANAGEMENT

By

Thomas G. Mueller

The accuracy of soil property maps for site-specific management may be

inadequate at sampling intensities recommended by commercial agriculture. Since the

success of site-specific fertilizer applications depends on the quality of soil property

maps, it is critical for Michigan farmers who are adopting these practices to have an

understanding of the accuracy associated with different soil sampling strategies, soil

sampling intensities, and interpolation techniques. This thesis evaluates how grid

sampling and interpolation schemes affected map accuracy based on measures ofmap

error. The second objective was to evaluate how different interpolation techniques that

incorporate terrain attributes affects the spatial predictions of soil properties and whether

relative performance ofthese techniques is affected by the scale of soil sampling. In

addition to the soil samples used for spatial interpolation, samples were collected to

assess the quality of the predictions. Grid point sampling at the industry standard

intensity (100 m regular grid), grid cell sampling (100 m grid cells) and directed

sampling based on soil type were not adequate to produce accurate nutrient condition

maps for this field even though most ofthe variables were spatially structured. Prediction

efficiencies were 0.5 to 10.5 % greater for inverse distance weighted interpolation than

for kriging using a distance exponent of 1.5 at the 30-m grid sampling intensity. At high



sampling densities (30 m regular grid), interpolation methods that utilized terrain

attributes had similar prediction errors to interpolation methods that did not utilize terrain

attributes. At a lower sampling intensity (61 m regular grid), methods that utilized terrain

attributes, especially multiple regression, were more accurate than methods that did not.

At the 61 m grid, the RMSE for multiple regression was lower (3.3 g kg") than the

RMSE for ordinary kriging (4.1 g kg’l). A 100 m grid was not of sufficient intensity to

be used to create accurate maps of soil properties for site-specific nutrient management,

enhancing spatial estimates with terrain attributes can reduced the number of samples

required to create an accurate map. It was not necessary to use complex, time consuming

geostatistical techniques to use terrain attributes because multiple regression was

sufficient.
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INTRODUCTION

Precision agriculture is about managing soil and crop variability in space and time

in order to improve crop performance and environmental quality (Pierce and Nowak,

1999). Soil chemical and physical properties and crop yield are spatially quite variable.

While some attributes are stable over time (e.g. total carbon, texture), others exhibit a

great deal oftemporal variability (e.g. soil N, soil water content water, grain yield, and

pest infestation). The area of precision agriculture related to nutrient management is

often referred to as site-specific fertility management (SSFM). In this dissertation, I am

specifically concerned with the SSFM of soil nutrients that that are spatially variable but

relatively temporally stable, specifically, total carbon, pH, P, K, Ca, and Mg.

Several conditions are essential for successful SSFM, the most basic of which is

that variation in soil properties is adequately known (Pierce and Nowak, 1999 and

Sawyer, 1994). Some ofthe studies that have tested the validity of this premise have

shown that it is not always valid (Wollenhaupt et a1, 1994; Gotway et al., 1996). Some

SSFM agronomic and economic studies that have had mixed or negative results (Snyder

et al., 1997; Wibawa et al., 1993; Wollenhaupt and Bucholz, 1993) might be explained by

poor prediction accuracy of soil properties. Fortunately, there are good methods for

measuring prediction and map accuracy.

The kriging variance can not be used to estimate the map accuracy because it is

independent of the data values (Deutsch and Journel, 1998) and only dependent on the

covariance model and the data configuration (Goovaerts, 1997). Cross-validation is a

technique where sample data points are sequentially dropped from the prediction data set,

estimated from the neighboring point, and then replaced (Deutsch and Joumel, 1998).



The measured values are subtracted from the predicted values to calculate the residuals

which can be used to assess the accuracy of the predictions. For a regular gridded data

set, cross-validation tends to over estimate prediction errors. A better approach would be

to jack-knifing with an independent validation data set. This approach was used in this

dissertation. The calculation of these errors is discussed in the first section of this

introduction.

The first objective of this dissertation was to evaluate how grid sampling and

interpolation schemes affected map accuracy and prediction efficiency. The next

objective was to evaluate different analytical techniques that using terrain attributes affect

the spatial prediction of soil properties and whether relative performance of these

techniques was affected by the scale of soil sampling. This dissertation requires some

understanding of geostatistics, ordinary kriging, and inverse distance interpolation. The

theory is presented in the second section of this introduction.

Prediction Errors and Efficiencies

In this study, measures of map error included MSE, RMSE (root mean squared

error), and bias. Let vi denote the difference between predicted value and observed value

at location 8;, i=1, ..., nv, where nV is the number of values in the validation data set. A

map correct on average should have EN] = 0. The bias of the map is estimated as

11
V

l ""

Bias = ——Zvi

i-l



and the MSE of the map as

MSE = Bias2 +—l—1—Zv(v,.—v)2

1 "V

——zvs
11v —1i=1

The RMSE is the square root of the MSE, RMSE-:JMS . The mean square

error combines accuracy (biasz) with precision, the variance of the residuals. Prediction

efficiency referred to as goodness by Gotway et a1. (1996) is calculated as

Prediction efficiency = 100% * (MSEM, — MSEMM XMSEM, )“. [1]

Positive prediction efficiencies can be interpreted as the percent reduction in MSE as

compared with the field average approach (A30). A prediction efficiency of 15% for

kriging can be interpreted as "compared to the field average approach, kriging reduced

the MSE by 15%." The optimal distance exponent for IDW interpolation was determined

as the one yielding the lowest RMSE.

Spatial Interpolation

A spatial estimator at an unobserved location 3 of an attribute Z is defined as a

weighted average of the observed values ofthe attribute at spatial locations 5:. The

weights Wsm may be restricted to non-zero values in some neighborhood N“) of the target

location 5. If n(s) is the number of observed values in the neighborhood, the predicted

value is calculated as



,. n(s)

2(s) = Zwsizc.)
i=1

The essential difference between kriging and IDW estimation lies in the

determination of the weights. The weights w for IDW are based on the distance between

the point to be estimated and each ofthe n sample data points d(sa, 3) within the search

neighborhood N(s).

n(s)

w. = [dew]: Eiders)?

where e is the user defined distance exponent (Gotway, 1996). Smoothness of

interpolated values decreases with the magnitude of the exponent. The kriging weights

are calculated by solving the kriging system presented here in an expanded matrix form

     

_ _ _ 1-1 _
W1 CovH . - - Covln 1 Cov” 1

w" Covn1 . Covm 1 COVm

M- _ 1 1 0_ t 1 . 

where )i. is a Lagrange parameter needed to satisfy certain constraints. Cov“

through Covm are the covariances among the sample data points, and C1, to Cns are the

covariances between each sample data point and the unobserved location 5 (Goovaerts,

1997). For details of constrained minimization through Lagrange multipliers in this

context see Isaaks and Srivastava (1989). Under weak stationarity conditions (Cressie,

1993) the covariances between two data points depends not on their actual coordinate, but



matters. Since the kriging weights are functions of the covariances which in turn depend

on spatial separation of data points, kriging weights are distance related weights too.

The metric in which distances are assessed is not, however, Euclidean distance alone, but

depends on the degree of spatial dependencies. Under second order stationarity, the

covariance model are related to semivariogram models through the relationship COVij =

C(O) - y(hi,~); where C(O) is the variance and hij is the Euclidean distance between

locations 3; and Si the distance between sample locations. The semivariogram models are

fit to empirical semivariograms 11(h) which is the average sample variance of points

separated by distance h but computationally defined as V2 of the average squared

difference of points separated by distance h,

n(h)

)=n[21(h)]Z[S(ti)— S(ai+h)] 2

i=1

where n(h) is the number of pairs at lag distance h or in some neighborhood of b. Figure

1.1 illustrates an isotropic semivariogram modeled with an exponential function. The

plateau the variogram reaches is called the sill. The discontinuity at the origin is referred

to as the nugget variance and is attributable to the additive effects of a white noise

process and measurement error (Cressie, 1993). The sill less the nugget variance is

referred to as the structural variance. The separation distance (lag) at which the

variogram reaches the plateau (spherical models) or 95% ofthe sill (exponential and

Gaussian models) is called the range or range ofspatial correlation.
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Relative structural variability (RSV) was used as a normalized measure of spatial

dependence (Robertson et al., 1993; 1997) and is defined as

RSV = structurallyanance = 1 _ RNE [2]

$1

 

and is related to what is commonly referred to as the relative nugget effect (RNE).



CHAPTER 1

Assessing Map Accuracy for Site-Specific Fertility Management

INTRODUCTION

Several conditions are essential for successful site-specific fertility management

(SSFM). The most basic condition is that variation in soil properties is adequately known

(Pierce and Nowak, 1999 and Sawyer, 1994). Soil property predictions across landscapes

are affected by soil sampling, laboratory analysis, prediction, and cartographic errors.

Poor map quality may explain why results of some SSFM agronomic and economic

studies have had mixed or negative results (Snyder et al., 1997; Wibawa et al., 1993;

Wollenhaupt and Bucholz, 1993). Some have suggested alternatives to grid sampling,

including directed sampling (Pocknee et al., 1996). In general, condition and

management maps are rarely examined for quality, which is unfortunate because methods

exist to assess map accuracy.

Measures of accuracy and goodness have been used in SSFM research to assess

quality ofmaps and soil properties predictions, mostly by studying the impact of grid.

sampling intensity (Wollenhaupt et al., 1994; Franzen and Peck, 1995; Gotway et al.,

1996, Mohamed et al., 1996) and interpolation techniques (Wollenhaupt et al., 1994;

Gotway et al., 1996, Mohamed et al., 1996) on map or prediction error. Wollenhaupt et

a1. (1994) and Mohamed et a1. (1996) considered map accuracy to be the percentage of

areal overlap of mapping categories between maps in question and maps considered

representative of the true spatial distribution of a soil property in space. These truth maps



were arbitrarily defined to be contour maps created either with Delaunay triangulation of

soil properties sampled at a 32-m grid (Wollenhaupt et al., 1994) or with the kriging of

soil properties sampled on a 20 x 40-m grid (Mohamed et al., 1996).

The correlation between predicted and observed data sets has been used as a

measure of prediction accuracy (Franzen and Peck, 1995; Goovaerts, 1997). A

correlation approach alone is problematic. While predicted and observed data sets may

be highly correlated, they may deviate greatly from a 1:1 relationship and therefore be of

low predictive value in a mapping context. Franzen and Peck (1995) assessed map error

by assigning both measured values and their associated predictions to classes and then

determining the percentage of measured values that were assigned to the same class as

their predictions.

Gotway et al. (1996) used mean square error (MSE) as a measure of prediction

accuracy calculated using independent validation data sets. Map goodness was calculated

by comparing the MSE for interpolation to the MSE for the field average approach. To a

large extent, the appropriate grid spacing depends on the spatial structure of soil

properties (Sadler et al., 1998) and the range of spatial correlation (Mohamed et al.,

1996). Furthermore, the appropriate interpolation method may depend on specific

coefficients of the interpolation procedure used. For example, the optimal distance

exponent for the inverse distance weighted (IDW) interpolation procedure may depend

upon the coefficient of variation (CV; Gotway et al., 1996).

While grid sampling and interpolation approaches have limitations, a shifi from

grid sampling to directed sampling schemes or grid cell based approaches may not

improve map accuracy. Directed sampling is a technique wherein samples are collected



and composited from specified areas within a field. Pocknee et al. (1996) suggest that the

areas be delineated based on established differences within a field. Differentiating

criteria might include soil map delineations (Bell et al., 1995, Moore et al., 1993,

Windawa et al. 1993), management history, yield potential maps, aerial imagery

(McCann et al., 1996; Pocknee et al., 1996), or electromagnetic induction (Jaynes, 1996).

Directed sampling techniques require prior knowledge about the factors that regulate crop

yield and nutrient availability. In general, map or prediction errors associated with

directed sampling schemes have not been reported. Instead of sampling on grid points,

composite samples can be taken from the area between grid points, a practice that is

referred to as grid cell sampling. Grid cell sampling schemes have not found extensive

use in SSFM. This may be related to earlier reports that grid point sampling more

accurately described soil properties than did grid cell sampling, such as that reported by

Wollenhaupt et a1. (1994) for two fields in central Wisconsin.

The purpose of this study was to evaluate how grid sampling and interpolation

schemes affect map accuracy based on measures of bias, precision, and prediction

efficiency, or what Gotway et al. (1996) termed goodness. For this study, a field was

subjected to several soil sampling strategies including grid point sampling at several grid

spacings, grid cell sampling, and directed sampling based on soil type. Soil fertility and

fertilizer recommendation data were interpolated using kriging and a range of IDW

coefficients for the various sampling schemes. Each resulting prediction map was tested

against a random validation set to evaluate map accuracy.



MATERIALS AND METHODS

Site description

This study was conducted within a 20.4-ha field (42° 57' 54" N, 84° 43' 38 W) in

Clinton County, Michigan, 6-km south of Fowler. The field has been in a corn (Zea

mays L.)-soybean (Glycine max L. (Mcrr.)) rotation for 22 years and the southeastern

portion of the field has been sub-irrigated since 1988. The field was selected because it

contained multiple soil map units and exhibits a range of terrain features, both of which

would be conducive to SSFM. Pregitzer (1978) described and mapped the soils in

Clinton County, MI at a scale of 1 :15,840. The great group taxonomic classifications of

the soils in this field were either Ochraqualfs (Capac and Metamora) or Hapludalfs

(Morley and Wasepi; Table 1.1). The soils were somewhat poorly drained except for the

Morley, which was moderately well drained. All of the soils formed in glacial till except

for the Wasepi, which formed in loamy glaciofluvial deposits.

Table 1.1 Map symbols, soil series or complex name, NRCS soil taxonomic description

(Pregitzer, 1978), and area occupied in the field

 

 

Symbol Name and slope Taxonomic Family and Subgroup Area

(ha)

MoB Morley loam Fine, illitic, mesic 1.3 ‘

(2 to 6 % slope) Typic Hapludalfs

CaA Capac loam Fine-loamy, mixed, mesic 7.2

(0 to 4 % slope) Aeric Ochraqualfs

MeA Metamora-Capac sandy Fine-loamy, mixed, mesic 8.9

loams Udollic and Aerie Ochraqualfs

(0 to 4 % slope)

WbA Wasepi sandy loam Coarse-loamy, mixed, nonacidic, 3.0

(0 to 3 % slope) mesic Aquollic Hapludalfs
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Figure 1.2. A digital orthophotograph overlain by the 30 m (black square), the 100 m

(blue cross), the random validation data set (green circle) and NRCS soil

types (CaA = Capac loam with 0 to 4 % slope; MeA = Metamora-Capac

sandy loam with 0 to 4% slope; MoB = Morley Loam with 2 to 6% slope;

and WbA = Wasepi sandy loam with 2 to 6 % slope).i

T red solid and dashed lines indicate boundaries ofdirected sampling zones (DS 1-

11) and dashed yellow lines indicate the boundaries ofthe CELL based sampling.
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Soil Sampling Design and Laboratory Analysis

Soil samples were obtained from the field using four sampling designs: a 30.5-m

regular grid, a 100-m grid cell, a 200-m unaligned grid, and random sample design.

These samples were used as data sets or to calculate data sets as described in Table 1.2.

The sample point locations were flagged using a DGPS system with a base station for on-

the-go differential correction. At each grid and randomly distributed point, 5 sub-

samples (1 at the grid point and 4 within a 1.5-m radius) were obtained to a depth of 20-

cm using a 2.5-cm diameter core and composited. The grid cell samples were taken by

compositing 9 individual cores of the same diameter and depth taken at regular intervals

within each 100-m grid cell (Figure 1.2). Soils were dried under forced air at 35° C for 3

days and ground to pass a 2-mm sieve. Standard soil analyses were conducted by the

Michigan State University Soil and Plant Nutrient Laboratory using the recommended

chemical soil test procedures for the North Central Region (Brown, 1998). Analyses

included pH (1 :1 soil water mixture), BpH (SMP buffer), P (Bray P-l extractable) K, Ca,

and Mg (lM/L NILOAc extractable). Cation exchange capacity (CEC) was calculated

by summation and lime (an), P (Pm), and K (Km) fertilizer recommendations were

calculated using the tri-state fertilizer recommendations (Vitosh et al., 1995) for corn

with a uniform yield goal of 11.3 Mg ha'l (180 bu acre").

12

 



Table 1.2. Data set descriptions

 

 

 

 

 

 

 

 

Name N Description

Prediction Data Sets

G30 215 Soil samples taken on a 30-m regular grid.

G100 24 Soil samples taken on a 100-m regular grid.

CELL 15 Soil samples taken in IOO-m grid cells

Gcomb 239 Created by combining G30 and G100 grid data sets.

Gel-a 54 Created by separating the 30-m grid data set into four separate

Gal-b 54 6l-m grids. Each grid was analyzed separately, but the results are

G6i-c 54 given as the average results from the four grids.

Gm-d 53

DIR 11 Created by overlaying the soil map units onto the 30-m grid and

determining the mean fertility value for each management unit.

A30 1 Field average value for the entire field calculated from the means

of the 30-m grid.

A100 1 Field average value for the entire field calculated from the means

of the IOO-m grid.

Validation Data Set

VAL 62 Independent validation created by combining a 200-m unaligned

grid with additional random samples.

Data set for geostatistical analyses

FULL 301 Created by combining G30, G100, and VAL.
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Data Analysis

Data analysis was performed in two phases. Phase I involved a quantitative

analysis of the FULL data set, which consisted of the combination of the G30, the G100,

and the random (VAL) data sets (Table 1.2). The purpose of Phase I was to assess the

extent to which the spatial variability of soil fertility in this field lends itself to SSFM.

The steps in phase I included an assessment of normality, calculation of descriptive

statistics, and analysis of spatial variability. Phase II was an assessment of the accuracy

of sampling designs and interpolation procedures using quantitative measures of map

quality.

Phase I: FULL data set

The FULL data set consisted of the 301 sample locations corresponding to an

average sampling intensity of 14.8 samples ha'l (Table 1.2). Normal probability (Q-Q)

with 95 % confidence intervals (Friendly, 1991) were used to assess normality of the

FULL data set. When the Q-Q normal probability plots indicated large deviations from

normality, the natural log of these variables was calculated and the resultant tested for

normality. If the log transformations were also non-normal, then the original variables

were power transformed and again tested for normality. The power transformations were

not successful in inducing normality and will not be discussed further. Finally, normal

score transformations (Deutsch and Joumel, 1998; Goovaerts, 1997) were used to

normalize the remaining variables that could not be normalized with log or power

transformations. Contour maps ofvariogram surfaces were created for each original

variable to determine the direction of the anisotropic axes if anisotropy existed

14



(Goovaerts, 1997; Isaaks and Srivastava, 1989). For directional (anisotropic)

semivariograms, an angular tolerance of i 40° was used because it allowed the

variograrns to be well defined while still preserving their essential features (Isaaks and

Srivastava, 1989). Nested semivariogram models (combinations of spherical,

exponential, and/or Gaussian models) were chosen based on their fit to the empirical

variograms, if warranted. Using the modeled semivariograms, GSLIB (Deutsch and

Joumel, 1998) was used to create kriged 4 by 4-m grids at search radii equal to the

distances to which the semivariograms were modeled. Contour maps for each kriged grid

were created with Surfer® (Golden Software, Golden, CO).

Phase 11: Accuracy of SSFM sampling and interpolation

Phase II was concerned with how different sampling schemes and estimation

procedures affected map accuracy. For the FULL, G30, 661.4, (3100, and Goon“, grid data

sets, empirical semivariograms were calculated using Variowin (Pannatier, 1996) and an

omnidirectional exponential model was fit to the empirical semivariograms. Surfer was

used to interpolate 4 x 4 m grids by kriging each data set with the modeled

semivariogram and using IDW for distance exponents from 0.1 to 5.0 in 0.1 increments.

For comparison purposes, omnidirectional semivariograms based on an exponential

model were also developed for the FULL data set.

To quantify the error of prediction for each attribute, sampling scheme, and

interpolation method, the difference between the predicted surface and the validation

points were estimated. Since the VAL points did not always coincide with the 4 x 4 m

predicted grid locations, bilinear interpolation in Surfer was used to estimate the

predicted value at each VAL grid location. Because only one value is assigned to each

15



soil management unit, each cell, and to the entire field, residuals for the DIR, CELL, A30,

and A100 predictions were calculated as the distance between the VAL points and the

measured value for the area containing that point. Prediction errors and efficiencies were

calculated as described in Chapter 1.

RESULTS AND DISCUSSION:

Phase 1. FULL Data Set.

While the average soil tests for this field indicated that soil fertility was adequate,

there was considerable range in each parameter (Table 1.3), indicating that some portion

of the field may respond to SSFM. For SSFM to be applicable to this field, the variation

of soil fertility must be spatially structured, of sufficient magnitude, and within the

manageable range. Semivariance analysis was conducted to quantify the extent to which

these conditions were met.

Table 1.3. Summary statistics for the FULL data set.

 

 

Variate mean Median MinT MaxT CV (%)

pH 6.1 6.0 5.2 8.0 9

P (mg kg") 26 25 8 86 44

K (mg kg“) 167 165 95 291 23

Ca (mg kg") 1482 1450 650 3053 22

Mg (mg kg") 274 267 80 474 23

CEC (cmole kg“) 13.0 13.0 7.7 20.5 17

L...c (Mg ha") 4 5 0 13 76

Free (kg ha") 63 75 0 114 42

Kmc (kg ha") 25 o 0 100 136
 

1 Min = minimum, Max = maximum.
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While normality is not a requirement for developing a semivariogram or kriging,

the classical linear kriging predictor does not retain optimal properties if the underlying

spatial process is not Gaussian (Cressie, 1993). Only Mg and CEC were normally

distributed, while P, K and Ca were log-normally distributed (Figure 1.3, Table 1.3). Soil

pH, Lm, Pm, and Krec could not be transformed to normality with log or power

transformations but could be through a normal score transformations (Figure 1.3). The

reason Lm, Pm, and Km deviated so drastically from normality is because the tri-state

lime and fertilizer recommendations (Vitosh et al., 1995) combine stair stepping, nested

functions. Because of the nature of these calculations, however, the back transformations

for the normal score transformations of LM, Pm, and Km were problematic and therefore

should not be used for SSFM of this field. It may be that native Mg and CEC levels were

distributed normally and remained so because lime applications have been primarily

calcitic and CEC has minimally been affected by management practices. In another geo-

spatial study in Michigan, soil properties in an uncultivated landscape appeared to be

distributed more normally than those in an adjacent cultivated field (Robertson et al.,

1993).

Anisotropy occurs when the semivariogram depends not only on separation

distance, but also on the angular relationships between data points. The presence and

direction of anisotropy must be known to create anisotropic models and can easily be

detected and measured using contour maps of semivariogram surfaces (Goovaerts, 1997).

Only CBC and Lrec were considered to be isotropic (Figure 1.4). Directional or
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omnidirectional semivariograms were calculated and modeled for each variable and their

normal transformations (Figure 1.5). The semivariogram models accounted for geometric

(range changes with direction, sill does not) and zonal (sill changes with direction; range

does not) anisotropy and mixtures of both (Isaaks, and Srivastava, 1989). The directional

and non directional variograms were described with one, two, or three nested spherical,

exponential, or Gaussian transitional structures in addition to a nugget structure (Figure

1.5 and Table 1.4). Overall, anisotropy was not severe and, removable with

transformations (pH and Ca). It would not be cost effective for anisotropy to be modeled

for this field on a commercial basis because the anisotropy is not strong, its modeling

time and resource expensive, and the coarseness of commercially accepted SSFM would

not allow the short range anisotropy to be resolved.

The kriging system of equations requires that a second order stationary model be

fit to the empirical semivariograms. Second order stationarity can be inferred the

semivariogram reaches a plateau as occurred for most variables (Figure 1.5). When

semivariograms do not reach a plateau, intrinsic stationarity is ofien assumed (Pannatier,

1996). But, by limiting the search radius, a stationary model can still be applied. The

semivariograms for pH in the N 54° E direction and and Ca in the N 49° E direction

exhibited intrinsic stationarity in these directions. This behavior was attributable to a

"hot spot" in the southwestern comer of the field where lime had been stored (Figure 1.6)

rather than a gradual trend in the data. Normalizing the pH and Ca data removed the

directional, intrinsic behavior. Second order and intrinsic stationarity was assumed for

the FULL data set and issues of non-stationarity are irrelevant for SSFM management of

this field.
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Figure 1.6. Contour maps ofkriged soil variables and fertilizer recommendations using

the FULL data sets overlain by the soil type boundaries *.

1' CaA = capac loam with 0 to 4% slope; MeA = Metamora-Capac sandy loam

with 0 to 4% slope; MOB = Morley Loam with 2 to 6 % slope; and WbA =

Wasepi sandy loam with 2 to 6 % slope.
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The RSVs for the first structure were greater than 50% with exceptions of K,

ln(K) and K... so most of the variables could be described as being spatially structured

(Figure 1.5; Table 1.4). The directional semivariogram models had ranges of spatial

correlation of 34-m or greater in one of the two directions and the omnidirectional

semivariogram models had ranges of at least 43-m. The degree to which these

parameters affect the accuracy of SSFM predictions is of great interest but unknown.

The interpolated maps show that considerable areas of the field were low or

slightly low in pH and slightly low in P. However, the entire field had greater than

optimal K levels and greater than adequate Ca and Mg levels (Figure 1.6). As evident in

these maps, the variables did not relate well with soil type. The apparent discrepancy

between the ranges in Table 1.3 and Figure 1.5 is due to the smoothing effect of kriging

that occurs with a non zero nugget effect (Goovaerts, 1997; Figure 1.5). Only when the

nugget effect is zero does kriging behave as an exact interpolator.

Soil pH, P, and K had significant variability, the variability was spatially

structured, and was in the manageable range. The variables were either normal or could

be transformed to normality with log or normal score transformation. For some

variables, the transformations also removed anisotropic features including directional,

intrinsic stationarity. Unfortunately, normal score back transformations were problematic

because ofthe nested, stair stepping features of the fertilizer recommendations. Because

Lac, Pm, and Km, cannot be back transformed and deviate severely from normality, their

SSFM may be difficult. Based on the presence of spatial structure and the fact that the

variability was within the manageable range, there is potential for SSFM in this field but

to determine if variability is adequately known, interpolations must be evaluated.
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Phase 11: Accuracy ofSSFM sampling and interpolation

Grid Sampling

Grid sample design had an effect on semivariograms for all parameters (Figure

1.7). Anisotropy was not modeled for the reasons listed in the Phase I analysis. The

semivariograms for the FULL (average grid size of 26.0-m) and the Gcomb (average grid

size of 29.2-m) data sets were similar. Because of the similarity, the test of the Geomb set

against the VAL set discussed later should be indicative of the performance of the FULL

data set. As sampling density decreases, the semivariograms deviate from those ofthe

FULL data set. The semivariogram for the G30 data set has a higher nugget variance and

range but a similar sill. The semivariograms for the four G61 and the G100 data sets

deviated greatly fiom the FULL data set and from each other.

For kriging, the RMSE of the residuals of the predicted grid versus measured

(VAL data set) generally increased as sampling intensity decreased with Goomb < G30 <

G61< G100 (Figure 1.8). A spatial sampling scheme with utility should improve

prediction over the whole field sample approach. The A30 field sampling scheme had the

lowest RMSE for K and Km, which may relate to the fact that soil test K levels were high

(low Km) and both K and Krec had low RSV (Figure 1.7) or high nugget effects. It

should also be noted that K was the only variable with substantial bias. The kriged G100

data sets had similar RMSE values to the field average approach for the remaining

variables. The fact that the A100 field average had higher RMSE values for some

variables than the A30, illustrates the importance of obtaining a good estimate of the field

mean, particularly in variables that are poorly spatially structured like K and Km.
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’1 The semivariogram models for G61 are not shown.

the FULL, 6.0.1, G30, G6,, and G... data sets. I

Figure 1.7. Omnidirectional experimental and modeled (exponential) semivariogram for
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Figure 1.8. The RMSE for several estimation approaches: IDW interpolation for distance

exponents ranging from 0.1 to 5.0 in 0.1 increments (line plots on the left),
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Although kriging is often considered to be the most accurate interpolator,

commercial SSFM applications commonly use IDW interpolation in lieu of kriging

because it does not require modeling the semivariogram. Like kriging, the RMSE for

IDW interpolation was affected by grid increment, but was also affected by the choice of

the IDW distance exponent G’igure 1.8). Generally, RMSE decreased with increasing

sampling intensity G30 < G61 < G100 with the exceptions of CBC and Lrec- The RMSE

decreased markedly for P and Prec with an increase in sampling intensity from G61 to G30

while the RMSE for K and Krec was reduced minimally. The RMSE decreased modestly

for all variables with an increase in sampling intensity from G100 to G5). The optimal

distance exponent depended on the variable and sampling intensity. Consistent with the

findings of Gotway et a1. (1996), the value of each distance exponent was inversely

related to the CV but only for the G30 and G6) data sets (Figure 1.9).

Measures of map error and prediction are indicators of map or prediction

goodness but can not be completely understood without graphically comparing predicted

and measured values along a 1:1 line (Figures 1.10). At the (3100 sampling intensity, this

relationship was generally weak for most variables. At the G30 sampling intensity, the

relationship between predicted and measured values was moderate for P, and Prec and

marginal for the others. Even though, for Goomb, the relationship between predicted and

measured markedly improved over this relationship for G30, their regression lines were

not parallel with the 1:1 line.
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Sadler et a1. (1998) and Mohamed et a1. (1996) suggest that the performance of

SSFM at different grid intensities is a function of the spatial structure and range of spatial

correlation ofthe spatial processes. The relationship between prediction efficiency, the

range of spatial correlation, the RSV, and grid sampling increment are described in

Figure 1.11. At each grid intensity, when the RSV values were less than 60 %, e.g. for K

and Km, prediction efficiencies are low regardless of the fact that their ranges of spatial

correlation were relatively high (greater than 90-m). For the G30 data set, with the

exception ofMg there was a quadratic relationship between prediction efficiency and the

range of spatial correlation when RSV values exceeded 75% (Figure 1.12). While this

relationship held for the G61 data set, it does not exist for the G100 data set. Therefore,

inferences between geo-spatial studies and the expected performance of SSFM can be

drawn but only when grid sampling intensities are adequate. _

Using the optimal distance exponent, IDW was equal to or superior to kriging for

most ofthe variables sampled on the 30, 61, and 100-m grid excluding log-transformed

attributes (Figure 1.13). Unfortunately, there is no a priori knowledge of the optimal

distance exponent. Visual inspection of Figures 1.13 suggests that a distance exponent of

1.5 would be a reasonable choice for this field. When the regression equations in Figure

1.12 were used to calculate the optimal distance exponent, the prediction efficiencies for

the IDW approach were nearly the same as or slightly better than when the distance

exponent was 1.5 with the exceptions ofK and Krec (Figure 1.13). How the relationship

in Figure 1.12 holds for other soils or locations is not known. For both kriging and IDW

interpolation, prediction efficiencies were lower for ln(P), and ln(Ca) than for P, and Ca.

Although normalizing K improved the prediction efficiencies, they were
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negative for K and ln(K), indicating that the field average approach was superior.

Normalizing the data had an insignificant or negative effect on the accuracy of the data.

The poor performance of kriging may be explained by the large variability of the

semivariograms for individual pairs (Figure 1.14). A fitted semivariogram model to the

average semivariograms would be accurate for a small fraction of the pairs. So for a

kriged estimate, two sample points the same distance from the prediction point will be

weighted the same even though the variances between the prediction points and the point

to be estimated (if it were known) would vary widely. It may be that the scatter of the

semivariogram cloud may be one of the best indicators of the spatial predictability of a

given variable.

CELL and directed sampling

Alternatives to grid sampling include cell sampling and directed sampling. The

CELL sampling approach had the highest RMSE for most variables (Figure 1.8) and the

lowest prediction efficiencies, confirming the results of Wollenhaupt et al. (1994). The

directed sampling approach had RMSEs that were similar to the A30 field approach

(prediction efficiencies near 0), indicating no advantage of directed sampling over the use

of a mean value for this field (Figure 1.8).
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CONCLUSIONS

Analysis of the FULL data set indicated that most soil fertility variables were

spatially structured. Nevertheless, the presence of spatial structure alone did not prove

sufficient for producing accurate yield maps, as evidenced by the plots of measured vs.

predicted in Figures 1.10. Sampling at lower intensities increasingly diminished the

delectability of spatial structure and generally increased the error of prediction as

measured by RMSE. Where spatial structure was poor, particularly for K and Km,

accurately sampling the field average was sufficient for nutrient management because

SSFM for these variables was not appropriate. These data suggest that grid sampling at

coarse grids and directed sampling were not adequate to produce accurate nutrient

condition maps for this field. Cell sampling at least at the course lOO-m grid intensity

was also inadequate.

These data suggest that grid point sampling at the industry standard lOO-m

intensity was inadequate. Sampling at greater intensities only modestly improved

prediction accuracy, likely not enough to justify the geometric increase in sampling costs.

In the second chapter of this dissertation, I will examine methodology for incorporating

secondary landscape information into spatial estimates of a soil property at several scales.

In this study, the accuracy of IDW interpolation with a distance exponent of 1.5

generally equaled or exceeded the accuracy of kriging at each scale of measurement. If

the data had been strongly anisotropic or was not second order stationary, kriging may

have been superior to IDW interpolation because the semivariogram model could account
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for these peculiarities. The poor performance of kriging may be explained by the large

variability of the semivariograms for individual pairs (Figure 1.14). Some measure of the

scatter of the semivariogram cloud may be an indicator of the predictability in space.

39



CHAPTER 2

COMPARISON OF TECHNIQUES TO OPTIMIZE SPATIAL ESTIMATES OF

SOIL PROPERTIES USING TERRAIN ATTRIBUTES

INTRODUCTION

Traditional survey methods and the more recent use of grid sampling and

interpolation methods have not produced maps of soil properties with the accuracy

needed for soil surveys (Bell et al., 1995; Moore et al., 1993) and precision farming

(Pierce and Nowak, 1999; Robert, 1993). New analytical approaches are being used to

utilize geometric properties of a landscape (slope, aspect, and curvature), collectively

referred to as terrain attributes, to improve spatial estimates of soil properties. Terrain

attributes are predictive of soil properties because topography is a soil forming factor. A

high resolution, digital elevation model (DEM) is needed to calculate terrain attributes.

Only recently has the technology become generally available to map elevation at the

needed resolution, achieved through advances in high resolution global positioning

system (GPS) now universally available. Several methods exist to use terrain attributes

in spatial estimates of soil properties, ranging in complexity from simple regression to

geostatistical methods. However, there is little consensus regarding which terrain

attributes are most useful or which analytical method is most appropriate for a given soil

property (Table 2.1).
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Table 2.1. Applications of regression, kriging with an external drift, and cokriging for

enhancing spatial estimates of soil properties using auxiliary information.

 

  

Primary Secondary Measure of Reported results 1'

accuracy and or

goodness T

Regression

Moore et al., A horizon depth 4 terrain attributes Visual Regression

1993 (R2 = 0.51) comparison and approach was

soil P (R2 = 0.48) the regression R2 considered good

soil pH (R2 = 0.41) values because terrain

particle size (R2 = 0.64) attributes could

explain substantial

43 points hal 43 points ha'l variability

Bell et al., A horizon depth 3 terrain attributes VDS; plots of A- horizon and

1995 (R2=0.51) predicted versus depths to carbonate

depth to free carbonates measured predicted within 20

(R2=0.44) cm for 70% of

validation samples

7.25 points ha’1 75 points ha'l

Thomson and Total carbon 2 terrain attributes None Unclear

Robert, 1995 (R2 = 0.66 to 0.69) and photographic

tone

2.7 points hal 30 points ha’l

Gessler et al., A horizon depth 2 terrain attributes Prediction error Regression reduced

1995 Solum depth (not specific) deviance by 63 and

68%

scale not given scale not given

 

Bourennane et

al., 1996

Gotway and

l-larford, 1996

Goovaerts,

1997

Thickness of silty-clay- one terrain attribute

loam pedological

horizon

0.62 samples ha’l 4.8 samples ha'I

residual soil NO;l corn grain yield

11 samples ha" 66 samples ha“I

Soil Cd, Cu, Pb, and Zn blocked

Co estimates???

(259 samples per field (359 samples per

area) ' field area)

Kriging with an external drift (KED) 

VDS; ME and

RMSE

improvement over

OK and KT

Cross validation, COK increased the

compared MSE MSE by 7% over

for OK and KT OK

with the MSE

for KED

VDS; rank Correlations

correlations for between predicted

predicted and and measured for

measured and % COK explain 16 to

misclassification 35% more of the

for both SK, OK variability than for

and KED OK
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Table 2.1, continued.

 

  

Primary Secondary Measure of Reported Results

accuracy and or

goodness

J‘vokriging (COK)

Zhang et al., 1992 N03" and Ca electrical Cross validation, cokriging reduced

(COK with pseudo- conductivity compared MSE the MSE by 78%

crossvariogram) for OK with MSE

0.8 samples ha" 1.3 samples ha'l for COK

Vaughan et al., Water content and surface electrical Visual inspection improvement over

1995 soil salinity conductivity ordinary kriging

0.12 points ha'l 0.15 samples ha'l

Rosenbaum and Soil Cd Soil Zn Independent Correlation

SOderstrOm, 1996 validation data set; between predicted

(standardized 0.00034 points ha‘l 0.0010 samples ha“n correlation of and measured was

ordinary cokriging) predicted and greater for COK

measured (p = 0.85) than

OK (p = 0.68)

Gotway and residual soil N03 corn grain yield Cross validation, COK reduced the

Harford, 1996 compared MSE MSE by 2%

10.8 samples ha'1 66 samples ha’l for ordinary

kriging with MSE

for cokriging

Zhang et al., 1997 soil solute soil solute Cross validation, COK reduced the

concentrations concentrations compared MSE MSE between 30

measured at for OK with MSE and 60 %

shallower depth for COK

1.3 - 1.8 points ha'l 1.3 - 1.8 samples ha'l

Goovaerts, 1997 Soil Cd, Cu, Pb, Four combinations of VDS; correlations Correlation

(isotropic and and Co (259 Ni, Zn, Pb, and or between predicted greater and errors

anisotropic samples per field Cu. and measured and lower for COK

standardized area) ??? ME for both OK compared with

ordinary cokriging) and COK OK

Juang and Lee, Soil Cd and Zn Soil Cd and Zn at Compared OK and COK improved

1998 same or lower depth COK predictions the r2 values by 6

(scale = 2 points to 60% over

2 points ha" 5.5 points ha’I ha") with OK COK.

predictions (scale

= 5.5 points ha")
 

1' VDS = Validation data set; MSE = Mean squared error; RMSE = Root mean squared error;

ME = mean absolute error; SK = Simple Kriging; OK = Ordinary kriging; KT = Kriging with a trend

model; COK = cokriging.
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The simplest approach has been the use of simple or multiple regression in which

a soil property is regressed on a single or multiple terrain attributes and the regression

equation used to predict the soil property at unsarnpled locations within the field where

terrain attributes are mapped. Success has been measured by the magnitude of the

regression coefficient of determination (R2), which ranged from 0.41 to 0.69 for the

studies reported in Table 2.1. In some cases, the accuracy of regression prediction was

evaluated using a validation data set (Bell et al., 1995), which is a more robust accuracy

measure .

The regression approach relies solely upon the relationship between the soil

property of interest and the selected terrain attributes. Geostatistical prediction

approaches utilize a statistical model of the spatial variability either using distance alone

(ordinary kriging) or in conjunction with other measured variables (e.g., co-kriging). For

ordinary kriging, a search radius is defined for each point that is to be assigned an

estimate. A mean attribute value is calculated from sample data points within this radius

and subtracted from each sample data point value. A weighted average of the residuals is

calculated. The weights are based on an empirical, statistical model ofthe relationship

between the separation distance and sample variance (semivariogram model). The

neighborhood mean is added to the weighted average of the residuals to calculate an

ordinary kriging point estimate. Estimation may be improved by incorporating secondary

information into kriged estimates by substituting the mean term with a smoothly

changing, rescaled variable (e.g. terrain attribute) that is linearly related to the variable

being predicted, a procedure known as kriging with an external drift (Goovaerts, 1997;

Deutch and Joumel, 1998). Multiple secondary variables can be incorporated in this
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fashion with a procedure known as random field analysis. However, this procedure has

traditionally been used to remove spatial correlation from an analysis of variance (Stroup

et al, 1994). Standardized ordinary co-kriging does not use the mean to incorporate

secondary information. Rather, the prediction is the sum of the weighted averages of the

primary variable and each ofthe secondary variables.

The performance of the various kriging approaches is mixed (Table 2.1).

Goovaerts (1997) reports that, while correlated, kriging with an external drift and

cokriging performed better than simple or ordinary kriging. In addition, cokriging

performed better than kriging with an external drifi for three of the four variables and

anisotropic cokriging performed better than isotropic cokriging. However, Gotway and

Hartford (1996) found that cokriging and kriging were respectively worse or only slightly

better than ordinary kriging. The fact that correlations between residual nitrate and yield

were not significant (p = -0.09) may explain the poor performance ofthese techniques.

From the studies in Table 2.1, there appears to be no consistency in which soil

properties were analyzed, which terrain attributes were selected for prediction, the

resolution of sampling of either soil properties or elevation, the scale of analysis, or the

measures of accuracy of prediction, if used at all. Furthermore, the analytical techniques

used in the various studies varied in complexity and in the effort required for analysis

(regression < kriging with external drifi << random field analysis << cokriging.

Increased complexity is only warranted if it leads to significantly improved spatial

prediction. The objective of this study was to evaluate how different analytical

techniques using terrain attributes affect the spatial prediction of soil properties and

whether relative performance of these techniques is affected by the scale of soil sampling.
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Four analytical techniques were used to generate spatial predictions of soil carbon

obtained on 30 and 100 m regular grids using elevation, slope, and curvature as predictors

and regression, residuals, and prediction efficiency as measures ofperformance.

MATERIALS AND METHODS

Site description

This study was conducted in a 12.5 ha field (47° 47' 30" N, 83° 52' 30 W) located

6-km south of Durand, Michigan in the Shiawassee River watershed (Figure 2.1). The

field had been in a corn (Zea mays L.)-soybean (Glycine max L. (Merr.)) rotation for

more than 10-yr. The soil color differences in the aerial photograph (Figure 2. la) were

related primarily to differences in soil organic matter content and drainage but did not

match well with the second soil order survey map unit boundaries (Figure 2.1b). Because

moisture conditions were not optimal in other years when USDA-AFS aerial photographs

were taken (e.g. 1979, 1983, and 1992), the striking visual differences were not captured

as they were in this photo (Figure 2.1a). The soil scientists who created this survey relied

on aerial photography taken prior to 1958, which may have been of a lower quality or,

taken with a full crop canopy. With better aerial photos, there may have been a better

match between the color differences in Figure 2.1a and the soil survey map unit

boundaries.
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Figure 2.1. Study location: (a) areal photograph and (b) soil and kinematic GPS

measurement locations overlain by soil type boundaries.

1‘ The scanned and enlarged aerial photograph (original scale = 1:7,920;

not georectified) taken 6/23/88 was purchased from the USDA-AFS

Aerial Photography Field Office in Salt Lake City, UT. The locations

of sample points for the three soil sampling strategies (G30 = V; Groo =

E]; VAL = +) and the kinematic survey (0) are overlain by NRCS soil

map unit boundaries (Bt = Breckenridge sandy loam; CtA = Conover

loam with 0 to 2 % slope; MaA = Macomb loam with 0 to 2 % slope;

MsA = Metamora sandy loam with 0 to 2 % slopes; MsB = Metarnora

sandy loam with 2 to 6 % slopes; WeA = Wasepi sandy loam with 0 to

2 % slopes; Threlkeld and Feenstra, 1974).
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Threlkeld and Feenstra (1974) classified and described the soils in Shiawassee

County, MI at a scale of 1:20,000. The soils were mapped (Figure 2.1b) as somewhat

poorly drained Alfisols with the exception of the Breckenridge (Bt; Coarse-loamy,

mixed, nonacid, frigid Mollic Haplaquepts), a poorly drained Inceptisol. The Metamora

sandy loam and Macomb loam (Finc-loamy, mixed, mesic Udollic Ochraqualfs) were

very similar but the Metamora was coarser in texture which means that its surface drained

somewhat faster but they both have slow subsurface drainage. While permeability is

moderately rapid for the Wasepi (Coarse-loamy, mixed, mesic Aquollic Hapludalfs)

series, it has low available water holding capacity. Most ofthe field had slopes of less

than 2% except for the Metamora map unit with a B slope (MsB), ranging from 2 to 6%.

Soil Sampling Design and Laboratory Analysis

Soil samples were obtained from the field (Figure 2.1b) in May of 1997 using a

30.5-m (G30; 11 = 134; 10.7 samples ha‘l) regular grid, a 100-m(Gloo; n = 12; 1 sample ha'

1) regular grid, and a set of validation points (VAL; n=26; 2.1 samples ha"). The VAL

points were collected using a 200 m unaligned grid with additional random points. The

sample point locations were flagged using a DGPS system with a base station for on-the-

go differential correction. At the each sample locations, 5 sub-samples (l at the grid

point and 4 within a 1.5-m radius) were obtained to a depth of 20-cm using a 2.5-cm

diameter soil core and composited. Soils were dried under forced air at 35° C for 3 days

and pulverized to pass a 2-mm sieve. Sieved soil was finely ground with a roller mill and

then analyzed for total carbon using a Carlo Erba NA 1500 Series 2 N/C/S analyzer (CE

Instruments Milan, Italy). A 61-m grid (G51; 11 = 38; 2.7 samples ha") was extracted

from the G30 data set to be used as a third prediction data set.
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DEM Creation and Terrain Analysis

A kinematic GPS survey was conducted in January of 1996 using two Z-12

Ashtech GPS sensors. The mobile GPS unit was mounted on an all terrain vehicle (ATV)

traveling at about 17 km hr'l logging GPS location and elevation. Every second, a data

point was logged so that the approximate distance between measurements was 4.7 meters.

The ATV traversed the field in the east-west direction making swaths every 4.6 meters so

the field was sampled at an approximate scale of 463 samples ha". Data that had high

position dilution of precision values (PDOP) and large vertical jumps between

sequentially logged data points were removed. Several swaths were removed from the

northern region of the field because of a systematic error in the GPS data (Figure 2.11)).

Topogrid (Arclnfo ver. 7.1.1, ESRI 1997) was used to create a l x l-m grid without

drainage enforcement. Slope, aspect, and curvature (plan, profile, and tangential) were

calculated with Surfer® (Golden Software, Golden, CO).

Data Analysis

For the G30 data set, normal probability (Q-Q) plots with 95 % confidence

intervals (Friendly, 1991) were used to assess normality. Contour maps of semivariogram

surfaces were created for total carbon and the terrain attributes to determine the direction

of the anisotropic axes if anisotropy existed (Goovaerts, 1997; Isaaks and Srivastava,

1989). Directional (anisotropic) semivariograms were calculated for soil properties and

terrain attributes using angular tolerances ofi 225° for the soil variables (Goovaerts,

1997) and i 15° for terrain attributes (a smaller angle was used because terrain model

was more densely sampled). For total carbon, nested semivariograms models
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(combinations of spherical, exponential, and/or Gaussian models) if warranted, were

chosen based on their fit to the empirical variograms. All variogram modeling was

performed with Variowin (Pannatier, 1996). Correlations (or = 0.15) and multiple

regression (or = 0.15) were calculated using SAS (SAS, 1990) for each grid sampling

interval.

The G30 and G61 data sets were interpolated with regression, ordinary kriging,

kriging with a trend model, kriging with an external drift, random field analysis, and

standardized ordinary cokriging. Because there were so few points in the G100 data set,

only regression analysis was performed. All geostatistical interpolation methods were

conducted with GSLib (Deutsch and Joumel, 1998) except for random field analysis

which was performed using SAS (SAS, 1990).

Some theoretical understanding is required to fully appreciate these procedures.

A geostatistical prediction at an unobserved location 3 of an attribute Z is the weighted

average ofthe observed values ofthe attribute at spatial locations 5,. The weights wSm

may be restricted to non-zero values in some neighborhood N“) of the target location 3.

If n(s) is the number of observed values in the neighborhood, the predicted value is

calculated as

n(s

Z11(s)—m(u)= wsi[Z(si)-m(u1)] Eqn. 1
i=1

Goovaerts (1997, 1999) distinguishes between kriging interpolators by the

treatment of the mean term m(u) or m(ui). The mean is constant throughout the study

area for simple kriging (SK), and within each search neighborhood, but varies through

the study area for OK, and varies gradually within each neighborhood N“) for KT, KED,
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and RFA. The mean component is modeled as a linear combination of the coordinates

for KT, and as a linear function of a smoothly varying secondary variable (e.g. terrain

attribute) for KED, and a linear or nonlinear combination of secondary variables for

RFA. The kriging weights are calculated by solving the kriging system presented in

Chapter 1 of this dissertation.

Measures of map error included MSE, RMSE (root mean squared error), and bias.

Let v, denote the differences between predicted value and observed value at location 5;,

i=1, ..., n,1 = 62 of the validation data set. Map errors and prediction efficiencies were

calculated as described in the Introduction to the dissertation.

RESULTS AND DISCUSSION

The discussion here focuses on two issues. The first is whether variability in soil

and terrain attributes within the field have the magnitude and structure needed for spatial

prediction. Then interpolation methods that utilize terrain attributes will be evaluate

using measures of prediction error and efficiency.

Nature of the Data

Due to its glacial origin, the elevation and derived terrain attributes within this

field varied considerably (Figure 2.2). While total relief in the field is only 4 m, there is

considerable micro-variability within the field as evidenced by rapid changes in slope and

aspect over short distances. Therefore, micro-variability in terrain attributes may exert

significant influence in the soil and hydrologic properties of this field. Elevation, slope

and aspect (Figure 2.3) were normally distributed while plan curvature, profile curvature,

and tangential curvature were not. Kriging or cokriging with non-Gaussian data is
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Figure 2.2. Surface maps (a) of elevation and (b) slope and a contour map (c) of

elevation overlain with arrows indicating aspect.
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Figure 2.4. Semivariogram surfaces for total carbon (G30) and elevation (n = 1000).

permissible but the predictions are not guaranteed to be best linear unbiased estimates

(Cressie, 1993).

Elevation was severely anisotropic (Figure 2.4) with the axis of maximum spatial

continuity 62° East from due North. Intrinsic stationarity was assumed in the orthogonal

direction because the semivariogram did not reach a plateau. The anisotropic axes for

slope were similar to the anisotropic axes for elevation except they were rotated 90° and

were less severe (not shown). Plan curvature, profile curvature, and tangential curvature

were mildly anisotropic (not shown).

The terrain attributes had large RSV values. Elevation had a range of spatial

correlation of 275 m. Slope and aspect had ranges of about 70 m and the curvature

parameters had ranges between 10 and 20 m. Elevation, slope and aspect were suitable to

be used in a geostatistical analysis. The use of curvature in the geostatistical study is

questionable because they were spatially correlated over such a short range and because

they were not normally distributed.
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Total carbon was normally distributed (Figure 1.3). The average value for the

field was 13 g kg'l, typical for a Michigan landscape. Despite just moderate changes in

relief and slope (Figure 2.2), total carbon content ranged substantially (2 to 29 g kg'l).

The anisotropic axes occurred in the North-South and East—West directions but at

distances of 200-m and greater the axes appear to shift to the same anisotropic axes

system as for elevation (Figure 2.4). The RSV values were not as high as might be

expected for total carbon which tends to be well structured (Table 2.2) indicating a large

nugget effect. The nugget can not be accurately estimated when distances between

sample points are great (e.g. 30.5 and 61-m). Therefore, the RSV could not be

interpreted as a measure of spatial dependence for total carbon. The range parameters for

the anisotropic model also was not interpreted because a technique had been employed to

account for zonal anisotropic accomplished by manipulating the range parameters. The

range of spatial correlation was quite large for the two isotropic models (244 and 249 m)

indicating that the data were spatially well structured. Based on the large range of spatial

correlation, total carbon is suitable for geostatistical analyses.

Ordinary kriging using the geostatistical parameters in Table 2.2 reveals that

carbon values were generally lower in the on hill tops and in the northern region of the

field and greater in the depressions in the southern and southeastern regions of the field

(Figure 2.5). Unfortunately, however, much ofthe detail apparent in the aerial photo

(Figure 2. 1 a) was not represented in this interpolation. In short, ordinary kriging did an

adequate job of predicting soil carbon across the landscape but there is room for

improvement. To apply other interpolation techniques, however, additional data

requirements must be satisfied.
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Table 2.2. Directional (G30) and omnidirectional (G30 and G51) SCmivariogram model

parameters for carbon to be used for ordinary kriging

  

 
 

—————-Structure1—— ———Structure 2

nugget model sill direction range RSV model sill direction range

(m) (%) EL

Isotropic
(Gm) 6.2 S 31 O 249 75

- - N90° E 146 N80° E 20000

An'sgmp": 10.2 G 15 60 G
(30) N 0°w 118 N10°W 950

Isotropic
(G61) 2.6 S 50 O 244 95

 

1' S = spherical; G = Gaussian; O = omnidirectional

 

600

Easting (m)

15 1 7 20 25 30

Figure 2.5. Total carbon (g kg") contour map created with ordinary kriging using the G30

data set overlain with elevation contours (lines).

 

For kriging with an external drift, the relationship between primary and secondary

variables must be linear (Goovaerts, 1997). For cokriging variables must be both

correlated and have structured cross semivariograms. Ahmed and De Marsily (1987)

state that for cokriging to be of greater predictive value than ordinary kriging, the

absolute value ofthe correlation coefficients between predicted and measured must
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exceed 0.70 (Table 2.3). While most ofthe variables were significantly correlated with

total carbon, only elevation could explain a substantial portion of its variability. In this

study, elevation was the only variable suitable for cokriging and kriging with an external

drift.

Table 2.3. Correlations between total carbon and terrain attributes and explained

 

 

variability (G30 data set) T.

Correlations Variability in total

with carbon explained

Total by terrain

Carbon attributes (%)

Elevation -0.72 * 51

Aspect 0.17 3

Slope -0.40 * 16

Plan curvature 0.19 * 4

Profile curvature 0.20 * 4

Tangential curvature 0.21 * 4
 

in = 134; * indicates significance at or = 0.05

An important requirement for cokriging is that a linear model of coregionalization

be developed that has covariance matrices that are positive semi-definite (Goovaerts,

1997). The parameters for the model at the G30 scale are listed in Table 2.4. Another

important requirement for kriging with a trend and kriging with an external drift is that a

stationary trend exists. The models for the directional trend are presented in Table 2.5.

In summary, total carbon and elevation had sufficiently large correlations and

structured semivariograms and cross semivariograms so ordinary kriging, and cokriging

were appropriate methods. Because total carbon also had a directional trend, kriging with
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Table 2.4. Linear model of coregionalization (G30) used for cokriging. .

 

 

Structure 1 Structure 2 Structure 3

(Gaussian) (Gaussian) (Gaussian)

3V1 or NugT Sill Direction Range Sill Direction Range Sill Direction range

Cross-8V (m) (m) (m)

1 N 90° E 145 N 90° E 2000 N 62 E 6000

TC 9 15 50 6.3

N 0°W 117 N 0°W 440 N28W 420

TC x N 90° E 145 N 90° E 2000 N 62 E 6000
. -0.23 -1.71 -1.56 -3.61

Elevatlon N 0° w 117 N 0° w 440 N 23 w 420

N 90° E 145 0 09 N 90° E 2000 N 62 E 6000
Elevation 0.02 0.225 ' 2.1

N 0°W 117 3 N cm 440 N28W 420
 

T SV = semivariogram; Nug = nugget; TC = total carbon

Table 2.5. Semivariogram model parameters fo the direction of maximum spatial

continuity (N 90 E) for kriging with a trend model and kriging with an

external drift.

 

scale nugget modelf sill direction range

(m)

G30 9.4 G 16 N 90° E 190

G61 4.4 S 50 N 90° E 213

1' S = spherical; G = Gaussian

a (quadratic) trend and kriging with an external drift (elevation) were also appropriate

methods. As will be presented in the next section, there were significant regression

relationships between total carbon and the terrain attributes. Because of this, multiple

regression and random field analysis are appropriate prediction methods.
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Evaluation of Interpolation Methods

Stepwise regression (or = 0.15) was used to predict total carbon each scale. The

regressor variables were Easting (m), Northing (m), elevation (m), slope (%), plan

curvature (m'l), profile curvature (ml), and tangential curvature (m") as independent

variables; however, at each scale only various combinations of these regressors were

selected to be in the model by the stepwise procedure.

Total Carbon (G30) = 1451 - 5.45 x elevation - 0.0145 x Northing - 2.95 x slope +

3.24 x plan curvature + 619 x profile curvature

Total carbon (G61) = 1567 - 5.88 x elevation - 0.0203 x Northing - 4.66 x slope +

18.6 x plan curvature - 993 x profile curvature

Total Carbon (G100) = 59.48 - 0.0589 x Northing

More than half of the variability in total carbon was predicted at the G30 (R2 =

0.66), G61 (R2 = 0.77), and 0100 (R2 = 0.74) scales. At the G100 scale, only Northing was

retained in the model and the R2 for this relation was large. Visually, the gradient in TC

is from N to S (Figure 2.1) and the few data points in the G100 grid could only identify

this major trend. Therefore the regression from the G100 data set (n=12) represents

spurious results because the measure of goodness were low. This is evident by a large

RMSE, low prediction efficiency (Figure 2.6), and low r2 between predicted and

measured (Figure 2.7) for regression procedure at the Gmo scale.
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Figure 2.6. Prediction efficiencies and RMSE's.

1' FA30 = mean value of the G30 data set; OK, = isotropic ordinary kriging; OK, =

anisotropic ordinary kriging; KT = kriging with a trend; COK = cokriging; KED

= kriging with an external drift; RFA = random field analysis.
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Figure 2.7. Predicted versus measured values for several prediction methods at two

scales of measurement. 7

1' OK= isotropic ordinary kriging; KT = kriging with a trend model; COK =

cokriging; KED = kriging with an external drift; RFA = random field analysis;
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At the G30 intensity, there was little difference between any ofthe prediction

methods as assessed with measures of prediction efficiency and RMSE (Figure 2.6) or by

deviations from a 1:1 line of predicted versus measured (Figure 2.7). At this scale,

ordinary kriging and kriging with a trend model, methods which rely solely on a

statistical model of the spatial variability, were of similar predictive value as methods that

relied only on the relationship between total carbon and terrain attributes (multiple

regression). Methods that utilized both the spatial variability of carbon and its

relationship with other variables (e.g. kriging with an external drift) only performed

slightly better than these methods.

At the G61 grid intensity, the regression approach had substantially lower RMSEs

and higher prediction efficiencies than any other method at this scale. In fact, the RMSE

for multiple regression was nearly in the same range as the RMSEs for the G30

interpolations (Figure 2.6). The plots of predicted versus measured show that at the 61-m

grid scale, all of the methods that incorporated terrain information out performed those

that used only geostatistical information, despite the large range of spatial correlation. A

great deal of information about total carbon exists in the terrain attributes. The

implication is that by using this information, it is possible to reduce the number of

samples needed to achieve a certain level of accuracy.

The cost of soil sampling is inversely proportional to the square ofthe grid

increment. For regression, prediction efficiency and grid sampling interval were

inversely related (Figure 2.8) which allow the relationship between prediction efficiency

and cost to be modeled. It should be noted that by considering the prediction efficiency,

a squared loss function is assumed (since prediction efficiency is based on the MSE).
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This is likely an incorrect assumption but unfortunately is the basis for most statistical

measures ofmap error. In other words, an accurate understanding of the cost benefit

relationship for grid sampling will require a better understanding of the relationship

between map accuracy and the relative benefit to the farmer.

Recall that in Table 2.1, researchers who used the regression approach used the

coefficients of determination (R2) as an indicator of goodness. Figure 2.8 shows that the

prediction efficiency decreases going from the G30 to G61 scales however the stepwise

regression R2 values increased from 0.66 and 0.77 for the G30 and G61 grids. This

suggests that the R2 may not be a very robust indicator of goodness.
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Figure 2.8. The relationship between prediction efficiency and sample point density for

multiple regression interpolation.

Standard measures of prediction accuracy and efficiency are important. Some

researchers use the correlations between predicted and measured while others compare

MSE values (Table 2.1). Unfortrmately, these measures are not the same and can give

conflicting results. In Figure 2.7, the r2 for ordinary kriging at G61 is 0.47 and the r2 for
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regression interpolation at Gm is 0.41 but the RMSE values are lower for ordinary

kriging than for the regression interpolation (Figure 2.6). Clearly some standards are

needed because these approaches can give conflicting results.

Although the predictions at the G30 intensity were not substantially different,

kriging with an external drift performed the best based on higher correlation coefficients

(Figure 2.7), greater prediction efficiencies, and lower RMSEs (Figure 2.6). However,

the best interpolator at the G61 scale was multiple regression. The kriging with an

external drift and multiple regression (G30 and C151) interpolations have been overlain

with elevation contours in Figure 2.9. Ofthese interpolations, by visual inspection, there

is more correspondence between the kriging with an external drift interpolation and the

aerial photograph (Figure 2.1a). In the southern and northeastern regions of the field, the

kriging with an external drift interpolation matches the darker tones in the aerial photo

better than the two multiple regression interpolations. But regression analysis does a

better job of assigning high carbon values to low areas like the veiny feature in the west

half of the field and low carbon values to ridges the bright red area in the north central

region of the field. The regression approach is successful for these areas because the

ridges and valleys have ether extremely positive or negative curvature values.
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Figure 2.9. Predicted total carbon (g kg") using kriging with an external drift (G30) and

multiple regression (G30 and G61).

1' KED = Kriging with an external drift; REG = Multiple regression; For display

purposes regressed interpolations were matrix smoothed (8 surrounding cells, central

cell weight was 2.5; other 8 cells weights were 1)



CONCLUSIONS

Terrain attributes improved spatial predictions of total carbon particularly with the

coarser sampling intensities. The comparable performance of multiple regression

interpolation procedure suggests that it may not be necessary to use the more

sophisticated geostatistical techniques. At high sampling densities (G30), interpolation

method had little impact on overall map accuracy. There was an interaction between the

scale of measurement and the most appropriate interpolation procedure. At lower

sampling intensity (G61), methods that utilized terrain attributes were more precise than

methods that did not. At this scale, multiple regression analysis yielded the best

predictions, which were nearly as accurate as the methods sampled at the G30 scale.

By using techniques that incorporate terrain attributes, sampling intensity can be

substantially reduced, while maintaining high levels of prediction accuracy and precision.

Since the cost of grid sampling is inversely related to the square of the grid sampling

increment, enhancing spatial estimates with terrain attributes is economically appealing.

SUMMARY AND RECOMENDATIONS

In the first chapter of this dissertation, grid sampling was found to be inadequate

for accurate spatial predictions of soil chemical properties for a field in Clinton County,

MI. The second chapter provides an example ofhow auxiliary terrain information

(elevation, slope, aspect, and curvature) can successfully be used to enhance spatial

estimates of total carbon. More work is needed to determine if terrain attributes can be

used to enhance the predictions of soil fertility variables (e.g. pH, P, K). Additionally,

other terrain attributes (e.g. wetness index, specific catchment area), high-resolution
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multi-spectral images, electromagnetic conductivity, ground-penetrating radar could be

used as secondary information.

Soil property sensors are greatly needed for precision agriculture, unfortunately

there are few commercially available sensors that directly measure soil properties of

agronomic importance. Development of on-the-go sensors for soil nutrients has been

limited primarily to nitrogen and has not been very successful. Sensors for soil organic

matter, water content, structure, compaction are still in development but have had greater

SUCCESS.

Until better sensors are developed, a two step approach is recommended. The

first step is directed sampling based on field history, landscape features, remote sensed

imagery, and yield map variability. Directed sampling may not provide accurate soil

property maps. This was the case in the first chapter of this dissertation; however,

management zones were based on NRCS soil types from a 1215,840 survey. However, if

a producer has records of within field manure applications or records of the locations of

old field boundaries, this approach may prove to be quite accurate. The second step is the

composite sampling of areas that have depressed yields or stressed plants as indicated in

yield maps and remote sensed imagery. Plant nitrogen deficiencies can cause chlorosis,

which changes the reflective properties of the plants. Chlorosis can be identified by

aerial images.
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