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ABSTRACT

A SEPARATION PRINCIPLE FOR THE
CONTROL OF A CLASS OF NONLINEAR
SYSTEMS

By

AHMAD NAZIR ATASSI

It is shown that the performance of a globally bounded partial state feedback
control of a certain class of nonlinear systems can be recovered by a sufficiently
fast high-gain observer. The performance recovery includes recovery of asymptotic
stability, the region of attraction, and trajectories. We deal with stability with respect
to an equilibrium point and stability with respect to a compact, positively invariant
set.

High-gain observers have been used in the design of output feedback controllers
due to their ability to robustly estimate the unmeasured states while asymptoti-
cally attenuating disturbances. The available techniques for the design of high-gain
observers can be classified into three groups: pole-placement algorithms, Riccati
equation-based algorithms, and Lyapunov equation-based algorithms. In this work,
we show that the abovementioned separation results hold for all these observer design

techniques.
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CHAPTER 1

Introduction

A separation principle is the property of a control system that allows the design of
a dynamic feedback controller in two separate steps. In the first step we design a
state feedback controller that achieves some desired properties such as asymptotic
convergence to an equilibrium point or asymptotic tracking by certain outputs of
some reference signals. This design assumes that all the state variables are available
for measurement. Then in the second step we design a state estimator (observer)
using measurements of some outputs (functions of the state variables). The state is
then replaced by its estimate in the state feedback controller to produce the dynamic
output feedback controller. The separation property facilitates the design of feedback
controllers in case we can only use measurements of outputs.

The literature provides several separation principles formulated for different
classes of systems. Hereafter we give a quick survey of the main ones.

For the case of linear time-invariant control systems

T = Az + Bu

y = Cz

if the system is stabilizable and detectable then a dynamical output feedback control



can be designed such that the closed-loop system has the origin as a globally asymp-
totically stable equilibrium point. The control input takes the form u = — Kz where
K is designed to stabilize the closed-loop system under state feedback and £ is the

estimate of the state r provided by the observer

i=Ai+Bu+ H(y - C%)

where H is the observer gain. This observer (Luenberger observer) replicates the
dynamics of the system and is driven by the output estimation error. The state es-
timation error z(t) — Z(t) approaches zero asymptotically. This separation principle
means that the poles of the system and those of the observer can be assigned sepa-
rately and that the poles of the closed-loop system are the set of the state poles and
the observer poles. Thus, if global stabilization is achieved by some linear state feed-
back u = — Kz, the corresponding output feedback u = — Kz will globally recover
this property.

We understand from the above discussion that the statement of a separation
principle is a statement of recovery by an output feedback controller of performance
achieved by a state feedback controller. In the case of linear systems the recovery
includes recovery of asymptotic stability to an equilibrium point and asymptotic
tracking of a reference. But we don’t achieve closeness, in some sense, of trajecto-
ries under output feedback to trajectories under state feedback. This point will be
illustrated later on.

In what follows we always assume that the origin is an equilibrium point of
the system considered and all the vector fields and state functions mentioned are
at least continuous in some appropriate regions of interest. We also abbreviate
asymptotic stability (or asymptotically stable) by AS, local or locally by L and

global or globally by G, so we may have for example LAS or GAS.



Vidyasagar in [53) formulated a separation principle for a general nonlinear MIMO

(multiple-input multiple-output) control system

T = f(t,z,u)

y = r(t,1)

This principle states that if f(¢,.,.) is uniformly locally Lipschitz and if the system
is stabilizable and weakly detectable, then the closed-loop system composed of the
stabilizing state feedback and a weak detector has the origin as a LAS equilibrium
point. Stabilizability implies the existence of a state feedback law u = h(t,z) that
renders the origin of the system LAS. On the other hand, weak detectability implies
the existence of a dynamical system (weak detector) driven by the input u and the
output y and whose state is not very far from the state of the original system for
initial conditions close to the origin.

This result is local, i.e. valid only in a neighborhood of the origin, and not
constructive since it does not suggest a construction of the detector. The author
actually stated a global version of his separation principle for the case of exponential
stabilizability. This global version required, in addition to the above conditions, that
the state estimation error decays exponentially and that the vector fields involved be
globally Lipschitz.

It is noteworthy that the formulation of a separation principle requires the system
to have some stabilizability and detectability properties. In the examples hereafter
we highlight this idea. It is useful for the rest to define a feedback linearizable system.

It is well known [20] that if the nonlinear system

x = f(x)+9(x)u



y = h(x)

has a vector relative degree (r1,...,7p), then it can be transformed into the form

£ = A&+ B[f1(&2) + g1(& 2)u]
z = f2(€7z;u)

y = C¢

where gj(.,.) is invertible in the domain of interest and y is the only measured
output. If the sum of the relative degrees equals the dimension of the system it is
called fully linearizable, otherwise it is called input-output linearizable. The first
part of the system is a chain of integrators driven by a nonlinear function of the

states and the inputs. The second part is called the zero dynamics.

Khalil and Esfandiari in [11] used a separation approach for a fully linearizable

MIMO system with a high-gain observer that estimates the output and its derivatives.

This observer is a chain of integrators of the form 1

“ « “
y1 = Yo+ —cl(y1 -11)

R « “
yo = Y3+ :22(3/1 -91)

in = (1 -1+ fol6,2) +90(6, 2

driven by the output estimation error and by nonlinearities that reflect our partial
knowledge of the system at hand. The observer gain can be regulated through the

parameter € in such a way that the observer is fast enough that the state under

1For convenience, we give the observer equations for SISO systems.
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output feedback stays close to the state under state feedback and thus the stabilizing
property of the controller is not lost. This observer introduces peaking into the state
variables, see [11], which requires the disabling (saturation) of the controller outside
some region of interest. The disabling period is made short by an appropriate choice
of the observer gain. Notice that the stabilizability and detectability properties are

immediately satisfied due to the particular structure of the system studied.

Tornambe in [52] proposed a local separation principle for a class of input-output
linearizable non-minimum phase (unstable zeros dynamics) SISO nonlinear control
systems. The system should be observable in the region of interest meaning that the
state can be written as a function of the input, the output, and their derivatives.
Considering the derivatives of the input and the output as state variables transforms
the system into a double chain of integrators that can be linearized by state feed-
back. The fact that some of the states of the transformed system form a chain of
integrators composed of an output and its derivatives allows the use of a high-gain
observer similar to the one mentioned above to estimate these states. Two differences
exist between the two observers, one is that Tornambe’s observer did not use any
knowledge of the nonlinearities of the system, and the other is that it did not deal
with the peaking issue which makes the region of attraction of the system shrinks as
the observer gain grows.

Teel and Praly in [49] proposed an interesting and constructive global separation
principle for a wide class of autonomous SISO (single-input single-output) nonlinear
control systems. It is a combination and extension of the ideas used in Esfandiari
and Khalil [11] and Tornambe [52]. They stated that a globally stabilizable and
uniformly completely observable (UCO) system can be semi-globally stabilizable by
dynamic output feedback. The UCO property implies that the state of the system

can be written as a function of the input, the output, and a finite (not necessarily



equal) number of their derivatives. This function is called the observability map.
The semi-global stabilizability means that given any compact set in the state space,
then a dynamic output feedback controller can be designed such that this compact
set is contained in the region of attraction of the closed loop-system. The observer
used is the high-gain observer proposed by Esfandiari and Khalil in [11]. One
major limitation of this separation principle is that the exact knowledge of the

observability map implies a lack of robustness of the controller.

The last three results dealt with systems that can be transformed into a linear
system using a function of the input, the output and their derivatives and an appro-
priate state feedback. For the sake of completeness we mention two more separation
results that deal with systems that are affine in the inputs and whose unforced dy-
namics (for zero inputs) are Lyapunov stable (i.e. dissipative). The first [14] is a

global separation principle for a class of SISO bilinear systems of the form

T = Az +u(Bz+b)

y = Cz

that are stabilizable and whose unforced dynamics are observable (the unforced
dynamics are linear). Structural conditions were provided to check the stabilizability
and observability properties and two globally stabilizing feedback controllers were
proposed. The two observers replicate the dynamics of the system and are driven
by the output estimation error; one requires the input to be small and the other

requires the input to be persistent.

The second [33] is a global separation result for a class of MIMO systems of the



form

m

T = Az+ ) g;(z)y;
7 =

y = Crz

that are stabilizable by bounded inputs ( a control input was suggested) and whose
unforced dynamics are observable (linear dynamics). Also, structural conditions
were given to check the stabilizability of the system. The observer replicates the
dynamics of the systems and is driven by the output estimation error. This result

was shown to generalize the one for the bilinear system.

The above separation results were mainly concerned with AS to an equilibrium
point. The following separation results are for cases of adaptive control and ser-
vomechanism where not all of the states approach the origin and the system depends
on time-varying external signals (reference signals, disturbances, etc.).

In (27, 2, 1] Khalil and Aloliwi considered a SISO minimum phase nonlinear

system which can be globally represented by an I/O model of the form

D P
o™ = fo() + Zl F08+ (o) + X g;()8)u(™ +d(t,0,.)
1= 1=1

where the different nonlinearities depend on the input, the output, and their
derivatives, € is an unknown vector of parameters that belong to a compact set,
and d(.) is a locally Lipschitz disturbance. Adaptive state feedback controllers
were designed so that the output can asymptotically track a bounded reference
signal with bounded derivatives. Later, a linear high-gain observer was used to
semi-globally recover what was achieved under state feedback. In some of the

scenarios studied the parameter estimation error § = 6 — 6 and some of the states



were only proven to be bounded. In other scenarios the tracking error as well as
the parameter estimation error were only ultimately bounded or were small in the

mean-square sense.

In [26] Khalil used the internal model principle to regionally (in a region of
interest) solve the servomechanism problem for a class of SISO uncertain systems
that can be transformed into a normal form with no zero dynamics. The proposed
dynamic state feedback controller achieved asymptotic convergence of the tracking
error but the overall state approached an invariant zero-error manifold. A similar
result was developed in [38] for a class of SISO systems represented by an I/O

equation which depends nonlinearly on a vector of time varying disturbances.

In [21] Isidori has shown that his previously proposed solution for the general
structurally stable regulation problem, see [22], can be coupled with the idea of high-
gain observer suggested by Khalil in [11] to solve a problem of robust semiglobal
output regulation in the presence of parameter uncertainties ranging over compact

sets. The class of systems considered is of the form

¢ = Z(pz+py(zy,w,p)
t = Fzr+Gu+ P(z,z,w,pu)

e = Hz—q(w,p)

where (F,G,H) is a chain of integrators, P(.) is a lower triangular vector of
nonlinearities, Z(u) is Hurwitz in a compact set, and w is generated by a linear

neutrally stable exosystem.

It is noteworthy that other separation results can be formulated for a specific



application as is the case for polymerization reactors discussed in [54].

The purpose of this survey of literature is to show the classes of systems covered
by different separation results and the observers used to achieve the goal of successful
output feedback. Having done that we can exactly situate our version among the
others and point out its merits compared to them. In a concise way we can say the

following about our work:

(1) class of systems: it includes I/O linearizable systems, fully linearizable systems,
and observable systems (that can be represented by a higher order ODE in the

input and the output);
(2) observer: the robust high-gain observer of [11];

(3) state feedback: any globally bounded state feedback that stabilizes the system
with respect to an equilibrium point or a compact positively invariant set. No

Lyapunov function associated with the state feedback is needed; .

(4) recovery properties: it recovers the AS property, trajectories, as well as the

region of attraction (as opposed to local or global);

(5) it unifies and generalizes the cases of [49, 52, 11, 2, 1, 27, 26, 37, 38] which
encompass a wide class of systems and a wide class of control techniques and

objectives.

The goal of this work is to formulate, in a generic way, a separation principle
for a wide class of nonlinear systems. This principle is based on the idea of fast
estimation of the outputs and their derivatives cristalized in the high-gain observer
concept. The resulting output feedback controller will be shown to recover a wide
range of performance measures achieved by the state feedback controller. It is meant

by ”a generic way” that the statement of the separation principle does not depend

9



on a specific state feedback nor on the knowledge of a Lyapunov function associated
with this state feedback.

This work can be divided into three major sections. The first formulates a sepa-
ration principle for the case where the state feedback controller achieves asymptotic
stability to an equilibrium point and is given in Chapter 2. The second formulates a
separation principle for the case of asymptotic stability to a compact, positively in-
variant set and is given in Chapters 3 and 4. The third shows that different observer
design techniques yield separation results similar to those of Chapters 2 and 3, and
is given in Chapter 5. Chapter 6 gives converse Lyapunov results for stability with

respect to sets.

10



CHAPTER 2

A Separation Principle for the
Stabilization of a Class of

Nonlinear Systems

2.1 Introduction

A few years ago, Esfandiari and Khalil introduced in [11] a new technique in the
design of robust output feedback control for input-output linearizable systems [11].

The basic ingredients of this technique are
(1) A high-gain observer that robustly estimates the derivatives of the output;

(2) A globally bounded state feedback control, usually obtained by saturating a
continuous state feedback function outside a compact region of interest, that
meets the design objectives. The global boundedness of the control protects
the state of the plant from peaking when the high-gain observer estimates are

used instead of the true states.

This technique has been the impetus for several results we have obtained over the

past few years. It was used in [11] and [30] to achieve stabilization and semiglobal

11



stabilization of fully-linearizable systems, in [26] to design robust servomechanisms
for fully linearizable systems, in [37] and [38] to extend the results of [26] to systems
having nontrivial zero dynamics. It was used also in adaptive control [27], variable
structure control [41], and speed control of induction motors [31].

As the results of [11] became known, other researchers adopted its technique in
their work. Teel and Praly [49, 50] and Lin and Saberi [35] used it in a few papers
to achieve semiglobal stabilization. Jankovic [23] used it in an adaptive control
problem. Isidori [21] used it to unify his pioneering work on servomechanisms [22]
with Khalil’s work [26]. Jiang, Hill, and Guo [24] used a reduced-order high-gain
observer to achieve semiglobal stabilization for a nonlinear benchmark example.

In most of these papers the controller is designed in two steps. First, a globally
bounded state feedback control is designed to meet the design objective. Second, a
high-gain observer, designed to be fast enough, recovers the performance achieved
under state feedback. This recovery is shown using asymptotic analysis of a singu-
larly perturbed closed-loop system. Our goal in the current chapter is to develop
this recovery property in a generic form that can be applied to any globally bounded
stabilizing state feedback control. In particular, we want a separation theorem that
is independent of the state feedback design and is derived under the least restric-
tive assumptions. To increase the utility of such a theorem, we want to allow for
model uncertainty. Finally, we want to demonstrate that the performance recovery
achieved with the high-gain observer is more than just asymptotic stability recovery.
It includes recovery of the region of attraction and trajectories achieved under state
feedback. These features of the theorem distinguish our work from the interesting
separation theorem proved by Teel and Praly [49], where it is shown that global
stabilizability by state feedback and observability imply semiglobal stabilizability
by output feedback. The result of [49] assumes perfect knowledge of the model and

shows only recovery of asymptotic stability and the semiglobal stabilization property.

12



The rest of the chapter is organized as follows. Section 2.2 introduces the class
of systems with which the chapter is concerned. Section 2.3 states the requirements
on the state feedback control. Section 2.4 introduces the high-gain observer used to
estimate the states. Section 2.5 discusses and proves the recovery of performance by

output feedback. Section 2.6 illustrates the previous results through simulations.

2.2 The Class of Systems

We consider a multivariable nonlinear system represented by

& = Azr+ Bo(z,z,u) (2.1)
¢ = (g, z,u) (2.2)
y = Cz (2.3)
¢ = gq(z,2) (2.4)

where u € Y C R™ is the control input, y € Y C RP and ¢ € RS are measured
outputs,and z € X C R" and z € Z C R constitute the state vector. The  x r

matrix A, the 7 x p matrix B, and the p x r matrix C, given by

FO 1 0-
0 0 1 0
A = block diag[A1,...,Ap], A; =
0 0 1
LO O-Tixri

13



0
0
B = block diag(By,...,Bp], B;=
0
Ll-rixl
C = block diag[Cy,...,Cp], C;=|1 0 ... ... 0
IXTi

where 1 <i < pand r =7 + ... + rp represent p chains of integrators. This system

satisfies the following assumption:

Assumption 2.1 The functions ¢ : X X ZxU - RP and ¢y : X x Zx U — Rt
are locally Lipschitz in their arguments over the domain of interest. In addition,

#(0,0,0) =0, ¥(0,0,0) = 0, and ¢(0,0) = 0.
Assumption 2.1 guarantees that the origin is an equilibrium point of the open-loop

system.

The main source of the system (2.1)-(2.4) is the normal form of a nonlinear
system having a vector relative degree (rq,...,7p). It is well known [20] that if the

nonlinear system

has a vector relative degree (rq,...,7p), then it can be transformed into the form

§ = AE+B[f1(&,2) +91(& 2)y]

z = f2(€1zv u)

14



y = C¢

In this case gj(.,.) is nonsingular in the domain of interest. y is the only measured

output, and equation (2.4) is dropped.

Another source, where equation (2.4) is relevant, arises when the dynamics are
extended by augmenting a series of integrators at the input side {27, 49, 52]. Ref-
erence [27] considers a single-input single-output system modeled by the nth—order

differential equation

y(™ = fo() + go()u(" = #)

where u is the input, y is the output, fj and g are functions of y, y(l), -

y(" - 1) TR y(n -p—1) Augmenting (n — p) integrators at the input side,
denoting their states by z; = u(i - 1), setting u = u(" = P) as the control input of
the augmented system, and taking z; = y(i - 1), results in a system of the form (2.1)-
(2.4) with r = n and £ = n — p. In this case all the components of z are measured;
hence ¢(z, z) = z in (2.4). Another example of the use of extended dynamics can be
found in [49]. Reference [49] considers a single-input single-output nonlinear system
where complete uniform observability guarantees that the state x can be expressed
as x = h(y, ..., y(ny), J TR u("u)) where p is the input, y is the output, and h(.) is
a known function. Furthermore, y(ny +1) = a(x, u, ..., u(mu)) where «a is a known
function. The dynamics are extended by adding I, = max {ny, my} integrators at

the input side. Taking z;, = y(i), for1 <1< ny, z; = u(i), for 1 <1< Iy, and

u= (bu + 1), the system can be represented as
H Y p

t = Az + Ba(h(z,z2),2)

z = Apgz+ Byu

15



y = Cz

where (A4, B,C) and (A, B) represent chains of ny and [y integrators, respectively.
In this case ¢ is independent of u and all the components of z are measured; hence

q(z, 2) = z in (2.4).

The model (2.1)-(2.4) may also arise in models of mechanical and electrome-
chanical systems where displacement variables are measured while their derivatives
(velocities, accelerations, etc.) are not measured. Examples of such models can be
found in (31, 15, 36, 19, 51, 24]. A model of induction motor [31] can be represented
in the form (2.1)-(2.4) with z = [6, 4, 6]T, where § = 6 — oref is the rotor position
error, and z constitutes the rotor flux and stator current. The measured variables y
and ( are the rotor position error and stator current, respectively. Examples of mod-
els that can be put in the normal form are the models given in [15] and [36] for the
inverted pendulum-on-a-cart system. These models, taking the cart displacement as
the measured output, have a relative degree two but are non-minimum phase. In [19]
and [51], the models given of the ball and beam system fit in the form of (2.1)-(2.4).
These systems can not be represented in the normal form because, taking the ball’s
position as one of the measured outputs, the relative degree is not well defined. A
last example of systems fitting the model (2.1)-(2.4) is the model of the benchmark
rotational/translational actuator given in [24] where the system has a well defined
relative degree with respect to the cart’s position but only locally. The design of the
globally stabilizing state feedback controller of [24] does not transform the system

into the normal form.
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2.3 Partial State Feedback Control

Our goal is to design a feedback control to stabilize the origin of the closed-loop
system using only the measured outputs y and (. We follow a two-step approach
to this design problem. We first design a partial state feedback control that uses
measurements of x and (. Then we use a high-gain observer to estimate z from y.
We allow the state feedback control to be dynamic, which is the case, for example, in
the adaptive control of [27], the speed control of induction motors of [31] which uses
a flux observer, and the stabilizing control of [11] which includes a zero-dynamics

observer. The state feedback control is assumed to be in the form

9 = T'(¥,z,Q) (2.5)

u = ’7(0a z, C) (26)

A non-dynamic state feedback control u = 7(z, () will be viewed as a special case of
(2.5)—(2.6) by dropping equation (2.5).

We allow any state feedback design that holds the following three properties:
Assumption 2.2

(1) T and 7y are locally Lipschitz functions in their arguments over the domain of

interest, I'(0,0,0) = 0 and v(0,0,0) = 0;
(2) T and vy are globally bounded functions of z;

(3) The origin (x =0, z = 0, ¥ = 0) is an asymptotically stable equilibrium point

of the closed—-loop system.

The state feedback control may have additional properties like conformity to certain
performance measures on the trajectories, and/or robustness to a certain class of un-

certainties. The global boundedness requirement is typically achieved by saturation
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of I'(.) and v(.), or saturation of their z-input, outside a compact region of interest.

The boundedness of v(.) may also follow from a design under control constraints.

2.4 High-Gain Observer

To implement the control (2.5)-(2.6) we use

9 = I'®W,%,0) (2.7)

v = 7(Y,%,() (2.8)
where the state estimate Z is generated by the high-gain observer
t = Az + Boy(%,¢,u) + H(y — Ci) (2.9)
The observer gain H is chosen as

/e
a’z/e2
H = block diagH;, ..., Hp|, H; = : (2.10)

o, /i1

i /.T;
al. /e
rz/ dr; x1

where € is a positive constant to be specified and the positive constants a;- are chosen

such that the roots of

1-i-----!-o:

T; 1.7~ 1
1 =
st+ags r; — 18 +a7’i
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are in the open left-half plane, for all i = 1,...,p. The function ¢g(z,(,u) is a
nominal model of ¢(z,z,u). If ¢ is a known function of z, ¢, and u, we can take
#9 = ¢. On the other hand, if such nominal model is not available, we can take
¢g = 0, which results in a linear observer. The function @) is required to satisfy the

following assumption:

Assumption 2.3 ¢g(z,¢,v(9,z,(¢)) is locally Lipschitz in its arguments over the

domain of interest and globally bounded in x 1 Moreover, ¢((0,0,0) = 0.

The high-gain observer suggested above is a full-order one. It is possible to design

a reduced-order high-gain observer of order (r — p) [45]. We start by partitioning

Y
the state vector z as r = , where y = [y, ..., yp]T, and rewriting the system

(2.1)-(2.2) as

Yy = A12v

v = Agov+ Bood(y,v, 2,u)

where, Ag9, B9, A9 have the same structure as A, B, C, respectively, but with all

the r;’s replaced by (r; — 1)’s. Then, the reduced-order observer will be

w = (Agg — LA19)(w + Ly) + Boodg(y, 7, ¢, u)

v = w+ Ly

1 The need for this global boundedness property will be made clear in footnote
3 in Section 2.5.1. Moreover, global boundedness of ¢y can always be achieved by
saturation outside a compact set of interest in the subspace of .
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where

B /e
B/
L = block diag[Lq,...,Lp|, L; = :

] r;— 2
ﬁri - 2/E

_ﬁf;i—l/fri_l

-(ri—l)xl

The positive constants ﬁ;- are chosen such that the roots of
sri-1+ﬂ{sr’i_2+---+ﬁii_2sl+ﬁii_1=0

are in the open left-half plane, for all: =1,...,p.
Remark 2.1

(1) In the case where one or more of the p channels that compose the system (2.1)-
(2.3) have relative degrees equal to one, then, there is no need to estimate their
states; they can be used as they are in the output feedback controller. This will

not modify the forthcoming analysis.

(2) We can use the measured y in the output feedback controller instead of its
estimate §y = CZ even when we construct a full-order high-gain observer. This,

also, will not change the forthcoming analysis.

2.5 Performance Recovery

In this section we show that the output feedback controller (2.7)—(2.9) recovers the
performance of the state feedback controller (2.5)—(2.6) for sufficiently small e. The

performance recovery manifests itself in three points. First, the origin (z =0, z =
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0,9 =0, £ = 0) of the closed-loop system under output feedback is asymptotically
stable. Second, The output feedback controller recovers the region of attraction of
the state feedback controller in the sense that if R is the region of attraction under
state feedback, then for any compact set S in the interior of R and any compact
set @ C R", the set S x Q is included in the region of attraction under output
feedback control. Third, the trajectory of (z, z,9J) under output feedback approaches
the trajectory under state feedback as ¢ — 0.

For the clarity of the proof we will follow the way used in [49] which establishes
asymptotic stability of the origin in three steps. The first step is to show boundedness
of trajectories, second, ultimate boundedness of these trajectories, and third, local
asymptotic stability. This allows us to deal with asymptotic stability as a local
property that will require some additional assumptions on the nonlinearities of the
closed-loop system, stated as a condition on the modeling error, which is not the
case for boundedness and ultimate boundedness of trajectories. Thus, the proof will
be divided into four sections. First we prove recovery of boundedness of trajectories;
second, we prove recovery of ultimate boundedness of trajectories; third, we prove
trajectory convergence; and fourth, we prove recovery of asymptotic stability of the
origin. In the latter case, we distinguish between asymptotic and exponential stability

in order to impose less conservative restrictions on the modeling error.

2.5.1 Boundedness

Let us first, for the purpose of analysis, replace the observer dynamics by the equiv-

alent dynamics of the scaled estimation error

(Y Ay
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for1 <i<pand1<j<r;, Hence, we have £ = x — D(e)n where

n = [77111'"17717‘11'-'snpla-"an])’rp]T
D(e) = block diag[Dy, ..., Dp)

D, = diag[e"t ~ 1""’1]’;' X 7

The closed-loop system can be represented by

& = Az+ Bé(z,z,7(9,z — D(€)n,()) (2.11)
¢ = ¢P(z,2,7(d,z - D(€)n,()) (2.12)
9 = I'(¥,z— D(e)n, <) (2.13)
e = Agn+ eBg(z,z,9,D(e)n) (2.14)

where

9(z,2,9,D(e)n) = ¢(z,2,7(9,%,()) - ¢o(2,(,7(9, 2,())

and 14 = D—l(e)(A — HC)D(e) is an 7 X r Hurwitz matrix. The initial states are
(z(0), 2(0),9(0)) = (zq,29,Tg) € S, and £(0) = £y € Q, where S is any compact
set in the interior of R and Q is any compact subset of R"; thus, we have n(0) =
D_l(e)(xo - Zg) = ng-

Remark 2.2 In the case of a reduced-order high-gain observer, the scaled error will

be

A R
for1<i<pand1<j<(r;—1). We also get the same structure of (2.11)-(2.14)
but with r; replaced by (r; — 1), = replaced by (y,v), and & replaced by (y, ) where

~

v = v — D(e)n. The results of this paper will be the same for this reduced-order
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observer.

The system (2.11)-(2.14) is a standard singularly perturbed one, and n = 0 is the
unique solution of (2.14) when € = 0. The reduced system, obtained by substituting
n = 0 in (2.11)—(2.14), is nothing but the closed-loop system under state feedback.

For simplicity we write the system (2.11)-(2.13) as

x = fr(x, D(e)n) (2.15)

where x = [a:T,zT,ﬁT]T and x(0) = [mg, zg,ﬁg]T. Then, the reduced system is
given by

x = fr(x,0) (2.16)

The boundary-layer system, obtained by applying to (2.14) the change of time vari-
able 7 = f then setting € = 0, is given by

To fix the notation, let (x(t,€),n(t,€)) denote the trajectory of the system (2.11)-
(2.14) starting from (x(0),7(0)). The recovery of boundedness of trajectories is

summarized in the following theorem:

Theorem 2.1 Let Assumptions 2.1-2.8 hold; then, there ezists e’f > 0 such that for
every0 < e < e’f, the trajectories (x, 1) of the system (2.11)-(2.14) starting in S x Q

are bounded for all t > 0.

Proof. The recovery of boundedness can be shown in two steps. First, we show the
positive invariance of an appropriately chosen set A. This set is arbitrarily small in
the direction of the error variable 7. Second, we show that, any closed-loop trajectory,

starting in the compact set § x Q, enters the positively invariant set A in finite time.
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We know that the origin of (2.16) is asymptotically stable with a region of attrac-
tion R. Then, the converse Lyapunov theorem of Kurzweil (32, Theorem 7] 2 assures
the existence of a C! Lyapunov function V(x) and three positive definite functions

U1(x), Ua(x), and Us(x), all defined and continuous on R, such that:

Ui(x) < Vix) < Usx) (2.18)
x—l—i)mBRUl(X) = o0 (2.19)
%{—fr(x,O) < ~Us0) (2.20)

for all x € R. The properness of V(x) in R guarantees that with any finite ¢ >
max, ¢ g V(x), the set Q = {x € R:V(x) < c} is a compact subset of R and S is
in the interior of §2.

For the boundary-layer system we define the Lyapunov function W (n) = 17TP01’],
where Py is the positive definite solution of the Lyapunov equation PyAg + A(T;PO =

—1I. This function satisfies

AminPo)Inl? < W(m) < Amaz(Pp)lnll® (2.21)
oW 9
oy Ao <l (2.22)

Let A=Q x {W(n) < pe2}. Due to Assumptions 2.1, 2.2, and 2.3 (i.e., continuity
of the nonlinearities and global boundedness of I'(.) and 7(.) in ) we have, for all

X € 0 (continuous functions are bounded on compact sets) and all n € R" (global

2 This theorem is built around a stability notion called Strong Stability in an open
set. The proof of Theorem 12 of [32] shows that asymptotic stability implies strong
stability in the region of attraction which is an open invariant set. Thus, we can
apply Theorem 7.
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boundedness of the controller),

/06 Dl < Ky (2.23)

lg(x, D(e))ll < ko (2.24)

where k1 and k9 are positive constants independent of . Moreover, forany 0 < € < 1,
there is L, independent of €, such that, for all (x,7) € A and every 0 < € < ¢, we

have

I fr(x, D(€)n) — fr(x,0)|| < Lq|inl| (2.25)

In the rest of the paper we always consider ¢ < €. We start by showing that there
exist positive constants p and ¢; (dependent on p) such that the compact set A is

positively invariant for every 0 < ¢ < €7. This can be done by verifying that

. |%
V< S frl,0) + cky (2.26)

for all (x,n) € {V(x) = c} x {W(n) < pe?}, and

. 1
W < —Zlinll + 2linll| Pl Bl (2:27)

for all (x,7) € @ x {W(1) = pe?}, where k3 = LyLo\/p/Amin(Po), IRl =
Amaz(Fp), and Lo is an upper bound for II%H over . Taking p = 161’c%||P0H3 and
€1 = B/k3, where § = minx e 50 U3z(x), it can be shown that, for every 0 < € < €7,
we have

V<0 (2.28)
for all (x,n) € {V(x) = c} x {W(n) < pe?}, and
W <0 (2.29)
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for all (x,n) € {V(x) < ¢} x {W(n) = pe2}. From (2.28) and (2.29) we conclude
that the set A is positively invariant.

Now, we consider the initial state (x(0),Z(0)) € S x Q. It can be verified that
the corresponding initial error 7(0) satisfies ||7(0)|| < k/e("mal‘ ~1) for some non-
negative constant k dependent on S and Q, where rmgz = max{rq,...,7p}. Since

the vector field fr(.,.) is continuous, we can write
t
x(t,€) = x(0) = [ fr(x(r,€), D(e)n(r, ))dr (2:30)
Then, using (2.23) and the fact that x(0) is in the interior of €2, we have
lIx(¢,€) — x(0)]] < kqt (2.31)

as long as x(t,e) € Q. Thus, there exists a finite time T(), independent of €, such

that x(t,¢€) € Q for all ¢ € [0,Tp]. During this time interval we have 3
. 1
W < = oInll?, for W (n) > pe®

Therefore,

W (n(t,e)) < 62(7‘ma2:1: —y exp (—o1t/e) (2.32)

where 01 = 1/2||Py|| and 09 = k2HP0||. Choose €9 > 0 small enough that

def € 09
= — —_—e ) < - .
T (e) o1 In (pezrmaz) < =T (2.33)

for all 0 < € < e9. We note that €9 exists since the left-hand side of the preceding

inequality tends to zero as € tends to zero. It follows that W (n(T(¢),¢)) < pe2, for

3 Here we use an inequality similar to (2.27), obtained using (2.24), which is valid
for (x,n) €  x R". Inequality (2.24) requires global boundedness of ¢ in z.
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every 0 < € < €9. Taking 6’1‘ = min (€, €], €9) guarantees that, for every 0 < € < 6’1‘,
the trajectory (x(t,¢€),n(t,€)) enters A during the interval [0, 7'(¢)] and remains there
for all t > T(e). Thus, the trajectory is bounded for all ¢ > T'(¢). On the other
hand, for t € [0, T(¢)], the trajectory is bounded by virtue of inequalities (2.31) and

(2.32).4

Remark 2.3 The constant e’f depends on the sets S and Q.

2.5.2 Ultimate Boundedness

Next, we show that trajectories of the system (2.11)-(2.14), starting in S x Q, come
arbitrarily close to the origin as time progresses. This is summarized in the following

Theorem:

Theorem 2.2 Under the conditions of Theorem 2.1, given any § > 0, there ezxist

€5 = €5(€) > 0 and Ty = Ty (£) such that, for every 0 < € < €5, we have
Ix@ el + lIn(t, e)ll <& vVt >Ty (2.34)

Proof. From the proof of Theorem 2.1 we know that, for every 0 < ¢ < e’i‘, the
trajectory of the closed-loop system, starting from (x(0),%(0)) € S x Q, is inside
the set A for all ¢ > T'(¢), where A is O(e) in the direction of the variable 7. Take
€3 = min{eJ, gm} Then, €3 = €3(£) < €] and for every 0 < € < €3 we

have

In(t, )]l < €/2, vt > T(e3) % T(e) (2.35)

In what follows we continue working with the Lyapunov function defined in the proof

of Theorem 2.1. It can be shown that, for all (x,7n) € A, we have

V < ~Us(x) + k3e (2.36)
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dx “) Thus, we conclude that

where k3 = L1/p/Apin(FPo) max, ¢ QIS
def

V < - 2U3(0), forx ¢ {x: U3(x) < 2kge % (o)) (2.37)

Since Us(x) is positive definite and continuous, the set {x : Us(x) < u(e)} is a
compact set for sufficiently small €. Let cy(e) = MaX{ra (x) < M(G){V( X)}; cole) is
nondecreasing and lim, _, cg(€) = 0. Consider the compact set {x : V(x) < cg(€)}.
We have {x : U3(x) < ()} C {x : V(x) < cp(e)}. Choose ¢4 = e4(£) < €] small
enough such that, for all € < ¢4, the set {x : U3g(x) < u(e)} is compact, the set
{x:V(x) < cg(e)} is in the interior of 2, and

{x: V0 <cpl)} < {x: lIxll <&/2} (2.38)

Then, for all x € Q but x ¢ {x : V(x) < cg(e)}, we have an inequality similar to
(2.37).

Thus, we conclude that the set {x : V(x) < cg(e)} x {n : W(n) < pez} is
positively invariant and every trajectory in Q x {n : W(n) < pe2} reaches {x :
V(x) <cple)} x {n:W(n) < pe2} in finite time. In other words, given (2.38), there

exists a finite time T = T'(€) such that, for every 0 < € < €4
Ix(t, o)l <&/2, vt > T (2.39)

Take €5 = €5(£) = min (e, €4) and Ty = Ty (€) = max (T, T), then (2.34) follows
from (2.35) and (2.39).«

In what follows we use the results of Theorem 2.2. Although it is understood
that different values of £ give different values of 6’5, we use the same notation for

simplicity.
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2.5.3 Trajectory Convergence

Let xr(t) be the solution of (2.16) starting from x(0). The following theorem shows

that x(t,€) converges to xr(t) as € — 0, uniformly in ¢, for all £ > 0.

Theorem 2.3 Under the conditions of Theorem 2.1, given any £ > 0, there ezists

€3 > 0 such that, for every 0 < e < €5 we have

Ix(t, €) —xr@®)l| <& V>0 (2.40)

Proof: We divide the interval [0,00) into three intervals [0,T'(¢)], [T'(e),To], and
[T9,00), where both T'(¢) and T are to be determined later, and show (2.40) for
each interval. This approach gives more insight into the factors that come into play
in each of these intervals.

e From Theorem 2.2 we know that there exists a finite time ’.f’2 > T'(¢), indepen-

dent of €, such that, for every 0 < € < 6’2‘, we have
Ix(t, o)l < €/2, Vt > Ty (2.41)

From the asymptotic stability of the origin of the reduced system we know that there

exists a finite time TQ, independent of ¢, such that
Ixr()ll < €/2, Vt > Ty (2.42)

Take Ty = ma.x{’f’Q, To}. Then, using the triangular inequality along with (2.41) and

(2.42), we conclude that, for every 0 < € < €, we have

lIx(t,€) — xr@®)|| <& Vt > Ty (2.43)
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e From the proof of Theorem 2.1 we know that

lIx(t,€) = x(0)]] < Kyt
during the interval [0, T(¢)]. Similarly, it can be shown that
lIxr(t) — x(0)|| < Kyt
during the same interval. Hence,
Ix(¢, €) = xr (D)l < 2k1T(€), Vt € [0,T(e)] (2.44)

Since T'(e) — 0 as e — 0, there exists 0 < e5 < 65 such that, for every 0 < € < €5,

we have

Ix(t,€) = xr(®)|| < & Vt € [0,T(e)] (2.45)

e Over the interval [T'(¢), To], the trajectory x(t,¢) satisfies
x = fr(x, D(e)n(t,€)), with initial condition x(7'(e), €)
Over the same time interval, the trajectory xr(t) satisfies
X = fr(x,0), with initial condition xr(7(¢))

From (2.44), we know that

Ix(T(e), €) — xr (T()] < 2k T(e) L ()
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where 6(¢) — 0 as € — 07. By continuous dependence of the solutions of differential
equations on parameters over compact time intervals [28, Theorem 2.5], we conclude

that

lix(t,e) = xr ()l < 6&(e) exp[L(Ty — T(e))]

+ %mf{emwfg ~T(e)] - 1}

< 30 + 2L\ /o Amin(Po)el explL(Ty ~ T(e))]  (2.46)

where L is the Lipschitz constant of fr(.,0) on Q. Thus, given (2.46), there exists

0<eg < 65 such that for every 0 < € < eg we have

lIx(t,€) — xr@)|| <& Vit € [T(e), To) (2.47)

Take e’é‘ = min(es, €g), then, using (2.43), (2.45), and (2.47) we conclude (2.40).q

2.5.4 Recovery of asymptotic stability of the origin

We treat first the case when there is no modeling error; then we proceed to the
more general case when modeling error is present. In order to avoid very restrictive
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