
ESSAYS ON THE QUALITY EDUCATION INVESTMENT ACT AND WEIGHTED
QUANTILE REGRESSION

By

Paul Burkander

A DISSERTATION

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

Economics - Doctor of Philosophy

2014



ABSTRACT

ESSAYS ON THE QUALITY EDUCATION INVESTMENT ACT AND
WEIGHTED QUANTILE REGRESSION

By

Paul Burkander

This dissertation contains three self-contained chapters. The first two are related in

their analysis of California’s Quality Education Investment Act (QEIA), with the former

estimating its effect on student achievement and the latter exploiting an aspect of the law to

estimate district preferences for resource allocation over low-performing schools. The final

chapter considers the distributions of quantile regressors under complex random sampling.

Beginning in the 2007-08 school year, California’s QEIA required schools selected via

lottery to institute reforms including class size reduction, increased average teacher ex-

perience, and extra professional training. The act provided additional per-pupil funding

for schools to meet these requirements. Conditional on known probabilities of selection,

which differed across schools, treatment is uncorrelated with potential outcomes, allowing

for non-parametric identification of the causal effect by inverse probability weighting. In

the first fully-funded year of the program, math scores in 4th grade increased by 0.32 SD

in the population of California school-grade averages, and by the second fully-funded year

5th grade math scores improved by 0.37 SD. By the third fully-funded year of the program,

math scores in 2nd grade were 0.30 SD higher in the distribution of California school-grade

averages, and 0.29 SD higher in 3rd grade. Selected schools did not increase teacher expe-

rience, and had 4.4 to 4.8 fewer students in the first fully-funded year in 4th and 5th grade.

In kindergarten through 3rd grade class sizes were reduced later and less dramatically, by 3

to 4.2 students by the third fully-funded year, due primarily to unselected schools exiting



California’s previous class size reduction program. The timing of class size reductions and

student achievement gains suggests class size was the driving factor.

This novel intervention also required school districts to rank their low-performing schools,

the analysis of which constitutes my second chapter. Districts understood that higher

ranked schools would be more likely to receive significant increases in funding to imple-

ment QEIA reforms. These rankings provide a unique revelation of district preferences for

resource allocation across low-performing schools. Using a discrete-choice model, I esti-

mate the school characteristics that districts ranked highly. I find descriptive evidence that

districts were more likely to rank highly schools with a high percentage of students eligible

for Free and Reduced Price Lunch, and which were repeatedly sanctioned under No Child

Left Behind for failing to make Adequate Yearly Progress. I also find some evidence that

districts ranked highly high schools that applied for an alternative program, in which they

crafted their own reforms.

The final chapter, coauthored with Otávio Bartalotti, extends previous work that devel-

oped the asymptotic properties of quantile regression estimators under Standard Stratified

sampling, to Variable Probability sampling. Formulas for the asymptotic variance and

feasible estimators are provided. Simulation results are provided for both Standard Strat-

ified and Variable Probability sampling. Simulation results confirm econometric theory

by demonstrating that under exogenous stratification unweighted estimates preform well

and are more efficient than weighted estimates. Under endogenous stratification and SS

sampling, no estimate of standard errors performs best across coefficients, quantiles, and

sample sizes. Under endogenous stratification and VP sampling, however, bootstrapped

standard errors consistently perform well.
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Chapter 1

The Causal Effect of School Reform:

Evidence from California’s Quality

Education Investment Act

1.1 Introduction

Current educational policy in the United States is focused on increasing the proportion

of students who meet state-determined proficiency levels on standardized tests. There

is disagreement about how to achieve this, with some arguing for additional educational

inputs, and others for more efficient use of existing inputs. An extensive literature on

educational production functions1 has attempted to resolve this and related questions.

However, despite some random experiments and a plethora of natural experiments, no

clear consensus has emerged on the question of whether marginal changes in educational

resources have any effect on educational outcomes.

California’s Quality Education Investment Act (QEIA) offers a unique opportunity to

identify the effect of increased inputs on outcomes. In the 2007-20082 school year the

1
Summaries of the assumptions and methods employed in the education production function literature

can be found in Hanushek (1979), Todd et al. (2003), and Rice et al. (2008).
2
Henceforth, school years are referred to by the year in which the Spring semester occurs. For example,

the 2007-2008 school year is referred to as 2008.

1



QEIA went into effect, leading to increased funding and obligatory reforms for about 500

selected schools, which were chosen from 1,260 participating schools. Districts were first

required to rank all of their participating schools, and then districts were randomly selected

to have their highest ranked schools funded. Once selected, funded schools were required

to institute several reforms, e.g., they had to reduce average class size, increase average

teacher experience, and provide additional professional training to teachers.

Conditional on districts’ rankings, selection of schools was random, though schools dif-

fered in their probability of selection. The selection process, and therefore the probabilities

of selection, are known, and the average treatment effect of QEIA can therefore be non-

parametrically identified using inverse probability weighting (IPW). A drawback of QEIA

is that the effects of the individual reforms cannot be separately identified. However, bun-

dled reforms are worth studying in their own right: pressure to improve outcomes often

leads to concurrent policy changes so QEIA is reflective of how reforms are actually carried

out; it may also be the case that interactive effects cause bundled reforms to be more or

less effective than the sum of their constituent parts.

Moreover, as I find, QEIA caused a reduction in class size of about 4 students per

class by the third fully-funded year of the program, but had no discernible effect on the

other main policy lever that I observe, teacher experience. Reportedly, the vast majority

of elementary schools eligible to participate in QEIA were already required to meet many

of its requirements, with the exception of reduced class size, increased teacher experience,

and increased professional training. Also, continued participation in QEIA was contingent

on schools meeting achievement growth targets; the evidence therefore suggests that the

causal effect of QEIA on standardized test scores occurred through some mix of class size

2



reduction, professional training, and increased pressure to raise test scores.

Indeed, QEIA did cause a statistically significant increase in student achievement, as

measured by both California’s Average Performance Index (API), and by grade-level results

on California’s primary standardized test. The API is a weighted school-level average across

all tested subjects, grades, and test types. With respect to the population of all elementary

schools, the average treatment effect of QEIA on the API by the third fully-funded year

of the program was an increase of 0.33 standard deviations, with larger gains for Hispanic

and low-SES students. With respect to the population of grade-level averages across all

California schools, by the third fully-funded year of the program standardized math scores

increased 0.28 standard deviations in 2nd grade, and by 0.44 standard deviations in 5th

grade. QEIA caused more modest gains in English language arts, of 0.19 and 0.22 standard

deviations in 2nd and 5th grade, respectively.

In what follows, section 1.2 reviews the relevant literature; section 1.3 describes QEIA

in greater detail; section 1.4 reviews the data used in this analysis; section 1.5 outlines the

identification strategy; section 1.6 presents the results. Section 1.7 concludes.

1.2 Literature Review

This analysis contributes causal evidence to the aforementioned extensive literature on

education production functions, which generally has found mixed results. Meta-analyses

that find no clear evidence of an effect of increased school inputs on student outcomes

include Hanushek (1986), and Hanushek (1997), though the methods employed in those

analyses are criticized by Krueger (2002). In contrast, Greenwald et al. (1996) provide a

meta-analysis that finds many school inputs do have positive effects, though their methods

3



are criticized by Hanushek (1996).

Within the education production function literature, this paper contributes to those

strands concerned with the effect of reducing class size, providing professional training to

teachers, and increasing accountability. The study of class size effects on student achieve-

ment has a rich history, dating back at least a century. As noted by Rockoff (2009), early

waves of the literature, which include field experiments as early as the 1920s, tended to

find no effect from a reduction of class size.

Recent studies of variation in class size tend to be quasi-experimental, with the notable

exception of Tennessee’s Project STAR (Student/Teacher Achievement Ratio). Project

STAR was a randomized control trial that assigned students to either small classes (13-

17 students per class), regular classes (22-26 students per class), or regular classes with

a teaching aide. The reduced class size treatment of Project STAR has generally been

found to have had positive effects in the short run (Nye et al. (1999), Krueger (1999)),

and in longer run outcomes (Krueger et al. (2001), Chetty et al. (2011a)) though non-

random attrition, lack of baseline measure of student performance, and little information

about teachers and how they were randomized should give us pause in interpreting results

(Hanushek (1999)).

Notable natural experiments include Angrist et al. (1999), which uses a regression dis-

continuity design based on a class size rule in Israel. They find significant returns to

achievement from class size reduction for math and reading scores for 5th graders. Hoxby

(2000) also uses variation in class size generated by class size caps, and exploits exoge-

nous variation in population, to analyze the effect of class size in Connecticut. She finds

no returns to class size reduction, and in fact rules out even modest returns to class size

4



reduction.

The results in Hoxby (2000) are questioned by Jepsen et al. (2009), who note that, in

using test scores from the following year, estimates may be attenuated. Jepsen et al. (2009)

analyze a previous class size reduction program in California, which was first implemented

in 1996. Using a fixed-effects analysis, and with a school-level measure of achievement as

the outcome variable, the authors find that a ten-student reduction in class size led to a

0.06 to 0.1 standard deviation improvement in Math, and a 0.04 to 0.6 standard deviation

improvement in Reading. An important contribution by Jepsen et al. (2009) is that, un-

like previous class size analyses, they explore changes in teacher quality that result from

rapidly reducing class size, finding that in the early years of the program class size returns

were offset by losses from reduced teacher quality. This issue is explored further by Dieterle

(2013), who finds that the reduction in teacher quality was large enough to account for only

modest returns to reduced class size reduction in an anonymous state. Chingos (2012) ex-

amines another class size reduction policy implemented in Florida, and finds no effect using

a comparative interrupted time series design. Chingos (2012) exploits the fact that many

districts already met the class size requirements of Florida’s law when it was implemented.

Districts that already met the requirement received the same increase in funding, so the

counterfactual to increased funding and class size reduction is an unconstrained increase in

funding.

The literature on effects of teacher professional development is less-well developed. Yoon

et al. (2007) reviews over 1,300 studies conducted between 1986 and 2006, and found

only nine to rigorously examine the effect of teacher professional development on student

achievement. Among these, the range of effects was quite large, from -0.53 to 2.39 standard

5



deviations,3 with the smallest and largest effect coming from the same study. The student

assessment tools were generally closely aligned with teacher training, and within study

there was wide variation of effects. In a more recent study, Barrett et al. (2012) uses a

propensity score model to test whether less effective teachers are more likely to select into

professional development, and whether accounting for this selection affects estimates of

effectiveness of such programs. They find that pre-treatment value added scores are an

important predictor of participation, and controlling for selection professional development

increases student test scores by 0.08 standard deviations in elementary school.

Linking incentives to test scores has been shown to improve medium term math out-

comes (Chiang (2009)), and long-term outcomes of low-performing students (Cohodes et al.

(2013)). A growing body of literature considers potential erosion of signal quality of student

assessments when those assessments are linked to incentives. There is evidence that schools

manipulate the population of test takers (Figlio et al. (2006), Jacob (2005)), shift resources

towards marginal students (Neal et al. (2010)), and that teachers manipulate test results

(Jacob et al. (2003)). The QEIA link between incentives and test scores differs from those

studied above in at least two ways: using the API, an average of scores across all students,

instead of percent proficient removes the incentive to teach to the marginal student, and

scores on tests for cognitively impaired students count toward a school’s API. I nonetheless

test below whether the population of test takers changes.

With conflicting results in meta-analyses and natural experiments, and few randomized

control trials, it seems clear that after a century of research into education production

functions, more research is needed. States such as California in 1996, Florida in 2003, and

3
Presumably the standard deviations are with respect to the population of students studied, though

neither Yoon et al. (2007) nor the source material clarifies the point.

6



Ohio in 2009 have passed class size reduction laws, devoting resources toward increasing

inputs that may or may not improve outcomes. If increased inputs can lead to improved

output, it must be determined how to move closer to an optimal mix of inputs. To address

these questions, more natural experiments with credible exogenous variation are needed.

QEIA provides such credible evidence.

1.3 Policy Description

The QEIA was preceded in California by a larger and more ambitious class size reduction

policy. That policy was enacted in 1996, and continues nominally to this day. Participation

was voluntary, but incentivized: districts received $650 in the first year4 per student in a

K-3 class of 20 or fewer students. However, this incentive has diminished twice over time.

In 2004 the maximum qualifying average class size was increased to just under 22, and as

of February 2009 classes of 25 or more students are still eligible for 70% of the per-pupil

funds, though funding is given for no more than 20 students per class.5

The QEIA came about as the consequence of litigation against then California Governor

Arnold Schwarzenegger. The plaintiffs in the case argued successfully that the state paid

less than the legislated minimum amount to kindergarten through 12th grade public schools

in the 20056 and 2006 school years. As a result, the state was required to pay back

approximately $2.7 billion to K-12 schools.

Rather than distribute the money equally across all schools, legislators decided to focus

4
This number was adjusted for inflation in subsequent years.

5
For instance, a class of 25 or more students would receive 0.70× 20× Full Per-Pupil Amount

6
Governor Schwarzenegger had reached an agreement with a coalition including the California Teachers

Association to underfund education by $2 billion below the amount guaranteed by Proposition 98, which
pegs education funding to growth in general funds. However, state revenue exceeded expectations, and
education funding was not updated to reflect this. For more information, see Bluth (2005).
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on a subset of low-performing schools. The subset was chosen on a semi-random basis, and

the number of schools was chosen such that per-student funding would increase by $500 in

grades K-3,7 $900 in grades 4-8, and $1,000 in high school from 2009-2014, and by half as

much in 2008.8

Schools were deemed eligible to participate in QEIA if they were in the bottom quintile

of the state’s 2005 academic performance distribution, as determined by the API.9 Eligible

schools had to commit to meeting the requirements of QEIA before they could participate

in the selection process. Schools could choose to participate in the regular QEIA program,

or an alternative program. Schools in the alternative program, which are excluded from

this analysis, were able to design their own reform plans, which had to be approved as part

of the application to participate in QEIA. Of the 1,455 schools eligible to participate in

QEIA, 1,260 chose to do so, and 88 of these chose to participate in the alternative program.

Each district with more than one participating school was required to rank its schools.

It was permissible to give multiple schools the same rank, and indeed several districts did

so. Districts received as many random numbers as they had participating schools, and these

random numbers were assigned to each district’s schools based on the district’s rankings.

For example, if a district with two schools received random numbers 213 and 314, the

highest ranked school was assigned 213 and the second was assigned 314. If a district

assigned the same ranking to multiple schools, the order was determined randomly within

that ranking, and was done so by the California Department of Education. The selection

then proceeded in four stages.

7
For comparison, in the first full year of QEIA funding the per-pupil funding for participation in Cali-

fornia’s existing class size reduction program was $1,071.
8
The reduced amount in 2008 was intended to give schools a chance to prepare for full implementation

of reforms by 2009.
9
Very small schools, whose API scores were considered unreliable, were excluded.
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First, schools for the alternative program were selected. High schools were given priority

for this program, and the number of schools was chosen such that no more than 15% of

the anticipated number of students in funded schools would be in the alternative program.

The high schools with the lowest random numbers in the alternative program were funded

until this target was reached.10

Second, to ensure geographic diversity, in each county without a funded school from

the first stage, the school with the lowest random number was selected. Districts were told

that after schools were selected for the alternative program and geographic diversity, all

schools with the lowest random numbers would be funded until funds were exhausted.11

In fact, high schools were selected separately in the third stage: to ensure the legisla-

tively mandated fair representation of grade spans, a target number of high school students

was selected so that the proportion of high school students in funded schools would be

roughly equivalent to the proportion of high school students in all participating schools.

The high schools with the lowest random numbers were selected until this target was

reached. Any school with at least one high school student in 2007 was considered a high

school for this purpose. Finally, the elementary and middle schools with the lowest random

numbers were selected until QEIA funds were exhausted.12

At the conclusion of the selection process, 25 schools had been selected for the alternative

10
Several middle and elementary schools applied for the alternative program, but given the number of

high schools that applied they effectively had zero probability of being chosen.
11

The actual selection differed somewhat, as described below. That districts were told this simplified
version is evidenced in contemporaneous school board minutes (Santa Rosa City Schools (2007)), and CDE
presentations (Balcom (2007)). This is also the depiction in the report to the California legislature (CDE
(2010)), written 3 years after the selection process.

12
As a result of this process, and unbeknownst to districts prior to selection, the funding results did not

always follow district rankings. For instance, a highly ranked high school could go unfunded, and a lower
ranked elementary school could be funded. Ranking a high school ahead of an elementary school could
also lead to both not being funded, while if the elementary were ranked higher it would be funded, if the
difference in random numbers is sufficiently large.
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program and 463 for the regular program. One school that was selected immediately

withdrew from the program, and in subsequent years 13 schools were added. For the

purpose of this analysis, I consider all schools initially selected to be treated, and all

participating schools not selected to be the control group. Additionally, I restrict the

sample to elementary schools,13 which account for over 70% of schools participating in the

regular QEIA program.

Funded schools were required to implement the following: reduce class size; align aver-

age teacher experience with their district average; ensure that all teachers in the school be

considered Highly Qualified Teachers (HQT) under the federal Elementary and Secondary

Education Act; satisfy the requirements of the Williams settlement, which required schools

to provide qualified teachers and safe, well-maintained facilities; provide professional train-

ing to teachers and paraprofessionals; and, for high schools, increase the counselor-student

ratio.

According to CDE (2010), the vast majority of schools eligible to participate in QEIA

were already required to meet the HQT standard and the requirements of the Williams

settlement, regardless of whether they were selected to be funded. This claim is substanti-

ated by Table 1.1, which shows that the typical participating elementary school had 94%

of its teachers classified as Highly Qualified, and 95% of participating schools were required

to satisfy the terms of the Williams settlement.

The class size reduction requirement stipulated that funded schools reduce class size to

13
This restriction has two motivations: there are additional QEIA requirements for high schools, com-

plicating the interpretation of the treatment, and beginning in 6
th

grade, students are sorted into various
math examinations, thus compositional changes may be confounded with changes in achievement. Results
that include middle and high schools are qualitatively quite similar, and are available from the author by
request.
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20 students per class in grades K-3.14 In grades 4-12, class sizes had to be reduced from

their baseline level15 by 5 students, or to 25 students per class, whichever was lower. In

each of the first three years of QEIA, schools were required to reduce the difference between

the pre-QEIA average class size and QEIA target class size by 1/3. For some schools, the

average in 2007 was quite low, which was particularly strenuous for small schools with a

single classroom per grade. As such, many schools applied for and were granted waivers

from this requirement, and instead met a higher minimum class size requirement.

Under QEIA, teacher experience is measured by the Teacher Experience Index (TEI).

Teachers with more than 10 years of experience are assigned 10 years in calculating the

average. Part-time teachers are given full weight in the calculation, and teachers teaching

at multiple schools count towards each school’s average. Funded schools are required to

exceed the district average TEI.

Districts selected for QEIA are required to provide professional development opportu-

nities for teachers, administrators, and paraprofessionals, e.g., teaching assistants. Funded

schools are required to build and maintain a system for tracking participation in profes-

sional development programs, and districts are required to ensure that funded schools are

in fact meeting the requirements. Participation requirements for teachers are clearly spelled

out by QEIA, e.g., each year at least one third of teachers in a QEIA funded school must

participate in training, but the specifics of the training program are largely left to the

schools and districts.

In addition to these reforms, participation in QEIA was contingent on meeting accel-

14
This is precisely the original requirement of California’s 1996 class size reduction policy, the maximum

cap of which increased over time.
15

The baseline was the grade-level average class size in 2006, unless that average was greater than 25, in
which case 2007 was used.
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erated student achievement growth targets, as measured by California’s API. The target

API for all schools in California is 800; all California schools below that target have a

growth target of 5% of the difference between their API and 800, or 1 point, whichever is

greater. By the third year of QEIA, funded schools are required to have exceeded growth

targets on average over those first three years. A school is permitted to fall short of its

growth target in the first two years of full funding without repercussions, then after the

third fully-funded year schools whose average growth did not exceed average growth targets

lost QEIA funding.

1.4 Data

This analysis relies on several publicly available data sets produced by the California De-

partment of Education. These include school-level data on API scores, a data set that

includes a rich set of school demographics; teacher-level data; assignment-level data, in-

cluding, e.g., the number of classes assigned to a teacher and the number of students in

each of those classes; and subject-grade-level data on California standardized tests. Though

these data sets are available for earlier years as well, I rely primarily on data from 2005-2011

with one exception: the assignment-level data were not collected in 2010 due to budget

constraints. As a result, I am unable to calculate average class size, proportion of teachers

classified as HQT, or TEI for 2010. In addition to these publicly available data, I have

obtained from CDE the rankings of participating schools submitted by each district, which

include a variable for whether the school applied for the regular or alternative program.

The teacher-level data are not linked from year to year. Instead, in each year teachers

are assigned a new ID. The purpose of the ID is to facilitate linking teacher-level data
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to assignment-level data. The teacher-level data do however contain a number of teacher

characteristics, such as years of teaching experience, years teaching in the same district,

ethnicity, gender and education. I use these characteristics to link teachers across years

within a school. If multiple teachers at a school are observationally similar, I randomly

link them across years.

As a result, I do not reliably observe duration of employment spells at a school. Simi-

larly, if a teacher leaves, and in the following year a new observationally identical teacher

enters the school, I do not observe a change in the composition of teachers. The data

can however be used to reliably determine net changes in the characteristics of the teacher

workforce at a school. I use these data to measure average teacher experience, the propor-

tion of teachers new to a school, and the proportion of teachers new to a school who are

either new to teaching, or experienced but new to the district.

For my measure of class size, I restrict the set of classes to math, English, science, and

self-contained classes. Self-contained classes are those in which subjects such as math and

English are taught by the same teacher, and are the most common class type in elementary

schools. This analysis excludes special education courses, vocational courses, and other

electives.16

It has become common in the education production function literature to use student

performance on standardized tests as a measure of the output of this production process.

Standardized tests surely fail to capture a number of cognitive and non-cognitive skills that

an educational system is expected to impart on students. However, there is evidence that

variation in school inputs that increase test scores also have a positive impact on a number

16
Teachers for these excluded classes are included in the teacher experience category, in part so my

measure of experience is not dependent on data missing in 2010. The TEI is based on a subset of classes
similar to that which I use to calculate average class size.
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of later-life outcomes, such as probability of attending college, selectivity of college, and

income (Chetty et al. (2011a), Chetty et al. (2011b)). Often a student’s performance on

standardized tests is the outcome in a regression including measures of scholastic inputs

and the student’s performance in previous years as controls. The use of California’s API

in this analysis is similar, but it differs from student-level assessment scores in important

ways.

Notably, the API is an average of performance not just across students, but across

subjects and even test types. For instance, an elementary school in 2010 would have

administered an English and language arts test in grades 2-5, a math test in grades 2-

5, and a science exam in grade 5. Additionally, two alternative exams, the California

Modified Assessment and the California Alternative Performance Assessment would have

been administered to students with varying degrees of cognitive impairment. The API for

that school is a weighted average across all these tests, subjects, and grades.17 Nonetheless,

the API is California’s primary tool for assessing academic performance, and the goal of

QEIA was to improve API scores, so I include it in my analysis. I standardize API scores

within years with respect to the distribution of all elementary school APIs.

I supplement this measure of student achievement with grade-subject-level data on

California’s primary standardized test, the eponymous CST. California makes publicly

available the mean scaled score,18 and percent of students whose scores fall into particular

bins, referred to as proficiency levels. I use these data for 2nd-5th grade math and English

language arts tests.

17
The average is weighted by the proportion of students for whom there is a valid score, and each subject

and test receives an additional weight.
18

The scaling of scores takes into account changes in difficulty of tests across years, and therefore makes
yearly comparisons more meaningful.
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Table 1.1 lists descriptive statistics for all funded and unfunded elementary schools in

2007, and those for which pi, the probability a school is selected, lies between 0.10 and 0.90,

as well as descriptive statistics for the restricted sample in 2011. The restricted sample

is similar to the full sample with two notable exceptions: a much smaller proportion of

schools in the restricted sample are in Los Angeles, and unfunded schools in the restricted

sample have a higher TEI.

Both funded and unfunded schools in QEIA typically had high proportions of students

who were Hispanic, English language learners, eligible for free and reduced price lunch, and

whose parents did not have a college degree. In 2007, a typical school in my sample had at

least 1/3 of its teacher work force that was not in the school the prior year.19 New teachers

did however tend to have nearly three years of experience.

From Table 1.1 it is apparent that the relative reduction in class size in funded schools

in kindergarten through third grade is driven by increased class sizes in unfunded schools,

while the relative reduction in class size in fourth and fifth grade is driven by smaller class

sizes in funded schools. The QEIA requirement for class sizes in kindergarten through

third grade replicated that of California’s prior class size reduction policy, the incentives

for which were drastically weakened in the first year of QEIA. This weakened incentive led

many unfunded schools to gradually increase class sizes in lower grades.

19
Recall that my teacher-level data set can only distinguish net changes in teacher characteristics. New

teachers who are observationally identical to departing teachers from the previous year are not recorded
as new, and thus the one third estimate is a lower bound.
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1.5 Identification

Estimating the causal effect of QEIA is complicated by two facts: districts ranked schools

according to unobserved objectives, and districts with more participating schools were more

likely to be chosen at least once. A simple comparison of funded and unfunded schools

within a district would surely be biased, though the direction of bias would depend on the

district’s objective functions. A comparison across even just the highest ranked schools in

each district would also likely be biased, since larger districts, e.g., Los Angeles Unified,

were almost certain to have their highest ranked schools funded, and the size of a district

could be correlated with potential outcomes. Even within a school over time, potential

outcomes might be correlated with treatment if districts gave higher rankings to schools

poised to improve.20

Instead, my estimation strategy relies on the following intuition: if we were to compare

only schools that had an equal probability of being funded, e.g., 50%, then within that group

treatment is random, and an OLS estimate would be consistent and unbiased. For each

probability we could repeat this exercise, yielding treatment effects conditional on each

probability. By the Law of Iterated Expectations, the unconditional average treatment

effect could then be recovered. As Wooldridge (2004) shows, the result of an exercise like

this is equivalent to the following population specification for τ
ATE

, the average treatment

effect:21

20
There is anecdotal evidence that this did in fact happen: in personal communication with a CDE

employee who was on Sacramento’s school board when schools were ranked, I was told that one school
ranked highly because, with a new and talented principal soon starting there, it was poised to improve.

21
Wooldridge (2004) shows that the coefficient in a “conditional linear projection” of outcome on treat-

ment, where the conditioning is on probability of selection, can be averaged across probabilities to yield
this form of the average treatment effect. He also notes several alternative and asymptotically equivalent
forms of the estimator. The estimator is similar to that used in Horvitz et al. (1952). See also Imbens et al.
(2009) and Wooldridge (2010).
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τ
ATE

= E

(
Tiyi
pi
− (1− Ti)yi

(1− pi)

)
= E

(
(Ti − pi)yi
(1− pi)pi

)
= E(yi1 − yi0) (1.1)

where Ti is an indicator for treatment, in this case being funded by QEIA; yi is an outcome

measure; yi0 is the outcome for school i if it is not selected, and yi1 is the outcome for

school i if it is selected; and pi is the probability of selection, i.e., the propensity score.

E(yi1 − yi0) is the Average Treatment Effect: it captures the average change in outcome

caused by QEIA. The parameter in equation (1.1) can be estimated using its sample analog.

Given the selection mechanisms, determining the functional form of pi is complex.22

However, given the rules of selection and districts’ rankings, I am able to determine the

true propensity score (up to an arbitrarily small error) by simulation; I do so by randomly

assigning the numbers 1-1,260 to districts and replicating the selection process 1 million

times.23

This method allows for the causal effect of QEIA to be non-parametrically identified if

two assumptions are satisfied. First, treatment must be mean independent of the potential

outcomes conditional on the propensity score (i.e., E(yj |T, p) = E(yj |p), j ∈ {0, 1}). This

requirement is satisfied by the nature of the selection process. The second requirement is

that there can be no schools for which pi = 1 or pi = 0. The intuition for this requirement

is straightforward. Among the schools for which pi = 0 or pi = 1, there is no variation

22
Were the total number of high schools and elementary or middle schools predetermined, the problem

would be considerably simpler, and pi would be based on a summation of hypergeometric functions,
weighted by the probability that the district has a school selected for geographic diversity. Since the
number of schools selected depended ultimately on the number of students in each grade level in each
school, the problem is considerably more complicated.

23
As a result, my estimates have SE of

√
pi(1−pi)
1000 , which at its largest is 0.0005. Given this precision,

I refer to my estimates as the true probabilities of selection. The actual random numbers assigned to
districts are made publicly available by CDE. Using these, and the district rankings, my simulation of the
selection process perfectly predicts funded schools.
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in treatment, and so these schools contribute nothing to identification. Among schools

participating in QEIA, some were in counties with only one participating school, and that

school was therefore selected with probability one. Conversely, the middle and elementary

schools that applied for the alternative program had zero probability of being selected.

There were also many schools, e.g., Los Angeles Unified’s highest ranked schools, whose

probability of selection was near one, and many, e.g., Los Angeles Unified’s lowest ranked

schools, whose probability of selection was very near zero.

In practice, researchers drop observations with probability of treatment “close” to zero

or one. Crump et al. (2009) suggest discarding observations less than α away from zero or

one, where α satisfies the following:

1

α(1− α)
= 2 ∗ E

[
1

pi(1− pi)

∣∣∣∣ 1

pi(1− pi)
<

1

α(1− α)

]
. (1.2)

As a general rule of thumb, Crump et al. (2009) suggest using α = .10. After dropping

schools for which pi is identically zero or one, I am able to calculate (1.2), and α = .10

nearly satisfies this requirement exactly. I therefore restrict the sample to schools for which

pi ∈ [0.10, 0.90].

To examine whether funded and unfunded schools share a common support across pi,

Figure 1.1 graphs the number of elementary schools that are funded and unfunded by

bins of pi. Since schools are not uniformly distributed within each bin, we should not

necessarily expect the proportion of schools funded to be the midpoint in each bin even in

the population.

Though consistent, the sample analog to (1.1) is not efficient: as Hahn (1998) shows,

it fails to achieve the semiparametric efficiency bound. Hirano, Imbens, and Ridder (2003)
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show that a two-step estimator, in which the first step estimates the probability of treatment

using a logit series estimator, does achieve the semiparametric efficiency bound, even when

the true probability is known. This puzzle is well known in the econometric literature

(Henmi et al. (2004), Hitomi et al. (2008), Prokhorov et al. (2009), Han et al. (2011)),

though as far as I know the result has never been applied empirically, presumably because

probability of treatment is rarely known, as it is in this case.

Though seemingly counter-intuitive, this result rests on a well-known fact: even under

exogenous treatment, if variation in the outcome can be explained by variation in other

observables, partialling out this variation results in more efficient estimation. This same

principle leads to the inclusion of covariates in an OLS estimate with random and dichoto-

mous treatment. An OLS estimate of the causal effect is consistent and unbiased without

covariates, but is more precise when covariates that explain variation in the outcome are

included.

Wooldridge (2010) makes explicit the application of this intuition. Consider ki = [(Ti−

pi)yi]/[pi(1 − pi)], where E(ki) = τ , my population parameter of interest. We could of

course estimate τ using the sample average of ki, but doing so treats variation in ki that is

explained by variation in covariates as noise, leading to inefficient estimation.

If instead we were to estimate pi in a first stage using a logit model, as Hirano et al.

(2003) suggest, this would be equivalent to regressing k̂i = [(Ti − p̂i)yi]/[p̂i(1− p̂i)], where

p̂i is the predicted probability from the first stage, on a constant and d̂i = Xi(Ti− p̂i): the

constant would be an estimate of τ , and the residuals can be used to estimate the variance of

τ̂ . To the degree that d̂i explains variation in k̂i, τ̂ will gain efficiency. Another way to reach

the same conclusion is to note that E(ki − τ) = 0 and E(di) = 0 are moment conditions.
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Estimating τ treating pi as known disregards the second moment condition, which, so long

as it is correlated with the first moment condition, contains useful information that we

incorporate in estimation by treating pi as unknown.

With known pi, the gains in efficiency can be achieved by regressing ki on di = Xi(Ti−

pi). This is equivalent to what Qian et al. (1999) call an augmented GMM estimator, in

which efficiency gains are achieved with moment conditions that are not a function of the

parameter of interest. I provide results using the sample analog of (1.1), which I refer to

as those with one moment condition, and results that regress ki on di, where Xi includes

an indicator for having met the growth target, proportion of students eligible for Free

and Reduced Price Lunches, enrollment, Standardized API, percent of students who are

Hispanic, English language learners, and migrant. I use the value of these variables in

2007. As illustrated in Table 1.2, the sample moment conditions implied by E(di) = 0 are

all quite close to zero.

1.6 Results

1.6.1 Regression Results

For comparison, I first present results based on various regression specifications with the

main QEIA requirements as outcome variables. It’s important to note that, unlike the

IPW estimator, consistent estimation of average treatment effects by the regression models

depends on assumptions that might not be satisfied. Each regression has a full set of

year dummies, excluding 2005, and interactions between a treatment indicator and the

year dummies. For expositional purposes the table includes only the coefficient on the
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interaction between the treatment indicator and the dummy for 2011.24 I present results

from regressions on the full sample as well as regressions on the restricted sample such that

pi ∈ [.10, .90].

For each main QEIA requirement, I present five regression models. Model 1 includes

only the year dummies and interactions between a treatment indicator and the year dum-

mies. This model consistently estimates the effect of QEIA on outcomes only if treatment

is uncorrelated with potential outcomes. Since the probability of treatment is dependent on

district rankings, as well as on the size of the district, we wouldn’t expect this assumption

to be satisfied.

The second regression model adds to Model 1 an interaction between the year dummies

and the probability of treatment, pi. If there is no heterogeneity in the treatment effect,

Model 2 will consistently estimate it. If there is heterogeneity, then consistent estimation of

the average treatment effect requires Var(T |p) to be uncorrelated with potential outcomes

(Wooldridge (2004)). There is of course no way to know whether this condition is satisfied.

Model 3 also nests Model 1, and includes as covariates an indicator for whether the

school met its growth target in 2007, whether the school is in Los Angeles Unified, the

percent of students eligible for free and reduced price lunch in 2007, and the enrollment in

2007. If conditional on these covariates treatment is uncorrelated with potential outcomes,

the average treatment effect will be consistently estimated.

Models 4 and 5 build on Model 1 by including fixed effects in the former, and the above

mentioned covariates with fixed effects in the latter. Fixed effects estimation requires

treatment to be uncorrelated with trends in potential outcomes. This assumption would

be violated if districts ranked highly those schools that were primed for improvement.

24
The full set of results is available from the author by request.
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As Table 1.3 illustrates, the estimated effect of QEIA on class size is robust to a broad

range of specifications and to the sample restriction. Average class size is estimated to

have decreased in selected schools by about 4.5 students per class. In the full sample,

estimates of the effect of QEIA on teacher experience are similarly robust to a broad

range of specifications. Average experience appears to have decreased by 0.73 to 0.98

years, suggesting that funded schools were not able to reduce class size by hiring more

experienced teachers. In the restricted sample, the standard errors are generally larger and

the effects are smaller in each model, suggesting at most a 0.74 reduction in average teacher

experience, significant at the 10% level.

The regression estimates of the effect of QEIA on schools’ API vary across models.

Controlling for the probability of treatment, the API in funded schools is estimated to

have increased by 0.41 standard deviations (p < 0.001) in the distribution of APIs across all

elementary schools in California. At the other extreme, controlling for covariates suggests

QEIA had no effect on schools’ API. Estimates from the restricted sample are precise and

less widely dispersed, with a maximum of 0.4 standard deviations and a minimum of 0.26

standard deviations.

Results for 5th grade assessments in math and English language arts vary across spec-

ifications, with effects for math being larger across specifications in the full and restricted

sample. In the full sample, the effect of QEIA on math scores varies from 0.25 (p < 0.01) to

0.46 (p < 0.001) standard deviations in the population of all school-level averages in Cali-

fornia, and ELA scores range from an insignificant 0.06 to 0.30 (p < 0.001). The estimates

are more uniform in the restricted sample, varying from 0.41 (p < 0.001) to 0.50 standard

deviations (p < 0.001) in math, and from 0.19 (p < 0.01) to 0.30 (p < 0.001) in ELA.
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There is some evidence from the regression results of an increase in persistence in

funded schools, measured by the percent of students who were in the same school from the

beginning of the school year through the time assessments were administered. A causal

effect of QEIA on the composition of students in a school could suggest that it did not

benefit particular students, but rather affected the likelihood that better students remained

in the school. However, the estimated effects are small relative to the baseline of about

90% (see Table 1.1), precise only in some specifications, and then only significant at the

5% level. More importantly, as indicated below, results from IPW estimates suggest no

change in student characteristics.

1.6.2 Main Results

Unlike the regression results above, IPW estimates depend only on the assumption that

the randomization was carried out correctly, and by all accounts it was. The remainder of

the paper therefore focuses on these estimates, presenting those that depend on one and

two sets of moment conditions.25

Table 1.4 shows the causal effect of QEIA on average class size, the percent of teachers

classified as highly qualified, average teacher experience, and the TEI. The point estimate

on class size in 2009, the first full year of QEIA funding, suggests that QEIA reduced class

size, but the effect is imprecisely measured. The standard errors are much smaller using

two sets of moment conditions, though they are still larger than those from the regression.

Using estimates based on two moment conditions, in the final year for which class size

data are available, QEIA reduced class size by 4.35 students per class, an estimate that is

25
Average treatment effects on the treated are available from the author by request. The point estimates

are quite similar to the average treatment effects, and are too noisy to distinguish from the average
treatment effects.
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significant at the 0.001 level.

Consistent with the claim that both funded and unfunded schools were required to have

high proportions of HQT teachers, being funded had no causal impact on the proportion of

HQT teachers. The estimates that rely on two sets of moment conditions are all practically

small, precisely measured, and not statistically discernible from zero.

Similarly, teacher experience does not appear to have been affected by QEIA. From

2009 through 2011 the point estimates using both one and two sets of moment conditions

are neither positive nor statistically discernible from zero, as evidenced by Table 1.4. The

point estimates based on two moment conditions are smaller in absolute value than the

regression estimates, both of which are small relative to the 2007 baseline of 11.81. The

marginally significant effects on TEI in 2007 are presumably spurious, and cast doubt on

the significant differences in 2008 and 2009, using one moment condition, and 2008, using

two moment conditions. Even taking the point estimates at face value, QEIA appears to

have reduced teacher experience, measured by years or by the TEI.

The estimated effect of QEIA on student achievement, as measured by California’s

API, is quite similar to the regression estimates based on the restricted sample, as shown

in Table 1.5. Using two sets of moment conditions,26 QEIA increased API scores in funded

schools by 0.35 standard deviations (p < 0.001) by 2011, with respect to the population of

all elementary school-level averages. The effect for Hispanic students is significantly larger

than for all students by 2011 (p = 0.068), as is the effect for low-SES students (p = 0.075).

From 2008 onward there is a clear pattern of funded schools improving over unfunded

schools.

26
Note that effects on the 2007 API scores are not calculated using both moment conditions. This is

because I use 2007 API scores in the second set of moment conditions.
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These estimates capture the causal effect of QEIA at the school level. However, it is

possible that these results are driven partly by changes in the composition of students in

response to QEIA. For instance, it may be that especially savvy parents, whose children are

more likely to receive extra support, will be aware of QEIA and select into a QEIA school.

Although I cannot currently observe student-level characteristics, I do observe school-level

averages of such things as Free and Reduced Price Lunch eligibility, whether parents have

a college degree, their race, and whether the student was enrolled in the school from the

beginning of the school year through the time assessments were administered.

Table 1.6 displays the results for FRPL,27 percent of students whose parents have a

college degree, and percent of students who were in the school the prior year. Focusing on

the estimates based on two sets of moment conditions, no coefficient is significant, and the

magnitudes of the point estimates are quite small. Similarly, Table 1.7 shows no discernible

impact on student enrollment, proportion black, or proportion Hispanic. This is consistent

with the student population not changing in response to QEIA.

However, it is still possible that the population of test takers at schools may have

changed in response to QEIA. This is particularly concerning since schools were required

to improve API scores in order to remain in the program, increasing the stakes of the

tests. Schools could manipulate their API scores by either encouraging more students

to take alternative tests,28 discouraging low-performing students from taking any test, or

manipulating answer sheets.

Of these possibilities, I currently am able to observe the number of students for whom

27
Estimates relying on two sets of moment conditions for FRPL in 2007 are not calculated, since FRPL

in 2007 is used in that set of moment conditions.
28

Alternative tests are included in the calculation of the API, but presumably the marginal student
would find the regular California Standardized Test challenging, and the California Alternative Performance
Assessment or the California Modified Assessment less so.
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there is a valid score, and the number who take the regular standardized test. Table 1.8

displays the results of this analysis. There is no evidence that the number of valid scores

differed between funded and unfunded schools, either before or after QEIA. Similarly,

there is no evidence of a difference in the number of valid scores for low-SES students or

for Hispanic students. Neither is there evidence of a change in the proportion of students

taking the regular standardized test. Though this is not definitive evidence, it is at least

consistent with the population of test takers not changing in response to QEIA.

Two key policy levers of QEIA, decreased class size and increased teacher experience,

require changes to the teacher workforce at a school. Using the teacher-level data, I am

able to observe the net changes in teacher characteristics at a school. Tables 1.9 and 1.10

list the results from this analysis. I examine differences caused by QEIA in the proportion

of teachers new to the school, new to the school but not new to the district,29 average

experience conditional on being new to the school, and proportion of probationary, tenured,

and temporary teachers.

In 2009 QEIA appears to have caused an increase in the proportion of teachers new to

the school in funded schools relative to unfunded schools. In 2009 there were 7 percentage

points more (p < 0.1) new teachers in funded schools. The similar estimates for the change

in new teachers with experience in the district suggests that nearly all teachers new to the

school had experience in the district. Comparing the set of teachers new to a school in

funded and unfunded schools, average experience is 0.92 years greater in funded schools in

2009 (p < 0.1).

Table 1.10 lists the change in proportion of teachers who are probationary, tenured,

29
A teacher is new to the school but not the district if no teacher with the same characteristics is observed

in the school the prior year, and the teacher has more than one year of experience in the district.
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and long-term substitutes. The differences between funded and unfunded schools in the

proportion of probationary teachers before 2008, significant at the 10%, and 5% levels, are

presumably spurious, casting some doubt on the results in later years. Assuming that the

more precisely estimated differences in proportion probationary after 2008 are not spurious,

there is evidence of an increase in probationary teachers caused by QEIA. There is also

significant evidence of fewer tenured teachers in funded schools (p < 0.05), and more long-

term substitutes (p < 0.10).

Tables 1.11 and 1.12 show the effect of QEIA on class sizes at the grade level. Estimates

based on one set of moment conditions are noisy, and are at no point statistically different

from zero. Class sizes in kindergarten through 3rd grade are not affected by QEIA until

2011, at which time there are 3.0 to 4.2 fewer students in those grades in funded schools.

As mentioned above, class size data are not available in 2010, and the difference in class

sizes in these earlier grades is driven by unfunded schools exiting the previous class size

reduction program. Estimates based on two sets of moment conditions suggest that grades

4 and 5 decreased class sizes by about 4.8 (p < 0.001) and 4.4 (p < 0.01) students per class

in 2009, respectively, and by 5.5 (p < 0.001) to 6.1 (p < 0.001) students in 2011.

The effect of QEIA on API scores is important, since the primary goal of the policy was

to improve API scores. However, given that the API is an average across students, grades,

subjects and even test types, changes in API scores are hard to interpret or compare to

other findings in the literature. Tables 1.13 and 1.14 therefore list the estimated effect

of QEIA on mean scaled scores from California’s Standardized Test for math and English

language arts.

The effects of QEIA on math scores is greater in later years of the program and in
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higher grades. There’s no discernible effect on 2nd grade math scores until 2011, when

they are 0.29 standard deviations higher in funded schools, with respect to the population

of grade-level averages (p < 0.001, 0.13 student-level standard deviations). The 3rd grade

math scores increase one year earlier, in 2010, by 0.18 standard deviations (p < 0.05, 0.08

student-level standard deviations), and by 0.29 standard deviations by 2011 (p < 0.01, 0.12

student-level standard deviations).

Math scores in 4th grade improve earlier; by 2009 they show an increase of 0.32 standard

deviations(p < 0.001, 0.15 student-level standard deviations), 0.40 (p < 0.001, 0.17 student-

level standard deviations) in 2010, and level off in 2011 at 0.40 (p < 0.001, 0.17 student-

level standard deviations). Interestingly, 5th grade math scores do not begin improving

until 2010, at which time they were 0.37 standard deviations higher in funded schools

(p < 0.001, 0.17 student-level standard deviations), and by 2011 they were 0.42 standard

deviations higher (p < 0.001, 0.19 student-level standard deviations)

Consistent with results from the vast majority of education reforms, the effects are

smaller for English language arts. Still, the previous pattern persists: effects are larger in

later years, in later grades, and there is an effect on 4th grade test scores in 2009 but not on

5th grade test scores. By 2011, ELA scores in 2nd grade are 0.20 standard deviations higher

in funded schools (p < 0.01, 0.09 student-level standard deviations), and in 5th grade they

are 0.23 standard deviations higher (p < 0.001, 0.11 student-level standard deviations).

To better understand the effects of increased exposure to QEIA, Figure 1.2 replicates

the information in the tables, displaying the average treatment effect on class size and

achievement at the grade level, but by cohort exposure. Each panel in the figure displays

the change in class size and achievement that a group of students with a normal grade
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progression would face. For instance, students in panel A enter kindergarten in 2005, and

those who progress one grade each year are exposed to QEIA for one year, in 2009. Since

class size data aren’t available in 2010, I instead use the same-grade average from 2009 and

2011, e.g., the 3rd grade class size in 2010 is the average of 3rd grade class size in 2009 and

2011.

As the figure suggests, consecutive years of smaller classes do not lead to a widening of

the achievement gains. Additionally, though it is not possible to empirically separate the

effects of teacher training, high-stakes testing, and reduced class size, it must nonetheless

be the case that if teacher training and high-stakes testing explain the improved scores,

the timing would have to be correlated with changes in class size. Since both the reduced

class sizes in 2nd and 3rd grade are delayed in the same manner that the relative change

in test scores is delayed, it seems likely that the effect is driven by class size. Otherwise,

there would have to be some reason that professional training and accountability pressure

were also delayed. Though professional training is not observed, test scores in each of the

first three years counted towards the achievement target, and it therefore seems unlikely

that schools would not respond to it until the third year of the program.

1.7 Conclusion

California’s QEIA provides a unique opportunity to study the causal effects of school reform.

Using district rankings and the details of the selection process, the probability of any school

being selected is known. Between any two schools with the same probability of selection,

being funded is uncorrelated with potential outcomes. Using this, and relying on methods

described in Wooldridge (2004), Hirano, Imbens, and Ridder (2003), and Qian et al. (1999)
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I am able to estimate the causal impact of QEIA by inverse probability weighting.

Doing so, I find that QEIA caused a decrease in class size, and had no discernible

effect on teacher experience. Two of the other QEIA requirements applied to all QEIA

eligible schools, and are therefore not considered part of the treatment here. The remain-

ing components of treatment, professional training for teachers, which is unobserved, and

added incentive to increase achievement to maintain funding, may also contribute to the

improvement in test scores.

Test scores improved significantly, albeit unevenly across grades and years. Grades 4

and 5, in which class sizes were first reduced, experienced the largest and earliest increase

in test scores. In the first fully-funded year of the program, math scores in 4th grade

increased by 0.32 standard deviations in the population of school-grade averages, and by

the second fully-funded year 5th grade math scores improved by 0.36 standard deviations.

The improvement in test scores in 2nd and 3rd grade, like the reduction in class sizes in those

grades, occurred later, and was more modest. By the third fully-funded year of the program,

math scores in 2nd grade were 0.28 standard deviations higher in the distribution of school-

grade averages, and 0.27 standard deviations higher 3rd grade. For teacher professional

training and added test pressure to explain the improvement, they would have to exhibit a

similar pattern of implementation across grades and years. Gains in English language arts

were modest, but exhibit the same pattern across grades and years.

To estimate the cost effectiveness of QEIA, I consider the expense that would be incurred

by replicating the intervention for each of three cohorts of students, those in 2nd, 3rd, and

4th grade in 2009. As an upper-bound, I consider the expenses that were incurred in

addition to the per-pupil allocation as fixed costs. These include an annual expense of $2
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million for county superintendents, $1.177 million annually for CDE staff, and a one-time

expense of $5 million for regional support offices. The lower bound treats these expenses as

variable costs. I use the OMB nominal interest rate on 3-year treasury bills from 2009-2011

to express the PDV of costs in 2008, the first year of the program. I average math and

English language arts scores, and express all effects in student-level standard deviations,

with respect to the population of all California students.

For the sake of comparison, I compare the cost-benefit estimates to the cost of achieving

the same class reduction as in Project STAR. The average teacher salary in California in

2008 was $64,424 (U.S. Department of Education (2009)). Following Podgursky (2006), I

allow for benefits to account for 20% of compensation, and thus the cost of an additional

teacher in 2008 is $80,530. The one-year cost of the same class size reduction as in Project

STAR is therefore ( 1
15−

1
23)∗80, 530 ≈ $1, 867 per student. Comparing the change in student

test scores caused by Project STAR to those caused by QEIA is complicated by a lack of

common measure. Under the strong assumption that a standard deviation with respect to

a select sample of Tennessee students in kindergarten through third grade is comparable

to a standard deviation with respect to the population of all California students in 2nd

through 4th grade, a class-size reduction of this magnitude would result in gains of 0.20 to

0.28 standard deviations (Krueger (1999)).

Table 1.15 shows the results of this exercise for each of three cohorts of QEIA students:

those in 2nd, 3rd, and 4th grade in 2009. Where the class size requirements of QEIA

duplicated the existing class size reduction program, QEIA had no effect, and was of course

not cost effective. In other years and grades, the upper-bound cost per standard deviation

gain in test scores is comparable to Project STAR in the first and third year of each program,

31



while the second year of Project STAR lies closer to the lower bound. Project STAR’s much

more dramatic, and much more expensive, reduction in class sizes is estimated to have only

achieved concomitant dramatic increase in student achievement in its second year.

Though the design of QEIA precludes separate identification of effects of its constituent

reforms, it is nonetheless a remarkable policy, unprecedented in education for being a large-

scale policy intervention with random assignment. Though potentially cost-effective relative

to Project STAR in years in which it was effective, QEIA was hampered by overlap with

existing policies that caused it to be completely ineffective in certain years and grades. The

unique design of QEIA, which accommodated district preferences for resource allocation

across schools, State budget constraints and preferences for reform design, also allows for

non-parametric identification of its causal effect. Were more policies to follow this design,

our understanding of the effectiveness of various reforms could be dramatically improved.
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APPENDIX A - FIGURES

Figure 1.1: Support over p, All Elementary Schools
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Figure 1.2: Cohort-Level Class Size and Math Achievement Comparison
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APPENDIX B - TABLES
Table 1.1: Descriptives, Elementary Regular QEIA Schools 2007

All Elem. pi ∈ [0, 1], 2007 pi ∈ [0.10, 0.90], 2007 pi ∈ [0.10, 0.90], 2011

2007 Unfunded Funded Unfunded Funded Unfunded Funded

Avgerage Class Size 21.86 21.93 21.96 22.14 22.12 25.03 20.34
(3.54) (1.87) (2.04) (1.75) (2.05) (3.19) (2.19)

Class Size Kindergarten 20.64 20.24 20.41 20.28 20.70 23.97 20.23
(4.14) (3.39) (3.78) (3.46) (4.23) (4.31) (3.48)

Class Size 1st Grade 19.32 19.29 19.13 19.33 19.21 23.78 19.54
(1.85) (1.40) (1.31) (1.47) (1.29) (4.07) (2.27)

Class Size 2nd Grade 19.14 18.84 18.97 18.76 19.00 23.85 19.36
(1.87) (1.52) (1.40) (1.58) (1.34) (4.24) (2.54)

Class Size 3rd Grade 19.89 19.42 19.60 19.76 19.60 23.95 19.54
(3.17) (2.71) (3.01) (3.18) (3.08) (4.49) (2.63)

Class Size 4th Grade 28.47 28.01 28.18 28.21 28.56 28.14 22.37
(4.23) (3.82) (3.80) (3.57) (3.81) (4.30) (3.97)

Class Size 5th Grade 28.89 28.28 28.51 28.70 28.62 28.36 22.25
(4.15) (3.72) (3.77) (3.57) (3.95) (4.53) (3.35)

Average Experience 13.01 11.92 11.61 12.38 11.70 13.68 12.95
(3.95) (3.17) (3.35) (3.10) (3.38) (3.56) (3.17)

TEI Relative -0.04 -0.17 -0.28 -0.07 -0.26 -0.12 -0.15
(1.05) (1.02) (1.00) (0.89) (0.98) (0.80) (0.69)

Highly Qualified Teachers 0.96 0.94 0.94 0.96 0.94 0.99 0.99
(0.11) (0.10) (0.14) (0.09) (0.15) (0.04) (0.11)

Williams Settlement Applies 0.24 0.94 0.96 0.95 0.95 0.95 0.95
(0.43) (0.24) (0.20) (0.22) (0.22) (0.22) (0.22)

Std. API 0.00 -1.10 -1.25 -1.13 -1.15 -1.11 -0.77
(1.00) (0.48) (0.48) (0.44) (0.47) (0.56) (0.61)

API Percentile Rank 0.50 0.16 0.12 0.15 0.15 0.17 0.26
(0.29) (0.11) (0.10) (0.11) (0.11) (0.14) (0.17)

Met Growth Target 0.70 0.68 0.65 0.66 0.60 0.60 0.71
(0.46) (0.47) (0.48) (0.47) (0.49) (0.49) (0.46)

Proportion Black 0.08 0.09 0.11 0.07 0.08 0.06 0.08
(0.12) (0.14) (0.16) (0.12) (0.13) (0.11) (0.12)

Proportion Hispanic 0.46 0.79 0.74 0.78 0.76 0.80 0.78
(0.30) (0.21) (0.25) (0.21) (0.25) (0.20) (0.24)

Proportion White 0.33 0.06 0.07 0.09 0.07 0.08 0.06
(0.28) (0.10) (0.10) (0.13) (0.10) (0.12) (0.10)

English Language Learners 0.29 0.55 0.55 0.55 0.56 0.51 0.53
(0.23) (0.18) (0.20) (0.18) (0.20) (0.18) (0.20)

Proportion FRPL 0.55 0.89 0.88 0.87 0.86 0.89 0.85
(0.31) (0.11) (0.11) (0.12) (0.12) (0.14) (0.17)

Parent College Grad 0.18 0.06 0.06 0.06 0.07 0.07 0.07
(0.14) (0.06) (0.07) (0.06) (0.09) (0.04) (0.05)

Student Enrollment 376.60 472.24 434.61 445.58 420.82 405.13 378.30
(192.56) (195.68) (179.70) (164.11) (154.59) (138.53) (135.89)

Proportion Same School 0.92 0.91 0.91 0.91 0.91 0.92 0.93
(0.08) (0.04) (0.04) (0.04) (0.04) (0.05) (0.08)

Los Angeles 0.09 0.23 0.09 0.06 0.03 0.06 0.03
(0.29) (0.42) (0.29) (0.24) (0.17) (0.24) (0.17)

Proportion Teachers New to School 0.33 0.30 0.35 0.34 0.36 0.50 0.48
(0.27) (0.26) (0.25) (0.26) (0.26) (0.31) (0.29)

New to School, Not District 0.24 0.22 0.25 0.26 0.25 0.47 0.43
(0.24) (0.23) (0.23) (0.25) (0.23) (0.31) (0.29)

Average Experience New Teachers 3.21 2.76 3.13 3.17 3.13 6.44 5.87
(3.64) (3.18) (3.12) (3.47) (3.07) (4.88) (4.48)

Proportion temp teachers 0.06 0.05 0.05 0.06 0.06 0.04 0.04
(0.10) (0.08) (0.10) (0.09) (0.11) (0.08) (0.07)

Proportion Probationary 0.14 0.13 0.16 0.15 0.18 0.06 0.09
(0.18) (0.14) (0.16) (0.15) (0.17) (0.10) (0.13)

N 6476 546 307 198 171 198 171

Note: Table lists means and standard deviations in parenthesis. Funded and unfunded includes all elementary schools
participating in the regular QEIA program.
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Table 1.2: Sample Moment Conditions

Variable Mean S.D.

(Fundedi-pi) -0.00 (0.45)

(2007 Met Growth Target)(Fundedi-pi) -0.02 (0.36)

(2007 Proportion FRPL)(Fundedi-pi) -0.01 (0.39)

(2007 Student Enrollment)(Fundedi-pi) -5.80 (203.35 )

(2007 Std. API)(Fundedi-pi) 0.00 (0.53)

(2007 Proportion Hispanic)(Fundedi-pi) -0.01 (0.36)

(2007 English Language Learners)(Fundedi-pi) 0.00 (0.26)

(2007 Migrant)(Fundedi-pi) -0.01 (0.06)

Note: Sample analogs of moments in condition E[X(Fundedi−pi)] = 0.
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Table 1.3: Select Regression Results

(1) (2) (3) (4) (5)

Full Sample

Avg. Class Size -4.45*** -4.76*** -4.54*** -4.62*** -4.58***
(0.56) (0.56) (0.40) (0.46) (0.42)

Experience -0.83** -0.73
†

-0.90** -0.93** -0.98***
(0.26) (0.43) (0.27) (0.28) (0.25)

Std. API 0.14
†

0.41*** 0.08 0.26*** 0.22***
(0.08) (0.07) (0.07) (0.06) (0.05)

5
th

Grade Math 0.27** 0.46*** 0.25** 0.37*** 0.34***
(0.09) (0.09) (0.08) (0.08) (0.08)

5
th

Grade ELA 0.12* 0.30*** 0.06 0.17** 0.16**
(0.06) (0.07) (0.06) (0.05) (0.05)

Enrolled Since Previous Year 0.00 0.01 0.01* 0.00 0.01*
(0.01) (0.01) (0.00) (0.01) (0.00)

pi ∈ [.10, .90]

Avg. Class Size -4.69*** -4.68*** -4.58*** -4.90*** -4.80***
(0.45) (0.50) (0.41) (0.45) (0.45)

Experience -0.74
†

-0.61 -0.73
†

-0.59
†

-0.67*
(0.38) (0.45) (0.40) (0.34) (0.34)

Std. API 0.34*** 0.40*** 0.26*** 0.37*** 0.34***
(0.06) (0.07) (0.06) (0.06) (0.06)

5
th

Grade Math 0.43*** 0.44*** 0.41*** 0.49*** 0.47***
(0.09) (0.09) (0.09) (0.10) (0.10)

5
th

Grade ELA 0.26*** 0.30*** 0.19** 0.26*** 0.24***
(0.06) (0.07) (0.06) (0.06) (0.06)

Enrolled Since Previous Year 0.01 0.01 0.01* 0.01 0.01*
(0.01) (0.01) (0.01) (0.01) (0.01)

Covariates No No Yes No Yes
Propensity Score No Yes No No No
Fixed Effects No No No Yes Yes

Note:
†

indicates p < 0.10, * indicates p < 0.05, ** indicates p < 0.01, *** indicates p < 0.001. Standard
errors robust and clustered at district level. Omitted variable is 2005 unfunded. Covariates include dummy
for whether school met growth target in 2007, percent of students eligible for Free and Reduced Price
Lunches in 2007, an indicator for being in LA, and total enrollment in 2007. Results are from regression
with time dummies, and time dummies interacted with treatment indicator. When propensity score is
included, it is interacted with time dummies. Reported coefficients are from interaction of dummy for 2011
and treatment indicator.
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Table 1.4: Class Size and HQT

Avg. Class Size HQT Experience TEI

ATE 1 ATE 2 ATE 1 ATE 2 ATE 1 ATE 2 ATE 1 ATE 2

2005 0.10 0.22 0.01 0.00 -0.06 -0.20 -0.02 -0.00
(3.93) (0.84) (0.18) (0.04) (2.16) (0.58) (0.10) (0.10)

2006 0.17 0.25 0.01 0.00 -0.21 -0.29 -0.09 -0.05
(3.97) (0.81) (0.17) (0.04) (2.24) (0.64) (0.11) (0.10)

2007 0.05 0.12 -0.01 -0.02 -0.69 -0.76 -0.30* -0.23†

(3.90) (0.81) (0.17) (0.04) (2.16) (0.69) (0.13) (0.12)

2008 -0.18 0.08 0.01 0.00 -0.41 -0.55 -0.28* -0.23†

(3.92) (0.68) (0.18) (0.04) (2.19) (0.66) (0.13) (0.14)

2009 -1.61 -1.45† 0.01 0.00 -0.45 -0.45 -0.25† -0.18
(3.82) (0.80) (0.18) (0.04) (2.33) (0.72) (0.13) (0.13)

2010 -0.64 -0.63
(2.47) (0.72)

2011 -4.65 -4.35*** -0.01 -0.00 -0.57 -0.58 -0.02 0.01
(4.05) (0.95) (0.18) (0.04) (2.39) (0.64) (0.10) (0.12)

Note: † indicates p < 0.10, * indicates p < 0.05, ** indicates p < 0.01, *** indicates
p < 0.001. ATE1 is estimate of average treatment effect using one moment condition;
ATE2 is estimate of average treatment effect using two moment conditions. Standard
errors bootstrapped and clustered at district level. Class size data, which is used to
calculate TEI and includes HQT data, is not available in 2010.
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Table 1.5: Average Performance Index

Std. API Std. API Hispanic Std. API Low SES

ATE 1 ATE 2 ATE 1 ATE 2 ATE 1 ATE 2

2005 -0.01 -0.03 0.08 0.04 -0.08 -0.07
(0.22) (0.05) (0.21) (0.07) (0.20) (0.06)

2006 0.02 -0.03 0.08 0.02 -0.04 -0.07
(0.22) (0.05) (0.20) (0.06) (0.19) (0.05)

2007 0.01 0.05 0.04 -0.04 -0.01
(0.21) (0.19) (0.06) (0.19) (0.04)

2008 0.07 0.03 0.15 0.09 0.05 0.03
(0.19) (0.04) (0.17) (0.07) (0.16) (0.06)

2009 0.16 0.10† 0.22 0.15† 0.18 0.12
(0.20) (0.06) (0.18) (0.08) (0.17) (0.08)

2010 0.31 0.23*** 0.47* 0.35*** 0.39* 0.31***
(0.20) (0.06) (0.19) (0.09) (0.19) (0.08)

2011 0.43* 0.35*** 0.45* 0.41*** 0.48** 0.41***
(0.19) (0.07) (0.18) (0.08) (0.18) (0.08)

Note: † indicates p < 0.10, * indicates p < 0.05, ** indicates p < 0.01, *** indicates
p < 0.001. ATE1 is estimate of average treatment effect using one moment condi-
tion; ATE2 is estimate of average treatment effect using two moment conditions.
Standard errors bootstrapped and clustered at district level. 2007 API effect not
calculated since that covariate is used in the second moment condition.
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Table 1.6: Demographics

FRPL Parents College Degree Enrolled Since Previous Year

ATE 1 ATE 2 ATE 1 ATE 2 ATE 1 ATE 2

2005 -0.02 0.01 0.01 0.01 0.01 0.01
(0.16) (0.03) (0.02) (0.01) (0.16) (0.03)

2006 -0.03 -0.01 0.01 0.01 0.02 0.02
(0.15) (0.03) (0.02) (0.01) (0.16) (0.03)

2007 -0.02 0.01 0.00 0.01 0.01
(0.15) (0.02) (0.01) (0.16) (0.03)

2008 -0.02 0.01 0.01 -0.00 0.02 0.01
(0.16) (0.03) (0.01) (0.01) (0.17) (0.03)

2009 -0.03 -0.01 0.01 0.00 0.02 0.01
(0.16) (0.03) (0.02) (0.01) (0.16) (0.03)

2010 -0.03 -0.01 0.01 0.01 0.02 0.01
(0.16) (0.03) (0.02) (0.01) (0.16) (0.03)

2011 -0.05 -0.03 0.01 0.00 0.02 0.02
(0.16) (0.04) (0.01) (0.01) (0.16) (0.03)

Note: † indicates p < 0.10, * indicates p < 0.05, ** indicates p < 0.01, *** indicates
p < 0.001. ATE1 is estimate of average treatment effect using one moment condi-
tion; ATE2 is estimate of average treatment effect using two moment conditions.
Standard errors bootstrapped and clustered at district level. FRPL, parents with
college degree, and enrolled previous year are expressed in proportions.
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Table 1.7: Demographics Continued

Enrollment Black Hispanic

ATE 1 ATE 2 ATE 1 ATE 2 ATE 1 ATE 2

2005 -32.38 -5.38 0.02 0.02 -0.03 -0.00
(92.10) (20.44) (0.03) (0.01) (0.13) (0.03)

2006 -25.03 -1.19 0.02 0.02 -0.03 -0.00
(84.61) (17.32) (0.03) (0.01) (0.13) (0.03)

2007 -24.21 0.02 0.01 -0.02
(79.61) (0.03) (0.01) (0.13)

2008 -34.45 -11.82 0.02 0.01 -0.02 0.00
(83.42) (17.90) (0.02) (0.01) (0.14) (0.03)

2009 -30.22 -7.30 0.02 0.01 -0.02 0.00
(76.39) (16.19) (0.02) (0.01) (0.14) (0.03)

2010 -25.21 -6.93 0.01 0.01 -0.01 0.00
(78.41) (17.30) (0.02) (0.01) (0.13) (0.03)

2011 -31.41 -7.36 0.01 0.01 -0.02 0.00
(76.97) (18.15) (0.02) (0.01) (0.14) (0.03)

Note: † indicates p < 0.10, * indicates p < 0.05, ** indicates
p < 0.01, *** indicates p < 0.001. ATE1 is estimate of average
treatment effect using one moment condition; ATE2 is estimate
of average treatment effect using two moment conditions. Stan-
dard errors bootstrapped and clustered at district level. Black
and Hispanic are expressed in proportions.
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Table 1.8: Test Taking

Valid Scores Number Low SES Scores Number Hispanic Scores Prop. CST

ATE 1 ATE 2 ATE 1 ATE 2 ATE 1 ATE 2 ATE 1 ATE 2

2005 -25.25 -2.19 -28.88 -0.73 -21.88 2.85 0.03 0.01
(79.32) (18.25) (74.56) (17.27) (59.94) (14.73) (0.19) (0.04)

2006 -17.20 3.96 -21.36 2.47 -14.61 8.95 0.03 0.01
(73.57) (14.75) (69.07) (13.33) (57.90) (11.88) (0.17) (0.03)

2007 -22.40 -1.28 -25.92 -0.29 -20.11 3.99 0.02 0.01
(65.98) (13.21) (62.82) (11.86) (55.65) (10.46) (0.18) (0.03)

2008 -23.29 -9.40 -25.84 -5.47 -21.02 -3.41 0.01 0.01
(68.51) (15.06) (62.13) (14.03) (54.45) (12.31) (0.18) (0.03)

2009 -15.96 -2.69 -21.52 -3.30 -14.70 2.88 0.03 -0.00
(67.14) (14.40) (61.05) (13.87) (53.18) (12.12) (0.18) (0.03)

2010 -19.13 -2.09 -27.98 -4.49 -14.93 5.70 0.03 -0.00
(69.82) (15.35) (65.13) (14.96) (56.92) (12.86) (0.17) (0.03)

2011 -22.24 -0.65 -33.00 -7.19 -21.41 4.05 0.03 0.00
(68.36) (16.16) (63.69) (16.20) (55.00) (13.62) (0.17) (0.04)

Note: † indicates p < 0.10, * indicates p < 0.05, ** indicates p < 0.01, *** indicates p < 0.001.
ATE1 is estimate of average treatment effect using one moment condition; ATE2 is estimate of
average treatment effect using two moment conditions. Standard errors bootstrapped and clustered
at district level. Valid, low SES, and Hispanic scores refers to all standardized tests used in API.
CST is proportion of students taking the California Standardized Test, a subset of the API.
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Table 1.9: Teacher Mobility

New to school New to School, Not New to Dist. Avg. Experience New Teachers

ATE 1 ATE 2 ATE 1 ATE 2 ATE 1 ATE 2

2005 0.07 0.06 0.08 0.07 0.80 0.64
(0.08) (0.04) (0.06) (0.04) (0.79) (0.56)

2006 0.05 0.04 0.04 0.03 0.40 0.25
(0.07) (0.04) (0.05) (0.04) (0.71) (0.49)

2007 -0.01 -0.01 -0.04 -0.04 -0.47 -0.58
(0.08) (0.05) (0.07) (0.05) (0.91) (0.66)

2008 0.06 0.06 0.03 0.03 0.52 0.35
(0.07) (0.04) (0.05) (0.04) (0.81) (0.61)

2009 0.08 0.07† 0.08 0.07† 1.04 0.92†

(0.07) (0.04) (0.06) (0.04) (0.80) (0.55)
2010 0.03 0.04 0.03 0.05 0.10 0.37

(0.09) (0.04) (0.08) (0.04) (1.04) (0.58)
2011 -0.05 0.00 -0.06 -0.01 -0.65 -0.04

(0.10) (0.05) (0.10) (0.05) (1.44) (0.76)

Note: † indicates p < 0.10, * indicates p < 0.05, ** indicates p < 0.01, *** indicates p < 0.001.
ATE1 is estimate of average treatment effect using one moment condition; ATE2 is estimate
of average treatment effect using two moment conditions. Standard errors bootstrapped and
clustered at district level.
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Table 1.10: Teacher Composition

Probationary Tenured Long-term Substitute

ATE 1 ATE 2 ATE 1 ATE 2 ATE 1 ATE 2

2005 0.05 0.05* -0.04 -0.04 0.00 0.00
(0.04) (0.02) (0.13) (0.05) (0.01) (0.01)

2006 0.04 0.03 -0.02 -0.03 0.00 -0.00
(0.04) (0.02) (0.14) (0.05) (0.01) (0.01)

2007 0.04 0.04† -0.02 -0.02 0.00 0.01
(0.03) (0.02) (0.13) (0.05) (0.01) (0.01)

2008 0.04 0.04* -0.05 -0.05 0.01 0.01
(0.03) (0.02) (0.14) (0.04) (0.02) (0.02)

2009 0.03 0.03* -0.07 -0.07* 0.03† 0.03†

(0.03) (0.02) (0.14) (0.04) (0.02) (0.02)

2010 0.03† 0.04** -0.04 -0.04 0.00 -0.00
(0.02) (0.01) (0.15) (0.04) (0.01) (0.01)

2011 0.03 0.03* -0.05 -0.05 0.01 0.00
(0.02) (0.01) (0.17) (0.04) (0.01) (0.01)

Note: † indicates p < 0.10, * indicates p < 0.05, ** indicates p < 0.01,
*** indicates p < 0.001. ATE1 is estimate of average treatment effect us-
ing one moment condition; ATE2 is estimate of average treatment effect
using two moment conditions. Standard errors bootstrapped and clus-
tered at district level. Probationary, tenured, and long-term substitute
are expressed in proportions.
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Table 1.11: Class Size Grades K-2

Class Size Kindergarten Class Size 1st grade Class Size 2nd grade

ATE 1 ATE 2 ATE 1 ATE 2 ATE 1 ATE 2

2005 0.33 0.96 -0.18 0.09 0.08 0.24
(3.97) (0.99) (3.53) (0.72) (3.62) (0.70)

2006 0.28 0.83 -0.93 -0.17 -0.27 -0.12
(3.84) (0.95) (3.58) (0.71) (3.61) (0.73)

2007 0.24 0.88 -0.41 -0.10 -0.30 0.29
(3.83) (0.93) (3.40) (0.73) (3.49) (0.70)

2008 0.50 1.26 -0.01 0.59 -0.21 0.36
(3.88) (0.88) (3.47) (0.59) (3.42) (0.61)

2009 0.15 0.34 -0.50 0.16 -0.16 0.17
(3.77) (0.91) (3.62) (0.72) (3.47) (0.68)

2010

2011 -3.26 -3.04** -4.70 -3.98*** -4.39 -4.17***
(4.36) (1.10) (4.20) (0.94) (4.06) (1.02)

Note: † indicates p < 0.10, * indicates p < 0.05, ** indicates p < 0.01, *** indi-
cates p < 0.001. ATE1 is estimate of average treatment effect using one moment
condition; ATE2 is estimate of average treatment effect using two moment con-
ditions. Standard errors bootstrapped and clustered at district level. Class size
data are not available in 2010.
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Table 1.12: Class Size Grades 3-5

Class Size 3rd grade Class Size 4th grade Class Size 5th grade

ATE 1 ATE 2 ATE 1 ATE 2 ATE 1 ATE 2

2005 0.21 -0.15 0.86 0.30 1.84 -0.45
(3.70) (0.74) (5.21) (1.21) (5.70) (1.36)

2006 -0.27 0.11 0.26 -0.25 0.42 -0.68
(3.64) (0.71) (5.10) (1.08) (5.44) (1.20)

2007 -0.16 -0.23 -0.40 0.50 0.26 -0.14
(3.62) (0.80) (4.94) (1.23) (5.55) (1.29)

2008 -0.08 0.42 -1.68 -1.51† -1.89 -1.34
(3.61) (0.66) (4.73) (0.87) (4.79) (0.98)

2009 -1.33 -1.07 -4.63 -4.77*** -3.26 -4.36**
(3.65) (0.78) (4.69) (1.09) (5.09) (1.39)

2010

2011 -4.12 -4.20*** -4.79 -5.54*** -5.48 -6.07***
(4.04) (0.95) (4.80) (1.14) (4.85) (1.29)

Note: † indicates p < 0.10, * indicates p < 0.05, ** indicates p < 0.01, ***
indicates p < 0.001. ATE1 is estimate of average treatment effect using one
moment condition; ATE2 is estimate of average treatment effect using two
moment conditions. Standard errors bootstrapped and clustered at district
level. Class size data are not available in 2010.
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Table 1.13: Math Standardized Test

2nd Grade 3rd Grade 4th Grade 5th Grade

ATE 1 ATE 2 ATE 1 ATE 2 ATE 1 ATE 2 ATE 1 ATE 2

2005 -0.01 -0.02 -0.09 -0.08 -0.08 -0.07 -0.10 -0.09
(0.22) (0.08) (0.19) (0.06) (0.20) (0.06) (0.20) (0.08)

2006 -0.04 -0.06 0.02 0.00 -0.05 -0.07 -0.06 -0.05
(0.23) (0.08) (0.18) (0.06) (0.19) (0.07) (0.21) (0.06)

2007 -0.08 -0.08 -0.07 -0.05 -0.02 -0.02 -0.01 0.00
(0.19) (0.07) (0.21) (0.07) (0.17) (0.06) (0.18) (0.06)

2008 -0.06 -0.08 -0.01 -0.01 0.04 0.03 0.16 0.11
(0.18) (0.07) (0.19) (0.07) (0.17) (0.06) (0.17) (0.07)

2009 0.10 0.05 0.07 0.04 0.30* 0.32*** 0.14 0.09
(0.17) (0.08) (0.18) (0.07) (0.15) (0.08) (0.16) (0.07)

2010 0.16 0.10 0.23 0.18* 0.40** 0.40*** 0.45* 0.37***
(0.19) (0.08) (0.18) (0.08) (0.16) (0.08) (0.18) (0.09)

2011 0.36* 0.30*** 0.32† 0.29** 0.45** 0.40*** 0.47** 0.42***
(0.15) (0.09) (0.18) (0.09) (0.15) (0.08) (0.16) (0.10)

Note: † indicates p < 0.10, * indicates p < 0.05, ** indicates p < 0.01, *** indicates p < 0.001. ATE1 is
estimate of average treatment effect using one moment condition; ATE2 is estimate of average treatment
effect using two moment conditions. Standard errors bootstrapped and clustered at district level.
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Table 1.14: ELL Standardized Test

2nd Grade 3rd Grade 4th Grade 5th Grade

ATE 1 ATE 2 ATE 1 ATE 2 ATE 1 ATE 2 ATE 1 ATE 2

2005 0.10 0.09 -0.01 -0.02 0.03 0.01 -0.01 0.00
(0.21) (0.06) (0.20) (0.04) (0.20) (0.05) (0.21) (0.07)

2006 0.00 -0.02 0.05 0.05 0.00 -0.03 -0.01 -0.01
(0.21) (0.06) (0.20) (0.06) (0.20) (0.05) (0.21) (0.06)

2007 -0.06 -0.06 0.01 0.01 0.09 0.06 -0.02 -0.01
(0.19) (0.05) (0.22) (0.07) (0.20) (0.05) (0.19) (0.04)

2008 -0.03 -0.06 0.00 -0.02 0.07 0.03 0.14 0.08
(0.18) (0.07) (0.20) (0.06) (0.19) (0.05) (0.19) (0.05)

2009 0.09 0.03 0.05 -0.01 0.17 0.16* 0.07 0.03
(0.18) (0.06) (0.21) (0.07) (0.19) (0.06) (0.19) (0.05)

2010 0.10 0.07 0.19 0.10 0.24 0.20** 0.26 0.20**
(0.17) (0.07) (0.19) (0.08) (0.19) (0.06) (0.19) (0.06)

2011 0.26 0.20** 0.23 0.18* 0.33* 0.24*** 0.32† 0.23***
(0.16) (0.07) (0.19) (0.09) (0.17) (0.06) (0.19) (0.07)

Note: † indicates p < 0.10, * indicates p < 0.05, ** indicates p < 0.01, *** indicates p < 0.001.
ATE1 is estimate of average treatment effect using one moment condition; ATE2 is estimate
of average treatment effect using two moment conditions. Standard errors bootstrapped and
clustered at district level.
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Table 1.15: Cost-Benefit Analysis

Grade SD gain Cost per SD

in 2009
PDV

2009 2010 2011 2009 2010 2011

Upper Bound

4rd $2,975 0.11 0.13 NA $27,047 $22,885 NA

3th $3,609 0 0.13 0.15 ∞ $27,764 $24,062

2th $3,235 0 0 0.14 ∞ ∞ $23,107

Lower Bound

4rd $2,059 0.11 0.13 NA $18,720 $15,838 NA

3th $2,506 0 0.13 0.15 ∞ $19,277 $16,707

2th $2,132 0 0 0.14 ∞ ∞ $15,228

Project STAR

Pre-K $5,247 0.20 0.28 0.22 $26,239 $18,742 $23,853

Note: Upper bound of QEIA costs assumes administrative expenses
are all fixed costs, while the lower bound assumes they are variable
costs. Estimates of cost of implementing Project STAR class size re-
duction assume cost of additional teacher is $80,530. Test score gains
from Project STAR class size reduction are from Krueger (1999).
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Chapter 2

School Districts’ Revealed Preference

for Resource Allocation: Evidence

from California’s Quality Education

Investment Act

2.1 Introduction

Despite a growing concern since the 1970s over financial disparities across school districts,

with the least resources going to those districts least able to raise local revenue,1 relatively

little attention has been paid to disparities in resource allocation within district. Due pri-

marily to a paucity of school-level financial data, few analyses have explored the causes and

consequences of intra-district disparities. Those that do analyze disparities within district

are typically restricted to post-hoc descriptive analyses. They observe, often imperfectly,

the outcome of the process that allocates resources across schools, a process driven by

district preferences and constrained by institutional factors such as union contracts. Cali-

fornia’s Quality Education Investment Act (QEIA), on the other hand, provides a unique

1
For a review, see Corcoran et al. (2008), and Springer et al. (2008).
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opportunity to directly examine district preferences over low-performing schools, which

may be a driving force of intra-district disparities.

Implemented in 2007, the QEIA allocated approximately $2.7 billion to low-performing

schools, and required that funded schools implement a bundle of reforms. Rather than

spread the money across the approximately 1,200 schools that were eligible and chose to

participate, it was decided that funds would be distributed to a small number of semi-

randomly chosen schools, to enable financing of ambitious reforms in each school.

As part of the process of choosing funded schools, each district with more than one

participating school was required to rank its participating schools. If selected for funding,

the school was required to reduce class size, increase their counselor-student ratio,2 provide

training opportunities to staff, align their average teacher experience with the district

average, and meet accelerated academic performance targets. Districts believed that the

probability of a school receiving funding was higher for higher ranked schools.3 District

rankings therefore provide a window into district preferences for resource allocation.

Using a discrete choice mode that leverages districts’ full rankings, this paper seeks to

address the question of how districts choose to allocate resources across schools. I find

some evidence that districts preferred schools that applied to, and would receive priority

for, an alternative program, in which schools crafted their own reforms. There is also some

evidence that districts ranked highly schools with a high percentage of students eligible for

Free and Reduced Price Lunch (FRPL).

There is clear evidence that districts ranked highly those schools that had been repeat-

edly sanctioned under No Child Left Behind for failing to make Adequate Yearly Progress.

2
This requirement applied only to high schools.

3
The actual selection process was misrepresented to schools, as described below. In fact, the probability

of selection was not monotonic in district rankings.
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These sanctions imposed costs on districts, and districts apparently preferred using QEIA

resources to help mitigate those costs. This has important implications for policy makers,

particularly where policies from various levels of government overlap: schools for which the

federal government imposed a cost for failing to meet achievement targets were more likely

to receive support from their districts. The federal government did therefore effectively

incentivize districts to shift resources toward under-performing schools.

Tests of the assumption that all districts share common preferences reject, perhaps due

solely to the preferences of one large district, LA Unified. Additionally, a test that districts

weight characteristics in selecting the highest ranked school in the same way that they

rank characteristics for all schools rejects. Nonetheless, the general pattern in coefficients

persists, particularly those pertaining to NCLB sanctions. An important limitation of

QEIA is that it does not reveal district preferences over all schools, only over those that

are low-performing and chose to participate in QEIA.

The remaining paper proceeds as follows: section 2.2 relates this paper to existing

literature; section 2.3 lays out the institutional details of QEIA; section 2.4 describes the

data; section 2.5 outlines the model and identification; section 2.6 presents results. Section

2.7 concludes.

2.2 Literature

This paper contributes to the still-nascent literature on intra-district resource allocation,

which by necessity focuses on large school districts for which school-level financial data are

available. For example, Iatarola et al. (2003) examine resource allocation across middle

and elementary schools in New York City. They examine distributions across schools for
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similar students, distributions within schools for different students, e.g., special education

and regular education students, and the association between educational outcomes and

equity of resources. In their analysis of resource allocation, they use measures of inequality

such as the range, Gini coefficient, and coefficient of variation of resource allocation. They

find that there is a trade-off between teacher salaries and certification on one hand, and

lower pupil-teacher ratios on the other. They hypothesize that districts try to channel

more teachers toward lower-performing schools, but that union contracts allow experienced

teachers to choose higher-performing schools.

Roza et al. (2004) find that the practice of using average salary, common among re-

searchers and public officials, creates important intra-distract disparities that can be exacer-

bated by “budget layering.” They note, for example, that Title I is intended to supplement

schools after districts equate spending across schools. However, since the legislation permits

calculation of teacher salaries using the average in the district, disparities persist. They

note that the vast majority of school districts are blind to these disparities because they

focus on average teacher salaries, ignoring the possibility that more experienced, and thus

higher paid teachers might be channeled toward particular types of schools.

In another study, Klein (2008) analyzes school-level financial data from the Metropolitan

Nashville-Davidson County School District in Tennessee, and finds that when enrollment

is controlled for, districts actually allocate more resources to schools with high percentages

of students eligible for Free and Reduced Price Lunches. No evidence is found to suggest

that preferences are determined by academic performance or percent of minority students.

Unlike the above studies, which rely on observed allocations of funding that are the

result of district preferences and institutional constraints, the QEIA allows for a direct
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analysis of district preferences over low-performing schools. The following section details

the background and implementation of the QEIA.

2.3 Institutional Details

The QEIA was the consequence of litigation against then California Governor Arnold

Schwarzenegger. The plaintiffs in the case successfully argued that the state underfunded

public schools in the 2004-2005 and 2005-2006 school years.4 As a result of the settlement,

the state was required to pay back approximately $2.7 billion to K-12 schools.

Recognizing that allocating the money equally across all schools, or even across all

low-performing schools, would have a small impact on per-pupil funding in those schools,

legislators decided instead to focus on a subset of low-performing schools. The subset was

chosen using a lottery mechanism, and the number of schools was chosen such that funding

would increase by $500 per student in kindergarten through 3rd grades, $900 in grades 4-8,

and $1,000 in high school from 2008-2014, and by half as much in 2007.

Schools were eligible to participate in the lottery if they were in the bottom two deciles

of the state’s academic performance distribution, as determined by California’s Academic

Performance Index (API). Eligible schools had to commit to meeting the requirements of

QEIA before they could participate in the selection process, though they could instead apply

to an alternative program, in which they would design their own reforms. Each district with

more than one participating school was required to rank each of its participating schools.

It was permissible to give multiple schools the same rank, and indeed several districts did

so.

4
Henceforth, academic years are referred to by the year in which the Spring semester occurs. Thus the

2005-2006 school year is referred to as 2006.
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Figure 2.1 provides an excerpt of the ranking submitted by the San Diego School Dis-

trict. Districts had to rank participating schools, list the type of each school (e.g., middle or

elementary), whether the school was applying to the alternative program, and if it should

receive priority consideration for the alternative program. Priority consideration for the

alternative program was given to all high schools, and not to any elementary or middle

schools. Each district was then assigned as many random numbers as it had participating

schools, and the numbers were allocated to schools based on the rankings. For example, if

a district received the numbers 1 and 201, 1 was assigned to the highest ranked school and

201 to the next school. If districts assigned tied rankings, the California Department of

Education randomly chose the ordering. Within each stage of the selection, these random

numbers determined the order.

Districts were told that the selection would occur in three stages: first, high schools

that applied to the alternative program with the lowest random numbers would be chosen

until 15% of funds were allocated;5 second, to ensure geographic diversity, the school with

the lowest random number in each county would be selected, if that county did not have a

school funded in the first stage; finally, schools with the lowest random numbers applying

to the regular program would be selected, until all funds were exhausted. In fact, the last

stage was divided in two, with high schools randomly selected separately from and prior

to middle and elementary schools. That districts were told high schools and elementary

schools would be treated equally is evidenced in contemporaneous school board minutes,

e.g., (Santa Rosa City Schools (2007)), and CDE presentations (Balcom (2007)). This is

also the depiction in the report to the California legislature (CDE (2010)), written 3 years

5
If all high schools were selected and the 15% of funds not exhausted, those elementary and middle

schools with the lowest random numbers applying to the alternative program would have been selected.
However, given the number of high schools that applied, this outcome was not possible.
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after the selection process occurred. Indeed, to my knowledge there is no public source

that correctly describes the separation of high schools in the selection process.6

Once a school was selected, it was required to implement the following reforms: reduce

class sizes; align average teacher experience, as measured by the Teacher Experience Index

(TEI), with the district average; provide professional development for teachers and staff;

ensure that all teachers at the school met requirements to be Highly-Qualified Teachers

(HQT); high schools were required to increase counselor-student ratios; and all selected

schools were required to exceed their average achievement growth target over the first

three years.7 Schools in the alternative program were exempt from the bulk of these

requirements.

The QEIA stipulated that funded schools should have no more than 20 students per

class in kindergarten through 3rd grades, and no more than 25 per class in grades 4-12 - or

5 fewer than the baseline average class size, which ever was lower.8 In the first three years

of QEIA, schools were required to reduce the difference between the pre-QEIA average class

size and the QEIA target class size by 1/3. For some schools, the average in 2007 was quite

low, which was particularly strenuous for small schools with a single class room per grade.

As such, many schools applied for and were granted waivers from this requirement, and

instead met a higher minimum class size requirement. There is no evidence that schools

were aware of the possibility of a waiver when they ranked schools.

Under QEIA, teacher experience is measured by the Teacher Experience Index (TEI).

6
I discovered that the common description was incorrect only after attempting to reconcile the district

rankings, actual random number allocation, and funding results. After extensive conversation with CDE
employees I learned the actual method.

7
Student achievement growth targets in California are formulaic: each school is required to improve by

5% of the difference between their API and 800, or by 1 point, which ever is greater, until they reach 800.
8
The baseline was the school’s grade-level average class size in 2006, unless that average was greater

than 25, in which case 2007 was used.
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In calculating the TEI, teachers with more than 10 years of experience are assigned 10

years in calculating the average. Part-time teachers are given full weight in the calculation,

and teachers at multiple schools count towards each school’s average. Funded schools are

required to exceed the district average Teacher Experience Index.

Districts selected for QEIA were required to provide professional development oppor-

tunities for teachers, administrators, and paraprofessionals, e.g., teaching aides. Funded

schools were required to build and maintain a system for tracking participation in profes-

sional development programs, and districts were required to ensure that funded schools

were in fact meeting the requirements. Participation requirements for teachers were clearly

spelled out by QEIA, e.g., each year at least one third of teachers in a QEIA funded school

were required to participate in training, but the specifics of the training program were

largely left to the schools and districts.

All teachers in QEIA funded schools had to meet the requirements of the federal Ele-

mentary and Secondary Education Act (ESEA) for Highly Qualified Teachers. According

to CDE (2010), and as corroborated in the data (see Table 2.1), the vast majority of schools

eligible to participate in QEIA were already required to meet the HQT standard. Schools

were also required to meet the stipulations of the Williams settlement, which was the re-

sult of a 2004 court case, Williams v. California State, and already applied to most QEIA

eligible schools prior to QEIA (again, see Table 2.1). The Williams settlement required

low-performing schools to have qualified teachers and safe, well-maintained facilities.

High schools that received funding under QEIA that were not in the alternative program

were required to increase their counselor-student ratio to 1:300. As with the class size

reduction, schools were required to reduce the difference between their initial counselor-
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student ratios and the target level by 1/3 in each of the first three years. Since so few

schools in QEIA are high schools, and since half of the high schools in QEIA are in the

alternative program, this requirement has not been monitored as extensively as the others

(CDE (2010)).

All funded schools were required to have a growth in API over the first three years of

funding that exceeded the average target growth over those three years. The API growth

target is determined formulaically for all schools in California. After the first three years of

funding, regular QEIA schools are required to meet target growth rates for each subsequent

year, and QEIA schools participating in the alternative program are required to continue

exceeding the target.

QEIA went into effect against the backdrop of the federal No Child Left Behind Act.

Under NCLB, schools are required to make Adequate Yearly Progress (AYP), or enter

“Program Improvement” (PI) status. Each year that a school remains in PI it faces in-

creasing sanctions. If a school meets AYP for one year, it’s PI status remains the same,

i.e., it does not advance to the next year of PI. If the school meets AYP for two consecutive

years, it exits PI. In the first year of PI, districts must notify parents and provide them the

option to choose another school in the district that is not in PI, while schools must divert

Title I funding toward professional development. In the second year, the requirements of

the first year persist, and districts must also provide supplemental services to students.

In the third year, the district is required to take more severe corrective action, which

can include replacing the entire school staff, replacing the curriculum, extending the school

year or day, or appointing an outside expert. In the fourth year, a district must plan for

changing the governance structure of the school; it can for instance reopen the school as a
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charter school, replace the staff, or allow the state to take over. In the fifth year the district

must implement this plan.

2.4 Data

This analysis draws on a number of publicly available data sets collected by the Califor-

nia Department of Education (CDE). School-level demographic data are made publicly

available in California’s (API) Data Files.9 These data include demographics such as en-

rollment, percent Free and Reduced Price Lunch, and percent of parents with a high school

degree. Also included is each school’s API, which is a weighted average across subjects of

that school’s performance on state standardized tests.

Yearly teacher-level data are also publicly available. Unfortunately, each year teachers

are reassigned unique identifiers, so the data are not linked across years. I therefore create

a synthetic panel, which links teachers across years and within schools on the basis of

teacher characteristics, notably teaching experience and experience within the district. For

example, if in a particular school there’s a teacher in 2008 with four years of experience

teaching and 2 years experience teaching in the district, and in the following year that same

school has a teacher with five years of teaching experience and three years experience in

the district, and both are equivalent in gender and race, I link those observations. If two

teachers are observationally equivalent, I randomly link them across years. An important

shortcoming of this synthetic panel is that I cannot accurately determine duration spells.

These data also include administrators and employees who interact with students but are

not teachers, e.g., guidance counselors, librarians.

9
Available at http://www.cde.ca.gov/ta/ac/ap/apidatafiles.asp
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Class size data are available at the employee-assignment level, where an assignment is

a class taught by a particular teacher. Teachers teaching multiple math classes at a school

appear multiple times in this data, as do classes with multiple teachers, e.g., a teacher and

teacher’s aide. I use these data to construct average class sizes and the class size targets

for schools were they to participate in QEIA.

Finally, I use the rankings submitted by districts to the California Department of Ed-

ucation. A portion of the form submitted by San Diego County is displayed in figure 2.1.

Districts were required to note whether the school was participating; the type of the school;

whether the school was applying to the alternative program; and, for alternative schools,

whether they met the requirement for priority funding.10 Most importantly, districts had

to assign a rank to each participating school. Districts could give all schools a rank of one,

or rank a subset of schools equally.

Table 2.1 provides descriptive statistics for all California schools, those eligible to par-

ticipate which chose not to, those that applied for the alternative program, and those that

applied to the regular program. High schools were more likely to apply to the alterna-

tive program, for which they received priority. As mentioned above, the vast majority of

teachers in schools eligible and participating in QEIA were already classified as HQT, and

indeed this is true of all schools in California. The Williams Settlement applied to nearly a

quarter of all schools, and nearly all schools eligible and or participating in QEIA. Schools

that were eligible to participate but chose not to do so were more likely to have met their

growth target in 2006. Not surprisingly, schools that were ineligible were less likely to be

in PI in 2007.

Table 2.2 provides descriptive statistics for my analytic sample. From the set of all

10
Priority funding for the alternative program was given to all high schools that applied for that program.
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schools participating in QEIA, my analytic sample drops those that are the only school in

their district, and those for which all schools in the district were given the same ranking,

since these schools provide no information on district preferences. The table provides

summary statistics by the number of schools in the district. The data contain 30 districts

that ranked 2 schools, 29 that ranked 3 schools, 51 districts with 4-10 schools, and one

district, LA Unified, with 234 schools.

For comparison with later results, table 2.3 presents unconditional differences in covari-

ates between schools ranked above the median, and schools ranked below the median, by

district size. If a district has an odd number of schools, the median school is randomly set

to be above or below. In larger districts, including LA Unified, charter schools were less

likely to be ranked above the median.11 Larger districts are also less likely to rank highly

schools that have just entered PI, but more likely to rank highly schools that are in the 5th

stage of PI. Across districts of all sizes, schools that bring in more revenue are more likely

to be ranked highly, and even more so if they met their growth target in 2006. In larger

districts middle schools were more likely to be found ranked above the median.

2.5 Model

Each district with more than one participating school was required to rank each of its

participating schools, with the understanding that the highest ranked school in each district

had the highest probability of being chosen as a QEIA school.

Let Nd denote the number of schools in district d. Schools are indexed by r, which is also

their ranking, and are denoted as Sr, where Sr � Si ∀i > r, and � denotes preference.

11
That several coefficients are significant only for larger districts is in part an artifact of the greater

statistical power given the larger samples.
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If there exists a function F (Zr) = F ∗(Zr) + εr, where εr is iid type I extreme value, such

that

S1 � S2 � · · · � SNd
⇐⇒ F (Z1) > F (Z2) > · · · > F (ZNd

) (2.1)

then we can use the following result, known as a rank order logit or exploding logit, and

first introduced into the economics literature by Beggs et al. (1981):

Pr(S1 � S2 � · · · � SN ) =
N∏
j=1

e
F
∗
j

N∑
m=j

eF
∗
m

(2.2)

This model does not explicitly allow for tied rankings, which would occur with proba-

bility zero. In the QEIA rankings, most ties occur where districts gave the same ranking to

all their participating schools, and these districts therefore provide no information about

district preferences. I drop these schools, and am left with five districts that give the same

rank to two schools, and different ranks to other schools, and one that ranks three schools

first, followed by others.

Tied rankings are analogous to tied exit times in a proportional hazard model. There,

ties can be thought of as the consequence of low-frequency data. For example, if data are

collected yearly, multiple observations may exit throughout the year at different points, but

they are observed as exiting simultaneously. If districts are insensitive to small differences

in F , then tied rankings would in fact obscure an underlying ordering.

If there is in fact an underlying order, tied rankings can be accommodated by modifying

equation (2.2) such that a set of tied schools contribute to the likelihood through the sum

of all possible orderings. For example, if a district had 3 schools, and ranked two first and
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the other second, their contribution to the likelihood would be

P(S1 � S2 � S3 ∪ S2 � S1 � S3) = eF
∗
1

eF
∗
1 + eF

∗
2 + eF

∗
3

 eF
∗
2

eF
∗
2 + eF

∗
3

+

 eF
∗
2

eF
∗
1 + eF

∗
2 + eF

∗
3

 eF
∗
1

eF
∗
1 + eF

∗
3



This can quickly complicate the likelihood, since for Tj schools given tied ranking j, there

are Tj ! terms in the summand. As such, Stata provides various methods for approximating

the exact likelihood. For my results, I use Efron’s approximation Efron (1977), which for

the above example would use

P(S1 � S2 � S3 ∪ S2 � S1 � S3) = eF
∗
1

eF
∗
1 + eF

∗
2 + eF

∗
3

 eF
∗
2

0.5 ∗ (eF
∗
1 + eF

∗
2 ) + eF

∗
3



Stata’s “exactm” option, which uses a Gauss-Laguerre quadrature approximation of the

exact likelihood, yields similar point estimates,12 but does not allow for the calculation of

robust standard errors.

The question then is how to model F . I assume F ∗ = F ∗(E(Revenue),E(Cost),X), and

my interest lies in estimating ∂F ∗/∂X. That is, holding constant the expected revenue and

12
Results are available from the author by request.
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costs of participating in QEIA, what school characteristics influence the rankings?

The revenue from a school is a function of its enrollment and the probability that the

school remains funded in each subsequent year, while the expected cost is a function of

how many teachers must be hired, the required average experience of those teachers, and

the total number of teachers, administrators, and para-professionals for whom professional

development must be provided. Conditional on meeting the class size, teacher experience,

and professional training requirements, whether a school remains in the program is a func-

tion of whether its average growth over the first three years exceeds its average growth

target over those years. I proxy for this using an indicator for whether the school met its

growth requirement in 2006, which I interact with measures of revenue and costs.

Revenue is included as the sum across grades of the per-pupil increase in funding times

the number of students in each grade. I model the cost of meeting the class size reduction

requirement as being proportional to the number of new teachers that must be hired, i.e.,

the change in the teacher-pupil ratio times the number of students:

∆T = Number new teachers =

(
1

CStarget
− 1

CS2007

)
∗ Enrollment2007 (2.3)

A school may be able to satisfy its teacher experience requirement and the class size

reduction requirement by ensuring that all newly hired teachers have at least 10 years of

experience. However, it may also be the case that even after having satisfied the class size

reduction requirement, additional changes to the teacher workforce will be required to meet

the experience requirement. To capture this, I include an indicator for whether TEI binds

after meeting the class size reduction requirement, i.e.,
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TEI Binds = 1

[
1

T2007 + ∆T
(TEI ∗ T2007 + ∆T ∗ 10) < TEItarget

]
(2.4)

where Tt is the number of teachers in year t, and 1[·] is the indicator function. To capture

the cost of providing professional development, I include T2007, and I include the number

of paraprofessionals. This last variable is also interacted with an indicator for being a high

school to capture the need for high schools to meet the counselor-to-student ratio.13

Also included in the model are demographic variables, including indicators for what if

any year of PI the schools is in, whether the school applied to the alternative program,

indicators for being high schools or middle schools, an interaction between high school and

alternative, an indicator for whether the school is a charter school, the percent of students

eligible for Free and Reduced Price Lunch, and the percent of students who are Hispanic.

To summarize the model, I estimate the following:

F = ξ1Revenue + ξ2Revenue ∗Met2006 + ξ3 ∗Met2006 + cγ + cδ ∗Met2006 +βX + ε (2.5)

where Met2006 is an indicator for having met the growth target in 2006, c is a row vector

containing number of teachers, number of non-teaching employees working with students,

the gap between a school’s TEI and its target, required number of new teachers, and

indicators for high school and middle school.

Though this “kitchen sink” approach might fully control for the expected cost and

revenue of participating in QEIA, care must be taken in interpreting the coefficients on

measures of revenue and cost. Consider, for example, a middle school with an average

13
Guidance counselors are included in this variable, but cannot be identified separately from other

positions, e.g., school nurses.
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class size of 35 students and a target of 25 students per class. Revenue, as a function of

enrollment, cannot increase while holding constant the required number of new teachers,

since for every 87.5 additional students the school receives an additional $78,780, and must

hire one more teacher to fulfill the class size requirement.14 While I attempt to control for

expected revenue and costs, I don’t tease apart their effects.

2.6 Results

Coefficients on demographic variables are presented in Table 2.4, with the baseline results

in the first column. Standard errors in brackets are robust to misspecification. That is,

even if ε does not follow the type I extreme value distribution, the robust standard errors

are correct for estimates of the parameters that minimize the misspecified log likelihood.

Standard errors in parentheses are not robust to this misspecification. Though no more

likely to rank highly middle and elementary schools that applied for the alternative program,

the non-robust standard error and point estimate suggests districts were more likely to rank

highly high schools applying to this program. This suggests that districts understood that

high schools would be given priority in this program, and they valued the flexibility of

the program. Districts were no more likely to rank charter schools higher than regular

schools, though they were more likely to rank highly schools with a higher percentage of

FRPL students, with a 43 percentage point increase in FRPL having an effect of the same

magnitude as being a high school applying for the alternative program. There is marginal

evidence that districts preferred schools with a high percentage of black students.

The pattern in the point estimates on year in PI suggests the more years a school was in

14
For comparison, average teacher salary in California in 2008 was $64,424 U.S. Department of Education

(2009), excluding benefits, which Podgursky (2006) estimates to account for 20% of total compensation.
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PI the more likely the district was to rank the school highly. The financial and reputation

costs of PI increased each year, and districts appear to have seen QEIA as a way to limit

these costs. The effect of being in the 5th year of PI is almost four times as large as the

effect for being in the 1st year, and is comparable to the effect of a school going from no

students eligible for FRPL to all students being eligible.

LA schools make up 21.1% of my sample, and my results may partially be driven by

the ranking of LA Unified. Column 2 presents estimation results excluding LA from the

sample. In an interaction of all variables with an indicator for being an LA school, a Wald

test rejects the null of no difference in coefficients with p < 0.001. Nonetheless, as the

second column indicates, the pattern on demographic coefficients is quite similar to the

baseline model. One exception is the effect of being a charter school, which diminished

a school’s ranking more in districts other than LA Unified. Districts give more favorable

rankings to high schools participating in the alternative program, and to schools with a

high percentage of students eligible for Free and Reduced Price Lunch. The pattern persists

of districts giving higher rankings to schools the longer they are in PI, though the effect is

smaller.

The distinct preferences of LA Unified are one example of how the assumption of same

coefficients across districts could be violated. Other tests are presented in columns 3 and 4,

both of which include an interaction with a count variable of the number of participating

schools, and the latter of which also excludes LA schools. The count variable is the number

of participating schools minus the average number of participating schools in districts other

than LA Unified. A Wald test of the null hypothesis that the coefficients on terms interacted

with the count variable are all zero rejects when LA is included (p < .001), and at the 10%
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level when LA is excluded (p = 0.08). For a typical district excluding LA, schools with

high percentages of FRPL lunch students, and schools in latter years of PI, are more likely

to be ranked highly. There is some evidence that the typical district, excluding LA, was

less likely to rank charter schools highly.

Another assumption of the rank order logit model is that districts weight characteristics

equally whether they are ranking the first school or the last. One way to test this assumption

is to estimate a conditional logit model, in which districts choose only the highest ranked

school. The results from this exercise are presented in the final column. A Hausman

test of the null hypothesis of no misspecification rejects (p = 0.0026), suggesting the rank

order logit assumptions are violated. Nonetheless, one finding remains true across all

specifications: districts were more likely to rank highly schools that were in the fifth, and

most severe year of PI. Given that the rank order logit model fails several specification

tests, the results should be interpreted as descriptive.

Nonetheless, across specifications a clear pattern emerges: districts preferred to rank

highly those schools that faced sanctions under NCLB, and the more severe those sanctions,

the more highly ranked the school became. NCLB sanctions were intended to improve stu-

dent achievement, but they imposed a cost on districts. For instance, in the first year of

Program Improvement, schools had to provide additional professional training, but this ef-

fort was to be funded using existing Title I allocations, which were therefore diverted from

elsewhere. The descriptive evidence suggests that districts thought sanctioned schools most

deserved to participate in QEIA, in an effort to help those schools exit NCLB sanction-

ing. The federal government was therefore able to influence intra-district allocations, by

providing incentives for districts to shift resources to sanctioned schools.
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2.7 Conclusion

The landmark court case Serrano v. Priest of 1971 ushered in an era of awareness of

disparities in educational resources across districts, with students from families with the

least resources attending districts that likewise were under-resourced. Due primarily to a

lack of within-district financial data, few studies have been able to address the question

of whether disparities exist within district as well. Resource allocation within a district is

determined by district preference and institutional constraints. Studies of within-district

disparities have by necessity focused on the outcome of this process in a handful of districts.

This paper seeks to understand determinants of intra-district resource allocation by

observing directly district preferences over low-performing schools. Due to a requirement

of California’s QEIA, districts were essentially required to answer the question, “Were you

to receive funding for one school to implement mandated reforms, which would you choose?

Conditional on that school being funded, which would you choose next?” Using districts’

responses, in the form of rankings, I model district preferences using a discrete choice

model.

Doing so, I find consistent evidence that districts preferred to fund schools that were in

the 5th year of PI. Under No Child Left Behind, schools that fail to meet Adequate Yearly

Progress are forced into increasingly strict sanctions, referred to in California as PI. By

the fifth year of PI, schools are required to implement plans that dramatically change their

organizational structure, by for instance reopening as a charter school, replacing the entire

staff, or allowing the state to take over. Districts seemed to have preferred giving these

schools the opportunity to participate in QEIA. This has important implications for policy

makers, particularly where policies from various levels of government overlap: schools for
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which the federal government imposes a cost for failing to meet achievement targets are

more likely to receive support from their districts. The federal government can therefore

effectively incentivize districts to shift resources toward under-performing schools.

The rank order logit model that I employ has strong assumptions, such as constant

coefficients across districts and choices. That is, each district is assumed to weight charac-

teristics equally, whether they are choosing their highest ranked or second-to-last ranked

schools. Tests for the validity of these assumptions fail in the case of QEIA, and the results

are therefore best viewed as descriptive, rather than as estimates of underlying parameters

of districts’ utility functions.

Another shortcoming of this study is that it is only capable of describing preferences

over low-performing schools. QEIA required districts to rank only those schools eligible

to participate, and eligibility was determined by an academic achievement cut-off. While

district preferences for resource allocation across low-performing schools is important, this

undoubtedly misses important dynamics in the allocation of resources across all schools

within a district. The study of district preferences across all schools is therefore left to

future research.
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APPENDIX A - FIGURES

Figure 2.1: Portion of Form Submitted by San Diego
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Table 2.1: Descriptive Statistics, All Schools

All Schools Eligible, Not
Participating

Participating
in Alternative

Participating
in Regular

2007 class size 22.53 23.33 25.36 23.18
(6.13) (4.49) (4.29) (3.55)

Middle school 0.15 0.14 0.19 0.17
(0.36) (0.35) (0.40) (0.38)

High school 0.24 0.22 0.45 0.11
(0.43) (0.41) (0.50) (0.31)

HQT 2007 0.92 0.91 0.87 0.90
(0.17) (0.17) (0.13) (0.15)

Williams applies 0.23 0.89 0.95 0.95
(0.42) (0.32) (0.21) (0.23)

Met target 2006 0.61 0.71 0.60 0.65
(0.49) (0.46) (0.49) (0.48)

2007 LA 0.08 0.01 0.24 0.18
(0.27) (0.10) (0.43) (0.39)

Year 1 of PI 0.07 0.10 0.19 0.17
(0.26) (0.30) (0.40) (0.37)

Year 2 of PI 0.03 0.10 0.07 0.10
(0.18) (0.30) (0.25) (0.30)

Year 3 of PI 0.05 0.15 0.10 0.21
(0.22) (0.36) (0.30) (0.41)

Year 4 of PI 0.03 0.18 0.18 0.16
(0.18) (0.39) (0.39) (0.37)

Year 5 of PI 0.04 0.14 0.26 0.19
(0.19) (0.35) (0.44) (0.39)

N 9714 195 88 1172

Note: Table lists sample means and standard deviations in parentheses. With the
exception of 2007 class size, all variables are dichotomous, and thus means are the
proportion of schools falling into that category. PI refers to “Program Improvement.”
All schools is the universe of public schools in California in 2007.
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Table 2.2: Descriptive Statistics, by Ranking

Participating Schools in District

2 3 4 5 6-10 11-55 234

Number of Districts 30 29 16 16 19 18 1

Alternative Program 0.033 0.080 0.063 0 0.144 0.055 0.090
(0.181) (0.274) (0.244) (0 ) (0.352) (0.228) (0.286)

HS*(Alternative) 0 0 0.016 0 0.068 0.027 0.051
(0 ) (0 ) (0.125) (0 ) (0.253) (0.163) (0.221)

Charter 0.033 0.023 0.016 0.025 0.014 0.037 0.026
(0.181) (0.151) (0.125) (0.157) (0.117) (0.188) (0.158)

Prop. FRPL 0.851 0.836 0.821 0.750 0.803 0.867 0.896
(0.125) (0.126) (0.175) (0.145) (0.139) (0.136) (0.096)

Prop. Hispanic 0.732 0.746 0.828 0.741 0.790 0.704 0.832
(0.221) (0.227) (0.185) (0.216) (0.173) (0.231) (0.195)

Prop. Black 0.055 0.057 0.031 0.113 0.079 0.151 0.132
(0.087) (0.079) (0.065) (0.148) (0.104) (0.167) (0.193)

Year 1 of PI 0.167 0.138 0.188 0.138 0.164 0.105 0.299
(0.376) (0.347) (0.393) (0.347) (0.372) (0.307) (0.459)

Year 2 of PI 0.150 0.092 0.047 0.125 0.137 0.084 0.047
(0.360) (0.291) (0.213) (0.333) (0.345) (0.278) (0.212)

Year 3 of PI 0.233 0.184 0.234 0.175 0.199 0.256 0.192
(0.427) (0.390) (0.427) (0.382) (0.400) (0.437) (0.395)

Year 4 of PI 0.150 0.322 0.188 0.250 0.144 0.194 0.047
(0.360) (0.470) (0.393) (0.436) (0.352) (0.396) (0.212)

Year 5 of PI 0.133 0.149 0.156 0.138 0.123 0.224 0.299
(0.343) (0.359) (0.366) (0.347) (0.330) (0.417) (0.459)

Elementary 0.750 0.713 0.641 0.700 0.699 0.692 0.675
(0.437) (0.455) (0.484) (0.461) (0.460) (0.462) (0.469)

N 60 87 64 80 146 438 234

Note: Table lists sample means and standard deviations in parentheses. With the excep-
tion of 2007 class size, all variables are dichotomous, and thus means are the proportion of
schools falling into that category. PI is “Program Improvement.” Required new teachers is
the change in the mandated change in the teacher/student ratio times student enrollment.
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Table 2.3: Difference Above Median Ranking-Below Median Ranking

Participating Schools in District

2 3 4 5 6-10 11-55 234

Number of 30 29 16 16 19 18 1
Districts

Alt. program 0.000 -0.017 -0.063 0.000 0.068 0.028 0.043
(0.047) (0.059) (0.061) (0.000) (0.058) (0.022) (0.037)

HS*(alt.) 0.000 0.000 -0.031 0.000 0.027 0.019 0.051*
(0.000) (0.000) (0.031) (0.000) (0.042) (0.016) (0.029)

Charter 0.000 -0.044 0.031 -0.048 -0.027 -0.054*** -0.034*
(0.047) (0.031) (0.031) (0.033) (0.019) (0.018) (0.021)

Prop. FRPL -0.011 -0.015 0.029 -0.034 -0.003 0.018 -0.031**
(0.032) (0.027) (0.044) (0.033) (0.023) (0.013) (0.012)

Prop Hispanic 0.001 0.037 -0.007 0.016 0.029 -0.023 -0.029
(0.058) (0.049) (0.047) (0.048) (0.029) (0.022) (0.026)

Prop black 0.006 -0.010 0.004 -0.006 -0.010 0.027* 0.030
(0.023) (0.017) (0.016) (0.033) (0.017) (0.016) (0.025)

Year 1 of PI -0.000 0.102 -0.063 -0.061 -0.137** -0.081*** -0.376***
(0.098) (0.075) (0.099) (0.077) (0.061) (0.029) (0.055)

Year 2 of PI 0.167* -0.040 -0.094* -0.188*** -0.055 -0.022 -0.043
(0.091) (0.062) (0.052) (0.069) (0.057) (0.027) (0.028)

Year 3 of PI -0.067 -0.033 0.031 0.068 0.178*** -0.034 0.060
(0.111) (0.084) (0.108) (0.086) (0.065) (0.042) (0.052)

Year 4 of PI -0.100 0.022 0.125 -0.025 0.041 0.070* 0.060**
(0.093) (0.101) (0.098) (0.098) (0.058) (0.038) (0.028)

Year 5 of PI 0.067 0.079 0.125 0.189** 0.055 0.212*** 0.496***
(0.089) (0.077) (0.091) (0.077) (0.055) (0.039) (0.051)

Elementary -0.167 -0.273*** 0.094 -0.281*** -0.301*** -0.163*** -0.530***
(0.112) (0.095) (0.121) (0.100) (0.072) (0.044) (0.051)

N 60 87 64 80 146 438 234

Note: Robust standard errors in parentheses for the coefficient from a regression of the characteristic on
an indicator for whether the school is above or below district’s median ranking. In districts with an odd
number of schools, the median school is randomly assigned to be above or below the median. PI is “Program
Improvement.”
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Table 2.4: Rank Order Logit Results, Efron’s Approximation for Ties

Baseline LA Excluded Interact Count Exclude LA C. Logit
Interact Count

Alt. prog. -0.09 0.09 0.09 0.17 0.53
(0.33) (0.40) (0.41) (0.39) (0.94)
[0.39] [0.51] [0.52] [0.52] [0.87]

HS*(Alt.) 0.73 0.91 0.37 0.79 0.10
(0.37)** (0.49)* (0.59) (0.50) (1.18)
[0.54] [0.84] [0.94] [0.81] [1.10]

Charter -0.38 -0.65 -0.91 -0.68 -0.55
(0.29) (0.34)* (0.40)** (0.35)* (0.95)
[0.34] [0.26]** [0.26]*** [0.27]** [0.65]

Prop. FRPL 1.68 1.57 1.97 1.32 2.07
(0.54)*** (0.60)*** (0.65)*** (0.61)** (1.82)
[0.82]** [0.85]* [0.93]** [0.95] [1.82]

Prop. Hispanic 0.49 0.45 -0.14 0.31 -0.55
(0.57) (0.63) (0.70) (0.65) (1.96)
[0.84] [0.79] [0.76] [0.81] [1.69]

Prop. black 1.07 1.36 0.25 1.19 1.08
(0.60)* (0.74)* (0.91) (0.77) (2.70)
[0.86] [0.98] [1.10] [0.97] [1.83]

Year 1 of PI 0.42 0.10 0.10 0.06 -0.25
(0.14)*** (0.18) (0.20) (0.19) (0.53)
[0.31] [0.23] [0.25] [0.25] [0.54]

Year 2 of PI 0.85 0.39 0.51 0.44 0.13
(0.18)*** (0.19)** (0.21)** (0.20)** (0.57)
[0.46]* [0.21]* [0.25]** [0.24]* [0.56]

Year 3 of PI 1.19 0.67 0.74 0.67 0.33
(0.15)*** (0.17)*** (0.18)*** (0.17)*** (0.50)
[0.52]** [0.25]*** [0.25]*** [0.25]*** [0.48]

Year 4 of PI 1.10 0.66 0.73 0.67 0.59
(0.17)*** (0.18)*** (0.19)*** (0.18)*** (0.48)
[0.54]** [0.30]** [0.29]** [0.29]** [0.48]

Year 5 of PI 1.65 1.03 1.03 0.98 0.98
(0.16)*** (0.18)*** (0.19)*** (0.19)*** (0.49)**
[0.67]** [0.40]** [0.36]*** [0.39]** [0.47]**

N 1097 863 863 1097 1093

Note: * indicates p < 0.10, ** indicates p < 0.05, *** indicates p < 0.01. Coefficients
are from rank order logit regression of district rankings on student outcomes, except the
final column, which is conditional logit where dependent variable is 1 if district ranked
the school highest. Coefficients for measures of expect revenue and expected cost and
included but not shown. Standard errors in parentheses, and standard errors robust
to misspecification in brackets. Count refers to measure of number of participating
schools in the district, minus the average number of participating schools in districts
other than LA.
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Chapter 3

Asymptotic Properties of Quantile

Regression for Standard Stratified

and Variable Probability Sampling1

3.1 Introduction

Quantile Regression has been widely used in the social sciences in recent decades, in part

due to its ability to estimate changes throughout the conditional distribution of an outcome

of interest. Ordinary Least Squares models the effect on an outcome of interest as a location

shift in the conditional distribution of the outcome variable. Yet causal effects may man-

ifest as greater variance, skewness, or density in the tails of the conditional distribution,

all of which may be obscured by focusing exclusively on location shifts. As exemplified

by Koenker (2005), changes in independent variables may even induce a bimodal condi-

tional distribution. Quantile Regression can reveal these effects. A natural use of Quantile

Regression has been to analyze the wage structure and potential differences in the deter-

minants of wages observed at different points of the wage distribution, e.g., Albrecht et al.

(2003); Buchinsky (1998); Buchinsky (2001); Machado et al. (2005); Martins et al. (2004);

1
This chapter coauthored with Otávio Bartalotti.
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and Melly (2005). Given a sample in which observations are selected with equal proba-

bility, well-established methods are available for estimating a Quantile Regression model

(Koenker (2005), Wooldridge (2010)).

Frequently, however, samples are not drawn with equal probability. Commonly used

data sets such as the Current Population Survey, Panel Study of Income Dynamics, National

Longitudinal Survey of Youth, and the Health and Retirement Study sample with unequal

probability. In order to more precisely estimate characteristics of subpopulations of interest,

these subpopulations are often oversampled. Ignoring the sampling design of such data sets

may lead to inconsistent estimation, in which case consistent estimation can proceed by

weighting observations.2

Two types of sampling schemes that are prevalent in a wide range of surveys and datasets

in social sciences are Standard Stratified (SS) and Variable Probability (VP) sampling.

With SS sampling, the population is divided into J mutually exclusive, exhaustive strata,

and a random sample of size Nj is taken from stratum j. Alternatively, in the VP sampling

case an observation is first drawn at random from the population, and if the observation

falls into stratum j, it is kept with probability pj . In either case, when stratification is

exogenous, i.e., the probability of selection is independent of the outcome conditional on

covariates, estimation can proceed without regard to the stratification; the usual estimators

that ignore stratification are consistent, efficient, and asymptotically normal, and the usual

variance estimators are valid (Wooldridge (1999); Wooldridge (2001)).

When the probability of selection is not independent of the outcome conditional on

covariates, stratification is said to be endogenous, and the standard estimators are generally

inconsistent. The asymptotic properties of M-estimators with smooth objective functions

2
For a general discussion and guidance on the appropriateness of weighting, see Solon et al. (2013)
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under VP and SS sampling have been analyzed in Wooldridge (1999) and Wooldridge

(2001), respectively. However, these results are not directly applicable to the Quantile

Regression case due to the nonsmoothness in the objective function that provides the QR

estimates.

Bartalotti (2012) partially fills this gap, by developing the asymptotic properties of

quantile regressors under SS sampling. This paper extends the analysis to Quantile Re-

gression under VP sampling. Additionally, we present evidence from simulations, which

demonstrate that Stata’s weighted standard errors are quite inaccurate, particularly under

VP sampling. Bootstrapped standard errors outperform analytic standard errors under VP

sampling across coefficients, quantiles, and sample sizes. Under SS sampling no method of

estimating standard errors performs consistently well. In what follows, section 3.2 reviews

the standard Quantile Regression estimator. Section 3.3 reviews the asymptotic properties

of Quantile Regression under SS sampling, and develops those of VP sampling. Section 3.4

provides results from Monte Carlo simulations. Section 3.5 concludes.

3.2 The Quantile Regression Population Problem

We are interested in estimating the Conditional Quantile Function (CQF) of a random

variable y conditional on a vector of q explanatory variables x. This is defined by,

Qτ (y | x) = inf {y : F(y | x) ≥ τ}

where τ ∈ (0, 1) indexes the τ th quantile of the conditional distribution of y. Let the CQF

be described by a known function g (·) of the parameters and the explanatory variables
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Qτ (y | x) = g
(
x,βo,τ

)
(3.1)

β is subscripted with “o” to denote the true population parameter, and with τ to indicate

that the parameters typically vary with τ .

A special case of interest is given by the linear model:3

y = x′βo,τ + ε (3.2)

with Qτ (ε | x) = 0. Throughout this paper we concentrate on the linear CQF, for ease of

exposition and since it is the most widely used by practitioners. Nevertheless, the results

presented are valid for a nonlinear, correctly specified CQF, g (·). In the population, βo,τ

solves the following problem:

min
βτ∈B

E
[
ρτ

(
y − x′βτ

)]
(3.3)

where, ρτ (u) = (τ − 1 [u ≤ 0])u and B ∈ RK is the parameter space.

Given a random sample from the population of size N , it is possible to obtain consistent

estimates of βo,τ by a standard Quantile Regression estimator, which solves the following:

min
βτ∈B

N−1
N∑
i=1

ρτ (yi − x′iβτ ) (3.4)

Note that the minimization problem has the following first order conditions and sample

3
This formulation assumes the error term is additive and, hence, separable. For a treatment of the more

general formulation with (potentially) non-separable ε see Powell (1991).

89



analogue (Buchinsky (1998)):4

E
[(
τ − 1

[
y − x′βo,τ ≤ 0

])
x
]

= 0 (3.5)

N−1
N∑
i=1

(
τ − 1

[
yi − x′iβ̆τ ≤ 0

])
xi = 0 (3.6)

where 1[·] is the indicator function.

We can therefore frame this problem as a GMM estimator that uses as moment condi-

tions the first order conditions of the Quantile Regression problem that identify βo,τ . Under

random sampling, the standard Quantile Regression procedures can be used to estimate

βo,τ and to perform inference.

3.3 Quantile Regression under SS and VP Sampling

3.3.1 SS Sampling

We review here the SS sampling case explicated in Bartalotti (2012), and extend the

analysis to VP sampling. Under SS sampling, the population is divided into J strata,

W1,W2, ...,WJ . A sample of Nj observations is drawn randomly from each stratum j, and

is denoted by {wij = (yij ,xij) : i = 1, . . . , Nj}.

The strata sample sizes Nj are nonrandom. Therefore, the total sample size, N = N1 +

· · ·+NJ , is nonrandom. The density of a characteristic y in the jth stratum is denoted by

dF (Y |j) with F (a|j) denoting the population proportion of households in stratum Wj with

y < a. Crucially, this density can differ across strata so even though the observations are

4
In general the FOC does not hold exactly, but the left-hand side of equation 3.6 is op(N

1/2
). See

Buchinsky (1998).
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i.i.d. within strata, observations from different strata are independent but not necessarily

identically distributed.

Bartalotti (2012) shows that a consistent estimator of βo,τ uses the following sample

moment condition:

1

N

N∑
i=1

Qj
Hj

(
τ − 1

[
yij − x′ijβ̂τ ≤ 0

])
xi = 0 (3.7)

where Qj = P (w ∈ Wj) is assumed known, and Hj =
Nj
N . If Qj is unknown, it can readily

be estimated from large survey data.

This is the empirical moment condition that is used to estimate the parameters of

interest, defining the weighted Quantile Regression estimator under SS sampling. This

estimator is consistent for the parameters of interest under Standard Stratified sampling

(Wooldridge (2001)’s theorem 3.1).5

As Bartalotti (2012) shows, under standard regularity conditions,
√
N(β̂τ − βo,τ )

a∼

N
(

0, A−1
1 B1A

−1
1

)
, where

A1 = E
[
fy|x

(
x′βo,τ

)
xx′
]

and

B1 =
J∑
j=1

Q2
j

Hj

Var
[
q|w ∈ Wj

]
5
As a minor point note that if one wants to implement the weighted estimator by applying a standard

Quantile Regression to weighted data, the weights for each observation will be given by
Qji
Hji

instead of the

(
Qji
Hji

)1
2

usually required when implementing least squares estimation and its variants.
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and qij =
(
τ − 1[yij − x′ijβo,τ ≤ 0]

)
xij .

Two main points regarding B1 are worth mentioning. The first, which is general to the

Standard Stratification literature, is that we cannot replace Var
[
q|w ∈ Wj

]
by the outer

product of the score as in the random sampling case because in general

E
[(
τ − 1

[
y − x′βτo ≤ 0

])
x|w ∈ Wj

]
6= 0 (3.8)

as pointed out by Wooldridge (2001). Without further assumptions, the population moment

condition does not necessarily hold in each stratum. Second, it is interesting to note

that, distinct from the standard results in Quantile Regression for random sampling, B1

does not simplify to τ(1 − τ)E[xx′] in this case, since the variance of the binary variable

1
[
yij − x′ijβo,τ ≤ 0

]
is not necessarily the same for each stratum. That is, x′ijβo,τ will

not represent the τ th quantile in every stratum.

A feasible estimator requires knowledge of fy|x. Koenker (2005) suggests using the

fact that 1/fy|x = dQτ (Y |X)/dt. fy|x can therefore be estimated using the inverse of a

difference quotient:

f̂y|x =
2h

Xβ̂τ+h −Xβ̂τ−h
(3.9)

We thus use the following estimate of A1:

Â1 = N−1
N∑
i=1

Qj
Hj

f̂i,y|x(xijβ̂τ )xijx
′
ij (3.10)

A natural estimate of B1 is
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B̂1 = N−1
N∑
i=1

Q2
j

H2
j

(
q̂ij − ¯̂qj

)
(3.11)

where q̂ij =
(
τ − 1[yij − x′ijβ̂τ ≤ 0]

)
xij , and ¯̂qj = N−1

j
∑
i∈Wj

q̂ij .

3.3.2 VP Sampling

Under VP sampling, N observations are first drawn at random from the population, and

the sample is denoted by {wi = (yi,xi) i = 1, . . . , N}. If an observation falls into stratum

j, it is kept with probability pj . Following Wooldridge (1999), for each individual i we

define J indicator variables sij = 1[wi ∈ Wj ]. Likewise, we define for each individual i J

binary variables hij , where P(hij = 1) = pj . If observation i is in stratum j it is kept if

hij = 1. Finally, define rij = sijhij , which indicates whether random draw i is kept, and if

so what stratum it belongs to. Note that under VP sampling, the number of observations

kept from stratum j, Nj , is random, and so therefore is the total number of observations

kept across strata, N0 = N1 + · · ·+NJ .

Corollary 1. With these definitions, a consistent Quantile Regression estimator under VP

sampling is given by the following sample moment condition:

N∑
i=1

J∑
j=1

p−1
j hijsij

(
τ − 1

[
yij − x′ijβ̃τ ≤ 0

])
xij = 0 (3.12)

All proofs are provided in Appendix B. Note that the outer summation in equation (3.12)

is over N , which includes discarded observations. In practice one can use

N0∑
i=1

p−1
j

(
τ − 1[yij − x′ijβ̃τ ≤ 0]

)
xij = 0 (3.13)
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The asymptotic distribution of β̃τ follows from Newey et al. (1994), Theorem 7.1:

Corollary 2. If the conditions of Newey et al. (1994) Theorem 7.1 are satisfied,
√
N(β̃τ −

βτ )
a∼ N (0, A−1

2 B2A
−1
2 ), where

A2 = E[fy|x(xβτ )xx′] (3.14)

and

B2 =
J∑
j=1

p−1
j E

[
sijqq′

]
(3.15)

and q is as defined above.

We estimate (3.14) using

Â2 = N−1
N0∑
i=1

p−1
j f̂i,y|xxijx

′
ij (3.16)

where f̂y|x is defined above. (3.15) can be estimated using

N−1
N0∑
i=1

p−2
j q̂ij q̂

′
ij (3.17)

Although both (3.16) and (3.17) depend on N , which is typically not observed, these

cancel out in the expression of Avar(β̃τ ).

3.4 Simulation Results

We compare the performance of the above analytic standard errors to those generated by

Stata’s qreg command both with and without the “pweight” option. We also compare them
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to bootstrapped standard errors, where the bootstrapping procedure ignores the sampling

scheme, but in each of 1,000 bootstrap replications coefficients are estimated with regard

to the sampling scheme, i.e., using the “pweight” option in Stata. Our data generating

process follows the multiplicative heteroskedasticity model of Cameron et al. (2009):

y = 1 + x1 + x2 + u

u = (0.1 + 0.5x1)× ε

x1 ∼ χ2
1

x2 ∼ N (0, 25)

ε ∼ N (0, 25)

An advantage of this DGP is that each quantile is linear in x:

Qτ (y|x) = ατ + β1,τx1 + β2,τx2 = [1 + 0.1F−1
ε (τ)] + x1 +

[
1 + 0.5F−1

ε (τ)
]
x2

We create a population of 51 strata, with sizes proportional to the population of the

50 US states and the District of Columbia. We present results with both exogenous and

endogenous stratification, and under endogenous stratification we present results for two

sample sizes. For the case of exogenous stratification, the u are sorted randomly across

strata, and the sample size is the smaller of the two. In the case of endogenous stratification,

observations are sorted across strata such that the most populous strata have the largest

values of u. Since u is correlated with x1, stratification is not exogenous, and estimators

that ignore stratification are inconsistent. The SS sampling case sets Nj = 20 ∀j for the

smaller sample size, and Nj = 50 ∀j for the larger sample size. For the VP sampling
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case, we set pj proportional to the inverse of the population of stratum j, and therefore

in expectation each stratum is equally represented in the sample. The scaling factor is set

so that E(N) = 1, 020 for the smaller sample size, and E(N) = 2550 for the larger sample

size. For both SS and VP sampling we draw 10,000 samples from the population.

We present results for infeasible estimates of A1 and A2 that rely on knowledge of the

true fy|x, the standard errors for which are denoted fi, as well as feasible estimates that use

equation (3.9). For the bandwidth, we rely on Stata’s three methods, the Hall-Sheather,

Bonger, and Chamberlain methods, the standard errors based on which are denoted f̂i,1,

f̂i,2, and f̂i,3, respectively. Each bandwidth is a function of
N∑
i=1

weightij , and τ , where

weightij is the weight for observation i in stratum j. Thus, for the VP case, the bandwidths

are random, since N is random, but in the SS case the bandwidths are not random.

Table 3.1 presents the results for the SS sampling case under exogenous stratification.

For reference, the true values of the parameters are listed in the first row of each panel.

Throughout the simulation results, estimates that do not have a w subscript use Stata’s

qreg command without weights, while those with the w subscript use weights. Confirming

theory, the unweighted estimates well approximate the true values, and are more precise

than the weighted estimates. Since the precision of Quantile Regression estimators is

determined in part by the amount of data in the neighborhood of yi around yi−Qτ (y|x) = 0,

the estimators are noisier at the tails, e.g., at the 10th and 90th percentiles.

Stata’s unweighted standard errors, which are correct under exogenous stratification,

well approximate the standard deviation from the empirical distribution of the unweighted

estimators. In contrast, the standard errors that use weights routinely underestimate the

standard deviation of the empirical distribution of weighted estimators. Among the esti-
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mates of standard errors of weighted estimators, those obtained by bootstrapping perform

best. Both the infeasible and the feasible analytic standard errors tend to underestimate

variation in the estimators. The bandwidth for f̂i,2 at the 25th percentile is approximately

0.35,6 and therefore it is not possible to estimate β0.25−h.

Table 3.2 presents results under endogenous stratification. Not surprisingly, estimates

of β1 and α that fail to account for stratification do a poor job, while those that account

for stratification well approximate the true values. The coefficients on x2, which is random

across strata, are unaffected by weighting. The variability of β̂1,w does not exhibit the

symmetric pattern observed under exogenous stratification, and is instead monotonically

increasing in τ . This is due to the sampling scheme: the endogenous stratification over

samples observations in the neighborhood of yi around yi − Q0.10(y|x) = 0, and under

samples observations in the neighborhood of yi around yi −Q0.90(y|x) = 0.

Stata’s weighted standard errors appear completely insensitive to this fact, and instead

exhibit a U-shaped pattern.7 This leads to dramatic overstatement of variability at lower

quantiles, and still nonetheless understatement of variability at higher quantiles. The

bootstrapped standard errors capture the monotonic pattern of increasing in τ , but for

estimates of α and β1 the bootstrapped standard errors are too low for τ = 0.10, and

perform fairly well at τ = 0.90. In stark contrast, both the feasible and infeasible standard

errors for αw and β1,w are too high for τ = 0.90, but perform well for lower values of τ .

We present the results for the larger sample size, Nj = 50, in Table 3.3. β̂1,w is

more precisely estimated across quantiles, with the proportional reduction in the empirical

6
Recall that the bandwidth is not random under SS sampling.

7
We believe Stata’s weighted standard errors have two flaws in implementing Equation (3.11): they use

the outer-product of the score, and the weighting factor, Qj/Hj is not squared.
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standard deviations being about constant across τ . The bootstrapped standard errors again

tend to overstate variability in estimates of α and β1,w, particularly at lower values of τ .

With the larger sample size, both the feasible and infeasible analytic standard errors tend

to outperform bootstrapped standard errors at each value of τ , and for each coefficient.

Table 3.4 presents results for the VP case under exogenous sampling. Again, confirm-

ing theory, when stratification is exogenous, unweighted estimates well approximate the

true values, and are efficient relative to weighted estimates. The standard deviation from

the empirical distribution of the estimates across all 10,000 simulations follows a U-shaped

pattern across τ , with less variation at τ = 0.50, and the most variation in the tails.

Stata’s unweighted standard errors accurately estimate the true variation in estimates, but

the weighted standard errors are more than an order of magnitude too small.8 The boot-

strapped and infeasible standard errors perform well, though both underestimate variation

of β̃1 at τ = 0.90. The feasible standard errors consistently underestimate variation in

estimates.

Results under endogenous stratification with E(N) = 1020 are presented in Table 3.5.

Again, as in the SS case, unweighted estimates perform poorly under endogenous strati-

fication, while the weighted estimates well approximate the true values. Variation in the

estimates is increasing in τ , which, as in the SS case, is a product of our sampling scheme:

observations with yi in the neighborhood of yi − Qτ (y|x) = 0 are systematically under

sampled at τ = 0.90, and oversampled at τ = 0.10. Stata’s weighted standard errors are

again wildly inaccurate. Across all coefficients and values of τ , the bootstrapped standard

errors perform quite well, while both the infeasible and feasible analytic standard errors

8
We obtain numerically identical results to Stata’s weighted standard errors when we use p

−1
, instead

of p
−2

, in Equation (3.17)
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tend to understate variation at higher values of τ .

The results from endogenous stratification with E(N) = 1020 are precisely mirrored

in the results under endogenous stratification with E(N) = 2550, presented in Table 3.6.

Again Stata’s weighted standard errors are woefully inaccurate, while bootstrapped stan-

dard errors perform quite well across coefficients and values of τ . Both the feasible and

infeasible analytic standard errors tend to understate variability for τ = 0.90.

3.5 Conclusion

This paper extends the results from Bartalotti (2012), which addressed the issue of inference

for Quantile Regressions when the data are obtained through Standard Stratified sampling,

to the case where data are obtained through Variable Probability sampling. We develop

the asymptotic distribution of Quantile Regression under VP sampling. Valid estimators

for the asymptotic variance matrix of those estimators are provided. Given the insights

provided by Quantile Regression, and the fact that many data sets are obtained through

complex random sampling techniques, this paper fills an important gap in the literature.

We provide simulation results that confirm theory in showing that unweighted esti-

mates perform well under exogenous stratification, and are in that case efficient relative

to weighted estimators. We demonstrate the importance of weighting for consistent esti-

mates under SS and VP sampling when the sampling scheme is endogenous. Under SS

sampling, neither bootstrapped nor analytic standard errors are always best, though with

larger sample sizes the analytic standard errors tended to do better.

Under VP sampling, bootstrapped standard errors performed best across coefficients,

quantiles, and sample sizes, while analytic standard errors underestimated variability around
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quantiles that were undersampled. A consistent finding throughout the simulation results

is that Stata’s standard errors are erroneous, and should not be used.
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APPENDIX A - TABLES

Table 3.1: Exogenous SS, Simulation Results

10th 25th 50th 75th 90th

β1 -2.200 -0.690 1.000 2.690 4.200

β̂1 -2.219 -0.699 0.997 2.671 4.192
(0.300) (0.239) (0.226) (0.238) (0.301)

β̂1,w -2.180 -0.685 0.992 2.660 4.162
(0.439) (0.355) (0.326) (0.353) (0.449)

S
ta

n
d
ar

d
E

rr
or

s

Stata’s Unweighted 0.299 0.240 0.223 0.238 0.302
Stata’s Weighted 0.291 0.237 0.218 0.235 0.296
Bootstrapped 0.423 0.357 0.331 0.355 0.430

f̂i,1 0.405 0.342 0.315 0.335 0.399

f̂i,2 0.444 0.322 0.345 0.412

f̂i,3 0.384 0.328 0.306 0.324 0.382
fi 0.417 0.343 0.316 0.337 0.398

β2 1.000 1.000 1.000 1.000 1.000

β̂2 1.001 1.000 1.000 1.000 1.000
(0.013) (0.011) (0.010) (0.011) (0.013)

β̂2,w 1.001 1.001 1.001 1.001 1.001
(0.021) (0.016) (0.015) (0.016) (0.021)

S
ta

n
d
a
rd

E
rr

o
rs

Stata’s Unweighted 0.013 0.010 0.010 0.010 0.012
Stata’s Weighted 0.012 0.010 0.009 0.010 0.012
Bootstrapped 0.022 0.017 0.016 0.017 0.022

f̂i,1 0.018 0.014 0.013 0.014 0.017

f̂i,2 0.020 0.014 0.015 0.018

f̂i,3 0.017 0.013 0.012 0.013 0.016
fi 0.019 0.016 0.014 0.015 0.019

α 0.350 0.660 1.000 1.340 1.640

α̂ 0.366 0.670 1.006 1.347 1.648
(0.082) (0.066) (0.062) (0.067) (0.085)

α̂w 0.345 0.660 1.002 1.344 1.658
(0.125) (0.100) (0.092) (0.101) (0.128)

S
ta

n
d
ar

d
E

rr
or

s

Stata’s Unweighted 0.083 0.066 0.061 0.067 0.082
Stata’s Weighted 0.082 0.065 0.060 0.065 0.081
Bootstrapped 0.130 0.104 0.095 0.104 0.131

f̂i,1 0.116 0.094 0.088 0.093 0.110

f̂i,2 0.130 0.090 0.097 0.116

f̂i,3 0.106 0.088 0.082 0.087 0.102
fi 0.118 0.096 0.088 0.094 0.112

Note: Estimates come from 10,000 simulations. β̂1 is estimated without weights. β̂w,1

is estimated with Stata’s “pweight” option. Numbers in parentheses are standard
deviation of estimates across the 10,000 simulations. Bootstrapped standard errors
come from 1,000 repetitions, where each draws from the sample with equal probability
and uses weighted estimate. f̂i,1, f̂i,2, and f̂i,1 are from Hall-Sheather, Bonger, and
Chamberlain methods of estimating bandwidth, while fi uses known distribution.
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Table 3.2: Endogenous SS, Simulation Results

10th 25th 50th 75th 90th

β1 -2.200 -0.690 1.000 2.690 4.200

β̂1 -3.959 -2.835 -1.682 -0.635 0.163
(0.173) (0.124) (0.102) (0.112) (0.141)

β̂1,w -2.213 -0.689 0.992 2.686 4.144
(0.145) (0.175) (0.264) (0.442) (0.681)

S
ta

n
d
ar

d
E

rr
or

s

Stata’s Unweighted 0.210 0.153 0.129 0.130 0.163
Stata’s Weighted 0.303 0.241 0.221 0.231 0.277
Bootstrapped 0.201 0.251 0.384 0.544 0.702

f̂i,1 0.140 0.168 0.250 0.411 0.567

f̂i,2 0.151 0.255 0.426 0.588

f̂i,3 0.137 0.165 0.243 0.390 0.542
fi 0.138 0.166 0.248 0.424 0.599

β2 1.000 1.000 1.000 1.000 1.000

β̂2 0.999 1.001 1.001 1.001 1.003
(0.018) (0.013) (0.012) (0.014) (0.022)

β̂2,w 1.001 1.001 1.001 1.001 1.001
(0.011) (0.012) (0.015) (0.021) (0.031)

S
ta

n
d
a
rd

E
rr

o
rs

Stata’s Unweighted 0.016 0.013 0.012 0.014 0.021
Stata’s Weighted 0.013 0.010 0.009 0.010 0.012
Bootstrapped 0.012 0.012 0.016 0.023 0.036

f̂i,1 0.011 0.011 0.013 0.018 0.025

f̂i,2 0.012 0.014 0.019 0.026

f̂i,3 0.010 0.010 0.012 0.017 0.024
fi 0.011 0.011 0.014 0.020 0.027

α 0.350 0.660 1.000 1.340 1.640

α̂ 0.206 0.557 0.960 1.387 1.886
(0.088) (0.059) (0.051) (0.062) (0.107)

α̂w 0.360 0.662 1.001 1.346 1.688
(0.057) (0.057) (0.079) (0.122) (0.193)

S
ta

n
d
a
rd

E
rr

o
rs

Stata’s Unweighted 0.101 0.078 0.074 0.082 0.135
Stata’s Weighted 0.084 0.066 0.060 0.064 0.081
Bootstrapped 0.070 0.074 0.101 0.142 0.219

f̂i,1 0.057 0.055 0.073 0.108 0.149

f̂i,2 0.061 0.075 0.115 0.158

f̂i,3 0.054 0.054 0.069 0.098 0.138
fi 0.055 0.054 0.073 0.113 0.152

Note: Estimates come from 10,000 simulations. β̂1 is estimated without weights. β̂w,1

is estimated with Stata’s “pweight” option. Numbers in parentheses are standard
deviation of estimates across the 10,000 simulations. Bootstrapped standard errors
come from 1,000 repetitions, where each draws from the sample with equal probability
and uses weighted estimate. f̂i,1, f̂i,2, and f̂i,1 are from Hall-Sheather, Bonger, and
Chamberlain methods of estimating bandwidth, while fi uses known distribution.
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Table 3.3: Large Sample Endogenous SS, Simulation Results

10th 25th 50th 75th 90th

β1 -2.200 -0.690 1.000 2.690 4.200

β̂1 -3.960 -2.833 -1.681 -0.632 0.168
(0.107) (0.078) (0.066) (0.072) (0.089)

β̂1,w -2.212 -0.687 0.992 2.679 4.181
(0.093) (0.110) (0.165) (0.283) (0.437)

S
ta

n
d
ar

d
E

rr
or

s

Stata’s Unweighted 0.131 0.096 0.080 0.081 0.102
Stata’s Weighted 0.190 0.152 0.139 0.148 0.183
Bootstrapped 0.129 0.159 0.242 0.346 0.462

f̂i,1 0.090 0.109 0.162 0.272 0.401

f̂i,2 0.094 0.164 0.280 0.414

f̂i,3 0.089 0.107 0.159 0.261 0.383
fi 0.089 0.108 0.161 0.276 0.410

β2 1.000 1.000 1.000 1.000 1.000

β̂2 1.000 1.001 1.001 1.001 1.003
(0.011) (0.008) (0.007) (0.009) (0.014)

β̂2,w 1.001 1.001 1.001 1.000 1.000
(0.007) (0.007) (0.009) (0.013) (0.019)

S
ta

n
d
a
rd

E
rr

o
rs

Stata’s Unweighted 0.010 0.008 0.008 0.009 0.014
Stata’s Weighted 0.008 0.007 0.006 0.006 0.007
Bootstrapped 0.007 0.008 0.010 0.014 0.020

f̂i,1 0.007 0.007 0.009 0.012 0.015

f̂i,2 0.008 0.009 0.012 0.016

f̂i,3 0.006 0.007 0.008 0.011 0.015
fi 0.007 0.007 0.009 0.013 0.018

α 0.350 0.660 1.000 1.340 1.640

α̂ 0.211 0.557 0.958 1.385 1.877
(0.054) (0.037) (0.033) (0.039) (0.067)

α̂w 0.360 0.662 1.001 1.342 1.658
(0.036) (0.036) (0.049) (0.077) (0.116)

S
ta

n
d
a
rd

E
rr

o
rs

Stata’s Unweighted 0.063 0.049 0.047 0.052 0.083
Stata’s Weighted 0.053 0.042 0.038 0.041 0.050
Bootstrapped 0.043 0.046 0.063 0.088 0.126

f̂i,1 0.036 0.035 0.048 0.072 0.099

f̂i,2 0.038 0.049 0.075 0.106

f̂i,3 0.034 0.035 0.046 0.065 0.092
fi 0.035 0.035 0.048 0.074 0.105

Note: Estimates come from 10,000 simulations. β̂1 is estimated without weights. β̂w,1

is estimated with Stata’s “pweight” option. Numbers in parentheses are standard
deviation of estimates across the 10,000 simulations. Bootstrapped standard errors
come from 1,000 repetitions, where each draws from the sample with equal probability
and uses weighted estimate. f̂i,1, f̂i,2, and f̂i,1 are from Hall-Sheather, Bonger, and
Chamberlain methods of estimating bandwidth, while fi uses known distribution.
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Table 3.4: Exogenous VP Sampling, Simulation Results

10th 25th 50th 75th 90th

β1 -2.200 -0.690 1.000 2.690 4.200

β̃1 -2.223 -0.697 1.001 2.674 4.194
(0.295) (0.236) (0.224) (0.237) (0.305)

β̃1,w -2.186 -0.682 0.992 2.659 4.166
(0.437) (0.358) (0.329) (0.356) (0.450)

S
ta

n
d
a
rd

E
rr

o
rs

Stata’s Unweighted 0.300 0.241 0.223 0.238 0.301
Stata’s Weighted 0.015 0.012 0.012 0.012 0.015
Bootstrapped 0.426 0.357 0.330 0.355 0.431

f̃i,1 0.367 0.322 0.303 0.318 0.368

f̃i,2 0.398 0.362 0.316 0.333 0.388

f̃i,3 0.346 0.302 0.283 0.293 0.359
fi 0.427 0.350 0.323 0.345 0.407

β2 1.000 1.000 1.000 1.000 1.000

β̃2 1.001 1.000 1.000 1.000 1.000
(0.013) (0.011) (0.010) (0.011) (0.013)

β̃2,w 1.001 1.000 1.001 1.000 1.001
(0.020) (0.016) (0.015) (0.016) (0.020)

S
ta

n
d
a
rd

E
rr

o
rs

Stata’s Unweighted 0.013 0.010 0.010 0.010 0.012
Stata’s Weighted 0.001 0.001 0.000 0.001 0.001
Bootstrapped 0.022 0.017 0.016 0.017 0.022

f̃i,1 0.016 0.013 0.012 0.013 0.016

f̃i,2 0.017 0.016 0.013 0.014 0.016

f̃i,3 0.017 0.014 0.013 0.014 0.017
fi 0.020 0.016 0.015 0.016 0.019

α 0.350 0.660 1.000 1.340 1.640

α̃ 0.367 0.670 1.005 1.347 1.648
(0.082) (0.066) (0.062) (0.068) (0.085)

α̃w 0.346 0.658 1.001 1.345 1.657
(0.125) (0.100) (0.092) (0.101) (0.128)

S
ta

n
d
ar

d
E

rr
or

s

Stata’s Unweighted 0.083 0.066 0.061 0.067 0.082
Stata’s Weighted 0.004 0.003 0.003 0.003 0.004
Bootstrapped 0.130 0.104 0.096 0.104 0.131

f̃i,1 0.098 0.082 0.079 0.082 0.096

f̃i,2 0.108 0.102 0.087 0.091 0.103

f̃i,3 0.099 0.083 0.076 0.081 0.099
fi 0.120 0.098 0.090 0.096 0.115

Note: Estimates come from 10,000 simulations. β̂1 is estimated without weights. β̂w,1

is estimated with Stata’s “pweight” option. Numbers in parentheses are standard
deviation of estimates across the 10,000 simulations. Bootstrapped standard errors
come from 1,000 repetitions, where each draws from the sample with equal probability
and uses weighted estimate. f̂i,1, f̂i,2, and f̂i,1 are from Hall-Sheather, Bonger, and
Chamberlain methods of estimating bandwidth, while fi uses known distribution.
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Table 3.5: Endogenous VP Sampling, Simulation Results

10th 25th 50th 75th 90th

β1 -2.200 -0.690 1.000 2.690 4.200

β̃1 -3.956 -2.830 -1.680 -0.634 0.165
(0.189) (0.142) (0.122) (0.127) (0.157)

β̃1,w -2.212 -0.691 0.989 2.636 4.107
(0.202) (0.252) (0.374) (0.530) (0.728)

S
ta

n
d
a
rd

E
rr

o
rs

Stata’s Unweighted 0.210 0.153 0.129 0.130 0.165
Stata’s Weighted 0.016 0.013 0.012 0.012 0.014
Bootstrapped 0.199 0.249 0.377 0.541 0.710

f̃i,1 0.191 0.239 0.350 0.458 0.571

f̃i,2 0.197 0.257 0.362 0.480 0.576

f̃i,3 0.180 0.223 0.325 0.457 0.556
fi 0.198 0.246 0.367 0.512 0.643

β2 1.000 1.000 1.000 1.000 1.000

β̃2 1.000 1.001 1.001 1.001 1.002
(0.018) (0.013) (0.012) (0.014) (0.022)

β̃2,w 1.001 1.001 1.000 1.000 1.000
(0.011) (0.012) (0.015) (0.021) (0.031)

S
ta

n
d
a
rd

E
rr

o
rs

Stata’s Unweighted 0.016 0.013 0.012 0.014 0.021
Stata’s Weighted 0.001 0.001 0.000 0.001 0.001
Bootstrapped 0.012 0.012 0.016 0.023 0.036

f̃i,1 0.010 0.010 0.013 0.017 0.026

f̃i,2 0.011 0.012 0.013 0.018 0.024

f̃i,3 0.010 0.010 0.014 0.021 0.029
fi 0.012 0.012 0.015 0.020 0.027

α 0.350 0.660 1.000 1.340 1.640

α̃ 0.204 0.554 0.959 1.389 1.887
(0.097) (0.068) (0.064) (0.078) (0.135)

α̃w 0.359 0.662 1.002 1.357 1.689
(0.068) (0.072) (0.098) (0.137) (0.198)

S
ta

n
d
ar

d
E

rr
or

s

Stata’s Unweighted 0.101 0.078 0.074 0.082 0.135
Stata’s Weighted 0.004 0.004 0.003 0.003 0.004
Bootstrapped 0.070 0.074 0.100 0.143 0.223

f̃i,1 0.060 0.066 0.083 0.110 0.155

f̃i,2 0.066 0.073 0.090 0.114 0.148

f̃i,3 0.055 0.060 0.083 0.127 0.169
fi 0.067 0.070 0.094 0.127 0.161

Note: Estimates come from 10,000 simulations. β̂1 is estimated without weights. β̂w,1

is estimated with Stata’s “pweight” option. Numbers in parentheses are standard
deviation of estimates across the 10,000 simulations. Bootstrapped standard errors
come from 1,000 repetitions, where each draws from the sample with equal probability
and uses weighted estimate. f̂i,1, f̂i,2, and f̂i,1 are from Hall-Sheather, Bonger, and
Chamberlain methods of estimating bandwidth, while fi uses known distribution.
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Table 3.6: Large Sample Endogenous VP Sampling, Simulation Results

10th 25th 50th 75th 90th

β1 -2.200 -0.690 1.000 2.690 4.200

β̃1 -3.959 -2.831 -1.679 -0.632 0.171
(0.119) (0.091) (0.077) (0.081) (0.099)

β̃1,w -2.210 -0.687 0.991 2.657 4.154
(0.129) (0.157) (0.237) (0.338) (0.465)

S
ta

n
d
a
rd

E
rr

o
rs

Stata’s Unweighted 0.132 0.096 0.081 0.081 0.102
Stata’s Weighted 0.017 0.013 0.012 0.012 0.015
Bootstrapped 0.128 0.159 0.240 0.344 0.464

f̃i,1 0.125 0.156 0.230 0.308 0.388

f̃i,2 0.127 0.164 0.235 0.323 0.416

f̃i,3 0.120 0.150 0.216 0.300 0.377
fi 0.127 0.157 0.236 0.333 0.435

β2 1.000 1.000 1.000 1.000 1.000

β̃2 1.000 1.001 1.001 1.001 1.003
(0.011) (0.008) (0.007) (0.009) (0.014)

β̃2,w 1.001 1.001 1.001 1.001 1.001
(0.007) (0.007) (0.009) (0.013) (0.019)

S
ta

n
d
a
rd

E
rr

o
rs

Stata’s Unweighted 0.010 0.008 0.008 0.009 0.102
Stata’s Weighted 0.001 0.001 0.000 0.000 0.001
Bootstrapped 0.007 0.008 0.010 0.014 0.020

f̃i,1 0.006 0.007 0.008 0.011 0.015

f̃i,2 0.007 0.008 0.009 0.011 0.015

f̃i,3 0.006 0.006 0.008 0.011 0.017
fi 0.007 0.007 0.009 0.013 0.018

α 0.350 0.660 1.000 1.340 1.640

α̃ 0.210 0.556 0.958 1.386 1.877
(0.059) (0.043) (0.040) (0.049) (0.085)

α̃w 0.360 0.662 1.001 1.346 1.662
(0.042) (0.045) (0.061) (0.087) (0.121)

S
ta

n
d
ar

d
E

rr
or

s

Stata’s Unweighted 0.063 0.049 0.047 0.052 0.083
Stata’s Weighted 0.004 0.004 0.003 0.003 0.004
Bootstrapped 0.043 0.046 0.062 0.089 0.127

f̃i,1 0.039 0.044 0.057 0.070 0.091

f̃i,2 0.042 0.047 0.060 0.078 0.098

f̃i,3 0.036 0.040 0.050 0.071 0.097
fi 0.042 0.045 0.060 0.083 0.109

Note: Estimates come from 10,000 simulations. β̂1 is estimated without weights. β̂w,1

is estimated with Stata’s “pweight” option. Numbers in parentheses are standard
deviation of estimates across the 10,000 simulations. Bootstrapped standard errors
come from 1,000 repetitions, where each draws from the sample with equal probability
and uses weighted estimate. f̂i,1, f̂i,2, and f̂i,1 are from Hall-Sheather, Bonger, and
Chamberlain methods of estimating bandwidth, while fi uses known distribution.
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APPENDIX B - PROOFS

Proof of Corollary 1. It suffices to show that (3.12) converges in probability to (3.5). Using

the facts that hij is independent of (sij , yij ,xij), E(hij) = pj , and
J∑
j=1

sij = 1, we have the

following:

N−1
N∑
i=1

J∑
j=1

p−1
j hijsij

[
τ − 1

[
yij − x′ijβτ ≤ 0

]]
xij

p→
J∑
j=1

p−1
j E

[
hijsij(τ − 1[yij − x′ijβτ ≤ 0])xij

]

=
J∑
j=1

p−1
j E(hij)E

[
sij(τ − 1[yij − x′ijβτ ≤ 0])xij

]

=E

 J∑
j=1

sij(τ − 1[yij − x′ijβτ ≤ 0])xij


=E

[
(τ − 1[yij − x′ijβτ ≤ 0])xij

]

Proof of Corollary 2. To apply the results from Newey et al. (1994), note that

5βτ

J∑
j=1

E
[
p−1
j hijsij

(
τ − 1

[
yij − x′ijβτ ≤ 0

])
xij

]

=5βτ

J∑
j=1

E
[
sij

(
τ − 1

[
yij − x′ijβτ ≤ 0

])
xij

]
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=5β E
[(
τ − 1

[
yij − x′ijβτ ≤ 0

])
xij

]
=5βτ E

[
E
[(
τ − 1

[
yij − x′ijβτ ≤ 0

])
xij | x

]]
=5βτ E

[
τ − Fy|x(x′ijβτ )xij

]
=E

[
fy|x(x′ijβ)xijx

′
ij

]
= AV P

and

BV P = E

[(∑J
j=1 p

−1
j hijsijqij

)′ (∑J
j=1 p

−1
j hijsijqij

)]

Cross products cancel out since hijsijhkmskm = 0 For any k 6= i or m 6= j. Note that

(hijsij)
2 = hijsij .

BV P = E

 J∑
j=1

p−2
j hijsijq

′
ijqij

 =
J∑
j=1

p−2
j E

[
hijsijq

′
ijqij

]
=

J∑
j=1

p−1
j E

[
sijq

′
ijqij

]
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