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ABSTRACT

STUDENTS’ ALGEBRAIC UNDERSTANDING:

A STUDY OF MIDDLE GRADES STUDENTS’ ABILITY TO

SYMBOLICALLY GENERALIZE FUNCTIONS

By

Angela S. Krebs

The publication of the National Council of Teachers of Mathematics’

Curriculum and Evaluation Standards in 1989 was pivotal in mathematics

reform. The National Science Foundation funded several curriculum projects

to address the vision described in the Standards. After these materials were

developed and implemented in classrooms, questions arose surrounding

students’ learning and understanding. This study investigates students’

learning in a reform curriculum. Specifically, “What do eighth grade students

know about writing symbolic generalizations from patterns which can be

represented with functions, after three years in the Connected Mathematics

Project curriculum?”

The content, the curriculum, the data, and the site chosen define the

study. Initially, the study surrounded students’ algebraic understanding, but

I focused it to investigate students’ ability to symbolically generalize

functions. Although this selection is a particular slice Of algebra it represents

a significant piece Of the discipline.
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I selected the Connected Mathematics Project (CMP) as the curriculum. I

supported the authors’ philosophy that the teaching and learning Of algebra

is an ongoing activity woven through the entire curriculum, rather than

being parceled into a single grade level.

The data surrounded the solutions of four performance tasks, completed

by five pairs Of students. These tasks were posed for students to investigate

linear, quadratic, and exponential situations. I collected and analyzed

students’ written responses, video recordings of the pairs’ work, and follow-up

interviews.

The fourth choice determined the site. I invited Heartland Middle

School, a pilot site of the CMP to participate in this study. I approached a

successful teacher, Evelyn Howard, who allowed her students to participate.

Together, we selected ten students who were typical students in her

classroom to participate in this study.

In conclusion, I present two major findings Of this study surrounding

students’ understanding Of algebra. First, students who had three years in

the Connected Mathematics Project curriculum demonstrated deep

understanding Of a significant piece Of algebra. And second, teachers can

learn much more about students’ understanding in algebra by drawing on

multiple sources Of evidence, and not relying solely on students’ written work.
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CHAPTER 1

Introduction—Some Problems with Algebra

Introduction

The discipline of mathematics is in a state Of rapid change and growth,

but the commonly held View Of school mathematics has not evolved in

parallel or in conjunction with these advances. One aspect of mathematics is

the discipline of algebra. Many people still consider algebra as the study Of

letters. I recall the reaction from one student after we found a solution of

3 . . . .

y = 74‘ for an equation. She threw up her hands In disgust, and said that She

thought y was always two. To her, learning algebra meant Simply learning a

correspondence between the letters of the alphabet and the numbers. TO

others learning algebra involves manipulating letters.

The NCTM Curriculum and Evaluation Standards (1989) and other

reforms recommend a move away from the traditional algebra curriculum

and teaching practice towards a discipline and instruction which is more

inviting and meaningful to students. Traditional algebra is Often seen as a

gatekeeper. Without successfully completing an algebra course, many

students are denied access to certain careers. Standard school practices are

rooted in traditions several centuries Old and cannot prepare students for
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their mathematical needs Of the 21st century (Steen, 1990). Supporters of the

reform believe that algebra can be a discipline where all students have

access.

One response by the government was to fund several curriculum

projects. With money being given to these curricula, the question becomes

what can a curriculum based on these reforms contribute to a students

understanding of algebra.

In this chapter I begin by describing a traditional algebra classroom. It

is standard in both content and teaching. This raises concerns regarding

access to algebra that has ignited a movement to encompass algebra for all

students. Next, I consider aspects of a curriculum that develop algebra

supporting the vision presented in the NCTM Curriculum and Evaluation

Standards (1989). In conclusion, I pose the question surrounding the

algebraic understanding of students in a curriculum such as CMP.

Traditional School Algebra

School algebra has not changed much in the past fifty years (Thorpe,

1989). The modal algebra classroom looks the same today—in both

curriculum and teaching—as it did many years ago. The content in an

Algebra I course is fairly standard and can be inferred by examining a typical

text. Most algebra books consist of chapters divided into sections and sections
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into lessons. Each lesson typically spreads over two facing pages and is

expected to be covered in one class meeting. The typical topics or chapters

included are Operations with positive and negative numbers; solving linear

equations, linear inequalities, and proportions; age, digit, (1 = rt, work, and

mixture word problems; Operations on polynomials and powers; factoring of

trinomials, monomial facts, and special factors; simplification and Operations

with rational expressions; graphs and properties of graphs; linear systems of

two equations with two variables; simplification and operation with square

roots; and solving quadratics equations by factoring and completing the

square (Usiskin, 1987). A lesson typically Ofi‘ers a handful of examples,

followed by a number Of exercises for students to practice the new skill or

procedure demonstrated in the examples. There is much repetition in this

approach. Students do many exercises which follow a similar format,

although the exercises may get progressively more complex as students

proceed down the page.

The curriculum also has commonalties in differing sites. This traditional

school algebra follows a “layer-cake” approach (Kaput, 1993; and Davis,

1993). The curriculum typically consists of some form ofAlgebra I in the

ninth grade or earlier,l followed by Algebra II. Unfortunately, with this

traditional approach most of a student’s algebra learning is confined to at

most two years of school. By keeping students’ learning in separate distinct

 

1 Algebra I is being taken by more and more eighth grade students to allow them the time to

take the advanced mathematics courses as juniors and seniors.
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layers, or courses, the development Of ideas across multiple areas of

mathematics is hampered (Kaput, 1993; and Steen, 1990).

Teachers in these traditional classrooms Often follow a format of

instruction that parallels the typical text. The teacher might begin the class

with a review Of questions fi'om the previous day’s homework. After these

concerns have been addressed, the class moves on to the next lesson. The

teacher demonstrates a procedure by completing several examples for the

class to see. This might be done interactively with input fiom the whole class,

but the teacher typically has a predetermined agenda to show students how

to progress through the problem using her method. After the teacher

completes her select examples she might assign some seatwork, a kind of

supervised practice, to monitor whether her students understand the

procedure. Once the students appear to be on the right track, the teacher

allows the rest Of the class time for students to complete their assignment Of

exercises from the text. These assignments typically consist of more exercises

similar to the examples demonstrated. A word Of caution might be offered to

the students that the later problems might contain some tricky or

challenging aspects.

The NCTM Board of Directors (1994) summarize three major flaws in

the traditional algebra courses. First they note that the focus on pencil and

paper manipulations is Often divorced fi'om any meaningful context. In fact,

these skills that are developed are not necessarily what students who are

employment-bound or college-bound need in a technology world. The directors
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add that the traditional curriculum does not encourage an informal

understanding of algebraic ideas in grades K-8 that could prepare students

for future investigations. Finally, they acknowledge that the concepts and

methods Of algebra are isolated from other strands Of school mathematics:

statistics, geometry, and discrete mathematics. Students do not have the

Opportunity to integrate their learning of mathematics.

The traditional curriculum and teaching of algebra do not foster success

for most students; neither is it clear how some of the content is meaningful or

worthwhile to students. Instead of drawing in students, traditional algebra is

viewed as a gatekeeper that effectively excludes certain students from future

studies and/or careers. Traditionally minority groups and women are the

ones who are most Often filtered out. There is a commitment by many policy

makers, professional organizations, and individual educators to help all

students develop algebraic competence.

Gatekeeping and Equity

American culture places a high value on algebra. The course “algebra”

listed on a student's transcript sends a message about this student's

mathematical experiences and perceived competence to future employers,

admission counselors, and others. In 1990 the United States Department of

Labor reported that the number of mathematics courses taken during high

school is the strongest predictor Of earning nine years after graduation. In

schools, algebra is typically a prerequisite for geometry. Nearly all students
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who plan on attending college take geometry in high school regardless Of

their race or ethnicity (Pelavin and Kane, 1988). When students do not take

algebra, they greatly limit the number of future choices and close some doors.

Students who are successful with algebra leave high school with many of

these doors Open.

Moses (1993) called algebra the new gatekeeper of the twenty-first

century. Students who have passed algebra are afforded many Opportunities

that would not otherwise be available. Davis (1993) noted that the United

States is becoming more Of a bi-modal society relative to income. Although

education is not solely responsible for this distinction, it plays an important

role. According to Davis, one aspect of this separation is the segregation Of

“those who know algebra versus those who do not.” Students who find success

in algebra have more opportunities available than those who do not. Algebra

is Often seen as a filter that only allows a select number of students to pass

through. Those who are blocked are Often prevented fi'om achieving specific

goals.

In the NCTM’s Board of Directors (1994) statement, the authors

summarized: “First year algebra in its present form is not algebra for

everyone. In fact, it is not the algebra for most high school graduates today.”

If algebra is used as a gatekeeper, then we need to consider who is being

excluded fi'om the advantages algebra afiords. Unfortunately it is most often

minority students and women who are likely filtered out (Moses, 1993).

NAEP data showed that less than half Of the students from impoverished
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urban schools takes more than one year Of algebra. As many as one in five do

not take any algebra at all (Silver 1997). Moses (1993) stated that we need to

develop a consensus around the right to learn algebra. He noted further in

Jetter (1993) that access to algebra is an important issue for a new civil-

rights movement for minorities. Moses argued that students, who do not take

algebra, left high school disadvantaged, and this is a situation that can no

longer be tolerated. Algebra for all students should be a top priority in

education.

Algebra for All

It can no longer be tolerated that some students are restricted in their

future by lack of success in an algebra course. Algebraic reasoning is a very

powerful tool for students to develop not only for the leverage it brings them

in society, but because it is one of the most powerful intellectual tools

civilization has developed. TO make the tools of algebraic understanding

available to students, “algebra for all” is becoming a matter of educational

policy in many states. (Olson, 1994).

NCTM commissioned several documents to represent a new vision Of

teaching algebra to all students. In one of their landmark publications, the

authors of the NCTM Curriculum and Evaluation Standards (1989) envision

a curriculum where algebra is expected for all students. The Standards

establish as a goal that students become mathematically powerful problem
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solvers; part of this power lies in the accessibility of algebraic understanding

to help students reason. In 1994, NCTM created the Algebra Working Group.

Their charge was to clarify the vision Of “algebra for all” through the K-12

setting advocated in earlier pieces of writing. The group did this by

illustrating and elaborating this goal with examples, practical ideas, and

promising practices to help educators raise questions about changing algebra

instruction. They published “A Framework for Constructing a Vision Of

Algebra” in 1997 that summarizes the group’s work. In the document, the

authors put forth diflefing perspectives on algebra, argue for algebra as more

than a course, and illustrate their view Of algebra in a K-12 setting.

In another NCTM publication, the authors ofAlgebra for Everyone

(1990) argue for the need to teach algebra to all students beginning in the

elementary curriculum, continuing through the middle grades, and

expanding in high school. These writers recognize that mandating the

traditional algebra described earlier in this chapter in ninth or even eighth

grade is unlikely to be successful at achieving mathematical equal

opportunity (Silver, 1997). In fact, many argue that requirements of this sort

might actually have an opposite effect and push more students away from

algebra. Worse yet, forcing students into an inappropriate traditional algebra

course might reinforce widely held destructive notions that algebra is only for

a select few students (Silver, 1997). Mandates to require traditional algebra

might have the ill-effect of accelerating students out of mathematics, rather



than ope

stresses

ahersch

uneas

the Ame

It is

but the a

careful r

Mos

manipul.

1993: Slt

the chap

b0ll1 the

 



than opening gates (Prevost, 1985). The National Research Council (1989)

stresses in Everybody Counts that since algebra is required for opportunities

after school, all students should study a “meaningful algebra.” Rather than

serve as a filter, Everybody Counts argues that algebra should be a pump in

the American education pipeline and help students pass through the gate.

It is not only access to algebra that reformers suggest needs revision,

but the approaches towards algebra that is Offered to students needs a very

careful reexamination.

A Standards-Based Algebra

Most advocates of “algebra for all” do not assume the traditional symbol

manipulation algebra taught in the standard ways (Fouche, 1997; Kaput,

1993; Steen, 1992; Silver, 1997; and Chazan, 1994). When educators accept

the challenge Of algebra for all, they also support a change in the focus Of

both the teaching and content of algebra (Steen, 1992; Wheeler, 1989).

Chambers (1994) nicely summarizes this: “Algebra for all is the right goal at

the right time. We just need to get the right algebra.” (page 85).

Educators are trying to find this “right algebra.” One idea that cuts

across many interpretations is to consider a “strands” approach to the

learning Of algebra (Kaput, 1993; and Steen, 1990).

I suggest a strands organization, where major ideas weave

through many grade levels, frequently interweaving with one
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another to create a rich fabric, but one that has a direction, a

natural flow, from the wide watershed concrete experience to

generalizations and abstractions, fiom informal and language-

based representations to more formal representations. Filters are

usually built using layers, while strands provide a natural flow,

gradually drawing into mathematics even more diverse

experiences. (Kaput, 1993, page 34).

A strands approach assumes that students continually develop algebraic

ideas and algebraic reasoning across different grades and multiple courses.

The content can be developed in much more depth by continuing to build on

ideas introduced earlier. Students can also benefit from the increased

relevance of applications as algebra is used in more meaningful integrated

contexts.

Davis (1993) adds that less risk for students might be an additional

benefit to this K-12 approach. Rather than having only one or two

opportunities to learn algebra, the ideas and reasoning should span over

several years. Instead of filtering students out Of algebra, strands allow for

multiple Opportunities for students to have access, drawing in more students.

This approach afi'ords diversity in student learning over the entire K-12

curriculum where each student weaves a unique tapestry.

This longitudinal K-12 approach to algebra does not simply allow more

Opportunity to cover the traditional curriculum. It requires careful

consideration of what really makes meaningful content to be taught across

the K-12 span. Every topic placed in the curriculum should have significant

value to students’ learning Of mathematics (Thorpe, 1989). The American

mathematics curriculum is often criticized as being an “inch deep and a mile

10
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wide.” Critics imply that so many topics must be covered in the curriculum

that each only receives a cursory mention rather than a deep exploration.

The entire algebra and preparatory algebra curriculum needs to be

reevaluated for meaningful content starting in kindergarten and continuing

through twelfth grade. One problem with the current curriculum is that it is

overcrowded (Usiskin, 1995). Fewer topics should be covered more in depth

(Barbeau, 1991; and Steen, 1993). In the following section I discuss how a

curriculum based on the NCTM Curriculum and Evaluation Standards could

respond to the charge of integrating algebra for all students.

The NCTM Curriculum and Evaluation Standards are not intended to

be curriculum materials implemented directly in a classroom. Rather, the

document represents a vision of teaching meaningful mathematics to all

students. An algebra curriculum in response to the NCTM Standards would

look quite difi'erent than the traditional Algebra I or eighth grade algebra

course. It would vary in who is taught, what is taught, where it is taught,

when it is taught, and how it is taught.

First, consider who is taught. Algebra for all students is a primary goal.

A curriculum supporting the Standards suggests heterogeneously grouped

classes for all students. It would not promote removing the top performers or

excluding those having difficulties. Rather, with the inclusion of all students,

they could suggest extensions for students who are prepared and Offer

additional support to others as needed.

11
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The next concern: what is included in the curriculum. The standard fare

of numerous symbol manipulations without a context would be minimized.

The focus would shift towards understanding algebraic ideas and multiple

representations.

The when and where algebra is taught could be taken together. Algebra

is not a specific course or a single chapter in a text. It represents a way of

thinking and reasoning. The Standards would support a vision of algebra

integrated throughout the entire K-12 curriculum.

Finally how algebra is taught in a Standards-based curriculum would

also change. The teacher is no longer the sole deliverer of knowledge. Her role

is to pose challenging and engaging problems for the students to work and

investigate.

Summary

There certainly seems to be a need to reconsider the content and

methods used to teach traditional algebra. There is little evidence to support

a claim that all students would develop solid algebraic reasoning by following

the traditional approach to both content and teaching. Neither is there yet

evidence to suggest that all students engaged in a curriculum based on the

NCTM Curriculum and Evaluation Standards would be successful. If these

reform ideas are to be accepted, then research must address this issue.

12
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This study begins to do this. The initial question that fiames the study

is: What do students learn about algebra in a Standards-based curriculum?

In Chapter 1, I discuss some Of the issues surrounding the discipline of

algebra and its implementation as a curriculum. Mathematics is in a state of

rapid change and as a result what traditionally constitutes algebraic

understanding is coming under fire. Educators are re-thinking wheat is in

the curriculum and Offer suggestions to afford access to all students.

I address the question of what is algebra in Chapter 2. Since there is not

a consensus by educators, researchers, or mathematicians, I do not attempt

to resolve the issue. Rather, I offer four organizing themes—functions and

relations, modeling, structure, and language and representations—presentsd

by the Algebra Working Group to cluster some Of the different perspectives.

The methodology of this study is rendered in Chapter 3. I describe the

reasons I made some Of the choices surrounding the content—patterns which

represent functions and generalizing with symbols from patterns Of data, the

curriculum—the Connected Mathematics Project, the site—Heartland Middle

School, and the data—students’ investigations on performance tasks,

recordings while they worked, and interviews after completing the tasks.

The data is presented in Chapters 4 and 5. In the first of the two

chapters I carefully consider what students have done with each task. I

describe their solutions by considering the three sources Of data, written

responses, recordings while they worked, and interviews after they completed

13
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each task. In the next chapter I look across students and tasks to recognize

common strategies and interesting aspects in their investigations.

In the final chapter, Chapter 6, I suggest some Of the implications and

limitations of this study. I summarize that the students who participated

have demonstrated a very solid understanding of a very important piece of

algebra.
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CHAPTER 2

What is Algebra?

"A mathematician like a painter or a poet, is a maker ofpatterns. "

--Godfrey Harold Hardy

Introduction

In the previous chapter I raise the question about what it means for

students to understand algebra. Before students’ understanding Of algebra is

considered, I need to further explore the question “What is algebra?” “Solving

equations with variables” is a typical response to the question. Even among

educators, researchers, and mathematicians there is not a consensus to this

question. In this chapter I describe some of the differing perspectives in the

literature surrounding algebra and briefly discussing some Of the

implications for classrooms. I use as a framework the organizing themes

presented by the Algebra Working Group—algebra as the study of (a)

functions and relations, (b) modeling, (c) structure, and ((1) language and

representations.

After this overview of the discipline I narrow my discussion Of algebra to

describe the aspect which is the focus of this study—symbolically

generalizing from patterns of data. In chapter three I describe the tasks used

15
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in the study and how they related to this area of algebra. I continue to

discuss the implications for school mathematics from this perspective of

algebra. Finally, I describe a sorting scheme to classify the patterns that

students in this study encountered.

Some Perspectives on Algebra

Several researchers and groups Offer varying perspectives of algebra

that emphasize different aspects. Kaput (1995) explains that even though

many use the term “algebra” there is not an encompassing discipline, no

monolith which describes it. He provides a slightly different review on

algebraic thinking. He categorizes five aspects Of algebra:

. as generalizing and formalizing;

. as manipulations of formal Objects;

. as the study Of structure;

. as the study Of functions; and

. as the study Of languages.

Kaput is careful not to classify these as five disjoint categories, but rather as

“loosely spun and richly interwoven.” They represent guidelines to start

thinking of the different perspectives of algebra.

Kaput’s aspects are very similar, but not a direct match, to the themes

Ofi'ered by the Algebra Working Group (Burrill, 1995; and Phillips, 1995). The

16
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Algebra Working Group (1997) organizes the various perspectives around

four key concepts:

. functions and relations—where functions underlie all big ideas in

algebra,

. modeling—where finding ways to represent situations with

mathematical relations or models is key to algebra,

. structure—where algebra is conceptualized as generalized

arithmetic, and

. language and representation—where communicating ideas through

the syntax of the representations is the focus Of algebra.

The dominance of each theme varies with researcher. Some support the

function approach to algebra (Kieran, Boileau, & Garancon, 1996, Heid, 1996;

Fey and Good, 1985; Schwartz and Yerulshalmy, 1991; and Chazan, 1993),

while others seem to suggest a structure approach (Kieran, 1989). Just as the

emphasis changes by researcher, the focus has shifted with time. In the 60’s,

the “new math” movement was based primarily on structure, while the “back

to basics” movement that followed relied on thinking of algebra as a

language. The more current movement with the integration Of graphing

calculators has shifted the focus to functions and relations, and models

(Algebra Working Group, 1997). Although the trend has shifted through time,

researchers continue to advocate particular themes.

17
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Although there is much overlap between classification themes suggested

by Kaput (1995) and the Algebra Working Group (1997), there are also

differences. Their organizations overlap with the function and relation,

structure, and language themes. While the Algebra Working Group seems to

sort out modeling, Kaput does not. Instead he teases out generalizing and

formalizing, and the manipulation Of formal Objects as two separate aspects.

In the following sections I elaborate on the Algebra Working Group’s

organizing themes and consider curricular issues surrounding each.

Functions and Relations

Both the Algebra Working Group (1997) and Kaput (1995) consider the

basic study Of functions as one of the primary perspectives on algebra.

Researchers whose work falls into the function and relations theme view the

function as the central Object of study (Chazan, 1993; Fey and Good 1985;

Yerulshalmy and Schwartz, 1991; Thorpe, 1989; and Confi'ey, 1994). Fey

(1989) defines functions as relations where output variables depend on input

variables. Some would emphasize the rate of change between the variables in

the functions. An example of this dependence is how at a given rate the time

(input) it takes for a trip determines the distance traveled (output).

The NCTM Curriculum and Evaluation Standards (1989) advocate an

approach to algebra that focuses on functions and function-related ideas.

With the increasing access to computers and the technology of calculators,

18
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the concentration on functions in the algebra curriculum has become a more

reasonable part of study for students. Functions can be introduced to

students using different representations such as tables and graphs (Confrey,

1994). Schwartz and Yerulshalmy (1992) suggest one such approach where

the concept of a function is introduced much earlier than in the traditional

secondary school curriculum. Students explore specially designed software

that relates both the symbolic and graphical representation Of functions. Both

representations are important to help students understand the concepts of

functions and variables (Schwartz and Yerulshalmy, ????). Kaput (1989)

reminds that students need actually experiences with three different

representations—table, graphs, and symbols.

Chazan (1993) also suggests a curriculum where the function is the core

Object Of study. He clarifies his view when he describes an equation as a

comparison Of two functions. For example, the equation 3x — 2 = x + 5 is

identified as a question about two functions, f(x) and g(x), where f(x) = 3x — 2

and g(x) = x + 5. The equation asks: when is f(x) equal to g(x)? or, for what

values Of x will this produce the same output in both functions? (Chazan, in

press)

Chazan asserts several advantages to using this functional approach

over the traditional algebra approach. Students are Offered an alternative

from traditional symbolic manipulation to solve equations. Rather than being

limited to a single method in their solutions, students could potentially have

19
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three reasonable strategies to solve equations. They might apply operations

to create equivalent equations. Using the equation above:

3x — 2 = x + 5 Start with f(x) = g(x),

2x — 2 = 5 Subtract x fi‘om both f(x) and g(x),

2x = 7 Add 2 to both Of the new functions,

x = 3% Finally, divide both by 2.

Or students could try a ‘guess and test’ strategy to solve the equation and

find that x = g is a solution. Or they might consider a graphical representation

to find solutions. In this graphical approach, students could plot each

function, f(x) and g(x), on a coordinate graph and search for a point of

. . . . . 1

intersection. See Figure 1 where both hnes meet at the pOint where x = 32

and is a solution to the equation.
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Figure l: Graphical Representation to Find Solutions

Each of these strategies could be considered an approach following this

functional View.
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Modeling

There are common ideas between the functions and relations theme and

the modeling theme. Kaput (1995) notes that most models have functions as

their core. Frudenthal (1983) would argue that modeling is the primary

reason to study algebra. In this version Of algebra, students start with some

situation and their goal is to mathematize it—find a mathematical relation

that models the phenomena. These mathematical models are represented

with equations, graphs, or tables (Kaput, 1995). The modeling perspective is

grounded more in data. It is finding mathematical relations that adequately

fit the data and that can be used to make reasonable predictions. An example

illustrates finding a model that will yield the weight Of an object if you know

how much a spring has been stretched. Students could collect the data

represented in Table 1 below.

Table 1: Spring Data

 

 

 

 

 

 

 

Length Weight

(cml (g)

6.5 0

7.3 100

7.5 200

8.5 500

12.2 1000   

Then use it to find the weight of a rock that stretches the spring a length Of

10 cm (see Figure 2).
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Figure 2: Spring Illustration

Part of their solution could involve making a graph, fitting a line on the

graph, and making a prediction. The graph in Figure 3 can be used to

estimate the weight of this rock to be about 700 grams. (I need to find a way

to fit the line on the graph).
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Figure 3: Spring Graph

Structure

Another way to consider algebra is to characterize the structure of the

system of algebra (Algebra Working Group, 1997; and Usiskin, 1988). An

example of this is algebra considered as generalized arithmetic (Thompson

and Thompson, 1993; Kieran, 1991; Peck and Jencks, 1988; and Sfard, 1995).

Peck and Jencks (1988) describe this as follows.
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Algebra is a generalization Of arithmetic. It should arise logically and

naturally as a consequence of children’s decisions about how arithmetic

works. If arithmetic becomes completely sensible to children and becomes

a tool for their thinking, the decisions which make algebra sensible flow

naturally from it. (page 85).

They infer that algebra can arise quite naturally from a solid understanding

of arithmetic.

Educators whose work falls into this class support the view that algebra

is learned through studying and generalizing the properties of the real

number system. Algebraic assertions can be made about the numbers based

on what was generalized fiom arithmetic. This can be illustrated with the

distributive property. Before studying the general case, consider this

rectangular array representation example Of 3 x (4 + 5) in Figure 4.

4 5
A A

\f

I

3 I 3x(4+5)=3x(9)=27

Figure 4: Distributive Property of 3 x (4 + 5)

 

 

 

          

These 27 squares can be represented in another, equivalent way. This can

also be shown with (3 x 4) + (3 x 5) in Figure 5.

4 5

A

  

  

  

           

3 3{ (3x4)+(3x5)=(12)+(15)=27

 
 

Figure 5: Distributive Property of (3 x 4) + (3 x 5)
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Studying the structure of the distributive property involves moving fi'0m the

specific case of 3 x (4 + 5) = (3 x 4) + (3 x 5) to the general case of

ax(b+c)=(axb)+(axc).

Kieran (1985) asserts that students are able to learn algebra when they

make the transition from the arithmetic approach, finding the values of the

unknowns using simple Operations, to the algebraic approach, making use of

the structure of the system when the equation is the key Object of study.

Employing the algebraic approach means more than surface and structural

operations. It is about being able to compare expressions without evaluating

them directly. This can be illustrated with the equation x — 10 = 27. Students

using simple operators might think, “What minus ten is twenty-seven? Thirty

minus ten is twenty, forty minus ten is thirty, thirty-seven minus ten is

twenty-seven. SO, the answer is thirty-seven.” Whereas, students making use

of the structure might think, “Since I subtract ten from X, I know that I need

ten more than twenty-seven, or thirty-seven.”

The first approach is case dependent. If students tried to solve

x - 17 = 41 they would likely start this problem over, “What minus seventeen

is forty-one? Fifty minus seventeen is thirty-three, sixty minus seventeen is

forty-three, fifty-eight minus seventeen is forty-one. SO, the answer is fifty-

eight.” Students who used the structure could apply the same strategy in this

second equation, “Since I subtract seventeen from X, I know that I need

seventeen more than forty-one, or fifty-eight.”
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Kieran (1989) claims that this understanding of the structure is where

many students confront dificulty learning algebra. She illustrates this with a

case of students in a typical classroom. The equality between the left- and

right-hand sides of an equation is a foundation in traditional algebra

instruction. Students are Often taught to solve equations by doing the same

thing to both sides of the equal sign. When students do not see the equation

as this balance, but instead see the right-hand side as the answer, they

encounter problems. These students do not fully see the structure of the

equations and often have difficulty solving equations in this manner. Filloy

and Rojano (1989) write that these students who do not make the transition

have an arithmetic notion of equality. Kieran suggests that confionting these

issues that deal with structure earlier in their algebra classrooms will help

students gain a better understanding of algebra.

Language and Representation

In the final theme presented by the Algebra Working Group (1997) the

important characteristic of algebra is the language that is used to

communicate. Algebra is sometimes considered the “language of arithmetic”

(Kline, 1972; and Usiskin, 1988). Educators whose work falls into this theme

write that algebra can be thought Of as a language with syntax to be learned

that communicates mathematical ideas (Booth, 1989; and Bell and Malone,

1993).
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In algebra there are many types Of representations that are used in the

language to communicate ideas. Many people’s first thoughts of algebra

relate to only the symbols present in a typical ninth grade algebra course.

This is very limiting. Considering only symbols in algebra would be like

restricting one’s writing to include only nouns. In both instances a much

more complete picture can be Obtained by using multiple representations, or

parts of speech. Just as a more informative story can be told when including

additional parts Of speech (e.g., nouns, verbs, adverbs, adjectives, and

prepositions) a more complete algebraic solution might include additional

representations (e.g., symbols, tables, words, graphs, and diagrams). One

aspect Of learning algebra means using one or more Of these representations

to communicate algebraic thoughts.

Learning this language is more complex than students think (Bell and

Malone, 1993). Students typically possess a very simplistic view of the

language Of algebra (Booth, 1989). They may not recognize the intricate

connections between different representations. Stacey and MacGregor, (1997)

caution that under this approach there is a new grammatical structure for

students to learn; the rules in the language Of algebra are not the same as the

rules in ordinary language. Some words that have multiple meanings in the

English language have very precise mathematical definitions, such as the

” u

words “product , and”, and “or”. Some operations that seem similar are not.
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For example, 2(x + y) = 2x + 2y is true, but many algebra teachers have been

frustrated when students incorrectly conclude that (x + y)2 = x2 + yz.

Arcavi (1994) warns that learning algebra is more than just learning

what the symbols mean. Rather, Obtaining “symbol sense” is at the heart Of

what it means to really know algebra. To him, “symbol sense” means having

a “feel” for symbols, or an “accurate appreciation, understanding, or instinct

regarding symbols.” (pg. 28). This involves knowing when symbols should be

used, when to use a different representation with symbols, when to abandon

symbols, how to manipulate and read symbolic expressions, and how different

symbols play different roles in difi'erent contexts. Some researchers

acknowledge that symbols should be introduced earlier in the curriculum SO

that students can more fully appreciate their power and learn the language

(Hershkowitz and Arcavi, 1990).

Patterns and the Study ofAlgebra

Studying patterns and finding generalizations cuts across all of the

themes discussed in the previous section. Students might emphasize

functions when they study the rate of change in a table to find a function to

represent the pattern. They could focus on the data collected in the search for

a model to predict additional values. They might study the data and
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generalize from the structure of the pattern. Or, they could use several

different representations to help generalize.

Patterns comprise a vital component Of the discipline of mathematics.

Interesting patterns arise in all areas of mathematics. Mathematicians can

use patterns of a sequence Of growing shapes in geometry to describe

characteristics Of the nth figure, patterns of simpler cases in probability to

explain a more complex probability, or patterns of numeric data in a table in

algebra to generalize the nth term in a sequence, or even patterns fi'0m a

continuous graph on a coordinate grid. The primary emphasis comes from the

function, relation, and modeling approach when students write

generalizations Of functions. They Often use the structure of algebra to help

write these generalizations, and Of course, they need knowledge Of the

language to do all of this.

Some researchers describe the discipline of mathematics as the “science

of patterns” (Hoffman, 1989; Steen 1988; American Association for the

Advancement Of Science, 1989; and Schoenfeld, 1989). In Land and Becher,

(1997) Van de Walle states:

The world is full of order and pattern: in nature, in art, in buildings, and

in music. Pattern and order are found in commerce, science, medicine,

manufacturing, and sociology. Mathematics discovers this order and uses

it in a multitude of fascinating ways... (page 301).

Steen (1988) writes,

Mathematics is the science of patterns. The mathematician seeks

patterns in number, in space, in science, in computers, and in

imagination. Mathematical theories explain the relations among

patterns; functions and maps, Operators and morphisms bind one type of
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pattern to another to yield lasting mathematical structures. Applications

of mathematics use these patterns to ‘explain’ and predict natural

phenomena that fit the patterns. Patterns suggest other patterns, Often

yielding patterns of patterns. In this way mathematics follows its own

logic, beginning with patterns from science and completing the portrait by

adding all patterns that derive from the initial ones. (page 616).

In the next sections I further illustrate the influence on mathematics

education of this view of patterns in mathematics. First, I consider the

implications for school mathematics, and then I describe a scheme to classify

the patterns students might study.

Patterns in School Mathematics

In school mathematics it is essential for students’ experiences to include

the exploration of patterns. The ability to recognize and describe patterns lies

at the foundation of mathematical science (Smist and Barkman, 1996). One

way this is useful is to illustrate an idea; mathematical conjectures Often

become more clear to Observers by examining patterns (Toumasis, 1994).

Some properties of positive integers can be more apparent through the

exploration Of patterns. There is much that can be inferred by studying the

way the numbers increase. An example is illustrated with the pattern Of

square numbers in Figure 6.

3 1 3 5 1 3 5 7

1 1+3=4 1+3+5=9 1+3+5+7=16

Figure 6: Square Number Pattern
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By studying the dot representations Of square numbers, it becomes clearer

that all square numbers can be written as the sum of consecutive Odd

numbers,4=1+3,9=1+3+5,16=1+3+5+7,etc.

In addition to being a general foundation in mathematics, using patterns

to investigate relationships can specifically help students develop their

algebraic thinking (NCTM, 1989; 1994; Silver, 1997; Ferrini-Mundy, et al.,

1997; Phillips, et al., 1991; and Phillips, 1993). The authors of NCTM’S

Curriculum and Evaluation Standards (1989) and Kieran (1994) both

support the view that the inductive study of patterns should represent the

ground work for students’ initial learning Of algebra. Inductive thinking

involves students studying a small number of specific terms fi°om a pattern

and then making more general statements based on their explorations. These

preliminary experiences with generalizations arise through investigating

patterns (Curcio and Schwartz, 1997). Students might eventually use

symbolic notation to write their generalizations. Although those who do

consider verbal generalizations but do not formalize their expressions with

symbols are still involved in algebraic thinking (Lins, 1990).

There are other essential components to algebraic thinking based on

investigating patterns besides generalizations. These include exploring and

formalizing patterns, conjecturing about the patterns identified, verbalizing

relationships between and among elements in patterns, extending patterns,

and eventually representing the relationships using symbolic notation
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(Silver, 1997; Kenney and Silver, 1997; and Sierpinska, 1992). Some

examples of these activities can be illustrated using the dot and sum

representations of square numbers in Figure 6 above. Students might

verbally describe or conjecture about several patterns. Students could

formalize the pattern by noticing that the square numbers can be written as

the sum of Odd numbers. Students might conjecture that all square numbers

could be written as the sum of consecutive Odd numbers. This relationship

might be further clarified between elements when students recognize that to

find the next square number, one can add the next Odd number to the

previous square numbers. This idea is extended in Table 2 below to illustrate

finding the first ten square numbers.

Table 2: Table of Square Numbers

 

 

 

 

 

 

 

 

 

 

  

N Sequence of Sum of Previous N“ Square

Odd Numbers Square Number and Number

(2N — 1) Next Odd Number

1 1 1 1

2 3 l+3=4 4

3 5 4+5=9 9

4 7 9+7=16 16

5 9 16+9=25 25

6 11 25+11=36 36

7 13 36+13=49 49

8 15 49+15=64 64

9 17 64+17=81 81

10 19 81+19=100 100     
Finally, students could symbolize their generalization by writing the

hypothesis that to find the nth square number add the first n Odd numbers:

1 + 3 + 5 + + (2n-1) or simplify this with n2.
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Patterns that are appropriate for middle grade students to study have

regularity and predictability. These two characteristics of patterns make

explicit some assumptions about the behavior of the patterns advocated in

the reforms (Heaton, 1994). A general purpose of searching for patterns is to

use the information gained through the investigation to make predictions

about later terms in the sequence. Making predictions is only relevant when

a pattern maintains aspects of regularity since it is the regularity that leads

to the predictability of the pattern's behavior. Students need some reason to

believe that this regularity will be maintained. The only way this occurs with

reasonable certainty is in some context. (The issue of context is discussed

later in this chapter.) There is not a guarantee that a pattern continues based

solely on the table of numbers. Heaton (1994) adds further clarification.

"...Identifying a pattern allows you to manipulate one variable and predict

what will happen with the other. A relationship between two variables with

this kind of regularity and predictability is a function" (p. 149).

Investigating patterns is one foundation to learning functions for

students. Functions are an important concept for students to learn in

mathematics; yet they often have difficulty understanding the principles of

functions such as the notion of independent and dependent variable (Artigue,

1992; Eisenberg, 1992; and Sierpinska, 1992). In the NCTM Curriculum and

Evaluation Standards (1989) the authors emphasize the significance of
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studying patterns to support the learning of functions through the entire K-

12 curriculum. In the section for the middle grades, the authors write:

The theme of patterns and functions is woven throughout the 5-8

standards. It begins in K4, is extended and made more central in 5-8,

and reaches maturity with a natural extension to symbolic representation

and supporting concepts, such as domain and range, in grades 9—12 (page

98).

In the elementary standards these goals are formalized in Standard 13:

Patterns and Relations, extended for the middle grades in Standard 8:

Pattern and Functions and Standard .9: Algebra, and pushed further at the

secondary level in Standard 5: Algebra and Standard 6': Functions.

Several educators suggest ways to implement this approach to functions

through studying patterns at both the elementary and the middle grades

levels (Curcio, 1997; Austin and Thompson, 1997; and Herbert and Brown,

1997). Chappell (1997) suggests some pre-symbol experiences for students

that relate to algebra at the elementary levels where students verbally

describe patterns in a “guess my rule” game. She reminds that it is algebraic

thinking and not formal algebra that should receive the emphasis at this

level. Pegg and Redden (1990) describe a seventh grade course in South

Wales, Australia where algebraic ideas are introduced through studying

numbers patterns in data without introducing the early use of the

manipulation of symbols.

A goal at the middle grades is to describe a generalization. However, the

transformation to symbolic notation is not necessary for a student to initially

recognize and generalize the pattern (Lee and Wheeler, 1987). Students may
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verbally describe a pattern, but not be able to write a symbolic rule from the

numeric pattern in the data (Lee, 1987). This ability to generalize with words

represents an important initial part of algebraic reasoning. An example of

this can be illustrated in a problem involving phone charges. Suppose a

phone company charges a $1.50 connection fee for a phone call and an

additional $0.25 for each minute, or a fraction of a minute. Students might

represent the pattern in Table 3 as follows.

Table 3: Cost of Phone Call

 

 

 

 

 

 

Number of Cost in

Minutes Dollars

0 1.50

1 1.75

2 2.00

3 2.25   

While completing the table they could use words to describe how the cost of

the phone call is increasing with time, but not be able to write a

generalization using symbolic notation.

Coming up with a symbolic representation to generalize a pattern often

proves challenging for students. It is not a trivial transition for students to

move from recognizing a pattern to writing an algebraic rule (MacGregor and

Stacey, 1993; Pegg and Redden, 1990; and English, 1995). Lee and Wheeler,

(1987) report that students can often formulate appropriate generalizations

without using algebraic symbolic notation. MacGregor and Stacey (1993)

identify four critical steps students must cross in order to move from
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recognizing a pattern in a function table to writing an algebraic rule with x as

the independent and y as the dependent variables. Students should to be able

to:

. articulate the relationship to find numerical values,

. look beyond a recurrence pattern to find one that links the two

variables,

. know the syntax of algebra, and

. know what can and can not be said with algebra (page 187).

While MacGregor and Stacey did not necessarily present these steps as a

hierarchy, I consider the order presented above. Prior to writing a symbolic

rule, students should recognize a pattern; this could be with a verbal

description, or by extending the pattern.

In many cases there are a number of different symbolic representations

that students can write. In this study, I am interested in how students write

symbolic generalizations where the dependent variable is expressed as a

function of the independent variable. Although this is not the only way to

represent functions, it is useful. To write a representation in this form,

students must look beyond a recurrence pattern.

To write symbolic rules students need to know the syntax. If they do not

know this language, writing a generalization can be nearly impossible. But,

not knowing the syntax is different than the fourth of MacGregor and

Stacey’s steps. Knowing what can be said with algebra might be considered a

more sophisticated step than the other three. To know this students would

need‘a more complete knowledge of the discipline. Students might confuse
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and believe that something can not be said, when actually they just do not

know the syntax to write a representation.

A Classification Scheme

There are two important, yet different, aspects in a classification of

problems involving patterns. Phillips, et al. (1991) along with other research

helps to distinguish these (Steen, 1990; 1988; Golos, 1981; Boles, 1990;

Heaton, 1994; and Algebra Working Group, 1997). The first is the content or

function type of the specific pattern; the second is the context in which the

problem is situated.

Content Class.

The first classification is based on the mathematical content, or function

type, of the pattern. Four functions suggested for a Standards-based middle

grades reform curriculum are linear, exponential, polynomial, and inverse

functions (NCTM, 1989). Although this list is not intended to be

representative of functions, it represents some of the typical functions

covered in the middle grades.

Linear functions are those which have a constant rate of change. They

typically are one of the first patterns students learn to recognize. Students

might observe these patterns by studying the linear graphs, or by recognizing

a constant difi‘erence in a table of data. Students might encounter these as
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either continuous or discrete functions. In some instances they might notice

that a pattern increases (or decreases) in a table by the same constant

number. For example, a problem might ask students to study the number of

perimeter dots of the following dot representations of squares with length

greater than or equal to two. The first four figures are illustrated in Figure 7

El

EB El. 0 0

El [El [:1 [E

4x1=4 4x2=8 4x3=12 4x4=16

Figure 7: Perimeter Dots on Squares

below.

[E3]

Students might recognize that this is a linear function by studying the

figures, tables, or a graph. In Figure 7 above, the perimeter dots for each

figure of the pattern are grouped into four boxes. For each figure in the

pattern, each box has one less dot than the length of the side. The number of

perimeter dots can then be represented as 4x(n-1) where n is the length of the

side. This form of the rule often tells students that this is a linear function.

The linearity of this pattern could also be observed by studying Table 4.

Table 4: Perimeter Dots on Squares

 

 

 

 

 

 

Length of Perimeter Rate of

Side Dots Change

2 4

3 8 8 — 4 = 4

4 12 12 - 8 = 4

5 16 16 — 12 = 4  
 

 
The constant rate of change can be found by subtracting subsequent terms:

8 - 4 = 4, 12 — 8 = 4, etc. Since these differences are all 4, this must be a
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linear function. Finally, a plot of the data on a graph supplies information

about the pattern because the data forms a straight line, it is a linear

function (See Figure 8).
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Figure 8: Linear Graph

 

A second function appropriate to the middle grades is the exponential

pattern. Students typically experience exponential functions as either growth

or decay patterns. One way to recognize this pattern is to note the

multiplicative growth (or decay) factor in a numeric table of data (See

Table 5).

Table 5: Exponential Table

 

 

 

 

 

   

Growth

x y : 4'3(x—1) Factor

' 1 4

2 12 12 + 4 = 3

3 36 36 + 12 = 3

4 108 108 + 36 = 3 
 

This could be presented to students as a problem where students find their

allowance after 10 weeks under the following plan. They receive one cent the

first week and then on subsequent weeks, they double their previous week’s

allowance. They would receive one cent the first week, two cents the second
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week, four cents the third week, eight cents the fourth week, and so on. The

data can be organized in Table 6 below.

Table 6: Allowance Table

 

 

 

 

 

 

 

 

 

 

  

Week Number Allowance Growth Factor

1 $0.01

2 0.02 0.02 + 0.01 = 2

3 0.04 0.04 + 0.02 = 2

4 0.08 0.08 + 0.04 = 2

5 0.16 0.16 + 0.08 = 2

6 0.32 0.32 + 0.16 = 2

7 0.64 0.64 + 0.32 = 2

8 1.28 1.28 + 0.64 = 2

9 2.56 2.56 + 1.28 = 2

10 5.12 5.12 + 2.56 = 2    
They could determine that this problem was exponential since the next term

could be found by multiplying by the growth factor of 2. The pattern can be

represented with a rule where A is the allowance for the wth week:

A = 0.01x2(w'1). The graph of an exponential also takes a different form as is

 

 

illustrated in Figure 9 below.

$6.00 T "T ,— , TE“

$5.00 T
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WeekNumber   
Figure 9: Allowance Graph
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In addition, students could study polynomials. They often first

experience polynomial patterns as the less complex power functions: y = x2,

y = :03, y = x4, and so on. But, more generally these patterns include

polynomial functions that can all be recognized by finding constant

differences in numeric tables of data. In Tables 7 and 8 below, the constant

differences are found for y = x2 and y = x3 respectively.

Table 7: y = x2 Constant Differences1

 

 

 

 

 

 

 

      
 

 

 

 

 

 

 

 

 

x y _—_-_ x2 181: 2nd

Difference Difference

0 0

1 1 l — 0 = 1

2 4 4 — l = 3 3 - 1 = 2

3 9 9 — 4 = 5 5 — 3 = 2

4 16 16 - 9 = 7 7 - 5 = 2

5 25 25—16=9 9—7=2

6 36 36—25=11 11—9=2

Table 8: y = x3 Constant Differences

x y = x3 lot 2nd 3rd

Difference Difference Difference

0 0

1 1 1 — 0 = 1

2 8 8 — 1 = 7 7 — 1 = 6

3 27 27—8=19 19—7=12 12—6=6

4 64 64—27=37 37—19=18 18-12=6

5 125 125—64:61 61—37=24 24-18=6

6 216 216-125:91 91-61=30 30—24=6      
 

In each case the first difference is not constant. In all quadratics the second

difi'erence is constant. In all cubics the third difference is constant. This can

 

1 Recall that the difi'erences are related to the derivatives.
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be extended to show that the fourth difference is constant in a quartic, but

middle school students do not typically explore polynomials to greater

degrees. Functions of this general polynomial type are typically more diffith

for students to generalize using symbols when they are other than the power

functions. In a typical problem, they might be asked to find the total number

of squares in the pattern illustrated in Figure 10.

 

  

  

         ED
Figure 1 Figure 2 Figure 3

lx2=2 2x3=6 3x4=12

  

Figure 10: Polynomial Pattern of Figures

The number of squares follows a quadratic pattern. This could be recognized

in either the rule or the table. A symbolic rule for the total number of squares

can be written as T= n(n+1) where n is the figure number. This could be

recognized as a quadratic since it is a quantity of n multiplied by a quantity

of n. The pattern can also be extended in Table 9 to find that the second

difi'erence is constant, which also signifies that it is a quadratic pattern.

Table 9: y = Constant Differences in Total Squares Table

 

 

 

 

 

 

. Figure Total 18‘ 2nd

Number Squares Difference Difference

1 2

2 6 6 — 2 = 4

3 12 12 - 6 = 6 6 - 4 = 2

4 20 20—12=8 8-6=2

5 30 30—20=10 10-8=2     
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A fourth function that students might study in the middle grades is the

. . . 1

inverse function. These are often in the form of ;. Students may first

encounter this function when they study distance-rate-time problems, d = rt,

d

and solve for the rate or time. These functions then would be of the form r = “t—

d . .

or t = :. Students could explore how changing the rate to walk 8 miles affects

the time walked as represented in a table, rule, or graph. The rule for this

8

case would be t = 7, while the table and graph are represented below as

Table 10 and Figure 11.

Table 10: Walking Times Table

 

 

 

 

 

 

 

 

 

 

Walking Rate Time

(mph) (in hours)

1 8

2 4

4 2

6 1.33

8 1

10 0.8

12 0.67

14 0.57

16 0.5    
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Figure 11: Walking Times Graph

Context Class.

The content is not the only important aspect of a pattern. The Algebra

Working Group (1997) reminds that any mathematics must be about

something. Algebra cannot be learned without some kind of context.

“Students build concepts and develop ways to think in pursuit of activities

that engage them in different contextual settings; such settings help students

make sense of the algebra they are studying (Algebra Working Group, page

9).” The group identifies five contextual settings: growth and change, size and

shape, data and uncertainty, number, and patterns. These are based on the

settings Steen (1990) presents: dimension, quantity, shape, uncertainty, and

change. Problems that involve studying expanding populations involve

growth and change. They might include linear or exponential growth. A key

idea in these type of problems is the relationship between how the change in

one variable affects the other. Size and shape problems are geometric in

nature. Students could study polygons and investigate which shapes could be

used to tile a surface. Data and uncertainty can be considered as data and
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chance, the ideas in statistics and probability. Initially students can delve

into ways to explore the representations of data and the probability of certain

outcomes. Numbers, or quantities, are fundamental to school mathematics.

The problems students can perform with the availability of powerful,

inexpensive calculators are no longer routine calculations. They need to be

able to reason about the numbers and quantities. Patterns are the main

context for the focus of this study. Problems with numeric patterns can be

found in tables of data, or they can be recognized in a series of shapes.

Any content can be placed in a different context. For example, the

exponential problem that asks students to find their allowance after ten

weeks maintains the same mathematical content as a problem regarding a

certain bacteria that doubles every hour. Strong problem solvers are able to

investigate problems in all difierent contexts.

Summary

Educators, policy makers, researchers, and mathematicians have not

reached a consensus on what should dominate the study of algebra. Nor do

they agree on a main focus. The Algebra Working Group (1997) suggests a

vision of algebra with multiple organizing themes: functions and relations,

modeling, structure, and language and representations. In the study of

functions and relations the rate of change between variables is emphasized.
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The modeling theme focuses on writing mathematical models to represent

data. Supporters of the structure theme believe that the understanding of the

structure of the number system lies at the root of understanding algebra.

While the language and representations theme seems to suggest that

understanding and communicating algebra ideas are key.

The Algebra Working Group and Kaput (1995) both remind that any one

of these themes or aspects to the exclusion of the others is not sufficient to

represent school algebra. Instead, aspects of each are important to develop a

rich knowledge and understanding of algebra.

The study of generalizations of mathematical patterns is one area in the

discipline where four of these themes can be emphasized at different times.

Investigating patterns is suggested in the reforms as valuable mathematics

and worthwhile for students to study.
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CHAPTER 3

The Study

Introduction

What is algebra? Although, I did not resolve it in the last chapter, I

presented some different perspectives in this discipline. These views helped

to define the study and influenced some of the choices I made to investigate

the question of what students know and understand about algebra after three

years in a Standards-based curriculum. These decisions focused my

exploration of the research question. This chapter represents an opportunity

for the reader to both learn how I investigated the question, and why I made

specific choices. There were four initial selections I made that shaped this

study into its current form.

1. The content—patterns which represent functions and generalizing

with symbols from patterns of data.

2. The curriculum—the Connected Mathematics Praject.

3. The site—Heartland Middle School.

4. The data—students’ responses to performance tasks, recordings

while students worked, and interviews after they completed each

task.
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Having made these choices, with these parameters, the question evolved to,

“What do eighth grade students know about writing symbolic generalizations

from patterns which can be represented with functions, after three years in

the Connected Mathematics Project curriculum?”

The Content

I demonstrated in the previous chapter that studying patterns renders

one fundamental aspect of algebra. Although this represented the initial slice

I made to study the algebraic thinking of middle grade students, the content

was not sufiiciently defined for this study. I looked further at my interests

and the foundational aspects of algebraic understanding. Once students

studied and recognized patterns, I wondered what tools they had to help

them represent the patterns. The study evolved to investigate the content of

how students represented patterns with symbols. I saw this as one of the

fundamental aspects of algebraic understanding.

The Curriculum

A second decision I made involved the curriculum. I selected the

Connected Mathematics Project (CMP) to study for six main reasons.1 The

 

1 The CMPwas funded by the National Science Foundation (NSF) to develop complete

curriculum materials for grades 68. After the NCTM Curriculum and Evaluation Standards
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first was the stance taken towards algebra. The CMP takes an approach

towards algebra different from traditional algebra curriculum. In CMP,

algebra is a strand woven throughout the curriculum. It was important to me

that the curriculum I studied took this stance since I was curious about the

strands approach.

The second was the position towards instruction. The developers of the

curriculum acknowledge that it is not possible to separate what is taught

from how it is taught. Both are important to the students’ understanding of

mathematics. The authors of CMP support an investigative approach to the

teaching of mathematics.2 I saw this approach as different than traditional

 

(1989) were published NSF supported several projects with 5-year grants to create materials

at the elementary, middle, and secondary levels that would support the teaching and

learning envisioned in the NCTM Standards. The goal of the CMP was “to develop a

complete mathematics curriculum with teacher support materials for the Middle Grades, 6,

7, and 8.” (page v, GTK CMP). Glenda Lappan, William Fitzgerald, and Elizabeth Phillips of

Michigan State University, James Fey of the University of Maryland, and Susan Friel of the

University of North Carolina are the principal investigators of the project.

2 Extensive teaching materials are available to support the implementation of CMP. The

CMP materials for teachers are organized around an instructional model that supports

problem-centered teaching. The model considers three phases of instruction: launch, explore,

and summarize.

Initially, during the launch, the teacher sets the context of the problem. She launches the

problem for the class to begin their investigation. This is the time the teacher could introduce

new ideas, clarify definitions, review old concepts, or connect the problem to previous work

done by the students.

The exploration phase allows time for students to “dig in” and investigate the problem.

They typically might do this with a partner or in a small group, but at times work

individually or even as a whole class, depending on the problem. The teacher’s role during

this phase of instruction is to observe students while they work, offer prompts to students

who are not making progress, redirect students as needed, and suggest extensions as

students complete solutions.

The final phase of instruction calls on the teacher to aid students summarize their work.

This is often done as a whole class when some students could share their strategies of the

investigation. The teacher helps students to deepen their understanding of the mathematics

in the problem by noting similarities or differences in students work or pushing students to

consider an extension.
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algebra instruction and was interested how students could learn in this

environment.

The third was the use of rich problems in the curriculum. The CMP is

organized around interesting problem settings. Students are presented with

worthwhile mathematics tasks to explore.3 This approach to problems

supports my use of tasks to evaluate student understanding. I will discuss

the tasks in further detail in the section surrounding the data later in this

chapter.

The fourth was a belief that all students can learn algebra. The authors

maintain a commitment towards teaching all children mathematics; as a

result they acknowledge that all students can learn a meaningful algebra.

The CMP takes the stand that all students can thrive in a heterogeneously

grouped classroom. The top performing students' mathematical

understanding is deepened when they consider ways to justify their solutions.

The teacher may also choose to suggest an extension to the problem that

continues to challenge the child. Students who are low performers are in an

environment where they are expected to learn valuable mathematics. The

materials meet the daunting task. of engaging while challenging all students.

 

3 The NCTM Professional Teaching Standards (1991) describe the importance of posing

worthwhile mathematical tasks for students to solve. They argue that the problems should

be based on sound mathematics, perceptions of students experiences, and knowledge of

diverse ways that students learn mathematics. The authors of CMP recognize the influence

of the tasks chosen by the teachers on students learning of mathematics. “There is no other

decision that teachers make that has a greater impact on students’ opportunity to learn and

on their perceptions about what mathematics is than the selection or creation of the tasks

with which the teacher engages the students in studying mathematics.” (Lappan, G., et. al.,

1996, page 40).
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The authors state, “The Connected Mathematics Project assumes that when

all students are held to the same high expectations and given a chance to

explore rich problems, all students can succeed in mathematics” (Lappan, G.,

et. al., 1996, p. 80). This vision supports a societal goal of educational

opportunities for all, as stated in the NCTM Curriculum and Evaluation

Standards.

The fifth was the importance of connections. The curriculum is called the

Connected Mathematics Project; this title alone is evidence that the authors

feel connections are vital for students to make. CMP is based on a foundation

that supports all students’ learning of mathematics by connecting it with

other areas of students’ learning and interests. Connections in the curriculum

are made between what students are learning in mathematics, different

areas of mathematics, ideas from other school subjects, and the world outside

of their mathematics classroom. The problem settings for each investigation

where students explore mathematics present many of the opportunities for

the connections. I felt it was important that for students to see the overall

picture of mathematics they should recognize how mathematical ideas are

related.

The sixth was my familiarity with the curriculum. I worked with the

authors of the CMP during the development phase. I helped with revisions to

both teacher and student editions in primarily the algebra strand. As a

result, I had the advantage of knowing the curriculum thoroughly. This

50



ins

1112

C.1

nee

nec

app

out

(lESt

DUI

 
tra

ll

 



insight helped me see that the CMP represented a curriculum that paralleled

many of my ideas regarding the teaching and learning of algebra.

CMPAlgebra

In the section above I describe my interest in, CMPs stance towards

algebra for all students. Recall in Chapter 1, I reference Chambers (1994)

when she states, “Algebra for all is the right goal at the right time. We just

need to get the right algebra.” (p. 85). While I do not pursue CMP as

necessarily the “right algebra” in this study, I do see the curriculum as an

approach to algebra and a set of goals for the learners of algebra that grows

out of the NCTM Curriculum and Evaluation Standards. In this section I

describe this curriculum’s approach to algebra.

Algebra Goals

The developers of CMP believe that every child can learn mathematics,

and specifically every child can gain a meaningful understanding of algebra

(Lappan, G., et. al., 1996). This means that the authors do not expect a

portion of students to be skimmed off and placed in an advanced mathematics

track. Rather, they believe all students together can be challenged and be

successful in this curriculum. One of the first things recognized as different

fi'om the typical pre-Algebra or Algebra I in 8th grade course is that the

algebra is not isolated in one course or grade level. Although there are
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specific units focused on algebra, algebraic ideas are woven throughout the

entire curriculum. This is in parallel with Kaput’s suggestion for a “strands”

approach to algebra.

The primary goal of the authors of CMP is to help students “reason and

communicate proficiently in mathematics” (Connected Mathematics Project).

The strand specific algebra goals for students who complete three years in

the CMP are that most students should be able to:

. Recognize situations in which important problems and decisions involve

relations among quantitative variables-one variable changing over time or

several variables changing in response to each other.

. Use numerical tables, graphs, symbolic expressions, and verbal

descriptions to describe and predict the patterns of change in variables.

. Recognize (in various representational forms) the patterns of change

associated with linear, exponential, and quadratic functions.

. Use numeric, graphic, and symbolic strategies to solve common problems

involving linear, exponential, and quadratic functions. (Lappan, G. T., et.

a1, 1996, pg. 22)

This list of goals looks quite different than what students in a

traditional Algebra I course would be able to do. Some of the areas that are

emphasized in traditional curricula that are not part of the CMP are: an

emphasis on multiplying and factoring polynomials, operating on algebraic

fractions, simplifying radicals, operating on non-linear polynomials, and

completing the square (Lappan, G., et. al., 1996, p. 28). By eliminating these

types of exercises, more time can be spent developing a solid underpinning in

algebraic reasoning. Some of the ideas included in CMP that traditional

curricula do not include are:
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. Emphasis on variables and the representations of the relation

between variables in words, numeric tables, graphs, and symbolic

statements.

. Focus, on the rate of change between two variables, not only linear.

. Development of functional point of view and applications.

- Emphasis on modeling

. Earlier introduction of exponential growth and decay

. Development of alternative strategies for answering questions about

algebraic expressions and equations (Lappan, G., et. al., 1996, p. 28).

It is apparent that students following this curriculum will have different

experiences than students taking a traditional Algebra I course. There is less

emphasis on manipulating symbols and more of a focus on understanding the

relationship between variables.

Organization of the Algebra Strand

The curriculum consists of eight units at each of the three grade levels.4

Each unit has a primary strand (content goal) as the focus of mathematical

content, but all units make connections to the other strands throughout.5 (See

Appendix A for a complete list of units.)

The six units with algebra as a primary strand are listed in Table 11 by

suggested grade level.

 

4 Each unit of the CMP curriculum is divided into four to seven investigations that are built

on big mathematical problems that students solve. Some problem situations are real; some

are whimsical, while others are pure mathematical investigations.

5 The materials were developed to be used in the order suggested in Appendix A, although

other paths through the curriculum may reasonably be followed, based on local

circumstances. The authors caution, that some adaptations may need to be made when
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Table 11: CMP Algebra Units

Grade Seven Algebra Units Grade Eight Algebra Units

Variables and Patterns: Thinking with Mathematical Models:

Introducing Algebra Representing Mathematical Relationships

Moving Straight Ahead: Growing, Growing, Growing...:

Linear Relationships Exponential Relationships

Frogs, Fleas, and Painted Cubes:

Quadratic Relationships

Say It with Symbols:

Algebraic Reasoning

The first unit with a central focus of algebra, Variables and Patterns, is

designed to start the seventh grade year. This unit builds on student’s prior

experiences and introduces them informally at first to the notion of variables

and representations of relationships. These ideas of representations are

revisited with a concentration on linear relationships in the next algebra

unit, Moving Straight Ahead. In the following year, four of the eight units at

grade eight have algebra as their primary mathematical strand. The first,

Thinking with Mathematical Models, introduces students more formally to

functions and modeling. Growing, Growing, Growing..., examines

exponential growth and decay in tables, graphs, and simple symbolic forms.

Frogs, Fleas, and Painted Cubes, focus on quadratic growth and functions.

The last algebra unit, Say It with Symbols, students investigate equivalent

symbolic expressions and solving linear equations symbolically.

 

following alternate routes since most units build on student understanding developed in

prior units.
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The six units in the algebra strand do not represent the full extent of

algebra in CMP. Consistent with the philosophy of connecting and weaving

the mathematical strands, ideas from algebraic reasoning are present in all

24 of the units. Prior to working more formally with algebraic symbols

students thoroughly investigate relationships in verbal, tabular, and

sometimes graphic forms. When algebraic symbols are introduced, they are

presented as a natural extension and representation of the ideas explored. By

the end of grade eight, it is expected that students will have a deep

understanding of the meaning of symbols and the relationships in tabular,

graphic, and verbal forms.

Recall that both the Algebra Working Group (1997) and Kaput (1995)

remind that a complete algebra experience for students involves all of the

organizing themes—functions and relations, modeling, structure, and

language and representationsThis is CMPs intent. Although the overall

focus is on the functions and relations theme throughout the algebra strand,

the other themes are present in various algebra units. A big idea in

functions and relations is rate of change. Students study rate of change in

linear patterns in Moving Straight Ahead, in exponential patterns in

Growing, Growing, Growing..., and in quadratics and cubics in Frogs, Fleas,

and Painted Cubes. Students explore models in Thinking with Mathematical

Models. In Say It with Symbols they study the structure of algebra. And, in
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Variables and Patterns they spend a lot of time studying difi'erent

representations of relations.

The authors of CMP acknowledge the importance of studying patterns.

They state that “(o)bservations of patterns and relationships lie at the heart

of acquiring deep understanding in mathematics...Students solve problems

and in so doing they observe patterns and relationships; they conjecture, test,

discuss, verbalize, and generalize these patterns and relationships.” (Lappan,

G., et. al., 1996, p. 1). Studying data to determine a pattern is a big part of

the algebra curriculum of CMP. It is also something reasonable for middle

grade students to do in their classes as a basis for algebraic understanding

(NCTM, 1989). This is expressed in two of the CMP algebra goals: use

numerical tables, graphs, symbolic expressions, and verbal descriptions to

describe and predict the patterns of change in variables, and recognize (in

various representational forms) the patterns of change associated with linear,

exponential, and quadratic functions. Students are expected to search for

patterns and relationships and then express their conclusions verbally and

eventually symbolically.

The Site

Another choice I made determined the site to conduct the study. Since

CMPwas still in development when I conducted the study, I sought a location

56



that was piloting the materials, was committed to the implementation of

CMP, and would allow my research. I selected Heartland. This site interested

me because they had demonstrated a record of their commitment to the CMP

curriculum and because of their proximity to the university.

Heartland

Heartland is a small, rural community with a population of around

4,000 residents. A strong German Catholic heritage is often credited for the

hard work ethics of the community. This ideal is often carried over into the

schools. Community members respect the teachers and it is expected that

children follow their parents’ lead in this regard. The town had been a fairly

closed community with many small family farms and blue collar automotive

workers, but it is changing to more of a bedroom community as residents

commute to jobs in other nearby urban areas.

Heartland Middle School, the one public middle school in the

community, averages around 450 students in grades six through eight. There

is a K-12 parochial school that has about 40 students per grade in the

community. These schools together account for all of the students in the

middle grades. Heartland Middle School has been involved in mathematics

staff development for a number of years. Heartland is only about 30 minutes

away from Michigan State University; this proximity to the university helped

the school actively participate in the early reform movement.
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Heartland Middle School has achieved academic awards in different

areas. Lamar Alexander, at the time United States Secretary of Education,

granted the school's mathematics department the "A+ for Breaking the Mold"

award for the 1992-93 academic year. The social studies department also

excels. They won many awards in the National American Express Geography

Competition.

Commitment to Reform

There are a number of sources to credit for the achievement in this

school: willing teachers, supportive administrators, quality materials, and an

informed mathematics teacher leader. Of primary importance is the notion

that this reform evolved over a number of years; it has not happened with a

“quick fix.”

Table 12 charts the reform projects at Heartland Middle School.

Table 12: Heartland Middle School Reform Table

 

Time Reform Project

1983 — 1985 Piloted MGMP

1987 — 1990 Participated in a “County Project”

1991 — 1996 Piloted CMP

 

 

 

    

In 1983, Heartland was chosen as a pilot site for the Middle Grades

Mathematics Project (MGMP).6 The middle school teachers from Heartland

 

3 MGMP is a set of five separate stand-alone units on equivalent fractions, factors and

multiples, perimeter and area, probability, and spatial visualization. They were written by
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participated in workshops given by the authors ofMGMP as part of the

piloting agreement. In 1987, Emily Clark, a local leader in the school,

initiated a countywide project.7 This began a four-year project to help the

mathematics teachers become more reflective about their practice. In 1991

CMP selected Heartland Middle School as a pilot site. Heartland seemed a

reasonable choice due to its closeness to the university, the stafi' development

that had already occurred with the teachers, and the disposition towards

reform by the administrators. The school agreed to teach the curriculum to

all of the students in heterogeneously grouped middle grade classes. When

the piloting of CMP began, teachers participated in regular workshops during

both the summer months and the school years to familiarize them with the

CMPphilosophy, instructional model, and materials.

Evaluating the Reform Efforts: MEAP

Schools are evaluated in Michigan based on their students’ performance

on the Michigan Educational Assessment of Progress (MEAP) test. Students

score within one of three ranges: satisfactory, moderate, or low. In 1991, early

in the reform story, only 44% of the students in Heartland scored in the

satisfactory range. (See Figure 12 for the data from 1991 to 1995). Only four

years later, 78.8% of the students scored in the satisfactory range. This is a

 

several of the same authors as CMP. They were not intended to represent an entire

curriculum, but rather as replacement units for these topics.
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huge increase! But this does not just show that students are moving up from

the moderate range, they are moving out of the low range. The number of

students scoring low decreased from 20% in 1991 down to only 6.8% in 1995.

Teachers and administrators were pleased. They felt this demonstrated that

students enrolled in a curriculum that focuses on problem solving continue to

do well on a more traditional standardized test while learning more powerful

mathematics.
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I credit two major factors for the improvement in the middle school

mathematics performance at Heartland. First was the availability of quality

materials, and second was the support from the administration.8

The closeness to the university afford teachers the opportunity to have

access to resources—both people and quality materials. The materials that

 

7 Emily convinced her superintendent along with the other five school districts in the county

to collectively pool their money to provide staff development for the 25 middle school
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were used, first MGMP and later CMP, represented a model for the teachers

of what it means to teach differently.

The final key aspect that was vital to the reform equation was the role of

the administration. John Roberts, the middle school principal, has

demonstrated openness, vision, and trust. He was willing to listen and allow

Emily to pursue her goals for the district. He readily approved the time for

the teachers to spend in their coaching sessions. I recall our conversation

when I sought permission to use Heartland Middle School as a site to conduct

my study; with his approval he added that he trusted his teachers as

professionals to make the best decision for the students. He further stated

that if Evelyn Howard, the classroom teacher whose students I wanted to

participate, agreed then he would also support my choice.

Implementation of CMP

The CMPwas implemented in the entire sixth grade at Heartland

Middle School in the fall of 1992. The seventh grade was added the following

year in 1993 as the materials were developed. Finally in the fall of 1994 the

eighth grade materials were available and the entire curriculum was

implemented in all three middle grades.

As the CMPwas implemented, all students had this curriculum in their

mathematics classes. Students at Heartland are not pulled out for gifted and

 

mathematics teachers of the county rather than just the four teachers in their school.

5 Conversation with Emily Clark on November 24, 1997.
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talented sessions, eighth grade algebra classes, or special education classes.

The classes are heterogeneously grouped. The school typically has between 10

and 15% of their students identified as special education students. All of

these are mainstreamed into regular classrooms. This percentage has risen to

as high as 18% at times. Evelyn Howard, the classroom teacher, has had as

many as one third of her students in one class labeled as special education.

There is a very minute minority population in this predominantly white

community. There are typically only five minority students in Heartland

Middle School in any given year.

The Students

All of the students participating were in their third year of CMP

mathematics. They represented the second cohort of students at Heartland

Middle School to have the entire CMP curriculum, sixth grade in 1993-94,

seventh grade in 1994-1995, and eighth grade in 1995-1996. They all had

Evelyn Howard as their eighth grade teacher, but came from two different

classes. In the seventh grade students had one of two mathematics teachers,

Evelyn or Jim Johnson. As sixth graders, these students had one of two

different teachers.

I introduced this study to two of Evelyn’s eighth grade mathematics

classes and described my interest in understanding how students in a CMP

classroom investigated problems with algebra. I sought permission from all
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students in the class to participate in this study and explained the time

commitment. I wanted to study the performance of students who found

varying degrees of success with the program, not just the top performers. I

asked Evelyn to identify students who would give me a range of achievement,

but would be able to participate in conversations with me about their sense

making. Of the volunteers whose parents had signed permission slips, Evelyn

and I together selected ten students to participate.

I decided that students would work with a partner because some of the

tasks were challenging and I felt that the students would be more successful

if they worked in pairs. I decided to videotape each pair while they worked on

their tasks, I saw the additional conversation occurring between partners an

additional benefit. Students worked with a partner fi'om their class on

selected problems. They worked with the same partner for all four tasks. I

assigned pairs randomly with the intention of having a diverse blend of

groups. I had two groups of male pairs, one group of female partners, and two

groups with a male and a female student working together. The partners are

listed in Table 13 below.

Table 13: List of Students

Students with Partners

Zachary and Todd

Ben and Joe

Anna and Katrina

Julie and Dan

Sara and Ryan
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The Data

Once I had determined the content, the curriculum, and setting, my final

decision involved the data to collect. I had spent a number of years studying

assessment with the Balanced Assessment Project (BA).9 While at BA I had

the opportunity to explore what represents a quality task, and to analyze

students’ written responses to tasks. This helped me recognize that often

some ofwhat students did while working on a task did not make its way to

the written record. This understanding helped me to determine the data that

I collected in this study. I determined that assessment tasks would be part of

my data. I developed and revised four performance tasks based on the

algebra content described earlier for the students to complete.

I collected three sources of data in this study.

. Students’ written responses to the performance tasks,

. Video recordings of the small group work, and

. Follow-up interviews.

Data Collection

I felt that each of the three sources of data could offer different evidence

about these students’ understanding.

 

9 Balanced Assessment was funded by the National Science Foundation in 1991. Their goal

was to develop a comprehensive range of performance assessment tasks in mathematics, and

assemble them into balanced packages at grades 4, 8, 10, and 12.
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Written responses. This is valuable data since typically classroom

teachers make decisions about student understanding and instruction based

on this written record. I was interested in how these students made sense of

these tasks. I felt that some of this would be revealed to me in their written

responses.

Tape-recordings (igroup work. I also thought that a lot of what students

did could potentially be lost if I limited my data to their written responses

alone. So while students worked with their partners, I either videotaped or

audiotaped them. (Most were videotaped, only one pair was audiotaped for

two of the tasks). I had hoped that these recordings would allow me insight

into the students’ conversations while they worked. I could see a little more of

what these students did in their solutions, when they were stuck on a

problem, or changed strategies.

Follow-up interviews. I wanted the opportunity to ask the students

questions about their solutions. I conducted follow-up interviews with each

pair of students after they completed each task, all of which were video-

recorded. I did not review the recording of the students’ work prior to the

interview, but I returned the students’ written responses and allowed them

some time to review their work before we began the interview. When they

were ready I used a protocol that I wrote while designing the study for some

of my initial questions. The general protocol I used to conduct each interview

is included in Appendix B. I realized during the interview that additional
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questions were needed to clarify a response or probe a little further. For

example, after Zachary and Todd replied that they made tables in all of the

problems, I asked them to further describe their strategies for constructing

them. Some of the additional questions I asked: When did you use the table?

Okay, what does that tell you? How did you construct tables? How many of

these did you have to draw before you could actually continued the table?

What does that tell you that the second difi’erence is one? Okay, what does

that mean?

The data was collected over a three week period. Several pairs of

students left their mathematics class each day to help me with this study.

The students completed a task and then participated in the interview before

completing the next task. The students spent an average of 23 minutes to

complete each task and 19 minutes for the interviews. The approximate times

each pair spent investigating the tasks and participating in the interviews

are given in Appendix C.

Although all students completed the tasks in the same order—Borders,

Cutting, Dominoes, and then Toothpicks—they were not all investigating the

same problem at the same time because I had only two video-cameras to

record their work. Not all interviews were done immediately after students

completed their work. At times several days passed after a student completed

a task before I conducted the interview. Since I had two ‘pairs working at a

time, I sometimes had to have one pair wait to complete their follow-up
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interviews. On some days, students were absent so I did not ask one student

from the pair participate.

Task Descriptions

The four tasks in this study were chosen based on their mathematical

content, context, and the students’ experiences in their mathematics

classrooms. Students were allowed as much time as needed to complete the

tasks and had access to calculators. (See Appendix C to see how long each

pair worked on each task.) If the students did not complete a problem during

their class time, then I allowed them additional time in our next meeting to

finish. The tasks are similar in that they all ask students to study some

regularity, make predictions for future values, and then generalize about

what they have found out. The tasks are dissimilar in the patterns they

represent—linear, quadratic, and exponential—and the context in which each

of them are set. A copy of each task is included in Appendix D.

Borders

First I asked the students to complete Borders. They were asked to write

generalizations for both the number of blue tiles in the center and the white

tiles on the outside border for any figure n in the pattern given in Figure 13.
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Figure 13: Borders Graphic

I thought that the two patterns—one quadratic and one linear—would

be straight forward for the students to investigate. The number of blue center

tiles increased in the basic quadratic pattern of n2, while the number of white

border tiles grew in the linear pattern of 4n + 4.

I perceived this as a good initial task since I felt that all of the students

could have some point of entry into the problem and therefore some success

with it. I thought that most students would complete the task and find a

symbolic generalization since the patterns were fairly basic and it was

similar to the types of problems they saw in the curriculum—collect and

organize data, and then write symbolic generalizations.

Cutting

After the students completed Borders, I asked them to explore Cutting.

Like Borders, Cutting also asked students to search for two generalizations,

but these patterns were not as familiar to the students. The first pattern

followed an exponential growth pattern, 2", while the second represented

exponential decay, §2%. Although, I administered the task with the expectation

that most students would not find symbolic generalizations for these
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patterns, I still considered this a worthwhile problem for the students to

explore for three main reasons. First, I was interested to find if the students

used any language that would allow them to verbally describe a

generalization with a recursive pattern. For example, they might have stated

that the number of sheets was always double the number of sheets for the out

before. Second, I wondered what strategies they would rely on to solve

unfamiliar problems—would they call upon a comfortable process or search

for something new? Third, I was curious to see how students from a

Standards-based curriculum would struggle with a generalization for a rule

that was unfamiliar to them—for what length of time would they pursue the

problem, at what point they became fi'ustrated with the problem, how they

handled their frustration, and how they coped with an unfamiliar problem.

Since this exponential pattern has a base of two, I felt students could

conduct a meaningful exploration of the problem prior to writing a symbolic

rule. I predicted that they could work with the doubling in the problem prior

to their formal introduction of exponential symbolism. I discovered after the

pairs of students finished the task that some did recall doing similar types of

problems in earlier CMP units or their seventh grade science class. I found it

interesting that some students were able to make this connection.

I felt that the generalizations for the rules in this task would prove to be

more challenging for these students. Since, these students had yet to

complete the CMP unit on exponentials, Growing, Growing, and Growing..., I
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saw this task as more challenging. They were scheduled to begin this unit

during their final weeks of school, shortly after the completion of this study.

Dominoes

The third problem students completed was Dominoes. The final question

asked students to find the total number of domino faces possible with from

zero to n dots.

I predicted that the students might observe and extend the pattern in

the data for a specific case, but would probably have difficulty writing a rule

for the nth case, g(n + 2)(n + 1).

I saw this as a problem that would challenge all of the students, but for

different reasons than with Cutting. Unlike the exponential unit, Growing,

Growing, and Growing..., all of the students in my study had completed the

CMP unit on quadratics, Frogs, Fleas, and Painted Cubes. The students had

some experiences in their mathematics class classifying patterns as

quadratics, but they did not have a systematic way to write generalizations

based on data for a quadratic relationship. This was not a basic quadratic

pattern that I felt the students would find easily.

Toothpicks

Next, the students explored Toothpicks which involved two number

patterns based on stair-step shape figures in Figure 14 below.
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Figure 14: Toothpicks Figures

Students explored both the number of toothpicks in the perimeter, and the

total number of toothpicks in the figures. This task possesses a similar

structure to Borders; one pattern is linear and one pattern is quadratic in

both tasks.

The pattern of the perimeters of the Toothpick shapes is linear, 4n, while

the total number of toothpicks is quadratic, n(n + 3). I saw the pattern for the

quadratic total number of toothpicks, as a little more difficult for the students

than the quadratic pattern in Borders, n2, but not as challenging as the rule

. . 1 .

1n Dominoes, ’(n + 2)(n + 1). I was interested to see what tools the students

would use to write a rule for this pattern.

I felt that most students could find these generalizations, unlike

Dominoes. The linear perimeter pattern was more basic and the students

spent time in the curriculum studying factored.

Task Solutions

One of the strengths of the four tasks the students completed was the

potential for multiple solution strategies. This opportunity for a variety of

approaches is one aspect that makes a worthwhile mathematical task
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according to the NCTM Professional Teaching Standards (1991). One possible

solution is explored in Appendix E for each of the tasks. This section is not

intended to be representative of the students’ work, rather ofier one possible

solution to each task for the reader.

In my solutions I make assumptions that these patterns do continue

infinitely in either the linear, quadratic, or exponential pattern I represented.

I realize that given any finite amount of data these patterns could reasonably

be extended in an infinite number of ways. The students also seem to make

this assumption, but it is important to note that these regular extensions of

the patterns are not the only possible completions.

Data Analysis

In my initial analysis I used only students’ written responses. I grouped

the responses by student pairs. I first studied all tasks completed by one pair

of students and looked for whether they used common strategies across

several tasks. I repeated this process with the other four pairs focusing on

each pair and searching for similarities across their solutions. After I

collected notes regarding what the students did by pairs, I looked across the

five pairs, looking for common approaches. I formulated tentative hunches of

what I saw in the students’ work. One of the strategies fairly common across

tasks and across pairs was the construction of a table and then the search for

a pattern in the table. I noted after studying the written work that:
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. Tables seemed to be a starting point for students when they encountered

unfamiliar problem situations.

. Tables seemed to serve as a means to systematically generate and

organize data.

. Students were able to answer questions about specific cases.

. Students used tables to study the data in a search for patterns by

looking at constant differences.

Students’ written work was not suficient to inform me about the

students’ understanding. It did two things for me. First, the written

responses offered confirming evidence for some of my hunches, and second,

this work raised some questions for me about students’ understanding. I still

had questions about how the students used their tables, and I was puzzled in

the instances where students did not construct tables.

I looked at other sources of data to support my assertions. In the

videotapes while students worked I saw further evidence that confirmed that

constructing tables was a reliable strategy for these students. When several

pairs independently voiced their uncertainty, one of the pair usually

suggested making a table. With this lead, the all made progress with the

tasks. During the interview the students elaborated further that the tables

gave them a lot of information and usually worked in their problems. This

represents an example of how I found confirming evidence and triangulated

the data (Bogdan and Biklen, 1982).
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Summary

This chapter represents a narration of the choices that shaped this study

to investigate the question of what eighth grade students know after three

years in the Connected Mathematics Project about writing symbolic

generalizations for patterns which can be represented with functions.

The next two chapters offer data and some analysis for the reader to see

how the question was addressed. First, in chapter four, I thoroughly describe

what each pair of students have done in their investigation for each of the

tasks. All three sources of data—written responses, recordings while working

and recordings of the interviews—are used to support this. Next, in chapter

five, I step back and look across students and across tasks to describe two

common strategies that were used in most of the solutions, making tables

and studying the shapes.
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CHAPTER 4

Digging Deep—

A Careful Look at Student Investigations

Introduction

In this chapter, I describe students’ solutions in four performance tasks.

I rely on three different sources of data—students’ written responses,

recordings while students worked, and interview recordings after students

completed each task—to help me understand what the students have done. I

describe each pairs’ investigation separately in each task.

Most students classified the four tasks I administered to them as

primarily algebra because they searched for symbolic generalizations. A few

classified some of the tasks as mostly geometric because of the shapes that

were involved.

The students’ interpretations of the problems, algebraic or geometric,

influenced their solution strategy. When the students considered a problem

algebraic, they constructed a table of numeric data to study the pattern. In

some of the less complex, linear cases, the students recognized a pattern in

the numeric data prior to organizing it in a table. When they saw a problem

as geometric, they studied the changing shapes to describe the pattern.
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The dominant strategy used across students and tasks was to construct

a table of data. Students who made tables followed some or all of these steps.

They used tables to (a) record or re-present data, (b) extend given data, (c)

find specific cases, ((1) study patterns, (9) write rules, and (f) verify rules.

Students followed an alternative strategy when they saw tasks as

geometric. They did not make a numeric table of data, instead they focused

on the changing shapes and found generalizations based on how the figures

grew. In a small number of cases, students made pictorial representations to

study the patterns. These students often found generalizations based on

sketches.

Regardless of the strategy used in the investigation, the students

demonstrated understanding about the patterns in all cases, even when they

did not write a symbolic generalization. The students demonstrated this at

times by describing the patterns verbally. In other cases some made

connections between the patterns of numeric data in a table to the shapes of

the graphical representations.

Zachary and Todd

Students often made and studied tables to help them solve situations

involving patterns. Zachary and Todd constructed tables for all four tasks.

The pair successfully found rules for all patterns.
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Borders

These students described Borders as an algebra problem since it dealt

primarily with “equations and variables.” This interpretation led them to

solve the problem by creating and studying tables as discussed during our

interview.

Todd: We could have just looked at pictures. First, I did and we saw

that it got taller and wider, but it was kind of hard to make

an equation based just on that.

Zachary: We just tried to find patterns in the table to see how much it

changes by.

Todd: Yeah, it was easier seeing the numbers.

Using a Table

Zachary and Todd began working on Borders by counting the tiles in the

drawings and making marks on the figures as they counted. Then, they made

tables to record their data. Next, they generated new data by observing the

pattern of change in the numbers they had recorded in their table. In the case

of the blue tiles, they extended the table to Figure 10; in the case of the white

tiles they extended the table to Figure 8. After they had extended their tables

for both blue and white tiles, they used the data in their table to read the

number of tiles needed for the specific case of the fourth figure.
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Figure 15: Zachary's work on Borders
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Figure 16: Todd's work on Borders
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The pair studied the patterns in the data table to extend their table and

to determine if a relationship was linear or non-linear. They quickly noted

the constant increase in the number of white tiles while working on the task.

Todd: After the first one is eight. Wait, we can start at zero, the

y-intercept is four.

Zachary: It increases by four each time.

Todd: So, for each blue1 square, it’s four times...

Once they recognized this change of four they attempted to write a

generalization.

The pattern for the blue tiles did not result in a linear relationship, so

the pair examined the data to see if and when they would get a constant

difference. Zachary noticed, “The increase increases by two each time, so

three, five, seven, nine. One times one is one, two times two is four, three

times three is nine.” In an interview I asked them about this.

AK: When did you stop looking for the pattern?

Todd: When the differences were the same.

AK: When was that?

Zachary: The increase increases by two each time.

Todd: I stopped about here [points to the table around four].

Using this they found the rule of x2 for the number of blue tiles.

 

1 Todd says “blue” but he refers to the pattern in the white tiles.
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Zachary and Todd found the linear rule for the white tiles by using the

constant rate of change they calculated from the table and extending the

pattern back to find the number of white tiles for figure 0.

Todd: It would be what?

Zachary: Four X plus four?

Todd: That [four] would be the intercept, even though we don’t have

zero [in our table].

In an interview they explained further.

AK: What did you get for your equations?

Todd: Four X plus four.

AK: How is this four [the X-coefficient], how is how it changes

shown in your work?

Todd: Right here [pointing to the increase in the table].

AK: What does that last four show?

Todd: That’s the y-intercept and it means...

Zachary: ...where it starts.

Todd: Yeah. This figure over here [pointing to the left of figure I]

wouldn’t have any blue squares only four white squares.

Zachary: For the four corners.

Todd: That would be figure zero.
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In this complete explanation they elaborated on what each four in their rule

of 4x + 4 represented, describing how it related back to the geometric context

in which the problem was posed.

Cutting

Although Zachary and Todd recalled completing a problem similar to

this in their seventh grade science class, they did not remember the process

they used to solve the problem. They were initially unsure how to start this

problem, but decided to make a table again, influenced by the demand of the

task to find an algebraic rule.

Using a Table

The pair began by immediately writing the number of sheets in each

stack above the figures on their paper and completed the pattern up to 64

sheets in a stack after six cuts (see Zachary’s calculations above and to the

right of the four figures). They soon recognized that a table would be useful

as evidenced in their conversation while they worked.

Zachary: So, one, two, four...

Todd: Squared?

Zachary: ...times two, so eight.

Todd: Then, sixteen, then thirty-two? [pause] I don’t know.

Zachary: Do you want to try to make a table?
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Figure 17 Zachary’s work on Cutting
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Figure 18: Todd’s work on Cutting
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Each student proceeded to flip his paper over and recorded the data in a

table for one to 10 cuts. Before they generalized their pattern, they used their

calculators to continue doubling the pattern and found 1,048,576 sheets in a

stack for the specific case of twenty cuts.

This exponential pattern was puzzling to the pair. They readily found

the recursive doubling pattern to find the number of sheets after each

successive cut by studying the pattern, but they had difficulty writing a co-

variational rule for the pattern. Part of the difficulty was that this situation

did not produce a constant difference. They continued to search out to the

sixth difference. In an interview I asked them about what they had tried.

AK: How did you fill out your table?

Zachary: Times two, times two, times two.

Todd: It was easy filling out the table.

AK: Why did it take so much longer to answer the question after

you filled in the table?

Todd: Not a real obvious problem. I tried finding the first difference,

second difference, and third difference and there really wasn’t

any other pattern besides it doubling.

AK: Why did you find the difi‘erences?

Zachary: To try to find the equation, that works for the one in the last

problem [Borders].
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They knew that constant differences helped them write algebraic rules, but

this problem did not lend itself to this strategy.

However, they recalled doing a similar problem in their science class the

year before. They explained during our interview.

Todd: We were trying to find the time for bacteria to touch the

moon. How many times it duplicated. Looking at the

equation, it was almost the same.

AK: Did that help you to solve this problem?

Todd: I wouldn’t have known how to use the y-x key.2

Even with this recognition they struggled for some time before they finally

came up with the rule. They followed a “guess and adjust” strategy recording

(C — 1), 0*, and (C — 1)2 x (C — 1). After about twenty minutes, Zachary

recognized something that led to the rule.

Zachary: It’s whatever number that is, the number of two times. I’m

not sure though how to write that in an equation.

Todd: It’s that right there.

Zachary: Two X [and writes 21‘].

Once the students had written their rule ofy = 23‘, they tested it by trying a

specific case. In our interview, they “proved” that their rule was appropriate

by demonstrating how it worked for the values in their table.

 

2 They had everyday access to the 77-30 Challenger in both their seventh and eighth grade

mathematics classrooms. These calculators used a y" to represent the exponential function or

(Footnote continued on next page.)
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This problem proved to be challenging for Zachary and Todd. What was

interesting was they way in which they persevered in their investigation.

Even when I told them they could stop and we could discuss the rule

together, the pair seemed to believe that they should be able to find an

equation given any problem. They continued their investigation until they

had completed the problem and found a symbolic generalization.

Dominoes

Zachary and Todd made tables again in Dominoes. But, before they did,

they sketched representations of the dominoes to generate their data. First,

they drew the dominoes with zero to two white spots. Todd drew nine

possibilities (0-0, 0-1, 0-2, 1-0, 1-1, 1-2, 2-0, 2-1, and 2-2), decided that the 0-1

and 1-0 dominoes were the same, and crossed off the doubles. Rather than re-

draw the dominoes with up to two spots again in the set of dominoes with up

to three spots, Zachary drew the four additional dominoes to arrive at a total

of ten dominoes with up to three white spots. Zachary then started to sketch

the dominoes with up to six spots, but quickly abandoned that strategy to try

an alternative approach.

 

“power key”. Students also had access to the TI-82 graphing calculators in their classroom. I

supplied both calculators for the students to use as needed while they completed the tasks.
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Figure 19: Zachary's work on Dominoes
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Figure 20: Todd's work on Dominoes
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Using a Table

With the preliminary sketches made, they recorded and organized the

data into a table to complete the task. They studied the pattern of the data in

the table and then extended their table up to the number of dominoes

possible with one to 10 white spots.

Zachary first recognized that once he had the dominoes with from zero to

two white spots, he could find the ones with up to three spots by adding four

additional dominoes (0-3, 1-3, 2-3, and 3-3). He saw that the pattern would

continue; to find the dominoes with zero to four spots he needed to add five

more dominoes. They repeated this pattern to find the specific case that there

were 28 dominoes with from zero to six white spots.

This iterative pattern did not help them write the symbolic rule. It was

when they organized the data into a table and studied constant difi'erences

that they found something in the pattern that could help with the rule. This

was noticed while they completed the task.

Zachary: There is kind of a pattern, like that changes, three, then four.

Remember? So that would be fifteen, the next would be

twenty-one. Is that what we got?

They used the 28 dominoes they found earlier for zero to six to confirm the

pattern of difi‘erences.

Zachary and Todd collected a lot of information about the pattern prior

to writing their symbolic rule. During the interview they explained that since
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the first difi'erence increased by a constant amount of one, they knew the

pattern was quadratic.

AK:

Todd:

Todd:

Todd:

Todd:

How many of these did you have to draw before you could

actually continue the table?

Probably the first three, after it went up by three, then four,

then five.

Then that was enough for you to say [what]?

The second difi'erence was one.

What does that tell you, that the second difference is one?

That, uhh, it’s a quadratic.

Okay, what does that mean?

Umm, the graph makes a parabola and X is multiplied by

itself or a quantity of X is multiplied by itself.

They found one as the constant term of the rule by extending their table

back to find that there was one domino possible with up to zero spots. They

seemed to try to fit their understanding of constant terms in linear situations

to constant terms in quadratic situations. During their investigation they

tried potential rules that were quadratic and had a constant term of one.

Zachary: The starting point would be one, so zero zero would be one.

Todd: So, its got to be something N plus one. N squared divided by

two plus one? N squared divided by three plus one?

Zachary: Maybe minus one? N [pause] N minus two times N minus?

Todd: You have to add one.
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These trials did not result in an appropriate symbolic rule.

The pair considered that they might need to divide by two because of the

way they counted the dominoes and crossed off the doubles. They explained

during our interview.

AK: Okay, what was your strategy for this one?

Todd: First we tried to make a chart to find all possible ways...

AK: Okay, and then what did you do?

Todd: Took out doubles.

AK: How did that help you with the problem?

Todd: Kind of found out that in the equation, that we will probably

needed to divide our 11 by two and then add one.

They used all of this information to make some trial guesses for a rule.

Zachary started to consider the consecutive integers when he noticed for the

10 dominoes with zero to three white spots, or “1 + 2 + 3 + 4.” After some

calculations, he arrived at (n + 2) + 2 x n, but realized his answers were off,

so he adjusted that expression and wrote his final rule.

Todd: Did you get it?

Zachary: Yea, I think I might, [11 plus two] divided by two times N.

That does not work.

Todd: That work?

Zachary: It doesn’t work for that, but it gets the answer before it, so

[pause] you have to add N plus one. [pause] Let’s try that out.
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Todd: It works for ten.

When the adjusted rule satisfied the case for 10 spots, the pair recorded their

ruleof(n+1)-:—2xn+n+1.

Toothpicks

Zachary and Todd also saw this as an algebraic task. They continued

with their numeric strategy of making and studying tables to address the

questions in this task.

Using a Table

The pair began the problem by counting the toothpicks and recording

these numbers above the shapes. They extended the pattern by drawing a

sketch of figure five. They recorded the perimeter toothpicks they counted in

the table. The pair used pattern of the increase of four they studied in the

table to complete it and find 24 toothpicks for the perimeter of the specific

case for figure 6.3

Even though their strategy of looking at differences was not apparent in

their written work for Toothpicks they demonstrated that they recognized

when the first difference was constant by referring to the increase when

 

3 Question 2 asked about the total number of toothpicks of figure six, while Zachary and Todd

recorded 24, the number of toothpicks in the perimeter of figure 6. I believe that this pair

would have likely been able to find the total number for figure 6 based on the table they

made and the pattern they noted for the total number of toothpicks.
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Figure 21: Zachary's work on Toothpicks
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Figure 22: Todd's work on Toothpicks
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counting the perimeter. Todd noted, “It goes up by four,” while studying the

numbers he recorded above the figures.

To find the total number of tobthpicks, a quadratic pattern, the pair

repeated their process of counting the toothpicks, recording the data,

observing the increase, and extending the table. They stopped searching for

patterns early in their solutions and continued the pattern they saw. Todd

explained this during our interview.

AK: When do you know to stop looking for a pattern and start to

generalize [to find the total number of toothpicks]?

Todd: We filled out five and six [in the table].

After Zachary and Todd determined that the perimeter of the toothpicks

was a linear pattern, they extended their tables back to zero. In their tables

they found corresponding values for Figure 0, I was curious how they thought

about this, so I asked them during the interview.

AK: How did you find zero?

Zachary: If it goes up by four, then it goes down by four.

AK: Does that make sense with the figures?

Zachary: Yes.

Although it was not clear how this made sense based on the pattern or

figures, in the pattern of the data (0,0) was reasonable. They used the

y-intercept of zero and the increase of four to write a rule of 4n for the total

number of toothpicks.
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The rule for the total number of toothpicks, n-(n+3), came fairly quickly

to Zachary. He studied the table and wrote a rule that seemed to work.

Zachary explained to Todd what he saw.

Zachary: So, N times N plus three.

Todd: Yeah. So how did you get the answer?

Zachary: I was looking to see what it was. It is kind of a coincidence

that I found it. Like five times two equals ten, so then five is

three more than two. Then I did the next one, six times three.

Todd: So you looked at the pattern in the table?

Zachary: Yeah.

Although they do not directly state it, Zachary began his trials with a

rule in the factored form of “n times itself or a quantity of itself.” They knew

that the pattern was quadratic since they found a constant second difference.

This helped them to make their initial guess that worked for the pattern of

data.

Ben and Joe

During each interview I asked Ben and Joe what they felt was the

mathematics in the problem. The pair saw the four tasks as algebra, or a

blend of both algebra and geometry. They claimed that all of the tasks

involved algebra because they were asked to find rules fi'om patterns in the

97



tables

involt

nume

the pi

where

invest

symbc

Borde

II

lot, 1115

but ve]

USing .

Bi

data in

The p

c3895.



tables. They added that two of the tasks also included geometry since they

involved changing shapes. The strategy they used to study the patterns—

numeric or geometric—seemed to determine their view of the mathematics in

the problem.

The pair constructed tables in three out of the four tasks. In the problem

where they did not make a table, they used a geometric approach to

investigate the problem. In all situations, Ben and Joe successfully wrote

symbolic rules.

Borders

In Borders, Ben described the task during our interview as “algebra a

lot, maybe a little geometry. They made tables to investigate the problem,

but verified their solution using a geometric approach.

Using a Table

Ben and Joe first counted the white border tiles and then recorded their

data into a table. They constructed tables with data for figures 0 through 10.

The pattern they observed helped them to extend the table to find the specific

cases.

AK: When do you know to stop looking for a pattern and start to

generalize?

Ben: For one b, [we] just saw a pattern once we got to four.

From the table, they formalized the pattern.
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Figure 23: Ben and Joe’s work on Borders
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AK: 'What did you use the table for?

Joe: To find the pattern. Pattern made it easier to find the rule.

AK: Did you find the table before the rules?

Ben: For one a, we found the equation first. For one b we found

table first. L times four plus four.4

Joe described the constant increase of the first difl'erence in his response to 1

a, when he wrote, “Figure 1 to Figure 2 is +3, +5, +7, +9...” (See Joe’s work

under 1 a).

In this problem the pair wrote the quadratic rule, L2, for the blue

interior tiles quickly. The linear white tile pattern also proved

straightforward to generalize for the pair of students. They wrote L x 4 + 4.

The increase of 4 in the data was represented as the coefficient of L. They

extended the tables back to find that 4 corresponded to a value of O for n and

used this 4 as the constant term.

Geometric Approach

Although this pair used a numeric approach to investigate this problem,

when asked to justify their results, they switched to a geometric approach.

AK: How would you justify your solution?

Joe: Sides are always the same length so it is squared.

 

4 l. a) If the pattern of blue squares with white borders continues, how many blue tiles are

needed to build the 4th square? the nth square? Show how you figured this out.

(Footnote continued on next page.)
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AK: In one b, what is L?

Ben: It looks like the length of blue tiles was L. That way there are

four on each side of the blue tiles, so that is L times four plus

the four corners.

They pointed to figure 3 and traced lines to illustrate their thinking as

illustrated in Figure 24.

 

L

Figure 24: Ben’s Borders diagram

Cutting

This was an unfamiliar problem for Ben and Joe since, “we had not

worked on anything with an X power before.” When I conducted my study the

class had not yet completed the CMP unit on exponential growth, but during

our interview these two students recalled a similar problem from the

previous year.

AK: Have you ever done this problem before?

Joe: In science class last year when we stacked things up.

Ben: In biology class we were multiplying things.

 

b) If the pattern of blue squares with white borders continues, how many white tiles

are needed to build the 4th square? the nth square? Show how you figured this out.
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Figure 25: Ben's work on Cutting
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Figure 26: Joe's work on Cutting
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Joe: We talked about cells doubling to reach the moon.

They referenced a problem from their seventh grade science class that had a

similar mathematical structure of exponential growth.

They saw Cutting as “(a)lgebra in writing a rule and table. Just algebra.

It doesn’t seem to have geometry.” Making and studying tables was a

strategy that they eventually used.

AK: What strategy did you use for this problem?

Ben: Guess and check

Joe: Made a table.

Ben: Yeah, and fi'om the table we got the equation.

Using a Table

Initially Ben and Joe recorded their data in an incomplete table and

made the table shown in Figure 27

 

2. a) How many sheets of paper thick would the paper pile be after 4

cuts? 5 cuts? 10 cuts? 20 cuts? n cuts? Explain how you figured this

out. IO 20

‘0 6‘: I2:
h\ Env- ne-r'innnr nnniar name- if folio: OWL"? 7‘“ cheat: tn malra a nila

Figure 27: Ben’s initial response to question 2 a in Cutting

  

They soon recognized their error and corrected it on a fresh sheet of paper.

Ben: It wouldn’t be sixty-four, for ten. Do you have an eraser or a

sheet of paper [to me]? It doubles from five to six, not five to

ten. It wouldn’t be sixty-four it would be something else.

Joe: Yeah, so double it.
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They created new tables and recorded data that ranged fiom 1 to 10 cuts,

including all numbers in between. They found that the number of sheets in a

stack after 10 cuts was 1,024 and not the 64 they originally wrote.

The pair completed the tables based on the doubling pattern they

observed in the data. They continued the pattern to correctly find the specific

case of 1,048,576 sheets in the stack after 20 cuts. Next, they searched for a

rule by first examining the difi'erences. They tried several iterations of

differences but did not find a constant.

The symbolic rule eluded Ben and Joe for some time. They found the

doubling factor for the growth problem and the halving factor in the decay

problem but had difficulty translating this into a symbolic rule.

Ben: I don’t see where the two is. For the first, second cuts, its

double, the number of cuts is two sheets and four is double

two, for three you get eight sheets.

Once Ben and Joe described the pattern in an iterative form, they searched

for a closed form of the rule. Joe began to guess.

Joe: Okay, X times Y times two?

Ben: Times? No, you can’t have X and Y in the same. You are

trying to find Y. This right here is Y [points to sheets thick].

You don’t know these, you are trying to get these [sheets

thick] from X [cuts].

Ben seemed to have a clear understanding of how the equation involved X

(the number of cuts) and Y (the number of sheets thick) as independent and
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dependent variables. They eventually wrote N = 2". Ben credits, “I was just

thinking and it popped into my head.” It remains a puzzle how they found

their rule. The pair did not articulate any further how they found it, nor is

there evidence in any of the videotape to suggest anything else.

Dominoes

Ben and Joe saw Dominoes as an algebraic task since they were asked to

find a rule. Making and studying a table was the strategy they relied on for

algebraic tasks.

Using a Table

Their investigation began with the pair sketching dominoes. They

counted the number sketched and recorded the data in a table. They followed

the familiar strategy of recognizing a pattern, generating new data,

answering specific cases, and classifying the pattern.

They recognized the pattern of increase in the first difl'erence and used

that to help them complete the table.

AK: When did you know when to stop looking for a pattern?

Ben: We filled in the table from one, two, and three and then

looked for constant difi'erences.

AK: For zero to six spots? How did you find that one?
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Figure 28: Ben's work on Dominoes
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Figure 29: Joe's work on Dominoes



Ben: We did the table, we saw it went up by two, three, four, five.

So we put one there [extended the first difference back] and

for 0 [dominoes with up to zero spots] it would be one then for

the third one we put ten, then added five, for fifteen. Add one

every time. So I found the second difference of plus one.

After the pair recognized the pattern, they then used that to find the 28

dominoes with fi'om zero to six spots.

During the interview they explained how the constant difference helped

them write the equation.

AK: Okay, let me ask you something different now. When you

found that the second difference was one, what did that tell

you about the equation?

Ben: I knew the n had to be multiplied by something.

They started to describe a factored form of a quadratic.

As an initial guess, they seemed to connect the numbers in the table to

the sum of consecutive integers. They partitioned the 10 dominoes they drew

for zero to three white spots into sections of four dominoes, three dominoes,

two dominoes, and one domino in their written work (See Ben’s work beneath

1 b). These 10 dominoes could be represented by the sum of consecutive

integers, 4 + 3 + 2 + 1. They continued and represented the number of

dominoes with from zero to four white spots as the sum of 5 consecutive

integers (5 + 4 + 3 + 2 + 1) on the back of Ben’s paper. After they wrote this
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sum, it prompted them to use N+1 x N + (N-l) as their initial guess. Ben

adjusted this guess and tried N+2, N+3, N+4, as different variations.

It was unclear what the pair tried for their rules after these guesses, but

they eventually wrote y = (N+l)(0.5N+1). They verified their rule with the

zero to three, zero to four, and zero to six cases by finding the 10, 15, and 28

dominoes respectively. (See the back of Ben and Joe’s written responses.)

Toothpicks

Ben and Joe used a different approach in Toothpicks. They did not

construct any tables as they did for the algebra tasks. Instead, they classified

it as geometric and studied the pattern of the changing shapes.

Geometric Approach

The pair used the geometric patterns of change in the figures to help

write rules. They explained their approach in our interview.

AK: Do you want to describe your strategy you used for this

problem?

Ben: For one, we...

Joe: ...we drew pictures.

Ben: We added on to the first one, we drew extra steps and we did

that for number two also.

Joe: We added on to the pictures.
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Figure 30: Ben and Joe’s work on Toothpicks
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AK: What did you mean you added on?

Ben: We drew the extra steps

Ben and Joe drew additional toothpicks on the steps of figure four to

represent the next two figures in the pattern (See Ben’s Figure 4 in his work).

Ben and Joe’s original rules of Y: (N-N) + (Nx2) for the perimeter and

Y: (NN) + (Nx2) + (N- 1) - N for the total number of toothpicks were not

correct. They recognized their error during the interview, revised their rules

and wrote correct generalizations.

Although their initial rules were incorrect, the reasoning they ofl‘ered

during our interview to find them was reasonable.

Ben: Umm, for four, we knew that each one had n times It to get

the two straight sides [the base and right side], then Joe came

up with this [the step portion on the left side] being two n.

Because you’ve got n here [vertical steps] and n here

[horizontal steps], so that you get two 11.

AK: Do you want...?

Joe: Yeah, 11 times n would be this times this part of the perimeter

[points to the base and right side]. Then n times two [the

steps portion] plus this perimeter is two, and right here is two

times two would be four. And it works over here too [See Joe’s

marks on Figure 3 in his work].
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The pair had mistakenly used n x n (rather than n + n) to represent the

number of toothpicks in the base and on the right hand side. After they

recognized their mistake they correctly adjusted their rule.

Ben: We counted this one. Oh, for the n times 11, it was this times

this. For two n and there’s an n and two 11, three 11 there and

four n. I think it would actually be four 11.

AK: Why’s that?

Ben: Because you’ve got one 11 here, two 11, three n there, and four 11

there. It works the same here for one, two, three, so it would

be Y is four 11.

The pair found the total number of toothpicks by considering two

separate categories: the perimeter toothpicks and the interior toothpicks.

They revised and wrote Y = 4N + (N-l) -N for the total number of toothpicks.

It was unclear how they verified that (N-1) -N would always result in the

interior toothpicks. Ben demonstrated on his paper how he could show 2

groups of 1 for figure 1, 3 groups of 2 for figure 2, and 4 groups of 3 for

Figure 3 (See Ben’s work for Figures 1-3). Even though this will be

numerically true, it was unclear how to continue this pattern and mark 5

groups of 4 in Figure 4, or the general case of n+1 groups of n in Figure 11, nor

was it evident how this pair saw this aspect of their generalization

continuing.
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Julie and Dan

This pair of students used two different approaches in their

investigation of the four tasks. Their strategy for each problem focused on

their interpretation of the mathematical content. Although they thought that

all of the tasks involved some algebra, they saw Borders and Toothpicks as

primarily geometry.

When Julie and Dan felt the main mathematics of a problem was

algebra, they constructed tables of numeric data to initiate their

investigation. For the tasks they interpreted as geometric they used a

strategy based on studying the shapes.

The pair found correct rules in Borders and Toothpicks. They found a

rule in Dominoes for Case 1 where they counted 1-0 and 0-1 as two distinct

dominoes, but were unsuccessful in Case 2 when they counted them as one

unique domino. They were unable to write a rule for the exponential patterns

in Cutting.

Borders

The pair seemed to find their rules in Borders by observing geometric

characteristics of the figures in the task. Their solution primarily focused on

geometry, but Julie also used the numeric values to search for a pattern in

part of the problem.
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Figure 31: Julie and Dan’s work on Borders
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Geometric Approach

Julie and Dan found their rule of n2 for the blue center tiles by studying

the shape of the figures. Dan supported his rule and wrote, “For the Nth

square the answer is N2 because one side squared equals the area of the

square.” They recognized that the blue tiles formed a square with dimensions

of n, where n was the figure number. The pair described their strategy during

our interview.

AK: How did you decide what strategy to use?

Julie: Kind of looked at a pattern for these and that [points to

Figure 2, Figure 1, and Figure 3], when two by two, one by

one, three by three, so we figured four by four and got sixteen.

They observed the pattern in the shapes, extended it to answer questions

about specific cases, and then finally wrote the generalization.

Julie and Dan continued with this strategy to find the generalization of

the white border tiles. Dan’s written work again offered evidence to support

their rule. “If you take one side and multiplied it by four, youd [sic] have

everything accept [sic] the corners, that’s why I added four.” They further

explained their strategy during an interview.

AK: How would you justify your solution for the white tiles in the

equation?

Julie: Yeah, four N plus four?

AK: Mm, hmm. Could you prove it to me?
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Julie: See, this [traces the side of the blue square] would be N, four

of these, then four corners.

Dan: You always have four corners left over.

Numeric Approach

Julie searched for a numeric pattern in at least one instance while

solving Borders, as illustrated in her written work where she counted the

number of white tiles and wrote the numbers, 8, 12, and 16, above the

figures. While she worked on the task she noticed an increase of four in her

data, “No, there’s [pause] you need to find out how many borders. Each

increases by four.” She further noted the increase in her written work where

she supported her rule of 4n + 4 by claiming, “So for n square, it would be

four n plus four. We found that the amount of tiles increases by four each

amount.” In her justification, she seemed to consider the numeric increase of

four in her statement rather than the geometric change.

Cutting

Even though Julie and Dan did not find symbolic rules, they

demonstrated understanding of the pattern and correctly responded to all of

the specific cases.
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Using a Table

The pair made and studied tables to investigate the task.

AK: How did you decide what strategy to use?

Dan: We tried to figure out simple ones, the first few. We tried to

make a table on back. We tried guess and check.

Julie: We found a pattern for them, but we couldn’t find the rule.

They used repeated multiplication on their calculators and recorded

data in their table. As evidenced on Julie’s paper, they correctly found the

specific cases for the number of sheets of paper in a stack, the height of the

stack in inches, and the area of the pieces of paper. As Julie passed her

calculator over to Dan to see the display she said, “That’s how many after ten

cuts. Would you believe that?” She recorded 1,024 on her paper from the

calculator display. Using the procedures they devised, Julie and Dan

correctly answered all of the questions related to specific cases.

It was apparent by the marks on the tables that both students searched

for constant differences while investigating the task in an attempt to describe

the pattern.

Julie: What’s it [the differences] going up by? Each time it increases.

Maybe [pause] I have no idea how to do this. Plus two, plus

sixteen, plus thirty-two. Then plus two, plus four.

Dan: That’s what I mean.

Julie: It just keeps going out.
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Figure 32: Julie's work on Cutting
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Figure 33: Dan's work on Cutting
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They found up to the fifth difference, but it was not constant. Although they

recognized that the column of difi’erences kept repeating (2, 4, 8, 16, 32) this

did not seem to help them write the rule. Dan hypothesized that this pattern

would never produce a constant difference. Julie was not convinced of Dan’s

generalization.

Julie:

Dan:

I suppose if you make it really long, it will.

No, it won’t.

During the interview the pair clarified their purpose of searching for constant

differences.

Julie:

AK:

Julie:

AK:

Julie:

We tried to find if it was a quadratic.

What did you find?

It [the differences] kept going and increasing.

Will it ever stop?

No.

Although they did not find a constant difference, Julie felt they did find a

pattern in the data.

Julie:

AK:

Julie:

We found a pattern for them [the differences], but we couldn’t

find the rule.

Okay, what was the pattern you found?

It went up by, it like increased by itself, like okay. Like it you

had four, four cuts, sixteen. Five cuts would increase by

sixteen.
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But, this description of a pattern of increase did not help the pair write the

symbolic rules.

Julie and Dan searched for a rule that would give them the number of

sheets of paper in a stack from the number of cuts.

Julie: Want to get the next one?

Dan: I’m not sure. There has to be a rule...times a half? Find out

what the heck six has to do with sixty-four?

Julie: That’s what six has to do with sixty-four. It doesn’t make any

sense.

After we discussed the rule y = 2" for the number of sheets of paper in a stack

after It cuts, I asked them to reconsider the other questions.

AK: Take a second to see if you can figure out a rule for three a.5

Julie: It would be thirty two divided by two to the n, I think.

Julie and Dan possessed a great deal of understanding about the task that

was not first apparent by analyzing only their written responses. On first

glance one might assume that Dan’s contribution to the solution was minimal

since his written work appears sparse. This was not the case; he continued to

puzzle over the rule for the number of sheets in a stack, while Julie continued

with other specific cases. He was determined to find the rule, even after I

suggested that they could continue with the rest of the problem.

 

5 3. Suppose the original piece of cut paper has an area of 32 cm2.

a) What is the area of each piece formed after 2 cuts? 3 cuts? 10 cuts? It cuts? Show how

you figured this out.
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Dominoes

Julie and Dan saw this task as algebra because of the rules, variables,

and symbols they used to explore the problem. They held two different

interpretations of Dominoes. In both situations it was evident that they used

primarily numeric solutions to investigate the problems.

Their two interpretations differed in the way they counted the 1-0 and

the 0-1 dominoes.

Table 14: Two Cases ofDominoes

 

 

   

Case 1: Case 2:

Count the 0-1 and 1-0 as two Count the 0-1 and 1-0

different dominoes. Therefore dominoes as the same. Using

four dominoes possible with this counting scheme, only

fiom zero to one white spot three domino faces possible

(0-0, 0-1, 1-0, and 1-1). with from zero to one white

spot (0-0, 0-1, and 1-1).
 

The labels Julie used on her tables in her written work to distinguish

the two patterns were unclear. She seemed to reverse her labels when she

called Case 1 (where the 0-1 and the 1-0 dominoes were classified as two

distinct dominoes) as “same,” and Case 2 (where the 0-1 and 1-0 dominoes are

counted as one domino) “different.” The pair successfully found a correct

symbolic generalization for Case 1 but was unable to write a rule for Case 2.

Using a Table

Julie explained their data collection: “The tree diagrams helped us with

like making our tables.” Both students organized their data with tables for
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Figure 34: Julie's work on Dominoes

 
 



125

 

Figure 35: Dan's work on Dominoes
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each case. In Julie’s tables there was evidence that she searched for constant

difi'erences. In the interview the students clarified how the constant second

differences informed them regarding the pattern.

AK: When the dominoes aren’t counted as the same,6 how did you

fill in that table?

Julie: Well that we found a pattern, every single time, the first one

it went up by four, and then five, six, seven, eight, nine so we

found the pattern in the table, but not anything else.

AK: Does that pattern tell you anything?

Julie: It looked to me like a quadratic

AK: What does that mean that it is a quadratic?

Dan: I think that Ms. Howard told us that if something goes up by

two degrees she called it that it was possibly a quadratic.

They seemed to recall from their mathematics class that a constant second

difi'erence meant that the pattern was quadratic; it was unclear what this

meant to Julie and Dan.

They successfully found a quadratic rule by studying the table for

Case 1, (n + 1)2 where n was the maximum number of white spots.

AK: How did you find N plus one squared [rule for Case 1]?

Julie: Well, we know that four plus one is five, obviously, and then

like five times five is twenty five. Five plus one is six, six

 

6 This is using Julie’s labels, but it refers to Case 2.
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times six. I don’t know. We just kind of saw the pattern in the

table.

This situation seemed to be a straight forward rule for them to find.

Although Julie and Dan did not find a generalization for Case 2, they

possessed some additional knowledge about the relationship. First, they

knew that the equation was quadratic while they worked.

Julie: This is a quadratic right?

Dan: I don’t know.

Julie: It is because it takes two degrees to get a constant.

Dan: Oh, yeah, but what is that going to help.

Julie: It helps with the equation. Umm, I don’t know its not like one

of the real obvious ones.

This seemed to inform them about a possible form of the rule. Although it

was still not evident what quadratic meant to this pair, they recorded

n(n + 3) and n(n — 1) as reasonable quadratic guesses for the pattern. It was

not clear why they tried these two expressions. They might have started with

them because they believed quadratics could be written in the factored form

of n(n + x). Besides being quadratic, they also knew that the rule had a

constant term of one. They explained.

Dan: For, zero it is one so, we have to find like some way to get one

fiom zero.
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Julie: So, then you would have to add one. So, it has to be something

plus one.

They combined these and tried n2 — 2n + 1, but continued to be unsuccessful

in their search.

Additionally, they referenced the shape of the graph. Dan noted during

the interview that the graph held the shape of a parabola and sketched one

on his paper (See the lower left corner of Dan’s work).

Toothpicks

The pair easily found a generalization based on the numeric data for the

perimeter pattern prior to making a table for the total number of toothpicks.

Julie and Dan systematically collected data, searched for patterns, and wrote

symbolic rules for both patterns in this task. Making tables played a partial

role in their solutions. They only used tables to investigate the total number

of toothpicks pattern.

Numeric Approach

In the perimeter pattern the pair counted toothpicks, recorded the data

on the shapes, and readily recognized the increase of four. While they

worked, Julie described how she used that pattern to find the perimeter of

Figure 5, “They go up by four each time, so the perimeter of five would be

twenty.” Once they had the increase of four, they readily wrote, y = 4n.
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Figure 36: Julie's work on Toothpicks
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 Dan: Okay.

Julie: I got Y equals four N.

Dan: N equals the base.

Julie: Four...N.

Dan: It’s four.

Julie: The increase?

toothpicks.

While working, they easily found the pattern in the perimeter number of
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[Figure 37: Dan's work on Toothpicks
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They further described how they found the rule in the interview.

AK:

Julie:

Julie:

Julie:

The perimeters, four, eight, twelve, and sixteen, you found

that by counting?

Yeah.

What was the pattern?

It increased by four each time.

How does that help you write the rule?

Because I know one times four, two times four, I just figured

N times four gives perimeter.

Once they collected the data for the total number of toothpicks they

recorded it in a table, searched for a rule, and easily recognized that the

second difference was constant.

AK:

Dan:

Julie:

What about total number of toothpicks? You sketched and

counted?

[nods]

Julie?

I used my pattern. First, I made a table and found the

amount of increase [second difference] by two, then I could

find fifty-four.

To verify how Julie extended the pattern in the table, Dan sketched figure 6

on the back of his paper.

Once they had the table complete, the rule came quickly to Julie as she

explained during our interview.

131



Julie:

Julie:

AK:

Julie:

What about total number of toothpicks?

I don’t know, I just like looked at my table and it [the rule]

just popped into my head. I guess I don’t know. I looked at it

[the table] and I tried it [the rule] and it was right.

How did you know it was right?

I like checked with my table with different variables and it

worked with all of them. It just kind of popped in here. I just

kind of tried it.

Just sort of tried some for this one then?

No that was the first one I got.

Julie’s first trial in their guess and adjust strategy yielded an appropriate

rule n(n + 3). Julie and Dan verified their rule by checking it against any

ordered pair in the table. When Dan saw that it yielded the appropriate

value, it convinced him that their rule was reasonable.

Sara and Ryan

According to Sara and Ryan, all of the tasks were algebra because they

“looked for patterns” and “made tables”. They added that Toothpicks also

involved some geometry since it involved shapes. In three out of their four

solutions they studied numeric data, but in only two of these three tasks did

they use tables. Additionally, in some cases they created graphs to help
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explore the patterns. The pair only found rules in two out of the four tasks,

but they demonstrated significant understanding of the patterns in those

instances where they were unable to generalize symbolically.

Borders

Sara and Ryan used a geometric approach to investigate Borders by

studying the shapes of the figures and they way they changed. The pair made

an interesting choice of variables in their generalizations. The question asked

them to generalize about the nth square, where n was the figure number, but

Sara and Ryan considered the length and width as their variables.

Geometric Approach

The pair used the drawings of the figures in the task to find the

generalization for the number of blue interior tiles.

AK: What strategy did you use for this problem?

Ryan: What do you mean?

AK: When you sat down and I gave you this paper, what did you

do?

Ryan: Umm, we started with the perimeters and know we needed to

get minus two fiom the center area. So we kind of looked at

[pause] there’s two extra on every side, so we took two away,
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Figure 38: Sara and Ryan’s work on Borders
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we go length minus two. To get the area of anything length

times width.

AK: Did you do this by the pictures?

Ryan: Yeah.

They wrote the rule, (L — 2)-(W— 2), for the number of blue interior tiles using

L and W as the dimensions of the figure. Using similar notation, Sara and

Ryan wrote an accurate rule to find the number of white tiles,

4(L - 2) + 4. In this expression they recognized the regularity of the squares,

and used one variable L to represent the length of all four sides. During our

interview they demonstrated their rule.

AK: What about one b?7

Ryan: L minus two times four plus four.

AK: How did you get that?

Sara: Oh, like we took away these corners, length minus two, so we

took away these two corners times four, so you’d be like

multiplying these ones [white tile sides minus the corners],

then you add the four corners.

Ryan: Yeah. Take away these areas [the four corners], then times by

four, then the four corners.

 

7 Question one b refers to the white border tiles. It states:

“If the pattern of blue squares with white borders continues, how many white tiles are

needed to build the 4th square? the nth square? Show how you figured this out.”

135



Ryan traced the drawing for Figure 3 in the task as illustrated in Figure 39.

L—2

  
L—2

 

  

 

L—2

Figure 39: Ryan’s tracing in Borders

 

He covered the four corners; each side had (L — 2) tiles remaining. Since there

were four sides, they multiplied L — 2 by 4. To find the total number of white

tiles they added the four corner tiles back and wrote 4(L — 2) + 4 as their rule.

Their geometric approach of studying characteristics of the shapes helped

them write their expressions.

Much was left unclear in the students’ written work about their choice of

variables. In the first pattern for the blue tiles they did not state that L and

Wrepresented the dimensions of the figures, although it can be inferred fi'om

their written work. Nor, did they consider the specific case of a square where

L = W. In the rule they wrote for the number of white tiles, they specifically

used squares with length, L, for all four sides. Their rules were reasonable

with the dimensions of L and W, but the pair never related these lengths

back to the figure number; the students never clarified that the side of the

squares, L, was two more than the figure number, n. They explained in an

interview that they chose dimensions because that seemed the important

characteristics of each shape to them.

Sara’s written work offers some evidence of her understanding of a

specific case. When she wrote, “4(L - 2) + 4, 6 - 2 x 4 + 4 = 20 white tiles” she
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recorded that the length of figure 4 was six (See Sara’s work under 1 b). Sara

successfully used their rule to support finding twenty white tiles. It still

remains unclear if they could adapt this to find the length of figure It for the

general case.

Cutting

Ryan and Sara approached Cutting by constructing tables. They

explained in an interview.

AK:

Ryan:

AK:

Sara:

Ryan:

AK:

Sara:

AK:

Sara:

Okay, umm, how did you decide what strategy to use?

Looked for patterns.

How did you do that?

Made a table.

Yeah.

What was an advantage to using the table?

To see a pattern.

What do you mean by that?

Get how much each of the variables increased by.

They felt confident using this approach when they were in an unfamiliar

problem context.
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Figure 40: Sara and Ryan’s work on Cutting
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Using a Table

The pair seemed to understand the doubling nature in finding the

number of sheets in a stack after It cuts. They found answers for most of the

specific cases requested in the problem by doubling the previous number of

sheets.

Sara: Maybe it goes up by eight and then sixteen. Yeah, it does. Do

you see what I am saying?

Ryan: Yeah, sort of.

Sara: It’s just thirty-two. You just double it. Double that, it goes up

by sixty-four. But, I don’t know how to find the equation.

Sara and Ryan successfully found the number of sheets in a stack up to

10 cuts and recorded this data in a table. They used this data to find the

specific cases for the thickness of the stack. The pair worked hard to make

sense of the situation. When they started question 2 b3, Ryan suggested an

answer while Sara was not clear how he found this. She pushed him to clarify

his process for her until she finally understood what he intended. The

following transcript illustrates their discussion.

Ryan: Okay, do you have that number, like six percent, I think.

Sara: Six percent?

 

8 2. b) For ordinary copier paper it takes about 250 sheets to make a pile 1 inch high. How

thick (in inches) would a stack starting with one sheet of paper be after 4 cuts? 5

cuts? 10 cuts? n cuts? Explain how you figured this out.

139



Ryan:

Sara:

Ryan:

Sara:

Ryan:

Sara:

Ryan:

Sara:

Ryan:

Sara:

Ryan:

Sara:

Ryan:

Sara:

Ryan:

Yeah, okay, umm. Cause that’s how many sheets. You get

that, I guess it’s like a fi'action.

Do you get a percent?

I don’t know. I don’t know, I just did a bunch of stuff, okay.

So if it’s six percent, what is it six percent of? Six percent of

one inch?

Help me out.

I’m doing it. [Pause] Okay, point oh six inches. Would you just

take one inch divided by that [points to 250 sheets].

I tried that, it didn’t work.

One inch divided by [pause] fifteen point six [250 sheets = 1

inch, Sara calculates 250 -:— 16 = 15.6]?

Explain how you figured it out.

I umm, isn’t there sixteen sheets [in a stack after four cuts],

this [250 sheets] is one inch. [Pause] And then divide that by

one inch [16 + 250]?

Yeah, that makes sense.

It does?

Yeah.

Point oh six four [pause] inches?

Yeah.
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Not only did the pair note the doubling in the number of sheets in a

stack, they further described a doubling in the thickness of the stack.

Ryan: It [the thickness after five cuts] should have doubled, right?

Sara: Doubled? So, it would be like point one two eight [double the

thickness after four cuts]?

Ryan: We’ve got to figure out a rule.

They had clearly described both patterns with verbal recursive rules that the

pattern doubles, but the symbolic expressions continued to elude them.

Graphic Connection

Although the students were not asked to create graphs in the tasks,

Sara and Ryan considered the nature of the shape of the graph while

searching for the rules.

While the pair worked, Ryan described the growth and decay graphs,

“Whatever it is, it would take, this [the number of sheets in a stack pattern]

sort of rises, going in the positive direction and this [the area of the pieces] is

going in the negative direction [slopes down].” In their search for

generalizations, they studied all they knew about the pattern, including the

shape of the graphs. They created representations of the graphs, and tried to

use this to help find the generalizations. They could still not find the rules.
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Dominoes

Sara and Ryan mainly considered the algebraic nature of Dominoes to

search for a symbolic rule. Sara described to me the path they followed

during their investigation, “I got this answer by drawing pictures, then I put

it in the table, and then I found a pattern.”

This pair did not find a symbolic rule. But they did demonstrate a deep

understanding of the pattern when they discussed the shape of the graph.

Using a Table

Prior to recording the data in a table Sara and Ryan made sketches and

counted the dominoes. This strategy of drawing or representing dominoes

helped them to find the number of dominoes for specific cases. They discussed

how to count the 0-1 and 1-0 dominoes and completed the task under the

assumption that they would count them as one unique domino. Sara

continued with her strategy of sketching dominoes to find the number of

dominoes with up to six white spots. She began to systematically sketch

dominoes (See the top three rows on the back of Sara’s work). First, she made

the doubles for zero through six, next she represented the dominoes that had

a one, then two, and she continued up to six. After sketching all of these she

realized that she had repeated some and she used an “X” to cross them off.

This sketch was incomplete since she had forgotten the six additional

dominoes that could be made with zero spots (0-1, 0-2, 0-3, 0-4, 0-5, and 0-6).
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Figure 41: Sara's work on Dominoes
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Figure 42: Ryan’s work on Dominoes

2
.

a
)
H
o
w
m
a
n
y
d
o
m
i
n
o
f
a
c
e
s
a
r
e
p
o
s
s
i
b
l
e
i
f
a
s
e
t
i
s
m
a
d
e
u
p
o
f

 

 

 

D
o
m
i
n
o
e
s
a
r
e
s
p
o
t
t
e
d
t
i
l
e
s
u
s
e
d
i
n
a
b
o
a
r
d
g
a
m
e
A
r
e
g
u
i
a
t
l
o
n
d
o
m
i
n
o
d
i
e

l
s
a
b
l
a
c
k
r
e
c
t
a
n
g
l
e
s
p
i
l
t
i
n
t
o
s
q
u
a
r
e
h
a
l
v
e
s
O
n
e
a
c
h
h
a
l
f
o
f
o
n
e
s
i
d
e
t
h
e
r
e

a
r
e
f
r
o
m
O
t
o
6
w
h
i
t
e
s
p
o
t
s
.
T
h
e
0
t
h
e
r
s
i
d
e
i
s
b
l
a
n
k
.
F
o
r
e
x
a
m
p
l
e
,
t
h
r
e
e

d
i
f
f
e
r
e
n
t
d
o
m
i
n
o
f
a
c
e
s
a
r
e
s
h
o
w
n
b
e
l
o
w
.

9
9
9
9

g
,
”
9
5
:
:
7
:

9
m
m

’
/
/
/

1
.

a
)
S
k
e
t
c
h
a
l
l
p
o
s
s
i
b
l
e
d
o
m
i
n
o
f
a
c
e
s
i
f
y
o
u
r
s
e
t
l
s
m
a
d
e
u
p
o
f
d
o
m
i
n
o
e
s

w
i
t
h
f
r
o
m
O
t
o
n
h
i
t
e
s
p
o
t
s
.

a
R
a
g
g
a

g
5
:

b
)
H
o
w
m
a
n
y
d
i
f
f
e
r
e
n
t
d
o
r
n
l
n
o
f
a
c
e
s
a
n
m
e
r
e
i
n
a
s
e
t
t
n
a
d
e
u
p
o
f

d
o
m
i
n
o
e
s
w
i
t
h
f
r
o
m
O
t
o
3
w
h
i
t
e
s
p
o
t
s
o
n
e
a
c
h
h
a
i
f
o
f
t
h
e
d
o
m
i
n
o
?

l
0

  
 
 

d
o
m
i
n
o
e
s
w
l
t
h
f
r
o
m
O
t
o
Z
W
h
i
t
e
s
p
O
t
s
?

G

b
)
0
t
o
3
w
h
i
t
e
s
p
o
t
s
?

.
"

)
j
?
‘

.
,.

;

_
,

5
‘

d
)
O
t
o
n
z
i
g
l
t
e
s
p
o
t
s
?

g
(
(
l

.
1
\
§
C
§
i

c
)
0

t
o
6
w
h
i
t
e
s
p
e
c
s
?

r
H
l
‘
H
+
+
l
fi
#
~

R
y
a
n

D
o
m
i
n
o
e
s

H
4
1

T
‘
H
'
i
-
W
M

H
i
l
l
/
l
]

ii
i

-
_
_
_
_
_
_
c
e
v
_
1
1

 
  
 



She initially answered question 2 c, with the 22 dominoes she sketched and

later revised her response when she recognized a pattern in the table.

Ryan opted for an alternative representation for his dominoes.

AK: When did you decide to try a new strategy?

Sara: I drew them, he did something different.

Ryan: I first kind of thought what they were. I thought about it and

drew tally marks.

AK: So, you thought about it and had a mental picture?

Ryan: Yeah.

Ryan mentally represented the dominoes. After noting the 28 dominoes with

up to six white spots, he proceeded to use his “tally marks” representations to

count the 15 dominoes with up to four white spots. (See the lower right corner

on the front of Ryan’s work.)

After they represented the dominoes, they used a table to organize the

data. They sketched additional domino representations to complete their

tables. Sara drew the number of dominoes with up to zero, up to one, and

then up four white spots and inserted these numbers into her table.

The pair studied the data in the table by searching for constant

differences. They used the pattern of a constant second difference of one to

complete their table and concluded that there were 21 dominoes with up to

five white spots, and 28 with up to six white spots. Here Sara recognized that

she had incorrectly represented 22 dominoes for the number of dominoes with

up to six spots and changed the value in both her table and response to 28.
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During the interview Sara and Ryan explained the ease with which they

changed the data. The pattern they found in the table was more convincing to

them than the sketches. Besides, Sara added, it was quite possible that she

missed some dominoes in her sketches.

Sara and Ryan did not find a symbolic rule for the number of dominoes.

They did suggest some reasonable ideas regarding the form of the equation,

based on their work. After they found the second difi'erence was constant,

Sara used (X + 1) (X - ) as a template for her initial guesses. Because the

second difference was constant, they knew the rule was a quadratic (that

meant that the rule would be X or a quantity of X times a quantity of X).

They continued with a guess and adjust strategy but never found an

appropriate symbolic generalization.

Graphic Connection

Ryan described a graph of the pattern in Dominoes during our interview.

Ryan: It forms a parabola in the graph.

AK: How do you know it forms a parabola in the graph?

Ryan: The way the table is written when you write it out.

AK: What about the table tells you that it is a parabola?

Ryan: It increases by more each time. See right here, it increases by

three, then it increases by four. Makes it curve up more.
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They analyzed an aspect of the pattern (the shape of their graph) even

though the task did not pose questions about graphical representations of the

situations. Ryan offered a very reasonable description of a parabola based on

this analysis of the data in their table. As he said, “Makes it curve up more,”

his hand curved up to indicate the upward swing of the curve.

Not only did he know that the graph would be a parabola, he offered a

very reasonable description of the graph based on the data in the table. They

made a strong connection between two representations (tables and graphs) of

quadratic functions.

Toothpicks

Although Sara and Ryan did not make a formal table in their solution to

Toothpicks they studied the pattern in the numeric data. They followed a

similar strategy of collecting data, generating new data, studying patterns,

and writing the rules.

Numeric Approach

Sara and Ryan first counted the number of toothpicks in the perimeter

for each of the four figures given and wrote these values (4, 8, 12, and 16)

above each shape. When they began investigating the second pattern for the

total number of toothpicks they repeated their process and counted the total
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Figure 43: Sara and Ryan’s work on Toothpicks
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number of toothpicks in the four figures and wrote these numbers (4, 10, 18,

and 28) above the perimeters.

Sara and Ryan quickly saw the pattern of increase in the perimeter

data.

AK: Can you describe your strategy for this problem?

Ryan: We tried finding a pattern.

AK: How did you try to find a pattern?

Sara: We figured out like the perimeter of these.

AK: You counted?

Sara: Yeah, it went up by four.

AK: Okay, did you use that to answer the question about five or

did you draw five?

Sara: Five, we just counted them.

Ryan: We just found the pattern goes up by four every time.

AK: How many of these did you have to find, to find the pattern?

Ryan: The first three, but we just kind of wrote in the last one.

AK: Like a check?

Ryan: Yeah.

The total number of toothpicks pattern did not come to the pair as

quickly, but they were still successful in their search. Once they had the total

number of toothpicks for the four figures (4, 10, 18, and 28) they wrote out

the first differences of 6, 8, and 10 above the numbers. They did not write the

second difference, but demonstrated their recognition that the second
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difference was two when Sara verbally extended the first difi'erences during

our interview, “It increased by six, then eight, then ten, so then we added

twelve and then fourteen.”

Sara and Ryan accurately found rules for both the perimeter and the

total number of toothpicks of the nth figure. Finding the perimeter rule was

straight forward for them once they saw the constant increase of four in the

data. Sara supported her rule of 4-N in her written response with, “We found

that the figures [sic] perimeter increased by 4 each time so we multiplied by 4

and it worked.”

It was not as clear how they arrived at their second rule of

[(x+1)(x+1)] + (x-l) for the total number of toothpicks. Sara and Ryan both

wrote that they “guess and checked.” Their discussion during our interview

suggested that they knew a form the equation might take and used that to

inform their guesses.

Sara: We saw how much they increased by.

Ryan: Yeah. We just started guessing and we knew it formed a

parabola.

AK: How did you know it formed a parabola?

Ryan: Because we sort of plotted it.

AK: Okay, what did that tell you when you knew it formed a

parabola?

Ryan: In the equation X had to multiplied by another form of X.
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The constant increase they observed in the first differences of 6, 8, 10, 12, 14

and so on, helped describe the shape of the graph to the pair. The shape of

the graph determined the form of the equation. Once they knew the form of

the equation, they embarked on their guess and check strategy.

AK: How did you guess and check that one?

Sara: We knew it would be a form of X times itself or a form of X,

and then I don’t know.

AK: Do you remember?

Ryan: It was boom. There it was. I just tried something, I just tried

the plus one and it worked.

Their guess and check resulted in a rule that satisfied the data. Although

they seemed to interpret their finding a rule for the pattern to be luck, their

initial guesses were guided by some fundamental understanding about the

pattern. They used a reasonable guess based on what they knew of the data

and were then successful in finding a rule.

Anna and Katrina

This pair of students claimed that all of these tasks involved algebra

since their goal in all was to write symbolic rules. They described algebra

during an interview.

AK: What do you think algebra is?
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Katrina: Taking math to a different level, using numbers and symbols

in the rules

Anna: I think using tables and graphs to get rules using data to find

patterns.

Although, they considered all of the tasks to be algebra their solutions

varied. In Cutting and Toothpicks they constructed tables, in Borders they

followed a geometric approach, and in Dominoes they considered a pictorial

strategy. They found adequate rules for the patterns in three out of the four

tasks.

Borders

Anna and Katrina wrote their symbolic rules for the patterns in Borders

based on the shapes of the figures, a geometric approach. They found the

rules early in their solutions and used these rules to generate specific cases.

Geometric Approach

Although their written work offered minimal insight into their approach

to finding the rules, the videotape provided evidence of their process. Anna

and Katrina readily described the rules b = n x n and w = (n + 2)~2 + (n + n)

in words shortly after they began the task.

Anna: So, for this, the fourth square is like N times N. So, for the

number of blue tiles it would be N times N. So, four times four
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Figure 44: Anna and Katrina’s work on Borders
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is sixteen [pause]. For, white tiles, N plus one, or N plus two,

plus N plus two plus N plus N.

While Anna discussed her generalization with Katrina, she motioned along

the lines sketched in Figure 44 below to the corresponding sides of figure 3 to

illustrate the pieces of the rule.

n+2 n+2

 

11

Figure 45: Anna’s figure 3 in Borders

When pushed to describe the strategy they used to complete this problem,

Katrina claimed that is was a simple problem, “we just looked for a pattern

in our heads.”

The pair found the number of blue and white tiles in figure 4 by using

the rules they generated. Anna described how she found the 20 white tiles for

figure 4 using her rule, “In this case N is three, and it goes, you add two on

each end [pause]. Okay, so in this case N is four, so N plus two is six, is

twelve, plus four plus four is twenty.” While stating her explanation she

wrote, “6 + 6 + 4 + 4 = 20 white tiles.”

Once they found the 16 blue and 20 white tiles for figure 4 using the

rules, they verified this for themselves by sketching figure 4 and counting

tiles. Not until this confirmation were they satisfied with their work.

During the interview Anna and Katrina again justified their results

with a specific case.
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AK: Please justify your solution in one a9, how did you get N times

N?

Anna: N times N is the area of the blue squares, Like for figure

three, three blue squares across, three here, so three times

three.

AK: How about one b?10 N plus two times two plus N plus N?

Anna: N plus two is like taking three and adding these two corners,

so that whole length would be five, then you times it by two,

because you have another one up here. What you have left is

N, then three, then N or another three.

Although Anna specifically used figure 3 for her support, her description

could be generalized for the nth figure. It was unclear based on the evidence if

Anna and Katrina saw this further generalization.

Cutting

This was an unfamiliar task to Anna and Katrina. They did not recall

completing it or a similar problem, but because Cutting asked the students to

write rules, they felt it was an algebra task. When faced with a new

 

9 1. a) If the pattern of blue squares with white borders continues, how many blue tiles are

needed to build the 4th square? the nth square? Show how you figured this out.

10 1. b) If the pattern of blue squares with white borders continues, how many white tiles

are needed to build the 4th square? the nth square? Show how you figured this out.
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Figure 46: Anna and Katrina’s work on Cutting
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situation, Anna and Katrina made and studied tables to investigate the

pattern.

Using a Table

The first step Anna and Katrina followed was to collect their data and

record that in a table.

Anna:

Katrina:

Anna:

Katrina:

Anna:

Katrina:

Anna:

Katrina:

Anna:

Katrina:

After one cut, two pieces, right?

Yeah.

After two, you out these pieces in half. You have four.

Uh huh.

Then you take those four and cut them.

I don’t know its either going to be eight or six.

Okay, let’s think about it. If you have four pieces of paper in

your hand just regular size and then in half, it would be

[pause] eight.

Eight.

So, would it be eight?

It would have to be. I guess because if you rip them in half it

would be eight papers.

They considered the context of the problem and used that knowledge to help

them collect their data.
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They found the data for up to 20 cuts by using calculators. They

recorded the data into a table and then used that representation to find the

specific cases for which the problem asked.

Anna: For ten it would be . . . one thousand twenty four.

Katrina: All right, twenty? [Long pause]. Is that what you got? One oh

four eight five seven six?

Anna: Yup.

Next, they tried to find the number of sheets in a stack after 10 cuts.

They studied the table and searched for patterns. They calculated the first

difi'erence in the table, but that did not seem to help them describe the

pattern.

Although Anna and Katrina did not find the symbolic rules for the

exponential patterns it was evident during our interview that they

recognized that they needed the rules for the number of sheets in a stack to

find the thickness of a stack in a later problem.

AK: What about b?11 What was your strategy?

Anna: We had to take the number of stacks and divide by two

hundred fifty. Our table helped us, so we needed to know for

four, so we took sixteen stacks and divided that two hundred

fifty and we got point oh six four.

 

11 2. b) For ordinary copier paper it takes about 250 sheets to make a pile 1 inch high. How

thick (in inches) would a stack starting with one sheet of paper be after 4 cuts? 5

cuts? 10 cuts? n cuts? Explain how you figured this out.

158



AK: All but the N?

Anna: We needed to know the equation for a, but we never figured it

out.12

AK: Katrina?

Katrina: I don’t think we did it.

Anna: I wrote how you could do it. [Pause] Four cuts, gives you

sixteen stacks of paper, so sixteen divided by two fifty, so

point oh six four of an inch. So, for any number of cuts , it

would be stacks divided by two fifty.

They generalized that they could find the thickness of the stack when they

were given the number of sheets in a stack.

Dominoes

Anna and Katrina saw this problem as algebra and probability. Algebra,

“because you need to write a rule” and probability, “to get different ways of

charting out all possibilities.” Their approach was to represent the dominoes

with tree diagrams and find a pattern in their sketches to generalize.

 

12 2. a) How many sheets of paper thick would the paper pile be after 4 cuts? 5 cute? 10 cuts?

20 cuts? 11 cuts? Explain how you figured this out.
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Figure 47: Anna and Katrina’s work on Dominoes
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Pictorial Representation

The pair had to first determine how to count the 0-1 and 1-0 dominoes.

This question arose early during their investigation. They decided 0-1 and

1-0 were two distinct dominoes and completed the task with this assumption

(Julie and Dan’s Case 1).

These two students made tree diagrams to represent the dominoes after

they sketched out the nine dominoes with up to two white spots. Making tree

diagrams was a strategy they recalled from the probability they studied in

their mathematics class. From the tree diagrams, they saw how to write the

rules of (n + l)-(n + 1).

Anna: Zero to three white spots it would be sixteen possibilities

right?

Katrina: Uh huh.

Anna: All you do is you add, through, add one to the total number,

so, for six it would be seven times seven, so it would be forty-

nine.

Katrina: How did you get that?

Anna: You do like, when you draw the diagrams you do zero, then

one, two, then three, up to three. When you include zero, its’

like one more, so you count its like one two three four.

Katrina: All right, I understand.
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Katrina demonstrated her understanding further in her written explanation

for question three when she wrote, “because when you have like 0-3 spots you

add 1 on which represents 0.” She illustrated this with a diagram to clarify

(See Katrina’s work under question 3).

Toothpicks

This was a straight forward task for Anna and Katrina. They readily

recognized the linear pattern for the perimeter toothpicks in a table. It took a

little more time but they also found the quadratic pattern for the total

number of toothpicks in another table.

Using a Table

The pair made tables to investigate the problem and to collect the data

for the specific case in the first pattern.

Anna: Let’s do a table to see if there is a pattern [in the perimeter

pattern]. Be four.

Katrina: Then twelve [is the perimeter in Figure 3].

Anna: One-two-three-four-five-six-seven-eight [counts perimeter in

figure 2].

When they investigated the second pattern for the total number of

toothpicks, Anna again suggested a table.
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Figure 48: Anna and Katrina’s work on Toothpicks
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Anna: Okay, let’s do a table for this one too [the total number of

toothpicks]. Figure one there’s one, two, three, four. This is for

perimeter and this is for toothpicks. Okay.

Once they decided to use a table they collected data by counting the

toothpicks. Anna described a shortcut for counting the total number of

toothpicks.

Anna: One, two, three, four, five, six, seven, eight, nine, nine, yup

eighteen [is the perimeter for figure 3]. All it is if you find all

of the toothpicks that go like this way [lie in the horizontal

direction] and you double ‘em, because its like going one, two,

nine, and then instead of counting all of the one like this [in

the vertical direction] you can just turn it and it would be the

ones that go across. Do you know what I am saying?

Katrina: Ohhh, okay.

Anna: For four: one, two, three, four, five, six, seven, eight, nine, ten,

eleven, twelve, thirteen, fourteen, twenty-eight.

They proceeded to use this shortcut to collect the remainder of the data.

With the data recorded in the table, they studied it in search of a

pattern. They quickly noticed the increase of four in the table and wrote the

rule 4N.

Anna: Sixteen? So, its...

Katrina: increases by four each time?
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Anna: The figure times four?

Katrina: Yup.

They studied their second table, for the total number of toothpicks, and

found the first difi'erences. Katrina continued to find the constant second

difference of two, but it was unclear how and if they used that information.

Anna: Okay, fi'om here to here, six, eight, ten, twelve, fourteen.

What are you doing?

Katrina: And then we can do this again, they each increase by two.

Anna: Okay, so how can we do that two times X plus six. No, that

doesn’t work, then umm. ..

Once they had this pattern the rule for the total number of toothpicks was

not immediately evident.

Anna: I totally forgot how to write equations fi'om tables. Is it

something like a X squared plus b...?

Katrina: Umm. I remember that for.

Anna: Plus b X? So [pause] no wait [pause] I totally forgot how to do

equations when they are like this, where you have to know

the previous ones. That’s why we had problems with that one

[Cutting]. Right?

Katrina: Mm, hmm. That’s paper stacks.

Anna eventually suggested that the equation be of the form x2 + b or x2 + bx.

It was unclear what guided her to select these families of quadratics. Rather
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than basing her use of a quadratic on the constant second difference, she

seemed to focus on the iterative nature of the problem. But she was

successful finding the rule, n2 + 3n, using this starting point.

Anna:

Katrina:

Anna:

Katrina:

Anna:

Katrina:

Anna:

Katrina:

Anna:

Oh my gosh.

Huh?

I got it. I got it, hold on. Three times four is twelve. Okay

remember twelve.

Right.

I got it. It’s N times N plus three times N. Don’t ask me how I

got it. It was just.

Guess and check?

So, three times three is nine plus three oops, times three is

nine.

Nine plus nine.

Eighteen. Okay.

Katrina: Good job.

A key to Anna finding their rule was starting with the form at:2 + bx. She did

not articulate a reason for her selection during their work or during our

interview. But, something about the pattern seemed to guide her to a

quadratic that in turn helped the pair find a rule.
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Summary

Making and studying tables represents a reliable strategy for these

students when studying patterns in data. There were 31 instances of

students investigating patterns in this study.13 The students constructed

tables in over 60% of the instances (19 out of 31). The range of values the

students used for their independent variables in the tables is listed in

Table 15. Of the tables that were made, half ranged from O to 10 or 1 to 10.

Only one table extended further. The less complex generalizations are

represented in the first four rows of the table (Borders—linear, Toothpicks—

linear, Borders—quadratic, and Dominoes—Case 1). The more challenging

problems are listed in the last three rows (Dominoes—Case 2, Toothpicks—

quadratic, and Cutting).

Ten out of the 12 instances where students did not make and study a

table were in the less complex cases. Six of these were from students

studying Borders, a fairly basic task where students immediately recognized

the patterns. These were both linear and quadratic patterns. Three of these

were the linear pattern in Toothpicks. The only remaining situation where

the students did not use a table was when Anna and Katrina completed

 

‘3 Borders and Toothpicks each had two patterns (one linear and one quadratic). Cutting and

Dominoes both had only one pattern, but Julie and Dan studied two patterns in Dominoes.

The 6 student pairs each studied 6 patterns or 30 total, plus Julie and Dan’s additional

pattern from Dominoes, gives a final total of 31.
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Dominoes. They solved this using the Case 1 assumption,” making it a fairly

straightforward pattern to generalize with symbols.

In the 14 more complex instances only two did not involve tables.

Students used tables in 85% of the more complex instances. In the two

instances where they did not use tables students followed a geometric

approach to solve Toothpicks. In Cutting, which was an unfamiliar task for

the students all constructed tables.

There were only five cases where the students did not find symbolic

rules. In all of these instances they constructed tables in their solutions.

Table 16 lists the symbolic rules found by students.

In the following chapter I step back and look for common ideas across

students and across tasks. I also consider some of the difl'erences that make

some of the solutions unique.

 

‘4 In the Case 1 assumption, the 1-0 and 0-1 dominoes are counted as two unique dominoes.
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CHAPTER 5

Stepping Back—

An Analysis ofWhat These Students Know

Introduction

In the previous chapter I describe what each of the pairs of students did

with each of the individual tasks. Now I consider a different framework and

review the data as a collection and describe common threads across students

and across tasks.

All of the students hold some strategies to help them formalize

generalizations. In the majority of situations, students constructed tables of

data. They studied patterns of data and regularly sought out constant

differences to help write rules. In some instances, the students used visual

models and studied changing shapes in the patterns. A few students went

beyond the demands of the task and considered the graphs of the data to help

them think about the pattern.

Another common idea I saw across students was the ability to make

connections. These students made connections between the representations of

the patterns—tables, symbols, and graphs. They also made connections

between the tasks and recognized similarities in the mathematical structure
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of the problems. Finally, some students made connections between these

tasks and other mathematics that they recalled.

In the final section, I write a bit about the students’ disposition towards

mathematics and mathematics problems. They all seemed frustrated and

surprised when they had difficulty with a problem.

Strategies to Formalize Generalizations

These students demonstrated that there was much that they knew about

formalizing generalizations in specific situations. This was evident in the

work they completed and in the interviews in which they participated. All

student pairs made reasonable progress in each of the tasks; all were able to

draw some strategies that afforded them access into the tasks.

Two aspects of the tasks determined the strategy students used to

investigate it. First was the mathematics they saw in the problems, and

second, the familiarity of the problems. When the students classified the

problem as primarily an algebra task, they constructed a table of data to (a)

record or represent data, (b) extend given data, (c) find specific cases, (d)

study patterns, (9) write rules, and (f) verify rules. If they considered it a

geometry task, they used a geometric approach to investigate and studied the

changing shapes. They considered a single figure and related the figure

number to the measure of interest, then used the next figure to confirm their

assertion. In familiar situations the students had several strategies they used
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in their investigations. In unfamiliar situations they studied tables as an

entry point into the problem.

The students had several difi'erent strategies they used to investigate

the situations. Most used tables, others followed a geometric approach, while

a few considered graphic representations.

Numeric Approach: Generalizing From a Table of Data

Constructing and studying tables was the dominant strategy used by

students in these four tasks. In over 60% (19 of 31) of the situations from this

study, students made tables of numeric data to help with their investigations.

Of the 31 situations, there were only five where the students did not

successfully find symbolic generalizations. In all of these five cases, the

students constructed tables to investigate the patterns.

The students saw making tables as a reliable strategy to investigate

challenging problems. When the students realized that a problem was

demanding, I heard many conversations where one student suggested trying

to make a table after they were unsure how to proceed. In the only problem

that was an unfamiliar content, Cutting, all five pairs of students constructed

tables to analyze the data. When the students were uncertain how to

approach a problem, making a table afforded them a reasonable entry point

to begin their investigation. After the students constructed tables of data,
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they usually found the constant differences and used this information to help

them write their rules.

Once students re-presented their data in a table, they usually did not

relate what they found back to the context of the problem. Most studied the

numeric data in the table and did not verify that their solution with the

numeric data was reasonable in the setting of the problems. In a few

instances when students related their solution back to the context they

extended their tables back to include 0 for the independent variable and

referenced figure 0 in their pattern.

Finding Constant Differences

The students were quite facile at finding constant differences. In most of

the tables they wrote the differences they found. They used this information

to describe and extend the pattern and then write the rules.

Linear functions. Writing a linear rule was fairly routine for the

students in the study. When they found a constant first difference, they knew

that the pattern was linear. The students often wrote linear rules in the form

ofy = mx + b. They easily recognized the rate of change in the table as the

coefiicient of x and proceeded to find the y-intercept. They found this by

either considering Figure 0 in the pattern of shapes, or by extending the

numeric pattern back in the table to include case 0. Some referred to this as
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the y-intercept, while others called it the constant term. All student pairs

easily found the linear rules in Borders and Toothpicks.

Quadratic Functions. Rules that corresponded to a quadratic function

proved to be more difficult for the students to find. A constant second

difference was a clue to the students that the pattern was quadratic.l A

quadratic meant to most of the students that it was a rule in the form of a

quantity of x (or x itself) times a quantity of x; their views represented the

factored forms (x + a)-(x + b) and x- (x + b). To others, it led to a specialized

expanded form of a quadratic x2 + bx or x2 + b.2 Students did not possess an

algorithm to write a quadratic rule. But, they knew some things about

quadratics that informed a conjecture and adjust strategy. They knew a

potential form of the rule, (x + a)-(x + b) or x-(x + b), that helped them write

an initial guess. From there they used a guess and check strategy to try to

find a rule in quadratic situations. They checked to see if their rule satisfied

the data; is so they were done, if not they adjusted the rule and tried again.

Some students tried to fit what they knew about linear cases to guide

their guesses. The most common idea was the notion of the constant term. In

the quadratic cases some students extended their tables back to include a

 

1 This is a reasonable conclusion to draw. When the x terms differ by one, the second

difi'erence is actually the second derivative. Recall that the second derivative of a quadratic is

a constant (non-zero) term.

2 These factored and expanded forms of the rules restricted students’ guesses. They

eliminated all quadratics with irrational roots from their trials. Some limited their guesses to

only integer roots.
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value of O for their independent variable and used the corresponding value

for the dependent variable as a constant term in their rule.

Students’ knowledge of quadratic situations was not as robust as it was

with linear situations. However, they had enough understanding of the

situation and a set of tools to conduct a reasonable investigation. They knew

how to determine if a pattern was quadratic from a table of data. They knew

the form of a quadratic rule. Some recognized the factored form, while others

focused on an expanded form. They also knew things about the graphs of the

pattern, which I describe in later sections.

Exponential functions. Quadratics were not the only non-linear patterns

the students explored. I asked them to consider an exponential pattern.

When the students could not find a constant difference, they were unsure

what form the rule might take. Most followed a guess and check strategy

hoping they might find something that worked for their situation. Even

though they were in an unfamiliar situation, they had some strategies that

allowed them access into the task.

Formulating Rules

After these students constructed tables, it was not trivial for them to

find symbolic rules in non-linear situations. MacGregor and Stacey (1993)

found that when students had difficulties writing algebraic rules from

function tables there were several different steps along the way where
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students might lack the needed skills or knowledge. They identified four of

these steps that students must cross before they can make the transition to

symbolic generalizations with x as the independent variable and y as the

dependent variable. Students must be able to (a) articulate the relationship

to find numerical values, (b) look beyond a recurrence pattern to find one that

links the two variables, (c) know the syntax of algebra, and (d) know what

can and cannot be said with algebra.

Students who were successful finding symbolic rules demonstrated

competence in each of the four steps outlined. Students who did not find

symbolic rules stumbled in at least one of the steps. This is illustrated in the

following sections.

Articulating the relationship to find numeric values. All students found

numeric values for specific cases in the tasks. They generally did this in one

of two ways. In some situations they extended a recursive pattern, at other

times they continued the pattern of differences. Examples to illustrate these

different strategies can be pulled from two tasks, Cutting and Toothpicks. In

Cutting students were asked to find the number of sheets in the stack of

paper after 20 cuts. Anna and Katrina extended their table by doubling the

previous term to find the 1,048,576 sheets after 20 cuts; they used a recursive

pattern to complete this. After finishing Toothpicks, Julie clarified during our

interview how she used her understanding of the constant second difference

to find the total number of toothpicks in the sixth figure. “I used my pattern.
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First, I made a table and found the amount of increase by two [the second

difl’erence], then I could find fifty-four [for the sixth figure].”

The numeric patterns in the data represented very strong support for

the students. When they noticed that a value they found through sketching or

counting did not agree with the values predicted by the pattern, they quickly

abandoned their counting strategy in favor of the pattern.

When the rules were straight forward to write, as in the linear case,

there were a few instances where students wrote their rules first and used

this articulated relationship to find the specific cases. This process seemed to

be the exception; students only did this in simpler linear cases like

Toothpicks where the pattern was 4n. Most students readily saw the increase

of 4 after they found the perimeter for two only cases. They noticed that the

perimeters were also multiples of 4 and wrote the rule

Looking beyond a recurrence pattern. This is the step that determined

for most students whether they were able to write the symbolic rules. In

nearly 84% (26 out of 31) of the situations, students were successful in

writing rules. Three pairs of students did not generalize with symbols for the

exponential case in Cutting and two pairs could not find the rules for a

difficult quadratic situation in Dominoes. In all five of these cases the

students had difficulty expressing a relationship that linked the two

variables.
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Cutting proved to be quite a challenging task for all five pairs of

students. The three pairs who did not write a rule, all described the doubling

in the tables, and used that doubling pattern to find the specific cases. Yet,

they could not make the transition from doubling to an exponential to link

the number of cuts to the number of sheets in a stack.

It was clear that some students knew they were searching for the

relationship that linked the two variables. Dan said while they worked,

“There has to be a rule [pause]. Times a half? Find out what the heck six has

to do with sixty four?”

Ben and Joe also discussed this link. Joe suggested “X times Y times

two?” as a possible rule. Ben responded “Times? No, you can’t have X and Y

in the same. You are trying to find Y. This right here is Y [points to sheets

thick]. You don’t know these, you are trying to get these [sheets thick] from X

[cuts].”

Both pairs demonstrated that they recognized the roles of the

independent and dependent variables in the generalizations. Dan did this

with a specific case of searching for a relationship between 6 and 64 while

Ben generalized the relationship using x and y. While Ben and Joe finally

wrote N = 2x to represent the number of sheets in a stack after x cuts, Julie

and Dan were not successful searching for a rule. One possible factor to

explain this distinction was the recognition of the structure of the problem.

Julie and Dan never recalled seeing a problem like this, while Brad and Joe
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recalled a similar problem from their seventh grade science class. The science

problem involved studying bacteria doubling. Although Brad and Joe

remembered the bacteria problem they added that they did not recall using x

as the exponent.

The second task where students did not write a rule was Dominoes. Two

pairs of students were unsuccessful with this rule; they both constructed

tables and used the patterns to extend the table, but neither found a rule.

The rule the students searched for was diflicult. The total number of

dominoes with up to n spots could be written in factored form as

in + 2)(n + 1) or én + 1)(n + 1). Both of these are slightly different than the

factored form the students used to guide their search, (x + a)(x + b). Their

rules all included a coefficient of 1 for the x2 term.

All of the rules that the students wrote in all situations did correctly

link independent and dependent variables in their patterns. When students

had difficulty finding the rule, it was not that they did not know they needed

to make the link, rather they did not know how to do this. In Dominoes, all

students recognized that they were trying to find a rule that related the

maximum number of spots (independent variable) to the total number of

dominoes (dependent variable), some could just not find a rule.

Knowing the syntax. A student who could not find a symbolic rule

because of the syntax might have possessed a verbal generalization, but did

not know the syntax, or algebraic language, that could represent the rule
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with symbols. The lack of knowledge about the syntax seemed to prevent the

students fi'om writing their rules in Cutting. Since the students were

unfamiliar with the appropriate syntax needed, they had difficulties

verbalizing their generalizations in a way that could be represented with

algebraic language. In the interviews after they completed the tasks I

discussed the possible solutions. We talked about adding specific columns to

their tables, illustrated in Table 17, to help them think about a rule.

Table 17: Cutting Table with Factors of 2 Represented

 

 

 

 

 

 

 

Number Number of Sheets

Of Cuts in a Stack

1 2 2x1 2

2 4 2x2 2x2

3 8 2x4 2x2x2

4 16 2x8 2x2x2x2

10 1,024 2x512 2x2x2x2x2x2x2x2x2x2
       

The three pairs who did not write rules were not familiar with the

exponential notation for functions. Although they had worked numerically

with exponents, they were unsure whether they could use them in an

algebraic rule. The lack of familiarity with the syntax represented at least

one step where the students tripped in their solutions.

The pairs who successfully found rules recalled a similar problem from

their seventh grade science class, which involved doubling bacteria. Todd

stated that if had he not done the problem the previous year he would not

have known how to use the “y-x” key. It seemed that the understanding of the
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calculator syntax from their science class helped the pair write their rule of

y = 2x for the number of sheets in a stack after x cuts.

The other task where some students encountered difficulties with a rule

was Dominoes. The students systematically observed the pattern of increase

in the differences fi'om the table. Since the rules did not fit the factored forms

of some students’ vision of quadratics, these students did not write rules in

this situation.3 They did not have the appropriate syntax, or language, to

represent the rule. The quadratic pattern in Toothpicks nicely fit their

assumed form, so that all pairs were successful. For the students who saw

the factored form it was n(n + 3). Anna and Katrina found n2 + 3n to fit their

general form of x2 + bx. It was unclear that Sara and Ryan saw how their

solution matched the factored form. They wrote [(x + 1)(x + 1)] + x — 1, which

is an equivalent expression. Ryan started with (x + 1)(x + 1), a factored form,

and recognized that he needed to adjust his rule and added (x — 1).

Knowing what can and cannot be said. This step might involve higher

order thinking than middle grade students’ algebraic understanding. Since

they do not have a complete view of the discipline they could confuse what

they don’t know the syntax for with something that cannot be said with

algebra.

 

3 Students looked for rules in the factored forms of x-x, x(x + b), or (x + a)(x + b). Some used

the expanded forms of x2 + b or x2 + bx.
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Geometric Approach: Generalizing about Changing Shapes

Part of being a mathematically powerful problem solver is for students

to have a number of strategies at their disposal to investigate problems. The

authors of the NCTM Curriculum and Evaluation Standards (1989) wrote

that instruction should increase its focus on having students use geometry to

investigate problems. A few students did successfully use geometric

approaches to solve the situations presented. Using these strategies, rather

than generating numeric data in a table, students observed all the patterns

spatially to recognize a generalization. When the students followed a

geometric approach, they were all successful seeing the geometric structure of

the pattern.

Four out of the five pairs used a geometric approach in the solution to

Borders. Julie and Dan, Sara and Ryan, and Anna and Katrina all used it to

launch their investigation while Ben and Joe followed a numeric approach in

their solution but verified their rule geometrically during the interview. The

students also followed a geometric approach for the quadratic pattern of blue

tiles in Borders, but they represented the pattern as n2 or n x n, without

much discussion. This pattern seemed trivial to these students. The

geometric interpretations of the patterns to find the white border tiles

allowed different ways to count. The rules the students wrote for white tiles

follow in Table 18.
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Table 18: Rules for White Tiles in Borders

 

 

 

 

 

   

Students Rule

Julie and Dan 4n + 4

Sara and Ryan 4(L — 2) + 4

Anna and Katrina w = (n + 2)-2 + (n + n)

Ben and Joe Lx4 + 4
 

The first two rules, 4n + 4 and 4(L — 2) + 4, could represent counting the sides

without including the corner tiles. The students knew that there were four of

these sides (n or (L — 2)), and then added the four corner tiles (+ 4). Anna and

Katrina’s rule represented counting the tiles slightly differently. They

counted the two long sides (n + 2), including the corners, and then added the

two short sides (n + n).

There were only two other situations where students studied the way

the pattern changed spatially to write their generalizations. Anna and

Katrina used a visual model in their solution of Dominoes. Ben and Joe

analyzed Toothpicks geometrically to find their rules.

Recall that Anna and Katrina explored the Case 1 (considering 1-0 and

0-1 as two distinct dominoes) interpretation of Dominoes. The girls relied on a

visual model or tree diagram to describe how they wrote (n+1)’. Katrina

wrote a nice explanation to visually support their rule (See Figure 49).
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Figure 49: Katrina’s Answer to Question 3 in Dominoes

Ben and Joe described how the individual pieces of the shapes in

Toothpicks were represented in the rule. They initially had made an error for

the perimeter toothpicks, but recognized their mistake and corrected it. After

they rewrote their rule for the perimeter, it was easy for them to revise the

total number of toothpicks based on their correction.

When students studied these problems using a geometric approach, they

considered the shape of the n"' figure of representation. They supplied visual

support of how the parts of the rule related to the pieces of figure n. This

keeps their rules related to the context of the problem. The students who

wrote 4n + 4 for the number of white border tiles knew that the constant

term of 4 represented the 4 corners in the shape.

Graphic Representations

Strong problem solvers often have multiple strategies to investigate

problems. Some students relied on a third strategy when their others did not

result in a rule. In some instances the students discussed the graphs of the
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patterns as a way to explore the problem. They were not asked to consider

the graph, but some used this to aid in their investigation.

Sara and Ryan discussed graphs while investigating Cutting and

Dominoes. They did not find rules in either of these patterns, but considered

graphs in both.

Although the exponentials represented an unfamiliar task for these

students, Ryan offered a reasonable description of the shape of both the

growth and decay graphs, “Whatever it is, it would take, this [the number of

sheets in a stack pattern] sort of rises, going in the positive direction and this

[the area of the pieces] is going in the negative direction.”

Ben and Joe sketched similar increasing and decreasing graphs on their

papers to represent the patterns while they searched for a rule. There are

several cases where the students made some reasonable sketches to help

them think about the problems. Although, it is not clear how the students

used this to help them write rules, this demonstrated an understanding of

the pattern that may not otherwise be evident.

Connections

Making mathematical connections is an important idea for students.

One of the four common standards in the NCTM Curriculum and Evaluation
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Standards (1989) is “Mathematical Connections.” A part of the middle grades

standards state,

STANDARD 4: MATHEMATICAL CONNECTIONS

In grades 5-8, the mathematics curriculum should include the

investigation of mathematical connections so that students can--

. see mathematics as an integrated whole;

. explore problems and describe results using graphical, numerical,

physical, algebraic, and verbal mathematical models or

representations;

. use a mathematical idea to further their understanding of other

mathematical ideas;

. apply mathematical thinking and modeling to solVe problems that

arise in other disciplines, such as art, music, psychology, science, and

business;

. value the role of mathematics in our culture and society. (page ??).

The curriculum that the students had used was called the Connected

Mathematics Project; this title emphasizes the importance of connections to

the authors.

Students demonstrated many difl’erent connections in their solutions to

these problems. There was evidence of the first three bullets as stated in the

Standards. They made (a) connections in each pattern between different

representations, (b) connections between the four tasks and additional

problems, and (c) connections with other mathematics.

Connections between Representations

The students readily made connections between several different

representations of the patterns. I have already described the links between

tabular and symbolic forms in the earlier discussion surrounding constant
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difl'erences. Students recognized that tables of data with constant first

differences were linear and tables of data with constant second differences

were quadratic. They were unsure when they could not find a constant

difference about the form of the equation. Several students offered evidence

connecting a third representation, connecting the graphs of the patterns.

Connections between Tasks

Some students connected the linear problems in the Borders and

Toothpicks as similar. They recognized the rule, tables, and graphs as

similar. Although all students did not write symbolic rules for Dominoes

some connected it to the other quadratics either through sketches in their

work (see Dan’s work for Dominoes) or discussions we had. In an exchange

during an interview Ryan explained the similarities in the graphs between

patterns in several tasks.

AK: Is this [Dominoes] similar to any of the other problems I have

asked you to do?

Ryan: The Toothpicks one, sort of

AK: How is it similar to Toothpicks?

Ryan: It forms a parabola in the graph.

AK: How do you know it forms a parabola in the graph?

Ryan: The way the table is written when you write it out.

AK: What about the table tells you that it is a parabola?
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Ryan: It increases by more each time. See right here, it increases by

three, then it increases by four. Makes it curve up more.

AK: Was that the same as Toothpicks?

Ryan: Yes.

AK: Were there any other parabolas?

Ryan: This one, one a in Borders.4

Since they additionally found symbolic rules in Borders and Toothpicks they

extended their connections between three representations—tables, graphs,

and symbols.

The students completed a fifth task, Dot Pattern, which I do not analyze

here.5 Sara and Ryan again made connections between the quadratic

situations in Dominoes and Toothpicks with the quadratic pattern in Dot

Pattern. They recognized the similarities in the quadratic patterns in both

tabular and graphic form. When questioned regarding any similarities or

 

4 1. a) If the pattern of blue squares with white borders continues, how many blue tiles are

needed to build the 4th square? the nth square? Show how you figured this out.

5 Dot Pattern asked the students to create their own pattern based on this '

first figure and then write several statements based on their pattern. Sara “2m:

and Ryan completed the pattern with the triangular numbers that formed Figure 50:

a quadratic pattern similar to the one they found in Dominoes. The 3, 6, Dot Pattern

10, 15, and 18 were the total number of dots for the first five figures

sketched below. The numbers between these numbers (3, 4, 5, and 6)

represented the first differences. The following written represents their written work.

Graphic

 

The following figure made with dots is the first figure in a pattern.
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Figure]. 1‘ ""° "

. y L] s   
Euro 51: Dot Pattern Written Response
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differences between the tasks, Ryan first noted that Toothpicks and Dominoes

were similar. His clarification was, “Similar in the table, the way it increases.

In Dominoes: eight, ten, twelve and fourteen. In Toothpicks: three, four, five,

six, and seven.” He recognized the constant increase in the first difference or

that the second difi’erence in both cases was a constant number.

They added to their earlier discussion of the similarity of the graphs but

described that all had the shape of parabolas because of the data from the

table.

AK:

Ryan:

Ryan:

Sara:

Ryan:

AK:

Ryan:

Were there any other patterns?

Forms a parabola, the number of dots.

How do you know that?

The way the pattern is.

They increase by three, then four, then five, then six.

How do you know that is a parabola?

If you were to plot it. It starts out shallow and starts to get

steeper and steeper until it is almost straight up and down.

How do you know?

It increases by more and more each time.

While saying this Ryan made the sketch in Figure 52 to support his claim.

/

Figure 52: Ryan’s sketch during Dot Pattern interview.
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In solving the problems that the pair saw as algebra, Sara and Ryan

made comparisons across the three different representations—tables, graphs,

and equations—of the relationship. Although they did not always find

symbolic generalizations for the patterns, they demonstrated a deep

understanding of the pattern.

Other students sketched graphs in their written work; some discussed it

during their investigations or interviews. Although they were not specifically

asked to consider graphs, they extended their solutions to include this

representation. The following diagram, Figure 51, illustrates the connections

that several students made between tasks, and the representations in the

 

(quadratic)

tasks.

Cutting Borders 1:: Toothpicks

(exponential) (linear) .................................... (linear)

I

I

I

!

Bacteria Doubling

Pizza Pirate

(exponential) :

I

I
Handshakes : Toothpicks

I
I

I
I ..-

l

l-'

Legend:

Symbolic Connections

-----Tabular Connections

......................... Graphic Connections

 

 

Figure 53: Connections between Tasks
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In addition, some students linked the mathematical structure of the

tasks with problems they had previously solved. While two pairs connected

Cutting to their seventh grade science problem, Anna and Katrina related it

to a problem fiom their seventh grade mathematics.

AK: What do you think this problem [Cutting] is about?

Anna: Umm, like taking things and cutting them in half and keep

cutting them in half. There was a pizza problem that we did

like this last year.6 When they came at night and took half of

the pizza and left half, and then half. They kept taking half.

AK: How was this similar?

Anna: Pretty much the whole thing, see how much you have.

The Pizza Pirate Problem the pair referenced had a discrete exponential

pattern. They recognized that both patterns looked at the way data doubled

and halved.

Both of these problems had similar mathematical structure. In the

science class, the students did use exponential notation to discuss the time it

took doubling bacteria to reach the moon. The students recalling the Pizza

Pirate Problem did not use exponential notation. The problem was posed to

 

3 This was Problem 4.3 from the Bits and Pieces II unit of CMP. A Pizza Pirate was raiding

the pizza in a freezer that a class was saving for their party. On the first night he crept in

and ate half of the pizza. On the second night, he ate half of what was left. Each night after

that he ate half of the pizza that remained. Students investigated what fraction of the pizza

was left after so much time.
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consider using fractions. But, both problems were reasonable to use as

comparisons.

Another comparison students made connected with Dominoes. Although

these students did not see that task prior to my administration of it, several

pairs recognized it a similar structure to some of the earlier problems they

did in their mathematics class.

Both pairs, Zachary and Todd, and Anna and Katrina felt they had done

similar problems prior to this in their mathematics class. Anna and Katrina

felt it was somewhat like the “handslaps, high fives, or handshakes”

problems they completed because of the way they charted the possibilities.

Zachary and Todd noted other similarities.

AK: Have you ever done this problem before?

Todd: I don’t think so.

Zachary: I don’t remember.

AK: Did you do anything kind of like it?

Todd: Yeah.

AK: When was that?

Todd: It was like only about a week ago, in this book, it was how

many games would a team play if there were five teams and

every team played every other team

AK: How was it the same?
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Todd: I remembered making a chart kind of like this, where there

were certain possibilities, certain ones that were doubled so

we crossed them out.

Later, during the interview, Zachary admitted that it seemed similar to

another problem, “I remember a problem like this except it did not have the

N plus one. In the book of Frogs 7, I think, with handshakes.”

In both of these tasks, Cutting and Dominoes, students connected the

problems to previous problems they had completed and used that information

to assist with completing the tasks. The tasks may be situated in very

different contexts, but the students looked beyond this to see the similarities

in the structure of these tasks. This is a very important problem solving skill

for these students to possess.

Connections with Other Mathematics

After each pair of students completed the tasks, I asked what

mathematics was involved in the problem. One student stated the connection

in the curriculum during an interview. Once they completed the final task, I

pushed further to find out what they felt were some of the different areas of

mathematics. Todd responded, “I don’t know. In CMP math the teacher

doesn’t say right now you are doing algebra, right now you are doing

geometry.” Todd did not want to parse out his mathematics into separate

 

7 He referred to the Frogs, Fleas, and Painted Cubes quadratic unit from CMP.

194



categories, he further determined that he saw mathematics as mostly related

and connected.

Disposition

There is more to learning mathematics than knowing the content. Again

I refer to the NCTM Curriculum and Evaluation Standards (1989) document

as a source to consider what educators envision. The authors wrote of helping

students develop a mathematical disposition,

Disposition refers not simply to attitudes but to a tendency to think

and to act in positive ways. Students' mathematical dispositions are

manifested in the way they approach tasks--whether with

confidence, willingness to explore alternatives, perseverance, and

interest-—and in their tendency to reflect on their own thinking

(page ??).

When I initially designed this study, I had not intended to look at

students’ disposition. Then, some evidence unfolded that pushed me to

consider their attitudes toward mathematical problem solving more carefully.

There is strong evidence that these students approached mathematical

tasks with positive attitudes. They used a number of strategies to investigate

the problems. When they were presented with an unfamiliar problem they

had some strategies to investigate the situations. They seemed confident that

they would be able to solve the problems and were disappointed when they

could not.
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I was also surprised at how long the students persevered on a

challenging problem. It frustrated them when they could not finish a

problem, but they persisted. Julie was quite animated while working. During

their solution of Cutting, she bemoaned, “I hate not being able to do this.”

When they investigated Dominoes she exclaimed, “This problem is driving me

crazy!” while she mocked pulling at her hair. She expressed her fi'ustration,

yet always continued to explore the problems.

The students all worked at Cutting until I reassured them that it was

understandable that they might have a difficult time with the problem and

we could discuss a solution together. I think that they might have worked on

the problem longer had I given them the opportunity. Some students did

continue their investigation, even after my warning.

These students all demonstrated confidence in their mathematics

ability, willingness to explore alternatives, and perseverance. I felt they all

revealed a very positive disposition towards mathematics.

Summary

When these students who had spent three years in a reform curriculum

confronted a situation involving patterns in functions, they demonstrated

understanding in several areas of mathematics. Each of the situations the

student pairs investigated could be represented by a function—linear,
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quadratic, or exponential—embedded in different contexts. These students

demonstrated a deep understanding about various algebraic functions. They

all had a solid understanding regarding linear functions. There seemed to be

a lot that they understood about quadratics, but occasionally had some

difficulties in pulling it together to write a generalization. When a pattern

did not fit one of these two categories they relied on several strategies to help

them investigate, but were unclear what to do for the generalization.

They all had reasonable strategies at their disposal to investigate .

various function types. Students made connections among the tasks they

solved for this study and with other problems they had previously

investigated. In all cases, they held dispositions towards mathematics that

encouraged them to persevere with the difficult problems.
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CHAPTER 6

Implications and Limitations

Implications

There are two major findings in this study surrounding students’

understanding. First, students who had three years in the Connected

Mathematics Project curriculum demonstrated a rich understanding of a

significant piece of algebra. And second, teachers can learn much more about

students’ understanding in algebra by drawing on multiple sources of

evidence, and not relying solely on their written work.

A Rich Understanding of an Important Piece of Algebra

There is not consensus among educators regarding what constitutes

algebraic thinking. Some would take issue with my view on the discipline. I

do not claim that this study represents students’ complete algebraic

understanding, but it does demonstrate that these students have significant

understanding of an important aspect of algebra.

Although this study draws on a narrow slice of algebra, it represents a

very significant piece of the discipline. In Chapter Two, I write of the

importance that studying patterns plays in the foundation of algebraic
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thinking. Studying and symbolically generalizing these patterns cut across

all of the organizing themes presented by the Algebra Working Group (1997).

NCTM published a discussion draft of the Principles and Standards for

School Mathematics in 1998 to build on the foundation of the three

Standards documents published earlier. In their overview, the authors write

the following algebra standard across grades K-12.

Standard 2: Patterns, Functions, and Algebra

Mathematics instructional programs should include attention to

patterns, functions, symbols, and models so that all students-

. understand various types of patterns and functional

relationships;

0 use symbolic forms to represent and analyze mathematical

situations and structures;

- use mathematical models and analyze change in both real and

abstract contexts (page 56).

The NCTM authors write further that,

Patterns, functions, and algebra encompass the systematic use of

symbols, algebraic characteristics of mathematical systems,

modeling of phenomena, and the mathematical study of change.

These notions are not only linked to one another, but also closely

linked to number and operations and to geometry. They are

essential to all areas of mathematics and form the basic language

in which mathematics is expressed. Ideas included within this

standard compose a major component of the school curriculum

(page 56). (Emphasis added)

This study addresses all three of the main components of the Patterns,

Functions, and Algebra Standard.

Studying patterns was the starting point for this study. Mathematics is

sometimes considered the “science of patterns,” and represents a

fundamental aspect of the discipline. In studying patterns the regularity one
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notices can be used to predict other values. I narrowed my field of patterns to

only those that held the potential for representation as a function. This'kind

of work can be seen as a precursor to more formal investigations with

functions.

In addition to studying patterns, I asked students to generalize the

patterns they recognized with symbolic representations. The use of symbolic

notation is also a powerful idea in mathematics. Some say that “(s)ymbolic

representation of quantitative relationships lies at the heart of algebra”

(NCTM, 1998, page 58).

This study, focused on the study of patterns, also included mathematical

modeling. Once the students recognized their patterns, they were asked to

write symbolic generalizations that modeled the situations. “One of the most

powerful uses of mathematics is the mathematical modeling of phenomena

(NCTM, 1998, page 60).” They were given a situation and asked to write a

mathematical model to represent it.

The students in this study demonstrated their competence in algebra in

a number of ways. The Algebra Working Group (1997) and Kaput (1995) both

recognize that solid algebraic understanding involves experiences across all

organizing themes of algebra. The students demonstrated competence across

three of the Algebra Working Group ’3 themes: functions and relations,

modeling, and language and representations. I did not see evidence of their
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understanding of the structure of algebra, but that was not the intent of the

tasks or this study.

While the ten students of this study demonstrated understanding across

the organizing themes, they met the ambitious algebra goals established by

the CMP authors. The students showed that they had more than a procedural

understanding of the algebra and were able to think deeply about the

mathematics involved in this collection of problems.

Understanding Functions and Relations

When approaching algebra through the functions and relations theme,

one of the main ideas is the focus on the rate of change. Making numeric

tables of data was the dominant strategy employed by all students in this

study to attend to the rate of change. After students made tables, a common

tool for analysis was to search for constant differences. When they found that

the first or second difference was constant this informed them about the

patterns. A constant first difference meant the pattern was linear, while a

constant second difference told them it was quadratic.

All five pairs of students considered the rate of change when they

constructed tables and found constant differences. The students not only

noted the differences, but also related the differences to graphs and described

various patterns of change. They described that the linear patterns increased
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by the same amount while quadratic patterns, “increase by more each time.”1

These students recognized how the rates of change in the tables affect the

patterns. They used this knowledge] to inform their generalizations. They had

reasonable general forms for the symbolic expressions of linear and quadratic

patterns that they matched with the pattern.

The students in this study also demonstrated a very strong sense of

changing quantities in the situations. They recognized the important

quantities that changed and the dependence between the quantities. All

students drew reasonable conclusions about the quantities in all tasks. There

were several instances in the challenging tasks (the quadratic patterns in

Toothpicks and Dominoes, and the exponential patterns in Cutting) that

while the students searched for rules they worked hard to make sense of the

variables. There was evidence while they worked of how they clarified the

independent and dependent variables in the situation.

The students did not seem to struggle as much with the variables in the

less complex problems (the linear patterns in Borders and Toothpicks, and

the quadratic pattern in Borders). They easily selected variables that seemed

to fit the problem. In Borders, one pair used different variables (length and

width instead of figure number) than the others for their independent

variable, but with their interpretation they found a reasonable solution for

the problem.

 

1 Quote from Ryan after during our interview after he completed Dominoes.
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Understanding Modeling

The students modeled the situations when they sought symbolic

generalizations to represent the patterns in the data. In all situations they

collected, organized, and studied their data in search of a rule. Some students

studied numeric data in a table, while others considered a geometric

representation. Once the students recognized a pattern in their data they

usually wrote their generalization. They often extended their table to find

additional values and then verified the additional data generated from the

table with their rule. In all instances the students looked for rules that

modeled their data, and helped them to predict other values.

In some instances, the students used a graph model to describe the data.

They discussed the shapes of the graphs in some tasks and used patterns in

the shapes to help predict other values. These students felt that studying the

graphs could be helpful to describe their patterns.

Understanding Language and Relationships

All students demonstrated competence with the language of several

different representations of the patterns. All constructed tables, all found

some symbolic rules, and some pairs considered graphical representations. In

all instances the students used and connected different representations.

The dominant representation the students used to study the patterns

was a numeric table. They recognized both linear and quadratic patterns in
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this tabular representation by finding constant differences. Once they knew

the function type, linear or quadratic, these students drew reasonable

conclusions about the symbolic representations. The tasks of this study did

not pose specific questions that asked students to consider other

representations, but some students additionally discussed their

understanding of linear and quadratic patterns in graphic form and related

that to other representations.

There was not sufficient evidence from this study to evaluate all

students’ understanding of the graphical representations since I did not pose

questions that addressed this in any of the tasks. However, several students

did demonstrate competence with this representation.

The students were not as solid in exponentials, the third pattern, that I

asked them to investigate. Some pairs were unfamiliar with this pattern

since they had not yet studied the CMP exponential unit in their

mathematics class. It is important to note that although they could not

classify the exponential pattern, they did not try to classify it as linear or

quadratic when they observed the pattern of differences in the table. They

did not use linear or quadratic rules inappropriately. The students who

sketched a graph also recognized it as different than the other two patterns.
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Understanding Deeply

Masingila (1998) writes about the difference between knowing some

mathematical idea procedurally and knowing it conceptually. She

acknowledges the importance of students’ understanding mathematical

concepts. If what these students learned through the CMP curriculum is to be

classified as meaningful mathematics, they needed to learn more than just a

new algorithm to generate symbolic rules. I believe that these students did

have a deep understanding of symbolically generalizing patterns from data.

If these students were to have only a procedural understanding, then

you could expect all of the students to arrive at similar generalizations by

following the procedure. In most of the less complex cases (linear patterns in

Borders and Toothpicks and the quadratic pattern in Borders) students did

arrive at expressions that appear similar, but in the more complex quadratic

cases of Toothpicks and Dominoes students found very different looking

equivalent expressions.

The students quickly wrote the symbolic rules in both linear cases in

Borders and Toothpicks and the quadratic case of Borders. It is apparent in

Table 19 below that all students found the same form of a symbolic

generalization for the linear case in Toothpicks. All pairs, except Sara and

Ryan, used the generalization of x2 or xxx for the Borders quadratic pattern;

Sara and Ryan found a slightly different expression based on their choice of

variables. Zachary and Todd, Ben and Joe, and Julie and Dan all found
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similar looking rules in the linear case of Borders, while Sara and Ryan and

Anna and Katrina based their rules on geometric interpretations and found

something that looked slightly different.

Table 19: Symbolic Rules Generated for Simple Cases

 

 

 

 

 

 

 

  

Tasks

Students Borders Toothpicks Borders

Linear Linear Quadratic

Zachary and Todd 4x + 4 4N x2

Ben and Joe Lx4+4 Y= 4N L2

Julie and Dan 4n+4 y = 4n n2

Sara and Ryan 4(L-2)+4 4N (L-2)(W-2)

Anna and Katrina w = (n+2)-2+(n+n) 4N b = nxn   
 

There was not much discussion between the pairs in the recordings

regarding their solutions for these patterns. I suggest that these students do

have a solid understanding in these cases, although their work might appear

to be somewhat procedural. Their ease of working with these patterns and

their connections with other representations during our discussions supports

this view. Additionally, their work with the more complex quadratic suggests

a solid understanding of these cases.

These students seemed to have a conceptual understanding of the more

complex cases also. Table 20 below lists the four equivalent, but different

expressions they wrote to represent the patterns found by the five pairs of
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students for the symbolic generalizations for the quadratic patterns in

Toothpicks and Dominoes.2

Table 20: Symbolic Rules Generated for More Complex Cases

 

 

 

 

 

 

 

Students Tasks

Dominoes Toothpicks

Quadratic Quadratic

Zachary and Todd (n+ l)+2-n+n+1 n(n+3)

Ben and Joe y = (N+l)(0.5N+l) y = 4N + (N-1)N

Julie and Dan No rule y = n(n+3)

Sara and Ryan No rule [(x+1)(x+1)]+x-1

Anna and Katrina - n2 + 3n     
In their solutions, three pairs made tables and studied constant differences;

Sara and Ryan studied the differences in numeric data not organized in a

table, while Ben and Joe studied the pattern of the Toothpicks in the

changing shapes to write the rules. Only two of the four pairs of students who

worked with this interpretation of Dominoes arrived at symbolic rules. These

two expressions looked quite different.

In all of these more complex cases the students had access to a number

of tools that helped them investigate the problem in a meaningful way. Since

their final rules did not look the same, in fact some appear quite different,

this supports the view that these students did not follow an algorithm to

 

2 I refer to the Case 2 interpretation of Dominoes, counting the 0-1 and 1-0 as one domino.
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generate symbolic rules. They used their understanding of the situations to

generate rules.

Assessment

This study also offers supporting evidence surrounding the uses of

multiple forms of assessment. If teachers want to know students’ sense

making of algebraic ideas, then a range of forms of assessment is required. To

paint a picture of students’ understanding it requires administering high-

quality tasks, observing students while they work, and talking with students.

High-quality tasks have some or all of the following characteristics.

They must engage all students while challenging them at the same time.

They should allow for multiple ways to find a solution. They should capture

important mathematics. They should support student discussions. They

should require higher levels of thinking. They should have the potential for

students to make connections. The problems should be based on sound

mathematics, perceptions of students experiences, and knowledge of diverse

ways that students learn mathematics (NCTM, 1991).

It is not enough to consider only students’ written responses. In this

study, much of the students’ thinking was not recorded in their written work.

In some instances I saw that students understood much more than what they

recorded on their papers. Watching the videotapes of the pairs working gave

me some insight into this additional understanding. Together, written

responses and careful observations still left some aspects of their
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understanding hidden. I learned much more by talking with students about

their understanding that was not evident in the other data sources. Much of

students’ understanding about the graphs became apparent in our

discussions. In their work with graphs, the students often connected the

pattern in the problem with the pattern for other problems and connected the

representations. I might not have seen what these students really understood

had I not collected this additional data.

A goal of assessment is to accurately represent what students

understand; good assessment strategies will aid teachers with this task. For

classroom teachers, this means that they need to be aware that the written

record may not tell everything about students’ understanding. When

evaluating students’ understanding teachers need to be diligent about

collecting multiple forms of assessment to more accurately represent this.

They need to be careful observers while students work. It may not be

practical for them to make video recordings of students working, but they can

make careful notes while observing students engaged in the tasks. They

should talk with students about what they have written and ask them to

clarify what they have done.

Limitations

In any study it is important to acknowledge the limitations. In Chapter

Three I offer support regarding the decisions I made for this study. In this
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section I describe three limitations based on the design of this study. First,

my selection of the performance tasks I administered limited what I could

learn about the students’ understanding. Second, I did not study the

implementation of the curriculum, and so I can not dismiss the importance of

the teachers’ role in the success these students had with algebra. And, third,

I did not have a control group and so I am unable to draw any comparison

conclusions.

Tasks

My selection of tasks limits what I could learn about these students’

algebraic understanding. This study considers students’ symbolic

generalizations of data from specific patterns. This cut on algebra is not

intended to represent the entire discipline or evaluate students’ complete

algebraic understanding, rather to survey students’ reasoning in an aspect

that represents a part of the foundation of the discipline. I described earlier

in this chapter that this narrow cut of algebra is quite significant for students

to learn. But, all of the tasks involved whole numbers and one could

speculate that other tasks with rational numbers might have proved more

challenging.
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Implementation

I recognize that the nature of the implementation of any curriculum is

vital to its success or failure. But, the implementation of the CMP curriculum

was not the focus of my study. Even though this was not part of my study, I

acknowledge that students coming out of the eighth grade are not just

prepared because of the curriculum. Quality curriculum is not sufficient for

success; it may be necessary, but not sufficient. There are a number of

interesting stories to be told surrounding Heartland. Some have already been

done regarding this site (Bouck, M. and Wilcox, S., 1996).

A key element to these students’ achievement is that they had quite

skilled teachers in grades 6 through 8. There is quite a bit of local knowledge

surrounding Evelyn Howard, the teacher these students all had in grade

eight, and some in grade seven. She is a very accomplished mathematics

teacher who is held in high regard in the community. I feel quite certain that

Evelyn’s skill teaching mathematics is a contributing factor to the success for

these students.

It should again be noted that this school had been seriously working on

professional development for teachers for a number of years and offered

considerable support for teachers. Many, including Evelyn had the

opportunity to work closely with the developers of the CMP curriculum as

part of the piloting agreement. This association helped the teachers refine

their teaching and better understand the curriculum.
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Comparison

This study was not designed to compare the algebraic understanding of

students from the CMP curriculum with that of students who had more

traditional experiences in mathematics. Instead, my intent was to carefully

describe the potential for students with three years in the CMP curriculum to

develop students’ algebraic thinking. This study suggests that there is great

promise for CMP students to develop a solid understanding of symbolically

generalizing from patterns of data.

There have been other studies done as a comparison and found that

CMP students did significantly better on challenging open-ended response

tasks than non-CMP students. In addition, on a traditional, multiple-choice

test, CMP students made gains comparable to the other students (Hoover,

M., Zawojewski, J., and Ridgway, J., 1997). This means that the CMP

students do better on the open-ended items and do not do any worse on the

traditional items.

Summary

This study represents an analysis of the learning of students in one

curriculum, in one site, and of one important slice of algebra. Even with these

limitations, this study provides an opportunity to get a very good look into

these students’ reasoning about algebraic situations. It offers compelling
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evidence that this Standards-based curriculum has great potential for

student learning in algebra. A curriculum that focuses on algebra as much

more than symbolic manipulation, that has taken functions, modeling, and

representations as key components can provide students with a solid

understanding in a fundamental area of algebra.

A study such as this begins to answer some questions, but it also raises

many more. There is certainly much more to be learned about students’

understanding regarding other areas of algebra with these curricula. An

additional set of questions important to study would look at the

implementation of a standards-based curriculum. The authors of the CMP

curriculum recognize the importance of good teaching. What does it take to

successfully implement a curriculum like CMP? What kinds of experiences do

teachers need to have to teach this curriculum? What do we know about

students’ knowledge prior to entering the CMP curriculum in the sixth grade?

All of these questions are worthy of future study.
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APPENDIX A

List of Cllfl’ Units

The units are listed in the form: Title: Subtitle, Strand in Table 17.

Table 21: Order of Cllfl’ Units

Grade Six Units

1. Prime Time:

Factors andMultiples

Number

2. Data About Us:

Statistics

Prob. and Stats.

3. Shapes and Design:

2-D Geometry

Geom. and Meas.

4. Bits and Pieces I:

Understanding Rational

Numbers

Number

5. Covering and

Surrounding:

2-D Measurement

Geom. and Meas.,

and Number

6. How Likely Is It:

Probability

Prob. and Stats.

7. Bits and Pieces II:

Using Rational Numbers

Number

8. Ruins of Montarek:

Spatial Visualization

Geom. and Meas.

Grade Seven Unit§

1. Variables and

Patterns:

Introducing Algebra

Algebra

2. Stretching and

Shrinking: Similarity

Geom. and Meas.

3. Comparing and

Scaling: Ratio,

Proportion, and Percent

Geom. and Meas.,

and Number

4. Accentuate the

Negative: Integers

Number

5. Moving Straight

Ahead:

Linear Relationships

Algebra

6. Filling and

Wrapping:

3-D Measurement

Geom. and Meas.,

and Number

7. What Do You

Expect?: Probability and

Expected Value

Prob. and Stats.

8. Data Around Us:

Number Sense

Number, and

Prob. and Stats.
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Grade Eight Units

. Thinking with

Mathematical Models:

Representing Mathematical

Relationships

Algebra

. Looking for

Pythagoras:

The Pythagorean Theorem

Geom. and Meas.,

and Number

. Growing, Growing,

Growing...:

Exponential Relationships

Algebra

. Frogs, Fleas, and

Painted Cubes:

Quadratic Relationships

Algebra

. Say It with Symbols:

Algebraic Reasoning

Algebra

. Hubcaps,

Kaleidoscopes, and

Mirrors: Symmetry and

Transformations

Geom. and Meas.,

and Algebra

. Samples and

Populations:

Data and Probability

Prob. and Stats.

. Clever Counting:

Combinatorics

Prob. and Stats.



10.

11.

12.

13.

APPENDIX B

Interview Questions

Have you ever done this problem before?

Have you ever done this type of problem before? If yes, explain.

What do you think this problem is about?

What do you think you are asked to do in this problem?

What mathematics do you think is involved in this problem?

How did you decide what strategy to use? What strategies did you use?

When did you decide to try a new strategy (if so)?

How did you decide what variables to use to solve this problem?

When do you know to stop looking for a pattern and start to generalize?

How would you justify your solution?

How would you verify your results?

Is this similar to any of the other problems I have asked you to do? In

what ways?

Did anything about this problem surprise you?
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APPENDIX C

Time Spent by Students Working on Tasks and During Interviews

Table 22: Approximate Number of Minutes Spent on Each Task

 

 

 

 

 

 

 

     

Tasks

Students Borders Cutting Dominoes Toothpicks

Zachary and Todd 17 21 24 8

Ben and Joe 10 34 33 8

Julie and Dan 13 30 31 10

Sara and Ryan 15 27 41 44

Anna and Katrina 20 29 13 26
 

Table 23: Approximate Number of Minutes Spent on Each Interview

 

 

 

 

 

 

 

     

Tasks

Students Borders Cutting Dominoes Toothpicks

Zachary and Todd 16 13 22 20

Ben and Joe 18 29 30 17

Julie and Dan 10 24 30 25

Sara and Ryan 14 17 10 13

Anna and Katrina 5 19 22 18
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Tasks

 

Name

Date

 

Borders .
 

These three squares have been made using blue tiles and then a border of

white tiles is put around the blue square.

 

 

 

   
Figure 1 Figure 2

 

1. a) If the pattern of blue squares with white borders continues, how

many blue tiles are needed to build the 4th square? the nth square?

Show how you figured this out.

b) If the pattern of blue squares with white borders continues, how

many white tiles are needed to build the 4th square? the nth

square? Show how you figured this out.

2. Suppose the blue files are arranged as rectangles of any length and

width.

a) How many blue tiles are needed for this? Show how you figured

this out.

b) How many white tiles are needed for this? Show how you figured

this out.

  
 

Figure 54: Borders Task
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Name
 

 

 

Date

CutunganCuttmgandCut ”g=

 

 

If you take a sheet of notebook paper and cut it in half and stack the

pieces and then cut in half again and stack. and then in half again and

stack, each cut gives smaller pieces but a thicker pile of paper.

 

  

 

  

At the start, before any cuts, there is one sheet of paper. After one cut,

stack the pieces. The stack is now 2 sheets thick. After 2 cuts and stacking,

the pile is 4 sheets thick.

1. Describe what happens after 3 cuts. How many pieces of paper do you

have in the pile?

2. a) How many sheets of paper thick would the paper pile be after 4

cuts? 5 cuts? 10 cuts? 20 cuts? n cuts? Explain how you figured this

out.

b) For ordinary copier paper it takes about 250 sheets to make a pile

1 inch high. How thick (in inches) would a stack starting with one

sheet of paper be after 4 cuts? 5 cuts? 10 cuts? n cuts? Explain how

you figured this out.

c) How many cuts would you need to get a pile that is 1 foot thick?

3. Suppose the original piece of cut paper has an area of 32 cm2.

a) What is the area of each piece formed after 2 cuts? 3 cuts? 10 cuts?

n cuts? Show how you figured this out.

b) After how many cuts would you get a piece that is 1 cm2.    
 

Figure 55: Cutting Task
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Name

Date

 

 

 

Dommes

Dominoes are spotted tiles used in a board game. A regulation domino tile

is a black rectangle, split into square halves. On each half of one side there

are from O to 6 white spots. The other side is blank. For example. three

different domino faces are shown below.

  
a) Sketch all possible domino faces if your set is made up of dominoes

with from O to 2 white spots.

.
.
.
a

I

b) How many different domino faces are there in a set made up of

dominoes with from O to 3 white spots on each half of the domino?

2. a) How many domino faces are possible if a set is made up of

dominoes with from O to 2 white spots?

b) O to 3 white spots?

c) O to 6 white sp0ts?

d) O to n white sp0ts?

3. How do you know that what you wrote for the above is true?  
 

Figure 56: Dominoes Task
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Name
 

Date
 

 

Toothplcks:1;;_;;.;;g...

 

  

 
 

Figure 1 Figure 2 Figure 3 Figure 4

    

                 

1. Extending the pattern, what is the perimeter of Figure 5? Show or

explain how you figured this out.

2. How many toothpicks are needed to make Figure 6? Show or explain

how you figured this out.

3. How did you decide how each new figure in the sequence is made?

4. Write a formula that you could use to find the perimfler of any

Figure N. Tell what your variables represent. Explain how you figured

this out.

Write a formula that you could use to find the total number of

mammals needed to make of any Figure N. Tell what your variables

represent. Explain how you figured this out.

U
l

  
 

Figure 57: Toothpicks Task
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APPENDIX E

Task Solutions

Borders

These three squares have been made using blue tiles and then a border of

white tiles is put around the blue square.  

 

 

 

 

 

 

  

 

        

Figure 1 Figure 2 Figure 3

Figure 58: Borders Figures

1. a) If the pattern of blue squares with white borders continues, how many

blue tiles are needed to build the 4th square? the nth square? Show

how you figured this out.

The pattern of squares can be continued

to sketch figure four as in Figure 59. The

 

blue interior tiles can be counted from

Figure 59: Figure 4 in

that figure to find 16 blue squares. Borders solution

To find the number of blue tiles in the nth square, try to observe a

pattern in the data. First, count the interior blue tiles from the shapes in

figures 1, 2, and 3 and organize that information in Table 24.



Table 24: Figure Number and

Blue Tiles in Borders solution

 

 

 

 

 

 

Figure Blue

Number Tiles

1 1

2 4

3 9

4 16   
The number of blue tiles is the figure number squared, or

Blue tiles = n2, where n is the figure number.

b) If the pattern of blue squares with white borders continues, how many

white tiles are needed to build the 4th square? the nth square? Show

how you figured this out.

To find the number of white tiles in figure four, use the sketch drawn

above to count. The fourth figure has 20 white squares.

Use a similar strategy of observing a pattern to find the number of white

tiles in the nth square. Count the perimeter in figures 1, 2, and 3 and

record that information in Table 25.

Table 25: Figure Number and

White Tiles in Borders solution

 

 

 

 

 

Figure White

Number Tiles

1 8

2 12

3 16

4 20    
The number of white tiles is a linear pattern since there is a constant

rate of increase of four in the table. This can be used to extend the table
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back to find the number of white tiles in figure 0 to be four. The rule can

be written as: White tiles = 4n + 4, where n is the figure number.

Suppose the blue tiles are arranged as rectangles of any length and

width.

a) How many blue tiles are needed for this? Show how you figured this

out.

To find the tiles in rectangular figures, consider the general rectangle

with dimensions L by W as illustrated in Figure 60.

W

 

L

Figure 60: General Rectangle in Borders

The number of blue squares would be the inside area. The dimensions of

the interior blue rectangle is (L - 2) by (W -2). So, the number of blue

tiles is:

Blue tiles = (L - 2)(W- 2)

b) How many white tiles are needed for this? Show how you figured this

out.

If the number of white tiles were written as 2L + 2W, the four corner

pieces are double counted, so four must be subtracted:

White tiles = 2L + 2W — 4
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Cutting

Ifyou take a sheet of notebook paper and cut it in half and stack the pieces and

then cut in half again and stack, and then in half again and stack, each cut

gives smaller pieces but a thicker pile ofpaper.
 

  

 

   

Figure 61: Cutting Graphic

At the start, before any cuts, there is one sheet ofpaper. After one cut, stack the

pieces. The stack is now 2 sheets thick. After 2 cuts and stacking, the pile is 4

sheets thick.

1. Describe what happens after 3 cuts. How many pieces ofpaper do you

have in the pile?

A table that gives the number of sheets of paper in a stack after each cut

could be used to organize and display the data. First, the data that is

given in the problem is put into Table 26.

Table 26: Cut Number and Sheets of Paper

in Solution of Cutting

 

 

 

 

 

Cut Sheets of

Number Paper

0 1

1 2

2 4

3 ?    
 

It appears in the table that the data is doubling from the previous term.

The number of sheets after 1 cut is double the number of sheets after 0

cuts. 2 is double the previous term of 1. Likewise, the number of sheets

after 2 cuts is double the number of sheets after 1 cut, or 4 is double the

previous term of 2. So, to find the number of sheets after 3 cuts, it would
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be double the number of sheets after 2 cuts, or 8 sheets of paper in the

stack after 3 cuts.

a) How many sheets ofpaper thick would the paper pile be after 4 cuts? 5

cuts? 10 cuts? 20 cuts? n cuts? Explain how you figured this out.

From here the pattern can be extended to find the number of sheets

after 4, 5, and 10 cuts. It seems rather cumbersome to complete the table

to find 20, so first search for a pattern in Table 27 to find n.

Table 27: Cut Number and Sheets of Paper in Cutting solution

up to 10 cuts

  

  

  

  

  

  

    
 

Cut Sheets of Cut Sheets of

Number Paper Number Paper

0 1 6 64

1 2 7 128

2 4 8 256

3 8 9 512

4 16 10 1024

5 32    
To find each of the answers, multiply the previous term by 2, so the

table can be rewritten as Table 28:
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Table 28: Cutting solution with exponential notation

 

 

 

 

 

 

 

 

 

 

 

     

Cut Sheets of Doubling Exponential

Number Paper Notation Notation

0 1 1 20

1 2 1x2=2 2:21

2 4 2x2=4 2x2=22

3 8 4x2=8 2x2x2=23

4 16 8x2=16 2x2x2x2=24

5 32 16x2=32 2x2x2x2x2=25

6 64 32x2=64 2x...x2=26

7 128 64x2=128 2x...x2=27

8 256 128x2=256 2x...x2=28

9 512 256x2=512 2x...x2=29

10 1024 512x2= 1024 2x x2=210  
The answer to the questions are displayed in Table 29:

Table 29: Cut Number and Sheets of Paper in

Cutting solution for 4, 5, 10, 20, and n cuts

 

 

 

 

 

 

   

Cut Sheets of

Number Paper

4 16

5 32

10 210 = 1,024

20 220: 1,048,576

n 2n

 

b) For ordinary copier paper it takes about 250 sheets to make a pile 1

inch high. How thick (in inches) would a stack starting with one sheet

ofpaper be after 4 cuts? 5 cuts? 10 cuts? It cuts? Explain how you

figured this out.

Since it takes 250 sheets to make 1 inch, after 4 cuts the paper stack

would be 16 + 250 = 0.064 inches. The answers to the specific cases

asked about in this question are displayed in Table 30.
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Table 30: Cut Number and Inches Thick in

Cutting solution

 

 

 

 

 

Cut Inches

Number Thick

4 16 + 250 = 0.064

5 32 + 250 = 0.128

10 1,024 + 250 = 4.096

n 2" + 250   
 

c) How many cuts would you need to get a pile that is 1 foot thick?

To have a stack one foot thick, that would be 12 inches, or

12 x 250 = 3,000 sheets thick. After 10 cuts it would be 1,024 sheets

thick. By examining the table, we see that after 11 cuts, it would be

double that or 2,048 sheets. 12 cuts would produce a stack 4,096 sheets

thick. So it would not be until 12 cuts that the stack was at least one

foot thick.

Suppose the original piece of cut paper has an area of 32 cm2.

a) What is the area of each piece formed after 2 cuts? 3 cuts? 10 cuts? It

cuts? Show how you figured this out.

The area after 2 cuts would be 32 + 4 = 8 cm2 since the sheet of paper is

cut into 4 equal pieces after 2 cuts. The answers to the specific cases

asked about in this question are displayed in Table 31.

Table 31: Cut Number and Area in Cutting solution

 

 

 

 

 

   

Cut Area

Number

2 32 + 4 = 8 cm2

3 32 + 8 = 4 cm2

10 32 + 1,024 = 0.03125 cm2

n 32 -:— 2"
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b) After how many cuts would you get a piece that is 1 cm2.

It would be when the sheet of paper was cut into 32 equal pieces. By

examining the table earlier, we can see that this is after 5 cuts.

32+25=32+32=1cm2.

Dominoes

Students interpreted this problem in two different ways. The first,

CASE 1, was to count the 0-1 and 1-0 domino as one unique domino. In

CASE 2, students counted 0-1 and 1-0 as two distinct dominoes. Since both

solutions follow in my analysis of students’ work I present both alternatives

in this section.

Dominoes are spotted tiles used in a board game. A regulation domino tile is a

black rectangle, split into square halves. On each half of one side there are

from 0 to 6 white spots. The other side is blank. For example, three different

domino faces are shown below.

 

Figure 62: Dominoes Graphic

CASE 1: 0—1 and 1-0 as one unique domino

1. a) Sketch all possible domino faces ifyour set is made up of dominoes

with from 0 to 2 white spots.

The sketch of the dominoes with from 0 to 2 white spots is represented

in Figure 63.
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Figure 63: Sketch of Dominoes with 0-2 Spots—Case l

b) How many different domino faces are there in a set made up of

dominoes with from 0 to 3 white spots on each half of the domino?

The dominoes with from O to 3 white spots would include the six

dominoes with from 0 to 2 (above) plus the following 4 dominoes in

Figure 64.

WW
  

 E
H

      

Figure 64: Additional Dominoes with 3 Spots

a) How many domino faces are possible if a set is made up of dominoes

with from 0 to 2 white spots?

Counting the dominoes drawn in question 1 a, above, there are 6

dominoes with from 0 to 2 spots.

b) 0 to 3 white spots?

To find the dominoes with 3 spots add the four dominoes sketched in

question 1 b, to the set of six dominoes with up to 2 white spots. There

are 10 dominoes possible with from 0 to 3 spots.

231



c) 0 to 6 white spots?

The dominoes possible with from O to 6 white spots would be 28. For

each set of dominoes add one more than the maximum number of spots

to the previous set of dominoes. To find the number of dominoes with up

to 3 spots add 4 for the dominoes 0-3, 1-3, 2-3, and 3-3. To find the

dominoes with up to 4 spots, add 5: 0-4, 1-4, 2-4, 3-4, and 4-4 to the 10

dominoes with up to 3 spots. This is illustrated in Table 32.

Table 32: Maximum Spots and Possible Dominoes

 

 

 

 

 

 

   

Maximum Dominoes

Spots Possible

2 6

3 6 + 4 = 10

4 10 + 5 = 15

5 15 + 6 = 21

6 21 + 7 = 28
 

d) 0 to n white spots?

To find the number of dominoes with up to n white spots, consider the

triangular array in Figure 65 sketched for up to 2 spots:

00

0-1 1-1

0-2 1-2 2-2

Figure 65: Triangular Array of Dominoes with up to 2 Spots

This array can be placed in the rectangle that has dimensions 3 by 4

illustrated in Figure 66.
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0-0
 

0-1|1-1
 

0-2| 1-2  2-2  
Figure 66: Triangular Array in 3 by 4 rectangle

The number of dominoes is one half the area of the rectangle,

2(3 x 4) =%(12) = 6 dominoes. This arrangement can be extended for any

n in a rectangle of dimensions (n+ 1) by (n+2) illustrated in Figure 67.

 

 

O-OI
 

0-1 1-1
 

 

   0.3 II  n-Il»

 

Figure 67: Triangular Array in (n+1) by (n+2) rectangle

The number of dominoes is still one half the area of the rectangle,

1/2 (n+ 1)(n+2)

This can be verified using the diagrams sketched above.

CASE 2: 0-1 and 1-0 counted as two distinct dominoes

1. a) Sketch all possible domino faces ifyour set is made up of dominoes

with from 0 to 2 white spots.

The sketch of the dominoes with from 0 to 2 white follows in Figure 68.
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How do you know what you wrote above is true?
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Figure 68: Sketch of Dominoes with 0-2 Spots—Case 2

b) How many different domino faces are there in a set made up of

dominoes with from 0 to 3 white spots on each half of the domino?

The dominoes with from 0 to 3 white spots are sketched below in

Figure 69.
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Figure 69: Sketch of Dominoes with 0-3 Spots—Case 2

2. a) How many domino faces are possible if a set is made up of dominoes

with from 0 to 2 white spots?

Counting the dominoes drawn in question 1 a, above, there are 9

dominoes with from 0 to 2 spots.
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b) 0 to 3 white spots?

Count the 16 dominoes drawn in question 1 b.

c) 0 to 6 white spots?

There are 49 dominoes possible with from 0 to 6 white spots. For each

set of dominoes add one more than the maximum number of spots to

include the zero. Then this number should be squared. So, for 6, you

take 7-squared to get 49. This is illustrated in Table 33.

Table 33: Maximum Spots and Possible Dominoes

in Dominoes Case 2 solution

 

 

 

 

 

 

Maximum Dominoes

Spots Possible

2 32 = 9

3 42 = 16

4 52 = 25

5 62 = 36

6 72 = 49    
d) 0 to n white spots?

Following the description above, this can be generalized for n, (n+1)2

How do you know what you wrote above is true?

We can show why you need to add one with the dominoes sketched with

0 to 2 white spots. You need to add one, to include the value for zero.
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Toothpicks

 

  

  

    

             
    

Figure 1 Figure 2 Figure 3 Figure 4

Figure 70: Toothpicks Graphic

1. Extending the pattern, what is the perimeter ofFigure 5? Show or

explain how you figured this out.

A sketch of figure 5 is shown in Figure 71, The perimeter can be counted

from the sketch as 20 toothpicks.

 

Figure 71: Toothpicks Figure 5

2. How many toothpicks are needed to make Figure 6? Show or explain

how you figured this out.

Figure 6 is sketched in Figure 72, 54 total toothpicks can be counted.

 

Figure 72: Toothpicks Figure 6
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Write a formula that you could use to find the perimeter of any Figure

N. Tell what your variables represent. Explain how you figured this out.

The perimeter toothpicks can be found from counting the first four

shapes and recording that data in Table 34.

Table 34: Figure and Perimeter in Toothpicks solution

 

 

 

 

 

 

Figure Perimeter

1 4

2 8

3 12

4 16

5 20    
 

The table has a constant increase of 4, so this is a linear relationship.

The table can be extended back to find a perimeter of 0 for figure 0.

Perimeter = 4n, where n is the figure number.

Write a formula that you could use to find the total number of

toothpicks needed to make of any Figure N. Tell what your variables

represent. Explain how you figured this out.

Table 35 shows the total number of toothpicks.

Table 35: Figure and Total Toothpicks in Toothpicks solution

 

Figure Total

Toothpicks

4

10

18

28

40

54

 

 

 

 

 

    6
5
0
1
4
:
m
e
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Figure three is used to demonstrate how to write the rule. First, count

all of the horizontal toothpicks that are marked on the shape below in

 

 

Figure73.

-/—1

7'1'2

I‘I‘I‘3

:iis     

Figure 73: Horizontal Toothpicks

There are 1 + 2 + 3 + 3 toothpicks. Likewise the vertical toothpicks can

be counted. They are marked in Figure 74.
 

 

     

‘\ ‘x
r-——-

)k ‘x ‘k

‘\ ‘N ‘\ ‘

l 2 3 3

Figure 74: Vertical Toothpicks

There are 1 + 2 + 3 + 3 vertical toothpicks. The total number of

toothpicks is the sum of the horizontal and vertical toothpicks or

(1+2+2+3) + (1+2+3+3) which is 18 toothpicks. This can be re-written as

2(3) + 2(1+2+3) and generalized with n: 2n + 2(1+2+...+n).

1 + 2 + 3 + + n can be rewritten by pairing off the sums:

_ n+1

n+1

l u u
1 + 2 + 3 + + n-1 + n, this is g(nfl)

 

So the total number of toothpicks can be rewritten 2n + 26 (n+1)). In

simplified terms the total number of toothpicks = n2 + 3n.
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