

LIBRARY
Michigan State
University

This is to certify that the

thesis entitled

EFFECTS OF ANDROGENS ON PROLIFERATION, VIABILITY, AND AROMATASE ACTIVITY OF BOVINE GRANULOSA CELLS IN VITRO

presented by

Christa M. A. Chilson

has been accepted towards fulfillment of the requirements for

M. S. degree in Animal Science

Major professor

Date_ 11/19/98

MSU is an Affirmative Action/Equal Opportunity Institution

O-7639

PLACE IN RETURN BOX to remove this checkout from your record.

TO AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

DATE DUE	DATE DUE	DATE DUE

1/98 c:/CIRC/DateDue.p65-p.14

EFFECTS OF ANDROGENS ON PROLIFERATION, VIABILITY, AND AROMATASE ACTIVITY OF BOVINE GRANULOSA CELLS IN VITRO

By

Christa M. A. Chilson

A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

MASTER OF SCIENCE

Department of Animal Science

1998

ABSTRACT

EFFECTS OF ANDROGENS ON PROLIFERATION, VIABILITY, AND AROMATASE ACTIVITY OF BOVINE GRANULOSA CELLS IN VITRO

By

Christa M. A. Chilson

This study determined the effects of dehydroepiandrosterone (DHEA), dihydrotestosterone (DHT), 19-hydroxy-androstenedione (19-OH-A) and 19-hydroxytestosterone (19-OH-T) on proliferation, viability, and aromatase activity of bovine granulosa cells (GCs) from first-wave dominant follicles. In Experiment I, GCs were cultured in media containing various doses of 19-OH-A, 19-OH-T, DHEA, DHT, or no androgen (NA) for 18 h. GC proliferation, viability, and estradiol production were then assessed. Treatment with androgens did not alter GC proliferation. However, viability of GCs was enhanced with 19-OH-A, 19-OH-T, or DHEA compared with NA or DHT treatment. GCs treated with 19-OH-A and 19-OH-T produced more estradiol and at a greater rate than those treated with DHEA. GCs treated with DHT or NA did not produce estradiol. In Experiment II, GCs were pre-treated for 6 h in media containing various amounts of 19-OH-A, 19-OH-T, DHEA, DHT, or NA. GCs were washed and cultured for a 12 h test period in media containing 19-OH-A or NA then aromatase activity was assessed. Pre-treatment with 19-OH-A or 19-OH-T enhanced aromatase activity compared with DHEA, DHT, or NA. In Experiment III, DHT diminished capacity of GCs to convert 19-OH-A to estradiol. In conclusion, type and amount of androgen altered GC viability, estradiol production, and aromatase activity implying that androgens have an important role in regulation of dominant follicle growth and atresia.

To my parents, Ronald and Carole Zielinski, and my husband, Jim Chilson II, for their love, support, and patience.

ACKNOWLEDGMENTS

I wish to express my sincere thanks to Dr. James Ireland, under whose guidance, drive for excellence, and unfailing interest the research for this thesis was undertaken. I also want to thank my graduate committee, Drs. W. Richard Dukelow, Roy Fogwell, and Sandra Haslam, for their time, expertise, and counsel.

I would like to thank Mrs. Janet Ireland, Mrs. Tara Good, Dr. Fermin Jimenez-Krassel, Mrs. Leanne Bakke, and Dr. Biljana Musicki for their assistance with various aspects of my research, insight, and friendship.

I thank the Animal Reproduction Laboratory and Drs. Michael Orth, Paul Coussens, and Jeanne Burton for allowing me the use of their laboratories and research equipment in order to conduct some of my experiments. I also thank Mr. Larry Chapin, Mrs. Kimberly Chlebek-Brown, and Dr. Patty Weber for their time and assistance with research equipment.

I thank MURCO for providing me with and allowing me to collect ovarian tissue for my research.

I would like to thank the Department of Animal Science at Michigan State
University for my teaching assistantship.

TABLE OF CONTENTS

LIST OF TABLES	viii
LIST OF FIGURES	ix
LIST OF ABBREVIATIONS	xi
INTRODUCTION	3
Part I	
CHAPTER 1	
REVIEW OF LITERATURE	12
Synthesis of estrogens from androgen substrates	12
Proliferation	14
Viability	14
Estradiol production	16
Aromatase P450 enzyme system	16
Aromatase P450 mRNA	16
Aromatase enzyme activity as measured by estradiol	
production	17
Part II	
CHAPTER 2	
Development and Validation of Techniques	19
Introduction	19
Materials and Methods	20
Reagents and hormones	20
Tissue collection and bovine granulosa cell preparation	21
Bovine granulosa cell culture	22
Viability assessment	22
Estradiol determination.	23
Study I: Effects of different culture media supplemented with	23
19-OH-A on capacity of bovine granulosa cells from first-	
wave dominant follicles to produce estradiol	23
Study II: Evaluation of trypan blue exclusion dye	24
Study III: Evaluation of dypan blue exclusion dye	24
	24
cells	24
Study IV: Use of absorbance to quantify alterations in granulosa	25
cell number during culture	25
A. Relationship of number of bovine granulosa cells to	2.
absorbance at 405 nm	26
B. Effects of temperature, cell size and androgens on	
absorbance at 405 nm	26

	Statistical analysis
Results	
	Study I: Effects of different culture media supplemented with
	19-OH-A on capacity of bovine granulosa cells from first-
	wave dominant follicles to produce estradiol
	Study II: Evaluation of trypan blue exclusion dye
	Study III: Effects of culture media on viability of bovine granulosa cells
	Study IV: Use of absorbance to quantify alterations in granulosa
	cell number during culture
	A. Relationship of number of bovine granulosa cells to
	absorbance at 405 nm
	B. Effects of temperature, cell size and androgens on
	absorbance at 405 nm
Discus	sion
	ary and Conclusions.
~~~	
Part III	
	TER 3
	ection
	als and Methods
	Reagents and hormones.
	Tissue collection and bovine granulosa cell preparation
	Androgens
	Bovine granulosa cell culture
	Viability assessment.
	Estimation of DNA
	DNA standard curve.
	Estradiol assay
	Experiments
	Experiment I: Effects of types and amounts of androgens
	on proliferation, viability and estradiol production
	Part A. Cell number
	Part B. Viability
	Part C. Estradiol production
	Experiment II: Effects of types and amounts of androgen
	pre-treatments on viability and aromatase enzyme
	• • • • • • • • • • • • • • • • • • •
	activity
	Experiment III: Effect of DHT on production of estradiol
	by bovine granulosa cells
D 1-	Statistical analysis
Results	
	Experiment I: Effects of types and amounts of androgens
	on proliferation, viability and estradiol production
	Part A. Cell number
	Part B. Viability

Part C. Estradiol production	62
Experiment II: Effects of types and amounts of androgen pre-	
treatments on viability and aromatase enzyme activity	63
Experiment III: Effect of DHT on production of estradiol by	
bovine granulosa cells	64
Discussion	76
Summary and Conclusions	83
APPENDIX A - Relationship of amount of calf thymus DNA to	
fluorescence	85
LITERATURE CITED	87
	0 /

# **LIST OF TABLES**

Linear regression analysis of the effects of different types	
and doses of androgens on amount of estradiol produced	
during cell culture	69
	and doses of androgens on amount of estradiol produced

# **LIST OF FIGURES**

Figure 1	The ovarian process of dominant follicle development in the cow	2
Figure 2	A hypothetical model showing how different types of androgens produced by a theca cell could regulate growth, viability and aromatase activity of a granulosa cell	7
Figure 3	Estradiol synthesis in the ovary	11
Figure 4	Effect of number of bovine granulosa cells on estradiol production per cell	32
Figure 5	Effect of sodium azide on viability of bovine granulosa cells	34
Figure 6	Effects of culture media and number of bovine granulosa cells on cell viability	36
Figure 7	Relationship of number of bovine granulosa cells to absorbance at 405 nm	38
Figure 8	Effect of temperature on absorbance at 405 nm	40
Figure 9	Effect of sodium chloride on size and absorbance of bovine granulosa cells	42
Figure 10	Effect of different types and amounts of androgens on absorbance at 405 nm	44
Figure 11	Effect of androgen treatments on viability of bovine granulosa cells	66
Figure 12	Effect of androgen treatments on estradiol production by bovine granulosa cells	68
Figure 13	Effect of different androgen substrates on production of estradiol	71
Figure 14	Effects of pre-treatment of bovine granulosa cells with different types and doses of androgens on aromatase	
Figure 15	Effect of dihydrotestosterone on the capacity of bovine	73

	granulosa cells to convert 19-OH-androstenedione into estradiol	75
Figure 16	Relationship of amount of calf thymus DNA to fluorescence	86

#### LIST OF ABBREVIATIONS

A androstenedione

A₄₀₅ absorbance at 405 nanometers

ANOVA analysis of variance

C Celsius
cm centimeter(s)
CO₂ carbon dioxide

DHEA dehydroepiandrosterone

DHT Dihydrotestosterone deoxyribonucleic acid

dsDNA double stranded deoxyribonucleic acid

E estradiol-17β  $E_1$  Estrone  $E_2$  estradiol-17β EA estrogen-active

EDTA ethylenediamine tetraacetic acid

EI estrogen-inactive fg femtogram(s)

FSH follicle-stimulating hormone

g gravity

GC granulosa cell(s)

h hour(s)

LH luteinizing hormone

M molar

mg milligram(s)
min minute(s)
ml milliliter(s)
mm millimeter(s)

mRNA messenger ribonucleic acid

NA no androgen
NaCL sodium chloride
NaN₃ sodium azide
ng nanogram(s)
nm nanometer(s)

19-OH-A19-hydroxy-androstenedione19-OH-T19-hydroxy-testosterone

P progesterone

P450_{arom} aromatase cytochrome P450

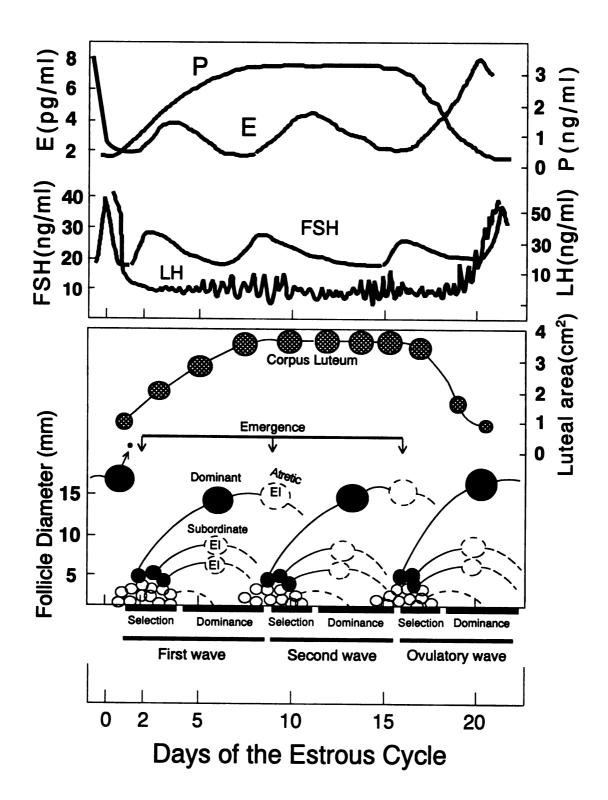
pg picogram(s)

pH hydrogen-ion concentration

RT room temperature

SEM standard error of the mean

SFM serum-free medium


SFM-growth Endothelial-SFM growth medium SFM-plating Endothelial-SFM plating medium

T testosterone

t time

μl microliter(s)

Figure	e 1. The ovarian process of dominant  Explanation provided in Introduction.	<u>-</u>

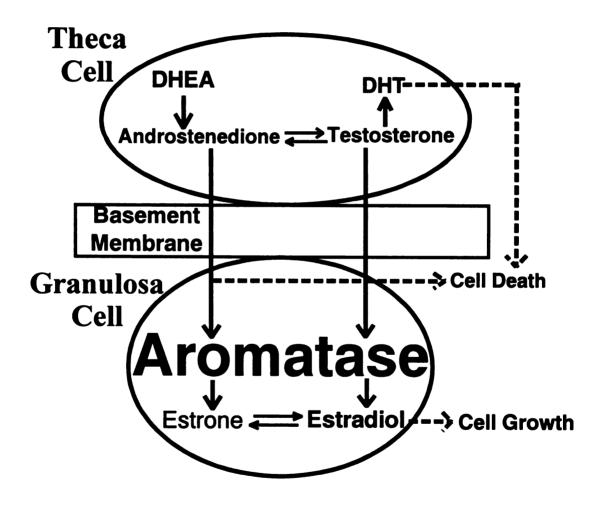


#### INTRODUCTION

The bovine estrous cycle is approximately 21 days in length. Development and growth of ovarian follicles during this period occurs in two to three distinct patterns or "waves" with the final one ending in ovulation (Figure 1; Rajakoski, 1960; Matton et al., 1981; Ireland and Roche, 1987; Fortune, 1993; Ginther et al., 1996; Roche, 1996). Based on ultrasonographic studies, follicular waves begin on Days 2 and 11 of the estrous cycle in heifers exhibiting two waves and on Days 2, 9, and 16 in heifers exhibiting three waves (Figure 1; Savio et al., 1988; Sirois and Fortune, 1988). During each wave a cohort of 3 to 6 follicles less than 5 mm in diameter simultaneously begin to grow (Sirois and Fortune, 1988; Bodensteiner et al., 1996a). This event is referred to as emergence (Figure 1; Ginther et al., 1996). One to 2 days after emergence, a follicle from the cohort grows larger than the others and becomes the dominant follicle (Fortune, 1993) while the subordinate follicles regress (Savio et al., 1988; Sirois and Fortune, 1988; Knopf et al., 1989). Besides using ultrasonographic analysis to characterize dominant follicle development, each wave of dominant follicle development consists of three theoretical growth phases: recruitment, selection, and dominance. During recruitment, a cohort of dormant, primordial ovarian follicles begins to grow. Out of this cohort, a follicle is "selected" to escape atresia and continue to grow. This selection process ends in development of a dominant follicle which continues to grow while the non-selected or subordinate follicles undergo atresia (apoptosis) and regress. No new follicles 5 mm or greater in diameter appear while the dominant follicle is growing. However, once the dominant follicle either starts to become atretic, as in the first two waves (Figure 1), or

ovulates, as in the ovulatory wave (Figure 1), a new cohort of follicles is recruited and another wave begins (Goodman and Hodgen, 1983; Ireland and Roche, 1982; 1983a; 1983b). Dominant follicles can also be identified by intrafollicular concentrations of hormones. Dominant follicles have higher intrafollicular ratios of estradiol (E) to progesterone (P) concentrations and secrete more estradiol than all other follicles, thus they are classified as estrogen-active (EA) ( Figure 1). Subordinate follicles contain more progesterone than estradiol in their follicular fluid, thus they are classified as estrogen-inactive (EI) (Figure 1; Ireland and Roche, 1982; 1983a; 1983b; Sunderland *et al.*, 1994). Understanding dominant follicle development (Figure 1) and its regulation are essential to increasing reproductive efficiency in cattle and improving methods to regulate the estrous cycle and increase fertility.

A transient increase in basal concentration of follicle-stimulating hormone (FSH) in serum precedes each follicular wave in heifers (Figure 1; Adams *et al.*, 1992; Sunderland *et al.*, 1994), therefore FSH may be the physiological "trigger" that activates the cyclic pattern of follicular growth. The decline of this transient increase in FSH is associated with the end of the selection process, growth of the dominant follicle, and atresia of the subordinate follicles (Roche, 1996; Ginther *et al.*, 1996). When FSH levels are low in serum, luteinizing hormone (LH) becomes important for dominant follicle growth (Figure 1). The dominant follicle gains LH receptors as it grows (Ireland and Roche, 1982; 1983a; 1983b; Xu *et al.*, 1995b; Bodensteiner *et al.*, 1996b) and depends on LH for survival in a hormonal environment that inhibits growth of subordinate follicles (Ginther *et al.*, 1996; Roche, 1996). However, within 3 to 7 days after a dominant follicle appears in waves 1 and 2, a decrease in the frequency of episodic LH secretion is linked


to atresia of the dominant non-ovulatory follicle (Cupp et al., 1995), whereas an increase in episodic LH secretion stimulates the dominant ovulatory follicle to ovulate (Figure 1; Rahe et al., 1980; Cupp et al., 1995).

Although FSH and LH are the primary hormones that regulate ovarian follicle growth and function (Richards, 1980; Niswender and Nett, 1994; Jiménez-Krassel, 1997), numerous intraovarian factors including steroids, pituitary hormones, and growth factors interact with gonadotropins to regulate proliferation, viability and steroidogenesis of theca and granulosa cells, the two predominant cell types that comprise an ovarian follicle (Payne and Hellbaum, 1955; Schwarzel et al., 1973; Louvet et al., 1975; Scaramuzzi et al., 1977; Hillier and Ross, 1979; Hillier et al., 1979; 1980a; Hillier, 1981; Farookhi, 1981; Terranova and Greenwald, 1981; Billig et al., 1993; Luciano et al., 1994; Evans et al., 1997). However, the primary intrafollicular factor that modifies gonadotropin action is estradiol. Specifically, estradiol synergizes with gonadotropins to enhance number of gonadotropin receptor sites on granulosa and theca cells (Goldenberg et al., 1972; Richards and Midgley, 1976; Richards et al., 1976; Ireland and Roche, 1983a) and follicular growth (Goldenberg et al., 1972; Hillier, 1981; Ireland, 1987; Fauser et al., 1989). In addition, estradiol synthesis (explained in Figure 3) is required for FSHinduction of its own receptor in granulosa cells (Tonetta and Ireland, 1984; Tonetta et al., 1985). Estradiol production is associated with follicular growth (Hillier, 1981), and estradiol is anti-atretogenic (Payne and Hellbaum, 1955; Hillier, 1981; Billig et al., 1993; Luciano et al., 1994). Taken together, regulation of estradiol production is clearly a key step involved in follicular growth, differentiation, and atresia.

In cattle, estradiol is positively associated with selection, growth, and dominance

produced by a theca cell could regulate growth, viability and aromatase activity of a granulosa cell. Further explanation provided in Introduction.

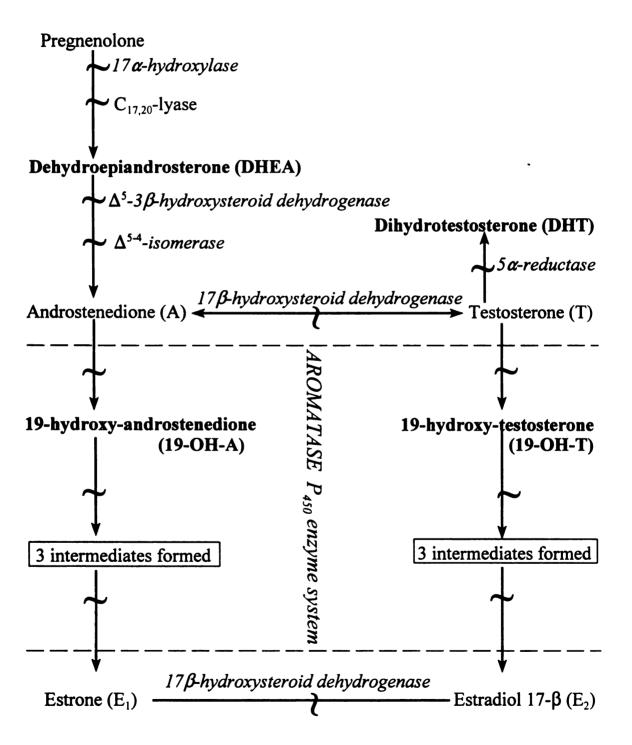
(Figure based on review of literature; Williams, 1940; Payne and Hellbaum, 1955; Goldenberg et al., 1972; Lacroix et al., 1974; Markis and Ryan, 1975; Fortune and Armstrong, 1977; Hillier, 1981; Hansel and Convey, 1983; Mc Natty et al., 1984b; Tonetta and Ireland, 1984; Richards et al., 1987; Payne et al., 1992; Turzillo and Fortune, 1992; Billing et al., 1993; Gore-Langton and Armstrong, 1994; Xu et al., 1995a; Conley and Bird, 1997).



and negatively associated with atresia of ovarian follicles. Specifically, each wave of dominant follicle growth is characterized by an increase in estradiol production from those follicles escaping atresia. The dominant follicle produces considerably more estradiol than subordinate or atretic follicles (Figure 1; Padmanabhan *et al.*, 1984; Ireland and Roche, 1987; Fortune, 1994), implying that estradiol production has an important role in dominant follicle growth in the cow.

A variety of androgens are produced in theca cells of bovine follicles (Markis and Ryan, 1975; Fortune and Armstrong, 1977; Turzillo and Fortune, 1992) and cross the basement membrane and enter granulosa cells (Figure 2). Two different androgens, androstenedione and testosterone, are converted to estradiol by the aromatase enzyme system in granulosa cells (Figure 2; Lacroix et al., 1974; Hansel and Convey, 1983; Richards et al., 1987; Gore-Langton and Armstrong, 1994; Xu et al., 1995a; Conley and Bird, 1997). While androstenedione and testosterone are needed for estradiol production other androgens such as dihydrotestosterone (DHT), which is also produced in theca cells, inhibit estradiol production (Schwarzel et al., 1973; Hillier and Ross, 1979; Hillier et al., 1979; 1980a; 1980b) and induce atresia (Louvet et al., 1975; Scaramuzzi et al., 1977; Hillier and Ross, 1979; Hillier et al., 1979; Farookhi, 1981; Hillier, 1981; Terranova and Greenwald, 1981; Bagnell et al., 1982; Billig et al., 1993; Gore-Langton and Armstrong, 1994; Evans et al., 1997). Since androgen receptors are in granulosa cells (Takeda et al., 1990; Hild-Petito et al., 1991; Horie et al., 1992; Suzuki et al., 1994; Tetsuka et al., 1995; Garrett and Guthrie, 1996; Tetsuka and Hillier, 1996), androgens may be important regulators of estradiol production, and thus growth of a dominant follicle, not only by providing substrate for estradiol synthesis, but also by regulating aromatase activity and

atresia of granulosa cells.


The overall hypothesis for my thesis research is that different types and amounts of androgens alter proliferation, viability, estradiol production, and aromatase activity *in vitro* of bovine granulosa cells isolated from the first-wave dominant follicle (Figure 2). The specific objective of my research was to determine if 19-hydroxy-androstenedione (19-OH-A), 19-hydroxy-testosterone (19-OH-T), dehydroepiandrosterone (DHEA), or DHT affected proliferation, viability, and aromatase enzyme activity of bovine granulosa cells.

This thesis is in three parts: Chapter 1 reviews literature pertinent to synthesis of estrogens in granulosa cells from androgen substrates and the role of androgens in regulation of granulosa cell proliferation, viability, and estradiol production; Chapter 2 explains the development and validation of techniques used to test my hypothesis; and Chapter 3 presents results of the following three studies:

- Effects of types and amounts of androgens on the proliferation, viability, and estradiol production of bovine granulosa cells from first-wave dominant follicles in vitro,
- II) Effects of types and amounts of androgen on aromatase enzyme activity of bovine granulosa cells from first-wave dominant follicles in vitro, and
- III) Effects of DHT on the production of estradiol by bovine granulosa cells *in vitro* (Chapter 3).

# Figure 3. Estradiol synthesis in the ovary.

The metabolism of pregnenolone to estradiol in ovaries by the 5-ene-3 $\beta$ -hydroxy (or  $\Delta^5$ ) pathway involves several microsomal enzyme systems. The  $C_{21}$  side-chain cleavage P450 enzyme system, consisting of 17  $\alpha$ -hydroxylase and  $C_{17,21}$ -lyase, converts pregnenolone to dehydroepiandrosterone (DHEA). DHEA is then converted to androstenedione by the  $\Delta^5$ -3 $\beta$ -hydroxysteroid dehydrogenase:  $\Delta^{5-4}$ isomerase enzyme complex. The conversion of the  $C_{19}$  -steroids to estrogens by the aromatase P450 enzyme system is accomplished in a number of reactions with 19-hydroxy-androstenedione (19-OH-A) and 19-hydroxy-testosterone (19-OH-T) being two of the resulting intermediates. In bovine ovarian follicles, DHEA, androstenedione, testosterone, and DHT are synthesized from pregnenolone in theca cells (Lacroix et al., 1974; Mc Natty et al., 1984b; Turzillo and Fortune, 1992). In contrast, DHEA can be converted to androstenedione, testosterone, DHT, estrone, and estradiol by granulosa cells (Lacroix et al., 1974; Mc Natty et al., 1984b; Payne et al., 1992; Turzillo and Fortune, 1992). Enzymes are in italics and "~" indicates where they act. Also note, aromatase P450 enzyme system participates in the reactions between the dashed lines. Steroids in **bold** were used in studies for this thesis (Chapter 3). Figure based on the following references: Hansel and Convey, 1983; Steinkampf et al., 1987; Gore-Langton and Armstrong, 1994; Xu et al., 1995a; Conley and Bird, 1997.



#### Part I

#### CHAPTER 1

#### REVIEW OF LITERATURE

## Synthesis of estrogens from androgen substrates

Androgens are a family of  $C_{19}$  (number of carbon atoms in their molecular structure) steroid hormones which are produced in the theca interna cells of ovarian follicles (Figure 2 and 3; Markis and Ryan, 1975; Fortune and Armstrong, 1977; Turzillo and Fortune, 1992). Synthesis of androgens by theca cells is primarily under the control of the pituitary gland hormone, luteinizing hormone (LH) (Collip et al., 1933; Selve and Collip, 1933; Selye et al., 1933; Papinicolaou and Falk, 1934; Price and Ortiz, 1944; Mc Natty et al., 1984a). Bovine theca cells preferentially use the 5-ene-3 $\beta$ -hydroxy (or  $\Delta^5$ ) pathway to synthesize androgens from pregnenolone (Figure 3; Lacroix et al., 1974; Fortune, 1986a, Fortune and Quirk, 1988; Gore-Langton and Armstrong, 1994). The conversion of pregnenolone to dehydroepiandrosterone (DHEA) by the C₂₁ side-chain cleavage P450 enzyme system, which is the first step in the  $\Delta^5$  pathway, is rate limiting (Gore-Langton and Armstrong, 1994). DHEA is converted to androstenedione by the  $\Delta^5$ - $3\beta$ -hydroxysteroid dehydrogenase:  $\Delta^{5-4}$  -isomerase enzyme complex either in the theca cells (Lacroix et al., 1974; Mc Natty et al., 1984b; Turzillo and Fortune, 1992; Gore-Langton and Armstrong, 1994) or, after crossing the basement membrane, in the granulosa cells (Rubin et al., 1963; Zelezink et al., 1974; Madej, 1980; Jones et al., 1983; Gore-Langton and Armstrong, 1994).

Androstenedione can be converted to testosterone in theca or granulosa cells by

17β-hydroxysteroid dehydrogenase (Figures 2 and 3; Lacroix et al., 1974; Mc Natty et al., 1984b; Payne et al., 1992; Turzillo and Fortune, 1992). Due to a deficiency in thecal 17β-hydroxysteroid dehydrogenase greater amounts of androstenedione are produced compared with testosterone by isolated bovine theca interna tissues or cells (Lacroix et al., 1974; Mc Natty et al., 1984b, Fortune and Hansel, 1985). In granulosa cells, androstenedione is converted to estrone or estradiol by the aromatase P450 enzyme system (Figures 2 and 3; Lacroix et al., 1974; Hansel and Convey, 1983; Richards et al., 1987; Gore-Langton and Armstrong, 1994; Xu et al., 1995a; Conley and Bird, 1997). Hence, androstenedione is an aromatizable androgen. Note, 19-hydroxy-androstenedione (19-OH-A), which will be added to cultures of granulosa cells in this thesis, is the first intermediate formed during conversion of androstenedione to estradiol (Figure 3).

Testosterone is another aromatizable androgen which can be converted into estradiol by the aromatase P450 enzyme system in granulosa cells (Figures 2 and 3; Lacroix *et al.*, 1974; Hansel and Convey, 1983; Richards *et al.*, 1987; Gore-Langton and Armstrong, 1994; Xu *et al.*, 1995a; Conley and Bird, 1997). Note, when testosterone is converted into estradiol, 19-hydroxy-testosterone (19-OH-T), which will be added to cultures of granulosa cells in this thesis, is the first intermediate formed. Alternatively, testosterone can be converted to dihydrotestosterone (DHT), a non-aromatizable androgen (Armstrong and Papkoff, 1976; Hillier and Ross, 1979), by 5  $\alpha$ -reductase in either theca or granulosa cells (Figures 2 and 3; Payne *et al.*, 1992; Gore-Langton and Armstrong, 1994).

In summary, if the aromatase enzyme system is present, granulosa cells can convert DHEA, 19-OH-A, 19-OH-T, but not DHT, into estradiol. Thecal androgens,

therefore, are important determinants of granulosa cell estradiol production because they are obligatory precursors for estradiol synthesis (Lacroix et al., 1974; Armstrong and Papkoff, 1976; Leung et al., 1979; Erickson and Magoffin, 1983; Mc Natty et al., 1984b; Payne et al., 1992; Turzillo and Fortune, 1992; Gore-Langton and Armstrong, 1994).

#### **Proliferation**

Whether androgens directly regulate granulosa cell proliferation in cows or other species is unknown. However, estradiol stimulates granulosa cell proliferation in rats (Williams, 1940; Goldenberg *et al.*, 1972; Hillier, 1981; Tonetta and Ireland, 1984). This finding implies that androgens indirectly regulate granulosa cell proliferation since they are substrates and thus potential regulators of estradiol production.

## Viability

Apoptosis, or programmed cell death is the underlying mechanism of cell loss during ovarian follicular atresia (Hughes and Gorospe, 1991; Tilly et al., 1991; Tilly and Hseuh, 1993; Guthrie et al., 1995a). Granulosa cells, but not theca cells, undergo apoptosis (Peluso et al., 1996). Although information concerning androgens and granulosa cell apoptosis is lacking in cattle, androgens increase granulosa cell apoptosis in rats (Billing et al., 1993). In contrast, estrogens prevent granulosa cell apoptosis (Payne and Hellbaum, 1955; Hillier, 1981; Billing et al., 1993). In addition, when estrogen implants are withdrawn from hypophysectomized female rats, there is increased granulosa cell apoptosis (Billing et al., 1993). Taken together, these findings imply that androgens regulate granulosa cell apoptosis both directly and indirectly through

regulation of estrogen production.

Follicular atresia, the enigmatic process whereby oocytes are lost from the ovary by means other than ovulation (Hurwitz and Adashi, 1993), is associated with the death (apoptosis) of granulosa cells (Luciano et al., 1994; Peluso et al., 1996). Little is known about the role of androgens on follicular atresia in cattle. However, androgens cause atresia of ovarian follicles in rats (Payne and Runser, 1958; Louvet et al., 1975; Hillier and Ross, 1979; Hillier et al., 1979; Farookhi, 1981; Billing et al., 1993), guinea pigs (Terranova and Greenwald, 1981), sheep (Scaramuzzi et al., 1977) and humans (Hillier, 1981). In cattle, early follicular atresia is characterized by diminished granulosa cell aromatase enzyme activity (Mc Natty et al., 1984a). In swine, atretic follicles have a reduced capacity to produce estradiol (Westhof et al., 1991; Maxson et al., 1985) despite the finding that enzyme activities for androgen production are maintained (Maxson et al., 1985). Taken together, these findings support the belief of Bagnell et al. (1982) that androgen-induced atresia may involve interference in the production and/or action of estradiol, which is anti-atretogenic in ovaries (Payne and Hellbaum, 1955; Hillier, 1981; Billing et al., 1993; Luciano et al., 1994).

In summary, although considerable circumstantial evidence exists implicating androgens in the process of granulosa cell apoptosis (Billing *et al.*, 1993) and follicular atresia (Payne and Runser, 1958; Louvet *et al.*, 1975; Scaramuzzi *et al.*, 1977; Hillier and Ross, 1979; Hillier *et al.*, 1979; Farookhi, 1981; Hillier, 1981; Terranova and Greenwald, 1981; Bagnell *et al.*, 1982; Billing *et al.*, 1993; Gore-Langton and Armstrong, 1994; Evans *et al.*, 1997), the specific role of androgens in this process is poorly understood (Gore-Langton and Armstrong, 1994).

### **Estradiol production**

Aromatase P450 enzyme system: The aromatase P450 enzyme system is comprised of aromatase cytochrome P450 and NADPH-cytochrome P450 reductase (Thompson and Siiteri, 1974; Steinkampf et al., 1987; Gore-Langton and Armstrong, 1994). This enzyme system catalyzes the multi-step reactions involved in conversion of aromatizable androgens, such as androstenedione and testosterone, into the estrogens, estrone and estradiol (Figures 2 and 3; Lacroix et al., 1974; Hansel and Convey, 1983; Richards et al., 1987; Gore-Langton and Armstrong, 1994; Xu et al., 1995a; Conley and Bird, 1997). Acquisition of the aromatase P450 enzyme system in bovine granulosa cells occurs after theca cells differentiate into androgen producing cells (Ireland, 1987; Mc Natty et al., 1984a). Because the aromatase P450 enzyme system is needed for granulosa cells to produce estradiol, examining whether androgens regulate the aromatase enzyme system may be key to understand the process of dominant follicle growth and atresia. Two major ways in which androgens could regulate the aromatase enzyme system are via alterations in gene expression and enzyme activity.

Aromatase P450 mRNA: Aromatase P450 mRNA (P450_{arom} mRNA) is located in granulosa and cumulus cells of bovine follicles (Voss and Fortune, 1993; Xu et al., 1995a). In healthy bovine ovarian follicles, the level of expression increases with follicle size, whereas atretic follicles do not express P450_{arom} mRNA (Xu et al., 1995a). Whether androgens regulate P450_{arom} mRNA in any species is unknown. However, androgens may indirectly affect P450_{arom} mRNA by their involvement in follicular atresia.

Aromatase enzyme activity as measured by estradiol production: Although it is unknown if androgens directly regulate aromatase enzyme activity in bovine granulosa cells, there is evidence of androgen regulation of the aromatase enzyme activity in granulosa cells of rats and humans. Androgens enhance aromatase enzyme activity in rats both in vivo (Leung et al., 1978; Goff et al., 1979) and in vitro (Lucky et al., 1977; Daniel and Armstrong, 1980; Hillier and De Zwart, 1981; Welsh et al., 1982). However, nonaromatizable 5α-reduced androgens, such as DHT, are competitive inhibitors of granulosa cell aromatase enzyme activity in rats (Hillier and Ross, 1979; Hillier et al., 1979; 1980a) and humans (Schwarzel et al., 1973; Hillier et al., 1980b). These findings support the theory of Hillier et al. (1980a) that alterations in the activity of  $5\alpha$ -reductase in combination with changes in the al androgen production could modulate follicular estradiol synthesis. Furthermore, estradiol production may be influenced by amount of substrate available and variation in the ratio of aromatizable to non-aromatizable androgens as a consequence of changes in 5α-reductase activity (Gore-Langton and Armstrong, 1994).

Androgens may regulate aromatase enzyme activity since they are substrates for estrogens, and estrogens enhance aromatase enzyme activity (Daniel and Armstrong, 1983). Additionally, aromatase enzyme activity is positively correlated with level of estrogens and negatively correlated with ratio of aromatizable to non-aromatizable androgens in human follicular fluid (Yen and Jaffe, 1986).

In summary, although androgens regulate aromatase enzyme activity in granulosa cells of rats and humans, it is unknown if androgens regulate estradiol production in cows. Androgens, in general, increase aromatase enzyme activity, but 5α-reduced

androgens are inhibitory. Therefore, the intrafollicular androgen environment, specifically the amounts of each androgen type and ratio of aromatizable to non-aromatizable androgens, may have an important role in regulation of estradiol production.

Thus, based on this review of literature, the following hypothesis will be tested: different types and amounts of androgens alter proliferation, viability, estradiol production, and aromatase enzyme activity *in vitro* of bovine granulosa cells isolated from the first-wave dominant follicle. To test this hypothesis, a serum-free culture system using granulosa cells isolated from the first-wave dominant follicle was developed (Chapter 2) and the following experiments (Chapter 3) conducted:

- Effects of different types and amounts of androgens on proliferation, viability, and estradiol production;
- Effects of different types and amounts of androgen on subsequent capacity of granulosa cells to produce estradiol; and
- III) Effects of DHT on the production of estradiol by granulosa cells.

#### Part II

#### **CHAPTER 2**

# Development and Validation of Techniques

#### Introduction

The overall objective of this project was to develop a serum-free culture system that could be used reliably to test the hypothesis that different types and amounts of androgen alter proliferation, viability, estradiol production, and aromatase activity *in vitro* of bovine granulosa cells isolated from the first-wave dominant follicle. In previous studies from our laboratory (Jiménez-Krassel and Ireland, unpublished) granulosa cells were isolated from dominant and subordinate follicles on Days 2 to 10 of the bovine estrous cycle (Figure 1). Cells were cultured serum-free in Ham's F-12 medium supplemented with 19-hydroxy-androstenedione (10⁻⁶ M) for 48 h. After culture, concentrations of estradiol and progesterone in media were determined. Granulosa cells from the first-wave dominant follicle on Days 2 to 5 of the estrous cycle produced more estradiol than progesterone, and greater amounts of estradiol compared with cells from all other follicle types. Because of these results, only granulosa cells isolated from the first-wave dominant follicle during Days 2 to 5 of the estrous cycle were used to test this thesis's hypothesis.

To further enhance and validate the serum-free culture system for bovine granulosa cells from the first-wave dominant follicle, the following four studies were completed. Study I: Preliminary studies indicated that bovine granulosa cells isolated from follicles at unknown stages of differentiation and cultured in Endothelial-SFM

media produced more estradiol than cells in Ham's F-12 medium (Weber and Ireland, unpublished). Thus, the first study was designed to test whether capacity of bovine granulosa cells from the first-wave dominant follicle to produce estradiol was greater in Endothelial-SFM media compared with Ham's F-12. Study II: Trypan blue exclusion dye is used routinely to estimate cell viability, but has not been evaluated for bovine granulosa cells. The second study, therefore, was designed to evaluate whether trypan blue exclusion dye could be used to quantify alterations in number of viable bovine granulosa cells during culture. Study III: Viability of bovine granulosa cells cultured for 48 h in Ham's F-12 medium is low (Jiménez-Krassel and Ireland, unpublished). Also, the greater production of estradiol observed for granulosa cells cultured in Endothelial-SFM media compared with Ham's F-12 media (Weber and Ireland, unpublished) could be the result of enhanced cell viability. Thus, the third study was designed to examine the effects of Ham's F-12 and Endothelial-SFM media on viability of bovine granulosa cells. Study IV: Since alterations in total number of granulosa cells during the cell culture period could influence estradiol production and confound interpretation of results, use of absorbance to quantify alterations in total number of cells in vitro was examined.

#### Materials and Methods

### Reagents and hormones

The following items were obtained from Life Technologies, Inc. (Grand Island, NY): Ham's F-12 liquid medium with L-glutamine, Endothelial-SFM growth medium with L-glutamine (SFM-growth), Endothelial-SFM plating medium with bovine vitronectin and L-glutamine (SFM-plating), penicillin G sodium, streptomycin sulfate,

and trypan blue exclusion dye. 19-hydroxy-androstenedione (19-OH-A), 19-hydroxy-testosterone (19-OH-T), dehydroepiandrosterone (DHEA), dihydrotestosterone (DHT), ethylenediamine tetraacetic acid (EDTA), and sodium azide were obtained from Sigma Chemical Co. (St. Louis, MO). Sodium chloride, monobasic phosphate, and dibasic phosphate were obtained from J. T. Baker Chemical Company (Phillipsburg, NJ).

# Tissue collection and bovine granulosa cell preparation

Ovaries from beef and dairy cows during Days 2-5 of the estrous cycle were collected from a slaughterhouse (MURCO, Plainwell, MI). Stage of the estrous cycle was determined by morphology of the corpus luteum (Ireland et al., 1980). Pairs of ovaries from each cow were placed in individual bottles containing ice-cold phosphate buffered saline solution (0.01 M monobasic phosphate, 0.04 M dibasic phosphate, 0.1 M sodium chloride, 0.02 M EDTA; pH 7.4) and transported on ice to the laboratory within 4 h of slaughter. The largest follicle per pair of ovaries, which is the first-wave dominant follicle (Fortune, 1993), was dissected, ovarian stroma removed, and the follicle's diameter was recorded. Follicular fluid was aspirated from each follicle by puncturing it with a 22-gauge needle attached to a 3 ml syringe. The follicle shell was then bisected under sterile conditions and placed on a watch glass containing cell isolation medium. Cell isolation medium was either Ham's F-12 or Endothelial-SFM growth (SFM-growth) medium supplemented with penicillin/streptomycin solution (1.5 mg/ml penicillin G sodium and 2.5 mg/ml streptomycin sulfate) as indicated for each study. Granulosa cells were scraped gently from the inner wall of each follicle into cell isolation medium using a bent microspatula. Granulosa cells were pooled, then washed and centrifuged (400 x g

for 5 min at 4°C) three times with ice-cold cell isolation medium. Number of cells was estimated using a hemocytometer.

# Bovine granulosa cell culture

Ham's F-12 or Endothelial-SFM plating (SFM-plating) medium was used as indicated below for cell culture. Except where noted,  $10^5$  bovine granulosa cells in  $20 \mu l$ of cell isolation medium were plated in 96-well Falcon Primaria culture plates (Becton Dickinson and Co., Lincoln Park, NJ) containing 180  $\mu$ l of medium previously equilibrated at 37°C and supplemented with penicillin/streptomycin solution (1.5 mg/ml penicillin G sodium and 2.5 mg/ml streptomycin sulfate) and 19-OH-A (1x10⁻⁶ M). Granulosa cells were incubated at 37°C in a humidified atmosphere (5 % CO₂ and 95 % air) for 18 or 24 h. After incubation, cells were detached from culture wells by gently flushing them with the existing media in the wells. Media and cells were collected from each well, placed in individual 1.5 ml Eppendorf tubes, and centrifuged (400 x g for 10 min at 4°C) to form pellets of cells. Media were then carefully removed without disturbing the pellet and stored at -20°C until assayed for estradiol. Fresh, ice-cold cell isolation medium (200  $\mu$ l) supplemented with penicillin/streptomycin solution was added to the cell pellet and cells were resuspended then stored on ice until viability was assessed.

#### Viability assessment

Viability of granulosa cells after isolation from follicles (initial) and viability after culture (final) were determined by mixing 200  $\mu$ l of a 1:10 dilution of the initial cell

suspension, or 200  $\mu$ l of a cell suspension that had previously been stored on ice after completion of the culture period, with 200  $\mu$ l of a 1:5 dilution of 0.4% trypan blue exclusion dye. The mixture was incubated at room temperature for 1 minute. An aliquot was then placed on a hemocytometer and examined under the microscope. Stained cells were considered dead. Viability was expressed as percent of viable (non-stained) cells per total (stained + non-stained) cells in a well.

# **Estradiol determination**

Concentrations of estradiol were measured in media by radioimmunoassay using previously validated (Turzillo and Fortune, 1990; Ireland *et al.*, 1994), commercial kits (Diagnostic Products Corporation, Los Angeles, CA). Sensitivity of the assay was 0.5 pg/ml. Cross-reactivity of estradiol antiserum with estrone is 12.5% and less than 1% with other steroids.

# Study I: Effects of different culture media supplemented with 19-OH-A on capacity of bovine granulosa cells from first-wave dominant follicles to produce estradiol

To determine if culture medium and number of cells plated affected capacity of bovine granulosa cells to produce estradiol, different numbers of granulosa cells per culture well were incubated in two different media. Specifically, granulosa cells were collected and processed for culture as described above, except half of the follicle shell was placed on a watch glass containing either Ham's F-12 medium or SFM-growth medium, and granulosa cells were isolated, washed, and counted in each medium

separately. Cells were plated at different concentrations (0.25x10⁵, 0.50x10⁵, 1x10⁵, 2.5x10⁵, 5x10⁵, and 10x10⁵ cells / well) in culture wells containing either Ham's F-12 medium or SFM-plating medium. One group of 5x10⁵ cells for each medium received no androgen. At the end of the 24 h culture, media were collected and assayed for estradiol.

# Study II: Evaluation of trypan blue exclusion dye

To determine if trypan blue exclusion dye can be used to assess alterations in bovine granulosa cell viability, cells ( $10^5$  / tube) were incubated with different concentrations of sodium azide (0, 0.005, 0.50, 2.50, 5.00, 25.0, 50.0, and 100.0 M) in 1.5 ml Eppendorf tubes. [Sodium azide is a well established cell poison (Bortkiewicz *et al.*, 1988; Telford *et al.*, 1991; Vaux and Häcker, 1995) that disrupts the electron-transport chain in mitochondria (Dawson *et al.*, 1993).] Cells were incubated for 1 h (37°C, 5 %  $CO_2$ , 95 % air) in sodium azide then pelleted by centrifugation (400 x g for 5 min at 4°C). The supernatant was removed, 200  $\mu$ l of ice-cold SFM-growth medium was added, and cells were resuspended and stored on ice until final viability was determined.

# Study III: Effects of culture media on viability of bovine granulosa cells

To determine if culture medium and number of cells plated affected viability of bovine granulosa cells, initial viability of granulosa cells after isolation from follicles was compared with viability after the 24 h culture period. Granulosa cells were collected, processed, and different numbers of cells (0.25x10⁵, 0.50x10⁵, 1x10⁵, 2.5x10⁵, 5x10⁵, and 10x10⁵ cells / well) cultured in two different media (Ham's F-12 and SFM), as described in Study I.

# Study IV: Use of absorbance to quantify alterations in granulosa cell number during culture

The rationale for this study is based on results by Mohler *et al.* (1996) and preliminary data (not shown) that absorbance of light at a wavelength of 405 nm ( $A_{405}$ ) can be used to quantify alterations in total numbers of cells. Use of absorbance to determine alterations in cell number, therefore, would be a simple, non-invasive assay which could be performed while cells remained in culture. In addition, alterations in cell numbers could be monitored several times throughout the culture period without cell loss due to transfer of cells from culture wells to other containers for assays. Finally, the need for separate culture wells to determine cell number could be eliminated.

To validate the absorbance method (Mohler et al., 1996), the following experiments were completed: a) relationship of number of bovine granulosa cells to absorbance at 405 nm; and b) to determine if temperature, cell size, or androgens altered absorbance measurements at 405 nm. Affect of temperature was examined because the decrease in temperature occurring when a culture plate is removed from the incubator until absorbance readings are made on the microplate reader may change the pH (Weast, 1989) of medium containing phenol red, thus altering the medium's color, and in turn, its absorbance properties. Since cells in culture may also change size as an effect of experimental treatment or apoptosis (Ellis et al., 1991; Wyllie, 1993), affect of cell size on absorbance at 405 nm was investigated. Finally, although peak absorbance values for steroid hormones are between 225 nm and 287 nm (Weast, 1989), indicating they should not affect absorbance measurements at 405 nm, the effect of different concentrations and types of androgens were investigated to ensure that alterations in absorbance readings at

405 nm reflected changes in cell number.

### A. Relationship of number of bovine granulosa cells to absorbance at 405 nm

To determine if changes in cell number and absorbance at 405 nm were correlated, different numbers  $(0.5 \times 10^5, 1 \times 10^5, 2 \times 10^5, 2 \times 10^5)$  of granulosa cells were plated per culture well and incubated for 24 h. Absorbance at 405 nm was then determined using a microplate reader (Bio-Rad model #3550; wavelength filter set for 405 nm). Absorbance of granulosa cells was calculated by subtracting the background absorbance values for wells containing only media  $(20 \ \mu l\ SFM$ -growth medium + 180  $\mu l$  SFM-plating medium / well) from the absorbance values of wells containing media and granulosa cells.

# B. Effects of temperature, cell size, and androgens on absorbance at 405 nm

To evaluate the effect temperature has on absorbance, a mixture of SFM-growth (20  $\mu$ l) and SFM-plating (180  $\mu$ l) media without cells was placed in a random fashion in 13 wells of two 96-well Primaria culture plates. One plate was kept at 37°C for 18 h, whereas the other was kept at room temperature for 18 h. After the 18 h incubation period ended, absorbance readings (A₄₀₅) were at 5 min intervals for 60 min, 15 min intervals for the next 30 min, and at 30 min intervals for the next 90 min.

To determine if cell size affected absorbance, granulosa cells were isolated and cultured in SFM media without androgen and supplemented with different concentrations (0, 0.3, 0.5, 1.0, or 2.0 M) of sodium chloride. Sodium chloride was used to create hypertonic conditions which should cause granulosa cells to decrease in size. Absorbance

readings ( $A_{405}$ ) were taken 1 h after addition of sodium chloride. Background values for wells containing only media ( $20~\mu$ l SFM-growth +  $180~\mu$ l SFM-plating media / well) with different concentrations of sodium chloride were subtracted from corresponding wells containing media, sodium chloride and cells. Cells were then examined under a light microscope. The number of relatively small cells per 20 cells in a random area was recorded for each well.

To determine if androgens altered absorbance, SFM-plating medium (without cells) supplemented with different types (19-OH-A, 19-OH-T, DHEA, DHT, or no androgen) and amounts ( $10^{-8}$ ,  $10^{-7}$ ,  $10^{-6}$ , and  $10^{-5}$  M) of androgens were placed in culture wells ( $200~\mu$ l medium / well) and incubated for 18 h. Absorbance measurements ( $A_{405}$ ) were taken at 1 h and 18 h to determine if absorbance was altered over time.

#### Statistical analysis

All analyses were performed using SPSS Base 8.0 (SPSS Inc., Chicago, IL). Experimental data are expressed as arithmetic means (± SEM) of measurements of triplicate culture wells or aliquots. With the exception of Study IV, studies were replicated at least twice with different pools of bovine granulosa cells isolated from ovaries obtained during separate trips to an abattoir. Two-way analysis of variance (ANOVA) was used to test the effects of: culture media and number of granulosa cells on estradiol production (Study I) and cell viability (Study III); incubation temperature and time on alterations in absorbance at 405 nm (Study IV); and types and doses of androgens on alterations in absorbance at 405 nm (Study IV). One-way ANOVA was used to test the effects of sodium azide concentration on trypan blue uptake by cells (Study II) and the

effects of sodium chloride concentration on absorbance measurements at 405 nm and percent of small cells (Study IV). Means were compared by the Bonferroni t-test. Pearson's correlation test was used to determine the relationship between number of granulosa cells and absorbance at 405 nm (Study IV). Unless stated otherwise, significance was P < 0.05.

#### Results

Study I: Effects of different culture media supplemented with 19-OH-A on capacity of bovine granulosa cells from first-wave dominant follicles to produce estradiol

Granulosa cells cultured in SFM-plating medium produced 40 to 95 fold (P<0.05) more estradiol than those in Ham's F-12 medium (Figure 4). In SFM-plating medium estradiol production per cell increased (P<0.05) from 0.25x10⁵ to 1x10⁵ cells per well, remained constant from 1x10⁵ to 5x10⁵ cells per well, and then decreased (P<0.05) from 5x10⁵ to 10x10⁵ cells per well (Figure 4). In contrast, maximum estradiol production for cells cultured in Ham's F-12 medium was at 10x10⁵ cells per well. Estradiol production for cells cultured in either medium without androgen (NA) was negligible.

# Study II: Evaluation of trypan blue exclusion dye

Viability of bovine granulosa cells was the same initially (t=0) and after 1 h incubation (t=1) for cells in medium without sodium azide (Figure 5). However, after 1 h in culture, viability of granulosa cells decreased (P<0.05) as amount of sodium azide increased.

#### Study III: Effects of culture media on viability of bovine granulosa cells

Granulosa cell viability was initially higher (P<0.05) for cells isolated in SFM-growth media compared with Ham's F-12 medium (Figure 6). Cell viability was stable during the 24 h culture period for cells in SFM-plating medium supplemented with 19-OH-A. In contrast, viability of cells in Ham's F-12 medium decreased (P<0.05) compared with initial viability. Viability of cells cultured in either medium without 19-OH-A (NA) was lower (P<0.05) compared with cells cultured in media supplemented with 19-OH-A. Number of granulosa cells plated per well had no consistent effect on cell viability.

# Study IV: Use of absorbance to quantify alterations in number of granulosa cells during culture

A. Relationship of number of bovine granulosa cells to absorbance at 405 nm

Absorbance at 405 nm was correlated positively (P<0.05) with increasing number of granulosa cells (Figure 7).

# B. Effects of temperature, cell size, and androgens on absorbance at 405 nm

As culture medium cooled from 37°C to room temperature, absorbance decreased (P<0.05) (Figure 8). In contrast, absorbance of medium at room temperature (Figure 8) was stable (P>0.10) and lower (P<0.05) compared with medium at 37°C.

As concentration of sodium chloride increased, the percentage of relatively small bovine granulosa cells increased (P<0.05) concurrently with a decrease (P<0.05) in absorbance at 405 nm (Figure 9).

Initial absorbance was higher (P<0.05) for 19-OH-T and DHEA (except 10⁻⁶ M) compared with no androgen, 19-OH-A (except 10⁻⁸ M), and DHT (Figure 10). Final absorbance was higher (P<0.05) for 19-OH-T, DHEA, and 10⁻⁸ M and 10⁻⁷ M doses of DHT compared with no androgen, 19-OH-A, and 10⁻⁶ M and 10⁻⁵ M doses of DHT. Final absorbance for 19-OH-T, DHEA, and DHT was higher (P<0.05) than initial absorbance (Figure 10). There was no consistent dose effect of androgens on absorbance.

Figure 4. Effect of number of bovine granulosa cells on estradiol production per cell. Pairs of ovaries from cows during Days 2-5 of the estrous cycle were collected from a slaughterhouse. The largest follicle per pair of ovaries, which is the first-wave dominant follicle (Fortune, 1993), was isolated. Follicular fluid was aspirated from the follicle, the follicle was cut in half, and each half was placed on a watch glass containing either Ham's F-12 medium or Endothelial-SFM growth medium. Granulosa cells were gently scraped into each medium. Cells were plated at different concentrations (x-axis; number x 10⁵) in a 96-well culture plate containing either Ham's F-12 medium (**a**) or Endothelial-SFM plating medium (SFM; □) supplemented with 10⁻⁶ M 19-hydroxyandrostenedione, except for two groups of 5x10⁵ cells which received no androgen (NA). Cells were incubated for 24 h. Media and cells were then collected and separated as explained in Methods. Radioimmunoassay was used to determine concentration of estradiol in media. To determine estradiol production per cell (yaxis), the total amount of estradiol per well was divided by cell number. Each bar depicts mean (± SEM) values for 6 replicates from a single experiment.

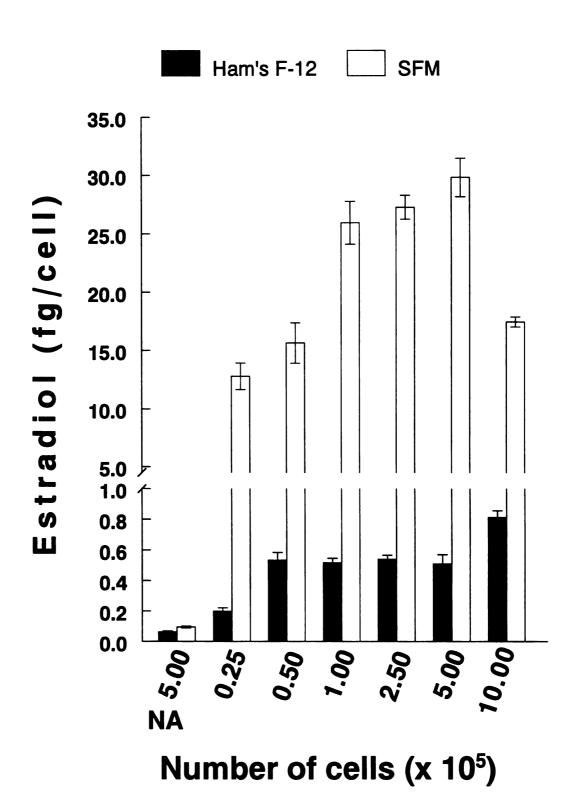
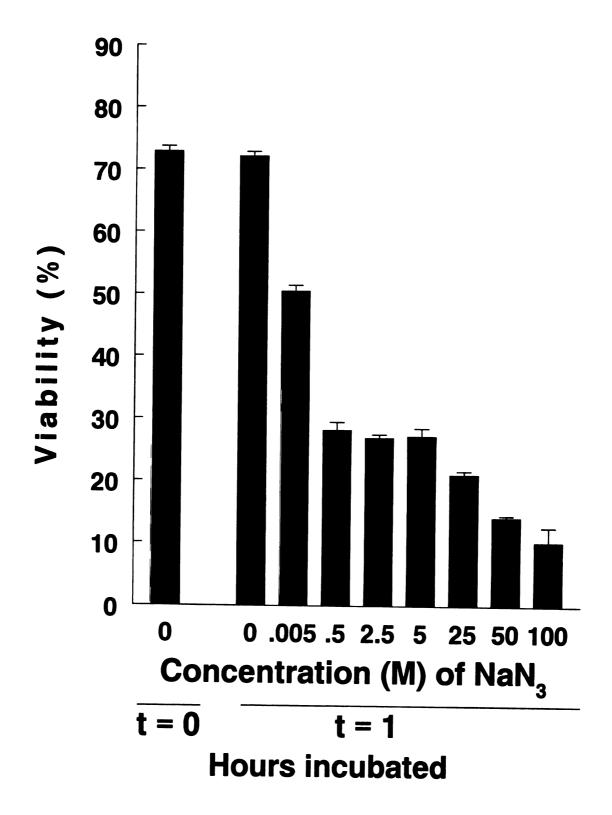
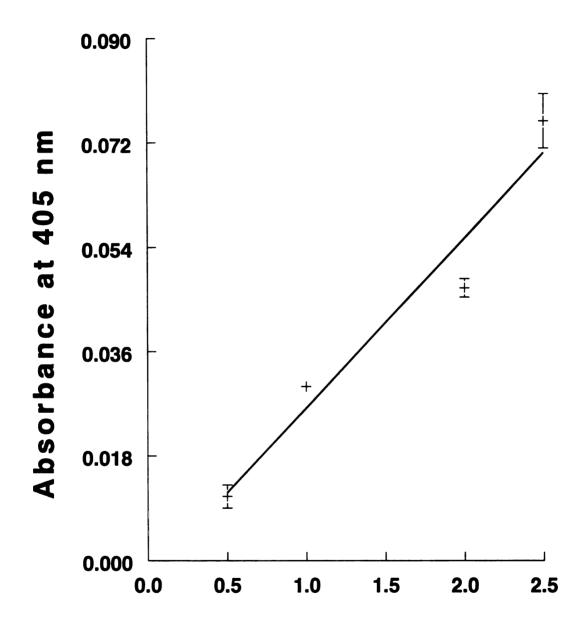





Figure 5. Effect of sodium azide on viability of bovine granulosa cells.

Granulosa cells were isolated and prepared for culture as explained in Figure 4's legend. Cells were pipetted into 1.5 ml microcentrifuge tubes ( $10^5$  cells / tube) containing Endothelial-SFM growth medium supplemented with different concentrations of sodium azide (NaN₃) (x-axis). Initial (t = 0) and final (t = 1) viability (y-axis) were assessed using trypan blue exclusion dye. Bars represent mean ( $\pm$  SEM) values for 3 replicates from a single experiment.




viability. Granulosa cells were isolated and prepared for culture as explained in Figure 4's legend. Cells were plated at different concentrations (x-axis; number x 10⁵) in a 96-well culture plate containing either Ham's F-12 medium (■) or Endothelial-SFM plating medium (SFM; □) supplemented with 10⁻⁶ M 19-hydroxy-androstenedione, except for two groups of 5x10⁵ cells which received no androgen (NA). Cells were incubated for 24 h. Media and cells were then collected and separated as explained in Methods. Initial and final viability (y-axis) were assessed using trypan blue exclusion dye. Each bar depicts mean (± SEM) values for 3 replicates from a single experiment.



nm. Granulosa cells were isolated and processed for culture as explained in Figure 4's legend. Cells were plated at different concentrations (x-axis) in a 96-well culture plate containing Endothelial-SFM plating medium supplemented with 10⁻⁶ M 19-hydroxy-androstenedione. Absorbance readings at 405 nm (A₄₀₅) were taken using a microplate reader after completion of the 24 h incubation. A₄₀₅ was selected based on a study by Mohler *et al.*, (1996) demonstrating that absorbance increases with increased cell number and previous results showing the absorbance values for granulosa cells were highest at A₄₀₅. Absorbance of granulosa cells was determined by subtracting background absorbance for wells containing only media. Each symbol represents mean (± SEM) values for 3 replicates for a single experiment. In follow up studies, results were similar for 3 additional

experiments.



Number of cells plated (x10⁵)

Figure 8. Effect of temperature on absorbance at 405 nm.

Endothelial-SFM medium (20  $\mu$ l growth medium + 180  $\mu$ l plating medium / well) without cells was placed in a random fashion in wells of two 96-well Primaria culture plates. Plate 1 (37° to RT; +) was incubated at 37°C for 18 h and Plate 2 (RT; •) was left at room temperature (RT, approximately 20°C) for 18 h. After incubation, absorbance readings at 405 nm (A₄₀₅) were then taken at various intervals (x-axis) using a microplate reader. After the initial reading (t=0 h), Plate 1 was not returned to the incubator. Each symbol represents mean ( $\pm$  SEM) value for 13 replicates from a single experiment.

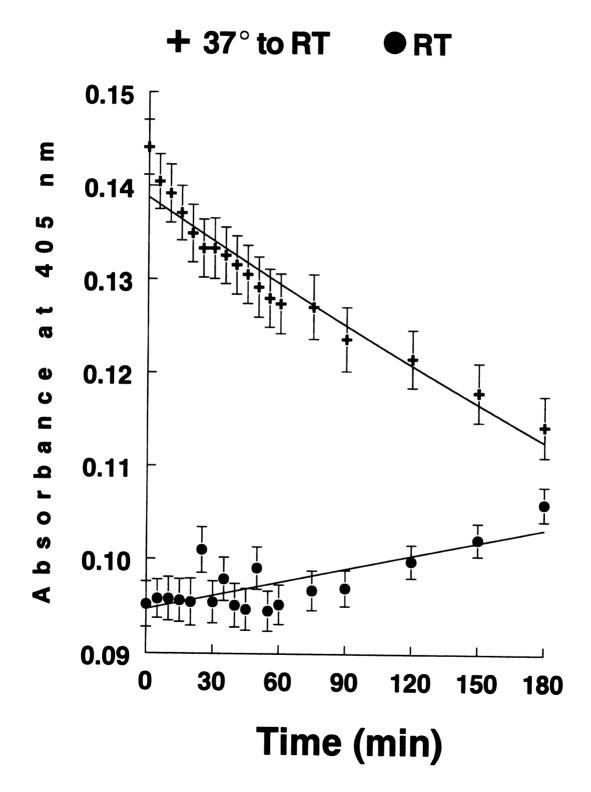
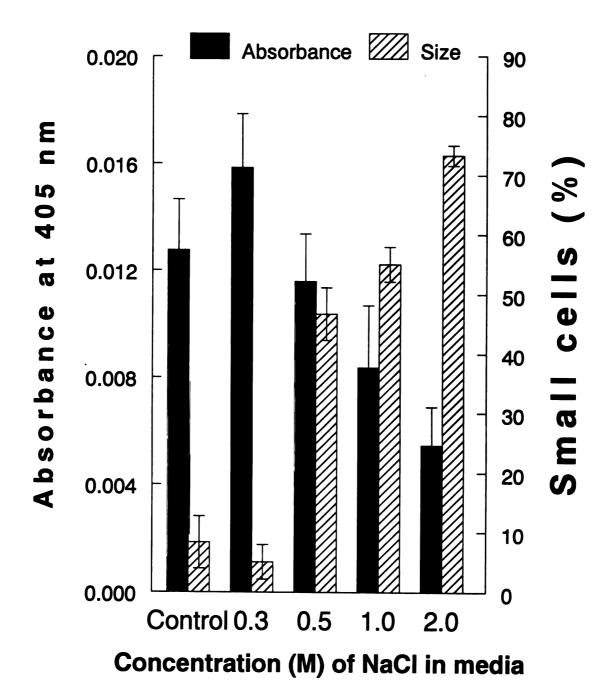




Figure 9. Effect of sodium chloride on size and absorbance of bovine granulosa cells. Granulosa cells were isolated and processed for culture as explained in Figure 4's legend. Cells were plated in a 96-well culture plate (10⁵ cells / well) containing Endothelial-SFM plating medium supplemented with 0 (Control), 0.3, 0.5, 1.0, or 2.0 M sodium chloride (NaCl, x-axis). Cells were incubated for 1 h then an absorbance reading at 405 nm was taken using a microplate reader (left y-axis). Cells were then examined under a light microscope. The percentage of relatively small cells (right y-axis) was determined by dividing number of small cells per 20 cells in a random area in the microscopic field per well by 20 and multiplying that value by 100. Each solid bar represents the mean (± SEM) absorbance values for 4 replicates. Each hatched bar represents the mean (± SEM) values of small cells for 4 replicates from a single experiment.



• •

Figure 10. Effect of different types and amounts of androgens on absorbance at 405 nm. Endothelial-SFM media (20 μl growth medium + 180 μl plating medium/ well) containing no cells and supplemented with different concentrations (x-axis) of 19-hydroxy-androstenedione (19-OH-A), 19-hydroxy-testosterone (19-OH-T), dehydroepiandrosterone (DHEA), dihydrotestosterone (DHT), or no androgen (NA) were placed in a 96-well culture plate and incubated for 18 h. Absorbance readings at 405 nm (A₄₀₅) were taken 1 h after start of the incubation (Initial) and after incubation ended (Final). Bars represent mean (± SEM) values for 4 replicates from a single experiment.



Initial Final

Concentration (M) of androgen

#### Discussion

The most significant findings of the present study are that: a) bovine granulosa cells from first-wave dominant follicles cultured in SFM-plating medium produced markedly more estradiol compared with those in Ham's F-12 medium; b) trypan blue exclusion dye can be used reliably to estimate bovine granulosa cell viability; c) bovine granulosa cells cultured in SFM-plating medium were more viable than those in Ham's F-12; and d) absorbance at 405 nm was an unreliable method to measure alterations in cell number.

The reason that estradiol production and viability were higher for granulosa cells cultured in SFM-plating medium compared with those in Ham's F-12 is unknown. Although formulations for SFM media are proprietary, bovine vitronectin, a cell attachment factor (Hoshi et al., 1991; Gorfien et al., 1993), is in SFM-plating medium. Since mammalian cells usually grow best when attached to a surface (Rappaport et al., 1960), this may explain why viability of boying granulosa cells was stable during the 24 h culture period and greater in SFM-plating medium verses Ham's F-12. In support of a positive effect of vitronectin, vitronectin enhances attachment of bovine granulosa cells to culture wells (Hoshi et al., 1991). In addition, bovine granulosa cells that attach to culture plates produce more estradiol in vitro compared with unattached cells (Metcalf, 1982). SFM-plating medium, therefore, may cause granulosa cells to attach better to culture wells compared with Ham's F-12 medium, which is devoid of attachment factors, and thus produce more estradiol compared with cells cultured in Ham's F-12 medium. Because more cells cultured in SFM-plating medium were viable compared with those in Ham's F-12 medium, this could also contribute to the higher estradiol production in

SFM-plating medium. The higher viability of bovine granulosa cells in SFM-plating medium compared with Ham's F-12 may also be due to the presence of growth factors, such as insulin and low density lipoprotein. For example, insulin, which is commonly used as a constituent of commercial serum-free media (Jean Donovan, Life Technologies, Inc., personal communication), is a requisite for growth of many cell lines (Hayashi et al., 1978; Mather and Sato, 1979;) and is important in maintaining normal physiological functions of porcine (May and Schomberg, 1981) and bovine (Savion et al., 1981; Hoshi et al., 1991; Gutiérrez et al., 1997) granulosa cells in vitro. In addition, lipoproteins, such as low density lipoprotein (LDL), are common constituents available in commercial serum-free media (Jean Donovan, Life Technologies, Inc., personal communication). LDL maintains porcine granulosa cell survival (Buck and Schomberg, 1987) and increases bovine granulosa cell proliferation (Hoshi et al., 1991) in vitro. If insulin and/or LDL or other growth factors are in SFM media, they could also explain the increase in granulosa cell viability and estradiol production for granulosa cells in SFM verses Ham's F-12 media.

Viability was the same for the different number of bovine granulosa cells in SFM-plating medium. Thus, the decreased estradiol production observed when number of cells exceeded  $5 \times 10^5$  may be due to limited availability of androgen substrate. In future studies,  $10^5$  cells per well cultured in SFM-plating medium supplemented with  $10^6$  M 19-OH-A will be used because estradiol production on a per cell basis was similar compared with larger numbers of cells. Also, by using  $10^5$  cells per well, a single first-wave dominant follicle can be expected to provide enough cells for at least 50 culture wells (Ireland and Roche, 1983a).

A reliable method to quantify cell viability is important because hormonal treatments of cells could affect viability, thus influencing interpretation of experimental results. For example, if treated cells produced less estradiol compared with controls, was it because estradiol production, cell viability, or both were reduced? Trypan blue exclusion dye is commonly used to determine cell viability. This assay is based on the assumption that dead cells have "damaged" membranes which allow charged dye molecules access to the cytoplasm (Cook and Mitchell, 1989). Once dye enters the cell, it is stained blue, and the cell is considered dead. Dye does not enter viable cells with intact membranes, thus viable cells remain clear. To confirm that trypan blue exclusion dye could be used to measure alterations in bovine granulosa cell viability, different concentrations of sodium azide were used to poison (Bortkiewicz et al., 1988; Telford et al., 1991; Vaux and Häcker, 1995) granulosa cells. The results of this study showed that increased amounts of sodium azide decreased viability of bovine granulosa cells causing sodium azide-treated, putatively dead granulosa cells to take up the trypan blue dye. Hence, trypan blue exclusion dye was considered a reliable qualitative and quantitative marker to assess viability of bovine granulosa cells.

It is common to use a spectrophotometer to monitor growth of bacteria (Sambrook et al., 1989), but is not a typical practice with tissue culture cells. Mohler et al. (1996) developed a spectrophotometric assay to quantify cell number in tissue culture. This assay required cells to be transferred from culture wells to cuvettes and kept in suspension while absorbance was measured. However, when cells are transferred from culture wells to another container loss of cells is unavoidable due to a portion of cells remaining in the culture wells and sticking to pipette tips. Therefore, a

spectrophotometric assay in which cells remained in culture wells would be advantageous. In the present study, absorbance at 405 nm increased in a linear manner with increasing granulosa cell numbers. Morever, when water was used to lyse cells absorbance decreased to zero (data not shown). However, the signal to noise ratio was very high indicating that slight variations in background absorbance could markedly influence absorbance for cells. In addition, temperature, cell size, and androgens influenced absorbance. The reason temperature altered absorbance may be due to a flux in pH (Weast, 1989) and thus change in color of SFM medium since it contains phenol red. As granulosa cells shrunk absorbance decreased probably because there was less cell area to absorb light compared with normal sized cells. It is unknown why androgens altered absorbance. To my knowledge, peak absorbance values for 19-OH-A, 19-OH-T, DHEA, and DHT have not been reported. However, since peak absorbance for most other steroids is between 225 nm and 287 nm (Weast, 1989), it is assumed that the androgens used in the present studies would have similar absorbance peaks. Therefore, androgens should not affect absorbance measurements at 405 nm. Nevertheless. androgens may interact with some unknown component in SFM-plating medium to produce a compound that absorbs light at 405 nm. Because of these aforementioned problems, absorbance at 405 nm was considered unreliable to determine alterations in number of cells during culture. Consequently, cell number in culture will be ascertained in future studies using a commercially available DNA assay kit.

## **Summary and Conclusions**

In summary: a) bovine granulosa cells from the first-wave dominant follicle cultured in SFM-plating medium are more viable and produce markedly more estradiol compared with cells cultured in Ham's F-12 medium; b) 10⁵ cells in SFM-plating medium produced the most estradiol per cell; c) trypan blue exclusion dye can be reliably used to estimate alterations in bovine granulosa cell viability; and d) measuring absorbance at 405 nm to quantify cells is unreliable. Consequently, it is concluded that bovine granulosa cells could be cultured in SFM media, viability assessed by trypan blue exclusion dye, and proliferation monitored by DNA analysis to test the hypothesis that different types and amounts of androgen alter growth, viability, estradiol production, and aromatase activity *in vitro* of bovine granulosa cells isolated from the first-wave dominant follicle.

Chapter 3 will describe the effects of different types and amounts of androgens on bovine granulosa cell proliferation, viability, estradiol production, and aromatase enzyme activity using the aforementioned cell culture parameters.

#### Part III

#### CHAPTER 3

#### Introduction

Estradiol is associated positively with selection, growth, and dominance and negatively associated with atresia of ovarian follicles in cattle. Specifically, there is an increase in estradiol production by follicles that escape atresia during each wave of dominant follicle growth (Figure 1). Granulosa cells in the dominant follicle produce more estradiol than those in subordinate or atretic follicles (Figure 1; Padmanabhan *et al.*, 1984; Ireland and Roche, 1987; Fortune, 1994). These observations imply that ovarian estradiol production has an important role in regulation of dominant follicle growth in the cow.

Nevertheless, without theca cell production of androgens, which provides substrate for granulosa cells to synthesize estradiol (Figures 2 and 3), there would be no estradiol produced. The major androgens aromatized to estradiol are androstenedione and testosterone, which are converted into estradiol by the aromatase enzyme system in granulosa cells (Figures 2 and 3; Lacroix et al., 1974; Hansel and Convey, 1983; Richards et al., 1987; Gore-Langton and Armstrong, 1994; Xu et al., 1995a; Conley and Bird, 1997). The ability of bovine granulosa cells to aromatize androgens increases as a function of follicle maturity (Mc Natty et al., 1979b; Hillier, 1981). Increased availability of aromatizable androgens from theca cells may also be responsible for increased estradiol production by granulosa cells (Tian et al., 1995). In contrast, other thecal androgens, such as dihydrotestosterone (DHT), inhibit aromatase activity competitively in

granulosa cells from rats (Hillier and Ross, 1979; Hillier et al., 1979; Hillier et al., 1980a) and humans (Schwarzel et al., 1973; Hillier et al., 1980b). Whether DHT inhibits aromatase activity in cattle is unknown.

Follicular atresia is associated with the death of granulosa cells (Luciano et al., 1994; Peluso et al., 1996). There is considerable evidence implicating androgens in the process of granulosa cell apoptosis (Billing et al., 1993) and follicular atresia (Payne and Runser, 1958; Louvet et al., 1975; Scaramuzzi et al., 1977; Hillier and Ross, 1979; Hillier et al., 1979; Farookhi, 1981; Hillier, 1981; Terranova and Greenwald, 1981; Bagnell et al., 1982; Billing et al., 1993; Gore-Langton and Armstrong, 1994; Evans et al., 1997). The death of granulosa cells may be caused by androgens interfering in production and/or action of estradiol (Bagnell et al., 1982), or by direct actions of androgens on granulosa cells (Tetsuka et al., 1995; Garrett and Guthrie, 1996). In cows, atresia is characterized by diminished granulosa cell aromatase enzyme activity (Mc Natty et al., 1984a), and granulosa cells in atretic follicles do not express mRNA for aromatase (P450_{amm} mRNA) (Xu et al., 1995a). Therefore, diminished capacity of bovine granulosa cells to produce estradiol is associated with apoptosis of granulosa cells and follicular atresia. However, it is not known whether diminished capacity of granulosa cells to produce estradiol is a cause or an effect of granulosa cell apoptosis. In summary, androgens may be important regulators of estradiol production not only by providing substrate for estradiol synthesis, but also by regulating aromatase activity and apoptosis of granulosa cells. These regulatory events would mean that androgens exert a significant role in dominant follicle growth and atresia.

The present study will test the hypothesis that different types and amounts of

androgens alter proliferation, viability, estradiol production, and aromatase enzyme activity in vitro of bovine granulosa cells isolated from the first-wave dominant follicle. To test this hypothesis, three experiments were conducted: Experiment I examined the effects of androgens on granulosa cell number (Part A), viability (Part B), and estradiol production (Part C). Experiment II determined if pre-treatment with different amounts of androgens alters subsequent capacity of granulosa cells to produce estradiol.

Experiment III tested the effects of DHT, a non-aromatizable androgen, on production of estradiol by granulosa cells.

#### Materials and Methods

#### Reagents and hormones

The following items were obtained from Life Technologies, Inc. (Grand Island, NY): Endothelial-SFM growth medium with L-glutamine (SFM-growth), Endothelial-SFM plating medium with bovine vitronectin and L-glutamine (SFM-plating), penicillin G sodium, streptomycin sulfate, and trypan blue exclusion dye. 19-hydroxy-androstenedione (19-OH-A), 19-hydroxy-testosterone (19-OH-T), dehydroepiandrosterone (DHEA), dihydrotestosterone (DHT), ethylenediamine tetraacetic acid (EDTA), and calf thymus DNA were obtained from Sigma Chemical Co. (St. Louis, MO). Sodium chloride, monobasic phosphate, and dibasic phosphate were obtained from J. T. Baker Chemical Co. (Phillipsburg, NJ). Tris base was obtained from Boehringer Mannheim (Indianapolis, IN). TNE buffer (mM Tris, 2 M NaCl, 1mM EDTA, ph 7.4) and Hoechst 33258 dye were included in the FluoReporter Blue Fluorometric dsDNA Quantitation kit from Molecular Probes (Eugene, OR).

# Tissue collection and bovine granulosa cell preparation

Ovaries from beef and dairy cows during Days 2-5 of the estrous cycle were collected from a slaughterhouse (MURCO, Plainwell, MI). Stage of the estrous cycle was determined by morphology of the corpus luteum (Ireland et al., 1980). Pairs of ovaries from each cow were placed in individual bottles containing ice-cold phosphate buffered saline solution (0.01 M monobasic phosphate, 0.04 M dibasic phosphate, 0.1 M sodium chloride, 0.02 M EDTA; pH 7.4) and transported on ice to the laboratory within 4 h of slaughter. The largest follicle per pair of ovaries, which is the first-wave dominant follicle (Fortune, 1993), was dissected, ovarian stroma removed, and the follicle's diameter was recorded. Follicular fluid was aspirated from each follicle by puncturing it with a 22-gauge needle attached to a 3 ml syringe. The follicle shell was then bisected under sterile conditions and placed on a watch glass containing Endothelial-SFM growth medium (SFM-growth) supplemented with penicillin/streptomycin solution (1.5 mg/ml penicillin G sodium and 2.5 mg/ml streptomycin sulfate). Granulosa cells were gently scraped from the inner wall of each follicle into medium using a bent microspatula. Granulosa cells were pooled then washed in ice-cold medium and centrifuged (400 x g for 5 min at 4°C) three times. Number of cells was estimated using a hemocytometer.

#### Androgens

The rationale to use of 19-hydroxy-androstenedione (19-OH-A), 19-hydroxy-testosterone (19-OH-T), dehydroepiandrosterone (DHEA), and dihydrotestosterone (DHT) is based on several previous observations. Each of the aforementioned types of androgens are in follicular fluid (Lacroix *et al.*, 1974; Mc Natty *et al.*, 1979b; Henderson

et al., 1982; Ireland and Roche, 1982; Dieleman et al., 1983a; 1983b; Fortune and Hansel, 1985; Wise, 1987; Xu et al., 1995a) and implicated in affecting follicular growth, atresia, estradiol production, and aromatase enzyme activity (Payne and Runser, 1958; Ohno et al., 1973; Schwarzel et al., 1973; Lacroxi et al., 1974; Louvet et al., 1975; Lucky et al., 1977; Mori et al., 1977; Scaramuzzi et al., 1977; Kumari et al., 1978; Leung et al., 1978: Goff et al., 1979: Henderson and Moon, 1979: Hillier and Ross, 1979: Hillier et al., 1979; Peluso et al., 1979; Daniel and Armstrong, 1980; Hillier et al., 1980a; 1980b; Farookhi, 1981; Hillier and De Zwart, 1981; Hillier et al., 1981a; Terranova and Greenwald, 1981; Bagnell et al., 1982; Welsh et al., 1982; Dieleman et al., 1983a; Möstl et al., 1984; Wise, 1987; Tonetta and di Zerega, 1989; Billing et al., 1993; Gore-Langton and Armstrong, 1994; Bley et al., 1997). Androstenedione (Dieleman et al., 1983a), testosterone (Henderson and Moon, 1979), and DHEA (Lacroix et al., 1974; Möstl et al., 1984; Wise, 1987) have all been reported as the preferred substrate for ovarian estrogen synthesis in cattle. Because of this controversy, 19-OH-A, 19-OH-T, and DHEA were used in the present study to clarify which androgen is the preferred substrate for estradiol production by bovine granulosa cells. The androgen metabolites, 19-OH-A and 19-OH-T, rather than androstenedione and testosterone, were used because they are directly metabolized into estradiol (Figures 2 and 3). In contrast, androstenedione and testosterone can be interconverted or form other androgens such as DHT. In the present study, DHT was used because it is a non-aromatizable androgen that diminishes the activity of granulosa cell aromatase enzyme (Schwarzel et al., 1973; Hillier et al., 1979; 1980a) and causes atresia (Bagnell et al., 1982).

Doses of androgens ranged from 10⁻⁸ M to 10⁻⁵ M. Except for 10⁻⁵ M, this range

of concentrations of androgens spans the range of androgen concentrations in follicular fluid (Mc Natty et al., 1979b; Henderson et al., 1982; Ireland and Roche, 1982; Dieleman et al., 1983a; 1983b; Fortune and Hansel, 1985; Wise, 1987; Xu et al., 1995a).

# Bovine granulosa cell culture

Except where noted,  $10^5$  bovine granulosa cells in 20  $\mu$ l of SFM-growth medium were plated in 96-well Falcon Primaria culture plates (Becton Dickinson and Co., Lincoln Park, NJ) containing 180 µl of Endothelial-SFM plating medium (SFM-plating) previously equilibrated at 37°C. The media was supplemented with penicillin/streptomycin solution and different types and doses of androgens. Granulosa cells were incubated at 37°C in a humidified atmosphere (5 % CO₂ and 95 % air) for 2, 6, 12, or 18 h as indicated for each experiment. After incubation, cells were detached from culture wells by gently flushing them with the existing media in the wells, except where noted. Cells and/or media were collected from each well and placed in individual 1.5 ml Eppendorf tubes. If both cells and media were collected, Eppendorf tubes were centrifuged (400 x g for 10 min at 4°C) to form pellets of cells and media were removed carefully without disturbing the pellets and placed in individual Eppendorf tubes. Fresh, ice-cold SFM-growth medium (200  $\mu$ l) supplemented with penicillin/streptomycin solution was then added to the cell pellet, and cells were resuspended and stored on ice until viability was assessed. If only media were collected, culture plates were centrifuged (400 x g for 1 min at 4°C) and approximately 140  $\mu$ l of medium from each well was collected and placed in individual Eppendorf tubes. Culture plates containing cells were then stored at -80°C until assayed for DNA. Media were stored at -20°C until assayed

for estradiol concentration.

#### Viability assessment

Viability of granulosa cells after isolation from follicles (initial) and viability after culture (final) were determined by mixing 200  $\mu$ l of a 1:10 dilution of the initial cell suspension, or by mixing 200  $\mu$ l of a cell suspension that had previously been stored on ice after completion of the culture period, with 200  $\mu$ l of a 1:5 dilution of 0.4% trypan blue exclusion dye. The mixture was incubated at room temperature for 1 min. An aliquot was then placed on a hemocytometer and examined under the microscope. Stained cells were considered dead. Viability was expressed as percent of viable (non-stained) cells per total (stained + non-stained) cells in a well.

#### **Estimation of DNA**

Alterations in number of cultured granulosa cells were determined by estimation of granulosa cell DNA using the protocol provided in the FluroReporter Blue Fluorometric dsDNA Quantitation Kit. Briefly, culture plates containing cells that had previously been stored at -80°C were thawed at room temperature and 100  $\mu$ l of double-distilled water was added per well. To lyse cells, the plate was incubated at 37°C for 1 h, frozen at -80°C, and then thawed at room temperature. Aqueous Hoechst 33258 dye in TNE buffer (25  $\mu$ l Hoechst 33258 solution + 10 ml TNE buffer) was added to wells (100  $\mu$ l / well) immediately before placing the plate on a microplate reader (CytoFluor 4000, PerSeptive Biosystems). Fluorescence was measured using excitation and emission filters centered at 360 nm and 460 nm, respectively. Background fluorescence readings

for cell-free samples (100  $\mu$ l dye + 60  $\mu$ l SFM-plating medium + 100  $\mu$ l double-distilled water) were subtracted from readings of samples containing cells. Amount of DNA in granulosa cells in each well was determined using a calf thymus DNA standard curve (Appendix A).

#### **DNA standard curve**

A stock solution of calf thymus DNA (6.7  $\mu$ g ml⁻¹ based on absorbance at 260 nm in a 1 cm path length cuvette, Molecular Probes, 1996) was prepared in TE buffer (10 mM Tris base, 1 mM EDTA, ph 7.4) and different concentrations (0 and 6.7 ng, 16.75 ng, 33.5 ng, 67 ng, 167.5 ng, 335 ng, 502.5 ng, and 670 ng per 100  $\mu$ l) pipetted in triplicate into wells of a Falcon Primaria 96-well culture plate to construct a standard curve. Aqueous Hoechst 33258 dye in TNE buffer (25  $\mu$ l Hoechst 33258 solution + 10 ml TNE buffer) was added to wells (100  $\mu$ l / well) immediately before placing the plate on a microplate reader. Fluorescence was measured as stated above. Background fluorescence readings for DNA-free samples (100  $\mu$ l dye + 100  $\mu$ l TE buffer) were subtracted from readings of wells containing DNA.

## Estradiol assay

Concentrations of estradiol in media were determined by radioimmunoassay using previously validated (Turzillo and Fortune, 1990; Ireland *et al.*, 1994), commercially available kits (Diagnostic Products Corporation, Los Angeles, CA). Sensitivity of the assay was 0.5 pg/ml. Cross-reactivity of estradiol antiserum with estrone is 12.55 % and less than 1% with other steroids.

### **Experiments**

Experiment I: Effects of types and amounts of androgens on proliferation, viability, and estradiol production

Part A. Cell number: To determine if androgens altered number of cells, granulosa cells were collected and processed for culture as described above. Cells were then plated in culture wells containing SFM-plating medium supplemented with different doses of 19-OH-A, 19-OH-T, DHEA, DHT, or no androgen, as explained earlier. At the end of the 18 h culture, media were collected, and culture wells containing cells were assayed for DNA.

Part B. Viability: To determine if androgens altered viability, initial viability of granulosa cells after isolation from follicles was compared with viability after the 18 h culture period in medium containing different types and amounts of androgens.

Granulosa cells were collected, processed, and cultured as described in Part A.

Part C. Estradiol production: To determine if androgens altered estradiol production, media from the granulosa cells in Part B were collected after the 18 h culture period and analyzed for concentration of estradiol.

To test whether the various types of androgens were converted into estradiol at different rates, granulosa cells were isolated and processed for culture as previously stated, except cells were plated into culture wells containing medium supplemented with 10⁻⁶ M of either 19-OH-A, 19-OH-T, or DHEA and cultured for 1, 3, 6, 12, or 18 h. Media were collected at the end of each culture period and assayed for estradiol.

# Experiment II: Effects of types and amounts of androgen pre-treatments on viability and aromatase enzyme activity

To evaluate the effects of androgen pre-treatments on subsequent capacity of granulosa cells to produce estradiol, residual steroids in media after androgen priming had to be removed without cell loss before final treatments began. To determine if granulosa cells could be washed in culture wells to remove residual steroids without cell loss, granulosa cells  $(5\times10^5$  cells in  $50~\mu$ l of SFM-growth medium) were plated in culture wells containing  $150~\mu$ l of SFM-plating medium and cultured for 1 h. Cells in each well were then washed 0, 3, 4, or 5 times by centrifuging the culture plate (400 x g for 1 min at 4°C), removing  $140~\mu$ l of medium from each well, and then replacing it with fresh, ice-cold SFM-growth medium. Medium was not replaced after the final wash. In order to evaluate cell loss, DNA content per culture well was determined after each wash.

To determine if washes removed residual steroids after androgen priming, granulosa cells were pre-treated with different types and amounts of androgens for 6 h, washed five times as stated above. Estradiol concentration was then measured in media from the final wash as an index for removal of all steroids in media.

To determine effects of androgens on aromatase enzyme activity, granulosa cells were processed for culture as explained above and pre-treated with different types (19-OH-A, 19-OH-T, DHEA, DHT, and no androgen) and amounts (10⁻⁸ M, 10⁻⁷ M, 10⁻⁶ M, and 10⁻⁵ M) of androgens for 6 h. Cells were then washed five times to remove residual steroids and cultured for an additional 12 h with or without 10⁻⁶ M 19-OH-A. Estradiol concentration was then measured in media. To determine if the various androgen pre-treatments affected viability, granulosa cell viability after the 18 h culture period was

compared among pre-treatments, and with the initial viability of granulosa cells after isolation from follicles.

# Experiment III: Effect of DHT on production of estradiol by bovine granulosa cells

To determine the effects of DHT on capacity of granulosa cells to produce estradiol, granulosa cells were cultured in medium containing 19-OH-A (1.01x10⁻⁶ or 2x10⁻⁶ M) or 19-OH-A (10⁻⁶ M) in combination with DHT (10⁻⁸ or 10⁻⁶ M). The 1.01x10⁻⁶ and 2x10⁻⁶ M doses of 19-OH-A were used to expose cells in the control groups to the same total concentration of androgen as the cells treated with combinations of DHT and 19-OH-A. Media were collected and concentration of estradiol in media was determined. Granulosa cells were isolated, processed, and cultured as previously stated.

### Statistical analysis

All analyses were performed using SPSS Base 8.0 (SPSS Inc., Chicago, IL). Experimental data are expressed as arithmetic means (± SEM) of measurements of triplicate or more culture wells or aliquots. Experiments were replicated at least twice with different pools of bovine granulosa cells isolated from ovaries obtained during separate trips to an abattoir with the following exceptions: Experiment I Part C (conversion rates of androgens into estradiol), Experiment II's washing 0 to 5 times to remove residual steroids, and Experiment III. Unless stated otherwise, significance was P<0.05. Except where indicated, the effects described are representative of results obtained in separate replicates, although the absolute levels of estradiol production and

the magnitude of response to androgen treatments varied between different pools of cells.

Two-way analysis of variance (ANOVA) was used to test the effects of type and dose of androgen on alterations in granulosa cell DNA (Experiment I Part A), viability (Experiment I Part B), and estradiol production (Experiment I Part C). When a significant difference was found, the Bonferroni t-test was used to determine which means differed significantly. In Experiment I Part B, linear regression analysis was used to determine if a linear relationship existed between androgen dose and granulosa cell viability. In Experiment I Part C, linear regression analysis was used to determine slopes for each type of androgen for each experimental replicate, which are displayed in Table 1. Differences between slopes for each type of androgen for each replicate and differences between replicates for each androgen were determined by the equivalent t-test for slope using the equation  $|t| = (\beta_{1A} - \beta_{1B}) / s\{\beta_{1A}\}$ .  $\beta_{1A}$  and  $\beta_{1B}$  are the slopes of different androgens A and B, respectively, and  $s\{\beta_{1A}\}$  is the standard deviation of the slope for androgen A (Neter et al., 1990; Frenud and Wilson, 1993).

In Experiment II, one-way ANOVA was used to test the effect of washing granulosa cells on alterations in granulosa cell DNA. Two-way ANOVA was used to determine if androgen pre-treatments altered subsequent estradiol production in Experiment II. When a significant difference was found, the Bonferroni t-test was used to determine which means differed significantly. Linear regression analysis was then used to determine if the subsequent capacity of granulosa cells to produce estradiol increased linearly for each androgen pre-treatment.

In Experiment III, one-way ANOVA was used to test the effect of DHT on estradiol production.

### **Results**

Experiment I: Effects of types and amounts of androgens on proliferation, viability, and estradiol production

Part A. Cell number: Treatment of granulosa cells with androgens did not alter (P>0.10) amount of granulosa cell DNA per well (data not shown).

Part B. Viability: Viability of granulosa cells for the four replicates were similar, thus data were pooled. The final viability for granulosa cells cultured in 10⁻⁶ M and 10⁻⁵ M 19-OH-A was the same (P>0.1) as initial viability, whereas final viabilities for cells cultured in all other androgen treatments were lower (P<0.05) than initial viability (Figure 11). Viability was higher (P<0.05) for granulosa cells cultured in 19-OH-A, 19-OH-T, or DHEA compared with cells in media without androgen (NA) or DHT. Overall viability of granulosa cells increased (P<0.05) with increasing dose of 19-OH-A.

Part C. Estradiol production: Granulosa cells treated with DHT or receiving no androgen produced negligible amounts of estradiol (Figure 12). For each replicate, cells treated with 19-OH-A or 19-OH-T consistently produced more (P<0.05) estradiol compared with cells treated with DHEA at the 10⁻⁶ M and 10⁻⁵ M doses, but not at lower doses. Since amounts of estradiol produced for each different androgen varied greatly (P<0.05) among replicates, pooling of results was precluded. However, despite the marked difference in response to androgens among replicates, the linear increase in estradiol production was consistently greater (P<0.05) with 19-OH-A and 19-OH-T treatments compared with DHEA or DHT (Table 1). Note, the linear increase in estradiol

was greater (P<0.05) for 19-OH-T compared with 19-OH-A and for DHEA compared with DHT for three replicates (Table 1).

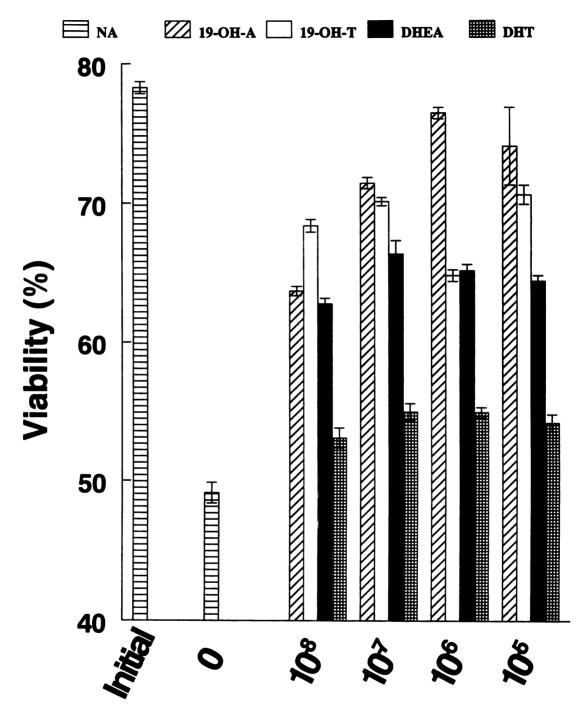
Accumulation of estradiol in media was similar at each time point for granulosa cells treated with 19-OH-A or 19-OH-T, but greater (P<0.05) for each of these androgens compared with DHEA (Figure 13).

## Experiment II: Effects of types and amounts of androgen pre-treatments on viability and aromatase enzyme activity

Cells could be washed five times without (P>0.10) alterations in amount of granulosa cell DNA per culture well (data not shown). After five washes, residual estradiol in media of granulosa cells pre-treated with androgens ranged from 0 to 0.19 ng/ml.

Final viability of granulosa cells differed (P<0.05) for the replicates which precluded pooling of results. For each replicate, final viability of cells was lower (P<0.05) than initial viability (Figure 14) at each androgen pre-treatment dose except for cells pre-treated with 10⁻⁵ M 19-OH-A or 10⁻⁸ M 19-OH-T, which was similar (P>0.1) to initial viability. In each replicate, viability was higher (P<0.05) at each dose, except 10⁻⁸ M (in Panel A), for cells pre-treated with 19-OH-A or 19-OH-T compared with DHEA, DHT, or no androgen.

Amount of estradiol produced during culture varied (P<0.05) among the two studies, which precluded pooling of results. Capacity of granulosa cells to convert 19-OH-A into estradiol increased (P<0.05) linearly with increasing pre-treatment dose of 19-OH-A, 19-OH-T, and DHEA, but not DHT, for each replicate (Figure 14). Cells pre-

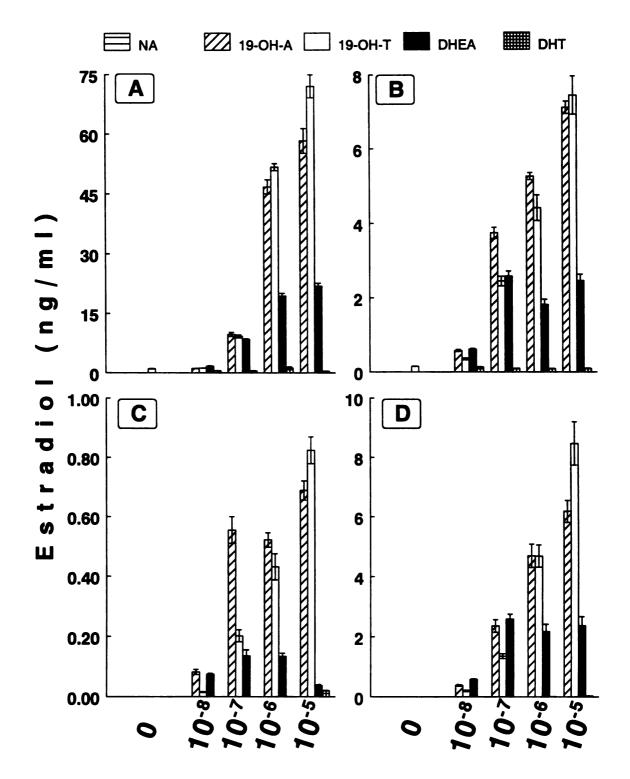

treated with 19-OH-A and 19-OH-T consistently produced more (P<0.05) estradiol compared with cells pre-treated with DHEA or DHT at the 10-6 M and 10-5 M doses, but not at lower doses.

# Experiment III: Effect of DHT on production of estradiol by bovine granulosa cells

Each dose of DHT diminished (P<0.05) capacity of granulosa cells to convert 19-OH-A into estradiol compared with controls without DHT (Figure 15).

Figure 11. Effect of androgen treatments on viability of bovine granulosa cells.

Pairs of ovaries from cows during Days 2-5 of the estrous cycle were collected from a slaughterhouse. The largest follicle per pair of ovaries, which is the firstwave dominant follicle (Fortune, 1993), was isolated. Follicular fluid was aspirated from the follicle, and the follicle was cut in half and placed on a watch glass containing Endothelial-SFM growth medium (SFM-growth). Granulosa cells were gently scraped into medium. Cells were plated in a 96-well culture plate (10⁵ cells / well) containing Endothelial-SFM plating medium (SFM-plating) supplemented with different concentrations (x-axis) of 19-hydroxyandrostenedione (19-OH-A), 19-hydroxy-testosterone (19-OH-T), dehydroepiandrosterone (DHEA), dihydrotestosterone (DHT), or no androgen (NA). Cells were incubated for 18 h. Media and cells were then collected and separated as explained in Methods. Initial and final viability were assessed using trypan blue exclusion dye. Results were similar for 4 separate experiments, thus data were pooled for final statistical analysis. Values are overall means (± SEM) of 4 separate experiments. Each bar depicts mean values for 12 replicates.




Concentration (M) of androgen

Figure 12. Effect of androgen treatments on estradiol production by bovine granulosa cells. Granulosa cells were isolated and processed for culture as explained in Figure 11's legend. Cells were plated in 96-well culture plates (10⁵ cells / well) containing Endothelial-SFM plating medium supplemented with different concentrations (x-axis) of 19-hydroxy-androstenedione (19-OH-A), 19-hydroxy-testosterone (19-OH-T), dehydroepiandrosterone (DHEA), dihydrotestosterone (DHT), or no androgen (NA). Cells were incubated for 18 h. Media and cells were collected and separated as explained in Methods.

Radioimmunoassay was used to determine concentration of estradiol in media.

Each bar depicts mean (± SEM) values for 6 replicates. Each panel (A, B, C, and D) shows results of four separate experiments.



Concentration (M) of androgen added to media

Table 1 - Linear regression analysis of the effects of different types ¹ and doses ² of androgens on amount of estradiol produced during cell culture ³.

	19-OH-A ¹	19-OH-T ¹	DHEA 1	DHT 1
Experiment A	20.83* a A	25.48* ^{b A}	7.14* ^{c A}	0.04 d A
В	2.29* aB	2.35* a B	0.48* bB	- 0.03 ° A
С	0.18* a C	0.27* bC	0.01 °C	0.01* ^{c A}
D	1.91* ^{a D}	2.81* bD	0.50* cB	0.01* ^{d A}

¹ 19-OH-A= 19-hydroxy-androstenedione, 19-OH-T= 19-hydroxy-testosterone, DHEA= dehydroepiandrosterone, DHT= dihydrotestosterone.

² Androgen doses (10⁻⁸ M, 10⁻⁷ M, 10⁻⁶ M, 10⁻⁵ M) used to calculate slopes (b).

³ Data shown in Figure 12.

b = P < 0.01

^a Slopes with dissimilar superscripts in a row are statistically different (P<0.05).

A Slopes with dissimilar superscripts in a column are statistically different (P<0.05).

Figure 13. Effect of different androgen substrates on production of estradiol.

Granulosa cells were isolated and processed for culture as explained in Figure 11's legend. Cells were plated in 96-well culture plates (10⁵ cells / well) containing Endothelial-SFM plating medium supplemented with 1 x10⁻⁶ M of 19-hydroxy-androstenedione (19-OH-A), 19-hydroxy-testosterone (19-OH-T), or dehydroepiandrosterone (DHEA). Cells were incubated for 1, 3, 6, 12, or 18 h (x-axis). Media and cells were then collected and separated as explained in Methods. Radioimmunoassay was used to determine concentration of estradiol that accumulated in media (y-axis). Each bar depicts mean (± SEM) values for 6 replicates from a single experiment.

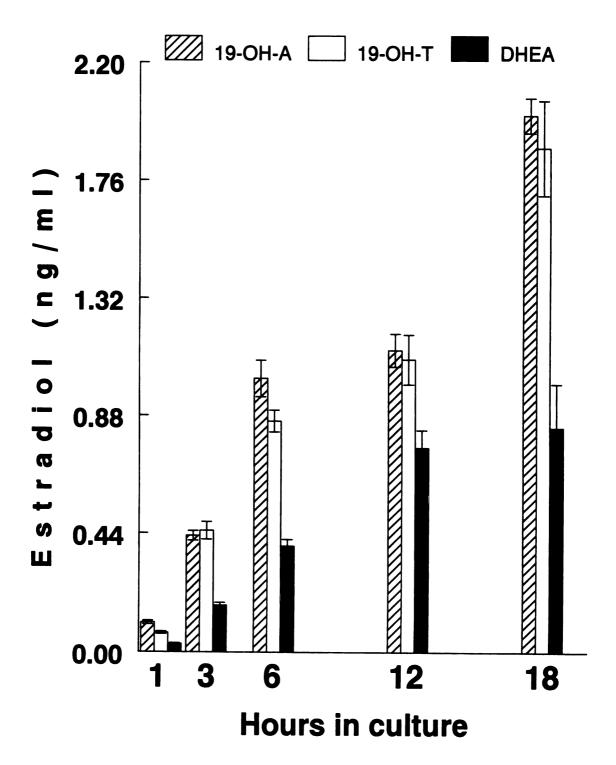
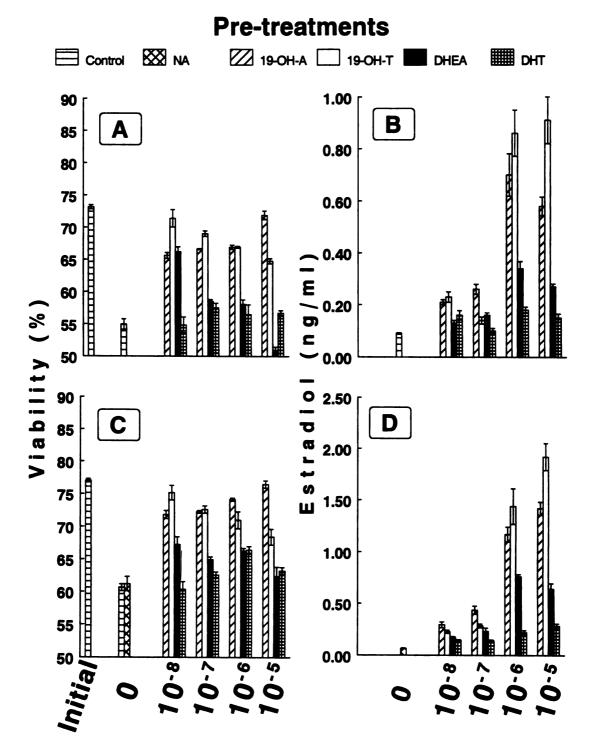
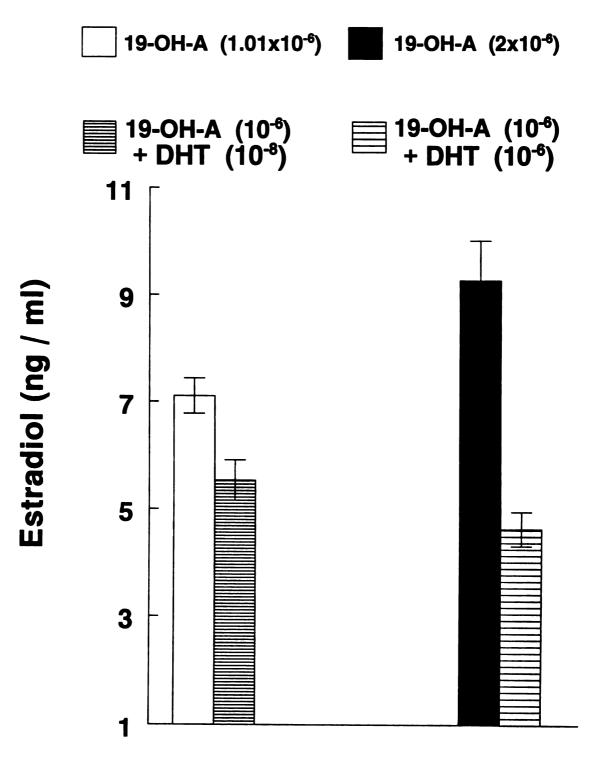





Figure 14. Effects of pre-treatment of bovine granulosa cells with different types and doses of androgens on aromatase activity. Granulosa cells were isolated and processed for culture as explained in Figure 11's legend. Cells were plated in 96-well culture plates (10⁵ cells / well) containing Endothelial-SFM plating medium supplemented with different concentrations (x-axis) of 19-hydroxyandrostenedione (19-OH-A), 19-hydroxy-testosterone (19-OH-T), dehydroepiandrosterone (DHEA), dihydrotestosterone (DHT), or no androgen (NA). Cells were incubated for 6 h. Media was then collected and cells were washed as explained in Methods. Fresh Endothelial-SFM plating medium (140  $\mu$ l) supplemented with either 10⁻⁶ M 19-OH-A or no androgen (Control) was added to cells. Cells were incubated for 12 h. Media and cells were then collected and separated as explained in Methods. Initial and final viability (Panels A and C) were assessed using trypan blue exclusion dye. Radioimmunoassay was used to determine concentration of estradiol in media (Panels B and D). Each bar depicts mean (± SEM) values for 3 (Panels A and C) or 6 (Panels B and D) replicates. Panels A and B, and C and D represent values for two separate experiments, respectively.



Pre-treatment concentrations (M) of androgens

convert 19-hydroxy-androstenedione into estradiol. Granulosa cells were isolated and processed for culture as explained in Figure 11's legend. Cells were plated in 96-well culture plates (10⁵ cells / well) containing Endothelial-SFM plating medium supplemented with different concentrations (legend) of 19-hydroxy-androstenedione (19-OH-A) or 19-OH-A in combination with dihydrotestosterone (DHT). Cells were incubated for 6 h. Media was then collected. Radioimmunoassay was used to determine concentration of estradiol in media. Each bar depicts mean (± SEM) values for 3 replicates for a single experiment.



**Androgen treatments** 

#### **Discussion**

The most significant findings of the present *in vitro* study are that different types and amounts of androgens did not alter proliferation, but did alter the viability, estradiol production, and aromatase enzyme activity of granulosa cells isolated from the first-wave dominant follicle.

The estradiol produced by granulosa cells treated with 19-OH-A, 19-OH-T, or DHEA in the present study did not increase number of granulosa cells during the *in vitro* culture period. This finding is in contrast to results of previous studies showing positive effects of estradiol on granulosa cell proliferation in rats *in vivo* (Williams, 1940; Goldenberg *et al.*, 1972; Tonetta and Ireland, 1984) and *in vitro* (Hillier, 1981). In speculation, the presence of androgens and/or production of other unknown factors during the *in vitro* culture period may have inhibited the mitogenic effect of estradiol in the present study. Alternatively, the culture period may have been insufficient for androgens or estradiol to stimulate cell proliferation.

Different types of androgens affected viability of granulosa cells *in vitro* in several different ways. First, viability decreased if granulosa cells were cultured without androgen. Second, viability of granulosa cells treated with DHT was consistently higher than viability of cells cultured without androgen. Third, viability was enhanced when granulosa cells were treated with 19-OH-A, 19-OH-T, or DHEA compared with DHT or no androgen. While the reason for these different responses is unknown, this finding may indicate that several sub-populations of granulosa cells within a first-wave dominant follicle have different steroid requirements for survival. For example, one sub-population of granulosa cells may not require androgen or estradiol to survive since approximately

50% of the cells cultured without androgen remained viable after the culture period. In contrast, a small sub-population of granulosa cells may be androgen responsive since cells treated with DHT, a non-aromatizable androgen, had a higher viability compared with cells treated with no androgen. Finally, a third sub-population of granulosa cells may require aromatizable androgen and/or estradiol to survive. The existence of sub-populations of granulosa cells that have different steroid requirements for survival may also indicate that sub-populations of granulosa cells within a follicle have different functional capabilities. Indeed, ovarian follicles are composed of small and large granulosa cells, and the large cells are steroidogenic (Rao et al., 1991; Lederer et al., 1993; Sanbuissho et al., 1993). Furthermore, bovine granulosa cells near the antrum of a follicle have a greater capacity to produce steroids than mural granulosa cells (Roberts and Echternkamp, 1994).

Granulosa cells die through the process of apoptosis (Hughes and Gorospe, 1991; Tilly et al., 1991; Luciano et al., 1994). Therefore, alterations in viability of granulosa cells, as measured by trypan blue exclusion dye, may provide insight into the role androgens have in apoptosis. Androgens are implicated in causing follicular atresia (Payne and Runser, 1958; Louvet et al., 1975; Scaramuzzi et al., 1977; Hillier and Ross, 1979; Hillier et al., 1979; Farookhi, 1981; Hillier, 1981; Terranova and Greenwald, 1981; Bagnell et al., 1982; Billing et al., 1993; Gore-Langton and Armstrong, 1994; Evans et al., 1997) and follicular atresia is initiated with the death of granulosa cells (Luciano et al., 1994; Peluso et al., 1996). In contrast, estradiol is anti-atretogenic (Payne and Hellbaum, 1955; Hillier, 1981; Billing et al., 1993; Luciano et al., 1994). Taken together, these findings could explain why granulosa cells treated with androgen substrates, which

are converted to estradiol, are more viable than those treated with DHT or no androgen. Alternatively, androgens may block the action of estradiol. For example, in a study conducted in rats by Bagnell *et al.* (1982), DHT injections trigger follicular atresia, but estradiol co-injected with DHT prevents the atresia. The reason DHT induced atresia may be because DHT is non-aromatizable and it competitively inhibits granulosa cell aromatase activity in rats (Hillier and Ross, 1979; Hillier *et al.*, 1979; Hillier *et al.*, 1980a). This could also explain why granulosa cells pre-treated with DHT in the present study produced less estradiol and were less viable than granulosa cells pre-treated with aromatizable androgen.

Different types of androgens were converted differentially into estradiol during culture of bovine granulosa cells isolated from the first-wave dominant follicle. At the two lowest doses of 19-OH-A, 19-OH-T, and DHEA tested there was no consistent evidence that granulosa cells treated with any of these androgens produced significantly more estradiol. However, limited availability of substrate may explain this finding.

Based on accumulation of estradiol in culture media over time, DHEA is converted by granulosa cells into estradiol at a slower rate than 19-OH-A or 19-OH-T. A possible reason for this may be because 19-OH-A and 19-OH-T require fewer reaction steps in the transition into estradiol compared with DHEA (Figure 3; Hansel and Convey, 1983; Steinkampf et al., 1987; Gore-Langton and Armstrong, 1994, Xu et al., 1995a; Conley and Bird, 1997). Also, 19-OH-A and 19-OH-T are committed to become estradiol, whereas DHEA must first be converted into androstenedione (Figure 3; Rubin et al., 1963; Zelezink et al., 1974; Madej, 1980; Jones et al., 1983; Gore-Langton and Armstrong, 1994) prior to being converted into estradiol or other androgens (Figure 3;

Lacroix et al., 1974; Hansel and Convey, 1983; Mc Natty et al., 1984b, Richards et al., 1987; Payne et al., 1992; Turillo and Fortune, 1992; Gore-Langton and Armstrong, 1994; Xu et al., 1995a; Conley and Bird, 1997). While the findings of the present study did not establish whether androstenedione or testosterone was the preferred substrate for estradiol synthesis by bovine granulosa cells, the results from Experiment I implied that 19-OH-A and 19-OH-T, metabolites of androstenedione and testosterone, were better converted into estradiol than DHEA. Although, at the lower doses of androgen there was no clear substrate preference, granulosa cells treated with high doses of 19-OH-A and 19-OH-T consistently produced more estradiol than those with DHEA. In fact, at the highest physiological dose (10⁻⁶ M), 19-OH-A and 19-OH-T were equally converted into estradiol. However, at the pharmacological dose (10⁻⁵ M) granulosa cells treated with 19-OH-T produced more estradiol than those treated with 19-OH-A. There is no apparent explanation for this finding. Taken together these results clearly show that estradiol production by granulosa cells is effected by type and amount of androgen substrate. Hence, the higher estradiol produced by the first-wave dominant follicle compared to the subordinate follicles (Padmanabhan et al., 1984; Ireland and Roche, 1987; Fortune, 1994) may be attributed to enhanced production of androstenedione and/or testosterone than DHEA or DHT by theca cells compared with theca cells from subordinate follicles.

The first-wave dominant follicle develops during Days 2 to 3 of the estrous cycle and persists approximately until Day 10 (Figure 1; Ireland and Roche, 1983b; Evans et al., 1997). However, estradiol production by the dominant follicle is transient peaking around Days 3 to 4 (Figure 1; Ireland and Roche, 1983 b; Evans et al., 1997), implying that aromatase enzyme activity is also transient. Thus, the reason for the marked

variability in estradiol production for the different pools of granulosa cells in the present study is probably best explained by the transient nature of the aromatase enzyme in granulosa cells of the first-wave dominant follicle, coupled with the absence of a more reliable method to precisely define when aromatase activity is at its peak in a dominant follicle. Nevertheless, despite the marked differences in aromatase enzyme activity in granulosa cells of the first-wave dominant follicle *in vitro*, cell viability was similar. This finding indicates that a decrease in capacity of dominant follicles to produce estradiol may precede loss in granulosa cell viability, or that capacity of granulosa cells to produce estradiol is unrelated to their viability. However, the latter seems unlikely since aromatase enzyme activity is decreased in atretic dominant follicles (Ireland and Roche, 1983a; Mc Natty *et al.*, 1984a). In future studies, it will be important to establish the relationship of the activity of the aromatase enzyme system with initiation of apoptosis in bovine granulosa cells.

My previous studies showed that incubation of granulosa cells from the first-wave dominant follicle with different types and amounts of androgens for 18 h affected granulosa cell viability and that there was differential conversion of the different types of androgens into estradiol. The final studies for this thesis examined whether pre-treatment of granulosa cells for 6 h with different types and amounts of androgens affected subsequent capacity to produce estradiol, and if co-treatment of granulosa cells with aromatizable and non-aromatizable affected estradiol production. Pre-treatment of granulosa cells with 19-OH-A or 19-OH-T enhanced viability and subsequent aromatase enzyme activity compared to that of granulosa cells pre-treated with DHEA, DHT, or no androgen. This finding implies that not only are androgen substrates important for

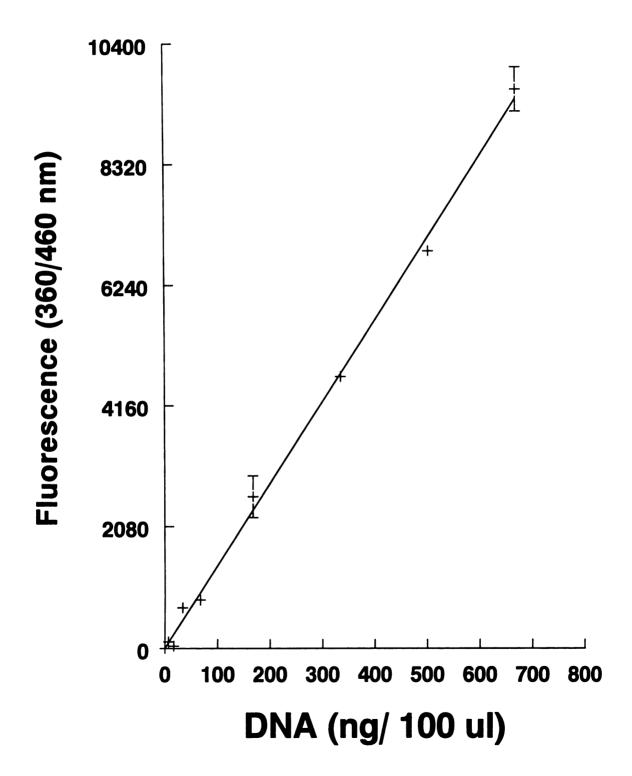
estradiol production, but they also positively affect health and aromatase enzyme activity of granulosa cells. The reason granulosa cells pre-treated with 19-OH-A or 19-OH-T were more viable after the culture period compared with cells pre-treated with DHEA, DHT, or no androgen is not certain, but may, in part, be due to the enhanced amounts of estradiol produced during the 6 h pre-treatment period. As mentioned earlier, estradiol may protect granulosa cells from the harmful effects of androgens. In addition, estradiol enhances aromatase enzyme activity (Daniel and Armstrong, 1983) which may explain why pre-treatment of granulosa cells with 19-OH-A or 19-OH-T enhanced subsequent aromatase enzyme activity compared with cells receiving DHEA, DHT, or no androgen. Alternatively, androgens may directly enhance aromatase enzyme activity (Lucky et al., 1977; Daniel and Armstrong, 1980; Hillier and De Zwart, 1981; Welsh et al., 1982). In contrast, granulosa cells pre-treated with DHT in the present study had the lowest subsequent aromatase enzyme activity, perhaps because DHT pre-treatment lowered granulosa cell viability. In addition, DHT may be a competitive inhibitor of the aromatase enzyme system in cows, like it is in rats (Hillier et al., 1979; Hillier et al., 1980a) and humans (Schwarzel et al., 1973). If so, this explains why DHT diminished the capacity of bovine granulosa cells to convert 19-OH-A into estradiol in Experiment III. Alternatively, since final viability of granulosa cells in Experiment III was not measured, the possibility that the diminished capacity of granulosa cells to convert 19-OH-A into estradiol was caused by their lower viability cannot be ruled out.

Results from the present study provide insight into how androgens could regulate the life span of the first-wave dominant follicle. For example, the dominant follicle on Days 2 to 5 of the estrous cycle is growing while serum concentrations of FSH are high

and pulsatile secretion of luteinizing hormone (LH) is low (Figure 1; Ireland and Roche, 1983b; Evans et al., 1997). The higher FSH not only maintains granulosa cell aromatase enzyme activity (Zeleznik et al., 1974; Moon et al., 1975; Steinkampf et al., 1987) and estradiol production, but also inhibits  $5\alpha$ -reductase enzyme activity and production of  $5\alpha$ reduced steroids, such as DHT (Payne et al., 1992). The low level of LH is sufficient to stimulate production of aromatizable androgens for estradiol production (Mc Natty et al., 1984a; Gore-Langton and Armstrong, 1994). Relatively high intrafollicular concentrations of estradiol protect granulosa cells in the dominant follicle from androgens (Payne and Hellbaum, 1955; Scaramuzzi et al., 1977; Hillier, 1981; Bagnell et al., 1982; Billing et al., 1993). However, as FSH decreases during Days 2 to 5 of the estrous cycle, the ratio of non-aromatizable to aromatizable androgens produced by theca cells of the dominant follicle could increase resulting in a reduction in aromatase activity and estradiol production. Whether the intrafollicular ratio or non-aromatizable to aromatizable androgens is increased during development of the first-wave dominant follicle is unknown. An increase in non-aromatizable androgens, such as DHT, would be expected to decrease the intrafollicular amount of estradiol available to protect granulosa cells from the increasing amounts of androgens (Louvet et al., 1975; Hillier et al., 1979; Farookhi, 1981; Terranova and Greenwald, 1981; Mc Natty et al., 1984a; Billing et al., 1993) triggered by the increase in episodic secretion of LH (Figure 1). A high intrafollicular concentration of non-aromatizable androgens, such as DHT, towards the end of the growth phase of the dominant follicle is associated with loss of LH receptors on granulosa cells (Evans et al., 1997). Together, the reduction of estradiol production, coupled with the increased intrafollicular amounts of non-aromatizable androgens, and

loss of LH receptors, leads to granulosa cell apoptosis (Luciano et al., 1994; Peluso et al., 1996), which eventually causes the dominant follicle to become atretic (Payne and Runser, 1958; Louvet et al., 1975; Hillier and Ross, 1979; Hillier et al., 1979; Scaramuzzi et al., 1977; Farookhi, 1981; Hillier, 1981; Terranova and Greenwald, 1981; Bagnell et al., 1982; Billing et al., 1993; Gore-Langton and Armstrong, 1994; Evans et al., 1997). Hence, alterations in intrafollicular levels of aromatizable and non-aromatizable androgens may alter granulosa cell aromatase activity, estradiol production, and viability, and by doing so, determine the physiological fate of a dominant follicle. However, whether the ratio of aromatizable to non-aromatizable androgens is altered during selection, dominance, and atresia of dominant follicles is unknown for any species.

### **Summary and Conclusions**


Treatment of bovine granulosa cells from the first-wave dominant follicle with different types and doses of androgens *in vitro* resulted in the following: a) no effect on cell number; b) enhanced viability of cells treated with 19-OH-A or 19-OH-T compared with cells treated with DHT or no androgen; c) higher estradiol production by cells treated with 19-OH-A or 19-OH-T than with DHEA, DHT, or no androgen; d) similar amounts of estradiol accumulation in media for cells treated with 19-OH-A or 19-OH-T; e) enhanced aromatase enzyme activity in cells pre-treated with 19-OH-A or 19-OH-T compared with DHEA, DHT, or no androgen; and f) diminished capacity of DHT treated granulosa cells to convert 19-OH-A into estradiol. These findings lead to the conclusion that type and amount of androgen alter viability, estradiol production, and aromatase activity of granulosa cells isolated from the first-wave dominant follicle. Thus, regulation

of androgen synthesis appears to have an important regulatory role in dominant follicle growth, differentiation, and atresia.

### APPENDIX A

## Figure 16. Relationship of amount of calf thymus DNA to fluorescence.

Serial dilutions of a calf thymus DNA (6.7  $\mu$ g / ml) solution in TE buffer were prepared and pipetted into wells of a 96-well culture plate (x-axis). Aqueous Hoechst 33258 dye in TNE buffer was added to each well and fluorescence (y-axis) was measured in a microplate reader using excitation and emission filters centered at 360 nm and 460 nm respectively. Fluorescence of DNA was determined by subtracting background fluorescence for wells containing only dye and TE buffer. Each symbol depicts mean ( $\pm$  SEM) values for a total 5 replicates form 2 separate plates.



#### LITERATURE CITED

- Adams GP, Matteri RL, Kastelic JP, Ko JCH, Ginther OJ. 1992. Association between surges of follicle-stimulating hormone and the emergence of follicular waves in heifers. J Reprod Fert 94:177-188.
- Armstrong DT, Papkoff H. 1976. Stimulation of aromatization of exogenous and endogenous androgens in ovaries of hypophysectomized rats *in vivo* by follicle-stimulating hormone. Endocrinology 99:1144-1151.
- Bagnell CA, Mills TM, Costoff A, Mahesh VB. 1982. A model for the study of androgen effects on follicular atresia and ovulation. Biol Reprod 27:903-914.
- Billing H, Furuta I, Hsueh A. 1993. Estrogens inhibit and androgens enhance ovarian granulosa cell apoptosis. Endocrinology 135:2204-2212.
- Bley MA, Saragueta PE, Baranao JL. 1997. Concerted stimulation of rat granulosa cell deoxyribonucleic acid synthesis by sex steroids and follicle-stimulating hormone. J Steroid Biochem Mol Biol 62:11-19.
- Bodensteiner KL, Kot K, Wiltbank MC, Bergfelt DR, Ginther OJ. 1996a.

  Synchronization of emergence of follicular waves in cattle. Theriogenology 45:1115-1128.
- Bodensteiner KJ, Wiltbank MC, Bergfelt DR, Ginther OJ. 1996b. Alterations in follicular estradiol and gonadotropin receptors during development of bovine antral follicles. Theriogenology 45:499-512.
- Bortkiewicz H, Maslinski H, Ryzewski J. 1988. Muscarinic receptors on rat lymphocytes; internalization of receptor-ligand complex. Int J Tissue React 10:29-32.
- Buck PA, Schomberg DW. 1987. A serum-free defined culture system which maintains follicle-stimulating hormone responsiveness and differentiation of porcine granulosa cells. Biol Reprod 36:167-174.
- Collip JB, SelyeH, Thomson DL. 1933. Gonad-stimulating hormones in hypophysectomized animals. Nature 131:56.
- Conley AJ, Bird IM. 1997. The role of cytochrome p450  $17\alpha$ -hydroxylase and  $3\beta$ -hydroxysteroid dehydrogenase in the integration of gonadal and adrenal steroidogenesis via the  $\Delta^5$  and  $\Delta^4$  pathways of steroidogenesis in mammals. Biol Reprod 56:789-799.

- Cook JA, Mitchell JB. 1989. Viability measurements in mammalian cell systems.

  Anal Biochem 179:1-7.
- Cupp AS, Stumpf TT, Kojima FN, Werth LA, Wolfe MW, Roberson MS, Kittok RJ, Kinder JE. 1995. Secretion of gonadotropins change during luteal phase of the bovine oestrous cycle in the absence of corresponding changes in progesterone or 17β-oestradiol. Anim Reprod Sci 37:109-119.
- Daniel SAJ, Armstrong DT. 1980. Enhancement of follicle-stimulating hormone-induced aromatase activity by androgens in cultured rat granulosa cells. Endocrinology 107:1027-1033.
- Dawson TL, Gores GJ, Nieminen, AL, Herman B, Lemasters JJ. 1993. Mitochondria as a source of reactive oxygen species during reductive stress in rat hepatocytes. Am J Physiol 264:C961-C967.
- Dieleman SJ, Bevers MM, Poortman J, van Tol HTM. 1983a. Steroid and pituitary hormone concentrations in the fluid of preovulatory bovine follicles relative to peak of LH in the peripheral blood. J Reprod Fert 69:641-649.
- Dieleman SJ, Kruip TA, Fontijne P, deJong WHR, van der Weyden GC. 1983b. Changes in oestradiol, progesterone, and testosterone concentrations in follicular fluid and in the micromorphology of preovulatory bovine follicles relative to the peak of luteinizing hormone. J Endocrinol 97:31-42.
- Ellis RE, Yuan J, Horvitz HR. 1991. Mechanisms and functions of cell death. Annual Rev Cell Biol 7:663-698.
- Erickson GF, Magaffin DA. 1983. Ovarian function: follicle. The endocrine control of follicle androgen biosynthesis. J Steroid Biochem 19:113-117.
- Evans ACO, Komar CM, Wandji SA, Fortune JE. 1997. Changes in androgen secretion and luteinizing hormone pulse amplitude are associated with the recruitment and growth of ovarian follicles during the luteal phase of the bovine estrous cycle. Biol Reprod 57:394-401.
- Farookhi R. 1981. Atresia: an hypothesis. *In*: Schwartz NB, Hunzicker-Dunn M (eds), Dynamics of Ovarian Function. New York: Raven Press, Ltd.. pp13-23.
- Fauser BCJM, Soto D, Czekala NM, Hsueh AJW. 1989. Granulosa cell aromatase bioassay: changes of bioactive follicle-stimulating hormone levels in the female. J Steroid Biochem 33:721-726.
- FluoReporter Blue Fluorometric dsDNA Quantitation Kit. (product information sheet). 1996. Eugene: Molecular Probes, Inc.

- Fortune JE, Armstrong DT. 1977. Androgen production by theca and granulosa isolated from proestrous rat follicles. Endocrinology 100:1341-1347.
- Fortune JE, Hansel W. 1985. Concentrations of steroids and gonadotropins in follicular fluid from normal heifers and heifers primed for superovulation. Biol Reprod 32:1069-1079.
- Fortune JE. 1986. Bovine theca and granulosa cells interact to promote androgen production. Biol Reprod 35:292-299.
- Fortune JE, Quirk SM. 1988. Regulation of steroidogenesis in bovine preovulatory follicles. J Anim Sci 66(Suppl. 2):1-8.
- Fortune JE. 1993. Follicular dynamics during the bovine estrous cycle: A limiting factor in improvement of fertility? Anim Reprod Sci 33:111-125.
- Fortune JE. 1994. Ovarian follicular growth and development in mammals. Biol Reprod 50:225-234.
- Frenud RJ, Wilson WJ. 1993. Statistical Methods. San Diego: Academic Press, Inc. pp 227-278.
- Garret WM, Guthrie HD. 1996. Expression of androgen receptors and steroidogenic enzymes in relation to follicular growth and atresia following ovulation in pigs. Biol Reprod 55:949-955.
- Ginther OJ, Wiltbank MC, Fricke PM, Gibbons JR, Kot K. 1996. Selection of the dominant follicle in cattle. Biol Reprod 55:1187-1194.
- Goff AK, Leung PCK, Armstrong DT. 1979. Stimulatory action of folliclestimulating hormone and androgens on the responsiveness of rat granulosa cells to gonadotropins *in vitro*. Endocrinology 104:1124-1129.
- Goldenberg RL, Vaitukaitis JL, Ross GT. 1972. Estrogen and follicle-stimulation hormone interactions on follicle growth in rats. Endocrinology 90:1492-1498.
- Goodman AL, Hodgen GD. 1983. The ovarian trial of the primate menstrual cycle. Recent Prog Horm Res 39:1-73.
- Gore-Langton RE, Armstrong DT. 1994. Follicular steroidogenesis and its control. *In*: Knobil E, Neill J (eds), The Physiology of Reproduction. 2nd edition. New York: Raven Press, Ltd. pp 571-628.
- Gorfien S, Spector A, De Luca D, Weiss S. 1993. Growth and physiological functions of vascular endothelial cells in a new serum-free medium (SFM). Exp Cell Res 206:291-301.

- Guthrie HD, Grimes RW, Cooper BS, Hammond JM. 1995. Follicular atresia in pigs: measurement and physiology. J Anim Sci 73:2834-2844.
- Gutiérrez CG, Campbell BK, Webb R. 1997. Development of a long-term bovine granulosa cell culture system: induction and maintenance of estradiol production, response to follicle-stimulating hormone, and morphological characteristics. Biol Reprod 56:608-616.
- Hansel W, Convey EM. 1983. Physiology of the estrous cycle. J Anim Sci 57 (Suppl. 2):404-424.
- Hayashi I, Larner J, Stato G. 1978. Hormonal growth control of cells in culture. In Vitro14:23-30.
- Henderson KM, Moon YS. 1979. Luteinization of bovine granulosa cells and corpus luteum formation associated with loss of androgen-aromatizing ability. J Reprod Fert 56:89-97.
- Henderson KM, Mc Neilly AS, Swanston IA. 1982. Gonadotropin and steroid concentrations in bovine follicular fluid and their relationship to follicle size. J Reprod Fert 65:467-473.
- Hild-Petito S, West NB, Brenner RM, Stouffer RL. 1991. Localization of androgen receptor in the follicle and corpus luteum of the primate ovary during the menstrual cycle. Biol Reprod 44:561-568.
- Hillier SG, Ross GT. 1979. Effects of exogenous testosterone on ovarian weight, follicular maturation and intraovarian progesterone concentration in estrogen-primed hypophysectomized immature female rats. Biol Reprod 20:261-268.
- Hillier SG, Van den Boogaard AJM, Van Hall EV. 1979. Abstract 194. 61st Annual Meeting of the Endocrine Society.
- Hillier SG, Van den Boogaard AJM, Reichert LE Jr, Van Hall EV. 1980a. Alterations in granulosa cell aromatase activity accompanying pre-ovulatory follicular development in the rat ovary with evidence that 5α-reduced C₁₉ steroids inhibit the aromatase reaction *in vitro*. J Endocrinol 84:409-419.
- Hillier SG, Van den Boogaard AJM, Reichert LE Jr, Van Hall EV. 1980b. Intraovarian sex steroid hormones interactions and the regulation of follicular maturation: aromatisation of androgens by human granulosa cells *in vitro*. J Clin Endocrinol Metab 50:640-647.
- Hillier SG. 1981. A consideration of the roles of ovarian C₁₉ steroid aromatase and 5α-reductase enzymatic activities in the local control of follicular development in the human ovary. *In*: Functional Morphology of the Human Ovary. Coutts J R T, ed.

- MTP Press, Ltd.:Lancaster, England. pp 94-101.
- Hillier SG, De Zwart FA. 1981. Evidence that granulosa cell aromatase induction/ activation by follicle-stimulating hormone is an androgen receptor-regulated process *in vitro*. Endocrinology 109:1303-1305.
- Horie K, Takakura K, Fujiwara H, Suginami H, Liano S, Mori T. 1992.

  Immunohistochemical localization of androgen receptor in the human ovary throughout the menstrual cycle in relation to oestrogens and progesterone receptor expression. Human Reprod 7:184-190.
- Hoshi H, Takagi Y, Kobayashi K, Onodera M, Oikawa T. 1991. Growth requirements and long-term subcultivation of bovine granulosa cells cultured in a serum-free medium. In Vitro Cell Dev Biol 27A:578-584.
- Hughes FM Jr, Gorospe WC. 1991. Biochemical identification of apoptosis (programmed cell death) in granulosa cells: evidence for a potential mechanism underlying follicular atresia. Endocrinology 129:2415-2422.
- Hurwitz A, Adashi EY. 1993. Ovarian follicular atresia as an apoptotic process. *In*:

  Adashi EY, Leung PCK (eds), The Ovary. New York: Raven Press, Ltd. pp 473-485.
- Ireland JJ, Murphee RL, Coulson PB. 1980. Accuracy of predicting stages of bovine estrous cycle by gross appearance of the corpus luteum. J Dairy Sci 63:155-160.
- Ireland JJ, Roche JF. 1982. Development of antral follicles in cattle after prostaglandininduced luteolysis: changes in serum hormones, steroids in follicular fluid, and gonadotropin receptors. Endocrinology 111:2077-2086.
- Ireland JJ, Roche JF. 1983a. Growth and differentiation of large antral follicles after spontaneous luteolysis in heifers: changes in concentrations of hormones in follicular fluid and specific binding of gonadotropins to follicles. J Anim Sci 57:157-167.
- Ireland JJ, Roche JF. 1983b. Development of nonovulatory antral follicles in heifers: changes in steroids in follicular fluid and receptors for gonadotropins. Endocrinology 112:150-156.
- Ireland JJ, Fogwell RL, Oxender D, Ames K, Cowley JL. 1984. Production of estradiol by each ovary during the estrous cycle. J Anim Sci 59:764-771.
- Ireland JJ. 1987. Control of follicular growth and development. J Reprod Fert Suppl. 34: 39-54.
- Ireland JJ, Roche JF. 1987. Hypothesis regarding development of dominant follicles

- during a bovine estrous cycle. *In*: Roche JF, O'Callaghan D (eds), Follicular Growth and Ovualtion Rate in Farm Animals. The Hague: Martinus Nijhoft. p 1.
- Ireland JLH, Good TEM, Knight PG, Ireland JJ. 1994. Alterations in amounts of different forms of inhibin during follicular atresia. Biol Reprod 50:1265-1276.
- Jiménez-Krassel F. 1997. Effects of recombinant bovine growth hormone-releasing factor and recombinant bovine somatotropin on dominant follicle development and function in dairy cows. A Ph. D. Dissertation. East Lansing: Michigan State University.
- Jones PBC, Valk CA, Hsueh AJW. 1983. Regulation of progestin biosynthetic enzyme in cultured rat granulosa cells: Effects of prolactin, β₂-adrenergic agonist, human chorionic gonadotropin and gonadotropin-releasing hormone. Biol Reprod 29:572-585.
- Knopf L, Kastelic JP, Schallenberger E, Ginther OJ. 1989. Ovarian follicular dynamics in heifers: test of two-wave hypothesis by ultrasonically monitoring individual follicles. Dom Anim Endocrinol 6:111-119.
- Kumari GL, Datta JK, Dos RP, Roy S. 1978. Evidence for a role of androgens in the growth and maturation of ovarian follicles in rats. Horm Res 9:112-120.
- Lacroix E, Eechaute W, Leusen I. 1974. The biosynthesis of oestrogens by cow follicles. Steroids 23:337-356.
- Lederer K, Luciano A, Pappalarado A, Peluso J. 1993. Proliferative and steroidogenic capabilities of different-sized rat granulosa cells. 44th SGI Meeting, Toronto.
- Leung PCK, Goff AK, Kennedy TG, Armstrong DT. 1978. An intraovarian inhibitory action of estrogen and androgen production *in vivo*. Biol Reprod 19:641-647.
- Leung PCK, Goff AK, Armstrong DT. 1979. Stimulatory action of androgen administration *in vivo* on ovarian responsiveness to gonadotropins. Endocrinology 104:1119-1123.
- Louvet JP, Harman SM, Schreiber JR. 1975. Evidence for a role of androgens in follicular maturation. Endocrinology 97:366-372.
- Luciano AM, Pappalardo A, Ray C, Peluso JJ. 1994. Epidermal growth factor inhibits large granulosa cell apoptosis by stimulating progesterone synthesis and regulating the distribution of intracellular free calcium. Biol Reprod 51:646-654.
- Lucky AW, Schreiber JR, Hillier SG, Schulman JD, Ross GT. 1977. Progesterone production by cultured preantral rat granulosa cells? Stimulation by androgens.

- Endocrinology 100:128-133.
- Madej E. 1980. Effect of exogenous hormones on the activity of  $\Delta^5$ -3 $\beta$  hydroxysteroid dehydrogenase in cultured granulosa cells from proestrous and preovulatory rat ovarian follicles. Acta Histochem 67:253-260.
- Makris A, Ryan KJ. 1975. Progesterone, androstenedione, testosterone, estrone, and estradiol synthesis in hamster ovarian follicle cells. Endocrinology 96:694-701.
- Mather JP, Sato GH. 1979. The growth of mouse melanoma cells in hormone-supplemented, serum-free medium. Exp Cell Res 120:191-200.
- Matton P, Adelakoun V, Couture Y, Dufour JJ. 1981. Growth and replacement of the bovine ovarian follicles during the estrous cycle. J Anim Sci 52:813-820.
- May JV, Schomberg DW. 1981. Granulosa cell differentiation in vitro: effect of insulin on growth and functional integrity. Biol Reprod 25:421-431.
- Maxson WAS, Haney AF, Schomberg DW. 1985. Steriodogenesis in porcine atretic follicles: loss of aromatase activity in isolated granulosa and theca. Biol Reprod 33:495-501.
- Mc Natty KP, Moore Smith D, Makris A, Osathanondh R, Ryan KJ. 1979a. The microenvironment of the human antral follicle: interrelationships among the steroid levels in antral fluid, the population of granulosa cells, and the status of the oocyte *in vivio* and *in vitro*. J Clin Endocrinol Metab 49:851-860.
- Mc Natty KP, Makris A, Reinhold VN, De Grazia C, Osathanondh R, Ryan KJ. 1979b. Metabolism of androstenedione by human ovarian tissues *in vitro* with particular reference to reductase and aromatase activity. Steroids 34:429-443.
- Mc Natty KP, Heath DA, Henderson KM, Lun S, Hurst PR, Ellis LM, Montgomery GW, Morrison L, Thurley DC. 1984a. Some aspects of thecal and granulosa cell function during follicle development in the bovine ovary. J Reprod Fert 72:39-53.
- Mc Natty KP, Heath DA, Lun S, Fanin JM, Mc Diarmid JM, Henderson KM. 1984b. Steriodogensis by bovine theca interna in an *in vitro* perfusion system. Biol Reprod 30:159-170.
- Metcalf MG. 1982. Estimation of viability of bovine granulosa cells. J Reprod Fert 65:425-429.
- Mohler WA, Charlton CA, Blau HM. 1996. Spectrophotometric quantitation of tissue culture cell number in any medium. Bio Techniques 21:260-266.
- Moon YS, Dorrington JH, Armstrong DT. 1975. Stimulatory action of follicle-

- stimulating hormone on estradiol-17 beta secretion by hypophysectomized rat ovaries in organ culture. Endocrinology 97:244-247.
- Mori T, Suzuki A, Nishimura T, Kambegawa A. 1977. Evidence for androgen participation in induced ovulation in immature rats. Endocrinology 101:623-626.
- Möstl E, Scharf A, Maberg E. 1984. Oestrogen concentration after infusion of androgens in cows near term. Ann Conf Soc Study of Fert, Univ of Reading. p 42 (Abstract).
- Neter J, Kuntner MH, Nachtsheim CJ, Wasserman W. 1990. Applied Linear Statistical Models. Chicago: Richard D. Irwin, Inc. pp 44-53.
- Ohno S, Christian L, Attardi B. 1973. Role of testosterone in normal female function. Nature 243:119-120.
- Padmanabhan V, Convey EM, Roche JF, Ireland JJ. 1984. Changes in inhibin-like bioactivity in ovulatory and atretic follicles and utero-ovarian venous blood after prostoglandin-induced luteolysis in heifers. Enderinology 115:1332-1340.
- Papinicolaou GN, Falk EA. 1934. Action of pregnancy urine extract (Follutein) on the external genitalia of female guinea pigs. Proc Soc Exp Biol Med 31:750-751.
- Payne DW, Packman JN, Adashi EY. 1992. Follicle stimulating hormone inhibits granulosa cell 5α-reductase activity. J Biol Chem 267:13348-13355.
- Payne RW, Hellbaum AA. 1955. The effect of estrogens on the ovary of the hypophysectomized rat. Endocrinology 57:193-199.
- Payne RW, Runser RH. 1958. The influence of estrogen and androgen on the ovarian response of hypophysectomized immature rats to gonadotropins. Endocrinology 62:313-321.
- Peluso JJ, Brown I, Steger RW. 1979. Effects of cyproterone acetate, a potent antiandrogen, on the preovulatory follicle. Biol Reprod 21:929-936.
- Pleuso JJ, Pappalarado A, Trolice MP. 1996. N-cadherin-mediated cell contact inhibits granulosa cell apoptosis in a progesterone-induced manner. Endocrinology 137:1196-1203.
- Price D, Ortiz E. 1944. The relation of age to reactivity in the reproductive system of the rat. Endocrinology 34:215-239.
- Rahe CH, Owen RE, Fleeger LH, Newton HJ, Harms PJ. 1980. Pattern of plasma luteinizing hormone in the cyclic cow: dependence upon period of the estrous cycle. Endocrinology 107:498-503.

- Rajakoski E. 1960. The ovarian follicular system in sexually mature heifers with special reference to the seasonal, cyclical, and left-right variations. Acta Endocrinol 34(suppl. 52):7-68.
- Rao IM, Mills TM, Anderson E, Mahesh VB. 1991. Heterogeneity in granulosa cells of developing rat follicles. Anat Rec 229:177-185.
- Rappaport C, Poole JP, Rappaport HP. 1960. Studies on properties of surfaces requried for growth of mammalian cells in synthetic medium. I. The HeLa cell. Expl Cell Res 20:465-510.
- Richards JS, Midgley AR. 1976. Protein hormone action: a key to understanding ovarian follicular and luteal cell development. Biol Reprod 14:82-94.
- Richards JS. 1980. Maturation of ovarian follicles: actions and interactions of pituitary and ovarian hormones on follicular cell differentiation. Physiol Rev 60:51-89.
- Richards JS, Johnson T, Hedin L, Lifka J, Ratoosh S, Durica JM, Goldring NB. 1987.

  Ovarian follicular development: from physiology to molecular biology. Recent Prog Horm Res 43:231-276.
- Roberts AJ, Echternkamp SE. 1994. In vitro production of estradiol by bovine granulosa cells: evaluation of culture condition, stage of follicular development, and location of cells within follicles. Biol Reprod 51:273-282.
- Roche JF. 1996. Control and regulation of folliculogenesis a symposium in perspective. J Reprod Fertil Reviews 1:19-27.
- Rubin BL, Deane HW, Hamilton JA, Dirks EC. 1963. Changes in Δ⁵-3β hydroxysteroid dehydrogenase activity in the ovaries of maturing rats. Endocrinology 72:924-930.
- Sambrook J, Fritsch EF, Maniatis T (eds). Molecular Cloning: a laboratory manual. 2nd edition. Cold Springs Harbor, New York: Cold Springs Harbor Laboratory Press. p 26.
- Sanbuissho A, Lee GY, Anderson E. 1993. Functional and ultrastructural characteristics of two types of rat granulosa cell cultured in the presence of FSH or transforming growth factor alpha (TGF-alpha). J Reprod Fert 98:367-376.
- Savio JD, Kennan L, Boland MP, Roche JF. 1988. Pattern of growth of dominant follicles during the oestrous cycle of heifers. J Reprod Fertil 83:663-671.
- Savion N, Ge-Ming L, Laherty R, Gospodarowicz D. 1981. Factors controlling proliferation and progesterone production by bovine granulosa cells in serum-free medium. Endocrinology 109:409-420.

- Scaramuzzi RJ, Davidson WG, VanLook PFA. 1977. Increasing ovulation rate in sheep by active immunization against an ovarian steroid androstenedione. Nature 269:817-818.
- Schwarzel WC, Kruggel WG, Brodie HJ. 1973. Studies on the mechanisms of oestrogen biosynthesis. VII. The development of inhibitors of the enzyme system in human placenta. Endocrinology 92:866-880.
- Selye H, Collip JB. 1933. Production of exclusively thecal luteinization and continuous oestrus with anterior pituitary like hormone. Proc Soc Exp Med 30:647-649.
- Selye H, Collip JB, Thomson DL. 1933. Further studies in production of thecal luteinization by means of A. P. L. Proc Soc Exp Med 30:780-783.
- Sirosis J, Fortune JE. 1988. Ovarian follicular dynamics during the estrous cycle in heifers monitored by real-time ultrasonography. Biol Reprod 39:308-317.
- SPSS Base 8.0 Applications Guide. 1998. Chicago: SPSS Inc.
- Steinkampf MP, Mendeldon CR, Simpson ER. 1987. Regulation by follicle-stimulating hormone of the synthesis of aromatase cytochrome P-450 in human granulosa cells. Mol Endocrinol 1:465-471.
- Sunderland SJ, Crowe MA, Boland MP, Roche JF, Ireland JJ. 1994. Selection, dominance and atresia of follicles during the oestrous cycle of heifers. J Reprod Fert 101:547-555.
- Suzuki T, Sasano H, Kimura N, Tamura M, Fukaya T, Yajima A, Nagura H. 1994. Immunohistochemical distribution of progesterone, androgen, and oestrogen receptors in the human ovary during the menstrual cycle: relationship to expression of steroidogenic enzymes. Human Reprod 9:1589-1595.
- Takeda H, Chodak G, Mutchnik S, Nakamoto T, Chang C. 1990. Immunohistochemical localization of androgen receptors with mono- and polyclonal antibodies to androgen receptor. J Endocrinol 126:17-25.
- Telford WG, King LE, Fraker PJ. 1991. Evaluation of glucocorticoid-induced DNA fragmentation in mouse thymocytes by flow cytometry. Cell Prolif 24:447-459.
- Terranova PF, Greenwald GS. 1981. Increased ovulation rate in the cyclic guinea pig after a single injection of an antiserum to LH. J Reprod Fert 61:37-42.
- Tetsuka M, Whitelaw PF, Bremner WJ, Millar MR, Smyth CD. Hillier SG. 1995.

  Developmental regulation of androgen receptor in rat ovary. J Endocrinol 145:535-543.

- Tetsuka M, Hillier SG. 1996. Androgen receptor gene expression in rat granulosa cells: The role of follicle-stimulating hormone and steroid hormones. Endocrinology 137:4392-4397.
- Thompson EA, Siiteri PK. 1974. The involvement of human placental microsomal cytochrome P-450 in aromatization. J Biol Chem 249:5373-5378.
- Tian XC, Berndtson AK, Fortune JE. 1995. Differentiation of bovine preovulatory follicles during the follicular phase is associated with increases in messenger ribonucleic acid for cytochrome P450 side-chain cleavage, 3β-hydroxysteroid dehydrogenase, and P450 17α-hydroxylase, but not P450 aromatase. Endocrinology 136:5102-5110.
- Tilly JL, Kowalaski KI, Johnson AL, Hseuh AJW. 1991. Involvement of apoptosis in ovarian follicular atresia and postovulatory regression. Endocrinology 129:2799-2801.
- Tilly JL, Hseuh AJW. 1993. Microscal autoradiographic method for the qualitative and quantitative analysis of apoptotic DNA fragmentation. J Cell Physiol 154:519-526.
- Tonetta SA, Ireland JJ. 1984. Effect of cyanoketone on follicle-stimulating hormone (FSH) induction of receptors for FSH in granulosa cells of the rat. Biol Reprod 31:487-493.
- Tonetta SA, Spicer LJ, Ireland JJ. 1985. CI628 inhibits follicle-stimulating hormone (FSH)-induced increases in FSH receptors of the rat ovary: requirements of estradiol for FSH action. Endocrinology 116:715-722.
- Tonetta SA, di Zerega GS. 1989. Intragonadal regulation of follicular maturation. Endo Rev 10:205-220.
- Turzillo AK, Fortune JE. 1990. Supression of the secondary FSH surge with bovine follicular fluid associated with delayed ovarian follicular development in heifers. J Reprod Fert 89:643-653.
- Tuzillo AK, Fortune JE. 1992. Estradiol production by dominant and subordinate follicles during the first wave of follicular development in cattle. Proc IX Ovarian Workshop. p 63.
- Vaux DL, Häcker G. 1995. Hypothesis: apoptosis caused by cytotoxins represents a defensive response that evolved to combat intracellular pathogens. Clin Exp Pharmacol Physiol 22:861-863.
- Voss AK, Fortune JE. 1993. Levels of messenger ribonucleic acid for cytochrome P450 17α-hydroxylase and P450 aromatase in preovulatory bovine follicles decrease

- after the luteinizing hormone surge. Endocrinology 132:2239-2245.
- Weast RC (ed). 1989. CRC Handbook of Chemistry and Physics. 70th edition. Boca Raton: CRC Press, Inc. pp C-688 C-703, D-144 D-146.
- Welsh TH Jr, Jones PBC, Ruiz de Galarreta CM, Fanjul LF, Hsueh AJW. 1982. Androgen regulation of progestin biosynthetic enzymes in FSH-treated rat granulosa cells *in vitro*. Steroids 40:691-700.
- Westhof G, Westhof KF, Braendle WL, diZerega GS. 1991. Differential steroid secretion and gonadotropin response by individual tertiary porcine follicles *in vitro*. Possible role of atretic follicles. Biol Reprod 44:461-468.
- Williams PC. 1940. Effect of stilbestrol on the ovaries of hypophysectomized rats. Nature 145:388-389.
- Wise T. 1987. Biochemical analysis of bovine follicular fluid: albumin, total protein, lysosomal enzymes, ions, steroids, and absorbic acid content in relation to follicular size, rank, atresia, classification, and day of estrous cycle. J Anim Sci 64:1153-1169.
- Wyllie AH. 1993. Apoptosis. Br J Cancer 67:205-208.
- Xu Z, Garverick HA, Smith GW, Smith MF, Hamilton SA, Youngquist RS. 1995a. Expression of messenger ribonucleic acid encoding cytochrome P450 side-chain cleavage, cytochrome P450 17β-hydroxylase, and cytochrome P450 aromatase in bovine follicles during the first follicular wave. Endocrinology 136:981-989.
- Xu J, Mc Keehan K, Matsuzaki K, Mc Keehan WL. 1995b. Inhibin antagonizes inhibition of liver cell growth by activin by a dominant-negative mechanism. J Biol Chem 270:6308-6313.
- Yen SSC, Jaffe RB (eds). 1986. Reproductive Endocrinology. Philadelphia: W B Saunders Co.
- Zeleznik JS, Midgley AR Jr, Reichert LE. 1974. Granulosa cell maturation in the rat: increased binding of human chorionic gonadotropin following treatment with follicle-stimulating hormone in vivo. Endocrinology 95:818-825.

