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ABSTRACT

UNSTABLE PERIODIC ORBIT EXTRACTION ERROR

AND ITS EFFECT ON NONLINEAR SYSTEM

PARAMETRIC IDENTIFICATION

By

Zamel M. Al-Zamel

In this dissertation the recurrence method is applied to extract unstable periodic

orbits in the tent, the horseshoe and the Henon maps, the Duffing equation and an

experimental two-well oscillator. The extraction error is quantified, and a proposed

theoretical bound for that error is characterized. Also, the least-squares estimation

method is applied in order to improve the extracted orbits. Finally, the effects of the

extraction error and its improvement on the nonlinear systems parametric identifica-

tion are quantified.

In order to quantify the extraction error, the true solutions are Obtained either

analytically or numerically in the maps and Duffing equation. After quantifying the

error, the exact theoretical bounds are calculated based on the jacobian matrices of

the known maps, and also estimated from the time series of the four systems.

The results show the applicability of the proposed theoretical bound to bound the

error at the recurrence point, while it fails to bound the error at some interior points.

Improvement of the extracted orbits is Obtained by estimating the linear or affine



models for the studied systems around every cycle point of the extracted periodic

orbit. Using the linear or affine model in the estimation method leads to almost the

same results with only one exception. In case of using the linear model, changing

variables to shift the origin to the locality of the periodic points requires a special

treatment.

This estimation method successfully improves the extracted periodic orbits in the

studied maps. In case Of Duffing equation, the extraction error is on the order of

10"2 and is reduced to zero, for the estimated orbits of period-l for l S 4, while

for higher periods the estimation method is not capable of improving the extracted

orbits, except at the recurrence point.

The least-squares method is used again to identify the parameters Of maps. For

clean signals, the extraction error has no effect on the identified parameters. In case

of Duffing equation, the harmonic balance method is used to identify its parameters.

Here, the effect of the extraction error on the identified parameters is approximately

on the same order of the error itself. .

The effects of noise and phase space reconstruction on the extraction and esti-

mation results, including the parametric identification, are discussed. The extraction

results are less sensitive to noise, compared to the estimation results. While the effect

of reconstructing the phase space from a single signal is dramatic and destructive.

Finally, the results of an experimental time series are shown. The unstable periodic

orbits are extracted from the reconstructed phase space, and improved by estimation.

Then, the parameters of the system are identified.
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CHAPTER 1

INTRODUCTION

In this chapter, a historical background for nonlinear system characterization is pre-

sented first. This includes a broad range Of techniques such as :

0 Phase space reconstruction through the method of delays, in which the entire

dynamics will be reconstructed from a small number of observable states

0 Determination of the invariant measures such as fractal dimensions, Lyapunov

exponents, density histogram and entropies

0 Determination of the number Of active states

0 Determination of the topological invariants such as unstable periodic orbits

through the extraction theory, knot theory and template analysis

0 Nonlinear prediction, cell mapping, weighted maps, neural networks, etc

0 Noise reduction and signal improvement, and

o nonlinear system parametric identification

Second, the motivation for studying extracting the unstable periodic orbits is

discussed. Finally, the contributions of this research to the problem of nonlinear

system parametric identification are stated.
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1 .1 Background

Efforts to interpret chaotic time series began nearly a century ago. The statement

of Poincare (1854-1912) on the importance of unstable periodic orbits as, “the only

breach by which we might attempt to enter an area heretofore deemed inaccessible,”

has proven to have been insightful, at least for some of the aims for which such

interpretations are sought. P. Drazin and C. King [1], the editors of Physica D58

(1992), summarized these aims :

1. To detect useful and interesting patterns by exploring the data

2. TO construct a model by using the data and as much additional knowledge Of

the process as possible; and

3. To verify that the model can both reproduce and predict the patterns, and if

necessary, to improve the model further

More aims can be added, such as reducing the noise with which the time series

is contaminated and controlling the nonlinear system by which the time series was

produced. It is possible that this is what the editors meant when they added, to the

third aim, improving the model further.

It is known that the traditional methods by which the linear systems are analyzed

are useless in the nonlinear system analysis without modifications. For example,

the Fourier transformation and filters, which are usually used efficiently in the linear

system analysis and noise reduction, can not be used in the nonlinear systems without

modifications.

This is because of the shape of the chaotic spectrum for nonlinear systems, in

the frequency domain, which is broad and covers the entire domain. Therefore, it

is impossible to specify the frequency at which the system is Operating. Also, any

filtering for the signal, to remove the noise effect, will affect its dynamics.

2



Some types of filters increase the dimension of the analyzed system while others

decrease it [2,3]. There are some chaotic systems such as the Henon map (which

will be studied here) which have remarkably flat spectra so that any filtering is sure

to have serious effects on the dynamical information contained by the time series

generated by the system [4].

In the late 708 and 808, a lot Of research was concentrated on analyzing nonlinear

systems by Observing their time series. The analysis focused on extracting, from

the time series, the various invariant quantities for the nonlinear system. By these

invariants the system can be characterized and identified.

System invariants define the system quantities that are not sensitive to the initial

conditions, so that they are fixed for at least a set Of initial conditions in the phase

space. Attractors are among the invariant sets Of the system. Some nonlinear systems

have more than one attractor. Each attractor has different characteristics.

Among the invariants of the nonlinear system are measures such as fractal di-

mensions, entropies, global and local Lyapunov exponents, density histograms, and

topological invariants such as unstable periodic orbits.

Reconstructing the phase space was a revolution in the field of time series analysis.

This step can be achieved through the method of delays, which was proposed inde—

pendently by Ruelle, Packard et. a1. [5] and Takens [6], whereby a scalar time series,

y(n), is used to ~generate a large-dimensional vector time series. This is achieved by

constructing the d-vector C(n) = [y(n),y(n + 7'), ...,y(n + (d — I)T)], where 7' is the

delaying time and d is the embedding dimension. Takens’s theory proves that under

suitable hypotheses, this reconstructed attractor is equivalent in some sense to the

original attractor if d is large enough [6].

The proper choice of these two parameters is essential in order to reconstruct an

accurate phase space that resembles the original one in its invariant set. There are

many criteria by which the optimal embedding parameters can be achieved.
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Buzug and Pfister [7] compared algorithms calculating Optimal embedding para-

meters for delay time coordinates. Among these algorithms was mutual information

analysis that was derived by Fraser [8] to determine the time delay, 1'.

Among the other methods that are used to determine the Optimal delaying time

were the integral local deformation, simple spreading of trajectories and fill-factor

methods [9].

In general, the idea behind choosing the delaying time is simple. If it is too short,

the successive points in the reconstructed phase space will depend on one another

too strongly, such that the sequence of points does not represent the dynamics of the

system. Also, if the delay is too long successive points will be totally independent,

and again they will not represent the dynamics of the system. Also, the effect of noise

will be larger if the chosen delaying time is longer than what is required [10].

For the choice of the embedding dimension, d, the same issues will rise again.

The dimension has to be large enough to express the dynamics of the system or the

reconstructed phase space will collapse upon itself. And if d is larger than what is

required the effect of noise will be high. Also, the possibility Of having nearly periodic

points will be low because of the relation between the number of data points needed

to occupy a ball of a fixed size, 6, and the dimension of the phase space. This number

.of the needed points is proportional to (“it [11].

Broomhead and King [12] used a singular value decomposition of the trajectory

matrix to Obtain the number of nonzero singular values, which yields a sufficiently

large embedding dimension. They plotted the singular values of that matrix for

different values of the embedding dimension, then the dimension where these values

reach their floor value will be selected'as a sufficiently large embedding dimension.

Grassberger and Procaccia [13] observed the change in the invariants of the re-

constructed phase space with difierent embedding dimensions. Then, when these

invariants reached to their steady values, they took the corresponding embedding di-



mension as an Optimal one. This is not always reliable, as Ding et. al. [9] noted that

the correlation dimension, d2, plateaus at the first recOnstruction dimension, dc > (12.

Liebert et. al. [14] proposed a method that is guided by topological considerations.

Their criterion relies on the position of the neighborhood points at the transition from

d to d + 1.. They stated that it is a large enough embedding dimension, d, if the inner

points remain inner points and the points in the boundary defining the neighborhood

remain boundary points at the transition from d to d + 1.

Kennel et. al. [15] implemented the false nearest neighbors method to determine

the sufficient embedding dimension. In this method, the dimension d in which the

neighboring points will remain also neighboring points in dimension d + 1, will be

selected as a sufficient embedding dimension.

L. Can [16] proposed a method to determine the minimum embedding dimension

from a scalar time series. This method is a modification for the false neighbor method

[15]. It is argued that it is not subjective, not strongly dependent on the length of

the time series and able to distinguish deterministic signals from stochastic signals.

E. Ott et. al. [17] has a survey on the methods that are used to determine the

Optimal embedding dimension from a scalar time series based on Takens’ theorem [6].

After reconstructing the phase space (or using the original one, which is not prac-

tical especially in the experimental time series), the analyst will be able to apply the

different methods to analyze the time series.

Among the most important analyzing steps is noise reduction, in order to have

a cleaned signal that represents the system more precisely. Much research has been

dedicated to cleaning the signal and separating it from the noise.

Some of the methods require the prior knowledge of the system and other methods

do not. There are also methods that can use the statistics of an Observed clean signal

to distinguish it from noise [10].



Sauer [18] presented a method to separate additive noise. A low-pass embedding

method and singular value decomposition were used to project the input signal along

directions belonging to the signal of interest. Rabinovitch and Thieberger [19] prO—

posed a method that used a special autoregressive moving-average filter to create the

signal from a random shock generator.

Rowlands and Sprott [20] described a method that extracts from a chaotic series

a system equation whose solution reproduces the general features of the original data

even when the time series is contaminated with noise. Cawley and Hsu [21] presented

a local geometric method for noise reduction. Their method is related to the local

singular-value analysis technique.

Shaw and King [22] used cluster analysis to classify the time series. They also used

the principal component analysis to filter the data by looking for a few linear combi-

nations of the original variables that account for most of the variances in the data.

Some research was dedicated to noise reduction using periodic orbits [21,23,24,25].

For nonrecurrent points, other methods were presented [26,27,28].

Pueyo [29] presented a new method that is proposed to uncover chaotic dynamics

in a time series. This method is based on the analysis of the local divergence of

trajectories. This method is assumed to easily distinguish the chaos from the linearly

auto-correlated random time series.

Finally, Schittenkopf and Deco [30] presented a method that can identify the deter-

ministic chaos by using an information-theoretic measure of the sensitive dependence

on the initial conditions. This method can determine whether the time series is pure

noise, chaotic but distorted by noise, purely chaotic or a Markov process. It also gives

an approximation for the noise level.

The nonlinear system parametric identification is the underlying motivation Of

this thesis. Among the many methods for nonlinear system parametric identification

is the method that was introduced by Nayfeh [31] where the resonance frequencies



were used. Stry and Mook [32] presented a method where the time series was used.

The harmonic balance method was used by Yasuda et. al. [33,34].

Extracting the unstable periodic orbits from the time series (Auerback et. al.

[35], Lathrop and Koslelich [36] and Tufillaro et. al. [37]) can be used in parametric

identification. The orbits can be extracted from a time series produced by a map or

a sampled vector field by watching any two points, say 2:,- and six-+1., which come very

close to one another after I: iterations or sampling intervals.

The length of time that separates the two points is an indication for the period

of the extracted orbit, k. In maps, the points from x,- to $g+k_1 are the elements of

the extracted period-k orbit. In vector fields, the number of the extracted samples

has to be divided by the number Of samples in period-1 orbits. Parameters, which

are related to and effective on the extraction process, will be discussed in this thesis.

The extracted unstable periodic orbits were used in nonlinear system parametric

identification by Hammel and Heagy [38], Kesaraju and Noah [39], Yuan and Feeny

[40] and Van de Wouw et. al. [41].

The present research is a continuation for the work done in reference [40]. In that

paper, an ultimate bound was derived for the error associated with extracting the

unstable periodic orbits. This bound is related to the singular values of the linearized

system matrices around these periodic orbits.

1.2 Motivation

As a result of the important role of the unstable periodic orbits in nonlinear system

parametric identification and because of the existence of uncertainties and error in

the extraction process of these orbits, the unstable periodic orbits extraction is chosen

to be studied. The extracted unstable periodic orbits are used in :

0 nonlinear system parametric identification [38 — 41]
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o Computation of Lyapunov exponents [10,42 - 46]

o Computation of fractal dimensions [10,35,47,48,49]

0 Template analysis and knot theory [10,50,51], and

0 Evaluation of a signal determinacy [10,21 - 25]

To this end, this thesis will focus on the error associated with unstable periodic

orbits extraction. Ultimately, the goal is to apply the quantification of the error to

the nonlinear system parametric identification. Specifically, this thesis aims to :

0 Evaluate unstable periodic orbit extraction error and compare it to the theo—

retical bound. This provides a verification of the theory and an understanding

of how conservative and applicable it might be.

0 Improve the extracted periodic orbit’s accuracy from the dynamics of the data

0 Examine the effect of the extraction error on the parameters that are identified

by the extracted orbits

0 Examine the effect of improving these extracted orbits on these identified pa-

rameters, and

0 Apply all of the previous points on maps and flows, and compare the results of

flows to those of real experimental data.

We also encounter several interesting issues in this work. For example, showing

the absence of some exact periodic orbits from the extracted orbit list will indicate

the deficiencies of the extraction process. Also, showing the difficulty to verify the

validity and distinction of the extracted periodic orbits will explain inaccurate results

attained by some previous researches [35,52,53,54].

The effect of noise is an important issue that is discussed. This includes studying

the sensitivity of the attained results toward the existence of noise.

8
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1.3 Contributions

This research will contribute to the nonlinear system parametric identification an

essential element. The unstable periodic orbits extraction process, through which the

first step of parameter identification by unstable periodic orbits can be completed,

will be improved. The exact unstable periodic orbits are Obtained to characterize the

proposed theoretical ultimate bound, for the extraction error, by comparing it to the

actual extraction error ratio.

The different kinds of applications, which normally are applied on the extracted

unstable periodic orbits, will be applied on the exact ones, too, in order to quantify

the error associated with the use of these extracted orbits. These applications will

include nonlinear system parameter identification and modeling.

In summary, this thesis will contribute to nonlinear system characterization by :

o Quantifying the extraction error in maps and flows. This includes the theoretical

bound verification and the effect of the error on the identified parameters.

0 Improving the extracted orbits and their applicability. This includes studying

the effect of this improvement on the identified parameters.



CHAPTER 2

DETERMINING THE

EXTRACTION ERROR

In this chapter the quantifying results for the error in the extracted unstable periodic

orbits are stated, and remarks about these results are presented. First, a study is

performed on the extraction error in the tent map, the horseshoe map and the Henon

map. After that, the extraction error in flows will be. studied. The numerically

produced time series Of the Duffing equation is the subject of this study.

The importance of the extraction process and its many applications in nonlinear

system analysis are the main driving motivations toward studying the error in the

extracted unstable periodic orbits. As it was mentioned in the introduction, these

extracted unstable periodic orbits are used in many nonlinear system characterization

techniques.

Furthermore, the existence of a theoretical bound for that error [40] and the need

to characterize it, is another reason behind this study. The uncertainty in these

extracted orbits and the general lack of knowledge about the true orbits can be found

in many previous researches [35,52,53,54].

Next, quantifying the error in the extracted orbits of maps is presented.
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2.1 Maps

In this section, the error in the extracted unstable periodic orbits is quantified for the

next three maps :

o The tent map with an expansion factor, Ac, that is in the form

22;.“ = Act; If 0 S 1:; _<_ 0.5

(2.1)

and :12,“ = ACT,- — 1 if 0.5 < 2:,- g 1

This map coincides with the known tent map under the coordinate transforma-

tion 1:.- -) 323 — 1:,- for -;- S 9:,- g 1, and its dynamics are the same.

0 The horseshoe map with the same expansion factor as the tent map and a

contraction factor, Ac, that is in the form

(I); = Acit,‘

+1 If 0 g y,- S 0.5

yi = ’\e i+1 y (2.2)

$i+1 = Acxi + 1 — Ac .

and If 0.5 < y,- S 1

yi-i-l = Acyi — 1

Again, this map coincides with the known horseshoe map under the coordinate

transformation y.- —> g —y,- for % S y, S 1, and its dynamics are the same. Also,

it is a special case in that no points in the unit square are mapped out of it.

o Henon map that is in the form

at,“ = 1 — 1.42:? + y,- (2 3)

31544 = 0.32.7;

As mentioned in the introduction, the unstable periodic orbits can be extracted

from a time series produced by a map by watching any two points, say 2:.- and an“,

11



which come very close to one another after I: iterations. Then, the points from :0,- to

1:94-; are the points of the extracted period-k orbit.

The procedures of calculating the extraction error involve obtaining the exact

unstable periodic orbits of the desired maps and also their time series. Then, the

extracted unstable periodic orbits will be compared to their exact solution in order

to calculate their error. To compare the exact and extracted orbits, they have to be

sorted in some consistent way.

Next, the results of these three maps are presented.

2.1.1 The tent map

This map is chosen because it is a simple one-dimensional map that exhibits chaotic

time series and has an analytical solution for its unstable periodic orbits.

The exact solution for the unstable period-k S 10 orbits of this map is Obtained

analytically via Mathematica. This solution is reproduced via a Matlab program (see

Appendix A). The time series is evaluated via a Matlab program, for A. = 1.9...9,

and also via a Mathematica program, for A, = 2.

The reason behind using Mathematica, even though Matlab is the software that

will be used in this thesis, is because of the behavior of the Matlab time series with the

value of A, = 2. The iterated sequence will go to 1 after some number of iterations.

To study the effect of using 1.9...9 instead of 2 on the results that are obtained from

Matlab, these results are compared to the Mathematica program results. Also, the

results are compared to the case where A, is taken as 2.0...01.

The difference in the unstable periodic orbits extraction error ratios of these three

processes is in magnitude of 10'”, where n is the number of nines, or zeros, in A,

value. In order to reduce this effect, the number of nines will be maximized as long

as the time series continues to be chaotic.

Fourteen nines will maintain chaos and give a difference of magnitude 10‘” in

12



the value of the extraction error ratios (to be defined later). In fact, even though the '

tent map time series is called chaotic, its steady state can be exactly determined for

any rational initial condition that is specified on the computer (without noise) [55].

Also, it is easy to calculate a valid initial condition value that takes the time series

to a desired steady state periodic orbit (see Appendix B). However, this observation

is attainable via Mathematica software.

The number of the analytical periodic orbits for the tent map can be calculated,

for any period-k orbits. It can be calculated by using mobius inversion [56]. In this

thesis, this number is calculated by the next equation

F q

2" — Z2" + :2"

(7%)): = ”I k '=1 (2.4) 

where lg, for z' = l, 2, ..., p, are the p largest factors Of k that are needed to include all

the smaller factors with taking 1 = 1 for the primary numbers, and r,-, for i = 1,2, ..., q,

are the q repeated factors in these large ones that are greater than one. The number

of the analytical, extracted and distinct extracted orbits, na, 12c and 124,, are shown

in Table 2.1, for orbits of period-k S 10.

From a time series whose length N = 15, 000, most of the tent map periodic orbits

were extracted. The distance, 6 = 0.005, is used to define a recurrence. It can be

_ any value that leads to a reasonable number of extracted orbits, but it gives more

accurate results if it is smaller. The number Of extracted orbits, and which ones are

extracted, depends on the initial conditions, 6 and the length of the time series.

The method of distinguishing the extracted orbits of same period-k, is to associate

them with the analytical orbits that yield the minimum amount of error. If the

analytical solution is unknown, which is the realistic case, the orbits within a distance

61 = 3 x c = 0.015, will be assumed to represent the same distinct orbit [35]. In both

cases, the same orbits are obtained. And, these orbits are sorted, for every period-k,

13



Table 2.1. Number of the analytical, extracted and distinct extracted orbits for the

tent map time series.

 

 

 

 

 

 

 

 

 

 

     

k 12,, II, Tide

1 2 149 2

2 1 108 1

3 2 113 2

4 3 112 3

5 6 109 6

6 9 125 9

7 18 129 17

8 30 100 21

9 56 159 44

10 99 105 42 
 

such that the orbit with the smallest value comes first, and so on.

Usually, the representative orbit Of every group of similar extracted orbits is the

average of these orbits [35]. Another method for finding a representative orbit, is to

choose the orbit that has a minimum recurrence distance [39]. The second method is

the one that is applied in this thesis and it is more accurate.

From Table 2.1, it is clear that the program is able to extract most of the lower-

period unstable periodic orbits. The lowest percentage is for period-10 orbits, and

it is 2:“- z 42%. All the exact orbits are real. The orbits that were not extracted

may have a high expansion factor, or maybe the initial conditions were such that the

orbits were not visited. With an example time series of length N = 50, 000, all the

orbits of period-k S 9 and 84% of the orbits of period-10, were extracted.

The error at any point of the extracted orbit, 6, that gives the maximum error

ratio i for every distinct extracted orbit is listed in Table 2.2, for some orbits of

period-k S 10 and index 2 S 8. The orbits indices, 2, distinguish the extracted

orbits and are sorted according to the smallest value in the analytical solution of each

periodic orbit. 6.. S c is the actual recurrence distance. It is used instead of 6 since
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Figure 2.1. Two actual selected iterations around period-k point, ma.

To compare the error ratios to the proposed ultimate bound ratio, we have to

in Table 2.3. The values of these ratios, fi, are shown in Table 2.4. In all of these

In these results we can see that the actual bound for the maximum error ratios of

the tent map depends only on I: an A.. Thus for every I: there is only one bound for

distances the oo-norm is used.

Figure 2.1 shows the distances for a two dimensional case.

these error ratios. This bound can be generalized as
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it is the minimum possible choice for c that will extract the same extracted orbit.

divide them by the actual recurrence distances of their orbits, ca, which are shown

 



Table 2.2. error”, 6, in the tent map extracted orbits that lead to the maximum error

ratios, 1
ca'

(.) Question mark means that the orbit for these indices is not extracted.

(..) The listed values are the error x103.

 

 

 

 

 

 

 

 

 

 

          

k z = 1 2 3 4 5 6 7 8

1 0.198 9.88

2 0.482

3 0.526 0.05

4 0.828 0.226 0.734

5 1.296 2.322 0.819 4.211 1.241 0.026

6 1.23 0.815 1.972 0.401 0.26 0.167 4.258 2.165

7 2.539 1.932 3.641 1.011 0.294 1.652 3.908 1.032

8 3.732 ?" ? 2.253 ? 2.309 3.474 2.176

9 0.859 2.704 ? 4.451 2.166 0.25 ? ?

10 ? ? ? 1.087 ? 0.583 4.728 ?
  

Table 2.3. Actual recurrence distances**, 6,, that correspond to error in Table 2.2.

(..) Question mark means that the orbit for these indices is not extracted .

(...) The listed values are the distances x103.

 

 

 

 

 

 

 

 

 

 

          

k z = 1 2 3 4 5 6 7 8

1 0.099 4.94

2 0.362

3 0.46 0.044

4 0.776 0.212 0.69

5 1.256 2.249 0.794 4.08 1.203 0.025

6 1.209 0.802 1.942 0.395 0.256 0.165 4.192 2.122

7 2.519 1.917 3.613 1.004 0.292 1.639 3.877 1.024

8 3.718 ?" ? 2.244 ? 2.3 3.46 2.168

9 0.858 2.699 ? 4.443 2.162 0.251 ? ?

10 ? ? ? 1.086 ? 0.582 4.723 ?
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Table 2.4. The maximum error ratios,

tent map.

(.) Question mark means that the orbit'for these indices is not extracted.

 

 

 

 

 

 

 

 

 

 

           
 

k 2:1 2 3 4 5 6 7 8

1 2 2

2 1.333

3 1.143 1.143

4 1.067 1.067 1.067

5 1.032 1.032 1.032 1.032 1.032 1.032

6 1.016 1.016 1.016 1.016 1.016 1.016 1.016 1.016

7 1.008 1.008 1.008 1.008 1.008 1.008 1.008 1.008

8 1.004 7‘ ? 1.004 ? 1.004 1.004 1.004

9 1.002 1.002 ? 1.002 1.002 1.002 ? ?

10 ? ? ? 1.001 ? 1.001 1.001 ?

6 2" 1

26—, in the extracted periodic orbits, for the

where Ac = 2, which is the expansion factor.

Also, as shown in Table 2.2, some of the error values, 6, that lead to the actual

bound value, for some periodic orbits, have very small magnitudes.

17



 

.
4

‘
§
v
9
“

G

-
'
%
~
-

~
A
,
-
‘
.
o
‘
n
p
‘

A
‘
.

  l 5 .

I I

‘ I
L l 1 I

.1 0.4 0.5 0.6 1

Figure 2.2. The horseshoe attractor.

2.1.2 The horseshoe map

The major difference between this map and the tent map is that the horseshoe map

is a two-dimensional map. The same procedures and extraction parameters as in

i the tent map are applied here (i. e. the analytical solution and the time series with

A9 = 2,N = 15,000, 6 = 0.005 and Ac = % are obtained, where the new parameter A6

is the contraction factor). The horseshoe attractor, approximated by iterates of the

map, is shown in Figure 2.2.

The number of the analytical, extracted and distinct extracted orbits, name and

71.1,, for the horseshoe map are shown in Table 2.5, for orbits of period-k S 10. The

18



Table 2.5. Number of the analytical, extracted and distinct extracted orbits for the

horseshoe map time series.

 

 

 

 

 

 

 

 

 

 

 

k "a ne nde

1 2 16 2

2 l 1 1

3 2 5 2

4 3 1 1

5 6 3 1

6 9 2 2

7 18 3 3

8 30 3 3

9 56 14 6

10 99 5 3      

analytical solution for the periodic orbits of this map has the analytical solution of

the tent map as its y—component, while its sit-component is calculated separately (see

Appendix A).

Comparing the numbers in Table 2.1 with these in Table 2.5 shows the reduction

in the number of the extracted orbits. This is caused by the increase in the dimension,

d, of the horseshoe map, which increases the number Of data points that are needed

to preserve the probability of occupying a ball of a fixed size, 6. This number of data

points is proportional to :1; [11].

The distance, cl, by which the distinct orbits of period-k can be distinguished,

in the absence of the exact solution, is chosen to be 3 x c = 0.015. All the distinct

orbits, by using the exact solution, were correctly distinguished by 61 criterion.

The lowest percentage of distinct extracted orbits for the horseshoe map extraction

process is for period-10 orbits again, and it is a? z 3%. If the spatial distance, 6, or

the length of the time series, N, are increased, this will improve the percentage. For

example, if N is increased to 50, 000, instead of 15, 000, the lowest percentage will be

1‘“ z 6%.
no

19



Table 2.6. error", 5, in the extracted periodic orbits, for the horseshoe map, that

lead to the maximum ratios, fi.

(* ) Question mark means that the orbit for these indices is not extracted.

l" ) The listed values are the error x103.

1c 2:1 2 3 4

6.33 9.88

6.046

3.114 3.193

4.057 27“

H

. . . 1.643

3.634 . . ? ? 4.417

? . . . ? ? ?

4.498 4.02

4.879

4.661

2

3

4

5

6

7

8

9

.
.
.
I

O 

The errors, 6, that lead to the maximum error ratios are shown in Table 2.6. Their

corresponding recurrence distances, ca, are shown in Table 2.7. The values of these

ratios, £3 are listed in Table 2.8. Again, in all of these distances the OO—norm is used.

The actual bound is the same as in case Of the tent map. Its general formula

would be :13, if the contraction factor, Ac, was greater than Agl. This means that

the maximum ratio will be for an extracted orbit that is moving in the contraction

direction instead of the expansion direction.

The major difference is the existence Of some values that are less than the tent map

actual bound, such as in orbits of period-k = 3 and 9. This is because the extracted

orbit is not on the expansion vector yet. The general formula for the minimum value

of the horseshoe error ratios is 171,75, and this is when the extracted orbit is located

on the contraction vector.

In conclusion, the similarity between the actual upper bounds for the tent and

horseshoe maps is due to the linearized matrix of the horseshoe map, which is diagonal

and has the same expansion factor as the tent map.
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Table 2.7. Actual recurrence distances**, ca, that correspond to error in Table 2.6.

(* ) Question mark means that the orbit for these indices is not extracted.

(** ) The listed values are the distances x103.

2:1 2 3 4 5

3.165 4.94

4.534

2.905 2.794

3.804

. 1.591

3.578 4.348

? 4.665 ? ? ?

4.48 4.004 ?

4.879

4.657 ?

1

2

3

4

5

6

7

8

9 H C

Table 2.8. The maximum error ratios, £, in the extracted periodic orbits, for the

horseshoe map.

(* ) Question mark means that the orbit for these indices is not extracted.

2 = 1 2 3 4 5 6 7 8

2 2

1.333

1.072

1.067

1.016

1.008

1.004 1.004

1.00005

1.001 ?

C
W
N
G
M
A
O
J
M
H

H O 
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Again, if this matrix had a contraction factor greater than the reciprocal Of its

expansion factor, the bound would be different, but still all the orbits of period-k

would have the same bound, i. e. 1:11;. Also, the ability of the eigenvalues to bound

the actual error ratios is a result of having a diagonal matrix, which means that its

eignvalues and vectors are the same as its singular values and vectors. And because

there are no nonlinearity distortions.

2.1.3 Henon map

The Henon map is expected to act differently because of its linearized matrix that

is not diagonal and also depends on the x-component of the linearization reference

point. The first difference is enough to make different ways of multiplication of

any orbit’s linearized matrices produce different matrices. This is expected to give

different bounds for the extracted orbits of the same period-k or even index 2.

The “true” solutions for the unstable periodic orbits Of the Henon map are treated

differently, too. They are calculated numerically via Mathematica, up to period-

k = 5. Some of these “true” orbits are complex. These complex solutions will not be

extracted since they are not real periodic orbits, and have large imaginary parts. On

the other hand, complex orbits with small imaginary parts can lead to recurrences,

which can then be extracted and thought to represent true periodic orbits.

For the orbits of period-k > 5, the true solution is unachievable via Mathematica.

Thus, a Matlab program that uses an intensive search method is designed to correct

the extracted orbits in order to approximate the corresponding true ones [53,66,67].

This is acheived by altering the existed initial conditions and simulate the map for

all the neighboring initial conditions, then choosing the initial conditions that yeild

the minimum recurrence distance, so.

In the correction step, the extracted orbits are corrected in such a way that will

keep the advantage of correcting every point to the next point correction by using
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its iteration. In this way, the points will be corrected to the closest related periodic

points. If the points are corrected separately without the use Of the previous correction

iteration, the corrected orbit may have unrelated points, i. e. points with different 2

or even 1:.

The accuracy of these corrected orbits can be verified by obtaining a very small

recurrence distance that is on the order of 10’” after one full cycle of k iterations.

If there is an initial error in some point of these orbits, its recurrence distance may

equal the initial error multiplied by nearly 100, for some high period-k orbits.

However, the correction method exploits the knowledge of the map, and it is not

useful in case of unknown systems. And if all of the true solutions are needed, then

the method have to be applied on the entire region Of attraction.

The number of the true periodic orbits for Henon map, as indicated in all the orbits

of period-k S 5 that are calculated via Mathematica, is the same as the number of

the analytical periodic orbits for the horseshoe map but with many complex orbits

among them. For example, both of the orbits of period-3, two of the three orbits Of

period-4 and all of the six orbits of period-5, are complex orbits.

Furthermore, some of the real periodic orbits are not part of the attractor. An

example for a real orbit that is disjointed from the Henon attractor is the first orbit Of

period-1 orbits, i..e. with index 2 = 1, which is a periodic point at (—l.131, —0.3394).

The shape of the Henon attractor is shown in'Figure 2.3.

The number of the corrected, extracted. and distinct extracted orbits, no, 71c and

nag, for'the Henon map are shown in Table 2.9, for orbits of period-k S 10. Comparing

the number of extracted orbits in Table 2.9 with these in Table 2.5 shows some

similarity. However, there are more extracted orbits, 12,, for Henon map in case

of periods-k = 7,8 and 9. This is expected since its dimension is lower than the

dimension of the horseshoe map.

The program did not extract any orbit of period-10 from the time series of length
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Figure 2.3. The Henon attractor.

Table 2.9. Number* of the corrected, the extracted and the distinct extracted orbits

for the Henon map time series.

(* ) The first number corresponds to N = 15,000; while the second one corresponds

to N = 50,000.

 

 

 

 

 

 

 

 

 

 

     

K nc n; n},

1 2 16,37 1,1

2 1 1,14 1,1

3 0 0,0 0,0

4 1 1,8 1,1

5 0 0,0 0,0

6 2 2,16 1,2

7 4 15,64 3,4

8 7 13,45 2,6

9 7 21,67 4,5

10 10 0,28 0,5  
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Table 2.10. error**, 5, in the extracted periodic orbits, for Henon map, that lead to

the maximum ratios, g.

(* ) Question mark means that the orbit for these indices is not extracted.

(** ) The listed values are the error x103.

 

 

 

 

 

 

 

 

 

 

          

k 2:1 2 3 4 5 6 7 8

1 ?" 2.184

2 0.958

3

4 3.736

5

6 6.496 2.511

7 9.763 2.01 11.116 5.63

8 2.589 10.359 8.073 2.848 ? 3.778 2.869

9 21.912 1.135 8.278 ? 22.596 3.944 ?

10 3.929 ? 1.08 4.656 7.157 ? ? ? 
 

N = 15, 000. If the spatial distance, 6, or the length of the time series, N, is increased;

the program will extract more orbits. For example, if N is increased to be 50,000,

the lowest percentage of distinct extracted orbits will be 35::- z 50% for orbits of

period-k = 10, as listed in Table 2.9.

It is unfair to compare this percentage to the previous ones since the number of

orbits available for the data to visit is dramatically changed. The fair comparison,

which showed the similarity of the extraction process of the Henon and horseshoe

maps, was the previous comparison between the number of the extracted orbits of

these maps with same extraction parameters.

For the Henon time series of length N = 50,000, the error, 6, that leads to the

maximum error ratios is listed in Table 2.10. Its corresponding actual recurrence

distances, 6,, are listed in Table 2.11. The values of the maximum error ratios, 43%,

are shown in Table 2.12. Again, in all of these distances the oo-norm is used.

In these results we can see that the actual bound for the maximum error ratios of

the Henon map differs from one orbit of period-k to another orbit of the same period.
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Table 2.11. Actual recurrence distances**, ea, that correspond to error in Table 2.10.

(* ) Question mark means that the orbit for these indices is not extracted.

(** ) The listed values are the distances x103.

 

 

 

 

 

 

 

 

 

 

          

k 2:1 2 3 4 5 6 7 8

1 ?" 1.77

2 0.662

3

4 2.678

5

6 4.893 1.582

7 4.848 0.75 3.41 4.57

8 1.712 2.638 4.36 2.01 ? 3.81 2.376

9 1.642 0.275 3.585 ? 4.019 1.938 ?

10 0.534 ? 0.486 2.416 4.939 ? ? ?
 

Table 2.12. The maximum error ratios, &, in the extracted orbits, for Henon map.

(* ) Question mark means that the orbit for these indices is not extracted.

 

 

 

 

 

 

 

 

 

 

          

k 221 2 3 4 5 6 7 8

1 ?" 1.234

2 1.449

3

4 1.395

5

6 1.328 1.587

7 2.014 2.679 3.26 1.232

8 1.512 3.927 1.852 1.416 ? 0.992 1.207

9 13.49 4.12 2.309 ? 5.623 2.035 ?

10 7.359 ? 2.215 1.927 1.45 ? ? ?
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This is what was expected before, since the linearized matrix for the Henon map is

not diagonal and not even constant; add to that the uncertainty in the true orbits.

The excessive error, in Table 2.12, may result from the fact that there are some

corrected orbits that are so close to one another that they cannot be distinguished

to the resolution of this study. Then, some extracted orbits may be compared to

the wrong true ones. Some of the true orbits that are not compared are complex, or

unrelated, orbits which means that they will not maintain small recurrence distances

if corrected. While others may be real and related.

For example, the two points (—0.9063, —0.38338) and (—0.9039, -0.383316) be-

long to two different period-9 real corrected orbits. As mentioned above, the acuracy

of these two real orbits is guaranteed by obtaining a recurrence distance that is on

the order of 10‘“ for both of them, so that their possibility to represent the same

true orbit is null. The two orbits are plotted in Figure 2.4.

Without the ability to distinguish between these two real orbits, in the correction

step, the corrected orbits will have only one orbit of them that is used in the com-

parison to the extracted orbits (for the purpose of quantifying extraction error). In

our data, this makes the error ratio, fi, jump to 112.74 if only the first orbit is used,

in the corrected orbits, or 252.72 if only the second one is used. The maximum error

ratio, if both of them are used, is equal to 13.49, as listed in Table 2.12. This is an

indication of the good accuracy of these corrected orbits since such a small error will

cause this high jump in the value of the error ratios.

Beside the closeness of distinct orbits, the fact that these orbits are unstable makes

the correction of their extracted orbits more difficult. This is because any error will

increase exponentially if the orbit is on the expansion direction.

The existence of some corrected orbits that have large recurrence distances for

their periodic points is necessary in order to reduce the maximum value of the error

ratios. These orbits are extracted as real representations of complex orbits, or ex-
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Figure 2.4. Two different real periodic orbits of period-9, which are close to one

another.
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tracted for unrelated period—kc orbits whose period-ke > 1:. These orbits are needed

more when they are far from the real ones.

Among the corrected orbits, there is one orbit of period—9 and another orbit of

period-10 that still have recurrence distances, for their points, that are on the order of

10'3. The effect of removing these real representations of complex orbits or unrelated

orbits depends on whether there is a real, and related, corrected orbit that is close to

them or not.

For example, the real representation of a complex orbit or unrelated corrected

orbit of period-9, which has a large recurrence distance, has the point (-0.0026,

—0.2934) as its first point. The closest real and related periodic orbit to it has

the point (—0.3452, —0.3312) as its first point, as shown in Figure 2.5. If this real

representation of a complex orbit or unrelated corrected orbit is eliminated from the

corrected periodic orbits, the error ratio will jump to 238.3 instead of 5.6, which is

for the fifth orbit.

If the other real representation of a complex orbit or unrelated corrected orbit,

that is a period-10 orbit and has the point (0.5941, -—0.216135) as its first point, is

eliminated, the error ratio will jump to only 161.6, instead of 1.2. The reduction in

the jump value, even though the period is 10 instead of 9, is due to the existence of a

closer real orbit to it. This real orbit has the point (0.5804, —0.221) as its first point,

as shown in Figure 2.6. i

There is no clear end for the correction step of some extracted orbits. Once some

orbits with recurrence distances on the order of 10’3 are accepted, the correction step

may continue with using very small gridding steps until obtaining very small error

ratios. This is nothing but taking the position of the closest local minimum value

of the recurrence distance for an extracted periodic point to represent its corrected

periodic point. Then, the corrected orbit will have unrelated periodic points.

This is a good reason to not accept any corrected orbit whose periodic points have
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Figure 2.5. A real periodic orbit and a real representation of a complex orbit or

unrelated periodic orbit of period-9, which are far from one another.
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recurrence distances that are greater than 10‘“). But, from another respected view-

point, it is unfair to compare (for the purpose of quantifying the extraction error)

the extracted orbits to some far-away real true orbits, while they are extracted for

closer complex, or unrelated, true orbits. Determining the right true orbit, to which

an extracted orbit has to be compared, is not a trivial matter, and it has a-dramatic

effect on the value of the extraction error.

2.2 Flows

Unlike maps, in sampled flows the extracted orbits contain a number of points much

greater than their periods. Therefore, the first and the most important difference

between extracting the unstable periodic orbits in maps and flows will be in the

number of points, k, that will be used in the extraction process. In this section, the

parameter k is only equal to the number of points in the extracted orbit, while a new

parameter, I, will be used as the period of the extracted periodic orbit.

For nonautonomous systems, period-l orbits contain a number of points,

m(1) = l m(1), where m(1) is the number of points in period-1 orbits. This number,

m(1), equals the period of the period-1 orbits, T1, divided by the sampling time of

the experiment, t,. If this number of points, m(1), is not an integer, which is the

realistic case, then this will be the first source of error in the extracted orbits.

In computer experiments, sampling time is the time step, At, that is used in the

numerical calculations of these periodic orbits. It is good to choose At in such a way

that will guarantee that m(l), for any period-l orbit, will be an integer number. This

will reduce the effect of one source of error.

In summary, the extraction process in flows will be the same as in case of maps

but with two differences :

0 Using the values of k = m(1),m(2), ...,m(ll) instead of k = 1,2, ...,l;, where I;
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is the largest period that will be extracted

0 Using the summation of the orbit points as a criterion value to distinguish

between the distinct orbits of the same period

Using the summation of the orbit points is replacing the use of the criterion

distance, 51 z 36, that was used to distinguish between the distinct orbits of the

same period in maps, i. e. orbits with different values of z. This is done because of

the difficulty and the uncertainty of sorting all the period-l orbits in some conventional

way, in order to be compared correctly.

As a consequence of that, quantifying the extraction error in flows is only achieved

by plotting the extracted orbits in the same plot together with the corrected ones.

Then, the 2-norm value of the worst extraction error, for some selected period-l orbits,

‘ will be calculated.

2.2.1 Duffing Equation

As a numerical example for the extraction process in flows, a time series that is pro-

duced numerically from the Duffing equation will be studied. This equation resembles,

in some manner, the experimental process examined later. Quantifying its extraction

error will help us to quantify the extraction error in that experimental process. The

Duffing equation has the form

5: + ad: + x3 — :1: = 7 cos(wt) (2.6)

Guckenheimer and Holmes [57] have shown that for a = 0.15 and 7 = 0.3 the sys-

tem reaches a stable period-1 orbit with an initial condition such as ($0,:i:0,to) =

(0.1,1,0), while it reaches a chaotic set with another initial condition such as

(zo,a':o,to) = (1,.15,0). They also have shown that for a = 0.21 and 7 = 0.3 the
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system reaches a stable period-3 orbit with an initial condition such as ($0,:iro, to) =

(1, 1, 0).

Equation 2.6 can be rewritten in the state space form and as a three dimensional

autonomous system that has the form

551 = $2

152 = -Ot~’€2 - I? + 2:; + 7 cos(w:c3) (2.7)

.733 = 1

As it was mentioned above, the advantage of knowing the period of the periodic

orbits and their sampling time will be exploited. For a forced nonlinear ordinary

differential equation with constant coefficients, the period-l orbits have a period,

T; = IT, where T is the period of the forcing term.

Therefore, for the values a = 0.15, 7 = 0.3 and w = 1rad/sec, and with an

initial condition such as (1:0, 5:0,to) = (1, .15,0), it is expected to produce a chaotic

time series that has many embedded unstable periodic orbits. The period T;, for any

period-l orbit, is equal to 2111' sec.

In order to have m(1)=64 points in period-1 orbits, the time step, At, has to be

equal to % = 0.09817477042468. This value of At will make the point 3,464 returns

close to the point z,- in the time series, if they are part of a period-1 orbit.

Since the system has three state variables, having two neighboring points, say 2:,-

and 2:5”, in the phase space of only the first two state variables is not enough to

qualify the segment from 2:,- to $5+k_1 to be a periodic orbit. Another condition that

guarantees these two points to have also a third state variable value that affects the

system similarly, has to be satisfied. This condition is satisfied if k = m(1), then the

segment will be a period-l orbit. This is the reason behind using only the values of

k = m(1), m(2), ..., m(l). In other words, this system has an R2 x S1 state space, with

31 representing explicit periodic dependence on time.
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By using c = 0.5 At 2 0.05, many unstable periodic orbits are extracted from

a chaotic time series of length 50,000. Some of these extracted orbits are corrected

iteratively by altering their initial values and taking the initial values that yield the

minimum recurrence distances. Many orbits maintain recurrence distances which are

on the order of 10'”. The orbits that fail to maintain that small recurrence distance

are expected to be a part of periodic orbits of periods greater than 1.

Comparing the extracted orbits to their corrected ones shows that for some period-

! orbits, the maximum error, 5, occurs in some interior point that is far from the two

ends of the extracted orbits. This is a violation for the assumption, in Chapter 3,

that the maximum error, 5, is the recurrence point, see Figure 2.1.

5
The error ratios, 2;, are not calculated here for all the extracted orbits, since the

error, 5, is not easy to be calculated as a result of the difficulty of sorting all the

orbits in some consistence way. Nevertheless, for only some extracted orbits, these

error ratios are calculated for 5 = max(51, 52), and listed in Table 2.13. The 2—norm

is used in these calculations. Figures 2.7-12 show some of these extracted orbits that

are plotted together with their corrected ones; for different values of period-l.

2.3 Summary

In this chapter, the extraction errors of the four studied systems were quantified. The

analytical solutions of the unstable periodic orbits of the tent and the horseshoe maps

were obtained. And the true solutions of the Henon map and the Duffing equation

were approximated by correcting the extracted orbits by an intensive search method.

The extracted orbits‘were compared to their corresponding true solutions, and the

largest actual error ratio for every distinct extracted orbit was tabulated. In the next

chapter, the theoretical bound that was proposed to bound this extraction error will

be evaluated.
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Table 2.13. Some of the error ratios, 26:, in the beginning of the extracted orbits of

Duffing equation.

 

 

 

 

 

 

 

k i

1 0.7287

2 0.6985

3 1.0578

4 1.0745

5 1.0464

6 0.9489    
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Figure 2.7. An extracted period-1 orbit and its corrected orbit for Duffing equation.
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Figure 2.8. An extracted period-2 orbit and its corrected orbit for Duffing equation.
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Figure 2.9. An extracted period-3 orbit and its corrected orbit for Duffing equation.
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Figure 2.10. An extracted period-4 orbit and its corrected orbit for Duffing equation.
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Figure 2.11. An extracted period-5 orbit and its corrected orbit for Duffing equation.
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Figure 2.12. An extracted period-6 orbit and its corrected orbit for Duffing equation.
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CHAPTER 3

CHARACTERIZING THE

THEORETICAL BOUND

As it was mentioned in the introductory background, one aim of this thesis is to

characterize the theoretical upper bound that has been suggested to bound the actual

error ratios, &. After having calculating these actual ratios, for some of the extracted

orbits of the three maps, up to period-10, and Duffing equation up to period-6, in

Chapter 2, the theoretical bound will now be calculated. In Section 3.2, the ability

of the theoretical bound to bound the actual values will be characterized.

If the assumed bound is violated dramatically, then this will declare the failure of

this theory and the reason behind'this failure will be sought. Another possibility is to

characterize the bound as a conservative bound, and this is when it is much greater

\ than the actual values. In both cases, another bound will be suggested. It is possible

that the bound will be violated but with an acceptable amount of error. In this case,

the reason of this violation will be sought, and this bound will be accepted.
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3.1 Determining the Theoretical Bound

on Extraction Error

The calculations for the theoretical bound begin with determining the linearized ma-

trices that represent the discussed system around its periodic points. After that,

the singular values of the appropriate matrices are used. A quick review for these

calculation steps is presented.

If the system is linearized around the period-k point, .13., in Figure 3.1, then

(1:), — 2:“) = A"(:L'o — ma) & (2:0 —- ma) = (Ak)"1(:tk — ma)

6a = In - xol = |(:c,, - as.) - (1‘0 - xall = KA" - I)(Ito - wall S 6 (3'1)

6a = Ix. - xol = Kn - ma) - (1:0 - ma)l=l(1 - (Ak)")(mk - xa)l S 6

where A" is the linearized period-k matrix around 3,; ca and c are the actual and the

criterion distances for the close return points, i. e. recurrences. By using the property

of matrix singular values

[’21-’50 " $a| S “Ah " I)(5'30 — xall S Pllxo - l‘al

Mll‘k - Ial S “(AU-l - I)(ivk — xall S llllxo - ital

(3.2)

where p2 and p; are the minimum singular values of (Ak — I) and ((A")‘1 — I) and

p1 and m are the maximum singular values. The norm that is used here has to be

the 2-norm.

This will give the next two bounds

a,=|xo-xa|gi & 52=|x,—x,|gi (3.3)

P2 #2

Then, with the assumption that the maximum value of error will be at one of the
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ending points, which is not guaranteed, the ultimate bound will be

a, = max(51,52) g maa:(i, i) (3.4)

P2 #2

Or, in the ratio form, which does not depend on any extraction parameter

6t 61 62 I I

c max( 6. c ) _ ma:z:(p2 #2) ( )

If the above assumption is false, this quantity merely provides a bound on the

error in the extracted orbit at the recurrence point. This error bound will be verified

by comparing it to the actual error ratios that were calculated in Chapter 2.

Figure 3.1 shows two actual points around a period-k point. The points are not in

sequence except if k = 1. The position of these two points suggests that this periodic

point has a negative expansion factor and a positive contraction factor. Nevertheless,

the linear matrix has both of its factors as negative values. These two contradictory

observations are due to the shape of the nonlinear manifolds of this periodic point.

Next, Determining the linear matrices that are used in the calculations of the

theoretical bound, is presented.

3.1.1 Maps

In maps, the theoretical bound for any extracted period-k orbit is a function of the

singular values of its orbital linearized matrices around the periodic points of that

extracted orbit. Every distinct period-k orbit has 1:: different orbital linear matrices,

Audi, where the phase index j = 1, ...,k corresponds to its 1: periodic points, :rfi'2'j,

and 2 refers to its index. These orbital linear matrices can be calculated by the next

two different methods.
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l) Jacobian method

This method is good for known maps where the period-k orbit linear matrix, Ak’z’j,

can be calculated from the known local linearized matrices based at every point of

that period-k orbit. It is used here to calculate the exact theoretical bound since the

required matrices are known. This exact theoretical bound will be used later to verify

the accuracy of the estimated theoretical bound that will be calculated later.

The local linearized matrices for the three maps are

0 -2.8.’I: I

1 Achon = (3°6)

2 0.3 0

ATcnt = 21 AHorseshoe =

O
C
A
I
—
1

The period-k orbit linear matrix, Ak'2'j, can be calculated from the linear local ma-

trices based at the points of its orbit. It has the form

z,‘ k.z k,z k,z k,z k.z k,z

Ak' , = A,_,...A, A, A, ...A,+,A, (3.7)

where A?“ is the local linear matrix that takes the points :13, in the neighborhood of

the period-k orbit point at?” , to their next iteration points $.41, in the neighborhood

of the period-k orbit point zfi'z’j“, if j < k. In case of j = k, At’z will take the points

1:5, in the neighborhood of the period-k orbit point 35"", to their next iteration points

35+}, in the neighborhood of the period-k orbit point zf'z'l.

Note that the singular values of Ak'z'j depend on the phase index j. Therefore, the

matrices (Ak - I) and ((A")‘1 — I) of Equation 3.2 will generate different theoretical

bounds for different phase index j, for the same orbit. Hence, the k theoretical bounds

for every pair of k and 2 values will be calculated. Then, every actual bound will be

compared to its corresponding theoretical one.

Table 3.1 shows the theoretical bounds for the tent map that are calculated by the

direct method. And Table 3.2 shows the theoretical bounds for the horseshoe map.
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Table 3.1. The exact theoretical bounds for the tent map that are calculated by the

direct method.

(.) Question mark means that the orbit for these indices is not extracted.

 

 

 

 

 

 

 

 

 

 

  

k z = 1 2 3 4 5 6 7 8

1 2 2

2 1.333

3 1.143 1.143

4 1.067 1.067 1.067

5 1.032 1.032 1.032 1.032 1.032 1.032

6 1.016 1.016 1.016 1.016 1.016 1.016 1.016 1.016

7 1.008 1.008 1.008 1.008 1.008 1.008 1.008 1.008

8 1.004 ?" ? 1.004 ? 1.004 1.004 1.004

9 1.002 1.002 ? 1.002 1.002 1.002 ? ?

10 ? ? ? 1.001 ? 1.001 1.001 ?        
 

 

The theoretical bounds for the Henon map are not the same for all the points of

a period-k and index 2 orbit. So that, only the maximum of the k bounds for every

period-k and index 2 orbit is shown in Table 3.3. Nevertheless, every theoretical

bound is compared to its corresponding actual error bound. In all of these tables the

2—norm is used.

In Section 3.2, the ability of these exact theoretical bounds will be evaluated by

comparing them with the results of the actual extraction error in Chapter 2.
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Table 3.2. The exact theoretical bounds for the horseshoe map that are calculated

by the direct method.

(..) Question mark means that the orbit for these indices is not extracted.

2 =1 2 3 4 5 6 7 8

2 2

1.333

1.143 1.143

R

l

2

3

4

5

6

7

8

9

p
—
a

O 

Table 3.3. The maximum exact theoretical bounds for Henon map that are calculated

by the direct method.

(..) Question mark means that the orbit for these indices is not extracted.

 

 

 

 

 

 

 

 

 

 

          

k 2:] 2 3 4 5 6 7 8

1 ?" 1.2211

2 1.2418

3

4 1.3266

5

6 1.3916 1.5742

7 1.899 2.4556 2.6462 1.797

8 5.1562 5.3704 2.4434 2.2611 ? 1.6031 1.6314

9 10.5618 10.355 2.0418 ? 1584 1.6398 ?

10 6.0414 ? 2.3292 2.1419 ? ? ? ?
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2) Least-squares method

In the second method, the least-squares method [58-61] will be used to estimate

the linear and affine approximation models around every extracted periodic point.

These approximation model can be estimated by two different ways. First way is

to estimate, in one step, the desired orbital model that takes the points 2:,- to their

k‘h-iteration points, 3,41,, in the neighborhood of the periodic point :rfi"'j . See Figure

3.1. The second way is to estimate the k local models first. Then, the orbit-k model

is calculated from these local models. This method is based on the data and does not

exploit the knowledge of the system.

The linear estimated model around a periodic point, say :cfi'z'j , has the form

(n+1. - mm" = A"""’ (x.- - 35"”) (3.8)

where A""’j is the estimated linearized matrix that takes any relative point (z,- —a:f‘z‘j)

to its relative k‘h-iteration point ($.41, — 2211?), and the variables :cf’z’j and 2:3? are

representing the same periodic point, :cfi'z'j, and they are used to shift the origin to

the locality of the linearization area in the neighborhood of that periodic point.

Since the models around all the periodic points are needed, this will require the

estimation to be repeated around all the distinct extracted periodic points. Then, as

mentioned before, the k different bounds, for every 11: and 2 pair, will be calculated.

The estimation process begins with the selection of the spatial distance, 6., that

defines the neighborhood of the reference point, zf’z’j . After that, the neighboring

points, :I:,-, will be stored in matrix 3:1; while their lath-iteration points will be stored

in matrix 2);. If the number of these neighboring point is n, the estimated parameters

matrix that will be estimated by the least-squares method, i. e. AL”, will minimize
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the square root of the summation of the n squared error vector

62 = (y2 - Ak'z‘jy1)T(y2 - Ak’z'jyx) (3-9)

k92’j

where y,- = x,- -— 2:,- is the relative state variables in the shifted coordinates.

Then, the normal equation for matrix A""‘j will be

Ak'z" : (yfy1)“yfy2 (3°10)

If the second way is used, the k linear local matrices, Af'z, have to be estimated

first. Again, the local matrix, Ag”, takes the points in the time series, 2:5, that are

in the neighborhood of every periodic point, :rfi'z'j, to just their next iterated points,

k,z,j+l

:1
22,-4.1, that are in the neighborhood of the next periodic point, a: . After repeating

this step around all the periodic points in the orbit, then the orbit matrix, Am". , will

be calculated by multiplying the matrices in the same order of iteration, i. e.

Akvzd = Aff,...A'fi”A'{"Afi”...Aff,A§" (3.11)

If the affine model is used, then the linear model sensitivity matrix, yl will be

replaced by the affine model sensitivity matrix, y” = [y1 1], where l is a vector

of ones with a proper length. And, the estimated matrix Ak"'j will be replaces by

the combined matrix whose transpose is 013””)T = [(Ak"'j)T ka‘Ij]. This combined

matrix contains the required estimated matrices for affine model that has the form

(as, — mfg” = AW (x, — $19”) +W (3.12)

If the second way of estimation is used, then 14"“ will be calculated by the same
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way, while the bk'z'j matrix will have the next form

k,z,' k,z k,z k,z k,z k.z k,z k,z k,z k.2

where the index i has the value

j if the subscript value will be S k

i = (3.14)

j — k if the subscript value will be > k with 2' = j

Equation 3.13 is equivalent to the form

_ i+k-2 1+1 k k

b’W = 2 H Afi’b,'z+b,fk_, (3.15)

l=i m=i+k-2

If the model is an m-dimensional linear model that has p = m x m parameters,

yl, which is the sensitivity coefficients matrix, has to be at least of rank 4:; = m, in

order to obtain a nonsingular matrix yfyl. In case of affine model, the number of

parameters, p = m x (m + 1), then the rank has to be at least (m + 1).

and (cf-12,? , that are used to shift the origin to the locality ofThe variables 21"”

the linearization area in the neighborhood of the periodic point, can be one of the

next four choices

0' The analytical periodic point corresponding to this extracted point

e The best extracted point and its lath-iteration point

e The average of all the extracted points that are similar to this point and the

average of their k‘h-iteration points

0 The average of only the neighboring points that are used in the estimation of

this point and the average of their k‘h-iteration points.
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The distance c, that defines the nearby points that will be selected has to be

chosen small enough in order to not exceed the valid area for linearization, but not

to the extent that will make the selected points less than the quantity, g.

In fact, if the extracted orbits are extracted from a clean signal, the choice of

n = 5; will give the same if not better results. This is because the selected points will

be closer to the linearization point, and the effect of nonlinearity will be reduced.

Table 3.4 shows the theoretical bounds for the tent map that are calculated by the

least-squares method. Table 3.5 shows the theoretical bounds for the horseshoe map.

Again, for Henon map, only the maximum theoretical bound, among the k different

bounds for every period-k and index 2 orbit, is shown in Table 3.6. In all of these

tables the 2—norm is used.

For the tent and horseshoe maps, the estimated theoretical bounds are equal to

the exact ones that are listed in Table 3.1 and Table 3.2. This indicates the high

accuracy of the estimated matrices that are used in the calculations of the estimated

theoretical bound. Also, it verifies the validity of using the estimated theoretical

bound in the case when the system is unknown.

For Henon map, these estimated theoretical bounds are very close to the exact

ones that are listed in Table 3.3 except for the fifth period-9 orbit, which has 2:5.

For this orbit, the theoretical bound exceeds the estimated one severely.

This periodic point turns out to be associated with the shape of the singular

vectors that are shown in Figure 3.2. However, this periodic point is not extracted

first with any set of the extraction parameters that are used in this study. Hence,

its theoretical bound is not compared to any actual error ratio. Therefore, in Section

3.2, the estimated bound is the only bound that will be evaluated.

Figures 3.2 and 3.3 show actual eigenvectors and singular vectors for some periodic

points of Henon map. Figure 3.2 shows the singular vectors and the eigenvectors of

a strongly sheared linearized matrix. In the contrary of that situation, Figure 3.3
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Figure 3.2. Actual eigenvectors and singular vectors for a strongly sheared linearized

matrix of Henon map.

shows the singular vectors that are very close to the eigenvectors. This means that

the shear, i. e. the off-diagonal elements values, in the linearized matrix is weak.

In conclusion, having a strongly sheared linear matrix, around any periodic point,

may lead to an exact theoretical bound that is very high. For example, the point that

has the vectors plotted in Figure 3.3, has an exact theoretical bound that is equal to

1584. This value is listed in Table 3.3 for the fifth period-9 extracted orbit since it is

the maximum theoretical bound value for that orbit. And for this kind of points the

estimated bound will be dramatically lower than the exact one.

Next, the estimated theoretical bound in flows is determined.
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Figure 3.3. Actual eigenvectors and singular vectors for a weakly sheared linearized

matrix of Henon map.
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Table 3.4. The estimated theoretical bounds for the tent map that are estimated by

the least-squares method

(.) Question mark means that the orbit for these indices is not extracted.

 

 

 

 

 

 

 

 

 

 

          

k z = 1 2 3 4 5 6 7 8

1 2 2

2 1.333

3 1.143 1.143

4 1.067 1.067 1.067

5 1.032 1.032 1.032 1.032 1.032 1.032

6 1.016 1.016 1.016 1.016 1.016 1.016 1.016 1.016

7 1.008 1.008 1.008 1.008 1.008 1.008 1.008 1.008

8 1.004 7‘ ? 1.004 ? 1.004 1.004 1.004

9 1.002 1.002 ? 1.002 1.002 1.002 ? ?

10 ? ? ? 1.001 ? 1.001 1.001 ?
 

 

Table 3.5. The estimated theoretical bounds for the horseshoe map that are estimated

by the least-squares method

(.) Question mark means that the orbit for these indices is not extracted.

2 6 7 8

2

2 =1 3 4 5

2

1.333

1.143 1.143

?" ?

1.016

1

2

3

4

5

6

7

8

9

H O 
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Table 3.6. The maximum estimated theoretical bounds for Henon map that are

estimated by the least-squares method.

(.) Question mark means that the orbit for these indices is not extracted.

 

 

 

 

 

 

 

 

 

 

          

k 2:1 2 3 4 5 6 7 8

1 ?“ 1.2213

2 1.2439

3

4 1.3285

5

6 1.3924 1.5709

7 1.9 2.487 2.6327 1.8015

8 5.3902 5.3467 2.4445 2.2548 ? 1.5919 1.6265

9 10.4809 10.1373 2.0371 ? 38.115 1.6447 ?

10 6.4584 ? 2.3534 2.1435 ? ? ? ? 
 

3.1.2 Flows

Since the error analysis is not achieved completely in flows, the theoretical bound will

be determined for only the selected set of the extracted orbits whose error ratios are

listed in Table 2.13. Only the least-squares estimation method is applied here, since

the sampled flows do not have known algebraic matrices around their periodic points

as in case of maps. They arise instead from differential equations that describe their

motion in their phase space.

There is no remarkable difference between using the least-squares estimation

method in maps or flows. After obtaining the numerically produced time series from

the ordinary differential equation, it is easy to apply the same procedures as in maps.

The difference between applying the least-squares method in maps and flows can

be observed in the estimation result. Unlike maps, the estimation result for flows is

not acceptable if the period-l orbit approximation model is estimated by the first way

(i. e. estimating it by using the neighboring points x,- and their lam-iterations).

This is understandable since the orbit is very long, and it is dificult to have
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Table 3.7. Duffing equation theoretical bounds that are estimated by the least-squares

method, for the selected orbits whose error ratios are listed in Table 2.13.

 

z = 1

0.9906
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1.1707
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1.2357
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the required number of neighboring points with reasonable value of 6.. Having bad

estimated orbits undermines the accuracy of the theoretical bound that is calculated

from the matrices of these estimated orbits.

However the estimation method gives good estimated orbits if the second way of

estimation, in which the local models are estimated first, is used. Therefore, the local

models are estimated first, then the period-l orbit matrix, or matrices in case of affine

model, will be calculated. Table 3.7 shows these estimated theoretical bounds for the

selected orbits that have their error ratios listed in Table 2.13.

Next, evaluating the estimated theoretical bound is presented.

3.2 Evaluating the Estimated Bound

After preparing the exact and the estimated theoretical bounds for all the extracted

points and showing the similarity of them, the estimated theoretical bound will now be

compared to the corresponding actual error ratios calculated in Chapter 2. The exact

theoretical bounds are those bounds that are calculated from the known Jacobian

matrices of the maps. The estimated theoretical bounds are those bounds that are

calculated from the estimated matrices.

Next, the results of evaluating the estimated theoretical bounds for all the three
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maps and the Duffing equation are presented. The theoretical bound on the recurrence

error is formulated from singular values based on local linearized dynamics. The 2-

norm is used in the calculations of these singular values. Nonetheless, the effect of

using other norms is studied in this thesis.

3.2.1 The tent map

For the tent map, the actual extraction error ratios in Table 2.4 are bounded by the

estimated theoretical bound in Table 3.4 exactly. As it was mentioned in Chapter 2,

these actual extraction error ratios are calculated with using the oo-norm. However,

they are not effected by the norm that is used. This is because the map is a one

dimensional map, hence all the different kinds of norms, such as the 1-norm, the

2—norm and the oo-norm, will give the same values.

3.2.2 The horseshoe map

For the horseshoe map, the actual extraction error ratios in Table 2.8 are bounded by

the estimated theoretical bound in Table 3.5. Unlike the tent map, the calculation of

these error ratios is effected by the norm that is used. This is because the map is a

two-dimensional map, hence using different norms will lead to different values.

For example, if the 1-norm is used in the calculations, instead of the oo-norm,

the actual ratios will be less than the theoretical bound by a considerable amount, as

shown in Table 3.8. While with using the 2—norm, the actual ratios will be closer to

the theoretical bound but not equal to it, as shown in Table 3.9.

If the oo-norm is used the actual ratios are equal to the theoretical bound in

almost all the cases. This is clear from comparing the actual values in Table 2.8 to

the estimated theoretical bound in Table 3.5.

The effect of using different norms appears in the number of the extracted orbits,
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Table 3.8. The maximum actual error ratios, 3:, in the extracted periodic orbits of

the horseshoe map, with using the 1-norm.

(..) Question mark means that the orbit for these indices is not extracted.

2:1 2 3 4 5 6 7 8

1.8604 1.9277

1.0715

0.6548 0.7173

. ?

? . . 1.0285

0.6363 .

? . ? ? 0.5673 ?

'7 0.8795

k

1

2

3

4

5

6

7

8

9 ? ? ?

0.8545 b—i C

Table 3.9. The maximum actual error ratios, 36? in the extracted periodic orbits of

the horseshoe map, with using the 2-norm.

(..) Question mark means that the orbit for these indices is not extracted.

2 = 1 2 3 4 5 6 7 8

1.9902 1.9976

_ 1.2855

1.0536 1.1231
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too. By using the oo-norm, the number of the extracted orbits has its maximum

value, while its minimum value is obtained when the l-norm is used.

This reduction in the number of the extracted orbits, when the 1-norm is used,

is easy to be justified in the light of the unity shapes of different norms. Figure 3.4

shows the unity shapes for all the three norms that are used in this section. It is clear

that if a distance measures some value, d, when using the 2-norm, it will be less than

d when using the oo-norm and greater than d when using the 1-norm. Therefore,

some of the orbits that are extracted using the oo-norm will not be extracted using

the 2—norm or the 1-norm. This is because these orbits, which are extracted in case

of using the oo-norm, have 6,, > 6 when the later two norms are used.

These orbits, which are only extracted with using the oo-norm, are normally the

orbits that are far from the periodic point. This is the first reason for the considerable

drop in the actual error ratio when using the 1-norm.

Furthermore, the linear model matrix is a diagonal matrix, for the horseshoe map,

which means that the direction of the maximum error vector, 5, will be close to the

direction of the stable eigenvector, in case of 5 = 51, or the unstable eigenvector, in

case of 5 = 52. Figure 3.5 shows actual neighboring points for a periodic point of the

horseshoe map. It is clear that these points have relative positions, with respect to

the periodic point, that are close to :l:90° for the points that are leaving the periodic

point, and 180° or 0° for those that are coming toward it.

In both cases, the angle of the error vector, 5, will be far from i45°. While the

angle of the actual recurrence distance, 6,, will be closer. This will make the increase

in the denominator value of these ratios, 6,, due to the use of the l-norm greater than

the increase in the numerator value, 5. Hence the value of the ratios will drop.
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Table 3.10. The maximum actual error ratios, :5:

map, with using the 1-norm.

(.) Question mark means that the orbit for these indices is not extracted.

, in the extracted orbits of Henon

 

 

 

 

 

 

 

 

 

 

          

k 2:1 2 3 4 5 6 7 8

1 ?“ 1.3934

2 0.8723

3

4 1.1461

5

6 1.1296 1.3271

7 1.1677 2.2417 2.152 ?

8 1.6197 2.7161 1.2078 1.1243 ? 1.0516

9 10.812 4.345 0.9573 ? 1.4293 ?

10 4.298 ? 1.7856 1.2708 ? ? ?
  

3.2.3 Henon map

For Henon map, the actual extraction error ratios in Table 2.12 exceed the corre-

sponding estimated theoretical bounds, for some periodic points. Nevertheless they

are bounded by the maximum theoretical bounds that are listed in Table 3.6. This

is because these actual error ratios have phase indices, j, that are not equal to the

indices of these maximum theoretical bounds.

As in case of the horseshoe map, using different norms effects the number of the

extracted orbits. Here again, using the oo—norm gives the maximum value, while the

minimum value is obtained when the l-norm is used.

The effect of using different norms on the actual error ratios is not easy to be

classified. The most important reason, which makes that effect hard to be classified,

is the nature of the linear model matrix that is not diagonal in case of Henon map.

As a result of that, the direction of the eigenvectors will not have the fixed angles

0°, 180° and i90°, for all the periodic points. Also, the singular vectors will not

be the same as the eigenvectors. Having eigenvectors that have irregular angles will
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Table 3.11. The maximum actual error ratios, £-

map, with using the 2—norm.

, in the extracted orbits of Henon

(..) Question mark means that the orbit for these indices is not extracted.

 

 

 

 

 

 

 

 

 

 

         

k 2:1 2 3 4 5 6 7

1 ?"' 1.2181

2 1.0566

3

4 1.0754

5

6 1.0054 1.471

7 1.4809 2.5645 2.6093 1.1759

8 1.5204 3.3914 1.6785 1.2598 ? 0.9715 1.1709

9 12.6816 4.1146 1.9015 ? 5.9457 1.626 ?

10 5.5049 ? 2.0857 1.5959 ? ? ?
 

  

make the effect of using different norms irregular, even for the extracted points of the

same periodic point. This is because the effect of using different norms on the values

of 5 and 6,, is not regular.

As it was mentioned in case of the horseshoe map, if 6,, has an angle that is closer

to 21:45° than the angle of the numerator, 5, then the value of the ratios will drop, with

using the 1-norm. This is again because the increase in the value of the denominator,

5,, will be greater than the increase in the value of the numerator, 5. But if the other

case happens, then the value of the ratios will increase. In both cases, if the 2-norm

is used, the value of the ratios will be between the two values of the other norms.

Comparing the actual error ratios that are obtained by using different norms shows

that both of the two mentioned cases occur. Therefore, the 1-norm and the 2-norm

error ratio values, as shown in Table 3.10 and Table 3.11, are less than the oo-norm

values that are listed in Table 2.12, for some periodic orbits and greater for others.

Furthermore, there are some periodic points, such as the period-1 periodic point,

that do not have the 2—norm value of the actual ratios between their values with the
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other two norms. This means that for the same exact periodic point, the extracted

periodic point that gives the oo-norm maximum value is not the same as the extracted

periodic point that gives the maximum value for the 1-norm. This is because the point

that gives the oo-norm maximum value is not extracted with using the l-norm, or

because of the existence of a 1-norm maximum value that has a corresponding 00-

norm value that is less than the existing oo—norm maximum value.

The last part in this characterization of the ability of the Henon map theoretical

bound to bound the actual error ratios, is an effort to justify the violations in the

values of these actual error ratios. The 2-norm is the only norm that is used here.

This is because the theoretical bound uses the singular values that are calculated, in

computer soft-wears, by using the 2-norm.

Reviewing all the extracted periodic points shows that these violations depend

strongly on the length of the time series. With longer time series, more orbits will

be extracted but with higher error ratios, in some of these extracted orbits. This is

normally due to smaller 6., rather than larger 5.

For example, a time series with length, N = 50, 000, has the first violation in the

error ratios of its period-4 extracted orbit. The percentage value of this violation if

it is compared to the exact bound isW x 100 = 3.54%. If it is compared to
99966

the estimated bound, it has a percentage of Egg—9%“ x 100 = 3.531%.

The violation occurs when the third periodic point is extracted first. The actual

and the theoretical bounds for this periodic point are not the maximum actual and

theoretical values for the period-4 orbit error ratios. Therefore, their values are not

listed in Tables 2.12, 3.3 and 3.6. For this time series, the percentages of all of its

violations, compared to the estimation theoretical bound, are listed in Table 3.12.

For a time series with length, N = 200, 000, the first violation occurs in the error

ratio of the same extracted periodic point, but the percentage value of this violation

if it is compared to the exact bound is 1Wx 100 = 8.21%. If it is compared to
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Table 3.12. The maximum percentages of the cases where the actual error ratios,£,

violate the estimated theoretical bound, in the extracted orbits of a Henon map time

series of length, N = 50, 000, and with using the 2-norm.

(..) Question mark means that the orbit for these indices is not extracted.

 

 

 

 

 

 

 

 

 

 

 

k 2:1 2 3 4 5 6 7 8

1 ?" 0

2 0

3

4 3.531

5

6 0 0

7 47.951 47.272 142.088 0

8 45.045 53.549 16.089 15.862 ? 0 0

9 253.306 278.82 81.354 ? 470.979 23.833 ?

10 168.035 ? 51.138 50.67 ? ? ? ?           

Table 3.13. The maximum percentages of the cases where the actual error ratios,&,

violate the estimated theoretical bound, in the extracted orbits of a Henon map time

series of length, N = 200, 000, and with using the 2—norm.

(..) Question mark means that the orbit for these indices is not extracted.

 

 

 

 

 

 

 

 

 

 

 

k z=1 2 3 4 5 6 7 8

1 T“ 0

2 0

3

4 8.197

5

6 14.037 0.0544

7 67.89 47.272 142.088 42.391

8 186.922 97.596 32.867 95.088 ? 0 0

9 309.62 382.3 88.029 ? 470.979 30.953 ?

10 168.035 ? 51.138 86.273 ? ? ? ?           
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the estimated bound it has a percentage ofWx 100 = 8.197%. For this time

series, the percentages of all of its violations, compared to the estimation theoretical

bound, are listed in Table 3.13.

The worst value among all of the listed violations is in the error ratios of the

fifth period-9 extracted orbit. If this is compared to the exact bound it will not be a

violation, since its corresponding theoretical bound is 17.776. While if compared to

the estimated bound it has a percentage of 471%, as listed in Tables 3.12 and 3.13.

This is an indication that the estimated theoretical bound is not as accurate as

the exact one. But this tends to occur only for the periodic points that have a very

high shear in their linearized matrices. However, there are many points whose error

ratios violate even the exact theoretical bound.

Having many small violations is expected as a result of using the linearized model

in the calculations of the theoretical bound. The nonlinearity of the stable and

unstable manifolds reduces the ability of the theoretical bound specially in the case

where the nonlinearity reduces the value of the denominator, cc, and increases the

value of the numerator, 5, in these actual error ratios.

Figure 3.6 shows the linear and nonlinear stretching and contracting factors in the

locality of some extracted period-k point, plotted in the range from 0° to 360° around

that periodic point. This is produced by taking a set of initial condition points that"

form a circle of radius 0.005 around the extracted periodic point, as shown in Figure

3.7, and iterating them 1: times. Then, the ratios of changing the magnitudes and

slopes (in the x-y plane) of these points with respect to the extracted periodic point

and its iteration are plotted.

In the linear case, the maximum stretching factor is the same in the two directions

that represent the large singular value vectors of the linear matrix, while the minimum

contraction factor is also the same in the two directions that represent the small

singular value vectors. The eigenvectors are in the direction of the angles at which
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the ratios of the change in slopes have the unity value.

The unstable eigenvector is the only one that is shown to have a unity value in

the plot of the slopes ratio. For the stable eigenvector, the unity value is not shown

in the plot due to the following three reasons :

1. The angular step that is used equals to 1°, hence it is not expected to get the

exact angle.

2. Having the stable eigenvector in a direction close to the right angle gives an

initial slope that is close to co.

3. The resulting slope for that initial slope is close to zero, due to the direction of

the unstable eigenvector that has an angle close to zero.

If the nonlinear maximum and minimum factors, which each one of them occurs

in one direction, are used, the theoretical bound will have higher values, and the

violations will be less. This is because the effect of nonlinearity on the singular values

is removed, but its effect on the shape of the manifolds still exists.

Figure 3.7 shows the linear and nonlinear shapes that are resulting from iterating

a cycle k-times around the same period-k point that has the factors plotted in Figure

3.6. It is clear that using the linear model changes the direction of the error vector,

52, dramatically. Whether this error vector has a 2-norm, I52I2, that is greater than

I51]; or not, this will give a theoretical distance for 6,, that is much greater than its

actual value. In this case, the theoretical bound will be less than the actual one.

Figure 3.1 shows all of these error vectors.

For the high violation percentages, another reason beside the nonlinearity has to

be added, except if its effect is too strong in these cases. Since these high violations

are only for the extracted orbits of period-k Z 7, the reason can be related to the

uncertainty of the corrected solution that is assumed to be the exact solution (to
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of the change in slopes due to that motion.
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which the extracted orbits are compared to quantify their errors). Having two large

percentages in sequence, for the first two orbits of period-9, suggests strongly that

there is a missing orbit in between.

Finding a new corrected orbit close to the one that has a high violation percentage

will reduce its percentage dramatically. This was the case when an unrelated orbit

or a real approximation of a complex orbit was found just before the fifth real and

related period-9 corrected orbit that had an error ratio of 212.7, using the 2-norm.

The error ratio dropped to be only 5.95 for the new period-9 corrected orbit. This

reduction, in the actual error ratio, means a reduction in the violation percentage

from 21,110.6% to the existing one that equals 471%.

Also, when the other unrelated orbit or real approximation of a complex orbit

was found, just after the ninth real and related period-10 corrected orbit, that had an

error ratio of 155.79, then the error ratio dropped to only 1.23 for the new period-10

corrected orbit. Again, this reduction, in the actual error ratio, means a reduction in

the violation percentage from 15,458.8% to 22.48%.

This great sensitivity of error ratios to finding any corrected orbit is an indication

of the accuracy of the existing ones. In fact, all the efforts to find a new corrected

period-9 orbit, by correcting the extracted orbit that has the worst error ratio, end

with the same old corrected orbit. Even the extracted periodic point that has the

worst error ratio goes to its corresponding point in the old corrected orbit.

Since there are no closer minima to this extracted orbit, this is an indication that

the existing corrected orbit is the orbit for which this orbit is extracted, and the

violation is due to the nonlinearity or some other reasons.

In fact, all the high violation percentages are due to an extraction error at an

“interior” extracted point, i. e. a point other than the recurrence point, hence the

theoretical bound cannot be applied on it.
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Table 3.14. The ratios of the interior large errors,51, compared to the errors in the

beginning, 5, for the extracted periodic orbits of Duffing equation.
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3.2.4 Duffing equation

For Duffing equation, the selected actual extraction error ratios in Table 2.13 are

bounded by the theoretical bounds in Table 3.7. But it is not enough to bound

the error in some high period-l extracted orbits. It has been shown, in Chapter 2,

that some extracted orbits have their largest deviation from the true orbit at some

“interior” point, i. e. a point other than the recurrence point.

For the extracted orbits that have their maximum errors, 5;, in some interior point,

the formulated bound is unable to bound the maximum errors in the extracted orbits.

Table 3.14 shows the approximated ratios of these interior large errors compared to

the extraction error, 5, in the beginning of each orbit. Having ratio of 1 means that

there is no large interior error.

While a periodic orbit is a saddle in its average dynamics, it is possible for its

local dynamics to vary widely from source, to saddle, to sink. The large interior

errors result from a long series of local dynamics that are sources or saddles.

As in case of maps, the extracted periodic orbits in flows have orbital matrices

that have invariant eigenvalues, i. e. they are the same for any value of the phase

index, j. But, as in case of maps, too, the singular values differ from one point in the

periodic orbit to another. This will lead to more than one theoretical bound for each
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Figure 3.8. A plot of an extracted, corrected and estimated (improved) period-4 orbit.

This extracted period-4 orbit has its largest error at the recurrence point.

orbit.

To illustrate the difficulty of determining whether the extracted periodic orbit has

a large interior error or not, the two extracted periodic orbits plotted in Figures 3.8

q and 3.9 are studied. Figures 3.10 and 3.11 show the theoretical bounds for the two

orbits plotted against the phase index, j. In Figure 3.10, the theoretical bounds of

the extraction errors of the extracted period-4 orbit that has its large error at the

recurrence point is shown, while in Figure 3.11 the theoretical bounds of the extracted

period-6 orbit that has a large interior error is shown, too. In all of these plots, the

recurrence point is corresponding to the phase index j = 1.
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Figure 3.9. A plot of an extracted, corrected and estimated (improved) period-6 orbit.

This extracted period-6 orbit has its largest error at some interior point.
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Figure 3.10. The theoretical bounds on the recurrence error, as a function of the

phase of the orbit, for the extracted period-4 orbit that has its largest error at the

recurrence point.
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Figure 3.11. The theoretical bounds on the recurrence error, as a function of the

phase of the orbit, for the extracted period-6 orbit that has its largest error at some

interior point.
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The similarity of the two plots of the theoretical bounds in Figures 3.10 and 3.11

undermines the possibility of determining whether the extracted periodic orbit has a

large interior error or not, just from the theoretical bounds of the different phases.

In fact, having a large theoretical bound value at j z 80, in Figure 3.11, corresponds

to a very small extraction error. While the large interior error at j z 22 corresponds

to a very low theoretical bound value.

Another idea is to look at the local dynamics of the periodic orbit around all of

its cycle points, and try to find a relation between their values and the existence of

the large interior error. Figures 3.12 and 3.13 show the magnitudes of the eigenvalues

of the local matrices for the two orbits.

The clear difference is the existence of a long sequence of local saddle dynamics in

Figure 3.13. The large interior error is in the interval that comes just after this long

local saddle dynamics that have a flat peak from j=138 to j=8.

It would be beneficial if the large interior error can be bounded by an estimated

theoretical bound. The results concerning that issue are not clear, yet. Nevertheless,

it is very clear that the error is due to the existence of the longest sequence of saddle

local dynamics. The extracted orbits will have a very small error when there is long

sequence of stable local dynamics.

Furthermore, it is a good sign to have the recurrence point in a place just after

the longest sequence of saddle or unstable dynamics. This will reduce the ratio of the

large interior extraction error, 5;, compared to the extraction error at the recurrence

point, 5. This reduction, in the ratio value, is mainly due to the increase in 5.

For example, the extracted period-6 orbit in Figure 3.9 has a large interior error

that is almost the same as in case of Figure 2.12. The recurrence point is now in the

interval that has the longest sequence of saddle local dynamics. The ratio of the large

interior error, 51, compared to the extraction error at the recurrence point, 5, is now

3. Its previous value, as listed in Table 3.14, is 8.
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Figure 3.12. The eigenvalues of the local matrices of the extracted period-4 orbit that
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3.3 Summary

In this chapter, the exact theoretical bounds on the extraction errors for the three

studied maps were calculated. Also, the least-squares method was used to estimate

these exact theoretical bounds and the theoretical bound of the Duffing equation. For

the three maps, the estimated theoretical bounds were very close to the exact ones

except in the case where Henon map has severe nonlinearity. However, the periodic

point that was associated with this case was never extracted first, hence its theoretical

bound was never used.

The estimated theoretical bound was capable of bounding the extraction error in

case of the tent and horseshoe maps, but, it was incapable to bound the large interior

errors that were in the extracted orbits of the Henon map and the Duffing equation.

However, the ratio of that interior error, 51, compared to the error in the recurrence

point, 5,, was smaller for the case when the recurrence occurred just after the longest

sequence of saddle local dynamics. This reduction in the value of the ratio was due

to the increase in the recurrence error, 6,, and was not due to the reduction Of the

interior error itself.

The large interior error, in this study, was observed in the extracted orbits of

period-k Z 7, in case of the Henon map, and period-l Z 5, in case of the Duffing

equation. For the Henon map, it has a maximum ratio of 5 compared to the error in

the recurrence point. While in case of the Duffing equation, the extracted orbits that

are studied have periods up to period-I = 6, and the maximum ratio is 8. Therefore,

the bound is only applicable for the lower periodic orbits, otherwise it bounds the

error in the recurrence point only.

In the next chapter, the extracted orbits, for all the studied systems, will be

improved by using the least-squares estimation method to estimate their exact orbits.
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CHAPTER 4

IMPROVING THE

EXTRACTED ORBITS

Since the original system is normally unknown, using estimation methods to improve

the extracted periodic orbits based on the knowledge of only its time series is a very

important step. The error associated with every estimation method can be quantified

in different ways. By quantifying the error, the best method will be determined.

In this chapter, the local affine and linear models around the extracted periodic

orbits of all the three maps and the Duffing equation will be used to estimate unstable

periodic orbits. These orbits will then be compared to the corrected and the extracted

ones.

For maps, a comparison between the approximated periodic orbits, which are

obtained by the following approximation methods, is made

1. Using the least-squares method to estimate the linear model

2. Using the least-squares method to estimate affine model

3. Using the average of the extracted orbits
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4. Using the extracted orbit with minimum actual recurrence distance

5. Using the average of the close points that were used in the least-squares method.

The least-squares estimation method that is used to improve the extracted orbits

is explained throughly in Chapter 3. After having the desired model, i. e. the approx-

imate local affine or linear maps , all that is needed is to solve the equations of these

estimated models in order to obtain their periodic points.

If the desired estimated model is the linear model, then its equation is Equation

3.8. It has the form

(x... — sci-n") = A’W (2.. — mi“) (4.1)

Then, its period-1 point, which is the period-k point for the original system, is

a = (1 — ,«1"~w')v-l (3333' — Ak'z'izf'z'i) (4.2)

If the desired estimated model is the affine model, then its equation is Equation 3.12.

It has the form

(13m: - xiféj = Ak’z'j (:c, - xi”) + bk’z’j (43)

Then its period-1 point, which is the period-k point for the original system, is

:7: = (1 — A’W)-1 (x333 — Ak'z'jxf"’j + bkvm') (4.4)
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4. 1 Improvement Results

The results of improving the extracted periodic orbits for all of the three maps and

Duffing equation are presented next.

4.1.1 The tent map

By comparing the analytical periodic orbits to the best extracted ones, it is found

that the error in these orbits, 6, is on the order of 10“. If the average of all the

extracted orbits is used, the error is higher but on the same order of 10". When

the average of all the neighboring points, which are used in the estimation method,

is used, the error is on the order of 10‘3.

When the estimated linear or affine model of the map is used in estimating the

exact periodic orbits, all the estimated orbits are improved such that the error is on

the order of 10"“.

For tent map, the results are not affected by the choice of the number of selected

neighboring points, as long as the neighborhood region does not contain'the discon-

tinuity point. This is expected since this map is linear around its periodic points but

changes its dynamics at the discontinuity point, i. e. x,- = l.
2

The very important remark here is related to the selection of the shifting variables

k.z.j’5'”. and 2:,-+1: , which are chosen to shift the origin to the locality of the linearization
I:

area in the neighborhood of the periodic point. They have to be chosen differently.

This is because if they are chosen to have the same value, then the estimated periodic

point will be exactly the same as that value.

This is only the case when the linear model is used, while if the affine model is

hm"
”J and 2:.-+1: , to shift the origin will not affect theused, choosing equal quantities, 1:,-

results. This is clear from Equations 4.2 and 4.4. Equation 4.2 will give 56 = x if

kk,2,j k,l,j

at,-+1: = :2,- = :15. While Equation 4.4 will give :7: = a: if xffgj + bk'm' = :c ’z’j = :c.
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All of the different choices of the reference point, xfi'z'j , lead to the same estimation

results. These choices are the same as the previous four choices of the variables xf‘z’j

and 3:1] , that are used to shift the origin to the locality of the linearization area in

the neighborhood of the periodic point. They are

e The analytical periodic point corresponding to this extracted point

e The best extracted point and its k‘h-iteration point

e The average of all the extracted points that are similar to this point and the

average of their k‘h-iteration points

0 The average of only the neighboring points that are used in the estimation of

this point and the average of their k‘h-iteration points.

4.1.2 The horseshoe map

Here again, the extracted orbits have an error on the order of 10“. Also, if the

average of all the extracted orbits is used, the error is higher on the order of 10‘3.

When the average of all the neighboring points, which are used in the estimation

method, is used, the error is higher but on the same order of 10‘3.

When the least-squares method is applied to estimate the exact orbits by esti-

mating their linear or affine models, the error is reduced to be on the order of 10’”,

which is the same as in case of the tent map.

Also, for the horseshoe map, the results are not affected by the choice of the

number of selected neighboring points, as long as the neighborhood reigion does not

contain any point of the discontinuity line, i. e. y,- = %. This is for the same reason as

the one was mentioned in case of the tent map. And the remarks that were mentioned

about the selection of the reference and shifting variables, is nececessary here, too.
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4.1.3 Henon map

As it was mentioned in Chapter 2, the Henon map behaves differently. Comparing

the best extracted orbits of period-k S 10 to their corrected ones shows that these

orbits have an error of order 10’3. If the average of all the extracted orbits is used,

the error is higher but on the same orders. When the average of all the neighboring

points, which are. used in the estimation method, is used, the error is higher and on

the order of 10'2.

By using the first way of estimation, in which the least-sequares method is used to

estimate, in one step, the orbital matrix, Ak'z'j , the error is reduced to be on the order

of 10'3 ~ 10'5. In fact, there are some extracted periodic points whose estimated

values have error that is worse than their extraction error. Figure 4.] illustrates one

reason behind having bad estimation results when the system exhibits the intermit-

tency phenomenon around some extracted periodic point [62]. Mathematically, this

means that the extracted fixed point is not really a fixed point, or it is a nonhyperbolic

real saddle or a hyperbolic complex saddle.

The failure to reach the previous accuracy is due to the nature of Henon map

that exhibits the intermittency phenomenon. Also, the existence of quadratic term is

making the manifolds of the map nonlinear, as it is clear from the shape of the Henon

map attractor, which is the shape of the unstable manifolds of all of its periods. 80

that, the linearization will not match these manifolds like the way it did with the

previous maps. Also, the large interior error will not be improved a lot.

Furthermore, the very low contraction factors and very high expansion factors

make the number of the neighboring points around these extracted periodic orbits

very small. This will force the criterion distance, 6,, to be larger, then the effect of

nonlinearity will increase. Add to that the uncertainty of the corrected orbits that

are used as an exact solution.
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Figure 4.1. A geometric illustration for the reason behind having bad estimation re-

sults when the system exhibits the intermittency phenomenon around some extracted

periodic point.
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Figure 4.2. An extracted period-9 orbit plotted with its corrected and estimated

orbits, for Henon map.
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Figure 4.3. An enlargement, for one periodic point, to show the improvement result

of Figure 4.2.
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When the second way of estimation, in which the 1: linear local matrices, Af‘z, are

estimated first, is used to estimate the orbital matrix, Ak'z'j, the error is reduced to

be on the order of 10"3 ~ 10'6. Figure 4.2 shows an extracted period-9 orbit, for

Henon map, plotted with its corrected and estimated orbits. The improvement is not

visible at this scale. Figure 4.3 is an enlarged plot, for one periodic point, to show

the improvement result of Figure 4.2. The same thing happens when the affine model

is used. The matrix Ah” is calculated by the same way, while the b""’j matrix is

calculated as in Equation 3.13.

It is important to emphasize that the number of the neighboring points that were

used in the estimation has to be as small as possible, i. e. n = p/m, in order to get the

best results. This is, as it was mentioned before, to reduce the effect of nonlinearity,

and it is only valid for a clean signal estimation. Also, the remarks about the selection

of the reference points, i. e. shifting variables, in case of tent map, apply here, too.

4.1.4 Duffing equation

In this section, the estimation method is applied on the extracted orbits whose ex—

tracted error ratios are listed in Table 2.13.

If these extracted orbits are compared to their corrected ones, their error is on

the order of 10"”. When the estimated matrices, which are estimated by the second

way of estimation that estimates the local dynamics first, are used to calculate the

estimated periodic points, the error is reduced to 0, for many orbits of period-k _<_ 6.

The bad news here that there is a possibility of having false periodic orbits. These

false orbits are only representing a collection of points where every point is a periodic

point for the estimated model, but not for the original system. Figure 4.4 shows an

example for this kind of orbit that is estimated as a period-2 orbit.

Verification that this orbit is not real can be obtained in two ways. First, by failing

to correct the extracted orbit and produce a corrected orbit with small recurrence
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distance, as it is clear in Figure 4.4. Second, by simulating the original system with

using the suggested initial condition. Figure 4.5 shows the resulting trajectory.

In the realstic case, there are three other ways that may indicate the falseness

of the estimated orbits. First, by having a visual mismaching between the extracted

orbit and its estimation. Second, by having a near nonhyperbolic periodic point. And

third, by having a large violation for the theoretical bound at the recurrence point.

Figures 4.6-8 show some extracted orbits that are improved by the estimation

method. The improvement in the period-4 estimated orbit, in Figure 4.6, is very

high. The period-5 and period-6 extracted orbits are improved at the reccurence

point, but the interior error still exists.

4.2 ' Summary

In this chapter, the extraction error in the extracted orbits of the tent and the horse-

shoe maps was reduced, by the estimation method, to the order of 10‘”. While

the error in many improved extracted orbits of the Heneon map was on the order of

10'6. For some periodic points, at which the Henon map exhibits the intermittency

phenomenon, the error in the improved orbits was even worse than the error in the

extracted orbits.

The accuracy of the improved orbits of the Duffing equation of period-l < 5 was

great and almost with zero error, but it was mentioned that these estimated orbits

might be false and did not represent the original system.

Furthermore, the improved extracted orbits of the Duffing equation of period-l Z 5

could not remove the large interior error, even though, the error at their recurrence

points were nearly zero.

In the next chapter, the effects of the extraction error and its improvement on the

nonlinear systems parametric identification are studied.
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Figure 4.4. A false period-2 orbit plotted with its extracted and corrected orbits.
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Figure 4.5. The false period-2 orbit plotted with its simulated orbit.
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Figure 4.6. A period-4 estimated orbit plotted with its extracted and corrected orbits.
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Figure 4.7. A period-5 estimated orbit plotted with its extracted and corrected orbits.
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Figure 4.8. A period-6 estimated orbit plotted with its extracted and corrected orbits.
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CHAPTER 5

NONLINEAR SYSTEMS

PARAMETRIC

IDENTIFICATION

In this chapter, the effects of the extraction error and its improvement on the identified

parameters of nonlinear systems are studied. First, a theoretical background about

the identification methods that are used in maps and flows is represented. After

that, these methods are applied in order to identify the parameters of the tent map,

horseshoe map, Henon map and Duffing equation.

In the identification of the Duffing equation parameters, the validity of using the

residual as a measure for the real error in the identified parameters is checked. This

enables us to' know the accuracy of using the residual as a measure of the identification

error when the real parameters are unknown.

Finally, the effects of noise and reconstructing the phase space on the extraction

and estimation results are studied. First, the effect of having only noisy time series

is discussed. Also, the effect of only reconstructing the phase space from a clean one

dimensional observed signal is discussed, too. In the end, the extraction process and
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the estimation method are applied on a time series that is reconstructed from only a

single contaminated observed signal.

5.1 Theoretical Background

From the shape of the extracted periodic orbits, it is easy to know whether their

time series is produced by iterating a map or solving a vector field numerically. If

the time series has a period-1 orbit that contains only one point, then it is produced

from maps. In this case, all the higher period-k orbits of the time series will be just a

group of points that jump around the period-1 point. This jumping motion obeys the

period-1 point expansion and contraction factors, as in Figure 4.1. This is applicable

to Poincare maps, too.

On the other hand, if the time series is produced experimentally from a continuous

time physical system or numerically from a differential equation, then the extracted

periodic orbits will represent sampled continuous differentiable functions in the phase

space. In this case, the periodic orbit with minimum number of points is a period-1

orbit. Then, all the higher period-l orbits will have number of points, m(l) = (m(1).

5.1.1 Identifying parameters in maps

In the case of maps, it is possible to use the least-squares estimation method to

identify the parameters of the corresponding map for that time series [58—61]. Here,

the model is not taken as a linear or affine map. Instead, it is a polynomial model

that has, in case of a two dimensional system, the form

2

$i+1 011 012 10.- b1 Cu 612 37; d1

= + xiyi+ + (5.1)

ya+1 .021 022 y? b: 621 C22 yt’ d2

97



Changing the notation of the variables from their previous representation in Chap-

ter 3, is necessary. In Chapter 3, the variables .1: and y represented points in the plane,

while now they represent only the :r and y components of these points. This is needed

in order to have a representation for the my term in the nonlinear model.

The only difference, beside this change in the notation of the variables, is in the

form of the nonlinear sensitivity matrix, Y, and its corresponding estimated para-

meters matrix, fl. For the general formula in Equation 5.1, the nonlinear sensitivity

matrix, Y, has the form

Y = [22? 31: $in 331 311 1l(nx6) ‘ (5-2)

while the transpose of the estimated parameters matrix, flT, has the form

,67‘ = [AT b CT d](2x6, (5.3)

which means that fl is a (6 x 2) matrix. It combines all the matrices that are needed

for the nonlinear general formula in Equation 5.1.

This matrix is estimated by using the normal equation, which has the form

fl = (YTyl-IYT [x2 yzl (5-4)

where 1:2 and y; are the a: and y components of the iteration of the neighboring points

that have 2:1 and y1 as their a: and y components.

In Equation 5.4, it is better to use the pseudo—inverse of Y instead of the matrix

(YTY)‘1YT. This is important because in case of having a poorly conditioned matrix,

YTY, the results will not be acceptable. In Matlab, the command “pinv” produces
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the required matrix. The equation will have the form

fl = Y? [502 ml (5-5)

where 1 indicates a pseudo-inverse.

5.1.2 Identifying parameters in flows

If the time series is produced experimentally from a physical system modeled by an

ordinary differential equation or numerically from an ordinary differential equation,

the harmonic balancing method will be used to identify the parameters of that or-

dinary differential equation [33,34,40]. In this method, the terms of the ordinary

differential equation are replaced by their truncated Fourier series.

The model that will be assumed for the unknown differential equation is

3 .

it} + (12': + 2,8,3? 2 7 cos(wt) (5.6)

i=0

The zit-component value of the periodic orbits is the only value that will be used to

calculate the returning terms of all of these truncated Fourier series. The equations

of thetruncated Fourier series for x, :i: and :i} are

=39-29-++;(a, cos(zwt))+ b- sin(iwt)) (5.7)

Then

i: = Z(—iwa; sin(iwt) + iwb; cos(z'wt)) (5.8)

i=1

And

5: = Z(—i2w2a, cos(iwt) — izwzbgsin(iwt)) (5.9)

5:1

The terms $2 and 1:3 are calculated by calculating the representative time series first,
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then they will have their own equations as

3:2 = %+ :(c, cos(iwt) + d, sin(iwt)) (5.10)

x3 = 329+ i:(e,-cos(iwt) + f,- sin(iwt)) (5.11)

When these Fourier series are implemented in Equation 5.5, and the same harmonic

terms are equated, the resulted algebraic equation has the form

  

    

- 0 0 1 co co co. .0.

—w2a1 wbl 0 al C; e; '7

—w2b, —wal 0 b1 d1 fl . 1 ‘

a

< 3° >.—. ' (5.12)

31

32

t 33 J

—(nw)2a,, nwbn 0 an cu can 0

_—(nw)2b,, —nwa,. 0 bn (in fn‘ .0.

where the known quantities in this equation are the Fourier coefficients. They have

the equations

a,- =% f” :r(t)cos(iwt)dt

T (5.13)

b,- =% is” m(t)sin(iwt)dt

c,- = % f+T 1:2(t) cos(iwt) (ii

(5.14)

d,- = %ff+T 32(t)sin(iwt)dt
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e; = % f” x3(t)cos(iwt) dt (5 15)

f, = -% f” 23(t) sin(iwt)dt

By putting all the unknowns in the left side column, the equation has the form

  

    

0 0 1 (10 co co 0

—1 wbl 0 al c1 el wzal

r ‘

0 —wal 0 ()1 (11 f1 ’7 £0sz

a

,6 .

t o t: (5.16)

131

flz

kfia J

0 nwbn 0 an on en (nw)2a,,

_ 0 -nwa,, 0 bn dn fn‘ . (nw)2b,, ‘

which has the general formula

Afl=b (5.17)

This equation has a residual vector

r = Afl — b (5.18)

The minimum value of this vector will be obtained by using the least-squares

method. In this method, the normal equation for the parameter vector, fl, is

fl = (ATA)"AT b (5.19)
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Here again, it is better to use the pseudo-inverse of matrix A, then

s = Al b (5.20)

5.2 Results and Error Analysis

In this section, the results of identifying the parameters of all the studied systems are

presented. As it was mentioned above, for maps, the parameters will be identified by

using the least-squares estimation method, while for flows, the harmonic balancing

method will be applied on the extracted and estimated periodic orbits.

Here, the original clean signals are studied. Studying the effects of noise and state

space reconstruction will be in the next section. First, the results of identifying the

parameters of the three maps will be presented. After that, the results of identifying

the parameters of the Duffing equation will be presented, too.

5.2.1 Maps

In maps, the cases that are covered in this section are different in

1. The way of using the estimation method.

2. The reference point around which the estimation is applied

3. The distance, 5., which defines the neighborhood of the reference point

4. The length of the time series

5. The amount of prior knowledge about the identified system

There are two different ways that are used to identify the parameters of the studied

maps. Both of these ways use the least-squares method. The first way uses the

time series to estimate the quadratic, or higher, model around a reference point on
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Table 5.1. The identification results for the different cases of the tent map.

 

 

 

 

Case No. a b c

1 0 2 0

2 0 2 -1

3 .34 .02 -.02      
 

the phase space. The second way uses only the unstable periodic orbits that are

extracted from the time series. In the second way, the effect of improving these

extracted periodic orbits will be studied, too.

Next, the results of the mentioned cases are presented, for all the discussed maps.

The tent map

The tent map is a one dimensional map. So that, the general quadratic form is

32,-“ = ax? + bx,- + c (5.21)

This map has two different functions that represent it. Having two extracted

period-1 points is an indicator of the existence of discontinuity in the function by

which the time series is produced. However, this discontinuity can be characterized

easily from the identified parameters that are obtained from the tent map time series.

In the case of the tent map, the identified parameters have three different results

depending on the selection of the reference point. These results are listed in Table

5.1. They represent the cases where the reference point is chosen to be

1. The first extracted period-1 point that is close to :r = 0

2. The second extracted period-1 point that is close to a: = 1

3. The discontinuity point, a: = 0.5
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It is clear from the identification results, in Table 5.1, that the first two cases

are representing the true functions of the original system. While the third one is

representing the situation where the neighboring points of the reference point are

treated differently. This is in agreement with the fact that the first function is applied

on some of these points while the second function is applied on others.

As mentioned above, having two extracted period-1 points is the reason behind the

early judgement that the time series is representing two differents. But, identifying

the system around many points on its phase space will identify every function and

determine the region where it is applied.

The choice of the distance, 6,, which defines the neighborhood of the reference

point has no effect on the estimation results as long as the neighborhood does not

contain the discontinuity point, x = 0.5. On the other hand, adding a quadratic term

to the estimated model, does not effect the identification results.

There is no way to use the extracted orbits in the estimation method. This is

because the identification results will not be acceptable since for any periodic orbit

of period-k > 1, there are points that are in the first function domain while others

are in the second function domain.

The horseshoe map

As in case of the tent map, this map has two different functions that represent it. It

also have two extracted period-1 points that indicate the existence of discontinuity in

the function by which the time series is produced.

Furthermore, the identified parameters have also three different results depending

on the selection of the reference point. These results are listed in Table 5.2. They are

representing the cases where the reference point is chosen to be

1. The first extracted period-1 point that is close to (0,0)
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Table 5.2. The identification results for the different cases of the horseshoe map.

 

 

 

 

             

Case NO- 011 012 021 022 b1 52 011 612 C21 022 d1 d2

1 0 0 0 0 0 0 1/3 0 0 2 0 0

2 0 0 0 0 0 0 1/3 0 0 2 2/3 -1

3 .34 1.2 0 .14 -.01 .02 0 .02 0 .01 0 -.02
 

 

2. The second extracted period-1 point that is close to (1,1)

3. The point (.5,.5) that is on the discontinuity line, y = 0.5

It is clear from the identification results, in Table5.2, that the first two cases

are representing the true functions of the original system. While the third one is

representing the situation where the neighboring points of the reference point are

treated differently.

Again, having two extracted period-l points is the reason behind the early judge-

ment that the time series is representing two functions. But, identifying the system

around many points on its phase space will identify every function and determine the

region where it is applied.

And the choice of the distance, 6,, which defines the neighborhood of the reference

point has no effect on the estimation results as long as the neighborhood does not

intersect the discontinuity line, y = 0.5. Also, adding a quadratic and try terms, to

the estimated model, does not effect the identification results.

As in case of the tent map, there is no way to use the extracted orbits in the

estimation method and for the same reason mentioned there.

Henon map

Henon map has only one extracted period-l point. It, also, has only one continuous

function that produces its time series. The identified parameters are not effected by
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Table 5.3. The identification results for the Henon map.

 

011 012 021 022 bl b2 Cu 012 021 622 d1 d2

-1.400000010.3010

 

              

the position of the reference point or the size of its neighborhood.

For any reference point and distance 6,, the identified parameters have the values

that are listed in Table 5.3. The only condition that has to be satisfied is to have

at least ‘5; = 6 neighboring points around the reference point, where p = 12 is the

number of the identified parameters and m is the dimension of the estimated model.

When the extracted periodic orbits are used in the estimation method, the same

results are obtained.

5.2.2 Flows

To identify the parameters in flows, orbits of different periods are used in the harmonic

balancing method. The use of the periodic orbits is necessary here. This is because

the truncated Fourier series is used as an approximation for the differential equation

terms. If the segment of the time series that is used in the estimation process is not

a periodic orbit, then its approximation by a small number of the truncated Fourier

series harmonics will not represent it accurately. Furthermore, using a large number of

harmonics will lead to an ill-conditioned matrix, which is another numerical problem.

The cases that are studied in this section are different in

1. The number of the unstable periodic orbits that are used

2. The period-l of these unstable periodic orbits

3. The amount of error in the recurrence point

4. The number of harmonics, n, in the truncated Fourier series
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5. The stability of the extracted periodic orbits

6. The amount of prior knowledge about the identified system

7. The harmonics that are used in the truncated Fourier series

8. The length of the time series

The effect of having an incorrect model, or an approximate representation of a

model, was investigated in examples by Yuan [63], and also in an experiment [64].

The improved orbits are used in the estimation method, in order to quantify the

effect of using the extracted orbits and their improvement on the accuracy of the

identified parameters. Also, the variation in the Fourier series coefficients due to the

use of these different orbits is shown, in order to compare it to the variation in the

identified parameters. This provides us with another measure, beside the residual,

for the identification error when the real parameters are unknown.

Next, the harmonic balancing method is applied to identify the parameters of

different cases that include all the differences mentioned above. The time series is

produced numerically by integrating the Duffing equation that was studied in the

previous chapters.

Duffing equation

As it was mentioned in Chapter 2, the true values for the parameters of the estimation

model, Equation 5.6, are a = 0.15,,30 = 62 = 0,31 = -1,63 = l and 7 = 0.3. Inte-

grating the differential equation with an initial condition such as (1:0, 5:0, to)=(l,0.15,0)

and a time step (At = g—g = 0.2513274) will produce a chaotic time series that has

many unstable periodic orbits. The number of points in their period-1 orbits is 25.

The extracted periodic orbits that are used in the identification process have

periods up to period-l = 11. The number of the distinct extracted orbits, 72.1,, for
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Table 5.4. The number of distinct extracted orbits, ndc, for the Duffing equation.

 

The period-l 10 11
 

No. of orbits
     

14
   

14
   

16
 
12
  

a time series of length N = 58000 and c = 0.35 x At = 0.0879646 is shown in

Table 5.4 for every period-l. This number of orbits depends on the initial conditions,

the selection of distance 6 and the length of the time series.

In the first case, extracted orbits of periods I S 6 that have large extraction errors

at their recurrence points are used to identify the parameters of Duffing equation.

The number of these extracted orbits is eighteen. Figure 5.1 shows the corresponding

plots of the average real parameter error, e, and the average residual, F, for different

values of the number of harmonics, n, in the Fourier series.

The average residual value, 1", is the average of the absolute values of the elements

in the residual vector, 1', in Equation 5.18, while the average real parameter error, E,

has the form

a = '= (5.22) 

where e; is the absolute value of the error in the 1"" identified parameter.

In Figure 5.1, the average real parameter error has relatively a large value for small

n that is .003. This is because the Fourier series is not able to match the original

function with one or two harmonics, due to the large error at the recurrence point.

The error has a steady value z .002 for the range of n = 3, ..., 8.

When extracted orbits of periods 7 S l S 9 that have large extraction errors at

their recurrence points are used, the results will be better for the values of it up to 4,

with minimum value .0018 for n = 1, but worse after that, as it is shown in Figure

5.2. The number of these extracted orbits is kept the same as the number of the lower
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Figure 5.1. The average real parameters error, é, and the average residual, 1", for

different values for the number of harmonics, n, in the Fourier series using orbits of

lower periods and large extraction errors.

periods orbits.

If all of the previous extracted orbits of periods 1 S l S 9 that have large extraction

errors at their recurrence points are used, the results will be effected by the lower

periods and will have a large error for n = 1. After that, the error will be smaller

than the previous two errors for the range of n = 2, .., 5, before getting worse than the

lower periods error for the remaining values of 12. Figure 5.3 shows the corresponding

plots of the average real parameters error, E, and the average residual, 1", for different

values of the number of harmonics, n, in the Fourier series.

109



 0.015 I

 
 

0.01

0.005

   0 J'— i

o 5 10 15

Number of Harmonics, n

 

Figure 5.2. The average real parameters error, E, and the average residual, F, for

different values for the number of harmonics, n, in the Fourier series using orbits of

higher periods and large extraction errors.
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Figure 5.3. The average real parameters error, E, and the average residual, 7", for

different values for the number of harmonics, n, in the Fourier series using orbits of

mixed periods and large extraction errors.
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Table 5.5. The identified parameters of the Duffing equation that are associated with

the minimum average residual value in Figure 5.6.

 

a 30 51 52 53 7

0.1479 -0.0001 -0.9984 0.0003 0.9979 0.2994

 

       
 

In the second case, extracted orbits of periods 2 S l S 6 that have small extrac-

tion errors at their recurrence points are used to identify the parameters of Duffing

equation. The number of these extracted orbits is eighteen. Figure 5.4 shows the

corresponding plots of the average real parameter error, E, and the average residual,

F, for different values of the number of harmonics, n, in the Fourier series.

For the orbits with lower periods, the real error has reduced its large value for

small n to 0.0014. This is because the Fourier series is able to match the original

function with one harmonic. The error has a steady value x 0.0012 for the range of

n = 3, ..., 17.

When extracted orbits of periods 7 S l _<_ 9 that have small extraction errors at

their recurrence points are used, the results will be better for n = 1, with a minimum

value .00087, but worse after that, as it is shown in Figure 5.5. The number of these

extracted orbits is kept the same as the number of the lower periods orbits.

If all the previous extracted orbits of periods 2 S I _<_ 9 that have small extraction

errors at their recurrence points are used, the results will have the minimum value of

error with a steady value that is 0.00087. Figure 5.6 shows the corresponding plots of

this case. The identified parameters of the Duffing equation that are associated with

the minimum average residual value in Figure 5.6, are shown in Table 5.5.
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Figure 5.4. The average real parameters error, E, and the average residual, i", for

different values for the number of harmonics, n, in the Fourier series using orbits of

lower periods and small extraction errors.
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Figure 5.5. The average real parameters error, E, and the average residual, 1", for

different values for the number of harmonics, n, in the Fourier series using orbits of

higher periods and small extraction errors.
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Figure 5.6. The average real parameters error, E, and the average residual, 7", for

different values for the number of harmonics, n, in the Fourier series using orbits of

mixed periods and small extraction errors.
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In the third case, nine extracted orbits of periods I = 1,1,2,2,3,3,3,4 and 6,

which have mixed recurrence errors are used to identify the parameters of Duffing

equation. Figure 5.7 shows the corresponding plots of the average real parameter

error, e, and the average residual, F, for different values of the number of harmonics,

n, in the Fourier series.

Using the improved orbits of the extracted orbits that produced Figure 5.7 leads

to the result shown in Figure 5.8. It is clear that the average real parameter error

has a steady value that is 0.0021.

If the period-6 orbit is removed the average real parameter error will increase by

0.0001. See Figures 5.9 and 5.10. If the orbits of periods I = 3 and 4 are removed, too,

the error will be worse. It has a steady value of 0.0037 in case of using the improved

orbits of periods 1 and 2, as shown in Figures 5.11 and 5.12.

Table 5.6 shows the variation of Fourier series coefficients for two extracted orbits

of periods 1 and 2 due to the improvement in their estimated orbits. It is clear

that the percentages of variations for higher harmonics are much greater than those

for lower ones. This is because the higher harmonics have very small amplitudes.

Therefore, it is better to avoid using high harmonics.
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Figure 5.7. The average real parameters error, E, and the average residual, i", for

different values for the number of harmonics, n, in the Fourier series using nine

extracted orbits of periods I _<_ 6.
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Figure 5.8. The average real parameters error, e, and the average residual, 1", for dif-

ferent values for the number of harmonics, n, in the Fourier series using the estimated

orbits of the extracted orbits that are used in Figure 5.7.
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Figure 5.9. The average real parameters error, E, and the average residual, F, for

different values for the number of harmonics, n, in the Fourier series using eight

extracted orbits of periods I S 4.
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Figure 5.10. The average real parameters error, E, and the average residual, F, for dif-

ferent values for the number of harmonics, n, in the Fourier series using the estimated

orbits of the extracted orbits that are used in Figure 5.9.
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Figure 5.11. The average real parameters error, E, and the average residual, F, for dif-

ferent values for the number of harmonics, n, in the Fourier series using four extracted

orbits of periods I S 2.
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Figure 5.12. The average real parameters error, E, and the average residual, F, for dif-

ferent values for the number of harmonics, n, in the Fourier series using the estimated

orbits of the extracted orbits that are used in Figure 5.11.
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Table 5.6. The variation of Fourier series coefficients for two extracted orbits of

periods 1 and 2 due to the improvement in their estimated orbits.

 

Term Ex. P-l Es. P-l Ex. P-2 Es. P-2

a0 .5864 .5852 .6409 .631

 

 

 

 

 

a1 -.58 -.5871 -.1787 -.169

()1 .234 .2016 .0891 .0846

a; .0758 .0783 -.0236 -.0306

b2 -.081 -.0735 .034 .0409
 

a3 -.0021 -.0107 .0004 -.0009

b3 .0217 .0205 -.0024 -.0061

(1., .0048 .0003 -.004 -.0001

54 -.009 -.0049 .0006 -.001

a5 .0043 .0002 .004 .0004

b5 .0024 .0007 -.001 .0003

 

 

 

 

       
 

In the fourth case, the using of stable periodic orbits to identify the parameters

of the Duffing equation is presented. In fact, only a period-1 stable orbit that has

the plot that is shown in Figure 5.13 is used to identify the parameters of the general

estimation model in Equation 5.6.

It turns that using a stable period-1 orbit to identify the parameters of the Duffing

equation gives good identification results. But this requires at least three harmonics

in the Fourier series approximation. This is required in order to have the number of

equations, ne 2 p, where p is the number of unknowns in Equation 5.16.

Figure 5.14 shows the corresponding plots of the average real parameter error, e,

and the average residual, F, for different values of the number of harmonics, n, in the

Fourier series. The average real parameter error has a steady value 0.0004 and for a

large range of n 2 3.
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Figure 5.13. The stable period-1 orbit that is used to identify the parameters of the

Duffing equation.
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Figure 5.14. The average real parameters error, E, and the average residual, F, for

different values for the number of harmonics, n, in the Fourier series using a stable

’ period-1 orbit.
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In the fifth case, the effect of adding more terms to the estimation model on the

identification results is shown. Also, the effect of removing the third degree term from

the polynomial series in Equation 5.6 is shown, too.

If the estimation model has the polynomial function up to degree 5 instead of 3

and has the sine forcing term beside the existing cosine term, the identification results

will have a larger error. By using all of the extracted orbits that have small error in

their recurrence points leading to the identified parameters that produced Figure 5.6,

the error becomes larger but with a reasonable steady value that is less than .004, as

shown in Figure 5.15.

While if the estimation model has polynomial terms up to degree 2 instead of

3, the identification results will have a very large average residual. By using all of

the extracted orbits that have small error in their recurrence points leading to the

identified parameters that produced Figure 5.6, the average residual becomes larger

and unable to maintain the low values that were maintained with the high models.

See Figure 5.16.

If the period-1 stable orbit is used to identify the parameters of the higher degree

model, the average real parameter error and residual have the plots that are shown

in Figure 5.17. It is clear that the one orbit is able to identify the parameters of the

higher degree estimation model. But again, this requires at least 5 harmonics in the

Fourier series.

However, if the same stable orbit is used to identify the parameters of the lower

degree model, the average residual is shown in Figure 5.18. It is clear that the

average residual is unable to maintain the low values that are maintained with the

higher degree models. This is because the estimation model is not sufficient, and

higher degree terms are needed.
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Figure 5.15. The average real parameters error, E, and the average residual, F, for

different values for the number of harmonics, n, in the Fourier series with using the

same extracted orbits that produced Figure 5.6, but to identify the parameters of a

higher degree model.
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Figure 5.16. The average residual, F, for different values for the number of harmonics,

n, in the Fourier series with using the same extracted orbits that produced Figure

5.6, but to identify the parameters of a lower degree model.
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stable period-1 orbit that produced Figure 5.14, but to identify the parameters of a

higher degree model.
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Figure 5.18. The average residual, 1", for different values for the number of harmonics,

n, in the Fourier series with using a stable period-1 orbit that produced Figure 5.14,

but to identify the parameters of a lower degree model.
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In the sixth case, the possibility of improving the identified parameters by the

selective reduction, in which the orbit that has the largest residual in its harmonic-

balance equations is removed first, is studied. The extracted orbits that have small

error in their recurrence points leading to the identified parameters that produced

Figure 5.6 are the subject of this process. Figure 5.19 shows the corresponding plots of

the average real parameter error, E, and the average residual, 1", for different numbers

of the removed orbits.

It is clear that reducing the number of orbits by removing the orbit that has the

largest residual, in every step, will guarantee the reduction in the average residual with

every step, while the average real parameter error will not be consistent. However, it

is good to choose the number of terms of which the average residual has its greatest

absolute slope.

The last subject that is studied in the identification of the Duffing equation para-

meters is the effects of using frequencies and phase angles that are different from the

true ones, on the accuracy of the identified parameters.

Using w = r x wt, where w is the identification frequency and w, is the true

frequency, in the identification process makes the identified damping a '= r x 01,,

while for the other parameters, the identified values are the true values multiplied by

r”. This is because the column in the right hand side of Equation 5.16 is multiplied

by 1'2 due to the change in w. Also the column in the left hand side matrix that

corresponds to :I': coefficient, a, is multiplied by r. To keep the balance of Equation

5.16, a is multiplied by r again, while the rest of parameters are multiplied by r2 in

order to accommodate the change in the frequency.

If the phase angle, (,6, is unknown using only the cosine forcing term is not enough

to identify the real parameters. This is because the values of these parameters depend

on the value of 45. Hence, for unknown initial time of a time series, the sine and

cosine forcing terms will be used together to make the values of the real parameters
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Figure 5.19. The average real parameters error, E, and the average residual, F, for

different numbers of the removed orbits.

different phase angles except for the coefficients of the two forcing terms. Hence, for

unknown initial time of a time series, the use of sine and cosine forcing terms will

keep the values of the system parameters from being changed.
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space from a clean single observed signal will be discussed, too. In the end, the

performance of the extraction process and also the estimation methods to be applied

on a time series that is reconstructed from a single contaminated observed signal will

be categorized.

5.3.1 Effect of noise

To study the effect of noise on the accuracy of the extraction and estimation results,

the time series of all the undergoing maps are contaminated, prior to extraction, by

1% and 0.1% of the noise levels. This kind of noise represents the sensor noise, and

does not influence the generation of data. Figures 5.28 and 5.29 show the horseshoe

and the Henon map that are contaminated by a 1% noise level. Next, the results of

the extraction process and the estimation method, in maps and flows, are discussed.

1 . Maps

For all of the maps, the extracted orbits are effected by noise to the extent that they

have an error that is on the order of the noise itself. Furthermore, some unrelated

orbits are extracted incorrectly. The unrelated extracted orbits are those orbits that

are extracted for periods not equal to their true periods.

For example, the Henon map has only one periodic orbit of period-2. An extra

orbit, which is extracted for period-2 and has a large extraction error, is not really

a period-2 orbit. To calculate its extraction error, it has to be compared to the true

values of the cycle points for which it is extracted, even if they are part of an orbit

of a different period.
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Figure 5.21. The horseshoe map that is contaminated by a 1% n01se level.
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Figure 5.22. The Henon map that is contaminated by a 1% noise level.
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In all of the three maps, most of the unrelated orbits have true periods that

are less than the periods for which they are extracted. They are not extracted for

their true periods because they, due to noise, have large recurrences. By increasing

the distance, 6, which is used to define the recurrence in the extraction process, these

unrelated extracted orbits will be extracted for their true periods. But other unrelated

orbits that have periods higher than the periods for which they are extracted will be

extracted incorrectly. When the noise level is reduced to 0.1%, the extraction errors

are at that level, too.

Concerning the periodic orbit estimation results, the method failed to improve

many of the extracted orbits for all of the three maps. In case of the tent and horseshoe

maps, the extracted periodic points that are close to the discontinuity region are more

difficult to be improved. For the rest of points, using a shell neighborhood around

the extracted point that includes the points 9:.- with distances r1 < r,- < 1'2, with a

small radius, r1, that is larger than the noise level improves the results of estimation.

For the Henon map, using a distance, 6. = 20 C, where C is the noise level, to

define the neighboring points that are used in the estimation process, gives the best

results. There is a trade off between increasing the distance, 6,, in order to reduce

the effect of noise and decreasing it to reduce the effect of nonlinearity.

Using a shell neighborhood with a small radius that is larger than the noise level

does not improve the estimation results for the Henon map. In fact, if the small

radius is greater than 0.02, the result is much worse. This is because the effect of

nonlinearity is high.
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Table 5.7. The identification results for the Henon map by using the extracted orbits,

with 0.1% noise.

 

011 012 021 022 b1 b2 611 012 021 622 d1 d'2

-l.392 -.059 .001 0 .007 .002 -.009 .988 .297 -.006 1.005 -.001

 

             
 

Table 5.8. The identification results for the Henon map by using the points of the

time series, with 0.1% noise.

 

611 012 C21 022 d1 d2

0 1.001 .299 0 1 0

011 012 021 022 bl

-1.4 -.004 0 0 .001

 

C
S
‘

             
 

The effect of noise on the accuracy of the identified parameters for the three maps

is approximately on the same order of noise. Table 5.7 shows the noise effect on

the parameters of Henon map that are identified by using only the nineteen periodic

points of the extracted orbits of periods I S 6. If all the time series is used, the results

are better, as shown in Table 5.8. This is because there are more points in the second

method that reduce the effect of noise more.
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Table 5.9. The identification results for the Henon map by using the improved ex-

tracted orbits, with 0.1% noise.

 

an 012 021 022 bl bz Cu 012 621 022 d1 612

-1.4 -.001 0 .003 .001 0 0 .999 .3 0 l 0

 

              

Table 5.10. The identification results for the Henon map by using the extracted orbits,

with 1% noise.

 

an 012 021 022 bl 52 Cu 612 C21 022 d1 d2

-1.405 -.265 -.009 -.186 -.011 .005 .005 1.036 0.317 .056 1.003 0

 

              

It is clear from comparing the identified parameters of noisy time series to the

parameters in Table 5.3, that are identified from a clean signal, that the effect of

noise is not destructive. Furthermore, the results can be improved by using the

improved extracted orbits. Table 5.9 shows that improvement of the parameters that

are identified by using the improved extracted orbits.

Tables 5.10-12 illustrate the effects of the noise and the improvement of the ex-

tracted orbits in case of having a 1% noise level.
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Table 5.11. The identification results for the Henon map by using the points of the

time series, with 1% noise.

 

Cu 012 621 C22 ‘11 612

-.005 .995 .299 0 1.005 O

011 012 021 022 bl

-1.398 -.079 0 -.015 -.002

 

O
S
‘

             
 

Table 5.12. The identification results for the Henon map by using the improved

extracted orbits, with 1% noise.

 

011 012 021 022 b1 52 011 612 621 022 611 dz

-1.395 -.124 0 -.019 -.004 .001 .013 .983 .299 -.001 .993 .001

 

             
 

2. Flows

For the harmonic balance method, the identification results are less sensitive toward

the existence of noise. To study the effect of noise on the accuracy of the identified

parameters the time series is contaminated by a 1% noise level. Figure 5.30 shows a

period-2 extracted orbit that is extracted from this contaminated time series.

Table 5.13 shows the effect of the 1% noise level on the identified parameters

of Equation 5.6. These parameters are identified by using the small error extracted

periodic orbits that are used to produce Figure 5.6 and have the identified parameters

that are listed in Table 5.5, in case of clean signal. One of the period-3 extracted

orbits, in case of clean signal, is not extracted here, due to noise.

Table 5.14 shows the identified parameters of the fifth order estimation model that

has also, beside the existing cosine forcing term, a sine forcing term, too.
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Figure 5.23. A period-2 extracted orbit that is extracted from the contaminated time

series.

Table 5.13. The identified parameters, for the third order estimation model of the

Duffing equation, with a 1% noise level.

 

0 .30 31 ,32 .33 ’7

.1459 0 -.9974 .0002 .9984 .2985

 

       
 

Table 5.14. The identified parameters, for the fifth order estimation model of the

Duffing equation, with a 1% noise level.

 

a 30 51 fl: 53 34 .35 7c ’7.

.148 -.0021 -1.0021 .0105 1.007 -.0057 -.0035 .2994 .001
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Table 5.15. The identified parameters that are resulting from using three contami-

nated extracted orbits of periods I = 1, 2 and 6.

 

01 flo 131 32 53 7

0.1480 0.0127 -1.0198 -0.0179 1.0118 0.3026

 

       
 

Table 5.16. The identified parameters that are resulting from using the improved

orbits of the three extracted orbits that give the parameters in Table 5.15.

 

0’ 50 31 .32 fla ’7

0.1400 0.0010 -0.9983 0.0010 1.0020 0.2959

 

       
 

Table 5.15 shows the identified parameters that are resulting from using three

contaminated extracted orbits of periods I = 1, 2 and 6 in the identification process.

When the improved orbits of these extracted orbits are used, the identified parameters

have the values that are listed in Table 5.16. The average residual value drops from

0.006 to 0.002 and the average real parameters error drops from 0.01 to 0.003.
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5.3.1 Efl‘ect of phase space

reconstruction

In this subsection, the effect of reconstructing the phase space from one observed sig-

nal is studied. The phase spaces of the horseshoe and Henon maps are reconstructed

from the :r-component of their time series.

Phase space reconstruction, or method of delays, was introduced in the work of

Takens [6] among others. The optimal choice of a time delay, 1', and an embedding

dimension, (1,, was the subject of many researches through the last fifteen years [7-17].

To determine the proper time delay, 1', and embedding dimension, (1., it is possible

to select the values that lead to extracted orbits of different periods whose shapes are

similar to the original ones [11]. Having the original phase space helps to determine

the best embedding parameters by this method. However, this method is not safe

when the original system is unknown. 1

In this thesis, the time delay, 1', that corresponds to the first minimum in the

average mutual information plot verses 1' [65], is used. The embedding dimension, (1,,

is determined by the singular systems analysis [12]. Next, the results of identifying

the parameters in maps are presented. The results of identifying the parameters in

flows are presented later.

1. Maps

For the horseshoe map, the delay reconstruction of the phase space is not guaranteed

to produce an embedding since the map is not smooth and has a discontinuity in its

function [6]. Trying to reconstruct the phase space will result in a totally unrelated

phase space for small values of 1'. If 1' is taken large, the y—coordinate in the recon-

structed phase space will be similar to the z-coordinate, and the reconstructed phase

space resembled the original one. This is a good indication that the two coordinates
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are absolutely independent [10], which is true.

In the opposite to the horseshoe map case, the Henon map can be reconstructed

easily by choosing T = —1. The only difference between the original phase space

and the reconstructed one is the factor of 0.3, by which the y-coordinate in the

reconstructed phase space needs to be multiplied.

There is no method that will suggest a negative value of 1'. And there is no doubt

that the knowledge of the system was the reason behind choosing 1' = —1. Taking

T = 1 will interchange the a: and y coordinates. This value of 1', which gives the closest

shape to the original one, indicates the strong dependence of y on a: [10], which is true

again. Figure 5.31 shows the reconstructed and normalized Henon map attractor for

1' = 1 and d, = 2.

Furthermore, there is no way to figure out the value of the factor between the

two coordinates, even for the easiest case where the y-coordinate depends only on the

previous z-coordinate value, as in case of the Henon map. But this problem can be

handled, by normalizing the phase space to be in the interval from -1 to 1, in all of

the system coordinates. The effect of this normalization on the parameters of Henon

map is shown in Table 5.17.

The attractor is normalized by dividing the z-component by its absolute maximum

value 1.285 while the y-component by its absolute maximum value 0.3854. This means

that $.41 and 2:,- are divided by 1.285 and y,“ and y.- are divided by 0.3854. In function

25+] of Henon map, this will effect the coefficient of x? to be multiplied by 1.285, the

0.3854
coefficient of y.- to be multiplied by "1'7235— = 0.3 and the constant term to be divided by

1.285. While in function y,“ the coefficient of 2:,- has to be multiplied by 61.53%, = -%°.

The effect of reconstructing and normalizing the phase space on the accuracy of

the identified parameters, for the Henon map, is shown in Tables 5.18 and 5.19. In

both of them, the phase space is normalized to be in a range from -1 to 1. Table 5.18

shows the identified parameters with using the time delay, 1' = 1, while Table 5.19
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Figure 5.24. The reconstructed and normalized Henon map attractor, for time delay,

7' = 1, and embedding dimension, d6 = 2.

Table 5.17. The identification results for the normalized Henon map.

 

011 012 021 022 bl 5: Cu 012 621 022 d1 d2

-1.7990 0 0 00 0 .310.77840
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Table 5.18. The identification results for the reconstructed and normalized Henon

map,for7'=land (1.2:?-

 

Cu 612 621 022 d1 d2

0 1 0.3000 0 0 0.7784

011 012 €121 €122 b1

0 0 0 -1.7990 0

 

O
S
‘

              

Table 5.19. The identification results for the reconstructed and normalized Henon

map,for'r=—1 and dc=2 .

 

 

             
 

an 012 021 022 b1 52 Cu 012 021 622 d1 d2

-1. 7990 0 0 0 0 0 0 0.3000 1 0 0.7784 0

shows the identified parameters with using the time delay, T = —1.

It is clear from comparing Table 5.18 to Table 5.17 that using 1' = 1 interchanges

the two coordinates. While using 1' = —1 does not effect the parameters, as it is

clear from the similarity of Tables 5.17 and 5.19. Using any other value of 'r leads to

parameters that are not related to the original ones.
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Table 5.20. The identified parameters for the Duffing equation based on the recon-

structed orbits of periods I S 9 that are extracted for T = 6 and cl. = 3.

 

[33

1.0015

[30

00005

fly.

-00003

A

4.0033

 

0.1503 0.3005
        

Table 5.21. The identified parameters for the Duffing equation based on 26 extracted

orbits from data that are reconstructed from a clean and normalized signal for 7' = 6

and dc = 3.

 

Bx

-l.0019

fig

2.4877

30

0.0001

fig

00019

7.9

-0.0018

7c

0.1919

 

0.1541
        
 

2. Flows

Reconstructing the phase space for the Duffing equation is only used in determining

the indices of the extracted periodic orbits that are used in the identification method.

Using the reconstructed states 27;, 2:2 and 2:3 in the identification method leads to

parameters that are not related to the original ones.

Table 5.20 shows the identified parameters that result from using the extracted

orbits of the reconstructed phase space. The values 7' = 6 and (IC = 3 are used in the

reconstruction method.

It is clear from comparing Table 5.20 and Table 5.5 that the identified parameters

are not affected by the use of the reconstructed phase space in determining the indices

Table 5.22. The identified parameters for the Duffing equation based on 26 extracted

orbits that are reconstructed from a clean and original signal for 1' = 6 and (1.3 = 3.

 

30 31 162 fla 7c ’7:
 

 
0.1541

 
0.0002

 
-l.0019

 
-0.0012

 
0.9972

 
0.3031

 
-0.0003
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Table 5.23. The identified parameters for the Duffing equation based on 26 extracted

orbits that are reconstructed from a contaminated and normalized signal for 7" = 6

and d6 = 3.

 

a 50 161 162 33 7c 73

0.1522 0.0006 -1.0032 —0.0035 2.539 0.1897 0.0002

 

         

of the periodic orbits. This is because the only state that is used in the identification

method is the original one.

However, if the original signal that is used in the identification method is normal-

ized by dividing it by its maximum value, arm: = 1.59, this normalization will affect

the identified parameters of the differential equation as follows :

1. The constant term and the coefficients of the cosine and sine forcing terms will

be divided by mm".

2. The terms that have a degree, n > 1, will be multiplied by the quantity 19‘“
man: °

Table 5.21 shows the identified parameters of the Duffing equation that result

from using 26 extracted orbits from a normalized clean signal. If the orbits of the

original signal are used, the identified parameters have the values listed in Table 5.22.

In the harmonic balance method, the effects of noise and phase space reconstruc-

tion when they are applied coincidentally are the same as their effects when they are

applied separately. In other words, they are not sensitive to each other, and their

effects on the identified parameters are not really observable. Table 5.23 shows the

identified parameters of the Duffing equation that result from using the extracted or-

bits of a reconstructed and contaminated phase space. The same orbits that produced

Tables 5.21 and 5.22 are used here.
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5.3.3 Summary

In this chapter, the least-squares method was used to identify the parameters of

maps. In case of using clean extracted orbits, the extraction error has no effect on

the accuracy of the identified parameters. In case of noise, the improvement in the

identified parameters due to the improvement in the estimated orbits was shown.

However using all the points in the time series gave better results.

Furthermore, an indicator of whether the time series of maps was produced from

one function or more was described. It was shown that having two period-1 periodic

points is a good indication that the time series is a multi-functional time series, i. e.

produced by more than one function. This was the case with the tent map and the

horseshoe map time series.

When the least-squares method was applied to identify the Henon map parame-

ters, using a shell neighborhood with small radius that is much larger than the noise

level did not improve the identification results. And the best results were obtained

with using the value , 6., = 20 C, where C is the noise amplitude, as a distance to

define the neighborhood.

The effects of normalizing and reconstructing the phase space of maps were pre- I

sented. For a normalized time series, the coefficients of the map have to be modified

by multiplying them by the mentioned factors, while the reconstruction with using,

the delay time, 1' = 1 interchanged :r and y coordinates.

For the Duffing equation, the harmonic balance method was used to identify its

parameters. It was shown that using bad extracted orbits, i. c. with large extraction

error, gave less accurate identified parameters. Increasing the number of the extracted

orbits gave more accurate identified parameters, specially if these orbits are good ones,

i. e. with small extraction error.

Using estimated orbits in the identification method improved the accuracy of the
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identified parameters and made it steady, or robust, for a wide range of the number of

harmonics, n, in the Fourier series. Also, using one stable periodic orbit was enough

to maintain a great accuracy for the identified parameters.

The effect of reducing the degree of the estimation model on the accuracy of the

identified parameters was much worse when some terms in the original system were

removed. This can be used as an indication of whether the degree of the estimation

model is high enough or not.

Using the selective reduction, in which the orbit that has the largest residual in

its harmonic balance equations is removed first, to reduce the extracted orbits that

were used in the identification method did not guarantee the reduction of the real

parameter error. However, using the number of orbits where the average residual had

its maximum absolute slope would give the minimum real parameter error.

The effect of using w = not, where w; is the true frequency, was studied. The

coefficient of :i: has to be multiplied by r, while the remaining parameters have to

b multiplied by r2. If the true initial time for the extracted orbits is unknown, the

cosine and sine forcing terms have to be used in order to remove the effect of having

a phase, 43, that is not equal to the true one.

Finally, the effects of noise and the phase space reconstruction on the identified

parameters were very limited in the case of using the harmonic balance method. This

was not the case when the least-squares method was used to identify the parameters

of the Henon map.
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CHAPTER 6

EXPERIMENTAL ANALYSIS '

In this chapter, an experimental time series that represents a nonlinear two-well

potential oscillator is studied. The experimental setup is shown in Figure 6.1. It

consists of a stiffened beam buckled by two magnets. The beam was rigidified by two

steel bars to make it behave as a single degree system. Thanks to Cusumano and

Kimble for providing the time series to be used in this thesis.

The tools that were applied on the Duffing numerical time series are applied here,

too. However, since the real parameters are unknown, the identification error is only

measured by the amount of the average residual, F.

First, the phase space is reconstructed from the single observed signal. Then the

periodic orbits are extracted. After that, some of the extracted orbits are improved by

estimation. The theoretical bound on the extraction error is evaluated by comparing

the extracted orbits to their improved ones. In the end, the harmonic balance method

that was applied to identify the parameters of the Duffing equation, is applied.
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6.1 Extracting and Improving the Periodic Orbits

The phase space of the experimental time series is reconstructed by the method of

delays, described in the introduction, for a time delay, 1' = 6, and an embedding

dimension, d6 = 4. The extraction process, described in Section 2.2, is used to

extract the unstable periodic orbits of the reconstructed time series.

To determine the number of samples in period-1 orbits, m(1), the number of the

obtained recurrences using different values of k = 1,..., 100 is plotted. Figure 6.2

shows that the number of recurrences has nonzero values at k = 25,50, 75 and 100.

This leads to the selection of m(1) = 25 samples.

The distance 6 = 0.0175 is used to define a recurrence in the normalized phase

space. The number of the extracted periodic orbits is reduced by extracting only

the orbit with the smallest actual recurrence, ca, for any consecutive orbits. The

extracted orbits are reduced to the best nineteen orbits of periods I S 11.

The least-squares estimation method, which is used to estimate the local models

that represent the system in the neighborhood of its extracted orbits, is explained

throughly in Section 3.1, while, using the estimated models to calculate the estimated

orbits (improved) is described in Chapter 4. Figures 6.2-5 show the two-dimensional

projections for some extracted orbits plotted with their improved ones.

The local dynamics around the extracted orbits suggest that the extracted orbits

have no large interior errors. Figures 6.6-9 show the local dynamics around all the

extracted orbits that are plotted in Figures 6.2-5. The value of the phase index, j = 1,

corresponds to the recurrence point for each orbit.

As mentioned in Section 3.2.4, there is a conjecture that the large interior error

occurs after a long sequence of local saddle dynamics that takes the extracted orbit

far from its exact periodic points.

Scanning the local dynamics around all the extracted orbits shows that the ex-
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Figure 6.2. The number of recurrence points for different values of the number of

samples in period-1 orbit,m(1).

153



51
:
i
+
T

 

 
     ----- - The extracted orbit 3

--—— The estimated orbit :

_0.1 l l l l

-o.1 o 0.1 02 0.3 o 4 o 5

33 7.

Figure 6.3. A period-1 extracted orbit and its improved orbit.
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Figure 6.4. A period-2 extracted orbit and its improved orbit.
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Figure 6.5. A period-4 extracted orbit and its improved orbit.
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Figure 6.6, A period-8 extracted orbit and its improved orbit.
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Figure 6.7. The local dynamics of the period-l extracted orbit that is plotted in

Figure 6.3.

tracted orbit of period-1 has a sequence of local saddle dynamics that has a flat peak,

while the higher period-l extracted orbits have no flat peaks in their local dynam-

ics plots. Whoever, the flat peak in period-1 plot is due to the large scaling of the

z-coordinate and not due to a long sequence of local saddle dynamics. Hence, it is

expected that all the orbits have no large interior errors.
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Figure 6.8. The local dynamics of the period-2 extracted orbit that is plotted in

Figure 6.4.
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6.2 Applying the Theoretical Bound

The theoretical bound for the experimental system is calculated from its estimated

linear period-l matrices that represent its dynamics local to its extracted periodic

points. The calculation steps of this theoretical bound are presented in Section 3.1.

As it was mentioned in the beginning of this chapter, the theoretical bound is applied

by comparing the extracted orbits to their improved ones. If the improved orbits

closely approximate the true orbits, the theoretical bound should be able to bound

the extraction error at the recurrence points. Hence, it may be applied as a diagnostic

of the improved orbits.

Comparing the extracted orbits from the reconstructed phase space to their im-

proved ones shows that the theoretical bound cannot bound even the extraction error

at the recurrence point. For example, Figure 6.11 shows the extraction error at the

recurrence point of the periodic orbit that has the theoretical bound shown in Figure

6.12. The violation is clear since the value of it w 10, in Figure 6.11, exceeds the

theoretical bound value 4.75 at j=1, in Figure 6.12. However, it is possible that the

improved orbits are the ones that deviate from the exact orbits. Then the extraction

error does not reflect the real one.

In fact, using the theoretical bound in case of orbits that are extracted from a

reconstructed phase space of Duffing equation leads to the failure of the theoretical

bound to bound their recurrence errors, too. This result suggests using another

method to reconstruct the phase space instead of the method of delays or increasing

the embedding dimension with which the estimation is performed.

A valid candidate method is to obtain the second state, which is in fact the

derivative of the observed state, by performing the numerical differentiation on the

162



 

-0915- ...... i . . . i . . . . _,

-o.92-' 1

-0.925~ a

 

 

  L i i i i _l 1 i i

-0.5 -0.495 —O.49 43.485 -O.48 -0.475 -0.47 -0.465 -O.46 -0.455 -0.45

371

Figure 6.11. A recurrence error of a period-6 extracted orbit.

 

observed state. Then, the equation of the second state is

$10 + 1) — 271(i — 1)

2At (6.1) 22(2) =

This method is sensitive to noise, even though the time step, At, has no noise in

its values. Reconstructing the phase space by the differentiation leads to nearly the

same extracted orbits that are extracted from the phase space that is reconstructed

by the method of delays, but with some new and missed extracted orbits.

Figures 6.12-14 show some extracted orbits that are extracted from a: - :5: space

plotted with their improved orbits. The same orbits are extracted from the delay space

and are shown in Figures 6.3-5. Comparing the extracted orbits to their improved

ones shows that the theoretical bound fails to bound the extraction error at the
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of the orbit, j, for the extracted period-6 orbit that has the recurrence error shown

in Figure 6.11.
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Figure 6.13. A period-2 extracted orbit that is extracted from a: — 1': space, and its

improved orbit.

recurrence point, too.

Figure 6.16 shows the extraction error at the recurrence point of the extracted

orbit that has the theoretical bound plotted in Figure 6.17. The violation is clear

since the value of g: z 2, in Figure 6.16, exceeds the theoretical bound value 1 at

j=l, in Figure 6.17. Again, it is possible that the improved orbits are not accurate,

and hence the extraction error is not true.
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Figure 6.14. A period-4 extracted orbit that is extracted from :1: — if: space, and its

improved orbit.
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Figure 6.15. A period-8 extracted orbit that is extracted from a: — 1': space, and its

improved orbit.
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Figure 6.16. A recurrence error of a period-4 extracted orbit.
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Figure 6.17. The theoretical bound on the recurrence error, as a function of the phase

of the orbit, j, for the extracted period-4 orbit that has the recurrence error shown

in Figure 6.16.
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Table 6.1. The identified parameters of the experimental third order model that are

associated with the average residual plot in Figure 6.18.

 

 

 

 

 

 

       

No. of harmonics a fig A 32 33 7c 7,

1 0.1810 -0.0157 -0.3917 0.3701 1.7740 -0.0074 0.0895

2 0.0582 -0.0037 -0.2401 0.2374 1.2156 -0.0500 0.1170

3 0.0561 -0.0017 -0.2180 0.2211 1.1485 —0.0494 0.1190

19 0.0544 -0.0013 -0.2147 0.2212 1.1493 -0.0489 0.1184

Artificial Parameters 0.0550 0 -0.2100 0.2200 1.1500 -0.0480 0.1200   

6.3 Identifying the Parameters

In this section, the parameters of the experimental system are identified by the har-

monic balance method. The extracted orbits and their improved ones are used in this

method. The model that is assumed for this system is

3

:13 + out + 25,1" = 76 cos(wt) + 7, sin(wt)

i=0

(6.2)

Using all the nineteen extracted orbits leads to the identified parameters that has

the average residual shown in Figure 6.18. The identified parameters have steady

values that are listed in Table 6.1, for n = 19. Simulating the differential equation

that has these parameters results in a phase space has the extracted period-4 orbit

shown in Figure 6.19.

Comparing this orbit to the period-4 extracted orbit of the experimental system,

Figure 6.5, shows the qualitative similarity of the two systems. If the artificial para-

meters, listed in Table 6.1, are used in the differential equation, the similarity will be

lost. This indicates the sensitivity of the dynamical behavior to the variations in the

parameters of the system.

However, using the values of the identified parameters that result from using a
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Figure 6.18. The average residual and the average parameters artificial error for the

third degree model.
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Figure 6.19. A period-4 extracted orbit, produced from the set of parameters listed in

Table 6.1 for n = 19, that is similar to the period-4 extracted orbit of the experimental

time series.
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Figure 6.20. Another period-4 extracted orbit, produced from the set of. parameters

listed in Table 6.2, that is similar to the period-4 extracted orbit of the experimental

time series.

different set of extracted orbits in the identification method will keep the similarity

of the shape of the phase space. Figure 6.20 shows a period—4 extracted orbit that is

extracted from the phase space of the differential equation that has the parameters

listed in Table 6.2.

In fact, even if the degree of the estimation model is increased to include the

fourth order term, the similarity can be achieved as it is clear from Figure 6.21. The

differential equation in this case has the parameters listed in Table 6.3.
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Table 6.2. Another set for the identified parameters of the experimental third order

model.

 

 

        
 

 

 
 

a .30 31 52 33 7c 7.
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Figure 6.21. The average residual and the average parameters artificial error for the

fourth degree model.

Table 6.3. The identified parameters of the experimental fourth order model that are

associated with the minimum average residual value in Figure 6.20.
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Figure 6.22. A period-4 extracted orbit that is extracted from the fourth degree model

and it is similar to the period-4 extracted orbit of the experimental time series.
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Table 6.4. The identified parameters of the experimental third order model, for seven

extracted orbits and their improvement in both kinds of reconstruction phase spaces.

 

 

 

 

        

Method 0 50 .31 32 33 7c 73

Extracted 0.0819 0.0066 -0.2181 0.1776 1.0492 -0.0660 0.1430

Est. in :c-i‘ P. S. 0.0808 0.0056 -0.2256 0.1928 1.1009 -0.0595 0.1403

Est. in delays P. S. 0.0834 0.0065 -0.2193 0.1810 1.0721 -0.0648 0.1411 
 

Table 6.5. The variation of Fourier series coefficients for a period-3 extracted orbit

due to its improvement in its estimated orbits that are estimated in both kinds of the

reconstructed phase spaces. 8 '

 

 

 

 

 

 

 

 

Term Extracted Est. in the delays P. S. Est. in :r-ri: P. S.

00 -0.2600 -0.2614 -0.2615

a1 0.0099 0.0056 0.0056

01 -0.1577 -0.1539 -0.1546

a; -0.0080 -0.0098 -0.0097

b2 -0.0298 ~0.0286 -0.0289

a3 -0.0027 0.0029 0.0027

03 -0.0003 0.0003 0.0004      
 

When seven extracted orbits of periods I = 1,1,2, 3,4, 5 and 8 are estimated and

used in the parametric identification, the identified parameters have the values listed

in Table 6.4. The corresponding phase spaces of these parameters values have the

period-4 orbits that are shown in Figures 6.23-25. It is clear that the improved orbits

have shapes that are more similar to the experimental period-4 orbit in Figure 6.5.

The variation of Fourier series coefficients for a period-3 extracted orbit due to its

improvement in its estimated orbits that are estimated in both of the delays and x-i'

reconstructed phase spaces is shown in Table 6.5.
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Figure 6.23. A period-4 extracted orbit that is extracted from the phase space of

the differential equation that has the identified parameters based on seven extracted

orbits.
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Figure 6.24. A period-4 extracted orbit that is extracted from the phase space of the

differential equation that has the identified parameters based on the seven improved

orbits in 33-5: phase space.
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Figure 6.25. A period-4 extracted orbit that is extracted from the phase space of the

differential equation that has the identified parameters based on the seven improved

orbits in the delays phase space.
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6.4 Summary

In this chapter, the extraction process was applied on the reconstructed phase space

of the experimental time series. The unstable periodic orbits were extracted and

the least-squares estimation method was used to improve the extracted orbits. After

that, the theoretical bound was applied by comparing the extracted orbits to their

improved ones.

The estimated orbits were very close to the extracted orbits but this did not

prevent the extraction error at the recurrence point to exceed the theoretical bound.

It is possible that the estimated orbits are not accurate and deviate from the exact

orbits. Hence, it is not clear whether the theoretical bound is violated or the estimated

orbits are not accurate.

However, the magnitudes of violations were smaller in 35-23 phase space. As men-

tioned in Chapter 3, the value of the extraction error ratio, §,is very sensitive to any

small error in the true orbit, hence having some violations would not mean that the

estimated orbits are too bad.

Using the extracted orbits in the identification method gave a phase space that

has some similarity to the original phase space. This similarity was obtained for more

than one estimation model, hence the identified parameters are not unique.

When seven extracted orbits were improved by estimation, the resulting phase

space was improved and had a shape that is closer to the original one. The variation of

the Fourier series coefficients associated with the improvement of a period-3 extracted

orbit, was shown. The similarity of the coefficients that result from the improvements

in :r-i' and the delays phase spaces is a good indication.
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CHAPTER 7

CONCLUSION

In conclusion to this thesis, the next points summarize the contributions and the

attained results of this research.

1. The exact periodic orbits for the tent and horseshoe maps were obtained ana-

lytically. In fact, the number of the periodic orbits and a valid initial condition

that leads to a desired periodic orbit can be obtained, for any period-k, see Ap—

pendix B. For example, the number of the period-32 orbits is 134,215,680 orbits.

For Henon map and Duffing equation, the exact solution was approximated by

correcting the extracted orbits via an intensive search method.

2. The effect of increasing the distance that defines a recurrence, 6, or the time

series length, N, on the extraction results was shown. The number of the

extracted orbits increases with increasing these parameters, with the possibility

to extract orbits for periods that are lees than their true periods. Increasing

only N will increase the extraction error ratio, 5;, even though the error, 5, will

decrease, where 6 is the ultimate bound for the error in the extracted orbits and

6., is the actual recurrence distance for these orbits.
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3. The distinction of the extracted orbits without exploiting the knowledge of the

map is an important step since in practice the systems will be unknown. The

61 criterion, in which the extracted orbits of period-k that are separated by 151

or less will be assumed to represent the same orbit, was used.

4. The error in the extraction process was calculated for the tent, horseshoe and

Henon maps. Furthermore, a general formula for the actual error ratio, 25;, was

developed for the tent and horseshoe maps. This general formula is -l_—l,;;, where

A is the maximum of Ac, the contraction factor, and Ac“, the reciprocal of the

expansion factor.

5. For the Henon map, there is no such a general formula since its linearized matrix

is not diagonal or even constant. Another reason behind the unclear actual

bound for the Henon map is the uncertainty about its exact orbits, which are

so close to one another and have complex, or unrelated orbits among them.

Furthermore, the largest extraction error in Henon map extracted orbits can be

at some interior point rather than the recurrence point.

6. The actual bounds were compared to their theoretical bounds. This included

the evaluation of the theoretical bound by two different methods. First, calcu-

lating the exact one by using the known linearized matrices of the maps. And

also estimating the theoretical bound by using the least-squares method. The

estimated theoretical bound and the exact one had very close values, except in

case of severe nonlinearity. The ability of the theoretical bounds to bound the

actual error ratios was great for the tent and horseshoe maps, specially if the

oo-norm was used. For Henon map, having an interior large error violated the

assumption that the largest extraction error is at the reccurence point. Hence,

the theoretical bound cannot be applied to obtain a bound on the largest error

in the extracted orbit.
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7. The extraction process was applied on time series produced numerically by the

10.

Duffing equation. The estimated theoretical bound was checked again for some

of the extracted orbits, and it was able to bound the error at the reccurence

points of these extracted orbits. But this was not enough to bound the large

interior error in some of the extracted orbits of period-l > 4.

The extracted orbits were improved by using the least-squares method. And

the best extracted orbits, i. e. with the smallest actual reccurence distances,

were used instead of the average of all the extracted orbits, which are normally

used. The estimation results were great for the tent and the horseshoe maps. For

Henon map, the estimated orbits were improved but not to the level of the other

two maps. However, for the Duffing equation, the estimated orbits maintained

a zero reccurence distance, but this did not mean that all the estimated points

had a zero error. Comparing the estimated orbits to the corrected ones showed

the deviation of these orbits at many interior points.

. The effect of extraction error and its improvement on the parameter identifica-

tion in maps and flows were studied. This included identifying the parameters

by using the extracted and the estimated orbits and compare their results. For

maps, the least-squares method was used, and the error in the identified para-

meters was zero, in the case of a clean signal.

For the Duffing equation, the harmonic balance method was used to identify its

parameters. There were many identification cases that were studied to show the

effect of many factors. Among the studied effects are the effects of the extraction

error, the number of the used orbits and their periods and stability. As it was

shown, using good orbits, i. e. with small extraction error, gave more accurate

identified parameters. Also, .using more orbits increased the accuracy of the

identified parameters, specially with good orbits, and reduced the necessary
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11.

number of harmonics, n, in the Fourier series. Furthermore, by using one stable

orbit, the identified parameters had a steady value with respect to n, with

a great accuracy. The effect of using an estimation model whose degree was

higher, or lower, than the original system was studied. It was shown that using

a lower degree led to inaccurate parameters with higher residuals, while using

a higher degree model led to a good estimation. Finally, the effects of using

different frequency, w, or initial time, to, were studied. The identified parameters

have to be multiplied by the proper functions of r = 5‘, where wt is the true

frequency. And using wrong to was very effective on the identified parameters,

in the case of having only a cosine forcing term. Hence, a sine forcing term was

added to the identification model in order to remove the effect of using different

to.

The effects of noise and phase space reconstruction on the parameter identi-

fication were studied, too. The effect of noise on the extraction results was

correlated with the noise level, while the effect of noise on the estimation of

periodic orbits was worse, specially with using small 6., to define the neighbor-

hood of the estimated orbits. However, for maps, the identification results, by

least-squares method, were more accurate when all the time series points were

used, instead of using only the extracted orbits or even their improved ones.

Reconstructing the phase space had a dramatic effect on the identified para-

meters of the tent and the horseshoe maps. This is expected since these maps

are discontinuous. For the Henon map, choosing the time delay, 7’ = l, inter-

changed the :c and y coordinates and did not identify the factor by which the

y-coordinate in the original system is multiplied. While if 'r = —1 was used the

identification results were exactly the same except for the factor by which the

y-coordinate in the original system is multiplied. This difficulty can be handled
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12.

by normalizing the phase space. For flows, reconstructing the phase space had

no effect on the parameter identification, as long as only the measured signal

was used. However, normalizing the phase space affected the identified parame-

ters differently. If there is no information about the original system, the signal

will lose a lot of its importance in the parameter identification method.

Finally, the extraction process was applied on a single experimental time series,

in order to extract its unstable periodic orbits. These orbits were extracted from

a reconstructed phase space then improved by estimating them. After that, the

extracted orbits and their improved ones were used to identify the parameters

of the original system.

The future studies for this thesis can be summarized in the next points.

1. Using the improved periodic orbits in calculating the different invariants of the

system such as the Lyapunov exponents and the fractal dimensions

Developing a theoretical bound that can bound the interior large error

. Performing a probability and confidence study for the attained results

. Using the bifurcation theory to determine the parameters values that lead to a

chaotic response and whether the system is structurally stable or not

Extending the extraction, estimation and identification methods to more com-

plicated systems such as systems of higher dimensions or different nonlinearity

. Reducing the effect of noise by using one of the many proposed methods, and

studying the effect of any filtering on the identified parameters

Driving a general singular values formula that can bound the extreme expansion

and contraction factors for a matrix using any norm
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APPENDIX A

Program 1

This Matlab program is to calculate the analytical periodic orbits for the tent and

the horseshoe maps.

fik=input(’Enter the max. desired no. of orbits, fik < 11,’)

ink=input(’Enter the min. desired no. of orbits, ink < 11,’)

c(1)=2;c(2)=1;c(3)=2;c(4)=3;c(5)=6;c(6)=9;c(7)=18;c(8)=30;c(9)=56;

c(10)=99;c(l1)=l86;cc=0;sc(1)=0;dx(1)=1;dy(l)=l;

for i=1:fik

sc(i+1)=sc(i)+c(i)*i;

dx(i+1)=3*dx(i)+l;

dy(i+1)=2*dy(i)+1;

end

n=3;k=2;a(2,:)=[1,1];a(3,:)=[3,1];

while 11 < sc(fik+1)

while cc < C(k)

for i=n+1zn+k-1

a(i,2)=2*a(i-1,2);

if a(i,2) > dy(k)

a(i,2)=a(i,2)-dy(k);

end

ay(i)=a(i.2);

for j=1zk

if (ay(i)-2("‘j)) Z 0

a(i,1)=a(i,1)+3(j"1);

a)’(i)=ay(i)-2("“j);

end, end, end

cc=cc+1;n=i+1;a(n,2)=2+a(n-k,2);

nn=1;ii(n)=0;

z=1;
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while z==1

2:0;

for i=1:k

for j=nn:nn+c(i *i-1

ifj < n & a(Ham/dy(k) == a(i,2)/WU)

a(n,2)=2+a(n,2);

z=1;ii(n)=ii(n)+1;

end

end

nn=j+1;

end

nn=1;

end

ay(n)=a(n,2);

for j=1:k

if (ay(n)-2("'j)) Z 0

a(n,1)=a(n,1)+3(j‘1);

ay(n)=aY(n)-2“"”;

end, end, end

k=k+1;cc=0;a(n,:)=[3“‘"l),1];

end

n=1;k=1;

while n < sc(fik+1)

while cc < c(k)

for i= n:n+k-1

xa(i,:)=[a(i,1)/dx(k),a(i,2)/dy(k)];

end

cc=cc+1;n=i+1;

end

k=k+1;cc=0;

end
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APPENDIX B

Program 2

This Matlab program is to calculate the initial condition required to take the output of

the tent map, or the horse shoe map, to a desired periodic orbit. It is also to calculate

the period of the orbit to which a given initial condition will take the output of the

two systems. Finally the number of these unstable periodic orbits is calculated for a

given period, k.

clear a,clear dx,clear dy

dx(1)=0;dy(1)=0,

p(2)=1;p(3)=1;p(4)=1;p(5)=1;p(6)=2;p(7)=1;p(8)=1;p(9)=1;p(10)=2;p(11)=1;

1>(=12)2;p(13)=1;p(14)=2;p(15)=2;p(16)=1;p(17)=1;p(18)=2;p(19)=1;p(20)=2;

p2(1)=2;p(22)=2;p(23)=1;p(24)=2;p(25)=1;p(26)=2;p(27)=1;p(28)=2;p(29)=1;

W(()=)3;P(31)=1;P(32)=1;

l2,(1=) 1',,l(3 1)=1;l(4,l)=2;l(5,1)=1;l(6,1)=3;l(6,2)=2;l(7,1)=1;l(8,1)=4;

1(9,1:)3,l(10,1):5,,l(102):2',,l(11 1)=1;l(12,1)=6;l(12,2)=4;l(13,1)=1;

(14,1):7-1,(14,2)—2,1(15,1)-_-5,,1(152):3;l(16,1)=8;l(17,1)=1;l(18,1)=9;

(18,2)=6;1(19,1):1,,1(201):10,,l(202)=4;1(21,1)=7;1(21,2)=3;1(22,1)=11;

(22,2):2',l(23,1)=1;l(24,1)=12;l(24,2)=8;l(25,1)=5;l(26,1)=13;l(26,2)=2;

(27, 1):9,l(28,1)=14;l(28,2)=4;l(29,1)=1;l(30,1)=15;l(30,2)=10;l(30,3)=6;

1(31,1)=1,1(32,1)=16;

q(6)=1;<1(10)=1;q(12)=1;q(14)=1;q(15)=1;q(18)=1;<1(20)=1;q(21)=1;q(22)=1;

q(24)=1;q(26)=1;q(28)=1;q(30)=3;q(32)=0;

r(6,1)=1;r(10,1)=1;r(12,1)=2;r(15,l)=1;r(18,1)=3;r(20,1)=2;r(21,1)=1;

r(22,1)=1;r(24,1)=4;r(26,1)=1;r(28,1)=2;r(30,1)=5;r(30,2)=3;r(30,3)=2,

format long e

t=input(’please enter 1 to get the period or 2 to get the I. C. 1', t=’);

if t ==

h=input(’please enter the denominator of your y initial condition, h=’);

l

l

l

l
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a(1)=1;

for i=1:h

a(i+l,l)=a(i)*2;

if a(i+l) > h

a(i+l,1)=2*a(i)-h;

end

for j=lzi-1

if a(1)==a( 1)

z=i-j;

sprintf(’The periodic orbit has %d periods.’,z)

return

end

end

end

elseif t==2

h=input(’please enter the desired no. of periods, h=’);

for i=1:h

dx(i+l)=3*dx(i)+1;

dy(i+1)=2*dy(i)+1;

end

format rat

sprintf(’A Valid I. C. is’)

ix=3(h'1)/d:r(h +1),iy =1/dy(h +1)

format long

snl=0;snr=0;

for i=1:p(h)

snl=2'("") + snl;

end

for i=1:q(h)

snr=2'("") + snr;

end

noo=(2" — snl + snr)/h;

sprintf(’This period has

else

sprintf(’You have to choose t = 1 or 2.’)

end
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