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ABSTRACT

AUTOMATIC IDENTITY VERIFICATION USING FACES,

FINGERPRINTS AND SPEECH

By

Yatz'n S. Kulkarm'

In the age of Internet communication and commerce, ensuring the security of

transactions is a major concern. To ensure the total security of the billions of trans-

actions taking place everyday, it is necessary to prevent the information being ex-

changed from being intercepted during transmission and to establish the identity of

the sender and/or the receiver. While increasingly powerful and sophisticated data

encryption algorithms are being made available to avoid the interception of informa-

tion, age-old techniques of user-name and password are still the predominant means

of establishing the identity of the sender and/or the receiver. Biometrics is a tech-

nique that is capable of establishing an individual’s identity with a high degree of

confidence on the basis of his/her physiological and/or behavioral characteristic. Of

the various biometric techniques available [1], we are mainly interested in faces, fin-

gerprints, and speech. Recognition by face is probably the most common method that

humans use to establish a person’s identity. Fingerprint verification has proved to

be the most reliable way of verifying the identity of a person and is by far the most
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mature biometric technique. Speaker verification, wherein a person’s voice patterns

are used to authenticate his/her identity claim, has been shown to be readily accepted

and widely deployed biometric technique. In this thesis we have designed and imple-

mented an automatic identity verification system that authenticates an individual’s

identity claim by integrating the above three biometric techniques through a robust

decision fusion scheme. Our goal is to improve the performance of the integrated

system, in terms of false accept and false reject rates, beyond those possible by using

each of the techniques separately, while still meeting the response time requirements

so as to make a real time implementation possible.
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Chapter 1

Introduction

Today, the Internet is changing the very nature of business. More and more routine

business transactions such as exchange of important documents, transfer of funds, etc.

are being conducted electronically. While the companies, institutions, and the people

involved in these transaction stand to benefit from the speed and efficiency that the

Internet has to offer, it has also made it possible for hi-tech computer criminals to

gain access to sensitive information and monetary resources. Hence, with the growing

volume of Internet commerce, there is a growing need for ensuring the security of the

billions of electronic transactions taking place.

To ensure fool proof security, it is necessary to establish the identity of the receiver

and/or the sender and to ensure that the information is not intercepted during transit.

Currently, it is possible to ensure that the information is not intercepted during transit

by means of powerful and sophisticated data encryption programs. However, the age-

old method of requesting a user-name and a password is still the only means of

establishing the identity of the sender and/or the receiver.
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Since the user-name and password are something that one knows, this method

of establishing a person’s identity is called a knowledge-based method. The other

traditional method, which is very popular in point-Of-access control applications, relies

on the user supplying a token such as a passport, a driver’s license, etc., as proof of

identity and is correspondingly called a token-based method.

Automatic personal identity authentication systems based on these two methods

have been deployed on a large scale during the past few decades and have gained

immense popularity. The most popular system being the combination of a magnetic

stripe card and a personal identification number (PIN) that is still being used at

millions of ATM machines world wide [1]. The popularity of these methods can be

attributed to their simplicity, ease of use, the ability to give absolute yes/no answers

and the ease of integrating them into the existing systems. However, their simplicity

also makes them easily susceptible to fraud. Passwords and PINS can be stolen,

misplaced or forgotten, and identity cards may be easily forged. Furthermore, since

the proof of identity is something that one knows or one has, it is not possible to

distinguish between an authorized user and an impostor who has fraudulently gained

access to the relevant knowledge and/or token.

1.1 An Ideal Personal Identity Verification System

The pertinent question today then, is “Can we have an automatic personal identity

verification system that is easy to use, 100% accurate and impossible to circumvent?”

The answer to this question lies in understanding how the three requirements can
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be satisfied. By “easy to use” we mean that the user is not required to memorize a

cumbersome password or a personal identification number and neither is he required

to carry around a magnetic stripe card or any other proof of identity. By “100% ac-

curate” we imply that the system never allows an impostor to gain access and neither

does it ever reject a genuine individual. And finally, by “impossible to circumvent”

we mean that an impostor can by no means fool the system into recognizing him/her

as a genuine individual.

Unfortunately such a system is still, at best, an elusive goal.

1.2 Biometrics

As humans, we identify a person by his/her face and/or voice. When a more reliable

proof of identity is required, use of fingerprints is preferred. Thus, we rely on the

variations in various physiological and behavioral characteristics amongst different

people for identification. Biometrics is a collection of technologies that attempts

to measure these variations so as to make automatic personal identification, using

physiological and behavioral characteristics, possible. It differs from knowledge-based

and token-based personal identification systems, in that, it makes use of something

that one is or one does to identify that individual. Since it is impossible to steal a

physiological characteristic from an individual and difficult to imitate an individual’s

behavioral characteristic, biometrics is inherently better suited for automatic personal

identification and/or identity authentication.
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1.3 Requirements of a Biometric Characteristic

Based on the definition of biometrics given above, it is easy to see that not all human

physiological and behavioral characteristics can be used as biometrics. The follow-

ing requirements must be satisfied by a physiological and behavioral characteristic

to be useful as a biometric [2]: (i) universality, which means that every individual

must posses that characteristic, (ii) uniqueness, which implies that no two individuals

should be identical with respect to that characteristic, (iii) permanence, which states

that the characteristic must not change beyond reasonable limits over a period of time

and neither must it be easily changeable by artificial means, and (iv) collectability,

which requires that the characteristic must be suitable for being measured quantita-

tively. Additional constraints are imposed on the characteristics due to the need for

a biometric system to be of practical use. These constraints are: (i) performance,

which refers to the resources required for constructing the biometric system, the time

required for the system to measure the biometric, process it and make a decision, the

identification accuracy that can be achieved using that biometric, and the robustness

of the system to variations in operating environment, (ii) acceptability, which indi-

cates the ease of use and the willingness of the intended users towards using it on a

regular basis, and (iii) circumvention, which indicates the possibility of the system

being fooled by an impostor attempting to gain access by fraudulent means.
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1.4 Biometric Technologies Prevalent Today

To date, nine biometrics namely face, fingerprints, speech, iris, retinal blood vessels

pattern, hand geometry, hand vein pattern, facial thermograms, and signature have

proved to be quite successful and a number of practical systems have also been built

using these biometrics. Face, fingerprints, iris, retinal patterns, hand geometry, hand

vein patterns, and facial thermograms are physiological characteristics whereas sig-

nature is a behavioral characteristic. Speech is a physiological as well as behavioral

characteristic. Typically, biometrics that are of a physiological nature are preferred

over those of a behavioral nature, since they exhibit smaller intro-class variations.

Furthermore, systems based on physiological biometrics are more difficult to circum-

vent than those based on behavioral biometrics. Figure 1.1 depicts examples of each

of the above nine biometrics.

Each of the nine biometrics, described above, satisfy the seven requirements stated

in Section 1.3 to varying degrees. Table 1.1 shows a brief comparison of the nine bio-

metric techniques along the seven requirements [2]. Depending upon the intended

application, the usefulness of a specific biometric technique varies. NO single biomet-

ric technique can outperform all the other techniques in all application domains. For

example, although fingerprint and iris-based biometric techniques perform much bet-

ter than speech-based systems, in terms of accuracy, in telephony based applications,

speaker verification is the most economical choice.

Besides the techniques mentioned above, a number of other biometric techniques

have been investigated or are currently under study, which include ear shape, gait,
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Figure 1.1: Examples of nine different biometric technologies.

keystroke dynamics, body odor, acoustic emission of writing lip shape, DNA, etc. Al-

though each of these techniques has its own advantages, so far, none of them can

achieve an accuracy that is comparable to the nine different techniques mentioned

above or can be implemented fully automatically. In fact, they do not have a strong

potential to become a valid biometric technique to be used widely in the near future.
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1.5 A Biometric based Personal Identity Authen-

tication System

Having studied the various biometric technologies, let us now address the issue of

designing an automatic personal identity authentication system. A generic automatic

personal identity authentication system based on biometrics is depicted in Figure

1.2. Clearly, before an individual can use the system, he/she must be enrolled in the

system. This is similar, for example, to going to a bank and opening a bank account so

that you may receive an ATM card, which would then allow you to withdraw money

anytime at an ATM machine. Consequently, any biometric system must consist of

at-least two modules: (i) enrollment module and (ii) verification module. From an

engineering perspective, the enrollment module must be able to (i) obtain a raw digital

representation of the desired biometric, (ii) process the raw digital representation by

means of a feature extractor so as to generate a compact but expressive representation,

referred to as a template, and (iii) store the template in a central database or a

magnetic stripe card or a smart card to be issued to the user. The verification

module is to be used at the point-of-access and it should be able to capture the same

biometric characteristic as the enrollment module, convert it into the same format as

the template and finally compare the two so as to verify the identity claimed by the

individual.

Apart from these two essential modules, a practical automatic personal identity

verification system based on biometrics may also incorporate auxiliary modules such

as a module for database management (in case a central database is being used),



[dainty Claim

(e4, User ID)

Flee

I III nllnh nl \IINIIII‘

Fad-I'l‘bermognms

Biometric

Read r

fingerprints -—]

IIIndGeomeu-y —]

\ I I lIIkJIlIIIl \Ilulllli  Refill-ISM—

Feature

Extractor

 

SIM" — 
Figure 1.2: A generic biometric identity verification system.

modules for doing off-line training, etc. Such modules may not be directly related

to the biometric technology being used, but are required nevertheless to make a

biometric system practical to use on a daily basis.

1.5.1 Operational Mode

There are two possible ways in which the identity of an individual can be established:

(2') verification, wherein the individual submits a claim of identity and the system

verifies the validity of the claim, and (ii) identification, wherein the individual does

not make any prior claim of identity and the system assigns an identity to the individ-

ual. In the verification mode, the system makes an one-to-one comparison between

the input representation and the template corresponding to the claimed identity and

makes a decision as to accept or reject the claim. In the identification mode, the sys-

tem makes one—to-many comparisons between the input representation and the entire
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template database. A measure of similarity or dissimilarity is computed for each com-

parison made and then the individual is assigned the identity of the template that

resulted in the highest (lowest) value of the similarity (dissimilarity) measure.

1.5.2 Accuracy

Given a biometric system that is designed to operate either in the verification mode

or the identification mode, we can divide the entire population of probable users

into two sets: (i) genuine individuals, users enrolled in the system and authorized

to access the resources being protected by the system, and (ii) impostors, users not

enrolled in the system and not authorized to access the resources being protected by

the system, but wanting to do so by fraudulent means. The biometric system either

accepts or identifies a user as a genuine individual or rejects a user as an impostor.

Consequently, the following four situations may occur: (i) a genuine individual is

accepted, (ii) a genuine individual is rejected, (iii) an impostor is accepted, and (iv)

an impostor is rejected. Clearly, situations (i) and (iv) are correct system responses

whereas situations (ii) and (iii) are erroneous system responses. It is interesting to

note that situations (ii) and (iii) never occur in a knowledge-based or token-based

identification system. A PIN or a password is either correct or incorrect. However, all

of the biometric characteristics studied above exhibit a significant amount of intra-

class variations. Due to these variations, a biometric system cannot make an absolute

yes or no decision, but rather it associates a confidence level with the decision, which

may be represented as a probability value. Therefore, the performance of a biometric
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system is measured in terms of two error rates, (i) false acceptance rate (FAR), the

probability that an impostor is accepted as a genuine individual, and (ii) false reject

rate (FRR), the probability that a genuine individual is rejected as an impostor. These

two error rates can be evaluated empirically for a given biometric system by generating

a genuine distribution and an impostor distribution of the Similarity (dissimilarity)

measure used. It is easy to see that FAR and FRR are dual of each other. Ideally,

we would like both of them to be zero so that an impostor is never accepted and a

genuine individual is never rejected. However in practical systems, a low FAR results

in a high FRR and vice versa. Depending upon the intended domain of application,

it may be desirable to either have a low FAR and a tolerable FRR, or, have a low

FRR and an admissible FAR.

In some cases the performance of a biometric system is also measured in terms of

the authentic acceptance rate, which is given as (1 — FAR), and the equal error rate,

which is defined as the error rate for which (FAR = FRR).

1.6 Combination of multiple biometrics

The individual use of different biometric characteristics result in systems that vary

widely in terms of FAR and FRR. At one extreme we have biometric characteristics

such as face and dynamic signature that result in a system with low FRR but a high

FAR, while at the other extreme, systems based on fingerprints, retinal scans and iris

have a very low FAR but an unacceptably high FRR. The primary goal of combining

multiple biometrics is, then, to improve the FAR and the FRR of the integrated
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system while meeting the response time requirement of a real time system. A number

of researchers have proposed automatic personal identification and/or verification

systems that combine two or more different biometrics.

Brunelli and Falavigna [5] have proposed a system that integrates face recognition

and speaker recognition. They have decomposed the face recognition and speaker

recognition subsystems into three and two single feature classifiers, respectively. Var-

ious methods of combining the scores resulting from these five classifiers are then

studied. They report a authentic acceptance rate of 98% for the integrated system

as opposed to the 88% and 91% authentic acceptance rates provided by the speaker

and face recognition systems, respectively.

Dieckmann et al. [6] have prOposed the personal authentication system, SESAM,

that integrates three different biometric cues from two different data sources: one

static cue derived from an image of the face and two dynamic cues, the spectrum of

the sound and the lip motion of a person saying his/her name in front of the system.

The results of the individual classifiers are combined using a 2-from-3 approach. They

report a FRR of 6.6% and FAR of 0.4% for the integrated identification system as

compared to a FRR of 19.7%, 12.5% and 18.2% and a FAR of 2.1%, 1.3% and 7.2%

for speech, lip movement and face image systems, respectively.

Duc et al. [7] also propose a system that integrates speech-based authentication

and face-based authentication. However, they model the joint distributions of the

speech and face matching scores for genuine individuals and impostors as Gaussian

distributions and then use a maximum a posteriori (MAP) classifier to make the ac-

cept/reject decision. They report a FAR of 0.54% and FRR of 0.0% for the integrated
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system as opposed to a FAR of 3.6% and 6.7% and a FRR of 7.4% and 0.0% for the

face and the speech systems, respectively.

Hong and Jain [8] have proposed an automatic personal identification system

that integrates faces and fingerprints. First, the impostor distributions for faces and

fingerprints are estimated from empirical data. The system then attempts to minimize

FRR while holding FAR constant at a desired value. This is achieved by varying the

decision threshold for the fingerprint system in accordance with the face matching

score and the desired FAR. For a FAR of 0.001%, they report a FRR of 9.8% for the

integrated system as opposed to a FRR of 64.1% for the face system and a FRR of

14.9% for the fingerprint system.

The gain in performance reported in all the above cases is impressive enough to

warrant further research into this topic. We have chosen to integrate face, fingerprint,

and speech for the following reasons:

1. Popularity: Face, fingerprint, and speech are the most popular and widely ac-

cepted biometrics today. These biometrics are accepted in a court of law as

valid proofs of identity.

2. Cost: Speech is the most economical biometric and can be most easily integrated

into several existing systems. The cost of the additional resources required for

acquiring face and fingerprint is rapidly decreasing. Thus, amongst the nine

biometrics discussed in Section 1.4, face, fingerprint, and speech Offer the most

cost efficient solution.
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1 .7 Problem Statement

Our objective in this thesis is to design and implement an automatic identity verifica-

tion system that integrates face, fingerprint, and speaker verification modules through

a decision fusion scheme with an objective of achieving a lower FAR and FRR than

what is possible using these three individual biometrics.

1.8 Intended use and Constraints

The resulting automatic verification system is to be used in a small to medium Sized

establishment wherein the number of enrolled individuals is of the order of a few

thousands. We further assume the users to be cooperative. Finally, the system is

intended for use in a controlled environment, wherein illumination, background, and

ambient noise are within specified limits.

1.9 Contributions

This thesis has resulted in the following contributions: (i) a robust decision fusion

scheme that enables the integration of face, fingerprint, and Speech for verification,

and (ii) the design and implementation of a fully automatic personal identity verifi-

cation system based on the proposed decision fusion scheme.

The face recognition and fingerprint verification modules were obtained as stand-

alone applications for the Unix platform [8] and were ported to the Windows NT

platform and integrated with a speaker verification module. The Speaker verification
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module was developed with the aid of the HTK toolkit [9] from EntrOpic Research

Laboratories [10]. The system itself has evolved from a previously developed system

by the author, called F2ID [11].

1.10 Overview of the thesis

We begin in Chapter 2 with a study of face verification techniques, followed by a study

of fingerprint matching techniques in Chapter 3 and Speaker verification techniques in

Chapter 4. Then in Chapter 5 we address the decision fusion schemes that integrate

face, fingerprint, and speech so as to improve the verification accuracy. The design

of the integrated system and some implementation details are discussed at length in

Chapter 6, followed by the experimental results in Chapter 7. Finally, we conclude in

Chapter 8 by addressing the limitations of our system and outline the future research

topics in this field.

1.11 Summary

Knowledge—based and token-based identity authentication systems are no longer se-

cure in our modern electronic society. An identity authentication system based on

biometrics overcomes the limitations of a knowledge-based or token-based system and

holds the key to the security of various systems in the future. Furthermore, systems

based on multiple biometrics are able to improve the accuracy of the system beyond

that of a system based on a single biometric. Such multimodal biometric systems
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are also more robust to fraud. The goal of this thesis is to design and implement a

fully automatic personal identity authentication system that uses three biometrics,

namely, face, fingerprint, and speech and demonstrate that our proposed decision

fusion scheme improves the performance of the system beyond that of the systems

based on the individual biometrics.
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Chapter 2

Face Verification

Face, as a biometric, has been primarily used in identification systems since its use

allows for fast indexing into a large database. Its use as a biometric in a verification

system can be considered as a logical extension of the principles underlying its use in

identification system. Towards this end, we shall first discuss an identification system

based on faces and then extend our discussion to face-based verification. The block

diagram of a face-based verification system is depicted in Figure 2.1.

The face recognition problem can be formally stated as follows: “Given still or

video images of a scene, identify one or more persons in the scene using a stored

database of faces” [12]. In order to solve the above problem, it is necessary to solve

the following two sub-problems: (i) detect the presence of one or more human faces in

the given image or sequence of images, and segment the faces from the background,

and (ii) identify the individuals, by matching a general unconstrained view of their

face against a database of faces. The lack of a face recognition system, that can

operate in an unconstrained environment, can be attributed to these two challenging

17
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sub-problems. The problem of face detection and segmentation has received a consid-

erable amount of attention [13, 14, 15, 16, 17, 18, 19, 20]. Although the performance

of these systems in terms of detection rate and false alarm rate is acceptable, the de-

tection time is far too high to be used in a real-time biometric system. Furthermore,

face recognition from a general view remains, to this date, an open research prob-

lem. Hence, in the context of a real-time automatic personal identification system,

face recognition is generally performed using static, controlled and well illuminated

frontal facial images captured against a plain background. Such constraints, although

unrealistic in a practical sense, allow for an efficient and fairly accurate solution to

the face recognition problem. Let us now discuss the details of a face recognition

system.
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Figure 2.1: The architecture of a face—based verification system.
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2.1 Face Detection

The choice of a suitable face detection algorithm is dependent upon the intended

operational environment. In our system, the facial images are obtained in a controlled

laboratory environment under sufficient illumination and a plain background. Figure

2.2 shows a typical example of a facial image obtained using our imaging setup. Thus,

we are able to employ a very simple edge-detection based algorithm in order to locate

the face and segment it from the background. The algorithm consists of the following

steps:

 

Figure 2.2: A typical facial image obtained using our imaging setup.

1. lie-sampling: The original image is 640x480 pixels in size. The size of the face

portion in this image is approximately 320x360 pixels. The computational de-

mand on the face recognition system for images of this size would render it

incapable of operating in real time. Consequently, the original image is down-

sampled to a size of 160x120 pixels. This results in a face sub-image of approx-

imately 80x90 pixels.

1
0

. Smoothing: The reduced image is smoothed using a Gaussian filter so as to

retain the strong edges and eliminate the weak edges in the image.
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3. Edge Detection: Two edge operators, one to detect the vertical edges and one

to detect the horizontal edges are then applied to the smoothed image and the

resulting images are thresholded to obtain two binary edge images. The idea

is to detect the left and the right extents of the face by using the vertical edge

image and the top of the head using the horizontal edge image. The chin cannot

be detected in this manner since it does not result in a significant edge in the

horizontal edge image.

4. Face detection and segmentation: Two edge distributions (number of edge points

per bin) are now computed: one along rows on the horizontal edge image and

other along columns on the vertical edge image. The bin size is determined

empirically for the given imaging setup (for our imaging setup bin size is 2

along rows as well as columns). Peaks in the two distributions are indicative of

the presence of strong edges in the region spanned by the bins in which the peaks

occur. To locate the left and the right bounds of the face, edge distribution for

the vertical edge image is examined sequentially from left to right. Similarly, the

top of the head is located by examining the edge distribution for the horizontal

edge image. The location of the center of the face is then hypothesized by

computing the centroid of all the edge pixels that lie within the left and the

right bounds; an 80x90 window placed at the estimated center is then used to

crOp the face image. Finally, the cropped image is normalized to have a certain

mean and standard deviation.
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Figure 2.3 illustrates the various stages in our algorithm. Although this simple

method is highly susceptible to artifacts in the image (such as vertical stripes on

the clothing of the individual), it works rather well for our imaging setup and for

cooperative users. In addition, we shall see in Chapter 6, that in the presence of

feedback during the data acquisition process, the above method can be used very

effectively for accurately extracting the face.

Resampling

(160X120) Gaussian Smoothing Veritcal Edge Image

    
  

Figure 2.3: Our face image segmentation algorithm.

2.2 Face Recognition

Face is a natural choice of a physiological characteristic for use as a biometric and in

fact, it is the most routinely used characteristic by humans to identify individuals.

Consequently, a considerable amount of research has been devoted towards under-

standing the recognition process used by humans and machine vision systems that



DH If

due I

nique

space

will fr):

sional :

each or.

between

Space an

of the (in

such as p1

glilar vain

SO as [O I'p'

  

   

  

   

 

infer-Clam

A rem;

ill] elast;

”ISUlts.
tl.

sifier. “Tit



22

require face image [21, 12, 22, 23, 24]. Numerous studies in psychophysics and neuro-

physiological literature have suggested that humans make use of facial features such

as hair, eyes, nose, mouth, etc. to identify faces [12]. Based on these studies, early

research in automatic face recognition systems focused on developing algorithms that

attempted to measure the various facial features and represent a facial image based

on these measurements [24]. However, these efforts met with limited success primarily

due to the enormous computational complexity of the tasks involved. Popular tech-

niques in face recognition now treat a facial image as a point in a high dimensional

space [21, 23]. It is argued that the facial images belonging to a specific individual

will form a set of points that are clustered in a compact region in this high dimen-

sional space and clusters belonging to different individuals are well separated from

each other. The recognition task involves: (i) computing a suitable distance metric

between a given test image and a set of reference images in the high dimensional

space and (ii) assigning the identity of the reference image with the smallest value

of the chosen distance metric to the test image. Dimensionality reduction techniques

such as principal component analysis (PCA), linear discriminant analysis (LDA), sin-

gular value decomposition (SVD), etc. reduce the dimensionality of the feature space

so as to reduce the computational complexity of the problem while maintaining the

inter-class separation [21, 23].

A recent study [22] of three well-known face recognition techniques, (i) eigenface,

(ii) elastic matching, and (iii) neural nets, has shown by analysis and experimental

results, that “the eigenface algorithm, which is essentially a minimum distance clas-

sifier, works well when lighting variation is small”. Our decision to use the eigenface
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approach for face recognition is based on the following reasons: (i) in the context of

personal identification, control can be exerted over the lighting conditions, the back-

ground and the pose of the subject, (ii) a very compact template can be generated

for each user by using the eigenface approach, (iii) efficient database retrieval tech-

niques can be employed to retrieve the templates quickly [23], and (iv) the eigenface

approach has been shown to be more accurate than the attribute-based approach [24].

Face recognition using the eigenface-based approach consists of the following two

stages [21]: (i) training stage: given a set of input images, compute the eigenvalues and

eigenvectors of the covariance matrix of these images; retain the M eigenvectors cor-

responding to the M highest eigenvalues; project each face onto this M-dimensional

eigenspace so as to obtain an M-element feature vector for each face which then forms

the template for that face, and (ii) operational stage: given a test image, project it

onto the M-dimensional eigenspace, so as to obtain an M-element feature vector for

the test image; compute the Euclidean distance, in the M-dimensional eigenspace, be-

tween this feature vector and each of the templates in the database; use the l-nearest

neighbor decision rule to establish the identity of the test image.

The M eigenvectors (represented as a 2D image) corresponding to the M highest

eigenvalues resemble face images and hence the approach is termed as the eigenface

approach. Examples of the first nine eigenfaces for a particular set of input images

are depicted in Figure 2.4. We shall now discuss the mathematical details of the

eigenface approach.
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Figure 2.4: The first nine eigenfaces.

2.2.1 ’ITaining Stage

Given a face image, I(at, y), as an W xH array of pixel intensities, it can be represented

as a W x H-dimensional feature vector, by concatenating the rows of I (2:, y). For our

image size of 80 x 90 pixels, each face image maps to a point in the 7200—dimensional

feature space. Due to the inherent similarity between different face images, the dis-

tribution of face images in this high dimensional space will not be random. Conse-

quently, principal component analysis can be used to project this high dimensional
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feature space to a lower dimensional subspace, also known as the eigenspace.

Let us denote the set of training face images as 1‘1, 1‘2, - -- ,1“T, where T denotes

the number of images in the training set. The average face of the above set of images

is defined as

I T

The covariance matrix is then calculated as

C—1T\P\IJ'
“'51"; Tina

where, I!” = I), — ‘II.

The dimension of this covariance matrix is 7200 by 7200 and calculating the

eigenvalues and eigenvectors of a matrix of this size is “an intractable task” [21].

Furthermore, if the number of training images, T < 7200, there are only T — 1 rather

than 7200 meaningful eigenvectors (“The remaining eigenvectors will have associated

eigenvalues of zero” [21]). The 7200 eigenvectors are, therefore, computed by first

computing the eigenvectors of a T x T dimensional matrix, defined as

1 ,
E = TZt/nxrn.

n=1
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Let v1, v2, - - - ,vM denote the M eigenvectors of 2, corresponding to the M high-

est eigenvalues. The M eigenvectors of the covariance matrix C are then obtained

as

T

u,=Zv,n\Iln, 1:1,... ,M.

1121

The projection matrix is then given as u = (u1,u2, - ~ ,uM), and the training

vectors, \Ill, \Ilg, - -- ,\IIT, are then projected onto the M-dimensional eigenspace to

obtain the M-dimensional templates, (1)1, (1)2, - ~ ,<I>T, as

<I>n—u'\Iln, 7221, ,T

2.2.2 Operational Stage

Given a set of T templates, (1)1, (1)2, - .. ,<I>T, the mean face, \11, and the projection

matrix, 11, the operational stage takes a test face image, I‘, and projects it onto the

M-dimensional eigenspace as

II = u'(F— \I').

Next, a l-nearest neighbor classifier, operating in eigenspace, is used to establish
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the identity of the test face image. The distance between the test pattern, II, and a

template, <1)", defined as ”(I)” — II”, where [I o I] denotes L2 norm, is called Distance

From Feature Space (DFFS) [21].

Identity verification using face can be performed by simply computing the mini-

mum DFFS for the input image against the templates for the claimed identity, and

comparing this DFFS against a pre-determined threshold. The threshold can be

determined for a desired FAR or FRR by generating the impostor and genuine dis-

tributions for the DFFS for the given database of users.

2.3 Experimental Results in Literature

The eigenface method for identification has been tested by a number of researchers

on several different databases [21, 12, 22]. It is well known that the method works

best when the lighting and scale variations are small [21]. Consequently, for databases

that satisfy the above requirement (e.g., the MIT database), the reported performance

figures are as high as 97% correct classification, whereas for databases that do not

satisfy these constraints (e.g., the Weizmann and Olivetti databases), the reported

performance figures are around 80% correct classification. Zhang et al. [22] report a

66% correct classification rate for a database that was obtained by pooling together

the MIT, the Olivetti, the Weizmann and the Bern databases.
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2.4 Summary

Face recognition is a non-intrusive method for personal identification. It is widely

accepted by people as a safe biometric technique and has the potential to become

the most popular biometric technique. However, for face recognition to be useful in

practice, a number of constraints need to be imposed. As of today, face recognition

works best with static, controlled and well illuminated frontal facial images taken

against a plain background. Under such conditions, the face images can be easily seg-

mented from the background and the resulting intra-class variations are small. But

if such constraints are imposed then the system looses its user-friendliness. Further-

more, there is no conclusive evidence that facial images are a reliable proof of identity

and that systems based on face recognition can achieve an acceptable identification

accuracy.

Ideally, a face recognition system should be able to automatically detect the pres-

ence of a face in an image, segment the face, if one is present, and be able to identify

the face from a general view point. Research efforts to solve these difficult problems

have so far met with very limited success. We thus conclude that it is very difficult

if not impossible, to design an automatic personal identification system based on fa-

cial images alone, that is capable of achieving an acceptable degree of recognition

accuracy in a general and unconstrained environment.

In our system the eigenface technique for face recognition by Turk and Pentland

[21] is employed. We have further extended the recognition system so as to operate

it in the verification mode.



Chapter 3

Fingerprint Verification

A fingerprint is a pattern of ridges and furrows that are formed on the tips of the finger

due to the accumulation of dead and cornified cells. The individuality of a fingerprint

is completely defined by the local characteristics of the ridge pattern (minute details)

and their relationships. The process of fingerprint verification involves (i) fingerprint

image acquisition, (ii) the extraction and representation of the local ridge character-

istics and (iii) the matching of two ridge characteristic patterns so as to measure the

similarity/dissimilarity between them. A block diagram of a fingerprint verification

system is shown in Figure 3.1. We shall now discuss the details of the various steps

involved.

3.1 Fingerprint Image Acquisition

Fingerprint images can be acquired either in an ofi-line fashion, in which case they

are referred to as inked fingerprints or latent fingerprints, or they can be acquired

29
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Figure 3.1: Architecture of the fingerprint verification system.

in an online fashion, in which case they are referred to as live-scan fingerprints.

Although the inked method of fingerprint image acquisition is rather cumbersome and

slow, it is has been the standard technique for over a hundred years. Furthermore,

unavailability of direct feedback during the acquisition process makes it difficult to

control the quality of the acquired images. Finally, this method is unacceptable in

an automated verification system.

Live-scan fingerprints eliminate the intermediate step of getting an impression

on paper by obtaining a digital image of the fingerprint directly from the finger.

Thus, live-scan fingerprints are ideally suited for an automated verification system. A

number of sensing mechanisms can be used for the acquisition of live-scan fingerprint

images including (2') optical frustrated total internal reflection (FTIR), (ii) ultrasonic

total internal reflection, (2'2'2') optical total internal reflection of edge—lit holograms,

(iv) thermal sensing of the temperature differential (across the ridges and valleys),
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(v) sensing of differential capacitance, and (vi) non-contact 3D scanning. A number

of live-scan fingerprint image acquisition devices based on the above techniques are

currently available in the market.

Live-scan fingerprints vary markedly from inked fingerprints in that they are typi-

cally obtained using the dabs method, wherein a finger is impressed on the acquisition

surface of a scanning device without rolling. Thus, a dabs live-scan fingerprint con-

sists only of the ridge structure that is in contact with the acquisition surface at

the time of acquisition. Although, such a fingerprint tends to have a smaller area of

valid ridge structure as opposed to an inked fingerprint, it has a smaller amount of

deformation than an inked fingerprint. Figure 3.2 shows examples of inked, latent

and live-scan fingerprints.

   
Figure 3.2: Different kinds of fingerprints: (a) inked, (b) latent, and (c) live-scan.

Of the various methods of obtaining live-scan fingerprints described above, the

most popular techniques is based on optical frustrated total internal reflection (FTIR)

concept. When a finger is placed on one side of a glass platen (prism), the ridges

on the fingertip are in contact with the glass surface, whereas the furrows are not in
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contact with the glass surface. A laser light source illuminates the glass at a certain

angle. The points on the glass surface which are in contact with the ridges cause

the incident light to be scattered randomly, whereas at the other points on the glass

surface, the incident light suffers total internal reflection. The light reflected from the

glass is captured by a CCD camera, resulting in a corresponding fingerprint image on

the imaging plane of the CCD. Figure 3.3 shows the FTIR fingerprint scanner used

in our verification system.

 

Figure 3.3: The live-scan fingerprint scanner from Digital Biometrics.

3.2 Feature Extraction

The role of feature extraction is to derive a set of representative features from the input

image, that satisfy the following requirements: (i) retain the discriminating power of

the fingerprint image, (ii) compactness, (iii) suitable for use by a matching algorithm,

(iv) robust to noise and distortions, and (2)) easy to compute. Since the individuality

of fingerprints is completely determined by the local ridge characteristics, the first

property postulates that a representation that captures these local characteristics is
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best suited for use in automatic fingerprint verification systems. To date, a total

of one hundred and fifty different local ridge characteristics, called minute details,

have been identified. However, they are not evenly distributed and their detection

depends on the image quality and impression conditions. The two most prominent

ridge characteristics, called minutiae, are (i) ridge ending and (ii) ridge bifurcation.

A ridge ending is defined as a point on the ridge at which a ridge terminates abruptly

and a ridge bifurcation is defined as a point on the ridge where a ridge forks or diverges

into branch ridges. Given a fingerprint image of reasonable quality, minutiae can be

identified easily. Each minutia is characterized by its type, its :1: and y coordinates,

and its direction. Examples of minutiae along with the features that characterize

them are shown in Figure 3.4.

/ ‘ a ‘ 8
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Figure 3.4: Examples of minutiae and their characterization.

A representation based on minutiae is compact, suitable for use by a matching

algorithm, robust to noise and distortions, and easy to compute. Due to varying light-

ing conditions and due to variations in the impression pressure, a ridge ending may be
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mistaken for a ridge bifurcation and vice versa, hence no distinction is made between

the two kinds of minutiae. Each detected minutiae is, thus, characterized by the

following three parameters: (i) x-coordinate, (2'2') y-coordinate, and (iii) orientation.

3.2.1 Minutiae Extraction

For our fingerprint verification system, we make use of the minutiae extraction algo-

rithm proposed in [25]. The overall flowchart of the algorithm is depicted in Figure

3.5. It mainly consists of three stages: (i) orientation field estimation, (ii) ridge

extraction, and (iii) minutiae extraction and post-processing. First, local ridge ori-

entation is estimated and the region of interest is located. Ridges are extracted from

the input gray-level images, processed to get rid of the small speckles and holes,

and thinned to obtain 8-connected single-pixel wide ridges. Finally, in the minutiae

extraction stage, minutiae are extracted from the thinned ridges and refined using

certain heuristics.

For each minutiae detected by the above algorithm, the following parameters

are recorded: (i) :c-coordinate, (ii) y-coordinate, (iii) orientation, which is defined

as the local ridge orientation of the associated ridge, and (iv) the associated ridge

segment. The recorded ridges are represented as one-dimensional discrete signals,

normalized by a preset length parameter which is approximately equal to the average

inter-ridge distance in the fingerprints. About 10 locations on the ridge associate

with each minutiae are sampled. A fingerprint image when represented by the above

representation and stored in a compressed format takes, on an average, about 250
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Figure 3.5: Flowchart of the minutiae extraction algorithm after Jain et al. [2].

bytes, a reduction by a factor of approximately 1,228 from the original size of 307,208

bytes for a 640 x 480 8-bit image.

3.3 Fingerprint Matching

The fingerprint matching problem is defined as follows: Given two (a. test and a

template) fingerprint representations, determine whether the two fingerprints are im-
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pressions of the same finger [2].

3.3.1 Minutiae Matching

Minutiae matching is essentially a point pattern matching problem. In the ideal

case, if (i) the correspondence between the template minutiae pattern and the input

minutiae pattern is known, (ii) there are no deformations such as translation, rotation

and deformations between them, and (iii) each minutiae present in a fingerprint image

is exactly localized, then minutiae matching is a relatively simple task of counting

the number of spatially matching pairs between the two fingerprints and comparing

it against a pre-specified threshold value. These conditions are rarely satisfied in

reality and hence under real life conditions, minutiae matching is an extremely difficult

problem (refer to Figure 3.6). The difficulty of the problem can be attributed, mainly,

to the following two reasons: (2) Given a template and a test minutiae pattern from

the same finger, it is still necessary to establish the correspondence between the two,

and (ii) the imaging system and the process of fingerprint image acquisition introduce

a number of errors in the representation. In order for the minutiae matching algorithm

to operate reliably in practice, it is necessary to establish and characterize a realistic

model of the variations that occur among the representations of mated pairs. The

following properties are desirable to be included in the model [25]:

1. The finger may be placed at different locations on the sensor resulting in a

(global) translation between the minutiae from the test and the template rep-

resentations.
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Figure 3.6: Fingerprint matching problem: (a) and (b) are two different impressions

from the same finger.

M
0
1

K
,

. The finger may be placed in different orientations on the sensor resulting in a

(global) rotation between the minutiae from the test and the template repre-

sentations.

. The finger may exert a different (average) downward normal pressure on the

sensor resulting in a (global) spatial scaling between the minutiae from the test

and the template representations.

. The finger may exert a different (average) shear force on the sensor resulting in

a (global) shear transformation (characterized by a shear direction and magni-

tude) between the minutiae from the test and the template representations.

. Spurious minutiae may be present in both the template as well as the test

representations.

. Genuine minutiae may be absent in the template or test representations.

. Minutiae may be locally perturbed from their true location and the perturbation
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may be different for each individual minutiae.

8. The individual perturbations among the corresponding minutiae could be rela-

tively large (with respect to ridge spacing) but the perturbations among pairs

of minutiae are spatially linear.

9. The individual perturbations among the corresponding minutiae could be rela-

tively large (with respect to ridge spacing) but the perturbations among pairs

of minutiae are spatially non-linear.

10. Only a (ridge) connectivity preserving transformation could characterize the

relationship between the test and template representations.

A large number of minutiae matching algorithms which are essentially “Euclidean”

matchers have been proposed in the literature [26, 27, 28, 29, 30, 31]. These al-

gorithms satisfy the above assumptions to varying degrees. However, they are ei-

ther too slow for use in real-time systems or are not reliable enough in terms of

accuracy. In our system an alignment-based matching algorithm developed in [25]

is used. The algorithm is simple in theory, efficient in discrimination, and fast

in speed. Given a template representation consisting of M minutiae denoted as

P = ((xf, yf), Of)? - .. ,(xfip 3151,65,?) and an input representation consisting of N

minutiae denoted as Q = ((23% 31?, 6?)T, - ~ ,(x2, y3, 6%)?) the algorithm performs

minutiae matching by executing the following steps:

1. Estimate the translation and rotation parameters between the ridge associated

with each input minutiae and the ridge associated with each template minutiae
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and align the two minutiae patterns according to the estimated parameters.

. Convert the template pattern and input pattern into the polar coordinate rep-

resentations with respect to the corresponding minutiae on which the alignment

is achieved and represent them as two symbolic strings by concatenating each

minutiae in an increasing order of radial angles:

PP = ((TfiefioflTi'”2(Tflvelifl’01fllT) (3'1)

Q11 : ((T1Qa 610361Q)T3 ' ' ' a(T1?’ae]QV361Cg/)T)v (3'2)

where r..,e,., and 0... represent the corresponding radius, radial angle, and nor-

malized minutiae orientation with respect to the reference minutiae, respectively.

. Match the resulting strings Pp and (2,, with a modified dynamic programming

algorithm to find the ‘edit distance’ between Pp and Qp.

. Use the minimum edit distance between Pp and Qp to establish the correspon-

dence of the minutiae between Pp and Qp. The matching score, S, is then defined

as .'

_ IOOMPQMPQ

3 MN ’

(3.3) 

where MpQ is the number of minutiae which fall in the bounding boxes of tem-
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plate minutiae. The bounding boa: of a minutiae specifies the possible positions

of the corresponding input minutiae with respect to the template minutiae.

Figure 3.7 depicts the above algorithm.

3.4 Experimental Results in Literature

The performance of the algorithm discussed above has been evaluated using the MSU

fingerprint database and a portion of the NIST 9 fingerprint database. The MSU

database consists of 150 individuals with 10 fingerprints per individual. The finger-

prints have been obtained using a live-scan fingerprint reader. No restrictions on

the position and orientation of the finger were imposed. Approximately 90% of the

fingerprints are estimated to be of fairly good quality. Jain et al. [2] report an au-

thentic accept rate of 87.5% with a false accept rate of 0.01% for the MSU database.

The NIST database consists of 1,350 mated fingerprint card pairs. Each mated pair

consists of a fingerprint obtained using the rolled method and a fingerprint obtained

using the live-scan method. The reported performance figures are 83.1% authentic

accept rate with a false accept rate of 0.012% [2].

3.5 Summary

Fingerprints have been used for centuries for establishing the identity of an individual.

Their biological properties are well understood and extensive research has been con-

ducted on fingerprint matching. The uniqueness of a fingerprint is completely defined
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Figure 3.7: Flowchart of the minutiae matching algorithm.
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by the local ridge characteristics. Minutiae, which are defined as ridge endings and

ridge bifurcations, are the most prominent amongst the local ridge characteristics and

a representation based on minutiae has been successful in designing automatic finger-

print verification systems. We have decided to use the minutiae extraction algorithm

proposed in [25] because it is fast, efficient and tolerant to noise. Minutiae matching

is essentially a point—pattern matching problem. The alignment-based elastic algo-

rithm proposed in [25] has been used in our system for its speed and robustness.

The algorithm is able to adaptively compensate for the nonlinear deformations and

inexact transformations between mated fingerprints and hence is able to achieve a

good verification accuracy at an acceptable speed.



Chapter 4

Speaker Verification

The speaker verification problem can be stated as follows: “Given an utterance,

verify the identity claimed by the speaker against a database of known speakers.”

Depending upon the application, the speaker may be prompted (visually or orally) to

speak a phrase known to the system. Alternatively, the system may attempt to verify

the identity claim without any knowledge of the actual words that were spoken. The

former mode of operation is termed as text-dependent speaker verification, whereas

the latter is termed as text-independent Speaker verification.

Text-dependent speaker verification systems can either make use of a small vo-

cabulary and require the user to speak certain words selected at random from the

vocabulary, or allow the user to select his “password” phrase and require him to use

the same phrase each time. The use of a small vocabulary is generally preferred since

the random choice of words to be spoken at the time of verification makes the system

less circumventable by fraudulent means. Furthermore, it is also possible to build a

speech recognition system for the chosen vocabulary which is then used to validate the

43
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correctness of the acquired speech data at enrollment as well as during verification.

We have designed and implemented a text-dependent speaker verification system

that uses a vocabulary of four digits: one, two, seven, and nine. This vocabulary was

chosen for the following reasons: (2') Rabiner et al. [32] have demonstrated that hidden

Markov models (HMMS) can be used for generating robust spoken digit models for an

individual, and (ii) given four digits, 24 combinations are possible, thus, effectively

increasing the length of the vocabulary from 4 to 24 which in turn makes the system

less susceptible to tape recording fraud (the use of prerecorded speech). There are no

particular reasons for the choice of the particular four digits, or for electing to have

four digits instead of three or five. It can, however, be argued that the choice of the

number of digits represents a trade-off between user convenience and susceptibility

of the system to tape recording fraud: a large number of digits used in combinations

would make the system practically impossible to break by tape recording fraud but

would also increase the time required for enrollment as well as verification and hence

could render the system unusable in a practical scenario.

Input to the system consists of a combination of the four digits, visually presented

to the speaker on a video monitor. During enrollment, twelve of the twenty-four

possible combinations of the four digits are recorded for each user. Each composite

utterance is then segmented to obtain four sets of training data, one for each digit.

Each set is then used to generate a spoken-digit model for that speaker. Thus, four

models are generated for each speaker. The training samples from all the users are

then pooled to train a speech recognition system. During verification, the user is

prompted visually to speak a combination chosen at random by the system from the
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24 possible combinations. The composite utterance is segmented into four utterances

and each utterance is fed to the speech recognition system. If the four utterances

are correctly recognized as the prompted combination, they are compared with the

corresponding spoken-digit models for the user and a matching score is computed.

The matching score is then fed to the decision fusion module which then makes the

final accept/reject decision in conjunction with the results of the face verification

system and the fingerprint verification system. Figure 4.1 depicts a block diagram of

our speaker verification system. It consists of three modules: (2) speech acquisition

and feature extraction, (ii) speech model generation, and (iii) pattern matching.
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Figure 4.1: A block diagram of the HMM-based Speaker Verification Module.

4.1 Feature Extraction

The speaker-specific characteristics of speech are due to differences in physiologi-

cal and behavioral aspects of the speech-production system in humans [33]. The

main physiological aspect of the human speech production system is the vocal tract
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shape. The vocal tract is generally considered as the speech production organs above

the vocal folds, which consists of the following: (i) laryngeal pharynx (beneath the

epiglottis), (ii) oral pharynx (behind the tongue, between the epiglottis and velum),

(iii) oral cavity (forward of the velum and bounded by the lips, tongue, and palate),

(iv) nasal pharynx (above the velum, rear end of nasal cavity), and (v) nasal cavity

(above the palate and extending from the pharynx to the nostrils). The shaded area

in Figure 4.2 depicts the vocal tract [3].
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Soft palate
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Figure 4.2: A schematic diagram of the human speech production mechanism [3].

The salient acoustic features of speech are contained in the spectral modifications

made to the source excitation by the vocal tract system. Hence, it is common in

speaker verification systems to make use of features derived only from the vocal tract.
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In order to characterize the features of the vocal tract, the human speech production

mechanism is represented as a discrete-time system of the form depicted in Figure

4.3 [3].

The acoustic wave is produced when the airflow from the lungs is carried by

the trachea through the vocal folds. This source of excitation can be character-

ized as phonation, whispering, frication, compression, vibration, or a combination of

these [3]. Phonated excitation occurs when the airflow is modulated by the vocal

folds. Whispered excitation is produced by airflow rushing through a small trian-

gular opening between the arytenoid cartilage at the rear of the nearly closed vocal

folds. Frication excitation is produced by constrictions in the vocal tract. Compres-

sion excitation results from releasing a completely closed and pressurized vocal tract.

Vibration excitation is caused by air being forced through a closure other than the vo-

cal folds, especially at the tongue. Speech produced by phonated excitation is called

voiced, that produced by phonated excitation plus frication is called mixed, and that

produced by other types of excitation is called unvoiced.

From Figure 4.3, the overall transfer function of the speech production system can

now be given as

8(3) H(Z)R(Z) unvoiced case

 

G(z)H(z)R(z) voiced case.

Thus, it is possible to represent the vocal-tract in a parametric form as the trans-
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Figure 4.3: A discrete-time model representing the human speech production system

[3]-

fer function H(2) In order to estimate the parameters of H(z) from the observed

speech waveform, it is necessary to assume some form for H(z) Ideally, the transfer

function should contain poles as well as zeros. However, if only the voiced regions

of speech are used then an all-pole model for H(z) is sufficient. Furthermore, linear

prediction analysis can be used to efficiently estimate the parameters of an all-pole

model. Finally, it can also be noted that the all-pole model is the minimum-phase

part of the true model and has a magnitude spectrum that is identical to the magni-

tude spectrum of the true model, which contains the bulk of the speaker dependent

information. Figure 4.4 illustrates the differences in the models for different sounds

spoken by the same individual [3]. Figure 4.5 illustrates the differences in the models

for two speakers saying the same vowel.
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4.1.1 Speech Acquisition and Preprocessing

The spoken speech is converted to an analog signal through the use of a noise can-

cellation headset micrOphone manufactured by Labtec. The analog speech signal is

digitized using a Creative Labs SoundBlaster audio card. The sampling rate used is

8KHz and the resolution is 16 bits/sample. The digitized speech signal, s(n), is then

processed by a first-order FIR filter to spectrally flatten the signal and to make it

less susceptible to finite precision effects during the later stages of processing. The

z-transform of the first-order FIR filter used in our system is

H(z) : 1 — az‘l, (4.2)

where a = 0.95. Thus, the preemphasized signal s(n) is related to s(n) as,

The preemphasized signal, s(n), is then blocked into frames of N = 300 samples,

with a shift of M = 100 samples. This corresponds in time to 37.5 ms frames with

a 12.5 ms shift between frames. If the lth frame of speech is denoted by 331(n) and

there are L frames within the entire speech signal then
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3:)(n)=§(Ml+n), n=0,1,-~,N—1, l=0,1,~-,L—1.

Each frame is then weighted by a Hamming window,

w(n) = 0.54 — 0.46 cos (27732), 0 S n S N — 1.

The windowed signal is

i,(n) = $,(n)w(n), 0 S n S N — 1.

4.1.2 Speech Segmentation

speech artifacts, segmentation into digits is a relatively easy task [34].

(4.5)

Since the speech signal is a composite utterance consisting of four digits, it is seg-

mented so as to obtain the four sub-utterances corresponding to the four digits. In

order to segment the speech, we compute the log energy in dB (Equation 4.7) of each

frame. A typical plot of the log energy for an utterance consisting of four digits is

shown in Figure 4.6(a). We note that corresponding to each spoken digit, there is a

peak in the energy waveform. Thus, in the absence of background noise and other

However, in most practical scenarios, a fair amount of background noise and speech
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artifacts such as clicking while Opening the mouth to speak, breath noise, etc. are

present. These noise sources result in an energy waveform as shown in Figure 4.6(b).

Under such conditions, the segmentation problem is no longer trivial [35].

We employ a modified version of the tOp-down approach proposed by Wilpon et

al. [35] to detect the word boundaries. A brief description of the algorithm is given

below, and the flowchart is shown in Figure 4.7.

The log energy of the speech signal is computed for each frame as

N—l

E(l)=1010g10 (2115101)?) , l: 0,1,- .. ,L — 1. (4.7)

In order to compensate for the background noise, adaptive-level equalization of the

energy contour is performed. First, Em," is computed as

Em," = min E(l)

0Sl<L

which is then subtracted from the energy contour to obtain E(Z)

Next, a histogram of the signal energies below 10 dB is computed. This histogram

is smoothed by applying a three—point median filter and the mode of the smoothed



Figure 4.7: The flowchart of the algorithm for word boundary detection.
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histogram is computed. Finally, the modified energy contour is computed as

E(l) = E(l) — Mode.

Under ideal recording conditions, the resulting energy contour has the prOperty

that during periods of silence, the energy level oscillates around the 0 dB level (Figure

4.6(a)). However, in the presence of significant background noise, this may not be

true (Figure 4.6(b)).

In the original algorithm [35] the equalized energy contour is scanned repeatedly

for the maximum energy pulse. Next, the algorithm examines the frames to the left

and the right of the frame with the peak energy until it finds frames in which the

energy falls below a predefined threshold. Finally, the algorithm refines the pulse

boundaries by checking the first few and the last few frames of the pulse for consis-

tently low energy content. The choice of the predefined threshold is the key to the

success of the algorithm. For our particular setup, a threshold below 5 dB needs to

be chosen for the algorithm to work properly. However, we have observed that in

the presence of widely variable background noise, any threshold below the 5 dB level

gives inconsistent results. As a result, we have modified the algorithm as follows:

Once the peak energy frame is detected, we scan the energy frames to the left

and the right of the frame. However, we chose a high threshold of 10 dB to obtain

the initial estimates of the pulse boundaries. Next we examine a certain number of

frames beyond the left and the right boundaries and record the minimum energies
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in those intervals. The final pulse boundaries are then taken as the frames where

the minimum energies occur. Furthermore, the choice of the number of frames to be

examined is decided by the pulse width at the 10 dB level. Thus, for small steep

pulses we examine a fewer number of frames than for large and wide pulses. This

eliminates the need for selecting a threshold that may be sensitive to the background

noise. This modified algorithm has been observed to give better results than the

original algorithm.

The detected pulses are then checked for a minimum width and magnitude and

are eliminated from the signal. The algorithm stops scanning the energy contour if

the last peak detected was below a threshold (15 dB in our case).

The validated pulses are then arranged in a decreasing order of their peak am-

plitudes. Since each utterance is supposed to contain four digits, if the number of

detected pulses is greater than four then an attempt is made to combine some of the

pulses to form longer pulses. Starting with the highest peak amplitude pulse, the end

points of the adjacent pulses are examined. If an adjacent pulse is found within a

certain number of frames from the end point of the pulse under consideration, the two

pulses are combined. If the number of pulses beyond this point is still greater than

four, then the magnitudes of the pulses beyond the fourth largest pulse are checked

and a decision is made either to discard the pulses or to reject the recording.

The log energy waveform of a typical utterance of the four digits one, two, seven,

and nine along with the detected word boundaries is shown in Figure 4.8.
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Figure 4.8: Output of the speech segmentation algorithm.

4.1.3 Cepstral Analysis

As discussed in Section 4.1, during a stationary frame of speech, the vocal-tract is

generally modeled as an all-pole filter whose transfer function, H(z), is given as

Ho
, 4.8

1— Eli. a(i)z“ ( )

 H(z) =

where H0 represents an overall gain term and a(i) are the filter coefficients. The fil-

ter coefficients can be estimated to the pth order by using linear prediction analysis[3].

The coefficients thus estimated are called a linear predictive code(LPC).

The LPC features were very popular in the early speech-recognition and speaker-
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verification systems. However, comparison of two LPC feature vectors requires the use

of computationally expensive similarity measures such as the Itakura-Saito distance

[32] and hence LPC features are unsuitable for use in real-time systems. Furui [36]

suggested the use of the cepstrum, defined as the inverse Fourier transform of the

logarithm of the magnitude spectrum, in speech-recognition applications. The use

of the cepstrum allows for the similarity between two cepstral feature vectors to be

computed by using the Euclidean distance. Furthermore, Atal [37] has demonstrated

that the cepstrum derived from the LPC features results in the best performance in

terms of FAR and FRR for speaker verification. Consequently, we use the LPC derived

cepstrum for our speaker verification system. The order, p, of the LPC analysis is a

parameter whose choice depends upon the application. For spoken digit recognition,

Rabiner et al. [38] have demonstrated that p = 10 results in the best performance.

Hence, for each frame a 10th order LPC analysis using Durbin’s recursive method is

performed to obtain 10 LPC coefficients. Durbin’s recursive method consists of the

following steps:

1. The autocorrelation coefficients up to the 10th order of each frame of the win-

dowed signal are obtained as,

N—l—m

rl(m) = Z 5:,(n)i:,(n + m), m = 0,1,--- ,10. (4.9)

11:0

2. Each frame of 11 autocorrelations is converted into 10 LPC coefficients by the
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following recursive algorithm:

E”) = r(0), (4.10)

L—l . '

k,- = I~(2')-— a;-1r(|2—j|)}/E('-1), 2:1,---,10 (4.11)

j=1

a(i) : k2,,
(4.12)

ali) = Gym—half)”,
(4.13)

E“) = (1—k§)E(i-1>, (4.14)

where the summation in Equation (4.11) is omitted for i = 1. The above set

of equations is solved recursively for i = 1, 2, - -- ,10 and the resulting 10 LPC

coefficients are given as

m =1,--- ,10. (4.15)

Next, Q cepstral coefficients, C(m), m = 1, 2, - - - ,Q, are computed from the p = 10

LPC coefficients, using the following recursion:
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c0 = [no2 (4.16)

m—l 113

cm 2 am + Z (a) ckam_k, m = 1, - -- ,p (4.17)

k=1

m-l k

Cm = (_) Ckam-ka m > pa (4'18)

k=1 m

where 02 is the gain term in the LPC model. Generally, Q is chosen to be greater

than p and is typically given as Q 2 (%)p [38]. We choose Q = 12. This vector is

then weighted by a window W(m) of the form

Finally, the time derivative of the sequence of weighted cepstral vectors is approxi-

mated by a first-order orthogonal polynomial over a finite length window of (2K +1)

frames (K = 2 in our case) to obtain 12 delta cepstrum coefficients. The 12 weighted

cepstral coefficients are combined with the 12 delta cepstrum coefficients to form the

feature vector for the given frame. The entire speech signal is thus represented by a

sequence of feature vectors.
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4.2 Speaker Modeling

Speech produced by the same person at different times result in similar, yet different,

sequences of feature vectors. The purpose of speech modeling is to build models that

capture these variations in the extracted set of features. There are two types of models

that have been used extensively in speaker verification and speech recognition sys-

tems: stochastic models and template models. The stochastic model treats the speech

production process as a parametric random process and assumes that the parame-

ters of the underlying stochastic process can be estimated in a precise, well-defined

manner. The template model attempts to model the speech production process in a

non-parametric manner by retaining a number of sequences of feature vectors derived

from multiple utterances of the same word by the same person. Template models

dominated early work in speaker verification and speech recognition because the tem-

plate model is intuitively more reasonable. However, recent work with stochastic

models has demonstrated that these models are more flexible and result in better

models of the speech production process [33].

A very popular stochastic model for modeling the speech production process is

the hidden Markov model (HMM). HMMs are extensions to the conventional Markov

models, wherein the observations are a probabilistic function of the state, i.e., the

model is a doubly embedded stochastic process where the underlying stochastic pro-

cess is not directly observable (it is hidden). The HMM can only be viewed through

another set of stochastic processes that produce the sequence of observations. Thus,

HMM is a finite-state machine, where a probability density function p(:1:|s,-) is associ-
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ated with each state s,-. The states are connected by a transition network, where the

state transition probabilities are a), = P(s,-|sj). A fully connected three-state HMM

is depicted in Figure 4.9.

Figure 4.9: A fully connected three-state hidden Markov model.

For speech signals, another type of HMM, called a left-right model or a Bakis

model, is found to be more useful. A left-right model has the property that as time

increases, the state index increases (or stays the same)— that is the system states

proceed from left to right. Since the properties of a speech signal change over time in

a successive manner, this model is very well suited for modeling the speech production

process. The parameters required for a complete specification of the HMM depicted

in Figure 4.10 are summarized below. Again, the choice of these parameters depends

upon the application and the particular choice of parameters, given below, has been

demonstrated by Rabiner et al. [38] to result in the best performance for isolated

spoken-digit recognition.
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Figure 4.10: A left-to-right five state Hidden Markov Model.

1. N, the number of states in the model. In our case N = 5.

2. A : [an], i, j = 1, - ~ - ,N, the state-transition matrix, where aij is the probabil-

ity of making a transition from state j to state i. For a left-to-right model, we

have the constraint a), = 0, j < i, j > i + 2 and aNN = 1. The state-transition

matrix is thus of the form

all 012 013 0 0

A: 0 0 (133 034 035 (419)

0 0 0 044 0.45

  
3. it = {7n},i = 1, - -- ,N, the initial state distribution, in which it,- = P[q1 = 2].

Again, for a left-to-right model the initial state must have unity index and hence

we have,
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1 ifi = 1,

713 = (4.20)

0 ifi¢1.

4. B, the observation-probability function. For our case, the observation-

probability function for each state is a continuous mixture density of the form

M

bi(0) Z ZCikN(Mikank)a 2:1,' ' ' 9N2 (4'21)

k=1

where o is the 24-dimensional observation vector of cepstral coefficients, cik is

the mixture coefficient for the kth mixture in state i and N is a 24-dimensional

multivariate Gaussian density with mean vector flu: and covariance matrix U“,

for the kth mixture component in state i. The mixture gains cu, satisfy the

following constraints:

M

Zakzr i=1,-~,N (4.22)

k

c,,,>o, lSiSN, k=1,---,M (4.23)

so that the probability density function is properly normalized, i.e.,



66

/ bj(o)do——- 1, j=1,-~ ,N. (4.24)
00

We choose M = 5 mixtures per state.

The complete parameter set of the model, as described above, is denoted com-

pactly as

/\ = (A,B, it). (4.25)

Given an HMM with a parameter set A, we can now compute the probability that

a particular sequence of observation vectors, denoted as

O = (01,02, - -- ,oT) (4.26)

was generated by the model. This conditional probability is denoted as P(O[A).

The training data for each digit is used to estimate the parameter set )1 for the

corresponding HMM, so as to maximize P(O|)\). Before we discuss the training

procedure, we will first list some variables and describe procedures for evaluating

these variables [39]:

1. The forward variable, at(i), is defined as
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0‘0.) = P(01,02, ‘ ' ' IOtIQt = ZIA), (4.27)

which is the probability of the partial observation sequence, 01, 02, . ~ . ,ot, (until

time t) and state i at time t, given the model A. at(i) is evaluated inductively

as follows:

(a) Initialization

01(2) : 7rtbi(ol)7 2:13. ' ° 2N' (4’28)

(b) Induction

N t = 1, . .. ,T _1

at+1(j) = [202(06113] bj(0t+1)a (429)

The above procedure is referred to as the forward procedure [39].

2. The backward variable, EU), is defined as

262(1) = P(°t+1,0t+2a ' " IOTth = 3', A) (4-30)
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which is the probability of the partial observation sequence from t + 1 to the

end, given state i at time t and the model A. flt(i) is evaluated inductively as

follows:

(a) Initialization

BT(2')=1, i: 1, - -~ ,N. (4.31)

(b) Induction

‘ N . t=T—l,T—2,~-,1

52(1) 2 Zatjbj(0t+l)fit+l(])a (4-32)

j=1 2:1,.H,N

The above procedure is referred to as the backward procedure [39].

3. The posteriori probability variable, 7t(i, k), is defined as

7t“, k) : P(qt : z'l()1’\)v (433)

which is the probability of being in state i at time t with the kth mixture

component accounting for 02, given the observation sequence 0, and the model

/\. “Mi, k) is evaluated using 021(2) and fit(i) as follows [39]:
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. (Ml-Wt”) CikN(#ik, Uik)

1 1,16 = . 4.342 ( ) [ l2 ( )

l2; athlfldi) 31:1 Cam/(mm, Um.)

Rabiner et al. [39] also define ”)2 (j ) as the probability of being in state j at time

t given the observation sequence 0, and the model A. From the definition of

7t(j1 k)

21(2) = 2720.16)- (435)

Based on the above definitions, the training procedure for a HMM, also known as the

Baum- Welch [40] method is given as follows:

First define €t(i, j) as the probability of being in state i at time t, and state j at

time t + 1, given the model and the observation sequence, i.e.,

€t(zij) : P(Qt:1)qt+l :leIA) (436)

€t(i, j) can be written in terms of the forward and backward variables as

at(i)aijbj (0t+1
)52+1(j)

4.37

23:1Ell/=1a‘(i)a
‘jbj(°t+llfit+l(j

)' ( )

 

€t(za.j) :



70

Since 71(2) is the probability of being in state i at time t, given the entire observation

sequence and the model, we have

N

72(2) = Zeus). (4.38)

The summation over t (from t = 1 to t = T — 1) of 7t(i) is the expected number of

transitions from state i in the observation sequence 0. The summation over t (from

t = 1 to t = T — 1) of §t(i, j) is the expected number of transitions from state i to

state j.

Using the above formulas and an initial estimate of the parameters, re-estimation

of the parameters is performed by the following equations:
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7r,- 2 number of times in state i at time (t = 1)

= 71(2) (4.39)

expected number of transitions from state i to state j
 

 

 

 

 

a” = expected number of transitions from state 2'

T- . .

_ Zi:11€t(2u7)
(4 40)

- T—l -
.

thl 73(2)

5. _ expected number of times the system is in state i using mixture k

'k _ expected number of times the system is in state i

T .

k: TZt:1;t(z’ )

(4.41)

Zt=12k=17t(z’k)

T .

fl“): : th1’72(lakl‘ 0t
(4 42)

2 T '

.thl 7th: k)

T .

U). = 22:1 710.19) ' (02 — M2k)(0t — ”belt (4 43) 

Zf=17tuakl

Thus, given an initial model estimate A = (A,B,7r), Equations. (4.39)-(4.43)

result in a re-estimated model denoted as 5. = (A, 13,71). It has been proven by Baum

and his colleagues [40] that either (i) the initial model /\ defines a critical point of

the likelihood function, in which case :\ : A; or (22) model :\ is more likely than

model /\ in the sense that P(O|/_\) > P(O|)\). Thus the training procedure proceeds

by iteratively using :\ in place of )I and repeating the re-estimation calculations. The

re-estimation procedure is terminated when (P(O|5\) — P(O|A)) < e, where e is some
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predefined threshold.

As with any iterative technique, a good choice of initial parameters is imperative

in order to ensure the convergence of the re-estimation procedure. A number of

algorithms for obtaining good initial estimates of the parameters have been proposed.

For our system, we make use of the algorithm proposed in [32]. The main steps in

the algorithm are summarized below:

1. Choose the state transition matrix such that the sum of each row is 1.0.

2. For a given set of utterances, compute the global mean and variance of all the

feature vectors and use this global mean and variance as the mean and variance

of the mixture densities for each state.

3. Use the Viterbi algorithm [41] to segment the utterances into states.

4. For each state, apply a clustering algorithm on the feature vectors assigned to

that state so as to obtain the same number of clusters as the number of compo-

nents in the mixture.

5. Update the mean and variances of the mixture densities to be the mean and

variances of the corresponding clusters.

6. Repeat steps 3 through 5 till the change in the model parameters between two

successive updates is less than a predefined value (c).

The training procedure described above is also used in our system to train four

speaker-independent models corresponding to the four digits. These speaker indepen-
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dent models are used for performing speech recognition and also for normalizing the

resulting matching score as described in the next section.

4.3 Pattern Matching

The pattern matching process involves the comparison of a given set of input feature

vectors against the speaker model for the claimed identity and computing a matching

score. For the hidden Markov models discussed above, the matching score is the

probability that a given set of feature vectors was generated by the model. Let

the set of feature vectors corresponding to the input speech be denoted as O =

(01,02, - .. ,oT) and let the HMM be denoted as /\ = (A, B, 7r). We wish to compute

the conditional probability P(O|)\). From the definition of the forward variable aT(i),

this conditional probability is simply given as

N

P(O|/\) = Zafii). (4.44)

However, in most cases we are interested in determining the optimal sequence

of states for the given observation sequence and the model and then computing the

probability of that state sequence. The Viterbi algorithm [41] is used to find the

single best state sequence, q = (Q1Q2 - - -qT), for the given observation sequence 0 =

(01,02, - -- ,oT) and the HMM /\ = (A, B,7r) as follows

First the quantity 6t(i) is defined as



74

6t(i) = max P[q1q2 - - ~qt_1qt = i,0102 - - -ot|/\], (4.45)

01 1q23'" 9Qt—l

as the highest probability along a single path, at time t, which accounts for the

first t observations and ends in state i. Based on the above definition, the complete

procedure for finding the best state sequence is given as:

1. Initialization

61(2) : 7Dbl-(01)) Z: 1a ' ° ' ’ N (4'46)

1121(2) = O. (4.47)

2. Recursion

' ' t = 2, . .. ,T

5M) = lrggléz—1(z)aslbj(ot), (4-48)

— _ j = 1, - ,N

. . t = 2, . -- ,T

114(3) = arg lgligl6t_1(2)asl, (4-49)

_ j : 13 ' ,N

3. Termination
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P“ = lggléflifl (4.50)

q} = argggwm. (4.51)

4. Path (state sequence) backtracking

qZ‘ =¢t+1(q2'+1), t=T—1,T—2,--- ,1. (4.52)

The probability of this single best path is the matching score for the given input

against the HMM for the claimed identity and is given by Equation (4.50) above.

However, on most machines a direct computation of the above probability will result

in numerical underflow. Hence, it is customary to calculate the matching score as the

logarithm of the probability. Thus, for a given digit the matching score against the

speaker’s model (S) is given as

L,(S) = log(P,.*(S)), 2 = 1, 2, 7, 9. (4.53)

In our system the input consists of one utterance containing each of the four dig-

its. Hence, the probability of the utterance being spoken by the user is the product

of the individual probabilities under the assumption that the digits were spoken in-
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dependently. However, since we are dealing with the logarithm of the probability, the

combined matching score can be simply computed by adding together the matching

score for each utterance against its corresponding model:

L(S) = L1(S) + L2(S) + L7(S) + L9(S). (4.54)

Recent studies [42, 43, 44] have suggested that the log likelihood score defined

above can be normalized by the use of the so called cohort models. The test utterance

is scored against the cohort models and the resulting score is subtracted from the log

likelihood score defined above. The normalized matching score thus obtained has

been demonstrated to be more stable and less variable than the unnormalized score

and thus results in a better performance.

Several cohort models have been proposed [43]. However, in our system we make

use of the speaker-independent models that are used for speech recognition as the co-

hort models. Thus cohort normalization is done by computing the combined matching

score for the test utterance against the speaker independent models and subtracting

that score from the combined matching score given by Equation (4.54) above.

4.4 Experimental Results in Literature

The YOHO database [45] has been widely used for evaluating the performance of

speaker verification systems. The database consists of combination lock sequences
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(e.g., 26-47-94) collected from 138 individuals over a period of three months in an office

environment using a STU-III electret-microphone telephone handset. Each individual

has four enrollment sessions with 24 phrases per session and 10 verification sessions

with four phrases per session. For the YOHO database, Che and Lin [46] report an

equal error rate of 0.62% using cepstrum features and word-level HMM models. For

the same database, Colombi et al. [44] report an equal error rate of 0.28% using a

feature vector composed of the cepstrum, log frame energy, first-order delta cepstrum

and second-order delta cepstrum. However, they use phoneme—level HMM models

rather than word-level HMM models and they also employ cohort normalization.

It should, however, be noted that in-spite of the impressive performance figures

stated above, speaker verification systems have not been able to achieve comparable

accuracies in field tests.

4.5 Summary

The production of human speech is a complex process that involves several transfor-

mations occurring at different levels: semantic, linguistic, articulatory, and acoustic

[33]. Anatomical variations that occur among different people and the differences

in their learned speaking habits manifest themselves as differences in the acoustic

properties of the speech signal. By analyzing and identifying these differences, it is

possible to discriminate among speakers [33]. The verification process, using speech,

can be text-dependent or text-independent.

We have implemented a text—dependent speaker verification system. Our vocabu-
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lary consists of four digits: one, two, seven and nine. Hidden Markov models are used

to model the speech production process for each digit and the matching score is the

probability that a given speech sample was generated by the HMM for the claimed

identity. Speech recognition is also implemented to ensure the validity of the input

speech and for use in implementing cohort normalization.

Speech is probably the most readily accepted biometric and, in fact, the largest

scale deployment of any biometric to date is Sprint’s Voice FONCARD [33]. The

reason for this popularity is simple: acquisition of speech samples is a very simple

non-invasive procedure. Furthermore, speech acquisition requires very modest hard-

ware and, in most cases, it is possible to perform identity authentication over the

existing telephone networks. However, compared to fingerprints or retinal scans, the

discriminative capability of a voice-print is significantly lower. Consequently, the

performance of a speaker verification system for a large population is limited. Fur-

thermore, environmental factors such as background noise, the time of the day, the

transmission channel, as well as the emotional state of the individual, cause a signifi-

cant change in speech patterns. Also people skilled in mimicking other peoples voices

may be able to easily fool a speaker verification system. Consequently, it is gener-

ally agreed that a speaker verification system will not be able to achieve an accuracy

comparable to fingerprint-based or retinal pattern-based biometric systems.



Chapter 5

Decision Fusion

Each of the three biometric systems considered so far makes use of only one biometric

characteristic to compute a confidence about the identity claim made by an individ-

ual. An integration schema that combines the confidence levels expressed by the

independent biometric systems is likely to improve the verification accuracy. In this

chapter we propose two different decision fusion schemas that allow us to integrate

face, fingerprint and speech to improve the accuracy of the system in terms of FAR

and FRR.

Identity authentication using multiple biometric indicators is essentially a deci-

sion fusion problem, which utilizes information from multiple systems to increase the

fault-tolerance, to reduce uncertainty, to reduce noise, and to overcome the limita-

tions of individual systems [47]. A multi-modal approach can increase the reliability

of the decisions made by a biometric system. Multiple biometrics enable a user’s

identity to be verified even if some of the biometric characteristics used by the sys-

tem are not available and/or not suitable for automatic processing. By using multiple

79
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biometric characteristics, the system will be applicable to a larger target population.

In addition, a multi-modal biometric system is generally more robust to fraudulent

technologies, because it is more difficult to forge multiple biometric characteristics

than to forge a single biometric characteristic. Figure 5.1 depicts the architecture of

a generic biometric-based identity verification system employing multiple biometrics

l4]-

Tflyfi’gaff;

 
Accept /

Reject

Figure 5.1: Integration of different biometric characteristics (after Jain et al. [4]).

Decision fusion can be carried out at different levels [5]: A)bstract level, the

output from each module is only a YES/NO label without any confidence associated

with the labels; in this case, the simple majority rule may be employed to reach a

more reliable decision [48], (ii) Rank level; the output from each module is a YES/NO
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label and the modules are ranked by decreasing confidence values, but the confidence

values themselves are not specified; (iii) Measurement level; the output from each

modules is a YES/NO label with associated confidence values; in this case, more

accurate decisions can be made by integrating different confidence measures to a

more informative confidence measure. Each of the biometric systems considered so

far has a very different characteristic and a different matching scheme. Therefore, it

is more reasonable to integrate the three biometrics at the measurement level instead

of at the other two levels. An identity claim along with the requisite biometrics are

inputted to the integrated system, the different modules within the system process

the respective biometric and produce an accept/reject decision along with a score

indicating the confidence in their decision. The decision fusion module then makes a

final accept/reject decision.

5. 1 Formulation

Let 8 denote a given biometric system, and let <I>1,<I>2,- - . ,<I>N denote the templates

of the N users enrolled in 3, who are labeled by numeric indicators, 1, 2, - u ,N [4].

Assume, for simplicity, that each enrolled user has only one template (for each type of

indicator) stored in the system. So the template for the ith user, <I>i = {<I>[, g, g},

has three components, where (1)], g, (1)}, are the templates for fingerprint, face, and

speech biometrics, respectively. Let (<I>°,I) denote the biometric indicator and the

identity claimed by a user. Again (PO has three components, (1)0 = {(D‘I),<I>3,CI>3},

corresponding to the measurements of the three biometric indicators. The claimed
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identity, I, belongs to either category wl or category wg, where w indicates that the

user claims a true identity (a genuine user) and w2 indicates that the user claims

a false identity (an impostor). The biometric system 8 matches <I>° against (1)1 to

determine into which category, w or U12, the claimed identity I falls, i.e.

wl, If .7:((I)O,q)l) > 6,

I e (5.1)

1112, otherwise,

where .7(<I>0,<I>’) is a function which measures the similarity between (1)0 and (DI

and e is a threshold. Under the assumption that the three biometric indicators are

independent, we can rewrite the function .7:((1)0, (DI ) as follows:

f(<I>O,CI)I) : .7:(f1((I>(1),¢{),f2(¢g,¢g),f3(@g,(1%)), (5'2)

where 71(<I>‘1),<I>[), f2(<1>g,<1>g), and 73(og,<1>§) are functions that measure the similar-

ity between the corresponding biometric indicators. For the three biometrics consid-

ered so far, we have:

1. Fingerprints: Let <I>[ denote the extracted minutiae for the Ith identity and (1)?

denote the extracted minutiae for the input fingerprint image. Then
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10002

PQ , (5.3) 

f1((13(1), (bl) =

where P and Q are the total number of minutiae in (I)? and <I>[, respectively,

and C is the total number of corresponding minutiae pairs between (D? and (1)]

established by the minutiae matching algorithm.

. Face: Let (1)5 denote the projection of the face image for the 1th identity onto

the eigenspace and let (1)3 denote the projection of the input face image into the

same eigenspace. Then

f2(<1>3,‘1>$) = -||<1>l - 23H, (54)

where [l - M denotes the L2 norm.

. Speech: Let (Pg denote the hidden Markov model for a given word for the

Ith identity and <I>° = (01,02, - -- ,oT) denote the sequence of feature vectors

extracted from the input speech. Then

r3(<r>g,<1>g) = P((01,02, - -- ,oT)|<I>g). (5.5)
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As explained in chapter 4, the probability computation step is performed using

the Viterbi algorithm (i.e., the maximum likelihood path is used).

When the input biometric indicator belongs to a genuine individual, the resulting

similarity measure is called a genuine score and when it belongs to an impostor it

is called a impostor score. If we denote the three similarity measures defined above

by the random variables X1, X2, and X3 then the distributions of genuine score for

fingerprint, face and speech verification are given by the class-conditional probability

functions pJ-(lewl), where j = 1, 2, 3. Similarly, the distributions of impostor score

are given by the class-conditional probability functions pj(X]-|w2), where j = 1, 2, 3.

Further, under the assumption that X1, X2, and X3 are statistically independent, the

joint class-conditional probability density function of X1, X2, and X3 has the following

form:

3

P(X1,X2,X3|wi) = Hpj(Xj|wi), i: 1,2- (5-6)

2:1

5.2 The Neyman—Pearson Rule

Depending on the application requirement on verification accuracy, any one of a

number of different statistical decision theory frameworks can be used. In biometrics,

the performance requirement is usually specified in terms of the FAR [1]. In this case,

the decision fusion scheme should establish a decision boundary which satisfies the

FAR specification and minimizes the FRR. Let R3 denote the three-dimensional space
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spanned by (X1, X2, X3); R? and R3 denote the wl-region and w2-region, respectively

(RI,3 + R3 = R3); 60 denote the specified FAR. According to the Neyman-Pearson

rule[49], a given observation, X0 = (X9, X3, Xg), is classified as:

p()fi’,XE.X§|w1) > A
 

 

”(1)1, . , . 1112

<X?.X§.X§>e “WW ’ (5.7)

w, otherwise

where

p(X1,X2,X3|w1)
/\ and 5.8

p(X1,X2,X3|w2) ( )

60 = p(X1,X2,X3|w2)dX1dX2dX3. (5-9)

31

For a given biometric system, the genuine and the impostor class-conditional prob-

ability density functions are usually unknown. A critical issue in this decision fusion

scheme is to estimate the genuine and impostor class-conditional probability den-

sity functions from a set of training samples. Ideally, it would be desirable to be

able to characterize these probability density functions by known statistical models.

However, in practice, these genuine and impostor probability density functions are

estimated using a non-parametric technique from empirical data.



86

5.3 Linear Discriminant Functions

In addition to the statistical decision theory approach, decision fusion can also be

performed using a discriminant function approach:

wl, if f(X°, X0, X0) > a0

(X?.X3,X§)e 1 2 3 (5.10)

Mg, otherwise,

where .7: is the discriminant function and a0 is a threshold, which can be “learned”

from a set of training samples using a number of techniques. While the discriminant

function .7: can be of any form, in practice, a linear function is used for its simplicity:

wl, if (a1X0+a2X°+a3X°) > a0

(X?,X§,X§) e 1 2 3 (5.11)

wg, otherwise,

where a0,a1,a2, and a3 are unknown parameters which need to be estimated from

training data. An important problem in this approach is to find an appropriate

discriminant function that satisfies the specified FAR. Generally, there exists no sys-

tematic method to find such a discriminant function. It is, however, possible to use

a perceptron to obtain a decision surface that minimizes the equal error rate and

then the desired decision scheme can be established by moving the resulting decision

surface parallel to itself so that the FRR is minimized for the specified FAR.
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5.4 Summary

Due to the inherent limitations of each of the biometric characteristic (refer to Table

1.1) it is difficult for an automatic personal identity authentication system based on

only a single biometric characteristic to achieve the desired verification accuracy. A

multimodal biometric system that integrates more than one biometric characteristic

through a decision fusion scheme can overcome the limitations of the individual bio-

metric characteristic. Thus, if the person is unable to give a good fingerprint sample

due to various reasons (dryness of the skin, personal injury, etc.) then the system

may use only his/her face and speech samples for identity authentication. Similarly,

in a noisy environment, a biometric system based on speech alone may not be able to

reach a reliable decision, while in a cluttered environment face verification may not

work very well. We have prOposed two decision fusion schemes that integrate faces,

fingerprints and speech so as to improve the verification accuracy. The prOposed

schemes also make the integrated system applicable to a larger target population and

diverse operating environments.

Decision fusion can also be employed for automatic personal identification systems

wherein the goal is to improve the accuracy as well as the speed of the integrated

system [8]. It can also be employed in systems wherein a single biometric characteristic

is processed by multiple matching algorithms.



Chapter 6

Integrated Biometric System

Our goal is to design and implement a fully automatic personal verification system

that integrates three biometrics: faces, fingerprint and speech. The system must be

able to operate in real time and must be user-friendly. By real time we imply that the

response time of the system must be of the order of a few seconds. “User-friendliness”

in this context implies that the system must be simple to use and easy to maintain.

Furthermore, the proposed system is intended for use in a medium sized environment

wherein the number of enrolled users is of the order of a few thousands. The block

diagram of such an integrated system is depicted in Figure 6.1. The system mainly

consists of four components: (2') data acquisition module, (ii) enrollment module,

(iii) template database, and (iv) verification module.

The data acquisition module is responsible for acquiring face and fingerprint im-

ages and speech samples of a user who intends to use the system. The enrollment

module is then responsible for converting them into a format suitable for use by the

verification module and storing them in the template database. In addition, the en-

88



89

ICnrullnIi-m \lmlulc

Face

llnm'.’ \..[11|~|l)u). Database

\l 'luly Br0wser

    

  

  

   

  

 

    

 

 

Extractor

Minutiae

Extractor

Cepstral

Analysis

    

 

 

\[xw' l1 \..]H|~»1I1w||

\lmlul.~

W
M

 
   

 

  

  

Ei ens ace

Cogmpaprison

Minutiae

Matching

HMM ]

Scoring I

\ cril'iculiun \lmlulc

 Decision Accept I

Fusion R939“
     

  

 
  

Figure 6.1: The block diagram of the integrated system for personal verification.

rollment module also allows for system maintenance operations such as user deletion,

user update, system parameter specification, etc. The use of a template database

allows for efficient retrieval of templates for a given identity claim during verification

and also allows for any off-line operations that may be required. The verification

module receives a set of input data from the data acquisition module and the iden-

tity claimed by the user. It then performs feature extraction on the input data and

retrieves the representative templates for the claimed identity. Finally, it evaluates

the input data against the templates and makes use of decision fusion to reach an
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accept/rej ect decision.

6.1 Data Acquisition Module

The performance of a biometric-based personal verification system depends critically

on the data acquisition process. If the user is assumed to be cooperative then the

quality of the acquired data can be controlled by providing the following mechanisms

to the user: (i) feedback and self-regulation guide, and (ii) quality control. For a

cooperative user, feedback provides an efficient mechanism to guarantee the quality

of input images; if the user does not provide the corresponding biometric charac-

teristic properly, the feedback mechanism will allow the user to make appropriate

adjustments. We have designed an intuitive graphical user interface to acquire face

and fingerprint images and speech data (Figure 6.2). For face and fingerprint images,

real-time feedback allows the user to rapidly adjust the location of the finger or the

position of the head so as to satisfy the placement requirements for face and finger-

print images. For speech data, the quality of the input speech in terms of signal to

noise ratio, etc. is monitored and feedback is provided to the user accordingly.

6.2 Enrollment Module

In our system, the data acquisition process is differentiated from the enrollment pro-

cess so as to allow for data collection to be done in a distributed fashion. The

enrollment module allows for centralized system administration. Once the data is
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Figure 6.2: GUIs for data acquisition during enrollment.

collected for a particular user, the following events must occur before the user is con-

sidered to be enrolled in the system: (i) the eigenspace and the projections onto the

eigenspace of the user must be computed, (ii) a representative image from the given

set of fingerprint images must be selected and minutiae extraction must be applied,

and (iii) hidden Markov models must be trained for the user.

The graphical user interface for the enrollment module has been designed to fa-

cilitate the above three tasks for an administrator. The administrator can select a

user from the list of users in the database (Figure 6.3(a)). For the selected user, the

particular data to be browsed can be selected from the three possible choices (Figure
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6.3(b)). The GUI changes to adapt itself to the data type selected (Figure 6.4). The

required tasks to complete the enrollment can now be performed from the appropriate

screens.
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Figure 6.3: User Database: (a) The users enrolled in the system are shown in the list,

(b) For each user, three type of data are defined.

6.3 Template Database

Ideally, a relational database management system would be used for storing the tem-

plates generated for each user. However, since our system is intended for use in

a medium sized environment, it suffices to use the native file system for the given

hardware and software platform for storing the templates. The template database

is organized as a hierarchical directory structure which is indexed by the user name.

For each user, the face template consists of the projections of the face images onto

the eigenspace defined by the set of enrolled users. The fingerprint template consists

of the set of extracted minutiae from the selected fingerprint image (the selection

is done manually in the enrollment module). The speech template consists of the
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Figure 6.4: GUIs for the enrollment module.

four hidden Markov models for that user. The combined storage requirement for the

three templates for a single user is of the order of a few thousand kilobytes (typically

around 7 to 8 KB).

6.4 Verification Module

During the verification session, the user is required to give one rendition of each of the

three biometrics and submit an identity claim. Since the data acquisition method at

verification stage is different from the enrollment session, we have designed a different



94

data acquisition GUI for the verification module (Figure 6.5). The verification module

is then responsible for retrieving the appropriate templates from the database, com-

pute the matching scores of the input renditions against the corresponding templates

and finally making an “Accept/Reject” decision through decision fusion.

Ln 1' [nun-mun! and Film

 
Figure 6.5: GUIs for the verification module.

6.5 Commercially Available Biometric Systems

Today a large number of vendors are offering automatic personal identification and

verification systems in the market. Some of the well-known systems are TrueFace

from Miros [50] and FaceIt from Visionics [51] that are face—based systems, GateKey
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Figure 6.6: The result of a successful verification.

from Indenticator Technology [52] and BioMouse from American Biometric Company

Inc. [53] that are fingerprint-based systems, and VoiceCrypt from Veritel Corporation

of America [54], SpeakeEz from T-Netix [55] and SpeakerKey from ITT [56] that are

speech-based systems. All the above systems are available for the Microsoft Windows

platform. Admittedly, our system does not have the same commercial appeal as

these systems but the functionality provided by our system is comparable to any of

the above systems. Also, all the above systems make use of a single biometric. We are

not aware of any commercially available system for the Microsoft Windows platform

that uses multiple biometrics.
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6.6 Summary

In this chapter we have described a real-time, medium sized automatic personal ver-

ification system that uses three different biometrics: face, fingerprint, and speech

to perform identity authentication. The system provides convenient graphical user

interfaces for data acquisition, user enrollment and database management and for

identity authentication. Real-time feedback is provided during the data acquisition

process to ensure that the data thus obtained is of reasonable quality. User enroll-

ment can be performed in an off-line fashion and at a centralized location so as to

ensure the validity of the users being added to the system. The verification module

requires one instance each of face, fingerprint and speech along with an identity claim

to perform authentication. The template database is maintained as a hierarchical

directory structure on the native file system of the host machine, in our case, an IBM

compatible personal computer running Windows NT 4.0. In the next chapter we

will evaluate the performance of our system and demonstrate through experimental

results that the system achieves the desired performance and also operates in real

time.



Chapter 7

Experimental Results

In this chapter we shall attempt to evaluate the performance of our integrated system

and assess the gain in performance that can be achieved by employing the two decision

fusion schemes discussed in Chapter 5. We will demonstrate that our proposed de-

cision fusion schemes significantly improve the performance of the integrated system

over the individual biometric systems. It is, however, critical to understand that the

performance of a biometric system is dependent upon the Operating environment and

the amount of c00peration that can be expected from the user. Hence, we must first

understand the various factors that affect the performance of the biometric systems

based on face, fingerprint, and speech. These factors are summarized in Table 7.1.

The users are assumed to be cooperative. Controllability refers to the ease with which

the various factors can be constrained to be within given limits for a cooperative user

without causing undue inconvenience to the user.

The performance evaluation of a biometric system is a difficult task [57, 58].

Given any biometric system, it is extremely time consuming and expensive for the
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Biometric Factors Controllability

Illumination High

Distance High

Face Orientation Medium

Cosmetics Low

Facial Expressions Low

Illumination High

Fingerprint Impression pressure Medium

Orientation Medium

Ambient Noise Medium

Speech Spectral Variations Low

Device Variations Medium  
 

Table 7.1: Various factors affecting the performance of different biometric systems.

manufacturer to test it under all possible conditions under which the system may have

to Operate. As of today, there are no standard benchmarks available for a biometric

system. The performance of a biometric system can be quantified by various measures

of performance such as FAR, FRR, receiver operating curve, etc. However, these

performance metrics are all dependent on the database available for training and

testing and the conditions under which the data was collected. Hence proper care

needs to be taken while generating the database. The number of individuals in the

database should be large enough so as to adequately represent the population and

enough samples must be available for each individual [57]. If these conditions are met

then the resulting performance metric can be a fair estimate of the true performance

of the system when used with the entire population.

We shall make use of the receiver operating characteristics (ROC) to assess the

performance of our system. The ROC curve is a plot of the authentic acceptance rate

(1 — FRR) against the FAR. The ROC curve is obtained by varying the operating
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point of the system from a point where the FRR is 100% to a point where the FAR is

100%. Ideally, we would like to have a system with a 100% authentic acceptance rate

for all values of FAR. This would imply that a genuine individual is never rejected.

The ROC curve for such a system is depicted in Figure 7.1. In practice, due to the

inherent variability in the data acquisition process, it is impossible for a system to

have such a ROC curve. The objective is then to design a system with a ROC curve

that is as close as possible to the ROC curve depicted in Figure 7.1.
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Figure 7.1: An ideal receiver operating characteristics curve.

7.1 Database

We have collected a database of faces, fingerprints and speech samples from 50 indi-

viduals. For each of these 50 individuals, we have collected 9 samples each of their

frontal facial images, 10 samples each of their fingerprints from a single finger and
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24 samples each of their speech. The frontal facial images were obtained using a

Panasonic camera under adequate light and against a plain background. The images

were digitized using a frame-grabber from Data Translation and were re-sampled and

cr0pped from their original size of 640 x 480 to the desired size of 80 x 90. Finally,

the images were normalized to have zero mean. The subjects were asked to vary the

orientation of the head and the direction of their gaze within small amounts across

each of the nine samples. A typical set of face images obtained for an individual are

depicted in Figure 7.2.

 
Figure 7.2: A typical example of the nine face images acquired for each user.

The fingerprint images were obtained using a live—scan fingerprint scanner manu-

factured by Digital Biometrics. The fingerprint acquisition process was supervised in
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terms of controlling the position, orientation and quality of the fingerprints. Conse-

quently, all of the acquired fingerprints are of reasonable quality. Figure 7.3 depicts

typical fingerprints in the database.
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Figure 7.3: A typical example of the ten fingerprint images of good quality acquired

for each user.

Our speech database consists of 24 samples per speaker, two sets of 12 samples

each, collected over two sessions held approximately a week apart. The recordings

were done in a laboratory environment using a Labtec micrOphone employing noise

reduction technology and a Sound Blaster audio card. The resulting speech samples

have a very high signal-to—noise ratio. Figure 7.4 depicts a typical speech sample

consisting of the four digits one, two, seven and nine.

The database described above was used for generating the face, fingerprint and
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Figure 7.4: The waveform of a typical speech sample in our database.

speech templates for the users and for training the decision fusion schemes. Next, for

a group of 25 people, additional sets of data were collected, over multiple sessions. In

each such session, 5 samples each of face, fingerprint and speech were collected. On

an average, about 3 such sessions were conducted for each of the 25 users. Finally, a

database of impostors was generated by pooling together face, fingerprint and speech

samples of individuals not enrolled in the system. The performance of the system

was also evaluated on this database of impostors. The genuine and the impostor

databases were pooled together to evaluate the performance of the individual and the

integrated systems.
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7.2 System Training

The first step in the evaluation process is to generate the impostor and genuine

distributions for face, fingerprint and speech matching scores. We shall briefly discuss

the methodologies used for generating the impostor and genuine distributions for

the individual biometrics. We note that the matching scores for face, fingerprint

and speech will have their respective ranges. Hence, we normalize the genuine and

impostor distributions for each biometric to the range [0, 100].

Face

In order to generate the genuine and impostor matching scores, the leave-one—out

method was employed. Thus a face template for a user is obtained by using eight

of the nine facial images. The image left out is used for computing the genuine

and impostor matching scores. The process is then repeated for each of the nine

images. Thus, for a database of 50 individuals with 9 face images per individual, the

comparison of each image with the 50 templates results in one genuine matching score

and 49 impostor matching scores. There are a total of 450 facial images, resulting in

a total of 450 genuine scores and 22,050 impostor scores. The genuine and impostor

distributions for face matching are depicted in Figure 7.5.

Fingerprint

Out of the ten fingerprints available for each user, we have manually selected one

fingerprint as the template. The manual selection of the template fingerprint is a
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Figure 7.5: The genuine and impostor distributions for face matching.

reasonable choice so as to enable us to represent each individual using the most

expressive sample. The remaining nine fingerprints are used to generate the impostor

and the genuine distributions for the matching scores in a manner similar to that

described for the face verification system. The genuine and impostor distributions for

fingerprint matching are depicted in Figure 7.6.

Speech

Amongst the 24 samples for each user, 12 samples from one session were used for

generating the hidden Markov models for that user and the 12 samples from the second

session were used for generating the genuine and impostor distributions in a manner

similar to the face verification system. The genuine and impostor distributions for

speaker verification are depicted in Figure 7.7.

 



V:
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Figure 7.6: The genuine and impostor distributions for fingerprint matching.

The above distributions were then used to train the two decision fusion schemes

discussed in Chapter 5 in the following fashion.

Neyman-Pearson Rule

The training procedure for the Neyman-Pearson rule essentially involves an exhaustive

search in the 100 x 100x100 dimensional space defined by the three discrete probability

distributions. The objective is to define a region wherein the false acceptance rate

is less than the desired value and then define a test on the likelihood ratio, A. The

Neyman-Pearson lemma[49] guarantees that the likelihood ratio test, as defined in

Equation 5.7, with this A will be the most powerful test resulting in the smallest

possible false reject rate for the specified false accept rate. We simplify the exhaustive

search into a linear search by sorting the likelihood ratios for the training data in
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Figure 7.7: The genuine and impostor distributions for the speaker verification sys-

tem.

an ascending order and then sequentially adding the sorted data points into the

acceptance region without exceeding the predefined false accept rate.

Linear Discriminant Functions

Since the three impostor and genuine distributions are assumed to be independent

of each other, the joint impostor and genuine distributions are simply obtained by

combining the three univariate distributions in a three-dimensional Euclidean space.

In this space the parameters of the linear discriminant function are learned using

a perceptron. Since a perceptron can only be trained to minimize the equal error

rate, a trial-and-error method is used next, wherein the decision surface obtained

through perceptron training is moved parallel to itself till the desired FAR is achieved.

Although, such an ad-hoc method is unlikely to be optimal, experimental results
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demonstrate that the method works reasonably well.

7.3 Performance Evaluation

The purpose of this thesis is to demonstrate that the FAR and FRR of an auto-

matic personal verification system can be improved by integrating multiple biomet-

rics. Consequently, for each decision fusion schema, we first evaluate the performance

of automatic personal verification systems based on each of the three biometrics by

plotting the ROC curves for each system. Next we will evaluate the performance

of the integrated system by plotting the ROC curve of the integrated system and

demonstrate the gain in performance. The test data collected for the 25 individuals

along with the impostor database was used to evaluate the various systems.

7.3.1 Performance of the Neyman-Pearson Decision Fusion

Schema

The training procedure described above results in one likelihood ratio test for each

desired value of the false accept rate. The test data is now used to evaluate the false

accept rate and the false reject rate for each test on previously unseen data. The

resulting receiver operating characteristics for the various systems are depicted in

Figure 7.8.
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Figure 7.8: The receiver operating characteristics for the Neyman-Pearson rule.

7.3.2 Performance of the Linear Discriminant Function De-

cision Fusion Schema

The various linear discriminant functions obtained during the training phase are used

along with the test data for performance evaluation. The resulting receiver operating

characteristics for the various systems are depicted in Figure 7.9.

7.3.3 Verification Speed

Since the integrated system is intended to operate in real time, it is necessary that

the response time of the system be of the order of a few seconds. The average wall-

clock time required for our system for one verification session on a Pentium 200MHz
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Figure 7.9: The receiver operating characteristics for the Linear Discriminant func-

tions.

machine running Windows NT 4.0 is summarized in Table 7.2.

 

Face Fingerprint Speech Integrated System

Time (seconds) 0.5 1.5 0.75 3.0

 

         
 

Table 7.2: Wall-clock times for the various verification systems.

7.4 Summary

Obtaining a reliable estimate of the performance of a biometric system is a rather

difficult task. To ensure that the estimated performance figures are reliable, the

database used for evaluation must contain enough samples so as to adequately rep-
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resent the intended population and the intended operating environment. Also, care

must be taken while collecting the data to ensure that there is no bias towards or

against any one of the three biometrics. The entire database is divided into three

components: (i) data to be used for generating the templates, (i2) data to be used for

training the various decision fusion schemes and (iii) data to be used for evaluating

the generalization ability of the trained systems.

In this chapter we have presented the experimental results for the two proposed

decision fusion schemes for a limited database collected in a laboratory environment

and from cooperative users. For this database, we have demonstrated that the pro-

posed decision fusion schemes are able to significantly improve the performance of the

integrated system over the individual biometrics systems. The integrated system has

a response time of approximately three seconds on a Pentium 200MHz machine run-

ning Windows NT 4.0. With code optimization and a faster processor, the algorithm

is capable of operating in real-time.

 



Chapter 8

Summary and Future Research

In this chapter we will summarize the work we have done, discuss the limitations of

our prOposed approach and propose some directions for future research.

8. 1 Summary

Biometrics, which is defined as the use of human physiological and behavioral char-

acteristics to establish and/or verify the identity of an individual is poised to become

the popular security standard in the near future. It is inherently more secure than

knowledge-based or token-based security systems since it relies upon something that

one is rather than something that one knows (e.g., passwords) or something that one

has (e.g., magnetic stripe cards) to make an identification/verification. A number of

different physiological and behavioral characteristics have been studied and identified

as potential candidates for a biometric system. Amongst them face, fingerprint, and

speech are the most widely applied and accepted biometric techniques. However,

111
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each of these three biometrics has its limitations: face is the least accurate biometric;

the performance of fingerprints is acceptable only when the fingerprint images ob-

tained are of good quality; and the performance of speech depends heavily upon the

operational environment and the data acquisition equipment. Thus, systems based

on a single biometric are not able to achieve the performance required of a practical

system. It is expected that a system that integrates these three biometrics can over-

come the limitations of the individual biometrics and be suitable for practical use.

Furthermore, such a system is also applicable to a larger target population.

In this thesis we have designed and implemented a real-time fully automatic per-

sonal identity verification system that integrates the following three biometrics: face,

fingerprint, and speech. The system uses the eigenface method by Turk and Pentland

[21] for face recognition/verification, the alignment-based minutiae matching algo-

rithm by Jain et al. [2] for fingerprint verification and continuous mixture density

hidden Markov models for speaker verification. A video camera is used to obtain

frontal images of the individual’s face under suitable lighting conditions and against

a plain background. An optical fingerprint scanner is used to obtain the fingerprint

images. The face and the fingerprint images are digitized using a frame grabber. The

resulting images are of 640x480 size. Speech is recorded using a noise cancellation

microphone and a standard sound card. The speech is sampled at a frequency of

8000 Hz and at a resolution of 16 bits per sample. The data thus obtained is then

processed by the respective sub-systems resulting in three matching scores. These

matching scores are then fed to a decision fusion module which uses one of the two

prOposed schemes to make the final “Accept/Reject” decision. Suitable graphical user
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interfaces have been provided to make the verification system user-friendly and for

providing real-time feedback during the data acquisition process.

Experimental results have been obtained on a limited database collected under a

controlled laboratory environment and from cooperative users. These results demon-

strate that our system achieves desired improvement in verification accuracy over the

individual systems while maintaining the response-time requirements.

8.2 Future Research

In our system face verification can only be done under a controlled operating en-

vironment. This is mainly because of the lack of a reliable and fast face detection

algorithm. The practicality of the system can be increased by incorporating a more

sophisticated face detection algorithm.

The performance of the face verification system is the worst amongst the three

biometrics. The primary reason for this is the elapsed duration between the training

data collection and the test data collection. Figure 8.1 illustrates one instance of

the difference between training and test data for the face system. Such changes are

undesirable but unavoidable for a practical system.

Intra—class variations introduced by time affect the performance of all the three

biometrics but to varying extent. Faces and speech are affected the most whereas

fingerprints are affected only to a limited extent. It is, however, possible to overcome

these variations by employing some kind of template adaptation technique. After each

verification session, the test data is used to update the stored template. If the system
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Figure 8.1: Example of the temporal variation present between training and test face

images.

is used regularly then the temporal changes can be tracked and the performance can

be maintained at the desired level.

Decision fusion is currently being performed at the measurement level. It is pos-

sible to perform decision fusion at a feature level. It is expected that a classifier

designed to operate in the combined feature space is likely to be able to achieve a

higher performance.

The integrated system is, at best, a useful tool for demonstration purposes. A

number of enhancements need to be made to make it a commercially viable system. It

would also be desirable to make a developer’s toolkit available that could be used by

application developers to easily integrate multimodal biometric authentication into

their applications.

Finally, we note that the performance of our system has been tested on a limited

database acquired in a laboratory environment. The performance on a larger database

consisting of a few thousand users remains to be evaluated. We are currently in the
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process of combining a number of different face, fingerprint and speech databases so

as to generate a larger and a more realistic database for testing our system.
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