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ABSTRACT

INTERACTION OF ELECTROMAGNETIC FIELDS WITH A MATERIAL
SAMPLE PLACED WITHIN AN ENERGIZED CAVITY

By

Jianping Zhang

The investigation of the heating of a material sample in an energized
electromagnetic cavity requires the understanding of the interaction of the electromagnetic
fields with the material sample in a cavity. The key factor for this understanding is to
quantify the distribution of the induced electric field inside the material sample placed in
the cavity.

The goal of this research is to solve Maxwell’s equations in an electromagnetic
cavity in the presence of a material sample based on an Electric Field Integral Equation
(EFIE) or a Magnetic Field Integral Equation (MFIE) and the dyadic Green’s function in
an electromagretic cavity. In this study, a complete set of vector wave functions which
include both solenoidal and irrotational functions are employed and the electric field (and
magnetic field) integral equation is derived based on the expansion of these vector wave
functions.

When solving the integral equation, due to the slow convergence rate of the dyadic
Green’s function, the infinite triple summation over the cavity eigenfunctions is reduced to
the infinite double summation, and the infinite double summation is then estimated by a

finite double summation plus an infinite single summation using the Poisson summation



formula. For some material samples with specific geometries, a scheme of separating the
material sample into the boundary layer region and the interior region is proposed. This
scheme tends to improve the convergence of numerical results and also to save
computation time. Numerical results agree well with the theoretical estimation using these
methods.

The mode-matching method is also employed to analyze the induced electric field
distribution in homogeneous material samples with simple cylindrical geometries placed
in an energized cylindrical cavity. In this method, the whole cavity is divided into three
waveguide regions and the eigenmodes in the inhomogeneously filled waveguide which
contains the material sample are derived. Numerical calculation shows that the resultant
matrix is sparse and the number of eigenmodes needed in the summation is reduced
considerably compared with the integral equation method. The numerical results of the

mode-matching method are found to be consistent with the corresponding results of the

integral equation method.
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CHAPTER 1

INTRODUCTION

The research reported in this dissertation was motivated by the investigation of
microwave heating of material samples. Microwave heating techniques have been widely
utilized in many industrial process [1]. However, the question of why the microwave
heating is much faster and more efficient than the conventional thermal heating in
promoting the chemical reaction and the heating of materials is still unanswered. Since the
microwave heating of material samples is usually conducted within an energized
electromagnetic cavity, to provide an answer to this question it is essential to study the
interaction of the microwave ficld witii a material sample in an electromagnetic cavity.

To understand the coupling of the microwave energy into molecules of a material
sample, it is necessary to determine the microwave (EM) energy absorption rate (or
dissipated microwave power density) P at any point inside the material sample. To
determine this P, it is essential to quantify accurately the distribution of the induced
electric field at any point inside the material sample. Therefore, the key factor to
understand the heating of a material sample in an energized electromagnetic cavity is to
quantify the induced electric field inside the material sample.

Recently, some studies [3]-[8] on this subject based on the finite difference-time

domain method, the finite element method, or the method of lines have been reported.



However, numerical results of these methods can not provide physical pictures of how the
microwave field interacts with a material sample. The method which gives more physical
pictures is to solve Maxwell’s equations in an electromagnetic cavity in the presence of a
material sample based on an Electric Field Integral Equation (EFIE) or a Magnetic Field
Integral Equation (MFIE) and the dyadic Green’s function in an electromagnetic cavity,
Tai [9]. However, in many studies involving this type of problem [9], [15]-[21], the
unknown induced electric field inside the material sample is expanded in terms of the
normal cavity electric modes which are completely solenoidal. This is not correct for the
following reason. When a material sample is placed in the cavity, the initial cavity electric
field will induce electric charges on the surface of the material sample if it is of finite size
or at the heterogeneity boundaries if it is heterogeneous. Thus, the divergence of the
electric field will not be zero at the location of the induced charges, or the divergence of
the electric field will not vanish at all points in the cavity. Therefore, the normal cavity
electric modes which are solenoidal are not sufficient to represent the unknown induced
electric field inside the material sample. Additional eigenfunctions which are irrotational
will be needed.

In this dissertation, a complete set of vector wave functions which include bo:h
solenoidal and irrotational functions are employed and the electric field (and magnetic
field) integral equation is derived based on the expansion of these vector wave functions.
In the solving of the integral equation, the convergence property of the derived dyadic
Green’s function plays a vital role, thus several mathematical methods are explored to
increase the convergence rate of the dyadic Green’s function. The same problem was also

solved by the mode-matching method when the material sample is homogeneous and of



simple cylindrical geometry. The results of this method provide a check for the validity of

that generated by the integral equation method.

In Chapter 2, the properties of the three vector wave functions 2.....:, ﬁ nm! and

1.\7,.».1 in a rectangular cavity are introduced. The orthogonality and completeness of these
three vector wave functions are proved. Using these three vector wave functions as a
complete set of eigenfunctions to expand the unknown electric field, we derive the Electric
Field Integral Equation (EFIE). On the other hand, based on the expansion for the
unknown magnetic field, we obtain the Magnetic Field Integral Equation (MFIE). The
EFIE and the MFIE are shown to be consistent even though different approaches for
deriving them are employed.

In Chapter 3, Galerkin’s method is applied to solve the EFIE derived in Chapter 2
and the convergence property of the dyadic Green’s function in the EFIE is studied. Due to
the slow convergence rate of the dyadic Green’s function, the infinite triple summation
over the cavity eigenfunctions is reduced to the infinite double summation, and the infinite
double summation is then estimated by a finite double summation plus an infinite single
summation using the Poisson summation formula. Numerical results show that the
electromagnetic fields distribution in the material sample are strongly dependent on the
geometry and the dielectric parameters of the material sample. For some material samples
with specific geometries, a scheme of separating the material sample into the boundary
layer region and the interior region is proposed. This scheme tends to improve the
convergence of numerical results and also to save computation time.

In Chapter 4, the microwave heating of a material sample in a cylindrical cavity is



studied. Theoretical analysis of the induced electric field inside a material sample placed

within an energized cylindrical cavity is more involved than that of a rectangular cavity

case as studied in Chapter 2 and Chapter 3. The vector wave functions Lnm!, Mnm! and

ﬁnml in a cylindrical cavity are derived and normalized. The infinite triple and double
summation formats of the dyadic Green’s function in terms of these vector wave functions
are provided. The numerical calculation is conducted for material samples with simple or
complex geometry and homogeneous or heterogeneous composition. Numerical results
agree well with the theoretical estimation.

In Chapter 5, the mode-matching method is employed to analyze the induced
electric field distribution in homogeneous material samples with simple cylindrical
geometries placed in an energized cylindrical cavity. In this method, the whole cavity is
divided into three waveguide regions and the eigenmodes in the inhomogeneously filled
waveguide which contains the material sample are derived. The electromagnetic fields in
each region are then expressed as infinite sums of the eigenmodes, and their tangential
components are matched at the junction surfaces between different regions. Numerical
calculation shows that the resultant matrix is sparse and the number of eigenmodes needed
in the summation is reduced compared with the integral equation method while the
convergence rate is improved. The numerical results of the mode-matching method are
found to be consistent with the corresponding results of the integral equation method
reported in Chapter 4.

Some derivations and proofs that are useful in this dissertation are provided in

Appendices. Appendix A compares the derivation of the dyadic Green’s function with that




of Rahmat-Samii [11] and explains the discrepancy of the expression in [11]. Appendix B

proves the identity of

ZZZ[znml(;o)anl(;) +ﬁnml(;0)ﬁnml(;) +ﬁnml(;0)ﬁnml(;)] = 78(;— ;'0) (LD

nm |

B
which is essential in the proof of the completeness of the vector wave functions Lami,

;;nml and ﬁnml. Appendix C provides a detailed derivation of the infinite double
summation reduced from the infinite triple summation and this reduction is important in
the numerical calculation. Appendix D gives the electric field in an inhomogeneous
dielectric sphere which includes two regions of different dielectric materials induced by a

uniform static electric field and this result is used as a theoretical estimation in Chapter 4.



CHAPTER 2

INTERACTON OF ELECTROMAGNETIC FIELDS
WITH A MATERIAL SAMPLE PLACED WITHIN A
RECTANGUALR CAVITY

In this chapter, the interaction of the electromagnetic field with a material sample
placed in a rectangular cavity is studied. We will consider a material sample of finite
dimensions with dielectric parameters of relative permittivity € = €' + je", permeability
i, and conductivity ¢, and assume that a certain electromagnetic mode of a rectangular
cavity has been maintained before a material sample is introduced. Our goal is to
determine the total electromagnetic fields inside the material sample induced by the initial
cavity electromagnetic fields, and the perturbed electromagnetic fields in the vicinity of
the material sample as well.

In many studies involving this type of problem[9], [15]-[20], the unknown induced
electric field inside the material sample is expanded in terms of the normal cavity electric
eigenmodes which are completely solenoidal. This is not correct for the following reason.
When a material sample is placed in the cavity, the initial cavity electric field will induce
electric charges on the surface of the material sample if it is of finite size or at the

heterogeneity boundaries if it is heterogeneous. Thus, the divergence of the electric field



will not be zero at the location of the induced charges, or the divergence of the electric
field will not vanish at all points in the cavity. Therefore, the normal cavity electric
eigenmodes which are solenoidal are not sufficient to represent the unknown induced
electric field inside the material sample. Additional eigenmodes which are irrotational will
be needed. In our study, a complete set of vector wave functions which include both
solenoidal and irrotational functions are employed.

The vector wave functions are the building blocks of the eigenfunction expansions
of various kinds of dyadic Green’s functions [9]. These functions were first introduced by
Hansen [60], [61] and [62] in formulating certain electromagnetic problems. The
effectiveness of these functions was recognized by Stratton [23] who, for example,
reformulated Mie’s theory of the diffraction of a plane electromagnetic wave by a sphere

using the spherical vector wave functions. In his original work [60] Hansen introduced

three kinds of vector wave functions, denoted by 2, X'; and N, which are the solutions of

the homogeneous vector Helmholtz equations. Such a presentation was followed by

Stratton [23] and by Morse and Feshbach [42].

EN - -
In this study, we use the three vector wave functions Lamiy Mnmi and Nnmi as the

basis functions to expand the unknown induced electric field inside the cavity. We will

-— -
show that the vector wave function Mnm! are the normal TE modes, Nnm! are the normal
TM modes and Lnmi are the so-called zero frequency modes which are irrotational. Also

EY -— -
the orthogonality and completeness of the vector wave functions Lnmiy, Mnmi and Nnmi

will be proved to assure that they form a complete and orthogonal set of basis functions.



An Electric Field Integral Equation (EFIE) is constructed when the electric dyadic

Green’s function is derived based on these vector wave functions anl, ﬁnml and ﬁnml.
Although there is a material sample inside the rectangular cavity, the divergence of
the magnetic field vanishes at all points inside the cavity. The solenoidal eigenfunctions
can form a complete set of basis functions within the space of solenoidal vector fields but
not within the space of all vector fields [28]. Thus, we can use the simple cavity magnetic
eigenfunctions which are solenoidal to expand the unknown magnetic field inside the
cavity and the Magnetic Field Integral Equation (MFIE) is obtained after the magnetic
dyadic Green’s function is derived. We will show that the EFIE is equivalent to the MFIE
and we will compare our results with those of Rahmat-Samii [11]. They are almost

identical except a minus sign. After carefully examining the derivation and the results of

[11], we have found an error of a minus sign in [11].

The outline of this chapter is as follows: Vector wave functions anl, ;;nml, I_V\nml
and their properties are introduced in Section 2.1. Based on Maxwell’s equations, we
obtain the electric dyadic Green’s function and EFIE in Section 2.2. In Section 2.3, a
MFIJE is derived based on the magnetic field expansion and a magnetic dyadic Green’s

function. The results of EFIE and MFIE are compared and the explanation is given in

Section 2.4.



2.1 Vector Wave Functions in Rectangular Cavities

2.1.1 Definitions for Vector Wave Functions Z,, mls M nmi and N nml in
Rectangular Cavities

- -— N
The definitions of vector wave functions Lnmi, Mnmi and Nnmi in rectangular

cavities can be found in [2], [9] and [23] as

Lomt = ——(Vot ) @.1)
knml
Mami = Vx(z0M ) 2.2)
Nomi = ——UxVx(z0. ) 2.3)
nml

B
where all the scalar wave functions ¢,,,, which yield the vector wave functions Lnmi,

Mpnmi and Nnmi satisfy the scalar Helmholtz equation (V2+kim,)¢nm, = 0 and the

subscripts n, m, and [/ are used to identify the eigenmodes in a cavity. The vector wave

- - -
functions Lnmi, Mnmi and Nnmi also need to satisfy the boundary conditions on the

perfectly conducting walls of the cavity as:

nXLomi =0 (24)

N>
X
X
3
3
1]
(=]

(2.5)

33
X
2l
3
2

1]
(=]

(2.6)



- -— -
Based on the definitions of the vector wave functions Lnmi, Mnmi and Nnmi, it is

easy to show that these vector wave functions have the following properties:

V- Mumi = 0 Q2.7
V-Numi = 0 (2.8)
VXanl =0 2.9)

That is, the vector wave functions ﬁ nml and I_\l\ nmi are solenoidal and 2...,.1 is irrotational.

The first complete theory for the spectrum of modes in a cavity was presented by
Kurokawa [12]. Helmholtz’s theorem states that a general vector field has both a
solenoidal and an irrotational part and may be derived from a vector and a scalar potential.
According to Helmholtz’s theorem, the electric field in the interior of a volume V bounded

by a closed surface S can be expressed in the form [2], [12] of

EG) = —V[I 0 4f1(er0) Vo + §" E(’O)dso] (2.10)
|4
v, xE(r ) an( )
+Vx [j 2 0 § 4nRr0 0:|
|4

where R = |; - ;OI and n is the unit inward normal to the surface S. This theorem gives

the conditions for which the electric field is a pure solenoidal or a pure irrotational field.
The pure solenoidal field must satisfy the conditions V - E = 0 in volume V and
n- E = 0 on the closed surface S, in which case there is no volume or surface charge

associated with the field. In a similar way there are two conditions that must be met in

10



order for a field to be a pure irrotational or lamellar field, namely, V x E = 0 in volume V

and n x E = 0 on the closed surface S.

For a cavity with perfectly conducting walls the boundary condition n X E=0

must hold on the cavity surface S. In general, 7 - E does not vanish, and is not required to
vanish, on S. Hence the electric field in a cavity with perfectly conducting walls is
generally not a pure solenoidal nor a lamellar field. In other words, pure solenoidal and
pure irrotational vector eigenmodes are difficult to find analytically.

In the integral equation method or the moment method, the basis expansion for the
unknown electric field is necessary. That is, we need a set of complete orthogonal basis
functions to expand the unknown electric field and the basis expansion for the unknown
electric field will converge much better if we use the basis functions that satisfy the same
boundary conditions as the unknown electric field we are expanding [1]. From a
mathematical point of view, it really does not matter whether the basis functions are pure

solenoidal or pure irrotational as long as they form a complete set of basis functions.

EN —
Based on the definitions and properties of the vector wave functions Lnmi, Mnmi and

- -

- -
Nnmit, we can choose the vector wave functions Lnmi, Mnmi and Nnmi as a set of

expansion basis functions after we prove that they are orthogonal and complete, where

Lnmi will be referred to as pure irrotational modes, while A_'; nmi and Nnmi will be referred
to as solenoidal modes but will not be pure solenoidal modes. All these vector wave

functions can be called the short-circuit modes because they satisfy the boundary



conditions
~ -
nxE =0
on S. In spite of the lack of purity in the short-circuit modes, in many instances non-pure

solenoidal modes turn out to be sufficient to express certain electric field distributions for

-
which n - E is not zero on S.

2.1.2 Expressions for Vector Wave Functions 2,, mls M nmil and N nml in
Rectangular Cavities

In order to obtain the numerical solution of the unknown induced electric field, we

need to know the expressions for the vector wave functions 2..,,.:, A—';nml and I_V‘nml based
on their definitions given by egs. (2.1) to (2.6).

The rectangular cavity under consideration has the geometry shown in Figure 2.1.

1. Expression for vector wave function Lnm! .

N
Based on the definition of the vector wave function Lnmi, we have

Lami = ](L(Vq;jm,) @.11)
nml
(VE+k2 Dok =0 2.12)

Applying the variables separation method to eq. (2.12), we obtain the solution of the scalar

Y
function ¢,,,,, as

T



bl

Figure 2.1 A rectangular cavity and the designation of the coordinate system
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L cos (k x) cos(k),y) cos(k,z)

¢nml = Anml : . . (2.13)
sin(k,x) sm(kyy) sin(k,z)

nmi 18 an unknown constant which will be determined by the normalization of the

where A

Lo 2. ,2,,2 2
vector wave function Lami and k,” + k,”+k,” = k- Then the three components of the

-
vector wave function Lnm! can be expressed as

L Anmlk -sin(k,x) cos(kyy) cos(k,z) )14
nmlx = m x{ cos(k x) }{ sin(k,y) }{ sin(kzz)} (2.14)
A, [cos(k.x) —sin(kyy) cos(k,z)
anlv = k, . . (215)
Y Ky ’{ sin(k,x) H cos(k,y) H sm(kzz)}
Apnl cos(k, x) cos(kyy) -sin(k,z)
Ly, = ks . (2.16)
Tk “{ sin(k,x) H sin(k,y) H cos (k,z) }

Based on boundary conditions given by eq. (2.4), the vector wave function Lami is derived

as

A

"MI[.X'"—TECOS(—1tX)Sll'l("l—fc )Sll’l(“It )+ MSI“(EX)COS(’"—EV)
k" a“\a b)) b
sin + —Sll'l —x |sin| —vy |cos —Z

P c a b c

2 2 2
nn mm Ir : . L .
where k,,m, = (7) + (—b—) + (?) and the expression for the scalar function ¢, is

anl =
2.17)

given by



L . (. (mm )\ .
¢nm1 = Anmlsm(7x) Sln(Ty)Sm(?Z) (2.18)
2. Expression for vector wave function A—} nml

—
Based on the definition of the vector wave function Mnmi, we have

Mami = Ux(z0M ) (2.19)
(Vi+kl, oM =0 (2.20)

Using the variables separation method, the solution of the scalar function ¢:’m ; is given by

M cos(k, x)) [cos(k,y)) [cos(k,z)
O i o o
sin(k,x) sm(kyy) sin(k,z)

where B,,,; is an unknown constant which will be determined by the normalization of the

2

- 2,,2,,2
vector wave function Mnmi and k" +k,"+k,~ = k.

The two components of the

-—
vector wave function Mami can then be expressed as

y B {cos(kxx)}{—sin(kyy) }{cos(kzz)} 2.22)
nmlx nml"y sin(k,x) | | cos(k,y) ] | sin(k,2) '
-sin(k,x) cos(k),y) cos(k,z)
Mnml = _Bnmlkt . . (2.23)
y *{ cos(k,x) | { sin(k,y) ] | sin(k,z2)

Based on boundary conditions given by eq. (2.5), the vector wave function Mnmi is

derived as



o ~mm nt ). (me \ . (It ~nmw . (N
Mpmi= B,,,,,,[-xTcos(?x)sm(Ty)sm(?z) Y7 sm(;x) (2.24)

o 2529

2 2 2
where kim, = (’%t) + (an') + (l%t) and the expression for the scalar function ¢an, is

given by
¢an [ = B, ,cos(n?nx)cos ({_n;:_t y) sin(%—tz) (2.25)

3. Expression for vector wave function Nnmi

-
Based on the definition of the vector wave function Nami, we have

Nomi = ——UxVx(zo" ) (2.26)
nml
(VE+k2 )oY =0 2.27)

In a similar way as before, the variables separation method is applied to eq. (2.27), and the

solution of the scalar funcuon ¢:’m ; becomes
N cos (k x) cos(kyy) cos(k,z)
canl = Cnml . . . (2.28)
sin(k x) sin(k,y) sin(k,z)

where C,,,; is an unknown constant which will be determined by the normalization of the

- 2 2 2
vector wave function Nami and k, +kv2 +k,” = k,,,. The three components of the

- .
vector wave function Nnmi can then be expressed as



Comi -sin(k,x) cos(kyy) -sin(k,z)
Nnmlx = k kxkz{ }{ }{ } (2.29)

nml cos(k x) sin(k),y) cos(k,z)

Comi cos(k, x) —sin(k),y) -sin(k,z)
Nnml = = k. k . (2.30)
Yo kg 7| sin(k x) cos(k,y) || cos(k,z)
Comi. .2 .2 [cOS(k,x) cos(kyy) cos(k,z)
Nomiy = 77—k +k5)1 , , (2.31)
kpmi Y| sin(k.x) | { sin(k,y) ] | sin(k,z2)

Based on boundary conditions given by eq. (2.6), the vector wave function Nnmi is

derived as

PN C " R ’
Nnmi = ""'Il:—,wcn—mitcos('-lltx)sin(m—Tt )sin(lltz) - ym—"lit sin('ﬂ'x) (2.32)
| S ac a b c b c a

5 (2] (5 (2 o )

: 2 2 2
where k,zm | = (n;_n) + ("’Tn) + (%‘) and the expression for the scalar function ¢:’m, is

given by

N . (nmt \ . (m~m In
Onmi = C,,mlsm(ZX)SIH(—b—'y)COS(?Z) (2.33)
From all of these expressions for the vector wave functions (2.17), (2.24), and

(2.32), we can identify that I-i'; nm! are the normal TE modes and ﬁnmt are the normal TM

modes in a rectangular cavity [10]. We can also identify Lnmi as the so-called zero-

frequency modes. It is noted that for these three vector eigenfunctions, the eigenvalues

17



2 2 2
= (2 (5 (9
a b c

are the same for the same indices. This will cause some degenerate modes.

Some field structures of the vector wave functions anl, A_';nml and I-\-;nml which
represent electric fields have been plotted in Figure 2.2 to Figure 2.13.
Figure 2.2 to Figure 2.4 show the electric field structures for the eigenfunction

Ly}, where Figure 2.2 depicts for L;;;, and L}, in the x-y plane with z=c/4, Figure 2.3
depicts L;;;, and L;;, in the x-z plane with y=b/4 and Figure 2.4 depicts L;;;, and L;;;,

in the y-z plane with x=a/4. From Figure 2.2 to Figure 2.4, we observe that the normal
components of the electric field decrease as the field point moves from the walls of the
cavity towards the center of the cavity. There is a sink point at the center of the cavity for

the eigenfunction L, Since the eigenfunction L, ; is irrotational, and

+ . (T . (T . (T
V.-Li = —kmAmsm(zx)sm(zy)sm(;z)

where x € [0, a], ye [0, b] and z € [0, c]. It is obvious that the minimum value of the
divergence of the eigenfunction L;;; occurs at the center of the cavity and the divergence
of the eigenfunction L,;; does not vanish at any point inside the cavity.

Figure 2.5-Figure 2.7 show the electric field structures for the eigenfunction M5,
where M;;, and My, in the x-y plane with z=c/4, M3, and M3, in the x-z plane with
y=b/4, and M, and My, in the y-z plane with x=a/4 are plotted orderly in Figure 2.5 to
Figure 2.7. Since M5;, is zero, there is only My;, in Figure 2.6 and Mp;,,, in Figure 2.7.

Also we can observe that My;,, and My, form a rotational field in Figure 2.5.

- -
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E-field of L111 in the x-y plane when 2=c/4
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E-field structure of L;;; in the x-y plane with z=c/4.

Figure 2.2
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E-field of L111 in the x-z plane when y=b/4
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E-field structure of L;;; in the x-z plane with y=b/4.

Figure 2.3
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E-field of L111 in the y-z plane when x=a/4

E-field structure of L;;; in the y-z plane with x=a/4.

Figure 2.4
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E-field of M221 in the x-y plane when z=c/4
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Figure 2.5 E-field structure of M,,; in the x-y plane with z=c/4.
The dimensions of the rectangular cavity are: a=0.072m, b=0.034m, and c=0.1163m.
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E-field of M221 in the x-z plane when y=b/4
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E-field of M221 in the y-z plane when x=a/4
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Figure 2.7  E-field structure of M,,, in the y-z plane with x=a/4.
The dimensions of the rectangular cavity are: a=0.072m, b=0.034m, and c=0.1163m.
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Figure 2.8 to Figure 2.10 show the electric field structures for the eigenfunction

N3;;, where Njy ;. and Ny, in the x-y plane with z=c/4, Np;,, and Nj;, in the x-z plane

with y=b/4, and N;;,, and Ny, in the y-z plane with x=a/4 are plotted orderly in Figure

2.8 to Figure 2.10. For the eigenfunction Ny; Ny, = 0 atx = a/4 and Ny, = 0 at

y = b/4. Because Figure 2.10 is plotted for N;;;, and Ny, ;, at the x = a/4 plane, there
are only Np;;, and N;,, and they form a rotational field, no sink or source points exist.
Also Figure 2.9 is plotted at the y = b/4 plane, N,;;, and N5, form a rotational field at
this plane.

Figure 2.11 to Figure 2.13 show the electric field structures for the eigenfunction

Lj,;, where Lyy,, and Ly, in the x-y plane with z=c/4, L;;;, and Ly,, in the x-z plane
with y=b/4, and Ly, ;, and L;;,, in the y-z plane with x=a/4 are plotted orderly in Figure

2.11 to Figure 2.13. For the eigenfunction Ly;; L,;, = 0 at x = a/4 and Ly, = 0

at y = b/4. However, in Figure 2.12 and Figure 2.13, L,,,, and L;,;, in the x-z plane
with y=b/4, and Ly;;, and L3/, in the y-z plane with x=a/4 do not form a rotational field.

It looks like there are some sink points and source points in Figure 2.12 and Figure 2.13.

-—

2.1.3 Vector Wave Functions 2,, mls Mpmi and N nmi Satisfy Vector
Helmbholtz Equation

Since the electric fields satisfy the vector Helmholtz equation, the basis functions
which are used to expand the electric fields should also meet the same requirement. The

vector Helmholtz equation is expressed as
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E-field of N221 in the x-y plane when z=c/4
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Figure 2.8

The dimensions of the rectangular cavity are

=0.072m, b=0.034m, and c=0.1163m.
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E-field of N221 in the x-z plane when y=b/4
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Figure 2.9  E-field structure of N,,; in the x-z plane with y=b/4.
The dimensions of the rectangular cavity are: a=0.072m, b=0.034m, and ¢=0.1163m.
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E-field of N221 in the y-z plane when x=a/4
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Figure 2.10  E-field structure of N,,; in the y-z plane with x=a/4.
The dimensions of the rectangular cavity are: a=0.072m, b=0.034m, and c=0.1163m.
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E-field of L221 in the x-y plane when 2=c/4
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Figure 2.11
The dimensions of the rectangular cavity are: a=0.072m, b=0.034m, and c=0.1163m.
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E-field of L221 in the x~z plane when y=b/4
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E-field of L221 in the y-z plane when x=a/4
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VA+k*A = 0 (2.34)
or
V(V-A)-VxVxA+KA =0 (2.35)
1. Vector wave function znml satisfies the vector Helmholtz equation

Based on the property of the vector wave function Z,.ml (2.9) and using egs.

(2.11) and (2.12), we have

k

nm

V(V-an/) - v(v : me,) = 2 Lom 236

Therefore,

V2Lomi + k*Lumi = v(v . Z,.,..l) VXV XLami + K2, Lami = 0 2.37)

Namely, the vector wave function anl satisfies the vector Helmholtz eq. (2.35).
2. Vector wave function Mnm satisfies the vector Helmholtz equation

Based on the property of the vector wave function A_';nml (2.7) and using egs.

(2.19) and (2.20), we have

VXV X Mumi = <V Mumi = =3V M = 59 My, (2.38)
VM = VRO = OvieM 2 M 2.39
nmix — §;¢ nml= a_y ¢ nml= —Kpp ) pmix ( . )

VM = vROM o O PM o 2 M 2.40
nmly = ~ w nml= x( ¢ nml)= — nm!*" nmly (2.40)
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Therefore,

VXV XMumi = =V Mumi = K2y Mnmi 2.41)

or
2= 2 =
v Mnml+knm[Mnml =0 (242)

Thus, the vector wave function ﬁ nm! satisfies the vector Helmholtz eq. (2.34).
3. Vector wave function 1_\; nmi satisfies the vector Helmholtz equation

Since the vector wave function I_Gnml has the same property (2.8) as the vector
wave function ﬁnml has, using egs. (2.26) and (2.27) and employing the same procedure

—
as that used for the vector wave function Mnmi, we can obtain

VXV X Nami = ~VNumi = kim,ﬁnmt (2.43)

ie.

V2 Numi + k2 Numt = 0 (2.44)
Therefore, the vector wave function ﬁnml satisfies the vector Helmholtz eq. (2.34).
2.1.4 Orthogonality of the Vector Wave Functions L,,,;, My, and

Nnmli

EY -— -
That the vector wave functions Lamiy, Mnmi and Nnm! are orthogonal mutually is

necessary for them to form a set of basis functions in order to represent the unknown
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electric field. We will prove that the vector wave functions are orthogonal for different

indices by themselves and also orthogonal mutually.

1. Vector wave functions M nmi are orthogonal for different indices.

We know the vector identity of

V'(ﬁmXVXﬁn-ﬁnxvxgm) = A—;n‘VXVXA_;m—A—;m'VXVXA_';n (245)

So

[(Mn- VXV x Min— M- V x V x Mn)dv

= IV-(ﬁmexﬁn-anVxﬁm)dv
\4

= §ﬁ.(M,,,xVxM,.-M,.xVxM,,.)ds
5

= §ULGx Mn) - (V x Mim)] = [ x Mim) - (V % Mn)] }ds

where the integration region is over the cavity volume V or the surface S of the cavity wall.
Because # X M» = 0 on the perfectly conducting walls of the cavity, it can be concluded

as

[(Mn- VXV X Mim = M-V % V % Mn)dv= 0 (2.47)

\4

-—
On the other hand, Mnm: satisfies the vector Helmholtz equation, then

J‘(A_;n'VXVXﬁm—A—';m'VXVXA—;n)dV

v

N a - N (2.48)
= [(Ma- ko Mm—M,, - keMu)dv= (ks ~ ko) [(Mn - Mm)dv
v v
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Based on egs. (2.47) and (2.48), we conclude that

j(ﬁn - Mm)dv= 0 if m#n (2.49)

That is, the vector wave functions ﬁ nm! are orthogonal for different indices.
2. Vector wave functions 1_\" nm! are orthogonal for different indices.
The same procedure used for the case of X;nml can be applied to prove the same
property for 1_\; nml .
3. Vector wave functions znml are orthogonal for different indices.
Using the identity of

V. (LVOL) = Voi-Vok +oEviel (2.50)

-
and the properties of the vector wave functions Lnmi, we can prove the orthogonality of

-
the vector wave functions La.m:! for different indices as follows:

1
knkm

[(Ln- Lmdv= [1vor - VoLl

= [V 05V 65 - 0 V707 1av

1 (2.51)

Lo2 L
e JonV 0nay

n"m,

1 Lo, L
= — 6"V~ -ds—
k,,kqu)" 9, - ds
Kme L. L
= 7 ontndy

where the integration region is over the cavity volume V or the surface S of the cavity wall
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and the integration over the surface S is zero due to the property of the scalar function ¢f.

Since the scalar function ¢,’; has been given in eq. (2.18), it is obvious that they are

orthogonal for different indices. If we assume that the scalar functions ¢, have been

normalized, that is

[onondy = 3, (2.52)

then
T 7 km L,.L
[(Ln- Lm)dv= = Jontndv = 8, (2.53)

EN
Therefore, the vector wave functions Lnmi are orthogonal for different indices and

normalized as well.

4. Vector wave functions mel and ﬁ nmi are orthogonal.

Using the vector identity of

V. (AxVxB) = VXA-VxB-A -VxVxB (2.54)

we have

V'(anvxxf‘m)=VXZn‘VXA—;m—Zn'VXVXﬁm 2.55)
= —Zn'VXVXA_;m= —zn’k’znﬁm

BN = N
Based on the properties of the vector wave functions Lam/ and Mnmi, we have
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kf,,j(Z,. Mm)dv= ~[V - (Ln X V X Mm)dv

a — a KN (256)
= -§ﬁ-LnxVmeds= -§(aan.VxM,..)ds= 0
s s

N -—
using the boundary conditions. That is, the vector wave functions Lnmi and Mnm! are

orthogonal.

S. Vector wave functions Ln.mi and Nnmi are orthogonal

This can be proved if the same preceding procedure is employed.

6. Vector wave functions A_:; nm! and I-Gnml are orthogonal.

Based on egs. (2.41) and (2.43), we know that
[(Mn- VX VXN = Nim - ¥V x M)y = (ki ~ k2) [ (M - Nim)dv 2.57)
\4 \ 4

Using the vector identity of eq. (2.54), we have

J(ﬁn'VXVXﬁm—ﬁm‘VXVXA—;n)dV
\ 4
= IV-(ﬁmexA?n—A?nxVxﬁm)dv
' - - - =N (2.58)
= §(NmXVXMn-—MnXVXNm)';1dS
)
= $( X Nm) - (V x Mn) = (3 X M) - (V x Nm)]ds= 0
)
where the boundary conditions egs. (2.5) and (2.6) have been employed in the last step.

Therefore,

(k2 ~k2) [(Mn - Nm)dv = 0
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2 2 . Y, Y
When k,, # k;, the vector wave functions Mnm! and Nnmi are orthogonal. For degenerate

modes, we can use the Gram-Schmidt orthogonalization procedure to construct a new

subset of orthogonal modes[2].

EN -— -
So far, we have proved that the vector wave functions Lami , Mnmi and Nnmi are

orthogonal mutually.

2.1.5 Normalization of the Vector Wave Functions L,,,,;, My, and
e
Nnmi

Up to now there are still three unknown coefficients A

wml» Bnmy @nd C, ., in the

EY -— -
expressions for the vector wave functions Lami, Mnmi and Nami which need to be

determined by the normalizations of these vector wave functions.

1. Normalization of znml

EN
The normalization of the vector wave function Lam! is given by [10]

f)jif)ankanldv =1 (2.59)
that is,
( "'"l) ( ) cos ( )sz(m_n )sinz(h—t )+(m—ﬂ)zsinz('itx)cosz('-ﬂt )
ko b~ ) (b a b
(") (Y sin i (5 eos (1)
sin | — — | sin | —x|sin | —y |cos | —z ]dv =1
c b c

Considering the expression for Lnmi given in eq. (2.17), we can observe that
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B
Lnmi will be zero if any one of the three indices is zero. Hence,

A:m,‘%‘ =1 without n=00r m=0,0or | =0 modes

BN
or the normalization coefficient for the vector wave function Lnm/ is given by

8
A= e (2.60)
2. Normalization of M
The normalization of the vector wave function A_'; nml is given by [10]
rJ‘bJ‘A_';nmz-A—;nmldv =1 (2.61)
07070

i.e.

o fmon () ox () (5o (20) ()
sin 2("7“x) cos z(an y) sin 2(1%‘2):|d v =1

-——
Thus, ths normalization coefficient for the vector wave function Mnm: is derived as

FOneomsoz 1
= 2.62
Bnml abc (nn)z (mﬂ)z ( 6 )
—— + ——
a b

where

€on = {l yon=9 (2.63)
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3. Normalization of 1-\\’ nml

-
The normalization of the vector wave function Nnmi is given by [10]

J‘:)J::J‘(-)I-\;nml : ﬁnmldv =1 (264)

ie.

( m:) Irr (nnht) Z(nn )smz(m_n )Sinz(’i‘z)
nml 0 ac a b g ¢
(mnln)z ) Z(mz ) z(mn ) . 2(11: )
+ b e sin [—x|cos | —y|sin | —z2
c a b c
nm\2 (mm\\2 . %(nm \ . ¥mm 2In
() (5o (2o 1) -

-
So the normalization coefficient for the vector wave function Nnmi is given by

_ €On(b"'Ome'Ol’ 1
Comi = N abe Aj(mt L(mn (263)

AN . N
2.1.6 Completeness of the Vector Wave Functions L, ,,;, M,;,; and
-
Nnmi
As well known, a vector function is uniquely defined only when both the

solenoidal and lamellar or irrotational parts are given. Let the subscript / denote the

lamellar part and the subscript r denote the rotational or solenoidal part. For any arbitrary

vector field -C" we have
C=Ci+C, (2.66)
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So in order to represent an unknown electric field which is both solenoidal and lamellar,

we need a set of the basis functions which have both solenoidal and lamellar components.
. . - -
In the previous sections, we show that the vector wave functions Mnmi and Nnmi are

-
solenoidal and Lnmi is lamellar or irrotational.

Conventional proof of the completeness of a set of orthonormal functions can be

found in [2], [42] and [43]. It states: The notion of the completeness for the space of

functions y,(x) defined on the interval 0 <x<a involves the following: Let f{x) be a

piecewise continuous function on 0 < x < a, that is, quadratically integrable with 6(x) as

a weighting function, i.e.

[If o’ o(x)dx < oo @2.67)
0

We assume that 6(x) is always positive. Consider now the approximation

N a
Y, caWalx) = £(2), cn = [O(0) (X)W, (x)dx (2.68)
0

n=1

If the limit as N — oo of the integrated square of the error tends to zero, then the functions

V,(x) form a complete set. Completeness thus implies that

N

f)=Y, ¥a(x)

n=1

2
o(x)dx = 0 (2.69)

a
limJ

N-o
0

> a . . . . . . . .
In our case, E(r) is a three dimensional vector function which is piecewise

continuous function in the cavity volume V,ie.,0<x<a,0<y<b and 0<z<c inthe
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- - -
rectangular cavity. The vector wave functions Lnmi , Mnmi and Nnmi have been defined

in the cavity volume V before. We then consider the approximation

N
EF) = 3 [a,Ln(?) + b,Mn(7) + c,Na(P)] 2.70)

n=1

where we assume that the vector wave function are normalized and

a, = j E(70) - La(Fo)dv, (2.71)
V(ﬂvll\'
b, = J E(?o)ﬁn(%)dvo (2.72)
e = [ E(ro)- Na(Fo)dv, @.73)
Let
- - N > -— -
F() = EO) = Y [@,Lna(F) + b,Mn(F) + c,Na(7)] (2.74)

n=1

Substituting egs. (2.71), (2.72) and (2.73) into eq. (2.74), we have

N
F(®) =E® =Y, | E(ro)- (La(ro)Ln(¥) + Mn(ro)Mn(F) + Nn(ro)Na(F)1dvy
=1V
-~ - N B - -— -— - -
= E(R) - [ E(ro): Y, (La(Fo)Ln(F) + Ma(ro)Mn(F) + Nu(ro)Nn(F)]dvy
Vcavm- n=1
Then

lim () = E¢)- 3, [ EGo)- (La(Fo)Ln(F) + Ma(Fo)Ma(}) + Nu(Fo)Nn(3) 1dvg
- n=1V

cavin
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In Appendix B we have proved the following identity

T [La(Fo)La(3) + Mn(F)Mn(F) + Na(Fo)Na(P)] = I8(F - F) (2.75)

n=1

Thus, for sufficiently smooth electric field we have

lim F(}) = 0

N> o

This implies

N 2
lim E(r)- Y, [a,Ln(F) +b,Mn(F) + c,Na(P)]| dv = 0 (2.76)

N oo
caviry n=1

- =N -
Therefore, the vector wave functions Lnmi, Mnmi and Nnmi form a set of complete
orthonormal basis functions which can be used to expand the unknown electric field.

In case we know that the electric field is solenoidal, we can only use the vector
. - = 0
wave functions Mnmi and Nnmi to represent the unknown electric field. That is, the vector

wave functions Mnm: and Nnmi become complete within the space of solenoidal vector
fields but not within the space of all vector fields [28]. The proof is as fcilows.

In this special case, we have

V.-EG) =0 Q.77)

Using the complete set of basis functions to expand the unknown electric field, we have

EG) = Y (a,La(3) + b, Mn(}) + c,Nu(?)] 2.78)

n=1
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The expansion coefficient a, will be equal to zero in this special case, because

a, = j E(G) - La(3)dv= j E(?).kl(wﬁ)dv (2.79)

cavity Vrnwl\'

Using the identity of

V- [0LEG)] = VoE-E() + 05V - E(H) (2.80)

The expansion coefficient a,, is given by

a, = %’[VI VM- | ¢5V.E(;)dv]= klns§ A OLE(hds =0 (281)

cavity V:avil\' cavity

based on the boundary condition for 2,,,,.,. That is, the expansion of the solenoidal electric

field can be based only on the solenoidal vector wave functions. In other words, we can

- -
conclude that the vector wave functions Mami and Nnmi are complete within the space of

solenoidal vector fields.

2.2 Derivation of Dyadic Green’s Function and Electric Field Integral
Equation (EFIE) in Rectangular Cavities

In this section, based on Maxwell’s equations we will investigate the
electromagnetic fields behavior in a rectangular cavity with a non-ionic material sample
placed inside the cavity. The dielectric parameters of the material sample under

consideration are permittivity € = €' + je", permeability W, and conductivity . We also

suppose that an initial cavity field has been set up before the material sample is placed

inside the cavity.



2.2.1 Maxwell’s Equations in the Material Sample

The curl equations of the Maxwell’s equations in the material sample can be

written as

VxE(})

CiouwHCG
JOUH(r) (2.82)

V x I-;(?) cE(?) + j(oel_::(;)

where E(r) and H(r) are the unknown electric and magnetic fields in the material

sample we aim to determine.

In the empty cavity, the Maxwell’s equation is given by

VxE'(}) = —jopH (7)
N o (283)
VxH (F) = jog,E (F)

where E'(;) and H'(;) are the initial electric and magnetic fields we assumed.
The initial cavity fields will induce electric currents and charges inside the material

sample. These induced electric currents and charges, in turn, will produce the scattered

fields or the secondary fields ES(;) and 175(;) . In case the material sample is of finite size

or heterogeneous, there will be induced charges on the sample surface or at the
. . AS . - .

heterogeneity boundaries. Thus, V- E will not be zero at the locations of the induced
25 s . .

charges. Or E (r) has an irrotational component.

The total electromagnetic fields E (r) and H (F) can be expressed as
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EG) = E+E R (2.84)

HG) = H)+H ) (2.85)

Substituting eqgs. (2.84) and (2.85) into eqgs. (2.82) and (2.83) leads to the equations for the

scattered fields as

VXE'(}) = —jopH () (2.86)
VxH'(}) = 6E(}) + j0eE(F) - joeE (F)= Jeq(F) + joksE (F) 2.87)

where
Jeo(}) = [0+ jo(e-£g)IE(D)= T,(DE() (2.88)

is the equivalent current and ‘ce(;) = 0+ jw(e-¢y) is the equivalent complex

conductivity. Taking curl of eq. (2.86) and using eq. (2.87), we have
VxVxE (F)= —jopgleg(r) + K2E (F) (2.89)

2 2 . .
where k; = @ ly€, . Thus, we have the wave equation for the scattered electric field as

VxVXE () -KE () = —jopgleg?) (2.90)

2.2.2 Expansion of E’(?) and Derivation of the Electric Dyadic Green’s
Function

EY -— -
The vector wave functions Lami, Mnmi and Nami form a complete set of
orthonormal basis functions, satisfy the same boundary conditions as the scattered electric

field does and are the solutions of the homogeneous vector Helmholtz equation with
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, : .2 . 2 I ,
particular eigenvalues krzm ;- This k., is not equal to k; appearing in the inhomogeneous

wave equation of (2.90). However, we can solve eq. (2.90) by expanding ES(;) in terms of

the vector wave functions zuml , ﬁ nml and I—Gnml . That s,
E'(F) = Y.[a,Ln(F) + b,Ma(F) + c,Nn(P)] (2.91)
n

where a,, b, and c, are unknown expansion coefficients. For simplicity, we use one

index n instead of three indices n, m, and / in the summation of eq. (2.91). Substituting eq.

(2.91) into eq. (2.90) gives
Vx Vx Y a,Ln(}) + b,Ma(F) + c,Nn(})] = ko3 [, Ln(3) + b,Mn(F) + ¢, Na(P)]
n n
= —jopgJeq(?)
Using the properties of the vector wave functions Z,.m: , ﬁnml and I-S;nml which

we have derived in Section 2.1, the above equation can be rewritten as

3 [~ko@nLn(F) + by(ks — kg)Mn(F) + c,(kn —kg)Na(F)] = —jopglea(r)  (2.92)
n

Taking the scalar product of eq. (2.92) with 2,,,,,1 , A—'; nmi! and I_N;nml , respectively

and integrating over the volume V, then applying the orthonormal property of the vector

B - -
wave functions Lnmi, Mnaml and Nami, we obtain the expressions for the unknown

expansion coefficients as

j(l)u > a > A
a, = 7‘-’ [ Ueg(Fo) - La(Fo)1dv, (2.93)
oV

sample
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Joup,

by = -——3 | UeaFo) - Ma(7o)ldv, (2.94)
kn—ko V.mmplr
Jop N

cn = =3 [ UeglFo) - Nn(Fo)ldv, (2.95)

2
kn—ko V.mmplt

s
Therefore, the expression for the scattered electric field E () becomes

Vo
(2.96)

n

=5 a2 . > IS —z,. r zn r A_;n r A_;n r +1_\;n ; I-V‘n ;
E (r) = -joy, I Jeq(ro)-Z[ (roz (r)+ (ro) (? > (ro)Nn )]d
v K K2k

sample

= —jopg [ Jeq(ro)- Ge(Fo, Pldv,
14

sample

where the integration region is over the material sample volume. The electric dyadic

Green'’s function is identified as

(2.97)

n

G.Co ) = Z —Ln(ro)Ln(r)+Mn(fo)Mn(r)+Nn(fo)Nn(f)
e 2 212
0 n— "0

2.2.3 Derivation of the Integral Equation in the Material Sample

Based on ey. (2.96) and the definition of the equivalent current .; eq(F) given in eq.

(2.88), the expression for the scattered field can be expressed as

E () = -jopy | 1,(Fo)E(0)- GulFo, Ddvg (2.98)
14

sample

Substituting eq. (2.98) into eq. (2.84) gives the electric field integral equation (EFIE) for

the unknown electric field E (r) inside the material sample as
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E(F) + jomo[T,(F)E(Fo) - GelFo, Pdv = E (7) (2.99)
14
where G,(rg, F) is given by eq. (2.97).

2.2.4 Expression of the Dyadic Green’s Function

The identity (2.75) can be applied to the electric dyadic Green’s function of eq.
(2.97) to lead it to an almost identical expression for the electric dyadic Green’s function
derived by Rahmat-Samii [11]. Using identity (2.75), eq. (2.97) can be rewritten as

Ee(;o’;) = z

n

Mn(Fo)Mn(F) + Na(Go)Na(H) ] 186G = 7o)
ky 2,,2 ,2 - 2
ko(k, — ko) ko

(2.100)
—~ a oa 18(F-r
= Geo(’Ov’)'#
ko
where
N Mn(70)Mn(}) + Na(Fo)Na(}
GolFor F) = z[kﬁ n(FQ)Mni7) + ¥nlTo) ”(')] (2.10%)
Therefore, the EFIE of eq. (2.99) can be rewritten as
2 a2 j(‘o"lOTe . A > s - A a =t N
E(r)1- kz +jmu0J.te(r0)E(r0) “Geplro, r)dvy = E (1) (2.102)
0 v

2.2.5 Detailed Expression of G, (r,, 7) and Comparison with the Results
of Y. Rahmat-Samii [11]

For simplicity, we derive only the coefficients for the different components of the

dyadic Green’s function (—;eo(;Ov r) when we give the expressions of (_;,0(;0, r), then we
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compare the results with those derived by Y. Rahmat-Samii [11].

Substituting the expressions of A—';nml given in eq. (2.24) and ﬁnml given in eq.

(2.32) into eq. (2.101) and using the normalization constants of A—'; nml and Nnm! given in

egs. (2.62) and (2.65), we obtain the expressions for the coefficients of the nine

components of the dyadic Green'’s function (_;w(;o, r) as follows:

(1) Coefficient for 2% component of G,,(ro, )

C

2
BZ(MY*E‘"(M)Z(E)Z mm\? _(InY?
"\ b ki\a)\c e €0 e\ b ) T\C
2 n _ “0n*0m®<0!

2,2 2 - 2,,2 2
k(K2 - kg) abc (k2 k)
where B2 = C> based on egs. (2.62) and (2.65).

(2)Coefficient for 3 component of G,,(r, 7)

2
Bz(ﬂ)2+ﬂ(ﬂ)2(’i‘)z nm\? (Im2
"\a K\bJ\c €9,E e(_)+(—)
2 _ “On“~0m®0!/

" a c

2,,2 2 - 2,2 ;2
k(K> = kp) abc  p2k-kp)
(3)Coefficient for 22 component of G,,(ro, F)

L)) connl’s) ()

= Cn =
2,,2 2 2,,2 2
ko(k2 - k3) abc  p3(k2-kg)

€02z

(4)Coefficient for %9 and $% component of G,,(rg, I)

50

(2.103)

(2.104)

(2.105)



a

G GE G CINC ¢

8eoxy = Ky 5 = — (2.106)
ko(ky— ko) abe ky(kn - ko)
(5)Coefficient for $2 and 29 component of G, (o, 7)
(5 -(3) (F)E)
—_— + — — —
_ 2\ a b (m"[)([‘n)— eoneome()l b c (2 107)
core = 5\ N\ o) :
ka(k2-kyy \b ¢ abe 22 _k?)
(6)Coefficient for %3 and 2% component of G,,(ro, )
(3-8 E)
2\ a b n\/In €,€0,€0; \ @ N\ €
8eoxz = ~Cn—5—5— (%)(-C-)= on om0 (2.108)
ko(ky = ko)

abc k(z)(k: —k(z))

Comparing all these coefficients with the expression (28) of Y. Rahmat-Samii [11],
we find that they are almost the same except there is a minus sign difference. Checking
carefully the results of (28) of Y. Rahmat-Samii [11], we found an error occurred in his

expression (28). See Appendix A.

2.2.6 Derivation of the Electrical Field Outside the Material Sample

Outside the material sample, the total electric field can also be expressed as

EG) = E(+E () | (2.109)
where based on eq. (2.96) the scattered field maintained by the induced currents and

charges in the material sample can be expressed as
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E'(h= —jou, [ JealFo) - G(Go P, (2.110)
|4

sample

Because the field point 7 is outside the material sample and the source point ro is inside

the material sample, then in the expression of the electric dyadic Green’s function
6,(;0, r) given in €q. (2.100) the second term including the unit dyadic is always zero.

That is, 5,(;0, ;) can be expressed as

G.(ro, )= Go(ro, T) @2.111)
where 5,0(;0, r) is given in eq. (2.101). Therefore the electric field outside the material
sample is given by

E(F) = —jody | T.(F0)E(F0) GeolFo Nddvy+E (F) 2.112)
14

sample

where we assume that the electric field inside the material sample £ (;0) has been solved

from the EFIE in the material sample given in eq. (2.102). Ei(F) is the initial electric field
we assumed before we place the material sample in the cavity. Therefore, after we obtain
the solution of the electric field inside the material sample, the electromagnetic fields
outside the material sample can be easily calculated based on eq. (2.112). For this reason,

we will only show the electric field inside the material sample in the numerical examples

in Chapter 3.
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2.3 Derivation of the Magnetic Dyadic Green’s Function and Magnetic
Field Integral Equation (MFIE)

As in Section 2.2, the behaviors of the scattered fields (ES, I_;S) are described by

egs. (2.86) and (2.87). Taking curl of eq. (2.87) and using eq. (2.86), we have
VxVxH (}) = VxTeg(?) + joe,V X E (F)= Vx Jeg(F) +2H ()
Or the wave equation for the scattered magnetic field ﬁ S(;) can be expressed as

VxVxH () -kH' (}) = VxTeg(}) (2.113)

Based on Maxwell’s equations, the magnetic field (total field or scattered field) is

solenoidal inside the material sample or in the cavity. That is,

V.H (5

]
o

(2.114)

So the wave eq. (2.113) can be rewritten as

VH' G +KH' () = -V x Jeg(?) 2.115)

Also the solenoidal vector wave functions are complete within the space of the solenoidal
vector fields as discussed in Section 2.1.6. The orthogonality of the cavity magnetic
eigenfunctions is well known [2], [10]. Thus, the cavity magnetic eigenfunctions which

are solenoidal should be sufficient to be employed to expand the magnetic field for solving

eq. (2.115).

AS . .
The expansion of the scattered magnetic field H (r) using the cavity magnetic

eigenfunctions as the basis functions leads to
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H' (%) = Ya,Ha?) (2.116)

-
where Hn(r) is the cavity resonant mode, and it satisfies the homogeneous vector

Helmbholtz equation as
V2Ha(F) +K2Ha(}) = 0 @117

where k,zI is the eigenvalue of the nth cavity mode [10].

Substituting eq. (2.116) into eq. (2.115) and using eq. (2.117), we have
Y a,(ky~ k) Hn(F) = -V X Jeg(F) (2.118)
n
Since

0 if ngm
N if n=m

n

| Hn(}) - Hm(P)dv = { (2.119)

Veavity

where N, can be found through the normalization of E,.(?) , the nth cavity modes of

electric field. That is, we suppose

| En(?) - Em(P)dv = {0 ."f nEm (2.120)
1 if n=m

Veavin

Based on Maxwell’s equations for the electromagnetic eigenmodes, we have

Ny= [ Ho?) Ha(Hdv= —— [ VxEn(}) - Vx En(P)dv 2.121)
Vravil_\' mfluovcawly
= 5 [ (V- Ea()x VX Ea()) + En() - V x V x En() ldv

mn ,J'O"m-m
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Therefore, based on boundary conditions and the property of the eigenmodes we have

= - £ Q. S0 €
N, = | Hn(r)-Hn(r)d‘v=-E(:) | En()- En(¥)dv= -f (2.122)

v 0

cavity vcavil_v

Let’s go back to eq. (2.118). Taking a scalar product of I-; i(r) with eq. (2.118),

integrating over the cavity volume, and using the orthogonality of the cavity magnetic

eigenfunctions, we derive the expansion coefficients as

a

n = '_'_—21 2 I ’7"(7)'V><3eq(?)dv (2.123)
N, (kg—k.),

caviry

Substituting eq. (2.123) into eq. (2.116) leads to the expression for the scattered magnetic

field H () as

[ Hn(Fo) - V x Jeq(Fo)dv,

H'()=3" Ha(?) (2.124)
r - cavily n r - .
: N, (ks - kg)
Using the vector identity as
V  [Hu(F) X Jeq(F)] = [V X Ha(F)] - Jeq(F) = [V X Teq(F)] - Ha(F) 2.125)
we have
[ Ha(Fo) - V' x Jeg(ro)av,
= [ VoxHn(ro) - Jeg(ro)dv = [ V- [Hn(Fo) X Jeg(Fo)ldvy (2.126)

V('GV“\' Vtawl\'

= I VO X Hn(;o) . .-;eq(;())dvo

V:amplc
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because Jeq(;o) exists only inside the material sample, then J eq(ro) = 0 on the walls of

the cavity. Therefore,

j [(Ha(Fo) - V xJeq(ro)]dvo

Zsample Hn(r)
; N (k -ko)
Jea(Fo) - Vo X Ha(Fo) (2.127)
=y | == O dvoHn(})
n Vsample Nn(kn—ko)

[ Jea(Fo) - Gm(Fo, vy

VSIIHIPI(

where the magnetic Dyadic Green’s function is identified as

. V. x Hn(Fo)Hn(F)
Gn(ro,r) = Z 0 "20 5 (2.128)
n Nn(kn—ko)

The equivalent current .7 eq(;) =1 e(;)l-;" (r) and based on a Maxwell’s equation,

EG) = LXHO) (2.129)
G+ joE
the equivalent current can be expressed in terms of the inagnetic field as
Jeg3) = 1,(H A0 (2.130)

O+ jOE

Substituting eq. (2.130) into eq. (2.127) and using eq. (2.85) leads to the magnetic field

integral equation (MFIE) as
= s VO X I_';(;o) —
HE) = [t~ GnlFo Ndvy = H (%) (2.131)

vmmplt
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2.4 Comparison of EFIE with MFIE and Explanation of the Result

In MFIE (2.131), the unknown magnetic field appears in the form of the curl under
the integral sign. If we use the pulse functions as the basis and testing functions in the
moment method, there will be singularities occurred when taking curl of the unknown
magnetic field at the boundaries of volume cells. On the other hand, we can solve EFIE
(2.102) using the pulse functions as both the basis and the testing function without any
difficulty because there is no differentiation for the unknown electric field involved.
Actually, we can show that EFIE (2.102) and MFIE (2.131) are exactly the same. If the
pulse functions are to be used as both the basis and testing functions, it is easier to find the
unknown electric fields from the EFIE and then determine the unknown magnetic fields
directly from a Maxwell’s equation. Of course for higher numerical accuracy, we can try
to use the continuous functions as the basis and the testing functions in the moment
method. Then either EFIE or MFIE can be solved directly, and they should give the same
results. We will show that EFIE and MFIE are identical.

Taking curl of both sides of MFIE (2.131) and using eq. (2.130), we have

VxH(F) -V x [ Jea(30) - Gm(Por Pdvy = VX H (3) (2.132)

Vsamplr

Based on eqgs. (2.82) and (2.83), eq. (2.132) can be rewritten as

(6 + joe)E(H) - j re(?o)E(?o) -V X Gp(ro, F)dvy = jmeogi(?) (2.133)

Vrumplf

Because
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- 2 2 \Y Xﬁn r ﬁn r
VXG,,,(I'(), r) = sz 0 (er) : (r)
n N, (k,—kp)

R . ) 2n o a (2.134)
) ZVoxh{,,(ro)vxH,.(?) _ _ZmnsoEn(;)En(ro)
n N, (k2 -k2) n N (K2-kd)
Substituting eq. (2.134) into eq. (2.133), we have
(o + joe)= 1 602822 (r)E (ro) '
a =\ n n >t a
I ER v —— [ 1, (o)E () - Y dvy = E(F) (2.135)
Jog, jogy n N (K-kD)
sample n n
Based oneq. (2.122) and T, = 0 + jw(€ —€), €q. (2.135) can be rewritten as
k E r E r
(1_’__@1 (r)JE( )+ 12H0 [ tGoEGY- Z HDEnro) vo = E (F) (2.136)
ko ko Vumplc n—kO

which is exactly the same integral equation as eq. (2.102). That is, even using different
dyadic Green’s functions, we still obtain the consistent results.

At this point, there will be a question raised: When we expand the magnetic field,
we only use the solenoidal eigenfunctions as basis functions. However, we use both the
solenoidal and the irrotational eigenfunctions as basis functions to expand the electric
field. Where do the irrotational eigenfunctions come from if we derive the EFIE from the
magnetic dyadic Green’s function? How can these two different approaches reach the
same result?

As stated before, because of the existence of the material sample of finite size in
the cavity, the divergence of the electric field doesn’t vanish at all points in the cavity, but
the divergence of the magnetic field vanishes at any point inside the cavity. So when we

expand the electric field, both the solenoidal and the irrotational eigenfunctions are
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necessary. However, the solenoidal eigenfunctions are sufficient for expanding the

magnetic field.

When we transform MFIE to EFIE, we take the curl of MFIE. Based on the
definitions of the electric and magnetic dyadic Green’s functions, the electric and

magnetic fields can be expressed in terms of the corresponding dyadic Green'’s function as

[20]
E() = —jouo[[[G.(Fo, F) - T(Fo)dv, (2.137)
HG) = [[[Gntro. 7y J(Fo)dv, (2.138)
The Maxwell’s equations inside the material sample are given as
VxE®) = —jop () (2.139)

VxH(F) = J(F) + joeE() (2.140)

Combining egs. (2.137) to (2.140) we can obtain the relationship betw<cen the electric and

magnetic dyadic Green’s functions as
VxG, = G, (2.141)

VxG,, = I8(r=70) +k°G, (2.142)

That is, taking the curl of the magnetic dyadic Green’s function, we introduce a singularity

at the source point based on eq. (2.142). From egs. (2.141) and (2.142), we observe that

V.G, =0 (2.143)

and
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V.G,%0 (2.144)

That is, the electric dyadic Green’s function can have an irrotational component even
though we derive it from the magnetic dyadic Green’s function.

In the previous sections, we have obtained the electric and magnetic dyadic

Green'’s functions as

G.Go b = 2[—Ln(ro)Ln(r) , Mn(Fo)Ma(7) + Nn(ro)Nn(r)] 2.145)

- ko K-k

and

N Vo x Hn(70)Hn(?)
GM(rO’ r) = Z o nz 2"
n Nn(kn—ko)

(2.146)

It can be verified that the electric and magnetic dyadic Green’s functions (2.145) and
(2.146) satisfy the relationship of egs. (2.141) and (2.142).
After we obtain the appropriatc cxpression for the electric dyadic Green’s function

and EFIE, we will numerically solve this EFIE (2.102) and present some numerical

techniques and results in Chapter 3.



CHAPTER 3

NUMERICAL TECHNIQUES AND RESULTS
ON THE INDUCED ELECTRIC FIELD IN A
MATERIAL SAMPLE PLACED WITHIN A
RECTANGULAR CAVITY

In Chapter 2, we have derived the EFIE for a material sample placed inside a
rectangular cavity based on either the electric dyadic Green’s function (2.101) or the
magnetic dyadic Green’s function (2.128). After the appropriate integral eq. (2.102) is
acquired, it will be numerically solved by discretizing the material sample into a large
number o1 volume cells using Galerkin’s method.

In fact, in the expression of the electric dyadic Green’s function (2.101) there are
nine triple infinite summations which have very poor convergence properties [2]. To
overcome this difficulty, a triple summation over cavity eigenfunctions is reduced to a
double summation using two relations in [2]. For the reduced double summations, several
methods are employed to obtain a faster c‘omputation.

The outline of this chapter is as follows: In Section 3.1, Galerkin’s method is .
applied to the integral eq. (2.102). In Section 3.2, the convergence property of the dyadic
Green’s function (2.101) is studied and the results of the double summation and the triple

summation are compared. Some numerical results are presented in Section 3.3. Several
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methods are investigated to increase the convergence rate of the infinite double

summations in Section 3.4.

3.1 Applying Galerkin’s Method to EFIE

In order to increase the convergence rate of the dyadic Green’s function, Galerkin’s
method is applied to the EFIE (2.102) with the pulse functions as both basis and testing
functions. The material sample is divided into M volume cells where M is assumed to be
large enough in order to generate satisfactory results.

The integral equation we are to solve is eq. (2.102) as

S TR R T Si
E(r)(l -——Z—ze—)+ joRo[T,(F)E(Fo) - GeolFo, P)dvy = E (F) 3.0)
0 v

and the pulse function is given by

p,(F) = { ! if rev, (3.2)

0 otherwise

where v, is the nth cell volume. The unknown electric field E (F) can then be expanded as

M
E(r) = Y Emp,(r) (3.3)

m=1

where the electric field in each volume cell is considered as a constant. Substituting eq.

(3.3) into eq. (3.1) leads to
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M . N M
> £ N jmu T (r) . a > b - a a
Z Empm(r)(l - —Oz—e—J + jop, J T,(ro) z Emp,,(ro) - G.o(To, r)dv,
m=1 ko Vs ample m=1 (3.4)

Next, applying the testing function (3.2) to the integral eq. (3.4), we have

M . 2
a > 2 ® te( ) .
jpn(r) Z Empm(r)[l —j—u:z—r}dv+ Jpn(r)j(ouo (3.5)
14 0 Va

n m=1

M .
[ ©G0) 3 Empn(Fo) GeolFo, Ddvodv = [E (F)p,(Pdv

Vsample m=1 v,

where the initial electric field can be assumed to be a constant within each volume cell and

the integration region is over the nth cell volume v, . Equation (3.5) is integrated with

respect to the variable 7 as

A _]0)“,0 N s M 2 s
En l-?‘[te(r)dv +j(.0u.0 j Te(ro) z Emp,,,("o) (3.6)

0 Vv, Viampie m=1

[ Pu(HGeolFo ;)dvdvo) = E(Gnav,

Va

Let’s denote

Eien(;o’ ;n) = jaeo(;O, ;)dv 3.7

Va

where G;,,(Fo, Fn) specifies the integration of G, (7o, ) with respect to 7 over the nth

cell volume v, . Equation (3.6) can then be rewritten as
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> Jjou
En(l__o It (r)dv)+ jou, j 2 Empm(ro) 1,(r0) G, n(Fo, )dvy
ko Yn vmmple m=1 (3.8)

= EGnAv,

Because the number of volume cells is assumed to be large enough, in eq. (3.8) the
integration which is over the total material sample volume can be estimated by the

summation of the integrations over each cell volume as:

M
> jou
En[l - —QI‘C (r)dv] + jou, z J' Z Empm(ro) T (ro)Gwn(ro, r,,))dvo
ko vy I=1lv\m=1 (3.9)
= E (F)AV,
Let’s denote
Gient(T1, 7n) = [1,(F0)Gin(Foy Fa)dvy (3.10)

Vi
where Gi,n)(Fy, ) specifies the integration of T,(F)G.n(Fo, F) With respect to 7o over
> a . .
the volume v, and Emp,,(rp) is not equal to zero in the volume v, only when m = [

based on the definition of the pulse function pm(;‘) defined in eq. (3.2). Thus, eq. (3.9) can

be rewritten as

M .
E,{l -’i’jr,(;)dv]ﬂmuoz Et-Gioni(F, 1) = E (Fa)AV,, (3.11)
k0 4 I=1

Also we can express Enjte(?)dv as

Vn
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M
Y Eifr(Hdv-18, (3.12)

=1 v

En [7,(7)dv

- 1 ' =l
where I is the unit dyadic and §,;, = { ¥ . Therefore, based on eq. (3.12),

eq. (3.11) can be rewritten as

M .
JOR s = .= s oa > =
Z l:(l - —2()Ire(r)va18n,+ju)}10G,-e,,,(r,, r,,):| -E| = E'(r,,)AV,l (3.13)

l=l 0 Va

M. Equation (3.13) can be expressed in a matrix format as

where n=1,2,......
[Andyxm [Elux1 = [BrlMxi (3.14)
wheren, [ =1,2,....M and
- JOR N - . — s a
A, = [1 ——zojte(r)dv]léin,+JmuoteG,~e,,,(r,, rn) (3.15)
0 Va
B, = E(3,)AV, (3.16)

If we use the scalar components format instead of the vector format, the matrix eq. (3.14)

can be expressed as

(Andsp s [Edsyxy = [Bilypx (3.17)

where

T
(Espnt = Ep e EpEryee EyyErn By (3.18)
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(Bl = [ES DAV . E(Fu)AV) ES(FAV . .E/(Fy)AV,, 519
E'(FDAV, .. .E (Fi)AV,y,1"

[anlxx [Zn[]xy [an]xz
(Anidspxsm = |[[Anly; [Anidyy (A, (3.20)
[Knl]zx [anlzy [Z’ll]zz

and the dimensions of each submatrix in (3.20) are M X M .

3.2 Convergence Property of Dyadic Green’s Function in EFIE
In the numerical computation, the most difficult step in solving EFIE is to fill out
the matrix [An,]3 Mx3M in egs. (3.17) to (3.20). The integrations of the dyadic Green’s

function G,,(7q, 7) at different points in the material sample with respect to both

variables r and 70 as specified in egs. (3.7) and (3.10) need to be carried out in the matrix
composition. However, the convergence property of the integration of the dyadic Green'’s
function G,,(ro, ) is still very poor even though the Galerkin’s method is used.

The dyadic Green’s function G,,(Fg, F) in a triple summation format is given by

eq. (2.101) in Chapter 2 as

e S 28T Muami(Po) Mami(F) + Numi(Fo) Numi(F)
G,,(rg, 1) = Z Z Z[knml nmi(rg nm2 ) mzn 0)Nnm
kO(knml—kO)

] 3.21)

n=0m=0/=0

Since eq. (3.21) has a very poor convergence property [2], the integration of it has a poor

convergence property as well. Several numerical results are shown here to illustrate the

slow convergence of the integration of the dyadic Green’s function (_;eo(;o, r).
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In these numerical results, we only show the convergence property of the

integration of G, on(;o, r) component at the different points and avoid the repetition of
the computation for the other components of the dyadic Green’s function G,,(ro, F) since
they all have the similar convergence properties. The coefficient of G, on(?o, r) was given

in eq. (2.95) in Chapter 2, and the expression of G,,_,(Fo, r) is then given by

ouion= 3 5 5L

nxw nm
bC COS(—a—X)COS(FxO)
nsome =12 k(KL - k) (3.22)
sin(m—1t )sin(m—n )sin(litz)sin(lit )
b b Y0 c c %o

where €, is defined in eq. (2.63).

In the following computations, we assume that the initial cavity mode is TE g,

then the eigenvalue (wavenumber) of this initial mode is given by

k= (’E‘)z+(’£)2 (3.23)

and in eq. (3.22) we will change the summation upper limit from e to N. We aim to
choose some value of N which makes the integration of the triple summation series (3.22)

converge. The dimensions of the rectangular cavity are a = 0.072m, b = 0.034m and

¢ = 0.1163m . The initial resonant frequency is then f,=2.45GHz based on eq. (3.23).

The integration of G, (ro, F) With respect to 7 and rq in regions v, and v, is

expressed as
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X+ Axy+Ayz+AzXo+ Axyg+ Avzg + Az
j j j I J J Geon(ro, r)dudvdwduodvodwo

x y b4 Xo Yo <o
(5)+(%)
b c 1
- otk k) (Y () (5
a b c

. nx . nxm mn mT mmw
[sm?(x0 + Ax) - sm;xo][cos -b—(y + Ay) - cosT :”:cos T(y0 + Ay)

["12
8
S| o0

N N
g § [sin'%t(x+Ax)—sin'—Z—tx] (3.24)

—cosm—nyo][cosllr(z + Az) - cos l—’-tzjl[cosgt(zo + Az) - cos litzo]
b c c c c
for n #0 and

x+Axy+Ayz+AzXo+ Axyg+Ayzo + Az

[ T ] | [ | GeoxsliorHdudvawdugdvodwy (3.25)
x y Z Xo Yo 20
NN (m_ﬂ)ﬂ(’.c.")z 2
_Z_';“Ckk_k mnzlnz[c
A e

mn mmx
osT(y + Ay)—cosT ]

C

mt mn In In In In
[cos—b-(y0 + Ay)—cosTyo]l:cos?(z + Az) - cos?x][cos?(zo + Az) — cos - Zo]

forn = 0. We choose Ax = Ay = Az = 0.002m in the following computations.

One thing which needs a special attention in the computation is when ki = k(z) , the
summation term will have a singularity. This occurs because one of the summation modes
is exactly equal to the initial mode, that is, n = ny, m = my and | = [, where ny, my
and [, specify the indices of the initial mode. From the experiments we observed that when

a material sample is placed into the cavity, the resonant frequency of the initial mode will

68



shift down about /% to /0% depending on the geometry of the material sample (this

resonant frequency shift is also shown in [68]). Based on this experimental observation,

when k: = k(z) we will make the approximation of

k2 - ko= —sk) (3.26)

where s is the shift rate of the resonant eigenvalue. The followings are the integrations of

G,,.(Fo, ) at different points with the assumed resonant frequency shift rate to be 5%.

1. When r = g, the integration of G,,, (o, F) is shown in Figure 3.1. The source and
observation points are F = ro= [0.033m, 0.014m, 0.0551m].

2.when r # rg,

(@) The source and observation points are r= [0.035m,0.014m, 0.0551m],

ro= [0.033m, 0.014m, 0.0551m], the integration of G,,, (Fo, r) is shown in Figure 3.2.
(b) The source and observation points are r= [0.035m, 0.016m, 0.0553m],
ro= [0.033m, 0.014m, 0.0551m], the integration of G, (Fo, r) is shown in Figure 3.3.
In Figure 3.1 to Figure 3.3, the horizontal axcs are the value of N and the vertical axes are
the integration of G,,_ (7o, F).

In all of these computations, we varied N from / to 400. These figures show that

when F = Fq, the convergence rate is slower than those of r # Fo. Also when x #Xg,

y # Y, and z # z, the integration converges fastest. Thus, we can conclude that the farther

the distance between the observation point and the source point is, the faster this
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Figure 3.1 Integration of the triple summation format G, ,( Fo, ) vs. the number

of summation modes when 7 = 7y, r= [0.033m, 0.014m, 0.0551m] and

Ax = Ay = Az = 0.002m. The dimensions of the rectangular cavity are:
a =0.072m,b = 0.034m and ¢ = 0.1163m.
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summation of DGF integration
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Figure 3.2 Integration of the triple summation format G,__ (o, ) vs. the number

eoxx
of summation modes when r= [0.035m, 0.014m, 0.0551m],
ro= [0.033m, 0.014m, 0.0551m] and Ax = Ay = Az = 0.002m. The dimensions of

the rectangular cavity are: a = 0.072m, b = 0.034m and ¢ = 0.1163m.
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summation of DGF integration
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Figure 3.3 Integration of the triple summation format G,__ ( ro, r) vs. the number

of summation modes when r= [0.035m, 0.016m, 0.0553m],
ro= [0.033m, 0.014m, 0.0551m) and Ax = Ay = Az = 0.002m.The dimensions of
the rectangular cavity are: a = 0.072m, b = 0.034m and ¢ = 0.1163m.
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. . b A . .
integration converges. However, when r = r, with the parameters chosen in case 1, the

convergence value in Figure 3.1 is about 1.88 x 10™'2 and those in Figure 3.2 and Figure

3.3 are about 4.15x 10™" and 1.05x 10™" with the parameters chosen in case 2(a) and

case 2(b). The r = ?0 terms are on the diagonal lines of each submatrix in (3.20) and they
are dominant in this matrix in terms of the numerical results.

Observing these three figures and considering the trade-off between the numerical
accuracy and the computation time, we conclude that when N = 200 we can obtain the

satisfactory convergence results for these three cases. However, this is over 8 million terms

summation! This indicates that the convergence rate of the integration of the dyadic
Green’s function G,,(rq, ) is extremely slow.

To save computation time we can reduce the triple summation in the dyadic

Green’s function to a double summation based on the following two relations:

. (mt j . (mt )
~ sin| —x |sin| —x,
v a a - a in(k,,,(a-x,))sin(k,,,x;)  (3.27)
oy kl_ké’.) 2kngSin(kgmla)Sln( gml b gml”*s .
= n
£ Cos(ﬂx)cos(’itx )

= . cos(k,,,(a—xp))cos(k,,,x;) (3.28)
n2=:0 2(kr21 —k(z)) 2kgm,sm(kgm,a) & g s

where €, is defined in eq. (2.63) and

2 2 2
@ = (2] (2] (1) 529
a b c
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2 2

2 (mm In

Kyt = Jko- (—b—) - (?) (3.30)
It will be convenient to define the following

x, =the greater of x or x, (3.31)
x,=the lesser of x or x, (3.32)
x, and x will be referred later for the same definitions. Detailed derivation of the last two

relations (3.27) and (3.28) and the representation of G,, in the double summation format
can be found in Appendix C. For simplicity, we will only perform the integration of

G wu(;o, r) represented in the double summation format.

In order to obtain the expression for G, oxx(;o, r) in the double summation format,

we can sum over any one of the indices n, m, [ in eq. (3.22) using the relations given by

: . mm\2  (Im\? .
egs. (3.27) and (3.28). However, since there is a factor of (—b—) + (:‘-) in the numerator

of the eq. (3.22), we can obtain the simplest expression for qu(;o, r) in the double
summation format if we sum over the index n by eq. (3.28) in the triple summation (3.22).

Using eq. (C.19), the expression for qu(;o, r) in the double summation format can be

expressed as

(32

kgmlSin(akgml)

.. mm
g mi(X, Xq) sIn —b-y

aeoxx(;o’ ;) = -'!E 2 2 bi(,‘

kOm =1ll=1 (3.33)

mn

sin—y sinmzsinmz
b0 ¢ c0
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where k gml has been defined in eq. (3.30) and

gmi(x, x9) = cos(kgm,(a - xb))cos(kgm,xs) (3.34)
It is noted that there is a factor of kgm ;sin(ak gm,) in the denominator in eq. (3.33). When
kgm, = 0, there exists singularity. For this case, we can not use the double summation

format expression of G,,_ (7o, F) (3.33). We should sum over the index n directly for this

special case taking into account of a slight shift in the resonant frequency. These

summations can be found in Appendix C. From eq. (C.38), for n, = 0, where ny is one of

the indices of the initial cavity mode, the summation over index n becomes

cosﬂxcosﬂx
11 27" a a0 11 1,2 2. a
——— < e —— 4 — - - 35
ask(2)+ Zla (mt)z aSk2+2a(x +Xxq )+3 X (3.39)
n= —
a

and for ny # 0, eq. (C.39) gives the summation over index n as:

n nt nw
Z - COS —xCOS — X,
a a

a 2 /namN\2
n=0 ('y_t) _(L)
a a
nw 1/ a

= - cos'—'ltxcos—x - —(———)2 + —1—(x2 +x 2)
- 0 nym 2a 07 (3.36)

,.=,a(n_n)2((@2_("o“)2) a a’ a
n#n, \@ a a

a 2 1 1 s nom
+ 3% L T + —; [cos—xcos —x,
a (non) Sko a a
a

where s has been defined in eq. (3.26).
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Substituting eqs. (3.35) and (3.36) into eq. (3.22), we can obtain another

alternative representation of G, ou(;o, r). Fortunately, the variables x, y, z are separable
in the summation, thus, we can integrate G, n(?o, r) with respect to them independently.

In the double summation format representation of G eou(;o, r) given by eq.
(3.33), the factor k gmi MAY be a real number, eq. (3.30) or an imaginary number for most

cases because we usually assume the initial mode to be a lower order mode. When k,,,, is

an imaginary number,

2
Koy = i J(’"T“) +(1Zt) —kp = ik gy, (3.37)

where k,,,,;; is a real number, eq. (3.34) can be rewritten as

Emii(%, Xo) = cosh(k,,,(a—xp))cosh(k,,;x, (3.38)

and the double summation format representation of G, oxx(?o, F) can be rewritten as

NGRG) -

sinh(ak Emii(%: xo)sm7y

NMS

; bck

1
eoxx(rOs r) ’_2
0

gmli gmli) (3.39)

sin ny sinmzsinmz
b9 ¢ c 0

In the actual computation, we find that sinh(ak,_,) grows exponentially due to

gmli

akgm“ » 1. Based on this condition, sinh(akgm“) can be estimated by
eakgmh
sinh(akgm“) = > (3.40)
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and eq. (3.38) can then be rewritten as

k - -k,,.(a- k -k, .
gmii(X Xg) = }t(e (A7) ) g Hen A7) lamt s g THemisy
| ak ‘ 5 (3.41)
== a gmli(e- gmlixb+ e ynh( a - Xb)) gmhxs
4
In eq. (3.41), because ak,,,;,;» 1, x<a and xj<a, it can be estimated as
gmlt(x xO) ~ l akxmue smlrlx -xq| (3.42)
Substituting eqgs. (3.40) and (3.42) into eq. (3.39) leads to
mm\2  (Im\?
1 o 4 T * ? K g s X~ x|
G (;0, ;‘) = — e gml 0 y
o ke E;IE’,I’C 2k g s b (3.43)

sinm—ny sinmzsinmz
b9 ¢ c™0

Based on these alternative representations of G, on(;o, r) for different cases, i.e.,

if kgm, is real or imaginary or if there is any singularity, the integration of eq. (3.33) is

given by

(mn)Z .\ (I—TE)ZX+A,:¥0+AX
mz_"uzl bc (mn) (In)Z I {) kgm,sml(akgml)

mn mn mn mm
[cosT(y + Ay)—cos TY}[COST(YO + Ay) - cos Tyo:]

8mi(U, ug)duduy

(3.44)

[cos!E(z + Az) - cos I—T-tz:l cosllt(z0 + Az) - cos litzo]
c c c c

Although in the expression of g _,(x,x,) there are different equations for x>x, and
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x < xg, also for the different k. the expressions of the g,,,(x, x,) involves only sine or
cosine and exponential functions of x and x, as given in eqs. (3.34) and (3.42), the
integrations of g, ,(x, x,) with respect to x and x, become easier for x > x; or x < x,.
However, when x = x;, we need to pay a special attention to the integration.

1. When x # x,, and k,,,, is real, the integration of g,,,(x, x,) with respectto x and x, is

given by
X+Axxo+Ax
j I k, ,sm(akgml)gmz(u, ug)dudu,
_l . i (3.45)
= 5 [sin(kg, (@ —x,— Ax)) — sin(k,, (@ —x,))]
kgm,sm(akgml)

[sin(kgm,(xs + Ax)) - sin(kgm,xs)]
2. When x # x, and k,,,; is imaginary, the integration of g,,,(x, x,) with respect to x and

X, is given by

X+A1X0+AX

xmll|u uﬂl l -kgmhlx_xﬂ|
dudup= ———e ' (1-cosh(k
I j 2kgmlz 0 k3

emiiAX))  (3.46)

gmli
3. When & gml is chosen in such a way that there is a singularity occurring, the integrations

of g,./(x, xy) withrespectto x and x, are those of egs. (3.35) and (3.36) with respect to x

and x;.

(1) When n;, = 0 and x # x;, the integration is given by
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x+A1X0+A.t(

J ]

11
ZT+—(u + U )+——xb]dudu0

= _1ar + X x+ A0’ =X +(xp+Ax)’ —x;°]
a.?2 6a
sk
aAJc2

+

1 2
7 - 5((x, + Ax) - x})Ax

(2) When ny#0 and x # x;, the integration is given by

2 a nw nw 1{ a
j I < cos—ucos—uo—- _
a a non

2. a 2 1 1 nom nom

1 2 0
+—(u +u +—-—Xp - | —— COS—UcCoS—u dudu
2a( o) 3 b a © 0

2 2
a (”0“) sky a

= z < [sin";—n(x+Ax)-sinn—1-tx:|

OIS “

3

[sin%t(x0+Ax)—sin'-'a—nx0]_[ a 2_2]Ax2_%[(xb+m)2_xf’]Ax

(ngm)

+g—:[(x+Ax)3—x3+(x0+Ax)3—x03]— 2 l +-l—

()
a a

. non . n01t . n01t . n01t
[smT(x + Ax) — sin —a—x:“:sm—(xo + Ax) — sin Txo]
a

(3.47)

(3.48)

4. When x = x; and k,,, is real, the integration of g,,(x, x;) with respect to x and x, is

given by
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X+ Axx+ Ax 1
- t, ty)dtdt
;': J; kgm,sm(ak g (1 1o) 0

gml) mi
X+ A 1 X+ Ax
= .‘. kngSin(akg l:jgml(t to)dto+ j gmi(t to)d10:|
* t
(3.49)
2sin(k A%
1 Sin gml?
= —sin(k a)Ax+_.
kemi gml kzml

[Sin(kgml%x)cos(kgml(a = 2x-Ax) - sin(kg,,,,(a - A?x))]

5. When x = x, and k,,, is imaginary, the integration of g,,(x, xy) with respect to x

and x, is given by

x4+ Axx+ Ax

gm: - Ax l _kgm iAx
j J’ e Mandrg= 854 L[ (3.50)

gmlt kgmli k

gmli
6. When there is a singularity occurring and x = x;, the integration of g, (x, x,) with

respect to x and x is given by

(I)forny =0,

X+ Axx+ Ax

_[ J' (_c_lzL+_(t +1, )+——tb]dtdt0

3.51)
2 3
= Yeeran? - A[2AE ], G20 <x—Ax>-x_+[e-1L Al
6 a

2 2

(2) for ny 20,
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nymy?

x+Axx+Ax| 4n, (_)

2 a nmw nw 1 a \?

| [1X: COS—1€0S— 1y — ~( —
X X

)
nen, \Q a a

1,2 2, a 2 1 1 n,m nym
—(1 t - = — —_ _—
+o (U H ) gty - = 2+sk2 cos —=tcos—~1q |dtd,
= 0
&)
2
ang ('ﬁ) (3.52)
2 a

2

= - 7 > > [sin'it(x+Ax)—sinEx] —( a z—g]sz
GG T
nzn, \ 94 a a
(x+Ax) +25  (x+Ax) (x = Ax)

* 6 - 2

+ é—x[(x + Ax)3 —x3]
3a

2 1 1 2

. non . n01t
- 5 + — [sm—(x-l-Ax)—sm—xil
(non) (non)z sk? a a
al — —_— 0
a a

In the following computations, we will use egs. (3.44) to (3.52) to perform the

integration of G eon(;o, 7) . In eq. (3.44), we will use a finite number of N instead of o as

the summation upper limit and find some value of N which can lead to the converged

results which is consistent with the results of the triple sunmation. The dimensions of the

cavity, the initial mode, the resonant frequency shift, Ax, Ay, Az and the choices of the

source and observation points 7 and 7, remain the same as those for the triple summation
in order to compare the convergence property of the triple and double summations.

Figure 3.4 is the integration of Geou(;o, r) when r = rg. Figure 3.5 and Figure

3.6 are the integrations of G, _(ro, r) when r # rq. In Figure 3.4 to Figure 3.6, the
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Figure 3.4  Integration of the double summation format G,,_ (ro, r) vs. the

number of summation modes when r = ;0, r= [0.033m, 0.014m, 0.0551m] and

Ax = Ay = Az = 0.002m. The dimensions of the rectangular cavity are:
a =0072m, b = 0.034m and ¢ = 0.1163m.
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Figure 3.5 Integration of the double summation format G,, xx(?o, 7) vs. the

number of summation modes when 7= [0.035m, 0.014m, 0.0551m],
ro= [0.033m, 0.014m, 0.0551m] and Ax = Ay = Az = 0.002m. The dimensions of
the rectangular cavity are: a = 0.072m, b = 0.034m and ¢ = 0.1163m.
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Figure 3.6  Integration of the double summation format G, (7, r) vs. the
number of summation modes when r= [0.035m, 0.016m, 0.0553m],
ro= [0.033m, 0.014m, 0.0551m] and Ax = Ay = Az = 0.002m. The dimensions of

the rectangular cavity are: a = 0.072m, b = 0.034m and ¢ = 0.1163m.
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horizontal axes are the value of N and the vertical axes are the integration of G, on(;o, r).

Comparing Figure 3.1 with Figure 3.4, Figure 3.2 with Figure 3.5 and Figure 3.3
with Figure 3.6, which have the same selected parameters values, we observe that the
convergence rate is the same for the cases of the double and triple summations. Also both
cases converge to almost the same value at N = 200. Therefore, in the double

summation, we can set the same upper limit as that in the triple summation. However, the
double summation includes only 40,000 terms instead of 8 millions terms if the triple

summation is used. This drastic simplification is achieved because we used a closed form

evaluation to sum over one of the three indices.

3.3 Numerical Examples

In the following numerical computations, we suppose that a rectangular material
sample is placed in the center of the rectangular cavity and the dimensions of the

rectangular cavity are shown in Figure 3.7. The initial field is assumed to be TE,;,; mode

and the resonant frequency of the empty cavity operating at this initial mode is 2.45 GHz

with the wavelength A equal to 0.12245m.

In order to quantify the induced electric field inside the material sample, we
uniformly divide the material sample into M = n ;X m x [, volume cells, where n;, m,
and [, are the number of volume cells in the x, y and z directions, respectively. Several

special cases with the selected shape and dimensions of the material sample, which can be

compared with some theoretical approximations, have been studied.
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Figure 3.7 Dimensions of the rectangular cavity and the material sample. The
center of the material sample is consistent with the center of the cavity.
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1. Cubic case

A cubic material sample, having equal three sides, is placed in the center of the

rectangular cavity. The dimensions of the material sample are set to be x=0.004m,

y=0.004m, z=0.004m and with the relative permittivity of €, = 2.5 and lossless. In the

computation, we chose n, = 2, m; = 2 and I; = 2. The dimensions of each volume

cellare: Ax = =, Ay = £ and Az = £. (xi, j» 21), i=1,ng, j=1,my and k=1,14, will be
R4 my ly

used to denote the center of the volume cells in the material sample. Based on the

convergence property discussed in Section 3.2 we chose the upper limit in the double

summation of N=200.

Since x/A = 0.0327, which is electrically very small, we may use the static

E' [14], [38] to estimate the

electric field induced inside of a dielectric sphere E = 3 38

induced electric field in this cubic material sample. We also assume the resonant

frequency shift to be 5% after placing the material sample in the rectangular cavity. The

numerical results are shown in Figure 3.8 in which the ratios of E / E'), at the different

volume cells in the material sample are given.

The numerical results are E; = 321.5729 based on eq. (2.24), or the
normalization of the cavity field as discussed in Chapter 2, and E,, = 203.9074 obtained

from the moment method. E | and E; are shown to be almost constant in each volume

cell in the material sample. This is expected because the dimensions of the material
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Figure 3.8  Ratios of Ey/Eyi at different volume cells in the 4-mm cubic material
sample, where the relative permittivity of the material sample is assumed to be
€, = 2.5. The geometry of the rectangular cavity is shown in Figure 3.7. The

resonant frequency shift is assumed to be 5%.
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sample are very small compared with the dimensions of the rectangular cavity. The ratio

of E)/Ey‘ is 0.634 in Figure 3.8. The electrostatic estimation of E / E; =3 gives the
2+¢

r
approximation of 0.667. The closeness of the numerical result and the electrostatic
estimation gives confidence to the numerical accuracy.

Because the induced charge on the material sample surface and the induced
current in the material sample can maintain a scattered field, the other components of the
electric field are induced to satisfy the boundary conditions. The induced electric field
inside the material sample has E, and E, components with the amplitudes of 5.494 and
5.552 in each volume cell, which are very small compared with the y component of the
induced electric field. This shows that the initial mode still dominates inside the material
sample although the other modes are also induced.

In order to assure that the upper limit is chosen properly, we change N, the upper
limit in the double summation, from /60 to 1000 with the same resonant frequency shift of
5%. The results are shown in Table 3.1. As stated before, the induced electric field inside
the 4-mm cubic material sample is almost constant. Since the y component of the induced
eiectric field dominates, we only compare the results of the y component of the induced

electric field for the different values of N at one volume cell, say (x;, y; z;). From this table

we observe that as we increase N, the ratio of E y/ Ei, gets closer to 0.667. Considering the

accuracy of the numerical results and the computation time, we choose N=200 as a
compromise and this upper limit will be used in the following computations.
For different relative permittivities, the results of the 4-mm cubic material sample

are shown in Table 3.2. We chose the resonant frequency shift to be 5% in the
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Table 3.1 Induced electric field inside the 4-mm cubic material sample and its ratio
to the initial electric field for different values of N, where the relative permittivity of

the sample is assumed to be €, = 2.5, the resonant frequency shift is 5% and the

initial electric field is E|, = 321.5729. The geometry of the rectangular cavity is

shown in Figure 3.7.
v E | B | approvimation
160 202.0437 0.628 0.667
200 203.9074 0.634 0.667
300 206.9128 0.643 0.667
400 208.6385 0.649 0.667
500 209.6048 0.652 0.667
600 210.2009 0.654 0.667
700 210.6752 0.655 0.667 ;
800 211.0442 0.656 0.667
1000 211.5217 0.658 0.667
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Table 3.2 Induced electric field inside the 4-mm cubic material sample and its ratio
to the initial electric field for different relative permittivities of the material sample,
where the resonant frequency shift is 5% and the initial electric field is

E; = 321.5729. The geometry of the rectangular cavity is shown in Figure 3.7.

Electrostatic Relative
€, E, E)/E),i =R, approximation Difference
Ra (Ra'Rc)/Ra
2.5 203.9074 0.634 0.667 4.95%
4.0 149.4301 0.4647 0.5 7.06%
7.0 97.4436 0.303 0.333 9.01%
10.0 72.3061 0.225 0.25 10.04%
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computations. Also in Table 3.2, the induced electric field is shown only in one volume

R,-R
cell. We define the relative difference as “Tf , where R is the ratio of the induced

electric field to the initial electric field based on the electrostatic approximation of

3
2+¢

r

as shown in the fourth column of Table 3.2, R_ is the ratio of the calculated induced

electric field to the initial electric field as shown in the third column of Table 3.2. From

this table we observe that the computational difference tends to increase as the relative
permittivity €, is increased. This is expected because as the relative permittivity €, is

increased, the wavelength in the material sample decreases accordingly and the volume
cell becomes electrically larger if the physical dimensions of the volume cell are kept
constant.

The results shown in Table 3.3 are the calculated induced electric field inside the
material sample with the change of the resonant frequency shift. From experiments the
resonant frequency will shift down about /% to 10% after a material sample is placed
inside the rectangular cavity. The resonant frequency shift depends on the geometry and
the dielectric parameters of the material sample. In the previous computations, we

assumed the resonant frequency shift to be 5%. In this table we change the frequency shift
from /% to 10%. The relative permittivity of the 4-mm cubic material sample is €, = 2.5
and lossless. In this table we only show the y component of the induced electric field in
one volume cell. From this table we observe that the induced electric field inside the

material sample does not change significantly when the resonant frequency shift is

changed from /% to 10%. Therefore, it is reasonable to assume the resonant frequency
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Table 3.3 Induced electric field and the ratio vs. the resonant frequency shift. The
relative permittivity of the 4-mm cubic material sample is assumed tobe €, = 2.5

and the initial electric field is E 'y = 321.5729. The geometry of the rectangular cavity

is shown in Figure 3.7.
Frequency E i
Shift y Ey/Ey
1% 197.1854 0.613
2% 201.3336 0.626
3% 202.8700 0.631
4% 203.0814 0.632
5% 203.9074 0.634
6% 204.0814 0.635
7% 204.3603 0.636
8% 204.5175 0.636
9% 204.6399 0.636
10% 204.7275 0.637 J
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shift to be 5% in the numerical calculation.
In order to check the stability of the numerical results, we change the dimensions
of the material sample and compute the induced electric field in the material samples.

First, we consider a 5-mm cubic material sample with the dimensions of x=0.005m,

y=0.005m, z=0.005mand n; = 2, m; = 2 and l; = 2. The relative permittivity of the

material sample is assumed to be €, = 2.5, and the resonant frequency shift to be 5%.
The computed results are E; = 321.3347 and E, = 204.1318. They are almost constant

in each volume cell. The ratio of E,/ E; is 0.635 which is nearly identical to the case of
4-mm cubic material sample. The x and z components E, and E, are 5.557 and 5.573
which are very small compared with E . If we consider a 6-mm cubic material sample
with the dimensions of x=0.006m, y=0.006m, z=0.006m and n; = 3, my = 3 and
[, = 3, the numerical results are shown in Figures 3.9.

Since the material sample is placed in the center of the rectangular cavity and the

initial TE;j; mode is symmetrical with respect to the center of the rectangular cavity, we

expect that the induced electric field will also be symmetric with respect to the center of

the rectangular cavity. Therefore, we only show the electric fields at z=z; and z=z;, in
Figures 3.9. The values of the initial electric field at each volume cell are 320.3034 at (x/,
Y5> 21), 321.5269 at (x5, y;, 27), 320.7714 at (x}, y;, 25), and 321.9967 at (x3,y;, 23)-

Figure 3.9a shows the ratios of the y component of the induced electric field to that
of the initial electric field at different volume cells inside the material sample. Although

the initial electric field is not a function of y, the induced electric field inside the material
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sample changes as y is varied. Also the induced electric field becomes less uniform
compared with the case of the 4-mm cubic sample because of the increase in the sample
dimensions. Figure 3.9b and Figure 3.9c show the x and z components of the induced
electric field inside the material sample and they are very small compared with the y
component of the induced electric field and can be ignored.

For a 2-cm cubic material sample with the dimensions of material sample as

=0.02m, y=0.02m, z=0.02m, if we set n; = 10, m; = 10 and [, = 10, that is, the

volume cell dimensions remain 0.002m at each side, then there will be 7,000 volume cells
for such a material sample and the dimensions of the matrix (3.20) will be 3,000. Due to
the limitation of our present computer resources, we were not able to solve this problem

over half a month of computing time. We were then forced to divide the material sample

with n; = 6, my = 6 and [; = 6. The relative permittivity of the material sample is
chosen as €, = 2.5 and it is lossless. Observing the numerical results, we find that the y

component still dominates the x and z components of the induced electric field in the
material sample. Due to the symmetry only a half of the ratios of the y component of the
induced electric field to that of the initial electric field as a function of x for different
locations of y and z are plotted in Figure 3.10. Observing Figure 3.10, the computed y
component of the induced electric field does not change significantly with respect to x and
z but changes somewhat more with respect to y. The ratios have been reduced from 0.634
for the 4-mm cubic sample to around 0.32~0.36 for the 2-cm cubic sample due to a larger
dimensions of the material sample. There is a possibility that these reduced ratios may be

due to the numerical errors since larger volume cells were used in the calculation.
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Figure 3.9a  The ratios of E/Eyi at different volume cells in the 6-mm cubic
material sample, where the relative permittivity of the material sample is assumed to
be £, = 2.5. The geometry of the rectangular cavity is shown in Figure 3.7. The

resonant frequency shift is assumed to be 5%.
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Figure 3.9b  The x component of the induced electric field at different volume cells
of the 6-mm cubic material sample, where the relative permittivity of the material

sample is assumed to be €, = 2.5. The geometry of the rectangular cavity is shown in
Figure 3.7. The resonant frequency shift is assumed to be 5%.
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Figure 3.9c  The z component of the induced electric field at different volume cells
of the 6-mm cubic material sample, where the relative permittivity of the material

sample is assumed tobe ¢, = 2.5. The geometry of the rectangular cavity is shown in
Figure 3.7. The resonant frequency shift is assumed to be 5%.
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Figure 3.10  Ratios of E,/Ey" varies in the x-direction. Each curve represents this
ratio as a function of x for different locations of y and z. The relative permittivity of
the 2-cm cubic material sample is €, = 2.5. The geometry of the rectangular cavity

is shown in Figure 3.7. The resonant frequency shift is assumed to be 8%.
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2. Thin square plate case

The material sample with a shape of a thin square plate, having its height much
smaller than its width, is placed in the center of the cavity. The dimensions of the
rectangular cavity are shown in Figure 3.7 and the dimensions of the material sample are:

x=0.02m, y=0.002m, z=0.02m with n; = 10, my; = 1 and [, = 10. The relative

permittivity of the material sample is assumed to be €, = 2.5. Since the initial mode

TE,(; contains only the y component of the electric field and the material sample has a
thin flat geometry, the induced electric field inside the material sample can be estimated by
the boundary condition of E = (1/ e,)Ei.

The numerical results are shown in Figure 3.11, where only the induced electric
fields in a half of the plate, z=z; to z=z5. are shown due to the symmetry. In Figure 3.11,

ratios of the y component of the induced electric field in the material sample to that of the
initial electric field are plotted as a function of x. Each curve in Figure 3.11 represents this

ratio as a function of x for different locations of z. The highest one is for z=z; and the
lowest one for z=z5 We observe that the electric field is higher at the edges of plate, an
expected edge effect. The induced electric field inside the material sample is almost

constant. Theoretical estimation of this ratic based on the boundary condition of 1/¢,

gives 2—15 = 0.4. Our numerical results varies between 0.315 to 0.39 which are in

agreement with this theoretical estimation.

The x and z components of the induced electric field in the material sample are

extremely small (/.0*/ 0% in all volume cells. This is expected because the sample is very
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Figure 3.11  Ratios of E/E,‘ varies in the x-direction. Each curve represents this
ratio as a function of x for different locations of z. The highest one is for z=z; and the
lowest one for z=z;. The relative permittivity of the thin square plate material sample

is €, = 2.5 and the geometry of the cavity is shown in Figure 3.7. The resonant
frequency shift is assumed to be 1%.
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thin in the y direction that no significant x and z components of the electric field can be

induced. Therefore, the y component of the induced electric field in the material sample

dominates.

3. Narrow strip case.
We consider next a material sample with a geometry of a narrow strip case. The

dimensions of the material sample are: x=0.002m, y=0.02m, z=0.002m with n, = 1,
m, = 10 and [; = 1. The relative permittivity of the material sample is assumed to be

€, = 2.5. Theoretical estimation of the induced electric field in the material sample may

be close to the initial electric field because the initial electric field is tangential to the
major part of the material sample surface, and the continuity of the tangential component
of the electric field at the material sample surface requires this estimation. Based on this
estimation, we expect that more terms will be needed in the computation of the induced
electric field because we have evaluated a delta function out the integration sign when we
derived EFIE (2.102). If we need the induced electric field to be equal to the initial electric
field, then there needs to be another delta function coming out of the integration sign to
cancel the previous delta function. Thus, the convergence rate may be slov.er in this case.
In this computation we assume the resonant frequency shift to be /%. The
numerical results are shown in Figure 3.12. In this figure, the maximum value of the ratio
of the induced electric field to the initial electric field is 0.82. If we change the upper limit
in the double summation, the numerical results are shown in Figure 3.13. In Figure 3.13
we observe that the ratio becomes closer to / as we increase the upper limit of the double
summation; when N=1000, the maximum ratio becomes 0.896; and when N=/500, the

maximum ratio becomes 0.903. Increasing N leads to an increase in the computing time.
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Figure 3.12  Ratios of E’/Ey‘ varies as a function of y. The dimensions of the

material sample are: x=0.002m, y=0.02m, z=0.002m and the geometry of the cavity is
shown in Figure 3.7. The resonant frequency shift is assumed to be 1%. The upper
limit in the double summation is chosen to be N=200.
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Figure 3.13  Ratios of E/Eyi varies as a function of y for different N. The

dimensions of the material sample are: x=0.002m, y=0.02m, z=0.002m and the
geometry of the cavity is shown in Figure 3.7. The resonant frequency shift is
assumed to be 1%.
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For such cases, we suggest the scheme of separating the material sample into interior

volume and boundary layer cells as will be discussed later.

3.4 Some Methods to Increase the Convergence Rate

1. Separation of the material sample into the boundary layer and interior regions

In Section 2.1.6 we showed that the vector wave functions ;l\nml and ﬁnml are
complete within the space of the solenoidal vector fields. We also explained that the
divergence of the electric field doesn’t vanish at all points in the cavity after placing a
material sample inside. In fact, the divergence of the electric field doesn’t vanish only at
the boundary of a homogeneous material sample of finite size where the induced electric
charges reside. The divergence of the electric field still vanishes in the interior of a
homogeneous material sample.

Based on this observation, in the determination of the induced electric field in the
material sample, we may divide the material sample into two groups of volume cells:

boundary layer and interior volume cells. For the boundary layer volume cells we use the

EN —_ PN
vector wave functions Lnmi , Mnmi and Nnmi as the complete set of basis functions to

expand the unknown induced electric field. For the interior volume cells only the vector

wave functions A-'-;nml and ﬁnml are used to expand the solenoidal electric field. Thus, the
Electric Field Integral Equation (EFIE) will be quite different for these two groups of
volume cells. The EFIE at the boundary layer is the same as that used before, eq. (2.102).
The EFIE for the interior volume cells is obtained as follows.

In Chapter 2, the scattered electric field is shown to satisfy the Helmholtz eq.
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. N -
(2.90). As we use only the vector wave functions Mnmi and Nnmi to expand this scattered

electric field in the interior region of the material sample, the scattered field can be

expressed as

E®) = Y [a,Mn(}) + b,Na(})] (3.53)

n=1

Substituting eq. (3.53) into eq. (2.90) we have

VXV x Y [a,Mn(}) + b,Na(})] - K33 [a,Mn(?) + b, Na(P)]= —joRoTeq(F) (3.54)

Based on the properties of the vector wave functions A_';nml and ﬁnml, eq. (3.54) can be

written as
2 2.0 2,2, . RS
Y [a,(k, = kg)Mn(F) + b, (k, - kg)Nn(F)] = —jopoteq(r) (3.55)
n

Taking the scalar product of eq. (3.55) with A—; nm! and I—Gnml, respectively and integrating

over the cavity volume V, then applying the orthonormal property of the vector wave

-— -
functions Mnmi and Nnmi, we obtain the expressions for the expansion coefficients as

jou RN YA
"= ‘; J‘ Jeq(Fo) - Mn(Fo)dv, (3.56)
kn—kovmmplt

j® N N
-’2 “‘; J‘ Jeq(Fo) - Nn(Fg)dv, (3.57)
kn-kov

2
]

sample

where the integration region is over the sample volume. Therefore, the expression for the

scattered field 25(7) becomes
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B X3 N

E (r)

-JOK, J ;eq(;o) . 2

I:A—';n(;o);ln(;) + ﬁn(;o)ﬁn(;) dv
Vv n

i,
kn =Ko (3.58)

sample

—JjOlg I Jeq(Fo) - Gs(Fo, vy
v

sample

where the dyadic Green’s function in the interior region is identified as

Ges(ror) = Y

n

[;;n(;o)ﬁn(;) + 1_\;,.(;0)1-\7"(;)] (3.59)

le = ks

Finally, the Electric Field Integral Equation (EFIE) for the induced electric field in the

interior region can be derived as
o b . b Y - b N p— L Y a Ai a
E(F) + jopo T, (Fo)E(Fo) - Ges(Fo, P)dvy = E (F) (3.60)
v

Comparing with G,,(Fo, 7) in the EFIE (2.102) for the boundary layer region, G,(Fg, )
can converge faster. Some numerical results are given to show this point.

In the following computations, we only show the convergence property of the
integration of G, (Fo, ) component with respect to 7 and 7y in regions V,, and V.
In Chapter 2, eqgs. (2.24) and (2.32) give the expressions of the vector wave

—-— -
functions Mnmi and Nnmi, from which the coefficient of G (;0, ;) can be obtained as

esxXx
(mn)z (111:)2
—_— 4+ =
€0n€omEoi\ b c

abc krzl(ki _ k(2))

(3.61)

b R N . .
Thus, G, ., (ro, r) can be expressed in a double summation format as
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(ﬂb'n)z ¥ (lg)z[ & (%5 Xo) Zmiz (%> Xo)
k

. s - « 4
Gesxx(r07 r)- - 2 Z b_C gm“Sin(kgm“a) - kgmlzsin(kgmlza)] (362)

2
m=1l=1 ko

s'n('—nlt )sin(m—n )sin(l—T-':z)sin(llt )
MY b 0¥\ ¢ ¢ 2o

where k,,;, is given by eq. (3.30) and

= )

Emip(X, Xg) = cos(kgm,p(a-xb))cos(kgm,pxs) (3.64)

p=1,2 in eq. (3.64). From egs. (3.63) and (3.30), we find that kgmi2 1s always imaginary

and kg,,;; will be approximately close to kg, as m and [ increase and this is the reason

why G, (ro. ) has a better convergence property.
The integration of Gesu(?o, r) with respect to r and ?0 inregions V and V  is

X+Axy +Ayz+ AzXo + Axyy + Avzg + Az

[ ] I [ [ | GuuxPo Hdudvdwdugdvodwy

X y < Xy Yo %
mT

()2
|l - « 4\b c mm mmn
= -k—2 Z zb_c — [cosT(y+Ay)—cosTy:I[cos—b—()’o"'A)’)

mmn In Ir In In
cos yo:“:cos?(z +Az) - cos?z][cos-c—(zo + Az) - cos p zo]

x+ AxXg+ Ax
I ' j [ Emi (4, Up) a Emia (U, ug)
x % kg'"llsm(kgmlla) kngZSin(kngZa)

:|duduo

The details of the integration of
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X+ AxXxg + Ax
J‘ J [ Bmit (W Ug) — Empa(U; Up)
. o kgm“Sin(kgm“a) kgmlzsln(kgmlza)

]dud ug (3.66)

for different cases can be carried out in a similar way as that in Section 3.2.
In the following computations, the dimensions of the rectangular cavity are -

assumed to be the same as that shown in Figure 3.7. We also assume the initial mode to be

TE;p;. We choose Ax = Ay = Az = 0.002m in the following computations. The

integrations of G, (o, r) are calculated at different positions of 7 and ry (we will use

the same source and observation points as those in Section 3.2 in order to compare the

results of both integrations) with the assumption of the resonant frequency shift to be 5%.

Figure 3.14 is for r = r( while Figure 3.15 and Figure 3.16 for F # ro, where the

horizontal axes are the value of N and the vertical axes are the integration of Guu(?o, r)
in these three figures. In Figure 3.14 to Figure 3.16, we find that the integrations converge
much faster than those in Figure 3.4 to Figure 3.6 or Figure 3.1 to Figure 3.3. These
integrations converge when N >80 for the different positions. This is because as m and /
increase, kg, becomes approximately equal to kg,,,lz. Then the difference in the eq. (3.65)

becomes nearly equal to zero. Thus, the summation terms are greatly reduced leading to

the reduced computation time.

The scheme of the separation of the material sample into boundary layer and
interior region has been successfully applied to the narrow strip case in Section 3.3. In this

case we choose the dimensions of the sample as x=0.003m, y=0.021m, z=0.003m with

ng=1,m; =10 and I; = 1 as the division for the interior region. The dimensions of
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Figure 3.14  Integration of G “xx(;o, r) vs. number of summation modes when

r = rg, r= [0.033m, 0.014m, 0.0551m] and Ax = Ay = Az = 0.002m.

110



2.5 T T

-
N
L

Integration of DGF

-
L]

05+

0 1 1 1 1 L 1 1 L .
0 20 40 60 80 100 120 140 160 180 200
Upper limit of summation N

Figure 3.15  Integration of G, JIJ‘(;0, r) vs. number of summation modes when

r= [0.035m, 0.014m, 0.0551m], o= [0.033m, 0.014m, 0.0551m] and
Ax = Ay = Az = 0.002m.
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Figure 3.16 Integration of G, (r¢, r) vs. number of summation modes when

r= [0.035m, 0.016m, 0.0553m], ro= [0.033m, 0.014m, 0.0551m] and
Ax = Ay = Az = 0.002m.
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the volume cells in the boundary layer region are chosen as bx=0.0008m, by=0.0008m,
bz=0.0008m. The dimensions of the interior region are x;=0.0014m, y;=0.0194m,
7;=0.0014m and the dimensions of each volume cell in the interior region are ix=0.0014m,
iy=0.00194m, iz=0.0014m. The number of total volume cells in the boundary layer region
and interior region is (ny+2)xX(my+2)X(l;+2) = 108. In the computation, we
suppose the resonant frequency shift to be /1% and choose the upper limits of the double
summation to be N; = 150 for the interior region and N, = 400 for the boundary layer
region. The numerical results are shown in Figure 3.17.

Since we are only interested in the induced electric field inside the material
sample, only the solutions for the volume cells in the interior region are presented in
Figure 3.17 while those for the boundary layer region are omitted. It is noted that the
solutions for the volume cells in the boundary layer region are usually not reasonable and
should be discarded. This is justified because the boundary layer region is artificially
created to contain the induced suriace charge for a mathematical reason. In Figure 3.17 we
only show the ratio of the y component of the induce electric field in the interior region to
that of the initial modc varies in the y direction. We see that the ratio is 1.04 which is very

close to 1 that is required by the continuity of the tangential electric field at the same
surface. The x and z components are around 1.0 X 10" which can be neglected. In this
computation we can also show that it reduces the computation time.

In Section 3.3 the numerical result is 0.903 when N = 1500 for the narrow strip
case. We mentioned that the construction of the matrix (3.20) in the moment method cost

™nost of the computation time. From the definition of this matrix, it consists of the series
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Figure 3.17 Numerical results obtained with the scheme of separating the material

sample into boundary layer region and interior region. The ratio of E/Eyi varies as a

function of y coordinate. The sample dimensions are: x=0.003m, y=0.021m, z=0.003m
and the geometry of the cavity is shown in Figure 3.7. The resonant frequency shift is
assumed to be 1%.
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summation, and this summation will be dominant in the computation time. In this case the
number of summations is 10 x 1500 x 1500 = 22, 500, 000. If we use the scheme of

separating the material sample into boundary layer and interior region, the number of the

summations becomes 98 x Ni + 10X N ,2 = 15, 905, 000. Therefore, the computation

time is about 7/ % of that in Section 3.2 and furthermore we obtain a better result.

Also we observe that in the scheme of separating the material sample into the
boundary layer and interior region for the narrow strip case, the major portion of the
computation time is consumed in the boundary layer region due to the small dimensions of
the material sample. Thus, this scheme will be effective if the number of volume cells in
the interior region is greater than that in the boundary layer region, or for the cases such as
a narrow strip, where a very large number of eigenfunctions are required to produce
accurate results if the sample is not separated into the interior and boundary layer regions
and eq. (2.102) is directly solved.

2. Poisson summation
As stated before, we found that the most difficult step is to fill out the matrix

[A"1]3M < IM in egs. (3.17) to (3.20) in the numerical computation due to the slow

convergence property of the dyadic Green’s function. Now we will apply the Possion
summation method [2],[32],[42] to accelerate the convergence property of the double

summation in the construction of the matrix (3.20). As before we will consider only the

integration of G,, _(Fo, r) component for brevity.

The double summation evaluation of Geon(?o, r) can be found in egs. (3.33) to

(3.34) as

115



mn\2  (Im)?
Ceonalro7) = —;(2;"21Iglgékgm,sin(akgml)gmz(x’ Xo)sin—=y

(3.67)
sinm—n siny-tzsinlitz
b Yo c c 0

where

Ko = Jko ((";")21«(’%‘)2) (3.68)

Emi(X, Xg) = cos(kgml(a—xb))cos(kgm,xs) (3.69)

Usually we suppose the initial mode to be a lower order mode. Thus, kgm, will be an

imaginary number as the indices m and [ increase in the double summation (3.67) and it

can be approximated by

. [(mm\? | (Im? .

when m and [ become larger. Equation (3.69) can then be expressed by eq. (3.42). Thus,

the double summation (3.67) is rewritten as

mm\? (Im)?
? - - b * ¢ Kemi|X=Xo| . mm mT In
b Ay o “Regmi|* T 2ol . . st
Geoxx(Tos ) = = 2 2 ek ¢ sin—-ysin—=yosin-=2
(mn)2 (11:)2
— + —
Z Z c g, (x, x )sinmnysmm—ny smlltzsmlltz
|5 bk gmsin(ak,,, HomET 0T g b0 0
om=11=

(3.71)

where m; and /; are chosen in such a way that k., is an imaginary number and can be

approximated by eq. (3.70). In the summation (3.71), the first term is what we need to
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consider and the second term is a finite summation which doesn’t affect the convergence

property. The first summation is denoted as

(mn)z (ln)
+
-kgmhlx XOI mn mn

G (Fo, F) = e in—ysin—1y
eoxxl bckomzm 1;'1 bCkgmll b b 0 (372)
e Iw
sin—zsin—z;
c c
Since k,,;; can be approximated by (3.70), eq. (3.72) can then be expressed as
mn\!  (In)
A A mT 2 11! (T) +(?) b=l
G l(r01 l') = J
eoxx Cko Z 2 (373)

sin—ysin— sin1-1-tzsinmz
b p Yo% c0

The expression (3.73) can converge faster if x # x, i.e. off-plane case. However, it will
converge very slow when x = xg, i.e. on plane case.

The Poisson summation formula [2],[32],[42] can sometimes be used to convert a
slowly converging series into a rapidly converging one by allowing the series to be
summed over in the Fourier transform domain, that is, if a series spreads out, the its
Fourier transform must be concentrated around the origin.

The Poisson summation formula is given by [2],[32],[42] as

™M s

Y flno) =

n = -oo

LS A o7

-—00

where F is the Fourier transform of f. In [32] the Fourier transform of
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L+ i

f1(x) = E——=cos(x4,) (3.75)
2 2
X +km
is given as
Ko{km JL + (0~ Ao)z} + Ko{kaLz +(0+ AO)Z} (3.76)

where K, is the modified Bessel function of the second kind and it decays rapidly
(Ky(0) = =0, K,(0.5) = 0.9244, K(1) = 0.4210 and K,(1) = 0.1139). Then using

the Poisson summation formula, we have

T b <
N f(nz) =2 Y F(2mb) 3.77)

n = —oco m = —oo

Therefore, we obtain the following summation by the Poisson summation:

e (AT 2
" (7) +kn (3.78)

y [Ko{km JL2 + (2mb - Ao)z} + Ko{km JLE+(2mb + Ao)z}]

a1

After some algebraic manipulation we have [32]
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T
= [

= 2_b1£ Y [Ko{l;nj(x—xo)z+(2mb—y+YO)2}

m = —oco

sin'—n— 'Sin—1y
b )’ b )O

(3.79)

+ KQ{%J(X-Xo)z +(2mb +y- yo)z}

_KO{%‘J(x —xg)’ +(2mb -y - yo)z}

_KO{I%:A/(x - xo)2 +(2mb+y+ yo)z}jl

Due to the rapid decay of the modified Bessel function of the second kind, the only

significant term in eq. (3.79) is that for m=0. Hence eq. (3.79) can be approximated as

Tblt)z + (%t)z (3.80)

= g[KO{I_CT—[“/(x - ro)l +O- }'0)2}_1(0{%‘/(* - Xo)z +(y+ Yo)z}:l

In order to employ eq. (3.80) to accelerate the series convergence rate of the dyadic

Green’s function, we rewrite the eq. (3.71) as
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J(mn)z (11:)2
oo oo - + -_
b 4 e gmhlx rt)l m T

sin—1t sinm—
be p 2> Y0

BT

sml—zsm—zo z Z > (3.81)
m—lI=l
(mn)z (lu)z
— + | —
+ b c (x, xg) sin Zxysin 28 smmzsinlltz
K gySin @k g, S5 X07 PPV 0 c %0

where the first summation can be accelerated by eq. (3.80) and the second term is a finite

summation.

The first summation is denoted as

K”"‘) +(’%‘)Z i

. mE_ . mnu Ir_ . In
sm—b—ysm—b—yosm zsm—~0

Geoxx?.(;o’ ;) 2 Z Z

kom=11=1 (3.82)

In the Galerkin’s method we need to integrate the dyadic Green’s function with

respect to variables r and rq. For the Geonz(;o, r), whether x = Xy or x#xq will
determine the convergence rate. Let’s consider the integration of Geoxxz(;o, r) with

respect to x and x, for brevity. The integration of G, oxx2(;0’ r) when x = x is given by
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X+ AxXg+Ax
b b
I I G,oxx2(ro, r)dugdu

x Xo

4 - < [(mn)z (zn)2] Ax e -1
= — — | +| = +

N RN GO
sinm—1t sinm—Tt sinllczsinllr'

b y b yO c c ZO

mn\?  (Ir)?
4 . e— (T) *(;)A‘ 1 m7 mT In In

=— Y Y [Ax+ sin—=ysin==y,sin—zsin—z,

and when x # x, is given by

X+ AxXg + Ax

[ | Geowa(Fo Frdugdu
- ('%n)z*(l?n)zlx-xdl:l ] COSh(Ax (m_n)z . (lit)z)] (3.84)
e [ (2 T

mm
b

.mre . Im . 11t7
ysm———yosm?zsm?m

sin
b

The first summation in eq. (3.83) is just a delta function 8(r —ry) divided by k(z). The

second term in eq. (3.83) and eq. (3.84) can be summed by eq. (3.80). Therefore, the

approximation of egs. (3.83) and (3.84) by eq. (3.80) can be expressed as
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X+ Axxq+Ax
[ [ GeoxalFo P)dudu

x Xo

= k—a(r—ro)+ z[xo{’“JAx +(y=¥p) }-Ko{ T ax? +(y+ yo) } (3.85)

0 nc kOl—l

In In I . w
+Ko{?|y-—y0|}—KO{-C-(y+yo)}]sm?zsm—c—zo

for x = x4 and

x + AxXo+Ax
> Y
I j G, oxx2(r0, r)duydu

x X

zz[xo{lnj(x x0)2 +(y - vo)} {%A/(x-xo)2+(y+yo)2}

“Ckm- |

(3.86)

_KO{’?“J(|x —xo| - Ax) + (y - yo)z}/Z

+ KO{%J(LV - xq| = Ax)’ + (y+ yo)z}/Z]sinl?nzsinl?nzo

for x # x,. Comparing eqgs. (3.85) and (3.86) with egs. (3.83) and (3.84), we find that the
double summations in eqs. (3.83) and (3.84) are approximated by the single summations
in eqgs. (3.85) and (3.86) when Poisson summation formula (3.77) is used.

In the numerical computation, we set m; and /; to be 5 in eq. (3.81) and the
summation index / to be from / to 25 in eqgs. (3.85) and (3.86). Then we apply egs. (3.85)
and (3.86) to our numerical examples as discussed in Section 3.3.

The material sample of a 4-mm cubic shape is placed in the center of the

rectangular cavity. The relative permittivity of the material sample is assumed to be
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g, = 2.5. The material sample is divided as n; =2, my =2 and [, = 2. The

numerical results using Poisson summation formula are: 5.09 (5.4949) for the x
component, 193.65 (203.9074) for the y component and 4.91 (5.552) for the z component
of the induced electric field in each volume cell of the material sample, where the values in
the parentheses indicate the numerical results of the double summation for the 4-mm cubic
shape material sample which we obtained before. The ratio of the y component of the
induced electric field to that of the initial electric field is 0.60 while it is 0.634 if the double
summation is applied. Thus, we can conclude that these approximation results are
satisfactory.

If we increase the dimensions of the cubic material sample to have 0.006m in each

side and divide the material sample as n; = 3, m, = 3 and [; = 3 while keeping the

other parameters the same as previous cases, we found that the computed electric field is
still dominated by the y component and all the components of the induced electric field are
symmetric with respect to the center of the rectangular cavity. The y component of the
induced electric field does not change significantly with respect to the variables x and z but
change somewhat more with respect to the variable y. The values of the y component of

the electric field are /94.88 for y=y,, 220.73 for y=y, and 194.88 for y=y;. The ratios of
the y component of the electric field to that of the initial electric field are 0.6/ for y=y; and
0.69 for y=y, while the ratios are 0.632 for y=y, and 0.677 for y=y, if the double

summation is applied to this 6-mm cubic material sample. Comparing these numerical
results we observe that the numerical results with the Poisson summation are very close to
the theoretical approximation and the previous numerical results using double summation.

In the Poisson summation scheme, for each component of the dyadic Green’s
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function, the summation in each volume cell is only 2 x5 x5 +25= 75 based on egs.
(3.81), (3.85) and (3.86) while in the double summation there are over 40,000 summation

terms. It is noted that even though we need a numerical integration of the modified Bessel
function with respect to the variables y and y, in this scheme, the overall computation

time is still saved about 60% due to the decrease in the summation terms.
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CHAPTER 4

QUANTIFICATION OF THE INDUCED ELEC-
TRIC FIELD IN A MATERIAL SAMPLE
PLACED WITHIN A CYLINDRICAL CAVITY

In the microwave heating of material samples, a cylindrical microwave cavity is
more commonly used than a rectangular microwave cavity. Theoretical analysis of the
induced electric field inside a material sample placed within an energized cylindrical
cavity is more involved than that of a rectangular cavity case as studied in Chapter 2 and
Chapter 3.

In this chapter, we will quantify the induced electric fields inside material samples
of various geometries and dielectric parameters which are placed within an energized
cylindricai cavity. The theoretical method used in Chapter 2 can be employed to obtain the

induced electric field inside the material sample placed within a cylindrical cavity. That is,

- - N -
we will use the vector wave functions Lnmi, Mami and Nnmi which will be defined in the

Cylindrical cavity as a complete set of basis functions to determine the induced electric

Field inside the material sample.

BN -—
In the cylindrical cavity, the definitions for the vector wave functions Lami, Mnmi
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and Nnm! are the same as that in the rectangular cavity as given in egs. (2.1), (2.2) and
(2.3). These vector wave functions also satisfy the same boundary conditions (2.4), (2.5)

and (2.6) at the perfectly conducting walls of the cavity. We will show that the vector wave

functions Z,.mz, A—';nml and ﬁnml in a cylindrical cavity are orthogonal and form a
complete set of basis functions and satisfy the vector Helmholtz equations based on the ‘
proofs given in Section 2.1.3, Section 2.1.4 and Section 2.1.6 in Chapter 2. However, they
have completely different expressions in a cylindrical cavity.

The outline of this chapter is as follows: In Section 4.1 we will derive the

RN -— -
expressions for the vector wave functions Lami, Mnmi and Nnmi in the cylindrical cavity.

In Section 4.2 the normalization of these three vector wave functions will be carried out

- —-— -
and some field structures of the vector wave functions Lami, Mnmi and Nami will be

plotted. In Section 4.3 the expression for the dyadic Green’s function in the cylindrical

cavity will be obtained. Some numerical examples will be presented in Section 4.4.

4.1 Expressions for Vector Wave Functions L1, M ;1 and Ny in

Cylindrical Cavities

The cylindrical cavity under consideration has the geometry shown in Figure 4.1.
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Figure4.1 A cylindrical cavity and the designation of the coordinate system
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4.1.1 Expression for Vector Wave Function Z,,m i

Based on the definition and the boundary conditions of the vector wave function

Lnmi given in egs. (2.1) and (2.4), we have

Lnmi = k—-—(Vq),,m,) (41)

;l X anl = (4.2)

where the scalar eigenfunction ¢ﬁm ; satisfies the scalar Helmholtz equation of
2,2 (L
(V +k, )0 = O 4.3)

2_19(.9Y, 1 3% 2%, L . .
and V° = 23:\"3; +S—+— in the cylindrical coordinate system. Applying the
ror\ or; r°9¢° 9z

variables separation method to eq. (4.3), we obtain the solution of the scalar eigenfunction

L
¢nml as

. cos(n®) cos(k,z)
_ 4.4
¢nm1 Anml‘]"(krr){ sin(n‘P) }{ Sin(kzz) o

where J,(k,r) denotes the first kind of the nth order Bessel function, n is an integer and

A, is an unknown constant which will be determined by the normalization of the vector

BN
Wave function Lnmi. The eigenvalue k,, , is then expressed as
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2

knml = kr2 + kzz (45)

If n=0, the solution of the scalar eigenfunction ¢16m ; is given by

cos(kzz)} “6)

L
= A, Jo(k

Using the definition (4.1), applying the boundary conditions (4.2) and after some

manipulations, we obtain the expressions for the three components of the vector wave

5N
function Lam! as

A

Lo = 22202, (22 ) 00 1) @
knmi @ a sin(nQ) N
4 i

Lo = —"’"—“-’J,,(p ""'r) sin(n9) sin(’l‘z) 4.8)

® Ky r "\ a )| cos(no) c

A

Loyms, = —ﬁ'l’fltfn(@r){cf’s("‘p)}cos(l—“z) 4.9)
knml ¢ a Sm(n(p) ¢

while the eigenvalue is determined by

Kot = (p"'")2+(15)2 (4.10)

a (4

Ineq. (4.7), J,/(k,r) denotes the derivative of the bessel function J,(k,r) with respect to

k,r and p,, denotes the mth root of the first kind of the nth order Bessel function, that is,

4 ,(Pnm) = 0. The expression for the scalar eigenfunction ¢,l,‘m ; is then given by
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o = Aumt T2 e (122

BN
When n=0, the expression of the vector wave function Lom! is given by

AomiPom , .(Pom \ .. (IR
AOmlth Pom In
LOmlz = m?JO(—a—r)COS(?Z) (413)

4.1.2 Expression for Vector Wave Function A_} nml

Based on the definition and the boundary conditions of the vector wave function

A_;nml given in eqgs.(2.2) and (2.5), we have

Mumt = VX201 ) (4.14)
ﬁXﬁnml =0 (415)

. . M : :
where the scalar eigenfunction ¢, satisfies the scalar Helmholtz equation of

2, 2 M
(V' +4,,00m =0 (4.16)
Applying the variables separation method to eq. (4.16), we obtain the solution of

: .M
the scalar eigenfunction ¢,,,, as
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Y cos(ng)) [cos(k,z)
_ 4.17
Ot Bnml‘]n(k’r){ sin(ng) H sin(k,2) &

and the eigenvalue g, , is expressed as

qrzlml = kr2 + k22 (4.18)

where B, , is an unknown constant which can be determined by the normalization of the

—-—
vector wave function Mnmi.

If n=0, the solution of the scalar function ¢(/;4m1 is given by

(4.19)

cos(k,z)
¢g’ml = BOml]O(krr){ i }

sin(k,z)

Hence, using the definition (4.14), applying the boundary conditions (4.15) and after some

manipulations, we obtain the expressions for the two components of the vector wave

. —
function Mnm! as

M, = Sl (p """r) ~sin(ne) sin(’l‘z) (4.20)
nmlr r N g cos(n(p) c .
Pam , (Pnm )| cOs(n@)| . (In
Mumig = ~Bumi :zm J"( Zm r){ Sin(n¢)}sm(-€—z) (@.21)
while the eigenvalue is determined by
2 Pam \*  (IT)?
Dnmi =( a'") +(-C-) (4.22)
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where p,..' denotes the mth root of the derivative of the nth order Bessel function of the

first kind, that is, J,'(p,,,,) = 0. The expression for the scalar eigenfunction ¢an, is then

given by

oM | = B,,,,,,J,,(p"—""r){ °°S("‘p)}sin(f’-‘z) (4.23)

a sin(n®) c

—
When n=0, the expression for the vector wave function Mom: is given by

Pom , .(Pom \ . (Im
Mopip = —Bom,T’"JO (Tmr)sm(?z) (4.24)

4.1.3 Expression for Vector Wave Function ﬁ nml

Based on the definition and the boundary conditions of the vector wave function

F/nml given in egs. (2.3) and (2.6), we have

1

nml

Nomi = ——VxUx(z0" ) (4.25)

AXNumi = 0 (4.26)

. . N . .
where the scalar eigenfunction ¢,,,, satisfies the scalar Helmholtz equation of

(VE+k2, poN =0 (4.27)

Applying the variables separation method to eq. (4.27), we obtain the solution of
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. . N
the scalar eigenfunction ¢,,,; as

N cos(n@) | [ cos(k,2)
¢rlml = Cnml‘]n(krr){ sm(n(p)}{ sin(kzz) (428)

and the eigenvalue is determined by

2

Ko =k vk] (4.29)

where C,,, is an unknown constant which can be determined by the normalization of the

-
vector wave function Nnmi.

If n=0, the solution of the scalar eigenfunction ¢:)Vm ; is given by

(4.30)

cos(k,z)
¢gml = COmlJO(krr){ ‘ }

sin(k_z)
Using egs. (4.25) and (4.28) and applying the boundary conditions (4.26), we obtain the

-
expressions for the three components of the vector wave function Nnmi as

C
N, = - nmlpnmlltj .(pnmr) C‘.)S(n(p) sin(l_f.tz) (4.31)
k.mi @ ¢ n\ a sin(nQ) ¢
c L
N, o= - nml'_llitj (pnmr) sin(n@) Sin(l—nZ) (4.32)
? Kpmi¥ € n\ a cos(ng) ¢
C 2
nmiz Kpmi\ @ " a sin(n@) ¢

while the eigenvalue is determined by
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Koy = (%)2 + (’l‘)z (4.34)

c

: . . N . :
The expression for the scalar eigenfunction ¢, is then given by

oV | = Cnm,Jn(p"—'"r){cos(mp)}cos(litz) (4.35)

a sin(nQ) c

-
When n=0, the expression of the vector wave function Nom! is given by

ComiPomin | ,(Pom \ . (Im

NOmlr = kom[ a ?.’0( a r)sm(?z) (436)
Comi(Pom\? , (Pom In

Nopmiz = kOml( 2 )JO( 2 r)cos(?z) 4.37)

* EN — -
In the expressions of the vector wave functions Lnmi, Mnmi and Nnmi, we did not
specify their dependences on the variable @ . The variations of these functions with respect

to the variable ¢ can be determined by the location of the excitation probe and the ¢
dependences of the r and z componems of the electric field. All the vector wave functions

should have the same dependence on the variable ¢ because they are excited by the same

source.

If the excitation probe is located at @ = O and the r and z components are even

>
functions of the variable @, then the expressions for the vector wave functions Lnmi,

rlnml and Nami can be given by
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> A, TP (P . (I
Laml = k""’ [r '""Jn( Z’"r)cos(n(p)sm(?z)

a
! (4.38)
N (Pnm In AT In
_(p-r-Jn(-a—r)sm(n(p)sm(c z)+ —J (Tr)cos(n(p)cos(c z)]
A_';nml = Bnm,[r J (p )cos(n(p)sm(l:'z) (4.39)
~Prm o (Prm )\ . . (In
-0 e Jn( P r)sm(n(p)sm(cz)]
= Cnml anlﬂt pnm . l’t Aant pnm
Nnmi = _m[ P CJ ( )cos(n(p)sm(?z)—(p;?J"( 2 ) (4.40)

sin(n(p)sin(l?nz) + 2(‘7‘#) Jn(p:zmr)cos(n(p)cos(l%tz)]

It is noted that these eqs. (4.38) to (4.40) are valid only for n #0 case. For n = 0 case,

we have already derived the expressions in egs. (4.12), (4.13), (4.24), (4.36) and (4.37).

4.2 Normalization of Vector Wave Functions L/, Mm1 and Ny in

Cylindrical Cavities

4.2.1 Normalization of Vector Wave Function Z,,,,, i

RN
Based on eq. (2.59) the normalization of the vector wave function Lami is given by

J‘(’) J’Z" [ (anl anl)rdrd(pdz =1 (4.41)

That is,
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J; J'z“ J; (znml'znml)rdrd(pdp f; jz [} Onmi®nmirdrdods

5 (4.42)
_ T2 Prm . (In _
= J‘;Jz J;A"m,(ln( . r)cos(n(p)sm(?z)) rdrdodz = 1
where we have used the following relation
Lnmi - Lnmi = +V¢ﬁm[ ’ V¢fm[
nml
1 L L 1 L o2.L
= 2_V ’ (¢nmlv¢nml) - z_q)nmlV ¢nml (4.43)
nml nml
1 L L L L
= TV ’ (¢nmlv¢nml) + <|>nmlq)nml
nml
and the integration of TI'V . (¢,l,‘m,V¢fm,) over the cavity volume is zero using the
nml
boundary conditions. Equation (4.42) can then be simplified as
2me 2P
2 tc 2(Fnm _
A"m150n801£1"( , r)rdr = 1 (4.44)

where €, has been defined by eq. (2.63) in Chapter 2. The identity for the integration of

the Bessel function is given in [64] and [65] as

2 2
| xJ3(ax)dx = %[J'i(ax) + [1 - —’z'—zjjf,(ax)] (4.45)

ax

Hence, using eq. (4.45) and after some manipulations, we may obtain the integration in eq.

(4.44) as
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a 2
jJ,z,(p "mr)rdr = ST 2(Pum) (4.46)

5N
The normalization constant for the vector wave function Lnmi is then expressed as

,EOnE’Ol 1
A = 447
nml nc al' , (Ppm) ( )

E
When n = 0, the normalization of the vector wave function Lom! is given by

f; j(z)n ]:, (Zoml-zOml)rdrd(pdz= 2n J: j‘o Og Oc rdrdz

- 2 [ a1 22 Yo ) v =

(4.48)

EN
Based on eq. (4.46), the normalization constant for the vector wave function Lomi is then

expressed as

Ay, = f—;-‘—l— (4.49)
Oml ncal' o(po) )

4.2.2 Normalization of Vector Wave Function A_'; nml

-—
Based on eq. (2.61), the normalization of the vector wave function Mnmi is given

2 - N
[ f nr(Mnml-Mnml)rdrd(pdz =1 (4.50)
00 Y0

Substituting eq. (4.39) into eq. (4.50), we have
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Bf,m,]:zf }[('—:J,,(p ';'"'r)sin(nw)sm(%tz))z

000 4.51)
Pnm , (Pnm (It ) _
+( 2 Jn( . r)cos(n(p)sm(?z)) :]rdrd(pdz =1

After integrating with respect to the variables z and ¢ in eq. (4.51), we obtain that

a 2 [ \2 [
2 2;c ¢[n” 2(P p 2(Pnm
B"'"leon_em‘[[7j"( o r)+( ';”') J, ( . r)r]dr =1 4.52)
0

Using the identities of the Bessel function of

_2n

Jpi1(x) = ?Jn(x) -J,_1(x) (4.53)
xJ,(x) = xJ,_{(x)=nJ (x) (4.54)
J() = 300y (D)= (0] 4.55)

we may obtain the following relations as

1 I
;J,Z,(x) = (0, () 1, (0),(0)] (4.56)
A = xJ,z,_l(x)—%"J,,_l(x)J,,(x) +g],,(x)1n+l(x) (4.57)

After changing the integration variable, we can modify the integration in eq. (4.52) as

a 2 ' 2 ' pnm' 2

n" 2(Pnm Pnm 2 Pnm _ n 2 2
j[7ln( p r)+( . )Jn ( . r)r]dr = j[71n(r)+ln (r)r]dr (4.58)
0 0

Substituting eqs. (4.56) and (4.57) into eq. (4.58), we have
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Pam Pam

2
I[n?li(r)+ln'2(r)r:|dr= [ (0, (N (N =T, (NI T2 (P)rldr
0 0

Based on eq. (4.55), eq. (4.59) can be expressed as

pnm| 2 pmnl

J [+ a2 orlar = [ Wh_ynor=2nd, () (n)dr
0 0

- "—2"'—2[1 )+ (1 (5 ) V1P| =12

nm

where we have used the integration (4.45). Rearranging eq. (4.54) leads to

J,_(x) = J'(x)+ gln(x)

then we have

Jn—l(pnm') = Jn'(pnm')+;,n_"’n(pnm') = ;n—'-"n(pnm')

nm nm

Using identities (4.53) and (4.54), we have

Jo ) = P2, ()=,

Hence,

2
, W n-1 , o on(n=-1)-p,; ,
‘,n-l (pnm) = T‘,n—l(pnm)—"n(pnm )= 2 L J,,(P,,m)

nm pnm

(4.59)

(4.60)

(4.61)

(4.62)

(4.63)

(4.64)

Substituting eqs. (4.62) and (4.64) into eq. (4.60) and after some manipulations we have

Pam

2
| ["TJ,Z,(r)+J,;2(r)r]dr = %(pnm'z—nz)li(pnm')
0
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Therefore, based on eqs. (4.52), (4.58) and (4.65), the normalization constant for the

—
vector wave function Mnm( is given by

(4.66)

B . = €onor 1
nml nc , / 2 2 .
Pnm 1-n /pnm Jn(pnm)

— .
When n = 0, the normalization of the vector wave function Mom! is given by

n 2
J‘; jz J‘O M} prdrdodz = 1 (4.67)

because M, ;. = 0.Equation (4.67) can then be expressed as

By, f" [ (p Ly (p om )sin(’%‘z))zrdrmpdz - (4.68)

or

Bom o jp°“ Jo (ryrdr = 1 (4.69)

It is noted that J,'(r) = —J(r), so based on the integration (4.45), the integration in eq.

(4.69) is given by
Pom Pom p 2
J " Iy (ryrdr = J " I ryrdr= 221, (Do) (4.70)
0 0 2
Also using the identities (4.53) and (4.54), we have
n+l(x) =J (X)—-J l(x) (47])

that 1s,

140



J)' (Pom) = Jo(Pom) (4.72)

—
and the normalization constant for the vector wave function Mom! is given by

B = x/ezol; 4.73)
0mt = N R Pom Jo(Pom) '
4.2.3 Normalization of Vector Wave Function N,,,;

Based on the definition of the vector wave function Nnmi eq. (2.64), the

-
normalization of the vector wave function Nnm! is given by

b4 jxN -
j‘(’) jz j:) (Nnmi - Numi)rdrdodz = 1 (4.74)

Substituting eq. (4.40) into eq. (4.74), we have

o (e (B ool 2] o (2,5

(sin(n(p) sin(%‘z))z + ((pzm)zln(pzmr)cos(n(p)cos({gz))z]rdrd(pdz =1

After integrating with respect to the variables z and ¢, changing the integration variables,

we can modify eq. (4.75) as

2 p"ﬂ
Cnml 21c

k2, Eon€ol I [(%tj n'('))zr‘“n?z(l?nl,,(’))z (pﬂ'f (f))z ] =1 (476

nml

Using eq. (4.60), we can derive the integration of the first two terms in eq. (4.76) as
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Pnm 2

j [nTJ:(r) + Jn'z(r)r]dr

0 2 4.77)
= 2 L0 o) + (1= (B2 Y 2| - 200
Using egs. (4.54) and (4.63), we have the following relations as
Tt Pam) = 1 (Prm) + 2o Pam) = I (Pr) (4.78)
Ty i (P = ’;;'J,,_ ()= IPam) = 7 (D) 4.79)

nm nm

Hence, based on eqgs. (4.78) and (4.79), and after some manipulations, we may rewrite eq.

(4.77) as
Pam o p 2
[ ["TJﬁ(r)un'z(r)r]dr = T Pam) (4.80)
0

Based on eq. (4.45), the remaining part of the integration in eq. (4.76) can be derived as

pnm 2
p
J riandr = 220, %p,) (4.81)

0

Substituting eqs. (4.80) and (4.81) into eq. (4.76), we have

2 nc

2,.,2
wmle——"Pnm I (Ppm) = 1 (4.82)
€onol

-
Therefore, the normalization constant for the vector wave function Nnmi is expressed as

€0,E 1
C, . = / On 0! : (4.83)
nml nc pnm‘]n (pnm)
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-
When n = 0, the normalization constant of the vector wave function Nomi is

given by

2
Comi n Pomin . (Pom \ . (IT 2
ZZ—J‘:)JZ J:)[( a ?10( a r)sm(?z))
Oml
2 2
+((paﬂ) Jo(p—zﬂr)cos(%—tz)) ]rdrd(pdz =1

After integrating with respect to the variables z and @, changing the integration variable r,

(4.84)

we have

Pom

C(2)m121tc In 2 Pom 2
“omi2nc [(_J ) r+ (225 rlar =1 (4.85)
k 80[ C 0 a

Oml 0

Using egs. (4.70) and (4.71), we have

2
jp""fo'z(r)rdr = jp°”1‘f(r)rdr = 2o 0 (4.86)
0 0 2
Thus, based on egs. (4.53) and (4.54) we obtain
Jyar(x) = 20, (x) =,/ (x) (487)
Hence,
J1(Pom) = =To'(Pom) (4.88)
and eq. (4.86) can be written as
P P 2
IO "Iy (ryrdr = —02"' Jo" (Pom) (4.89)
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Using eq. (4.45) we have

Pom 2

[ ryndr = 2215 (p,) (4.90)
0

Substituting egs. (4.89) and (4.90) into eq. (4.85), we obtain the normalization constant of

-
the vector wave function Nom: as

Comi = JEOI——I 4.91)
nc pOm"O (pOm)

4.2.4 Some Field Structures of Vector Wave Functions in Cylindrical

Cavities
In this subsection, several electric field structures are plotted for the vector wave

’ . a —_ N
functions Lamiy Mnmi and Nnmi .

In the calculations, we assume the dimensions of the cylindrical cavity as: the

radius a=0.0762m and the height ¢=0.15458m. In Figure 4.2 and Figure 4.3 we plot the

electric field structures for the Noi2 in the r-z plane with ¢ = 121° and in the r-¢ plane

with z=0.0271m. We can identify that it is just the normal TM,;, mode. In Figure 4.4 and

Figure 4.5 the electric field structures for the M 111 are plotted in the r-z plane with

¢ = 121° and in the r-¢ plane with z=0.027Im. It is noted that this is the normal TE,;,

mode. The electric field structures for the Z] 12 are plotted in Figure 4.6 and Figure 4.7 in

the r-z plane with @ = 121° and in the r-¢ plane with z=0.0271m.

So far we have obtained the normalized expressions for the vector wave functions
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Figure4.2 E-field structure of N, in the r-z plane with ¢ = 121°.
The dimensions of the cylindrical cavity are a=0.0762m, c=0.15458m.
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Figure 4.3 E-field structure of N, in the r-¢ plane with z=0.0271m.
The dimensions of the cylindrical cavity are a=0.0762m, c=0.15458m.
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Figure 4.4  E-field structure of M;;; in the r-z plane with ¢ = 121°

The dimensions of the cylindrical cavity are a=0.0762m, c=0.15458m.
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c=0.15458m.

cylindrical cavity are a=0.0762m,

Figure 4.5  E-field structure of M;;; in the r-¢ plane with z=0.0271m.
The dimensions of the
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Figure 4.6  E-field structure of L;;, in the r-z plane with ¢ = 121°
The dimensions of the cylindrical cavity are a=0.0762m, c=0.15458m.
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Figure 4.7  E-field structure of L;;, in the r-¢ plane with z=0.0271m.
The dimensions of the cylindrical cavity are a=0.0762m, c=0.15458m.
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Lamiy Mnm! and 1—\’\,,".1 in cylindrical cavities. They are orthogonal and form a complete
set of basis functions based on the proofs given in Chapter 2. Therefore, they can be
employed to express any unknown electric field inside the cylindrical cavity.

The Electric Field Integral Equation for a material sample which is placed in the
cylindrical cavity can be obtained in the same way as that used in Chapter 2. We can also

obtain the same EFIFE as that expressed in the eq. (2.102) as

2 s Jmuo"e . A LD = P N BN
E(r)|1- el jORo[T(FO)E(Fo) - GeolFo, P)dvy = E (F) (4.92)
0 v

However, due to the different eigenvalues for the vector wave functions A—;nml and ﬁnml
in the cylindrical cavity as given in egs. (4.22) and (4.34), the dyadic Green’s function

(_;eo(;o, ;) need to be modified from eq. (2.101) as

[ 2Mn(Fo)Mn(r) | kan(’o)Nn(')] 4.93)

aeo(;oa;)-‘-z qn 2, 2 2 n 2.2 2
ko(q, — ko) ko(k, — ko)

n

for the cylindrical cavity and we need to give the detailed expression for thc dyadic
Green'’s function (4.93) in the cylindrical cavity in order to solve the EFIE (4.92) using the

Galerkin’s method.

4.3 Dyadic Green’s Function in the Cylindrical Cavity

In this section the detailed expression of the dyadic Green’s function (4.93) in a
cylindrical cavity will be derived. As in Chapter 3, the dyadic Green’s function (4.93) is a

triple summation over the cavity eigenfunctions and we can reduce it to a double
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summation format based on the relations (3.27) and (3.28) in Chapter 3. Substituting the

expressions for the vector wave functions A—inml and K/nml (4.39) and (4.40) and the

normalization constants (4.66) and (4.83) into eq. (4.93), we can obtain the expressions for

the different components of the dyadic Green’s function G, (¥, r) as follows:

1. ## component of the dyadic Green’s function G,,(rq, F) in the triple summation

format is given by:

oo ©o oo 2 2 '
N 1 €onfol 1 n 4
GuanrPo?) = Z 2 z i [ n 2 ——.J,.( o r)
0 = =1l= kO(pnm

2 '
pn ' 1 1 ln 2 , pnm p
J"( am r0)+ 2 2. 2,.2 (-g) J,,( - r)Jn( Z’"ro)] (4.99)
kn—koa JII (pnm)

(I . (In
cos(n(p)cos(n(po)sm(?z)sm(?zo)

Equation (4.22) gives the eigenvalue qi of the vector wave function ﬁ nmi, and the first

summation term in eq. (4.94) is then split into two parts as:

o o oo 2 2 '
1 Z 2 280;?01 zq—n . 1 )Ll__'Jn(an r)
= n

2 2, ,2 '
-n )‘]n(pnm rr qa

Jn(p'"" ro)cos(n(p)cos(nq)o)sin(l%tz)81n(lltzo)

(%)2 (E)Z ) (4.95)
Confot|l\ @ ) A€ 1 n’

2 2 2 2 2 2, ,2 \
k0n=0m=ll=l qn‘ko qn_ko (pnm —-n )'In(pnm)rro

)cos(n(p)cos(n(po) sin (%rz) sin(%tzo)
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Using the relation (3.27) in Chapter 3, the first term in the summation (4.95) can be

summed over the index [/ as

(=)
- eOl a . l1t . l1t _ pnm' 2 f](z, ZO)
- T2 sm(cz)sm(?zo)— ( 2 ) K sin(k, 0) (4.96)
=1 49,~ %K 8 8
where
"\ 2
kg = kf,-(p ';"’) (4.97)
f1(z,29) = sin(k,(c-2z,))sin(k,z,) (4.98)

and it is convenient to define the following (they will be used later for the same definition):
z,=the greater of z or gz, (4.99)

z,=the lesser of z or z, (4.100)
Also in [21] it gives

(l—n\Z
i Ll CJ sin(luz)sin(mz )
c 2 .2 o e <0
=1 day-ky € ¢ (4.101)

? & Eoi ki f1(z 20)
T c q:-ko c c sm(kglc)

Thus, based on eq. (4.101), we can obtain the closed form evaluation of the summation

over index [ for the second term of the summation (4.95).
The other terms in the summation (4.94) can be summed over the index [ in the

same way. So after some algebraic manipulations, we obtain the double summation format
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of the ## component of the dyadic Green’s function G, (7, ) as

s o w € 1 2 (Pam ), (Pam
FCUEES D> [ S ))

kOn-Om-l (pnm -n )‘] (pnm
2
kO 1 P Pnm ngfZ(z’ ZO)
——f (2, 25) + Jn'( ""'r).ln'( r ) : ]
kglsm(kglc)f‘( o) a1 %p, )"\ @ a %) sin(kg,c)
(4.102)
cos(n@)cos(ng,) Z 2 [ ! "21 (p"’"'r)
Y -
kOn-Om-l (pnm nz)‘li(pnm')rr "\ a
Jn(p"'" r0)+ 5 21 J"'(p""'r).ln'(p"'"ro)]cos(n(p)cos(n(po)ﬁ(z—Zo)
a a J"l (pnm) a a
where
p
kpp = ko—( ;"’) (4.103)
and
f2(z,29) = sin(kgy(c - z,))sin(k,,2,) (4.104)

2. @ component of the dyadic Green’s function G,,(rq, r) in the triple summation

format is given by:

pnm
oo oo ©co 2 L
s 1 €0no1 ( a ) (P
o) = 55 3 T T = (%)

2 2.2, .
k0n= 1 ko(pnm -n )J"(pnm
2
' l—n) 2 (4.105)
J, (P,;m ,0)+ 1 e i j"(p;"',.) Jn(%roj sin(ng)
k” kopnm ',n (pnm)

sin(n )sin(lfz)sin(lltz)
Po c c O
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Applying the same procedure used for 7# component to the summation (4.105), we obtain

the double summation format for the $@ component as

(=)

2 2, ,2 ,
1 T (pnm -n )‘]n(pnm

a

G opplFo 7) = %2:‘,2:: )J_,,'(p """r)ln'(p ';”'ro) (4.106)

k2 ’ 2 k s
Ofl(z Zo) + 1 :—r.’ (pnm )Jn(_’ﬂ 0);‘3{&(2_20) sin(n(p)
)

kgysin(kgic) ”12‘,".2(p’ml a a sin(kg,c)

sin(n )— 2 2 (p’;'") J'(p"""r)J ,(an'r)
o n A Ve S a0

On- Om=1 (pnm -

1 n’ (P 4
+ oy '2( );7]"( Zmr)Jn( ;er) sin(n@)sin(n@y)d(z - z,)
pnm n pnm

3. #® component of the dyadic Green’s function G,,(r, F) in the triple summation

format is given by:

an'n
-] oo oo 2 - L]
G A 1 £0n€01 qn ar J Pnm 4107)
eorg(ro: 1) = _2222 N 2 ") @
0 = = =

q _ko(p:m —-n )Jn(pnm

(%) Per

Pum 1 c) a
Jn'( rO)"’ 2 2 2,2
a kn‘koan Jn' (pnm)r

. (ln ) (ITI: )
(4 c

The double summation format of the 7@ component is then expressed as

E,Jn'(p;mr)ln(%'—"ro) cos(n@)sin(ngg)
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.
ann

A a 1 €on ar pnm' pnm'
Ceorelio ) = -5 3 3 2| —2 L r)J,;( ro)  (@.108)
k0n=0m= T (pnm' —-n )"n(pnm‘) a a

ann

2 -
kof 1(2.20) + ar g '(p"’"r)l (p,,,,, )kngz(z, 20 cos(n@)
pnm'g

1 i 0 ar pnm' . pnm'
sin(n@,) + —2 Z z — 33 Jn( r)J,,( ’0)
0 =0m=1 T (pnm' -n )Jn(pnm.) a a

ann
a r J ' pnm J pnm . 6
+ 2 n\"q ryJ, a ro COS("‘P)SIU("(PO) (Z—Zo)
pnm "n (pnm)

4. Similarly, the $# component of the dyadic Green’s function G,,(r, F) in the double

summation format is given by:

pnm _’L
ESEN 1 - - eOn a ry pnm' pnm.
G (ro,r) = — — J ( r)J ( "o) (4.109)
Y kSE‘oEl " P =0 () N @ /N @
2 ann ¢ f ( )
k 2,2 r 2,2
Of.l( o) — azr J (p""'r)l,,'(p"'"ro) /22
kgysin(kgc) o (D) N G a sin(k ¢)
Pnm i
1 - - eOn ary .pnm' pnm'
k0n=0m=l T (pnm n )Jn(pnm) a a

5. 22 component of the dyadic Green’s function G,,(Fo, ) in the triple summation format
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is given by

Pnm)2
( a ) ) Jn(anr)

2
_kO Jn (pnm a

1 ISR -F
eozz(ro’ r) _5 2 Z Z 0n*0!
0 =0m=1I=

(4.110)

J,,(EZ—"'ro)cos (n@)cos (n(po)cos(%tz)cos(l—gzo)

Applying the relation (3.28) in Chapter 3 to the summation (4.110), we obtain the double

summation format for the ZZ component as

p 2
0o o nm
A 1 €on (a) Pnm Pnm
Gop(To: 1) = - 2 2 —= J ( r)J ( ’0)
konmomo1 * @, (Py) L@ /N8 @.111)
gZ(z’ ZO)
cos(n®)cos(n@y) —————
(n@) ( (po)kgzsm(kgzc)
where
8,(2,2y) = Cos(kgz(c—zb))cos(kgzzs) 4.112)

AA

6. 7z component of the dyadic Green’s function G,,(r, F) in the triple summation

format is given by

R e
Georz(ro’ r) == 2

2
kon = om (4.113)

In [21], it gives
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0
_ Oy o1 In In (4.114)
N kz—kzcos(cz)cos(czo)
1=0 n 0
1
51n(kg2c)f32(z’ %)
where
sin(k_,(c—z))cos(k ,2q) 2>,
falzzg)=4 . 7 $ 4.115)
—sm(kgzz)cos(kgz(c -Zp)) <7,

The double summation format for the 72 component is then given by

s 1 € a (P
Geor(T0: 1) = = 2 2 %’ > ; )Jn( nmr)

k0n=0m— 1 a Jn (pnm (4.116)
Jn( p ro)cos(mp)cos(n(po)m

7. Similarly, the 27 component of the dyadic Green’s function G,,(r, ) in the double

summation format is given by

Prm

A 1 - - e()n a Pnm
G,oplror) = = Z Z —5 Jn( r)
k0n=0m=l T a Jn' (pnm) a

4.117)
fgl(z, Zo)

sin(kgzc)

Jn'(p:l"'ro)cos(n(p)cos(n(po)

where
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—cos(k_,(c—2))sin(k_,2z,) | z2>7
fe1(z29) = { 2 8270 ° (4.118)
cos(kgzz)sm(kgz(c—zo)) z2<2

A

8. @2 component of the dyadic Green’s function Eeo(;o’ r) in the triple summation

format is given by

. .o nim
a 3 1 €., € p
GeO(pz(rOa r) = "—2 Z Z z on ! 2 =< Jn( Zmr)
kon =om=11= J ( m) (4.119)
Pn . . (In I
Jn( " )sm(n(p)cos(n(po)sm(—c—z)cos(?zo)
The double summation format is then expressed as
n
2 e0 r Pnm
Guopio ) = -5 3, 3 ety (Pom,)
Kon=0m=1 n (Pnm) (4.120)
Pnm . fgz(zy Z())
Jn( - )sm(n(p)cos(n%)Sin(kgzc)

9. Similarly, the 2§ component of the dyadic Green’s function G,,(q, r) in the double

summation format is given by

1 oo oo 0 ro p
SRS 3 DU Sy
0 = =

a’J . (P a (4.121)
Pnm . fg](Z, Zo)
Jn( p )cos(n(P)sm(n%)-—-—sin(kgzc)

After we derived the detailed expression for the dyadic Green’s function, we can
numerically solve the EFIE (4.92) in the material sample by the same Galerkin’s method

as that used in Chapter 3. That is, the material sample is divided into a large number of
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volume cells and the pulse functions are employed as both the basis and testing functions.
After some similar manipulations as those used in Chapter 3, we can transfer the EFIE
(4.92) to the similar matrices eqs. (3.17) to (3.20) which can be solved to obtain the

unknown electric field. Detailed discussions on the numerical techniques will be presented

in Section 4 4.

4.4 Numerical Examples

In Chapter 3, we have studied the convergence property of the dyadic Green’s
function in both the triple and double summation formats. Based on those results, in the
following numerical examples we will adopt the same volume cell dimensions in the
Galerkin’s method and the same upper limit N=200 in the double summation format of the
dyadic Green’s function as those used in Chapter 3 to assure the convergence of the

numerical results.

In the application of the Galerkin’s method, there will be integrations with respect

to both variables 7 and F' as shown in eqs. (3.7) and (3.10). In the cylindrical cavity, we
deal with the Bessel functions or their derivatives and their numerical integrations in the
formation of the matrix (3.20). These numerical integrations consume much more
computing time than the case of the rectangular cavity. Thus, in general it is very difficult
to find the numerical solution of a EFIE even for a material sample with small dimensions
with our present computer resources. However, for some special cases we can simplify the
expression of the dyadic Green’s function and numerically solve the EFIE in the
cylindrical cavity.

We assume that the material sample, which is azimuthally symmetrical, is placed
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in the center of a cylindrical cavity. If the initial cavity mode is not a function of variable
¢, for example TM)),;,, then due to the symmetry property [2],[39] the scattered electric
field induced by this material sample and the total electric field will not be functions of
variable @. Therefore, in the numerical computation for this special case, the eigenmodes

with n=0 will be sufficient to represent the unknown electric field and the expression for
the dyadic Green’s function in the double summation format over indices n and m will be

further reduced to one summation format over index m.

In the following numerical computations, we assume the dimensions of the

cylindrical cavity to be: the radius a=0.0762m and the height ¢=0.15458m. The initial
cavity mode is TMj;, and the resonant frequency of this mode is f = 2.45 GHz for

these dimensions of the cavity. This resonant frequency of the cavity will shift slightly
downward when a material sample is placed inside as discussed in Chapter 3. A material

sample with the diameter d) and the height h is placed in the center of the cylindrical
cavity as shown in Figure 4.8. The relative permittivity of the matcrial sample is assumed

to be €, = 2.5 and it is lossless. Using the Galerkin’s method, the material sample is

uniformly divided into M = n,x [, volume cells, wnere n; and [; are the numbers of

the volume cells in the r and z directions, respectively. Scveral numerical calculations are
carried out for the material sample with selected shapes and dimensions.

1. Cubic material sample

A cubic material sample, having the diameter equal to the height, is placed in the

center of the cylindrical cavity. The dimensions of the material sample are chosen as:

diameter d=0.004m and height hy=0.004m with n;, = 1 and [, = 2. The cavity
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Figure 4.8 Dimensions of the cylindrical cavity and the material sample. The center
of the material sample is consistent with the center of the cavity.
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resonant frequency is assumed to shift down 5% after the material sample is placed inside

the cavity. Since the wavelength A of the initial mode is 0.12245m which is much larger

than the dimensions of the sample (hy/A = 0.0327), the induced electric field inside the

material sample can be estimated by the electrostatic field induced inside of a dielectric

3
2+¢

r

sphere as E = E'.

Observing the electric field structures for the initial mode TM),, in Figure 4.2 and
Figure 4.3, we find that there is only E, component of the electric field which is significant

near the center of the cavity. Due to the small dimensions of the material sample, the

numerical results are uniform in each volume cell and the E, component of the induced
electric field dominates the other two components. The ratio of the E, component of the

induced electric field to that of the initial electric field in the material sample is found to be

0.65 in each volume cell while the electrostatic estimation of E v/ E';, = gives the

3
2+¢€

,
approximation of 0.667. Thus, numerical results and the theoretical estimation are in

satisfactory agreement.

For the stability check of the numerical results, we increase the dimensions of the
cubic material sample to: d;=0.008m and hy=0.008m with n; = 2 and I; = 4. The
cavity resonant frequency is assumed to shift dov.vn 5% after the placement of the material
sample. The numerical results show that the E, component of the induced electric field
still dominates and the ratios of the E, component of the induced electric field to that of

the initial electric field becomes 0.61, 0.64, 0.64 and 0.70 at the different volume cells in

the material sample. These values are still close to the electrostatic estimation of 0.667.
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For a larger cubic material sample with the dimensions: dyp=0.02m and hy=0.02m
with n; = 5 and /; = 10, the numerical results are shown in Figure 4.9, where the

cavity resonant frequency shift is assumed to be 8% after the placement of the material
sample. Since the z component of the induced electric field dominates only the ratios of
the z components of the induced electric field to that of the initial electric field in the
material sample are plotted, in Figure 4.9, as a function of r, for the lower half of the
sample. (Numerical results are symmetrical with respect to the center of the sample.) We
observe that due to the inc.rease in the material sample dimensions, the ratios in Figure 4.9
are now reduced to about 0.5/ to 0.62. This indicates that the induced electric field in a
larger sample will be smaller than the value given by the electrostatic estimation.
2. Thin chip case

A material sample with the shape of a thin chip, having its height much smaller
than its diameter, is placed in the center of the cylindrical cavity. The dimensions of the
material sample are hy=0.002m and d;=0.04m with n; = 10 and [, = 1. The cavity
resonant frequency shift is assumed to be /% after the material sample is placed inside.
Because only the z component of the initial electric field is significant near the center of

the cylindrical cavity and the material sample has a thin chip geometry, theoretically the

induced electric field in the material sample can be estimated by the boundary condition of
E = (1/ sr)Ei = O.4Ei. The numerical results are shown in Figure 4.10.

In Figure 4.10, the ratios of the z component of the induced electric field to that of
the initial electric field are plotted as a function of the radial distance, r, of the material

sample. We observe that the numerical results are consistent with the theoretic estimation
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Figure 4.9  Ratio of E/E,’ varies in the r direction at the different locations of z.
The dimensions of the material sample are dy=0.02m and h;=0.02m with the relative
permittivity of €, = 2.5. The dimensions of the cylindrical cavity are shown in
Figure 4.8.
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Figure 4.10 Ratio of E/E, varies in the r direction. The dimensions of the material
sample are dy=0.04m and h;=0.002m with the relative permittivity of €, = 2.5.The
dimensions of the cylindrical cavity are shown in Figure 4.8.
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as expected.
3. Thin pipe case
A material sample with the dimensions: hy=0.044m and the diameter dy=0.008m is

placed in the center of the cylindrical cavity. The material sample is divide with n; = 2

and /; = 22, the number of the volume cells being 44, and the cavity resonant frequency

shift is assumed to be /% after the material sample is placed inside. For this case, the
induced electric field inside the material sample should be approximately equal to the
initial electric field because the initial electric field is tangential to the major part of the
material sample surface, and the continuity of the tangential component of the electric
field at the matcriél sample surface requires this estimation. The numerical results are
shown in Figure 4.11.

In Figure 4.11, we observe that the maximum ratio of the z-component of the
induced electric field to that of the initial electric field is around 0.8 which is not very close
to 1. This is because when we derived the EFIE (4.92), we have extracted a delta function
out the integration sign and if we expect the induced electric field to be equal to the initial
electric field, another delta function is needed to be generated under the integration sign in
EFIE (4.92) to cancel the former delta function. Thus, we will need much more
summation terms for this special case to meet this requirement just like the narrow strip
case in Chapter 3. If we increase the upper limit in the double summation, the numerical
results become closer to the theoretic estimation but at the expense of increasing the
computation time.

For this thin pipe shaped material sample, if we employ the scheme of separating

the material sample into boundary layer and interior cells as that used in Chapter 3,
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Figure 4.11  Ratio of E/E,’ varies in the z direction at the different locations of r.
The dimensions of the material sample are dy=0.008m and hy=0.044m with the

relative permittivity of €, = 2.5. The dimensions of the cylindrical cavity are shown
in Figure 4.8.
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the results are improved and at the same time the computation time is reduced. In this

computation, the dimensions of the material sample are: dy=0.008m and hy=0.044m with
n; = 1 and [; = 20. The dimensions of the volume cells in the boundary layer region

are: br=0.002m and bz=0.002m in the r and z directions, respectively and the dimensions
of each volume cell in the interior region are: ir=0.002m and iz=0.002m in the r and z
directions, respectively. The number of the total volume cells in the boundary layer and
interior regions is: 2 X 22 = 44 which is the same as the previous computation. The cavity
resonant frequency shift is assumed to be /% after the material sample is placed inside.
The upper limits in the mode summation are chosen as 200 for the boundary layer region
and /50 for the interior region. The numerical results are shown in Figure 4.12.

Since we are only interested in the induced electric field inside the material
sample, only the solutions for the volume cells in the interior region are plotted in Figure
4.12. Because the numerical results show that the z components of the induced electric
field dominate in the material sample, only the ratios for the z components of the induced
electric fields to that of the initial electric field in the interior region are plotted as a
function of z in Figure 4.12. We observe that the ratios are now very close to /.

In the scheme of the separating the material sample into the boundary layer and
interior regions for the thin pipe shaped material sample, we keep the number of the
volume cells the same as the previous computation. However, the upper limit of the mode
summation in the interior region is reduced to /50. Hence, the computation time is saved
and at the same time better results are obtained.

4. Lossy material sample

In this numerical example, we will assume that the material sample has a complex
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Figure 4.12  Ratio of E/E, varies in the z direction with the scheme of separating

the material sample into the boundary layer and interior regions. The dimensions of
the material sample are d;=0.008m and h,=0.044m with the relative permittivity of

g, = 2.5. The dimensions of the cylindrical cavity are shown in Figure 4.8.
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permittivity of €, = €' — je"; where €' is the real permittivity (electrical polarizability) of

the material sample, the magnitude of which reflects its ability to store electric energy; €"
represents the loss factor of the material sample, and its magnitude determines its ability to

dissipate electric energy into thermal energy [63]. In the computation, we assume
€ =25 and €' = 0.5 with the dimensions of the material sample as: diameter

d, = 0.008m and height hy, = 0.008m . The numerical results are shown in Figure 4.13.

In Figure 4.13, we plot the ratios of the z components of the induced electric field
to that of the initial electric field inside the material sample. Due to the complex
permittivity of the material sample, the induced electric field has both the real and
imaginary parts. In Figure 4.13 the upper graphs are for the real parts and the lower ones
are for the imaginary parts of the ratios. Comparing the real parts of the ratios in Figure
4.13 (about 0.62 to 0.68) with that for a lossless cubic material sample of the same
ciimensions (about 0.61 to 0.70), we find that the real parts of the ratios remain relatively
unchanged if the material sample has a complex permittivity. Also the numerical results
indicate that if the imaginary part of the relative permittivity is increased, the real parts of
the ratios will decrease whi'c the imaginary parts of the ratios will increase. The numerical
results shown in Figure 4.14 can demonstrate this finding where we assume the complex
relative permittivity of the material sample as € = 2.5 and €" = 1.5 with the same

sample dimensions as that in Figure 4.13.

In Figure 4.13, where the relative permittivity is € = 2.5 and €" = 0.5, the real
parts of the ratios are about 0.62 to 0.68, while in Figure 4.14, where the relative

permittivity is € = 2.5 and €" = 1.5, the real parts of the ratios are about 0.54 to 0.63.
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Figure 4.13  Ratios of Ez/Ezi varies in the r direction. Each curve represents this
ratio as a function of r for different locations of z in a material sample when the
material sample has a complex permittivity of ¢, = 2.5 — j0.5. The dimensions of the
material sample are: diameter d, = 0.008m and height #;, = 0.008m. The upper
graphs are for the real parts of the ratios and the lower ones are for the imaginary

parts of the ratios.
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However, the imaginary parts of the ratios in Figure 4.13 are about 0.072 to 0.085 while
that in Figure 4.14 are about 0.2 to 0.23. Thus, a larger imaginary permittivity causes more
power loss or more microwave power dissipated in the material sample.
5. Inhomogeneous material sample

In this numerical example, we assume that the material sample is composed of two

kinds of dielectric materials as shown in Figure 4.15. The relative permittivities of the two
regions of the material sample are denoted as €, and €, and their radii and heights
denoted as r;, r, and h;, hy, respectively.

If the dimensions of the material sample are electrically small compared with the
operating wavelength, we can estimate the ratios of the z components of the induced
electric fields inside the material sample to that of the initial electric field by the

electrostatic approximations, which are given in Appendix D (D.45) and (D.47), as

-3

E -9¢,¢

il 0 271 . (4.122)
E, (g, +2£2)(ez+2£0)r] +2(g —ez)(ez—eo)r;

-3 -3
€, —€,)r —(&, +2¢,)r
522 3¢, (&) —&))r (&, +28y)r,

0 (g, + 2552)(t»:2+-2eo)r;3 +2(g, —t-:z)(ez—t—:o)r;3

(4.123)

In this numerical example, the dimensions of this inhomogeneous material sample

are chosen as: r; = 0.004m, h; = 0.008m, r, = 0.008m and h, = 0.016m, and with

the relative permittivities assumed to be €, = 2.5 and €, = 4.0. The egs. (4.122) and

(4.123) give the ratios of the z components of the induced electric fields in the

inhomogeneous material sample to that of the initial electric field as R, = 0.5818 in

174



Figure 4.15  An inhomogeneous material sample is placed in the center of a
cylindrical cavity.
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region 1 and R, = 0.5091 in region 2.

The numerical results are shown in Figure 4.16, where we observe that the
numerical results are smaller than the electrostatic estimations. This is because the

dimensions of the inhomogeneous material sample are not very small compared with the

operating wavelength.

If we change the dimensions of the material sample to r, = 0.002m,

h, = 0.004m, r, = 0.004m and h, = 0.008m, and remain the relative permittivities of

the material sample unchanged, the numerical results are shown in Figure 4.17. In this

figure, we observe that the numerical results become more consistent with the electrostatic

estimations.
6. Irregularly shaped material sample

In this numerical example, we assume the material sample to have a irregular
shape but keep the material sample azimuthally symmetrical in order to save the

computation time. The shape of the material sample is shown in Figure 4.18. We assume

the dimensions of the material sample as: A, = 0.004m, h, = 0.008m, d; = 0.016m

and d, = 0.008m, and with the relative permittivity of €, = 2.5. The numerical results
are shown in Figure 4.19.

After we have quantified the induced electric field inside the material sample, the
212
dissipated power is determined [66] as P = meos"lEI , where €" is the imaginary part of

the permittivity and E is the induced electric field inside the material sample. This

dissipated power becomes a volumetrically-distributed heat source. The temperature
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Ratios of Ez/Ezi in an inhomogeneous material sample with the
dimensions of r; = 0.004m, h; = 0.008m, r, = 0.008m and h, = 0.016m, where

the relative permittivity in the shadowed region is €, = 2.5 and that in the non-

shadowed region is €, = 4.0. The electrostatic estimations of the ratios are
R, = 0.5818 and R, = 0.5091.
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Figure 4.17 Ratios of Ez/Ezi in the inhomogeneous material sample with the
dimensions of r; = 0.002m, h; = 0.004m, r, = 0.004m and h, = 0.008m, where

the relative permittivity in the shadowed region is ¢, = 2.5 and that in the non-
shadowed region is €, = 4.0. The electrostatic estimations of the ratios are

R, = 0.5818 and R, = 0.5091
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Figure 4.18  Geometry of an irregularly shaped material sample placed in the
cylindrical cavity. The material sample is azimuthally symmetrical and the center of
the material sample is consistent with the center of the cylindrical cavity.
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Figure 4.19  Ratios of EZ/EZ‘ in an irregularly shaped material sample.
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distribution in a material sample due to the microwave radiation is thus governed by the
interaction and absorption of the radiation by the material and the accompanying transport
processes due to the dissipation of electric energy into heat [3]. Detailed discussion about

the heating processing of the material sample are available in [66] to [67].
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CHAPTER S

QUANTIFICATION OF THE INDUCED ELEC-
TRIC FIELD IN A MATERIAL SAMPLE
PLACED INSIDE AN EM CAVITY USING
MODE MATCHING METHOD

In the previous chapters, the induced electric field inside a material sample placed
in an energized cavity has been determined based on the numerical solution of an electric
field integral equation (EFIE) or a magnetic field integral equation (MFIE). These integral
equations were obtained after the dyadic Green'’s function in an EM cavity was derived. It
has been demonstrated that the integral equation method is a very powerful technique
because it can handle the material samples of arbitrary shapes and heterogeneities. The

only disadvantage of this method is its slow numerical convergence and a large

BN N

computation time. The reason is that we used the vector wave functions, Lnmi, Mnmi and

-
Nnmi, to represent the induced electric field inside the material sample and it requires the

summation a very large number of these vector wave functions to reach a convergent

numerical result.

When the material sample is of a simple cylindrical geometry and homogeneous,

the mode-matching method can be employed to determine the induced electric field inside
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the material sample placed within an energized cylindrical cavity. This method will be
investigated in this chapter.

Applying the mode-matching method to a homogeneous material sample with a
simple cylindrical geometry placed within a cylindrical cavity, we can divide the cavity
into three waveguide regions as shown in Figure 5.1, where regions I and III are the
normal waveguide regions filled with a homogeneous material or empty and region II is
the inhomogeneously filled waveguide region containing the material sample. The
waveguide eigenmodes in region II are derived first while those in regions I and III are
well known. The EM fields in each region are expressed in terms of its eigenmodes, and
the tangential component of the electric and magnetic fields are matched at the junctions
of the three regions. The equations resulted from the matching of the boundary conditions
are then numerically solved.

The outline of this chapter is as follows: In Section 5.1 the eigenmodes in the
inhomogeneously filled waveguide containing the material sample are derived and those in
the normal waveguide regions are introduced. The mode-matching method is applied to
these three regions in Section 5.2. And the numerical examples are shown and the results

are compared with that of Chapter 4 in Section 5.3.

5.1 Eigenmodes in Different Waveguide Regions

5.1.1 Eigenmodes in a Homogeneously Filled Waveguide
The eigenmodes in an empty or homogeneously filled waveguide have two
categories [10): TM and TE mode. They are complete and orthogonal. The expressions for

TM eigenmodes are: (We only show the propagation mode in the plus z direction for
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Figure 5.1 Geometry of the material sample placed in a cylindrical cavity driven
by an excitation probe.
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5.1.2 Eigenmodes in an Inhomogeneously Filled Waveguide

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

The geometry of an inhomogeneously filled waveguide is shown in Figure 5.2

which consists of two sub-regions having the same central axis. The central sub-region is a

homogeneous material sample and the outer sub-region is empty space. It is noted that if

the material sample has an irregular shape or is heterogeneous, the eigenmodes in such an

inhomogeneously filled waveguides will be difficult, if not impossible, to be determined.

Therefore, we only deal with the homogeneous material samples with simple cylindrical

geometries which are placed in the cavity in this chapter.
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Figure 5.2 G y of the inh 2 ly filled id

The normal eig des in this inh ly filled ide are not, in

general, either TE or TM modes, but a combination of an TE and an TM mode, a hybrid
eigenmode. An exception is the case of n=0 modes which will be shown later.
In Figure 5.2, the dielectric parameters of sub-region 1 are: relative permittivity

€,, permeability p, and conductivity &, and its radius is b. The parameters of sub-region

2 are: relative permittivity €, , permeability [, and conductivity ¢, with radius a. Based

on the relations between the longitudinal and the tr cf of the

P

electromagnetic fields given in [10], we obtain the electromagnetic eigenmodes in these
two sub-regions when n # 0 as follows:

In sub-region 1, the electromagnetic eigenmodes can be expressed as
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-r
E:l = Anmkil-’n(kclr)cosnee nm?

~[m?
H,, = B,,k:\J (k. r)sinn@e” ™

N n ' -r""':

Eny = [-j0B,, 2 ki) ~ApnT k], (keir) |cosnte
. , . e

Eel = [j(l)ll]Bnka]J,, (kclr) + Anmrnmgjn(kclr):lsmnee
' . n . -rnmz

Hrl = [_Bnmrnmkcl‘,n (kclr)_-lmsclAnm;Jn(kclr)]smnee

n : ' -rnmz
Hel = [—Bnmrnm;‘]n(kclr)—jweclAnmkclJn (kclr)]cosnee

In sub-region 2, the electromagnetic eigenmodes can be expressed as

E., = [Condu(koar) + Dy ¥ (K r) Ik cosn0e ™™

nm- n

nm- n

Hay = Enpdo(kea?) + Fo¥ ok o) ysinne™

Er2 = {—jwng[Enm‘ln(kCZr) + anYn(kCZr)]_rnmkf2

nm- n

(Comd(kyr)+ D, Y '(kczr)]}cosnee-r”z

nm~- n

Eg, = {ijZkCZ[Enmjrt'(kCZr)+F Y '(kc2r)]+r""";l

[Cnm‘ln(kar) + Dnm Yn(kc2r)]}5innee_rm:
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5.17)

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)

(5.25)

(5.26)



Hr2 = {_rnkaZ[EnmJn‘(kCZr) + anYn'(kczr)]—jmeczg (527)

(C,,J,(k,r)+D,, Yn(kczr)]}sinnee—r"'z

Hg, = {-rmf’r-[E,,mJ,,(kczr) + F oYk or)1-j0E ok (5.28)

(C, T (kor)+ Dann'(kCzr)]}cosnee_r""'z

where

mzulec, + I‘ﬁm (5.29)
K, = @' pgE,+ T2, (5.30)

de . = i \ =12
an EC‘ - EO 8‘+‘-j—“)—€(-) ,l— y oo

Applying the boundary conditions to these eigenmodes, we can determine the

unknown coefficients A_ . B

wm? Conm Ppmy Enm @and F . in egs. (5.17) to (5.28). The

nm’

boundary conditions are as follows:

() Eo(r=a)=0

C,mJnka)+D

nm-n

¥ (k,a) = 0 (5.31)

(2) Egy,(r=a)=0

F"mZ[C,,mJn(kcza)+D Y, (k.,a)]+ (5.32)

nm= n

jm“de[Enm‘]n'(kaa) + anYn'(kCZa)] =0
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Based on eq. (5.31), eq. (5.32) can be rewritten as

E,J '(koa)+F,.Y, (k,a) = 0

(3) Eq(r=b" ) = Egy(r=b" )

jmuanmkcljn’(kclb)+Anml“nm'—;]n(kclb) = jou,k ,[E, J '(k.b)

nm-n

+ anYn'(kCZb)] + anz[cnm‘,n(kCZb) + Dann(kCZb)]

@) E, (r=b")=E,(r=b" )

Anmkil']n(kclb) = [Cnm‘]n(kdb) + Dann(kczb)]kcz'2

(5) Hgy(r= b~ ) = Hgy(r=b" )

n . '
_Bnmrnml;‘]n(kclb)_-’weclAnmkcl‘]n (kclb) = - rnm%[Enm‘,n(kdb)
+ an Yn(kCZb)] - jmecZkCZ[CnmJn'(kdb) + Dnm Yn'(kCZb)]

6) H,(r=b" ) = Hy(r=b" )

2 2
B, k2\J (k. b) = [E,J, (kob)+F, Y, (k. b)Ik2,

nm-n nm=-n

(5.33)

(5.34)

(5.35)

(5.36)

(5.37)

Combining eqs. (5.31) and (5.35), we can express C,,, and D, intermsof A, as:

2
7 (kb)Y (k
5 n(kc10)Y (K pa)

C - _ k(‘Z A
" Yn(kCZb)Jn(kc2a) - Yn(kCZa)‘,n(kCZb) b
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2
by (k.,b)J (k
kT n( cl )Jn( c2a)

D,, = L A
i Yn(kCZb)Jn(kda) - Yn(kc2a)"n(kc2b) "

Let’s denote

2

k 1

%J,,(kclb)

kc2

Y, (k. b)] ,(k,a) =Y, (k.pa)],(kb)

Ccpa =
Equations (5.38) and (5.39) can then be rewritten as
Cnm = —CCDA Yn(kcza)Anm

Dnm = CCDA‘]n(kCZG)Anm

Using egs. (5.33) and (5.37), we can express E,, and F,, intermsof B,  as:

Enm = _CEFBYn'(kda)Bnm
an = CEFB‘In'(kCZa)Bnm

where Crrp is denoted as

2

k 1

—J (k1 b)

kc2

Yn(kfzb)J"'(kCZa) - Y"'(kcza).’"(kczb)

Cerp =

Substituting egs. (5.41) to (5.44) into egs. (5.34) and (5.36), respectively, we have
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(5.40)

(5.41)

(5.42)

(5.43)

(5.44)

(5.45)



jow,B, k. J, (k, b)+Aannngn(kclb) = j@W,k ,[Crpgl, (k,,a) (5.46)

2
k2,
ZA,, T (k..b)

nmp““nm 2
c2

Yn'(kCZb)_CEFB Yn'(kCZa)‘,n'(kCZb) ]Bnm +I

2
k
BunDampdulke1D)=j0E A, ki (k1 B) = T 7 Bum = J (k1 B)

nmb nm_ 2
c2

- jwecde(_CCDA Yn(kcza)Jn'(kCZb) + CCDAJn(kCZa)Yn'(kc2b))Anm

(5.47)

Equations (5.46) and (5.47) can be rearranged as
2

kC
c2

+ Jn.(kc2a) Yn'(kCZb) - p’lkcl‘]n‘(kclb) }Bnm

2

k
Bnm nmb n(k )[ —Cl) = jm{sclkcl"n'(kclb) (5'49)
c2

- ec2kc2CCDA[Jn(kc‘.’a) Yn'(kc2b) - Yn(kCZa)Jr;(kab)] }Anm

Equations (5.48) and (5.49) can then be rewritten in a matrix form as

M M |A, - 0 (5.50)
M2l M22 Bnm 0

where

k2
1

M, =M, =-T "’"b J (k. b)[l—%) (5.51)
c2
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My, = jopk,Crpgl-Y, (kpa)] '(keyb) +J, (k@) Y, (kyb)]

_ ' (5.52)
—jmulkcl‘ln (kclb)
My = jog k2 Copal=Yplkpa)d, (kpb) +J,(k2a) Y, (keyb)]
. o (5.53)
- jmeclkcljn (kclb)
To have non-trivial solutions for A, and B, , it is necessary that
M My-M M, =0 (5.54)

i.e. the determinant of the matrix in eq. (5.50) is zero. Therefore, we obtain the

characteristic equation for the eigenmodes as

2 \\2

kC

[r""'g]"(k“b)[l "—2_1]] = wz{”zkczcsmlYn'(kcza)f,,'(kczb) (5.55)
c2

- Jn'(kCZa) Yn'(kCZb)] + p’lkcl‘ln'(kclb)}{ec2kc2CCDA[Jn(kc2a)Yn|(kc2b)
- Yn(kCZa)‘]n'(kc?.b)]_Eclkcl‘]n'(kclb)}

Substituting egs. (5.40) and (5.45) into eq. (5.55) and using the relations between

k.,, k., and T,, given in eqs. (5.29) and (5.30), we can numerically obtain the
propagation constant I', ~for each eigenmode and then determine the corresponding
eigenvalues k., and k_,. After that, based on eqgs. (5.41) to (5.44) and (5.48) we can

express the other five coefficients in terms of A,,, as
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k2
n
_angjn(kclb)(l - k—z‘]

B,, = L A,, (5.56)
k
jmkcl{p'lkL;CBAJn(kclb)—MZ"n'(kclb)}
C

where
— [Jn'(kc’la)yn‘(kdb) - Yn'(kc2a)‘,n.(kc2b)} (5 57)
BA Y, (kb)) (k,a) =Y, (kpa)],(k,b) '
and
2
J (kb)Y (k. ,a) K2,
Com = T BT (a7 (kaa) T B2 onm (5-58)
n( c2 ) n( CZa) n( c2a) n( c2 )kc2
2
Jn(kclb)‘]n(kCZa) kcl
Dum = ¥ b)Y T (kya) = ¥ (kaa) T (kyb) 2 nm (559)
n( c2 ) n( CZG) n( c2a) n( c2 )kc2
, 2
E, = Inlke D)Xy (kp) ferp (5.60)
Yn(kCZb)Jn (kc2a) - Yn (kc2a)‘]n(kc2b)kz'2
2
J (k..b)J '(k k
F n( cl ) n( cZa) ClB (5.61)

nm = Yn(kczb)‘]n'(kcza) - Yn'(kcza)‘]"(kc2b)l:cz_2- nm

Therefore, we can derive the expressions for all the eigenmodes in the inhomogeneously

filled waveguide if we can find the coefficient A, in region IL

When n=0, the eigenmodes in region II can be either TM or TE modes. For TM

modes, the eigenmodes in sub-region | can be expressed as

—rnm:

E:l = Aomkiljo(k“’)e (5.62)
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-'r(),,,Z

E,; = ~Aonlomke o (keyr)e

The eigenmodes in sub-region 2 can be expressed as

"'r(),,,z

2
EZZ = [COmJO(kCZr)+D0mY0(k02r)]kcze

-T,,
ErZ = _FOkaZ[COm‘IO'(kCZr) + DOmYO'(kCZr)]e o

. ' , -Tom2
Hg, = -jog 1k ,[Co,J o (kyr) + Do, Yo' (kpr)le

Applying boundary conditions to egs. (5.62) to (5.67), we have

COmJO(kCZa) + DOmYO(kCZa) =0

2 2
Agmk1To(ke1b) = [Comlolkeab) + Doy ¥ ok yb) ke,
Agukc1do (ke b) = €2k [ Copmd g (keab) + Doy Yo' (k 2b)]

Combining egs. (5.69) and (5.70), we have the following relation of

’féjo(kczb) N k?zyo(kczb)
Omkz JO(kclb) om~ 3 2 JO(k b)
cl
8c2kc2"0'(kc2b)+ CZkCZYO'(kc2b)
ke Jo (ki) "Ome ik g T (k  b)

or

[ 2dolkeab) €'k, 2b)] [kczyo(kczb) €Yo (kpb)
Om

ko Jo(k b)  €.,Jq (k. b) k. Jok b) €.k b)

(5.63)

(5.64)

(5.65)

(5.66)

(5.67)

(5.68)

(5.69)

(5.70)

(5.71)

Combining egs. (5.68) and (5.72), we obtain the following characteristic equation for the
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TM modes as

ka YO(kCZb) €c2 YO'(kc2b)
JO”‘fz“[ TokoB) £, Ty (K, b 5)
CZJO(kc"b) €c2‘]0 (kCZb)
~Yolkepa )[ ToksD) £, Tg (ki Bl =

and the unknown coefficients can be expressed in terms of C,, as

_ —Jo(kcza)
Om YO(kc2a) Om

-C Lz[Jo(k 2b)  Jolk2a) Yo(k D)
Aom Om 2 1 Jo(k.b) YO(kCZa)JO(kclb)]

For TE modes. the eigenmodes in sub-region 1 can be expressed as

2 —Tom2
Hzl = BOmkcl‘IO(kclr)e ’
] —rﬂmz
H, = -By, Lok Jo (ke r)e
. -r()mz
Eg, = jow,B, k. Jy (k. r)e

The eigenmodes in sub-region 2 can be expressed as

= [Egmdo(keor) + Fy, Yo(kczr)]kéz Font
—r()m:

H,., = Ty, k[EgJo(kar) +Fo,Yo(kor)le

Egy = jOMk o [Eg,Jo (kor) + Fo, Yo' (kor)le Fond

Applying boundary conditions to egs. (5.76) to (5.81), we have

196

(5.73)

(5.74)

(5.75)

(5.76)

5.77)

(5.78)

(5.79)

(5.80)

(5.81)



EyJo(kqa) + Fy, Yo (ka) = O (5.82)
W1By k1o (ki) = Wok ol Eqpml o (ke2b) + Fop Y g'(kepb)] (5.83)

2
BOrnkcz‘l‘IO(kclb) = [Egpdo(kb) + Fo,, Y (k) 1k, (5.84)

Using egs. (5.83) and (5.84) we have the following relation of

, \ 2 2
Mok o J g (kcob) . Hoko Yo' (ko) kcaJo(k ,b) koy Yok ob)

, _ , = By 202 o Ze2 02 (5 gs)
O ke Jo(keyb) Ok Jo' (kg r) Oki,-’o(knb) omkiljo(kclb)(

or

Fﬁ]d(kczb) _I_‘_c_gjo(kczb)] I:Ez Yy (k.,b) _@Yo(kczb)] — 0 (586)
Oml )y (ko b) ke Jolke b) Oml ) Jo' (ko b)  keyJo(keyb) '

Combining eqs. (5.82) and (5.86), we obtain the characteristic equation for the TE modes

as

Y (k.,b) k.,Y,k b
JO'(kCZa)[&—_Or(-_C-Z__)' _ ﬁM} (5.87)
By Jo (ke &) ko Jolkeb)
: HoJg (kab)  koaJo(k ob)
=Y, (kcqa)[— ; -7 ] =
gk b) ke ok b)
and the unknown coefficients can be expressed in terms of E, as
Jo'(k.,a)
korTotkqb) Ty (keya) Yok b)
BOm = Om_2_|: - ) - ] (589)
k2 Wolke D) Yo(kepa) Jolkeyb)
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5.1.3 Normalization of Homogeneously filled Waveguide Eigenmodes

The normalization of the homogeneously filled waveguide eigenmodes can be

realized by the relation of

jz,,l eqdS = 1 (5.90)
CS

where e, (r,0) is the transverse component of the eigenmode in region I or III and the

integration region is over the cross section of the waveguide.

For TE mode, using egs. (5.12) and (5.13) the normalization leads to

azin ,

2 n Pnm 2 P,,m' ' an' ; 2 =
—(0HA,,,) {{{[;Jn(Tr)cosne] +[ p Jn( . r)smne] }rdrde =1 (5.91)

when n # 0. Equation (4.65) gives us the integration of

Pam

2
I [%Ji(r) +Jn'2(r)r:|dr = %(pnm'z—nz)li(pnm') (5.92)
0

After integrating over the variable 6 and changing the integration variable r, eq. (5.91) can

be rewritten as

pr,m' 2
~opa,,)’n [ [0 + () Jdr = 1 (599
0
Using eq. (5.92), we have
Apm = J’Jz l (5.94)

n \ ‘ 2 2
mp"’n(pnm) Pym —N
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When n = 0, the normalization is given by eq. (5.16) as

a )
~(@pAg,) 2n [P_Zgjo.({’_oﬂ,)] rdr = (5.95)

Equations (4.70) and (4.72) give us the integration of

, 2

j”"" Jo (ryrdr = Pom ) (5.96)
0 2

Therefore, the normalization constant is given by

Ay, = j«/i ! , . (5.97)
ORI o(Pom ) Pom
Combining egs. (5.94) and (5.97), we have
€

A= j [ ! (5.98)

T . 2 2
ORJ, (Ppm )«/p,,,,, -n

where g, is defined in eq. (2.63).
For TM mode, using egs. (5.2) and (5.3) the normalization leads to

aln

AunTo)’J j{[”""' (222 )cosn)]

2

2
[EJ,,(" ;’"r)sinne] }rdrde =1 (599

when n # 0. Equation (4.80) gives us the integration of

Pom 5
J[ s ROGENN (r)r] = p"2'" Jn'z(pnm) (5.100)
0

After integrating over the variable 8, changing the integration variable r and using eq.

199



(5.100), we obtain the normalization constant A, as

Apn = ./Sﬂ 1 . (5.101)
n anpnm‘ln (pnm)

5.2 Electromagnetic Fields in Three Regions

Up to now we have obtained the eigenmodes in each region shown in Figure 5.1.
The electromagnetic fields in each region can then be expressed as the infinite summations

of the eigenmodes in the corresponding region.
Because we assume that there is an excitation probe in region I, the electric field in

region I for 0 <z <z, can be expressed as
E\(}) = _[7(70) e G(¥g, 1)dV, (5.102)
V
where the dyadic Green’s function is given by [10]

—€ni (r()’e())

(1- Rl,,Rz,,)(l +Ry,)Z,( Ent (r) + RypEyy () (5.103)

Ny
G(Fo.7) = X 3
n=1
for 20. znl(rO,OO) is the transverse component of the eigenmode in region I which is
P
normalized by eq. (5.90). Ex1(r) is the eigenmode propagating in *z direction as
>4+ A A R -,z
Eni (r) = [e,1(r0) +Ze,, (r,0)]e (5.104)

Eni(7) = [en1(r0) - Ze., (r®)]e (5.105)

R,, and R, are the reflection coefficients of the nth mode due to the short-circuit
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termination at z=-z, and the discontinuity at z=z; in region I, respectively. Therefore,

-2r
R,, = € " and R,, is unknown. The wave impedances for the TE and TM modes are

expressed as

Z,p = fl‘_"“ (5.106)
n
rﬂ

ZaTM = T (5.107)

where I, is the wave propagation constant of the nth mode and is given by

2 2 2 . : .
I', = k,,—o W€ with k., as the eigenvalue of the eigenmode, u, and €, are the

dielectric parameters of the medium in region I. The upper summation limit N, is set to

assure a convergent result. The current density on the excitation probe is assumed to have

a sinusoidal distribution as

s sinB(l-a+r)
J(r) = rlm—-————sinBl 5(0)d(z) (5.108)

where B is the wave number in the medium of region I, / is the length of the excitation

probe.

Rewriting the dvadic Green’s function (5.103) as

N,
6(;09;) = 2

n=1

—en1(r0,8,) O
—"—23—0(1+R1,,)z,, Eni (7)

(5.109)

e"](ro' 0) 24 ) Ay
¥ Z 2(1 -R,,R,,) ( + R ,)Ry,Z Ry, Eni (r)+Eni(r)]

and substituting eq. (5.109) into eq. (5.102), we can obtain the electric field in region I as:
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N, N,
a a r,, = a —rn - > o
E(F) = Y Ve 4 Em () + 2 Ane “[Ry, Ent (F) + Ent(P)]

n=1 n=1
where
1 + R -r,,Z a a
Vp = - 2 lnzne lj[enl("()qeo) : J(ro)]dVO
is known and
l + Rln I 4 a a
= - R n .

(5.110)

(5.111)

(5.112)

is unknown due to the unknown reflection coefficient R,,. The magnetic field in region I

can also be expressed as
N, N,

= A r,z,, = s -r,z = a - 3
HH = T Ve ™ Hu+ Y Ae ™R, Hn () +Hu(?)

n=1 n=1

where
-4 N a Tz
Hni (r) = [hn1(r,0) +2h_, (rB)]e ~

i;;l(;‘) = [—71n1(r,6)+2h:n|(r,6)]er":

Inregion II, z; £z < z,, the electromagnetic fields can be represented as

= | N -I,5=2-

Ex7) = Y [Bne ™ Ema(F)+Cpe " Em(P)]
m=|

= ., = A -, ;22— s

Ha(r) = ) [B,e ™ H;,z(r)+Cme "Hma(r)]

m=1
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at At L <
where Em2(r) and Hm2(r) denote the electromagnetic eigenmodes propagating in *z

direction derived in Section 5.1.2.

In region IIl, z, < z < z5, the electromagnetic fields can be represented as

N’

= a . Mz, 2+ a 2= A

Exr) = Y, D,e "'l Eni (F) +R,E, ()] (5.118)
n=1
N, -

= A W2, ot - A

Hy(#) = Y D,e "1 Hai () +RH,,(7)] (5.119)
n=1

-2r
where R, = —e " is the reflection coefficient at the termination of z=2z3.

After the total electromagnetic fields in the three regions are found, we can express

the transverse components of the electromagnetic fields in each region as:

N,
> N - (z-z2 N
Eu(® = 3 Ve T e (ron (5.120)
N n=1

1

-T(z, + 22, HAZ2-20)

T Ay (e ETETD LTINS (1 0)
n=1
-— Nl r - kS
Hu(®) = 3 Ve "7 har, 00 (5.121)
N, n=1

T (2 +22,+2) F(z-z). >
Y A-e T e Vhni(r, 6)

n=1

= A F.(z-2) s
E2(r) e

= Y B, e, Jema(r, ©) (5.122)
m=1
FTTE -I(z-2) Fa(z=2,).>
Hau(r) = Z (B, -C,e Jhm2(r, ) (5.123)
m=1
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N,
PR . -T.(z-2,) F(z+2,-22).a
E3(r) = 2 D,[e e "len(r, )

n=1

N,
= 3 _r,, -23 r,, Z :2—22 ) >
Hu(3) = ¥ Dyl 7w e 5 0, 0)

n=1

(5.124)

(5.125)

The boundary conditions at the junctions of the different regions are the continuity

of the transverse components of the electric and magnetic fields. Therefore, at z = z;, we

have

N, N,
T Vem(rn,0)+ Y A -e T 4 1)e,(r,8)
n=1 n=1

M
= Y (B, +Cpe " T 0e,0(r,0)

=1
N, N,
Y Va0 + ¥ A-e S hni(r, 0)
n=1 n=1

M RN
= 2 [Bm_ Cmer"'(:l_zz)]hmz(r, 0)

m=1

At z = z,, the boundary conditions can be expressed as

M N,

“Tm(z2- a n(22-23) >
S (Bue " 4 Colima(r, 0= 3 D1 T8, 0)
m=1

n=1

M N,
-Ta(z-2) 2 2T, (20— 22) >
T (Be " o Colhma(r,8)= ¥ D(1 4 " i, 0)

m=1 n=1

(5.126)

(5.127)

(5.128)

(5.129)

Since the electric eigenmodes in the homogeneously filled waveguide are orthonormal,

that is, they satisfy
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s a 1 lf n=m
. das = 5.130
Jenl €ml {0 if nem ( )

I

a EN if n=m
[ bt hmids = {2z, (5.131)
s 0 if n#m
Thus, egs. (5.126) to (5.129) can be changed to
id T,(z )
2 [Bm+cme s ]Iznl '2m2ds
A = — Vn 4m=1 CS (5.132)
n= 22Tz, + 29) =2[,(2, +29) '
l1-e l-e
2 M
v, Z, Tolzi-2), (> 2
A" = —Zl',.(:l+z‘,)— =2l (2, + 29) 2 [B"'_Cme 2 ]J'h"l + hm2d$§ (5'133)
l +e 1 +e m=1 CS

M
—r,,,(: -2 ) a a
Y [Bye " U +Cpl [ ent - emadS
CS

_m=1
b, = - 821",,(22-:3) (5.134)

M
-, (z3-2
2,3 (Bye ")

m

Dy ==l o — J‘h,,. - hm2dS (5.135)
l+e "7 7 Cs

Equations (5.132) and (5.133) are valid for n = 1,2, ...... , N, and eqs. (5.134) and

(5.135)are valid forn = 1,2, ...... , N,.Let’s denote

€mn = I 2nl : szdS (5136)
CS

P = | ot - hm2dS (5.137)
CS
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then based on egs. (5.132) and (5.133), we have

M 2 Fa(2-2y)
2 €mn + Znhmn B + € €mn
=2 (2 + 20) =2 (i +2) | ™ =2T (2, + 2)
m=1\L1—-e l+e e

1-
.y ) (5.138)
Z2e "Ny 2V,
- 1+ e-zr,(:. +z0) | m |~ l_e-ar"(z. +20)
forn=1,2,...... , N, . Based on egs. (5.134) and (5.135), we have
M 2
€mn Znhmn ‘rm(zz‘zn)B
z 2T,(2;,-23) B 2l (z3-23) ¢ m
m=1\L1—e l1+e
) (5.139)
€mn Znhmn _
+ [1 _ezrn(lz-ZJ) + 1+ ezrn(iz"za):‘cmj =0
forn =1,2,..... ,» N,. Equations (5.138) and (5.139) are expressed in a matrix form as
[BMllleM[B]MXl + [CMI]N,xM[C]Mxl = [VS]lel (5.140)
[BMZ]NzxM[B]Mx  + [CMZ],\m(M[C]MXI = [0],\,2)(l (5.141)

where the elements in each matrix defined in eqgs. (5.140) and (5.141) are expressed as

2
— em" Znhmn
BM],,m - =20, (2, + 2y) + =2l (2, + 2y) (5142)
1-e l+e
Fa(zi-22) 2 T -2)
- € €mn Zne hmn
CMlnm - 2T, (2, + 2p) - —2T,(2, +20) (5.143)
1-e l+e
2V
VS, = ——r— (5.144)

—4rn(:l + zi))
l-e
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€mn Zrzlhmn -T.(z,-2)
BMan = 2r,,(Zz‘~.3)— T2 4 (5.145)
l1-e l1+e
2
_ €mn - Znhmn
CMan = TIRENEN| + TSEREN : (5.146)
1-e l+e

for n=1,2,...... ,N, and m = 1,2, ...... ,M. The unknown coefficients can be

expressed as

[Blyxi = [By, By, ... Byl (5.147)

[Clyx; = [Cy, Cy, ...... Cuyl (5.148)
If we choose N, = N, = M, the matrices [BM,], [CM,], [BM,], and [CM,] in egs.

(5.140) and (5.141) are square matrix and the solutions for B,, and C,, can be expressed

as
(B, = [[BM,]-[CM,1(CM,]" [BM,]] " [VS] (5.149)

[Clyx; = [[CM,1-[BM,1[BM,]" [CM,]]" [VS] (5.150)

Therefore, we can determine the electromagnetic fields in region II after the unknown

coefficients B, and C,, are obtained from egs. (5.149) and (5.150). Substituting the
solutions for B,, and C,, into egs. (5.132) or (5.133) and (5.134) or (5.135), the solutions

for the unknown coefficients A, and D, can be found and then the electromagnetic fields
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in region I and III can be determined.

5.3 Numerical Example

In this section, the numerical results based on the mode-matching method will be
demonstrated. As stated before, we restrict the material samples which are placed in a
cylindrical waveguide to be of simple cylindrical shapes and homogeneous. The numerical
results obtained in this chapter will be compared with the corresponding results shown in
Section 4.4 in Chapter 4.

In the numerical computation, the eigenmodes in region II are derived first after
the dimensions and the dielectric parameters of the material sample are selected. The
integrations of product of the eigenmodes in regions I and II (given in eqgs. (5.136) and
(5.137)) are then calculated. After that the unknown coefficients needed in egs. (5.110),
(5.113) and (5.116) to (5.119) are obtained from egs. (5.149), (5.150), (5.132) and (5.134).
Equations (5.133) and (5.135) can be employed to check the validity of the numerical
solutions for these coefficients. After the total electromagnetic fields are obtained and their
numerical results can be checked further by the boundary conditions at the perfectly

conducting walls and at the junctions of the different regions.
Examining the matrix eqgs. (5.140) and (5.141), we find that when VS, = O for
some indices n, the solutions for B,, and C,, become zero also. Thus, we can select the

eigenmodes based on both the values of VS, and the convergence property of the

summation for the electromagnetic fields in each region.
In the following numerical computations, we assume the dimensions of the

cylindrical waveguide shown in Figure 5.1 to be: the radius a=0.0762m and the length
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¢=0.15458m. A cylindrical material sample with the dimensions of radius r, and length k)
is placed in the center of the waveguide. The position of the excitation probe is at ¢/4 from

the bottom of the waveguide, that is, z, = - and z; = iﬁ The values of b, z; and z,

4

S0

h
are determined by the dimensions of the material sample tobe b = ry, z; = %-— EO -2

hy

and z, = -+ 5 ~ 20 The length of the excitation probe is chosen as the half of the radius

NIo

of the waveguide, a/2, and the operating frequency is 2.45 GHz. The relative permittivity
of the material sample is assumed tobe €, = 2.5 and it is lossless.

Several numerical calculations are carried out for the material sample with selected
shapes and dimensions.
1. Cubic material sample

A cubic material sample, having the diameter equal to the length, is placed in the
center of the cylindrical waveguide. The dimensions of the material sample are chosen as:
radius ryp=0.004m and length h,=0.008m.

In the numerical computation, the number of modes to be summed is set to be 62
based on the non zero values of the right hand side of the eq. (5.140). However, observing

the numerical results for the solutions of the unknown coefficients A, and D, in regions I

and III, we find that there only exist several waveguide modes with significant magnitudes

which are shown in Table 5.1, and the TM,); mode appears as the dominant mode. This

result is expected because of the choice of the dimensions of the cylindrical waveguide

and the operating frequency of the excitation probe. The computational results show that
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Table 5.1 Significant modes in the mode-matching method when the dimensions of
the cavity are: a=0.0762m, c=0.15458m and that of the material sample are:
rp=0.004m and h)=0.008m. The operating frequency is 2.45 GHz, and the excitation

probe is located at c¢/4 from the bottom.

Mode A, (real, imaginary) D, (real, imaginary)
™, -79.1583, 11.9465 78.8164, -14.0405
™, 0, -0.5485 0, 0.3906
T™™; 0, 0.8847 0, -0.8946
™y, 0,-1.1825 0, 1.1827

TM s 0, 1.4291 0, -1.4276

TM g 0,-1.6162 0,1.6144
™y, 0, 1.7506 0,-1.7483
™, -0.1651, 0.1809 0.1798, 0.1671
TE,, -3.8618, 2.3057 4.4303, 0.7882
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the electromagnetic fields in each region do not vary significantly with respect to the

variable © and the z component of the induced electric field dominates the other two
components of the electric field near the center of the waveguide.

The validity of the numerical results are checked by the continuity of the tangential
components of the electromagnetic field at the junctions of the different regions and the
boundary conditions at the cavity walls.

Figure 5.3 demonstrates the ratio of the z component of the induced electric field in
the material sample to that of the electric field near the material sample in the empty

region of the waveguide as a function of z at r=0.0004m. The ratios are around 0.69 to

0.72 which are close to 0.667 given by the electrostatic estimation of E / E; =3

2+¢,’

and they are consistent with the results found in Chapter 4.
For a larger cubic material sample with the dimensions: rp=0.0Im and h,=0.02m,
the number of the modes is set to be 76. The most significant values for the unknown

coefficients A, and D, in regions I and III still belong to the TM,; waveguide mode.

Therefore, the z component of the induced electric field dominates near the center of the
waveguide, and Figure 5.4 shows the ratio of the z component of the induced electric field
in the material sample to that of the electric field in the empty waveguide near the material
sample varying as a function of r at the different locations of z. Due to the symmetric
property of the numerical solutions, we only plot the ratios in the lower half of the material
sample in Figure 5.4. Comparing the results of Figure 5.4 with that of Figure 4.9 in
Chapter 4, we can see a good agreement between these two sets of numerical results

generated by two different methods.
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Figure 5.3  Ratio of E/E; varies in the z direction at r=0.0004m. The dimensions of
the material sample are ry=0.004m and hy=0.008m with the relative permittivity of

€, = 2.5. The dimensions of the cylindrical waveguide are: a=0.0762m and
¢=0.15458m. The operating frequency is 2.45 GHz.
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Figure 5.4 Ratio of Ez/Ezi varies in the r direction at the different locations of z.
The dimensions of the material sample are ry=0.0Im and ky=0.02m with the relative

permittivity of ¢, = 2.5. The dimensions of the cylindrical waveguide are:
a=0.0762m and c=0.15458m The operating frequency is 2.45 GHz.
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2. Thin chip case

A material sample with the shape of a thin chip, having its length much smaller
than its diameter, is placed in the center of the cylindrical waveguide. The dimensions of
the material sample are hy=0.001m and ry=0.02m and the number of the modes which are
involved in the computation is 55. The numerical results are shown in Figure 5.5.

Since the z component of the induced electric field dominates near the center of the
waveguide, the ratios of the z component of the induced electric field to that of the electric
field near the material sample in the empty region of the waveguide are plotted as a
function of the radial distance, r, in Figure 5.5. We observe that the numerical results are

close to the theoretical estimation given by the boundary condition of
E = (1/¢,)E' = 04E'.
3. Thin pipe case

A material sample with the dimensions: the length hy=0.044m and the radius
rg=0.004m, is placed in the center of the cylindrical waveguide. The number of the modes
involved in the computation is /29 and the numerical result is shown in Figure 5.6.

Examining the numerical results for the solutions of the unknown coefficients A,

and D, in regions I and III, we find that those with the most significant values belong to

the TM,; waveguide mode, that is, the TM,, waveguide mode dominates in the empty
region of the waveguide. For this case, the induced electric field inside the material sample
should be approximately equal to the electric field in the empty region near the material
sample because the electric field in the empty region near the material sample or near the

center of the waveguide is dominated by the z component and it is tangential to the major
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Figure 5.5 Ratio of E/E, varies in the r direction. The dimensions of the material
sample are ry=0.02m and h,=0.00Im with the relative permittivity of €, = 2.5.The

dimensions of the cylindrical waveguide are: a=0.0762m and c=0.15458m. The
operating frequency is 2.45 GHz.
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Figure 5.6 Ratio of E/E, varies in the z direction at r=0.0004m. The dimensions of
the material sample are r;=0.004m and h)=0.044m with the relative permittivity of

g€, = 2.5. The dimensions of the cylindrical waveguide are: a=0.0762m and
¢=0.15458m.The operating frequency is 2.45 GHz.
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part of the material sample surface, also the continuity of the tangential component of the
electric field at the material sample surface requires this estimation.

In Figure 5.6, we plot the ratios of the z component of the induced electric field to
that of the electric field near the material sample in the empty region of the waveguide
varying as a function of z at r=0.0004m. Most of the ratios are very close to 1 which is in
agreement with the theoretical estimation.

Considering the numerical accuracy and the computation time, we find that in the
mode-matching method the number of the modes to be summed can be reduced a great
deal when compared with the integral equation method. The most important reason for
this finding is that the eigenmodes used in the mode-matching method satisfy the
boundary conditions on the material sample and the cavity wall. (On the other hand, the

vector wave functions used in the integral equation method only satisfy the boundary

conditions at the cavity wall.)

The other reason for this finding is that in the mode-matching method, the angular

dependence of the eigenmodes, ?z,,,, 2,,,2, ;,,1 and Zmz, on O is sinn® or cosnB, and
many of the integrations of the scalar products of these eigenmodes given in egs. (5.136)
and (5.137) become zero due to the orthogonality of the sinusoidal functions. Therefore,
the matrices [BM ], [CM,], [BMZ] , and [CM2] given in egs. (5.140) and (5.141) are
sparse and the computation time can be saved greatly. In spite of this advantage for the

mode-matching method, it is not a very general technique because it can not be used to

solve the problem involving material samples with arbitrary shapes or heterogeneous

compositions.

Table 5.2 lists the number of eigenmodes used in the mode-matching method for
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Table 5.2 Number of eigenmodes used in the mode-matching method for material
samples of different geometries

Geometry of material sample Number of modes
8-mm cubic material sample 62
2-cm cubic material sample 76

Thin chip case 55

Thin pipe case 129
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the material samples of different geometries. From this table, we find that this number is
the largest for the thin pipe case. This confirms our finding that much more summation
terms are needed for the narrow strip case in Chapter 3 and the thin pipe case in Chapter 4
to secure accurate results. To overcome this shortcoming, we suggest the scheme of

separating the material sample into the boundary layer and interior regions to save

computation time while obtain better results.
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CHAPTER 6

CONCLUSIONS

In this dissertation, both the integral equation method and the mode-matching
method are investigated to quantify the induced electric field in a material sample placed
in an EM cavity. It has been demonstrated that the integral equation method is more
powerful than the mode-matching method because the integral equation method can be
employed to solve the problem involving the material sample with any arbitrary shape or
heterogeneity while the mode-matching method can only handle the case of the
homogeneous material sample with a simple geometry. The only disadvantage of the
integral equation method is its slow numerical convergence and a large computation time
while the mode-matching method is more computational effectiveness. To our best

knowledge, this is the first attenipt to solve this type of problem using the integral equation

method.

B
In the integral equation method, a complete set of vector wave functions Lami,

Mnmi and Nami which include both solenoidal and irrotational functions are employed to
expand the unknown electric field in the material sample placed within an energized

cavity. After the electric and magnetic dyadic Green’s functions are obtained both EFIE
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and MFIE are derived and they are shown to be equivalent.

Increasing the convergence rate of the dyadic Green’s function is a main concern
in solving the EFIE in order to obtain the electromagnetic field distribution in the material
sample. To achieve this goal, the infinite triple summations over the cavity eigenmodes are
reduced to the infinite double summations using the relations given in Collin [2]. The
infinite double summation is further divided into a finite double summation and an infinite
single summation using the well-known Poisson summation formula. However, this
division is only possible for the rectangular cavity case while the infinite double
summation is still used for the cylindrical cavity case because it is difficult to apply the
same division technique in the cylindrical cavity case due to mathematical complexity.

As numerical results demonstrated, the electromagnetic fields in the material
sample are strong functions of the geometry and the dielectric parameters of the material
sample. When the initial cavity electric field is tangential to the major part of the material
sample surface, the induced electric field in the material sample may be close to the initial
cavity electric field as required by the boundary conditions. For this case, the convergence
property of the dyadic Green’s function is very poor. To overcome this difficulty, the
scheme of separating the material sample into the boundary layer and the interior regions
are proposed for this special case. Satisfactory numerical results can be produced with this
scheme at a reduced computation time.

In this dissertation, the mode-matching method is also applied to the case of the
homogeneous material sample with a simple geometry and it is found that the mode-

matching method can save a great deal of computation time attributed to the use of the

well-defined eigenmodes and sparse resultant matrices.
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APPENDIX A

COMPUTATION OF DYADIC GREEN’S FUNC-
TION IN CAVITIES BY Y. RAHMAT-SAMII [11]

In [11] Y. Rahmat-Samii first obtained the magnetic dyadic Green’s function, then

he used the relation between electric and magnetic dyadic Green’s functions of

KGe(Fo, 7) = V X Gm(Fo, 7) = 18(F — 7o) (A.1)
to derive the electric dyadic Green’s function. In order to obtain the magnetic dyadic

Green’s function Gpn(rg, F), he introduced another Green's function based on the

following definition:

(V4 k) gm(Fo, 1) = —18(F = Fo) (A2)

and the boundary conditions for this Green’s function are expressed as
Ai-gm(Fo, ) =0 (A.3)

AXV X3 (FoF) = O (A.4)

on the perfectly conducting walls of a cavity. After applying Green’s theorem, he obtained

the magnetic dyadic Green'’s function as

Gn(Fo, 1) = g7, 77) - V" x I8(Fg ~ F")dv" (A.5)
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Therefore, in order to derive the expression for the Green’s function g,,(Fq, 7), we

should first solve eq. (A.2) with the boundary conditions (A.3) and (A.4) or eq. (11) of [3].

Equation (A.2) can be rewritten as

( XX\
gm l
(V25 g = <L 118G - 7o) (A.6)
2z 1
[ 8m

1. The expression for gfnx is derived as follows:
Based on eq. (A.6), the equation for gfnx can be expressed as

(V24kD)g = ~8(F - 7o) (A7)

with the boundary conditions of

XX

g, =0 when x=0,a

ag;‘ﬂ( ag'XnX

% —5; =0 when x=0,a

agxx (A.8)
=" =0 =

PR when y=0,b

agXX

=" =0 when z=0,c

0z

In order to derive the expression for gfnx, we may obtain the eigenmodes H nx(;) which

satisfies the equation,

(V+k)H, (F) = 0 (A.9)
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and also satisfies the same boundary conditions as g, does.
Using the variables separation method and applying the boundary conditions

(A.8), the expression for H, x(?) can be found as

H,,m,x(?) = Anm,sin(nfx)cos("-;—ny)cos(%tz) (A.10)

while the normalization factor is given by

€n..€0,..E
Apmi = ./————O"aZ'Z o (A.11)

and the eigenvalues are expressed as

- (2 )

That is, we have obtained a set of orthonormal eigenmodes H, , () and gf: can be

nmix

represented by the linear combination of these eigenmodes H,,,, ,x(;) as:
8 (F=70) = 3.3 a,iH i (F) (A.13)
n mm
Substituting eq. (A.13) into eq. (A.7), we have
2 2 s A A
(V +k )ZzzanmlHnmlx(r) = —8("—!‘0) (A.14)
n m m
or
2 2 N N
3NN @ik = Ky ) H i (F) = =8(r = Fo) (A.15)

n mm
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Multiplying H p qrx(?') on both sides, integrating over the cavity volume and using the

orthogonality of H pq,x(?), we obtain the expression for the unknown expansion

coefficient a,,,; in eq. (A.13) as

-1 s N -1 .
Gt = 5T j 8(r—ro)H,,, (r)dv = ﬁHnmlx(ro) (A.16)

nmlv nml

Substituting eq. (A.16) into eq. (A.13), we obtain the expression for g'f: as

gm (r_rO) = 222 nmlx(;O)Hnmlx(;)
n.-m Ik nml
€n,€0,,€
= ZZZ > On Om Olsin(ﬂx)sm(ﬂxo) (A.17)
k —k abc a a

cos("—”—':v)cos('-'it )cos(ézz)cos(l—ttz )
b- b 70 c c0
2. The same procedure can be employed to obtain the expressions for g',‘;;v and gf:. They

are expressed as

vy -1 €on€om€or nm nm
m = 222 3 2be cos 7): cos — %o
nm | kK =k

nml

(A.18)
sin(mv)sin(m—nv )cos(lit )cos(ht )
b-) b0 ¢’ c™0
€on€om€ol nm nm
222 5 b cos| —x |cos| —x
mom o1 k -k aoc a a (A 19)

cos(mv)cos(m—nv )sin(lit )sin(lﬁv )
b - b0 ¢’ c0

Comparing egs. (A.17) to (A.19) with eq. (26) in [11], we find that there is a minus
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sign missing in eq. (26) of [11]. Therefore, we can explain the discrepancy of the

expression for G,,(rq, r) which is specified in Section 2.2.5.
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APPENDIX B

THE IDENTITY OF
EZZ[ZMI(?O)ZW(?)+1'\7,,m1(?0)1'\7nm1(?)+A7nmz(?0)ﬁmz(?)] = I8(+-%) IN
nm |

RECTANGUALR CAVITIES

The identity which we need to prove is

ZZZ[znml(;o)anl(;) + I_V\nml(;'o)l—\;nml(;) +A—';nml(;o);;nml(;)] = 78(;" ;0) (Bl)

n m |

In Chapter2, we have derived the expressions for Lnmi , Mnmi and Nami which

are expressed in egs. (2.17), (2.24) and (2.32) as:

A

nml[.mt (rm ) : (mn ) : (In )

¥—cos| —x |sin| —y |sin| —z

kol a a b- c
+ﬁ'm—ﬂcsin('%tx)cos(”it )sin(mz) (B.2)

-
Lamt =

b b
+ 91—’—‘ sin ,'itx)sin(zllt )cos(llczﬂ
“c L a b Y c
- .mTf nt \. (mre \ . (Ir
Mnpmi = B“'"Il:—x—b—COS(7X)Sln(Ty)SIn(?Z)

+ {~rﬂsin('y—t vc)cos(m—Tt )sin(l—y—tz)]
Ta’ a’ b Y c

(B.3)
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muin . (nx mn \ . (Ixn
_Y—_ phdd —_— = B4
Y sm( - x)cos( 5 y)sm(cz) (B.4)
N 2((n1t)2 + (mn)z) sin('mx) sin(mn )cos(ln )]
a b a b y c ¢
where the normalization constants are given by eqgs. (2.60), (2.62) and (2.65) as

’8 €j,,€
Anml — Onal(;t: 0l (B.5)

and

_ _ ’eOnEOmem 1 _ 1
Bnml - Cnml— abc )2 mr\2 - Anml nm\2 m\2 (B.6)
(-5 )+ (%)
a b a b

Substituting eqs. (B.2) to (B.4) into the left hand side (LHS) of eq. (B.1), we can obtain its

nine components as follows:

1. Coefficient for XX component is expressed as

(e ) et
knml a b knml ac
(5) (73
. b N ac
w5+ () Rl(F) +(5))
a b nmi a b (B7)
(2 () ) (2
a a b nml\ " p ac

]
>
I N
3
7/ | S |
tay =
) Q
3 13
-~ )
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Thus, the XX component of the LHS of the eq. (B.1) is given by

ZZZAZ cos('—l—nx)cos(ﬂ:x )sin(@y)sin(’n—Tty )sin(l—nz)sin(litz
s s £ nml a a 0 b b 0 c c 0

= 8(;—;0)

) (B.8)

based on eq. (19) of [11].

2. Coefficients for Xy and yX components are expressed as

GCl6 R REI S O]
P

R N e i o Yo I
-+ prea T e
e

Thus, the XV and ¥x components of the LHS of eq. (B.1) are zero.

3. Coefficients for Xz and ZX components are expressed as

(Anml)znnln (Cnml)z(nn)ln((nn)z (mn)2)
c——— — — — e—— — | — — + —
kymi/ @ ¢ \k,,/\a)c\\a b
("__")2 + ('1’_‘)2 (B.10)
A \nmin a b
= 7<— —— 1 - =0

RRGE

Thus, the XZ and X components of the LHS of eq. (B.1) are zero.

nml

4. Coefficients for 32 and Z§components are expressed as
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(e (Gt )
Komi/ b ¢ \kppy) b c\\a b
2
(ﬂ‘)z . ('ﬁ’.‘) (B.11)
Anml zmnln a b
= k_ —_—1]- =0

REGEGH

Thus, the 2 and 2y components of the left hand side of eq. (B.1) are zero.

nml

5. Coefficient for ¥ component is expressed as

|
>

+ ) +
Knmi ("7)2+(T’t)2 kimz((%n)z‘“(%n)z) (B.12)

|
>

Thus, based on eq. (19) of [11], the ¥ component of the LHS of eq.(B.1) is expressed as

ZZZAZ sin(ﬂx)sin(ﬂtx )cos(my)cos(ﬂy )sin(litz)sin(litz )
[ nml a a 0 . b b 0 c C 0 (B 13)
nm .

= (7~ ro)

6. Coefficient for 22 component is expressed as
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=y (2 + (=) () + (5 )
_ (Awmi) (I 2+((%n)2+(an)2 2 (B.14)
- (k,.,,,,) (c) ('%r)er('"T")z

nml

=A
Thus, the 22 component of the LHS of eq.(B.1) is
ZZZAimlsin(n—nx)sin('—lltxo) sin(m—ny)sin('ﬂtyo)cos(litz)cos(lfzo)
o~ & a a b b c c (B.15)
= 8(r-ro)

Therefore, the identity given by eq. (B.1) has been proved after combining egs. (B.8),

(B.9), (B.10), (B.11), (B.13) and (B.15).



APPENDIX C



APPENDIX C

AN ALTERNATIVE REPRESENTATION OF
THE ELECTRIC DYADIC GREEN’S FUNCTION

In Chapter 2, we have obtained the electric dyadic Green’s function (2.100)as

- a a - A a 78(;—;0)
G.(ro,r) = G,o(ro, 1) -—— (C.1
ko
where the detailed expression for G,,(F, F) is given in Section 2.2.5 as
. €0,E0mE 2
0n*0m*0l m nt
G,o(Fo, ) = 22 Z Y [((T) +( ))cos—xcos—xo
abc(k — k%) a
On-Om 0l=0 0
sin’-ﬂtysmm y smht zsin —z xx+(('it ( ) )sm—nxsm—ltx
b b0 0 a a®
cos'ﬂ-tycosmny sml——7$m z ) +((—n) ( ))sin'ﬂx
b - b0 0¥¥ a a
sm—Ex smm )sm cosmzco L 02l - nnmncosﬂxsnnﬂx
0" b b yo c” a b a a®
sin— ycos — sinitzsinlitz 29— 2T Gin 2T xcos” nx cos 2F €2
b b YoM VT %%
sin——v,Sin —zsin—z,yX main sin nxsm Ty cosm—nysmm’—ty
b ¢ ¢ oY b ¢ a a © b b0

Lodn o mmin . A . nm mn mn In
sm? ICO0Ss— Oyz——l;-—sm—xsm—tosm b yCOS—b—yOCOS—'Z

In_ .. nmin_. nm nm mu_ . mn It . In_ ..
sm—yo@y—7—c-sm—xcos—-—xosm b vsin— 5 yocos—zsm?‘ozx

nnin nx

Ccos —xsin nx smmnvsinmnv sin“t’coslnz i*]
ac a 0 b~ b0 ¢” c 0
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and g, is defined by eq. (2.63).

In Chapter 3, we have demonstrated that this series converges extremely slow. As a
general rule, if one series representation converges very slowly an alternative series
representation usually converges more rapidly.

We know the following relation which is given in [1] as

Z cos(nx) _ 1  mcos((x-m)a)

22 2 2a sin(ma)

n=1 N —a 2a
(Il . (In In In
e SiN ’ZZ sin ?Zo s COS ?z cos —c-zo
If we evaluate the summations of 2 > and 2 >3
=1 k, — ko I=1 k,— ko

O<x<2rm (C.3)

into closed form expressions, then the triple summations in eq. (C.2) can be reduced to

double summations to increase the series convergence.

) (lu ) . (ln )
o SIN ?z sin ?zo
1. Evaluation of 2 :
1= k, =k

. (It \ . (In In Ir -
S‘“(CZ)S‘“(C~0)_ e cos(?(z—zo)) oo cos(?(z+zo))

> (C4)
- K-k < In\* 2 “ InN? 2
B ’ s (FA
where
2 2
K= kf,_(’%‘) _(’lb’_‘) (C.5)

When z > z;, the summations in the right hand side of eq. (C.4) are given by
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% o cos(%t(z—zo)) _ %(E)zi cos(%t(z-zo))

2 2
N By
C T g
T c
L/ en2 | . COS((E(Z—ZO)—K)T—tkg) (C.6)
- 2(7—‘) Cc - Ek

2 c
2(—k ) 2 sin(—k n)
N g T g T g
1 ¢ cos((z-2z5-c)k,)

4—k§_2k_g sin(ckg)

~ m? 2 2\m ~ 2 (c, V
t=1 (?) ke =1 ‘(,‘t"g) (C.7)
1 c cos((z+z0—c)kg)

‘Ii—tt_kg sin(ckg)

. (ln: ) : (111: )
= sin| —z |sin| —z,
c c

Substituting eqgs. (C.6) and (C.7) into eq. (C.4), we evaluate 2 >3 as
k. -k
=1 n 0

. (ln ) . (ln )
w SIN{ —2Z {SINn —2p
Z C C
2 2
=1 kn_kO
1 ¢ cos((z-zg-C)ky) [1 c cos((z+zo—c)kg)]

;,z_zﬁc—g sin(ck,) 4—,C§_Zk_g sin(ck,)

(C.8)
C
4kgsin(c1<g)[°05((Z +29—C)k,) - cos((z -z - €)k,)]

sin(k,(c - 2))sin(k,z()

¢
2kgsm(ckg)

When z <z, the first summation in the right hand side of eq. (C.4) is given by
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i} 1(5)2 R cos((g(z""z)'“)i"g) 9)
2\r c

2
2(-k ) 25k sin(-c-k n)
T g L T,

1 Lcos((zo—z—c)kg)
4k§ 4kg sin(ckg)

. (ITE ) ) (ln )
~ SIN| —z |sin| —z,
C C

and the evaluation of 2 - leads to

2
I=1 kn—kO

) (ln ) . (lu )
> — -
2 2
=1 k= kg
1 c cos((zo—z—c)kg) [ 1 c cos((z+z0-—c)kg)J

ézjﬁ—df—k/g sin(ck,) 475_4_1% sin(ck,)

(C.10)
C

Tk sin(oky) 082+ 20 = kg — cos((zg =z =)k,

sin(k,2)sin(k,{c - z())

¢
2kgsm(ckg)

Combining egs. (C.8) and (C.10), we obtain the closed form expression of

(C.11)

sin(lit )sin(lit )
i ¢’ ¢ Lo ) c sin(k,(c - 2))sin(k,zo) 2>z
= ki—ké 2kgsin(kgc) | sin(k,z)sin(k,(c - zp)) z<z,

If we define
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sin(kg(c—z))sin(kgzo) z>7,

Fmn(2,29) = { (C.12)

sin(kgz)sin(kg(c—zo)) z2<g,
then eq. (C.11) can be rewritten as

. (ln:) . (ln )
sin| —z |sin| —z,
c c c

= - Fmun(25 20) (C.13)
2 2 2 2k, sin(k c) 0

(m ) (m )
e COS 72 )cos 7 20
2. Evaluation of Z

2 2
=1 kn - kO

In In Ir In
o cos(?z)cos(?zo) = cos(?(z-zo)) = cos(?(z+zo))

Z 2 2 =3 2 2 + Z 2 (C.14)
=1 kn_kO 21=l (lit) -k2 =1 (lit) —k2
where k; is given by eq. (C.5). Based on egs. (C.6), (C.7) and (C.9), we have
(ln) (ln )
= COS| —z|cos| —z,
Z c c
2 2
=1 kn —kO
(1] c cos((z—zo—c)kg)
— - :
4k, kg sin(cky) 1 ¢ cos((z+25-c)k,)
= Y2 A sin(ck
L_LCOS((ZO-Z-C)kg) 4kg g sin(c g) (C.15)

~4k§ 4kg sin(ckg)

¢

1 c
— -5 ————cos(k,(c-2z))cos(k z >
) L-;cos(k z)cos(k (c—2z,)) Z<Z
263 2kgsin(ck) e EO Lm0 °

That is,
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(ln) (ln: )
w C€OS| —Zz|COs| —Z,
c c

1 c
2 —_—— — g (Cl6)
2 2 2 mn
o kn-kO Zkg Zkgsm(ckg)
where
cos(k,(c—2z))cos(k,z() 7>7
8mn = (C.17)
cos(kgz)cos(kg(c—zo)) <7,
Therefore,
In In
oo EOHCOS(?Z)COS(?ZOJ c
z = : Em (C.18)
/=0 2(ki_kg) ZkgSln(Ckg) n

After we derived these two closed form expressions (egs. (C.13) and (C.18)) of the series

summation, we can apply them to the electric dyadic Green’s function to obtain an

alternative representation.

In order to derive the alternative expressions for the electric dyadic Green’s
function based on egs. (C.13) and (C.18), we can evaluate the summation over any one of
the three indices n, m, and /. However, there are different numerators for the different

components in eq. (C.2). Therefore, to derive the simplest expression for the dyadic
Green’s function, we may evaluate the summation over index n for xx, $Z, and Zy
components, the summation over index m for 3y, %%, and 2% components and the
summation over index / for ZZ, Xy, and ¥X components using eqgs. (C.13) and (C.18). The

expression for G,, (D.2) can then be rewritten as

237



GeolFo 7) = ‘é{ il glbckgm,si‘:l(akgm,)[((r%—t)z+(IZ‘C ) )g'"‘(x *o)

oOtm=11

mn . mn In_ . In % muin
sm—b—vsm 5 )Osm—zsm-— XX + - Cfm,(x xq) cos-z—

sin 2% sinlnvcoslnz V2 + sinmnycosmnv cosmzsinmz 25’)]
p Y0 S0 Z0¥ b b0 ¢ c0

' 2 Zack lsnn<bkgn,)[((r%t)2+(m) )gn,(y, o)sinx

In
snn—nxosnnl—;—tvsmI—T-t 2099 + '%tlitfn,(y, )0)(sm—nxcos—nxocos—z (C.19)

A nt . nnt . In It ..
sm—zozx + COS—xSin —xosm—zcos—zoxz
C a a C [

" ! 1abk8nm5i"(Ckgnm)[(( a ) +( b ) )gnm(zr zg)sin—-x
n=Ilm=

sin nr smm ysm 37 nnmﬂ:
a © b b y0~

nm_ . nn
f,,,,,(z, Zg)| cos —xsm —Xo

sm—’t cos xy+sm—nxcos—1tx cos sin— mT ‘i)]
b7 "o a 0€0S "y b 707

where the parameters

o = =) +(2))
= () +(2))
b = - () + ()

X, X)) = (C.23)
8mil%: %) {cos(kgm,x)cos(kgm,(a—xo)) x<x
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cos (kg (b= y))cos(k,,¥o) Y>Y
gu(¥, ¥o) = { s 8" (C.24)
cos(k,,,;y)cos(k,, (b —yy)) Y <¥o
cos(k, (c—2z))cos(k, 2z,) >z
8nm(2 20) = { g gnm=0 0 (C.25)
€08 (K gy ) €OS (kg (€ = 20)) <2,
sin(k,,,.(c=2))sin(k,,..20) >
Foml20) = { o 8" 0 (C.26)
sin(k,,,2)sin(k,,,,(c - 25)) <7
sin(k,,.,(a-x))sin(k,,,;xq) x> xq
fmi(x, x0) = o s (C27)
sm(kgm,x)sm(kgm,(a—xo)) x < Xq
sin(k,,,(b-y))sin(k,,;yq) y>Y
Fut>¥0) = { L ’ (C.28)
sin(kg, y)sin(k,,(b - o)) y<Yo

That is, we have obtained the double summation representation instead of the triple sum-

mation representation for the electric dyadic Green’s function.
So far we have not considered the singularity of the closed-form evaluation. Since

there exists kg, sin(ak,, ) in the denominator of the evaluation (for X%, yZ, and 2§

compcaents of G,,(rg, 7)), the singularity occurs when kemi = 0 or akg, = pm,where
p is an integer. Since the three sides of the rectangular cavity (a, b, and c) are not in integer
proportion in order to avoid more degenerated modes, the singularity occurs only when
one of the summation modes is exactly equal to the initial mode, that is

ko = k, (C.29)

for some indices m and /. For this case, we can not use the above closed-form evaluations

to obtain the alternative expressions for the electric dyadic Green’s function. However,
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based on the analysis given in Chapter 3, we know that the initial resonant frequency will
shift slightly after a material sample is placed within the cavity. Therefore, when the

singularity occurs, we can make the estimation of

k2 - kp = —sk; (C.30)

where s is the shift rate of the resonant eigenvalue and the summation over any one of the
three indices can be obtained as follows. For brevity, we only show the derivation for the
XX component of G.o(Fo, r) when there exists singularity.

When we evaluate the ¥X component of G,,(ro, F), we obtain a closed form

expression for the summation over index n of

~ €

2 on__1 cos’itxcos'itx0 (C.31)
a kz k2 a a

n=0 -

n

o

2 ((mm)? | (Im)? : o
and kg = [kg- ((T) + (?) ) At the singularity points of kg , we find that they occur

when

2 2
k2 — kg = ("7") —(@) (C.32)

where n, denotes one of the three indices of the initial mode (we assume that the three

sides a, b, and c of the rectangular cavity are not in integer proportion). The summation in

eq. (C.31) can be written as
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nm nm
- 7 nom 5COs p xcos;xo (C.33)
n=0 _— = =
(2 (%)
There are formulas for summations of [2]
- cosnx 1 Tt cos(x—")a
= —_——-——— 0 2 .34
n=|nZ—a2 2a2 2a sin(ma) D (€39
- cosnx X 7t2 x2 ncos(x—m)a 1
257 3 =-a3 a3 . toa  0<x<am (€35
n=n (n"—a) 2a- 6a” 4a a sin(ta) 2a

Using egs. (C.34) and (C.35), we can obtain the following summation as

> (C.36)
and based on eq. (C.36), we can obtain the following summation of

oo ol cosﬂt(x+t )+cos'ﬂx—x
5 (g Lt
a

(nn)z (nn 2
n=1 —_ n=1 —_
a

cos ™= xcos M x
2 a’ a ©
a

a

(C.37)
2 2
= Zz(x + X, )+§—xb

where x,, is the greater one of x and x;. In general n is not very large because we

assume a lower order mode as the initial mode.

When n, = 0, based on eq. (C.37) the summation (C.31) or (C.33) is given by

cosmttcosnnr
> —XC0S X
Ayt g Il Lldegheion €39
aska n:la (,_11_:)~ ask(') 2a 3
a
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When n # 0, based on eq. (C.37) the summation (C.33) can be expressed as

€on 1 nm nm
T 5 T 2COS—a—ICOSZXO
= )
a a
1 ntw

nx nm 2 nn
= - COS—xcos—xo+ I, = cos—xcos-c—l- X

~ a (,m)Z (non)z a a - a(,m)Z a
n= _ = — n=1 —_
n#n, a a a

] nm nm 21 nopm nom
- C_l 2C057(C05—\’0———ECOSTtCOSTYO
nw
"o (_) skg (C.39)
a
,
n, e 5
2 a nw nw 1( a \*
= z < cos—rcos—.o—- —_
a a\nyn

BRI CEC

2 a 2 1 ] npm nyn
—(x +x5)+5-x,—-| ———= +— |cOs—xcos—x,
a 3 al rnam\2 2 a a
( 0 ) skg
a

where n; is chosen in such a way that when n > n, the following approximation is valid

(-2 2

Equation (C.38) or (C.39) is another alternative representation for the ¥X component of

G,,(ro, r) when there exists singularity. The same procedure can be applied to obtain the

alternative expressions for the other components of the dyadic Green’s function when

there exist singularties.
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APPENDIX D

INHOMOGENEOUS DIELECTRIC SPHERE IN
UNIFORMELY APPLIED STATIC FIELD

In this appendix, the electric field in an inhomogeneous dielectric sphere which
includes two regions of different dielectric materials induced by a uniform static electric

field is determined. The geometry of this inhomogeneous dielectric sphere is shown in

Figure D.1.

We select the polar axis (8 = 0 or z-axis) to be in parallel with Eo. Using the
spherical coordinate system, the induced electric field inside the dielectric sphere will be

independent of ¢ [14]. Therefore,

E = E(r, 0) (.1
inside the dielectric sphere.

In the absence of the sphere, the primary electric field is given by

E' = Ey (D.2)

in rectangular coordinate system. The primary potential is given by

VP = “Ey (D3)

in rectangular coordinates. In spherical coordinates, we have
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FigureD.1 G 'y of an inh dielectric sphere
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Z = rcosO (D.4)

3 = cosO7 - sin0H (D.5)

So the primary electric field and potential can be expressed in the spherical coordinates as
E"(r,0) = Eycos8f - Eysin08 (D.6)

VP(r,8) = —Eyrcos (D.7)

2
This VP (r, 8) also satisfies the Laplace equation V vP(r,8) = 0.

The next step is to find the secondary potentials V*(r, 8) which are maintained by

the equivalent induced charges on the spherical surfaces. The total potentials in region 1

and 2 are expressed as:
V, (r,0) = V(r,0)+ Vi(r,0) (D.8)
V,(r,0) = VP(r,8)+ V5(r,0) (D.9)

All the potentials satisfy the Laplace equation V2V(r, 08) =0.

To determine V’(r, &), we need to employ the variables separation method to

solve a Laplace equation. The solution of this Laplace equation is given by [14]:

Vi(r,8) = Y (G,r"+H,r """ VP (cosB) (D.10)
n=0

where P,(cos6) denotes the Legendre function of order n and degree 0.

The secondary potentials V°(r, 8) in regions | and 2 can be expressed as



vs,(r,e) = 2 Anr"Pn(cose) for 0<r<r,
n=0

Vi(r,8) = Y (B, +C,r " V1P (cos®)  for r<r<r,

n=0

and the secondary potential V*(r, 8) outside the sphere can be expressed as

Vo(r,0) = z Dnr—(“])P"(cosO) for rzr,
n=0

The total potentials in the three regions are then given as:

(DforO0O<r<r,

Vi(r,8) = —Eyrcos6 + Z A,r"P, (cos8)
n=0

Q) forry<r<r,

V,(r,0) = —Eyrcos6 + 2 [Bnr"+C"r_“”l)]Pn(cosG)
n=90

(3)forrz2r,

Vo(r,8) = ~Egrcos@+ 3 D,r™"* P, (cos)
n=0

The unknown coefficients A

conditionson r = r, and r = r, as:
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(D.11)

(D.12)

(D.13)

(D.14)

(D.15)

(D.16)

. B,, C, and D, will be determined by the boundary




v](r]’e) = VZ(r]ve)
V2(r2,6) = VO(rZ,G)
Dlr(rl’e) = D2r(r176)

D?.I‘(rZ’ 6) = DOr(rZ, 6)
Equation (D.17) leads to
Y AP, (cos8) = 3 (B, +Cori" " V1P, (cosO)
n=0 n=0

Since P,(cosB) are a set of orthogonal functions [14], we have

A, = B,+C,r;?"*V
Equation (D.18) leads to
Y (B,r5+C,ry" V1P (cos8) = 3 D,ry" " P, (cosB)
n=0 n=0

and

2n+ 1
D, = B,r, +C

n

Equation (D.19) leads to

e,{— E,cos0 + z nAnr'l'_ lP"(cose)}
n=0

= 82{—E0C059+ 2 [anr'l'_l -(n+ l)Can(“z)]Pn(cosO)

n=0
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(D.17)

(D.18)

(D.19)

(D.20)

(D.21)

(D.22)

(D.23)

(D.24)

(D.25)



or
g [e~(nB Pl (n+1)C r_('”z)) £, nA r"—l]P (
2 n'1 - n'1 I MGk | n cos8)

n=0
= (g,-€|)E,cos0

Equation (D.20) leads to

82{— EycosO + z [anr;_ ' (n+ l)Cnr;(MZ)]Pn(cose)}

n=0

= eo{—Eocose— Y, (n+ l)D"r;(“z)Pn(cosO)}
n=0

or

Y [ey(nB,ry = (n+1)C,r3" " ) +eg(n+ 1D 1" * 1P, (cosB)
n=0

= (g, -¢€()E,cosO
Using eqgs. (D.26) and (D.28), we have

n-1 -(n+2) n-|
€,[nB,r, -(n+1)C,r, ]—-t—:lnAnrl =0

—(n+2)

Eg[anrg-l _(n-l- l)Can ]+€0(n + I)Dnr-z'(n-r.?.)z 0

forn#1 and
-3
) -3
€:(B) -2Cry") +2e4D\ry = (€, - €))E

Substituting eqs. (D.22) and (D.24) into eqgs. (D.29) and (D.30), we have
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(D.27)

(D.28)

(D.29)

(D.30)

(D.31)

(D.32)



1

(e,-€,)nr] " 'B —[en+ey(n+ I PC, =0 (D.33)

[e;n+eg(n+ 1)1r3 "B, ~(g,—g)(n+ D" P2, = 0 (D.34)

For non-trivial solutions for B, and C,, coefficient matrix needs to be zero. That is, the

determinant of the following matrix is zero.

-1 - 2
(e, -€,)nr) —[en+e,(n+ D]

(D.35)

[eon +e5(n+ DIA™ —(g,-gp)(n+ ;" P

However, the matrix in eq. (D.35) is a function of ry, ry, &, €, and €&,, and it is obvious
that the determinant of this matrix can not be zero. Therefore, the unknown coefficients
B, and C, are all equal to zero for n# 1 and the unknown coefficients A, and D, are
also equal to zero based on eqgs. (D.22) and (D.24).

For n = 1, the unknown coefficients A,, B|, C, and D, are to be obtained as
follows:

Substituting egs. (D.22) and (D.24) into eqs.(D.31) and (D.32), we have
(g, -€,))B| + (g, +2£2)rf’cl = (g, -&))E, (D.36)
(€,+2€0)B, - 2(e,—€)r; C; = (&, -€0)E, (D.37)

Then the solutions forA |, B, C, and D, can be expressed as

-3 -3
€, +2€,)r, +2(g,-¢€,5)r €,—-€4)E
B, = [(g, 27Ty (-31 2)ry 1€, - €g) 0_3 (D.38)
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3e,(e, —€,)F
c, o€ —€)E,

= 5 (D.39)
(&) + 28,) (€5 +2€5)r|” +2(€, —€,) (&, — €y,

2, -3 -3
(2e0€y —S€LEH + €€, + 285)r, +2(€,)—€1)(Ey —€5)1H
A, = 0%1 o2 T &1€ ~;) 1 (€, - €p)(g, -i) 2 E, (D.40)
(8, +2€,)(€5 +289)r” +2(€; —8&,)(E5—€y)T,

-33
(€, +28,)(E5—€g)r ry + (€ — €,5) (g + 2€,)

= = = (D.41)
(€1 +28,)(g, +2gp)r;” +2(8; —€,)(g, - €g)r,
Therefore, the potentials in the three regions are given as
~9¢,e,r, E
Vi(r,8) = e — —rcos (D.42)
(&) +28,)(e5+2€0)r|” +2(€; ~€,)(E, - EQ) T,
-3
-3g4(e, +28,)r E
Vy(r,8) = of 1_3 271 Eo _3rc050

3gy(g, - &,)E cos 6

(8, +28,) (€, + 280)r] + 2(€, - €2)(E, — EQ)ry T

+

-3 3
€, +28,)(e,—€4)r, ry+ (€, —€,)(€y+2¢,) E, cosO
Vo(r,8) = - Egreosd+ (&) +285)(€) —€g)ry 1y + (€, - €))(Eg +28y) Ey

——(D.44)

&

-3 3
(8)+28))(6y+ 260077 + 208 ~€) (&) ¥

and the electric field in region 1 is given as

-3
a -9¢ E,r E
Ei 0=2"1 ~0

5 =2 (D.45)
(&) +28,)(g, +2€¢)r,” +2(€, - &,)(E, - €g)r,

The ratio of E,/E, is a constant within region | of this inhomogeneous sphere. The

electric field in region 2 is given as
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-3 -3
a €, —€,)r —(€) +28,)r
Ey = 35050{ 178 _3( Sl as —2 (D.46)
(€, +28,)(e5 +28p)r|” +2(€; —&,)(E; —EQ) Ty
-3
(€ —€5)r
+ 1_3 = — 3cosei~}
(8, +28,)(e, +2€0)r +2(€; —€,)(E, - €)1
The z component of the electric field in region 2 can be expressed as
(8, —€,)r —(&; +2€,)r}°
E,. = 3g, L S AL Eq (D.47)

-3 -3
It is noted that there are other smaller components of the electric field in region 2.

For the special case of r| = r, and €, = g,, i.e. ahomogeneous sphere, based on

eq. (D.42) the potential in this region is given by

-3g4E,
Vi(r,8) = — rcos© (D.48)
1 0

and the electric field is obtained as

EN =3¢e,F
E) 00,
€, +2¢,

(D.49)

This is the result given in [14]. For another special case of r; — 0, which is also a

homogeneous sphere, based on eq. (D.43) the potential in this region is given by

E,
rcos9 (D.50)

Va(r8) = £, +2¢,

and the electric field in this region have the same expression as eq. (D.49).
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