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ABSTRACT

UNSTABLE PERIODIC ORBIT EXTRACTION ERROR
AND ITS EFFECT ON NONLINEAR SYSTEM
PARAMETRIC IDENTIFICATION

By

Zamel M. Al-Zamel

In this dissertation the recurrence method is applied to extract unstable periodic
orbits in the tent, the horseshoe and the Henon maps, the Duffing equation and an
experimental two-well oscillator. The extraction error is quantified, and a proposed
theoretical bound for that error is characterized. Also, the least-squares estimation
method is applied in order to improve the extracted orbits. Finally, the effects of the
extraction error and its improvement on the nonlinear systems parametric identifica-
tion are quantified.

In order to quantify the extraction error, the true solutions are obtained either
analytically or numerically in the maps and Duffing equation. After quantifying the
error, the exact theoretical bounds are calculated based on the jacobian matrices of
the known maps, and also estimated from the time series of the four systems.

The results show the applicability of the proposed theoretical bound to bound the
error at the recurrence point, while it fails to bound the error at some interior points.

Improvement of the extracted orbits is obtained by estimating the linear or affine



models for the studied systems around every cycle point of the extracted periodic
orbit. Using the linear or affine model in the estimation method leads to almost the
same results with only one exception. In case of using the linear model, changing
variables to shift the origin to the locality of the periodic points requires a special
treatment.

This estimation method successfully improves the extracted periodic orbits in the
studied maps. In case of Duffing equation, the extraction error is on the order of
102 and is reduced to zero, for the estimated orbits of period-l for [ < 4, while
for higher periods the estimation method is not capable of improving the extracted
orbits, except at the recurrence point.

The least-squares method is used again to identify the parameters of maps. For
clean signals, the extraction error has no effect on the identified parameters. In case
of Duffing equation, the harmonic balance method is used to identify its parameters.
Here, the effect of the extraction error on the identified parameters is approximately
on the same order of the error itself. .

The effects of noise and phase space reconstruction on the extraction and esti-
mation results, including the parametric identification, are discussed. The extraction
results are less sensitive to noise, compared to the estimation results. While the effect
of reconstructing the phase space from a single signal is dramatic and destructive.

Finally, the results of an experimental time series are shown. The unstable periodic
orbits are extracted from the reconstructed phase space, and improved by estimation.

Then, the parameters of the system are identified.
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CHAPTER 1

INTRODUCTION

In this chapter, a historical background for nonlinear system characterization is pre-

sented first. This includes a broad range of techniques such as :

e Phase space reconstruction through the method of delays, in which the entire

dynamics will be reconstructed from a small number of observable states

e Determination of the invariant measures such as fractal dimensions, Lyapunov

exponents, density histogram and entropies
o Determination of the number of active states

e Determination of the topological invariants such as unstable periodic orbits

through the extraction theory, knot theory and template analysis
o Nonlinear prediction, cell mapping, weighted maps, neural networks, etc
o Noise reduction and signal improvement, and

¢ nonlinear system parametric identification

Second, the motivation for studying extracting the unstable periodic orbits is
discussed. Finally, the contributions of this research to the problem of nonlinear

system parametric identification are stated.

1



1.1 Background

Efforts to interpret chaotic time series began nearly a century ago. The statement
of Poincare (1854-1912) on the importance of unstable periodic orbits as, “the only
breach by which we might attempt to enter an area heretofore deemed inaccessible,”
has proven to have been insightful, at least for some of the aims for which such
interpretations are sought. P. Drazin and G. King (1], the editors of Physica D58

(1992), summarized these aims :
1. To detect useful and interesting patterns by exploring the data

2. To construct a model by using the data and as much additional knowledge of

the process as possible; and

3. To verify that the model can both reproduce and predict the patterns, and if

necessary, to improve the model further

More aims can be added, such as reducing the noise with which the time series
is contaminated and controlling the nonlinear system by which the time series was
produced. It is possible that this is what the editors meant when they added, to the
third aim, improving the model further.

It is known that the traditional methods by which the linear systems are analyzed
are useless in the nonlinear system analysis without modifications. For example,
the Fourier transformation and filters, which are usually used efficiently in the linear
system analysis and noise reduction, can not be used in the nonlinear systems without
modifications.

This is because of the shape of the chaotic spectrum for nonlinear systems, in
the frequency domain, which is broad and covers the entire domain. Therefore, it
is impossible to specify the frequency at which the system is operating. Also, any

filtering for the signal, to remove the noise effect, will affect its dynamics.
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Some types of filters increase the dimension of the analyzed system while others
decrease it [2,3]. There are some chaotic systems such as the Henon map (which
will be studied here) which have remarkably flat spectra so that any filtering is sure
to have serious effects on the dynamical information contained by the time series
generated by the system [4].

In the late 70s and 80s, a lot of research was concentrated on analyzing nonlinear
systems by observing their time series. The analysis focused on extracting, from
the time series, the various invariant quantities for the nonlinear system. By these
invariants the system can be characterized and identified.

System invariants define the system quantities that are not sensitive to the initial
conditions, so that they are fixed for at least a set of initial conditions in the phase
space. Attractors are among the invariant sets of the system. Some nonlinear systems
have more than one attractor. Each attractor has different characteristics.

Among the invariants of the nonlinear system are measures such as fractal di-
mensions, entropies, global and local Lyapunov exponents, density histograms, and
topological invariants such as unstable periodic orbits.

Reconstructing the phase space was a revolution in the field of time series analysis.
This step can be achieved through the method of delays, which was proposed inde-
pendently by Ruelle, Packard et. al. [5] and Takens [6], whereby a scalar time series,
y(n), is used to generate a large-dimensional vector time series. This is achieved by
constructing the d-vector z(n) = [y(n),y(n + 7),...,y(n + (d — 1)7)], where 7 is the
delaying time and d is the embedding dimension. Takens’s theory proves that under
suitable hypotheses, this reconstructed attractor is equivalent in some sense to the
original attractor if d is large enough [6).

The proper choice of these two parameters is essential in order to reconstruct an
accurate phase space that resembles the original one in its invariant set. There are

many criteria by which the optimal embedding parameters can be achieved.
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Buzug and Pfister [7] compared algorithms calculating optimal émbedding para-
meters for delay time coordinates. Among these algorithms was mutual information
analysis that was derived by Fraser 8] to determine the time delay, 7.

Among the other methods that are used to determine the optimal delaying time
were the integral local deformation, simple spreading of trajectories and fill-factor
methods [9).

In general, the idea behind choosing the delaying time is simple. If it is too short,
the successive points in the reconstructed phase gpace will depend on one another
too strongly, such that the sequence of points does not represent the dynamics of the
system. Also, if the delay is too long successive points will be totally independent,
and again they will not represent the dynamics of the system. Also, the effect of noise
will be larger if the chosen delaying time is longer than what is required [10].

For the choice of the embedding dimension, d, the same issues will rise again.
The dimension has to be large enough to express the dynamics of the system or the
reconstructed phase space will collapse upon itself. And if d is larger than what is
required the effect of noise will be high. Also, the possibility of having nearly periodic
points will be low because of the relation between the number of data points needed
to occupy a ball of a fixed size, ¢, and the dimension of the phase space. This number
of the needed points is proportional to % [11].

Broomhead and King [12] used a singular value decomposition of the trajectory
matrix to obtain the number of nonzero singular values, which yields a sufficiently
large embedding dimension. They plotted the singular values of that matrix for
different values of the embedding dimension, then the dimension where these values
reach their floor value will be selected as a sufficiently large embedding dimension.

Grassberger and Procaccia [13] observed the change in the invariants of the re-
constructed phase space with different embedding dimensions. Then, when these

invariants reached to their steady values, they took the corresponding embedding di-



mension as an optimal one. This is not always reliable, as Ding et. al. [9] noted that
the correlation dimension, d;, plateaus at the first reconstruction dimension, d, > d,.

Liebert et. al. [14] proposed a méthod that is guided by topological considerations.
Their criterion relies on the position of the neighborhood points at the transition from
d to d+ 1. They stated that it is a large enough embedding dimension, d, if the inner
points remain inner points and the points in the boundary defining the neighborhood
remain boundary points at the transition from d to d + 1.

Kennel et. al. [15] implemented the false nearest neighbors method to determine
the sufficient embedding dimension. In this method, the dimension d in which the
neighboring points will remain also neighboring points in dimension d + 1, will be
selected as a sufficient embedding dimension.

L. Cao [16] proposed a method to determine the minimum embedding dimension
from a scalar time series. This method is a modification for the false neighbor method
[15]. It is argued that it is not subjective, not strongly dependent on the length of
the time series and able to distinguish deterministic signals from stochastic signals.

E. Ott et. al. [17] has a survey on the methods that are used to determine the
optimal embedding dimension from a scalar time series based on Takens’ theorem [6].

After reconstructing the phase space (or ﬁsing the original one, which is not prac-
tical especially in the experimental time series), the analyst will be able to apply the
different methods to analyze the time series.

Among the most important analyzing steps is noise reduction, in order to have
a cleaned signal that represents the system more precisely. Much research has been
dedicated to cleaning the signal and separating it from the noise.

Some of the methods require the prior knowledge of the system and other methods
do not. There are also methods that can use the statistics of an observed clean signal

to distinguish it from noise [10].



Sauer [18] presented a method to separate additive noise. A low-pass embedding
method and singular value decomposition were used to project the input signal along
directions belonging to the signal of interest. Rabinovitch and Thieberger [19] pro-
posed a method that used a special autoregressive moving-average filter to create the
signal from a random shock generator.

Rowlands and Sprott [20] described a method that extracts from a chaotic series
a system equation whose solution reproduces the general features of the original data
even when the time series is contaminated with noise. Cawley and Hsu [21] presented
a local geometric method for noise reduction. Their method is related to the local
singular-value analysis technique.

Shaw and King [22] used cluster analysis to classify the time series. They also used
the principal component analysis to filter the data by looking for a few linear combi-
nations of the original variables that account for most of the variances in the data.
Some research was dedicated to noise reduction using periodic orbits [21,23,24,25].
For nonrecurrent points, other methods were presented [26,27,28].

Pueyo [29] presented a new method that is proposed to uncover chaotic dynamics
in a time series. This method is based on the analysis of the local divergence of
trajectories. This method is assumed to easily distinguish the chaos from the linearly
auto-correlated random time series.

Finally, Schittenkopf and Deco [30] presented a method that can identify the deter-
ministic chaos by using an information-theoretic measure of the sensitive dependence
on the initial conditions. This method can determine whether the time series is pure
noise, chaotic but distorted by noise, purely chaotic or a Markov process. It also gives
an approximation for the noise level.

The nonlinear system parametric identification is the underlying motivation of
this thesis. Among the many methods for nonlinear system parametric identification

is the method that was introduced by Nayfeh [31] where the resonance frequencies



were used. Stry and Mook [32] presented a method where the time series was used.
The harmonic balance method was used by Yasuda et. al. [33,34].

Extracting the unstable periodic orbits from the time series (Auerback et. al.
[35], Lathrop and Koslelich [36] and Tufillaro et. al. [37]) can be used in parametric
identification. The orbits can be extracted from a time series produced by a map or
a sampled vector field by watching any two points, say z; and z;4+x, which come very
close to one another after k iterations or sampling intervals.

The length of time that separates the two points is an indication for the period
of the extracted orbit, k. In maps, the points from z; to z,,x_; are the elements of
the extracted period-k orbit. In vector fields, the number of the extracted samples
has to be divided by the number of samples in period-1 orbits. Parameters, which
are related to and effective on the extraction process, will be discussed in this thesis.

The extracted unstable periodic orbits were used in nonlinear system parametric
identification by Hammel and Heagy [38], Kesaraju and Noah [39], Yuan and Feeny
[40] and Van de Wouw et. al. [41].

The present research is a continuation for the work done in reference [40]. In that
paper, an ultimate bound was derived for the error associated with extracting the
unstable periodic orbits. This bound is related to the singular values of the linearized

system matrices around these periodic orbits.

1.2 Motivation

As a result of the important role of the unstable periodic orbits in nonlinear system
parametric identification and because of the existence of uncertainties and error in
the extraction process of these orbits, the unstable periodic orbits extraction is chosen

to be studied. The extracted unstable periodic orbits are used in :

¢ nonlinear system parametric identification 38 - 41]
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e Computation of Lyapunov exponents [10,42 - 46]
e Computation of fractal dimensions [10,35,47,48,49]
e Template analysis and knot theory {10,50,51], and

e Evaluation of a signal determinacy [10,21 - 25]

To this end, this thesis will focus on the error associated with unstable periodic
orbits extraction. Ultimately, the goal is to apply the quantification of the error to

the nonlinear system parametric identification. Specifically, this thesis aims to :

e Evaluate unstable periodic orbit extraction error and compare it to the theo-
retical bound. This provides a verification of the theory and an understanding

of how conservative and applicable it might be.
e Improve the extracted periodic orbit’s accuracy from the dynamics of the data

e Examine the effect of the extraction error on the parameters that are identified

by the extracted orbits

e Examine the effect of improving these extracted orbits on these identified pa-

rameters, and

o Apply all of the previous points on maps and flows, and compare the results of

flows to those of real experimental data.

We also encounter several interesting issues in this work. For example, showing
the absence of some exact periodic orbits from the extracted orbit list will indicate
the deficiencies of the extraction process. Also, showing the difficulty to verify the
validity and distinction of the extracted periodic orbits will explain inaccurate results
attained by some previous réea.rches [35,52,53,54].

The effect of noise is an important issue that is discussed. This includes studying

the sensitivity of the attained results toward the existence of noise.

8



1.3 Contributions

This research will contribute to the nonlinear system parametric identification an
essential element. The unstable periodic orbits extraction process, through which the
first step of parameter identification by unstable periodic orbits can be completed,
will be improved. The exact unstable periodic orbits are obtained to characterize the
proposed theoretical ultimate bound, for the extraction error, by comparing it to the
actual extraction error ratio.

The different kinds of applications, which normally are applied on the extracted
unstable periodic orbits, will be applied on the exact ones, too, in order to quantify
the error associated with the use of these extracted orbits. These applications will
include nonlinear system parameter identification and modeling.

In summary, this thesis will contribute to nonlinear system characterization by :

¢ Quantifying the extraction error in maps and flows. This includes the theoretical

bound verification and the effect of the error on the identified parameters.

e Improving the extracted orbits and their applicability. This includes studying

the effect of this improvement on the identified parameters.



CHAPTER 2

DETERMINING THE
EXTRACTION ERROR

In this chapter the quantifying results for the error in the extracted unstable periodic
orbits are stated, and remarks about these results are presented. First, a study is
performed on the extraction error in the tent map, the horseshoe map and the Henon
map. After that, the extraction error in flows will be studied. The numerically
produced time series of the Duffing equation is the subject of this study.

The importance of the extraction process and its many applications in nonlinear
system analysis are the main driving motivations toward studying the error in the
extracted unstable periodic orbits. As it was mentioned in the introduction, these
extracted unstable periodic orbits are used in many nonlinear system characterization
techniques.

Furthermore, the existence of a theoretical bound for that error [40] and the need
to characterize it, is another reason behind this study. The uncertainty in these
extracted orbits and the general lack of knowledge about the true orbits can be found
in many previous researches [35,52,53,54].

Next, quantifying the error in the extracted orbits of maps is presented.
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2.1 Maps
In this section, the error in the extracted unstable periodic orbits is quantified for the
next three maps :

e The tent map with an expansion factor, A, that is in the form

i1 = /\,.‘t,' if 0 S Ty S 0.5
(2.1)

and Tip1 = /\,.‘IJ,’ -1 if 05< T; < 1

This map coincides with the known tent map under the coordinate transforma-

tion z; — % — z; for % < z; <1, and its dynamics are the same.

e The horseshoe map with the same expansion factor as the tent map and a

contraction factor, A, that is in the form

T = /\CJ:,'
i if 0<y; <05
i1 = AeYi
Yi+1 Y (2.2)
Tig1 = AZi+1 - A .
and if 0.5<y; <1

Yiy1 = ’\eyi -1

Again, this map coincides with the known horseshoe map under the coordinate
transformation y; — %—y,- for % < y; <1, and its dynamics are the same. Also,

it is a special case in that no points in the unit square are mapped out of it.

o Henon map that is in the form

Ti41 = 1- 1.43? + Y (2 3)

Yi+1 = 0.3z;

As mentioned in the introduction, the unstable periodic orbits can be extracted

from a time series produced by a map by watching any two points, say z; and z;,
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which come very close to one another after k iterations. Then, the points from z; to
Ti+k-1 are the points of the extracted period-k orbit.

The procedures of calculating the extraction error involve obtaining the exact
unstable periodic orbits of the desired maps and also their time series. Then, the
extracted unstable periodic orbits will be compared to their exact solution in order
to calculate their error. To compare the exact and extracted orbits, they have to be
sorted in some consistent way.

Next, the results of these three maps are presented.

2.1.1 The tent map

This map is chosen because it is a simple one-dimensional map that exhibits chaotic
time series and has an analytical solution for its unstable periodic orbits.

The exact solution for the unstable period-k < 10 orbits of this map is obtained
analytically via Mathematica. This solution is reproduced via a Matlab program (see
Appendix A). The time series is evaluated via a Matlab program, for A, = 1.9...9,
and also via a Mathematica program, for A, = 2.

The reason behind using Mathematica, even though Matlab is the software that
will be used in this thesis, is because of the behavior of the Matlab time series with the
value of A, = 2. The iterated sequence will go to 1 after some number of iterations.
To study the effect of using 1.9...9 instead of 2 on the results that are obtained from
Matlab, these results are compared to the Mathematica program results. Also, the
results are compared to the case where A, is taken as 2.0...01.

The difference in the unstable periodic orbits extraction error ratios of these three
processes is in magnitude of 10™", where n is the number of nines, or zeros, in A,
value. In order to reduce this effect, the number of nines will be maximized as long
as the time series continues to be chaotic.

Fourteen nines will maintain chaos and give a difference of magnitude 10~ in

12



the value of the extraction error ratios (to be defined later). In fact, even though the
tent map time series is called chaotic, its steady state can be exactly determined for
any rational initial condition that is specified on the computer (without noise) [55].
Also, it is easy to calculate a valid initial condition va.lqe that takes the time series
to a desired steady state periodic orbit (see Appendix B). However, this observation
is attainable via Mathematica software.

The number of the analytical periodic orbits for the tent map can be calculated,
for any period-k orbits. It can be calculated by using mobius inversion [56]. In this

thesis, this number is calculated by the next equation

P 9
2k -y ok 4 S o

(na)x = =1 i=1 (2.4)

k

where [;, for i = 1,2, ..., p, are the p largest factors of k that are needed to include all
the smaller factors with taking [ = 1 for the primary numbers, and r;, for = 1,2, ..., q,
are the ¢ repeated factors in these large ones that are greater than one. The number
of the analytical, extracted and distinct extracted orbits, n,, n. and ng., are shown
in Table 2.1, for orbits of period-k < 10.

From a time series whose length N = 15,000, most of the tent map periodic orbits
were extracted. The distance, ¢ = 0.005, is used to define a recurrence. It can be
. any value that leads to a reasonable number of extracted orbits, but it gives more
accurate results if it is smaller. The number of extracted orbits, and which ones are
extracted, depends on the initial conditions, ¢ and the length of the time series.

The method of distinguishing the extracted orbits of same period-k, is to associate
them with the analytical orbits that yield the minimum amount of error. If the
analytical solution is unknown, which is the realistic case, the orbits within a distance
€1 =3 x € = 0.015, will be assumed to represent the same distinct orbit [35]. In both

cases, the same orbits are obtained. And, these orbits are sorted, for every period-k,
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Table 2.1. Number of the analytical, extracted and distinct extracted orbits for the
tent map time series.

k Na Ne Tde
112149 2
211 /([108( 1
312|113 2
4 |3 |112| 3
5|16 109 6
6 {9125 9
7 (181129 | 17
8 (30100 | 21
9 |56 (159 | 44
10 | 99 | 105 | 42

such that the orbit with the smallest value comes first, and so on.

Usually, the representative orbit of every group of similar extracted orbits is the
average of these orbits [35]. Another method for finding a representative orbit, is to
choose the orbit that has a minimum recurrence distance [39]. The second method is
the one that is applied in this thesis and it is more accurate.

From Table 2.1, it is clear that the program is able to extract most of the lower-
period unstable periodic orbits. The lowest percentage is for period-10 orbits, and
it is e 42%. All the exact orbits are real. The orbits that were not extracted
may have a high expansion factor, or maybe the initial conditions were such that the
orbits were not visited. With an example time series of length N = 50,000, all the
orbits of period-k < 9 and 84% of the orbits of period-10, were extracted.

The error at any point of the extracted orbit, §, that gives the maximum error
ratio é for every distinct extracted orbit is listed in Table 2.2, for some orbits of
périod-k < 10 and index z < 8. The orbits indices, 2, distinguish the extracted
orbits and are sorted according to the smallest value in the analytical solution of each

periodic orbit. €, < € is the actual recurrence distance. It is used instead of € since
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Figure 2.1. Two actual selected iterations around period-k point, z,.

it is the minimum possible choice for ¢ that will extract the same extracted orbit.

Figure 2.1 shows the distances for a two dimensional case.

To compare the error ratios to the proposed ultimate bound ratio, we have to

divide them by the actual recurrence distances of their orbits, ¢,, which are shown

in Table 2.3. The values of these ratios, %, are shown in Table 2.4. In all of these

distances the co-norm is used.

In these results we can see that the actual bound for the maximum error ratios of

the tent map depends only on k an A.. Thus for every k there is only one bound for

these error ratios. This bound can be generalized as
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Table 2.2. error**, 4, in the tent map extracted orbits that lead to the maximum error
ratios, %.

(») Question mark means that the orbit for these indices is not extracted.

(es) The listed values are the error x103.

k|z=1 2 3 4 S 6 7 8

1 10.198 | 9.88

2 |0.482

3 10.526 | 0.05

4 |0.828 | 0.226 | 0.734

5 | 1.296 | 2.322 | 0.819 | 4.211 | 1.241 | 0.026

6 | 1.23 | 0.815 | 1.972 | 0.401 | 0.26 | 0.167 | 4.258 | 2.165
7 12539 |1.932 |3.641 | 1.011 | 0.294 | 1.652 | 3.908 | 1.032
8 [3.732| 7 ? 2.253 ? 2.309 | 3.474 | 2.176
9 | 0.859 | 2.704 ? 4.451 | 2.166 | 0.25 ? ?
10 ? ? ? 1.087 ? 0.583 | 4.728 ?

Table 2.3. Actual recurrence distances**, ¢,, that correspond to error in Table 2.2.

(«) Question mark means that the orbit for these indices is not extracted .
(es) The listed values are the distances x103.

k|lz=1 2 3 4 5 6 7 8

1 |0.099 | 4.94

2 |0.362

3 | 0.46 | 0.044

4 10.776 | 0.212 | 0.69

5 | 1.256 | 2.249 | 0.794 | 4.08 | 1.203 | 0.025

6 | 1.209 | 0.802 | 1.942 | 0.395 | 0.256 | 0.165 | 4.192 | 2.122
7 12519 | 1.917 | 3.613 | 1.004 | 0.292 | 1.639 | 3.877 | 1.024
8 |3.718| 7 ? 2.244 ? 2.3 | 3.46 | 2.168
9 | 0.858 | 2.699 ?7 | 4.443 | 2.162 | 0.251 ? ?
10 ? ? ? 1.086 | ? |0.582|4.723 ?
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Table 2.4. The maximum error ratios, %, in the extracted periodic orbits, for the
tent map.

(.) Question mark means that the orbit:for these indices is not extracted.

k|z=1 2 3 4 ) 6 7 8

1 2 2

2 | 1.333

3 | 1.143 | 1.143

4 | 1.067 | 1.067 | 1.067

5 |1.032 | 1.032 | 1.032 | 1.032 | 1.032 | 1.032

6 | 1.016 | 1.016 | 1.016 | 1.016 | 1.016 | 1.016 | 1.016 | 1.016

7 [ 1.008 | 1.008 | 1.008 | 1.008 | 1.008 | 1.008 | 1.008 | 1.008

8 [1.004 | 7 ? 1.004 ? 1.004 | 1.004 | 1.004

9 | 1.002 | 1.002 ? 1.002 | 1.002 | 1.002 ? ?

10 ? ? ? 1.001 ? 1.001 | 1.001 ?
0 2k 1 1

(E:)"=2k—1=1—2-k=1—,\;k (2:5)

where A, = 2, which is the expansion factor.

Also, as shown in Table 2.2, some of the error values, §, that lead to the actual

bound value, for some periodic orbits, have very small magnitudes.
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Figure 2.2. The horseshoe attractor.

2.1.2 The horseshoe map

The major difference between this map and the tent map is that the horseshoe map
is a two-dimensional map. The same procedures and extraction parameters as in
" the tent map are applied here (i. e. the analytical solution and the time series with
Ae=2,N =15,000, ¢ = 0.005 and )\, = % are obtained, where the new parameter A,
is the contraction factor). The horseshoe -attra.ctor, approximated by iterates of the
mabp, is shown in Figure 2.2.

The number of the a.né.lytica.l, extracted and distinct extracted orbits, n,,n. and

ng, for the horseshoe map are shown in Table 2.5, for orbits of period-k < 10. The
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Table 2.5. Number of the analytical, extracted and distinct extracted orbits for the
horseshoe map time series.

k Mg | Ne | Nde
11216 2
21111 1
3 12|51 2
4 (3|1 1
51631
6 192 | 2
71183 ] 3
8 (30| 3| 3
9 [56|14| 6
10199 5 | 3

analytical solution for the periodic orbits of this map has the analytical solution of
the tent map as its y-component, while its z-component is calculated separately (see
Appendix A).

Comparing the numbers in Table 2.1 with these in Table 2.5 shows the reduction
in the number of the extracted orbits. This is caused by the increase in the dimension,
d, of the horseshoe map, which increases the number of data points that are needed
to preserve the probability of occupying a ball of a fixed size, . This number of data
points is proportional to % [11].

The distance, €;, by which the distinct orbits of period-k can be distinguished,
in the absence of the exact solution, is chosen to be 3 x ¢ = 0.015. All the distinct
orbits, by using the exact solution, were correctly distinguished by ¢, criterion.

The lowest percentage of distinct extracted orbits for the horseshoe map extraction
process is for period-10 orbits again, and it is e 3%. If the spatial distance, ¢, or
the length of the time series, N, are increased, this will improve the percentage. For
example, if N is increased to 50, 000, instead of 15,000, the lowest percentage will be

e 5 6%.
a
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Table 2.6. error**, 4, in the extracted periodic orbits, for the horseshoe map, that
lead to the maximum ratios, %

(* ) Question mark means that the orbit for these indices is not extracted.
(** ) The listed values are the error x103.

k|lz=1 2 |34 5 6 7 8
1] 633 | 9.88

2 | 6.046

3 |3.114 | 3.193

4 14057 | 7™ |7

5 ? ? 717 ? 1.643

6 | 3.634 ? ?717? 7 ? ? | 4.417
7 ? ? ?717]4.702 ? ? ?
8 ? ? ?7(7? 7 14.498 | 4.02 ?
9 ? ? 7(7? 4879 | 7 ?
10 ? ? ?7? 4661 | ? ?

The errors, 4, that lead to the maximum error ratios are shown in Table 2.6. Their
corresponding recurrence distances, ¢,, are shown in Table 2.7. The values of these
ratios, %, are listed in Table 2.8. Again, in all of these distances the co-norm is used.

The actual bound is the same as in case of the tent map. Its general formula
would be i-+\5’ if the contraction factor, \., was greater than AJ!. This means that
the maximum ratio will be for an extracted orbit that is moving in the contraction
direction instead of the expansion direction.

The major difference is the existence of some values that are less than the tent map
actual bound, such as in orbits of period-k = 3 and 9. This is because the extracted
orbit is not on the expansion vector yet. The general formula for the minimum value
of the horseshoe error ratios is l—_%\yc;, and this is when the extracted orbit is located
on the contraction vector.

In conclusion, the similarity between the actual upper bounds for the tent and
horseshoe maps is due to the linearized matrix of the horseshoe map, which is diagonal

and has the same expansion factor as the tent map.
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Table 2.7. Actual recurrence distances**, ¢,, that correspond to error in Table 2.6.

(* ) Question mark means that the orbit for these indices is not extracted.
(** ) The listed values are the distances x103.

k [z=1 2 34 5 6 7 8

1 ]3.165 | 4.94

2 | 4.534

3 2905 | 2.794

4 {3804} 7 |7?

5 ? ? 717 1.591

6 | 3.578 ? 717 ? ? ? 4.348

7 ? ? ?717]4.665 ? ? ?

8 ? ? 717 ? 4.48 | 4.004 ?

9 ? ? 717 4.879 ? ?

10 ? ? 717 4.657 ? ?
Table 2.8. The maximum error ratios, <, in the extracted periodic orbits, for the

€’

horseshoe map.

(* ) Question mark means that the orbit for these indices is not extracted.

k [z2=1 2 |34 5 6 7 8
1 2 2

2 | 1.333

3 [1.072 | 1.143

4 [1.067 | 7 |[?

5 ? T 7 1.032

6 | 1.016 7 17]? ! ? ? 1.016
7 ? [?7[7]1.008 ? ? ?
8 ? ™ol ? 1.004 |1.004| 7
9 ? T 1?]? ? 1.00005 | 7 ?
10 ? T ? 1.001 ? ?
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Again, if this matrix had a contraction factor greater than the reciprocal of its
expansion factor, the bound would be different, but still all the orbits of period-k
would have the same bound, i. e. 1_-13\'5 Also, the ability of the eigenvalues to bound
the actual error ratios is a result of having a diagonal matrix, which means that its
eignvalues and vectors are the same as its singular values and vectors. And because

there are no nonlinearity distortions.

2.1.3 Henon map

The Henon map is expected to act differently because of its linearized matrix that
is not diagonal and also depends on the x-component of the linearization reference
point. The first difference is enough to make different ways of multiplication of
any orbit’s linearized matrices produce different matrices. This is expected to give
different bounds for the extracted orbits of the same period-k or even index z.

The “true” solutions for the unstable periodic orbits of the Henon map are treated
differently, too. They are calculated numerically via Mathematica, up to period-
k = 5. Some of these “true” orbits are complex. These complex solutions will not be
extracted since they are not real periodic orbits, and have large imaginary parts. On
the other hand, complex orbits with small imaginary parts can lead to recurrences,
which can then be extracted and thought to represent true periodic orbits.

For the orbits of period-k > 5, the true solution is unachievable via Mathematica.
Thus, a Matlab program that uses an intensive search method is designed to correct
the extracted orbits in order to approgimate the corresponding true ones [53,66,67].
This is acheived by altering the existed initial conditions and simulate the map for
all the neighboring initial conditions, then choosing the initial conditions that yeild
the minimum recurrence distance, ¢,.

In the correction step, the extracted orbits are corrected in such a way that will

keep the advantage of correcting every point to the next point correction by using
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its iteration. In this way, the points will be corrected to the closest related periodic
points. If the points are corrected separately without the use of the previous correction
iteration, the corrected orbit may have unrelated points, i. e. points with different =
or even k.

The accuracy of these corrected orbits can be verified by obtaining a very small
recurrence distance that is on the order of 10~!* after one full cycle of k iterations.
If there is an initial error in some point of these orbits, its recurrence distance may
equal the initial error multiplied by nearly 100, for some high period-k orbits.

However, the correction method exploits the knowledge of the map, and it is not
useful in case of unknown systems. And if all of the true solutions are needed, then
the method have to be applied on the entire region of attraction.

The number of the true periodic orbits for Henon map, as indicated in all the orbits
of period-k < 5 that are calculated via Mathematica, is the same as the number of
the analytical periodic orbits for the horseshoe map but with many complex orbits
among them. For example, both of the orbits of period-3, two of the three orbits of
period-4 and all of the six orbits of period-5, are complex orbits.

Furthermore, some of the real periodic orbits are not part of the attractor. An
example for a real orbit that is disjointed from the Henon attractor is the first orbit of
period-1 orbits, i. e. with index z = 1, which is a periodic point at (—1.131, —0.3394).
The shape of the Henon attractor is shown in Figure 2.3.

The number of the corrected, extracted. and distinct extracted orbits, n.,n. and
n4e, for the Henon map are shown in Table 2.9, for orbits of period-k < 10. Comparing
the number of extracted orbits in Table 2.9 with these in Table 2.5 shows some
similarity. However, there are more extracted orbits, n., for Henon map in case
of periods-k = 7,8 and 9. This is expected since its dimension is lower than the
dimension of the horseshoe map.

The program did not extract any orbit of period-10 from the time series of length
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Figure 2.3. The Henon attractor.

Table 2.9. Number* of the corrected, the extracted and the distinct extracted orbits
for the Henon map time series.

(* ) The first number corresponds to N = 15,000; while the second one corresponds
to N = 50,000.

K|n.| n. |nj
1|2 [1637|1,1
2 1] 1,14 1,1
310 00 [0,0
4 1] 1,8 |11
50| 00 [0,0
6 2] 216 |12
7|4 [1564 ]34
8 |7 |1345 (2,6
9 | 7 | 21,67 |45
10[{10[ 0,28 [ 0,5
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Table 2.10. error**, 4, in the extracted periodic orbits, for Henon map, that lead to
the maximum ratios, 2

€’

(* ) Question mark means that the orbit for these indices is not extracted.
(** ) The listed values are the error x103.

k|z=1 2 3 4 ) 6 7 8
1 7" 2.184

2 | 0.958

3

4 | 3.736

5

6 | 6.496 | 2.511

719763 | 2.01 |11.116 | 5.63

8 | 2.589 | 10.359 | 8.073 | 2.848 ? 3.778 | 2.869
9 [21.912 | 1.135 | 8.278 ? 22.596 | 3.944 ?

10 | 3.929 ? 1.08 | 4.656 | 7.157 ? ? ?

N = 15,000. If the spatial distance, ¢, or the length of the time series, N, is increased;
the program will extract more orbits. For example, if N is increased to be 50,000,
the lowest percentage of distinct extracted orbits will be 24 = 50% for orbits of
period-k = 10, as listed in Table 2.9.

It is unfair to compare this percentage to the previous ones since the number of
orbits available for the data to visit is dramatically changed. The fair comparison,
which showed the similarity of the extraction process of the Henon and horseshoe
maps, was the previous comparison between the number of the extracted orbits of
these maps with same extraction parameters.

For the Henon time series of length N = 50,000, the error, §, that leads to the
maximum error ratios is listed in Table 2.10. Its corresponding actual recurrence
distances, ¢,, are listed in Table 2.11. The values of the maximum error ratios, f—’;,
are shown in Table 2.12. Again, in all of these distances the co-norm is used.

In these results we can see that the actual bound for the maximum error ratios of

the Henon map differs from one orbit of period-k to another orbit of the same period.
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Table 2.11. Actual recurrence distances**, ¢,, that correspond to error in Table 2.10.

(* ) Question mark means that the orbit for these indices is not extracted.
(** ) The listed values are the distances x103.

k[2=1 2 3 4 5 6 7 |8
1 7 1.77

2 |0.662

3

4 | 2.678

5

6 | 4.893 | 1.582

7 14848 | 0.75 | 3.41 | 4.57

8 | 1.712 | 2.638 | 4.36 | 2.01 ? 3.81 | 2.376
9 | 1.642 | 0.275 | 3.585 ? 4.019 | 1.938 ?

10 | 0.534 ? 0.486 | 2.416 | 4.939 ? ? ?

Table 2.12. The maximum error ratios, (i in the extracted orbits, for Henon map.

a’

(* ) Question mark means that the orbit for these indices is not extracted.

k [z2=1 2 3 4 5 6 7 |8
1 ™ 11.234

2 | 1.449

3

4 1139

5

6 | 1.328 | 1.587

7 12014 | 2.679 | 3.26 | 1.232

8 [1.512 13.927 | 1.852 (1.416 | ? |0.992 | 1.207
9 [13.49 | 4.12 | 2.309 ? 156232035 7

10 | 7.359 ? 122151927 | 1.45 ? ? ?
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This is what was expected before, since the linearized matrix for the Henon map is
not diagonal and not even constant; add to that the uncertainty in the true orbits.

The excessive error, in Table 2.12, may result from the fact that there are some
corrected orbits that are so close to one another that they cannot be distinguished
to the resolution of this study. Then, some extracted orbits may be compared to
the wrong true ones. Some of the true orbits that are not compared are complex, or
unrelated, orbits which means that they will not maintain small recurrence distances
if corrected. While others may be real and related.

For example, the two points (—0.9063, —0.38338) and (—0.9039, —0.383316) be-
long to two different period-9 real corrected orbits. As mentioned above, the acuracy
of these two real orbits is guaranteed by obtaining a recurrence distance that is on
the order of 107! for both of them, so that their possibility to represent the same
true orbit is null. The two orbits are plotted in Figure 2.4.

Without the ability to distinguish between these two real orbits, in the correction
step, the corrected orbits will have only one orbit of them that is used in the com-
parison to the extracted orbits (for the purpose of quantifying extraction error). In
our data, this makes the error ratio, %, jump to 112.74 if only the first orbit is used,
in the corrected orbits, or 252.72 if only the second one is used. The maximum error
ratio, if both of them are used, is equal to 13.49, as listed in Table 2.12. This is an
indication of the good accuracy of these corrected orbits since such a small error will
cause this high jump in the value of the error ratios.

Beside the closeness of distinct orbits, the fact that these orbits are unstable makes
the correction of their extracted orbits more difficult. This is because any error will
increase exponentially if the orbit is on the expansion direction.

The existence of some corrected orbits that have large recurrence distances for
their periodic points is necessary in order to reduce the maximum value of the error

ratios. These orbits are extracted as real representations of complex orbits, or ex-
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Figure 2.4. Two different real periodic orbits of period-9, which are close to one
another.
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tracted for unrelated period-k. orbits whose period-k. > k. These orbits are needed
more when they are far from the real ones.

Among the corrected orbits, there is one orbit of period-9 and another orbit of
period-10 that still have recurrence distances, for their points, that are on the order of
10~3. The effect of removing these real representations of complex orbits or unrelated
orbits depends on whether there is a real, and related, corrected orbit that is close to
them or not.

For example, the real representation of a complex orbit or unrelated corrected
orbit of period-9, which has a large recurrence distance, has the point (—0.0026,
—0.2934) as its first point. The closest real and related periodic orbit to it has
the point (—0.3452, —0.3312) as its first point, as shown in Figure 2.5. If this real
representation of a complex orbit or unrelated corrected orbit is eliminated from the
corrected periodic orbits, the error ratio will jump to 238.3 instead of 5.6, which is
for the fifth orbit.

If the other real representation of a complex orbit or unrelated corrected orbit,
that is a period-10 orbit and has the point (0.5941, —0.216135) as its first point, is
eliminated, the error ratio will jump to only 161.6, instead of 1.2. The reduction in
the jump value, even though the period is 10 instead of 9, is due to the existence of a
closer real orbit to it. This real orbit has the point (0.5804, —0.221) as its first point,
as shown in Figure 2.6.

There is no clear end for the correction step of some extracted orbits. Once some
orbits with recurrence distances on the order of 10~2 are accepted, the correction step
may continue with using very small gridding steps until obtaining very small error
ratios. This is nothing but taking the position of the closest local minimum value
of the recurrence distance for an extracted periodic point to represent its corrected
periodic point. Then, the corrected orbit will have unrelated periodic points.

This is a good reason to not accept any corrected orbit whose periodic points have
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Figure 2.5. A real periodic orbit and a real representation of a complex orbit or
unrelated periodic orbit of period-9, which are far from one another.
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unrelated periodic orbit of period-10, which are close to one another.
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recurrence distances that are greater than 107!°. But, from another respected view-
point, it is unfair to compare (for the purpose of quantifying the extraction error)
the extracted orbits to some far-away real true orbits, while they are extracted for
closer complex, or unrelated, true orbits. Determining the right true orbit, to which
an extracted orbit has to be compared, is not a trivial matter, and it has a-dramatic

effect on the value of the extraction error.

2.2 Flows

Unlike maps, iﬁ sampled flows the extracted orbits contain a number of points much
greater than their periods. Therefore, the first and the most important difference
between extracting the unstable periodic orbits in maps and flows will be in the
number of points, k, that will be used in the extraction process. In this section, the
parameter k is only equal to the number of points in the extracted orbit, while a new
parameter, [, will be used as the period of the extracted periodic orbit.

For nonautonomous systems, period-l orbits contain a number of points,
m(l) = { m(1), where m(1) is the number of points in period-1 orbits. This number,
m(1), equals the period of the period-1 orbits, T}, divided by the sampling time of
the experiment, t,. If this number of points, m(1), is not an integer, which is the
realistic case, then this will be the first source of error in the extracted orbits.

In computer experiments, sampling time is the time step, At, that is used in the
numerical calculations of these periodic orbits. It is good to choose At in such a way
that will guarantee that m(l), for any period-I orbit, will be an integer number. This
will reduce the effect of one source of error.

In summary, the extraction process in flows will be the same as in case of maps

but with two differences :

e Using the values of k£ = m(1),m(2),...,m(l;) instead of k = 1,2,...,1;, where [,
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is the largest period that will be extracted

e Using the summation of the orbit points as a criterion value to distinguish

between the distinct orbits of the same period

Using the summation of the orbit points is replacing the use of the criterion
distance, €; & 3¢, that was used to distinguish between the distinct orbits of the
same period in maps, i. e. orbits with different values of z. This is done because of
the difficulty and the uncertainty of sorting all the period-{ orbits in some conventional
way, in order to be compared correctly.

As a consequence of that, quantifying the extraction error in flows is only achieved
by plotting the extracted orbits in the same plot together with the corrected ones.

Then, the 2-norm value of the worst extraction error, for some selected period-{ orbits,

~ will be calculated.

2.2.1 Duffing Equation

As a numerical example for the extraction process in flows, a time series that is pro-
duced numerically from the Duffing equation will be studied. This equation resembles,
in some manner, the experimental process examined later. Quantifying its extraction
error will help us to quantify the extraction error in that experimental process. The

Duffing equation has the form

i+ az + 12 — = v cos(wt) (2.6)

Guckenheimer and Holmes [57] have shown that for a = 0.15 and v = 0.3 the sys-
tem reaches a stable period-1 orbit with an initial condition such as (zo,Zo,%0) =
(0.1,1,0), while it reaches a chaotic set with another initial condition such as

(z0,Zo,t0) = (1,.15,0). They also have shown that for @ = 0.21 and v = 0.3 the
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system reaches a stable period-3 orbit with an initial condition such as (zo, Zo, %) =
(1,1,0).
Equation 2.6 can be rewritten in the state space form and as a three dimensional

autonomous system that has the form

T, =1,
T2 = —az; — T3 + 1) + 7y cos(wz3) (2.7)
1:3 =1

As it was mentioned above, the advantage of knowing the period of the periodic
orbits and their sampling time will be exploited. For a forced nonlinear ordinary
differential equation with constant coefficients, the period-l orbits have a period,
T; =T, where T is the period of the forcing term.

Therefore, for the values a = 0.15, ¥ = 0.3 and w = lrad/sec, and with an
initial condition such as (zg, Zo,%0) = (1,.15,0), it is expected to produce a chaotic
time series that has many embedded unstable periodic orbits. The period T;, for any
period-l orbit, is equal to 2i7 sec.

In order to have m(1)=64 points in period-1 orbits, the time step, At, has to be
equal to % = 0.09817477042468. This value of At will make the point z;,¢4 returns
close to the point z; in the time series, if they are part of a period-1 orbit.

Since the system has three state vaﬁables, having two neighboring points, say z;
and z;4x, in the phase space of only the first two state variables is not enough to
qualify the segment from z; to z;,x-; to be a periodic orbit. Another condition that
guarantees these two points to have also a third state variable value that affects the
system similarly, has to be satisfied. This condition is satisfied if k = m(l), then the
segment will be a period-! orbit. This is the reason behind using only the values of
k = m(1),m(2), ...,m(l). In other words, this system has an R? x S! state space, with

S! representing explicit periodic dependence on time.
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By using ¢ = 0.5 At =~ 0.05, many unstable periodic orbits are extracted from
a chaotic time series of length 50,000. Some of these extracted orbits are corrected
iteratively by altering their initial values and taking the initial values that yield the
minimum recurrence distances. Many orbits maintain recurrence distances which are
on the order of 10~!4. The orbits that fail to maintain that small recurrence distance
are expected to be a part of periodic orbits of periods greater than [.

Comparing the extracted orbits to their corrected ones shows that for some period-
[ orbits, the maximum error, 4, occurs in some interior point that is far from the two
ends of the extracted orbits. This is a violation for the assumption, in Chapter 3,
that the maximum error, 4, is the recurrence point, see Figure 2.1.

The error ratios, ﬁ-, are not calculated here for all the extracted orbits, since the
error, 4, is not easy to be calculated as a result of the difficulty of sorting all the
orbits in some consistence way. Nevertheless, for only some extracted orbits, these
error ratios are calculated for § = maz(4,,9;), and listed in Table 2.13. The 2-norm

is used in these calculations. Figures 2.7-12 show some of these extracted orbits that

are plotted together with their corrected ones; for different values of period-i.

2.3 Summary

In this chapter, the extraction errors of the four studied systems were quantified. The
analytical solutions of the unstable periodic orbits of the tent and the horseshoe maps
were obtained. And the true solutions of the Henon map and the Duffing equation
were approximated by correcting the extracted orbits by an intensive search method.
The extracted orbits were compared to their corresponding true solutions, and the
largest actual error ratio for every distinct extracted orbit was tabulated. In the next
chapter, the theoretical bound that was proposed to bound this extraction error will

be evaluated.
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Table 2.13. Some of the error ratios, -f:, in the beginning of the extracted orbits of
Duffing equation.

0

0.7287
0.6985
1.0578
1.0745
1.0464
0.9489

| U ] QB =] X

0.8 ! ! T T

------ The extracted orbit
The corrected orbit

Figure 2.7. An extracted period-1 orbit and its corrected orbit for Duffing equation.
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Figure 2.8. An extracted period-2 orbit and its corrected orbit for Duffing equation.
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Figure 2.9. An extracted period-3 orbit and its corrected orbit for Duffing equation.
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------ The extracted orbit
E— The corrected orbit

Figure 2.10. An extracted period-4 orbit and its corrected orbit for Duffing equation.
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Figure 2.11. An extracted period-5 orbit and its corrected orbit for Duffing equation.
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Figure 2.12. An extracted period-6 orbit and its corrected orbit for Duffing equation.

41



CHAPTER 3

CHARACTERIZING THE
THEORETICAL BOUND

As it was mentioned in the introductory background, one aim of this thesis is to
characterize the theoretical upper bound that has been suggested to bound the actual
error ratios, % After having calculating these actual ratios, for some of the extracted
orbits of the three maps, up to period-10, and Duffing equation up to period-6, in
Chapter 2, the theoretical bound will now be calculated. In Section 3.2, the ability
of the theoretical bound to bound the actual values will be characterized.

If the assumed bound is violated dramatically, then this will declare the failure of
this theory and the reason behind this failure will be sought. Another possibility is to
characterize the bound as a conservative bound, and this is when it is much greater

\ than the actual values. In both cases, another bound will be suggested. It is possible
that the bound will be violated but with an acceptable amount of error. In this case,

the reason of this violation will be sought, and this bound will be accepted.
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3.1 Determining the Theoretical Bound
on Extraction Error

The calculations for the theoretical bound begin with determining the linearized ma-
trices that represent the discussed system around its periodic points. After that,
the singular values of the appropriate matrices are used. A quick review for these
calculation steps is presented.

If the system is linearized around the period-k point, z, in Figure 3.1, then

(zh — z5) = A¥(z0 — 2,) & (20 — o) = (AF) Y2k — 2,)
€a = |2k — zo| = |(zk — za) = (20 = za)| = |(A* = I)(z0 —za)| < € (3.1)

€a = |k — Zo| = |(zk — 7a) — (z0 — za)| = |( = (A*)™")(zk — za)| S €

where A* is the linearized period-k matrix around z,; €, and € are the actual and the
criterion distances for the close return points, i. e. recurrences. By using the property

of matrix singular values

p2|zo — za| < |(AF = I)(z0 — z4)| < p1lz0 — 74

p2|zk = za| < |((A%)7F = I)(@k = 2a)| < 170 — 7]

(3.2)

where p; and p; are the minimum singular values of (A* — I) and ((A*)~! — I) and
p1 and p; are the maximum singular values. The norm that is used here has to be
the 2-norm.

This will give the next two bounds

§1=|to—2a| € — & b3=|zn—7a] < — (3.3)
p2 H2

Then, with the assumption that the maximum value of error will be at one of the
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ending points, which is not guaranteed, the ultimate bound will be

8 = maz(6,6;) < ma:c(i, i) (3.4)
P2 M2

Or, in the ratio form, which does not depend on any extraction parameter

& = ma:c(é—l, é) < ma:c(l, l) (3.5)
€ € € P2 H2

If the above assumption is false, this quantity merely provides a bound on the
error in the extracted orbit at the recurrence point. This error bound will be verified
by comparing it to the actual error ratios that were calculated in Chapter 2.

Figure 3.1 shows two actual points around a period-k point. The points are not in
sequence except if k = 1. The position of these two points suggests that this periodic
point has a negative expansion factor and a positive contraction factor. Nevertheless,
the linear matrix has both of its factors as negative values. These two contradictory
observations are due to the shape of the nonlinear manifolds of this periodic point.

Next, Determining the linear matrices that are used in the calculations of the

theoretical bound, is presented.

3.1.1 Maps

In maps, the theoretical bound for any extracted period-k orbit is a function of the
singular values of its orbital linearized matrices around the periodic points of that
extracted orbit. Every distinct period-k orbit has k different orbital linear matrices,
A**J where the phase index j = 1,...,k corresponds to its k periodic points, zF*,
and z refers to its index. These orbital linear matrices can be calculated by the next

two different methods.
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Figure 3.1. Two actual selected iterations around period-k point, z,.
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1) Jacobian method

This method is good for known maps where the period-k orbit linear matrix, A**7,
can be calculated from the known local linearized matrices based at every point of
that period-k orbit. It is used here to calculate the exact theoretical bound since the
required matrices are known. This exact theoretical bound will be used later to verify
the accuracy of the estimated theoretical bound that will be calculated later.

The local linearized matrices for the three maps are

0 -28z 1
) AHenon = (36)
2 03 0

ATcnt = 2, AHoracshoe =

oS wi=

The period-k orbit linear matrix, A¥*7, can be calculated from the linear local ma-

trices based at the points of its orbit. It has the form
AR = ARE AT AT AL LA AYT (3.7)

where Af'z is the local linear matrix that takes the points z;, in the neighborhood of
the period-k orbit point 5%, to their next iteration points 4, in the neighborhood
of the period-k orbit point z5*i+! if j < k. In case of j = k, Ay" will take the points
z;, in the neighborhood of the period-k orbit point z%** to their next iteration points
Ti41, in the neighborhood of the period-k orbit point z¥*!.

Note that the singular values of A***¥ depend on the phase index j. Therefore, the
matrices (A* — I) and ((A¥)~! — I) of Equation 3.2 will generate different theoretical
bounds for different phase index 7, for the same orbit. Hence, the k theoretical bounds
for every pair of k and z values will be calculated. Then, every actual bound will be
compared to its corresponding theoretical one.

Table 3.1 shows the theoretical bounds for the tent map that are calculated by the

direct method. And Table 3.2 shows the theoretical bounds for the horseshoe map.
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Table 3.1. The exact theoretical bounds for the tent map that are calculated by the
direct method.

(») Question mark means that the orbit for these indices is not extracted.

klz=1 2 3 4 b) 6 7 8

1 2 2

2 11333

3 | 1.143 | 1.143

4 | 1.067 | 1.067 | 1.067

5 | 1.032 | 1.032 | 1.032 | 1.032 | 1.032 | 1.032

6 | 1.016 | 1.016 | 1.016 | 1.016 | 1.016 | 1.016 | 1.016 | 1.016
7 11.008 | 1.008 | 1.008 | 1.008 | 1.008 | 1.008 | 1.008 | 1.008
8 [1.004 | 7 ? 1.004 ? 1.004 | 1.004 | 1.004
9 |1.002 | 1.002 ? 1.002 | 1.002 | 1.002 ? ?
10 ? ? ? 1.001 ? 1.001 | 1.001 ?

The theoretical bounds for the Henon map are not the same for all the points of
a period-k and index z orbit. So that, only the maximum of the k bounds for every
period-k and index z orbit is shown in Table 3.3. Nevertheless, every theoretical
bound is compared to its corresponding actual error bound. In all of these tables the
2-norm is used.

In Section 3.2, the ability of these exact theoretical bounds will be evaluated by

comparing them with the results of the actual extraction error in Chapter 2.
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Table 3.2. The exact theoretical bounds for the horseshoe map that are calculated
by the direct method.

(») Question mark means that the orbit for these indices is not extracted.

k [2=1 2 3|4 5 6 7 8
1 2 2

2 |1.333

3 | 1.143 | 1.143

4 7 ? ?

5 ? ? 71? ? 1.032

6 | 1.016 ? 717 ? ? ? 1.016
7 ? ? ?71711.008 ? ? ?
8 ? ? 71? ? 1.004 | 1.004 ?
9 ? ? 717? ! 1.002 ? ?
10 ? ? 717 ? 1.001 ? ?

Table 3.3. The maximum exact theoretical bounds for Henon map that are calculated
by the direct method.

(+) Question mark means that the orbit for these indices is not extracted.

k| z=1 2 3 4 5 6 7 8
1 7 1.2211

2 | 1.2418

3

4 | 1.3266

5

6 | 1.3916 | 1.5742

7 | 1.899 |2.4556 | 2.6462 | 1.797

8 | 5.1562 | 5.3704 | 2.4434 [ 2.2611 | ? | 1.6031 | 1.6314
9 |10.5618 | 10.355 | 2.0418 ? 1584 | 1.6398 ?

10 | 6.0414 ? 2.3292 | 2.1419 | ? ? ? ?
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2) Least-squares method

In the second method, the least-squares method [58-61] will be used to estimate
the linear and affine approximation models around every extracted periodic point.
These approximation model can be estimated by two different ways. First way is
to estimate, in one step, the desired orbital model that takes the points z; to their
k*h-iteration points, T, in the neighborhood of the periodic point z5*7. See Figure
3.1. The second way is to estimate the k local models first. Then, the orbit-k model
is calculated from these local models. This method is based on the data and does not
exploit the knowledge of the system.

The linear estimated model around a periodic point, say 57, has the form

(Tivk — Thi) = AR (z; — 2F™7) (3-8)

where A¥*7 is the estimated linearized matrix that takes any relative point (z; —xf ‘z'j)
to its relative k*’-iteration point (s — a:f:,;j ), and the variables "/ and xff,;j are
representing the same periodic point, 57, and they are used to shift the origin to
the locality of the linearization area in the neighborhood of that periodic point.
Since the models around all the periodic points are needed, this will require the
estimation to be repeated around all the distinct extracted periodic points. Then, as
mentioned before, the k different bounds, for every k£ and z pair, will be calculated.
The estimation process begins with the selection of the spatial distance, €., that
defines the neighborhood of the reference point, z'*7. After that, the neighboring
points, z;, will be stored in matrix z,; while their k**-iteration points will be stored

in matrix z3. If the number of these neighboring point is n, the estimated parameters

matrix that will be estimated by the least-squares method, i. e. A**J, will minimize
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the square root of the summation of the n squared error vector

e’ = (yo — A¥yy)T(yo — A%Iyy) (3.9)

k,z,J

where y; = z; — z;"* is the relative state variables in the shifted coordinates.

Then, the normal equation for matrix A¥*7 will be

AR = (yTy)) 'yl ys (3.10)

If the second way is used, the k linear local matrices, Af", have to be estimated
first. Again, the local matrix, Af", takes the points in the time series, z;, that are
in the neighborhood of every periodic point, z¥*7, to just their next iterated points,
41, that are in the neighborhood of the next periodic point, z¥*7+!. After repeating
this step around all the periodic points in the orbit, then the orbit matrix, A**7, will

be calculated by multiplying the matrices in the same order of iteration, i. e.
AbmI = AR ATTAY AR AN A (3.11)

If the affine model is used, then the linear model sensitivity matrix, y; will be
replaced by the affine model sensitivity matrix, y1; = [y1 1], where 1 is a vector
of ones with a proper length. And, the estimated matrix A**J will be replaces by
the combined matrix whose transpose is (A;™’)T = [(A*#7)T b*#J]. This combined

matrix contains the required estimated matrices for affine model that has the form
(Tigk — T3y ) = AR (2 — ™) + B4 (3.12)

If the second way of estimation is used, then A**7 will be calculated by the same

50



way, while the b7 matrix will have the next form

b = Aa+k— An+1bkz +A,+k 1 A:+2 b1+1 +...+ Az+k lbx+k 2 +b-+k p (3.13)

where the index 7 has the value

J if the subscript value will be < k
i = (3.14)
j — k if the subscript value will be > k with : = 3

Equation 3.13 is equivalent to the form

i+k-2 1+1

b= N [ AR 465, (3.15)

=t m=i1+k-2

If the model is an m-dimensional linear model that has p = m x m parameters,
Y1, which is the sensitivity coefficients matrix, has to be at least of rank £ = m, in
order to obtain a nonsingular matrix y7y,. In case of affine model, the number of
parameters, p = m x (m + 1), then the rank has to be at least (m + 1).

The variables z*7 and z i ', that are used to shift the origin to the locality of
the linearization area in the neighborhood of the periodic point, can be one of the

next four choices
o The analytical periodic point corresponding to this extracted point
o The best extracted point and its k**-iteration point

e The average of all the extracted points that are similar to this point and the

average of their k*’-iteration points

e The average of only the neighboring points that are used in the estimation of

this point and the average of their k**-iteration points.

51



The distance ¢, that defines the nearby points that will be selected has to be
chosen small enough in order to not exceed the valid area for linearization, but not
to the extent that will make the selected points less than the quantity, Z.

In fact, if the extracted orbits are extracted from a clean signal, the choice of
n = £ will give the same if not better results. This is because the selected points will
be closer to the linearization point, and the effect of nonlinearity will be reduced.

Table 3.4 shows the theoretical bounds for the tent map that are calculated by the
least-squares method. Table 3.5 shows the theoretical bounds for the horseshoe map.
Again, for Henon map, only the maximum theoretical bound, among the k different
bounds for every period-k and index z orbit, is shown in Table 3.6. In all of these
tables the 2-norm is used.

For the tent and horseshoe maps, the estimated theoretical bounds are equal to
the exact ones that are listed in Table 3.1 and Table 3.2. This indicates the high
accuracy of the estimated matrices that are used in the calculations of the estimated
theoretical bound. Also, it verifies the validity of using the estimated theoretical
bound in the case when the system is unknown.

For Henon map, these estimated theoretical bounds are very close to the exact
ones that are listed in Table 3.3 except for the fifth period-9 orbit, which has 2=5.
For this orbit, the theoretical bound exceeds the estimated one severely.

This periodic point turns out to be associated with the shape of the singular
vectors that are shown in Figure 3.2. However, this periodic point is not extracted
first with any set of the extraction parameters that are used in this study. Hence,
its theoretical bound is not compared to any actual error ratio. Therefore, in Section
3..2, the estimated bound is the only bound that will be evaluated.

Figures 3.2 and 3.3 show actual eigenvectors and singular vectors for some periodic
points of Henon map. Figure 3.2 shows the singular vectors and the eigenvectors of

a strongly sheared linearized matrix. In the contrary of that situation, Figure 3.3
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Figure 3.2. Actual eigenvectors and singular vectors for a strongly sheared linearized
matrix of Henon map.

shows the singular vectors that are very close to the eigenvectors. This means that
the shear, i. e. the off-diagonal elements values, in the linearized matrix is weak.

In conclusion, having a strongly sheared linear matrix, around any periodic point,
may lead to an exact theoretical bound that is very high. For example, the point that
has the vectors plotted in Figure 3.3, has an exact theoretical bound that is equal to
1584. This value is listed in Table 3.3 for the fifth period-9 extracted orbit since it is
the maximum theoretical bound value for that orbit. And for this kind of points the
estimated bound will be dramatically lower than the exact one.

Next, the estimated theoretical bound in flows is determined.
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Table 3.4. The estimated theoretical bounds for the tent map that are estimated by
the least-squares method

() Question mark means that the orbit for these indices is not extracted.

k|lz=1 2 3 4 5 6 7 8

1 2 2

2 11333

3 | 1.143 | 1.143

4 | 1.067 | 1.067 | 1.067

5 |1.032 | 1.032 | 1.032 | 1.032 | 1.032 | 1.032

6 (1.016 | 1.016 | 1.016 | 1.016 |{ 1.016 | 1.016 | 1.016 | 1.016
7 | 1.008 | 1.008 | 1.008 | 1.008 | 1.008 | 1.008 | 1.008 | 1.008
8 | 1.004 | 7 ? 1.004 ? 1.004 | 1.004 | 1.004
9 | 1.002 | 1.002 ? 1.002 | 1.002 | 1.002 ? ?
10 ? ? ? 1.001 ? 1.001 | 1.001 ?

Table 3.5. The estimated theoretical bounds for the horseshoe map that are estimated
by the least-squares method

(«) Question mark means that the orbit for these indices is not extracted.

k|jz2=1] 2 |3|4| 5 6 7 8
1 2 2

2 | 1.333

3 [1.143 | 1.143

4 ™ ? ?

5 ? ? 717? 1.032

6 | 1.016 ? 717? ? ? ? 1.016
7 ? ? 1?7]17]1.008 ? ? ?
8 ? ? 7|7 ? 1.004 | 1.004 ?
9 ? ? 717 1.002 ? ?
10 ? ? 717? 1.001 ? ?
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Table 3.6. The maximum estimated theoretical bounds for Henon map that are
estimated by the least-squares method.

(+) Question mark means that the orbit for these indices is not extracted.

k| z=1 2 3 4 5 6 7 8
1 7 1.2213

2 | 1.2439

3

4 | 1.3285

5

6 | 1.3924 | 1.5709

7 1.9 2.487 | 2.6327 | 1.8015

8 | 5.3902 | 5.3467 | 2.4445 | 2.2548 ? 1.5919 | 1.6265
9 |10.4809 | 10.1373 | 2.0371 ? 38.115 | 1.6447 ?

10 | 6.4584 ? 2.3534 | 2.1435 ? ? ? ?

3.1.2 Flows

Since the error analysis is not achieved completely in flows, the theoretical bound will
be determined for only the selected set of the extracted orbits whose error ratios are
listed in Table 2.13. Only the least-squares estimation method is applied here, since
the sampled flows do not have known algebraic matrices around their periodic points
as in case of maps. They arise instead from differential equations that describe their
motion in their phase space.

There is no remarkable difference between using the least-squares estimation
method in maps or flows. After obtaining the numerically produced time series from
the ordinary differential equation, it is easy to apply the same procedures as in maps..

The difference between applying the least-squares method in maps and flows can
be observed in the estimation result. Unlike maps, the estimation result for flows is
not acceptable if the period-/ orbit approximation model is estimated by the first way
(i. e. estimating it by using the neighboring points z; and their k**-iterations).

This is understandable since the orbit is very long, and it is difficult to have
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Table 3.7. Duffing equation theoretical bounds that are estimated by the least-squares
method, for the selected orbits whose error ratios are listed in Table 2.13.

z=1
0.9906
1.0073
1.1011
1.1707
1.1945
1.2357

DO W N —|®

the required number of neighboring points with reasonable value of ¢.. Having bad
estimated orbits undermines the accuracy of the theoretical bound that is calculated
from the matrices of these estimated orbits.

However the estimation method gives good estimated orbits if the second way of
estimation, in which the local models are estimated first, is used. Therefore, the local
models are estimated first, then the period-/ orbit matrix, or matrices in case of affine
model, will be calculated. Table 3.7 shows these estimated theoretical bounds for the
selected orbits that have their error ratios listed in Table 2.13.

Next, evaluating the estimated theoretical bound is presented.

3.2 Evaluating the Estimated Bound

After preparing the exact and the estimated theoretical bounds for all the extracted
points and showing the similarity of them, the estimated theoretical bound will now be
compared to the corresponding actual error ratios calculated in Chapter 2. The exact
theoretical bounds are those bounds that are calculated from the known Jacobian
matrices of the maps. The estimated theoretical bounds are those bounds that are
calculated from the estimated matrices.

Next, the results of evaluating the estimated theoretical bounds for all the three
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maps and the Duffing equation are presented. The theoretical bound on the recurrence
error is formulated from singular values based on local linearized dynamics. The 2-
norm is used in the calculations of these singular values. Nonetheless, the effect of

using other norms is studied in this thesis.

3.2.1 The tent map

For the tent map, the actual extraction error ratios in Table 2.4 are bounded by the
estimated theoretical bound in Table 3.4 exactly. As it was mentioned in Chapter 2,
these actual extraction error ratios are calculated with using the co-norm. However,
they are not effected by the norm that is used. This is because the map is a one
dimensional map, hence all the different kinds of norms, such as the 1-norm, the

2-norm and the oo-norm, will give the same values.

3.2.2 The horseshoe map

For the horseshoe map, the actual extraction error ratios in Table 2.8 are bounded by
the estimated theoretical bound in Table 3.5. Unlike the tent map, the calculation of
these error ratios is effected by the norm that is used. This is because the map is a
two-dimensional map, hence using different norms will lead to different values.

For example, if the 1-norm is used in the calculations, instead of the oo-norm,
the actual ratios will be less than the theoretical bound by a considerable amount, as
shown in Table 3.8. While with using !:he 2-norm, the actual ratios will be closer to
the theoretical bound but not equal to it, as shown in Table 3.9.

If the oco-norm is used the actual ratios are equal to the theoretical bound in
almost all the cases. This is clear from comparing the actual values in Table 2.8 to
the estimated theoretical bound in Table 3.5.

The effect of using different norms appears in the number of the extracted orbits,
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Table 3.8. The maximum actual error ratios, c—i—, in the extracted periodic orbits of

the horseshoe map, with using the 1-norm.

(.) Question mark means that the orbit for these indices is not extracted.

k| 2=1 2 3|4 5 6 718
1 |1.8604 | 1.9277

2 | 1.0715

3 | 0.6548 | 0.7173

4 7 ? ?

5 ? ? 717 1.0285

6 | 0.6363 ? 717 ! ? ?717?
7 ? ? ?1710.5673 ? 717
8 ? ? 717 ? 08795 [ ? | ?
9 ? ? ?717? ? ? ?7(7?
10 ? ? 717? ? 0.8545 |7 | ?

Table 3.9. The maximum actual error ratios, f:, in the extracted periodic orbits of
the horseshoe map, with using the 2-norm.

(.) Question mark means that the orbit for these indices is not extracted.

k| 2=1 2 3|4 5 6 7 8
1 ]1.9902 | 1.9976

2 | 1.2855

3 | 1.0536 | 1.1231

4 7 ? ?

5 ? ? 77 ? 1.0323

6 | 0.872 ? ?71? ! ? ? 0.7573
7 ? ? ?717]1.0001 ? ? ?
8 ? ? 717 ? 0.9940 | 0.8894 ?
9 ? ? 717 0.7649 ? ?
10 ? ? ?717? 0.9866 ? ?
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too. By using the oco-norm, the number of the extracted orbits has its maximum
value, while its minimum value is obtained when the 1-norm is used.

This reduction in the number of the extracted orbits, when the 1-norm is used,
is easy to be justified in the light of the unity shapes of different norms. Figure 3.4
shows the unity shapes for all the three norms that are used in this section. It is clear
that if a distance measures some value, d, when using the 2-norm, it will be less than
d when using the co-norm and greater than d when using the 1-norm. Therefore,
some of the orbits that are extracted using the co-norm will not be extracted using
the 2-norm or the 1-norm. This is because these orbits, which are extracted in case
of using the co-norm, have ¢, > ¢ when the later two norms are used.

These orbits, which are only extracted with using the co-norm, are normally the
orbits that are far from the periodic point. This is the first reason for the considerable
drop in the actual error ratio when using the 1-norm.

Furthermore, the linear model matrix is a diagonal matrix, for the horseshoe map,
which means that the direction of the maximum error vector, &, will be close to the
direction of the stable eigenvector, in case of § = §,, or the unstable eigenvector, in
case of § = §;. Figure 3.5 shows actual neighboring points for a periodic point of the
horseshoe map. It is clear that these points have relative positions, with respect to
the periodic point, that are close to £90° for the points that are leaving the periodic
point, and 180° or 0° for those that are coming toward it.

In both cases, the angle of the error vector, 4, will be far from +45°. While the
angle of the actual recurrence distance, €,, will be closer. This will make the increase
in the denominator value of these ratios, €,, due to the use of the 1-norm greater than

the increase in the numerator value, §. Hence the value of the ratios will drop.

60



D R SR ST U S b, SR 4

Figure 3.4. Unity shapes of the 1-norm (), the 2-norm (o) and the co-norm(0).
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Figure 3.5. Neighboring points for a periodic point of the horseshoe map.
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Table 3.10. The maximum actual error ratios, {:, in the extracted orbits of Henon

map, with using the 1-norm.

(«) Question mark means that the orbit for these indices is not extracted.

k|z=1 2 3 4 5 6 7 8
1 ™ 1.3934

2 | 0.8723

3

4 | 1.1461

5

6 | 1.1296 | 1.3271

7 | 1.1677 | 2.2417 | 2.152 ?

8 | 1.6197 | 2.7161 | 1.2078 | 1.1243 | ? ? 1.0516
9 |[10.812 | 4.345 | 0.9573 ? ? |1 1.4293 ?

10 | 4.298 ? 1.7856 | 1.2708 | ? ? ? ?

3.2.3 Henon map

For Henon map, the actual extraction error ratios in Table 2.12 exceed the corre-
sponding estimated theoretical bounds, for some periodic points. Nevertheless they
are bounded by the maximum theoretical bounds that are listed in Table 3.6. This
is because these actual error ratios have phase indices, j, that are not equal to the
indices of these maximum theoretical bounds.

As in case of the horseshoe map, using different norms effects the number of the
extracted orbits. Here again, using the co-norm gives the maximum value, while the
minimum value is obtained when the 1-norm is used.

The effect of using different norms on the actual error ratios is not easy to be
classified. The most important reason, which makes that effect hard to be classified,
is the nature of the linear model matrix that is not diagonal in case of Henon map.

As a result of that, the direction of the eigenvectors will not have the fixed angles
0°, 180° and +90°, for all the periodic points. Also, the singular vectors will not

be the same as the eigenvectors. Having eigenvectors that have irregular angles will
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Table 3.11. The maximum actual error ratios, ﬁ-, in the extracted orbits of Henon
map, with using the 2-norm.

() Question mark means that the orbit for these indices is not extracted.

k| z=1 2 3 4 ) 6 7 8
1 7™ 1.2181

2 | 1.0566

3

4 | 1.0754

)

6 | 1.0054 | 1.471

7 | 1.4809 | 2.5645 | 2.6093 | 1.1759

8 | 1.5204 | 3.3914 | 1.6785 | 1.2598 ? 0.9715 | 1.1709
9 | 12.6816 | 4.1146 | 1.9015 ? 5.9457 | 1.626 ?

10 | 5.5049 ? 2.0857 | 1.5959 ? ? ? ?

make the effect of using different norms irregular, even for the extracted points of the
same periodic point. This is because ';he effect of using different norms on the values
of § and ¢, is not regular.

As it was mentioned in case of the horseshoe map, if ¢, has an angle that is closer
to £45° than the angle of the numerator, §, then the value of the ratios will drop, with
using the 1-norm. This is again because the increase in the value of the denominator,
€q, Will be greater than the increase in the value of the numerator, §. But if the other
case happens, then the value of the ratios will increase. In both cases, if the 2-norm
is used, the value of the ratios will be between the two values of the other norms.

Comparing the actual error ratios that are obtained by using different norms shows
that both of the two mentioned cases occur. Therefore, the 1-norm and the 2-norm
error ratio values, as shown in Table 3.10 and Table 3.11, are less than the co-norm
values that are listed in Table 2.12, for some periodic orbits and greater for others.

Furthermore, there are some periodic points, such as the period-1 periodic point,

that do not have the 2-norm value of the actual ratios between their values with the
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other two norms. This means that for the same exact periodic point, the extracted
periodic point that gives the co-norm maximum value is not the same as the extracted
periodic point that gives the maximum value for the 1-norm. This is because the point
that gives the co-norm maximum value is not extracted with using the 1-norm, or
because of the existence of a 1-norm maximum value that has a corresponding oo-
norm value that is less than the existing co-norm maximum value.

The last part in this characterization of the ability of the Henon map theoretical
bound to bound the actual error ratios, is an effort to justify the violations in the
values of these actual error ratios. The 2-norm is the only norm that is used here.
This is because the theoretical bound uses the singular values that are calculated, in
computer soft-wears, by using the 2-norm.

Reviewing all the extracted periodic points shows that these violations depend
strongly on the length of the time series. With longer time series, more orbits will
be extracted but with higher error ratios, in some of these extracted orbits. This is
normally due to smaller ¢, rather than larger 4.

For example, a time series with length, N = 50,000, has the first violation in the
error ratios of its period-4 extracted orbit. The percentage value of this violation if

1.035-.99966

it is compared to the exact bound is =222 x 100 = 3.54%. If it is compared to

the estimated bound, it has a percentage of ﬂ%’gm x 100 = 3.531%.

The violation occurs when the third periodic point is extracted first. The actual
and the theoretical bounds for this periodic point are not the maximum actual and
theoretical values for the period-4 orbit error ratios. Therefore, their values are not
listed in Tables 2.12, 3.3 and 3.6. For this time series, the percentages of all of its
violations, compared to the estimation theoretical bound, are listed in Table 3.12.

For a time series with length, N = 200,000, the first violation occurs in the error

ratio of the same extracted periodic point, but the percentage value of this violation

if it is compared to the exact bound is ngg;s—;—m x 100 = 8.21%. If it is compared to
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Table 3.12. The maximum percentages of the cases where the actual error ratios,j‘;—,
violate the estimated theoretical bound, in the extracted orbits of a Henon map time

series of length, N = 50,000, and with using the 2-norm.

(») Question mark means that the orbit for these indices is not extracted.

k| z=1 2 3 4 5 6 718
1 7 0

2 0

3

4 | 3.531

5

6 0 0

7 | 47.951 | 47.272 | 142.088 0

8 | 45.045 | 53.549 | 16.089 | 15.862 ? 0 0
9 | 253.306 | 278.82 | 81.354 ? 470.979 | 23.833 | ?
10 | 168.035 ? 51.138 | 50.67 ? ? 717?

Table 3.13. The maximum percentages of the cases where the actual error ratios,%,
violate the estimated theoretical bound, in the extracted orbits of a Henon map time

series of length, N = 200,000, and with using the 2-norm.

() Question mark means that the orbit for these indices is not extracted.

k| z=1 2 3 4 5 6 718
1 7 0

2 0

3

4 | 8.197

5

6 | 14.037 | 0.0544

7 | 67.89 |47.272 | 142.088 | 42.391

8 |186.922 | 97.596 | 32.867 | 95.088 ? 0 0
9 | 309.62 | 382.3 | 88.029 ? 470.979 | 30.953 | ?
10 | 168.035 ? 51.138 | 86.273 ? ? 7?
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the estimated bound it has a percentage of L8=3%78 » 100 = 8.197%. For this time
series, the percentages of all of its violations, compared to the estimation theoretical
bound, are listed in Table 3.13.

The worst value among all of the listed violations is in the error ratios of the
fifth period-9 extracted orbit. If this is compared to the exact bound it will not be a
violation, since its corresponding theoretical bound is 17.776. While if compared to
the estimated bound it has a percentage of 471%, as listed in Tables 3.12 and 3.13.

This is an indication that the estimated theoretical bound is not as accurate as
the exact one. But this tends to occur only for the periodic points that have a very
high shear in their linearized matrices. However, there are many points whose error
ratios violate even the exact theoretical bound.

Having many small violations is expected as a result of using the linearized model
in the calculations of the theoretical bound. The nonlinearity of the stable and
unstable manifolds reduces the ability of the theoretical bound specially in the case
where the nonlinearity reduces the value of the denominator, ¢,, and increases the
value of the numerator, §, in these actual error ratios.

Figure 3.6 shows the linear and nonlinear stretching and contracting factors in the
locality of some extracted period-k point, plotted in the range from 0° to 360° around
that periodic point. This is produced by taking a set of initial condition points that
form a circle of radius 0.005 around the extracted periodic point, as shown in Figure
3.7, and iterating them k times. Then, the ratios of changing the magnitudes and
slopes (in the z-y plane) of these points with respect to the extracted periodic point
and its iteration are plotted.

In the linear case, the maximum stretching factor is the same in the two directions
that represent the large singular value vectors of the linear matrix, while the minimum
contraction factor is also the same in the two directions that represent the small

singular value vectors. The eigenvectors are in the direction of the angles at which
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the ratios of the change in slopes have the unity value.
The unstable eigenvector is the only one that is shown to have a unity value in
the plot of the slopes ratio. For the stable eigenvector, the unity value is not shown

in the plot due to the following three reasons :

1. The angular step that is used equals to 1°, hence it is not expected to get the

exact angle.

2. Having the stable eigenvector in a direction close to the right angle gives an

initial slope that is close to oo.

3. The resulting slope for that initial slope is close to zero, due to the direction of

the unstable eigenvector that has an angle close to zero.

If the nonlinear maximum and minimum factors, which each one of them occurs
in one direction, are used, the theoretical bound will have higher values, and the
violations will be less. This is because the effect of nonlinearity on the singular values
is removed, but its effect on the shape of the manifolds still exists.

Figure 3.7 shows the linear and nonlinear shapes that are resulting from iterating
a cycle k-times around the same period-k point that has the factors plotted in Figure
3.6. It is clear that using the linear model changes the direction of the error vector,
82, dramatically. Whether this error vector has a 2-norm, |d;|;, that is greater than
[61]2 or not, this will give a theoreticﬂ distance for ¢, that is much greater than its
actual value. In this case, the theoretical bound will be less than the actual one.
Figure 3.1 shows all of these error vectors.

For the high violation percentages, another reason beside the nonlinearity has to
be added, except if its effect is too strong in these cases. Since these high violations
are only for the extracted orbits of period-k > 7, the reason can be related to the

uncertainty of the corrected solution that is assumed to be the exact solution (to
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Figure 3.6. Nonlinear (a) and linear (b) , stretching and contracting factors in the
locality of some extracted periodic point, and the nonlinear (c) and linear (d) ratio
of the change in slopes due to that motion.
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iterating a cycle around the same extracted periodic point that has the factors in

Figure 3.6.

70



which the extracted orbits are compared to quantify their errors). Having two large
percentages in sequence, for the first two orbits of period-9, suggests strongly that
there is a missing orbit in between.

Finding a new corrected orbit close to the one that has a high violation percentage
will reduce its percentage dramatically. This was the case when an unrelafed orbit
or a real approximation of a complex orbit was found just before the fifth real and
related period-9 corrected orbit that had an error ratio of 212.7, using the 2-norm.
The error ratio dropped to be only 5.95 for the new period-9 corrected orbit. This
reduction, in the actual error ratio, means a reduction in the violation percentage
from 21,110.6% to the existing one that equals 471%.

Also, when the other unrelated orbit or real approximation of a complex orbit
was found, just after the ninth real and related period-10 corrected orbit, that had an
error ratio of 155.79, then the error ratio dropped to only 1.23 for the new period-10
corrected orbit. Again, this reduction, in the actual error ratio, means a reduction in
the violation percentage from 15,458.8% to 22.48%.

This great sensitivity of error ratios to finding any corrected orbit is an indication
of the accuracy of the existing ones. In fact, all the efforts to find a new corrected
period-9 orbit, by correcting the extracted orbit that has the worst error ratio, end
with the same old corrected orbit. Even the extracted periodic point that has the
worst error ratio goes to its corresponding point in the old corrected orbit.

Since there are no closer minima to this extracted orbit, this is an indication that
the existing corrected orbit is the orbit for which this orbit is extracted, and the
violation is due to the nonlinearity or some other reasons.

In fact, all the high violation percentages are due to an extraction error at an
“interior” extracted point, i. e. a point other than the recurrence point, hence the

theoretical bound cannot be applied on it.
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Table 3.14. The ratios of the interior large errors,d;, compared to the errors in the
beginning, 4, for the extracted periodic orbits of Duffing equation.

[y

| OY B W N =] X

3.2.4 Duffing equation

For Duffing equation, the selected actual extraction error ratios in Table 2.13 are
bounded by the theoretical bounds in Table 3.7. But it is not enough to bound
the error in some high period-/ extracted orbits. It has been shown, in Chapter 2,
that some extracted orbits have their largest deviation from the true orbit at some
“interior” point, i. e. a point other than the recurrence point.

For the extracted orbits that have their maximum errors, 4, in some interior point,
the formulated bound is unable to bound the maximum errors in the extracted orbits.
Table 3.14 shows the approximated ratios of these interior large errors compared to
the extraction error, 4, in the beginning of each orbit. Having ratio of 1 means that
there is no large interior error.

While a periodic orbit is a saddle in its average dynamics, it is possible for its
local dynamics to vary widely from source, to saddle, to sink. The large interior
errors result from a long series of local dynamics that are sources or saddles.

As in case of maps, the extracted periodic orbits in flows have orbital matrices
that have invariant eigenvalues, i. e. they are the same for any value of the phase
index, 7. But, as in case of maps, too, the singular values differ from one point in the

periodic orbit to another. This will lead to more than one theoretical bound for each
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Figure 3.8. A plot of an extracted, corrected and estimated (improved) period-4 orbit.
This extracted period-4 orbit has its largest error at the recurrence point.

orbit.

To illustrate the difficulty of determining whether the extracted periodic orbit has
a large interior error or not, the two extracted periodic orbits plotted in Figures 3.8
~and 3.9 are studied. Figures 3.10 and 3.11 show the theoretical bounds for the two
orbits plotted against the phase index, j. In Figure 3.10, the theoretical bounds of
the extraction errors of the extracted period-4 orbit that has its large error at the
recurrence point is shown, while in Figure 3.11 the theoretical bounds of the extracted
period-6 orbit that haé a large interior error is shown, too. In all of these plots, the

recurrence point is corresponding to the phase index ;7 = 1.
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Figure 3.9. A plot of an extracted, corrected and estimated (improved) period-6 orbit.
This extracted period-6 orbit has its largest error at some interior point.
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Figure 3.10. The theoretical bounds on the recurrence error, as a function of the
phase of the orbit, for the extracted period-4 orbit that has its largest error at the

recurrence point.
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Figure 3.11. The theoretical bounds on the recurrence error, as a function of the
phase of the orbit, for the extracted period-6 orbit that has its largest error at some

interior point.
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The similarity of the two plots of the theoretical bounds in Figures 3.10 and 3.11
undermines the possibility of determining whether the extracted periodic orbit has a
large interior error or not, just from the theoretical bounds of the different phases.
In fact, having a large theoretical bound value at j = 80, in Figure 3.11, corresponds
to a very small extraction error. While the large interior error at j = 22 corresponds
to a very low theoretical bound value.

Another idea is to look at the local dynamics of the periodic orbit around all of
its cycle points, and try to find a relation between their values and the existence of
the large interior error. Figures 3.12 and 3.13 show the magnitudes of the eigenvalues
of the local matrices for the two orbits.

The clear difference is the existence of a long sequence of local saddle dynamics in
Figure 3.13. The large interior error is in the interval that comes just after this long
local saddle dynamics that have a flat peak from j=138 to j=8.

It would be beneficial if the large interior error can be bounded by an estimated
theoretical bound. The results concerning that issue are not clear, yet. Nevertheless,
it is very clear that the error is due to the existence of the longest sequence of saddle
local dynamics. The extracted orbits will have a very small error when there is long
sequence of stable local dynamics.

Furthermore, it is a good sign to have the recurrence point in a place just after
the longest sequence of saddle or unstable dynamics. This will reduce the ratio of the
large interior extraction error, §;, compared to the extraction error at the recurrence
point, 8. This reduction, in the ratio value, is mainly due to the increase in 4.

For example, the extracted period-6 orbit in Figure 3.9 has a large interior error
that is almost the same as in case of Figure 2.12. The recurtence point is now in the
interval that has the longest sequence of saddle local dynamics. The ratio of the large
interior error, §;, compared to the extraction error at the recurrence point, 4, is now

3. Its previous value, as listed in Table 3.14, is 8.
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Figure 3.12. The eigenvalues of the local matrices of the extracted period-4 orbit that
has its largest error at the recurrence point.
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Figure 3.13. The eigenvalues of the local matrices of the extracted period-6 orbit that
has its largest error at some interior point.
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3.3 Summary

In this chapter, the exact theoretical bounds on the extraction errors for the three
studied maps were calculated. Also, the least-squares method was used to estimate
these exact theoretical bounds and the theoretical bound of the Duffing equation. For
the three maps, the estimated theoretical bounds were very close to the exact ones
except in the case where Henon map has severe nonlinearity. However, the periodic
point that was associated with this case was never extracted first, hence its theoretical
bound was never used.

The estimated theoretical bound was capable of bounding the extraction error in
case of the tent and horseshoe maps, but, it was incapable to bound the large interior
errors that were in the extracted orbits of the Henon map and the Duffing equation.
However, the ratio of that interior error, §;, compared to the error in the recurrence
point, §;, was smaller for the case when the recurrence occurred just after the longest
sequence of saddle local dynamics. This reduction in the value of the ratio was due
to the increase in the recurrence error, §;, and was not due to the reduction of the
interior error itself.

The large interior error, in this study, was observed in the extracted orbits of
period-k > 7, in case of the Henon map, and period-l > 5, in case of the Duffing
equation. For the Henon map, it has a maximum ratio of 5 compared to the error in
the recurrence point. While in case of the Duffing equation, the extracted orbits that
are studied have periods up to period-l = 6, and the maximum ratio is 8. Therefore,
the bound is only applicable for the lower periodic orbits, otherwise it bounds the
error in the recurrence point only.

In the next chapter, the extracted orbits, for all the studied systems, will be

improved by using the least-squares estimation method to estimate their exact orbits.
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CHAPTER 4

IMPROVING THE
EXTRACTED ORBITS

Since the original system is normally unknown, using estimation methods to improve
the extracted periodic orbits based on the knowledge of only its time series is a very
important step. The error associated with every estimation method can be quantified
in different ways. By quantifying the error, the best method will be determined.

In this chapter, the local affine and linear models around the extracted periodic
orbits of all the three maps and the Duffing equation will be used to estimate unstable
periodic orbits. These orbits will then be compared to the corrected and the extracted
ones.

For maps, a comparison between the approximated periodic orbits, which are

obtained by the following approximation methods, is made
1. Using the least-squares method to estimate the linear model
2. Using the least-squares method to estimate affine model

3. Using the average of the extracted orbits
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4. Using the extracted orbit with minimum actual recurrence distance
5. Using the average of the close points that were used in the least-squares method.

The least-squares estimation method that is used to improve the extracted orbits
is explained throughly in Chapter 3. After having the desired model, i. e. the approx-
imate local affine or linear maps , all that is needed is to solve the equations of these
estimated models in order to obtain their periodic points.

If the desired estimated model is the linear model, then its equation is Equation
3.8. It has the form

(zipk — ziyy’) = AM® (2 — 2f7) (4.1)

Then, its period-1 point, which is the period-k point for the original system, is

z=(I-A) (2 — AR (4.2)

If the desired estimated model is the affine model, then its equation is Equation 3.12.

It has the form

(Zigk — 2577 ) = AP (2; — 2F27) bR (4.3)

Then its period-1 point, which is the period-k point for the original system, is

= (I — AW3) (ghzd — Aknighed | phad) (4.4)
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4.1 Improvement Results

The results of improving the extracted periodic orbits for all of the three maps and

Duffing equation are presented next.

4.1.1 The tent map

By comparing the analytical periodic orbits to the best extracted ones, it is found
that the error in these orbits, &, is on the order of 10~%. If the average of all the
extracted orbits is used, the error is higher but on the same order of 10™4. When
the average of all the neighboring points, which are used in the estimation method,
is used, the error is on the order of 10-3.

When the estimated linear or affine model of the map is used in estimating the
exact periodic orbits, all the estimated orbits are improved such that the error is on
the order of 10715,

For tent map, the results are not affected by the choice of the number of selected
neighboring points, as long as the neighborhood region does not contain the discon-
tinuity point. This is expected since this map <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>