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ABSTRACT

CONDITIONAL INFERENCE FOR INCOMPLETE PERMUTATION

BOOTSTRAPS IN MULTIPLE LINEAR RECRESSION

By

Rudolf Bohumil Blaz’ek

In this dissertation we develop a method for estimating conditional distributions

of estimation errors for coefficients in multiple linear regression. These distribu-

tions are conditional on how the Observation errors 6 are presented to the model.

The estimation of these distributions is achieved via incomplete permutation boot-

strap of the observed residuals. We prove results ensuring that the incomplete

permutation bootstrap distributions approximate the desired conditional distribu-

tions under very relaxed conditions. In particular, the key assumption needed is

for the errors 6 to have an exchangeable distribution. For the case of independent

block permutations in a model with i.i.d. errors from the domain Of attraction of

a stable law with a < 2 we prove an invariance principle assuring correctness of

confidence regions based on the incomplete permutation bootstrap. There is an

application of these methods to wavelets.
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Chapter 1

Incomplete Permutation

Bootstrap in Multiple Linear

Regression

1. 1 Introduction

One of the common goals in multivariate linear models y = X - ,8 + e is to find Si—

multaneous confidence regiOns for a subset of components of the unknown vector fl.

An important consideration is that the relative performance of various estimators

and designs should be capable of evaluation before taking data.

Introduced as a descriptive method in [8], permutation bootstrap of the Ob-

served residuals was shown by the authors of [17] and [18] to provide approximate

conditional confidence intervals for the (contmstl) components of 6, given the or-

der statistics of the components of the vector Of errors 6. A very important feature

of these conditional methods is that they may be applied to all but the constant

term without moment assumptions on exchangeable errors.

The key idea to be developed in this dissertation is that a linear form 2 view,

 

1A vector v 6 Rd will be called a contrast if v - 1 = 0. Here 1 represents a vector with all

components equal to 1.



may for outsized errors {6,} be greatly changed depending upon how the outsized

em. line up with I),- under a random permutation 7r uniform over the group 2,, of

all permutations of {1, . . . , n}.

We shall show that the estimation of particular conditional distributions (as-

sociated with how 6 aligns with a contrast '0) can be Obtained via (incomplete)

random permutation of the observed residuals over a subgroup A of the permuta-

tion group 2,, of indices {1, . . . ,n}. A very special example of this would be to

use independent blockwise permutations2 uniformly distributed over the indices of

vectors v1 and '02, respectively, for a vector

..=(::)

where both v1 and v2 are contrasts, and the ig—norm “'01“ is relatively small in

comparison to [[112 II.

It is then of interest to study the conditional distribution of v - 7re condi-

tional on which block 1:1 or v2 the extreme values of the errors align with. Fig-

ure 1.1 illustrates this with long—tailed errors 6,- = (SIM-'2 (where 61, . . . ,6" is a

Rademacher sequence and U1, . . . , Un are i.i.d. uniform random variables indepen-

dent of the random signs 6,) in a simple linear regression y = a + flu: + us with

:1: = (—10, —9.5, . . . , 10)’. Here the centered vector 2: plays the role of the contrast

 

2The idea of blockwise random permutations appears in many contexts, for example in re-

stricted randomizations (e.g. Lehmann [14, Chapter 5, Section 9]). If the variation among the

experimental units is excessive, then a conventional test will have small power. As a remedy

Lehmann examines restricted randomization analogous to stratified sampling:

...The experimental material is divided into subgroups, which are more homoge-

neous than the material as a whole, so that within each group the differences among

the u’s (units) are small. In animal experiments, for example, this can frequently

be achieved by a division into litters. Randomization is then applied within each

group.

The focus is thus on “matching designs” required for Fisher’s exact tests. In particular, the

contrasts considered by Lehmann are restricted to indicators of treatment group.



3

'v with '01 consisting of the 7 smallest and 7 largest components of a: (see (1.40) on

page 32). In the second row the figure shows the distribution of v - 7re conditional

on the event that the components of c with large absolute values align themselves

with the block 1:1 of extreme values of the vector :13, while the third row illustrates

the conditional distribution given that the extreme values of e align instead with

the block '02. The full permutation bootstrap approximation and the unconditional

distribution of v - we are shown for comparison in the first row. Figure 1.2 com-

pares the true conditional distributions to their incomplete permutation bootstrap

approximations.

For the same model Figure 1.3 provides a second illustration with a “pulse” error

i.e. containing a single outlier e = (a, O, . . . , 0)’. The second and third rows show the

.' distributions of v - 7re conditional on whether the single large error aligns with the

2, respectively. (In other words, the last two rows show the conditionalblock 121 or v

distributions v - 7T6 |7r(1) 6 A1 and v - Ire [7r(1) 6 A2 where the sets A1 and A2

contain indices of components in 1) corresponding to 121 and '02, respectively.) The

first row of Figure 1.3 illustrates the full permutation bootstrap approximation of

the unconditional distribution of v-7re. Figure 1.4 offers a more detailed comparison

of the incomplete permutation approximations of the corresponding conditional

probabilities.

Motivated by the above idea we extend results Of [17] to create conditional

confidence regions given A7r, where A is a subgroup of Zn and Ar = {mr : V E A}.

We achieve this by the means of incomplete permutation bootstrap of the observed

residuals, i.e. bootstrap based on random permutations distributed uniformly over

A, instead of 2,, as in [8, 17, 18]. These are shown in row 3 of Figure 1.3 and in

Figure 1.4 with A permuting the indices in each block A1 and A2 among themselves.



Figure 1.1: The'conditional and unconditional distribution of the errors 2) - 7I€

in a simple linear regression with i.i.d. errors from the domain of attraction of a

symmetric stable law with a = 0.5 (in particular, 6,- = QUIZ are reciprocals of

squared i.i.d. uniform variables with independent symmetrical random signs). The

estimates of the distributions were obtained via Monte-Carlo using 2000 replicas

Of the corresponding random permutations.
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Figure 1.2: Comparison of the exact and incomplete permutation bootstrap ap—

proximated conditional distributions of the errors v-rre in a simple linear regression

with i.i.d. errors from the domain of attraction of a stable law with a = 0.5 (see

Figure 1.1). All estimates of the distributions were Obtained via Monte—Carlo using

2000 replicas of the corresponding random permutations.

2.x10">
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-400000 400000 -400000 400000

Comparison of the conditional Comparison of the conditional

distribution £1 and its approximation distribution £2 and its approximation

The fact that the permutation is incomplete generally introduces a conditional

bias to the least squares estimator of ,8. This bias is not present in the case A = 2,,

studied in [17]. We introduce a conditional bias adjusted estimator for which we

obtain in Theorem 1.3.4 below a design formula (1.19) for the relative size of the

mean square of its (remaining) conditional bias (RMSB).

Aside from bias a key issue is the relative size of the mean squared discrepancy

(RMSD) between the exact Arr—conditional distribution of the bias adjusted esti-

mator and its approximation based on incomplete permutation bootstrap of the

Observed residuals. Theorem 1.4.1 below establishes an exact design formula (1.23)

for the relative size of the mean square discrepancy.

In Theorem 1.4.3 we also obtain a design formula (1.27) for the relative reduc-

tion in the size of our conditional confidence regions (based on the bias adjusted

estimator and incomplete permutation bootstrap) versus the full permutation boot-

strap in cases where both the RMSB and RMSD are small.



Figure 1.3: The conditional and unconditional distributions of the errors 1: - we

in a simple linear regression with a single outlier. The corresponding independent

block and full permutation bootstrap approximations were Obtained via Monte—

Carlo with 5000 replicas Of the corresponding random permutations.
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Figure 1.4: Comparison of the exact and approximated conditional distributions

of the errors '0 - 7re in a simple linear regression with a single outlier. (Data from

Figure 1.3.)

      ""1 0
  

7..
  

-10k —7 0

Comparison of v - 7re |7r(1) 6 A1 Comparison of v - 7re | 7r(1) 6 A2

and its approximation and its approximation

We refine these results in Section 1.5 where we obtain a formula (1.33) for

the relative An—conditional mean square discrepancy for the case of independent

block permutations of block—wise contrasts in which the estimator is unbiased.

In this section we also obtain simplified versions of the formulas for the case of

independent block permutation bootstrap in simple linear regression. The reduced

formulas and the performance of the independent block permutation bootstrap in

simple linear regression are illustrated by a numerical simulation and comparison

in Example 1.6.1.

In addition to developing these incomplete permutation bootstrap confidence

regions we also extend the idea of Quade (1973, [20]) and the results from [19]

and [9] to find an exact one—dimensional confidence interval (1.52) for a single

coefficient of the regression model (1.1), conditional on the incomplete random

permutations of the errors (Proposition 1.8.1). Unfortunately, the pivot employed

in this exact method seems not to generalize to simultaneous confidence regions

for several coefficients. At present it would seem that our incomplete permutation



method provides the only viable solution for the case of simultaneous confidence

regions, short Of a fully exhaustive exact permutations test method.

Although our results are not limited to the case of errors attracted to stable

laws, we establish limit theorems for the special case of errors {6,} belonging to

the domain of attraction of an a—stable law with a < 2. These limit theorems

describe the conditional convergence Of conditional confidence intervals based on

incomplete block—wise permutations, founded on results in [18]. For such errors

the sampling distribution of the size of the conditional confidence intervals tends

to be small compared to the size of unconditional confidence intervals.

In Chapter 2 we discuss an application of these results to the problem of esti-

mating the coefficients of a wavelet expansion of an L2 function which can, from

the practical point of view, be considered a special case of model (1.1). The spe-

cial form of the matrix X in the wavelet expansion model suggests that instead of

the full permutation bootstrap one should consider using incomplete permutation

bootstrap with a specifically selected permutation subgroup A.

In wavelet expansion of an L2 function f the vector y of the sampled values of

the function f tends to be of a large dimension n, therefore the limiting theory of

the (incomplete) permutation bootstrap will apply to the discrete approximation

of the original wavelet expansion problem.

Therefore these modified bootstrap methods can potentially be applied with

good results to wavelet shrinkage (see [5]) to construct simultaneous conditional

confidence intervals for the wavelet coefficients not only in the case of normal errors

as considered by the authors in [5], but also in cases with ill behaved errors for

which the central limit theorems fail. An important example Of such a situation is

the case of errors attracted to a stable law with index a < 2 mentioned above.
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1.2 Random Permutations in Multiple Linear

Regression

Consider a linear regression model

y=X~fi+7re (1.1)

where 31an is an observed real vector, and is a known matrix with real compo-

nents, Bob, 1 is a vector of unknown real parameters, and 7r is a random permutation

with distribution uniform over the collection 2,, of all permutations over {1, . . . , n}

The vector of errors is introduced into the model via its random n—presentation 7re

obtained from 6 by applying 7r to the indices of the components of e. The unknown

real vector 6,, x1 itself is considered to be non-random.

We will assume that n 2 1, X has full rank d and that either its first column is

the vector 1 with all components equal to 1, or alternatively that all the columns

of X are orthogonal to 1.

Typically, the goal is to estimate the joint unconditional distribution of the

estimation errors 3,- — [3,- for several indices i Z 1. Here ,0 represents the least

squares estimator

A

[3 = V-y =((X’X)‘1X’)-y

We will be concerned with a modification of the above goal which seeks instead

to estimate particular conditional distributions of the estimation errors. Denoting

the rows of the matrix V by 12,-, i = 1,. ..,d, allows us to rewrite the estimation

errors as 3,- — 6, = v,- - we and for i Z 2 consider a more general problem of

estimating the joint distribution of v - ms for several contrast vectors 2) which are

generally not assumed to be rows of the matrix V.
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Note that this is a generalization since if 1 is the first column of X, then for

each i 2 2 the vectors 2),- are contrasts. Indeed, for all i _>_ 2 the vectors 1),- are

orthogonal to the first column 1 of the matrix X since VX is equal to the identity

matrix. In the case when all columns of X are orthogonal to 1 the definition of V

clearly guarantees that v, are contrasts for all i _>_ 1.

1.2. 1 Basic Properties

Let us first consider a few basic properties of random permutations. Hereafter we

will assume that 7r is a random permutation with distribution uniform over the

group 2,, of all permutations over {1, . . . , n}.

For an n-dimensional vector 6 and a permutation p E 2,, we will by p6 denote

the vector obtained from 6 by applying p to the indices of its components. The

i-th component of p6 will be naturally denoted by (pm.

We will use the usual notation E}- to denote the expectation conditional on a

a—algebra f. If Z is a random variable, then Ea(Z) will for simplicity be written

as EZ.

In this section we will take advantage Of the following two facts. For any

measurable function f, any n-dimensional real vector 6, and for all i, j = 1, . . . ,n,

where i aé j, it holds that

 

Ef(€1r(i)) = £23 “£0 (1-2)

Er“) _ 1 n 1
f(€7r(j)) “ Tl. _1;f(€k)‘ T—l_—1f(€7r(i)) (13)

To see that (1.2) holds write Ef(e,,(,-)) = E 22:, 1{,,(,-)=k}f(ek) and Observe that

for all i and k the probability P(7r(i) = k) is equal to -11;. Similarly, for every i and
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l we have that E"(f)f(e,,(j)) = E"(‘)2k¢,1{,,(j)=k}f(ek) as. on the set {7r(i) = l},

and that for all k aé l and i # j P(7r(j) = k | 7r(i) = l) = —1—- Therefore (1.3)
n—l'

holds as well.

Lemma 1.2.1 (Lemma 1 in [17]) Let 6 and v be vectors in IR" and let 7r be a

random permutation with distribution uniform over 2,,. Then for every contrast

vector u in B" it holds that

Em . ne)(v . ms) = n—iim . v) “e — enz, (1.4)

where E denotes the vector 1(e - 1) /n with all components equal to the average of

the components of 6.

Proof: First notice that for any vector 2 6 En the equation (1.2) implies that

E(z - ms) 2 2 - 3. Consequently we can write

E [u - 7r(e — 8)] [v - 7r(e — é)] E(u~7re)(v-7re) - ('I'1.-'i3)||1‘s||2

= E(u-1re)(v'7re)

since u is a contrast. Therefore we can assume, without loss of generality, that e is

also a contrast since for an arbitrary vector 6 this modified lemma can be applied

to the vector 6 — E which is a contrast.

Observe that for a contrast is the right hand side in (1.3), with the identity

function in place of f, becomes flew). Then, using equations (1.2) and (1.3) and

the fact that u is a contrast, we obtain

n

E(u - Ire)(v - we) = Z u,v,-Ee:(,-) + Zu,vjEe,,(,)E“(i)e,,(J-)

i=1 i¢j

1 1

= ; ”EH2 (u ' v) " EL—l guivjEérer)

I J
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= inelflu - v) — ||e||2[(u-1)(v-1) — (u-vH
__1___

n(n —- 1)

1 2
— ”_lllell (w). 

Corollary 1.2.2 Let u, v, and e be vectors in B" and let 7r be a random permu-

tation with distribution uniform over 2,,. Then

Emma-we) = ”:1(It—a].v)”._.—snz+(.-...—.)Hau2 (1.5) 

= ~77},- ([u — a] -[v — 27]) Ile — an? +0147) “an? (1.6)

Proof: To prove (1.5) write

E(u-7re)(v-7re) = E([u-—fi.]-7re)(v-1re)+E(fi-1re)(v-7re)

= E([u—'&]-1re)(v-7re)+(il-e)(iJ-e) (1.7)

= nil (In—a]-v)IIe-alr+(a-a>néni

 

by Lemma 1.2.1 with u — 11 playing the role of the contrast vector.

To see that (1.6) holds notice that in (1.7)

E([u — it] - ne)(v - n6) :2 E(['u. —- fl] - ne)([v — 13] - 7T6)

since E([u — 11] - 7T6)(’l—) - re) = (i2 - E)E([u - it] -7re) = 0.

Corollary 1.2.3 Let e and 'v be vectors in B" and let 7r be a random permutation

with distribution uniform over 2,,. Let W be a subspace in R" with either 1 E W



13

or 1 _L W. Then for any contrast vector u in R"

1

E(u~ (W€)/W)(v' (Tel/w) = ”_—_1(U/w°’v/w)ll€ — éllz- (1.8)

Here u/W denotes the projection of the vector u. on the space W.

Proof: We can clearly write (u- (Ire)/W)(v - (7T6)/W) = (u/W -7re)(v/W - re)

where u/W is a contrast. Hence a direct application of Lemma 1.2.1 implies that

(1.8) holds.

To see that u/W is a contrast recall that either 1 E W or 1 _L W and observe

that because of u being a contrast u/W - 1 = u - 1/W = 0 in both cases.

1.3 Conditional Models

To simplify the notation of projections we will use z/x to denote the projection of

a vector z E R" on the subspace generated either by a set X of vectors in R", or

by the columns of a matrix X. Further, Xi will denote the appropriate orthogonal

complement of the corresponding space and zi will stand for z/X, whenever the

meaning of X is implicitly clear from the context. Similarly, z 1 X will indicate

that the vector 2 is orthogonal either to the space X or to the column space of the

matrix X.

Before we introduce the conditional model, let us briefly mention a few impor-

tant properties of the permutations and random permutations being used. Consider

a subgroup A of the group 2,, of all permutations over {1, . . . ,n} and recall that

for every permutation V E A there is a unique inverse permutation in A, denoted

1 1
by U" , such that VV- results in the identity permutation. In addition, if A is a
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random permutation with distribution uniform over A then also A” is distributed

uniformly over A. We will also take advantage of the fact that for such a random

permutation A and for any vector v E B" it holds that

AEAv 2 EM). (1.9)

The equation (1.9) follows from the fact that the application of any fixed permu-

tation 7 E A leaves the components of EM) unaffected. To see this we can write

yEAv = IWI ZVEA 71m = EAv, where M] represents the cardinality of A. The last

equality holds because A is a group of permutations and hence for each 6 in A there

exists a unique V E A such that 6 = 71/.

Assumption: For all that follows we require that /\ be uniformly distributed over

a subgroup A of 2,, and independent of 11' which is distributed uniformly over 2,,.

We will now turn our attention to a conditional version of the model (1.1).

Observe that the conditional distribution 7r I Arr of 7r given the o-algebra generated

by the random set—valued mapping Ar = {V7l' : V E A} satisfies

7r |A7r = /\7r [7r. (1.10)

Under the An—conditional model for the errors re the estimator v - 3; may be

conditionally biased with conditional bias

EA”(v-y—v-Xfi) = E"(Au-7re) = (EAv)-7re. (1.11)

In an attempt to reduce the effect of any Ar—conditional bias we propose using

a bias—adjusted estimator

(’0 - yladj = v - y — (EM) ' (NV, (M?)

where, of course, (ms)i = yi = y/X, is a statistic.
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The remaining conditional bias of the adjusted estimator (u - y)“,- and its

unconditional mean square are described in the following two lemmas.

Lemma 1.3.1 The remaining Arr—conditional bias of the bias—adjusted estimator

(u - y)ad,- is equal to

Badj(A,7r) = (EAv—EA(EAv)J-) -we (1.13)

E (A [(EAv)/X]) - we (1.14)

Proof: The Arr-conditional bias of ('v - y),,dj can be written as

E” (v . y — (EAv) . (we)J- — v . X3)

= E” (v - we — (EAv) - (we)i)

= E" (v - Awe — (EAv) - (Awe)i)

= E" (An . we — A(EAv)l - we) (1.15)

= E" (Av — AEAv + A [(EAv)/X]) - we

= E (A [(EAv)/x]) . we

which proves both statements Of the lemma as (1.13) follows directly from (1.15).

In the last equality above we have used (1.9).

Note that if in the following lemma 1 _L X then the assumption that v is a

contrast is not necessary. This fact can be seen from the proof of the lemma.

However, for other results below we will have to require that v be a contrast even

if1_LX.

Lemma 1.3.2 If v E R" is a contrast, then the mean square of the conditional
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bias BadJ-(A, 7r) is

1

n—l
19(13adj(1\,7r))2 [[EAv — EA(EAv)i]]2 ||e — .2”2 (1.16) 

= n:1[[EA[(EAv)/X][[2||e — en? (1.17) 

Proof: We will first show that the vector EA [(EAv)/X] is a contrast. If u is

a contrast then so is a vector obtained from u by permuting its components and

hence also EAu is a contrast. In addition, the projection u/X of a contrast it is

a contrast since u/X ' 1 = u - 1/x = 0 in both cases when 1 is the first column

of X or if 1 _L X. Therefore (EAv)/X and consequently also EA [(EAv)/x] are

contrast vectors.

Hence the assertion of the lemma is a direct consequence of Lemma 1.2.1 applied

to E (E (A [(EAv)/x]) - re)2 with the contrast EA [(EAv)/x] playing the role of

the vectors u and '0.

Cl

The next lemma and theorem provide the means for comparing the mean square

Of the remaining Arr—conditional bias Bail-(A, 7r) against the mean squared error of

the bias adjusted estimator (v - y)ad,-.

Lemma 1.3.3 For a contrast vector v E R" the mean squared error of the bias—

adjusted estimator (v - y)“,- equals

1

n—l

 MSE,dj = [[v — (EAw)i]|2 He — e||2. (1.18)

Proof: First write

MSEadj = E ((v ' y)adj — 1%sz
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= E(v-y—(EAv)-(7r€)L—’U'Xfi)2

= EEA’r (v . 7re — (EAv) - (7rt3)i)2

: EE" (1) . Are — (EAv) - (Arre)i)2

= EE" ([Av — A(EAv)i] -7re)2.

Similarly as in the proof of Lemma 1.3.2 we will Show that, for every fixed value

of the random permutation A, the vector Av — A(EAv)i is a contrast. Observe that

it suffices to prove that (EAv)J- is a contrast since then it is clear that Av—A(EAv)i

is nothing but a random permutation of a difference of two contrast vectors, and

hence itself is a contrast, although random.

As noted in the proof of Lemma 1.3.2, if v is a contrast then so are EAv and

it’s projection to the subspace Xi which, similarly as X itself, either contains the

vector 1 or is perpendicular to it.

A straightforward application Of Lemma 1.2.1 with u and '0 both equal to the

contrast vector Av — A(EA’v)i then yields that for each fixed value of A

E"([Av — A(EAv)i] - we)2 = n i 1 [[Av — A(EAw)i||2 He — en2 

= n i 1 Ilv — <EAv>iII2 He — €12
 

which completes the proof.

Theorem 1.3.4 Let 6 be a vector in R" and let 7r be a random permutation with

distribution uniform over 2,,. Let and be a matrix of rank d with the first column

equal to 1 or such that 1 .1. X. Assume that A is a random permutation distributed

uniformly over a subgroup A of 2,, and independent of 7r. Then for any contrast
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vector v in R" the ratio of the mean square of the remaining Arr—conditional bias

Badj(A,7r) to the mean squared error of the bias—adjusted estimator (v - y),,dj, i.e.

the relative mean squared bias, is

mat-(And)? __ IIEA [(EW/xllfRMSB = _ . .

MSEadJ’ llv - (1%”le

  (1.19)

Proof: The assertion of the theorem follows directly from (1.17) and (1.18).

[:1

An extension of Theorem 1.3.4 to the multi—dimensional case can be Obtained

as follows.

Corollary 1.3.5 Let r be a positive integer and let {ak},:=1 and {bk};=1 be two

sets of real numbers. Then for r contrast vectors {vk},:=1 it holds that

2

2;, akE(Bad,-(A, 7r, v,))2 _ 22-. a, IIEAKEAvU/xlll

-
1.20

22:1 bkMSEadJ-(vk)
thl bk ””1: _ (EAvk)i||2

( )

  

Proof: Equations (1.17) and (1.18) imply that

212:1 akE(Badj(/\,7rka))2 = 22:1 CREW/”KW ' was - ‘vk ' Xe)?

212:1 bkMSEadj(vk) Zi=1bkE((vk ' y1adj — ”I: ' X512

 
 

_ r

2

wi—I Ile — e112 z,=,a,||EA[(EAv.)/x1]|

— Ile — @112 22.1% Hm — MEWLIIZ

 

2

zz=1ak|]EAI(EAvk)/XIH

22-11». va — (EAkalz '

 

In general it is desirable that (1.19) or (1.20) be small so that the bias com-

ponent of the error of the bootstrap approximation developed below is relatively

small when compared to the sampling variation of v - y.
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1.4 Incomplete Permutation Bootstrap

The Arr—conditional distribution Of the estimation errors of the bias—adjusted esti-

mator (v - y),,d,- satisfies

[(22 ~ ytt- — v - X3] IAr = (A122 —(EAv)*1-vre) I71 (1.21)

as noted in the proof of Lemma 1.3.1.

To approximate the conditional distribution (1.21) of the errors we will propose

using

A[v — (EAv)i] - (re)i [y (1.22)

where the unknown presentation Of the errors 71'6 is replaced by the observed resid-

uals (ne)i. The proposal will by justified by the fact that both the mean squared

remaining bias of the bias—adjusted estimator (v - y),,dj and the mean squared dif-

ference of the random variables in (1.21) and (1.22) will in some cases be small

when scaled by the mean squared error of the bias—adjusted estimator.

Confidence regions and hypotheses tests based on the distribution (1.22) will

under some circumstances and with high probability closely approximate the con-

ditional forms based on (1.21). Typically we have to require that (1.19) and (1.23)

below both be small which depends only on X and A. These regions and tests

may, as a practical matter, be constructed via Monte—Carlo simulations.

The following theorem will allow us to investigate how well (1.22) approximates

the target distribution (1.21) as it establishes an upper bound on the Mallows

metric between these two distributions (see e.g. [3] for details on Mallows metric).

For a fixed contrast vector v and a random permutation A uniform over A let

TrueA = A[v—(EAv)i]-7re and BSA = A[v—(EAv)i]-(7re)i. These two specifically
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chosen dependent random variables have conditional distributions (1.21) and (1.22),

respectively.

Theorem 1.4.1 The mean squared difference of True), and BSA scaled by the

mean squared error MSEadj of the bias—adjusted estimator (v-y)adj, in other words,

the relative mean squared discrepancy, is

“BSA _ TmAy _ E [[[Av -— EAv]/,,]|2
RMSD = _

MSEadI' llv - (EMPII2

  (1.23)

Proof: TO show (1.23) we will first use Corollary 1.2.3 to observe that the

numerator can be written as

E(EsA — Truew)2

= El/W , (“)1 __ A(EAv)i . (we)i —- Av - we + A(EAv)i - we]2

= E[Av . (we/x — MEAvr - (“El/x12

= EE"[(Av — A(EAv)i) - (no/x12

= 1 E [[[Av — A(EAv)]/xl[2 ||e — e‘sll2
n—I

 

= n: 1E “(Av _ EAv]/XH2 ue — 212.
 

The role of the vectors u and 'v in Corollary 1.2.3 is, for each fixed value of A,

played by Av — A(EAv)i which has been shown to be a contrast in the proof Of

Lemma 1.3.3.

The form Of the denominator in (1.23) can be obtained from the assertion of

Lemma 1.3.3, hence (1.23) holds.

By minimizing (1.23) we can control how closely the incomplete permutation

bootstrap method approximates the conditional distribution (1.21).
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Corollary 1.4.2 (Part a) is Proposition 1 in [17]) Assume that all requirements of

Theorem 1.4.1 are satisfied for A = 2,,. Then the estimatorv-y has no conditional

bias and the following hold:

a) If 1 is the first column ofX then the relative mean square discrepancy becomes

E(v-A7re-—v.A(7I'e)i)2 d—1

M D: = . .

R S E(v - Arne)2 n —1 (124)

 

b) If 1 _L X then the relative mean square discrepancy becomes

E(v - Arre — 110A(7re)i)2 d
D = = .

RMS E(v - Arne)2 n — 1 (1 25)

  

Proof: Let {20,-};1 be an orthonormal basis Of the space generated by the

. columns Of X. Both assertions (1.24) and (1.25) follow directly from (1.23) and

Lemma 1.2.1 applied to E(v - Aw,-)2 for each i.

To prove (1.25) first observe that if A = 2,, then E(Av) = t7 = 0 since u is a

contrast vector. This and Lemma 1.2.1 yield that the numerator on the outmost

right hand side in (1.23) becomes

2 d

EHOWVXH = 253(02in

 

d

n _1 |le|2 1w.- — m1? (126)
i=1

d 2
— "_lnvu. 

The last equality holds because of the fact that {111,-}:1 is an orthonormal basis

and thatfi=0for everyi= 1,...,dsince 1 .LX.

The proof of ( 1.24) is essentially identical if we assume that ml is equal to a

multiple of 1 because then ”to—,- = 0 for every i = 2, . . . ,d, and the first summand of
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2le E(v - Aim-)2 in (1.26) becomes E('v - Aw1)2 = 0. Note that such a basis exists

since in this case 1 is assumed to be the first column of X.

We will use the previous result to compare the performance of our incomplete

permutation bootstrap to the performance of the full permutation bootstrap. The

latter has been shown in [17] to perform in some cases better than the uncon-

ditional approach, yielding narrower confidence regions. Therefore it is sensible

to determine in which situations our incomplete permutation bootstrap brings an

additional performance improvement.

Corollary 1.4.3 Letv be a contrast vector and let BSA, ESE", TrueA, and Truegn

be as above. Then the ratio of the incomplete bootstrap mean square discrepancy

versus the mean square discrepancy under the full permutation bootstrap model can

be expressed as

E(BS,( — TereA)2 _ n —1

E(Bs,;n — 111mm)2 ‘ d— IEHW EA” W]

2

a
 

(1.27)  

Proof: According to the proof of Theorem (1.4.1) and formula (1.26) we can

write 2

E(BS,1 — True/1)2 _ E [[(Av — EAvl/xH

E(BSgn — Truegn)2 f:—[ “v”2

which implies (1.27).

  

1.5 Independent Block Permutations

In the previous sections we obtained results for the unconditional relative mean

square bias (RMSB) of the bias adjusted estimator (v - y)“,- and the unconditional
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relative mean square discrepancy (RMSD) between the true conditional distribu-

tion of its errors and the incomplete permutation bootstrap approximation.

In this section we will consider the relative Arr—conditional mean square dis-

crepancy between the true and incomplete permutation bootstrap distributions

in a special case Of independent block permutations of a vector 1) consisting of

blocks Of contrasts. One of the advantages of this special case is that the estimator

v - y becomes conditionally unbiased which implies that the true conditional distri-

bution (1.21) of the estimation errors and the incomplete permutation bootstrap

approximation (1.22) turn out to be

Av . re Irr, and

Av ° (mi Iv

respectively.

For a partition A = (14),),5;1 Of {1, . . .,n}, a vector u in IR", and every k E

{1, . . . , K} we will define a vector [u]’° = (“the/1,. representing the k'th block of

components of the vector u. The cardinalities of the sets A), will be denoted by

nk=|Ak|,k-——1,...,K.

We will say that a random permutation A consists of K independent block

permutations if for some fixed partition A as above and any vector u E R" the

random permutation A satisfies

[Au]k = AkMk, k = 1,. . .,K, (1.28)

where A1, A2, . . . , AK are independent random permutations with distributions uni-

form over the full permutation groups 2,,,, . . . , 2,,K, respectively.

Note that previously we have required that A be distributed uniformly over the



24

permutation subgroup A, therefore the condition (1.28) also enforces the form of

A. Such a subgroup A will be called a K—block permutation group.

Below we describe the Arr-conditional Mean Square Error Of the estimator v - y

and the Arr—conditional Mean Square Discrepancy of the conditional distribution of

its estimation errors from the proposed incomplete permutation bootstrap approx—

imation under the assumption that EA?) = 0. Note that the requirement EAv = 0

is in the case of independent block permutations equivalent to the condition that

EAk[v]" = [v]k = 0, i.e. that [21]" is a contrast vector for every k = 1, . . . , K.

It is also easy to see that if EAv = 0 then the estimator v - y is conditionally un-

biased as suggested above since according to (1.11) on page 14 the Arr—conditional

bias of v - y equals (EAv) - 7re.

Lemma 1.5.1 Assume that A consists of K independent block permutations and

that v E R". If EAv = 0 then the Arr—conditional mean squared error of the

estimator v - y equals

 

K 2 — 2

MSEA" = EA"(v - 7re)2 = k: [[[v]k[[ [[[re]k — [rte]" [[ . (1.29)

1

: nk—I

Proof: Using Lemma 1.2.1 with [11]" playing the role of the contrast vectors u

and v we can write

MSEM = EA"(v - y — v - X,6)2

= E”(Av - 7re)2

= E" (I: Akflv]’° - [re]k)

2

E" (Mk . Ak[r6]k)2 (1.30)ll

M
3
:

1: 1
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K

 

 

    _, III IIIrIk-I“I“ II

In the equality (1.30) we used the independence Of the random permutations

{Aklle and the fact that EA’rAkflv]k - [ne]k = [v]k - Emflrrefl" = 0 for every

k=1,...,K.

Lemma 1.5.2 Under the assumptions of Lemma 1.5.1 the condition EAv = 0

implies that the A7r~conditi0nal mean squared discrepancy between the true condi-

tional distribution of the errors of the estimator‘v'y and its incomplete permutation

bootstrap approximation is equal to

[111"]? E" Inna/XI" - Irma/XII If,

(1.31)

 

  

K

E” BS —T 2:( A TUBA) Erik—1

where TrueA and BSA are as in Theorem 1.4.].

Proof: Similarly as in the proof of Lemma 1.5.1 we will use the independence

of A1, . . .,AK, the fact that EA"Ak[v]k - [(7re)/X]k = W - EA"[[(7re)/X]k = 0 for

every k E { 1, . . . , K}, and Lemma 1.2.1 with u and 2) replaced by the contrasts

[[vfi’c to Obtain

EA“(BSA — Tram)2 2 EM (Av - (7re)i — Av - re)2

= EA”(Av-(7re)/X)2

=E’”(2Ak[v1k1<we/w1)

= 2 EA" (1ka - AkI(vre)/XI")2
k=1
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k,
2

—— 2

z 23.2.11 IIIkaII E""III<we)/x1’:—I<7re>/XI’“
II

K 1 2
—— 2

= kX-T’Hk—I [[[vlkll En I()‘7I€)/xllk_[(’\7r€)/X]Ik[[
'

Corollary 1.5.3 Assume that l is the first column of the matrix X and that A is

as in Lemma 1.5.1. Let {wj}:=1 be an orthonormal basis of the column space of

the matrix X such that wl = 1/,,/r—i. IfEij = 0 for allj = 2, . . . ,d then for any

1) E R" with EA!) = O the Arr—conditional mean squared discrepancy between the

true conditional distribution of the errors of the estimator v - y and its incomplete

permutation bootstrap approximation can be written as

EWBSA — True/()2 = (1.32)

= ;[(2, 1 IIIkaIIgIIIwI-Ikllz)__ nk—l

 

 

(‘2 I IIIreIk-Wllzflwz-I’“ijI"))],

where TrueA and BSA are as in Theorem 1.4.].

Proof: The assertion follows from Lemma 1.2.1 and 1.5.2. In (1.31) we can

write

(1 2

2(775 ' willwilk

i=2

EA" Iva/xr—Iea/wrlf = E”
  

    

d

= Z [101],“-[w,~]kEA"(7re-w,)(7reowj),

i,j=2
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for every k E {1, . . . , K}, and then use Lemma 1.2.1 to observe that for every i

andjin {2...,d}

Ewe - wow - w» = E“ (‘2‘ War - iwil') (gum—11'- lel’)

= g E" ([wa . may) ([[wjnl . Alflrell’)

= 1 lwill‘lell’lllrel-Fre—l’llz-
l=1n1—1

 

In the second equality we use the independence of /\1, . . .,AK and the fact that

 

Enqflunfl’ - [refit = flwJI’ - EMIIrrefl’ = 0 for every l = 1, . . . , K.

Theorem 1.5.4 Let /\ be a random permutation consisting ofK independent block

permutations. If v E R" satisfies EM: 2 0 then the ratio of the Arr—conditional

mean squared discrepancy between the true conditional distribution of the errors of

the estimator v - y and its incomplete permutation bootstrap approximation versus

its Arr—conditional mean squared error, in other words the relative Arr—conditional

mean square discrepancy of v - y can be expressed as

 was, — Mew = 2;; ”WW E“ llama/w — two/xi“ ”2
E""(/\v - rros)2 2:le 1 “[[vllku2 Hflrreflk —W ”2

nk-l

  
,

 

(1.33)

where True,‘ and BSA are as in Theorem 1.4.].

Proof: The result is a direct consequence of Lemmas 1.5.1 and 1.5.2.



28

Corollary 1.5.5 Under the assumptions and using the notation of Corollary 1.5.3

we obtain that ifl is the first column ofX then

 

            

EAW(BSA — True/02 _ (K

-1

1‘3A7'(z\v-rns)2
— flmlk ll ) (1'34)

 

2K2:. -1 HMH 11min)

(21k=l nk —1

 

llflwer -W H2 (iwr . [2216)] ,

where TrueA and BSA are as in Theorem 1.4.1.

Proof: The assertion follows from Lemma 1.5.1 and Corollary 1.5.3.

As a corollary of Theorem 1.5.4 we obtain a formula for the case of full permu-

tation bootstrap in which the relative Arr—conditional mean squared discrepancy

becomes equal to the unconditional RMSD described in Corollary 1.4.2 above and

in Proposition 1 of [17].

Corollary 1.5.6 If /\ is a random permutation with distribution uniform over 23,,

and v E R" is a contrast vector then the Arr-conditional mean squared discrepancy

becomes

EA"(BSA — MCAV _ d — 1

EA"(Av ~ we)? — n — 1

 (1.35)

where TrueA and BSA are as in Theorem 1.4.1.

Proof: In the assertion of Corollary 1.5.5 take K = 1 and write, using the facts

that [all = u for any vector u and that ”to—,- = 0 for i Z 2,

 EM<BSA‘T’"“€A)2—( 1 ll H2“ _II2)_1EA"(A’U . W€)2 — _ 'v 7T6 TI'E
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 2 ( 1 llvll2 Hw. II?) (J— une 4—. ll2(w.-w,- ))

 

M22 n—1 n—1

= i “L" llwillzwi'w‘z d-l-
n—l 3 n—l

i,j=2

1 .6 Examples

To illustrate the previous results we will consider a simple linear regression model

ynxl = a + flmnxl + 7renxl

which is a special case of model (1.1) with 6le = (a,fl)’ and anz = (1,33). The

random permutation r is assumed to be distributed uniformly over 23,, while the

unknown vector 6 is assumed to be non-random as in model (1.1).

Under the simple linear regression model the matrix V = (X’X)‘1X' has two

rows v1 = 1/n and v2 = x/ ||x||2. Although the following example is formulated in

terms of a general blockwise contrast vector v, we will keep in mind that one would

most often be concerned with the Arr—conditional distribution of v2 - rs = 6 — B

and its incomplete permutation bootstrap approximation. As before, 6 denotes

the least squares estimator of ,8 and A is a K—block permutation subgroup of 2,,.

Example 1.6.1 (Single outlier) Assume that the random permutation A con-

sists of K independent block permutations and that the vector of errors 6 E B" is

of a very simple form, namely that e = (a, O, . . . ,O)’ for some a.

2

Define a sequence of disjoint events {Ek}f=1 as E, = {Hflneflku = a2} for every

k = 1, . . . , K. Then for any v E B" with EA?) = 0 the following hold:
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1. The estimator v - y is Arr-conditionally unbiased.

2. The Arr—conditional Mean Squared Error of the estimator v - 3; becomes

E""(/\v - rre)2 = a2 f: —1- IIIkaIIzlE . (1.36)

k=1 "2" k

3. The ratio of the Arr—conditional Mean Squared Error of the estimator v - y

versus its unconditional Mean Square Error is equal to

5:382:52: ”7”leZ:—IIIvI’2Il ls. (1.37) 

4. The Arr—conditional mean squared discrepancy between the true conditional

distribution of the errors of the estimator 12-3] and its incomplete permutation

bootstrap approximation can be written as

13""(85A — True/()2 = (1.38)

[72f(:—IIII2II13~)I:M=1III2’IIIIImIkImI’2II2
 

where TrueA and BSA are as in Theorem 1.4.1.

5. The ratio of the Arr—conditional mean squared discrepancy between the true

conditional distribution of the errors of the estimator v . y and its incomplete

permutation bootstrap approximation versus its Arr —conditional mean squared

error, in other words its relative Arr—conditional mean square discrepancy is

EA”(BSA — True/()2

EA"()W . “)2

 (1.39)

2IIII__II21,

IvIII1’2 II21E 212““

1

Ilwll
IIMII III-3112 Il—kl 23——

where TrueA and BSA are as in Theorem 1.4.1.
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Proof: In light of the fact that for every I: = l, . . . , K

IIIlfl'éllk ‘ WW 2 a2 ”kn—1
 

1E1:

it is easy to see that (1.36) is a direct consequence of Lemma 1.5.1.

Equation (1.38) follows from Lemma 1.5.2. Similarly as in the proof of Corol-

lary 1.5.3 (with K=2 and EAwg not necessarily equal to 0) we can in (1.31) write

EMIliqevxr—WIIZ = E” (we.w2>(1w212—W)II2

= lliw212 —W IIZ E22<vre - w2>2.

  

and

K K 2

EA"(7re - 202)2 = Z E7r (2: 15m [Airefll - [10232)

m=l (=1

K

= 2. E213... (Irelm ~ 3.120212"?

K 1

= 25—0aIl222IleImII 15m

where 102 = m/ Hm“.

Clearly (1.36) and (1.38) together yield (1.39). Recall that the events E1, . . . , E,

are disjoint.

Equation (1.37) is a consequence of (1.36) and Lemma 1.3.3, according to which

the mean square error of the estimator is equal to

MSEadj = E()\v . me)2 = 
1

2 _ 2 2 2

’U €—€ —— ’U a

Figure 1.5 shows the conditional distribution of v - we and its incomplete per-

mutation bootstrap approximation for the case of four—point regression with single
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outlier 6 = (1,0,0, . . . , 0)’. We consider a vector v = a: and assume that v consists

of two blocks

( -10) ( -3)
—10 -3

W = ' and M2 = z

310

K10} \3/

with dimensions m1 and mg, respectively.

    

The unconditional distribution of v - 7T6 assigns probabilities $711 to the points

—10 and 10 and probability 3% to the points ——3 and 3.

The conditional distributions of v - ire given that in ms the error value 1 aligns

with [v]1, that is v - 7T6 |7r(1) 6 A1, consists of the points —10 and 10, each with

probability 1 /2. Similarly, v - 7re |7r(1) 6 A2 is uniform over the points -3 and 3.

The full permutation bootstrap of the residuals approximates the unconditional

distribution of v - 7T6 while the independent block permutation bootstrap approxi-

mates the conditional distributions. The approximations shown in Figure 1.5 were

obtained via Monte-Carlo using 5000 random permutations. The dimensions of

the blocks were chosen m1 = 100 and m2 = 200.

Figure 1.6 shows the distributions of v ~ us for simple linear regression y =

a + Ba: + ms with pulse error e = (1,0,0, . . . ,0)’ and

(~10)
—9.8

—9.6

. (1.40)

9.8

I 10}
  

The contrast vector v was chosen equal to a: with the first block [[vlll consisting of
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the 7 largest and 7 smallest components of (B.

For i = 1, 2 the conditional distribution of v - 7T6, given the order statistics of

errors in each block, is uniform over the components of [v]‘ and, as Figure 1.5

shows, is well approximated by the independent block permutation of bootstrap of

the residuals. The approximations shown were obtained using Monte-Carlo with

5000 replicas of v - A(7re)i|Y.

Figure 1.9 illustrate conditional distributions of v - e in the same regression

model with errors 6 being i.i.d. Gaussian with one outlier. In Figure 1.10, e,- =

6,-Uf2 where 61, . . . , 6,, are i.i.d. symmetrical random signs and U1, . . . , Un are i.i.d.

uniform random variables independent of the random signs.
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Figure 1.5: Four point linear regression with a single outlier. The conditional and

unconditional distributions of the errors v . we and their corresponding indepen-

dent block and full permutation bootstrap approximations. The approximations

were obtained via Monte—Carlo with 5000 replicas of the corresponding random

permutations.
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Figure 1.6: The conditional and unconditional distribution of the errors v - NC in

a simple linear regression with a single outlier. The corresponding independent

block and full permutation bootstrap approximations were obtained using Monte—

Carlo with 5000 replicas of the corresponding random permutations. (Same as

Figure 1.3)
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Figure 1.7: Comparison of the exact and approximated conditional distributions

of the errors v ~ ms in a four point linear regression with a single outlier. (Data

from Figure 1.5.)
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Figure 1.8: Comparison of the exact and approximated conditional distributions

of the errors v - we in a simple linear regression with a single outlier. (Same as

Figure 1.4, see data in Figure 1.6.)
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Figure 1.9: The conditional and unconditional distribution of the errors v - we in a

simple linear regression with i.i.d. Gaussian errors. The corresponding independent

block and full permutation bootstrap approximations were obtained using Monte-

Carlo with 2000 replicas of the corresponding random permutations.
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Figure 1.10: The conditional and unconditional distribution of the errors v - 7T6

in a simple linear regression with i.i.d. errors from the domain of attraction of a

symmetric stable law with a = 0.5 (in particular, 6, = 5,-U,‘2 are reciprocals of

squared i.i.d. uniform variables with independent symmetrical random signs). The

estimates of the distributions were obtained via Monte—Carlo using 2000 replicas

of the corresponding random permutations. (Same as Figure 1.1)
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1.7 Asymptotics for Independent Block Permu-

tations

Our results in the previous sections Show that the conditional distribution v -

71’6 |A7r, i.e. the distribution Av - 71'6 |1r or v - Ac I6, can under some conditions

on the design be well approximated by incomplete permutation bootstrap of the

observed residuals (ms)i with proper compensation for the conditional bias of the

estimator v 2 y.

To support the use of conditional confidence intervals based on incomplete per-

mutations bootstrap and to clarify the relationship of the conditional distribution

to the unconditional one we establish a strong invariance principle (as n increases

to infinity) for the conditional distributions

vn - Anen len (1.41)

for a sequence of particularly chosen block-wise contrast vectors vn E R" in the

special case when for each n the errors 6,, = (em)?=1 are i.i.d. random variables

with distribution attracted to a fixed a—stable law of index 0 < a < 2, and the

random permutation An consists of K independent uniform block permutations.

Theorem 1.7.1 (Limit Theorem) Let A = {Ak};1 be a partition of the in-

terval [0,1] into K finite unions of intervals, and for every n let An be a random

permutation consisting of K independent block permutations induced by A as de-

scribed in (1.43}.

For every distribution F in the domain of attraction of a—stable law having

index a < 2 there exists a triangular array such that for every n the errors in the

n‘th row of the array 6,, = (em-)2;1 are i.i.d. F and ifv is a continuous function
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on [0,1] with finite variation, satisfying fA1. v = 0 for all k = 1,. . . ,K then there

exist cddla’g versions L1, . . . , LK ofK independent a—stable Le’vy processes on [0, 1]

such that

1 K 1

E; vn-Anen la. a kzumira / v<f0dL2 ($2. as.) (1.42)

as n —> 00, where u is the Lebesgue measure, the vectors vn are defined using v

as specified in (1.44), the scaling constants an are defined in (1.45), and for every

k = 1, . . . , K the o—algebra J?" is generated by the jumps of the process L" while

f), is an appropriate monotone, piece-wise linear scaling of [0,1] onto Ak.

Those familiar with convergence to stable laws may note the absence of center-

ing in (1.42), but this is taken care of by centering vn (see (1.46)).

Proof: We will adopt a modification of the approach used by authors in [17]

who obtained similar results for the complete permutation bootstrap case. This

method is based on a series representation of a cadlag version of a Lévy process

which is described in great detail in [18].

Assume that for every n the permutation An is generated by K independent

block permutations, i.e. that for a fixed integer K there is a partition A = {Ak}f=l

of the interval [0, 1] with A), being a finite union of intervals for every k = 1, . . . , K,

and that for every n the random permutation An applied to a vector u 6 R"

satisfies

[[Anu]k = A:|]u]]k, k = 1, . . . , K, (1.43)

where {A2}; are independent random permutations, each distributed uniformly

over 2mg; . Here m: denotes the dimension of [14" = (u,),-e,,Ak which, similarly as

before, represents a vector consisting of the 10““ block of components of the vector
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u. Notice that, in contrast to our previous definition, the set of indices {1, . . . , n}

is partitioned into K blocks by the sets in nA.

We will generalize the notation of block vectors to functions on [0,1] as fol-

lows. For a positive integer n and a function v : [0,1] —+ R define [vfin as the

n—dimensional vector with components equal to values of v sampled at the succes-

sive points i/n, i = 1, . . . , n. For every 10 = 1, . . . , K let [[v]f, denote the k'th—block

of [v]n.

This notation will be used to specify the special form of the sequence of contrast

vectors {vn}n21. For what follows we will assume that v: [0, 1] —> [R is a continuous

function with finite variation satisfying

/v(x)dx=0, k=1,...,K,

AI:

and for every n we will define a vector vn E R" by requiring

[[vn]k = [v]: — [[vflfi, k = 1, . . .,K. (1.44)

The specific choice of the vectors vn guarantees that all the vectors vn are block-

wise contrasts, in other words,that all the corresponding blocks [vn]’° are con-

trast vectors. As noted earlier, this condition is equivalent to the condition that

EAnvn = 0 for all n 2 1.

Let us now state the results for the full permutation case as developed in [18].

For a random variable X with distribution F define G+(x) = P(X 2 x IX 2 0),

G_(x) = P(—X > x| — X > 0), and C(35) = P(|X| 2 0). The inverse of a

function F will be defined as F‘1(x) = inf {y 2 0: F(y) S x}. For every 72. let

an = G—1(1/n) (1.45)

If F belongs to the domain of attraction of an a~stable law with a < 2 then
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the following limits exist (see [18])

 

__ lim P(X 2 x) _ lim P(—X > x)

p " x—voo C(22) 2 q _ x—m C(15)

For a sequence u = (u,)f_:1 of numbers from [0,1] and 0 g t g 1 define (as in

[15], reprinted in [16])

I?(u,t) = 1{s: U171 S [sn]}(t) and recursively

I,"(u, t) 1{s: u,-(n + 1 — i) 3 [sn] — 23;] Iflu, 3)}(t)’

wherei=1,...,n.

If 1" = (13);): 1 is a sequence of the arrival times of a standard Poisson process,

U = (U03; is a sequence of i.i.d. random variables with uniform distribution

over the interval [0,1], and if 6 = ((2)321 is a sequence of random, possibly non-

symmetric signs such that l", U, and 6 are mutually independent then according

to [18, Lemma 3 and (11)] the random vector

en = (5n,i)?=1 = "it! (620321 (FP:1))n i=1

consists of i.i.d. F random variables. Here 7g? represents a uniform random permu-

 

tation of {1, . . . ,n} chosen by U via the positions (1,-'2)?=1 of jumps of the functions

(I?(U, t))?=l'

According to Theorem 2 in [18]: Let a 6 (0,2) and let v be a continuous real

function with bounded variation with f0l v = 0. Then

  41.12052“ z)6,- 0.5—,1 ( Pi ) = Z Ziggy"), (as), (1.46)

n 1':
i=1 i

1 Ffl+1

where

  

Z-— I? 1/06i+1+ q ”061—1

2‘ P(XZO) 2 P(—X>0) 2 '



43

Note that for every n the sum under the limit in (1.46) can be written as

i [v]n ~ 112,? e. The right side of (1.46) can be according to [18] viewed as f vdL

where L is a cadlag version of an a-stable Lévy motion on [0, 1].

Theorem 2 in [18] also states that if bn = E(z,-f1"/nG5,(x)dx)n/an then the

scaled and centered sums 1/an 22;, em- — bn converge (a.s.) to a finite random

variable as in (1.48) below with A = [0,1]. Note that [an S B n/an for some

B > 0, therefore if {an} is a sequence of real numbers with ncn/an —2 0 then

lim 2"— : 6",,- = 0 (a.s.). (1.47)
71—2000,", 1

1:

If A is a finite union of intervals in [0,1] we can use the same construction to

obtain an (a.s.) limit for the sums of [np(A)] random variables

lim 1 Z v(f(J,-"))6,- 0&1 (FL) = 00 #2, (a.s.),
n—oOO anp(A) iEnA .=1 1

(1.43) 

n+1

where f is a scaling of [0, 1] onto A.

We can therefore construct K independent (a.s.) limits for 31,: [UK - Axienk as

u(Ak)° f v(fk)dL". Here we use that if F is a—stable law then for every x > 0 it

holds that limn_,oo aux/an = x“.

The facts that v is continuous and fA1. vdu = 0 guarantee that [v]: —-> 0.

Replacing cn in ( 1.47) by [v]: we obtain that a—lgflv]: - en), converges to 0 (a.s.), for

every k as an —-> oo, hence we obtain that for every k = 1, . . . , K

1

lim —— (0,112 - A216,), = u(Ak)°' / v(f,,)dL’°, (a.s.).

Similarly as in Proposition 1 of [18], the conditional convergence result is ob-

tained via conditioning on (1226,") which is equivalent to conditioning on the jumps

of the corresponding processes.
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1.8 Exact Confidence Intervals Based on Incom-

plete Permutation Tests

Quade (1973) ([20]; see also [19] and [9]) has found a pivot which can be used to

develop an exact confidence interval for B in the simple regression model

y=a1+xfi+7re (1.49)

where a: is a known vector in R" and a and S are two unknown parameters. For

simplicity we will assume that a: is a contrast, i.e. :1: - 1 = 0.

The model (1.49) is a special case of the model (1.1) y = X - ,6 + 7T6 with

the matrix X having two columns 1 and a: and fl = (a,fi)’. The vector 4: 6

R" is, similarly as in (1.1), considered to be non-random but unknown, and the

random permutation 7r is assumed to be distributed uniformly over the group 2,,

of all permutations of components in B". Lastly, we assume that the random

permutation A is distributed uniformly over a subgroup A of 2,,.

Let v denote the second row of the matrix V = (X’X)“lX’ , in other words let

v = ”—xleg, and recall that v is a contrast. Denote by B = v - y the least squares

estimator of B.

Under the hypothesis H0: 5 = 50 we can observe that the vector of marginal

errors 60 = y — g — $30 is equal to re — E. Therefore under the hypothesis Ho we

are able to recover the centered errors without postulating the value of a.

A permutation test for testing Ho can be based on the test statistic

Trr(160) : ’0 ° 60

which under Ho has Arr-conditional distribution that is uniformly distributed over

the indices of the values of v - A60. Note that if H0 holds then T,,(60) is equal to
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v - rs = B — BO.

Denote by T" the random variable v - A60 which is Arr-conditionally independent

of T7r(Bo), but under Ho: 5 = So has the distribution T,,(B0) IAN. Then the p-

value for the observed value to of the test statistic T1450) can be expressed as

2min(P+, P‘, %) where P+ = P(T" > to) and P“ = P(T" < to).

Lemma 1.8.1 (Extension of Quade’s result in [20]) Let T,(B0), T", and A be as

before. Assume in addition that there are no ties among the values of T". Then

an a-level confidence region for B can be formed as

B = {fies % < P"(T* > Time» 31-2}, (150)

where a is of the form 1% for some integer 0 < j < 2|Al.

Proof: Denote by PBAO" the probability measure under the assumption that So

is the true value of the parameter ,8, conditional on Arr. Let the u-conditional

distribution function of T" be denoted by F50. To examine the probability that So

is not covered by the confidence region B we will write

Pause r B) = Pit,"(P2(T* 3 ma.» 3 25-) + P3,"(P2(T* 3 72.03..» > 1- s)

(1.51)

and observe that P&”(P"(T* S T1,(Bo)) S 92!) = P&”(F00(Tn(fio)) S 523) = g since

Fgo(T,,(fio)) is distributed uniformly over {fi: 10 = 0, . . . , IAI} and a is of the form

1%, for some j. Similarly, the second probability on the right hand side in (1.51)

is equal to %. Hence Pgflflo g? B) = a.

The confidence region in (1.50) has the desired confidence level, but is hard

to construct since for each value of B0 the probability P"(T"‘ > T,(Bo)) has to be
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computed individually. To simplify the construction of the confidence region B we

will rewrite its definition in a more useful form using a pivotal random variable

which does not depend on the value of ,80. A special case of this method, for the

permutation group 2,,, was first introduced by Quade in 1973.

Proposition 1.8.1 (Extends Quade [20]) Let a = (21%| for some integer 0 < j <

2|Al. Then the a-level confidence region (1.50) can be obtained as

B={eo.-g<P2(8—(1—'j)%2—;§fi<flo)<1—g. (1.52)

Proof: Recall first that if H0 holds then moo) = 0 — 50. Thus (1.50) can be

written as

B={fi0: <P“(v-Ae°>fi—fio)<l—%}.

N
I
Q

Notice further that under H0

(“ell =y-Q-mB=eo—x(B—,80)

which implies that v - A60 = v - A(7re)i + (B —— Bo)(v ~ Ax). Hence the probability

P'”(v - A60 > B — 30) becomes

P"(v 2 /\(7T€)i > (B — fio)(1-(v-Am)))

and the a-level confidence region (1.50) can be obtained as

B={fio:%<P"(S—%<flo)<l—§}

which completes the proof.

The pivot B —% does not depend on the hypothetical value ,60 of the

parameter E, therefore the confidence region B can be constructed for example by

resampling from the distribution of A.



Chapter 2

Wavelet Expansion Model

2. 1 Introduction

Consider a problem of estimating a function f that has been observed with errors

at N points

y.- = f(t.-)+e.,z‘=1,...,N, (2.1)

where (2),";1 is an equidistant division of the interval [0, 1] and the random vector

of errors (6,),1il has a distribution with exchangeable components. Authors in [5]

use wavelet shrinkage for model (2.1) with i.i.d. normal errors.

Here we consider a modified discrete wavelet expansion of the function f as a

means of estimating the function f at the points (ti)i1:1' Our modification of the

wavelet expansion will allow us to use permutation resampling of the residuals to

find conditional confidence regions for the wavelet coefficients of the function f.

The only assumption about the distribution of the vector of errors is exchange-

ability of the components.

47



48

2.2 Modified Discrete Wavelet Transform

Consider a discrete wavelet transform based on a finite collection W0 of wavelets

and a corresponding matrix W0 with columns representing discrete versions of the

wavelets, evaluated at the points of interest (ax-1:1.

In many situations all the columns of the matrix W0 are orthogonal to the

vector 1, therefore in such cases the results of this dissertation can be used directly

for the model (1.1) with 1 _L X.

Also in cases when the column space of W0 contains the vector 1 we can use our

results directly. For example the Haar wavelet basis on a finite interval contains

the constant function 1 hence our results can be utilized.

The modification of the original concept of discrete wavelet transforms is con-

cerned with the case when neither of the above situations applies, that is when 1

is neither orthogonal to nor contained in the column space of W0. Is such a case,

instead of the wavelet collection W0 we use a collection of functions

W={91}UW0={91,92,---,9K}, (2-2)

where 91 is the constant function 1 on the interval [0, 1]. In place of the matrix W0

we use a matrix W with columns {w1, . . . , wK} corresponding to the functions in

W.

This modification allows us to assume that the first column ml of the matrix

W is the vector 1 with all components equal to 1, which is required to use our

results.

For simplicity we will also use W and W in place of W0 and W0, respectively,

when the modification of the wavelet transform is not required, that is when 1 .L W
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or when 1 is spanned by the columns of W0.

2.2.1 Linear Regression Model

Let f“ denote the L2 projection of the function f on the L2([0, 1]) subspace spanned

by the collection of functions in W. We can write f* = 2le gkfik (a.s.) for some

01,...,6K.

Consider now a problem of estimating f* using the same observations and errors

as in (2.1). This problem can be described by the following linear regression model

K

yi=:(wk6k)+€i,i= 1,...,N, (2.3)

k=1

which in matrix form becomes

y=W~0+e, (2.4)

where y is the vector of N observations {311, . . .,yN}, W is an N x K matrix,

0 = {61, . . . , 6K} is the vector of unknown parameters, and e is an N—dimensional

random vector with exchangeable distribution.

The conditional version of model (2.4), given the order statistics of e, is a special

case of model (1.1) with 0 playing the role of ,6 and W in place of the matrix X.

The assumption that 1 _L X or that 1 is the first column of X will in light of

our modification of the wavelet transform be always satisfied. The matrix W0, and

ergo also the matrix W, usually has full rank, therefore all the assumptions of the

model (1.1) are satisfied.

2.2.2 Asymptotics for the Modified Wavelet Transform

The modification of the wavelet transform described above is essential in that it

allows us to use our method of incomplete permutation bootstrap to approximate
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the conditional distribution of the estimation errors. The effect of the modification

on the original wavelet expansion becomes less important as the number K of

wavelets used in the expansion increases.

Proposition 2.2.1 The diflerence between the modified and traditional wavelet

transforms vanishes with increasing K in the L2 sense as described by (2. 5), (2.7),

and {2.8)

Let us consider the case when W corresponds to the modified wavelet transform

as described in (2.2). Let us define f“ = f/W and fi = f/Wi. We can then rewrite

the function f in a few useful ways as follows:

f = f/w+f/mu=f"‘+fi (2.5)

f = f/wo'l'f/W6L (2-6)

f = f/wo'l'f/wl‘l’f/wh (2.7)

where W1 = {gl/Woi}. Recall that 91 represents the constant function 1 on [0,1]

and note that in the representation (2.7) all three sets W0, W1, and W1i are

mutually orthogonal.

According to the theory of discrete wavelet transforms, f/w6L 3 O as K —) 00.

Therefore, with K —+ 00 also f/Wi £3 0 using W0 Q W in (2.5) and (2.6). As an

easy consequence of (2.7) we then obtain that also

f/W, 53 0. (2.8)

2.3 Illustration

We will illustrate the potential benefits of incomplete permutation bootstrap in the

area of wavelet expansion in a simulation study by recovering certain conditional
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Figure 2.1: Mexican hat mother wavelet w(t) = (1 — t2)e“2/2.
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Figure 2.2: Wavelets $075 and 100.5 based on Mexican hat mother wavelet.
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distributions of the estimation errors for one wavelet coefficient in a simplified

discrete wavelet expansion by two selected wavelets.

For the sake of simplicity we will consider wavelets based on the Mexican hat

mother wavelet

in) = (1 — the-‘2”

which is shown in Figure 2.1. For any two integers m,n (possibly negative) a

wavelet Thmm will be defined using a shifted and scaled or dilated version of the

mother wavelet w

2pm,, = 2-m/2¢(2—ma: — n).

(See [7], [4] or [12] for details on orthonormal wavelet bases and multi—resolution

analysis.)

Let us consider a special case of the regression model (2.4) with the matrix W

consisting of three columns 101,102 and 103 with wl = 1, and 102 and 21);; equal

to n—dimensional discrete versions of wavelets 100,—5 and 21205, respectively. The

wavelets 1,00,-5 and wofi (which are based on the Mexican hat mother wavelet w)

are shown if Figure 2.2.

In the simulation study we have considered independent Gaussian errors with

standard deviation of 0.1, and discrete versions of the wavelets with n = 400. All

distributions were approximated using Monte—Carlo based on 2000 replicas from

the distribution of the corresponding random permutations.

Figure 2.3 compares the distribution of the estimation errors for the coefficient

92 of Via—5 (conditional on the order statistics of e) to its approximation based on

full permutation bootstrap of the observed residuals.

To illustrate the approximation of blockwise conditional distributions of the
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estimation errors we consider distributions conditional on which of two blocks of

indices extreme values of the errors 6 align with. These two blocks of indices are

in this particular case hinted at by the form of the vectors ml and wg.

Assume that n is even and consider a random permutation A consisting of two

independent block permutations A1 and A2 which uniformly permute the first n/2,

respectively the last n/2 components of the vector to which A is being applied. In

the case of the vectors wl and wg, A thus permutes independently their close-to

zero and non-zero values among themselves.

The next three figures illustrate the approximation of the conditional distri-

bution of the estimation errors for 02. The approximation is based on incomplete

permutation bootstrap of the observed residuals using Monte-Carlo from the dis-

tribution of the random permutation A.

Figures 2.4 and 2.5 show approximation of the distribution conditional on

whether the first n/2 components of 6 contain errors with small or large absolute

values, while Figure 2.6 illustrates approximation of the block-wise conditional

distribution of the estimation errors when the components of e are not in a par-

ticular order. A comparison of the distributions and their permutation bootstrap

approximations are shown in Figure 2.7.
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Figure 2.3: The conditional distribution of the estimation errors for the coefficient

02 of did—5, given the order statistics of the errors 6(left), and its estimate based

on full permutation bootstrap of the observed residuals (right).

  A

-‘1 o 1 51 6 1
 

True distribution of the errors F1111 permutation bootstrap

approximation

Figure 2.4: The incomplete permutation bootstrap approximation of the distribu-

tion of the estimation errors for the coefficient 02, conditional on the fact that the

errors with large absolute values align with the last n/2 components of e. In the

simulation study the components of e have been sorted to satisfy this condition.

 M M

— 1 o i 51 5 1
 

True conditional Incomplete permutation

distribution of the errors bootstrap approximation
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Figure 2.5: The approximation of the conditional distribution of the estimation

errors for the coefficient 62, given that the errors with large absolute values lie

among the first n/2 components of e. In the simulation study the components of

e have been sorted to satisfy this condition.

  M

-l 0 1 -1 0 1

 

True conditional Incomplete permutation

distribution of the errors bootstrap approximation

Figure 2.6: For a vector of errors with randomly arranged components, the block-

wise conditional distribution of the estimation errors for the coefficient 62, given

the order statistics of the errors in each of the two blocks are well recovered by

the incomplete permutation bootstrap of the observed residuals. In this particular

case the true block-wise conditional distribution appears similar to the conditional

distribution given the order statistics of 6 (see Figures 2.3 and 2.7 for comparison).

    
-1 o 1 -1 6 1

True conditional Incomplete permutation

distribution of the errors bootstrap approximation



56

Figure 2.7: Comparison of conditional distributions of the estimation errors for the

coefficient 92 and the corresponding incomplete permutation bootstrap recoveries.

Full permutation bootstrap was used for the distribution conditional on the order

statistics of e.

  
-‘1 6 1

Distribution conditional on

the order statistics of e
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Conditional distribution given large

absolute errors fall into the second block

  

 

-1 6 1

Distribution conditional on the order

statistics of the errors in each block.

L
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Conditional distribution given large

absolute errors fall into the first block
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2.4 Conclusions - Incomplete Permutations of

Residuals

As shown above, the problem of estimating the coefficients of discrete wavelet

transforms of functions in L2 with additive exchangeable noise is a special case

of model (1.1). The results of this thesis are in principle applicable to wavelet

shrinking in a context of the model (2.1) with incomplete permutation bootstrap

estimates of the conditional sampling error used as our alternative to the normal

errors of [5].

The methods described in [5] consider model (2.1) with Gaussian white noise

and use a wavelet transform and the method of thresholding of the resulting wavelet

coefficients to remove the noise. In models with strongly non-Gaussian noise the

wavelet transform may not yield i.i.d. wavelet coefficients. For example in the

case of Cauchy errors (see [6]) the transformed errors are neither independent nor

identically distributed.

Therefore our method which requires only that the errors be exchangeable is of

possible interest as a solution to noise removal in non-Gaussian cases.
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Appendix A

Matrix formulation of Basic

Results

All the main results obtained in the previous sections can be re—stated in terms of

random permutations of the elements of the matrix X and the projection matrix

corresponding to the projection on the column space of X, rather than in terms of

random permutations of the contrast vector 12. Therefore all the necessary calcula-

tions involving random permutations can be performed without prior knowledge of

the contrast vector 1) which is advantageous in the case of multiple contrast vectors

1),. In addition, the matrix form of the formulas allows us to find an upper bounds

for the relative mean square bias and discrepancy.

Before stating these modified results we need to introduce notation for permu-

tations applied to matrices.

Definition A.O.1 Assume that it E 2,, and p 6 Ed are two permutations of

{1,...,n} and {1,...,d}, respectively. Let A = (ai,j):’jd=1 be an n x d matrix

with real components.

Then the row and column permutations of A are defined by A,r = (ar(i).j):}:1

and A” = (a,,p(j)):3:1. If A is a square matrix then the r-permutation of A will be

58
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defined as 7rA = Ag.

The definition of permutations of a vector introduced earlier is a slight extension

of Definition A.O.1 for matrices with a single column. For a vector v E B" it is

natural to write 7rv = v...

In the proofs below we will use the following simple properties of matrix per-

mutations. For any two matrices Anxd and den and a permutation 1r E 2,, it

holds that

A“B = A3,.-. and (A.1)

AWE = (A3)... (A2)

Assume that A is a subgroup of 2n and that A is a random permutations

distributed uniformly over A. For a matrix Anxd the expectation EAA will be

denoted by AA. The symbols AA = EA" and AA = EAA will be used similarly

whenever appropriate. Note that the meaning of the latter symbol differs from A]:

which represents E(EA,\)A.

We will now turn our attention to restating our previous results. We will

naturally use the same assumptions for the conditional version of model (1.1) as

before, namely we will henceforward assume that A is a subgroup of 2,, and that

A and 7r are two independent random permutations, distributed uniformly over A

and 2,,, respectively.

In addition to our previous notation we will denote by M the projection matrix

of the projection to the column space of the matrix X from model (1.1), while the

projection to XJ” will be represented by Mi = I — M. Here I is used to denote

the unit matrix of the appropriate dimension, which in this case is n x n.
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The results describing the basic properties of our proposed bias adjusted esti-

mator (v - y)adj, in particular the representation of its remaining conditional bias

and error, are restated in the following two lemmas.

Corollary A.O.1 (of Lemma 1.3.1 and 1.3.2) The remaining Air—conditional

bias of the bias adjusted estimator (v-y)adj, and the mean square of the conditional

bias satisfy

BadJ-(Anr) = MXv-ire, and

Ema-(A, ””2 = n—i—l IIM2v1|2 lle — @112

1 2

< ——1IM“II .2n__, A II II u an

Proof: According to Lemma 1.3.1 the remaining conditional bias is BadJ-(A, it) =

E(A [(EAv)/x]) - ire. Using the rules (A.1) and (A2) we can write

E(A [(EAv)/X]) = E(A(MEvA)) = E(MAv),\ = MA‘v

to obtain BadJ-(A, 7r) 2 Mfiv - 7T6.

The second part of the lemma concerning the mean square bias is a direct

consequence of Lemma 1.3.2 with Mkv substituted for E(A [(EAv)/X]). The

inequality is a basic inequality which follows from the common definition of the

norm of a matrix ”M“ = SUPllvll=l IIMvII.

Corollary A.O.2 (of Lemma 1.3.3) For the mean squared error of the bias ad-

justed estimator (v - y)adj it holds that

M88... = 1 ]|(11_MM)..||2“._a“2
n—l

 

1

n—l

|
/
\

 

||<II — MWHZ llvllz lle — an?
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Proof: Let. us substitute (EAv)i = MLEvA = [VJ-Av in formula (1.18) of

Lemma 1.3.3 to obtain

”v — (mining He — an? = {1.1—1“" — Mflvl]2 ||e — an?
1

MSij = n 1   

Similarly as in the proof of Lemma A.O.1, the inequality is a basic result for

the norm of matrices.

These two lemmas allow us to reformulate the result for the relative mean

square bias (RMSB) of (v ~ y)adj stated in Theorem 1.3.4. In addition, we find an

upper bound for RMSB.

Corollary A.O.3 (of Theorem 1.3.4) Assume that all assumptions of Theo-

rem 1.3.4 hold. Then the relative mean squared bias of the bias—adjusted estimator

(v . y)adj satisfies

  

  

   

RMSB _ IIMtvIV < ”Mir
— 2 _ 2, (A3)

“(I — Mi")v]| ”(I — MiA)v*

where v" is the normalized vector W’

Proof: Lemma A.O.1 and Lemma A.O.2 yield that

warm»? “MW ”Mill? ||vH2
RMSB = = , . ,

MSE... Hw— var S uw—mt

which completes the proof.

C]

The next theorem restates (in the projection matrix notation) and strengthens

the result for RMSD of Theorem 1.4.1.
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Corollary A.O.4 (of Theorem 1.4.1) The relative mean squared discrepancy

and its upper bound can be expressed as

2

E (MA — M")v|2 E M" — MA
2, (AA)2 S

”(I — MUM] ”(r — MiA)v*

       RMSD =  

  

where v" = “1;“.

Proof: As shown in the proof of Theorem 1.4.1 we can write

E(EsA — may = iii—1mm” — EAv]/X]]2 He — an?

According to rules (A.1) and (A.1) we obtain

E “[Av — EAv]/X]]2 = E ||Mv,\ — EMvAHz = E ”MM; —- MAsz, (A.5)

thus we can conclude, using also Lemma A.O.2, that

E(BSA — Tram)? _ E]|M"v — MAvH2

RMSD = MSEadj — ”(I _ MJ-A)v]]2 .  

The inequality holds since E “MM: — MAvl]2 _<_ E ”M" — MAH2 ||v||2.

It is worthwhile to mention that the matrix I — M“A used in formulas (A3)

and (A4) above can be rewritten as I — 1" + MA. This should, for example, help

us to investigate the ratio in (A.3).

Finally, the next theorem uses the formula of Theorem 1.4.3 concerning the

relative performance improvement of the incomplete versus the complete permuta-

tion bootstrap and states an upper bound for the performance improvement. This

upper bound is completely free of the contrast vector v.
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Corollary A.O.5 (of Corollary 1.4.3) Let v be a contrast vector and BSA,

35;", TrueA, and Truegn be as in Theorem 1.4.3. Then the ratio of the incomplete

bootstrap mean square discrepancy versus the mean square discrepancy under the

full permutation bootstrap model satisfies

2

3

(A.6)

   

_ 2 _
E(BSA True,1) _ n IEHUAIA _ IVA)?” 2 ”—1

E(Bssn - Meg")? — d—1
< EHMA _ MA]

_d—l   

L
wherev = II ll‘

Proof: The equation is a direct consequence of Theorem 1.4.3 and (A.5). The

inequality follows from the fact that E ”(M’\ — MA)v*
  
s BIIMA — MAN urn.
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