
 
.
i
t
.

 

l
l

4
.
3
%
?

.
3
2
.
.

.
9

‘
l
l
'

:
F
.
.
.

b
y

.
.
3
,

.
n
i
x

_
9
5
4
.
5
5

H
y
m
a
n
”
.

‘
J
3

,
4
.
5

p
.
.
.

x
.

a
n

.
M
.
»

w...
‘

.
3
H

u
p
.
.
.

W
N
-
w
.

‘
1

s
w
fi
m
x

0.
g
m
.

‘
-

'
0
. E
:

s

a
n
.
”
-
.
1
._.
{
I

i
s

..
L

«
I
‘
l
l
r
i
A
c
.
.
.

2
.
:
5
.
1
.
(
v

.
’
I
L
I
Z
.
’
I
r

r

.
u

3
-
1
1
"
!

0
‘

 
2
1
:
;
:
9

a

.
0
:
-

1
‘

a

fl
u
x
.



THESIS

IIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIII
3 1293 0177183

I LIBRARY

Michigan State

University

 

   

This is to certify that the

dissertation entitled

Analog CMOS Implementation of Artificial

Neural Networks for Temporal Signal Learning

presented by

Hwa-Joon Oh

has been accepted towards fulfillment

of the requirements for

Ph . D . degree in anineering
 

 

   
Major professor

MSUi: an Affirmative Action/Equal Opportunity Institution 0-12771

 



PLACE IN RETURN BOX to remove this checkout from your record.

To AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

 

DATE DUE DATE DUE DATE DUE

 

  

 

  

 

  

 

  

 

 
     
 

use creme/mm“



Analog CMOS Implementation of Artificial

Neural Networks for Temporal Signal Learning

By

Hwa-Joon 0h

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Electrical Engineering

1996



ABSTRACT

Analog CMOS Implementation of Artificial

Neural Networks for Temporal Signal Learning

By

Hwa-Joon 0h

A recurrent neural network with a recurrent learning rule is implemented using

CMOS technology. We employ several building blocks for the implementation in-

cluding a wide-range transconductance amplifier, a modified Gilbert multiplier, and

a vector multiplier.

A sigmoid function generator is designed using the wide-range trans-conductance

amplifier. The output of the wide-range transconductance amplifier is current. To

convert the current output to voltage, we use active resistors. The modified Gilbert

multiplier and the vector multiplier are implemented using current bus and active

resistors. Their four-quadrant and dot-product multiplications are verified through

the PSPICE circuit simulations.

We have developed a modified recurrent back-propagation learning rule for tempo—

ral learning. Its forward instantaneous update scheme is suitable for analog hardware

implementations.

We have designed 4-neuron and 6-neuron recurrent neural network prototypes.



We have implemented the neural network using standard CMOS circuits and verified

their performance using extensive PSPICE circuit simulations. We have trained the

two prototype neural networks to learn different state trajectories and the PSPICE

circuit simulation shows that the recurrent neural network learn the temporal signals

for reproduction and classification successfully.

Finally, a two—dimensional scalable array configuration is designed for a large-scale

implementation of fully connected recurrent neural network with learning. With the

2-D array configuration, the layout offers a simple and scalable VLSI architecture.
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CHAPTER 1

Introduction

The brain is a highly complex, nonlinear, and parallel computing structure. Neural

networks have been motivated from its inception by recognizing that the brain com-

putes in an entirely different way than the conventional digital computer. Artificial

neural networks are machines that are designed to model the way in which the brain

performs a particular task or function of interest [1][2] [3] [20].

An important feature of neural networks is that they perform useful computations

through a process of learning. To achieve good performance, neural networks employ

a massive interconnection of simple computing cells referred to as neurons. In neural

networks, interneuron connection strengths known as synaptic weights are used to

store the knowledge. The knowledge is acquired by the neural network through a

learning process. The procedure used to perform the learning process is called a.

learning algorithm. A learning algorithm modifies the synaptic weights of the neural

network in order to get a desired design objective.

Neural networks have some unique attributes [48]: nonlinearity, input-output map-

ping, adaptivity, the ability to learn from their environment, the ability to generalize

from weak assumptions, fault tolerance, VLSI implementability. There have been

a lot of architectures and learning algorithms in artificial neural networks [4]. One

important artificial neural network is the feedforward neural network and the back-

 



propagation learning algorithm. Typically, the multilayer feedforward neural network

consists of an input layer, one or more hidden layers of computation nodes, and an

output layer of computation nodes. The error back-propagation process consists of

two processes: a forward pass and a backward pass. In the forward pass, input pat-

terns are applied to the network, and their effects propagate through the network. In

the backward pass, the desired patterns are presented to the network and the out-

puts of the network are compared with the desired ones. The errors are calculated

and propagated backward through the connection weights to minimize the errors.

The synaptic weights are adjusted so as to make the actual responses of the network

move closer to the desired responses. Multilayer feedforward networks have been ap-

plied successfully to solve some difficult and diverse problems by training them in a

supervised manner [1] [20] [48] .

The neural networks are usually implemented using electronic components or sim-

ulated in software on a conventional computer. In the forward pass and the backward

pass of neural network, high computational requirement is needed. To meet the com-

putational requirement, analog hardware implementation of the neural networks will

be an ideal medium for real time learning and processing. The advantages of using

analog VLSI as technology medium for special-purpose neural network implementa-

tions include the inherent parallelism of the operations, fast speed on learning and

processing, the compact size, and low power consumption of the elements performing

the computational functions [5].

Some of the traditional analog design requirements such as accurate absolute com-

ponent values, device matching, precise time constants, etc., are not major concerns

in neural networks. This is primarily because computation precision of individual

neurons is not important [6]. For learning neural networks, the effects of mismatches

and offsets in the analog components can be greatly compensated by the learning

hardware parameters directly on the implemented neural networks. The learning



performance of the neural networks may still be affected by the analog precision of

the implemented learning function themselves, depending on the nature of the algo-

rithm used.

The list of general-purpose and special-purpose neural chips available presently is

quite diverse, and still growing.

The direct implementation of biological circuitry has been done by Mead’s group

[7] [38]. They have found parallels between the behavior of subthreshold analog CMOS

VLSI and biological neural circuitry. They have implemented a wide variety of

neural VLSI systems that have been successfully constructed, including retinas[8],

cochleas[9], and other biological systems.

Intel’s ETANN chip [10] is an analog model of 64 analog neurons and 10240

analog synapses. It uses EEPROM technology to store synaptic weights and the

learning algorithm is performed at external general computers. The network can

simultaneously compute the dot-product of a 64 element analog vector with a 64x64

synaptic array at a rate in excess of 1.3 billion interconnections per second. All

elements of the computation are done in the analog domain and strictly in parallel.

AT&T has built an ANNA (Analog Neural Network Arithmetic and logic unit)

chip [11] that is a hybrid analog-digital neural network chip. The chip implements

4096 physical synapses. The resolution of the synaptic weights is 6 bits, and that of the

states (input and output of the neuron) is 3 bits. The chip uses analog computation

internally, but all input/output is digital. The chip can be reconfigured for synaptic

weight and input vectors of varying dimension, namely, 64, 128, and 256. The ANNA

chip is implemented for the application of high-speed optical character recognition

with a total of 136,000 connections on a single chip.

An analog VLSI neural network processor was designed and fabricated for com-

munication receiver applications [12]. A channel equalizer was implemented with a

neural chip configured as a three-layer perceptron network. The number of neurons

 



in the input layer, two hidden layer, and the output layer is 8, 12, 12, and 1, re-

spectively. The whole network includes a total of 252 synapse cells, and the input

layer consists of the switched-capacitor analog delay circuits. The synapse cell is re-

alized with a wide-range Gilbert multiplier circuit. The neuron circuit consists of a

linear current-to-voltage converter and a sigmoid function generator with a control-

lable voltage gain. Network training is performed by the modified Kalman filtering

algorithm and the learning process is done in the companion DSP board which keeps

the synaptic weight for the chip. The chip requires the refresh hardware to maintain

the weight values.

Storage of adjustable analog weights is one of the most important problems faced

in analog implementation of artificial neural networks. The storage form can be

analog: it would thus have the properties of an analog memory cell. A commonly

used storage technique is based on storing charge across a capacitor. The storage

capacitor will slowly discharge. For today’s conventional technologies, the storage

time is of the order of several milliseconds. To store the weight control voltage for

longer periods, the charge stored on the capacitance needs to be refreshed once every

few milliseconds. The natural decay of a capacitor’s charge is one of the inherent

limitations of the analog storage of weights.

We have designed a neural network which has two feedforward neural networks

in one chip [13]. The first feedforward neural network has its learning circuits. The

second neural network does not have the learning circuit. The weight of the second

feedforward neural network, is fed from the first neural network through voltage

followers. If we keep applying the input-target pairs to the first feedforward neural

network, there is no need to make an external interface circuit for weight refreshing

in the second feedforward neural network.

A recent paper [14] which employs a stochastic perturbative algorithm uses a

local analog memory technique which does not require external storages. The weight

 



refresh is performed in the background, and does not interfere with the continuous-

time network operation.

The back propagation algorithm is one of the most popular methods for the design

of neural networks. A major limitation of the standard back propagation algorithm

is its focus on approximating static mappings. This static input-output mapping is

well suited for static information processing problems, however, it is not suitable for

dynamic temporal information processing.

Time-varying signals are important in many of the cognitive tasks encountered

in practice, e.g., in vision, speech, control, and signal processing [15]. It is necessary

to provide the neural network with dynamic properties that make it responsive to

time-varying signals. For a neural network to be dynamic, it must be given memory

[48]. One way in which a neural network can assume dynamic behavior is to make it

recurrent, that is to build feedback into its design. In the recurrent neural network,

connections are allowed in both ways between a pair of units, and even from a unit

to itself.

Analog recurrent neural network learning on time-varying signals offers a wide

range of attractive applications, e.g., for process control, identification of dynamic

system, and adaptive signal processing.

Several versions of gradient descent algorithms for supervised learning in dynamic

recurrent neural networks exist [16]. Pearlmutter [50] has derived learning proce-

dure which can learn nonfixed point attractor. The technique is called the back-

propagation through time. Pineda [54] has studied the fixed point learning proce-

dure using the error back-propagation algorithm. It is called the recurrent back-

propagation learning rule. An on-line [55], but computationally expensive, procedure

for determining the derivatives of the states with respect to the weight parameters

has been discovered and applied to the recurrent networks. It is called real time

recurrent learning. The above mentioned algorithms are implemented in software.

 



Their analog hardware implementations for real—time operations have currently not

been demonstrated.

We have deigned and fabricated feedforward neural networks with the modified

update law [13] [28] [47]. The test results have demonstrated the successful operations

of the feedforward neural networks [13] [28] [47] [61][62]. The circuit designs of the

neural network at this dissertation are based on the test results of previous fabrications

and test results.

In this dissertation, recurrent artificial neural networks with on-chip learning cir-

cuit are implemented using standard CMOS technology. We have modified the learn-

ing rule from the time-dependent recurrent back-propagation learning rule. We avoid

the backward integration and the memory requirement by modification. Its forward

instantaneous update scheme is suitable for an analog hardware implementation. This

is the first successful demonstration of the implementation of the gradient descent al-

gorithm in the recurrent neural network. In order to implement the recurrent neural

network and its learning algorithm, we employ a wide-range transconductance am-

plifier, an active resistor, a modified Gilbert multiplier, and a vector multiplier.

Contributions of this dissertation are as follows:

1. A simple sigmoid function generator is designed using a wide-range trans-

conductance amplifier. Its current output is converted to voltage via active

resistors in order to achieve voltage-to-voltage operations. The sigmoid function

generator is simulated using the PSPICE circuit simulator. Its characteristics

are shown in this dissertation.

2. The modified Gilbert multiplier is designed and implemented as a CMOS circuit.

Its voltage-to-voltage operation is achieved through active resistors. Its four-

quadrant multiplication is verified in this dissertation. The performance of the

multiplier using the PSPICE circuit simulator is shown in this dissertation

 



. The vector multiplier is designed using the modified Gilbert multiplier. High

dimensional multiplier is implemented through simple current summing nodes.

The performance of the vector multiplier is presented using the PSPICE circuit

simulator.

. The modified recurrent back-propagation rule is presented. Its continuous-time

modified update law from the time-dependent recurrent back-propagation learn-

ing rule is shown in this dissertation. The modified algorithm is suitable for the

analog CMOS implementation.

. The MATLAB simulations show the conditions for the stable operation of the

network. The damping factors in the modified equations are important for the

stability of the recurrent neural network. We show the range of the parameters

'which ensure the successful learning in the learning phase.

. The modified recurrent back-propagation rule is implemented with on-chip

learning. Its learning rule is implemented in CMOS circuit and the PSPICE

simulations demonstrate its learning capability. We have demonstrated the

learning capability by training a circular state trajectory. In the circular trajec-

tory generation experiment, the recurrent neural network can generate a limit

cycle. We have performed experiments with different parameters for successful

learning. At the trajectory recognition experiment, the simulation result shows

that the recurrent neural network can distinguish different trajectories.

. A two-dimensional scalable array configuration is designed for large-scale im-

plementation. With the 2-D array configuration, the layout offers a simple and

scalable VLSI architecture. We have designed 4-neuron recurrent neural net-

work and its number of input and target is easily configurable. We show the

subcell design, the floor plan, and its layout in this dissertation.

 



This dissertation is divided into 7 chapters. Chapter 2 reviews the model of neuron

and three artificial neural network models. McCulloch and Pitts model, a feedfor-

ward neural network model, and Hopfield neural network model are investigated. In

Chapter 3, basic CMOS circuits and analog neural subcircuits are discussed for the

implementations of the artificial neural networks. Active resistors are designed to

convert the current output to the voltage output and its characteristics are shown

using the PSPICE circuit simulator. The designs of a transconductance amplifier,

a modified Gilbert multiplier, and a vector multiplier are demonstrated. Chapter

4 reviews the algorithms for the temporal signal learning. 'We have reviewed the

Pearlmutter’s algorithm, the classification of temporal trajectories, the Pineda’s al-

gorithm, and the William and Zipper’s algorithm. The hardware requirement for the

William and Zipper’s algorithm are investigated in this chapter. In Chapter 5, the

modified back-propagation learning rule is presented. Its MATLAB simulations for

stability are shown in this chapter and its implementation is explained. We have

demonstrated that the learning scheme successfully learns the temporal signals by

generating the circular trajectory and recognizing the different state trajectories in

the recurrent neural networks. In Chapter 6, we present the 2-D array configuration

of the modified back-propagation learning rule. With the 2-D array configuration,

the layout offers a simple and scalable VLSI architecture. We show the layout and

pin-configuration of the chip. Chapter 7 summarizes the conclusions of this research

work.

 



CHAPTER 2

Neural Network Models

2.1 The model of a Neuron

The basic unit in the nervous system is specialized cell which is called neuron. A

typical view of neuron is shown in Figure 2.1.

 

Fromotheraxons

Sy11apse\> s

W

Deodritec / :I‘

© . ....Axonlnllock

Cell Body orSonn

Synapse/

Figure 2.1. The structure of a classical neuron

Most neurons share certain structural features that make it possible to distinguish

four regions of the cell: the cell body or soma, the dendrites, the axon, and synapse.
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The individual nerve cell transmits nerve impulses over a single long fiber (the axon)

and receives them over numerous short fibers (the dendrites) [17].

The functioning of the brain depends on the flow of information through elaborate

circuits consisting of networks of neurons. Information is transferred from one cell to

another at specialized points of contact: the synapses. A typical neuron may have

anywhere from 1,000 to 10,000 synapses and may receive information from something

like 1,000 other neurons. Synapses are most often made between the axon of one cell

and the dendrite of another. These synaptic contacts are the primary information

processing elements in neural systems.

The transmission of a signal from one cell to another cell at a synapse is a complex

chemical process. At a synapse the axon usually enlarges to form a terminal button,

which is the information-delivering part of the junction. The terminal button con-

tains tiny spherical structures called synaptic vesicles, each of which can hold several

thousand molecules of chemical transmitter. On the arrival of a nerve impulse at

the terminal button, some of the vesicles discharge their contents into the narrow

cleft that separate the button from the membrane of another cell’s dendrite, which

is designed to receive the chemical message. Hence the information is relayed from

one neuron to another by means of a transmitter. The “firing” of a neuron-the gener-

ation of nerve impulses-reflects the activation of hundreds of synapses by impinging

neurons. Some synapses are excitatory in that they tend to promote firing, whereas

others are inhibitory and so are capable of canceling signals that otherwise would

excite a neuron to fire.

Equipped with a tree of filamentary dendrites, the neuron body aggregates synap-

tic inputs from other neurons. The input currents are integrated by the capacitance

of the cell body until a critical threshold potential is reached, at which point an out-

put is generated in the form of a nerve pulse. This output pulse propagates down the

axon, which ends in a tree of synaptic contacts to the dendrites of other neurons.
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2.2 McCulloch and Pitts neural network model

Due to the complexity and diversity of the properties of biological neurons, the task

of compressing their complicated characteristics into a model is extremely difficult.

Neural computational elements are nonlinear, and typically these are analog in nature.

Many researchers have tried to model neural network systems with current knowledge

of biological neurons since it is still under research.

McCulloch and Pitts [18] proposed a simple model of a neuron as a binary thresh-

old unit. Specifically, the model neuron computes a weighted sum of its inputs from

other units, and outputs a one or a zero according to whether this sum is above or

below a certain threshold:

"10+ 1) = 5(2 w,.-n.~(t) + 91) (2-1)

The diagram is shown in Figure 2.2. Here n, is either 1 or 0, and represents the state

 

Figure 2.2. Schematic diagram of a McCulloch-Pitts neuron

of neuron j as firing or notfiring respectively. Time t is taken as discrete, with

one time unit elapsing per processing step. 5 is the unit step function, or Heaviside
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function:

1 if a: Z 0;

3(1') = (2.2)

0 otherwise.

The weight 111,; represents the strength of the synapse connecting neuron i to neuron

j. It can be positive or negative corresponding to an excitatory or inhibitory synapse

respectively. It is zero if there is no synapse between j and i. The cell specific

parameters 0,- is the threshold value for unit j; the weighted sum of inputs must

reach or exceed the threshold for the neuron to fire.

Though it is a simple model, a McCulloch-Pitts neuron is computationally a pow—

erful device. McCulloch and Pitts proved that a synchronous assembly of such neurons

is capable in principle of universal computation for suitably chosen weights wji. This

means that it can perform any computation that an ordinary computer can, though

not necessarily so rapidly or conveniently.

Real neurons involve many complications omitted from this simple description.

The most significant ones include [1]:

0 Real neurons are often not even approximately threshold device as described

above. Instead they respond to their input in a continuous way. However, the

nonlinear relationship between the input and the output of a cell is a universal

feature. The hypothesis is that it is the nonlinearity that is essential, not its

specific form.

0 Many real cells also perform a nonlinear summation of their inputs. There

can even be significant logical processing (e.g., AND, OR, NOT) within the

dendritic tree.

0 A real neuron produces a sequence of pulses, not a simple output level. Rep-

resenting the firing rate by a single number like 11,-, ignores much information

that might be carried by such a pulse sequence.
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o Neurons do not all have the same fixed delay (t —» t+1). Nor are they updated

synchronously by a central clock. In fact, Neurons are operating in asynchronous

way.

2.3 Feedforward neural network model

In a feedforward neural network, information flows in the forward direction only, and

there are no feedback loops. The network is always stable, and its state depends on

the inputs in a simple manner. Suppose that N neurons form a feedforward neural

network with M inputs. Its structure is shown in Figure 2.3.

Input Output

layer la er
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9 y.

«25 y.
'21s 92
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9»

 

I
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Yn

Figure 2.3. Single layer feedforward neural network. 5 means sigmoid function
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For this network, the input-output relationship can be expressed as

    

311 ( “’11 “’12 ° " WM 1'1 91 l

312 w21 w22 ' " 102114 $2 92

= S + (2.3)

_yN‘ (_wN1 wN2 wNM. [3714‘ _0Nd)      

where 3;, 1 S i S M, is the input neuron, y,, 1 S j S N, is the output neuron, and

wj; is the connection weight from ith input neuron to jth output neuron. The above

equation is represented by

Y = S(WX + o) (2.4)

where X is an M-component column vector of inputs, W is an N x M synaptic weight

matrix, and Y is the resulting N-component column vector of outputs. 9 is an N-

component column vector of threshold and S is a differential, bounded, and strictly

increasing monotone function. The threshold can be included into the weight matrix

implicitly by using wgo = 0,- and 2:0 = 1. Thus the general equation is expressed as:

    

. . I . , 1 \

Ill “’10 "’11 w12 ° ' ' 101M

31

3’2 wzo 1021 2022 ' ‘ ' sz

_ yN-l - I wNo le wN2 “WM 1

I .‘W .)
    

This type of network has only one layer of neurons and there is no connection

between neurons themselves. It is called single-layered feedforward neural network

or Perceptron [19]. Naturally, its practical applications are limited and interesting

applications are emerged when many layers are interacted each other. This can be

achieved through cascading two or more layers of such simple network, as shown in
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Figure 2.4. Any layer between the input layer and output layer is called a hidden

 

Figure 2.4. Two layer feedforward neural network

layer. Thus, all but the output layer are hidden layer in internal layers.

The operation of such networks duplicates that of Figure 2.3, that is, the outputs

of each layer are produced from the weighted sum of the previous layer’s output.

As the number of layers increases, the usefulness of the network also increases. The

output from a multi-layered neural network can be expressed as

Y = S(W‘S(W’ - - - S(WKX))) (2.6)

where W" is a matrix of weights for kth layer, the size of this matrix depending on

the number of neurons acting as source and destination for the layer.

With the development of the back-propagation training algorithm, multi-layered

feedforward neural networks overcome many of the limitations of single-layered feed-

forward neural network [20]. The back-propagation algorithm uses a gradient-descent
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search technique to minimize a cost function which is difference between the desired

output and the actual output. Also, this approach is called supervised learning. For

training the desired output, the input vector is applied to the neural network and its

output vector is produced. The actual output is compared to the desired output and

the error is passed in a backward direction to adjust the connection weights. The

modification of weights is carried out from layer to layer in a backward fashion and

this process is iteratively continued until its error is minimized.

2.3.1 The standard back-propagation algorithm

The static equations of feedforward artificial neural networks [1][20] [48] [49] are given

by

"‘3th = 9(wiiv mini) (2-7)

ym‘ = 3("8th) = S(g(w,-.-,xp,.-)) (2-8)

where g() denotes the general synapse function. Usually, it is given as a dot-product

multiplication between input vector and weight matrix. Here, p represents the index

of patterns and w, is a connection weight from the (output of the) ith node to the

(input of the) jth node and 319.6: which is an output of ith node at pth pattern.

Observe that, in a feedforward network, 3110.)“ is the output of the jth neuron in the

present layer and mm.- is the output of the ith neuron from the previous layer. 5' is

a differentiable, bounded, and strictly increasing monotone function. S is in fact a

diffeomorphism usually referred to as a sigmoid function.

The desired patterns are presented to the neural network and the outputs of the

networks are compared with the desired ones. The error signal at the output of neuron

j is defined by

ep’j = dpvj — ypvj (2'9)
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The errors between the desired output (d) and the actual outputs (y) are calculated

and propagated backward through the connection weights to minimize the total error.

The total squared error is given by

1 1

E = XE» = —£Z(d,,,,- - 31m)2 = -ZZ¢§,,~ (2-10)

in 2 p 1' 2 P 1'

where p denotes the pth pattern and j denotes the jth output neuron.

The error is a function of connection weight 20,-; and updating the weight in gra-

dient system is defined as the delta rule:

w’F. = wffl + A112,. (2.11)
J8

where ijg denotes the changes in the weight 112,; at the kth iteration due to the

input-target patterns. The delta rule defines the change due to applying 1) patterns

such as

3E _ _

820,-.-

  

Aw], = -17

as,
w (2.12)77 E

p a

where r] > 0 is the (learning) rate. Observe that 17 is assumed to be sufficiently small

in order for equation (2.12) to be truly gradient system. The method of gradient

descent has the task of continually seeking the bottom point of the error measure.

According to the chain rule, we may express this gradient as follows:

0E,D _ BEP . Bew- - 831m .Bnetw-
  

_

2.13

awn 36m 31111,,- Bnetm- 620,,- ( )

Differentiating Ep in equation (2.10) with respect to em, we get

E

a p
(2.14)

P1]

aepd
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Differentiating both sides of equation (2.9) with respect to ym, we obtain

36,,,1-

= —1

531m

Next, differentiating equation (2.8) with respect to net”, we get

63/95

Finally, differentiating equation (2.7) with respect to 11),, yields

6111:th _ 89(w,-,~,x,,,.-)

6212,.- — 610,-.-

Hence, the use of equation (2.14) to equation (2.17) in equation (2.13) yields

3531» 5900151 9312.5)
— = —e 6"- net -
aw.“ p1] J( p91) Cw];

Accordingly, the use of equation (2.18) in equation (2.12) yields

 

3E

Aw '5 = —7] p

1 2p: 610,-.-

39(wjg, 3? i)= 7) 5.—
2p: P] aw.“

where the local gradient 6,9,,- is defined by

_ 6E? . 36m . 631105

8610.1 63110.1 67‘3th

 

5m

= 6p.15§(netp.j)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

The local gradient points to required changes in synaptic weights. We may identify

the local gradient in two distinct cases, depending on where in the network neuron j
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located.

For an output layer, we may use equation (2.9) to compute the error signal. Thus

it is straightforward to compute the local gradient 6,9,5 using equation (2.22).

Aw]; = 77 $0121 - yp.j)3§(n€tp.j)%tgfi?p'—i) (2-23)

When neuron j is located in a hidden layer of the network, there is no specified

desired response for that neuron. Accordingly, the error signal for a hidden neuron

would have to be determined recursively in terms of the error signals of all the neurons

to which that hidden neuron is directly connected. Suppose that neuron r,- is in the

input layer, neuron y,- is in the hidden layer, and neuron 2,, is in the output layer.

For the input-to—hidden connection weight wig, we must differentiate E, with respect

to the wjg’s, which more deeply embedded. Using the chain rule, we obtain

8E, 6E, . flyw-

  

 

 

 

610,,- = Byw- Bwj; (2.24)

= 3::-..i*:::.-33;i?’ (2...,
= 4mmg—gjfl‘l (226)

where the local gradient 6”- is given by

‘5“ = ’33,}: ' 6:32;; (2'27)

= -35: .s;(net,,,~) (2.28)

Using the chain rule again, we may express the first term of equation (2.28) by

CE, _ CE, 66%);

all/pd I: 5611.15pr

   (2.29)
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= 2.30

-810;1:63:91]:J' ( )

_ 62,,k anetpk

‘ “e”;kpanet,. ayp, (2'31)

= ‘2 epkSk(net”)agmkj’ yp,,-) (2.32)

k Byrd

= W269(wa1 311!J') (233)

I: By?J

where , in the last line, we have used the definition of the local gradient 6M given in

equation (2.22) with the index k substituted for j.

Finally, using equation (2.33) in equation (2.28), we get the local gradient 6105’ for

hidden neuron j, after rearranging terms, as follows:

 

I a w '1 ,°

5m = Sj(netp.j) 2610.}: g( 0"] Sq“) (2°34)

1: 3110.1

Thus, for a hidden layer, the delta rule is given by

 

, a .,:c 6 w -, ,~

ijs‘ = "€253(”etpj)i('tgjw_11_)k261" g( a; 1?”) (2°35)

where 2:), is the summation over the next layer and 6p), is a back-propagated error

from the next layer.

2.3.2 The modified update law

Let’s consider the new update law. Define the total energy by the following equation:

E. = (é 2w... — 1...)? + flat-wt) (2.36)
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where a5,- is a sufficiently small ‘forgetting factor’, signifying damping, which is also

important for global stability. Update law in continuous time system is expressed as

ij, z tbjgdt = —17j536u%dt (2.37)

The differential dt is the time—step in the integration of the derivative quantity, 112,3.

If we let the differential dt be sufficiently small, the approximation becomes more

accurate. 17,-,- is the learning rate of each weight.

After the chain rule, the continuous time gradient descent dynamic update

law is given by the differential equation as [25] [26].

, 090.0332: 3)

wJ'i = "ii 2 :5p.15§(n6tp.j)——a—:for— '— "jiajiwji (2.38)
1» ,.

If the neuron j is in an output layer,

 

5m = (dim - ym‘) (239)

If neuron j is in any hidden layer,

69 wk I, y 9 -

5m = 2 610.1: (a J . N) (2°40)

1: 31m

where k is the index for the elements in the immediate subsequent layer.

The modified continuous time update law is obtained by removing the sig-

moid derivative terms, namely S;(netp,_,-) [25] [27]. Also, we can have ij instead of

the partial derivative ag(wa-, yp,j)/0yp,,- and mm.- instead of (9g(w,-,-, $11.5) /810,-.- in equa-

tion (2.38) and (2.40). It is shown that the derivative terms in the equation may

be removed without loss in stability or convergence of the update law [25] [26]. The
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modified update law is thus given by

‘in = 71:12 5 .1pr - njs'ajiwji (2-41)

in

For an output layer, the modified update law is obtained as

6M = (dim - 31:25) (2-42)

For a hidden layer, the modified update law is given by

6p“, = Z 6p,kwkj (2.43)

k

where 6,9,,- 18 glven as

61,”, = ep,k (2.44)

Observe that an essential difference between the modified (continuous time) up-

date law and the conventional (discrete time) back-propagation is the absence of the

derivatives of the sigmoid functions. This results in simplifying the learning rule with

major payoff in implementations, both in software and hardware.

2.3.3 Learning methods

We have written the update rule as sums over p patterns. For given training patterns,

back-propagation learning may proceed in one of two basic ways: parallel learning

or sequential learning [27] [28].

In parallel learning, weight updating is performed after the presentation of all

the training patterns (i.e., batch mode). In hardware implementation of parallel

learning, it requires excessive copies of the feedforward neural network equal to the

number of patterns and additional terminals for each input-target pair. In parallel
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learning, the number of input-target pairs is limited to the number of the copies in

the neural network implementation.

Although we have written the modified update rule as sums over all patterns p,

they can be used incrementally. A pth pattern is presented at the input and then

all weights are updated before the next pattern is considered. This clearly decreases

the error measure (for small enough 1)) at each pattern. We refer to this approach

as sequential learning. In sequential learning, the network receives p input-target

pairs periodically as time-varying signal. If we continue to feed the input-target pairs

to the network, the network will learn the input-target pairs by converging to a set

of equilibrium weights.

From an implementation point of view, the sequential learning is preferred over the

parallel learning, because it requires less hardware component. Moreover, given that

the patterns are presented to the network in a random manner, the use of sequential

learning makes the search in weight space stochastic in nature. This randomization

makes the search less likely for the back-propagation algorithm to be trapped in a local

minimum. On the other hand, the use of parallel learning provides a more accurate

estimate of the gradient vector, while sequential learning gets the time-averaged value

in weight space. The relative effectiveness of the two learning modes depends on the

problem [1] [48] .

2.4 Feedback neural network model

Biological systems have some sort of feedback among various neurons. A more realistic

neural network model should have such feedback path.

In this section, We briefly introduce the Hopfield model [21][22] [23]. Extensions to

the Hopfield model have generated interest in a new class of dynamic network models

called recurrent neural networks which are capable of performing a wide variety of
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computational tasks including sequence recognition, trajectory following, nonlinear

prediction, and system modeling [24].

In the Hopfield model, each neuron has a nondecreasing sigmoid nonlinearity. Its

output is fed back to all other neurons via synaptic weights. Each synaptic weight

is denoted by T5,, which connects from the output of neuron j to the input of the

neuron i. There is a symmetric requirement on the connections, namely, we must

have ng = Tjg. The Hopfield model is shown in Figure 2.5.
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Figure 2.5. (a) The circuit of one unit in Hopfield model. (b)A three neuron Hopfield

neural network.

Each unit 1' is consists of the circuit shown in Figure 2.5(a). u,- is the input voltage,
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V.- is the output voltage, and the amplifier has the transfer function of V.- = g(u,-). I,-

is the external input to the node i. The input of each unit is connected to ground

with a resistor R and a capacitor C. The output of unit j is connected to the input

of unit 1' with a resistor 12.3.

The circuit equations are

du; u; I

or, equivalently

Cgfl—ZT-V .1_ ~+I- (246)
(It — j 13 J 12"“: 1 .

where

T-- __ i (2 47)
I) R‘j '

1 1 1

— = - + — 2.48

Rt P 21': '2' ( )

The equilibrium points of the above neural system are the roots of the n simulta-

neous equations

1

0 = 271116 - E93104) + 1; (2-49)

.7

The dynamic behavior of I the Hopfield model can be examined by considering the

energy function of equation (2.46). Equation (2.46) can be rewritten as

du; _ CE

7&- - ~37; (2.50)

where the energy function, E, is given by

V.‘

E = -§ZX:71.VM +22]. g:‘(v.-)dv— 23w.- (2.51)
i j i i
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The time derivative of the energy function along trajectories is

d_E_

dt

since C _>_ 0 and g,-(u.-) is a monotone nondecreasing sigmoid function. Therefore, this

system is a gradient-descent system. That is, this energy function decreases along

trajectories and its time-derivative equals zero at 35 = 0, which is an equilibrium

point of this system.

The Hopfield model is proposed as an associative memory or to solve optimization

problems.
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CHAPTER 3

Analog CMOS Circuit Blocks

3.1 CMOS transistor

Research into some of the unusual electrical properties of semiconductors led to the

development of the transistor, a device for controlling the flow of electrons in a solid

crystal. Like a switch, a transistor can either allow or inhibit the flow of electric

current in response to an external signal. Metal-Oxide—Silicon (MOS) Field Effect

Transistors are commonly used in digital and analog electronics. A MOS transistor

is formed by creating islands of semiconducting material, doped with either negative

N-type or positive P-type charge carriers, in a substrate of the same material doped

with charge carriers of the opposite type. The schematic drawing of an N-channel

MOS transistor and P-channel MOS transistor is shown in Figure 3.1.

By alternating the voltage applied to the gate, charge carriers from the source are

either attracted toward the channel or repelled from the channel. A channel under

the gate is formed since enough attracted or repelled charges are accumulated. The

channel allows current flows all the way across the gate region.

The first MOS electronic circuits employed p-channel (PMOS) transistors. As

MOS technology advanced, n-channel (NMOS) transistors replaced PMOS transistors

because they offered higher speed performance than PMOS. The need for reduced

27
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Figure 3.1. The schematic diagram of NMOS and PMOS

power consumption led to the development of the larger but more powerful efficient

Complementary MOS (CMOS) transistors.

3.1.1 MOS Models

The n-channel and p-channel enhancement MOS devices along with the convention

for the electrical variables are shown in Figure 3.2.

In Figure 3.2, (a) and (b) shows the convention of the four terminal device respec-

tively. If the bulk terminal of NMOS is connected to the lowest circuit level, usually

V35 or GND, the bulk the convention of (c) is used. This is equivalent to (d). In (d),

the bulk terminal of PMOS is connected to the highest voltage of the circuit, VDD.

The following model equations is restricted to the n-channel transistor. The p-

channel model equation is identical with the exception of sign changes in some of the

equations. The same model is used for the PMOS if all the voltages and currents are

multiplied by -1 and the absolute value of the p-channel threshold is used.

When the length or width of the MOS is greater than about 10pm, the substrate

doping is low, and when a simple model is desired, the model suggested by Sah [29]

and used in SPICE by Shichman and Hodges [30] is very appropriate. The dc model
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Figure 3.2. The convention of NMOS and PMOS, D:drain, stource, G:gate, szulk

introduced by Sah is given by

VDs
ID = [3((Vas - VT) -— ——2-—-)Vps (3.1)

which was derived for small value of V05, 0 < V03 S VGs — VT. Small values of VDs

correspond to the ohmic region of operation. The region is termed the ohmic, linear,

or active region. In this equation,

,6 = the transconductance parameter

W

= K— = (poCoz)Z(amps/volt2),

L L

K = FOCoa:

p0 = surface mobility of the channel,

0 t 0 Cox

capacztance per umt area of the gate oxide = —,

03

£
3

a

II
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L = channel length,

W = channel width,

VT = threshold voltage

For V05 2 Vas — VT > 0, the current remains practically constant(independent of

V05) at the obtained when the channel is pinched off. The equation is obtained by

_ fl 2
ID —- 5(VGS — V7) (3.2)

which is good for V03 > V63 — VT and veg > VT. The region of operation is termed

the saturation region. When the MOSFET is operating in the saturation region, the

MOSFET is inherently a transconductance-type device with the voltage input, V03,

and the current output, ID.

If VGs — VT is zero or negative, then the MOS is in the cutoff region and the

current becomes zero.

ID = o, VGS — VT 3 o (3.3)

The model based on the equations (3.1), (3.2) and, (3.3) is the simplest model. In

many situations, this model is quite tractable for hand calculations and adequate for

the analytical portions of the design.

It can be shown theoretically and experimentally that the drain current in the

saturation region increases slightly in a linear manner with V05. Defining A to be

the coefficient that represents the linear dependence of ID on VDS, a more accurate

expressions for the drain current in the saturation region is given by

_ 5 2
ID — 5(Vas — VT) (1+ AVDs) (3.4)

The coefficient A is quite small for long devices but increases considerably for very
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short transistors.

The W/L ratio is the only geometrical design parameter available to the design

engineer that affects the performance of MOS transistor. Assuming the parameter K

and VT are constant, it can be shown that the device is electrically symmetric with

respect to drain and source. The choice of which end of the channel to designate

as source and drain is thus arbitrary. Since the MOS is a bi-directional device, the

source for an n—channel transistor is always at the lower potential of the two nodes.

For the p-channel transistor, the source is always at the higher potential.

The threshold voltage, VT, is somewhat dependent upon the bulk-source voltage.

The dependence can be approximated by

VT = VTo + 7(V¢ - VBs - fl) (3-5)

where V33 is the bulk-source voltage and V10, 7, and 45 are process parameters:

VTo = threshold voltage for V33 = 0

7 = bulk threshold parameter

()5 = strong inversion surface potential

Note that the change in V7 can be quite significant for large V33. The effect becomes

even worse with larger A.

This simple model has five electrical and process parameters that completely de-

fine it. These parameters are K, VT, 7, A, and 43. They constitute the Level 1 model

parameters of SPICE (Simulation Program with Integrated Circuit Emphasis) circuit

simulator [31][32]. In many situations, this model is quite tractable for hand calcula-

tions and adequate for the analytical portions of the design. With the Level 1 model,

the simulation does not perform the short- and narrow-channel effects.
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In the Level 2 model based on Meyer [33], the short- and narrow-channel effects

are calculated. The Level 2 model differs from the Level 1 model both in its method

of calculating the effective channel length (A effects) and the transition between the

saturation and ohmic region. The Level 2 model offers improvements in performance

which are particularly significant for short channel devices.

The Level 3 model has been developed to simulate a semi-empirical model. Several

empirical parameters (parameters not obviously related to or motivated by the device

physics of the MOS transistor) are introduced in the Level 3 model. It simulates quite

precisely the characteristics of MOS which have a channel length up to 2pm. The

basic equations have been proposed by Dang [34].

It is useful to examine the differences among the three models [31]. The Level

1 model is elementary, the Level 2 model uses processing parameters and geometry,

and the Level 3 model uses measured characteristics. Usually the Level 1 model is

not suffiCiently precise because the theory is too approximated and the number of

fitting parameters too small; its usefulness is in a quick and rough estimate of circuit

performances. The Level 2 model can be used with differing complexity by adding

the parameters relating to the effects needed to simulate with this model. However,

if all the parameters are used, i.e., the greatest possible complexity is obtained, this

model requires a great amount of CPU time for the calculations, and it often causes

problems with convergence [35]. The Level 3 model takes less time and less errors on

simulation than the Level 2 model. The only disadvantage of the Level 3 model is

the complexity in the calculation of some of its parameters.

3.2 Transconductance amplifier

The transconductance amplifier is a device that generates current as its output. If

the output current is proportional to the difference between two input voltages, V1
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and V;, the circuit is called a differential transconductance amplifier. Since

the input terminal of the transconductance amplifier receives the voltage input, we

usually need current-to-voltage conversion at the output stage of the amplifier. The

current-to-voltage converter is implemented using operational amplifier and resistors.

However, it is not practical to use operational amplifier inside the neural network

implementation. Thus a simple and convenient current-to-voltage converter is needed.

3.2.1 Active resistors/Loads

The current-to-voltage converter is implemented using two transistors. The active

resistor is used to produce a dc-voltage drop or provide a resistance which is linear

over a small range. The active resistor is achieved by simply connecting the gate to

the drain. The active resistor is shown in Figure 3.3.

 

 

 

 
 _fi M,

-I 1m-

Figure 3.3. The circuit diagram of active resistors using PMOS

Vss

In this figure, there is a current source Im and two PMOS transistors. If we

assume that M1 and M2 is a matched pair, i.e., they have the same conductance fl,

and work in saturation region, we have the circuit equation by applying Kirchhoff’s
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current law at the VOUT node:

1m + 101 = 102 (3-6)

I — B V V V 2D1 — §( DD — OUT - T1) (3.7)

_. 5 2
102 — 5(Vour - Vss - V12) (3-8)

After some algebraic manipulations with the assumption, VT = V11 = V72, VOUT is

given as

 
 

 

1 1 (Von + Vss)
V = —I + 3.9
OUT (VDD _ V33 _ 2%) )6 IN 2 ( l

_ 1 (Von + Vss)

where G is the conductance of the active resister,

G = (VDD — V35 — 2VT)fl (3.11)

If we assume that V33 is 5V and V33 is 0V, then VOUT will be 2.5V when [m is zero.

In Figure 3.4, the characteristics of current-to—voltage relation are shown with

different W/L ratios of the active resistor. In this graph, the W/L ratio of the upper

PMOS is assumed to be same as the W/L ratio of the lower PMOS. We can see

that the resistance increases as the W/L ratio of PMOS decreases. In Table 3.1, the

calculated resistances at the (0A, 2.5V) point from Figure 3.4 are shown with different

W/L ratios. From the table, the value of resistance of active resistors ranges from

10K0 to 1M9.

If we need larger active resistors but we have a limitation of area in chip layout

for active resistors, we can cascade active resistors. Two upper and two lower active
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Figure 3.4. The PSPICE circuit simulation result: Active resistors with different

W/L ratios

Table 3.1. Resistance with different W/L ratios for Active resistors

 

 
 

 

 

 

 

 

 

I (W/L)M1 (W/L)M2 I Resistance, R = é = 52% I

4p/4p 4p/4p 20.61Kfl

' 4p/8p 411/8}; 47.03Kfl

411/1611 411/1611 95.85KQ

411/3211 411/32}; 192.941“)

411/6411 411/6411 392.041“)

411/ 128;: 471/128}: 786.05KQ

411/2561: 4p/256p 1573.1Kfl    
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resistors approximately have 9 times greater resistance than that of single upper and

single lower active resistor with the same W/L ratio. The circuit diagram of the two

cascaded active resistors and its PSPICE simulations are illustrated in Figure 3.5 and

3.6. In Table 3.2, the resistances of the cascaded active resistors are shown.

To make active resistors operate correctly, we have to consider the body effect of

the transistor. To make two threshold voltages, VT; and V12, the same, M1 and M2

should have the same bulk-source voltage, V33, according to equation (3.5).

- Von 

  
M1

 

 

» [.1 M2

——(—>,L v VOW

M3

['1 M4

Figure 3.5. The circuit diagram of the cascaded active resistors using PMOS

 

 

Vss

That is why each transistor’s bulk terminal is connected to its source. The selec-

tion of NMOS or PMOS as linear active resistors depends on the fabrication technol-

ogy. If n-well is used for fabrication, PMOS is used as active resistors because we can

isolate the bulk voltage of PMOS, i.e., the bulk voltage of NMOS is tied together to

the p-type substrate. When p-well is used for fabrication, NMOS should be used as

active resistors since we can isolate the p-well only.
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Figure 3.6. The PSPICE circuit simulation result: The cascaded active resistors with

different W/L ratios

Table 3.2. Resistance with different W/L ratios for the cascaded active resistor

 

I (W/LlMl = (W/Lle (W/L)M3 = (W/L)M4 I Resistance, R = % = fl
 

 

 

 

 

 

AI

411/4}; 4p/4p 208.81KQ

411/811 411/811 455.801“)

411/16}: 411/16}; 893.65KQ

411/3211 4p/32p 1730.41“!

411/64}; 4p/64p 3418.6Kfl   
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3.2.2 Simple transconductance amplifier

The differential transconductance amplifier is one of the most versatile circuits in ana-

log circuit design [36] [37]. The objective of the differential amplifier is to amplify the

difference between two different voltages regardless of the common-mode value. The

differential amplifier is characterized by its common-mode rejection ratio (CMRR)

which is the ratio of the differential gain to the common-mode gain. Another char-

acteristic affecting performance of the differential amplifier is voltage offset. If the

terminals of the differential amplifier are connected together, the output offset voltage

is the voltage which appears at the output of the differential amplifier.

Let us consider the large- and small-signal characteristic of the CMOS differential

amplifier [36]. Figure 3.7 shows a CMOS differential amplifier that uses n-channel

MOS devices, M1 and M2, as the differential pair. M3 is a current source and the

loads for M1 and M2 are obtained from a simple p-channel current mirror (M4 and

M5). If M4 and M5 is matched, then the current of M1 will determine the current in

- V00

M4 [>—<'——<] [Ir/15

Um I In: ’0'”.

II»: II...

v, 14511 M2]: v,

V V

I, I...

vans ‘_] M3

. VSS

   

VOUT

   

 

Figure 3.7. Simple transconductance amplifier
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M4. This current will be mirrored in M5. If V1 = V2, then the currents in M1 and

M2 are equal. Thus the current in M5 is equal to the current in M2, causing Io,“ to

be zero. If V1 > V2, then 131 increases with respect to 132 since 133 = 101 + 132.

This increase in [31 implies an increase in 134 and 135. However, 13: is decreased

with respect to 131, therefore, the only way to establish circuit equilibrium for IOUT

is to become positive. It can be seen that if V; < V; then [OUT becomes negative.

The large—signal characteristics can be developed by assuming that M1 and M2,

the differential pair, are always in saturation. The relationship describing large-signal

21 21

VID=VGS1—Vcsz=‘/ BB] -‘/ :2 (3.12)

103 = IDl + [02 (3-13)

behavior are given as

  

where it has been assumed that M1 and M2 are matched (3 = 31 = [32). The solution

for 131 and 132 is given by

 

  

101:—

2 2
133 + IDs2l/ID\I fl 3 VID

(3.14)

 

I =——— ——— -D” 2 2 \IID3 41,2,3 (315)

where these relationships are valid only for V13 < ([2253. Figure 3.8 shows a plot

of the normalized drain current of M1 and M2 versus the normalized input voltage.

If we assume that the currents in the current mirror are identical, then IOUT can

be found by subtracting 132 from 131. The output voltage V037 of the differential

transconductance amplifier can be found by assuming that a load resistance R3 is
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Figure 3.8. Current output of the simple transconductance amplifier

connected from the output of the amplifier to ground.

 

2V2

VOUT = IOUTRL = (131 — IDZ)RL = ID3V1D\ fi— — fl ID
103 412,” 12;, (3.16)

 

The differential-in, differential-out transconductance is written as

_ alovr

gmd-a—w;  

KI W

(v,D=o)=\/flloa= —‘Z3 1 (3.17)

The small-signal voltage gain of the differential amplifier can be found by differenti-

ating Eq.(3.16) with respect to V13 and setting V") = 0, giving

av K I W
Av = 0‘” = 31033,, = ‘l—lm—l-RL (3.18)

8V”) L1

We note several important deviations from ideal behavior of the differential am-

 

plifier. The first is the mismatch between transistors. Not all transistors are created

equal. Some are created with a higher transconductance property than are others. It

causes current mismatch and shift in characteristic curve and results in voltage offset.
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The designer must consider the worst case VT spread (specified by the process) in each

[transistor and adjust current level and transconductance to meet the requirements.

Typically, the voltage offset of a CMOS differential amplifier is 5 to 20 millivolts.

The common mode gain of the CMOS differential amplifier is ideally zero, because

the current-mirror load rejects any common-mode signal. Due to the mismatches in

the differential amplifier, a common-mode response might exist. This mismatches

consist of a non-unity current gain in the current mirror and geometrical mismatches

between M1 and M2.

Another important characteristic is the input common-mode voltage range. The

input common-mode range is defined by the input voltage range over which both M1

and M2 remain in saturation. The highest input voltage at the gate of M1 (or M2)

when V1 = V; is found to be

V1 = VDD - V504 - V031 + V031 (3.19)

For saturation, the minimum value of V331 is

V051 = V031 - VT01 (3-20)

Substituting and replacing the equations give the final result,

2104

V1=VDD- 34
 

- IVT04I + V101 (3-21)

The last two terms are determined by the process and the equations now becomes

[1 .

Vl(ma.r) = V33 — f — IVT04|(maJ:) + V701(mzn) (3.22)

As V1 approaches V33, M1 will be in the saturation region and close to cutoff.
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Therefore, it makes more sense to relate Vl(min) to V3343 when M3 is no longer in

saturation. The gate voltage on Ml can be shown to be

V1 = V051 + V033 (323)

Set V053 = V053 — VT03 to get

V1 = VGss + V051 - VT03 (3.24)

21133
 V1(m2'n) = V3343 + + VT01(ma:r:) — V703(min) (3.25)

[31

Third, the common-mode input voltage has a significant effect on the transfer

function, particularly the output-signal swing. In this case, the swing limitation will

be based on keeping both M2 and M5 in saturation. When V1 is taken above V2, the

output voltage, VOUT, increases. The output voltage is given as

VOUT = VDD — V305 (3-26)

M5 is at the edge of saturation when V335 = V335 — |V1~05|. Using this relationship,

the maximum output voltage is given as

VOUT = VDD - V304 + [VT05I (3.27)

2104.

34

The minimum output voltage is found by determining when M2 is at the edge of

 

Vour(ma$) = VDD - - IVTO4I + IVrosl (3-28)

saturation. The minimum output voltage is given by

VOUT(min) = V2 -- VT2 (3.29)
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Table 3.3. The transistor sizes of the simple transconductance amplifier

 

[Transistor [ W/L ratio I
 

 

 

 

 

 

  

M1 4,1/4p

M2 4p/4/1

M3 1211/4}:

M4 l5p/4p

M5 l5p/4p  
 

To verify the limitation on the output voltage range, a PSPICE simulation has

been performed. To see the output current, we attached two resistors at the end of

the output terminal. Since two resistors have the same value of 100K0, the output

current is 131 - 132. The circuit diagram is shown in Figure 3.9

The W/L ratios of the transistors are shown in Table 3.3. Figure 3.10 shows

the PSPICE simulation result of the differential transconductance amplifier. The

influence of V2 upon [OUT is illustrated in this figure.

shown in Appendix A.1.

 

The PSPICE input file is

1 I111

R1

 

12::

  

Figure 3.9. Simple transconductance amplifier with load resistors
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Figure 3.10. Simple transconductance amplifier: Output current (131 — 132) as func-

tion of V1 for different values of V2

3.2.3 Wide range transconductance amplifier

A simple transconductance amplifier will not generate output voltage below

VOUT(min), which, in turn, is dependent on the input voltages. We can remove

this restriction by a simple addition to the simple transconductance amplifier, as

shown in Figure 3.11.

To overcome the problem, two extra current mirrors are usually added [38] [39]. By

reflecting the currents of M1 and M2 to upper current mirrors, the output current is

just the difference between 11 and 12. The major advantage of the wide-range amplifier

over the simple circuit is that both input and output voltages can run almost up to

V33 and almost down to V33, without affecting the operation of the circuit.

The output current, IOUT, in the PSPICE simulation is shown in Figure 3.12 and

Figure 3.13. 100K0 resistors are used in Figure 3.12, and 1Mfl resistors are used in
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Ml] [He—<1 M5 M6 kiwi 1.7

  

 

   

 

. ”BIL... {1m LIE?

Figure 3.11. The circuit diagram of the wide range transconductance amplifier

Table 3.4. The transistor sizes of the wide range transconductance amplifier

 

I Transistor [ (W/L) ratio ]
 

 

 

 

 

 

 

 

 

  

M1 411/411

M2 4p/4p

M3 12p/4p

M4 1511/411

M5 15,1/411

M6 l5p/4n

M7 1511/41:

M8 4p/4p

M9 4p/4p  
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Figure 3.12. The PSPICE circuit simulation result: the wide range transconductance

amplifier, output current as function of V1 for several values of V2, Resistor = 100K(I
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Figure 3.13. The PSPICE circuit simulation result: the wide range transconductance

amplifier, output current as function of V1 for several values of V2, Resistor = 1M0
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Figure 3.13. The output current represented in the difference current between R1 and

R2. The PSPICE input file is shown in Appendix A.2 and the sizes of transistors are

shown in Table 3.4. As the value of resistors increased, the saturated level of current

is decreased and the current gain at the operating point is increased.

3.2.4 Sigmoid function generator

The sigmoid function can be obtained by using a wide range transconductance ampli-

fier and active resistors. The output of the transconductance amplifier is in current.

Thus we attached diode-connected MOS transistors as active resistors to convert

current to voltage. Using active linear resistors, we can achieve voltage-to-voltage

operations.

The complete circuit of sigmoid function generator is shown in Figure 3.14. The

sizes of the transistors are shown in Table 3.5. The transconductance of the differential

transconductance amplifier is proportional to the bias current. The (W/L) ratios of

the M1 and M2 transistors also control the transconductance. We can achieve a larger

transconductance when we increase the width of the transistor M1 and M2. The

PSPICE simulation results are shown in Figure 3.15 and Figure 3.16. The PSPICE

input files are shown in Appendix A.3 and AA.

In Figure 3.15, VOUT is shown with different W/L ratios of the active resistor. If

the W/L ratio is decreased, the gain is that of the tanh like function and saturated

level of high and low voltage is increased. In Figure 3.16, VOUT is plotted according

to the different V3343 voltages. From this figure, it is obvious that the gain of the

sigmoid function generator and the level of the saturated voltage are dependent on

the V3343 voltage.

From the PSPICE circuit simulation, we have two parameters to control the char—

acteristics of the sigmoid function generator. The W/L ratio of the active resistor

and the bias voltage are the controllable parameters.
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Figure 3.14. The circuit diagram of sigmoid function generator

Table 3.5. The transistor sizes of the sigmoid function generator

 

[Transistor [ (W/L) ratio [
 

 

 

 

 

 

 

 

 

 

 

  

M1 2411/41:

M2 2411/4/1

M3 10p/4p

M4 1511/4);

M5 15p/4p

M6 1511/4};

M7 1511/4”

M8 1611/41;

M9 16p/4p

M10 4p/19p

M11 411/2111  
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Figure 3.15. The PSPICE circuit simulation result: Sigmoid function generator with

different W/L ratio of the active resistors (M10 and M11) in PMOS when the bias
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Figure 3.16. The PSPICE circuit simulation result: Sigmoid function generator

with different bias voltages when (W/L) of the active resister (M10 and M11) is

(4pm/19pm,4pm/2lpm)
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3.3 The Modified Gilbert Multiplier

To implement the multiplication of the neural networks, a multiplier is one of the

most important component. Several different techniques are used in the multiplier

design. Multipliers based on a modified Gilbert cell [40] [41] [42] are popular. The other

technique is the use of the square-law characteristics in saturation region [43] [44] [45].

Others have implemented the multiplier based on the current-voltage characteristics

in the non-saturation region [46].

We consider a modified Gilbert multiplier as a synapse circuit[38]. The circuit

diagram of the modified Gilbert multiplier is shown in Figure 3.17.

Assume that all transistors in Figure 3.17 are in saturation region, and are matched

so that the transconductance parameters satisfy the equations flN = 3M1 = 5M2 and

5? = 5M3 = 5M4 = 5M5 = flMe.

The output current is the difference between 1301412) and 1301413) since the current

1301421) and 130,122) are reflected by the current mirrors. Defining the output current

1+ = I301“) + 13(M5) and I. = 130143) + 130146), it can be readily shown that the

differential output current I3133 = 1+ — I. is given by

11m = (bran-V.) (WI _ 5pm. — v4)? _ WJI _ now. — V0")

 

 
 

”own 2101142)

(3.30)

The above equation can be approximated into

IDIFF = \/2,BP(\/ID(M1) - \/ID(M2))(V3 - V4) (331)

if the following condition is satisfied

.BP(V3 - V02
<< 1

21D(M1)
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3120/3 — V4)2
<< 1

21mm)

 

Also, the current I3(M1) and ID(M2) are dependent on the voltage difference (V1 — V2).

Since (Vl — V5) is given by

K_%=‘/?_I_2LEQ_‘/M . (332)

BN ,BN

the equation (3.31) becomes

IDIFF = t/flPflNU/s - V4)(V1 - V2) (333)

This is the ideal characteristics of the approximated equation.
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Figure 3.17. The circuit diagram of the modified Gilbert multiplier

The modified Gilbert multiplier takes the difference between two voltages (Va -— V4)

and multiply that difference by a difference two other voltages (V1 - V;). In the small
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Table 3.6. The transistor sizes of the modified Gilbert multiplier

ratio ' ratio

4;: 4p 11 4

4 4p M12 4

15 4 13

15 4 14

15 4 M15

15;: 1

15 4;: M22

15 4 31

15 4 M32

15 4 

'1-DVWWWIT.mwufl)
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1.0V 15V 20V 2.5V 30V 3.5V 40‘!

ova)

Figure 3.18. The PSPICE circuit simulation result: the modified Gilbert multiplier

with V2 = V4 = 2.5V, V(5) is the output voltage
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signal range, the characteristic curve is approximately linear, and all four inputs

carry information about multiplication. For the large-signal range, the multiplier

is nonlinear. However, the nonlinearity does not cause any instability. Since the

modified Gilbert multiplier has current outputs, we employed PMOS active resistors

at the output stage of the multiplier to convert current to voltage. Thus, the voltage-

to—voltage multiplier is achieved.

The PSPICE circuit simulation result of the modified Gilbert multiplier is shown

in Figure 3.18. In this figure, V2 and VI, are connected to Reference voltage, 2.5V.

With different voltages of V3, the output voltage is shown according to the input

voltage, V1. The output voltage shows four quadrant multiplication. The PSPICE

input file is shown in Appendix A.5.

3.4 The Vector Multiplier

In a dot-product operation, two vectors are multiplied to generate a scalar quantity.

Let X = ($1,:c2,...,a:,,)T and Y = (y1,y2,...,yn)T be N x 1 vectors. Their dot-

product operation is expresses as

z = XT - Y = 223,315 (3.34)

In a vector multiplier, the vector multiplication is given as

Vout = E9041 — V,-2)(V,-3 - V14) (3.35)

To implement the dot-product operation, we use the modified Gilbert multiplier

to obtain the vector multiplication. There are identical Gilbert multiplier subcircuits

in the vector multiplier and they are connected together at the terminals of the

current mirror. The differential output currents from the multiplier are summed on
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two current buses and they are converted to voltage through active PMOS resistors.

One thus can construct larger dimensional vector multipliers by simply adding the

Gilbert multiplier subcircuits.

Figure 3.19 presents the 3-dimensional vector multiplier. In this figure, identical

three Gilbert multiplier subcircuits are connected together via 1+ and I- current bus.
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Figure 3.19. The circuit diagram of the 3-D Vector Multiplier

The PSPICE simulation result is shown in Figure 3.20. In this figure, all V1,V2,V3

and V4 of the subcircuits are connected together. V2 and V4 are connected to 2.5V

and V3 is varied from 0.5V to 4.5V. The output voltage obtained by the different

voltages of V1 and V3 are shown in this figure. The output voltage gain and the

saturated voltage are controllable by the V3343 voltage and the (W/L) ratio of active
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Figure 3.20. The PSPICE circuit simulation result: the 3-dimensional vector multi-

plier

resistors.

3.5 Implementation of the modified update law

With a view towards a circuit realization, we have proposed the circuit to implement

the modified update law [13] [28] [47]. To approach the concept of implementing the

differential equation, let us first review the circuit shown in Figure 3.21.

In this figure, there is a current source Im from the modified Gilbert multiplier

and two PMOS transistors as active resistors. A capacitor is attached to the VOUT

node to generate the dynamic behavior of the circuit. We assume that M1 and M2

are a matched pair (i.e., they have the same conductance ,3), work in the saturation

region, and have the same threshold voltage. We have the circuit equation by applying
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Figure 3.21. The implementation of the differential equation

Kirchhoff’8 current law at the VOUT node,

 

[IN + 101 = 102 + IC (336)

101 = .B(VDD — VOUT — VT)2 (3-37)

102 = 5(V0UT - V35 - VT)2 (3338)

d

10 = C ‘2” (3.39)

After some algebraic manipulations, we have a solution for VOUT as

 

dV 1 2

fl= —IIN-£(VDD-Vss-QVT)V0UT+E(VDD"VSS‘2VT)(VDD+VSS) (3.40)
dt C C C

(IV 1 2G G

5th = 51m - —C—V0UT + 5(VDD + Vss) (3-41)

where G is given as equation (3.11)

G = 3(VDD - Vss - 2VT)
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The last term can be treated as an AC-ground term. If we rewrite the equation

with the shifted variable VOUT,

 

 

V + V

VOUT = VOUT - —DD—2——S—S (3-42)

dV l 20

——5th = 51m - ‘CTVOUT (3-43)

With a new variable 76;, the reference voltage is shifted to 2.5V when VDD is 5.0V

and V55 is 0V.

The equation (3.43) is qualitatively same as the following differential equation

(3.44).

13:2 = "(di - yi)$j " flawu‘ (3-44)

Thus the learning parameter, 1], is related with the capacitor value in the learning

circuit and the a parameter is related with the conductance of the transistor.



CHAPTER 4

Learning Temporal Signals

The supervised learning algorithm will be extended to incorporate the use of temporal

processing. The standard feedforward network makes its topology implausible in

a neurobiological sense. On the other hand, by permitting arbitrary connections,

including the use of feedback, the recurrent network assumes a more neurobiologically

plausible topology [48].

In this chapter, we review several learning methods in literature for temporal sig-

nal. We consider a neural network consisting of the interconnection of N continuous-

valued neurons, V5, continuous in both time and amplitude, and with the synaptic

weights from neuron j to neuron i denoted by 212.3. Neurons are assumed to have the

nonlinear function, 5', such as tanh. Unlike the standard feedforward network, the

network will be permitted to have feedback connections among the neurons; that is,

the network is recurrent.

Three subsets of neurons are identified in the neural networks:

1. Input neurons: they receive stimuli directly from the externally applied pattern.

2. Output neurons: they supply the overall response learned by the network.

3. Hidden neurons: which are neither input nor output neurons.
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Of particular interest is the ability of the recurrent network to deal with time-varying

input or output through its own temporal operation.

4.1 Time-dependent recurrent back-propagation

Pearlmutter [50] has developed an algorithm for training a general continuous-time

recurrent network. The units evolve according to

d i
Td—yt = —yi+S(Zwijyj)+Ii (4-1)

= —y,- + S(nJet.-) + I; (4.2)

Some of the units are designed as input units and have input values 1;. Similarly,

some units are used as output units with desired training values d;.

The objective is to minimize the difference between the outputs of the neural

networks and the desired outputs:

=%/ 2b,. — dk]2dt (4.3)

0 1:50

where the sum is only over the units that are output units.

We must minimize equation (4.3), subject constraints equation (4.1). For this

purpose, we introduce the functional:

t1

J = Ldt (4.4)

= /°1§1 Zlyk—dklz'l’ZA(t) T_y_+y'_ 5(ngjyj) -—I,- dt (4.5)

‘0 21:60

where the constraints equation (4.1) is multiplied by Lagrange multipliers, A,(t).

The variation of the integral[5l][52] leads to the well-known Euler-Lagrange equa-
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tions for the functions y;(t), Ag(t) depending on time. For y;(t), we have

(9L d 0L

531—507)” (4'6)

and

BL

5A: — (4.7)

with the end-point conditions:

3L

5;“ — t1) — 0 (4.8)

Notice that the equation (4.7) is in fact equivalent to equation (4.1).

The equation (4.6) can be expressed as

0L ,

67;- = 61¢(yk - dk) + A; —- z: Aijwj,‘ (4.9)

' 1

3L

— = A,- .all.“ 7' (4 10)

where 6;, is 1 if k E 0 and 0 if otherwise. 5'; is the derivative of S(net,~) in terms of

netj. Finally, we obtain

TX; = 6k(yk - d],) + A; — z Ang-wj; (4.11)

J'

The boundary conditions are given by

6L
6—3j.-(t = t1) = 0 = /\.‘(t = t1) (4-12)

As for the back-propagation algorithm, we adapt the weights by gradient descent
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method such as

OJ

6ng

 

t

Aw.-, = -17 = 1] f ’ y,.5'{).,~dt (4.13)
to

where 17 is a small positive constant.

Equations (4.1), (4.11), and (4.13) specify the learning rule for the recurrent net-

work. Equation (4.11) is a backward integration in time and has a final value in

equation (4.12). The learning algorithm proceeds as follows:

1. Starting from t = to to t = t1, integrate the activation equation (4.1) in forward

time with initial condition. Record every state, 3],, and the derivative of Si,

S’(net.-).

2. Make input signal halt. With the final value of A, in equation (4.12), start

integrating the equation (4.11) in backward time. Record every co-state, A5.

3. With the data which are obtained in step 1 and step 2, update the corresponding

weight change using equation (4.13), and repeat the computation.

This algorithm is successfully used by Pearlmutter to learn temporal trajectories

[50]. He has trained a recurrent neural network with no inputs, four hidden units,

and two output units to follow the circular trajectory. In addition to the circular

trajectory, he has trained a network with ten hidden units to follow the figure eight

trajectory. Since this algorithm requires analog memories and backward integration,

it has limitation for analog circuit implementation.

4.2 Classification of temporal trajectories

The previous Pearlmutter’s algorithm is used for the identification of temporal trajec-

tories. For the classification of temporal trajectories, Sotelino et al. [53] has modified

the Pearlmutter’s algorithm. In Sotelino’s algorithm, the decision is taken immedi-

ately at the end of the input signal. The output units play the same role as the
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hidden units before the end of the input signal, and the task of the network is easier:

the activation of the output units just has to pass through a point; they do not have

to follow a trajectory.

As in the Pearlmutter’s algorithm, the activation rule for V;- is given by

TdV-

d_t——— —V- + $220014) + I (4.14)

We have to minimize the functional

$23M — 0.1 I.—.. + /: Ldt (4.15)
21:60

where L is the Lagrange function

L= ZA(t)[r—+V.-— S(ij.-,V,—)— 1.]dt (4.16)

The output units do not have to follow a desired time trajectory any more. They have

to classify the signal by clamping output units on at time t1. The end—point term at

time t1 is exactly the same as the one used in standard back-propagation algorithm

for the output layer. The difference is that the dynamic is continuous.

By the Euler-Lagrange equations,

TX; = A; — ZAngwJ-g (4.17)

i

The end-point conditions at t = t1 are now

_0_L+

0: 8V- +8V~

 

%Z(V— 1),)2] (4.18)

2160
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and we obtain

Mt = t1) = —6,-(V,-(t = 11) - Di) (4J9)

The gradient descent rule is obtained as same as the Pearlmutter’s algorithm.

t1

862;; = 77/;0 VjSfikgdt (4.20) 

Am,- = -n

The procedure of updating the weight is the same way in the previous section.

The fundamental difference with Pearlmutter’s algorithm is the end-point condition,

equation (4.19). The final value of the Lagrange parameters is no longer zero, but

the difference to the target value at this time. This can be considered as the error

signal that has to be back propagated in time.

4.3 Recurrent Back-propagation

Pineda [54] has developed the back-propagation algorithm that can be extended to

arbitrary networks. Let us consider N continuous-valued units, V}, with connection

weight, w;,-, and activation function, 5'. Some of these units are used as input neurons

and have input values of I.-. We define I,- = 0 if the neuron i is not the input neuron.

Similarly some may be output neurons with desired values of D5.

The dynamics of the network is based on the following differential equations

dV;
TE = —V£+S(Zwijvj)+1i (4°21)

i

-V.' + S(net,-) + I; (4.22)

where 10.3 is a connection weight from jth neuron to the ith neuron. It is easily seen
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that this dynamic rule leads to the right fixed point, where dVg/dt = 0, given by

V.- = 5(2 w.,-V,-) + 1.- (4.23)

1'

We assume that at least one such fixed point exists and is a stable attractor.

An error measure for the fixed point is the quadratic one

E = 12 E: (4.24)

2 k

where

D;c — V;c if K is an output unit;

E), = (4.25)

0 otherwise

Gradient descent method gives

  

6E _ aw.
_nawr‘ — 17 2k: Eh awr’ (4.26)Awrs =

On performing the differentiation in equation (4.23), one immediately obtains

0V;

620..

 

0w"

: S'(net,-) [6.3-V, + ngj 6V} ] (4.27)

i

where 6;, is the Kronecker 6 symbol. With solving for the derivatives, the result is

0V ,

gLijEZJ—j: = 6&5 (net;)V, (4.28)

where

ng = 651' - S'(net,-)w,~,- (4.29)
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Inverting the linear equations (4.28) gives

8V)c

0w"

 = (L'l)k,S'(net,)V, (4.30)

On substituting equation (4.30) into (4.26) one immediately obtains

Aw" = 7754/. (431)

where

6,. = S'(net,) Z Ek(L'l)k,. (4.32)

1:

Equations (4.31) and (4.32) specify a formal learning rule. Equation (4.32) requires

a matrix inversion to calculate the error signal 6,. Direct matrix inversion is not

suitable for implementation of the neural networks. A local method for calculation

of 6, is obtained by the introduction of an associated dynamic system. Consider the

vector 2 whose components are defined in terms of the components of 6 according to

6,. = S'(net,)z, (4.33)

so that

z, = Z EAL-1))" (4.34)

1:

Equations (4.32) and (4.33) imply that 2, satisfies

2 [4,52, = E; (4.35)

Now observe that the solutions of equation (4.35) are the steady-state solution of

dz,-

TE 2 -- : Ln-z, + E; (4.36)
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Using equation (4.29),

7% = —z.' + Z S'(net,)wn'zr + E.“ (4'37)

Equations (4.31) and (4.33) lead to a learning rule of the form

Aw" = nS'(net,.)z,V, (4.38)

Equations (4.22), (4.37), and (4.38) completely specify the dynamics for an adap-

tive neural network, provided that equations (4.22) and (4.37) are convergent.

The whole procedure is

1. Use the activation equation (4.22) to find W3.

2. Compare with the targets to find the E53 from equation (4.25).

3. Relax the network equation (4.37) to find zfs.

4. Update the weights using equation (4.38).

4.4 Real-time recurrent learning

Williams and Zipser [55] showed how to construct a learning rule for general recurrent

networks that runs continuously. The network so trained is called a real-time recurrent

network. The network operates at discrete time and the rule can be run on-line,

learning while sequences are being presented, rather than the whole sequences are

shown.

Consider a network consisting of a total of N neurons and M input connections.

Let x(n) denotes the M x 1 input vector at discrete time n, and let y(n + 1) be

the corresponding output vector produced one step later at time n + 1. The input
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vector a:(n) and one-step delayed output vector y(n) are concatenated to form the

(M + N) x 1 vector z(n). Let A denote the set of indices 2' for which 9:;(n) is an

external input, and let B denote the set of indices 2' for which 2,-(n) is the output of

a neuron. We have

at; n i i 6 A

2.0.) = ( l f (439)
yd") if i 6 B

Let W be the N x (M + N) weight matrix of the network. The net internal

activation of neuron i is given by

net-(n) = ngjzj(n) (4.40)

yg(n+1) = S(net,-(n)) (4,41)

Let d;(n) denotes the desired (target) response of neuron i at time step n. Let C

denote the set of neurons that chosen to be visible neurons externally. The remaining

neurons are hidden neurons. An appropriate error measure e(n) on neuron i at time

step n is given by

e(n) = dd") -ye(n) if i E C (4.42)

0 otherwise

The instantaneous error measure at time step n is

E(n) =l % E; e?(n) (4.43)

:6

To minimize the error, we use the gradient descent method. For a particular weight

wpq(n), we may define the incremental change Awpq(n) at time step 12 as follows:

 

 

Awpq(n) = ”flaalZZ) (4.44)

= nZek(n)ag:fn) (4.45)

k P9
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where 17 is the learning-rate parameters. The last derivative in (4.45) can now be

found by differentiating the activation equation (4.41),

0y.-(n)

0w,”

- — 1
= S’(net.-(n _ 1)) 6ipzq(n — 1) + Zwij 6.1/16(2) )

j
P?

 (4.46)

where 6;, denotes that 65,, = 1 when i = p, otherwise it is zero.

It is natural to assume that the initial state of the network at time step n = 0,

say, has no functional dependence on the synaptic weights; this assumption implies

that

3.1/5(0)

0w“

 = o (4.47)

We now may define a dynamic system by a triply indexed set of variables, ngq,

where

i = 63M")

P9 awpq

(4.48)

For every step n and all appropriate 2', p, q the dynamics of the system are governed

by:

n;q(n) = S'(net,-) 6;,zq(n — 1) + Z ngwgq (4.49)

i

with initial conditions

7r‘ = 0 (4.50)

The real-time recurrent learning algorithm for training the recurrent neural net-

work proceeds as follows:

1. For every time step n, starting from n = 0, use the activation equation (4.41)

of the network to compute the output value of the N neurons. For the initial

values of the weights, choose them from a set of uniformly distributed random

numbers.

2. Use equation (4.49) and (4.50) to compute the variables 1r;Q(n).
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3. Use the value of n;q(n) obtained in step 2, and the error signal e.-(n) expressed

in equation (4.42), to compute the corresponding weight changes

Aw..(n) = nze.(n)w;.(n) (4.51)

4. Update the weight mpg in accordance with

wpq(n + 1) = "’99 + Awpq(n) (4°52)

and repeat the computation.

The use of the instantaneous gradient rather than the true gradient over the whole

interval is analogous to that encountered in the standard back-propagation algorithm

used to train a multilayer feedforward neural network, where weight changes are

made after each pattern presentation. The practical differences between the real-

time and non real-time versions are often slight. These two versions become more

nearly identical as the learning rate 17 is sufficiently small [55]. The real-time version

avoids any storage requirements and is especially simple to implement.

4.5 Hardware limitation of the real-time recur-

rent learning rule

At the Williams and Zipser’s algorithm, the learning rule runs on-line. The on-line

version of the Williams and Zipser’s algorithm is appropriate for analog circuit imple-

mentation since analog hardware usually doesn’t have memory capability. Though

the learning equations of the real-time recurrent learning rule are simple and easy

to implement with analog hardware, the Williams and Zipser’s algorithm requires a

large number of 11' equations.
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Table 4.1. Hardware requirements of the real-time recurrent learning rule

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Number of Number of Number of weights Number of 1r equations

neurons, N inputs, M W = N(M + N) N2M + N3

2 2 8 16

3 2 15 45

4 2 24 96

5 2 35 175

6 2 48 288

7 2 63 441

8 2 80 640

9 2 99 891

10 2 120 1200

2 3 10 20

3 3 18 54

4 3 28 112

5 3 40 200

6 3 54 324

7 3 70 490

8 3 88 704

9 3 108 972

10 3 130 1300

2 4 12 24

5 4 45 225

10 4 140 1400

20 4 480 9600

50 4 2700 135000

100 4 10400 1040000       
Consider a recurrent neural network with N neurons and M inputs. Under these

conditions, the dimension of the weight matrix becomes N x (M + N). The imple-

mentation of the real-time recurrent learning rule uses 1r equations (4.49) and weight

update equations (4.45). The 7r equations take total N x (N x (M + N)) equations.

Thus, the required number of 1r equations becomes N2M + N3.

In table 4.1, the required number of weight equations and 7r equations for different

number of neurons and inputs are shown. Nevertheless, because of its ease of imple-

mentation, the real-time recurrent learning rule is used by many researchers working

 



with small networks.
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CHAPTER 5

Implementation of the Modified

Recurrent Back-propagation

5.1 The modified recurrent back-propagation

rule

Let us consider N neuron recurrent neural network which is fully connected among

neurons. Let y.- be the output of the neuron, ng be a connection weight from the jth

neuron to the ith neuron, and 9:,- be the external inputs. Some of the neurons can be

externally seen as output neurons, and some neurons receive the external inputs.

The dynamics of the network in the Pearlmutter’s algorithm is expressed as equa-

tion (4.1)

7.1—4 = -315 + 3(2 212,331,) + I.-

J

= —y,- + S(net,-) + I,-

We propose the equivalent discrete model to the recurrent neural network as

y,-(t+At) = S(net,—(t)) (5,1)

72
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= 5(2 win/1'0) +4.0» (5.2)

where 5' means the sigmoid function, and 2:;(t) represents the input value which may

be zero if y.-(t) is not used as an input neuron in the network. The activation equation

(5.2) is analogous to the equations in the feedforward neural network.

In the Pearlmutter’s algorithm, the error is defined in the integral form as equation

(4.3)

1 ‘1

E = 5/ Elf/k - dk]2dt

‘0 1:60

The error measure of the proposed network is defined at instantaneous time t such as

E(t) = g; 6:“) + $2 2: Claw?)- (5.3)

= $2140) - 4.0))” + $224.44 (5.4)

where [C denotes the output neuron, dk(t) is the desired value of the output neuron

k, and 0.3 is a small positive constant, which is damping factor.

In the Pearlmutter’s algorithm, the following two equations (4.11) and (4.13)

specify the learning rule.

TX; = 61¢(yk — (1);) + A; - Z Ang-wj; (5.5)

j

31 n ,
Aw,‘7 — -178ng — ”/40 y,S,-A,dt (5.6)

We propose the modified recurrent back-propagation update law with equa-
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tions (5.7) and (5.8).

 

1'; digit) = —z,(t) + Z: wjng-(t) + ek(t) (5.7)

Lu?)- = nzs(t)yj(t) - mews-(t) (5-8)

In the Pearlmutter’s algorithm, the forward integration from to to t1 is used in

the weight update equation (5.6). If we consider that the weight update law changes

the weights only at instantaneous time t, not at the interval from to to t1, the weight

update equation becomes equation (5.8) with damping factor a. The modification

from equation (5.6) to equation (5.8) is based on the derivation in Section 2.3.2.

We use the continuous-time gradient descent method for modification and we re-

move the sigmoid derivative term. In the implementation of the modified recurrent

back-propagation update law, we set the r] parameter as small as possible and the

integration is obtained by averaging of the weight value through time. Since we start

the learning with arbitrary initial conditions and continue to learn the target with

periodical waveform, the A equation (5.5) is modified to the 2 equation (5.7). For

analog hardware implementation, the backward integration is impossible. We employ

only forward instantaneous update in the 2 equation.

Also, this updating rule is the special case of the Pineda’s algorithm. The Pineda’s

algorithm assumes the activation equation is convergent and the error measure is cal-

culated in the fixed point. The update rule at the modified recurrent back-propagation

is the on-line version of the Pineda’s algorithm. It updates the weights at instanta-

neous time t. The activation equation at neurons gives instantaneous response to the

network at time t. Instantaneous error is measured at time t and used to update the

weights, while the time-varying inputs and time-varying targets are changing with

time.
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Since we have showed the successful operations of the feedforward neural network

with the modified algorithm that does not have the derivative of non-linearity term

[13] [28] [47], the derivative of the non-linearity term is omitted. The omission of

the derivative of the non-linearity term makes the analog hardware implementation

simple.

5.2 Stability of the modified recurrent back-

propagation

If we do not guarantee that the network will be stable, it may not perform the task

we wish it to learn. We need to investigate the stability of the learning rule.

To consider the stability of the recurrent neural network with fixed point learning,

we must consider the stability of the dynamic equation of the system and the 2

equation. It has been shown previously by Almeida [56] that if the dynamic equation

of the system is stable, then the 2 equation is stable as well.

Other stability requirements for the dynamic equation of the neural network deal

with constraints on the weight matrix. Hopfield [21] has guaranteed that if the weight

matrix is symmetric, he could find a Lyapunov function and global asymptotic sta-

bility. We can not ensure that our weight matrix will be symmetric. Other type of

constraints [57] [58] deal with the size of the weights in the network relative to the

maximum gain of the sigmoid function. However, they consider only static patterns.

The key pattern is given as a constant input to the network. There is no report on

the stability analysis of the recurrent neural network when the pattern is a dynamic

(temporal) pattern.

In the modified recurrent back-propagation learning rule, we have two basic equa-
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tions for the learning rule such as

u30(1) = nze(t)yj(t) - Wow“) (59)

54(1) = iji(t)zj(t) + ek(t) - 4240) (5.10)

Note that we have inserted the ,6 parameter to investigate the stability of the 2

equation. In equations (5.9) and (5.10), the damping factor a and [3 control the

stability of the equations.

We have simulated the learning rule in MATLAB. The network is given as 4-

neuron neural network with threshold weights. Thus there are total 20 weights, 16

connection weights and 4 threshold weights.

The experiment has two inputs and one target. In this experiment, two input

values are given as

2:1(t) = sin(0.5 x 1r x t) (5.11)

3:2(t) = sin(0.25 x 1r x t) (5.12)

The target value is given as

d1(t) = 541(4) + an» (5.13)

With input and target values, the differential equations (5.9) and (5.10) are solved

with the activation equation,

yi(t + At) = “In“: w,,-(t)y,-(t))
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where tanh is a hyperbolic-tangent function. There are 16 differential equations for

(5.15)

and 4 differential equations for the 2 equation,

ng(t)

T’ dt

 

= 244.240) + e.(t) — 324:)



Table 5.1. The MATLAB simulation results
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] y(learning rate) a(weight update) 6(2 equation) Results ]

0.50 0.050 0.20 infinity

0.50 0.050 0.30 infinity

0.50 0.050 0.35 infinity

0.50 0.050 0.40 converge

0.50 0.050 0.50 converge

0.05 0.050 1.00 converge

0.10 0.050 1.00 converge

0.30 0.050 1.00 converge

0.50 0.050 1.00 converge

0.70 0.050 1.00 converge

0.90 0.050 1 .00 converge

1.10 0.050 1.00 converge

1.20 0.050 1.00 infinity

1.30 0.050 1.00 infinity

0.05 0.025 1.00 converge

0.10 0.025 1.00 converge

0.30 0.025 1.00 converge

0.50 0.025 1.00 converge

0.70 0.025 1 .00 converge

0.80 0.025 1.00 infinity

0.90 0.025 1.00 infinity

0.10 0.010 1.00 infinity

0.20 0.010 1.00 infinity

0.30 0.010 1.00 infinity

0.40 0.010 1.00 infinity

0.50 0.010 1.00 infinity

31 “hi w21 wal w41 21 61 21

22 “’12 w22 w32 wt: 22 0 22

72. = - fl

is “’13 was was was 23 0 23

_54. _w14w24w34w44sz4J L0‘ ‘24]          

(5.16)

In MATLAB simulation, we have changed the parameters 7), a, and 6 to investi-

gate the stability. The simulation results are summarized in Table 5.1.

From the simulation results, the stable operation of the network is determined by

the damping factors. If the 0: parameter and the 6 parameter are not big enough to
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make the equations stable, the to values and the 2 values increase to infinity.

The first set of data in Table 5.1 shows the stability dependence on the B parame-

ter. With the fixed value of 17 = 0.5 and a = 0.05, the small 6 value drives the neural

network into infinity values of weights and 2 values. The weights have converged to

the constant values with ripples with B = 0.40, however, the weights have diverged

to the infinity value when 6 = 0.35.

The rest of the results in the table are obtained with the fixed value of 6 since

equation (5.8) implies the B parameter is 1. From the results in the table, we can

see that the small value of a, such as a = 0.01, makes the unstable operation in

the neural network. Another observation on the a parameter suggests that a large

a parameter is not desirable for successful learning. The large a parameter ensures

the convergence of the weights. However, the large a parameter tends to drive the

weights to near zero since the damping factor dominates the weight update equation.

The 17 parameter usually deals with the speed of the learning equation. The

large value of 7) causes the divergence of the weights and the 2 values. Once the

differential equations are stabilized, the n parameter determines the success or failure

of the learning. If the learning rate (7]) is not sufficient small, the ripple in the

converged weights becomes significant since we are using the instantaneous learning

in continuous time. To get the constant weight in learning phase, we need to have a

very small 1] value. In the learning phase, we usually take the averaged value of the

oscillating weights. If the weights are converged with large oscillation, we can not

decide the constant weight values.

From Figure 5.1 to Figure 5.4, we display four simulation results in Table 5.1.

In Figure 5.1 and Figure 5.2, the effect of the a parameter is shown. The large a

parameter causes the large magnitude oscillation of the converged weight. In Figure

5.3, it is shown that the constant converged weight can be obtained with the small 1]

parameter. Figure 5.4 shows the diverged weights to the infinity when 1) has a large
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Figure 5.1. The MATLAB simulation result: the converged weights example

wmeta-0.5 chm-0.050 bob-1.0

(16 r’ w .
 

 

  
 

V T ! I r I

iii-W NI I III

04 j 1 x l I liaiiv'HWi‘Mdi‘z‘mmqu6666161166661avivivivtivmvm

* ..1vvwvvvvvv) )11 11111 vvvvvvvvvrvvvvvvvvwviw

] ........ h ............................................................................. q

)1
‘ - .............. a

\‘I . . 4 4 n I n | \ t l \ t t t 1 111 I | t | \ 1 | l,| u \ I'

] ttta2i.“i{§§§§hf~\{~\\£a\\\\\\\\\\\\\\\\s\\~\\~~

t ................... i.......... 2 .......... ...........i .........i ..........i ........ .4

I”,

"r

' .............................................................................................. .,

4‘ l l l J l l I i i

0 50 100 150 200 250 300 350 400 450 500

time

Figure 5.2. The MATLAB simulation result: the converged weights example
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Figure 5.3. The MATLAB simulation result: the converged weights example
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value.

5.3 Implementation of the modified recurrent

back-propagation

The recurrent neural networks with learning capability are designed using the mod-

ified recurrent back-propagation learning rule. This implemented recurrent network

can be divided into two parts: a recurrent neural network and a learning network.

Suppose that the recurrent neural network has four neurons. It is fully connected

including self-feedback. There are 16 connection weights and 4 threshold weights in

this recurrent neural network. The recurrent neural network is shown in Figure 5.5.

Let us suppose that the recurrent neural network has two inputs, 2:1 and 2;. These

inputs are connected through the neuron, m, and 314. Two neurons, yl and yg, will be

visible with the target signal, d1 and d2. wgo denotes the threshold weight and 20,-, is

the connection weight from the jth neuron to the ith neuron.

The activation equation is given as

        

, , r. . m . .1
yr “’10 mil w12 1013 um 0

5'1

312 wzo W21 1022 wzs 1024 , 0

= S y.2 + Vlogzcl (5.17)

313 wso war 1032 was 1034 $1

313

314 1040 1041 1042 w43 11744 a 1 $2 .

' ‘ 1' _ m . 1  
In circuit implementation, activation equations (5.17) are implemented using the 6-

dimensional vector multiplier. There are 5 multiplications between the weight matrix

and the input vector and a multiplication for input. If there is an input signal to

the neuron, the activation equation is implemented using whole 6 modified Gilbert
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Figure 5.5. The recurrent neural network with four neurons and two inputs, 5' means

the sigmoid function generator
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multiplier sub—circuits. If there is no input to the neuron, the 6-dimensional multiplier

uses only 5 modified Gilbert multiplier sub-circuits by connecting the input terminal

to the reference voltage, 2.5V. If there is no + or - sign in the dotted pair, V2 and V4

are 2.5V. Vth denotes the threshold voltage which is chosen to be 3.5V and Vlogicl

has been chosen as the role of identity 1 in multiplication. Since the high saturated

voltage of the sigmoid function generator is 3V, Vlogicl is selected to be 3V.

The sigmoid function generator is designed to have the saturated voltage as 2V

and 3V. The gain and the voltage characteristics are shown in Section 3.2.4. The bias

voltage is selected as 1.1V.

The learning network is implemented using weight update equations (5.8) and 2

equations (5.7). There are 20 differential equations for the weight update equation,

    

I- q I- 1

“’10 wu w12 wls w14 21

wzo w21 w22 w23 w24 22

o o o o o — n Vth yl y2 y3 y4

wso wsl w32 wss ws4 Zs

w4o w41 w42 w4s w44 L Z4

"’10 wn w12 wls w14

wzo w21 w22 wzs w24

_,,a (5.18)

wso wsl wsz wss ws4

  w4o w41 w42 w4s w44

Weight update equations (5.18) are implemented using l—dimensional multiplier since

the term no: is implemented using active resistors and capacitors. The learning rate,

17 is related with the capacitor value and the damping factor, a is related with the

conductance of active resistors. Active resistors of the 1-dimensional multiplier uses

cascaded PMOS as shown in 3.5 since the small a parameter is required for successful

learning.
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There are 4 differential equations for the 2 equation,

     

u- 1 F q I- - 1- - I- -1

21 wn w21 wsl w41 21 31 21

52 1012 1022 w32 w42 22 , 82 22

1-2 = + Vlogzcl — Vbeta (5.19)

23 "’13 wzs wss w43 za 0 23

24 w14 w24 ws4 w44 Z4 1 0 24
L d h u L c u L d     

The differential equations for the 2: equation (5.19) are implemented using 6-

dimensional vector multiplier. The 6—dimensional vector multiplier can be used as

a fidimensional vector multiplier or a 5-dimensional vector multiplier depending on

the existence of the target signal. If the neuron is not used as an output neuron, there

is no target signal to receive. In the case of non-output neuron, the e.- is set to zero

by connecting Vl 2 V2 together to prevent producing the multiplication since V1 is

connected to the target signal and V2 is connected to the output signal.

We have tried to implement the damping factor (the last term, -z) in the 2 equation

using the active resistors. We have found that the use of the active resistors can not

guarantee the stable operation in the PSPICE circuit simulation. We realized the

damping factor using the negative self-feedback. Using the negative self-feedback,

we can control the stability of the neural network with the associated voltage to the

negative self-feedback. The associated voltage to the negative self-voltage is labeled

Vbeta. Vbeta is selected to 3V. If we reduce this voltage to 2.7V or 2.6V, then the

circuit operation turns to be unstable. When Vbeta is 2.7V, the weight values and

the 2 values usually hit the rail voltage (5V or GND). Vlogicl has been chosen as the

same role of identity 1 in multiplication. It is selected to be 3V.

In an analog circuit implementation, different time constants are used for equa-

tions (5.17), (5.18), and (5.19). The time 3] and z spend settling is negligible compared

to the rate of weight change 17. The learning rate (17) is designed to be slow compared

to the speed of presentation of new training samples.
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The circuit block diagram of the recurrent neural network with modified recurrent

back-propagation learning circuit is shown in Figure 5.6.

In this diagram, 6D denotes 6dimensional vector multiplier. S means the sigmoid

function generator. y.- represents the state of neuron, z,- is the state of 2 equations,

and 11);, is the connection weight from the jth neuron to the ith neuron. In the vector

multiplier, the usual multiplication occurs in the form of 2,-(V1 - V2) x (V3 - V4).

The dotted lines inside the vector multiplier show the multiplication pair. If V2 and

V4 are Vref = 2.5V, (1:1 — 2.5V) x (yl — 2.5V) becomes 1:1 x yl since 2.5V is the

virtual ground term. Vlogicl has been chosen as 3V and Vref is the reference voltage

which is 2.5V. Vth supplies the threshold voltage which is chosen to be 3.5V. Vbeta

in the implementation of 2 equation is selected to be 3V.

5.4 Simulation results of 4 neuron recurrent neu-

ral network

5.4.1 A circular trajectory generation

We have trained a recurrent neural network with no input units, two hidden neurons

and two output neurons. The neural network has fully connected weights. It has 20

weights, 16 connection weights and 4 threshold weights. Since the neural network has

no inputs, all input terminals are connected to the reference voltage, 2.5V.

It is trained to follow a circular trajectory. To learn the circular trajectory is the

well-known problem [14] [50]. The desired state (I; and d; are plotted against each

other in Figure 5.7. The target trajectory consists of a sine waveform and a cosine

waveform. The trajectory is given as the continuous waveform to the neural network.

We have run the PSPICE transient analysis. We performed the PSPICE circuit

simulation using the M0818 2.0pm CMOS parameters. The PSPICE parameters are
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Figure 5.6. The block diagram of recurrent neural network with the modified recurrent

back-propagation: four neurons and two inputs
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Circular Trajectory

  

 
      
   

 
Figure 5.7. The circular trajectory

shown in Appendix A.1.

We apply the target signal to the neural network and observe the output waveform

and the weight waveforms. If the output is following the target closely and weights

have converged to the constant values, we take the averaged value of the weights.

The obtained weight values are used as a verification of learning. After learning, we

set the weight values to the neural network and see the generation of the trajectory

by the neural network. If the neural network generates the circular trajectory, the

learning is successful.

We found that the randomly initialized weight values didn’t fail to learn the trajec-

tory. We have performed several experiments with different frequencies of waveforms,

different values of capacitance, and different gains of active resistors in the weight

update equation. The results of the experiment are summarized in Table 5.2.

In Table 5.2, (W/Lmfifl'fio, denotes that (W/L) ratios of 4 PMOS transistors in

cascaded active resistors of l-D multiplier for weigh update equation. The multiplier

with (W/L)=4/64 has higher gain than that of (W/L)=4/16. From the table, high

gain of active resistor will be desirable for successful learning. High gain of the active
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Table 5.2. The simulation results of the circular trajectory experiment

 

 

 

 

 

(W/Lmfiififor Target Cw C2 Result Remark

4/64 1MHz 20pF 1pF fail

4/64 1MHz 50pF 1pF fail

4/64 1MHz 100pF 1pF fail

4/64 500KHz 20pF 1pF success

4/64 500KHz 50pF 1pF success example 1

4/64 500KHz 100pF 1pF success

4/64 250KHz 20pF 1pF small amplitude

4/64 250KHz 50pF 1pF success

4/64 250KHz 100pF 1pF success

4/64 lOOKHz 20pF 1pF fail

4/64 lOOKHz 50pF 1pF small amplitude example 3

4/64 100KHz 100pF 1pF success

4/16 1MHz 20pF 1pF fail

4/16 1MHz 50pF 1pF fail

4/16 1MHz 100pF 1pF fail

4/16 500KHz 20pF 1pF small amplitude

4/16 500KHz 50pF 1pF success example 2

4/16 500KHz 100pF 1pF success

4/ 16 250KHz 20pF 1pF fail example 4

4/16 250KHz 50pF 1pF small amplitude

4/16 250KHz 100pF 1pF success

4/16 lOOKHz 20pF 1pF fail

4/16 lOOKHz 50pF 1pF fail

4/ 16 ' lOOKHz 100pF 1pF small amplitude
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resistors implies the small value of the a parameter.

From the table, Cw means the capacitor value of the weight update equation. In

the weight update equation, a larger value of the capacitor implies a small learning

parameter 1]. When the learning parameter is not small enough, the weight has a

ripple in its converged value. Small capacitance causes oscillatory behavior on the

converged weight values and makes the determination of the final constant weight

difficult. With the small capacitance, it is observed that the output waveforms usually

follow the target waveforms. However, the weight is oscillating and not approaching

the constant value when the capacitance is small. A large value of capacitance (small

learning rate) is needed for near constant value of the weights.

When the target signal is very fast trajectory such as 1MHz, the learning is not

successful. The reason is that the circuit can not respond to the high frequency tar-

get. In this experiment, a target around 500KHz has the best results. With 250KHz

target signal, the weight has a small oscillation in its converged value. Usually, we

take the averaged value in the learning phase when the weights have oscillation. If

the peak-to—peak value of the oscillated value is not small enough, the taken averaged

value can not generate the exact trajectory. It results in a small amplitude trajectory

generation. In Table 5.2, the Result has three cases in the testing phase such as

success, small amplitude, and fail. The success case generates the circular trajec-

tory closely, the small amplitude case generates the circle in small magnitude. The

fail case can not generate the circular trajectory in the testing phase.

Both successful and failed cases of Table 5.2 are illustrated from Figure 5.8 to

5.23. We show four examples that are marked in Table 5.2. First two examples

are successful cases, the third example is the case of small amplitude, and the last

example is the failed case.

The obtained weights of each example are shown from Table 5.3 to 5.6. In these

tables, ng denotes the connection weight from jth neuron to ith neuron and 1050
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denotes the threshold neuron at the neuron 2'.

Each example consists of four figures. In the first figure, three sub-plots are

shown. V(7) is the first target signal, d1, and V(8) is the second target signal, d2.

V(1) represents the actual output signal, yl, and V(2) represents y;. The second sub-

plot shows d1 and y1, and the third sub-plot shows d; and y;. The trajectory shape

is illustrated in the first sub—plot in the figure. The transient trajectory is shown in

V(1) versus V(2) plot (yl versus yg plot).

In the second figure, the error measure is shown in the first sub-plot. The error

measure is given as

 

Erma = $1/(d1 — 311)2 + (d2 — 312)2 (530)

The value Em, has the sense of a root-mean-square normalized error. The second

and the third sub-plot show the weight values. The weights are labeled as w.-,- = V(z'j)

and wgo = V(6i). The final weight in the learning phase is obtained by averaging each

weight at the end of simulation.

The third figure and the fourth figure show the results in the testing phase with

the weights that are obtained in the learning phase. Two experiments with different

initial conditions are shown in the third figure and in the fourth figure. The third

figure shows the test result when the initial is inside the circle and the fourth figure

shows the test result when the initial condition is given at the outside of the circle.

The first sub-plot in each figure shows the state trajectory.

Except the failed case, all test results (two successful cases and a small amplitude

case) show that the circular trajectory is a limit cycle. The neural network has learned

the stable oscillation and generated the circular trajectory irrespective of the initial

state.



Table 5.3. The averaged weights in the learning phase from the PSPICE transient

analysis: example 1
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J' l 2 3 4
 

2021'

 2041'

wlj

1031‘

 

2.7844

2.5706

2.5279

2.5285

2.4111

2.7708

2.5338

2.5313

2.5234

2.5674

2.5253

2.5248

2.5264

2.5619

2.5254

2.5252  

2.5276

2.5262

2.5339

2.5338
 

Table 5.4. The averaged weights in the learning phase from the PSPICE transient

analysis: example 2

 

j l 2 3 4
 

wlj

1021'

2031‘

1041'  

2.7751

2.5901

2.5188

2.5190

2.4051

2.7702

2.5223

2.5208

2.5147

2.5427

2.5152

2.5150

2.5164

2.5401

2.5152

2.5150  

2.5286

2.5309

2.5225

2.5226
 

Table 5.5. The averaged weights in the learning phase from the PSPICE transient

analysis: example 3

 

j l 2 3 4
 

Wu

1021'

1031‘

1043'  

2.7452

2.5772

2.5292

2.5294

2.4099

2.7536

2.5306

2.5289

2.5296

2.5614

2.5250

2.5248

2.5305

2.5587

2.5252

2.5249  

2.5215

2.5276

2.5344

2.5342
 

Table 5.6. The averaged weights in the learning phase from the PSPICE transient

analysis: example 4

 

j l 2 3 4
 

Wu

1122,

1031'

1041'  

2.7452

2.5772

2.5292

2.5294

2.4099

2.7536

2.5306

2.5289

2.5296

2.5614

2.5250

2.5248

2.5305

2.5587

2.5252

2.5249  

2.5215

2.5276

2.5344

2.5342
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5.4.2 Trajectory recognition

The 4-neuron recurrent neural network is trained to learn two trajectories. There are

two inputs and one output in the 4-neuron recurrent neural network. The learning

circuit employs the modified recurrent back-propagation learning rule. This circuit

does not include the threshold parameters.

The general procedures for learning and testing are the follows:

1. In the learning phase, the first trajectory is applied to the inputs of the neural

network and an associated target is also applied to the neural network. After

one period of the first trajectory waveform, the second trajectory is applied to

the recurrent neural network with its target waveform. We keep supplying the

input-target pair to the neural network.

2. We can distinguish two trajectories by assigning the different states of the out-

put waveform. the first trajectory is assigned to the high (or low) state of the

target and the second trajectory is assigned to the low (or high) state of the

target.

3. Each input-target pair is applied to the neural network as continuous waveforms

and the PSPICE transient analysis is performed. After the transient analysis, we

measure the output waveform and the target waveform. If the output waveform

is following close to the target waveform, it is considered as successful learning.

4. We measure the weight values. If the learning parameter (1]) is small, the

weight values are converged to the near constant value. However, the weights

have some ripples in their waveform since the capacitors on the learning circuit

have limited value. We measure the averaged value of the weights.

5. After the learning phase, we perform the testing phase in the recurrent neural

network. We set the weights of the neural network to the obtained weight values

 



at the learning phase. We verify the learning by applying the input waveforms
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to the recurrent neural network.

In Figure 5.24, two state space trajectories are shown. The trajectory 1 consists

of V1 and V2 waveform. V1 is applied to the input 1 of the neural network and

V2 is applied to the input 2. The trajectory 2 consists of W1 and W2 waveform.

W1 and W2 are applied to the input 1 and input 2 of the recurrent neural network,

respectively.

We have performed the PSPICE transient analysis with different parameters. The

results of the transient analysis in PSPICE simulation are shown in Figure 5.25 and
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Figure 5.24. Two state trajectories
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Figure 5.25. The PSPICE transient analysis: V(5), V(6), V(7), and V(1) are 1:1, 2:2,

d1, and 311 of the recurrent neural network, respectively
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Figure 5.26. PSPICE transient analysis: weight waveforms, ng = V(z'j )

 



Table 5.7. The averaged values of the weight from the PSPICE transient analysis
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Figure 5.27. PSPICE transient analysis: the test result, V(5), V(6), and V(1) are the

input 1, the input 2, and the actual output
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Figure 5.28. PSPICE transient analysis: the test result of the trajectory 1, V(5),

V(6), and V(1) is the input 1, the input 2, and the actual output
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Figure 5.29. PSPICE transient analysis: the test result of the trajectory 2, V(5),
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Figure 5.26. In Figure 5.25, input waveforms, the target waveform of the trajectory,

and the actual output waveform is shown. The weight values in the transient analysis

are shown in Figure 5.26.

The averaged weight values which are obtained in the learning phase are summa-

rized in Table 5.7. After setting these weight values to the recurrent neural network,

the testing phase is performed. The result is shown in Figure 5.27, 5.28, and 5.29.

In Figure 5.27, the waveform which is used at the learning phase is used as a test

waveform. In Figure 5.28 and Figure 5.29, the trajectory 1 and the trajectory 2 is

applied to the neural network to test the learning, respectively.

In this simulation, we use 250KH2 signal for $1 and 500KHz signal for $2. The

(W/L) ratio of the active resistor in 1-D multiplier of the weight update circuit is

given as 4/64. Other simulations with (W/L)=4/16 have the same results as those

of (W/L)=4/64. The capacitor of the weight update equation is given as a 100pF

capacitor and the capacitor of the 2 equation is given as a 1pF capacitor in figures.

We have changed the capacitor value of the weight update equation from 20pF to

200pF in other simulations. The test results are almost same as the case of 100pF

capacitor. The simulation results show that this recurrent neural network succeeds

to learn the different trajectories.

5.5 Simulation results of 6 neuron recurrent neu-

ral network

The 6-neuron recurrent neural network with learning capability is implemented us-

ing the modified recurrent back-propagation learning rule. We have performed the

PSPICE circuit simulation with MOSIS 0.5pm technology for future development.

The SPICE parameters for MOSIS 0.5pm HP process are shown in Appendix A.2.
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The recurrent neural network has 6 neurons. It is fully connected including self-

feedback and there are 36 connection weights in this recurrent neural network. The

recurrent neural network is shown in Figure 5.30.

The recurrent neural network receives two inputs, 2:1 and 32. These inputs are

connected through the neurons, 3’5 and ye. Two neurons, yl and y2, are visible to

outside with the target signals, d1 and (1;, respectively.

 

 

 

 

 

 

output 1

   

 
output 2

 

   
    

        
Figure 5.30. The recurrent neural network with six neurons, two inputs, and one

output, 5 means the sigmoid function generator

We follow the general procedure for learning and testing as shown in the 4-neuron

recurrent neural network. The 6-neuron recurrent neural network is trained to learn

two trajectories. In Figure 5.31, two state space trajectories are shown. The trajec-

tory 1 consists of V1 and V2 waveform. The trajectory 2 consists of W1 and W2

waveform. V1 and W1 are applied to 1:1 and V2 and W2 are applied to 1:; of the



Table 5.8. The averaged values of the weight in the 6-neuron recurrent neural network

with two output neurons
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j 1 2 3 4 5 6

401,- 2.5481 2.4543 2.5318 2.5326 2.1609 2.7469

452, 2.4893 2.5948 2.5277 2.5280 2.7394 2.1480

w3j 2.5217 2.5201 2.5210 2.5204 2.5253 2.5213

45., 2.5210 2.5196 2.5207 2.5204 2.5250 2.5191

«.55,- 2.4830 2.5547 2.5200 2.5199 2.6287 2.3962

40.,- 2.5542 2.4545 2.5123 2.5152 2.3975 2.6496

 
   
 

recurrent neural network.

In this simulation, we distinguish two trajectories by assigning two different states

(ON/OFF) at two output neurons. If the recurrent neural network receives the tra-

jectory 1, one of the output neurons will be ON state. If the trajectory 2 is applied

to the input of the neural network, the other output neuron will be ON.

We have performed the PSPICE transient analysis. The results of the transient

analysis in PSPICE simulation are shown in Figure 5.32 and Figure 5.33. In Figure

5.32, input waveforms, the target waveform, and the actual output of the neural

network are shown. The actual output waveform tries to match the target waveform.

The weight values at the end of simulation are shown in Figure 5.33. We measure the

averaged values of the weights. The averaged weight values are summarized in Table

5.8.

After the learning phase, we perform the testing phase. We set the weights of the

neural network to the obtained weight values at the learning phase. We verify the

learning by applying the input waveforms to the neural network. The test result is

shown in Figure 5.34, 5.35, and 5.36. In Figure 5.34, the waveform which is used at

the learning phase is used as a test waveform. In Figure 5.35 and Figure 5.36, the

trajectory 1 and the trajectory 2 is applied to the neural network to test the learning,

respectively.
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Figure 5.31. Two state trajectories: the two output neuron case on 6-neuron recurrent

neural network
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Figure 5.33. PSPICE transient analysis: weight waveforms of the 6-neuron recurrent

neural network with two output neurons, 20,-, = V(z'j )
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Figure 5.34. PSPICE transient analysis: the test result of the 6-neuron recurrent

neural network, V(7), V(8), V(1), and V(2) are 2:1, 0:2, yl, and y2, respectively
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Figure 5.35. PSPICE transient analysis: the test result of the 6-neuron recurrent

neural network, V(7), V(8), V(1), and V(2) are :01, 2:2, yl, and 312, respectively
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Figure 5.36. PSPICE transient analysis: the test result of the 6-neuron recurrent

neural network, V(7), V(8), V(1), and V(2) are 2:1, 0:2, yl, and y2, respectively

As shown in the figures, the output of the neuron yl always goes to high state and

the output of the neuron y; goes to low state when the trajectory l is applied to the

neural network.

Since we take the averaged value of the weights, the actual output waveform in

the testing phase is a little different from the output waveform in the learning phase.

However, it is very close to the output waveform in the learning phase. The result

shows that the approximation of the averaged weight value is quite acceptable in the

test results.

If the output waveform of the testing phase is not saturated enough to classify the

input waveforms, we can attach the buffer amplifier at the output of the recurrent

neural network. The buffer amplifier can be a comparator or a double inverter with

the threshold voltage of 2.5V.

In this simulation, 250KHz and 500KHz sine waveforms represent the state tra-
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jectory. The capacitor of the weight update equation is implemented using a 200pF

capacitor and the capacitor of the 2 equation is assigned to lOpF.

In the testing phase, we have applied the input trajectory that is not one of the

learned trajectories. In this testing simulations, we applied the circular trajectory

with different frequencies. The circular trajectory is shown in Figure 5.7. It consists

of the sine waveform and the cosine waveform with same frequency.

The test results are shown in Figure 5.37 and Figure 5.38. With the circular tra-

jectory of 500KHz, the neural network classifies it as a trajectory 1. The simulation

result is shown in Figure 5.37. With the circular trajectory of 250KHz, the neural

network can not classify the input trajectory. The output states of the neural net-

work is changed as the input trajectory is applied. The simulation result is shown

in Figure 5.38. Futher exhaustive testing is needed to characterize the behavior for

other arbitrary signals.
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Figure 5.37. Testing phase with the circular trajectory: when the circular trajecroty

is 500KHz
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Figure 5.38. Testing phase with the circular trajectory: when the circular trajecroty

is 250KHz

5.6 Hardware implementation considerations

5.6.1 Hardware requirements of the modified recurrent

back-propagation learning rule

The advantage of the implementation of the modified recurrent back-propagation

learning rule over the modified recurrent real-time learning rule is that the modified

recurrent back-propagation learning rule requires less learning circuitry. In section

4.5, we have investigated the hardware requirement of the real-time recurrent learning

rule. The number of the learning circuitry increases in order of N3 as the number

of neuron is N. However, in the modified recurrent back-propagation learning rule,

it needs only N equations for the 2 equation when the number of neuron is N. The
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modified recurrent back-propagation learning rule is an efficient and economical way

to implement the recurrent neural network.

5.6.2 Offset voltage adjustment

In the realization of the multiplier circuit, there is an offset current about lpA. If

active resistors have larger resistance, this offset current has become a significant

offset voltage. To compensate the offset voltage, we usually change the W/L ratio

of active resistors. The W/L ratios of the upper PMOS are adjusted with the W/L

ratios of the lower PMOS. If the offset voltage is lower than 2.5V, the resistance of

the lower PMOS is increased by decreasing its W/L ratio, or the resistance of the

upper PMOS is decreased by increasing its W/L ratio. If the offset voltage is higher

than 2.5V, the opposite way is performed to get the near zero offset voltages.

5.6.3 The learning rate

The learning parameter r] is related with the capacitor value in the learning circuit. In

the PSPICE circuit simulation, the value of the capacitor is given from 101) to 2001).

With this value, on-chip implementation of the capacitor will not be appropriate.

If the network is small and the chip has enough pins to connect each weight value

to outside, the external capacitors will be used. If the capacitor value is the main

concern for design, we need to develop the multiplier as a low current multiplier.

In PSPICE circuit simulation, the output current of the multiplier ranges from OpA

to 50pA. If we reduce the current level to the nano-A range, the capacitor value of

several pico-F will be enough. One way of achieving the low-power multiplier is to use

the sub-threshold design [38]. However, the design of a low-power multiplier includes

several factors to be considered. The matching problem of the transistors, the poor

linearity of the multiplication, and the slow speed of the circuit need to be overcome
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in the sub-threshold design.

5.6.4 Weight refresh

In order to provide the two phases (the learning phase and the testing phase), the

neural chip has two modes, the learning mode and the test mode [27] [47]. The neural

chip executes the learning mode with its input-target pair and the weight values

are taken by the Analog-to—Digital (A/D) converter with external interface. In the

testing phase, the obtained weights are written onto the capacitor which holds analog

weight voltage using Digital-to—Analog (D/A) converter. The weight values have to

be refreshed since the capacitor always discharges. The interface circuit for A/D

converter, D/A converter, and refresh circuit is costly.

If we employ the second recurrent neural network (the slave neural network) whose

weight values are taken from the first neural network (the master neural network), we

don’t need the refresh interfaces and the operations of two modes. The weight voltages

are transferred through the voltage follower. The weight averaging also is achieved

through the low-pass filtering with voltage follower. The slave neural network can be

used for any testing works or any applications as long as the master neural network

executing the learning tasks with its continuous input-target pair.

5.6.5 Temperature effects

The temperature dependence of CMOS components is an important performance

characteristic in analog circuit design. The PSPICE simulations of the recurrent

neural networks are valid only for limited ranges about room temperature. In the

PSPICE simulation of the modified Gilbert multiplier and the sigmoid function gen-

erator with different temperatures, the change of the characteristics due to the change

of temperature is much larger in the simulation of the sigmoid function generator. If
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we tune the bias voltage of the sigmoid function generator via external pin in the neu-

ral chip, we can achieve proper operations in the wide range of temperature. In the

PSPICE simulations of the trajectory generation and the trajectory recognition, the

neural chip shows the successful operations over the temperature range of 0 to 50°C.

Other modifications are necessary for extreme temperature ranges. In Appendix C,

the PSPICE simulation results of the trajectory generation with different tempera-

ture are shown. With the temperature range of 0 to 50°C, the weights have converged

as shown in Appendix C.1 and C2. However, the weights hit the rail voltage of the

circuit with extreme temperature such as 125°C 0r -50°C as shown in Appendix C.3.

5.6.6 Future work

In this implementation, we don’t include the update for time constant parameters.

The time constant parameters give another degree of the freedom to the solution

space of the neural network. Time constants of the equations are controlled by the

capacitor value and the amount of current to the capacitor. The current can be

controlled by the bias voltage. We need to develop the modified back-propagation

learning rule to the time constant parameters.

We need an efficient architecture for practical applications. Experiments with

small-scale problem have proved as fruitful in many areas of science and engineering.

However, not every phenomenon encountered in dealing with small models can be

usefully scaled up [19]. We have seen many interesting demonstrations of neural net-

works solving problems of very small scale but not doing so well when those problems

were scaled up.

Control domains are the most natural application for continuous-time recurrent

neural networks. Signal processing and speech recognition and generation are also

domains to which the recurrent neural network might be naturally applied. Certainly

there is no reason to use a recurrent network when a feedforward layered neural
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network suffices. Almeida [59] pointed out that one should not expect a major increase

in the performance of a perceptron in every situation with feedback. In most cases,

the best network structure will probably turn out to have feedback only in a small

group of units. Ljung [60] also mentioned that, for system identification, the identifier

must be chosen to have a small number of parameters, i.e., fewer parameters for a

neural network. This is because the more parameters we use, the higher is the random

influence on the model. We need to investigate the characteristics of new architectures

such as partially connected recurrent neural network not the fully connected neural

network.

 



CHAPTER 6

2-Dimensional Scalable Array

Configuration

The recurrent neural network and its learning algorithm is implemented on a single

analog CMOS chip. The floor plan of the recurrent neural network is organized in the

2-D array configuration. With the 2-D array configuration, the layout offers a sim-

ple and scalable VLSI architecture for implementing a fully interconnected recurrent

neural network.

6.1 Subcell design

The multiplication between two quantities is the basic circuit of the recurrent neural

network. Since the modified Gilbert multiplier generates the current output, we

employ the current bus to collect the analog current outputs. The collected currents

are converted to the voltage output through active resistors.

To support the current bus and active resistors, we divide the modified Gilbert

multiplier into two parts. The first component is the multiplier subcircuit which

generates the current output, 1+ and I-. The second component consists of a current

mirror and active resistors. The modified Gilbert multiplier cell and the current
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The Modified Gilbert Multiplier Subcell

Figure 6.1. 2-D array configuration elements

mirror and active resistors are shown in Figure 6.1.

In this figure, we label the modified Gilbert multiplier subcell as a X component.

The current mirror and active resistors are labeled as a CA component. The X

component receives four voltage inputs and generates current outputs, 1+ and I-.

The current output is proportional to the multiplication between (V1 — V2) and

(V3 — V4). Since the neural network chip operates from ground to VDD of 5V,

the virtual ground voltage becomes 2.5V. We label this virtual ground as reference

voltage, Vref, 2.5V. If V2 and V4 terminals of the X component are connected to

the reference voltage, the multiplication between V1 and V3 occurs. If V1 and V2

are connected together, then there is no multiplication on the X component since
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(V1 — V2) produce the zero term. These current outputs are applied to the 1+ and I-

of the CA component. The CA component converts the current inputs to the voltage

output.

There are two variations in the X component, X1 and X2. The X2 component

has higher conductance than that of the X1 component. We use large (W/L) ratio

of the transistor M1 and M2 in the X2 component. The X2 component is used at

the ll-dimensional multiplier for weight update equation.

The CA component has three variations, CA1, CA2, and CA3. We have designed

the voltage gain of the learning circuit is a little higher than that of the recurrent

neural activation circuit. The CA1 component is used at the recurrent learning circuit

and the CA2 component is used at the 2 equation generator. The CA3 component

is used at the weight update equation and has the highest voltage gain overall.

6.2 Implementation of Floor Plan

The floor plan of the VLSI recurrent neural network is organized in the 2-D array of

weight interconnections. The block diagram of a fully connected 4-neuron recurrent

neural network is shown in Figure 6.2. The 2—D array of weights and two boundary

cells are shown in this figure.

In Figure 6.2, we implement 4-neuron recurrent neural networks with maximum

two input neurons and two output neurons. The number of inputs or outputs can

be reduced by connecting the input terminal to the Vref or connecting the target

terminal with the output terminal.

The main function of the weight cell, w,-,- in Figure 6.2, is generating the activation

term, 112.331,, of the neural network and the 2 term, 10.32;, in the learning equation.

The upper X 1 component generates the 70,-, 2.- current output and the lower right X1

component generates the my, current output. These current outputs are connected
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Figure 6.5. The MAGIC layout of the error.- & 2.- cell

 

  
 

Figure 6.6. The MAGIC layout of the sigmoid.- & input,- cell
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Figure 6.7. The MAGIC layout of the recurrent neural network
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to the current buses and are collected in the error; & 2; cell and in the sigmoid; &

input; cell. Also the update rule for weight itself is performed with z; and y,- terms by

the lower left X2 component and the CA3 component. The capacitor is not included

in this cell. The capacitor is located in the outside area of the array structure or

weight can be connected to the external capacitor through the pins of the chip . The

threshold weight cell, w;o, is shown in Figure 6.2. Since the threshold weight is not

used at the 2 equation, the generation of w;,-z; circuit is removed. Other terminals

such as V2 and V4 are connected to the reference voltage, 2.5V.

The 2-D array of weights is connected with the boundary cells. Two boundary

cells are designed to support the weight array. One is an error; & 2; cell and the

other is a sigmoid; & input; cell.

The error; & 2; cell collects the current of w;,-z; from the weight cell and the

CA2 component generates the z; voltage with collected currents. Also, it receives

target waveform and output waveform to generate the error term. If the neuron i is

not used as an output neuron, the upper X1 component in the cell can be blocked

not to generate any output by tying the t; and y; terminals together. The error; 81.

2; cell also has the negative self-feedback component (the lower X1 cell) to ensure

the convergent operation. Other terminals, such as V4 in the upper X1 component

and V1 in the lower X1 component, which is not displayed in the cell diagram are

connected to the reference voltage, 2.5V.

The sigmoid; & input; cell collects the current of w;,-y,~ from the weight cell to gen-

erate the net; of the neuron 2'. These currents are converted to the voltage through

the CA1 component and the output of the CA1 is applied to the sigmoid func-

tion generator. The sigmoid function generator is implemented using the wide-range

transconductance amplifier and its output becomes the state of the recurrent neural

network. Also, this cell can receive the input waveform via the X1 component. If the

neuron is used as an input neuron, the X1 component is activated to get the input
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waveform. If the neuron is not used as an input neuron, the V1 terminal of the X1

component is connected to the reference voltage, 2.5V. The V2 and V4 terminals of

the X1 cell are connected to the reference voltage.

This current-bus output arrangement combined with the boundary cells offers a

simple and scalable VLSI architecture for implementing a fully interconnected recur-

rent neural network with learning circuit.

Figure 6.3 shows the MAGIC layout of the weight cell, w;,-. It has two X1 com-

ponents, one X3 component, and one CA3 cell. It has been drawn using Scalable

CMOS (SCMOS) technology and its size is 252) x 240). If 1A = 1p, the actual size

becomes 252nm x 240pm. The actual size is dependent on the fabrication technol-

ogy. In Figure 6.4, the layout of the w;o cell is shown. The size of the w;o cell is

252A x 224)..

The other cells such as error; & z; and sigmoid; 85 input; has smaller size than

the weight cell since they use fewer components. In Figure 6.5, the layout of the

error; & 2; cell is displayed. Figure 6.6 shows the layout of the sigmoid; & input;

cell. Each size is 220) x 214) and 247) x 178A, respectively.

In Figure 6.7, the whole chip layout is displayed. 4 x 5 weight array is located

in the center of the chip and the lower and right boundary cells are surround the

weigh array. The lower boundary cells are error; & 2; cells and right boundary cells

are sigmoid; & input; cells. The chip has 40 pins, 34 analog pads and 6 VDD and

GND pads. It is designed to fabricate via MOSIS Tiny chip. In Table 6.1, the pin

assignment of 40-pin tiny chip is shown.
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Table 6.1. The pin assignment of the 4 neuron recurrent neural network chip

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        

Pin 1 2 3 4 5

Signal 2:1 x2 y1 y2 VDD

Pin 6 7 8 9 10

Signal wu 1.012 1013 w“ GND

Pin 11 12 13 I4 15

Signal wlo 2.021 1.022 1023 VDD

Pin 16 17 18 19 20

Signal 1024 wzo Vbias,mul Vref,mul Vth #

Pin 21 22 23 24 25

Signal unused Vlogicl 11231 1032 GND

Pin 26 27 28 29 30

Signal w33 w34 1.030 w.“ VDD

Pin 31 32 33 34 35

Signal 1042 1043 to.“ 1.040 GND

Pin 36 37 38 39 40

Signal t1 t2 unused Vref,sig Vbias,sig
 

 



CHAPTER 7

Conclusion

A recurrent neural network with a modified recurrent back-propagation learning rule

is implemented using analog CMOS technology. In order to implement the recurrent

neural network and its learning algorithm, we employ a modified Gilbert multiplier,

an active resistor, and a wide-range transconductance amplifier.

The sigmoid function generator is designed using the transconductance amplifier.

The limitation of the output voltage is resolved by using the wide—range transconduc-

tance amplifier. The output of the transconductance amplifier is current.

To convert the current output to the voltage output, we use an active resistor. To

get appropriate ranges of resistance of the active resistor, we performed the PSPICE

circuit simulation with different W/L ratios. By adjusting the W/L ratio of the

transistors, we can get a proper resistance value for converting the current output to

the voltage output.

The modified Gilbert multiplier uses voltage signals for its inputs where its output

is current. We attached active resistors to get voltage-to-voltage operations. In

the small-signal range, the characteristic curve is approximately linear, and its four-

quadrant multiplication is verified through the PSPICE circuit simulation.

Since the modified Gilbert multiplier cell generates the current output, the vector

multiplier is designed on the current bus to collect the currents from the modified

129

 



130

Gilbert multiplier cells. The dimension of the vector multiplier can be increased by

simply placing the modified Gilbert multiplier cell on the current bus. The adjusted

active resistor converts this current to the voltage for voltage-to-voltage operations.

We have reviewed four learning algorithms for temporal signal learning. The

Pearlmutter’s algorithm converts a network evolving through time into a network

whose activation is flowing through a number of layers (space). The requirements

of the forward and backward integration make analog hardware implementation dif-

ficult. For the classification of temporal trajectories, Sotelino et al. has developed

the modified version of the Pearlmutter’s algorithm. This algorithm has the same

problems as the Pearlmutter’s algorithm. The recurrent back-propagation algorithm

by Pineda assumes that the activation equation of the neural network is convergent

and the error is measured in the fixed point. The real-time recurrent learning by

William and Zipser has on-line updating rule. However, its hardware requirements

are so massive that we can not build a large network economically.

We have modified the Pearlmutter’s algorithm and the Pineda’s algorithm for the

modified recurrent back—propagation. Its forward instantaneous update scheme is

suitable for an analog hardware implementation.

We have built a 4-neuron recurrent neural network and a 6-neuron recurrent neural

network. We have implemented the modified recurrent back-propagation learning rule

using standard CMOS circuit and performed the PSPICE circuit simulations.

In the 4-neuron recurrent neural network simulations, we have verified its func-

tions by generating a circular trajectory. Simulation results show that the output

signal is following the target signal and weights are convergent. The circular trajec-

tory is generated by the recurrent neural network as a limit cycle. In the trajectory

recognition experiment, we trained the neural network to recognize different trajec-

tories. Its learning phase and test phase results show that the modified recurrent

back-propagation learning rule is successful in learning and in testing the temporal
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signals.

In the 6-neuron recurrent neural network simulations, we have built two-neuron

output neural network. We trained the neural network to learn different state tra-

jectories and the PSPICE circuit simulations show the recurrent neural network has

learned the temporal signals for classification.

A two-dimensional scalable array configuration is designed for large-scale imple-

mentation of fully connected recurrent neural network with learning. With the 2-D

array configuration, the layout offers a simple and scalable VLSI architecture. We

have built a 40-pin tiny chip using MOSIS’s SCMOS technology.
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A.1 The SPICE parameters: MOSIS 2.0 pm OR-

BIT ANALOG process

 

 

   

N MOS P MOS

LEVEL 2 2

TPG -1

LD 133.300000E—09 102.100000E-09

VTO .8577 -.8721

KP 59.272000E—06 16.129000E-06

GAMMA .5361 .5972

PHI .7 .7

LAMBDA .03084 .03942

RSH 12.93 .1019

IS 10.000000E- 15 10.000000E- 15

PB .4 .9

PBSW .4 .9

CJ 134.000000E—06 334.000000E—06

CJSW 61 1 .000000E— 12 397.000000E— 12

MJ .535 .585

MJSW .2 .127

CGSO 174.800000E-12 133.890000E-12

CGDO 174.800000E- 12 133.890000E— 12

CGBO 345.820000E- 12 401 .740000E— l2

NSUB 6.617000E+15 8.212000E+15

NFS 93.830000E+09 607.200000E+09

TOX 39.500000E—09 39.500000E—09

XJ 200.000000E-09 200.000000E—09

UO 678 184.5

UCRIT 6.778000E+03 207.200000E+03

UEXP .0875 .4362

VMAX 48.300000E+03 999.900000E+03

DELTA 2.779 3.097
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A.2 The SPICE parameters: MOSIS 0.5 pm HP

 

 

   

process

N MOS P MOS

LEVEL 3 3

TPG -1

LD 47.290000E—09 35.070000E-09

VTO .6566 - .9213

KP 196.470000E-06 48.740000E-06

GAMMA .5976 .4673

PHI .7 .7

RSH 35.12 .11

IS 10.000000E— l5 10.000000E-15

PB .99 .99

PBSW .99 .99

CJ 562.000000E-06 935.000000E—06

CJSW 50.000000E— 12 289.000000E— 12

MJ .559 .468

MJSW .521 .505

CGSO 305. 150000E- 12 239.220000E- 12

CGDO 305. 150000E- 12 239.220000E— 12

CGBO 402.390000E- 12 375.790000E- 12

NSUB 139.200000E+15 85.120000E+15

NFS 590.900000E+09 650.000000E+09

TOX 9.600000E—09 9.600000E—09

XJ 200.000000E-09 200.000000E-09

UO 546.2 135.5

VMAX 200.800000E+03 254.200000E+03

DELTA .691 .2875

THETA .2684 .1807

ETA .03718 .0245

KAPPA .02898 7.958
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B.l Simple transconductance amplifier

* Simple trans-conductance amplifier: Vbias = 1.3V (transl.cir)

vdd 80 0 5.0

vs: 90 0 0.0

v1 1 0

v2 2 0

vbias 3 0 1.3

vdum 6 66 0.0

m1 5 1 4 90 n w=4u I=4u

m2 6 2 4 90 n w=4u l=4u

m3 4 3 90 90 n w=12u I=4u

m4 80 5 5 80 p w=15u l=4u

m5 80 5 6 80 p w=15u l=4u

r1 80 66 1000K

r2 66 0 1000K

N63J SPICE LEVEL2 PARAMETERS

.MODEL N NMOS LEVEL=2 PHI=0.700000 TOX=3.9500E-08 XJ=0.200000U TPG=1

+ VTO=O.8577 DELTA=2.7790E+00 LD=1.3330E-07 KP=5.9272E-05

+ UO=678.0 UEXP=8.7500E-02 UCRIT=6.7780E+03 RSH=1.2930E+01

+ GAMMA=0.5361 NSUB=6.6170E+15 NFS=9.3830E+10 VMAX=4.8300E+04

+ LAMBDA=3.0840£-02 CGDO=1.7480E-10 CGSO=1.7480E-10

+ CGBO=3.4582E-10 CJ=1.34E-04 MJ=0.535 CJSW=6.11E-10

+ MJSW=0.200 PB=0.40

.MODEL P PMOS LEVEL=2 PHI=0.700000 TOX=3.9500E-08 XJ=0.200000U TPG=-1

+ VTO=-0.8721 DELTA=3.097OE+00 LD=1.0210E-07 KP=1.6129E-05

+ UO=184.5 UEXP=4.3620E-01 UCRIT=2.0720E+05 RSH=1.0190E-01

+ GAMMA=0.5972 NSUB=8.2120E+15 NFS=6.0720E+11 VMAX=9.9990E+05

+ LAMBDA=3.942OE-02 CGDO=1.3389E-10 CGSO=1.3389E-10

+ CGBO=4.0174E-10 CJ=3.34E-04 MJ=0.585 CJSW=3.97E-10

+ MJSW=0.127 PB=O.90

.probe v(6) V(66) i(rl) i(r2) i(vdum)

.dc v1 0.0 5.0 0.05 v2 0.5 4.5 0.5

.end
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B.2 Wide range transconductance amplifier

* Wide trans-conductance amplifier: (wtran1.cir)

vdd 80 0 5.0

vs: 90 0 0.0

v1 1 0

v2 2 0

vbias 3 0 1.3

m1 5 1 4 90 n w=4u l=4u

m2 7 2 4 90 n w=4u l=4u

m6 80 5 5 80 p w=15u l=4u

m7 80 5 6 80 p w=15u l=4u

m5 80 7 7 80 p w=15u I=4u

m4 80 7 8 80 p w=15u I=4u

m8 8 8 90 90 n w=4u |=4u

m9 6 8 90 90 n w=4u l=4u

m3 4 3 90 90 n w=12u l=4u

r1 80 6 1000K

r2 6 0 1000K

N63J SPICE LEVEL2 PARAMETERS

.MODEL N NMOS LEVEL=2 PHI=0.700000 TOX=3.9500E-08 XJ=0.200000U TPG=1

+ VTO=0.8577 DELTA=2.7790E+00 LD=1.3330E-07 KP=5.9272E-05

+ UO=678.0 UEXP=8.7500E-02 UCRIT=6.7780E+03 RSH=1.2930E+01

+ GAMMA=0.5361 NSUB=6.6170E+15 NFS=9.3830E+10 VMAX=4.8300E+04

+ LAM BDA=3.0840E-02 CGDO=1.7480E-10 CGSO=1.7480E-10

+ CGBO=3.4582E-10 CJ=1.34E-04 MJ=0.535 CJSW=6.11E-10

+ MJSW=0.200 PB=0.40

.MODEL P PMOS LEVEL=2 PH|=0.700000 TOX=3.9500E-08 XJ=0.200000U TPG=-1

+ VTO=-0.8721 DELTA=3.097OE+00 LD=1.0210E—07 KP=1.6129E-05

+ UO=184.5 UEXP=4.3620E-01 UCRIT=2.0720E+05 RSH=1.0190E-01

+ GAMMA=0.5972 NSUB=8.2120E+15 NFS=6.0720E+11 VMAX=9.9990E+05

+ LAMBDA=3.9420E-02 CGDO=1.3389E-10 CGSO=1.3389E-10

+ CGBO=4.0174E-10 CJ=3.34E-04 MJ=0.585 CJSW=3.97E-10

+ MJSW=0.127 PB=0.90

.probe v(6) i(r1) i(r2)

.dc v1 0.0 5.0 0.05 v2 0.5 4.5 0.5

.end
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B.3 Sigmoid function generator 1

* Soma (SIGMOIDAL FUNCTION) circuit with adjusted W/L, Vbias=1.1V: ORBIT, N63J

(sm1-20u.cir)

vdd 80 0 5.0

vs 90 0 0.0

vbias 3 0 1.1

v2 2 0 2.5

v1 1 0

xmainl 80 90 1 2 3 8 main

xactl 80 90 8 arl

xmain2 80 90 1 2 3 18 main

xact2 80 90 18 ar2

xmain3 80 90 1 2 3 28 main

xact3 80 90 28 ar3

xmain4 80 90 1 2 3 38 main

xact4 80 90 38 ar4

xmain5 80 90 1 2 3 48 main

xact5 80 90 48 arS

.subckt main 80 90 1 2 3 8

m1 5 1 4 90 n w=24u |=4u

m2 6 2 4 90 n w=24u |=4u

m3 4 3 90 90 n w=10u |=4u

m4 80 6 7 80 p w=15u |=4u

m5 80 6 6 80 p w=15u |=4u

m6 80 5 5 80 p w=15u |=4u

m7 80 5 8 80 p w=15u |=4u

m8 7 7 90 90 n w=16u |=4u

m9 8 7 90 90 n w=16u |=4u

.ends

.subckt ad 80 90 8

m10 80 8 8 80 p w=4u |=4u

mll 8 90 90 8 p w=4u |=4u

.ends

.subckt ar2 80 90 8

m10 80 8 8 80 p w=4u |=12u

mll 8 90 90 8 p w=4u I=12u

.ends
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.subckt ar3 80 90 8

m10 80 8 8 80 p w=4u I=20u

mll 8 90 90 8 p w=4u |=20u

.ends

.subckt ar4 80 90 8

m10 80 8 8 80 p w=4u I=28u

mll 8 90 90 8 p w=4u I=28u

.ends

.subckt ar5 80 90 8

m10 80 8 8 80 p w=4u l=36u

mll 8 90 90 8 p w=4u l=360

.ends

N63J SPICE LEVEL2 PARAMETERS

.MODEL N NMOS LEVEL=2 PHI=0.700000 TOX=3.9500E-08 XJ=0.200000U TPG=1

+ VTO=0.8577 DELTA=2.7790E+00 LD=1.3330E-07 KP=5.9272E-05

+ UO=678.0 UEXP=8.7500E-02 UCR|T=6.7780E+03 RSH=1.293OE+01

+ GAMMA=0.5361 NSUB=6.6170E+15 NFS=9.3830E+10 VMAX=4.8300E+04

-l- LAMBDA=3.0840E-02 CGDO=1.7480E-10 CGSO=1.7480E-10

+ CGBO=3.4582E-10 CJ=1.34E-04 MJ=0.535 CJSW=6.11E-10

+ MJSW=0.200 PB=0.4O

.MODEL P PMOS LEVEL=2 PHI=0.700000 TOX==3.9500E-08 XJ=0.200000U TPG=-1

+ VTO=-0.8721 DELTA=3.0970E+00 LD=1.0210E-07 KP=1.6129E-05

+ U0=184.5 UEXP=4.3620E-01 UCR|T=2.0720E+05 RSH=1.0190E-01

+ GAMMA=0.5972 NSUB=8.2120E+15 NFS=6.0720E+11 VMAX=9.9990E+05

+ LAMBDA=3.9420E-02 CGDO=1.3389E-10 CGSO=1.3389E-10

+ CGBO=4.0174E-10 CJ=3.34E-04 MJ=0.585 CJSW=3.97E-10

+ MJSW=0.127 PB=0.90

.probe V(8) v(18) v(28) v(38) v(48)

.dc v1 1.5 3.5 0.01

.end
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BA Sigmoid function generator 2

* Soma (SIGMOIDAL FUNCTION) circuit with different bias with (4u/19u,4u/21u): ORBIT,

N63J (sm2-20u.cir)

vdd 80 0 5.0

vs 90 0 0.0

vbias 3 0

v2 2 O 2.5

v1 1 0

xmain2 80 90 1 2 3 18 main

xact2 80 90 18 ar2

.subckt main 80 90 1 2 3 8

m1 5 1 4 90 n w=24u |=4u

m2 6 2 4 90 n w=24u |=4u

m3 4 3 90 90 n w=10u |=4u

m4 80 6 7 80 p w=15u |=4u

m5 80 6 6 80 p w=15u |=4u

m6 80 5 5 80 p w=15u |=4u

m7 80 5 8 80 p w=15u |=4u

m8 7 7 90 90 n w=16u |=4u

m9 8 7 90 90 n w=16u |=4u

.ends

.subckt ar2 80 90 8

m10 80 8 8 80 p w=4u |=19u

mll 8 90 90 8 p w=4u l=21u

.ends

N63J SPICE LEVEL2 PARAMETERS

.MODEL N NMOS LEVEL=2 PH|=0.700000 TOX=3.9500E-08 XJ=0.200000U TPG=1

+ VTO=0.8577 DELTA=2.7790E+00 LD=1.3330E-07 KP=5.9272E-05

+ UO=678.0 UEXP=8.7500E-02 UCR|T=6.7780E+03 RSH=1.2930E+01

+ GAMMA=0.5361 NSUB=6.6170E+15 NFS=9.3830E+10 VMAX=4.8300E+04

+ LAMBDA=3.0840E-02 CGDO=1.7480E-10 CGSO=1.7480E-10

+ CGBO=3.4582E-10 CJ=1.34E-04 MJ=0.535 CJSW=6.11E-10

+ MJSW=0.200 PB=0.40

.MODEL P PMOS LEVEL=2 PHI=0.700000 TOX=3.9500E-08 XJ=0.200000U TPG=-1

+ VTO=-0.8721 DELTA=3.0970E+00 LD=1.0210E-07 KP=1.6129E-05

+ U0=184.5 UEXP=4.3620E-01 UCRIT=2.0720E+05 RSH=1.0190E-01

+ GAMMA=0.5972 NSUB=8.2120E+15 NFS=6.0720E+11 VMAX=9.9990E+05

+ LAMBDA=3.9420E-O2 CGDO=1.3389E-10 CGSO=1.3389E-10

+ CGBO=4.0174E-10 CJ=3.34E-04 MJ=0.585 CJSW=3.97E-10

+ MJSW=0.127 PB=0.90
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.probe v(18)

.dc v1 1.5 3.5 0.02 vbias 0.9 1.4 0.1

.end
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B.5 Modified Gilbert Multiplier

* l-D Vector Multiplier: ORBIT, N63J (gmul1.cir)

vdd 80 0 5.0

vs: 90 0 0.0

v110

V220

vref 10 0 2.5

vbiasl 11 0 1.5

xgl so 90 1 102 10 11 535:1

.subckt gill 80 90 1 2 3 4 5 7

xsgl 80901234567sgil

xre 80 90 6 7 linrel

.ends

.subckt sgil 8O 90 1 2 3 4 5 13 14

m1 7 1 6 90 n w=4u |=4u

m2 8 2 6 90 n w=4u |=4u

m3 9 3 12 80 p w=15u |=4u

m4 9 4 11 80 p w=15u |=4u

m5 10 3 11 80 p w=15u |=4u

m6 10 4 12 80 p w=15u |=4u

m7 80 7 9 80 p w=15u |=4u

m8 80 7 7 80 p w=15u |=4u

m9 80 8 8 80 p w=15u |=4u

m10 80 8 10 80 p w=15u |=4u

m11 13 11 90 90 n w=4u |=4u

m12 11 11 90 90 n w=4u |=4u

m13 12 12 90 90 n w=4u |=4u

m14 14 12 90 90 n w=4u |=4u

m15 6 5 90 90 n w=12u |=4u

.ends

.subckt linrel 80 9O 6 77

vdum 77 7 0.0

m31 80 7 7 80 p w=4u |=12u

m32 7 90 90 7 p w=4u |=12u

m21 8O 6 6 80 p w=11u |=14u

m22 80 6 77 80 p w=11u |=14u

.ends

N63J SPICE LEVEL2 PARAMETERS

.MODEL N NMOS LEVEL=2 PHI=0.700000 TOX=3.9500E-08 XJ=0.200000U TPG=1
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+ VTO=0.8577 DELTA=2.7790E+00 LD=1.3330E-07 KP=5.9272E-05

+ UO=678.0 UEXP=8.7500E-02 UCRIT=6.7780E+03 RSH=1.2930E+01

+ GAMMA=0.5361 NSUB=6.6170E+15 NFS=9.3830E+10 VMAX=4.8300E+04

+ LAMBDA=3.0840E-02 CGDO=1.7480E-10 CGSO=1.7480E-10

+ CGBO=3.4582E-10 CJ=1.34E-04 MJ=0.535 CJSW=6.11E-10

+ MJSW=0.200 PB=0.40

.MODEL P PMOS LEVEL=2 PHI=O.700000 TOX=3.9500E-08 XJ=0.200000U TPGz-l

+ VTO=-0.8721 DELTA=3.097OE+00 LD=1.0210E-O7 KP=1.6129E-05

+ U0=184.5 UEXP=4.3620E-01 UCR|T=2.0720E+05 RSH=1.0190E-01

+ GAMMA=0.5972 NSUB=8.2120E+15 NFS=6.072OE+11 VMAX=9.9990E+05

+ LAMBDA=3.9420E-02 CGDO=1.3389E-10 CGSO=1.3389E-10

+ CGBO=4.0174E-10 CJ=3.34E-04 MJ=0.585 CJSW=3.97E-10

+ MJSW=0.127 PB=0.90

.probe V(5) i(xgl.xre.vdum) id(xg1.xre.m31) id(xg1.xre.m32)

.dc v1 1 4 0.02 v2 1.5 3.5 0.25

.end
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B.6 3-D Vector Multiplier

"‘ 3-D Vector Multiplier: ORBIT, N63J (vm3-20u.cir)

vdd 80 0 5.0

vs 90 0 0.0

V110

V220

vref 10 0 2.5

vbiasl 11 0 1.1

xgl80901102101111021011110210115gil3

.subckt gil3 80 9O 1 2 3 4 5 11 12 13 14 15 21 22 23 24 25 7

xsg180901234567sgi|

xsg2 80 90 11 12 13 14 15 6 7 sgil

xsg3 80 90 21 22 23 24 25 6 7 sgil

xre 80 90 6 7 linre3

.ends

.subckt sgil 80 90 1 2 3 4 5 13 14

m1 7 1 6 90 n w=4u |=4u

m2 8 2 6 90 n w=4u |=4u

m3 9 3 12 80 p w=15u |=4u

m4 9 4 11 80 p w=15u |=4u

m5 10 3 11 80 p w=15u |=4u

m6 10 4 12 80 p w=15u |=4u

m7 80 7 9 80 p w=15u |=4u

m8 80 7 7 80 p w=15u |=4u

m9 80 8 8 80 p w=15u |=4u

m10 80 8 10 80 p w=15u |=4u

mll 13 11 90 90 n w=4u |=4u

m12 11 11 90 90 n w=4u |=4u

m13 12 12 90 90 n w=4u |=4u

m14 14 12 90 90 n w=4u |=4u

m15 6 5 90 90 n w=12u |=4u

.ends

.subckt |inre3 8O 9O 6 77

vdum 7 77 0.0

m31 80 7 7 80 p w=4u |=12u

m32 7 90 90 7 p w=4u |=12u

m21 80 6 6 80 p w=11u |=14u

m22 80 6 77 80 p w=11u |=14u

.ends
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N63J SPICE LEVEL2 PARAMETERS

.MODEL N NMOS LEVEL=2 PHI=0.700000 TOX=3.9500E-08 XJ=0.200000U TPG=1

+ VTO=0.8577 DELTA=2.779OE+00 LD=1.3330E-07 KP=5.9272E-05

+ U0=678.0 UEXP=8.7500E-02 UCRIT=6.7780E+03 RSH=1.2930E+01

+ GAMMA=O.5361 NSUB=6.6170E+15 NFS=9.3830E+10 VMAX=4.8300E+04

+ LAMBDA=3.0840E-02 CGDO=1.7480E-10 CGSO=1.7480E-10

+ CGBO=3.4582E—10 CJ=1.34E-04 MJ=0.535 CJSW=6.11E-10

+ MJSW=0.200 PB=0.40

.MODEL P PMOS LEVEL=2 PH|=O.700000 TOX=3.9500E-08 XJ=0.200000U TPG=-1

+ VTO=-0.872l DELTA=3.0970E+00 LD=1.0210E-07 KP=1.6129E-05

+ U0=184.5 UEXP=4.3620E-01 UCR|T=2.0720E+05 RSH=1.0190E-01

+ GAMMA=0.5972 NSUB=8.2120E+15 NFS=6.0720E+11 VMAX=9.999OE+05

+ LAM BDA=3.9420E-02 CGDO=1.3389E-10 CGSO=1.3389E-10

+ CGBO=4.0174E-10 CJ=3.34E-04 MJ=0.585 CJSW=3.97E-10

+ MJSW=0.127 PB=0.90

.probe

.dc v1 1.5 3.5 0.02 v2 1.5 3.5 0.25

.end

 



APPENDIX C

PSPICE simulation results with

different temperature
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C.1 Trajectory generation with 50°C

°m:4mmd):m

Wham “31:10 Twat)

m 1 .
 

 

 

 
Figure C.1. Input, output and target signals

'm:smp1-1):ao_u

Warm 03:31:13 1mm)

 1.0

.
c
n
-
o
o
o
o
.
.
.
-
-
.
-
o
d
-

  
 

 

 

  

 

 

 

   

D It. m

cm may mm mm om om um vch-gsm Wm

Figure 0.2. Em. and the weights

 



145

C.2 Trajectory generation with 0°C
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C.3 Trajectory generation with 125°C and -50°C
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