

THESIS

by

QU

312930

LIBRARY
Michigan State
University

This is to certify that the
dissertation entitled

Analog CMOS Implementation of Artificial

Neural Networks for Temporal Signal Learning

presented by

Hwa-Joon Oh

has been accepted towards fulfillment
of the requirements for

Ph. D. degreein Electrical Engineering

Major professor

Date__)., ln 3 ?é

q
N

MSU is an Affirmutive Action’/Equal Opportunity Institution 0-121T1

PLACE IN RETURN BOX to remove this checkout from your record.
TO AVOID FINES return on or before date due.
MAY BE RECALLED with earlier due date if requested.

DATE DUE

DATE DUE

DATE DUE

198 C/CIRC/DatsDue.pB5-p.14

Analog CMOS Implementation of Artificial

Neural Networks for Temporal Signal Learning

By

Hwa-Joon Oh

A DISSERTATION
Submitted to
Michigan State University
in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Electrical Engineering

1996

ABSTRACT

Analog CMOS Implementation of Artificial

Neural Networks for Temporal Signal Learning
By

Hwa-Joon Oh

A recurrent neural network with a recurrent learning rule is implemented using
CMOS technology. We employ several building blocks for the implementation in-
cluding a wide-range transconductance amplifier, a modified Gilbert multiplier, and
a vector multiplier.

A sigmoid function generator is designed using the wide-range trans-conductance
amplifier. The output of the wide-range transconductance amplifier is current. To
convert the current output to voltage, we use active resistors. The modified Gilbert
multiplier and the vector multiplier are implemented using current bus and active
resistors. Their four-quadrant and dot-product multiplications are verified through
the PSPICE circuit simulations.

We have developed a modified recurrent back-propagation learning rule for tempo-
ral learning. Its forward instantaneous update scheme is suitable for analog hardware
implementations.

We have designed 4-neuron and 6-neuron recurrent neural network prototypes.

We have implemented the neural network using standard CMOS circuits and verified
their performance using extensive PSPICE circuit simulations. We have trained the
two prototype neural networks to learn different state trajectories and the PSPICE
circuit simulation shows that the recurrent neural network learn the temporal signals
for reproduction and classification successfully.

Finally, a two-dimensional scalable array configuration is designed for a large-scale
implementation of fully connected recurrent neural network with learning. With the

2-D array configuration, the layout offers a simple and scalable VLSI architecture.

Copyright by
Hwa-Joon Oh
1996

To my parents, wife Jeong-Hyeon, and son Eugene

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor Dr. Fathi M. Salam for
his able guidance and constructive criticism throughout the course of my research.

I would like to thank Dr. Hassan Khalil, Dr. Timothy Grotjohn, Dr. Gregory M.
Wierzba, and Dr. Frank Hoppensteadt for being on my graduate thesis committee.
Their critical comments and useful discussions aided in improving the quality of my
thesis.

My colleagues at the Circuits, Systems and Artificial Neural Networks Labora-
tory, Department of Electrical Engineering, MSU, provided extensive help during the
course of this research. I would like to sincerely thank Ammar Gharbi and Kay
Hyounseok for their help, moral support and useful discussions.

I also record my appreciation of the help rendered by the staff and the faculty of
the Department of Electrical Engineering, MSU.

I would like to express my sincere gratitude to my wife, Jeong-Hyeon and son,
Eugene, for love, affection and patience.

I would like to express my sincere thanks and appreciation to my parents and
parents-in-law for their support and sacrifice.

I also gratefully acknowledge the partial support during the research from ONR,
the Michigan Research Excellence Fund (REF), and Innovating Computing Technol-
ogy, Inc. (IC Tech).

vi

TABLE OF CONTENTS

LIST OF TABLES
LIST OF FIGURES
1 Introduction

2 Neural Network Models

2.1 ThemodelofaNeuron
2.2 McCulloch and Pitts neural networkmodel
2.3 Feedforward neural networkmodel
23.1 The standard back-propagation algorithm
2.3.2 The modifiedupdatelaw
233 Learningmethods.
2.4 Feedback neural network model

3 Analog CMOS Circuit Blocks

3.1 CMOS transistor v v ittt it
311 MOSModels,
3.2 Transconductance amplifier
3.2.1 Activeresistors/Loads
3.2.2 Simple transconductance amplifier.
3.2.3 Wide range transconductance amplifier
3.2.4 Sigmoid function generator,
3.3 The Modified Gilbert Multiplier
3.4 The Vector Multiplier.
3.5 Implementation of the modified updatelaw

4 Learning Temporal Signals

4.1 Time-dependent recurrent back-propagation
4.2 Classification of temporal trajectories
4.3 Recurrent Back-propagation

vii

11
13
16
20
22
23

27
27
28
32
33
38
44
47
50
53
55

58
59
61
63

44 Real-timerecurrentlearning
4.5 Hardware limitation of the real-time recurrent learning rule

Implementation of the Modified Recurrent Back-propagation

5.1 The modified recurrent back-propagationrule
5.2 Stability of the modified recurrent back-propagation
5.3 Implementation of the modified recurrent back-propagation
5.4 Simulation results of 4 neuron recurrent neural network
5.4.1 A circular trajectory generation
5.4.2 Trajectoryrecognition0uu....
5.5 Simulation results of 6 neuron recurrent neural network
5.6 Hardware implementation considerations
5.6.1 Hardware requirements of the modified recurrent back-
propagation learningrule.
5.6.2 Offset voltage adjustment
5.6.3 Thelearningrate
56.4 Weightrefresh.
5.6.5 Temperatureeffects.
56.6 Futurework
2-Dimensional Scalable Array Configuration
6.1 Subcelldesign
6.2 Implementationof FloorPlan
Conclusion

SPICE parameters
A.1 The SPICE parameters: MOSIS 2.0 um ORBIT ANALOG process .
A.2 The SPICE parameters: MOSIS 0.5 ym HP process

PSPICE Input Files

B.1 Simple transconductance amplifier.
B.2 Wide range transconductance amplifier
B.3 Sigmoid function generator 1.,
B.4 Sigmoid function generator 2.
B.5 Modified Gilbert Multiplier
B.6 3-D Vector Multiplier

C PSPICE simulation results with different temperature

viii

119
119
121

129

132
132
133

134
134
135
136
138
140
142

144

C.1 Trajectory generation with 50°C
C.2 Trajectory generation with 0°C
C.3 Trajectory generation with 125°C and -50°C

BIBLIOGRAPHY

ix

..............

oooooooooooooo

3.1
3.2
3.3
3.4
3.5
3.6

4.1
5.1
5.2
5.3
5.4
5.5

5.6

5.7
5.8

6.1

LIST OF TABLES

Resistance with different W/L ratios for Active resistors 35
Resistance with different W/L ratios for the cascaded active resistor . 37
The transistor sizes of the simple transconductance amplifier 43
The transistor sizes of the wide range transconductance amplifier .. 45
The transistor sizes of the sigmoid function generator 48
The transistor sizes of the modified Gilbert multiplier 52
Hardware requirements of the real-time recurrent learning rule 70
The MATLAB simulationresults 78
The simulation results of the circular trajectory experiment 89
The averaged weights in the learning phase from the PSPICE transient

analysis: example 1 92
The averaged weights in the learning phase from the PSPICE transient

analysis: example 2 e 92
The averaged weights in the learning phase from the PSPICE transient

analysis: exampled o o oo 92
The averaged weights in the learning phase from the PSPICE transient

analysis: example4 e 92
The averaged values of the weight from the PSPICE transient analysis 104
The averaged values of the weight in the 6-neuron recurrent neural

network with two output neurons, 108

The pin assignment of the 4 neuron recurrent neural network chip . . 128

LIST OF FIGURES

2.1 The structure of a classicalneuron 9
2.2 Schematic diagram of a McCulloch-Pittsneuron 11
2.3 Single layer feedforward neural network. S means sigmoid function . 13
2.4 Two layer feedforward neural network 15
2.5 (a) The circuit of one unit in Hopfield model. (b)A three neuron Hop-

field neural network. L L. 24
3.1 The schematic diagram of NMOS and PMOS 28
3.2 The convention of NMOS and PMOS, D:drain, S:source, G:gate, B:bulk 29
3.3 The circuit diagram of active resistors using PMOS 33
3.4 The PSPICE circuit simulation result: Active resistors with different

W/Lratiost iiienn.. 35
3.5 The circuit diagram of the cascaded active resistors using PMOS . . . 36
3.6 The PSPICE circuit simulation result: The cascaded active resistors

with different W/Lratios. 37
3.7 Simple transconductance amplifier., 38
3.8 Current output of the simple transconductance amplifier 40
3.9 Simple transconductance amplifier with load resistors 43
3.10 Simple transconductance amplifier: Output current (/g — Ir2) as func-

tion of V1 for different valuesof V2 44
3.11 The circuit diagram of the wide range transconductance amplifier . . 45

3.12 The PSPICE circuit simulation result: the wide range transconduc-

tance amplifier, output current as function of V1 for several values of

V2, Resistor = 100K, 46

3.13 The PSPICE circuit simulation result: the wide range transconduc-

tance amplifier, output current as function of V1 for several values of

V2,Resistor = 1IMQ e 46

3.14 The circuit diagram of sigmoid function generator 48

xi

3.15

3.16

3.17
3.18

3.19
3.20

3.21

5.1
5.2
5.3
5.4
5.5

5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15

5.16
5.17

The PSPICE circuit simulation result: Sigmoid function generator with
different W/L ratio of the active resistors (M10 and M11) in PMOS
when the bias voltageis 1.1V,
The PSPICE circuit simulation result: Sigmoid function generator with
different bias voltages when (W/L) of the active resister (M10 and
M11) is (4pm/19pmdpm/2lpm) oo
The circuit diagram of the modified Gilbert multiplier.
The PSPICE circuit simulation result: the modified Gilbert multiplier
with V2 = V4 = 2.5V, V(5) is the output voltage
The circuit diagram of the 3-D Vector Multiplier.
The PSPICE circuit simulation result: the 3-dimensional vector mul-
tiplier e e
The implementation of the differential equation

The MATLAB simulation result: the converged weights example .

The MATLAB simulation result: the converged weights example .

The MATLAB simulation result: the converged weights example . . .
The MATLAB simulation result: the diverged weights example
The recurrent neural network with four neurons and two inputs, S
means the sigmoid function generator
The block diagram of recurrent neural network with the modified re-
current back-propagation: four neurons and two inputs
The circular trajectory e e e e e e e e e e e e e e
Example 1 (the first figure): Input and target signals
Example 1 (the second figure): E,,,, and the weights
Example 1 (the third figure): Test phase with the initial condition
insidethecircle o L
Example 1 (the fourth figure): Test phase with the initial condition
outsidethecircle 000 L
Example 2 (the first figure): Input and target signals
Example 2 (the second figure): E,n, and the weights
Example 2 (the third figure): Test phase with the initial condition
inside thecircle L o o L.
Example 2 (the fourth figure): Test phase with the initial condition
outside thecircle
Example 3 (the first figure): Input and target signals
Example 3 (the second figure): E,,, and the weights

xii

49

49
51

52

39
56

80
80
81
81

83

87
88
93
93

94

94

95
95

5.18

5.19

5.20

5.21

5.22

5.23

5.24
5.25

5.26
5.27

5.28

5.29

5.30

5.31

5.32

5.33

5.34

5.35

5.36

Example 3 (the third figure): Test phase with the initial condition
insidethecircle00
Example 3 (the fourth figure): Test phase with the initial condition
outside thecircle L oL
Example 4 (the first figure): Input and target signals
Example 4 (the second figure): E,n, and the weights
Example 4 (the third figure): Test phase with the initial condition
insidethecircle o o .
Example 4 (the fourth figure): Test phase with the initial condition
outside thecircle o0,
Two state trajectories
The PSPICE transient analysis: V(5), V(6), V(7), and V(1) are z;,,
z3, dy, and y; of the recurrent neural network, respectively
PSPICE transient analysis: weight waveforms, w;; = V(j)
PSPICE transient analysis: the test result, V(5), v(6), and V(1) are
the input 1, the input 2, and the actualoutput
PSPICE transient analysis: the test result of the trajectory 1, V(5),
V(6), and V(1) is the input 1, the input 2, and the actual output

PSPICE transient analysis: the test result of the trajectory 2, V(5),
V(6), and V(1) is the input 1, the input 2, and the actual output

The recurrent neural network with six neurons, two inputs, and one
output, S means the sigmoid function generator
Two state trajectories: the two output neuron case on 6-neuron recur-
rent neuralnetwork L o oo
The PSPICE transient analysis: V(7) and V(8) are z, and z3, V(9)
and V(1) are d; and y;, V(134) and V(2) aredz andy,
PSPICE transient analysis: weight waveforms of the 6-neuron recur-
rent neural network with two output neurons, w;; = V(ij)
PSPICE transient analysis: the test result of the 6-neuron recurrent
neural network, V(7), V(8), V(1), and V(2) are z,, 2, 1, and y;,
respectively L e e
PSPICE transient analysis: the test result of the 6-neuron recurrent
neural network, V(7), V(8), V(1), and V(2) are z,, z3, y1, and ys,
respectively L e e
PSPICE transient analysis: the test result of the 6-neuron recurrent
neural network, V(7), V(8), V(1), and V(2) are z,, 2, y1, and y3,
respectively e

5.37

5.38

6.1
6.2
6.3
6.4
6.5
6.6
6.7

C.1
C.2
C.3
C4
C.5
C.6

Testing phase with the circular trajectory: when the circular trajecroty

i8500KHz. e e 113
Testing phase with the circular trajectory: when the circular trajecroty

i8250KHz e e e e e e e 114
2-D array configuration elements 120
The array structure of the recurrent neural network 122
The MAGIC layout of the weight cell, w;; 123
The MAGIC layout of the weight cell, w;o 123
The MAGIC layout of the error; & z; cell 124
The MAGIC layout of the sigmoid; & input; cell 124
The MAGIC layout of the recurrent neural network 125
Input, output and target signals 147
E,,,andtheweights 147
Input, output and target signals 148
Ens,andtheweights 148
Weighfs hit therail voltage 149
Weghts hit the rail voltage 149

xXiv

CHAPTER 1

Introduction

The brain is a highly complex, nonlinear, and parallel computing structure. Neural
networks have been motivated from its inception by recognizing that the brain com-
putes in an entirely different way than the conventional digital computer. Artificial
neural networks are machines that are designed to model the way in which the brain
performs a particular task or function of interest [1]{2][3](20].

An important feature of neural networks is that they perform useful computations
through a process of learning. To achieve good performance, neural networks employ
a massive interconnection of simple computing cells referred to as neurons. In neural
networks, interneuron connection strengths known as synaptic weights are used to
store the knowledge. The knowledge is acquired by the neural network through a
learning process. The procedure used to perform the learning process is called a
learning algorithm. A learning algorithm modifies the synaptic weights of the neural
network in order to get a desired design objective.

Neural networks have some unique attributes [48]: nonlinearity, input-output map-
ping, adaptivity, the ability to learn from their environment, the ability to generalize
from weak assumptions, fault tolerance, VLSI implementability. There have been
a lot of architectures and learning algorithms in artificial neural networks [4]. One

important artificial neural network is the feedforward neural network and the back-

propagation learning algorithm. Typically, the multilayer feedforward neural network
consists of an input layer, one or more hidden layers of computation nodes, and an
output layer of computation nodes. The error back-propagation process consists of
two processes: a forward pass and a backward pass. In the forward pass, input pat-
terns are applied to the network, and their effects propagate through the network. In
the backward pass, the desired patterns are presented to the network and the out-
puts of the network are compared with the desired ones. The errors are calculated
and propagated backward through the connection weights to minimize the errors.
The synaptic weights are adjusted so as to make the actual responses of the network
move closer to the desired responses. Multilayer feedforward networks have been ap-
plied successfully to solve some difficult and diverse problems by training them in a
supervised manner [1][20][48].

The neural networks are usually implemented using electronic components or sim-
ulated in software on a conventional computer. In the forward pass and the backward
pass of neural network, high computational requirement is needed. To meet the com-
putational requirement, analog hardware implementation of the neural networks will
be an ideal medium for real time learning and processing. The advantages of using
analog VLSI as technology medium for special-purpose neural network implementa-
tions include the inherent parallelism of the operations, fast speed on learning and
processing, the compact size, and low power consumption of the elements performing
the computational functions [5).

Some of the traditional analog design requirements such as accurate absolute com-
ponent values, device matching, precise time constants, etc., are not major concerns
in neural networks. This is primarily because computation precision of individual
neurons is not important [6]. For learning neural networks, the effects of mismatches
and offsets in the analog components can be greatly compensated by the learning

hardware parameters directly on the implemented neural networks. The learning

performance of the neural networks may still be affected by the analog precision of
the implemented learning function themselves, depending on the nature of the algo-
rithm used.

The list of general-purpose and special-purpose neural chips available presently is
quite diverse, and still growing.

The direct implementation of biological circuitry has been done by Mead’s group
[7](38]. They have found parallels between the behavior of subthreshold analog CMOS
VLSI and biological neural circuitry. They have implemented a wide variety of
neural VLSI systems that have been successfully constructed, including retinas(8],
cochleas[9], and other biological systems.

Intel’s ETANN chip [10] is an analog model of 64 analog neurons and 10240
analog synapses. It uses EEPROM technology to store synaptic weights and the
learning algorithm is performed at external general computers. The network can
simultaneously compute the dot-product of a 64 element analog vector with a 64 x64
synaptic array at a rate in excess of 1.3 billion interconnections per second. All
elements of the computation are done in the analog domain and strictly in parallel.

AT&T has built an ANNA (Analog Neural Network Arithmetic and logic unit)
chip [11] that is a hybrid analog-digital neural network chip. The chip implements
4096 physical synapses. The resolution of the synaptic weights is 6 bits, and that of the
states (input and output of the neuron) is 3 bits. The chip uses analog computation
internally, but all input/output is digital. The chip can be reconfigured for synaptic
weight and input vectors of varying dimension, namely, 64, 128, and 256. The ANNA
chip is implemented for the application of high-speed optical character recognition
with a total of 136,000 connections on a single chip.

An analog VLSI neural network processor was designed and fabricated for com-
munication receiver applications [12]. A channel equalizer was implemented with a

neural chip configured as a three-layer perceptron network. The number of neurons

in the input layer, two hidden layer, and the output layer is 8, 12, 12, and 1, re-
spectively. The whole network includes a total of 252 synapse cells, and the input
layer consists of the switched-capacitor analog delay circuits. The synapse cell is re-
alized with a wide-range Gilbert multiplier circuit. The neuron circuit consists of a
linear current-to-voltage converter and a sigmoid function generator with a control-
lable voltage gain. Network training is performed by the modified Kalman filtering
algorithm and the learning process is done in the companion DSP board which keeps
the synaptic weight for the chip. The chip requires the refresh hardware to maintain
the weight values.

Storage of adjustable analog weights is one of the most important problems faced
in analog implementation of artificial neural networks. The storage form can be
analog: it would thus have the properties of an analog memory cell. A commonly
used storage technique is based on storing charge across a capacitor. The storage
capacitor will slowly discharge. For today’s conventional technologies, the storage
time is of the order of several milliseconds. To store the weight control voltage for
longer periods, the charge stored on the capacitance needs to be refreshed once every
few milliseconds. The natural decay of a capacitor’s charge is one of the inherent
limitations of the analog storage of weights.

We have designed a neural network which has two feedforward neural networks
in one chip [13]. The first feedforward neural network has its learning circuits. The
second neural network does not have the learning circuit. The weight of the second
feedforward neural network, is fed from the first neural network through voltage
followers. If we keep applying the input-target pairs to the first feedforward neural
network, there is no need to make an external interface circuit for weight refreshing
in the second feedforward neural network.

A recent paper [14] which employs a stochastic perturbative algorithm uses a

local analog memory technique which does not require external storages. The weight

refresh is performed in the background, and does not interfere with the continuous-
time network operation.

The back propagation algorithm is one of the most popular methods for the design
of neural networks. A major limitation of the standard back propagation algorithm
is its focus on approximating static mappings. This static input-output mapping is
well suited for static information processing problems, however, it is not suitable for
dynamic temporal information processing.

Time-varying signals are important in many of the cognitive tasks encountered
in practice, e.g., in vision, speech, control, and signal processing [15]. It is necessary
to provide the neural network with dynamic properties that make it responsive to
time-varying signals. For a neural network to be dynamic, it must be given memory
[48]. One way in which a neural network can assume dynamic behavior is to make it
recurrent, that is to build feedback into its design. In the recurrent neural network,
connections are allowed in both ways between a pair of units, and even from a unit
to itself.

Analog recurrent neural network learning on time-varying signals offers a wide
range of attractive applications, e.g., for process control, identification of dynamic
system, and adaptive signal processing.

Several versions of gradient descent algorithms for supervised learning in dynamic
recurrent neural networks exist [16]. Pearlmutter [50] has derived learning proce-
dure which can learn nonfixed point attractor. The technique is called the back-
propagation through time. Pineda [54] has studied the fixed point learning proce-
dure using the error back-propagation algorithm. It is called the recurrent back-
propagation learning rule. An on-line [55], but computationally expensive, procedure
for determining the derivatives of the states with respect to the weight parameters
has been discovered and applied to the recurrent networks. It is called real time

recurrent learning. The above mentioned algorithms are implemented in software.

Their analog hardware implementations for real-time operations have currently not
been demonstrated.

We have deigned and fabricated feedforward neural networks with the modified
update law [13][28][47]. The test results have demonstrated the successful operations
of the feedforward neural networks [13][28](47][61][62]). The circuit designs of the
neural network at this dissertation are based on the test results of previous fabrications
and test results.

In this dissertation, recurrent artificial neural networks with on-chip learning cir-
cuit are implemented using standard CMOS technology. We have modified the learn-
ing rule from the time-dependent recurrent back-propagation learning rule. We avoid
the backward integration and the memory requirement by modification. Its forward
instantaneous update scheme is suitable for an analog hardware implementation. This
is the first successful demonstration of the implementation of the gradient descent al-
gorithm in the recurrent neural network. In order to implement the recurrent neural
network and its learning algorithm, we employ a wide-range transconductance am-
plifier, an active resistor, a modified Gilbert multiplier, and a vector multiplier.

Contributions of this dissertation are as follows:

1. A simple sigmoid function generator is designed using a wide-range trans-
conductance amplifier. Its current output is converted to voltage via active
resistors in order to achieve voltage-to-voltage operations. The sigmoid function
generator is simulated using the PSPICE circuit simulator. Its characteristics

are shown in this dissertation.

2. The modified Gilbert multiplier is designed and implemented as a CMOS circuit.
Its voltage-to-voltage operation is achieved through active resistors. Its four-
quadrant multiplication is verified in this dissertation. The performance of the

multiplier using the PSPICE circuit simulator is shown in this dissertation

. The vector multiplier is designed using the modified Gilbert multiplier. High
dimensional multiplier is implemented through simple current summing nodes.
The performance of the vector multiplier is presented using the PSPICE circuit

simulator.

. The modified recurrent back-propagation rule is presented. Its continuous-time
modified update law from the time-dependent recurrent back-propagation learn-
ing rule is shown in this dissertation. The modified algorithm is suitable for the

analog CMOS implementation.

. The MATLAB simulations show the conditions for the stable operation of the
network. The damping factors in the modified equations are important for the
stability of the recurrent neural network. We show the range of the parameters

"which ensure the successful learning in the learning phase.

. The modified recurrent back-propagation rule is implemented with on-chip
learning. Its learning rule is implemented in CMOS circuit and the PSPICE
simulations demonstrate its learning capability. We have demonstrated the
learning capability by training a circular state trajectory. In the circular trajec-
tory generation experiment, the recurrent neural network can generate a limit
cycle. We have performed experiments with different parameters for successful
learning. At the trajectory recognition experiment, the simulation result shows

that the recurrent neural network can distinguish different trajectories.

. A two-dimensional scalable array configuration is designed for large-scale im-
plementation. With the 2-D array configuration, the layout offers a simple and
scalable VLSI architecture. We have designed 4-neuron recurrent neural net-
work and its number of input and target is easily configurable. We show the

subcell design, the floor plan, and its layout in this dissertation.

This dissertation is divided into 7 chapters. Chapter 2 reviews the model of neuron
and three artificial neural network models. McCulloch and Pitts model, a feedfor-
ward neural network model, and Hopfield neural network model are investigated. In
Chapter 3, basic CMOS circuits and analog neural subcircuits are discussed for the
implementations of the artificial neural networks. Active resistors are designed to
convert the current output to the voltage output and its characteristics are shown
using the PSPICE circuit simulator. The designs of a transconductance amplifier,
a modified Gilbert multiplier, and a vector multiplier are demonstrated. Chapter
4 reviews the algorithms for the temporal signal learning. We have reviewed the
Pearlmutter’s algorithm, the classification of temporal trajectories, the Pineda’s al-
gorithm, and the William and Zipper’s algorithm. The hardware requirement for the
William and Zipper’s algorithm are investigated in this chapter. In Chapter 5, the
modified back-propagation learning rule is presented. Its MATLAB simulations for
stability are shown in this chapter and its implementation is explained. We have
demonstrated that the learning scheme successfully learns the temporal signals by
generating the circular trajectory and recognizing the different state trajectories in
the recurrent neural networks. In Chapter 6, we present the 2-D array configuration
of the modified back-propagation learning rule. With the 2-D array configuration,
the layout offers a simple and scalable VLSI architecture. We show the layout and
pin-configuration of the chip. Chapter 7 summarizes the conclusions of this research

work.

CHAPTER 2

Neural Network Models

2.1 The model of a Neuron

The basic unit in the nervous system is specialized cell which is called neuron. A

typical view of neuron is shown in Figure 2.1.

From other axons

Figure 2.1. The structure of a classical neuron

Most neurons share certain structural features that make it possible to distinguish

four regions of the cell: the cell body or soma, the dendrites, the axon, and synapse.

10

The individual nerve cell transmits nerve impulses over a single long fiber (the axon)
and receives them over numerous short fibers (the dendrites) [17].

The functioning of the brain depends on the flow of information through elaborate
circuits consisting of networks of neurons. Information is transferred from one cell to
another at specialized points of contact: the synapses. A typical neuron may have
anywhere from 1,000 to 10,000 synapses and may receive information from something
like 1,000 other neurons. Synapses are most often made between the axon of one cell
and the dendrite of another. These synaptic contacts are the primary information
processing elements in neural systems.

The transmission of a signal from one cell to another cell at a synapse is a complex
chemical process. At a synapse the axon usually enlarges to form a terminal button,
which is the information-delivering part of the junction. The terminal button con-
tains tiny spherical structures called synaptic vesicles, each of which can hold several
thousand molecules of chemical transmitter. On the arrival of a nerve impulse at
the terminal button, some of the vesicles discharge their contents into the narrow
cleft that separate the button from the membrane of another cell’s dendrite, which
is designed to receive the chemical message. Hence the information is relayed from
one neuron to another by means of a transmitter. The “firing” of a neuron-the gener-
ation of nerve impulses-reflects the activation of hundreds of synapses by impinging
neurons. Some synapses are excitatory in that they tend to promote firing, whereas
others are inhibitory and so are capable of canceling signals that otherwise would
excite a neuron to fire.

Equipped with a tree of filamentary dendrites, the neuron body aggregates synap-
tic inputs from other neurons. The input currents are integrated by the capacitance
of the cell body until a critical threshold potential is reached, at which point an out-
put is generated in the form of a nerve pulse. This output pulse propagates down the

axon, which ends in a tree of synaptic contacts to the dendrites of other neurons.

11

2.2 McCulloch and Pitts neural network model

Due to the complexity and diversity of the properties of biological neurons, the task
of compressing their complicated characteristics into a model is extremely difficult.
Neural computational elements are nonlinear, and typically these are analog in nature.
Many researchers have tried to model neural network systems with current knowledge
of biological neurons since it is still under research.

McCulloch and Pitts [18] proposed a simple model of a neuron as a binary thresh-
old unit. Specifically, the model neuron computes a weighted sum of its inputs from
other units, and outputs a one or a zero according to whether this sum is above or

below a certain threshold:

ni(t+1) = S(3_ wjini(t) + 0;) (2.1)

The diagram is shown in Figure 2.2. Here n; is either 1 or 0, and represents the state

Figure 2.2. Schematic diagram of a McCulloch-Pitts neuron

of neuron j as firing or notfiring respectively. Time t is taken as discrete, with

one time unit elapsing per processing step. S is the unit step function, or Heaviside

12

function:

1 ifz>0;
S(z) = (2.2)

0 otherwise.

The weight w;; represents the strength of the synapse connecting neuron : to neuron
j. It can be positive or negative corresponding to an excitatory or inhibitory synapse
respectively. It is zero if there is no synapse between j and :. The cell specific
parameters 6; is the threshold value for unit j; the weighted sum of inputs must
reach or exceed the threshold for the neuron to fire.

Though it is a simple model, a McCulloch-Pitts neuron is computationally a pow-
erful device. McCulloch and Pitts proved that a synchronous assembly of such neurons
is capable in principle of universal computation for suitably chosen weights wj;. This
means that it can perform any computation that an ordinary computer can, though
not necessarily so rapidly or conveniently.

Real neurons involve many complications omitted from this simple description.

The most significant ones include [1]:

o Real neurons are often not even approximately threshold device as described
above. Instead they respond to their input in a continuous way. However, the
nonlinear relationship between the input and the output of a cell is a universal
feature. The hypothesis is that it is the nonlinearity that is essential, not its

specific form.

e Many real cells also perform a nonlinear summation of their inputs. There
can even be significant logical processing (e.g., AND, OR, NOT) within the

dendritic tree.

o A real neuron produces a sequence of pulses, not a simple output level. Rep-
resenting the firing rate by a single number like n;, ignores much information

that might be carried by such a pulse sequence.

13

o Neurons do not all have the same fixed delay (t — ¢t +1). Nor are they updated
synchronously by a central clock. In fact, Neurons are operating in asynchronous

way.

2.3 Feedforward neural network model

In a feedforward neural network, information flows in the forward direction only, and
there are no feedback loops. The network is always stable, and its state depends on
the inputs in a simple manner. Suppose that N neurons form a feedforward neural

network with M inputs. Its structure is shown in Figure 2.3.

Yi

Y,

¥

Figure 2.3. Single layer feedforward neural network. S means sigmoid function

14

For this network, the input-output relationship can be expressed as

Y1 (wn w2 - WM T 6, \
Y2 w2y W22 -t WM T2 0,
| YN | \| Wy wN2 -0 waMm || TM _0N_}

where z;, 1 < i < M, is the input neuron, y;, 1 < j < N, is the output neuron, and
wj; is the connection weight from :th input neuron to jth output neuron. The above
equation is represented by

Y = S(WX + ©) (2.4)

where X is an M-component column vector of inputs, W is an N x M synaptic weight
matrix, and Y is the resulting N-component column vector of outputs. © is an N-
component column vector of threshold and S is a differential, bounded, and strictly
increasing monotone function. The threshold can be included into the weight matrix

implicitly by using w;o = 6; and o = 1. Thus the general equation is expressed as:

i] (I D
1/} Wy wn w2 - WM
31
Y2 Wz W21 W22 - WM
= S T, (2.5)
YN-1 WNo WN1 WN2 *°° WNM
\ | ZM |}

This type of network has only one layer of neurons and there is no connection
between neurons themselves. It is called single-layered feedforward neural network
or Perceptron [19]. Naturally, its practical applications are limited and interesting
applications are emerged when many layers are interacted each other. This can be

achieved through cascading two or more layers of such simple network, as shown in

15

Figure 2.4. Any layer between the input layer and output layer is called a hidden

Figure 2.4. Two layer feedforward neural network

layer. Thus, all but the output layer are hidden layer in internal layers.

The operation of such networks duplicates that of Figure 2.3, that is, the outputs
of each layer are produced from the weighted sum of the previous layer’s output.
As the number of layers increases, the usefulness of the network also increases. The

output from a multi-layered neural network can be expressed as
Y = S(WIS(W?...§(WKX))) (2.6)

where W* is a matrix of weights for kth layer, the size of this matrix depending on
the number of neurons acting as source and destination for the layer.

With the development of the back-propagation training algorithm, multi-layered
feedforward neural networks overcome many of the limitations of single-layered feed-

forward neural network [20]. The back-propagation algorithm uses a gradient-descent

16

search technique to minimize a cost function which is difference between the desired
output and the actual output. Also, this approach is called supervised learning. For
training the desired output, the input vector is applied to the neural network and its
output vector is produced. The actual output is compared to the desired output and
the error is passed in a backward direction to adjust the connection weights. The
modification of weights is carried out from layer to layer in a backward fashion and

this process is iteratively continued until its error is minimized.

2.3.1 The standard back-propagation algorithm

The static equations of feedforward artificial neural networks [1][20][48][49] are given
by

net,; = g(wji, Tp,) (2.7)
Yp.j = S(nety;) = S(g(wji, zp,i)) (2.8)

where g() denotes the general synapse function. Usually, it is given as a dot-product
multiplication between input vector and weight matrix. Here, p represents the index
of patterns and wj; is a connection weight from the (output of the) ith node to the
(input of the) jth node and z,;, which is an output of ith node at pth pattern.
Observe that, in a feedforward network, y,, ; is the output of the jth neuron in the
present layer and z,; is the output of the ith neuron from the previous layer. S is
a differentiable, bounded, and strictly increasing monotone function. S is in fact a
diffeomorphism usually referred to as a sigmoid function.

The desired patterns are presented to the neural network and the outputs of the

networks are compared with the desired ones. The error signal at the output of neuron

j is defined by

ep,j = dp,j — Yp,j (2.9)

17

The errors between the desired output (d) and the actual outputs (y) are calculated
and propagated backward through the connection weights to minimize the total error.

The total squared error is given by

1 1
E=Y E, =533 (di— i)’ =522 €, (2.10)
P 2 P 2 P

where p denotes the pth pattern and j denotes the jth output neuron.
The error is a function of connection weight w;; and updating the weight in gra-

dient system is defined as the delta rule:

wh = wi! + Awj; (2.11)

Jt

where Awj; denotes the changes in the weight w;; at the kth iteration due to the
input-target patterns. The delta rule defines the change due to applying p patterns

such as

OFE aE,.,' (2.12)
#11

ij,- = —n-aw—j' = —-nz aw
s 4

where 7 > 0 is the (learning) rate. Observe that 7 is assumed to be sufficiently small
in order for equation (2.12) to be truly gradient system. The method of gradient
descent has the task of continually seeking the bottom point of the error measure.

According to the chain rule, we may express this gradient as follows:

OE, _OE, 0Oep; Jyp; Onetp,

= . . 2.13
6w,-.- 6e,,,,- ay,,j 6net,,,,~ 6w,~,~ ()
Differentiating E, in equation (2.10) with respect to e, ;, we get
OF,
p' = €p,j (2.14)

18
Differentiating both sides of equation (2.9) with respect to y, ;, we obtain

6e,, ¥
Oy,

=-1 (2.15)
Next, differentiating equation (2.8) with respect to net, ;, we get

ayP»J —_ /A .
Bnet,; Si(nety,;) (2.16)

Finally, differentiating equation (2.7) with respect to wj; yields

Bnet,,',- _ ag(wj;,z,,,.-)

B0, Bw; (2.17)
Hence, the use of equation (2.14) to equation (2.17) in equation (2.13) yields
22 ' Ag(wji, Tp,i)
aw:: = —ep'ij(netp'j)—Fl#—- (2.18)
Accordingly, the use of equation (2.18) in equation (2.12) yields
O0E,
Awj = —n; v (2.19)
9g(wji, Zp,:)
= n) bpj—F—— (2.20)
zp: P 6w,—.-
where the local gradient 4, ; is defined by
bpj = - OF, . Oer; Oups (2.21)
Oe,; Oyp; Onety;
= c,,_jS;-(netp'j) (222)

The local gradient points to required changes in synaptic weights. We may identify

the local gradient in two distinct cases, depending on where in the network neuron j

19

located.
For an output layer, we may use equation (2.9) to compute the error signal. Thus

it is straightforward to compute the local gradient 6, ; using equation (2.22).

B = e = 3p)S ety) L e 2:2)

When neuron j is located in a hidden layer of the network, there is no specified
desired response for that neuron. Accordingly, the error signal for a hidden neuron
would have to be determined recursively in terms of the error signals of all the neurons
to which that hidden neuron is directly connected. Suppose that neuron z; is in the
input layer, neuron y; is in the hidden layer, and neuron 2 is in the output layer.
For the input-to-hidden connection weight w;j;, we must differentiate E, with respect

to the wj;’s, which more deeply embedded. Using the chain rule, we obtain

aE,, 6E,, . ay,,, j

dw;i Oyp; Owy (2.24)
= B B T @225)
Y 39(';2;:%.&) (2.26)
where the local gradient 6, ; is given by
bpi = —g;f "J - 3_?1%1; (2.27)
= —g!i: - Si(net,;) (2.28)

Using the chain rule again, we may express the first term of equation (2.28) by

0E, _ « OE, de,s

= 2.29
0yp,; k Oey i OYy.; ()

= —Ecp'kg;p"f (230)
k Py
0z, Onetyy
= — ek 2Tk 2.31
Z Bnet,k Oyp.; (2.31)
- —Zcp,kSk(net,,,)-—-———ag(';';; Y.) (2.32)
= -%s, ag(g’;;’f”’) (2.33)

where , in the last line, we have used the definition of the local gradient 6, given in
equation (2.22) with the index k substituted for j.
Finally, using equation (2.33) in equation (2.28), we get the local gradient 6, ; for

hidden neuron j, after rearranging terms, as follows:

' 0 B]
b = 5)(nety) 3 by 2L 0kio i) (234)
k Yp.j

Thus, for a hidden layer, the delta rule is given by

' a w t’x 1’ a w " 7'
Awj; = 'IZ S; (net”)g(aJTJ’) Z‘sp.k% (2.35)
1 k ,

where), is the summation over the next layer and 6, is a back-propagated error

from the next layer.

2.3.2 The modified update law

Let’s consider the new update law. Define the total energy by the following equation:

By = (5 X (s — 1) + 5 2 Y asiu) (2.36)

21

where a;j; is a sufficiently small ‘forgetting factor’, signifying damping, which is also

important for global stability. Update law in continuous time system is expressed as

Awj; = w;idt = —njg%dt (2.37)
The differential dt is the time-step in the integration of the derivative quantity, wj;.
If we let the differential dt be sufficiently small, the approximation becomes more
accurate. 7;; is the learning rate of each weight.
After the chain rule, the continuous time gradient descent dynamic update
law is given by the differential equation as [25][26).

. 0g(wji, Tp,i
Wi =5 Y 6,,j5;(net,,,j)——(62:-' i) _ 5i0iWji (2.38)
P It

If the neuron j is in an output layer,

6p.; = (dp,; — yp.j) (2.39)

If neuron j is in any hidden layer,

a w . , 3 .
bpi =) 6p,k—g(akJ fu”) (2.40)
k vaJ

where k is the index for the elements in the immediate subsequent layer.

The modified continuous time update law is obtained by removing the sig-
moid derivative terms, namely S}(net, ;) [25][27). Also, we can have wy; instead of
the partial derivative dg(wy;, yp,;)/0yp,; and x,; instead of dg(wji, z,:)/Owj; in equa-
tion (2.38) and (2.40). It is shown that the derivative terms in the equation may

be removed without loss in stability or convergence of the update law [25][26]. The

22

modified update law is thus given by
Wi = N5 D 8p,jTpi = NjiiW;i (2.41)
P
For an output layer, the modified update law is obtained as

6p.i = (dp; — ¥Yp.j) (2.42)

For a hidden layer, the modified update law is given by

bp; = D Opkwij (2.43)
k

where 6, ; is given as

bp; = €pk (2.44)

Observe that an essential difference between the modified (continuous time) up-
date law and the conventional (discrete time) back-propagation is the absence of the
derivatives of the sigmoid functions. This results in simplifying the learning rule with

major payoff in implementations, both in software and hardware.

2.3.3 Learning methods

We have written the update rule as sums over p patterns. For given training patterns,
back-propagation learning may proceed in one of two basic ways: parallel learning
or sequential learning [27][28].

In parallel learning, weight updating is performed after the presentation of all
the training patterns (i.e., batch mode). In hardware implementation of parallel
learning, it requires excessive copies of the feedforward neural network equal to the

number of patterns and additional terminals for each input-target pair. In parallel

23

learning, the number of input-target pairs is limited to the number of the copies in
the neural network implementation.

Although we have written the modified update rule as sums over all patterns p,
they can be used incrementally. A pth pattern is presented at the input and then
all weights are updated before the next pattern is considered. This clearly decreases
the error measure (for small enough 5) at each pattern. We refer to this approach
as sequential learning. In sequential learning, the network receives p input-target
pairs periodically as time-varying signal. If we continue to feed the input-target pairs
to the network, the network will learn the input-target pairs by converging to a set
of equilibrium weights.

From an implementation point of view, the sequential learning is preferred over the
parallel learning, because it requires less hardware component. Moreover, given that
the patterns are presented to the network in a random manner, the use of sequential
learning makes the search in weight space stochastic in nature. This randomization
makes the search less likely for the back-propagation algorithm to be trapped in a local
minimum. On the other hand, the use of parallel learning provides a more accurate
estimate of the gradient vector, while sequential learning gets the time-averaged value

in weight space. The relative effectiveness of the two learning modes depends on the

problem [1][48].

2.4 Feedback neural network model

Biological systems have some sort of feedback among various neurons. A more realistic
neural network model should have such feedback path.

In this section, We briefly introduce the Hopfield model [21][22][23]. Extensions to
the Hopfield model have generated interest in a new class of dynamic network models

called recurrent neural networks which are capable of performing a wide variety of

24

computational tasks including sequence recognition, trajectory following, nonlinear
prediction, and system modeling [24].

In the Hopfield model, each neuron has a nondecreasing sigmoid nonlinearity. Its
output is fed back to all other neurons via synaptic weights. Each synaptic weight
is denoted by T;;, which connects from the output of neuron j to the input of the

neuron :. There is a symmetric requirement on the connections, namely, we must

have T;; = Tj;. The Hopfield model is shown in Figure 2.5.

o v |
li P
e L] L
P o -
o]]

1
L
(@ Ig/
1
L
®

Figure 2.5. (a) The circuit of one unit in Hopfield model. (b)A three neuron Hopfield
neural network.

Each unit ¢ is consists of the circuit shown in Figure 2.5(a). u; is the input voltage,

25

V; is the output voltage, and the amplifier has the transfer function of V; = g(u;). I;
is the external input to the node i. The input of each unit is connected to ground
with a resistor R and a capacitor C. The output of unit j is connected to the input
of unit ¢ with a resistor R;;.

The circuit equations are

d"’ Y Z V, —u) + I (2.45)
j
or, equivalently
du,
ZT,JV u. + I (2.46)
where
T;; = L (2.47)
(¥} R,J .
1 1 1
— = -4 — 2.48
R; P z,: R;; (2.48)

The equilibrium points of the above neural system are the roots of the n simulta-

neous equations

0= STV, - o' (W) + 1 (249)
J

The dynamic behavior of . the Hopfield model can be examined by considering the

energy function of equation (2.46). Equation (2.46) can be rewritten as

du.- _ 6E
CF =" (2.50)

where the energy function, E, is given by

=-—EEﬂJVV+E&/ g (Vi)dV - ZI (2.51)

26

The time derivative of the energy function along trajectories is

dE

dt

since C > 0 and g;(u;) is a monotone nondecreasing sigmoid function. Therefore, this
system is a gradient-descent system. That is, this energy function decreases along

trajectories and its time-derivative equals zero at

point of this system.

The Hopfield model is proposed as an associative memory or to solve optimization

problems.

IN

8E' du;
)Y

R

OFE dV; du;

"L i &t

1dV; (6E\?
Z:C'du, (6V)

- ()

3E __ . . eyep e
577 = 0, which is an equilibrium

CHAPTER 3

Analog CMOS Circuit Blocks

3.1 CMOS transistor

Research into some of the unusual electrical properties of semiconductors led to the
development of the transistor, a device for controlling the flow of electrons in a solid
crystal. Like a switch, a transistor can either allow or inhibit the flow of electric
current in response to an external signal. Metal-Oxide-Silicon (MOS) Field Effect
Transistors are commonly used in digital and analog electronics. A MOS transistor
is formed by creating islands of semiconducting material, doped with either negative
N-type or positive P-type charge carriers, in a substrate of the same material doped
with charge carriers of the opposite type. The schematic drawing of an N-channel
MOS transistor and P-channel MOS transistor is shown in Figure 3.1.

By alternating the voltage applied to the gate, charge carriers from the source are
either attracted toward the channel or repelled from the channel. A channel under
the gate is formed since enough attracted or repelled charges are accumulated. The
channel allows current flows all the way across the gate region.

The first MOS electronic circuits employed p-channel (PMOS) transistors. As
MOS technology advanced, n-channel (NMOS) transistors replaced PMOS transistors

because they offered higher speed performance than PMOS. The need for reduced

27

28

NMOS PMOS
source gate drain drain gate source
insulator
n n P P
n-well
p-type substrate

Figure 3.1. The schematic diagram of NMOS and PMOS

power consumption led to the development of the larger but more powerful efficient

Complementary MOS (CMOS) transistors.

3.1.1 MOS Models

The n-channel and p-channel enhancement MOS devices along with the convention
for the electrical variables are shown in Figure 3.2.

In Figure 3.2, (a) and (b) shows the convention of the four terminal device respec-
tively. If the bulk terminal of NMOS is connected to the lowest circuit level, usually
Vss or GN D, the bulk the convention of (c) is used. This is equivalent to (d). In (d),
the bulk terminal of PMOS is connected to the highest voltage of the circuit, Vpp.

The following model equations is restricted to the n-channel transistor. The p-
channel model equation is identical with the exception of sign changes in some of the
equations. The same model is used for the PMOS if all the voltages and currents are
multiplied by -1 and the absolute value of the p-channel threshold is used.

When the length or width of the MOS is greater than about 10um, the substrate
doping is low, and when a simple model is desired, the model suggested by Sah [29)
and used in SPICE by Shichman and Hodges [30] is very appropriate. The dc model

29

(b) PMOS
D D
+], . =a -
v i
Vs l'—: G Ve }3—: G
Aig v Vis vy
= +5 4
S S
(c) NMOS (d) PMOS

Figure 3.2. The convention of NMOS and PMOS, D:drain, S:source, G:gate, B:bulk

introduced by Sah is given by

V;
Ip = B((Vgs — V1) — %s‘)VDS (3.1)
which was derived for small value of Vps, 0 < Vps < Vgs — Vr. Small values of Vpg

correspond to the ohmic region of operation. The region is termed the ohmic, linear,

or active region. In this equation,

B = the transconductance parameter

= K% = (pOCo,)%(amps/voltg),

K = POCo:

po = surface mobility of the channel,

. . , €
capacitance per unit area of the gate oride = —=,

or

Q
8
Il

30

L = channel length,

W = channel width,

Vr = threshold voltage

For Vps > Vgs — Vr > 0, the current remains practically constant(independent of

Vbs) at the obtained when the channel is pinched off. The equation is obtained by
_B 2
Ip = E(Vcs - Vr) (3.2)

which is good for Vps > Vgs — Vr and Vs > V. The region of operation is termed
the saturation region. When the MOSFET is operating in the saturation region, the
MOSFET is inherently a transconductance-type device with the voltage input, Vgs,
and the current output, Ip.

I Vgs — Vr is zero or negative, then the MOS is in the cutoff region and the
current becomes zero.

Ip=0, Vgs—Vr<0 (3.3)

The model based on the equations (3.1), (3.2) and, (3.3) is the simplest model. In
many situations, this model is quite tractable for hand calculations and adequate for
the analytical portions of the design.

It can be shown theoretically and experimentally that the drain current in the
saturation region increases slightly in a linear manner with Vpgs. Defining A to be
the coeflicient that represents the linear dependence of Ip on Vpg, a more accurate

expressions for the drain current in the saturation region is given by
Ip = g(VGs - VT)2(1 + AVps) (3.4)

The coefficient A is quite small for long devices but increases considerably for very

31

short transistors.

The W/L ratio is the only geometrical design parameter available to the design
engineer that affects the performance of MOS transistor. Assuming the parameter K
and Vr are constant, it can be shown that the device is electrically symmetric with
respect to drain and source. The choice of which end of the channel to designate
as source and drain is thus arbitrary. Since the MOS is a bi-directional device, the
source for an n-channel transistor is always at the lower potential of the two nodes.
For the p-channel transistor, the source is always at the higher potential.

The threshold voltage, Vr, is somewhat dependent upon the bulk-source voltage.

The dependence can be approximated by

Vr = Vro+7(y/é - Ves — \/f;) (3.5)

where Vg is the bulk-source voltage and Vrg, 7, and ¢ are process parameters:

Vro = threshold voltage for Vgs =0
v = bulk threshold parameter

¢ = strong inversion surface potential

Note that the change in Vr can be quite significant for large Vps. The effect becomes
even worse with larger A.

This simple model has five electrical and process parameters that completely de-
fine it. These parameters are K, V1, v, A, and ¢. They constitute the Level 1 model
parameters of SPICE (Simulation Program with Integrated Circuit Emphasis) circuit
simulator [31}[32]. In many situations, this model is quite tractable for hand calcula-
tions and adequate for the analytical portions of the design. With the Level 1 model,

the simulation does not perform the short- and narrow-channel effects.

32

In the Level 2 model based on Meyer [33], the short- and narrow-channel effects
are calculated. The Level 2 model differs from the Level 1 model both in its method
of calculating the effective channel length (X effects) and the transition between the
saturation and ohmic region. The Level 2 model offers improvements in performance
which are particularly significant for short channel devices.

The Level 3 model has been developed to simulate a semi-empirical model. Several
empirical parameters (parameters not obviously related to or motivated by the device
physics of the MOS transistor) are introduced in the Level 3 model. It simulates quite
precisely the characteristics of MOS which have a channel length up to 2um. The
basic equations have been proposed by Dang [34].

It is useful to examine the differences among the three models [31]. The Level
1 model is elementary, the Level 2 model uses processing parameters and geometry,
and the Level 3 model uses measured characteristics. Usually the Level 1 model is
not sufficiently precise because the theory is too approximated and the number of
fitting parameters too small; its usefulness is in a quick and rough estimate of circuit
performances. The Level 2 model can be used with differing complexity by adding
the parameters relating to the effects needed to simulate with this model. However,
if all the parameters are used, i.e., the greatest possible complexity is obtained, this
model requires a great amount of CPU time for the calculations, and it often causes
problems with convergence [35]. The Level 3 model takes less time and less errors on
simulation than the Level 2 model. The only disadvantage of the Level 3 model is

the complexity in the calculation of some of its parameters.

3.2 Transconductance amplifier

The transconductance amplifier is a device that generates current as its output. If

the output current is proportional to the difference between two input voltages, V;

33

and Vj, the circuit is called a differential transconductance amplifier. Since
the input terminal of the transconductance amplifier receives the voltage input, we
usually need current-to-voltage conversion at the output stage of the amplifier. The
current-to-voltage converter is implemented using operational amplifier and resistors.
However, it is not practical to use operational amplifier inside the neural network

implementation. Thus a simple and convenient current-to-voltage converter is needed.

3.2.1 Active resistors/Loads

The current-to-voltage converter is implemented using two transistors. The active
resistor is used to produce a dc-voltage drop or provide a resistance which is linear
over a small range. The active resistor is achieved by simply connecting the gate to

the drain. The active resistor is shown in Figure 3.3.

<} M

VL,

St
I

e,

Figure 3.3. The circuit diagram of active resistors using PMOS

In this figure, there is a current source I;y and two PMOS transistors. If we
assume that M1 and M2 is a matched pair, i.e., they have the same conductance S,

and work in saturation region, we have the circuit equation by applying Kirchhoff’s

34

current law at the Voyr node:

Itn + Ipy = Ip, (3.6)

_B 2
Ip, = E(VDD — Vour — V1) (3.7)
Ip; = g(Vour — Vss — Vra)? (3.8)

After some algebraic manipulations with the assumption, Vr = V5 = Vo, Vour is

given as

1 1 (Vop + Vss)
Ve = Iy + —= 3.9
ouUT (Vob — Ves — 2Vi) B IN 2 (3.9)
1 (Vbp + Vss)
= GIIN + 3 (3.10)
where G is the conductance of the active resister,
G = (Vpp — Vss — 2Vr)B (3.11)

If we assume that Vpp is 5V and Vss is 0V, then Voyr will be 2.5V when I;y is zero.

In Figure 3.4, the characteristics of current-to-voltage relation are shown with
different W/L ratios of the active resistor. In this graph, the W/L ratio of the upper
PMOS is assumed to be same as the W/L ratio of the lower PMOS. We can see
that the resistance increases as the W/L ratio of PMOS decreases. In Table 3.1, the
calculated resistances at the (0A4,2.5V) point from Figure 3.4 are shown with different
W/L ratios. From the table, the value of resistance of active resistors ranges from
10K to 1MQ.

If we need larger active resistors but we have a limitation of area in chip layout

for active resistors, we can cascade active resistors. Two upper and two lower active

35

Dete/Time run: 08/06/88 21:23:20 Temperature: 27.0
LY A R b bbb ittt bttt 1
H 1
' et
4_w.§
2.0\/‘: . WA - — - "
W/Lndu/8u
T Wieawteu
E W/iL=duw/32u
w,: P AN Y P
E wij
H
;' ------------------------- R R el b bbbl [AL LAl S bttt b i faiiis Il Al
10uA 0A 10uA 20uA 30uA 40uA

-40uA 0uA -20uA .
oV(11) eV(12) aV(13) vV(14) oV(15) +V(18) xV(17)

Figure 3.4. The PSPICE circuit simulation result: Active resistors with different
W/L ratios

Table 3.1. Resistance with different W/L ratios for Active resistors

| (W/L)mw (W/L)m2 | Resistance, R = é = %ll'. |

dufdp dufdp 20.61KQ

4u/8u 4u/8u 47.03K2
4u/16p 4p/16p 95.85KQ
/320 4p/32 192.94K Q2
4u/64p 4p/64p 392.04K02
4u/128u 4p/128u 786.05KQ
/2560 4pu/256p 1573.1K0

36

resistors approximately have 9 times greater resistance than that of single upper and
single lower active resistor with the same W/L ratio. The circuit diagram of the two
cascaded active resistors and its PSPICE simulations are illustrated in Figure 3.5 and
3.6. In Table 3.2, the resistances of the cascaded active resistors are shown.

To make active resistors operate correctly, we have to consider the body effect of
the transistor. To make two threshold voltages, V7, and Vr,, the same, M1 and M2

should have the same bulk-source voltage, Vps, according to equation (3.5).

Voo
T
——E]— M2
) Vour
N
L ﬂ_ M3
Vs

Figure 3.5. The circuit diagram of the cascaded active resistors using PMOS

That is why each transistor’s bulk terminal is connected to its source. The selec-
tion of NMOS or PMOS as linear active resistors depends on the fabrication technol-
ogy. If n-well is used for fabrication, PMOS is used as active resistors because we can
isolate the bulk voltage of PMOS, i.e., the bulk voltage of NMOS is tied together to
the p-type substrate. When p-well is used for fabrication, NMOS should be used as

active resistors since we can isolate the p-well only.

37

* Active Resistor with 2 TRs: ORBIT, N63J: acti2.cir

Deate/Time run: 05/08/08 20:42:10 Temperature: 27.0

BV T eeeeeoooooaiooo-oog Saee— oo gmem---m--eseemeeoocs 3
: :
! :
40V .E E
H H
H H
: :
: :
: :
1 H
: WiL=dwau :
; WiedwBu :
v ;
! WiLedu/16u :
WiLmdwB4u :
beoooen D e e qewTT oo T e D e Rt 4
15uA -10uA SuA 0A SuA 10uA 15uA 20uA

QV(11) eV(12) aV(13) vV(14) oV(15)

n

Figure 3.6. The PSPICE circuit simulation result: The cascaded active resistors with

different W/L ratios

Table 3.2. Resistance with different W /L ratios for the cascaded active resistor

(W/L)mi1 = (W/L)mz (W/L)ms = (W/L)m4 | Resistance, R = 2 = 2%
du/dp 4ufdp 208.81KQ
4u/8p 4u/8u 455.80 KN
4u/16p 4u/16p 893.65 K}
4u/32u 4u/32u 1730.4K92
4u/64p 44/64u 3418.6 KQ

38

3.2.2 Simple transconductance amplifier

The differential transconductance amplifier is one of the most versatile circuits in ana-
log circuit design [36][37]. The objective of the differential amplifier is to amplify the
difference between two different voltages regardless of the common-mode value. The
differential amplifier is characterized by its common-mode rejection ratio (CMRR)
which is the ratio of the differential gain to the common-mode gain. Another char-
acteristic affecting performance of the differential amplifier is voltage offset. If the
terminals of the differential amplifier are connected together, the output offset voltage
is the voltage which appears at the output of the differential amplifier.

Let us consider the large- and small-signal characteristic of the CMOS differential
amplifier [36]. Figure 3.7 shows a CMOS differential amplifier that uses n-channel
MOS devices, M1 and M2, as the differential pair. M3 is a current source and the
loads for M1 and M2 are obtained from a simple p-channel current mirror (M4 and

M5). If M4 and M5 is matched, then the current of M1 will determine the current in

Vi
wa Jp——4[ms
o $los_Lor
Ll VI, You
\' T| [’Ml M2] |—+ Vv,
Vs — Voo

lIDJ
Voa [™5

Vs

Figure 3.7. Simple transconductance amplifier

39

M4. This current will be mirrored in M5. If V; = V;, then the currents in M1 and
M2 are equal. Thus the current in M5 is equal to the current in M2, causing I,y to
be zero. If V; > V;, then Ip, increases with respect to Ip; since Ips = Ip; + Ips.
This increase in Ip; implies an increase in Ip4 and Ips. However, Ip; is decreased
with respect to Ip;, therefore, the only way to establish circuit equilibrium for Ioyr
is to become positive. It can be seen that if V; < V; then IoyT becomes negative.
The large-signal characteristics can be developed by assuming that M1 and M2,
the differential pair, are always in saturation. The relationship describing large-signal

behavior are given as

2Ip, 2Ip,

Vip = Ves1 — Vgsa = 3 5 (3.12)

Ips = Ip1 + Ip2 (3.13)

where it has been assumed that M1 and M2 are matched (8 = 8, = ;). The solution

for Ip, and Ip; is given by

_Ips IpaVio | B B*Vp
_Ips IpsVip | B BV
Ipa == 2 \Ips 4ld, (3.15)

where these relationships are valid only for Vip < \/ﬁ—[fﬁ7 Figure 3.8 shows a plot
of the normalized drain current of M1 and M2 versus the normalized input voltage.
If we assume that the currents in the current mirror are identical, then Ioyr can
be found by subtracting Ip; from Ip,. The output voltage Voyr of the differential

transconductance amplifier can be found by assuming that a load resistance Ry, is

40

-141 -1 0 1 141

Figure 3.8. Current output of the simple transconductance amplifier

connected from the output of the amplifier to ground.

_ _ _ B BV
Vour = IoutRL = (Ipy — Ip2)RL = IpsVip,| +— — - —RL (3.16)
ID3 4103

The differential-in, differential-out transconductance is written as

_ Olout
Jmd 0Vip

K, Ip;W,
(Vip=0) = \/Blp3 = ;LD:—I (3.17)

The small-signal voltage gain of the differential amplifier can be found by differenti-

ating Eq.(3.16) with respect to Vip and setting V;p = 0, giving

1Y KilpsW,
Ay = =221 — \/BIpsRyL = \/&RL (3.18)
oVip L,

We note several important deviations from ideal behavior of the differential am-

plifier. The first is the mismatch between transistors. Not all transistors are created
equal. Some are created with a higher transconductance property than are others. It

causes current mismatch and shift in characteristic curve and results in voltage offset.

41

The designer must consider the worst case Vr spread (specified by the process) in each
'transistor and adjust current level and transconductance to meet the requirements.
Typically, the voltage offset of a CMOS differential amplifier is 5 to 20 millivolts.

The common mode gain of the CMOS differential amplifier is ideally zero, because
the current-mirror load rejects any common-mode signal. Due to the mismatches in
the differential amplifier, a common-mode response might exist. This mismatches
consist of a non-unity current gain in the current mirror and geometrical mismatches
between M1 and M2.

Another important characteristic is the input common-mode voltage range. The
input common-mode range is defined by the input voltage range over which both M1
and M2 remain in saturation. The highest input voltage at the gate of M1 (or M2)

when V; = V; is found to be
Wi = Vpp — Vsca — Vps1 + Vasi (3.19)
For saturation, the minimum value of Vpg, is
Vps1 = Ves1 — Vroa (3.20)

Substituting and replacing the equations give the final result,

2Ip,

Vi=Vpp - B

— |Vros| + Vror (3.21)

The last two terms are determined by the process and the equations now becomes

j .
Vi(maz) = Vpp — ‘/ﬁ — |Vroa|(maz) + Vror(min) (3.22)

As V) approaches Vsg, M1 will be in the saturation region and close to cutoff.

42

Therefore, it makes more sense to relate Vj(min) to Vgjas when M3 is no longer in

saturation. The gate voltage on M1 can be shown to be

Vi = Vgs1 + Vpss (3.23)
Set Vpss = Vgss — Vros to get
Wi = Vesa + Vasi — Vros (3.24)
2Ip3

Vi(min) = Vpras +

3, + VTol(ma:r) - VT03(min) (3.25)

Third, the common-mode input voltage has a significant effect on the transfer
function, particularly the output-signal swing. In this case, the swing limitation will
be based on keeping both M2 and M5 in saturation. When V; is taken above V;, the

output voltage, Vour, increases. The output voltage is given as

Vour = Vop — Vsps (3.26)

M5 is at the edge of saturation when Vsps = Vsgs — |Vros|. Using this relationship,

the maximum output voltage is given as

Vour = Vop — Vsgs + |Vros| (3.27)
2Ip4
Vovur(maz) = Vpp — e |Vros| + |Vros| (3.28)
4

The minimum output voltage is found by determining when M2 is at the edge of

saturation. The minimum output voltage is given by

VOUT(min) = Vg - VT2 (329)

43

Table 3.3. The transistor sizes of the simple transconductance amplifier

| Transistor | W/L ratio |

M1 4ufdp
M2 4ufdp
M3 12pu/4p
M4 15u/4p
M5 154/4p

To verify the limitation on the output voltage range, a PSPICE simulation has
been performed. To see the output current, we attached two resistors at the end of
the output terminal. Since two resistors have the same value of 100K (2, the output
current is Ig; — Ips. The circuit diagram is shown in Figure 3.9

The W/L ratios of the transistors are shown in Table 3.3. Figure 3.10 shows
the PSPICE simulation result of the differential transconductance amplifier. The

influence of V; upon Ipyr is illustrated in this figure. The PSPICE input file is
shown in Appendix A.1.

vDD

v | p——qﬂw i

v, —{[m szl— v, éll:z

Vaias —‘| M3

VSS

Figure 3.9. Simple transconductance amplifier with load resistors

44

* Simple Yane-conductance ampiifier: Vbiss = 1.3V (Vans1.cir)

Figure 3.10. Simple transconductance amplifier: Output current (Ir; — Ir2) as func-
tion of V1 for different values of V2

3.2.3 Wide range transconductance amplifier

A simple transconductance amplifier will not generate output voltage below
Vour(min), which, in turn, is dependent on the input voltages. We can remove
this restriction by a simple addition to the simple transconductance amplifier, as
shown in Figure 3.11.

To overcome the problem, two extra current mirrors are usually added [38][39]. By
reflecting the currents of M1 and M2 to upper current mirrors, the output current is
just the difference between I; and I;. The major advantage of the wide-range amplifier
over the simple circuit is that both input and output voltages can run almost up to
Vbp and almost down to Vsg, without affecting the operation of the circuit.

The output current, Ioyr, in the PSPICE simulation is shown in Figure 3.12 and

Figure 3.13. 100K resistors are used in Figure 3.12, and 1 M2 resistors are used in

45

i b——Cvs welb——[or

e e

Figure 3.11. The circuit diagram of the wide range transconductance amplifier

Table 3.4. The transistor sizes of the wide range transconductance amplifier

| Transistor | (W/L) ratio |

M1 dpfdp
M2 4u/dp
M3 12u/4p
M4 1544
M5 15u/4p
M6 154 /4p
M7 15u/4u
M8 4pldp
M9 4ufdp

Figure 3.12. The PSPICE circuit simulation result: the wide range transconductance
amplifier, output current as function of V1 for several values of V2, Resistor = 100K}

Date/Time run: 060006 22:00:28

Figure 3.13. The PSPICE circuit simulation result: the wide range transconductance
amplifier, output current as function of V1 for several values of V2, Resistor = 1M}

47

Figure 3.13. The output current represented in the difference current between R, and
R;. The PSPICE input file is shown in Appendix A.2 and the sizes of transistors are
shown in Table 3.4. As the value of resistors increased, the saturated level of current

is decreased and the current gain at the operating point is increased.

3.2.4 Sigmoid function generator

The sigmoid function can be obtained by using a wide range transconductance ampli-
fier and active resistors. The output of the transconductance amplifier is in current.
Thus we attached diode-connected MOS transistors as active resistors to convert
current to voltage. Using active linear resistors, we can achieve voltage-to-voltage
operations.

The complete circuit of sigmoid function generator is shown in Figure 3.14. The
sizes of the transistors are shown in Table 3.5. The transconductance of the differential
transconductance amplifier is proportional to the bias current. The (W/L) ratios of
the M1 and M2 transistors also control the transconductance. We can achieve a larger
transconductance when we increase the width of the transistor M1 and M2. The
PSPICE simulation results are shown in Figure 3.15 and Figure 3.16. The PSPICE
input files are shown in Appendix A.3 and A .4.

In Figure 3.15, Voyr is shown with different W/L ratios of the active resistor. If
the W/L ratio is decreased, the gain is that of the tanh like function and saturated
level of high and low voltage is increased. In Figure 3.16, Vour is plotted according
to the different Vpras voltages. From this figure, it is obvious that the gain of the
sigmoid function generator and the level of the saturated voltage are dependent on
the Vgas voltage.

From the PSPICE circuit simulation, we have two parameters to control the char-
acteristics of the sigmoid function generator. The W/L ratio of the active resistor

and the bias voltage are the controllable parameters.

48

M4:' F‘—'—q I:MS Mg })———C{ [M7

- o
el AT
Ms’]—J Vaus —|[M3 L{[lmg

VSS

Figure 3.14. The circuit diagram of sigmoid function generator

Table 3.5. The transistor sizes of the sigmoid function generator

| Transistor | (W/L) ratio |

M1 24u/dp
M2 24u/4p
M3 10p/4p
M4 15u/4p
M5 15u/4p
M6 15u/4p
M7 15u/4p
M3 16p/4p
M9 16u/4p
M10 4u/19u
M11 4u/21p

49

* Soma (SIGMOIDAL FUNCTION) circult with adjusted WL, Vbias=1.1V: ORBIT, N6SJ (sm1_20u.cir)
Date/Time run: 06/06/08 23:58:25

sV 3 :
H d
'

avs ;
: Watw/du,su/du :
WiLedw/12u 40120 :

20V - - WAL=4w/20u,40/20u - E
WLndu28u, 47280 :
Wiln4u/36u,40/36u :

H

1BV $ommeeeemeocceccmmoyeceeeeeemaeeeeeeseeeaqmemseeeseemaceeseeesepesesoesesocceeeccesapecesecessseasessecons q

20v 2v 24v 2.6v 28v aov

avm) eV(1H) AV vV(SH) oVies)

Figure 3.15. The PSPICE circuit simulation result: Sigmoid function generator with
different W/L ratio of the active resistors (M10 and M11) in PMOS when the bias

voltage is 1.1V
(SIGMOIDAL FUNCTION) circult with different biae with (4u/19u,4u/21u): ORBIT, N63J (em2_20u.cir)
DOute/Time run: 06/06/98 00:03:48

Figure 3.16. The PSPICE circuit simulation result: Sigmoid function generator

with different bias voltages when (W/L) of the active resister (M10 and M11) is
(4pm/19pum,4um/21pm)

50

3.3 The Modified Gilbert Multiplier

To implement the multiplication of the neural networks, a multiplier is one of the
most important component. Several different techniques are used in the multiplier
design. Multipliers based on a modified Gilbert cell [40][41][42] are popular. The other
technique is the use of the square-law characteristics in saturation region [43][44][45].
Others have implemented the multiplier based on the current-voltage characteristics
in the non-saturation region [46).

We consider a modified Gilbert multiplier as a synapse circuit[38]. The circuit
diagram of the modified Gilbert multiplier is shown in Figure 3.17.

Assume that all transistors in Figure 3.17 are in saturation region, and are matched
so that the transconductance parameters satisfy the equations By = Bar1 = Bm2 and
Bp = Bm3 = Bma = Bms = Pus.

The output current is the difference between Ip(a12) and Ip(a13) since the current
Is(m21) and Is(aa2) are reflected by the current mirrors. Defining the output current
Iy = Isma) + Isms) and I~ = Iss) + Isime), it can be readily shown that the

differential output current Ip;rr = I, — I_ is given by

Ipirr = \/2Bp(V3—Vi4) (\/ID(MI)\JI LA/) \/ITM?)\JI _ Br(Vs — Va)* V‘){)

2Ipn) 2Ip(m2)
(3.30)
The above equation can be approximated into
IpiFr = \/2ﬂP(\/ID(M1) — VIpm2)(Vs — Vi) (3.31)

if the following condition is satisfied

Bp(Vs — V,)?

L1
2Ipany

51

Bp(Vs — V,)?

<1
2Ip(m2)

Also, the current Ip(a) and Ip(ass) are dependent on the voltage difference (Vi — V3).

Since (V; — V2) is given by

W—IQ:\/Z!_QQ’L)_ 2Ippa) (3.32)
Bn Bn

the equation (3.31) becomes

Ipirr = \/BPBN(Va — Va)(Vi — V3) (3.33)

This is the ideal characteristics of the approximated equation.

TR A P A

va—[ms m3]p—v3 vi—q[ms me]p— vs —-|E:| M31
A,) i

Ml I———-Hzrlz Ve —{[M15 M13 I—-—Iﬁ}m

Figure 3.17. The circuit diagram of the modified Gilbert multiplier

The modified Gilbert multiplier takes the difference between two voltages (V3 —V,)

and multiply that difference by a difference two other voltages (V; — V). In the small

52

Table 3.6. The transistor sizes of the modified Gilbert multiplier

| Transistor | (W/L) ratio || Transistor | (W/L) ratio

[M1 dpfdp | M1 4ufdp
M2 4u/dp Mi12 4uldp
M3 15u/4p H M13 du/dp
M4 15u/4u M14 4ufdp
M5 15u/4p M15 12u/4p
M6 15u/4p M21 11p/14p
M7 15u/4p M22 11u/14p
M8 15u/4p M3l 4u/12p
M9 15u/4p || M32 4u/12p
M10 15u/4p |

* 1-D Vector Multiplier: ORBIT, N83J (gmul1 .dir)

40V VIeISV

30V i vsa228v

20V +__ V3=2.75V-

V3=3.0¥
| VIa328V
1.0V —
Vo V=38V
'
E
T S |
1.0v 15v 20v 25v ov sv 4.0V
o Vs)

Figure 3.18. The PSPICE circuit simulation result: the modified Gilbert multiplier
with V2 = V4 = 2.5V, V(5) is the output voltage

53

signal range, the characteristic curve is approximately linear, and all four inputs
carry information about multiplication. For the large-signal range, the multiplier
is nonlinear. However, the nonlinearity does not cause any instability. Since the
modified Gilbert multiplier has current outputs, we employed PMOS active resistors
at the output stage of the multiplier to convert current to voltage. Thus, the voltage-
to-voltage multiplier is achieved.

The PSPICE circuit simulation result of the modified Gilbert multiplier is shown
in Figure 3.18. In this figure, V; and V, are connected to Reference voltage, 2.5V.
With different voltages of V3, the output voltage is shown according to the input
voltage, V;. The output voltage shows four quadrant multiplication. The PSPICE
input file is shown in Appendix A.5.

3.4 The Vector Multiplier

In a dot-product operation, two vectors are multiplied to generate a scalar quantity.
Let X = (z1,%2,...,2,)T and Y = (y1,¥2,...,¥n)T be N x 1 vectors. Their dot-

product operation is expresses as
z=XT.Y = Zx.-y,- (3.34)
In a vector multiplier, the vector multiplication is given as
Vout = ;(WI — Vig)(Via — Via) (3.35)

To implement the dot-product operation, we use the modified Gilbert multiplier
to obtain the vector multiplication. There are identical Gilbert multiplier subcircuits
in the vector multiplier and they are connected together at the terminals of the

current mirror. The differential output currents from the multiplier are summed on

54

two current buses and they are converted to voltage through active PMOS resistors.
One thus can construct larger dimensional vector multipliers by simply adding the
Gilbert multiplier subcircuits.

Figure 3.19 presents the 3-dimensional vector multiplier. In this figure, identical

three Gilbert multiplier subcircuits are connected together via I, and I_ current bus.

Vbb VBb
P T A
va—d[ms ro]p-vs vi—d[aes me]p-ve va—{[m w]p-v i ms]p-va
wpa sall-vz F T AN T a

ol o bl ol oL | Sl

S sl ||] -
wedm salbw || il sl il
vl v : E_ o2 -
S Bl)

Figure 3.19. The circuit diagram of the 3-D Vector Multiplier

The PSPICE simulation result is shown in Figure 3.20. In this figure, all V1,V2,V3
and V4 of the subcircuits are connected together. V2 and V4 are connected to 2.5V
and V3 is varied from 0.5V to 4.5V. The output voltage obtained by the different
voltages of V1 and V3 are shown in this figure. The output voltage gain and the

saturated voltage are controllable by the Vpras voltage and the (W/L) ratio of active

55

* 3-D Vector Multiplier: ORBIT, N83J (vm3_20u.cir)

25V 7

20v 4

15V 5
:

Figure 3.20. The PSPICE circuit simulation result: the 3-dimensional vector multi-
plier

resistors.

3.5 Implementation of the modified update law

With a view towards a circuit realization, we have proposed the circuit to implement
the modified update law [13][28][47]. To approach the concept of implementing the
differential equation, let us first review the circuit shown in Figure 3.21.

In this figure, there is a current source Ijy from the modified Gilbert multiplier
and two PMOS transistors as active resistors. A capacitor is attached to the Voyr
node to generate the dynamic behavior of the circuit. We assume that M1 and M2
are a matched pair (i.e., they have the same conductance), work in the saturation

region, and have the same threshold voltage. We have the circuit equation by applying

e
- Vour
I C J} e
(multiplier) ‘lﬂ’__’ M2 I
b I

Figure 3.21. The implementation of the differential equation

Kirchhoff’s current law at the Voyr node,

I'n + Ipy = Ip2 + Ic (3.36)
Ipy = B(Vbp — Vour — Vr)? (3.37)
Ip2 = B(Vour — Vss — Vr)? (3.38)

_ ~dVour
Ic=C) (3.39)

After some algebraic manipulations, we have a solution for Voy7r as

dV 1 2
—ovT _ —'IIN——é(VDD"VSS-2VT)VOUT+£(VDD—VSS—2VT)(VDD+VSS) (3.40)
dt C C C
dV, 1 2G G
;UT = EIIN - —C-VOUT + E(VDD + Vss) (3.41)

where G is given as equation (3.11)

G = B(Vpp — Vss — 2Vr)

57

The last term can be treated as an AC-ground term. If we rewrite the equation

with the shifted variable Voyr,

Vour = Vour — 5 (3.42)
dV, 1 2G
-—-—5th = EIIN - FVOUT (3.43)

With a new variable Voyr, the reference voltage is shifted to 2.5V when Vpp is 5.0V
and Vsg is OV.
The equation (3.43) is qualitatively same as the following differential equation
(3.44).
dw;;

5 = di = yi)z; — naw; (3.44)

Thus the learning parameter, 7, is related with the capacitor value in the learning

circuit and the a parameter is related with the conductance of the transistor.

CHAPTER 4

Learning Temporal Signals

The supervised learning algorithm will be extended to incorporate the use of temporal
processing. The standard feedforward network makes its topology implausible in
a neurobiological sense. On the other hand, by permitting arbitrary connections,
including the use of feedback, the recurrent network assumes a more neurobiologically
plausible topology [48].

In this chapter, we review several learning methods in literature for temporal sig-
nal. We consider a neural network consisting of the interconnection of N continuous-
valued neurons, V;, continuous in both time and amplitude, and with the synaptic
weights from neuron j to neuron : denoted by w;;. Neurons are assumed to have the
nonlinear function, S, such as tanh. Unlike the standard feedforward network, the
network will be permitted to have feedback connections among the neurons; that is,
the network is recurrent.

Three subsets of neurons are identified in the neural networks:
1. Input neurons: they receive stimuli directly from the externally applied pattern.
2. Output neurons: they supply the overall response learned by the network.

3. Hidden neurons: which are neither input nor output neurons.

38

59

Of particular interest is the ability of the recurrent network to deal with time-varying

input or output through its own temporal operation.

4.1 Time-dependent recurrent back-propagation

Pearlmutter [50] has developed an algorithm for training a general continuous-time

recurrent network. The units evolve according to

dy;
dyt = _yi+3(zwijyj)+1i (4.1)

i
= —yi+ S(nety)) + I; (4.2)

Some of the units are designed as input units and have input values I;. Similarly,
some units are used as output units with desired training values d;.
The objective is to minimize the difference between the outputs of the neural

networks and the desired outputs:

E=3 [Slue - difla (43)

o keo

where the sum is only over the units that are output units.
We must minimize equation (4.3), subject constraints equation (4.1). For this

purpose, we introduce the functional:

ty
J = / Ldt (4.4)

— /1 L Z[yk—dk]2+zA) 1'—+y. S(Z:wijyj)—fi dt (4.5)

to keo

where the constraints equation (4.1) is multiplied by Lagrange multipliers, A;(t).
The variation of the integral[51][52] leads to the well-known Euler-Lagrange equa-

60

tions for the functions y;(t), \i(t) depending on time. For y;(t), we have

0L d (oL
5 (5) =0 o
and
oL
ETH =0 (4.7)
with the end-point conditions:
oL
a—g‘.(t =1)=0 (4.8)

Notice that the equation (4.7) is in fact equivalent to equation (4.1).

The equation (4.6) can be expressed as

aL

a— = 6k(yk - dk) + A - Z/\jS;wjg (49)
Yi j

oL

3_3].- = TA.' (410)

where 64 is 1 if k € O and 0 if otherwise. S is the derivative of S(net;) in terms of

net;. Finally, we obtain
A = 8k(yr — dk) + X — 3 ;S (4.11)
J
The boundary conditions are given by
oL
a_y.-(t =t)=0=X\({t=1) (4.12)

As for the back-propagation algorithm, we adapt the weights by gradient descent

61

method such as
aJ

3w.~ 5

t
Aw;; = —q = q/ l y;Siddt (4.13)
to

where 7 is a small positive constant.
Equations (4.1), (4.11), and (4.13) specify the learning rule for the recurrent net-
work. Equation (4.11) is a backward integration in time and has a final value in

equation (4.12). The learning algorithm proceeds as follows:

1. Starting from t = o to t = t,, integrate the activation equation (4.1) in forward
time with initial condition. Record every state, y;, and the derivative of §;,

S'(net;).

2. Make input signal halt. With the final value of A, in equation (4.12), start

integrating the equation (4.11) in backward time. Record every co-state, A;.

3. With the data which are obtained in step 1 and step 2, update the corresponding

weight change using equation (4.13), and repeat the computation.

This algorithm is successfully used by Pearlmutter to learn temporal trajectories
[50]. He has trained a recurrent neural network with no inputs, four hidden units,
and two output units to follow the circular trajectory. In addition to the circular
trajectory, he has trained a network with ten hidden units to follow the figure eight
trajectory. Since this algorithm requires analog memories and backward integration,

it has limitation for analog circuit implementation.

4.2 Classification of temporal trajectories

The previous Pearlmutter’s algorithm is used for the identification of temporal trajec-
tories. For the classification of temporal trajectories, Sotelino et al. [53] has modified
the Pearlmutter’s algorithm. In Sotelino’s algorithm, the decision is taken immedi-

ately at the end of the input signal. The output units play the same role as the

62

hidden units before the end of the input signal, and the task of the network is easier:
the activation of the output units just has to pass through a point; they do not have
to follow a trajectory.

As in the Pearlmutter’s algorithm, the activation rule for V; is given by

T%i =-Vi+ SO _wiV))+ L (4.14)

We have to minimize the functional

J= LS W - Dy, + / Ldt (4.15)

2 keo

where L is the Lagrange function

L= ZA) |7 +v S(Zw,,V)] (4.16)

The output units do not have to follow a desired time trajectory any more. They have
to classify the signal by clamping output units on at time ¢,. The end-point term at
time ¢, is exactly the same as the one used in standard back-propagation algorithm
for the output layer. The difference is that the dynamic is continuous.

By the Euler-Lagrange equations,
= A, - E /\jS;wj.- (4.17)
Jj

The end-point conditions at ¢ = t; are now

oL
0_6_V a—v[J%(:)(V D)]t=t1 (4.18)

63

and we obtain

Ai(t =t1) = —6;(V;(t =t1) — Dj) (4.19)

The gradient descent rule is obtained as same as the Pearlmutter’s algorithm.

aJ

Aw;j = =9 Ow::
ij

t
n / 'ViSihdt (4.20)
to
The procedure of updating the weight is the same way in the previous section.
The fundamental difference with Pearlmutter’s algorithm is the end-point condition,
equation (4.19). The final value of the Lagrange parameters is no longer zero, but
the difference to the target value at this time. This can be considered as the error

signal that has to be back propagated in time.

4.3 Recurrent Back-propagation

Pineda [54] has developed the back-propagation algorithm that can be extended to
arbitrary networks. Let us consider N continuous-valued units, V;, with connection
weight, w;;, and activation function, S. Some of these units are used as input neurons
and have input values of I;. We define I; = 0 if the neuron : is not the input neuron.
Similarly some may be output neurons with desired values of D;.

The dynamics of the network is based on the following differential equations

dV;

il —Vi+ S wiV) + I; (4.21)
J

= -Vi+ S(net,-) +I; (422)

where w;; is a connection weight from jth neuron to the ith neuron. It is easily seen

64

that this dynamic rule leads to the right fixed point, where dV;/dt = 0, given by
Vi= S(E wi;V;) + I; (4.23)
j

We assume that at least one such fixed point exists and is a stable attractor.

An error measure for the fixed point is the quadratic one

E=iYE (4.24)
2 k
where
Dy — Vi if K is an output unait;
o G P (4.25)
0 otherwise

Gradient descent method gives

O Vi
Ny Exp— (4.26)

A rs = - —
s nawn k ow,,

On performing the differentiation in equation (4.23), one immediately obtains

oV
ow,,

= §'(net;) |6,V + Zw;j ov; } (4.27)
J

ow,,

where §;, is the Kronecker § symbol. With solving for the derivatives, the result is
ov;
;L;J‘aT:. = 5,-,.5'(net,~)V, (4.28)

where

L.‘j = 6,'1' - S'(net;)w;j (4.29)

65
Inverting the linear equations (4.28) gives

Vi
ow,,

= (L7)k S'(net,)V, (4.30)
On substituting equation (4.30) into (4.26) one immediately obtains

Aw,, = 6.V, (4.31)
where

b, = S'(net,) Y Ex(L™")ir (4.32)
k

Equations (4.31) and (4.32) specify a formal learning rule. Equation (4.32) requires
a matrix inversion to calculate the error signal é,. Direct matrix inversion is not
suitable for implementation of the neural networks. A local method for calculation
of &, is obtained by the introduction of an associated dynamic system. Consider the

vector z whose components are defined in terms of the components of § according to
8, = S'(net,)z, (4.33)

so that
2, = z: E],(L_l Ykr (4.34)
k

Equations (4.32) and (4.33) imply that z, satisfies
Z L,.,-z, = Eg (4.35)

Now observe that the solutions of equation (4.35) are the steady-state solution of

‘r% ==Y Lz +E; (4.36)

66
Using equation (4.29),

r% = —2; + Z S'(net,)wy;z, + E; (4.37)

Equations (4.31) and (4.33) lead to a learning rule of the form
Aw,, = 1S'(net,)z,V, (4.38)

Equations (4.22), (4.37), and (4.38) completely specify the dynamics for an adap-
tive neural network, provided that equations (4.22) and (4.37) are convergent.

The whole procedure is

1. Use the activation equation (4.22) to find V}'s.

2. Compare with the targets to find the Es from equation (4.25).
3. Relax the network equation (4.37) to find z]s.

4. Update the weights using equation (4.38).

4.4 Real-time recurrent learning

Williams and Zipser [55] showed how to construct a learning rule for general recurrent
networks that runs continuously. The network so trained is called a real-time recurrent
network. The network operates at discrete time and the rule can be run on-line,
learning while sequences are being presented, rather than the whole sequences are
shown.

Consider a network consisting of a total of N neurons and M input connections.
Let z(n) denotes the M x 1 input vector at discrete time n, and let y(n + 1) be

the corresponding output vector produced one step later at time n + 1. The input

67

vector z(n) and one-step delayed output vector y(n) are concatenated to form the
(M + N) x 1 vector z(n). Let A denote the set of indices 7 for which z;(n) is an
external input, and let B denote the set of indices ¢ for which z;(n) is the output of

a neuron. We have
zi(n) ifi€A
zi(n) = (=) i (4.39)
y;(n) ifi€eB
Let W be the N x (M + N) weight matrix of the network. The net internal

activation of neuron i is given by

net,'(n) = Zw,‘ij(n) (440)

yi(n+1) = S(neti(n)) (4.41)

Let di(n) denotes the desired (target) response of neuron ¢ at time step n. Let C
denote the set of neurons that chosen to be visible neurons externally. The remaining
neurons are hidden neurons. An appropriate error measure e(n) on neuron i at time

step n is given by

e'-(n) _ d.-(n) - yg(n) zf teC (4.42)
0 otherwise

The instantaneous error measure at time step n is

E(n) = % % ltn) (4.43)

To minimize the error, we use the gradient descent method. For a particular weight

wpe(n), we may define the incremental change Aw,,(n) at time step n as follows:

Awpy(n) = - %ET? (4.44)
= qzek(n)ag:v n) (4.45)
k rq

68

where 75 is the learning-rate parameters. The last derivative in (4.45) can now be

found by differentiating the activation equation (4.41),

0yi(n)

Ow,,

= S§'(neti(n — 1)) |8ipzg(n — 1) + 3 wi; ayjé()::_ .
j Pe

(4.46)

where 6;, denotes that é;, = 1 when ¢ = p, otherwise it is zero.
It is natural to assume that the initial state of the network at time step n = 0,
say, has no functional dependence on the synaptic weights; this assumption implies

that
dy:(0) _

0wy,

0 (4.47)

We now may define a dynamic system by a triply indexed set of variables, r;q,

where

T, = (4.48)

For every step n and all appropriate i, p, ¢ the dynamics of the system are governed
by:
W;q(n) = S'(net;) bipzg(n — 1) + E w;ngq (4.49)
3

with initial conditions

mh, =0 (4.50)

The real-time recurrent learning algorithm for training the recurrent neural net-

work proceeds as follows:

1. For every time step n, starting from n = 0, use the activation equation (4.41)
of the network to compute the output value of the N neurons. For the initial
values of the weights, choose them from a set of uniformly distributed random

numbers.

2. Use equation (4.49) and (4.50) to compute the variables =} (n).

69

3. Use the value of 7} (n) obtained in step 2, and the error signal e;(n) expressed

in equation (4.42), to compute the corresponding weight changes
Awpy(n) =19 2 ei(n)mh (n) (4.51)
4. Update the weight w,, in accordance with

Wpq(n + 1) = wpg + Awpy(n) (4.52)

and repeat the computation.

The use of the instantaneous gradient rather than the true gradient over the whole
interval is analogous to that encountered in the standard back-propagation algorithm
used to train a multilayer feedforward neural network, where weight changes are
made after each pattern presentation. The practical differences between the real-
time and non real-time versions are often slight. These two versions become more
nearly identical as the learning rate 7 is sufficiently small [55]. The real-time version

avoids any storage requirements and is especially simple to implement.

4.5 Hardware limitation of the real-time recur-
rent learning rule

At the Williams and Zipser’s algorithm, the learning rule runs on-line. The on-line
version of the Williams and Zipser’s algorithm is appropriate for analog circuit imple-
mentation since analog hardware usually doesn’t have memory capability. Though
the learning equations of the real-time recurrent learning rule are simple and easy
to implement with analog hardware, the Williams and Zipser’s algorithm requires a

large number of 7 equations.

70

Table 4.1. Hardware requirements of the real-time recurrent learning rule

Number of | Number of | Number of weights | Number of 7 equations
| neurons, N | inputs, M | W = N(M + N) N*M + N3
2 2 8 16

3 2 15 45
4 2 24 96
5 2 35 175
6 2 48 288
7 2 63 441
8 2 80 640
9 2 99 891
10 2 120 1200
2 3 10 20
3 3 18 54
4 3 28 112
5 3 40 200
6 3 54 324
7 3 70 490
8 3 88 704
9 3 108 972
10 3 130 1300
2 4 12 24
5 4 45 225
10 4 140 1400
20 4 480 9600
50 4 2700 135000
100 4 10400 1040000

Consider a recurrent neural network with N neurons and M inputs. Under these
conditions, the dimension of the weight matrix becomes N x (M + N). The imple-
mentation of the real-time recurrent learning rule uses = equations (4.49) and weight
update equations (4.45). The 7 equations take total N x (N x (M + N)) equations.
Thus, the required number of 7 equations becomes N2M + N3.

In table 4.1, the required number of weight equations and 7 equations for different
number of neurons and inputs are shown. Nevertheless, because of its ease of imple-

mentation, the real-time recurrent learning rule is used by many researchers working

with small networks.

71

CHAPTER 5

Implementation of the Modified

Recurrent Back-propagation

5.1 The modified recurrent back-propagation
rule

Let us consider N neuron recurrent neural network which is fully connected among
neurons. Let y; be the output of the neuron, w;; be a connection weight from the jth
neuron to the ith neuron, and z; be the external inputs. Some of the neurons can be
externally seen as output neurons, and some neurons receive the external inputs.

The dynamics of the network in the Pearlmutter’s algorithm is expressed as equa-

tion (4.1)

T(T = —ui+SQ wyy;) + 1
J

= —yi+ S(net;) + I;
We propose the equivalent discrete model to the recurrent neural network as

yi(t + At) = S(neti(t)) (5.1)

12

73

= S wijyi(t) + zi(t)) (5.2)

where S means the sigmoid function, and z;(t) represents the input value which may
be zero if y;(t) is not used as an input neuron in the network. The activation equation
(5.2) is analogous to the equations in the feedforward neural network.

In the Pearlmutter’s algorithm, the error is defined in the integral form as equation

(4.3)

1 st
E = 5/ > lyk — di)?dt

to keo

The error measure of the proposed network is defined at instantaneous time ¢ such as

E(t)

3 260 + 3 X T ol (53
k LI]
- %zk:(dk(t)) + 5 T T e (5.4)

where k denotes the output neuron, di(t) is the desired value of the output neuron
k, and a;; is a small positive constant, which is damping factor.
In the Pearlmutter’s algorithm, the following two equations (4.11) and (4.13)

specify the learning rule.

A = iy — di) + N = 3 A Shwj; (5.5)
J
o
Awij = —nz = =7 /¢ y; Shdt (5.6)

We propose the modified recurrent back-propagation update law with equa-

74
tions (5.7) and (5.8).

dz;(t)

Tz dt = —Zi(t) + Z Wj;Zj(t) + ek(t) (5.7)
%)' = nzi(t)y;(t) — nai;jwi;(t) (5.8)

In the Pearlmutter’s algorithm, the forward integration from to to ¢, is used in
the weight update equation (5.6). If we consider that the weight update law changes
the weights only at instantaneous time ¢, not at the interval from ¢, to t,, the weight
update equation becomes equation (5.8) with damping factor a. The modification
from equation (5.6) to equation (5.8) is based on the derivation in Section 2.3.2.
We use the continuous-time gradient descent method for modification and we re-
move the sigmoid derivative term. In the implementation of the modified recurrent
back-propagation update law, we set the n parameter as small as possible and the
integration is obtained by averaging of the weight value through time. Since we start
the learning with arbitrary initial conditions and continue to learn the target with
periodical waveform, the A equation (5.5) is modified to the z equation (5.7). For
analog hardware implementation, the backward integration is impossible. We employ
only forward instantaneous update in the z equation.

Also, this updating rule is the special case of the Pineda’s algorithm. The Pineda’s
algorithm assumes the activation equation is convergent and the error measure is cal-
culated in the fixed point. The update rule at the modified recurrent back-propagation
is the on-line version of the Pineda’s algorithm. It updates the weights at instanta-
neous time ¢t. The activation equation at neurons gives instantaneous response to the
network at time . Instantaneous error is measured at time ¢t and used to update the
weights, while the time-varying inputs and time-varying targets are changing with

time.

75

Since we have showed the successful operations of the feedforward neural network
with the modified algorithm that does not have the derivative of non-linearity term
[13][28][47], the derivative of the non-linearity term is omitted. The omission of
the derivative of the non-linearity term makes the analog hardware implementation

simple.

5.2 Stability of the modified recurrent back-
propagation

If we do not guarantee that the network will be stable, it may not perform the task
we wish it to learn. We need to investigate the stability of the learning rule.

To consider the stability of the recurrent neural network with fixed point learning,
we must consider the stability of the dynamic equation of the system and the z
equation. It has been shown previously by Almeida [56] that if the dynamic equation
of the system is stable, then the z equation is stable as well.

Other stability requirements for the dynamic equation of the neural network deal
with constraints on the weight matrix. Hopfield [21] has guaranteed that if the weight
matrix is symmetric, he could find a Lyapunov function and global asymptotic sta-
bility. We can not ensure that our weight matrix will be symmetric. Other type of
constraints [57][58] deal with the size of the weights in the network relative to the
maximum gain of the sigmoid function. However, they consider only static patterns.
The key pattern is given as a constant input to the network. There is no report on
the stability analysis of the recurrent neural network when the pattern is a dynamic
(temporal) pattern.

In the modified recurrent back-propagation learning rule, we have two basic equa-

76

tions for the learning rule such as
wij(t) = nzi(t)y;(t) — nawjwi;(t) (5.9)

&(t) = 3o wii(t)z;(t) + ex(t) — Bi(?) (5.10)

Note that we have inserted the § parameter to investigate the stability of the z
equation. In equations (5.9) and (5.10), the damping factor and B3 control the
stability of the equations.

We have simulated the learning rule in MATLAB. The network is given as 4-
neuron neural network with threshold weights. Thus there are total 20 weights, 16
connection weights and 4 threshold weights.

The experiment has two inputs and one target. In this experiment, two input

values are given as

z1(t) = sin(0.5 x * x t) (5.11)
z,(t) = 31n(0.25 x 7 x t) (5.12)
The target value is given as
1
di(t) = 5(21(t) + (2)) (5.13)

With input and target values, the differential equations (5.9) and (5.10) are solved

with the activation equation,

yi(t + At) = tanh(z: wi;(t)y;(t))

17

- -
- [N o
0 Wy W1 Wiz W13 W4 0
L/} 0
Y2 W20 W21 W22 W23 W4
= tanh y2 | + (5.14)
Y3 W3p W31 W32 W33z W34 31
Y3
Y4 Wy W41 Wy2 W43 W44 T2
\ | Y4)

where tanh is a hyperbolic-tangent function. There are 16 differential equations for

the weight update equation,

250 — ey Os(t) — mews (1)

We assume all «;; has the same quantity o.

W) Wn Wiz Wiz Wyg 21
Wz W21 W22 W23 W4 22
. ... =1 1 1 y2 ¥3 va
W3 W31 W32 W33z W34 <3
We W41 W42 W43 Wy4 24

Wy Wi W12 W3 Wig

Wz W21 W22 W23 W24
—na (5.15)

W3p W31 W32 W33z W34

W W41 W4e2 W43 Wy4
and 4 differential equations for the z equation,

Tzdzd;gt) = Z wjiz;i(t) + ex(t) — Bzi(t)

Table 5.1. The MATLAB simulation results

78

| n(learning rate) oa(weight update) ((z equation) Results |

0.50 0.050 0.20 infinity
0.50 0.050 0.30 infinity
0.50 0.050 0.35 infinity
0.50 0.050 0.40 converge
0.50 0.050 0.50 converge
0.05 0.050 1.00 converge
0.10 0.050 1.00 converge
0.30 0.050 1.00 converge
0.50 0.050 1.00 converge
0.70 0.050 1.00 converge
0.90 0.050 1.00 converge
1.10 0.050 1.00 converge
1.20 0.050 1.00 infinity
1.30 0.050 1.00 infinity
0.05 0.025 1.00 converge
0.10 0.025 1.00 converge
0.30 0.025 1.00 converge
0.50 0.025 1.00 converge
0.70 0.025 1.00 converge
0.80 0.025 1.00 infinity
0.90 0.025 1.00 infinity
0.10 0.010 1.00 infinity
0.20 0.010 1.00 infinity
0.30 0.010 1.00 infinity
0.40 0.010 1.00 infinity
0.50 0.010 1.00 infinity

z wn w21 W3 Wq 2 €1 2

z2 Wiz W2 Wiz Wa2 23 0 22

Tz = - B
z3 W13 W3 W33 We3 z3 0 23
| 24| | W wa Wi wa || 2| |0 | 24

(5.16)

In MATLAB simulation, we have changed the parameters 7, a, and 8 to investi-

gate the stability. The simulation results are summarized in Table 5.1.

From the simulation results, the stable operation of the network is determined by

the damping factors. If the a parameter and the 3 parameter are not big enough to

79

make the equations stable, the w values and the z values increase to infinity.

The first set of data in Table 5.1 shows the stability dependence on the § parame-
ter. With the fixed value of n = 0.5 and a = 0.05, the small 3 value drives the neural
network into infinity values of weights and z values. The weights have converged to
the constant values with ripples with 8 = 0.40, however, the weights have diverged
to the infinity value when 8 = 0.35.

The rest of the results in the table are obtained with the fixed value of 8 since
equation (5.8) implies the 3 parameter is 1. From the results in the table, we can
see that the small value of a, such as @ = 0.01, makes the unstable operation in
the neural network. Another observation on the a parameter suggests that a large
a parameter is not desirable for successful learning. The large a parameter ensures
the convergence of the weights. However, the large a parameter tends to drive the
weights to near zero since the damping factor dominates the weight update equation.

The n parameter usually deals with the speed of the learning equation. The
large value of 5 causes the divergence of the weights and the z values. Once the
differential equations are stabilized, the parameter determines the success or failure
of the learning. If the learning rate (n) is not sufficient small, the ripple in the
converged weights becomes significant since we are using the instantaneous learning
in continuous time. To get the constant weight in learning phase, we need to have a
very small value. In the learning phase, we usually take the averaged value of the
oscillating weights. If the weights are converged with large oscillation, we can not
decide the constant weight values.

From Figure 5.1 to Figure 5.4, we display four simulation results in Table 5.1.
In Figure 5.1 and Figure 5.2, the effect of the a parameter is shown. The large o
parameter causes the large magnitude oscillation of the converged weight. In Figure
5.3, it is shown that the constant converged weight can be obtained with the small 5

parameter. Figure 5.4 shows the diverged weights to the infinity when 7 has a large

80

Weight: eta=0.5 aipha=0.025 beta=1.0
A T v v

Figure 5.1. The MATLAB simulation result: the converged weights example

Waeight: eta=0.5 alpha=0.050 beta=1.0

°ne L] T A v v J | L T

odf ifWMMM:«:f:,:v:‘u:.:,:-:.'v:.:,:.:,:.:;,:.;,:.:,‘.:‘:!:‘:‘:,:.:,:.:,:.:;‘:.:.:.‘
,'1111!1!!‘!!!!!!vvvvv!vvvvnvvwvvvvvwvvv!vvvv\vwv

0 50 100 150 200 250 300 350 400 450 500
time

Figure 5.2. The MATLAB simulation result: the converged weights example

81

Figure 5.3. The MATLAB simulation result: the converged weights example

Woeight: eta=0.8 alpha=0.025 beta=1.0

15 R ; P

Figure 5.4. The MATLAB simulation result: the diverged weights example

82

value.

5.3 Implementation of the modified recurrent
back-propagation

The recurrent neural networks with learning capability are designed using the mod-
ified recurrent back-propagation learning rule. This implemented recurrent network
can be divided into two parts: a recurrent neural network and a learning network.

Suppose that the recurrent neural network has four neurons. It is fully connected
including self-feedback. There are 16 connection weights and 4 threshold weights in
this recurrent neural network. The recurrent neural network is shown in Figure 5.5.

Let us suppose that the recurrent neural network has two inputs, z; and z,. These
inputs are connected through the neuron, y3 and y4. Two neurons, y; and y,, will be
visible with the target sigha.l, d; and d;. wjo denotes the threshold weight and w;; is
the connection weight from the jth neuron to the i:th neuron.

The activation equation is given as

- (- v)
n Wy Wi Wiz Wiz Wiy 0
7)1
Y2 Wy W1 Wiz W3 Wy) 0
=S y2 | + Vlogicl (5.17)
Y3 W3g W31 W32 W3z W34 T
/K]
i Ya] I Wy W41 W4e2 W43 Wyy T2
\ Loy S)

In circuit implementation, activation equations (5.17) are implemented using the 6-
dimensional vector multiplier. There are 5 multiplications between the weight matrix
and the input vector and a multiplication for input. If there is an input signal to

the neuron, the activation equation is implemented using whole 6 modified Gilbert

83

Figure 5.5. The recurrent neural network with four neurons and two inputs, S means
the sigmoid function generator

84

multiplier sub-circuits. If there is no input to the neuron, the 6-dimensional multiplier
uses only 5 modified Gilbert multiplier sub-circuits by connecting the input terminal
to the reference voltage, 2.5V. If there is no + or - sign in the dotted pair, V2 and V4
are 2.5V. Vth denotes the threshold voltage which is chosen to be 3.5V and Vlogicl
has been chosen as the role of identity 1 in multiplication. Since the high saturated
voltage of the sigmoid function generator is 3V, Vlogicl is selected to be 3V.

The sigmoid function generator is designed to have the saturated voltage as 2V
and 3V. The gain and the voltage characteristics are shown in Section 3.2.4. The bias
voltage is selected as 1.1V.

The learning network is implemented using weight update equations (5.8) and z

equations (5.7). There are 20 differential equations for the weight update equation,

Wy Wi W2 W13 W4 2
Wz W21 W22 W23 W24 22
L = Vih y1 y2 ys s
W3 W31 W32 W33z Wiy 23
Wy Wqy W42 W43 Wy i 24

Wy Wi W2 W13 Wi4

W20 W21 W22 W23 W24
—na (5.18)

W39 W31 W32 W33z Wiy

Wy W4 W42 W43 W44

Weight update equations (5.18) are implemented using 1-dimensional multiplier since
the term na is implemented using active resistors and capacitors. The learning rate,
7 is related with the capacitor value and the damping factor, a is related with the
conductance of active resistors. Active resistors of the 1-dimensional multiplier uses
cascaded PMOS as shown in 3.5 since the small a parameter is required for successful

leaxrning.

85

There are 4 differential equations for the z equation,

- . - - - - - o - - W
2 Wy W21 W3 Wq 21 €1 2
23 W2 W Wiz Wa 2) €2 23
s = + Vlogicl — Vbeta (5.19)
23 W13 W23 W33 W43 23 0 23
i 24 Wyg W24 W34 Wyy 24 L 0 24
- = - = - - - -

The differential equations for the z equation (5.19) are implemented using 6-
dimensional vector multiplier. The 6-dimensional vector multiplier can be used as
a 6-dimensional vector multiplier or a 5-dimensional vector multiplier depending on
the existence of the target signal. If the neuron is not used as an output neuron, there
is no target signal to receive. In the case of non-output neuron, the e; is set to zero
by connecting V1 = V2 together to prevent producing the multiplication since V1 is
connected to the target signal and V2 is connected to the output signal.

We have tried to implement the damping factor (the last term, -z) in the z equation
using the active resistors. We have found that the use of the active resistors can not
guarantee the stable operation in the PSPICE circuit simulation. We realized the
damping factor using the negative self-feedback. Using the negative self-feedback,
we can control the stability of the neural network with the associated voltage to the
negative self-feedback. The associated voltage to the negative self-voltage is labeled
Vbeta. Vbeta is selected to 3V. If we reduce this voltage to 2.7V or 2.6V, then the
circuit operation turns to be unstable. When Vbeta is 2.7V, the weight values and
the z values usually hit the rail voltage (5V or GND). Vlogicl has been chosen as the
same role of identity 1 in multiplication. It is selected to be 3V.

In an analog circuit implementation, different time constants are used for equa-
tions (5.17), (5.18), and (5.19). The time y and z spend settling is negligible compared
to the rate of weight change 7. The learning rate () is designed to be slow compared

to the speed of presentation of new training samples.

86

The circuit block diagram of the recurrent neural network with modified recurrent
back-propagation learning circuit is shown in Figure 5.6.

In this diagram, 6D denotes 6-dimensional vector multiplier. S means the sigmoid
function generator. y; represents the state of neuron, 2; is the state of z equations,
and w;; is the connection weight from the jth neuron to the ith neuron. In the vector
multiplier, the usual multiplication occurs in the form of }";(V1 — V2) x (V3 — V4).
The dotted lines inside the vector multiplier show the multiplication pair. If V2 and
V4 are Vref = 2.5V, (21 — 2.5V) x (y1 — 2.5V) becomes z; x y; since 2.5V is the
virtual ground term. Vlogicl has been chosen as 3V and Vref is the reference voltage
which is 2.5V. Vth supplies the threshold voltage which is chosen to be 3.5V. Vbeta

in the implementation of z equation is selected to be 3V.

5.4 Simulation results of 4 neuron recurrent neu-

ral network

5.4.1 A circular trajectory generation

We have trained a recurrent neural network with no input units, two hidden neurons
and two output neurons. The neural network has fully connected weights. It has 20
weights, 16 connection weights and 4 threshold weights. Since the neural network has
no inputs, all input terminals are connected to the reference voltage, 2.5V.

It is trained to follow a circular trajectory. To learn the circular trajectory is the
well-known problem [14][50]. The desired state d; and d; are plotted against each
other in Figure 5.7. The target trajectory consists of a sine waveform and a cosine
waveform. The trajectory is given as the continuous waveform to the neural network.

We have run the PSPICE transient analysis. We performed the PSPICE circuit
simulation using the MOSIS 2.0um CMOS parameters. The PSPICE parameters are

87

Vref, 2.5V
Wio W)W, W, W, Viogicl Wag W WoWpWoviogicl
Wao Wy Wy, Wyywy viogicl
X
X2
Vth
"] "l T
Wa w. Wy,
o)
., "y ‘ ",
T I T)
target, d,
target, d,

wnWaWyWa 1

—

WiWnWyWe

Figure 5.6. The block diagram of recurrent neural network with the modified recurrent
back-propagation: four neurons and two inputs

88

Circular Trajectory

Figure 5.7. The circular trajectory

shown in Appendix A.l.

We apply the target signal to the neural network and observe the output waveform
and the weight waveforms. If the output is following the target closely and weights
have converged to the constant values, we take the averaged value of the weights.
The obtained weight values are used as a verification of learning. After learning, we
set the weight values to the neural network and see the generation of the trajectory
by the neural network. If the neural network generates the circular trajectory, the
learning is successful.

We found that the randomly initialized weight values didn’t fail to learn the trajec-
tory. We have performed several experiments with different frequencies of waveforms,
different values of capacitance, and different gains of active resistors in the weight
update equation. The results of the experiment are summarized in Table 5.2.

In Table 5.2, (W/L)A» denotes that (W/L) ratios of 4 PMOS transistors in
cascaded active resistors of 1-D multiplier for weigh update equation. The multiplier
with (W/L)=4/64 has higher gain than that of (W/L)=4/16. From the table, high

gain of active resistor will be desirable for successful learning. High gain of the active

89

Table 5.2. The simulation results of the circular trajectory experiment

(W/L)gtwe Target Cw Cgz Result Remark |

4/64 IMHz 20pF 1pF fail

4/64 IMHz 50pF 1pF fail

4/64 1IMHz 100pF 1pF fail

4/64 500KHz 20pF 1pF success

4/64 500KHz 50pF 1pF success example 1

4/64 500KHz 100pF 1pF success
4/64 250KHz 20pF 1pF small amplitude

4/64 250KHz 50pF 1pF success

4/64 250KHz 100pF 1pF success

4/64 100KHz 20pF 1pF fail

4/64 100KHz 50pF 1pF small amplitude example 3
4/64 100KHz 100pF 1pF success

4/16 IMHz 20pF 1pF fail

4/16 IMHz 50pF 1pF fail

4/16 1IMHz 100pF 1pF fail

4/16 500KHz 20pF 1pF small amplitude

4/16 500KHz 50pF 1pF success example 2
4/16 500KHz 100pF 1pF success

4/16 250KHz 20pF 1pF fail example 4
4/16 250KHz 50pF 1pF small amplitude

4/16 250KHz 100pF 1pF success

4/16 100KHz 20pF 1pF fail

4/16 100KHz 50pF 1pF fail

4/16 © 100KHz 100pF 1pF small amplitude

90

resistors implies the small value of the a parameter.

From the table, Cw means the capacitor value of the weight update equation. In
the weight update equation, a larger value of the capacitor implies a small learning
parameter 7. When the learning parameter is not small enough, the weight has a
ripple in its converged value. Small capacitance causes oscillatory behavior on the
converged weight values and makes the determination of the final constant weight
difficult. With the small capacitance, it is observed that the output waveforms usually
follow the target waveforms. However, the weight is oscillating and not approaching
the constant value when the capacitance is small. A large value of capacitance (small
learning rate) is needed for near constant value of the weights.

When the target signal is very fast trajectory such as 1M Hz, the learning is not
successful. The reason is that the circuit can not respond to the high frequency tar-
get. In this experiment, a target around 500K H z has the best results. With 250K H z
target signal, the weight has a small oscillation in its converged value. Usually, we
take the averaged value in the learning phase when the weights have oscillation. If
the peak-to-peak value of the oscillated value is not small enough, the taken averaged
value can not generate the exact trajectory. It results in a small amplitude trajectory
generation. In Table 5.2, the Result has three cases in the testing phase such as
success, small amplitude, and fail. The success case generates the circular trajec-
tory closely, the small amplitude case generates the circle in small magnitude. The
fail case can not generate the circular trajectory in the testing phase.

Both successful and failed cases of Table 5.2 are illustrated from Figure 5.8 to
5.23. We show four examples that are marked in Table 5.2. First two examples
are successful cases, the third example is the case of small amplitude, and the last
example is the failed case.

The obtained weights of each example are shown from Table 5.3 to 5.6. In these

tables, w;; denotes the connection weight from jth neuron to ith neuron and wjo

91

denotes the threshold neuron at the neuron :.

Each example consists of four figures. In the first figure, three sub-plots are
shown. V(7) is the first target signal, d,, and V(8) is the second target signal, d,.
V(1) represents the actual out;;ut signal, ¥, and V(2) represents y,. The second sub-
plot shows d; and y;, and the third sub-plot shows d; and y;. The trajectory shape
is illustrated in the first sub-plot in the figure. The transient trajectory is shown in
V(1) versus V(2) plot (y, versus y, plot).

In the second figure, the error measure is shown in the first sub-plot. The error

measure is given as

Erma = %J(dl - yl)2 + (d2 - y2)2 (520)

The value E,,,, has the sense of a root-mean-square normalized error. The second
and the third sub-plot show the weight values. The weights are labeled as w;; = V(i)
and w;o = V(6¢). The final weight in the learning phase is obtained by averaging each
weight at the end of simulation.

The third figure and the fourth figure show the results in the testing phase with
the weights that are obtained in the learning phase. Two experiments with different
initial conditions are shown in the third figure and in the fourth figure. The third
figure shows the test result when the initial is inside the circle and the fourth figure
shows the test result when the initial condition is given at the outside of the circle.
The first sub-plot in each figure shows the state trajectory.

Except the failed case, all test results (two successful cases and a small amplitude
case) show that the circular trajectory is a limit cycle. The neural network has learned
the stable oscillation and generated the circular trajectory irrespective of the initial

state.

Table 5.3. The averaged weights in the learning phase from the PSPICE transient

analysis: example 1

92

J

1

2

3

4

W,
Wa;
w3;
Wyj

2.7844
2.5706
2.5279
2.5285

2.4111
2.7708
2.5338
2.5313

2.5234
2.5674
2.5253
2.5248

2.5264
2.5619
2.5254
2.5252

2.5276
2.5262
2.5339
2.5338

Table 5.4. The averaged weights in the learning phase from the PSPICE transient

analysis: example 2

J

1

2

3

4

wy;
Waj
‘lD3J‘
Wy;

2.7751
2.5901
2.5188
2.5190

2.4051
2.7702
2.5223
2.5208

2.5147
2.5427
2.5152
2.5150

2.5164
2.5401
2.5152
2.5150

2.5286
2.5309
2.5225
2.5226

Table 5.5. The averaged weights in the learning phase from the PSPICE transient

analysis: example 3

J

1

2

3

4

wh;
Wa;
W3;
Wqjy

2.7452
2.5772
2.5292
2.5294

2.4099
2.7536
2.5306
2.5289

2.5296
2.5614
2.5250
2.5248

2.5305
2.5587
2.5252
2.5249

2.5215
2.5276
2.5344
2.5342

Table 5.6. The averaged weights in the learning phase from the PSPICE transient

analysis: example 4

J

1

2

3

4

wh;
wa;
w3;
Wyj

2.7452
2.5772
2.5292
2.5294

2.4099
2.7536
2.5306
2.5289

2.5296
2.5614
2.5250
2.5248

2.5305
2.5587
2.5252
2.5249

2.5215
2.5276
2.5344
2.5342

93

* The modified recurrent back-propagation : 4 neurons (2-1-1) : or.clr

Figure 5.8. Example 1 (the first figure): Input and target signals

* The modified recusrent back-prapagation : 4 neurons (2-1-1) : ciré.clir

Os 50us 100us 150us 200us
OVI3) oV(34) AV(41) TV(4Q) OV(43) < V(44) x V(1) 'Vm‘v(ﬂ) = V(84)

Figure 5.9. Example 1 (the second figure): E,,, and the weights

94

* The modified recurrent back-propagalion : 4 neurons (2-1-1) : ficiré.cir
Date/Time rur: 0611786 04:16:13 Temperature: 27.0

Figure 5.10. Example 1 (the third figure): Test phase with the initial condition inside
the circle

* The modified recurrent back-propagation : 4 neurons (2-1-1) : ficir8.clr

Figure 5.11. Example 1 (the fourth figure): Test phase with the initial condition
outside the circle

95

* The modiied recusrent back-propagation, (2-1-1), 500K, cw=S0p : diré.clr
Date/Time run: 08/1458 134131 Temperahure: 27.0

.
.
’
.
'
1]
.
'
'
.
]
'
'
'
.
.
'
'
.
'

+

O S0us 100us
OV(33) eV(M) aV(4l) YV(E) oV(43) +V(44) xV(81) 'Vgﬂm x V(84)

Figure 5.13. Example 2 (the second figure): E,,,, and the weights

96

* The modified recurrent back-propagalion : 4 neurons (2-1-1) : fids6.clr

Temperahre: 27.0

Date/Time run: 06/17/58 04:56:05

9BV b-eeeeccctcmcccnccccccactcaccccaccceceacacceccaccaccccaacccccccc ettt eeccaccac eseescencacnaccacsnnmencanaaaad

o V(1)

epecceccccecsccscscccnapacsesannnnn

ceccamsseeqescansscccnansanmseee

ide

ion ins

it

Test phase with the initial cond

Figure 5.14. Example 2 (the third figure)

the circle

* The modified recusrent back-propagalion : 4 neurons (2-1-1) : fidir8.cir

Date/Time run: 06/20/98 00:54:34

e

o V(1)

epecceccecaccacen

ceccscacaseysccsan

ov@)

on

Test phase with the initial condit

Figure 5.15. Example 2 (the fourth figure)

outside the circle

97

* The mocified recurrent back-propagaion : 4 neurons (2-1-1) : cir8.clr
Date/Time run: 05/1798 14:18:32 Tempershse: 27.0
W 7 ..

A

Figure 5.16. Example 3 (the first figure): Input and target signals

* The mocified back-p i 4 (2-1-1) : cirS.clr
Date/Time run: 06/17/08 14:18:32 Temperature: 27.0

Os S0us 100us
OV(X3) V(M) aV(41) VV(42) oV(43) +V(4d) xV(61) vV(62) 4V(63) =V(ed)
Time

Figure 5.17. Example 3 (the second figure): E.., and the weights

98

* The modified recurrent back-propagation : 4 neurons (2-1-1) : ficir8.cir

Temperature: 27.0

Date/Time run: 05119/96 01:26:48

L PR DET R REREpE

o

L R R R A LR L LR LR R Rl LR S et At ALt e Rt Lt L LRt R ey]

5.0v

4.0V

aov

a0v

1.0V

(1)
| i |

asv

ceecpecccccd

cpeeeccecnan

Pocccccecaccccepececacaceceseo et ect ce e e e e e e ecceccecacgecnocnannennn

4us

10us

tial condition inside

ini

Test phase with the

Figure 5.18. Example 3 (the third figure)

the circle

* The modified recusrent back-propagation : 4 neurans (2-1-1) : ficlk8.cir

L
H §

Date/Time run: 08/19/96 01:29:36

V(1)

cepeneaand
14us

cesrcecscssesyrreccorsnsscncpe

ceepreccececccccceqecccncacccanasqen

cessprasccenernn

Pococecacna

Time

Figure 5.19. Example 3 (the fourth figure)

outside the circle

Test phase with the initial condition

99

* The madiied recurent back-propagalion(2-1-1), 2S0KHz, ow=20p : dir18.cir
aov

»
2

Figure 5.20. Example 4 (the first figure): Input and target signals

* The modified recurrent back-propagation(2-1-1), t=250KHz, cw=20p : dirt8.clr

Date/Thme run: 05/17/98 08:52:40 Temperahure: 27.0
10 T -- ~!
B e T LT T E T e 3
0 0.5°0qrpwWiv(7)-¥(1).2)+pwWitV(8)-v(2).2))
E T e it e --- - ----q

cecevscblech L Bee...

Os S50us 100us
OV@E3) o V(M) aV(41) VV(42) oV(43) +V(44) xV(61) YV(62) 4V(e3) xV(e4)
Time

Figure 5.21. Example 4 (the second figure): E,., and the weights

100

* The modified recusrent back-propagation : 4 neurons (2-1-1) : fidirt6.cir
Date/Time run: 06/19/98 01:54:56 Temperature: 27.0
w L IR R R I R I L b AL At DL L L L it St Sttt b bt St kbt S S St

4ecccccccccnccaccncas

2

DI A T T R e i h

18V beooooomommeeeee D LR L LT L T B e EEEELL LD T e LT LT P pommeeeeeeeecaaeas 4

Figure 5.22. Example 4 (the third figure): Test phase with the initial condition inside
the circle

* The modified recurrent back-propagalion : 4 neurons (2-1-1) : fidir16.clr
Date/Time run: 05/19/98 01:53:36 Temperature: 27.0

Figure 5.23. Example 4 (the fourth figure): Test phase with the initial condition
outside the circle

101

5.4.2 Trajectory recognition

The 4-neuron recurrent neural network is trained to learn two trajectories. There are
two inputs and one output in the 4-neuron recurrent neural network. The learning
circuit employs the modified recurrent back-propagation learning rule. This circuit
does not include the threshold parameters.

The general procedures for learning and testing are the follows:

1. In the learning phase, the first trajectory is applied to the inputs of the neural
network and an associated target is also applied to the neural network. After
one period of the first trajectory waveform, the second trajectory is applied to
the recurrent neural network with its target waveform. We keep supplying the

input-target pair to the neural network.

2. We can distinguish two trajectories by assigning the different states of the out-
put waveform. the first trajectory is assigned to the high (or low) state of the
target and the second trajectory is assigned to the low (or high) state of the

target.

3. Each input-target pair is applied to the neural network as continuous waveforms
and the PSPICE transient analysis is performed. After the transient analysis, we
measure the output waveform and the target waveform. If the output waveform

is following close to the target waveform, it is considered as successful learning.

4. We measure the weight values. If the learning parameter (5) is small, the
weight values are converged to the near constant value. However, the weights
have some ripples in their waveform since the capacitors on the learning circuit

have limited value. We measure the averaged value of the weights.

5. After the learning phase, we perform the testing phase in the recurrent neural

network. We set the weights of the neural network to the obtained weight values

102

at the learning phase. We verify the learning by applying the input waveforms

to the recurrent neural network.

In Figure 5.24, two state space trajectories are shown. The trajectory 1 consists
of V1 and V2 waveform. V1 is applied to the input 1 of the neural network and
V2 is applied to the input 2. The trajectory 2 consists of W1 and W2 waveform.

W1 and W2 are applied to the input 1 and input 2 of the recurrent neural network,

respectively.
vi v2 Trajectory 1
1 : 1 . 1 :
0 5 0.5 0 5

Figure 5.24. Two state trajectories

We have performed the PSPICE transient analysis with different parameters. The

results of the transient analysis in PSPICE simulation are shown in Figure 5.25 and

103

* The modified recurrent back-propagation (4 neurons), cwe100p, 250K & 500K : t1_6_2.cir
Date/Time run: 08/109¢ 16:22:08 Temperature: 27.0

84us 186us
oV eVv(1)

Figure 5.25. The PSPICE transient analysis: V(5), V(6), V(7), and V(1) are z,, 2,
d;, and y, of the recurrent neural network, respectively

* The modified beck-p “ Cw=100p, 250K & 500K : t1_6_2.cir

2V e :
OV(11) *V(12) aV(13) vV(14) oV(21) +V(22) xV(23) v V(24)

kX e bbb bbb b bbb bbb b bbb bbb b

26v 4]

20v “b -------------------------- prescesccssccncccccncccccse R qvsececersccocstccccccancann 4‘

100us 150us 200us

Os 50us
OV@E1) *V(32) aV(I) vV(M) oV(41) +V(42) xV(43) v V(44)
Time

Figure 5.26. PSPICE transient analysis: weight waveforms, w;; = V (i5)

Table 5.7. The averaged values of the weight from the PSPICE transient analysis

104

J

1

2

3

4

LYY
wg,-

Wy;

waj

2.5883
2.5132
2.4733
2.5125

2.5042
2.5131
2.5140
2.5092

2.1633
2.5148
2.6207
2.5151

2.5008
2.5136
2.5158
2.4912

Date/Time run: 05/19/868 21:21:06

Figure 5.27. PSPICE transient analysis: the test result, V(5), v(6), and V(1) are the

input 1, the input 2, and the actual output

* The modified recurrent back-propagation (4 neurons): fit1_8.cir

105

* The modiied recurrent back-prapagation (4 neurans): fit1_6.clr
Date/Time run: 061996 21:12:44 Temperature: 27.0

/ " ~ e e /S A4 ~\/
1V booom o e g oot eme oo ceeaaeemseeeeeseesacqeoaneoneaon 4
us 4us 6us Bus 10us 12us 14us 160
o V(1)
Time

Figure 5.28. PSPICE transient analysis: the test result of the trajectory 1, V(5),
V(6), and V(1) is the input 1, the input 2, and the actual output

* The modified recurrent back-propagation (4 neurons): iR1_6.clr
Dete/Time run: 0619/08 21:16:03 Temperature: 27.0

\ A A A A A A A
DY q
2 4us Gus 8us 10us 12us 14us 16us
ov(1)
Time

Figure 5.29. PSPICE transient analysis: the test result of the trajectory 2, V(5),
V(6), and V(1) is the input 1, the input 2, and the actual output

106

Figure 5.26. In Figure 5.25, input waveforms, the target waveform of the trajectory,
and the actual output waveform is shown. The weight values in the transient analysis
are shown in Figure 5.26.

The averaged weight values which are obtained in the learning phase are summa-
rized in Table 5.7. After setting these weight values to the recurrent neural network,
the testing phase is performed. The result is shown in Figure 5.27, 5.28, and 5.29.
In Figure 5.27, the waveform which is used at the learning phase is used as a test
waveform. In Figure 5.28 and Figure 5.29, the trajectory 1 and the trajectory 2 is
applied to the neural network to test the learning, respectively.

In this simulation, we use 250K H z signal for z; and 500K Hz signal for z;. The
(W/L) ratio of the active resistor in 1-D multiplier of the weight update circuit is
given as 4/64. Other simulations with (W/L)=4/16 have the same results as those
of (W/L)=4/64. The capacitor of the weight update equation is given as a 100pF
capacitor and the capacitor of the z equation is given as a 1pF capacitor in figures.
We have changed the capacitor value of the weight update equation from 20pF to
200pF in other simulations. The test results are almost same as the case of 100pF
capacitor. The simulation results show that this recurrent neural network succeeds

to learn the different trajectories.

5.5 Simulation results of 6 neuron recurrent neu-
ral network

The 6-neuron recurrent neural network with learning capability is implemented us-
ing the modified recurrent back-propagation learning rule. We have performed the
PSPICE circuit simulation with MOSIS 0.5um technology for future development.
The SPICE parameters for MOSIS 0.5um HP process are shown in Appendix A.2.

107

The recurrent neural network has 6 neurons. It is fully connected including self-
feedback and there are 36 connection weights in this recurrent neural network. The
recurrent neural network is shown in Figure 5.30.

The recurrent neural network receives two inputs, z; and z;. These inputs are
connected through the neurons, ys and ys. Two neurons, y;, and y,, are visible to

outside with the target signals, d; and d,, respectively.

output 1

output 2

Figure 5.30. The recurrent neural network with six neurons, two inputs, and one
output, S means the sigmoid function generator

We follow the general procedure for learning and testing as shown in the 4-neuron
recurrent neural network. The 6-neuron recurrent neural network is trained to learn
two trajectories. In Figure 5.31, two state space trajectories are shown. The trajec-
tory 1 consists of V1 and V2 waveform. The trajectory 2 consists of W1 and W2

waveform. V1 and W1 are applied to z; and V2 and W2 are applied to z, of the

108

Table 5.8. The averaged values of the weight in the 6-neuron recurrent neural network
with two output neurons

] 1 2 3 1 5 6

wy; | 2.5481 2.4543 25318 2.5326 2.1609 2.7469
wy; | 24893 2.5048 2.5277 2.5280 2.7394 2.1480
wsj | 25217 25201 2.5210 2.5204 2.5253 2.5213
wy; | 25210 2.5196 2.5207 2.5204 2.5250 2.5191
ws; | 24830 2.5547 2.5200 2.5199 2.6287 2.3962
we; | 2.5542 2.4545 2.5123 2.5152 2.3975 2.6496

recurrent neural network.

In this simulation, we distinguish two trajectories by assigning two different states
(ON/OFF) at two output neurons. If the recurrent neural network receives the tra-
jectory 1, one of the output neurons will be ON state. If the trajectory 2 is applied
to the input of the neural network, the other output neuron will be ON.

We have performed the PSPICE transient analysis. The results of the transient
analysis in PSPICE simulation are shown in Figure 5.32 and Figure 5.33. In Figure
5.32, input waveforms, the target waveform, and the actual output of the neural
network are shown. The actual output waveform tries to match the target waveform.
The weight values at the end of simulation are shown in Figure 5.33. We measure the
averaged values of the weights. The averaged weight values are summarized in Table
5.8.

After the learning phase, we perform the testing phase. We set the weights of the
neural network to the obtained weight values at the learning phase. We verify the
learning by applying the input waveforms t6 the neural network. The test result is
shown in Figure 5.34, 5.35, and 5.36. In Figure 5.34, the waveform which is used at
the learning phase is used as a test waveform. In Figure 5.35 and Figure 5.36, the
trajectory 1 and the trajectory 2 is applied to the neural network to test the learning,

respectively.

109

Figure 5.31. Two state trajectories: the two output neuron case on 6-neuron recurrent
neural network

110

* The modified recusrent back-propagalion: 6 neurons (2-2-2) : s3_1.cir(om p3_2)

160us 1
oV(134) *V(2)

Figure 5.32. The PSPICE transient analysis: V(7) and V(8) are z; and z2, V(9) and
V(1) are d; and y,, V(134) and V(2) are d; and y;

* The modiied recustent back-propagation: 6 neurons (2-2-2) : 63_1.clr(irom p3_2)

Date/Time run: 03/1888 00:00:21 Tempershwe: 27.0

¥ ke h S bbb bbb bbb b bbbttt bbb bbbttt Sl bbb bbbt bbb it 1'
——— —

T T T :
oVv(11) eV(12) aV(13) vV(14) oV(15) +V(16) xV(21) YV(22) aV(23) xV(24) OV(25) o V(26)

254V T --- '!

282 4 e ————— e

m -'L ... l.
0V[31) eV(32) aV(IF) vV(M) oV(E5) +V(I) xV(41) YV(42) 4V(43) xV(44) OV(45) ¢ V(46)

R R e e R e e e 1
} —
= —

PY VI S S Areme e . o mmaneaan P . S i

184us 106us 188us 190us 192us 104us 196us 190us 200us

OV(B1) oV(S2) aV(53) ?V(54) oV(SE) +V(S6) xV(61) ¥V(62) AV(B3) xV(6d) ©V(65) o V(68)
Time

Figure 5.33. PSPICE transient analysis: weight waveforms of the 6-neuron recurrent
neural network with two output neurons, w;; = V(i3)

Date/Time run: 631886 04:28:18 Temperature: 27.0

Figure 5.34. PSPICE transient analysis: the test result of the 6-neuron recurrent
neural network, V(7), V(8), V(1), and V(2) are z1, 3, y1, and y2, respectively

* The modified back-p e (2-2-2) : 31 cir(trom ¢3_1)

Figure 5.35. PSPICE transient analysis: the test result of the 6-neuron recurrent
neural network, V(7), V(8), V(1), and V(2) are z,, z3, y1, and y,, respectively

112

* The modified recurrent back-propagation: 8 neurons (2-2-2) : fis31.cir(from s3_1)

Figure 5.36. PSPICE transient analysis: the test result of the 6-neuron recurrent
neural network, V(7), V(8), V(1), and V(2) are z,, z,, 1, and y2, respectively

As shown in the figures, the output of the neuron y, always goes to high state and
the output of the neuron y; goes to low state when the trajectory 1 is applied to the
neural network.

Since we take the averaged value of the weights, the actual output waveform in
the testing phase is a little different from the output waveform in the learning phase.
However, it is very close to the output waveform in the learning phase. The result
shows that the approximation of the averaged weight value is quite acceptable in the
test results.

If the output waveform of the testing phase is not saturated enough to classify the
input waveforms, we can attach the buffer amplifier at the output of the recurrent
neural network. The buffer amplifier can be a comparator or a double inverter with
the threshold voltage of 2.5V.

In this simulation, 250 K Hz and 500K H z sine waveforms represent the state tra-

113

jectory. The capacitor of the weight update equation is implemented using a 200pF
capacitor and the capacitor of the z equation is assigned to 10pF.

In the testing phase, we have applied the input trajectory that is not one of the
learned trajectories. In this testing simulations, we applied the circular trajectory
with different frequencies. The circular trajectory is shown in Figure 5.7. It consists
of the sine waveform and the cosine waveform with same frequency.

The test results are shown in Figure 5.37 and Figure 5.38. With the circular tra-
jectory of 500K H z, the neural network classifies it as a trajectory 1. The simulation
result is shown in Figure 5.37. With the circular trajectory of 250K H z, the neural
network can not classify the input trajectory. The output states of the neural net-
work is changed as the input trajectory is applied. The simulation result is shown
in Figure 5.38. Futher exhaustive testing is needed to characterize the behavior for

other arbitrary signals.

* The modilied back-propag L} (2-2-2) : fie31.cir(from &3_1)

Figure 5.37. Testing phase with the circular trajectory: when the circular trajecroty
is 500K H z

114

* The modiied recurrent back-propagation: 6 neurons (2-2-2) : fls31.cir(rom $3_1)

Figure 5.38. Testing phase with the circular trajectory: when the circular trajecroty
is 250K Hz

5.6 Hardware implementation considerations

5.6.1 Hardware requirements of the modified recurrent

back-propagation learning rule

The advantage of the implementation of the modified recurrent back-propagation
learning rule over the modified recurrent real-time learning rule is that the modified
recurrent back-propagation learning rule requires less learning circuitry. In section
4.5, we have investigated the hardware requirement of the real-time recurrent learning
rule. The number of the learning circuitry increases in order of N3 as the number
of neuron is N. However, in the modified recurrent back-propagation learning rule,

it needs only N equations for the z equation when the number of neuron is N. The

115

modified recurrent back-propagation learning rule is an efficient and economical way

to implement the recurrent neural network.

5.6.2 Offset voltage adjustment

In the realization of the multiplier circuit, there is an offset current about 1uA. If
active resistors have larger resistance, this offset current has become a significant
offset voltage. To compensate the offset voltage, we usually change the W/L ratio
of active resistors. The W/L ratios of the upper PMOS are adjusted with the W/L
ratios of the lower PMOS. If the offset voltage is lower than 2.5V, the resistance of
the lower PMOS is increased by decreasing its W/L ratio, or the resistance of the
upper PMOS is decreased by increasing its W/L ratio. If the offset voltage is higher

than 2.5V, the opposite way is performed to get the near zero offset voltages.

5.6.3 The learning rate

The learning parameter 7 is related with the capacitor value in the learning circuit. In
the PSPICE circuit simulation, the value of the capacitor is given from 10p to 200p.
With this value, on-chip implementation of the capacitor will not be appropriate.
If the network is small and the chip has enough pins to connect each weight value
to outside, the external capacitors will be used. If the capacitor value is the main
concern for design, we need to develop the multiplier as a low current multiplier.
In PSPICE circuit simulation, the output current of the multiplier ranges from 0uA
to 50uA. If we reduce the current level to the nano-A range, the capacitor value of
several pico-F will be enough. One way of achieving the low-power multiplier is to use
the sub-threshold design [38]. However, the design of a low-power multiplier includes
several factors to be considered. The matching problem of the transistors, the poor

linearity of the multiplication, and the slow speed of the circuit need to be overcome

116

in the sub-threshold design.

5.6.4 Weight refresh

In order to provide the two phases (the learning phase and the testing phase), the
neural chip has two modes, the learning mode and the test mode [27][47]. The neural
chip executes the learning mode with its input-target pair and the weight values
are taken by the Analog-to-Digital (A/D) converter with external interface. In the
testing phase, the obtained weights are written onto the capacitor which holds analog
weight voltage using Digital-to-Analog (D/A) converter. The weight values have to
be refreshed since the capacitor always discharges. The interface circuit for A/D
converter, D/A converter, and refresh circuit is costly.

If we employ the second recurrent neural network (the slave neural network) whose
weight values are taken from the first neural network (the master neural network), we
don’t need the refresh interfaces and the operations of two modes. The weight voltages
are transferred through the voltage follower. The weight averaging also is achieved
through the low-pass filtering with voltage follower. The slave neural network can be
used for any testing works or any applications as long as the master neural network

executing the learning tasks with its continuous input-target pair.

5.6.5 Temperature effects

The temperature dependence of CMOS components is an important performance
characteristic in analog circuit design. The PSPICE simulations of the recurrent
neural networks are valid only for limited ranges about room temperature. In the
PSPICE simulation of the modified Gilbert multiplier and the sigmoid function gen-
erator with different temperatures, the change of the characteristics due to the change

of temperature is much larger in the simulation of the sigmoid function generator. If

117

we tune the bias voltage of the sigmoid function generator via external pin in the neu-
ral chip, we can achieve proper operations in the wide range of temperature. In the
PSPICE simulations of the trajectory generation and the trajectory recognition, the
neural chip shows the successful operations over the temperature range of 0 to 50°C.
Other modifications are necessary for extreme temperature ranges. In Appendix C,
the PSPICE simulation results of the trajectory generation with different tempera-
ture are shown. With the temperature range of 0 to 50°C, the weights have converged
as shown in Appendix C.1 and C.2. However, the weights hit the rail voltage of the

circuit with extreme temperature such as 125°C or -50°C as shown in Appendix C.3.

5.6.6 Future work

In this implementation, we don’t include the update for time constant parameters.
The time constant parameters give another degree of the freedom to the solution
space of the neural network. Time constants of the equations are controlled by the
capacitor value and the amount of current to the capacitor. The current can be
controlled by the bias voltage. We need to develop the modified back-propagation
learning rule to the time constant parameters.

We need an efficient architecture for practical applications. Experiments with
small-scale problem have proved as fruitful in many areas of science and engineering.
However, not every phenomenon encountered in dealing with small models can be
usefully scaled up [19]. We have seen many interesting demonstrations of neural net-
works solving problems of very small scale but not doing so well when those problems
were scaled up.

Control domains are the most natural application for continuous-time recurrent
neural networks. Signal processing and speech recognition and generation are also
domains to which the recurrent neural network might be naturally applied. Certainly

there is no reason to use a recurrent network when a feedforward layered neural

118

network suffices. Almeida [59] pointed out that one should not expect a major increase
in the performance of a perceptron in every situation with feedback. In most cases,
the best network structure will probably turn out to have feedback only in a small
group of units. Ljung [60] also mentioned that, for system identification, the identifier
must be chosen to have a small number of parameters, i.e., fewer parameters for a
neural network. This is because the more parameters we use, the higher is the random
influence on the model. We need to investigate the characteristics of new architectures
such as partially connected recurrent neural network not the fully connected neural

network.

CHAPTER 6

2-Dimensional Scalable Array

Configuration

The recurrent neural network and its learning algorithm is implemented on a single
analog CMOS chip. The floor plan of the recurrent neural network is organized in the
2-D array configuration. With the 2-D array configuration, the layout offers a sim-
ple and scalable VLSI architecture for implementing a fully interconnected recurrent

neural network.

6.1 Subcell design

The multiplication between two quantities is the basic circuit of the recurrent neural
network. Since the modified Gilbert multiplier generates the current output, we
employ the current bus to collect the analog current outputs. The collected currents
are converted to the voltage output through active resistors.

To support the current bus and active resistors, we divide the modified Gilbert
multiplier into two parts. The first component is the multiplier subcircuit which
generates the current output, I+ and I-. The second component consists of a current

mirror and active resistors. The modified Gilbert multiplier cell and the current

119

120

L Bt "
_|$31

va— b—v3 vi—~ b—ve 2 i
3]

vi—{[m m2]}-v2 B lwr—-l%ﬁ”

D e 'y 4%@

Vi—p) 4 — I+ I+ — v
vi—sl_ X |, - —p CA out
+ -

V3 V4 The Current Mirror and Active Resistors

The Modified Gilbert Multiplier Subcell

Figure 6.1. 2-D array configuration elements

mirror and active resistors are shown in Figure 6.1.

In this figure, we label the modified Gilbert multiplier subcell as a X component.
The current mirror and active resistors are labeled as a CA component. The X
component receives four voltage inputs and generates current outputs, I+ and I-.
The current output is proportional to the multiplication between (V1 — V2) and
(V3 — V4). Since the neural network chip operates from ground to VDD of 5V,
the virtual ground voltage becomes 2.5V. We label this virtual ground as reference
voltage, Vref, 2.5V. If V2 and V4 terminals of the X component are connected to
the reference voltage, the multiplication between V1 and V3 occurs. If V1 and V2

are connected together, then there is no multiplication on the X component since

121

(V1-V2) produce the zero term. These current outputs are applied to the I+ and I-
of the C A component. The C A component converts the current inputs to the voltage
output.

There are two variations in the X component, X1 and X2. The X2 component
has higher conductance than that of the X1 component. We use large (W/L) ratio
of the transistor M1 and M2 in the X2 component. The X2 component is used at
the 1-dimensional multiplier for weight update equation.

The C A component has three variations, C A1, C A2, and C A3. We have designed
the voltage gain of the learning circuit is a little higher than that of the recurrent
neural activation circuit. The C Al component is used at the recurrent learning circuit
and the C A2 component is used at the z equation generator. The C A3 component

is used at the weight update equation and has the highest voltage gain overall.

6.2 Implementation of Floor Plan

The floor plan of the VLSI recurrent neural network is organized in the 2-D array of
weight interconnections. The block diagram of a fully connected 4-neuron recurrent
neural network is shown in Figure 6.2. The 2-D array of weights and two boundary
cells are shown in this figure.

In Figure 6.2, we implement 4-neuron recurrent neural networks with maximum
two input neurons and two output neurons. The number of inputs or outputs can
be reduced by connecting the input terminal to the Vref or connecting the target
terminal with the output terminal.

The main function of the weight cell, w;; in Figure 6.2, is generating the activation
term, w;;y;, of the neural network and the z term, w;;z;, in the learning equation.
The upper X1 component generates the w;;2; current output and the lower right X1

component generates the w;;y; current output. These current outputs are connected

122

Vth
235V
3 . J L 4 3“'
1

P # mi e
Yio Wi] “is sigmoid, [Y1 |
WioYo 3

. g q
25V
z J 4 }u‘
4 -
, —+— ” 1 o .
ro Wy r W Wy e sigmoid, Y,
WaoYo
[Hr
) 7] 4 ¥y _ %
z,

#-y, s 11 11 11 ™ 14 1o | sigmoid,
V3o Wy W3 Wy Wi I—' input, Y3
WioYo a

1 % l { 11 li 1 i r
L 2 2 L] J z ¥y %
z,

"Yo L g 11 1] > ns Py, ns I+ | sigmoid,
Vo Ya Vo Ve W l_' input, Ys
VYo

11 AN 11 11 F
L 1) l J{
lﬂ J.-_ IO‘ fl——— lq = l-oi 'l—_ X
J
iy ,{5
e ermor &2, ::-: errorkz, | Y z y"c= z, o
1 2
I v3e—viogicl
2] z| L z,
I+ CA
It I- % I
viogic XTI sigmoid; & input, |
‘v:i o L M Wz, 4
'K |
wi’ w,y.f
v L [[L v
L »{vi [X2] Lap3 [X1 vi [X2| Lep3 [XT]
I+ 1= I+ I- I+ I- I+ -
'y Yy
[™] [*]
/] W)

B

Figure 6.2. The array structure of the recurrent neural network

123

| ".:;irr"'

| _|Il_l

Figure 6.4. The MAGIC layout of the weight cell, wio

124

Figure 6.5. The MAGIC layout of the error; & z; cell

Figure 6.6. The MAGIC layout of the sigmoid; & input; cell

125

[1]

Figure 6.7. The MAGIC layout of the recurrent neural network

126

to the current buses and are collected in the error; & z; cell and in the sigmoid; &
input; cell. Also the update rule for weight itself is performed with 2; and y; terms by
the lower left X2 component and the C A3 component. The capacitor is not included
in this cell. The capacitor is located in the outside area of the array structure or
weight can be connected to the external capacitor through the pins of the chip . The
threshold weight cell, w;o, is shown in Figure 6.2. Since the threshold weight is not
used at the z equation, the generation of w;;z; circuit is removed. Other terminals
such as V2 and V4 are connected to the reference voltage, 2.5V

The 2-D array of weights is connected with the boundary cells. Two boundary
cells are designed to support the weight array. One is an error; & z; cell and the
other is a sigmoid; & input; cell.

The error; & z; cell collects the current of w;;z; from the weight cell and the
C A2 component generates the z; voltage with collected currents. Also, it receives
target waveform and output waveform to generate the error term. If the neuron 1 is
not used as an output neuron, the upper X1 component in the cell can be blocked
not to generate any output by tying the ¢; and y; terminals together. The error; &
z; cell also has the negative self-feedback component (the lower X1 cell) to ensure
the convergent operation. Other terminals, such as V4 in the upper X1 component
and V1 in the lower X1 component, which is not displayed in the cell diagram are
connected to the reference voltage, 2.5V.

The sigmoid; & input; cell collects the current of w;;y; from the weight cell to gen-
erate the net; of the neuron :. These currents are converted to the voltage through
the CAl component and the output of the C Al is applied to the sigmoid func-
tion generator. The sigmoid function generator is implemented using the wide-range
transconductance amplifier and its output becomes the state of the recurrent neural
network. Also, this cell can receive the input waveform via the X1 component. If the

neuron is used as an input neuron, the X1 component is activated to get the input

127

waveform. If the neuron is not used as an input neuron, the V1 terminal of the X1
component is connected to the reference voltage, 2.5V. The V2 and V4 terminals of
the X1 cell are connected to the reference voltage.

This current-bus output arrangement combined with the boundary cells offers a
simple and scalable VLSI architecture for implementing a fully interconnected recur-
rent neural network with learning circuit.

Figure 6.3 shows the MAGIC layout of the weight cell, w;;. It has two X1 com-
ponents, one X3 component, and one C A3 cell. It has been drawn using Scalable
CMOS (SCMOS) technology and its size is 252X x 240, If 1A = 1y, the actual size
becomes 252um x 240um. The actual size is dependent on the fabrication technol-
ogy. In Figure 6.4, the layout of the w;o cell is shown. The size of the wjo cell is
252X x 224).

The other cells such as error; & z; and sigmoid; & input; has smaller size than
the weight cell since they use fewer components. In Figure 6.5, the layout of the
error; & z; cell is displayed. Figure 6.6 shows the layout of the sigmoid; & input;
cell. Each size is 220\ x 214 and 247\ x 178, respectively.

In Figure 6.7, the whole chip layout is displayed. 4 x 5 weight array is located
in the center of the chip and the lower and right boundary cells are surround the
weigh array. The lower boundary cells are error; & 2; cells and right boundary cells
are sigmoid; & input; cells. The chip has 40 pins, 34 analog pads and 6 VDD and
GND pads. It is designed to fabricate via MOSIS Tiny chip. In Table 6.1, the pin

assignment of 40-pin tiny chip is shown.

128

Table 6.1. The pin assignment of the 4 neuron recurrent neural network chip

Pin 1 2 3 4 5
Signal N T,) Y2 VDD
Pin 6 7 8 9 10
Slgna.l wi1 wi2 w13 w4 GND
Pin 11 12 13 14 15
Slgnal W10 w Wwa2 Wa3 VDD
Pin 16 17 18 19 20
Signal | wo4 wao Vbias,mul | Vref,mul Vth
Pin 21 22 23 24 25
Signal | unused | Vlogicl wa, w3y GND
Pin 26 27 28 29 30
Signal w33 Wiy wag Wy VDD
Pin 31 32 33 34 35
Si gnal W42 W43 W44 W40 GND
Pin 36 37 38 39 40

Signal t t unused | Vrefssig | Vbias,sig

CHAPTER 7

Conclusion

A recurrent neural network with a modified recurrent back-propagation learning rule
is implemented using analog CMOS technology. In order to implement the recurrent
neural network and its learning algorithm, we employ a modified Gilbert multiplier,
an active resistor, and a wide-range transconductance amplifier.

The sigmoid function generator is designed using the transconductance amplifier.
The limitation of the output voltage is resolved by using the wide-range transconduc-
tance amplifier. The output of the transconductance amplifier is current.

To convert the current output to the voltage output, we use an active resistor. To
get appropriate ranges of resistance of the active resistor, we performed the PSPICE
circuit simulation with different W/L ratios. By adjusting the W/L ratio of the
transistors, we can get a proper resistance value for converting the current output to
the voltage output.

The modified Gilbert multiplier uses voltage signals for its inputs where its output
is current. We attached active resistors to get voltage-to-voltage operations. In
the small-signal range, the characteristic curve is approximately linear, and its four-
quadrant multiplication is verified through the PSPICE circuit simulation.

Since the modified Gilbert multiplier cell generates the current output, the vector

multiplier is designed on the current bus to collect the currents from the modified

129

130

Gilbert multiplier cells. The dimension of the vector multiplier can be increased by
simply placing the modified Gilbert multiplier cell on the current bus. The adjusted
active resistor converts this current to the voltage for voltage-to-voltage operations.

We have reviewed four learning algorithms for temporal signal learning. The
Pearlmutter’s algorithm converts a network evolving through time into a network
whose activation is flowing through a number of layers (space). The requirements
of the forward and backward integration make analog hardware implementation dif-
ficult. For the classification of temporal trajectories, Sotelino et al. has developed
the modified version of the Pearlmutter’s algorithm. This algorithm has the same
problems as the Pearlmutter’s algorithm. The recurrent back-propagation algorithm
by Pineda assumes that the activation equation of the neural network is convergent
and the error is measured in the fixed point. The real-time recurrent learning by
William and Zipser has on-line updating rule. However, its hardware requirements
are so massive that we can not build a large network economically.

We have modified the Pearlmutter’s algorithm and the Pineda’s algorithm for the
modified recurrent back-propagation. Its forward instantaneous update scheme is
suitable for an analog hardware implementation.

We have built a 4-neuron recurrent neural network and a 6-neuron recurrent neural
network. We have implemented the modified recurrent back-propagation learning rule
using standard CMOS circuit and performed the PSPICE circuit simulations.

In the 4-neuron recurrent neural network simulations, we have verified its func-
tions by generating a circular trajectory. Simulation results show that the output
signal is following the target signal and weights are convergent. The circular trajec-
tory is generated by the recurrent neural network as a limit cycle. In the trajectory
recognition experiment, we trained the neural network to recognize different trajec-
tories. Its learning phase and test phase results show that the modified recurrent

back-propagation learning rule is successful in learning and in testing the temporal

131

signals.

In the 6-neuron recurrent neural network simulations, we have built two-neuron
output neural network. We trained the neural network to learn different state tra-
jectories and the PSPICE circuit simulations show the recurrent neural network has
learned the temporal signals for classification.

A two-dimensional scalable array configuration is designed for large-scale imple-
mentation of fully connected recurrent neural network with learning. With the 2-D
array configuration, the layout offers a simple and scalable VLSI architecture. We

have built a 40-pin tiny chip using MOSIS’s SCMOS technology.

APPENDICES

APPENDIX A

SPICE parameters

132
A.1 The SPICE parameters: MOSIS 2.0 ym OR-
BIT ANALOG process

N MOS P MOS
LEVEL 2 2
TPG -1
LD 133.300000E-09 | 102.100000E-09
VTO 8577 -.8721
KP 59.272000E-06 | 16.129000E-06
GAMMA .5361 5972
PHI N N
LAMBDA .03084 .03942
RSH 12.93 1019
IS 10.000000E-15 | 10.000000E-15
PB 4 9
PBSW 4 9
CJ 134.000000E-06 | 334.000000E-06
CJSW | 611.000000E-12 | 397.000000E-12
MJ 935 .585
MJISW 2 127
CGSO | 174.800000E-12 | 133.890000E-12
CGDO | 174.800000E-12 | 133.890000E-12
CGBO | 345.820000E-12 | 401.740000E-12
NSUB 6.617000E+15 | 8.212000E+15
NFS 93.830000E+4-09 | 607.200000E+-09
TOX 39.500000E-09 | 39.500000E-09
XJ 200.000000E-09 | 200.000000E-09
Uo 678 184.5
UCRIT | 6.778000E+03 | 207.200000E+03
UEXP .0875 .4362
VMAX | 48.300000E+03 | 999.900000E+03
DELTA 2.779 3.097

133

A.2 The SPICE parameters: MOSIS 0.5 ym HP

process
N MOS P MOS
LEVEL 3 3
TPG -1
LD 47.290000E-09 | 35.070000E-09
VTO 6566 -.9213
KP | 196.470000E-06 | 48.740000E-06
GAMMA 5976 4673
PHI T R
RSH 35.12 11
IS 10.000000E-15 | 10.000000E-15
PB 99 .99
PBSW .99 99
CJ | 562.000000E-06 | 935.000000E-06
CJSW | 50.000000E-12 | 289.000000E-12
MJ 559 468
MISW 521 505
CGSO | 305.150000E-12 | 239.220000E-12
CGDO | 305.150000E-12 | 239.220000E-12
CGBO | 402.390000E-12 | 375.790000E-12
NSUB | 139.200000E+15 | 85.120000E+15
NFS | 590.900000E+09 | 650.000000E+09
TOX | 9.600000E-09 | 9.600000E-09
XJ | 200.000000E-09 | 200.000000E-09
Uo 546.2 135.5
VMAX | 200.800000E+03 | 254.200000E+03
DELTA 691 2875
THETA 2684 1807
ETA 03718 0245
KAPPA 02898 7.958

APPENDIX B

PSPICE Input Files

134

B.1 Simple transconductance amplifier

* Simple trans-conductance amplifier: Vbias = 1.3V (transl.cir)
vdd 80 0 5.0

vss 90 0 0.0

vi1l0

v220

vbias 301.3

vdum 6 66 0.0

m151490n w=4u l=4u
m26 2490 n w=4u |=4u
m34 39090 n w=12u I=4u
m4 8055 80 p w=15u I=4u
m580 56 80 p w=15u I=4u

rl1 80 66 1000K
r2 66 0 1000K

N63J SPICE LEVEL2 PARAMETERS

.MODEL N NMOS LEVEL=2 PHI=0.700000 TOX=3.9500E-08 XJ=0.200000U TPG=1
+ VT0=0.8577 DELTA=2.7790E+00 LD=1.3330E-07 KP=5.9272E-05

+ U0=678.0 UEXP=8.7500E-02 UCRIT=6.7780E+03 RSH=1.2930E+01

+ GAMMA=0.5361 NSUB=6.6170E+15 NFS=9.3830E+10 VMAX=4.8300E04

+ LAMBDA=3.0840E-02 CGDO=1.7480E-10 CGSO=1.7480E-10

+ CGBO=3.4582E-10 CJ=1.34E-04 MJ=0.535 CJSW=6.11E-10

+ MJSW=0.200 PB=0.40

.MODEL P PMOS LEVEL=2 PHI=0.700000 TOX=3.9500E-08 XJ=0.200000U TPG=-1
+ VT0=-0.8721 DELTA=3.0970E+00 LD=1.0210E-07 KP=1.6129E-05

+ U0=184.5 UEXP=4.3620E-01 UCRIT=2.0720E+05 RSH=1.0190E-01

+ GAMMA=0.5972 NSUB=8.2120E+15 NFS=6.0720E+11 VMAX=9.9990E 05

+ LAMBDA=3.9420E-02 CGDO=1.3389E-10 CGSO=1.3389E-10

+ CGBO=4.0174E-10 CJ=3.34E-04 MJ=0.585 CJSW=3.97E-10

+ MJSW=0.127 PB=0.90

.probe v(6) v(66) i(r1) i(r2) i(vdum)
.de v1 0.0 5.0 0.05v2 0.5 4.5 0.5
.end

135

B.2 Wide range transconductance amplifier

* Wide trans-conductance amplifier: (wtranl.cir)
vdd 80 0 5.0

vss 90 0 0.0

vi1lo0

v220

vbias 30 1.3

m151490nw=4u |=4u
m27 2490 n w=4u |=4u
m6 8055 80 p w=15u I=4u
m78056 80 p w=15u I=4u
m580 77 80 p w=15u I=4u
m4 80 7 8 80 p w=15u I=4u
m8 8 8 90 90 n w=4u |=4u
m96 8 90 90 n w=4u |=4u
m34 39090 n w=12u I=4u

r1 80 6 1000K
r26 0 1000K

N63J SPICE LEVEL2 PARAMETERS

.MODEL N NMOS LEVEL=2 PHI=0.700000 TOX=3.9500E-08 XJ=0.200000U TPG=1
+ VT0=0.8577 DELTA=2.7790E+00 LD=1.3330E-07 KP=5.9272E-05

+ U0=678.0 UEXP=8.7500E-02 UCRIT=6.7780E+03 RSH=1.2930E+01

+ GAMMA=0.5361 NSUB=6.6170E+15 NFS=9.3830E+10 VMAX=4.8300E+04

+ LAMBDA=3.0840E-02 CGDO=1.7480E-10 CGSO=1.7480E-10

+ CGBO=3.4582E-10 CJ=1.34E-04 MJ=0.535 CJSW=6.11E-10

+ MJSW=0.200 PB=0.40

.MODEL P PMOS LEVEL=2 PHI=0.700000 TOX=3.9500E-08 XJ=0.200000U TPG=-1
+ VT0=-0.8721 DELTA=3.0970E+00 LD=1.0210E-07 KP=1.6129E-05

+ U0=184.5 UEXP=4.3620E-01 UCRIT=2.0720E+05 RSH=1.0190E-01 |
+ GAMMA=0.5972 NSUB=8.2120E+15 NF5=6.0720E+11 VMAX=9.9990E +05 |
+ LAMBDA=3.9420E-02 CGD0O=1.3389E-10 CGSO=1.3389E-10

+ CGBO=4.0174E-10 CJ=3.34E-04 MJ=0.585 CJSW=3.97E-10

+ MJSW=0.127 PB=0.90

.probe v(6) i(r1) i(r2)
.dc v10.0 5.0 0.05 v2 0.5 4.5 0.5
.end

136

B.3 Sigmoid function generator 1

* Soma (SIGMOIDAL FUNCTION) circuit with adjusted W/L, Vbias=1.1V: ORBIT, N63J
(sm1-20u.cir)

vdd 80 0 5.0
vss 90 0 0.0

vbias 30 1.1
v22025
vli1l0

xmainl 80 90 1 2 3 8 main
xactl 80 90 8 arl

xmain2 80 90 1 2 3 18 main
xact2 80 90 18 ar2

xmain3 80 90 1 2 3 28 main
xact3 80 90 28 ar3

xmain4 80 90 1 2 3 38 main
xact4 80 90 38 ar4

xmain5 80 90 1 2 3 48 main
xactb 80 90 48 ar5

.subckt main 80901238
m151 490 nw=24u |=4u
m26 24 90 n w=24u |=4u
m34 390 90 n w=10u I=4u
m4 80 6 7 80 p w=15u I=4u
m5 80 6 6 80 p w=15u I=4u
m6 80 55 80 p w=15u |=4u
m7 805 8 80 p w=15u I=4u
m87 7 90 90 n w=16u I=4u
m9 8 7 90 90 n w=16u I=4u
.ends

.subckt arl1 80 90 8

m10 80 8 8 80 p w=4u I=4u
m118 90 90 8 p w=4u I=4u
.ends

.subckt ar2 80 90 8

m1080 8 8 80 p w=4u I=12u
m118 90 90 8 p w=4u I=12u
.ends

137

.subckt ar3 80 90 8

m1080 8 8 80 p w=4u |1=20u
m11 8 90 90 8 p w=4u I1=20u
.ends

.subckt ar4 80 90 8

m10 80 8 8 80 p w=4u I=28u
m11 8 90 90 8 p w=4u |1=28u
.ends

.subckt ar5 80 90 8

m10 80 8 8 80 p w=4u 1=36u
m11 8 90 90 8 p w=4u |=36u
.ends

N63J SPICE LEVEL2 PARAMETERS

.MODEL N NMOS LEVEL=2 PHI=0.700000 TOX=3.9500E-08 XJ=0.200000U TPG=1
+ VT0=0.8577 DELTA=2.7790E+00 LD=1.3330E-07 KP=5.9272E-05

+ U0=678.0 UEXP=8.7500E-02 UCRIT=6.7780E+03 RSH=1.2930E+01

+ GAMMA=0.5361 NSUB=6.6170E+15 NFS5S=9.3830E+10 VMAX=4.8300E+04

+ LAMBDA=3.0840E-02 CGDO=1.7480E-10 CG50=1.7480E-10

+ CGBO=3.4582E-10 CJ=1.34E-04 MJ=0.535 CJSW=6.11E-10

+ MJSW=0.200 PB=0.40

.MODEL P PMOS LEVEL=2 PHI=0.700000 TOX=3.9500E-08 XJ=0.200000U TPG=-1
+ VT0=-0.8721 DELTA=3.0970E+00 LD=1.0210E-07 KP=1.6129E-05

+ UO=184.5 UEXP=4.3620E-01 UCRIT=2.0720E+05 RSH=1.0190E-01

+ GAMMA=0.5972 NSUB=8.2120E+15 NF5=6.0720E+11 VMAX=9.9990E+05

+ LAMBDA=3.9420E-02 CGDO=1.3389E-10 CGSO=1.3389E-10

+ CGBO=4.0174E-10 CJ=3.34E-04 MJ=0.585 CJSW=3.97E-10

+ MJSW=0.127 PB=0.90

.probe v(8) v(18) v(28) v(38) v(48)
.de vl 1.5 3.50.01
.end

138

B.4 Sigmoid function generator 2

* Soma (SIGMOIDAL FUNCTION) circuit with different bias with (4u/19u,4u/21u): ORBIT,
N63J (sm2-20u.cir)

vdd 80 0 5.0
vss 90 0 0.0

vbias 3 0
v22025
vli1l0

xmain2 80 90 1 2 3 18 main
xact2 80 90 18 ar2

.subckt main80901238
m151490nw=24u I=4u
m26 2 4 90 n w=24u I=4u
m34 39090 n w=10u |=4u
m4 80 6 7 80 p w=15u |=4u
m580 6 6 80 p w=15u |=4u
m680 55 80 p w=15u |=4u
m7805 8 80 p w=15u |=4u
m87 79090 n w=16u |=4u
m9 8 7 90 90 n w=16u |=4u
.ends

.subckt ar2 80 90 8

m10 80 8 8 80 p w=4u |=19u
m118 9090 8 p w=4u |=21u
.ends

N63J SPICE LEVEL2 PARAMETERS

.MODEL N NMOS LEVEL=2 PHI=0.700000 TOX=3.9500E-08 XJ=0.200000U TPG=1
+ VT0=0.8577 DELTA=2.7790E+00 LD=1.3330E-07 KP=>5.9272E-05

+ U0=678.0 UEXP=8.7500E-02 UCRIT=6.7780E+03 RSH=1.2930E+01

+ GAMMA=0.5361 NSUB=6.6170E+15 NFS=9.3830E+10 VMAX=4.8300E + 04

+ LAMBDA=3.0840E-02 CGDO=1.7480E-10 CGSO=1.7480E-10

+ CGB0O=3.4582E-10 CJ=1.34E-04 MJ=0.535 CJSW=6.11E-10

+ MJSW=0.200 PB=0.40

.MODEL P PMOS LEVEL=2 PHI=0.700000 TOX=3.9500E-08 XJ=0.200000U TPG=-1
+ VT0=-0.8721 DELTA=3.0970E+00 LD=1.0210E-07 KP=1.6129E-05

+ UO=184.5 UEXP=4.3620E-01 UCRIT=2.0720E+05 RSH=1.0190E-01

+ GAMMA=0.5972 NSUB=8.2120E+15 NF5=6.0720E+11 VMAX=9.9990E+05

+ LAMBDA=3.9420E-02 CGDO=1.3389E-10 CGSO=1.3389E-10

+ CGBO=4.0174E-10 CJ=3.34E-04 MJ=0.585 CJSW=3.97E-10

+ MJSW=0.127 PB=0.90

139

.probe v(18)
.dc v1 1.5 3.5 0.02 vbias 0.9 1.4 0.1
.end

140

B.5 Modified Gilbert Multiplier

* 1-D Vector Multiplier: ORBIT, N63J (gmull.cir)
vdd 80 0 5.0
vss 90 0 0.0

vli1lo0
v220

vref 10 0 2.5
vbias1 11015

xgl1 8090110210115 gill

.subckt gil1 8090123457
xsgl1 8090123456 7 sgil
xre 80 90 6 7 linrel

.ends

.subckt sgil 8090123451314
m171690n w=4u |=4u
m2826 90 n w=4u I=4u
m39 3 12 80 p w=15u I=4u
m49 4 11 80 p w=15u I=4u
m5 10 3 11 80 p w=15u I=4u
m6 10 4 12 80 p w=15u I=4u
m78079 80 p w=15u |=4u
m880 77 80 pw=15u I=4u
m980 8 8 80 p w=15u I=4u
m1080 8 10 80 p w=15u |=4u
m1113 11 90 90 n w=4u |=4u
m12 11 11 90 90 n w=4u I=4u
m13 12 12 90 90 n w=4u |=4u
ml4 14 12 90 90 n w=4u |=4u
m156 590 90 n w=12u I=4u
.ends

.subckt linrel 80 90 6 77
vdum 77 7 0.0

m31807 7 80 pw=4u I=12u
m327 9090 7 p w=4u I=12u

m21806 6 80 p w=11u |=14u

m22806 77 80 p w=11u I=14u
.ends

N63J SPICE LEVEL2 PARAMETERS

.MODEL N NMOS LEVEL=2 PHI=0.700000 TOX=3.9500E-08 XJ=0.200000U TPG=1

141

+ VT0=0.8577 DELTA=2.7790E+00 LD=1.3330E-07 KP=>5.9272E-05

+ U0=678.0 UEXP=8.7500E-02 UCRIT=6.7780E+03 RSH=1.2930E+01

+ GAMMA=0.5361 NSUB=6.6170E+15 NF5=9.3830E+10 VMAX=4.8300E+04
+ LAMBDA=3.0840E-02 CGDO=1.7480E-10 CGSO=1.7480E-10

+ CGBO=3.4582E-10 CJ=1.34E-04 MJ=0.535 CJSW=6.11E-10

+ MJSW=0.200 PB=0.40

.MODEL P PMOS LEVEL=2 PHI=0.700000 TOX=3.9500E-08 XJ=0.200000U TPG=-1
+ VT0=-0.8721 DELTA=3.0970E+00 LD=1.0210E-07 KP=1.6129E-05

+ U0=184.5 UEXP=4.3620E-01 UCRIT=2.0720E+05 RSH=1.0190E-01

+ GAMMA=0.5972 NSUB=8.2120E+15 NFS5=6.0720E+11 VMAX=9.9990E +05
+ LAMBDA=3.9420E-02 CGDO=1.3389E-10 CGSO=1.3389E-10

+ CGBO=4.0174E-10 C)=3.34E-04 MJ=0.585 CJSW=3.97E-10

+ MJSW=0.127 PB=0.90

.probe v(5) i(xgl.xre.vdum) id(xgl.xre.m31) id(xg1.xre.m32)
.dcvl140.02v215350.25
.end

142

B.6 3-D Vector Multiplier

* 3-D Vector Multiplier: ORBIT, N63J (vm3-20u.cir)
vdd 80 0 5.0
vss 90 0 0.0

vli1l0
v220

vref 10 0 2.5
vbias1 110 1.1

xg180901102101111021011110210115gil3

.subckt gil3809012345111213141521222324257
xsgl1 8090123456 7 sgil

xsg2 80 90 11 12 13 14 15 6 7 sgil

xsg3 80 90 21 22 23 24 25 6 7 sgil

xre 80 90 6 7 linre3

.ends

.subckt sgil 80901234513 14
m1716 90 n w=4u |=4u
m2826 90 n w=4u |=4u
m39 3 12 80 p w=15u |=4u
m49 4 11 80 p w=15u I=4u
m5 10 3 11 80 p w=15u |=4u
m6 10 4 12 80 p w=15u |=4u
m7807980p w=15u I=4u
m8 8077 80 p w=15u |=4u
m9 80 8 8 80 p w=15u |=4u
m10 80 8 10 80 p w=15u I=4u
m11 13 11 90 90 n w=4u |=4u
m1211 11 90 90 n w=4u |=4u
m13 12 12 90 90 n w=4u I=4u
m14 14 12 90 90 n w=4u |=4u
m156 590 90 n w=12u |=4u
.ends

.subckt linre3 80 90 6 77
vdum 7 77 0.0

m31807 7 80 pw=4u I=12u
m327 9090 7 p w=4u 1=12u

m21806 6 80 p w=11u |=14u
m22 806 77 80 p w=11u I=14u
.ends

143

N63J SPICE LEVEL2 PARAMETERS

.MODEL N NMOS LEVEL=2 PHI=0.700000 TOX=3.9500E-08 XJ=0.200000V TPG=1
+ VT0=0.8577 DELTA=2.7790E+00 LD=1.3330E-07 KP=5.9272E-05

+ U0=678.0 UEXP=8.7500E-02 UCRIT=6.7780E+03 RSH=1.2930E+01

+ GAMMA=0.5361 NSUB=6.6170E+15 NF5=9.3830E+10 VMAX=4.8300E+04

+ LAMBDA=3.0840E-02 CGDO=1.7480E-10 CGSO=1.7480E-10

+ CGB0O=3.4582E-10 CJ=1.34E-04 MJ=0.535 CJSW=6.11E-10

+ MJSW=0.200 PB=0.40

.MODEL P PMOS LEVEL=2 PHI=0.700000 TOX=3.9500E-08 XJ=0.200000U TPG=-1
+ VT0=-0.8721 DELTA=3.0970E+00 LD=1.0210E-07 KP=1.6129E-05

+ U0=184.5 UEXP=4.3620E-01 UCRIT=2.0720E+05 RSH=1.0190E-01

+ GAMMA=0.5972 NSUB=8.2120E+15 NFS$=6.0720E+11 VMAX=9.9990E+05

+ LAMBDA=3.9420E-02 CGDO=1.3389E-10 CGSO=1.3389E-10

+ CGBO=4.0174E-10 CJ=3.34E-04 MJ=0.585 CJSW=3.97E-10

+ MJSW=0.127 PB=0.90

.probe
.dcvl115350.02v215350.25
.end

APPENDIX C

PSPICE simulation results with
different temperature

144

C.1 Trajectory generation with 50°C

* TEMP0 : ¢ nowens (3-1-1) : cl_S.oir
Dste/Time nex 002488 05:31:19 Tomperatuwss: 0.0

Figure C.1. Input, output and target signals

* TEMP=E0 : 4 nowons (3-1-1) : eb6_S.obr

Os SO 100w
SV SW) AWe1) TWAD W) < Vie) XVIRI) TVRE) AV = VeH

Figure C.2. E,,, and the weights

145

C.2 Trajectory generation with 0°C

* TRMPSO : 4 Aowrons (3-1-1) : ob@_Selr

Tempersture: 0.0

cevmneedd

Figure C.3. Input, output and target signals

* TEMP=O0 : 4 nowrons (2-1-1) : oir@_Soir
Oute/Time nan: 002500 12:20:32 Tompersture: 0.0

0y
1

{ - ” N
T oo —
,"’('ll/y((v(('-'

[80w 100us
SV VB AV TVAD WA ©VRH VI VD VRN XVed

Figure C.4. E,,,, and the weights

146

C.3 Trajectory generation with 125°C and -50°C

* temp=128 : 4 newons (2-1-1) : or6_2.0k

Os S0us 100us
SV VM) AVAT) TVER) SV ©We) TVEY) VIR svem =V

Figure C.5. Weights hit the rail voltage

* TEMP=-80 : 4 nowrons (3+1-1) : eh@_Solr

- S e " e > > oo

...............

Os S0w 100w
SV SVI AVI4) TV SWeN) <Viee) XVRY) TVRR Avien vieq

Figure C.6. Weghts hit the rail voltage

BIBLIOGRAPHY

BIBLIOGRAPHY

(1] John Hertz, Anders Krogh, and Richard G. Palmer, Introduction to the Theory of
Neural Computation, Addison-Wesley Publishing Co., 1991.

[2] Judith E. Dayhoff, Neural Network Architecture, Van Nostrand Reinhold, New York,
1990.

(3] Patrick K. Simpson, Artificial Neural Systems: Foundations, Paradigms, Applications,
and Implementations, Pergamon Press, New York, 1990.

(4] R. P. Lippmann, “An Introduction to Computing with Neural Nets”, IEEE Acoustics,
Speech and Signal Processing Magazine, 4(2), April 1987, pp. 4-22.

[5] S. Eberhardt, R. Tawel, T. Brown, T. Daud, and A. Thakoor, “Analog VLSI Neu-
ral Networks: Implementation Issues and Examples in Optimization and Supervised
Learning”, IEEE Transaction on Industrial Electronics, Vol. 39, No. 6, December 1992,
pPp. 552-564.

(6] Eric A. Vittoz, “Analog VLSI Signal Processing: Why, Where and How?”, Analog
Integrated Circuits and Signal Processing, July 1994, pp. 27-44.

[7] M. Mabher, S. DeWeerth, M. Mahowald, and C. Mead, “Implementing Neural Architec-
tures using Analog VLSI Circuits”, IEEE Transaction on Circuits and Systems, Vol.
36, No. 5, May 1989, pp. 643-652.

[8] Caver Mead, “Adaptive Retina”, in Analog VLSI Implementation of Neural Networks,
C. Mead and M. Ismail, Eds. Boston: Kluwer Academic Publishers, 1989.

[9] R.F.Lyon and C. Mead, “An Analog Electronic Cochlea”, IEEE Trans. Acoust. Speech
Signal Proc., Vol. 36, No. 7, July 1988, pp.1119-1134.

[10] M. A. Holler, S. Tam, H. Castro, and R. Benson, “An Electrically Trainable Artificial
Neural Network (ETANN) with 10240 Floating Gates Synapses”, International Joint
Conference on Neural Networks, 1989, Vol. 2, pp.191-196, Washington D.C.

[11] E. Sackinger, B. E. Boser, J. Bromley, Y. Le Cun, and L. D. Jackel, “Application of
the ANNA Neural Network Chip to High-speed Character Recognition”, IEEE Trans-
actions on Neural Networks, Vol. 3, May 1992, pp.498-505.

147

148

[12] J. Choi, S. H. Bang, and B. J. Sheu, “A Programmable Analog VLSI Neural Network
Processor for Communication Receiver”, IEEE Transactions on Neural Networks, Vol.
4, May 1993, pp.484-495.

(13] Hwa-Joon Oh and Fathi M. Salam, “Analog CMOS Implementation of Neural Network
for Adaptive Signal Processing”, Proc. of IEEE International Symposium on Circuit
and Systems 1994, London, England, May 30 - June 2, 1994, pp.503-506.

[14] Gert Cauwenberghs, “An Analog VLSI Recurrent Neural Network Learning a
Continuous-Time Trajectory”, IEEE Transactions on Neural Networks, Vol. 7, No.
2, March 1996, pp.346-361.

(15] Bart Kosko, Editor, Neural Networks for Signal Processing, Prentice-Hall, Inc., New
Jersey, 1992.

(16] Barak A. Pearlmutter, “Gradient Calculations for Dynamic Recurrent Neural Network:
A Survey”, IEEE Trans. on Neural Networks, Vol. 6, No. 5, September 1995, pp.1212-
1228.

[17] Charles F. Stevens, “The neuron”, Scientific American, September 1979.

(18] Warren S. McCulloch and Walter Pitts, “A Logical Calculus of Ideas Immanent in
Nervous Activity”, Bulletin of Mathematical Biophysics 5, 1943, pp.115-133.

(19] Marvin L. Minsky and Seymour A. Papert, Perceptrons, Expanded edition, The MIT
Press, 1990.

[20] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Parallel Distributed Processing:
Ezplorations in the Microstructure of Cognition, MIT Press, 1986, Vol. L.

(21] J. J. Hopfield, “Neural Networks and Physical Systems with Emergent Collective Com-
putational Abilities”, Proc. Natl. Acad. Sci. U.S.A. Vol. 79, pp. 2554-2556, 1982.

[22] J. J. Hopfield, “Neurons with Graded Responses Have Collective Computational Prop-
erties Like Those of Two-State Neurons”, Proceedings of the National Academy of
Sciences, USA 81, pp.3088-3092.

[23] J. J. Hopfield and D. W. Tank, “Computing with Neural Circuits: A Model”, Science
233, pp-625-633.

[24] Don R. Hush and Bill Horne, “Progress in Supervised Neural Networks: What’s new
since Lippman?”, IEEE Signal Processing Magazine 10, 1993, pp. 8-39.

[25] Fathi M. Salam, “Learning Algorithms for Artificial Neural Nets for Analog Circuit
Implementation”, Computing Science and Statistics, Proc. of the 22nd Symposium on
the Interface, May 16-19, 1990, pp.169-177.

149

[26] Fathi M. Salam, “A Modified Learning Rule for Feedforward Artificial Neural Nets
for Analog Implementation”, Memorandum No. MSU/EE/S 90/02, Department of
Electrical Engineering, Michigan State University, Jan. 26 1990.

[27] Myung-Ryul Choi, Implementation of Feedforward Artificial Neural Networks with
Learning using Standard CMOS Technology, Ph. D. Dissertation, Dept. of Electrical
Engineering, Michigan State University, 1991.

(28] Hwa-Joon Oh and Fathi M. Salam, “A Modular Analog Chip for Feedforward Networks
with On-Chip Learning”, Proc. of IEEE 36th Midwest Symposium on Circuit and
System, Detroit, Aug.1993. pp.766-769

[29] C. T. Sah, “Characteristics of the Metal-Oxide-Semiconductor Transistor”, IEEE
Trans. on Electron Devices, vol. ED-11, July 1964, pp.324-345.

(30] H. Shichman and D. Hodges, “Modeling and Simulation of Insulated-Gate Field Effect
Transistor Switching Circuits”, IEEE Journal of Solid State Circuits, Vol. SC-3, No.
3, Sep. 1968, pp.285-289.

[31] A. Paolo and M. Giuseppe, Semiconductor Device Modeling with SPICE, McGraw-Hill,
Inc. 1988.

[32] Paul W. Tuinenga, SPICE: A guide to circuit simulation and analysis using PSpice,
Prentice-Hall, New Jersey, 1988.

[33] J. E. Meyer, “MOS Models and Circuit Simulation”, RCA Review, Vol. 32, 1971.

(34] L. M. Dang, “A Simple Current Model for Short Channel IGFET and Its Application
to Circuit Simulation”, IEEE Journal of Solid-State Circuits, Vol. 14(2), 1979.

[35] R. Kielkowski, Inside SPICE: Overcoming the Obstacles of Circuit Simulation,
McGraw-Hill, 1994.

[36] Phillip E. Allen and Douglas R. Holberg, CMOS Analog Circuit Design, Holt, Rinehart
and Winston (HRW), 1987.

[37] Randall L. Geiger, Phillip E. Allen, and Noel R. Strader, VLSI Design Techniques for
Analog and Digital Circuits, McGraw-Hill Publishing Company, 1990.

[38] Caver Mead, Analog VLSI and Neural Systems, Addison-Wesley Publishing Company,
1989.

[39] M. Steyaert and W. Sansen, “High Performance Operational Amplifiers and Compara-
tors”, in Analogue-Digital ASICs: Circuit techniques, design tools and applications,
edited by R. Soin, F. Maloberti and J. Franca, Chapter 3, pp.41-64., Peter Peregrinus
Ltd. 1991.

150

[40] Barrie Gilbert, “A Precise Four-quadrant Multiplier with Subnanosecond Response”,
IEEE Journal of Solid-State Circuits, Vol. SC-3:365, 1968.

[41] S. Qin and R. Geiger, “A £5-V CMOS Analog Multiplier”, IEEE Journal of Solid-State
Circuits, Vol. SC-22, No.6, December 1987, pp.1143-1146.

[42] J. N. Babanezhad and G. C. Temes, “A 20-V Four-quadrant CMOS Analog Multiplier”,
IEEE Journal of Solid-State Circuits, Vol. SC-20, No. 6, Dec. 1985, pp. 1158-1168

[43] K. Bult and H. Wallinga, “A CMOS Four-quadrant Analog multiplier”, IEEE Journal
of Solid-State Circuits, Vol. SC-21, No. 3, June 1986, pp. 430-435.

(44] J. Pena-Finol and J. A. Connelly, “A MOS Four-quadrant CMOS analog Multiplier
using the Quarter-square Technique”, IEEE Journal of Solid-State Circuits, Vol. SC-22,
No. 6, Dec. 1987, pp.1064-1073.

[45] D. C. Soo and R. G. Meyer, “A Four-quadrant NMOS Analog Multiplier”, IEEE
Journal of Solid-State Circuits, Vol. SC-17, No. 6, Dec. 1982, pp.1174-1178.

[46] C. W. Kim and S. B. Park, “New Four-quadrant CMOS Analog Multiplier”, Electron
Letters, Vol. 23, No. 24, Nov. 1987, pp. 1268-1270.

[47) Hwa-Joon Oh and Fathi M. Salam, “4x4x2 Neural network Design Using Modular
Neural Chips with On-chip Learning”, Proc. of IEEE International Conference on
Neural Networks (ICNN), Orlando, Jun.28-Jul.2, 1994, pp.2070-2073.

(48] Simon Haykin, Neural Networks: A Comprehensive Foundation, Macmillan College
Publishing Company, Inc., 1994.

[49] Jacek M. Zurada, Introduction to Artificial Neural Systems, West Publishing Company,
1992.

[50] Barak A. Pearlmutter, “Learning State Space Trajectories in Recurrent Neural Net-
works”, Proc. of International Joint Conference on Neural Networks (IJCNN) 1989,
June 18-22, 1989, Vol. II, pp.365-372.

[51] D. Kirk, Optimal control theory: An introduction, Englewood Cliffs, NJ: Prentice-Hall,
1970.

[52] Frank L. Lewis, Optimal Control, John Wiley & Sons, NY, 1986.

[53] Luis G. Sotelino, Marco Saerens, and Hugues Bersini, “Classification of Temporal
Trajectories by Continuous-Time Recurrent Nets”, Neural Networks, Vol. 7, No. 5,
pp.767-776, 1994.

[54] Fernando J. Pineda, “Generalization of Back-Propagation to Recurrent Neural Net-
works”, Physical Review Letters, Vol. 59, Number 19, 9 Nov., 1987, pp.2229-2232.

151

[55] R. J. Williams and D. Zipser, “A Learning Algorithm for Continually Running Fully
Recurrent Neural Networks”, Neural Computation 1, 1989, pp.270-280.

[56] L. B. Almeida, “A Learning Rule for Asynchronous Perceptrons with Feedback in
a Combinatorial Environment”, In IEEE First International Conference on Neural
Networks (San Diego 1987), Eds. M. Caudill and C. Butler, Vol. II, pp.609-618.

[57] Kiyotoshi Matsuoka, “Stability Conditions for Nonlinear Continuous Neural Networks
with Asymmetric Connection Weights”, Neural Networks, Vol. 5, pp. 495-500, 1992.

[58] L. Jin, P. N. Nikiforuk, and M. M. Gupta, “Absolute Stability Conditions for Discrete-
time Recurrent Neural Networks”, IEEE Trans. on Neural Networks, Vol. 5, No. 6,
November 1994, pp.954-964.

[59] L. B. Almeida, “Backpropagation in Non-Feedforward Networks”, in I. Aleksander
(Ed.), Neural Computing Architectures, Cambridge, MA: MIT Press, 1989, pp.75-91.

[60] L. Ljung, “Issue in system identification”, IEEE Control System Magazine, Vol. 11,
Jan. 1991, pp.25-29.

[61] Hwa-Joon Oh and Fathi Salam, “Analog CMOS Feedforward Artificial Neural Network
with On-Chip Learning: Test Results”, Proc. of 1993 International Symposium on
Nonlinear Theory and Its Applications, Hawaii, Dec. 5 - 10, 1993.

[62] Fathi Salam and Hwa-Joon Oh, “Real-Time Tracking Control Using Modular Neural
Chips with On-Chip Learning”, Proc. of IEEE International Conference on Neural
Networks (ICNN), 1996, June 2-6, Washington D.C.

