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ABSTRACT

MULTIWEIGHT OPTIMIZATION IN OPTIMAL

BOUNDING ELLIPSOID ALGORITHMS

By

Dale Joachim

Optimal Bounding Ellipsoid (OBE) algorithms offer an attractive alternative to

traditional least squares methods for identifying linear-in-parameters signal and sys-

tem models due to their low computational efficiency, superior tracking ability, and

selective updating that permits processor sharing among tasks.

In existing OBE algorithms, optimization takes place pointwise; all conditions (in

particular, previous weights) extant at the time of optimization remain fixed. The

globally optimal solution at a given time would diminish the solution set in light of

all observations.

This research introduces a new class of 0813 algorithms with improved conver-

gence speed and tracking capability, the multiple weight optimal bounding ellipsoid

(MW—OBE) algorithms. Given a system of order m, a MW-OBE algorithm “revisits”

K past weights when the observation set at time n is received and deemed innova-

tive, so that the ellipsoid is optimally diminished with respect to the current and past

K observations, conditioned upon information known at time n — K — 1. The si-

multaneous optimization over multiple weights in MW-OBE algorithms offers greater

flexibility with respect to conventional methods in shaping the hyperellipsoid, thus

potentially decreasing the solution set.



This dissertation derives a general MW-OBE algorithm form. This general algo-

rithm is then optimized in the framework of two existing OBE algorithms, the quasi-

OBE (QOBE) and set membership—weighted least square (SM-WRLS). Simulation

results are then presented, demonstrating the potential of the developed algorithms,

MW-QOBE and MW-SM-WRLS.
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Chapter 1

Introduction and Background

 

1.1 Introduction

System identification techniques are used in diverse fields, ranging from engineering,

to natural and social sciences, to finance and economics. Indeed, many physical

problems benefit from modeling and identification. Linear-in-parameters systems

form a broad and important class of well-studied models for which extensive analysis

tools have been developed. In particular, models that are linear in the data as well as

in the parameters have been widely studied and applied in statistics [47], economics

[38], biology [4, 42, 48], engineering [8, 19, 33] and other fields [24, 37]. In the

autoregressiue (AR) model, for example, the output at a given time is a linear function

of past outputs and an excitation sequence. This relatively simple model has been

used to represent many physical systems [26, 45], a notable example of which is speech

[9].

Several batch and recursive methods have been developed to identify linear-in—

parameters system. Of these, set-membership (SM) algorithms are unique in providing

a. set of feasible parameter vectors (a solution set) instead of a single point estimate.

This is achieved through successive refinements of an initial solution set, consistent

with a priori constraints on the signal or system model. Optimal bounding ellipsoid

(OBE) algorithms belong to the class of recursive SM algorithms and iteratively

assign a weight to each incoming data vector that reflects the current observation set’s

potential to refine the solution set [14]. Each weight is determined by minimizing a



measure of the size of an hyperellipsoidal feasibility set to which the “true” parameter

vector must belong.

In existing OBE algorithms, optimization takes place pointwise; all conditions (in

particular, previous weights) extant at the time of Optimization remain fixed. The

globally optimal solution at a given time would diminish the solution set in light of

all observations.

This research introduces a new class of OBE algorithms with improved conver-

gence speed and tracking capability, the multiple weight optimal bounding ellipsoid

(MW-OBE) algorithms. Given a system of order m, a MW-OBE algorithm “revisits”

K past weights when the observation set at time n is deemed innovative, so that the

ellipsoid is Optimally diminished with respect to the current and past K observations,

conditioned upon information known at time n — K - 1. The number of revisited past

weights, K, must be less than the system order m and may be time-Varying. The

corresponding past data vectors are not required to be sequential. The simultaneous

optimization over multiple weights in MW-OBE algorithms offers greater flexibility

with respect to conventional methods in shaping the hyperellipsoid, thus potentially

better fit to exact feasibility set (described later.)

This dissertation begins with the derivation of a general MW-OBE algorithm

form. This general algorithm is then optimized in the framework of two existing OBE

algorithms, the quasi-OBE (QOBE) [39] and set membership-weighted least square

(SM-WRLS) [l3]. Simulation results are then presented, demonstrating the potential

of the developed algorithms, MW-QOBE and MW-SM-WRLS.

1.2 OBE in system identification

Several batch methods are available to identify linear-in-parameters models system

models, including minimum squared error (MMSE), maximum likelihood (ML) and

least square error (LSE) [25, 26, 45]. The recursive least square (RLS) [26], least

mean [square (LMS) [25], instrumental variable [45] and Optimal bounded ellipsoid

(OBE) [8, 14, 17, 21] algorithms are recursive (in the estimates) techniques for use

in on-line applications. RLS and LMS require the whiteness of the model distur-

bance, and they fail to perform adequately in colored noise [26]. OBE algorithms

2



do not impose any statistical requirements on the disturbance, but require that the

sequence squared, say {5,3,}, be pointwise bounded by a known sequence {7,2,} [34].

OBE identification algorithms (e.g., [14, 15, 21]) have strong potential for application

to signal-processing problems involving linear-in-parameters models. With respect

to conventional least-square-error identification methods (e.g., [26]), OBE identifiers

offer superior adaptation, improved accuracy, efficient use of innovation in the data,

improved computational efficiency, robustness to measurement noise, robustness to

deviation from the assumed input model, a set of feasible solutions rather than a sin-

gle point estimate, and the ability to compute the solution recursively in time without

block processing or windows (e.g., [2, 13, 15, 16]).

OBE algorithms are used to identify linear-in-parameters models of the form

y. = 932.. + a... (1.1)

in which 0. 6 ER'" is the unknown “true” parameter vector to be identified; {3"} is a

sequence of measurable vectors of dimension m; and {5",} is a “true” but unknown

error sequence. OBE algorithms are based on the premise that, for each n, the model

error has a known pointwise energy bound,

52 < 72. (1.2)

This “true” model is posed only for analysis purposes and provides the background

from which actual parameter vector estimates are derived. Given data on times

t E [1,n], an exact feasibility set, say Q", of estimates for 0.. whose elements are

consistent with these bounds is formally described by (Figure 1.1)

(2,, = “$21M, where a), = {9 : 5?, 2 lg; — OTmtlz _<_ 7,2}. (1.3)

OBE algorithms work with an hyperellipsoidal set, say f2", that is guaranteed to

Contain Q", hence 0.. The observations are scrutinized with respect to their ability

t0 “shrink” On, hence to more tightly bound (in. At time n, the hyperellipsoid is



£03 ,

W2

 

91—)

Figure 1.1. Hyperstrips w, and their intersection 9,. as described in (1.3) for a system

of order 2 (m = 2) at time n = 3.

given by (e.g., [14]) (Figure 1.2)

(2,, 4510 : (0 — 9,,)TC,,(0 — 9,.) 3 ran} (1.4)

in which 0,, is a weighted covariance matrix of the observations,

0,; = thmztx'f, (1.5)

t=l

K." is the scalar

Kn : 0:07:07: + Z qtm (712 — ytzli (16)

t=l

and 0”, the center of On, is a weighted least-square—error estimator of 0. at time n

(Figure 1.3),

0,, = Pncn, with P, ‘13! 0,;1 and c, ‘13};me (1.7)

t=l

The weighting sequence in this process at time n, {(1:31}in is chosen to optimally

diminish some set measure of the hyperellipsoid.

4



W2

 

01—}

Figure 1.2. The ellipsoid superset On 2 (2,, corresponding to the system of Figure 1.1.

OBE algorithms make selective use of incoming data in updating the ellipsoid and

central estimator. Frequently, the observations at time n contain no innovation in

the sense that they cannot be used to reduce the size of Qn_1. This is manifest in the

failure to find _valid weights, and the effort of updating can be avoided at this time.

Depending on the properties of the sequence {5",}, OBE algorithms often update

only 10 percent of the time or less.

1.3 Review of OBE algorithms

Schweppe published one of the first OBE-type algorithm in early 1968 [44] in the

context of estimating state parameters of linear dynamic systems using noisy ob-

servations. Assuming bounded inputs and bounded observation error, Schweppe’s

algorithm estimates the state of the system using bounding ellipsoids. However, as

Schweppe notes [44], this novel algorithm is presented without convergence proof,

processes all available data, and is computationally impractical.

Witsenhausen in 1968 [49], and Bertsekas and Rhodes in 1971 [5], tackled the

State-estimation problem from a SM approach. Under similar assumptions as those
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Figure 1.3. The polytope, ellipsoid and least squares surface for a system of order 2.

The “true” and ellipsoid center estimators are denoted by * and 0 respectively.

of Schweppe, Bertsekas and Rhodes examined filtering, prediction and smoothing

problems. The algorithm of Schweppe, and of Berstekas and Rhodes have a Kalman—

Bucy filter structure which is optimal as a state estimator in Gaussian white noise.

In 1979, Fogel [20] published an OBE identification algorithm for the ARX model

(e.g., [36]) based on a priori knowledge of the cumulative error energy. Fogel proves

the convergence of the hyperellipsoid central estimator to the true parameter in a de—

terministic setting, by demonstrating that the hyperellipsoid asymptotically reduces

to a point set.

In 1982, Fogel and Huang [21] published an OBE algorithm with selective updat—

ing (F-H/OBE) which processes only relevant data, a key feature of modern OBE

algorithms. This data—selection process is achieved by assigning weights to each in-

coming data vector, with a zero weight indicating data rejection. A pre—processing

information check 0(m2) determines the possibility of a non-zero weight, thereby po—

tentially eliminating redundant computations. Fogel and Huang present a sufficient

Condition for the convergence of the F-H/OBE hyperellipsoid to a point, provided

the observation error is white noise. The validity of this proof remains controversial,



and a more recent proof in a stochastic setting with a more general class of OBE

algorithms is presented in the paper by Nayeri et al. [40].

The F-H/OBE data selection process was improved to 0(m) complexity in 1987 by

Dasgupta and Huang [8] in their OBE-type algorithm (D-H/OBE). By minimizing an,

a scalar not apparently related to the hyperellipsoid volume [see ( 1.4)], Dasgupta and

Huang derive a simple but effective algorithm and prove the asymptotic convergence

(at an exponential rate) of its central estimator to a region around the true parameter.

Deller et al. introduced the set-membership weighted recursive least squares (SM-

WRLS) algorithm in 1989. SM-WRLS is similar to F-H/OBE but is derived in a

much different manner [13, 18]. A major difference between the F-H/OBE algorithm,

derived from geometric considerations, and SM-WRLS, derived as an RLS algorithm

with special weighting, is in the weighting strategy. With the introduction of SM-

WRLS, the relationship between OBE and WRLS was formally established. In 1993,

the set-membership stochastic approximation (SM-SA) was introduced in a paper that

unifies all previously known versions of OBE algorithms [14, 15]. The first stochastic

proof of convergence (in probability) of an OBE algorithm is achieved with the SM-

SA algorithm in [14], and the unification in [14] implies that the convergence result

is generally applicable to all published OBE algorithms.

In 1991, Cheung [6, 7] published the optimal volume algorithm (OVE) based on

an affine transformation which reduces the hyperellipsoid volume without imposing

the condition that the hyperellipsoid center be equivalent to 9". This relaxation on

the hyperellipsoid center improves reduction in the hyperellipsoid size with a minimal

increase in computational cost.

The compounded effect of (1.2) at each n restricts the “true” parameter vector

estimate to an exact polytope. In the 1991 paper by Veres and Norton [46], it is

proved that, under heavy-tailed conditions on {5",} (see Appendix A1) and certain

persistency of excitation [26] (PE) conditions on {xn}, these polytOpes converge in

probability to a point set.

In spite of the potential benefits of OBE identification, a significant practical

impediment precludes widespread application. The practical difficulty concerns the

estimation of proper model error bounds which are theoretically necessary for reliable

identification. Failure to prescribe accurate bounds in OBE processing is potentially



catastrophic. Underestimated bounds may cause divergence to a parameter vector

that is not even capable of generating the observed data (i.e. outside the set Q"),

while overestimated bounds may cause the estimate to “freeze” at a biased estimate.

Although improper bounds imply statistical inconsistency in theory, OBE algorithms

have been successfully applied to a range of applications in which bounds can only

be estimated.

The OBE algorithm with automatic bound estimation (OBE—ABE) developed by

Lin in 1996 [34] is the first OBE method to theoretically solve the difficult problem

of accurately estimating “true” model error bounds in ARX models with “true” error

{5",} and exogenous input {an} (included as part of the measurements {:cn}). In

theory, OBE-ABE removes the practical roadblock to model identification using OBE

algorithms. OBE—ABE converges consistently under conditions on the “true” model

error sequence {5",} that are met by many practical signals, and additionally provides

the customary OBE set of feasible solutions. The basis for the “ABE” in OBE-ABE

is Lin’s proof [34] that, if the error bounds are overestimated, there exists an interval

Z of length N over which no update takes place for any finite N. Thus, the need to

adjust the bound is practically indicated by a sufficiently long period over which no

update takes place. When such an interval is found, OBE-ABE invokes its bound

re-estimation recursion which depends on N and an “adjustment constant” 5. The

choices (and possible iterative refinements) of parameters N and 5 have a significant

impact on OBE-ABE performance in practice [29].

One of Lin’s principal results [34] asserts that the OBE-ABE bound re—estimation

recursion results in point-set convergence of S2,, in probability if, in addition to a PE

requirement on {ten}, and a statistical infinite visitation (IV) criterion on {5",}, {5m}

and {an} are asymptotically independent (see Definitions A.1 and A2 in Appendix

A.1). However, the choice of N and 5 may still pose practical challenges in certain

applications [29]. Lin’s convergence proof depends upon asymptotic analyses in which

n—>oo, N-+oo,and5—>O.

Huang and hisresearch group at the University of Notre Dame (UND) and Deller

working at UND and later at Michigan State University (MSU) recently focused on the

quasi-OBE (QOBE) algorithm, an OBE algorithm featuring a very simple innovation

data check, similar to that of D-H/OBE [22, 39] but with a weighting strategy similar

8



to SM-WRLS. Working together, these groups proved that in a deterministic setting

the parameter estimator asymptotically converges to the “true” parameter vector

given PE and disturbance sequence IV of any arbitrary neighborhoods of the true

bounds [11, 22]. A convergence proof of the QOBE ellipsoid volume is forthcoming

and requires joint conditions on {3"} and {5",} that would seem to be rare in practice

[11, 39].

1.4 Motivation for a new algorithm

All published OBE algorithms can be manipulated into the formal framework de-

scribed in Section 1.2, provided that we allow for time-varying ( “n-dependent”) weight

sequences as we have done in (1.5) - (1.7) [14]. In all published cases, however, this

time dependence (if any) has a simple structure arising from a either a generalized

“forgetting factor” (e.g., c.f. [15] and [21]) or some heuristic measures to induce adap-

tation (e.g., [17]). In no published case is there an attempt to reoptimize any of the

“previous” weights at time n in light of the new measurements 23,, and yn. That is,

all optimization in existing OBE algorithms can be accomplished by manipulation of

the current weight only except for possible inherent scaling of past weights. This can

be inferred directly from the work in [14]. The globally optimal solution at time n

would optimize all weights {q¢,n}[‘:1, in light of all known information {(x¢,y¢)}?=1.

In this work, we develop an algorithm that can potentially approach the perfor-

mance of a globally—optimized algorithm at each time, by “revisiting” K 2 0 past

weights when data at time n are received and deemed innovative. The revision of

past weights is made by additive adjustments to existing weight values, subject to

the constraint that any revised weight remain nonnegative and that the number of

revisited weights be less than the system order.

1.5 Notation, variables and acronyms

The vector and matrix notation, acronyms and abbreviations employed throughout

the remaining developments are defined in Tables 1.1 - 1.3.

9



Table 1.1. Vector and matrix notation. A, B represent matrices, a a vector and x,

a scalar.

 

Notation Definition

I identity matrix with appropriate dimensions

AT transpose of matrix A

T

A.T (A'l) when matrix A‘1 exists

A adjoint of the matrix A, i.e. :4— : det (A)A"T

A(*, i) N-vector comprising the ith column of A, an N x M matrix

A(i, *) M-vector comprising the ith row of A, an N x M matrix

A(i,j) (i,j) element of matrix A

\(A) matrix formed by setting off-diagonal elements of N x N matrix

A to zero

A o B Hadamard product of two N x M matrices A and B defined to

be the N x M matrix with (i,j) element A(i,j)B(i,j) [27]

A > 0 each element of the matrix A is positive (similar notation applies

to vectors)

[A] matrix with (i,j) element [A(i,j)[ (similar notation applies to

vectors)

A > B A - B > 0 (similar notation applies to vectors)

sign(A) matrix with (i, 3') element |A(:3)| (similar notation applies to

vectors)

a(i) ith element of vector 0

D(a) diagonal matrix with ith diagonal element a(i), where a is an

N-vector

d(A) N x 1 vector with ith element A(i, i), with A an N x N matrix

E . . h . . 1 t 6x
BA matrix Wit (2,]) e emen _8A(i,j)'

IO



Table 1.2. MW-OBE vector and matrix variables at time n for a system of order m

when considering K past weights. n is the “current” time and t represents the general

sequence index.

Quantity Notation Dimension

 

Note: KdéfK+1
  
 

Observation matrix Xn dz-e-f [ xn_K -- - xn_1 32,.1] m x K

Output vector yn dz”! [ yn_K - -- yn-1 yn ] K x l

e T ’

Weight adjustments A, ‘2 [ APK," AH, Aw, ] K x 1

vector

Weight adjustments An Cg D(A,,) K x K

matrix

. . def T ~
Cumulative weight q”, : [th’n qt-” qt," ] K x 1

vector

Cumulative weight QM ”Er D(q,,,,) K x K

matrix

T -

Error bound vector 7,, {if [ 7,.-K -- - 7n_1 7,. ] K x 1

Error bound matrix I",I ‘13-! Db") K x K

T ..

Conditional predic- 5",, {if [ En-Klt 5,,” ] K x 1

tion error vector

Conditional predic- En1td:°fD(5nu) K x K

tion error matrix

~ - def T ~

Sign vector (Signs of 3,. = [ 21:1 i1 :l:1 ] K x1

elements are chosen

in context)

Sign matrix 5,, (ire-f D(sn)

Instantaneous Cult ”—3! XIPtxn

covariance-weighted

observation energy

matrix

(Inverse) relative en- Hn drgf I + AnGn,n_1 K x K

ergy gain

k
c

>
§
i

R
i
k
i

X
X
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Table 1.3. Acronyms and abbreviations

Definition ]

 

 

Acronym

ABE automatic bound estimation

AR autoregressive (parametric model)

ARX autoregressive with exogenous input (parametric model) i

IV infinite visitation I

IID independent and identically distributed i

LMS least mean square (algorithm)

ML maximum likelihood

MW-OBE multiple weight optimal bounding ellipsoid (algorithm)

MWnQOBE multiple weight strategy applied to QOBE (algorithm)

MW-SM-WRLS multiple weight strategy applied to SM-WRLS (algorithm)

MMSE minimum mean squared error

OBE-ABE optimal bounding ellipsoid with automatic bound estima-

tion (algorithm)

OBE Optimal bounding ellipsoid (algorithm)

OVE optimal volume ellipsoid (algorithm)

PE persistently exciting, or persistency of excitation (as appro—

priate in context)

QOBE quasi-OBE (algorithm)

SM set-membership

SM-SA set-membership-stochastic-approximation (algorithm)

SM-WRLS set—membership weighted least squares (algorithm)

UCT uniformly conditionally tailed

WRLS weighted recursive least squares (algorithm)



Chapter 2

OBE with Multiple Weight

Optimization

 

2.1 Introduction and overview

This chapter introduces the general class of MW-OBE algorithms and presents back-

ground formulation for the MW-QOBE and MW-SM-WRLS algorithms (presented

in the following two chapters).

At each time n, conventional OBE algorithms update the previous covariance

matrix 0..-], by incorporating a weighted outer product of the current data vector,

if this vector is deemed innovative (e.g., [14]). This process, although efficient, may

result in large ellipsoid volumes [13, 34], often due to the shape and size of the

underlying exact polytope [46]. However, when adequate PE and IV conditions are

present (Appendix A.1), pointwise reduction in ellipsoid volume may be improved by

a joint weight assignment [29, 30]. If (2,, is too large, adding weights to OBE will not

help. A principal objective of this research is to develop methods for taking optimal

advantage of the information in the data by optimizing a present and reoptimizing

K past weights over a block of measurements.

The block optimization process begins by separating the last K +1 outer products

in the covariance matrix (1.5)

n-K-l

Cn : Qt,n$z$¢T+ Z qt,n$tmrtr (21)

(:1 tzn—K
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where the block of weights {q¢,n}?:,,_K is reoptimized at each time n. To express

(2.1) in matrix form, let X" represent the observation matrix (the block of K + 1

data vectors beginning at index n — K), Xn ‘2‘ [ In—K xn_K+1 x" ], and q”,

the vector containing the weights applied to the vectors in Xn at time t. In these

terms, (2.1) is written

n—K—l

Cn : qtfllztx’tr + XnQn,nXI (2'2)

t=l

where QM, = ’D(q,,,,,). Let An ”:33 qn’n — r1,,.,,_l represent the adjustments to the

weights applied to observation matrix Xn at time n, with corresponding diagonal

matrix An = D(/\,,). The weight adjustments represent the difference between the

a priori and newly computed weights, with the most recent “adjustment” being a

modification to a zero (by definition) weight. The recursive expression (2.2) in terms

of the weight adjustments becomes

C, = C..-,+X,,A,,X3‘. (2.3)

The (composite) weights at any time must be non-negative, gm, 2 An+qn,,,-1 > 0, in

order to retain proper meaning. The block weight assignment strategy is comparable

to a sliding window over the sequence of data vectors, where the weights assigned to

a data vector vary with time n, but only vary during the time interval [n,n + K].

Accordingly, at time n, the time—varying weights are computed by (Figure 2.1)

ELK/My, 0‘_<_t<n—K

(Ian = 234 A”, n - K S t S n , (2-4)

0, n < t

with the constraint q”, > 0 for any t and n. The weight adjustments A”, are zero

outside the time interval [72 -— K S t S n].

This formulation allows the covariance matrix to be updated at each n with a set

of weight adjustments acting upon the present and past K observation vectors. In

the next section, we derive the general MW—OBE recursions, beginning with (2.3).
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Figure 2.1. Weight assignments in the MW-OBE algorithm.

2.2 Recursions

As in other OBE algorithms, at each time t, the MW-OBE computes the inverse

covariance matrix, P; 1 (1:?! C" as part of its recursion [15]. In the present formulation,

the matrix Pu is similarly obtained by applying the matrix-inversion lemma (see

Appendix A.1) to the covariance, (2.3), yielding

P,, = 19,... _— ,,_,X,,H;1A,,X,TPn_1. (2.5)

where H,, ”re—f I + AnGn[n_1 and Gnln-1 (1g X,,TP,,_1X,,. The existence of the matrix

H,j 1A,, 2 [Ag‘ + G,,[,,.1]’1 is contingent upon all weight adjustments in the matrix

A,I being non-zero and [Ag 1 + G',,,,,_1]“l being invertible. In practice this constraint

is adhered to by omitting data vectors corresponding to zero weights [see (2.3)].

Another constraint, the reason for which is not yet obvious, is that K be no larger

than m. The general reason for this inequality is the necessity to invert Gum-) in

future developments.

As in conventional OBE algorithms, the MW-OBE algorithm recursively computes

the ellipsoid center 0,, and the scalar Kn. The ellipsoid center represents the parameter
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vector estimate at time n, and Kn, a defining scalar for the ellipsoid [see (1.4)]. The

equalities

Cu 2 Cn—1+XnAnyn (2-6)

1r>,,.,)r,,1r1;l = P,,X,, (2.7)

are first noted from (1.7) and (2.5) in order to simplify further developments. The

recursion for the ellipsoid center 0,, is derived in a manner similar to that used by

Deller and Luk [13]. By employing (2.6) and (2.7) in (1.7), we obtain

0.. = Pncn

= Pncn—l + PanAnyn

= on—l — Pn-IH;lAnX:0n-l + PanTAnyn

= 9..-. + P.X..A.(y.. - X39.-.)

= on-l + PanAnEnln—l' (28)

Recursion (2.8) is similar in form to its conventional OBE counterpart (reduces to the

conventional recursion when K = 0) but updates the ellipsoid center as a function of

K past data vectors. By substituting the recursion

91‘0an : (an—1 + PanAnEnln~llTCn(0n-l + PanAnEnln—l)

— 93—1Cn0nul + 01—1Cnpn(XnAnEn|n—l) + (XnAnEnln—1)TPnCn0n-1

+ (XnAnEnln—l)TPnCnPn(XnAnen|n-ll

: or—lcnan-l + 95.1(XnAnEnIn—l) + (XnAn€n]n—1)T0n-l

+ (XnAnEnln—1)Tpn(XnAnEn[n—ll

: 0:_1Cn-lgri—l + (yn —' En|n-—1)T1xn(yn T" En]n—-l)

+ 2(yn _ En[n—1)T1‘n€n]n—l + Earl—[AnGnlnAnenIn—l

__. 91.161510.-. + yZAny. — e1].-.A..e...-.

+ E31],,—11\nc;n|nl‘n5n]n-—l

= 0:_,Cn-10n_1 + yrAnyn + 52,“, [AnGnlnAn — An] 5,,|,,_1

-1

: 6:-1Ci—10n-1 + III/‘71?!" — 5:3,._1[A;1+ Grim—1] é:nlnul'
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into (1.6), we obtain

K3,, : K’n-‘l - (7n _ ynlAnb'n + yan + 0:000" - 93-1Cn—10n—1

: rend +71An‘7n — 5:,”_,H;1A,,5,,l,,_,. (2.9)

Expression (2.9) also yields the conventional SM—WRLS recursion for K3,, [13] when

K=O.

2.3 A posteriori error vector and energy matrices

The overall objective of any OBE algorithm is to define a set of solutions, or a

single solution, that closely identifies the parameters of a system. This objective

is achieved by seeking to reduce either the distance (in some sense) between the

parameter estimate and the “true” parameter vector, or the ellipsoid size. The latter

in effect brings the estimator to a closer neighborhood of the true parameter vector

when (2,, becomes “small.” The progress of OBE algorithms in achieving the given

objective is observable in the effects of each recursion at time n on error vector Enln—l

and energy matrix Gn|n_1. In the process of reducing the current ellipsoid size, OBE

algorithms “re-map” the error (scalar or vector) to satisfy inequality (1.2). As a result,

5,], and 0,4,, provide important insights into algorithm behavior. In this section we

express the error vector and energy matrix in their a posteriori representations, to

better illustrate MW-OBE behavior.

2.3.1 A posteriori error, 5,4,,

To satisfy the pointwise error bound constraint (1.2), the a posteriori error vector Enln

must belong to the hyper-box {u E SiK : [a(i)] 57"} (Fig. 2.2). The transformation

which maps 5,,[,,_, to this hyper-boxl at time n is found by expressing 5,,ln in terms

Of5n[n_1 (2.8),

Enln : yn — X397,

b

1The hyper-box is defined with the inclusion of its boundaries.
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T

: yn _ Xn 071—1 _ GnlnAnenln-l

: EnIn—l — GnlnAnenIn—l

: [I — G,,,,A,,] e,,,_,. (2.10)

By Lemma A.1 (see Appendix A.1), the inverse ofmatrix H,, = I+A,,G,,l,,~1 becomes

H;‘ = I -— 1A,,X,,T ((3.,_l +X,,IA.,X,Z")—1X,,

3 I _ AnGn[ns
(211)

which, combined with (2.10) yields

5"," = H;T5n[n_1. (2.12).

From (2.12) we note that the mapping of error vector Enln—l to its a posteriori image

5,,|,, is achieved through the transformation H,jT. The expression for the scalar rc,,

takes a simpler form through the use of 5,,|,,; substituting (2.12) in (2.9), we have

[6,, :: K2,,_1 +7IAn7n — 5,7,]"_1A,,5,,|,,, (2.13)

or, using the Hadamard product notation (see Table 1.1),

Kn : Kn—l + A3671; 07:; — 5tulip—1 O En|n) - (214)

2.3.2 A posteriori weighted energy matrix, Gnln

The weighted energy matrix (divided by Kn) represents the composite projection of

the data vectors in X,, on the current ellipsoid axes. The a posteriori matrix Gal" is

'found by substituting the right side of (2.5) into XZPan, yielding

on], = XnTPan

-—- XIP.-.X. — XIP.-.X.H;‘A.XIP.-.X.

= G,,;,,_, — G,,,,,-1H;‘A,,G,,,.,,-,
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Figure 2.2. Rectangular error bound constraint (1.2) (dashed line) when K = 1 and

m = 2. An error 5,,[,,-1 originally violating the bound condition in light of new

observations is mapped to a location inside the rectangle {u : [u] S 7} in its a

posteriori Enln form.

= H;TGn]n_1. (2.15)

(Since Gnln is symmetric, (2.15) is also equal to Gn'n-1H;1.) The matrix H: may

be expressed as

H;‘ = (G,,,._,)“(G,,,,,). (2.16)

Theorem 2.1 The matrices G,,[,,_1, Gnln are positive definite.

Proof: Since Pn_1 is positive definite, aTG’nln-la 2 (aX:)TP,,_1(aX3) Z 0 for

all a E it”, or Gn,n_1 is positive semi—definite [41]. The same is deduced for Gal”.

With both Gum-“ Gnln non—singular (no zero eigenvalues), we conclude that they are

positive definite. I

2.4 Ellipsoid volume

The volume of ellipsoid $2,, is proportional to the determinant of an?" and therefore

 

the ratio

det(1c,,P,,) _ a. "‘ det (P..) (2 17)

det(Kvn—1Pn—l) _ Kn—l dEt (Pnrll .
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represents an appropriate measure for the change in volume [13]. The ratio of deter-

minants in (2.17) reduces to

det (P11) —1 -1 T
——-——- = I —X,, A Gun- X P"-
det(P,,_1) [ n + I l] n l

det [11;1 + G,,,,-, — G,,,,_,]

_ det (A;1 + Gn.,_,)

l

det (I + A,G,.,,.-,)

 

.—_ det (H;‘) = 1/det(H,,), (2.18)

or,

det (Pn._1)

t = -—————-. .de (H,,) det (Pu) (2 19)

Incorporating (2.19) into the inverse of (2.17), we obtain

d‘” (“n-1P"-1) : det (H,,) (“2“) . (2.20) 

det (nnPn)

Results (2.19) and (2.20) will facilitate future deveIOpments.

2 . 5 Algorithm

MW—OBE algorithms are similar to other OBE algorithms in that the observation

matrix is checked for innovation at each iteration. If the observation matrix is deemed

useful, a new inverse covariance matrix and parameter vector estimate are computed.

An advantage of MW-OBE over conventional OBE algorithms is the flexibility in

selection and number of past weights to revisit. Indeed, MW-OBE does not specify

Which past weights are to be revisited, but limits their number to (m —- 1), m being

the system order, due to the necessity to invert the matrix Gn'n_1 (see Section 2.2 and

Chapter 3). The simulations presented in Chapter 6 are generated using MW-OBE

algorithms that revisit the past K non-zero weights. Updating the past sequentially

nun'lbered K weights often results in reconsideration of previously rejected observation

vectors (zero weighted observation vectors) which may not offer any new information
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represents an appropriate measure for the change in volume [13]. The ratio of deter-

minants in (2.17) reduces to

det (P11) —l .1 T
_ = I - Xn A + an, n— X71 Pn—

det (19,.-.) l " ‘ 1] ‘

det [A;1 + Gn]n_1 - Gn|n_1]

det (A;1 + Gn,,,_,)

 

 

1

“ det(I+A,,G,,,,,_1)

= det(H;‘)=1/det(H,,), (2.18)

or,

det(H,,) = gig—"1)— (2.19)
det (P,,) .

Incorporating (2.19) into the inverse of (2.17), we obtain

 

det (Km..1Pn_1) (Km—1),"

:: d t H,, . 2.2

det(r.:,,P,,) e ( ) ran ( 0)

Results (2.19) and (2.20) will facilitate future developments.

2.5 Algorithm

MW-OBE algorithms are similar to other OBE algorithms in that the observation

matrix is checked for innovation at each iteration. If the observation matrix is deemed

useful, a new inverse covariance matrix and parameter vector estimate are computed.

An advantage of MW-OBE over conventional OBE algorithms is the flexibility in

selection and number of past weights to revisit. Indeed, MW—OBE does not specify

which past weights are to be revisited, but limits their number to (m — 1), m being

the system order, due to the necessity to invert the matrix Gn],,-1 (see Section 2.2 and

Chapter 3). The simulations presented in Chapter 6 are generated using MW-OBE

algorithms that revisit the past K non-zero weights. Updating the past sequentially

numbered K weights often results in reconsideration of previously rejected observation

vectors (zero weighted observation vectors) which may not offer any new information
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Table 2.1. The MW-OBE algorithm.

 

I. Initialization:

1. 0K = 0, xx =1 and PK : £1, 11 small.

2. (1,, : 0.

II. Recursion:

Forn=K+1,K+2,...

Form X,, matrix from present and chosen past K data vectors

along with corresponding ya and 7,, vectors.

EnIn—l : yn — Xian-l

Rn = Pn—IXn and Gnln—l : XIRn

If current and past K observations are innovative,

determine optimal weight vector, An (optimization criterion dependent).

Otherwise, next n.

Kn = I?.,,[A;l + G,,Il,,_1]“1

Pn = Pn—l _ Kan

0n = on—l + I{nenln-l

Kn = ren_1 +7ZA,{7,, - 5:|n_1[A;1 + Gn[n_1]’15,,l,,_1 (when necessary)

Next n.   
 

on the system. This issue needs more study although empirically, observations taken

in the past are more likely to be informative.

The MW-OBE algorithm is described in Table 2.1. Intermediate matrices R,, and

Kn are introduced there to simplify the recursions.

2.6 Computational costs

The following discussion is restricted to the computational costs of the general form

of the MW-OBE algorithm. These recursions, common to all MW-OBE algorithms,

are only performed when a data matrix is deemed informative. MW-OBE algorithms

compute the error vector 5,,|,,_1 and the energy matrix GnIn—l in the process of check-

ing for innovation in the observation matrix. Although these costs are included in

the following considerations, costs due to particular optimization methods (actual

innovation check and weight generation) are excluded.

Detailed per update cost is shown in Table 2.2. When K = 1 (K = O), corre-

sponding to the conventional OBE algorithm, this cost becomes 3/2(m2 + 3771 + 4),
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comparable to that of the algorithm described in [15] at 0(m2). This 0(m2) perfor-

mance is maintained for m > K. When K x m, the per-update cost increases to

0(m4).

In order to keep the cost performance of this algorithm to real-time (on-line)

status, we limit this study to the re—visitation of one or two past weights. In so

doing, the computational cost are kept within a “reasonable” range (see Table 2.3

and Figure 2.3). Note that with small values of such K, the inversion of matrix

[11,:1 + G,,|,,_1]‘1 is relatively inexpensive. The expression for computational cost

shown in Table 2.2 includes the computations of 5,,[n_l and Gain-“ which are used

in the innovation check.
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Figure 2.3. Computational costs (number of multiplications) of a single MW-OBE

iteration for K = 0, 1,2 and 3 for system orders m = 2,4, 8, 12 and 16. K = O repre-

sents the conventional OBE algorithm case.

As pointed out in [10, 13, 15, 17], OBE algorithms update the parameter estimator

by using a small percentage of observation vectors, often less than 5% (on simulated

data with known bounds). MW-OBE algorithms use an even smaller number of

Observation vectors [30, 31] and thereby compensate for the higher per—update com-

putational cost. This tradeofi makes MW—OBE algorithms attractive in applications

Where per—point convergence is the dominant concern.
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Table 2.2. Detailed computational costs of MW-OBE algorithms per update. The

computation of Enln-l and Gnln_1 are included although they are usually considered

part of the innovation check. For simplicity, the notation K is used to denote K + 1.

 

 

Expression Dimension No. of Multiplications

Enln-l R X 1 mK

R,, = P,X,, m x K m2K_

Gnln-l K X If (PK/2) (~K + 1.)

K,=R,,[A;l-l-G',,,,,_1]‘l me K3j-mK2+K

P, = 3..1 — K,RZ,‘ m x m (mK/2)(m +1)

9,, = 0,-1 + Kn5,,n_1 K x 1 ~mK~

19,, 1 x 1 3K + K2

Total (3mK/2)(m+K+2)+K(K2+K+4) 
 

Table 2.3. Computational costs of MW-OBE algorithms per update for K = 0, 1, 2

and 3 as functions of m.

 

    

For typical m

K No. of Multiplications per Update m z: 10 m = 100 m = 1000

0 (3/2)(m2 + 3m + 4) 201 15456 1504506

1 3m2 + 12m + 20 440 31220 3012020

2 3/2(3m2 + 15m + 32) 723 47298 4522548

3 6(m2 + 6m + 16) 1056 63696 6036096 

The computational costs in Table 2.2 exploit symmetries in the computations.

Additional reduction in cost is achieved by noting that expensive recursion of P,,

may be evaluated in a total of 12%? + Km + m2) [23, 28] multiplications using LU

decomposition (Choleski factorization) of H,j 1A" (56—3). This technique also simplifies

the computation of Km.

2.7 Optimizations

The matrix defining the hyperellipsoid at time n is given by [see (1.4)] Pgl/n,

The measure det(1c,,P,,) is proportional to the square of the volume of the ellipsoid
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and is most often minimized in the OBE optimization process. Minimization of the

trace of {5,2,} is also a meaningful measure of size (e.g., [14, 21]). Minimization

of the parameter ran, first suggested in [8], had been controversial with respect to

its interpretability [14] until recently when Huang’s research group developed the

QOBE algorithm [22, 39]. QOBE, which minimizes re, in conjunction with a specific

weighting strategy, provides interesting interpretations of this optimization process.

Because of the relative algebraic simplicity of the algorithm, we use the QOBE—like

approach of n, minimization to develop a specific instance of the MW-OBE algorithm,

MW-QOBE. MW-QOBE is presented in Chapter 3. On the other hand, the SM-

WRLS OBE algorithm optimizes the volume of the ellipsoid at each step. This is

used to develop a second MW-OBE algorithm, MW-SM-WRLS. In Chapter 4, the

MW-SM-WRLS is presented with simulations.
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Chapter 3

Multiple Weight Quasi-OBE

Algorithm

 

3.1 Introduction

In this chapter we develop the MW—QOBE, a MW—OBE algorithm based on min-

imizing the scalar n, with respect to the present weight and past K weights (the

diagonal elements of A,,) if the new data admit further reduction. We compare this

novel approach to the QOBE algorithm developed by Huang et al. [22]. We prove

the uniqueness of the optimal solution for general K S m, and experimentally study

the case of K =1.

3.2 5,, minimization

Recent study of the QOBE algorithm has shown the merit of minimizing the scalar

Kn [22, 39]. This simple yet efficient algorithm ofiers good convergence of the param-

eter estimator to the true parameter vector [11]. When the prediction error Enln-l

generated by the current parameter estimator 971—1 and observation vector 3,, falls

outside the error bound constraint (1.2), the QOBE generates a new parameter es-

timator 0,, which re—maps the prediction error to (exactly) the bound ([5,,l,,| = 7,).

Although developed from an “OBE” point of view, the condition for data acceptance

(lenln_1] < 7,) and the process of mapping 5n[,,_1 into 5,], is found to be “decoupled”

from the ellipsoid, a departure from other OBE algorithms (and reason for the name
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“QOBE”). This independence from the ellipsoid makes QOBE particularly interest-

ing in time-varying applications due to its robustness to a “true” parameter 9. moving

outside the ellipsoid. In this section we develop a specific MW—OBE algorithm by

using as the optimization criterion the minimization of K.” with respect to the weight

vector A".

In the following theorem, we derive the optimal weight vector A, at time n which

minimizes Km over the present and past K weight adjustments.

Theorem 3.1 The scalar 5,, is minimized by the weight adjustments F

"n = (GnIn—lSnAn)—1(En|n—l "' 51171;)

where 5,, is a diagonal matrix with diagonal elements :l:1.

 
Proof: In minimizing K." (2.9), we encounter the term 51],,_1H;1A,,5,,l,,_1, a

quadratic expression in Enln-l which involves the inverse matrix H,j 1A,, = [A;‘ +

Gala—ll—l- We use the notation of Table 1.1 in writing to Afl(i) to mean the ith

element of the vector A, at time n. An(i) is equivalent to An(i, i) since A, = ‘D(/\,,).

Differentiating the term H,j1A” with respect to an arbitrary (scalar) weight An(i),

 

 

 

we obtain

a(H;1A,) _ an;1 _, 311,

(me) ‘ aA..(z‘)A"+H" ax,(z')

6A 6A
_ __ 'Tl '3 —1 —1 n

— Ha aAn(z-)Gnlfl-1Hn An+Hn aAnh)

aA
_ —1 n __ -1
_ H, (”a(i) (I G,,,_,H, 11,)

8A T
__ —1 n —1
_. H, a (2,)(H,) . (3.1)

me (3.1) we conclude that

T a(H;lA”)
_ . _ . T

”ht—l 8A (2,) Eula—1 €:ln_lH-nl(*, 1) [Hnl(*, 1)] €n|n_1, (3.2)

n

E

where the column vector H;1(*, i) (see Table 1.1) is the ith column of matrix H,‘,’ 1.
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By incorporating (3.2) in the differentiation of (2.9) with respect to A,,(i) we obtain

 6
° 2 T _1 . _1 ,

6A3” = 6111(2)) _enln‘lHfl (”U“) [Hn (*iz)]Ten[n—l

= (,,(.-) + e:.,_.H.-;l(*.i)) (v.0) — e1].-.H;‘(*.z')). (33)

Hence,

 

6K." _ 2

8A" = r3 - [D(H,Te,,,_,)] , (3.4)

an . . . . . . 5,,

where at: 18 the diagonal matrix whose ith diagonal element [S m.

Using the Hadamard product notation (see Table 1.1), and recalling that A, =

D(A,,), (3.4) is expressed as

01:,

0A,, = (7,, + H;T€n|n—l) 0 (7n “ HgTenIn—l) ° (35)
 

The optimal diagonal weight matrix A, (or vector A,, ) is the solution of the equation

 

016,.
: O, .3A,, (3 6)

Using [Al to denote matrix with (i, j) element [A(i, 3)], (3.5) and (3.6) imply that

1H;Ten.n—II—v. = 0. (3.7)

To solve (3.7), we define the column vector of signs, :l:1, 3,, (113-f sign{H;T5,,l,,_1} (see

Table 1.1). By incorporating

|H;Te,,,_,| = (H;Te,,,_,) o 3,, (3.8)

into (3.7), and multiplying on the left by HI, the optimal weight vector is found to

be the solution in A,, of

Enln-l = HZhn o 3n)

= (7n 0 8n) + GnIn—lAnhn o 3n). (39)
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After some manipulation, we obtain

A, = [G',,’l,‘,_l (5,,ln_1 —7,, o s,)] o (g, o s,,) (3.10)

where 9,, denotes the column vector whose elements are the diagonal elements of I‘,‘ 1.

If we further define the matrix 5,, déf D(s,,), then (3.10) can be also expressed as

An 2 (Gn]n—lSnFn)-1(En]n-l- Sn’Yn). (311)

We verify that the solution point is a minimum by demonstrating a positive determi—

nant of the Hessian, the matrix whose (i, j) element is

62’s,,

ax,(.)a,\,(j)’ (3‘12)

Using the differentiation vector notation of (3.5), the Hessian (3.12) is alternatively

represented by the (symmetric) matrix whose ith column is

a 85,,

621.0) (M). (3.13) 

The derivative of (3.5) with respect to a scalar weight A,,(i) is expressed as

 

6 are, “T a ‘

ax,(r)(a,\,) z ‘2(Hn e..._1)o[m (H.TE.I._.)] (3.14)

which, by incorporating (3.1), becomes

6 0K." _ _ _‘T _T (9H: _T

(9A,,(2) (6&1) - 2(Hn Eula—1)0[ Hn 0An(l)Hn Enln—l] - (3.15)
  

Evaluating (3.15) at any root, say A; of the first derivative (3.5) and by substituting

H;T5,,l,,_1 = 5,7,, into (3.14), we obtain the columns of the Hessian matrix

 
 

a ann _ —T 6H:

(9A,,(i) (6A,)X ‘ ”WWII" ax,(i)5"7"

0A,,

2 n H—TGnn— ——. n37n0 n [ 16An(l)57n
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0A,

: 25n7n O H;TGn[n~lrnSn——

 

(”a(i)

0A

: 2 n nn— —l———n._' n -S7no I lHn 6An(z)57n

The determinant of the Hessian is then

det fill—— 62K" - 2K+ldet (S I‘ )det (G H‘IS F)8A,(1)6A,' ’aAn(K+1)aAn _ 11 fl nln-l n n n

2K+l 2

=——-———t ,I‘,dtG,,-.dams“ (5 1 e( . I)

(3.16)

A necessary and sufficient condition for a non-negative Hessian determinant (3.16)

is det (H,) 2 0. This condition is satisfied with valid weight adjustments, made

evident by expressing H, in its a posteriori representation (2.16). I

Remark: It is noteworthy that setting K = 0 reduces this expression to the optimal

scalar weight in the QOBE algorithm [22, 39].

Corollary 3.1 Optimizing [in over several weights at each n results in a non-

increasing sequence {5,}.

Proof: By substituting (3.7) into (2.9) we obtain

K'n = Kn—i +7ZAnhn ‘ SnEnxn—il (3-17)

= rs.-. -7fAnSn(en)n-1 — 51.7..)

= fin—1 - AIFnSn(EnIn-l — Sn‘Yn)

= ”71-1 — (Enln-I "‘ Sn’YanGJLAEnln—i “ 5:1an (3-18)

Where Gn‘IL, is positive definite. Therefore, we, is a non—increasing function when

evaluated at A, of (3.11).

Equation (3.18) provides an algebraic proof of Corollary 3.1 along with the amount

0f decrease in It, at each step. To simply prove that K, _<_ n,_1 [using weights (3.11)],

we note that n,[An___O = n,..1. I
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3.3 Existence and uniqueness of an optimal solu-

tion

A major benefit of OBE algorithms is the avoidance of computationally costly recur-

sions by a simple redundancy check that detects when observations supply no new

information. Indeed, by pre-determining the absence of an optimal solution through

a computationally inexpensive test, an OBE algorithm avoids laborious computations

that ultimately yield zero or negative weights (indicating no optimal solution). The

QOBE algorithm is particularly attractive due to very its simple test for innovation,

notably le,,,_1| > 7,.

In the previous section, the MW-QOBE algorithm optimal weights were derived

as functions of a sign vector (or equivalent diagonal matrix) 3, (at time n). This

(K + 1) x 1 sign vector is formed from a set of 2K+1 possible permutations of :tl

elements, with the constraint (see Section 2.1) that the (composite) weights at time

n be element—wise positive,

qn’n : An + qn,n—l > 0. (3.19)

An efficient test for new information in the MW-OBE observation matrix presents

new challenges. Although a sufficient test for the presence of an optimal solution is

not yet found, we report a necessary condition in Theorem 3.1.

The following lemma represents the principal algebraic result needed to prove a

condition for existence of the weight adjustment vector A,.

Lemma 3.1 Let A represent an n x n symmetric positive definite matrix and let u

and v be two n x 1 vectors with v(i) > 0, for all i (E [1, n]. There exists a sign vector

8 with corresponding diagonal matrix S = ”0(3) (see Table 1.1) which satisfies the

vector inequality SA(u — Sv) > 0, only if

vTDz(v—|u|) S 0

where D is a diagonal matrix of eigenvalues of A.

Pr00f: We multiply the vector inequality 3.41:. > SASv by the vector v > O and
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obtain the scalar inequality

  

vTSAu > vTSASv > 0 (3.20)

which can be re-written

sTVAu > sTVAVs or (3.21)

sz > 2T2 (3.22)

where v 2 73(1)), z ‘1—5‘ RDVs, w 42‘ RDu, A = RTD2R with D a diagonal

matrix comprised of the positive square roots of the eigenvalues of A (all positive since

A is positive definite) and R unitary. The functions f1(z) déf sz and f2(z) déf sz

represent a hyperplane and a quadratic function in z, respectively. The inequality

(3.22) is only achieved in the interior of the spheroid represented by

sz — sz = 0. (3.23)

In order to express (3.23) in the form

Hz - 15c”2 - a = 0.

where 2, represents the center of the spheroid and a is a scalar, we choose

1 1

Cz- d =- 2.z 211) an a 4”w”

The spheroid equation then becomes

4 1 l l

(W) Hz - iwll2 = 1, or Hz — iw“2 = Iliwllz. (3.24)

Substituting the expressions for z and w, and recalling that R is unitary, (3.24)

iInplies that

IIRD(2V8 "11)“2 = HRDUII2

||D(2VS - u)“2 = HDUH2 0f
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vTDz(v—Su) = 0.

Any feasible vector u therefore satisfies

{u : vTD2 (v — Su) 3 0} (3.25)

where the vector 3 is one of 2"+1 possible sign vectors. The smallest value on the left

side of (3.25) occurs whenever s = sign(u). Therefore any n consistent with (3.25)

must satisfy

vTD2(v-|u|) g o. (3.26)

Hence the existence of a solution requires that there be a vector u satisfying (3.26).

Theorem 3.2 (Necessity) There exists a weight adjustment vector A, (3.11) sat-

isfying (3.19) only if

7:11.67. - lean—1|) S 0 (3.27)

where D, is the diagonal matrix of eigenvalues of G,},_1.

Proof: We may assume without loss of generality that A, > 0 as demonstrated in

Chapter 5. Let A = viii-1’ v, = Eula-1 and u, =7,,. Apply Lemma 3.1 to prove

the existence of an appropriate sign vector, hence, a weight adjustments vector. I

Next we prove that at most one weight adjustment vector A satisfies (3.11) with

constraint (3.19) beginning with the following lemma.

Lemma 3.2 Let A represent an n x n symmetric positive definite matrix and let u

and v be two n x 1 vectors with v(i) > 0, for alli E [1,n]. There exists at most one

sign vector with corresponding diagonal matrix S = D(s) such that

SA(u — Sv) > 0. (3.28)
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Proof: Let 31 ;£ 32 be sign vectors with corresponding diagonal matrices SI and

52 both satisfying inequality (3.28). Without loss of generality, we assume that

the mismatched elements of SI and 52 are consecutively arranged in the top left

quadrants as S1, and 32,, since we may re-order the basis and preserve the positive

definitiveness of A. The partitioned matrices (including A appropriately partitioned)

 

 
 

 

  

 
 

 

 

are

Sla O —Sla 0 An Ac

S] I , $2 = , A = T (3.29)

0 [51,, o Is, Ac (.4.

We now add the inequalities corresponding to S1 and 52,

0 < (31+ $2)Au — ($14431 + 321432)”

and incorporate (3.29), to obtain

i 0 0 SlaAaSla 0 v0

0 < - 2

_ o 23.. 0 l sit/1.5... v.

i _ZslaAaSIava

o < (3.30)

_ 2(Slb — SibAbSm)vb

where [ ya I vb ]T is an appropriately partitioned vector v. Multiplying each side

of the top partition inequality by the vector v, > O maintains the inequality, therefore

0 < “vaTSlaAaSla'vaa

a contradiction since A, is positive definite. Hence a sign vector 3 satisfying (3.28)

is unique. I

Theorem 3.3 (Uniqueness) At most one weight adjustment vector A, solving

(3.11) also satisfies (3.19).

Proof: Define A, u, and v, as in the proof Theorem 3.2. Apply Lemma 3.2. I
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3.4 Incremental gain

The merit of MW-QOBE with respect to QOBE is its ability to further reduce re,

and the ellipsoid volume at each update. In this section we explore the incremental

gains in such improvements.

Although “valid” weights are required to be non-zero for the non-singularity of

H;1A, (see Section 2.2), in practice a zero weight may be replaced by a small num-

ber2. This substitution allows us to prove the following theorem.

Theorem 3.4 If valid optimal weights ARK and A;,K_1 exist at time n for the opti-

mization of K2,,K and n,,K_1, then K,,K(A;,K) < n,,K_1(A;,K_1).

Heuristic proof: We can always achieve n,,K : n,,K_1 by taking A,,K =

[0 I An,K—1(2:K) ] a: [5 | An’K_1(2;K) ] where e is a small number. If

this solution produces the smallest possible n,,K, then the new (Kth) observa-

tion provides no innovation and therefore rc,,K(A;’K) = n,,K_1(A;,K-1). Otherwise

"n.K(’\;,K) < Kn,K-1(/\Z,K-1)- I

Proof with exact incremental gain: The energy matrix at time n when optimizing

over K weights may be partitioned in the following manner:

T
,K

Gnln—1.K : g" ng (331)

9n,K GnIn—l,K—l

with g,,K ‘2‘ x:_KP,_lx,_K, giK déf xZ_KP,_1X,,K-1, X,,K_1. We define the

d r _ . . . . . -
scalar AmK é ng — 9:,KGnlh—l,K-lgn.K' Since G,‘K IS posrtive definite, A,,fK =

G;}((1,1) is positive. Let us recall (3.18),

Kn : Kn—l —' (Enln—l _ Sn7anGn—|:;_1(Enln—l — 31:7,)

and define u,,K : e,|,_1,K — Sn.K7n,K- Then, by Lemma A.5, we rewrite n,,K as

2
——1 —1 T

“3n,K = Kn,K-1— n,K (un,K(1) n,K_1X,,K_1Pn—1$n,K-1 “* “ax—1)

\

2Necessary for the existence of A; l
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and conclude that n,,K < K,K_1.

Theorem 3.5 The sequence of ellipsoid volumes (over the times of updates) in MW-

OBE algorithms is decreasing.

Proof: Deferred until Chapter 5. I

3.5 Geometric interpretation of the n, minimiza-

tion

The geometric interpretation of the MW-QOBE algorithm provides considerable in-

sight into its behavior. The QOBE algorithm (MW-QOBE with K = 0) maps the

absolute value of the (scalar) a posteriori error, |e,|,_1|, to the bound 7, [11, 39]. We

observe a similar behavior in the MW-QOBE algorithm by incorporating (3.7) into

(2.12) to obtain

7n 077: — 6iii]?! 0 Enln = 0 (3.32)

This reveals that the MW-QOBB algorithm maps the component-wise absolute value

of a posteriori error vector 6,], to the error vector bound 7,, by requiring

7n : lenlnl- (3.33)

This phenomenon is illustrated in Figure 3.1 for the case K = 1. At each iteration,

the MW-QOBE algorithm attempts to map the error vector Enln—l to the unique 5,7,,

vector (one of 2"+1) which satisfies condition (3.19) through the transformation (3.7).

This condition imposes a more stringent requirement on the acceptance of observation

vectors and as a result provides a more selective screening process.

3.6 Algorithm

The MW-QOBE algorithm appears in Table 3.1. The initial conditions mirror those

in QOBE supplemented by the initial “accumulated” weight vector qwk1 which is
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Sn 27" 71(2) 5,; {7n

1 5 5 1-’7..( k {M ) :

S" 37" fln(2)i 371,477:

 
Figure 3.1. Error bound constraint (1.2) when K = 1 and m = 2. An error 6","-1

originally violating the bound condition is mapped to a location inside the rectangle

{u : In] 37} in its a posteriori an," form.

appropriately assumed to contain all zero elements. This vector contains the accumu-

lation of all adjustments made to the weights over the window of time that it currently

represents, n - K, . . . ,n. At each iteration, the elements of q,,,,,_1 are “shifted” to

reflect the new time window. The check for innovation at time n in the conventional

QOBE algorithm (K = O) is

IEnIn—ll >7n- (3-34)

With weight reoptimization (K > 0), satisfaction of this simple test is still necessary

for any further computation to be required on the window 12 - K, . . . , 17.. Indeed, if

there is no innovation in the observation at time n, then the past K weights are already

optimal. The use of the QOBE check for innovation (3.34) also becomes the basis for

a simple adaptive (in K) version of MW-QOBE algorithm. When an Optimal weight

adjustment vector for K past weights cannot be found, the algorithm may opt to use

the optimal weight for K = O. This adaptive process guarantees further decrease in Kn

(per update, see Section 3.4) and allows use of QOBE algorithm convergence results

[11, 39]. The computational cost of the method is drastically reduced by recourse to

the simple check (3.34) prior to further optimization.
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EnIn-l

  
Figure 3.1. Error bound constraint (1.2) when K = 1 and m = 2. An error Enln...1

originally violating the bound condition is mapped to a location inside the rectangle

{u : In] 37} in its a posteriori 5,4,, form.

appropriately assumed to contain all zero elements. This vector contains the accumu-

lation of all adjustments made to the weights over the window of time that it currently

represents, n — K, . . . ,n. At each iteration, the elements of qn,n-l are “shifted” to

reflect the new time window. The check for innovation at time n in the conventional

QOBE algorithm (K = O) is

lEnIn-il >7n- (3-34)

With weight reoptimization (K > O), satisfaction of this simple test is still necessary

for any further computation to be required on the window 12 - K, . . . , n. Indeed, if

there is no innovation in the observation at time n, then the past K weights are already

optimal. The use of the QOBE check for innovation (3.34) also becomes the basis for

a simple adaptive (in K) version of MW-QOBE algorithm. When an optimal weight

adjustment vector for K past weights cannot be found, the algorithm may opt to use

the optimal weight for K = 0. This adaptive process guarantees further decrease in ten

(per update, see Section 3.4) and allows use of QOBE algorithm convergence results

[11, 39]. The computational cost of the method is drastically reduced by recourse to

the simple check (3.34) prior to further optimization.
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Table 3.1. The MW-QOBE algorithm (non—zero past weights).

 

I. Initialization:

1. 9K 2 0, 5K :1 and PK : i], [1 small.

2. qK = 0.

II. Recursion:

For n = K + 1, K + 2, . . . , L (available data length)

If lEnln—l' > 7n

Form Xn matrix from present and chosen past K data vectors

along with corresponding yn and 7,, vectors.

E:nln-l : yn — Xian—l

Rn = Pn-an and Gnln-l : Xy’f‘Rn

If Sn exists such that Sn—Gnln_1(sn'n_1 - San) > 0

An : (Gnln—lsnrn)-I(En|n—l — $1177.)

Otherwise, next n.

Kn :: Rn[A;1+ Gn arr—l]—l

Pn : Pn-l. -' Kan

on : on—l + KnEnIn-l

Kn = nn-1 4‘71"an — SnE'rIIln—l) (if necessary)

Next n.

 

  
 

The computational complexity of the reoptimized algorithm is significantly worse

per update than that of QOBE without reconsideration of past data. However, these

selective algorithms tend to incorporate so few data that, even with the additional

burden at times of update, the overall complexity remains 0(m), the complexity of

the computations at a time for which no update occurs. Further, there is empirical

evidence that reoptimization may result in a significant reduction in the number of

updates over conventional OBE optimization.

3.7 Computational cost

The basic computational costs are described in Section 2.6. The initial data ac-

ceptance check remains the same as in the QOBE algorithm. If a QOBE Optimal

weight exists, the algorithm attempts an optimization over the past K weights (3.19)

which requires the computation of .G—nIn—l (K3 floating-point operations (flops)) as

well as its multiplication to a vector (K2 flops) (3.11). Note that the computation

of det (G,,l,,_1) is not necessary to check inequality (3.19) since det (Gnln-1) > 0 and
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Table 3.2. Computational cost of the MW-QOBE per—innovation check. For simplic-

ity, the notation K is used to denote K + 1.

Expression Dimension No. of Multiplications

 

EnIn-l

Rn = 1’an

Enln-l

Gn|n-—l

Sna—nln—l(5n|n—l

An

— 511771)

Total

 

le

me

KxK

KxK

le

le

 

mK

m2K

(mK/2)(K+ 1)

< K3

K2 (x2k)

R2 x R + det (Gn,n_1)

E-T—n—(m+K+2)

K/2

+I?(R2+I?+4)
 

therefore does not change this inequality. Table 3.2 summarizes the computational

cost of the MW-QOBE algorithm.

The computational cost is decreased with increased K due the reduction in ob-

servations deemed innovative (avoiding laborious recursions).

3.8 MW—QOBE with K :1

Readjusting a single past weight offers important insight into behavior of the general

MW-QOBE algorithm. The innovation check requires the computation of the vector

en,,,_1 (2m flops), the 2 x 2 matrix Cw.-. (2m2 + 3m flops) and a maximum of four

tests of condition (3.19), each requiring four multiplications (see Table 3.3).
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Table 3.3. Computational cost of the MW-QOBE per-observation innovation check

when K = 1.

 

Expression No. of Multiplications

Einln-l 2m

R" = 1’an 2m2

EnIn—l
3m

_ Gnln-l ‘

SnGnln—l(€n|n—l _ 57177;) 4 (X4, max)

An 4

Total 2m2 + 5m + [8 — 20] 
 

3.9 Illustrative examples

3.9.1 Decrease in ellipsoid volume

In order to illustrate the effect of increased K in MW-QOBE algorithms, we consider

the AR(2) system,

yn = -O.10yn_1 - 0.56yn_2 + em. (3.35)

where e... is uniformally distributed over the interval (—1,+1). We use the MW-

QOBE with K 2: O (QOBE) and MW-QOBE (K = 1) to identify this AR(2) system

of length 100. The QOBE algorithm found 21 points relevant to the optimization

process as compared to the five used by MW-QOBE with K = 1. Figure 3.2 shows

the ellipsoid generated by the two techniques at times 71 = 8 and n = 13 with

corresponding polytopes, ellipsoid centers and true parameters. The MW-QOBE

ellipsoids show improved alignment with the major axis of the polytope, and reduced

volumes.

We note that QOBE does not focus on decreasing volume. In fact, it more-or-less

“ignores” the ellipsoid altogether in the attempt to minimize Kn.
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3.9.2 Weight assignments

In this section, we illustrate the weight assignment mechanism in the MW-QOBE

algorithms and their data screening behavior. We consider the AR(3) system,

31,, :2 0.49%-; + 0.61yn—2 + 0.58yn_3€n. (3.36)

where 5,... is biased and found in the interval [—0.5, +1]. Table 3.4 show the first 38

weight assignments. As expected, the QOBE algorithms uses the largest number of

observations in the optimization‘process, followed by the MW—QOBE (K =2 1) and

MW-QOBE (K = 2) algorithms. At time n = 17 (K = 2), the non-zero weight

917,17 = A17 = [9.34 x 10“, 1.904 x 10’3,4.148 x 10’3]T is assigned to observations

previously ignored. Therefore, observation vectors 1:15 and 1:15 became relevant in

light of the new observation vector 2:17. We also observe at times n=15, 16 and 17

(K = 1) the compounding effects of weight adjustment as consecutive observation

blocks are used. Between times 15 and 17, the weight applied to observation vector

(:15 increased from 6.242 x 10'3 to 6.551 x 10‘3 and the one applied to 1:15 decreased

from 1.906 x 10‘3 to 5.443 x 10“. This example illustrates the importance of allowing

negative adjustments (within constraints) to past data vectors which may not convey

as much information as previously computed in light of a current observation.

The MW—QOBE (K = 2) only used three observation vectors in identifying (3.36),

compared with the 32 and 10 needed by MW-QOBE (K = l) and QOBE, respectively.

Using this reduced number of observations, the MW-QOBE (K = 2) was able to

identify system (3.36) in a comparable amount time to that required by smaller K, as

seen in Figure 3.3a. The associated volume is greater (Figure 3.3b) due to the smaller

number of points taken (even though, per update, increasing K decreases volume).

A similar remark is true of the plot of K." in Figure 3.4b. The a posteriori error in

Figure 3.4a shows its mapping to the error bound (when an observation is accepted).
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(b) Time n = 13.

Figure 3.2. OBE ellipsoids resulting from the system identification of AR(2) system

y7, 1' —0.10y,,_1 — 0.5611,.-2 + 6,... by QOBE (dashed line) and MW-QOBE (solid line,

Kzl) at times 72. = 8 and 13. The star (*) represents the “true” parameter and the

circles (0) the central estimators (superimposed). The underlying polytopes (exact

feasible sets) are also shown.
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Table 3.4. First 30 weights assigned by QOBE and MW-QOBE (K = 1,2) algorithms

in the identification of the AR(3) system yn = 0.49yn_1 + O.61y,,_2 + 0.58y,,_3 + Em,

where the “true” measurement error sequence {5...} is uniformly distributed over the

interval (-1, +1). The QOBE and MW—QOBE (K = 1,2) algorithms selected 32, 10,

3 observations, respectively, from a total of 100.

 

 

 

 

 

QOBE MW-QOBE (K=1) MW-QOBE (K=2)

Time)" qn." Qnm qn,n—l Qn,n gum—1 ([n,n—2

x1074r x104 x10-4 x10-4 x10‘ ><10-‘r

5 1.837 - - - _ -

7 6.203 12.002 7.117 - - -

8 - — 12.002 - - -

9 50.115 - - - - -

14 15.073 - - - .. -

15 16.917 62.422 25.913 - - -

16 20.392 19.061 65.508 - - -

17 6.189 21.261 5.443 9.340 19.039 41.481

18 2.025 - 21.261 —— 9.340 19.039

19 — - - - - 9.340

20 0.624 - - - _ -

24 1.798 - - - - -

25 - 15.458 10.908 - - -

26 - — 15.458 - - -

28 - 13.325 1.661 - - _

29 1.546 - 13.325 - - -

30 0.475 - - - - -

32 0.612 - - - _ _

34 0.059 - - - _ -

36 0.034 - - - - -

39 0.357 3.191 4.099 - - _

40 0.515 1.301 3.764 .. - -

41 - - 1.301 - - -

44 2.757 - - - - -

46 3.933 - - - - -

47 0.685 - - - - -

54 0.009 - - - .. -

57 0.146 - - - - -

61 0.219 - - - _ -

62 0.200 - - - - -      
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Table 3.4.
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(b) Volume.

Convergence of the parameter estimator 0,,(2) to the “true” param—

eter 9,,.(2) = 0.61 and associated ellipsoid volume in the system identification of

31,. = 0.49yn_1 + 0.61yn_2 + 0.5831,.-3 + 5,... by QOBE and MW-QOBE (K=l,2) as in
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Figure 3.4. 16,, and a posteriori error €n|n associated with the identification of the

system of Figure 3.3.
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Chapter 4

Multiple Weight Set-Membership

Weighted RLS

 

4. 1 Introduction

Reducing the ellipsoid volume in OBE algorithms shrinks the set of feasible solutions,

and assuming convergence of (2,, to {0.}, asymptotically forces the central estimator

to a closer neighborhood of the true parameter vector. This approach is successfully

used in several OBE algorithms including the SM-WRLS [13, 14], which pointwise

minimizes the ellipsoid volume in the context of an RLS-like framework. In this

chapter we develOp an OBE algorithm named after the SM-WRLS, the MW-SM-

WRLS algorithm, which extends the pointwise SM-WRLS minimization of volume to

an algorithm that optimizes the volume over several past weights.

4.2 Volume minimization

The volume of ellipsoid (2,, is measured by either the trace or determinant ofMP" [14].

The SM-WRLS algorithm minimizes the determinant of MP", which is proportional

within a constant to the actual ellipsoid volume, in its derivation of optimal weights.

Here, we use the same optimization approach, with the added flexibility of K past

weights adjustments. Hereafter the term “ellipsoid volume” or “volume” at time n

refers to the determinant of the matrix renPn

,. Pn
Va (1:! det (KnPn) = Kgndet (Pu) :— n’” det( ) det (Pn_,). (4.1)

n det (Pn_1)
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Using (2.18), (4.1) can be written

 V,, = m—-———— = ” 4.2

“" det (H,,) 11,, ( )

where h,, —Erdet(H,, ). We minimize (4.2) over several weights, in a manner similar

to that used in [13]. Minimizing the volume3 with respect to the weight matrix,

alternatively represented by (see Section 2.2)

:fl(H - I) nln— l-—nH n|n—1_Gn_[rlr-l : Gnln—IHT— 75111—1? (4'3)

is equivalent to minimizing volume with respect to the matrix H,,. The derivative of

the volume function with respect to matrix H,,,

   

BVn _ 015,, K'm—l 0h” m

6H,, — det(P,,_1)[maHnnn hn—aHnnnJ, (4.4)

is minimized by determining a matrix H,, that solves

= ~411~ ~141 <44

(142"1 and det (P,,_1) are both strictly positive numbers.) In finding the derivative

of 19,, with respect to H,,, we first write 15,, as a function of Hn,

Kn : K'n-l +711; [(Hfl - I)Gn|n-1]7n _ Eran— l [H—1(Hfl _ I):n|n- I] Enln l

: kn l +7n [I17lG1nln— l]7n + E:nTlnm 1 [G111ln— 1(HnGn-ln— I).l Gnln- I] e.M’V" 1

= is".1+7” [HnGn‘ln_ ,]7,, +511,” l[H,,GJIM,] le',,,,,_1 (4.6)

~ (19‘ T —1 T

7!

Using the formulae given by Athans [1] (see Lemma A.6), we then find

 

 

0h"

6H : “nHiT
(4.7)

an”

_T

6H :: 7n7nGnln-1WHT—qun lenln— lenln— 1H" , (48)

 

3Minimizing the“volume ratio” as in [13] or “volume” lead to identical optimizations.
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The volume minimizing equation (4.5) becomes

0 = mn‘ynGn—[n— l —;mHT__Gn[n lenln— lsnTln- [HgT—I‘CanT

_—_ mHn7n7nG,;_,HT —_mG,,,., ,§,,,,_ ,51‘,,,_ , 14an

-_- mG,;_,HT (.mn)Gn,}, 1H,, —m(§,,,,_,§3,‘,,,_,)—1~.,,G;,}, ,HZ (4.9)

or, in matrix form,

"rm: l “$19.1 5.3.411:

0=[ J1". IHT | I] -———l ——————— --—- (4-10)

— l 5711 I _mEnlfl-lenln- l I

where G"1n|n_1HTis the unknown, symmetric positive-definite, matrix.

Remark: When K = O, the solution to (4.9),

 

Hn Rn—l + ’23—] + 4(m2 _ 1)7353,[,,..1

7

Gnln—l — 2(m _ 1)7721

 

corresponds to the SM-WRLS weight

Gn[n—1[Hn/Gn|n—l] - 1

Gnln—l

Gnln—lkn-l — 2(m - 1)7r21+ GnIn—l\/Rizr-l + 4(m2 — 1)77216721|n—1

)

— 2(m —' 1)Gn|n—l712;

An:

 

~ _ 2 2 7 _

Where “Zn-1 “ K'n—l_5n|n_1/Gn|n—l_7nln-1/Gn|n-11EnIn—l — Enln—l/Gnln—ly and Where

H,, and 0,4,,4 are the scalar versions of H,, and Gum—1-

4.3 Optimal solution existence and uniqueness

In this section we provide a method for solving (4.9) for the matrix H,,, describe a

condition for the existence of a solution and show the uniqueness of this solution.

Without loss of generality, we assume that the weight adjustment vector A" has

all positive elements, as demonstrated in Chapter 5. Notation and definitions needed
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Table 4.1. Notation used in Chapter 4.

Notation Definition

71 x 1 vector

 

u

v n x 1 vector with v(i) > 0, for all i 6 [1,71]

m m E N, with m 2 n

Mn+ set of all real symmetric positive definite n x n matrices

X X E Mn+

W . W E Mn+ with diagonal elements 111,- ”g W(i, i)

D diagonal matrix of eigenvalues, d,, of X [i.e., d, déf D(i, i)]

R orthogonal matrix such that X = RTDR

a,- ,-déf u_(i) [mu(i)v(i) - uTv] for all i 6 [1,71]

8 ”63
fl, [6,-"=f— muiv(i)+uTv foralli€1,n:71, [ 1 1 ] 1 1

Table 4.2. Function definitions used in Chapter 4.

Function Definition

b b=c-uTW“lu —vTW'1v wherec> 0

f f : Mn+ —+ 31”.

f(Z) 2 12+ uTZu + vTZ‘lv

F F: Mn+ —> Mn+

F(Z) = ZuuTZ — f(Z)Z —mva

throughout the rest of this chapter given in Tables 4.1 and 4.2.

The following lemma is necessary to find a condition for the existence of a valid

weight adjustment vector A" (or matrix Gn|n_1H:) which solves (4.9).

 Lemma 4.1 f(X) —+ 00 and (i641?) —+ 00 as trace (X) —> 00.

Proof: We re-write the function f(X) as

u _,v
vT

f(X) = b+llull2i +llvH2—X _—
ll" H Xu“ll “‘0 ll “’0”

:2 b+]|u]|2 uTDu+llvll2f2TD1"
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where i 2: Ru/Hu“ and i5 = Rv/Hvll, each having unity norm. Since (1min <

fiTD‘ii < dmax and d",1 < 'vTD‘lv < dmfn, the function f(X) is bounded by

b + Hallzdmin + llvllzdmax<<f(X) < b + ”1‘“:lex + llvllzdmin

Let j be the index of the largest eigenvalue of X. The function f (X) is then decom-

posed into the two terms

f(X) = b+nun2uw+900 .

Hun? zfizmdi + Hull? 2 399
#1 i

llwhere, g(X)

The function g(X) is a sum of positive elements and is therefore positive. We conclude

therefore that f(X) —) 00 as trace (X) ——) 00 (dj ——> 00 implies trace (X) -) 00.) We

rewrite f(X) as

 

 

 

 

 

 

__ b " ‘ii i

f(X) = dJJ-Mllltdlz)2 +3: +213’]

so that

f'"(X) _ d'?‘ H " W ‘ "‘
det(x) — I‘zldllullu J'()+ £+§dd

Since the term

b " 52(2')

[gig-F: didJ-l ->oo as dj—>oo,

and since m > 72 implies that d;" > [1111 d,, we have

m X d‘m

f ( ) [||u||fi(j)]2m n] —>oo as d]- ->oo, 

det (X) —> i=1 di

from which we obtain

f’"(X)
det(X) -—>oo as dj——)oo. 

 



Hence,

f’"(X)
det (X) —+ 00 as trace (X) —> oo. 

Theorem 4.1 (Existence) A suflicient condition for existence of a positive weight

vector that solves (4.9) at time n is

Kn_
(my: — Emu—153,34) Gn—ln— 1 < ml], (4.11) 

Proof: The volume (4.1) is a continuous function in the positive hyperquadrant of

ER“+1 (see Chapter 2). From the definition of Hn, we have

K-H

trace( =2 [1+ A,,( G_,,,,, 1(i, i)].

i=1

Therefore “An [I ——+ 00 implies that trace (Hn) —> 00. Let X: Hn n],,_ 1, b-- kn_1,

u :7" and v = En,n_1 with RP; and En'n_.1 as in (4.6). By Lemma 4.1 we have

m

[tn—>00 and {ii-+00 as ”Ann—+00,

n.

hence Vn(A,,) —> 00 as ”An” —+ 00 (see Equation 4.1). We also know that Vn(0)

must be greater that Vn(An) if an optimal weight adjustment, An, exits. Therefore,

the condition that all partial derivatives be negative at An = 0 is sufficient for the

existence of a solution in the positive hyperquadrant. By substituting A" = 0 in

(4.7) and (4.8) we obtain

Bhn
 

 

 

= I

8H"
A7120

an?!
: 77TG-l

“—GnIn—lE-nln-IE-T

1

6H" Anzo n nln— l nln-

._ T —l

_ Vn’YnGnln— 1 "Enln-IEnIn—l n|n—l

 



which, when incorporated into (4.4), produces the matrix

  

 

 

  

3V"
T —1 T _1

6H" Anzo
: K'n-l (7n7n0n

ln—l — €nln'lsn
ln-1Gnln

—1) — I

T
T —1 “Zn—1

: (7717" — Enln-lenln-l) nln—-1 _ m I (4.12)

with trace

n — T ‘1 T —1 (K + 1)

trace 6H" r\..:O _7n Gnln—l7n - Enln-IGnln—lsn
ln—l — Kn—l- (4.13)

 

The check for existence of a valid weight is therefore the matrix inequality (4.11) I

Remark: From (4.13) we obtain

(K+1)

 

[Cn_1 ”71Gn-irlh4‘7n > ET Grii_15n|n_1 > 0 (4.14)
nln—l

which implies Kn-1 —7IG,:|,1,_17,, > EZIn-lGn—lrli-lsnln‘l > 0, thus 12,.-1 > 0. 0

We next turn our attention to solving (4.9). At present, no closed form solution

for K > 1 has been found, but we present a general approach for solving the problem,

which simplifies the quest for solutions. The following lemma represents the principal

algebraic result needed to derive the optimal weight adjustment vector A,,.

Lemma 4.2 F(D) = O with constraint f(D) > 0 when

d,- = 1(b+,/1;2+4a,s,). (4.15)
201'

 

Proof: The (i,j) equation in F(D) = 0 when i aé j:

m(d,dj)[u(i)u(j)]—m[v(i)v(j)] = 0 ' .

or did, 2 M. (4.16)

 



The (i,j) equation in F(D) = 0 when i = j:

 

2 .

0 = md,-2u(i)2 - 5d." — d1 ZU2(j)dj " (11': ”(10) — mv(i)2

,- ,- j

= (m —1)d§u(4)2 — bd. — (m +1)v(z')2 - Z (u2(j)d.dj + 122(1)?)

  

 

  

 
 

  

J9“

= (m —1)d,2u(i)2 — bd, -— (m -l-1)v(i)2

2 - 2 - d?

_ ,2; (u (2)4161]- +1! (”(174) (4.17)

Substituting (4.16) in (4.17), we obtain

0 : l-(7,n___ 1),“(02 _Zu(i)u(.7)v(j) di2__bdi_ (m+1)v(i)2—Zv(z)v(j)u(])

_ #4 ”(2) #i "(‘l

= l.(m — l)u(i)2 — 1('(Z)Zu(j)v(j) d? —- bd- — (m + l)v(i) z.)}__:u(j)v(j)

, ”(z) J¢i :(z)1#i

= l(m —1)u(i)2 —— 5%(uTv -— u(i)v(i))] d? —- bd, — (m -l-1)v(i)2

'_v(i) _ ’,
-2114‘7‘)(1‘‘D — “(3)710”

- mui2 1—‘—(—ZZuT 2- -mvi2+ —(—vi)uTv

‘ (’ v(z)T”‘ld “1 l () a(i) l

_ 2 - "(2') b ' _ [mu(i)v(i) + uTv]

— d‘ v(i) [mu(i)v(i) — uTv]d' [mu(i)v(i) — uTv] (4'18)

.—_ d3 —- 3d, - g3} (4.19)

IEquation (4.19) is quadratic in d,- with solutions (4.15).

We now revisit the condition for existence of the MW-SM-WRLS optimal solutions

through Lemma 4.3 by determining a condition for the existence for the roots of (4.19).

Lemma 4.3 A matrix D satisfying F(D) = 0 with constraint f(D) > O and d,- > w,-

erists if and only if

a,([3.-+bw,-) > (01,111,)2. (4.20)



Proof: From d,- > w, we obtain

1

.

(fl.+bw.-) > w? (4.21)

01(fli+b1“t) > (a,w,)2. (422)

Remark: When n z 1, we have a :2 u2(m — 1), fl :-. v2(m +1), w 2 1/0 and

2

= c — Z‘_ — v20. Equation (4.20) becomes

G

N

’U.

u2v2(m —1)(m +1) > —G—'(m —1)[E§(m - 1) — b]

which reduces to

msz2 > mu2 - cG. (4.23)

We obtain the SM-WRLS innovation check by u = '7, v = enln-1/Gn and c = rem). 0

Theorem 4.2 When the weight adjustment vector An exists, the matrix H"On-[Ll

solves (4.9), and A" solves (4.3).

Proof: Let X = H“ ’1 b = Fen-“ u :7" and v = En'n_., where Fan.) and Emu-)
nln-l’

are as in (4.6). Apply Lemma 4.2 to find HnGn-Irli—l' I

Next we prove that at most one weight adjustment vector A... (or matrix

”1 1HI) satisfies (4.9) with constraint (3.19). The following lemma is required.
n|n-

Lemma 4.4 There exists at most one X e Mn+ satisfying F(X) 2: 0.

Proof: Let X1 and X2 6 Mn+ such that F(Xl) = 0 and F(Xz) = 0. Let M be

a non-singular matrix such that MXIMT = I and MX2MT : D, where D is a

diagonal matrix with positive elements. The existence of such a matrix D is proven

 



in [41]. Let i = Mu and '17 = M‘Tv. We then have

0 = mDaaTD - (b + aTDfi + oTD“v)D — mot—F (4.24)

0 = miii‘iT —(b+ uTu + vTv)I — min-2T. (4.25)

When i 75 j, the (i,j) equations of (4.24) and (4.25) become

m(¢dj)lU(i)fi(j)l-le(i)"17(J')l = 0

mlU(i)fi(j)l-mlv(i)’fi(j)l = 0

implying that d,d,- : 1. From the diagonal equations (i,i) of (4.24) and (4.25) we

 

have

0 = m‘u(i)2 - :—((:—))fiTvi d? — bd, — [mv(i)2+ :2—7;fiTiiJ

_ , 2 a(i) . 2+ v() ._
0 — mu(i) — ”(i)“”T1)] —b- [mv(z)+ "Ti—)1;uTv]

  

thus d,- = 1 for all i. The matrix D is therefore the identity matrix, indicating that

X1 must equal X2. Therefore, a solution to F(X) = 0 must be unique. I

Theorem 4.3 (Uniqueness) At most one weight adjustment vector An (or

G" HZ) satisfies (4.9).
nln— 1

Proof: Let X: Gn-ln— 1H1, b 2 kn.“ u 27,, and v = 6",,th with fin.) and e",,,,,_,

as in (4.6). Apply Lemma 4.4. I

4.4 MW-SW—WRLS with K = 1

Optimizing the ellipsoid volume by re-visiting a single past weight is the simplest

form of MW—SM-WRLS. It offers significant insight into the behavior of the algo-

rithm and presently is the only case with a closed form solution. We solve for the

matrix HnG'—lnln 1 from which we obtain the weight adjustments. In order to simplify
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notation, the optimal solution to (4.9) when K = l is presented through the following

lemma.

Lemma 4.5 Let n = 2. The solution to F(X) = 0 with f(X) > 0 is X = RTDR,

 

- ' d 0

with R 2 C081!) 3m 11) , D 2: 1 and X(1, 2) 2 gm, where

Slut/J cosw 0 d2

__ <15 Pi

11’ ” 2 4

¢ : arctan 1 mllleul - v.2)(u1 + 1110+ 2uTv(u1v1 -— "2112)

2 mllvllulug + uTv(u1v2 + 11211))

d,‘ = ii:(b+vb2+4a,fl,)fori=1,2.

 

Proof: Let

 

  

—— ' d 0

R = cosw 5'” and D : 1 (4.26)

sinw COS‘l/J 0 d2

where w is a rotation angle. We then obtain

1

912 = ((12 — d1) coswsini/J : §(d2 —- d|)sin 2w. (4.27)

From (4.27) and (1le = 31:2 , we obtain the quadratic equation in ct),

11111.2

2912 5152
0 = 42 d - 4.28

1+ sin2w l ‘iIl'fig ( )

 

 

 

 

E b : ‘29” * (4 29)
7&1 TIM—£151 — UT'U sin 2d) .

— -— -— — T

_23‘ "13‘3” u v = 1 (4.30)
122111 mulvl — uTv

E b = ————29” (4 31)
fig mfigvg -— uTv sin 21,0 '

— - — — T
ulvg 77111202 "l’ 'u. 'U : 1 (432)

 



Combining (4.29-4.32) we obtain the system of equations

-—b

mfilfigfil + fig (BTU) Z ——-‘D—2 Sill 211} (4.33)

2912

b

m'filfigv‘g + fi1(uTv) : —'61 sin 2w (4.34)

2912

which simplifies to

TRH’UHZ'l—Ilfig + UTV(E1'-U_2 + 5251) Z 0. (4.35)

Incorporating the rotation matrix (4.26) into (4.35), we obtain

0 : [mllvll2u1u2 + uTv(u1v2 + u2v1)) cos 21/1

+ 5 [mllv||2(u1 - U2)("1+ “2) + 21‘7’”("11’1 — u2v2)] sin 24’

 

(4.36)

which we solve for the angle #2. Let

¢ : arctan 1 m||v||(ul — u2)(u1 + 112) + 2uTv(u1v1 — U202). (4.37)

2 mllvllulug + uTv(u1v2 + u2v1)

The solution w of (4.36) becomes

0 = cos ¢cos 2w + sin ¢sin 21,!) = cos(¢ — 21.0) (4.38)

or,w 2 g—g-kn k=O,1,-~. (4.39)

Since the addition of the term kn k =2 0, 1, - ~ . in (4.39) does not change the solution

of F(X), we have

e H

(
\
D
I
S
~

|

A
)
:

(4.40)

 



Table 4.3. The MW-SM-WRLS algorithm for K := 1.

 

I. Initialization: 1

1. 9K = 0, KK =1 and PK 2 ——I, p small.

it

2. qK = 0.

II. Recursion:

Forn=K+1,K+2,...

n _ G2 2 n l nln 1

If EnIn—l > 7n '“" """"_""_' '-'""'

m

Form Xn matrix from present and chosen past K observation vectors

along with corresponding y" and 7,. vectors.

5.n|n--l : yn — Xyrgn-l

Mn = Pn-,x,. and 0,4,.-. = Xan

- _ -l ~ __ —1

Enln—l ‘— G _1Enln-117n “ Gn|n_17nnln

-1 Kn—II

If (7J7: _ Enln-IEZ‘In—l) nIn—l > m

[78"-] = Kn..1 " EZIn-lé-nln‘l _7IIn—l‘7nln-l

Compute the rotation matrix R" from (4.40) and (4.26) i

Compute the diagonal matrix Dn from (4.15)

An : RZDan _ 1511-1,

Otherwise, next n.

Kn = M,,[A;1 + GEM-11-1

Pa = Pn—l "' Kn n

9n = gn—l + KnEnIn—l

—1
- T —l ~T - -

K" : Kn_1 +713 [Hfl vulva—J77! + Enln-l [HnGnlrlz—l] Enln—l

 

 

  
 

4.5 Algorithm

To date, a closed form for the MW-SM-WRLS optimal weights hasn’t been found.

We offer an outline of the general algorithmic steps on Table 4.4. An algorithm for the

case K = l is presented in Table 4.3. When K = 1, we first determine an appropriate

rotation angle with corresponding eigenvalues for the matrix HGal—IL” then generate

the optimal weight vector.
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Table 4.4. The MW-SM-WRLS algorithm (non-zero past weights).

 

I. Initialization: 1

1. 0K = 0, KK =1 and PK 2 ——I, )1 small.

it

2. qK = 0.

II. Recursion:

Forn=K+l,K+2,...

n G
2 2 71-1 nln—l

If Enln—l > 7n —_—

Form Xn matrix fiblm present and chosen past K observation vectors

along with corresponding y" and 7,, vectors.

Enln— l "”yr; XT91:- 1

Mn =_Pn1Xn andGnln_1=XTMn

Enln—l__ Gnln—lEnln-l? 773—- Gum—177!

If (7:31“ Earn—162M) n-lrln—l > Kin—“ll

Rum] = K'n-l -' 531""- IEInIn—l —7:|n—17-n|n—l

Compute optimal 04",..-1HZ = RZDan,

where Dul is diagonal (positive), and R", orthogonal.

An HGn—ln 1H: _ n-lrli—l’

Otherwise, next n.

Kn =MnIA;l + 011,1- 11—1

R, : Pn_1— KnMn

on : 011— 1+Knenln— l 1

Kn=Kn—1+7n[Hnn|n—1]7n+5n|n1(Hn n|n 1] 5'71!"—1

Next n.

 

 
 

 FIX
I
'
V
‘
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A
1
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4.6 Illustrative examples

4.6.1 Decrease in ellipsoid volume

In order to illustrate the effect of increased K in MW-SM—WRLS algorithms, we

consider the AR(2) system (3.35). We use the SM-WRLS and MW-SM-WRLS (K =

1) to identify this AR(2) system of length 100. Figure 4.1 shows the ellipsoid generated

by the two techniques at times n. = 8 and n = 10 with corresponding polytopes,

ellipsoid centers and true parameters. The MW-SM-WRLS ellipsoids show reduced

volumes. Note the significant size differences between the MW-QOBE ellipsoids of

Figure 3.2 and the MW-SM-WRLS (K = l) ellipsoids of Figures 4.1. This difference

reinforces the remark in section 3.9.1, that MW-QOBE algorithms do not focus on

minimizing the ellipsoid volume and therefore may generate large ellipsoids.

4.6.2 Weight assignments

In this section, we illustrate the weight assignment mechanism in the MW—SM-WRLS

algorithms and their data screening behavior. We consider the AR(3) system (3.36).

Table 4.5 shows the first 38 weight assignments. As expected, the SM-WRLS algo-

rithms use more observations in the optimization process than the MW-SM-WRLS.

At time n = 5 (K = 1), the non-zero weight Q5,5 = A5 = [0.857 x 101,1.437x1]T is

assigned to an observation vector previously ignored. Therefore, observation vector

24 became relevant in light of the new observation vector 2:5. We also observe that,

between times n=11 and 12 (K = l), the weight applied to observation vector 1:“

decreased from 21.24 x 101 to 15.31 x 10‘. This example illustrates the importance of

allowing negative adjustments (within constraints) to past data vectors which may not

convey as much information as previously computed in light of a current observation.

The MW-SM-WRLS (K = 1) used 45 observation vectors in identifying (3.36),

compared the 51 needed by SM-WRLS. Using this reduced number of observations,

I the MW-SM-WRLS (K = 1) was able to identify system (3.36) in a comparable

amount time to that required by SM-WRLS, as seen in Figure 4.2a. As expected,

the MW-SM-WRLS (K = 1) ellipsoid volume is smaller than that of SM-WRLS

(Figure 4.2). No particular conclusion is drawn about the effect of increased K on Kn
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(shown in Figure 4.3b.) The a posteriori error in Figure 4.3a shows its mapping to

less than (or equal to) the error bound (when an observation is accepted.)

4.7 Volume minimization, alternative approach

In this section we describe an alternative approach for solving for the optimal weight

matrix that minimizes volume.

—1

Multiplying (4.5) from the right by [gain—J we obtain

an” ah, _I K."

which, by substituting (3.4), becomes

0 = m [If — D(H;Te,.,,,_,)2] [\,(H;TG,,,,,_,)]‘l — nnI (4.42)

o = m [half - D(Fne,,,,_,)2] [\,(‘I?I‘,.G,,,,,_,)]’l — hnnnl. (4.43)

Minimizing the ellipsoid volume in the MW-OBE context is seen to be equivalent to

solving for the weight adjustments, roots of either (4.42) or (4.43). We re-write (3.4)

3.5

 

05,, _ _

8A 2 r3 —\,(HnTe,,n_,efln_,Hn‘) (4.44)

to obtain the volume minimizing equation

0 = mrf — m\,(H;Tenln_ls:,n-1H;l -— n..\, (G,,,,_,H;‘)

o = \ (H;T (Hfer, - e,,,,-,e?,‘,,,_, + %H30,,,_1) H;‘] . (4.45)

Equation (4.45) may be re-written the following way:

0 z \ [H;TGn|n-1(Tn)Gnln“lH'—fll
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with the symmetric matrix Tn defined by

Tn : G"l (HZI‘ZHn _ EnIn—legn—l _ EHZGflln‘l) Gn|n~l

m
nln—l

_ __ R

Z FIE/‘72! + nlrli-lrrfAn + Aflrr? nlrlr—l - ERA"

_1 2 T Kn -—l

'i' nIn—l (I), ‘* €n|n~15nln-1 _ ‘7‘; n|n—-I) nIn—l' (4.46)

We re—write Tn in the following block form:

(4.47)

 
where

i

A, = r:

K:_ -1 2 __ n

B" — Gnln-lrn 2m

_ —1 2 T "n —l

C" — nln—l (Pu - E’lln‘IEnIn——l — 7n- Gnlfl—l) nIn-l’

When An and 0,, are positive definite, Tn is positive-semi-definite. Therefore Tn

must be zero in order for (4.45) to hold as shown in the following lemma.

Lemma 4.6 : Let A and B be symmetric non-singular and positive-semi-definite

matrices respectively. Then \, [ABA] = 0 implies that B = 0.

Proof: By congruence, B positive semi-definite implies that the product ABA is

also positive-semi-definite. The trace of ABA, sum of non-negative eigenvalues,

being zero implies in turn that all the eigenvalues are zero. In addition, the matrix

ABA with non-negative eigenvalues is symmetric therefore it must be zero. However,

A is non-singular; therefore B must be zero. I

We therefore solve Tn = 0 for a general Kn > 0. Note that 52,, — nn_1 = 0 gives

(4.47) a Ricatti equation form [3].
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Definition 4.1 : The operator 1"” (HT) creates a matrix identical to H except that

its ith row is replaced by the vector uT. (This is an adaptation of the notation in

[43])-

Focusing on [fin and hnnn, the following observations are made:

fin(*ij)5n|n—l : detllJBn(E:|n-l)l

em.-.(2')A..(j)‘ii.(*,j)e...-. = det[14.4,(e...-1(j)A.(j)eI..-1)l

detthiom) = det [Hg,(~ri(j)A.H.(j.*))]. (a

Since the expression for has" sums these determinants (from similar matrices except

for one row), we may combine their determinants (see [41]) as

 K .

hn’cn : hnKn—l + :det [HHn(7121(j)Afl(J)Hn(J1 *) _ Enln—l(jlxn(j)517f|n—l)] - u

1:1

By defining the matrix Mn

M, “é‘ r3A§G,,n_, + A, (r: — en,,-lejgn_,) (4.48)

= An [1‘an -— en,n_le;,rl,,_l] ,

h"Kn becomes

K .

hnnn = hnrcn_1+;det [r’Hn(M,,(j,*))] (4.49)

.7

which is converted into the matrix form

14,, — nn_1 = trace(M,,H;1) = trace (H;TM:) (4.50)

hnnn — h,,n,,_1 : trace (Mnfif) : trace ()7an (4.51)

By expressing Mn and Jn in block form,

  

i 6.4.4.4..

M. = [ A, | I J A.G.......1 — ~ —— 0....-. (4.52)

_ C" + Lid—l Grflrli—lj
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I

and J" = trace (HgTMn) [ A,1 | I] —- . (4.53)

G—l

nIn—l

The initial steps provided in this section for finding the Optimum MW-SM-WRLS

weights may provide important information for future research in MW-SM-WRLS

algorithms.
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as,

  
(b) Time it = 10.

Figure 4.1. OBE ellipsoids resulting from the system identification of AR(2) system

31.. = —-0.10y,,_1 — 0.56yn_2 + E". by SM—WRLS (dashed line) and MW-SM-WRLS

(K21, solid line) at times n = 8 and 10. The star (*) represents the “true” parameter

and the circles (o) the central estimators (superimposed). The underlying polytopes

(exact feasible sets) are also shown.

 



Table 4.5. First 30 weights assigned by SM-WRLS and MW-SM-WRLS (K = l)

algorithms in the identification of the AR(3) system yn = 0.49y,._1 + 0.6131,.-2 +

0.58%.; + em, where the “true” measurement error sequence {6",} is uniformly dis-

tributed over the interval (—1,+1). The SM-WRLS and MW-SM-WRLS (K = 1)

algorithms selected 51 and 45 observations, respectively, from a total of 100.

 

 

 

     

SM-WRLS MW-SM-WRLS (K=1)

Time)" gum qn,n Qnm—l

x10I x10l x10l x10I

4 9.994 - -

5 14.912 0.857 1.437

6 22.302 10.541 0.857

7 24.355 14.597 10.541

8 21.644 16.438 14.597

9 28.240 20.155 16.438

10 23.885 21.241 20.155

11 24.891 7.621 15.312

12 - - 7.621

14 46.303 25.753 -

15 26.187 17.355 25.753

16 19.828 18.332 17.355

17 12.770 5.007 18.332

18 24.471 4.723 5.007

19 2.471 - 4.723

20 3.639 - -

24 41.686 15.696 8.232

25 43.606 17.851 15.696

26 - - 17.851

27 4.092 6.023 -

28 0.332 - 6.023

29 47.938 14.348 -

30 13.976 7.815 14.348

31 - - 7.815

32 12.784 6.149 -

33 - - 6.149

34 12.027 3.715 -

35 0.607 - 3.715

39 32.757 8.178 -

40 22.735 6.752 8.178

'
.
1
"
"
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Figure 4.2. Convergence of the parameter estimator 0,,(2) to the “true” parameter

0,,.(2) = 0.61 and associated ellipsoid volume in the system identification of yn =

0.49yn-1 + 0.61yn._2 + 0.58yn_3 + an. by SM-WRLS and MW-SM-WRLS (K21) as in

Table 4.5.
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Figure 4.3. Kn and a posteriori error an," associated with the identification of the

system of Figure 4.2.
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Chapter 5

Alternate MW-OBE Algorithms

 

5. 1 Introduction

The general MW-OBE algorithm introduced in Chapter 2 does not place any con-

straints on the selection of observations targeted for weight adjustments (correspond—

ing to distinct observation vectors), nor on how many times a weight may be ad-

justed. This algorithm was presented in the context of weight adjustments acting on

past observation vectors because this is how the algorithm was originally conceived

and developed. In fact, MW-OBE algorithms can be structured to target any set

of observation vectors for weight adjustments, as long as the cumulative weight on

each observation vector remains positive. In this chapter we identify and study two

broad classes of the MW-OBE algorithms. First, we make the distinction between

the “forward-looking” MW-OBE algorithms, which solely act on “future” observa-

tion vectors, based on a “current” covariance matrix, and the “backward-looking”

MW-OBE algorithms, which make adjustments of only past observation vectors. It

is the latter category that has thus far been the subject of this work. We establish

a duality between the two classes of MW—OBE algorithms and use this duality to

simplify the proof of Theorem 3.5. Secondly, we focus on MW-OBE algorithms that

only modify non-zero weights associated with successive overlapping blocks of obser-

vation vectors (overlap of exactly one observation vector) and generate a simplified

MW-OBE algorithm.
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5.2 Forward-looking and backward-looking MW-

()1313

MW-OBE algorithms may be constructed as “forward-looking” or “backward-

looking.” At time n, backward-looking MW-OBE algorithms adjust K selected pre-

vious weights (in addition to the current weight), based on the current observation

matrix X" and the covariance matrix'of time n — l. The backward-looking algo-

rithm, although not labeled as such when presented in Chapter 2, is restricted to the .

modification of past weights. F-

The forward-looking algorithm acts on the “same” observation matrix X", but

considers it to represent the “future” based on a “current” covariance matrix at time

n - K — 1. The relationship between the forward-looking and backward-looking al-

 gorithms (see Figure 5.1) has some similarities with the relationship introduced by i

Deller et al. in [15] concerning the weighting strategy in conventional OBE algorithms.

The labels “forward—looking” and “backward-looking” are references to the time re-

lationships between the covariance matrix and the “current” observation matrix.

 

 
(1-x-1 Ct_.

1\ /1
(Weight adjustments A,,J

 
 

 

n — K — 1 (Observation matrix X") n — 1

 

 

Figure 5.1. Forward-looking and backward-looking MW—OBE algorithms’ duality.

We now develop the different recursions associated with these two Mw-OBE algo-

rithms. We shall see that these two approaches lead to formally different algorithms,

but generate exactly the same sequence of permanent (composite) weights {qmn}.

Recursions (2.5), (2.8) and (2.9) are expressed as functions of A,,, but can be

re-written as functions of QM, = An + le‘n, where QM”, is a matrix of known

past weights at time n. This is achieved by writing the covariance matrix CM] in
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the form (2.2),

Cn-l : é’lK + XnQnm-IXIi (51)

d r - d r . . . . .
where nK :51 n -— K - 1 and CM é 22;“, q.,,,a:.z;” IS a posxtive definite matrix“.

Applying the matrix inversion lemma to (5.1), we obtain

.. - - -1 ..

P._I = p,“ — P... X. [Q;},_, + 0......) xfpnk (5.2)

" --l " " . . . . . .

where PM (ii—f CM and 0,,an dr-e—f XanKXn (pOSitive definite Similar to 0,4,.-. in

Section 2.3.2). Pre— and post-multiplying the left and right sides of (5.2) by X; and

X" respectively yields

GnIn-l : £3"an - G~nan [Qni'i-l + énan]-l énInK

'2 (3,1an (I "‘ [anrla—l + énlnxl-l énan)

= énan [Qn—JIi—l + énanl-l "ZIP—1

—l

-—- (G... +o.,....]". (5.3)

. . - —1 . .
an important relation between Gnln-1 and GM” which Wlll be needed later.

The recursion for the inverse covariance matrix PnK11 is found similarly to (5.2),

- .. .. -1 -

PM,“ = P... — PnKXn [an + an...) X,TP,.K. (5.4)

The central parameter estimator 9,,K and the scalar an related to the covariance

matrix (5.1) become

énK+l : énK + PnK+anQy|,nE-nlfl;{ (55)

.. _ .. _ - -1 ..

KnK-H : K’nK +7Z‘Qnm7n — €711an [ n,rli + Gnan] Enan, (56)

where Enlnx =2 3],, — XIO-nk. Recursions (5.4), (5.5) and (5.6) form the forward

MW-OBE algorithm. These are the counterparts to (2.5), (2.8) and (2.9).in the

 

”Note the significant difference between CnK and CM.
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Table 5.1. The forward MW-OBE algorithm.

 

I. Initialization:

1. 90 = 0,1740 =1 and 150 :51,” small.

2. q0 = 0.

II. Recursion:

Forl= 1,2,...

n = I + K

Form Xn = XH—K matrix from future K + 1 observation vectors

along with corresponding yn and 7,, vectors.

5am =_ y. - X9115

R. = PMX. and 0...... = X312.

If the current and past K observations are innovative,

determine optimal weight vector, (17...; (optimization criterion dependent).

Otherwise, next n;

K. = R44: + G....1-*

an+l : Pug ‘7 KnRZ‘

onK-l-l z aux + KnEnInK _

link.” = link +7Z‘Qflm7n —- éran[Q,,',l, + Gnan]“é'n.nK (when necessary)

Next 12.   
 

backward algorithm (Section 2.5). The forward MW-OBE algorithm is summarized

in Table 5.1.

At a given time n, the forward and backward forms of MW—OBE algorithms gen-

erate an identical weight adjustment vector Am". The forward-looking algorithm gen-

erates the weights QM, as opposed to weight adjustments A" generated by backward-

looking MW-OBE. The quantities are related by Gym 2 qn,,,_1 + A", where q,h,,_l

is known. Thus, the composite weight vector on," applied to the observation matrix

X. at time n is the same whether generated by the MW-OBE forward or backward

algorithm. The forward and backward forms of MW-OBE algorithms are therefore

equivalent.

The following theorem, broadens the idea of MW-OBE algorithm equivalence by

showing that any MW-OBE optimization (in particular MW-QOBE or MW-SM—

WRLS developed in this research) may be implemented using positive weights.

Theorem 5.1 Let C" 2 CM] + XnAnXI. There exists a covariance matrix CL,

and a weight matrix An with positive elements such that 0,. = 6..-] + XnAnXI.
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Proof: Let 8,. = {i1, - - - , iKH} represent the indices of observation vectors included

in X". We write C. as

011 : Cn—l + XnAnX:

= Z (Inn-13:1? + Z: qt,n_1:n.m.T+ XnAnxf

2515. £65..

where C7,. = Z qtnxtxfl a symmetric positive definite matrix, and A. 2

:es.

2 qtnxtx, + X.A.XT, with A. containing all positive weights (by definition).

less.

INote that (11,7141 = qt," for t f? 8...

These equivalent MW-OBE recursions are helpful in simplifying the analysis of

MW-QOBE weight adjustments employed in the “backward” class. By inserting (5.3)

into (3.11), the weight adjustment vector becomes

A. = I‘n’ISn G"ln|,,_ 1(enln—1 51:77.)

2 1),—IS. [0,,an + kal] (Enln—l — 5:17..)

= I‘;‘S. Gn,,:,K(r-:n1n 1- 3.7..) +rr:ISnQn,n—len|fl—l " PJISnQnm-isrfln

= r. 1s.G",,,,‘,K [(1 + G....Q.,._.)e...-1 — 5.7.] - PJ‘Q..-17.

= r15.c“:.3. [(1 + o....o.,._.) 5....-. - 3.7.] - 4...-.. (5.8)

Substituting (5.8) into (3.19) we obtain the inequality

5.G.... [(I + G....Q.,.-.) a... —— 3.7.] > 0. (5.9)

It can be shown that

5.... = (I + é....Q,,,,_,) 5....-. (5.10)

and therefore (3.19) and (5.9) are equivalent to

5.6," , (5....-1 — 3.7.) > 0. (5.11)
ilnh

72

 



Inequality (5.11) is used in the existence and uniqueness proofs of Section 3.3.

5.3 One-step MW-OBE

At each iteration, a MW-OBE algorithm adjusts a set of K weights. These weights

may correspond to successive data vectors in time, past non-zero weights, or any

other criterion. When the indices of the weights targeted for revision at time n are

the same those at time n — 1 with the n — Kth index discarded and a new index

appended, we shall refer to this weight as “shifted” by one (from the weight at time

n - 1.) The indices of the revised (scalar) weights at time n - 1

111—1 2 {in—1,1.in—i,2. ‘ ' ‘ .in-1,K+i.in-1,K+i}

are “shifted” to

In = {In—1,2.Zn-is,"°.2n—1,K+i.3n,K+1}-

When an algorithm shifts indices at each iteration, it computes the last adjustment for

the weight indexed 1,,(1). Therefore the An,I..(1) becomes the final additive adjustment

to the weight at index 1.0). This weight remains permanent but the other K weights

will be recomputed. Therefore, the algorithm may be simplified by updating the

covariance matrix based on the single permanent weight and discarding the others

(since they will be recomputed in future iterations.) The update of the covariance

takes on the form of a conventional OBE algorithm.

We therefore use the much simpler OBE recursions (QOBE or SM-WRLS algo-

rithms) [14], in conjunction with an MW-OBE weight strategy. Such a MW-OBE

algorithm is shown Table 5.2. The corresponding MW—SM-WRLS and MW-QOBE

algorithms are identical to the SM—WRLS and QOBE algorithms [15, 39] aside from

the weight computations. We refer to this MW-OBE algorithm as “one-step” (re-

stricted to the overlap described earlier.)
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Table 5.2. The one-step MW-OBE algorithm (overlapping weight adjustment blocks

applied to non-zero past weights.)

 

I. Initialization:

1. 60 = 0, k0 = land B0 = $1, 11 small.

2. q0 = 0.

II. Recursion:

Forn=K+1,K+2,...

l = n — K

Form X. matrix from present and chosen past K observation vectors

along with corresponding ya and 7,, vectors.

€71an z-yn — X59715

R. = PMX. and 0.... = X312.

If the current and and (other) chosen K observations are innovative,

determine optimal scalar weight, qmn (optimization criterion dependent).

Otherwise, next 71.

PnK-H : PnK - QnK+l,nK+l/(1+ QnK+_1,nK+lGnK+1)PnK$nK+1$ZK+1PnK

anx+l = 071K + (QnK+l,nK+lEnK+1|nK)Pn—lznx+l

Nnx+i = Knx+qu+1mK+17121K+l "(QnK+1,nK+i€nK+i|nK)/(1+QnK+i,nK+iGnK+i)

(when necessary)

Next 12.
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5.4 Proof of Theorem 3.5

In Chapter 3, Theorem 3.5 states that the sequence of ellipsoid generated by MW-

OBE algorithms is decreasing. Proving that det (nnPn) _<_ det(nn_lP,._1) is circum-

vented by the following proof.

Proof of Theorem 3.5: The backward MW-OBE algorithm described in Chapter 2

is equivalent to a one-step MW-OBE algorithm and therefore generates a single single-

positive-weight per recursions. We apply results from the single weight case [11] to

prove the theorem. Alternatively, we may apply (2.18) with K = 0 and a single

positive weight to derive the same result. I

5.5 Example contrasting forward-looking, back-

ward looking, and one-step MW-OBE algo-

rithms

The equivalence of the forward and backward MW-QOBE algorithm is demonstrated

in Table 5.5. The AR(2) system,

y. = —0.10y._l — 0.5631,.-2 + 5...,

where e... is uniformly distributed in (—1, 1) is identified by forward-looking and

backward-looking MW-QOBE algorithms. As expected, the weights assigned are

equal at each time in both algorithms. The same system is also identified by the one-

step MW-QOBE algorithm of Table 5.2 and compared with the backward MW-QOBE

algorithm. Table 5.5 shows that the sequence (q...) is the same in the backward,

forward, and one-step MW-QOBE algorithm.

\
1

C
I
]



Table 5.3. Equivalence of the forward and backward MW-QOBE algorithms, and

weight assignments in the one-step MW-QOBE. First eight weights assigned in the

identification of the AR(2) system y. = —0.10yn_1 —— 0.56yn_2 +5.", where the “true”

measurement error sequence {5...} is uniformly distributed and bounded by 1. MW-

QOBE (backward), MW—QOBE (forward) and one-step MW-QOBE used the same

number of points.

 

 

 

 

 

        

fl MW-QOBE (backward) [[ MW-QOBE (forward) [[ MW-QOBE (one—step)

‘ Time,n ll gm. (1) ] q.,.(2) [I q... (1) q.,.(2) H 0.....(1) 9....(2)

x10'4 x10‘4 x10“ x10‘4 x10" x10"4

12 15.671 10.908 15.671 10.908 - 10.908

13 18.316 11.931 18.316 11.931 — 11.931

14 20.143 23.546 20.143 23.546 - 23.546

15 - 20.143 — 20.143 - 20.143

20 0.246 0.253 0.246 0.253 - 0.253

21 - 0.246 - 0.246 - 0.246

40 - — — - - -

100 0.002 0.025 0.002 0.025 - 0.025
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Chapter 6

Practical enefits of MW-OBE

lgorithms

 

6. 1 Introduction

In this chapter, we demonstrate the practical benefits of MW-QOBE algorithms

through simulations. QOBE and SM-WRLS are briefly compared to LMS and RLS

algorithms (for reference) and subsequently to their multiple weight upgrade versions,

MW-QOBE and MW-SM-WRLS. The performance benchmarks are parameter con-

vergence, tracking, and data usage. By “data usage,” we refer to the number (or

percentage) of observations used by the algorithm to update its estimator. Whenever

possible, the simulations are generated using observation data similar to that found

in previous work ([13, 14, 34]) in order to facilitate comparison.

6.2 QOBE, SM—WRLS, RLS and LMS

We first briefly compare QOBE and SM-WRLS algorithms to each other, and to the

popular identification algorithms, LMS and RLS, in order to establish benchmarks.

The SM-WRLS algorithm Optimization minimizes the volume of f2", without di-

rect consideration of the “distance” between the “true” parameter vector 9. and the

central parameter vector estimator 9... Under proper data conditions (see Chapter 1),

0,. -—> 0. asymptotically as the set f2. converges to a point [15]. QOBE algorithms,

however, reduce (not minimize) both the “distance” between 9,. and 9. and the vol-

ume. As a result, the excellent parameter convergence of QOBE algorithms is often
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accompanied by large ellipsoid volumes. The large terminal volume in QOBE al-

gorithms is often because the algorithm becomes extremely selective of data as its

estimator approaches the true parameter vector [12]. Therefore, the QOBE feasible

solution set, f2", tends to be larger than its SM—WRLS counterpart.

Both QOBE and SM-WRLS algorithms exhibit performance superior to LMS and

RLS in parameter convergence and adaptation when the error bound sequence is

known (or closely approximated). This is partly due to the discriminatory selection

of data points by QOBE and SM—WRLS algorithms which does not exist in RLS and

LMS. The choice of pertinent observation vectors in QOBE and SM-WRLS also leads

to faster convergence to the “true” parameter vector, increases robustness to additive

noise, and improves performance in colored noise [15].

We illustrate performance differences among QOBE, SM-WRLS, LMS and RLS

through the following simulation. The AR(2) system

3). = —0.104y._l + 0.5621)...2 + 5..., (6.1)

where e... is uniformly distributed over (—1, 1), is identified by the QOBE, SM-WRLS,

LMS and RLS. Figure 6.1 shows the superior performance of QOBE and SM-WRLS

over RLS and LMS in parameter convergence. QOBE and SM-WRLS use small

percentages of the available data (approximately 2 and 10 percent of the data, re-

spectively.) In Figure 6.2, we illustrate important differences between the QOBE and

SM-WRLS algorithms. SM-WRLS generates a much smaller ellipsoid, with a less

“stable” convergence, whereas the QOBE, retains a large volume, uses fewer points

and exhibits fast parameter estimator convergence to the “true” parameter.
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(a) QOBE vs. LMS and RLS.
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(b) SM-WRLS vs. LMS and RLS.

Figure 6.1. Parameter 9.(2) = 0.562 convergence ofQOBE and SM-WRLS vs. that of

LMS and RLS in the identification of the AR(2) system y. = —0.104yn_1+0.562yn_2+

5..., where e... is uniformly distributed over (~1,1). The QOBE and SM-WRLS algo-

rithms used 22 and 121 points, respectively, from a total of 1200 points.
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Figure 6.2. Parameter 9,.(2) = 0.562 convergence and volumes of QOBE and SM-

WRLS algorithms in the identification of the AR(2) system y. = —0.104y,._1 +

0.562yn_2 + 5..., where e... is uniformly distributed over (-1,1). The QOBE and SM-

WRLS algorithms used 22 and 121 points respectively from a total of 1200 points.
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6.3 Signal cataloging

In this section, we catalog the signals used for the simulation. This cataloging is

similar to Lin’s [34] in order to facilitate comparison with the results of previous

work (e.g., [14, 34, 35]). The systems to be identified are described by a parameter

vector (or sequence of parameter vectors in the time-varying case) (Table 6.1) and an

input noise type (Table 6.2.) The systems are cataloged in Table 6.2.

SYSTEM 1 through SYSTEM 8 have time-invariant parameter vectors with var-

ious types of input noises. SYSTEM 9 through SYSTEM 12 are time-varying pa-

rameter vectors; SYSTEM 9 and SYSTEM 10 have gradual variations in parameter

vector 0.. (sine wave), while SYSTEM 11 and SYSTEM 12 have abruptly changing

parameters. The excitation noises used are Bernoulli, uniform and colored, with zero

and non-zero means.

6.4 Parameter convergence and volume

In this section, we show by simulation that increasing the number of weights re-

visited improves parameter convergence speed, and further reduces ellipsoid volume.

We considerer the case of K = 1 and adjust a single past weight in addition to

computing the current data vector weight. We choose to adjust non-zero past weights

due to their obvious past relevance (although this choice does not guarantee current

new information.) At each iteration, we attempt to adjust one previous weight in

addition to computing a present weight but fall back on the single weight algorithm

(SM—WRLS or QOBE) when this such attempt fails . Recall that K = 0 corresponds

to “conventional” QOBE or SM-WRLS.

This first series of simulations compares the benefits of an extra weight adjust-

ment in the identification of SYSTEM 1 through SYSTEM 8 in terms of parameter

convergence speed and volume reduction. We consider the “true” parameter vectors

unknown and identify them using MW-OBE algorithms. SYSTEM 1 and SYSTEM 3

have Bernoulli distributed noise sequences.

The relationship between 10,, minimization and the volume of the hyperellipsoid is

not well-defined. It can be inferred from recent work, however, that 112,, minimization
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Table 6.]. Parameter vector for the AR systems used in the simulations of Chapter 6,

both time-invariant (TI) and time-varying. The operator ’\’ denotes the division

 

remainder.

Label Model “True parameter vector”, 0:, Type

Order

A 2 {-01, 0.56 ]T T1

213

B 2 1'6““ 600 sine wave
—0.68

(slow)

2115

C 2 [ 1.6-cgségoo J sine wave

' (fast)

0 (1) _ 1.6, (n \ 600) + 300 < 300

D 2 m - —1.6, otherwise square

0,.(2) = —0.68 wave

(slow)

9 (1) __ 1.6, (n \ 300) + 150 < 150

E 2 m _ —1.6, otherwise square

9...,(2) = -—0.68 wave

(fast)

F 3 [ 2, -1.48, 0.34 ]T TI

G 12 [ 0.1, 0.9175, -0.191, -0.2253, 0.2601, 0.0046, TI

-0.00367, -0.0209, -0.0082, 0.0095, -0.0052, -

0.0041 17‘
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Table 6.2. Excitation noises for the AR systems used in the simulations of Chapter 6.

 

 

Label Distribution “True error”, Em. Mean

. 1, with probability 0.7

A Bernoulli, B(_1’ l) { -1, with probability 0.3 zero

. 1, with probability 0.7 :--

B Bernoulli, B(—-1,0.5) { _05, with probability 0.3 non-zero E

C Uniform, U(-1,1) zero [-

D Colored, 2,, ~ U(-1,1), { 1’ if 11),, >.—1 non-zero
——1, otherw1se

11),, = -—0.8w,,_1 + 2,, b:

E Colored, 2,, ~ U(——1,l), { 1’ If w" > -05 non-zero

111,, = —0.8w,,_1 + 2,,

—0.5, otherwise

Table 6.3. Matrix of systems used in the simulations of Chapter 6. See Tables 6.1

and 6.2.
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will reduce volume at each update [14, 22]. This assertion is verified through the

following simulations.

6.4.1 MW-QOBE vs. QOBE

We compare MW-QOBE (K = 1) and QOBE algorithms in terms of parameter

convergence and ellipsoid volume reduction. We assume the true error magnitude to

be bounded by7,, = 1.1, when is it actually bounded by unity. In general, we observe

a decrease in the number of updates and an improvement in parameter convergence

when adjusting a single past weight.

Figure 6.3 shows the parameter convergence of SYSTEM 1, an AR(3) system

driven by a non—zerO-mean Bernoulli distributed sequence. Both the QOBE and

MW-QOBE perform equally well. This is due to the frequent visitation Of the bound.

Considering an extra weight slightly decreases the number of points taken as well as

the ellipsoid volume.

The disturbance in SYSTEM 2 is uniformly distributed over (—1,1) therefore

the MW—QOBE parameter estimator 0,, is not expected to converge as fast as in

SYSTEM 1 (where 5", visited the bound more frequently). We notice an improvement

in MW—QOBE performance when increasing K from zero to one, in both parameter

tracking and volume reduction (Figure 6.4). The volumes remain large in all the

QOBE experiments due to the algorithm’s tendency to stop taking points (or very

stringent requirements on accepting incoming data points) once the central estimator

approaches the true parameter vector.

The disturbance in SYSTEM 3 is Bernoulli distributed as in SYSTEM 1 but

has asymmetric error bounds (see excitation noises labeled A and B on Table 6.1.)

The resulting overestimated bound (30% Of the time) decreased the performance of

SYSTEM 3 (as Opposed to SYSTEM 1). As in the previous case, the volume is further

decreased by adjusting one past weight (Figure 6.5). In this experiment we notice a

significant reduction in number Of points taken.

SYSTEM 4 shows an improved performance over SYSTEM 1 because of smaller

model order. The incremental improvements are minimal with increased number of
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weight revisions (Figure 6.6). This improvement may be due to the equality between

number Of weights revisited and model order.

In SYSTEM 5, the noise sequence is a filtered AR(1) signal. This is usually a

difficult case of the type that causes RLS to converge tO a biased estimator. MW-

QOBE’s performance stands out in this experiment with fast convergence, smaller

volume, and significantly fewer points selected (Figure 6.7). This improvement may

be due tO the more stringent criteria for data acceptance in MW-QOBE, resulting in

the selection of points with a higher energy concentration in the modes of the system

being identified.

In SYSTEM 6, the AR(3) system Of SYSTEM 5 is replaced by an AR(12) system.

The result of the identification of 9,,(2) in this higher order system by QOBE and

MW—QOBE is shown in Figure 6.8. The MW-QOBE algorithm shows a modest

improvement over the QOBE algorithm.

In SYSTEM 7, the mean Of SYSTEM 5 is moved closer to zero and therefore

induces some improvement in its identification as seen in Figure 6.9.

SYSTEM 8 has the same noise sequence as SYSTEM 5, but with a smaller sys-

tem order, AR(2), and therefore enjoys faster convergence and smaller volume (Fig-

ure 6.10).

In summary, the adjustment Of a single past weight improves the convergence

speed of the QOBE (MW-QOBE with K = 0) algorithm and further reduces the

ellipsoid volume.

 



 

  

 

 

 

 
 

 

 

 
 

 

 

 

  
 

   
 

2.5 If I Y I I V I fir

QOBE

— - MW-OOBE (K=1)

1

0.5 1
-

1

1

1

1

' l 1 A l 1 _L l L

0 40 80 BO 100 120 140 180 180 200

Time (0)

(a) Parameter convergence.
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Figure 6.3. Parameter 0,,.(l) = 2.00 convergence and volumes resulting from the

identification Of SYSTEM 1 by MW-QOBE and QOBE algorithms, which used 94

and 108 points, respectively, from a total of 200 points.

(b) Volume.
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Figure 6.4. Parameter 0.,(1) = 2.00 convergence and volumes resulting from the

identification Of SYSTEM 2 by MW-QOBE and QOBE algorithms, which used 75

and 87 points, respectively, from a total Of 700 points.

87



 

 

 

 

  
 

  
 

 

 

  
 

 

 

 

  
 

2.5 T Y T T I I

z: - 1

g QOBE
i - - — MW—QOBE (K=1)

5 1. 1

0.5 .1

I

o l L L l 1 l

O 100 200 300 400 500 600 700

Time (n)

(3) Parameter convergence.

10. {st ' V ' T. . ., l' 7:

................. f:

10‘ y .......... -

‘O'r . . . ......... ‘ 1

g L ..... BE

3 — — - MW—QOBE (K=1)

E ........... .. I _

g '

IT! 1

‘0‘, 1 1 1 1 1 1

0 ‘00 200 300 400 500 600 700

Time (n)

(b) Volume.

Figure 6.5. Parameter 0,..(1) = 2.00 convergence and volumes resulting from the

identification of SYSTEM 3 by MW-QOBE and QOBE algorithms, which used 100

and 82 points, respectively, from a total of 700 points.
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Figure 6.6. Parameter 9,..(1) = —0.10 convergence and volumes resulting from the

identification of SYSTEM 4 by MW-QOBE and QOBE algorithms, which used 11

and 42 points, respectively, from a total of 100 points.
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Figure 6.7. Parameter 9,..(1) = 2.00 convergence and volumes resulting from the

identification of SYSTEM 5 by MW-QOBE and QOBE algorithms, which used 117

and 116 points, respectively, from a total of 1500 points.
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Figure 6.8. Parameter 9,..(2) = 0.92 convergence and volumes resulting from the

identification of SYSTEM 6 by MW-QOBE and QOBE algorithms, which used 174

and 166 points, respectively, from a total of 3000 points.
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Figure 6.10. Parameter 9111(1) = —0.10 convergence and volumes resulting from the

identification of SYSTEM 8 by MW-QOBE and QOBE algorithms, which used 9 and
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6.5 Tracking performance

In this section we show the tracking benefits of increased K in MW-OBE algorithms.

6.5.1 MW-QOBE vs. QOBE

While based in the “OBE philosophy,” QOBE algorithms may be interpreted as hav-

ing an update rule that is essentially independent of the current hyperellipsoid [22, 39].

This result is counter-intuitive because the Optimization criterion is to minimize the

parameter K", a scalar that is directly related to the ellipsoid and its size. Neverthe-

less, the alternative interpretation reveals why QOBE is strongly robust to parameter

variation and highly proficient at adaptive estimation.

In the present work, we use faster systems than those in [14, 34] in order to high-

light both the superior tracking performance of QOBE algorithm and the incremental

benefits of higher-order weight adjustments in MW-QOBE.

SYSTEM 9 represents a time-varying system in which one of the parameters

changes gradually from -1.6 to 1.6 every 400 points. The noise sequence is uniformally

distributed in (-1, 1). We observe good tracking by both MW—QOBE and QOBE

(Figure 6.11).

In SYSTEM 10 the rate of change of parameter 9111(1) is increased compared

with that of SYSTEM 9. The noise sequence is the as in SYSTEM 9 but parameter

9,..(1) is made to change twice as fast. Nevertheless the parameter estimators of both

QOBE and MW-QOBE stay on track most of the time (Figure 6.12). MW-QOBE

uses fewer points to achieve the same (or better) tracking performance. The final

ellipsoid (volume) is very small due to the relatively large number of points taken by

MW-QOBE.

SYSTEM 11 represents an abruptly changing system, with parameter 0,..(1)

switching in one sample from —1.6 to 1.6 (see Tables 6.1-6.3). The tracking per-

formance can be observed at switching times. Again the benefit of an additional

weight in the optimization process is evident (Figure 6.13).

As in SYSTEM 11, SYSTEM 12 represents a fast switching system with abrupt

changes in parameter vector. The MW-QOBE superior tracking is shown in Fig-

ure 6.14.

 



The simulations presented in this section show that MW-QOBE (K = 1) has a

tracking performance at least as good as QOBE while using fewer observations.
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Figure 6.11. Parameter 9,..(1) tracking and volumes resulting from the identification

of SYSTEM 9 by MW—QOBE and QOBE algorithms, which used 109 and 110 points,

respectively, from a total of 700 points.
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Figure 6.12. Parameter 0,..(1) tracking and volumes resulting from the identification

of SYSTEM 10 by MW-QOBE and QOBE algorithms, which used 70 and 72 points,

respectively, from a total of 350 points.
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Figure 6.13. Parameter 0m( 1) tracking and volumes resulting from the identification

of SYSTEM 11 by MW-QOBE and QOBE algorithms, which used 52 and 95 points,

respectively, from a total of 700 points.

98



 
  

 

 0.5 ‘-

 

—— QOBE

- - - MW—QOBE (K=1) _

  
 

d T

_
—
-
—
-
—
—
-
—
.
“
’
H
R
—
-
-

L
P
p
a
r
a
m
e
t
e
r
#
1

O

   
-2

  

 

 

Time (n)

(a) Parameter convergence.

.

'.V ‘11:.VT‘TT " "1:T‘§":.£52.:TEIIiT;S:1'i:;f.r?:§

1

..5.5.:.§‘.§E}§ ‘5;..3_;;.;.»:.?.-p_--_::.‘; . —— ooae 5.3

3 ' "‘Ei?§j§;i‘??f"ft'?".'35:”???.fi_’f‘:§f‘-€'Eff‘?f?f?’§?:f ”’ MW‘QOBE(K=‘)13

 

  
 

. . . . . . . . ‘ . . . . . ~ . . . . . . . . . . . . . . . .

. 1 . . . . a . . . . . - ~ ~ ~ . . , . - . f. . . 1 . .. . .. . a 1 ~ . u - - . . . I . a . a - u 1 1 - .

1 u ' 111:1 .' '. I ‘. '. 1 I :1 I r 1 : 1| 1 r l t 1 3111‘. .' r ‘ 1 11 I l .‘ z r ‘ ‘ : ' 1 '. r 1 : 11.1 . 1 :1. I :1 I 1 - 1 ' ‘I t 11.!1l:ll ‘ 1 I ‘ 1 I l I 2 ' '1I:1 l 1

' i ’ , ' I I . ' ' .2- ' ' i ‘ i ' ' 7 ' ' 7 I ' f ' .1 :2 f ' ' a: I ' ’i ' ‘. ‘ 4

. . . . . . . . . . . . . . , . . . . . . . . . . . . ~ .. .. .. 4

. . . . . . . . . . r . . . . . . . . . . . , . . . . . . . a

 

  
 

€10 .-§.; .3.'Z§ '.';:;;

a :31: Ike-g

‘5
>

3‘0 .rrv 322“

.3 “TEX- ‘J 1-~:--:3{'

““0 2'5? 57:33:" +3352:

-'151 =1 “5.2: Wits: .......

1° F 14‘ ~ .91 4:931:33). . :1

“_.-‘. 3:" ' X f: i' ' .7” 1'3
...... | . .. ... .4

10 rum. 1 1 T-1§§!3—%+4.-5L.H+—.-4—ir+!—1-4!21:211~:29 .......... 11t-1::r.‘::t:=‘!

:1". .H. i7. .:.‘:: ,It'fl" : 1

5 ..... . .. I... .. 1

10‘ r ..... 31f3'1. .3 ' 1

«5'3; ”143.3;

10-9 1 1 1 1 J__ _L

0 50 100 150 200 250 300 350

Tlrne (n)

(b) Volume.

Figure 6.14. Parameter 9,...(1) tracking and volumes resulting from the identification

of SYSTEM 12 by MW-QOBE and QOBE algorithms, which used 37 and 67 points,

respectively, from a total of 350 points.
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6.6 Selective updating

MW-QOBE algorithms utilize fewer points than QOBE algorithms due to their more

stringent data selection. The extra per-point-taken costs are often offset by the de-

crease in the number of observations processed. In this section, we chart the average

number of data points accepted by QOBE and MW—QOBE in the identification of

SYSTEM 2.

In the first experiment we identify SYSTEM 2 by MW-QOBE and QOBE using an

MW—QOBE algorithm with an “adaptive” number of weights. That is, the algorithm

first attempts to optimize by incorporating one past weight, but is allowed to revert

to K = 0 (QOBE) if the attempt fails. We then compare the average number (over 10

runs) of points taken by MW-OBE and QOBE per length of data. Figures 6.15—6.17

show plots of the results.

The average number of updates of the central estimator in both MW-QOBE and

QOBE algorithm decreases as the duration of the observation vector sequence in-

creases. This is expected, since many of the observations are redundant after a

certain time. However, the MW-QOBE selects fewer points on average. We observe

performance gains in each case. Increasing the number of weights revisited results

in a more stringent test for acceptance of observations but increases the per-point

convergence and decreases the ellipsoid volume.

Figures 6.15 - 6.17 compare the average number of points used by MW-QOBE and

QOBE in identifying AR(2), AR(3) and AR(12) [systems SYSTEM 4, SYSTEM 2

and SYSTEM 12] with error sequence uniformly distributed over (-—1, 1). We observe

performance gains in each case.

Next we consider an MW-QOBE algorithm which attempts to Optimize Kn over

K weights but does not revert to the QOBE algorithm when the optimization over

K weights fails. Figures 6.18 - 6.20 compare the average number of points utilized by

MW-QOBE and QOBE in identifying the systems of the preceding experiments.

The per-update MW-QOBE algorithm computational costs (flops) for a system

of order m is (3/2)(m2 + 3m + 4) for K =2 O (QOBE), and 3m2 + 12m + 20 for K = 1

(see Chapter 3). When m = 3 the computational cost per update becomes 33 and 83

(flops). For a sequence of length 1000 (see Fig 6.19), this corresponds to an average
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Figure 6.15. Ratio of points taken, averaged over 10 runs, in the identification of an

AR(2) system with uniformly distributed error sequence by QOBE and MW-QOBE

(adaptive K.)

of 34 and 10 updates for K = 0 and K = 1, or 112 and 83 multiplications. These

numbers support the assertion that the extra per-update cost is often offset by a

decrease in the number of observations processed. Using a fixed K in MW-QOBE,

demonstrates its strongest asset, namely the drastic decrease in number of observation

taken.

6.7 General findings, conclusions, recommenda-

tions for practice

Simulation results show improvements in parameter convergence Speed, reduction in

ellipsoid volume and tracking ability, when an extra weight is used in MW—OBE

algorithms. Both QOBE and MW-QOBE have excellent tracking capabilities, with

MW-QOBE performing at least as well as QOBE when tracking fast systems with

abrupt parameter transitions. In practice, revisitation of a large number of weights

becomes impractical. We recommend the use of a small number of weight revisions,
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typically one or two.

In the simulations presented, the MW-QOBE algorithm was given the option of

reverting to the QOBE algorithm when no optimal solution could be found consid-

ering K weights. When this option is removed, as shown in Figures 6.18-6.20, the

number of observations necessary to update the estimator is dramatically reduced.

The drawback is the more stringent data acceptance criteria which may prevent the

algorithm from sufficiently updating its estimator in a short interval.

We suggest the use of MW-OBE with an adaptive number of adjustments when

identifying parameters in short data segments and for parameter tracking of time-

varying parameters. This adaptive version (in K) guarantees maximum tracking

performance. For long data sequences where the concern is to reduce the number

of points processed (in updating the estimator), we recommend using an MW-OBE

algorithm with fixed K.
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Chapter 7

Future Directions and

Complementary Work

 

7. 1 Introduction

This chapter contains a collection of topics that were explored as part of this research.

These topics contain information and ideas potentially helpful for future research.

We also summarize the results obtained throughout the course of this research and

conclude the dissertation.

7.2 Normalized MW—OBE algorithm

Including a normalization strategy (as in [6]) offers new insights in the behavior of

MW-OBE algorithms. This “normalization” is achieved by an (affine) transformation

of the parameter estimator space, which normalizes the ellipsoid semi-axis lengths to

unity and shifts its center, 0,,_1, to the origin. We begin by expressing the positive

definite matrix Pn_1 using its normalized eigenvector representation

P,._l = RHRL, (7.1)

where Rn_1 is a unitary matrix. We define the change of variable in the parameter

space (at each iteration) by

521‘ RT (9“0n—1lor02Rri—1§+9n—1 (7-2)11-1
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and the projection of the matrix of data vectors in the parameter Space spanned by

Rn-l by

2..-, “:‘i’ RZ_,X,,_1. (7.3)

It follows that Gn,,-, = 2:2,. and Hn,,,_1 = ”1,212... The a posteriori ellipsoid

set at time n — l (a priori at time n) in the new coordinate system becomes

- _ _T T _

9..-. = {Rn_,0+0,.-l 412.40..-.) C..-1(R.-lon-l)< no-1}

or, by multiplying each side by 12,11 (a rotation),

Qn_1 : {0 Z 6T(Rz_lpn_lRfl_1)-r0— < Kn_1}

= {9 : 5T9- < 19.4}.

The MW-OBE recursions take on the new form:

RI_,P,,R,,_1 = I-ang‘Anzf (7.4)

5,, = an—I+ZnAnEnIn—l (7.5)

n, z to“, +7111“,—eZ,‘,,,_,H;1A..e,,,,,_,. (7.6)

Equations (7.4-7.6) may be used as alternatives to the MW-OBE recursions intro—

duced in Chapter 2 and have a simpler form.

7.3 Hyperellipsoid volume

The determinant of the matrix representing a hyperellipsoid is proportional to the

volume. The need to compare volumes in different dimensional Spaces (models of

different order) sometimes arises, leading to the need for a more exact representation

of volume. Some of the following ideas are used in Section 7.4.

Lemma 7.1 Let 9 = [91, 02, - - -, 0m-1] represent a vector of angles, describing a direc-

tion in m-dimensz'onal space, and u = [uh 112, - - - ,um] is the unit vector in that direco

tion. Without loss of generaliti, we assume that 0 S 01 < 2n and —7r/2 _<_ 6,- < 7r/2,
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for i 76 1. The ith element of u is expressed as follows:

m

u,- 2 Si H Cj (7.7)

1:1

whereS=[1 Sindl sin6m_1 J andC’: [c0391 cosflm_1 1].

Proof: Start with the two-dimensional case and iterate. I

Lemma 7.2 Let M be a positive definite matrix of order m describing a hyperellip-

soid. The distance from the center to the surface of the hyperellipsoid in any given

direction 0 is given by:

_1

d9 = (uTMu) 2 (7.8)

where the vector u is derived as in Lemma 7.1.

Proof: Let 1) be the vector from the origin to the ellipsoid in the 9 direction. Then 1)

may be expressed as a multiple of the vector uT, or v = air, where a is a scalar and

u, the unit vector in the 9 direction. From the hyperellipsoid equation vTMv = 1,

we obtain uTMu =2 1/a2. Equation 7.8 follows. I

Lemma 7.3 The volume of an m-dimensional hypersphere of radius r is given by

g- % 21f r

v = / .../ / /lsin01cosfig-ncosflm_1dld91---d0m-1
- -§ 0 oI.

2

_ 2:2(m—I)Tm

m

2m-l

: 7r7‘m
(7'9)

m

 

In Figure 7.1, we compare the effects of model order on the volume in OBE

identification of a speech segment. Volume corresponding to each model order is

normalized by scaling by an appropriate constant (see Lemma 7.3).

Lemmas 7.1 and 7.2 are used for generating the “other” parameter vectors inside

the ellipsoid in Section 7.4. These “other” points are generated by choosing a random
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Model Order, m

Time (n)

Figure 7.1. Effect of the model order in the identification of the LP parameters in the

voiced /I/ phoneme. We Show the log of the final volumes (normalized to the initial

ellipsoid volume) using the model orders 7-14.

direction inside the ellipsoid (m — 1 angle vector), determining the length of a semi-

axis in the chosen direction, then choosing a random length.

7.4 Application to linear-prediction analysis of

speech signals

Speech signals are often modeled as AR signals with 10-14 linear prediction (LP) pa-

rameters [9]. These parameters represent the Spectral properties of a Speech segment

and are usually identified by a least-squares method, often in batch form. However,

the least-squares estimator does not necessarily provide the best perceptual represen-

tation of the original speech sequence. OBE algorithms have interesting properties

with applications to speech processing. Fast convergence and good tracking abilities

of MW-QOBE make it an ideal candidate for spectral estimation in very short time

frames. However, what distinguishes OBE from most system identification methods

is its data selection ability and its generation of a feasible set. These two pr0perties
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offer great potential for improving perceptual qualities in speech analysis.

An objective in Speech analysis may be to find a parameter estimator that would

enhance a certain perceptual quality. Such an estimator may be found within the

ellipsoid, aside from the central estimator and the conventional LS estimators. OBE

algorithms provide a set of feasible parameters from which a “better” estimator can

be chosen.

In Figure 7.23 we Show the spectrum of a segment of length L (L=512 points)

of the vowel /I/, generated by fast Fourier transform (FFT) and assume that the

Speech segment is accurately modeled with an AR(14) signal with “true” parameter

9.. In Figure 7.2b, we Show the impulse response FFT of the “covariance method”

estimator ( 900‘“), the LSE estimator [9], the central estimator (0d,) and three

“other” non-central estimators (01-3,L) of 0. inside the ellipsoid (see Section 7.3).

These alternative estimators, with close spectra to the least-squares estimators, may

offer other desirable properties in terms of perceptual quality. We suggest the use of

these alternative parameters in improving speech quality.

 

 

 

     

Parameter 01,1, 92,1, 93,1,

1 0.07 -0.00 0.04

2 0.17 0.00 -0.07

3 -0.04 -0.00 -0.06

4 0.27 0.00 0.05

5 —0.16 0.03 -0.57

6 0.13 -0.25 -6.16

7 -0.62 -0.15 5.24

8 0.57 2.00 15.31

9 22.61 4.21 73.82

10 -1.24 23.52 17.00

11 141.98 79.60 336.44

12 16.86 66.57 75.48

13 329.19 547.10 -288.21

14 —147.43 -374.22 73.76

“9,1, — 96,1,”2 388.66 671.34 461.98

 

 
Table 7.1. “Other” AR parameter estimators inside the ellipsoid (Figure 7.2b). The

coordinates and radii (“0,1, — BC’LHZ) are in relation to the final SM-WRLS ellipsoid

center (M = 14, volume 2: 1.4 x 1019 and 4.67 x 10“1 S semi-axes S 43.6).
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Certain challenges remain in applying OBE algorithms to speech processing. First,

determining reasonable error bounds for speech signals poses a challenge, since the

“true” bounds are unknown [9, 29]. Second, OBE algorithms generate large ellipsoid

volumes [13]. A closer look at these ellipsoids shows a great disparity between axis

lengths as shown in Table 7.2. (Tables 7.3 and 7.4 are provided for reference.) It is

conjectured that this is largely due to the lack of persistency of excitation in most

voiced speech data.

 

Lengths

   

43.62

3.81
 

35.51

 
0.47

17.33

0.91
 
2.47

13.85 13.47

2.62

5.10

1.86
   

4.07

1.82
 
 

Table 7.2. SM-WRLS 14-dimensiona] hyperellipsoid semi-axes (see Figure 7.2). Vol-

ume = 4.32 x 1017.

 

        

Magnitudes(x10‘1) 7.98 9.66 9.66 9.69 9.69 9.33 9.33

8.45 8.45 9.86 9.86 9.35 3.83 3.83

Angles (deg) 180.00 124.03 -12403 80.38 -80.38 95.69 -95.69

113.81 -113.81 10.10 -1010 0.00 27.59 -27.59  
 

Table 7.3. Poles of the 14th order system, based on the batch covariance estimate

(see Figures 7.2 and 7.3).

pa.

 

 

        

Magnitudes (X10'1) 10.1 10.1 9.10 9.62 9.62 9.27 9.27

9.58 9.58 8.22 7.44 7.44 2.57 1.99

Angles (deg) 9.93 —9.93 0.00 79.51 -79.51 96.54 -96.54

j 123.10 -123.10 180.00 113.14 —113.14 180.00 0.00  
 

Table 7.4. Poles of the 14th order system (SM-WRLS), based on the ellipsoid center

estimate (see Figure 7.2 and 7.3).
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7.5 Alternative volume minimization: Trace

Minimizing the volume can also be done by minimizing the trace of the ellipsoid

matrix [15]. In this section initial steps toward finding a solution with multiple-

weight adjustment are described. More work is necessary to find an actual solution

to the derived system of equations. Using the fact that trace AB = trace BA, and

defining Rn (i=8:r [Pn-1XnH;lAnXIPn_1], we can then find the trace of

traceRn = trace [Pn_,X,.H;'A,.XZ'P,.-,]

= trace [H;1A,,X,,TP,,-1P,.-1X,.]

= trace [Hg‘Aan]

where Bn déf XIPf_1Xn. Using the formulae of Athans [1] and defining An <ng

A;1H,., the derivative (with respect to the matrix) is found as followed:

atraceRfl
______________ : _A-I n ~1-

6A,. n B An

By the chain rule, we can obtain the partial derivative with respect to a particular

t 11
weight by using the fact that 6 r;<::(A ) = [trace %] and

 

6A.. __ 0, #1

8)“ _E) sz

We then obtain

6 traceRn _ 0R" 6am)
 

03,“ — 3am) 6A.-

0 trace Rn Bah,”

6.4.. (m 8A,-

which can be expressed in matrix form as

0 traceRn _2 -1 -1

—————- z A A "A .
aAn \ n n B n
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The task becomes to solve the equation:

 0 = 31:"trace(P,,)+K,,[\AngngnA;l]. (7.10)

A solution of (7.10) minimizes the trace of the nnPn and therefore the volume of the

corresponding ellipsoid.

7.6 Approximations

The recursions (2.8) require the relatively expensive computation of the term

HglAn. The product H;IA,, can be expanded as an infinite series H;1Afl :

,9':0(—1)"(G,,|,,_1A,,)i which can then be approximated by a small number of terms.5

For example, (M < 00)

[A;‘ + (3...,,_,]*1 = [An — A,,[G,;,,‘,_, + A,,]"‘A,,]

Z [An — An[Gnln—l _' Gala—“A;1 + GnIn—l)-1Gn|n-l]An]

— An - AnGnIn—lAn + AnC¥n|n—1(Ak;l + Gnln-l)_IGn|n-1An

M .

z 2(GnIn—1Any-

i=0

Similarly,

H171 : Z(_1)-i(AnGnln—l)-i-

i=0

Approximating each polynomial with the first two terms:

[A;‘ + Gn,,,_1]“ 2: An — A,,[ "VP, + A,,]“A,, (7.11)

H;1 :9 I—AnGn,,,-1, (7.12)

 

5The primary purpose of this development is not to reduce the computational complexity of the

inverse, since K is usually small (1 to 3), but rather to express Kn and the volume in a way that

facilitates the derivation of an approximate closed-form solution.



from which we obtain:

Pn z Pn—l - Pn—anAnXIPn—l _ Pn-IXnAnGnIn-lAnXIPn—l

~ T T T

Kn ~ Kn—l +7nAn7n - Eula—jAngn — €n|n_1AnGn|n-1An5n-

The corresponding approximation for Kn is

8,, 2: Kn_1 +7ZAn7n -— EZIn_IAnEn — ezln_1AnGn,n_1Anen. (7.13)

As demonstrated in [31], these approximations are useful in deriving an optimum

solution for a MW-OBE algorithm. Future work may involve the derivation of a

closed form solution for the MW-SM-WRLS and a study of the benefits associated

with each additional term (in the series.)

7.7 MW—OBE in the Kalman—Bucy framework

The structural similarities between the Kalman-Bucy (K-B) recursions and MW—OBE

are addressed in this section. MW-OBE may be framed in a state-space setting in

which the parameter estimator represents the state of a time—varying system. Let us

re-write the system of MW-OBE recursions as

0n : 9n~l+Kn£n|n—l

y" : —X,,T9n—i+5nln-1

where

Kn = Pn—IXHH;lAn

= P,._1Xn(GnIn-1+1871)-l

and

P, = Knxg‘Pn_1.
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These recursions can be compared with the KB commonly expressed as

A

ann :- f(nln—I + Kn(Yn ‘— Hnln—lxnln-l)

Kn : 2:riln-lPszf‘IInln—lSum-JP]: + Rid-1

2n|n : 2znln-I — Kanln—IEnIn—l

where ann is the updated state vector, 2,4,, is the regressor vector (Hn|,,_1) covari-

ance, and Rn the error—vector covariance, all at time n. In the MW-OBE algorithm,

the K-B computation of the matrix Rn is replaced the computation of weights and

the state variable Kn. Therefore a structure identical to the K-B may be used to

implement the MW-OBE with the addition of the weights matrix and Kin.

7.8 Conclusions, contributions and further work

In this dissertation, we derived the MW-OBE algorithm, which was then optimized

in the framework of the single-weight QOBE and SM-WRLS algorithms. Simulation

studies have revealed enhanced ability to minimize 19,, with increasing K. Enhanced

ability to reduce volume also results with increasing K. Reoptimization of weights

results in an increased computational cost per update, but the overall complexity

remains 0(m) when only adjusting one previous weight since updating is very infre-

quent. In fact, the number of updates decreased dramatically with increasing K due

to a conservative aggregate check for innovation. We also introduced the notion of

“forward-looking” and “backward-looking” MW-OBE algorithms as equivalent alter-

natives.

The major contributions of this research are the following. This research has:

1. Introduced the notion of block optimization in OBE algorithms.

2. Produced an MW-QOBE algorithm with improved parameter vector conver-

gence speed and reduced ellipsoid volume with respect to the recent QOBE

algorithm.

3. Produced an MW-SM-WRLS algorithm with improved parameter vector con-

vergence speed and reduced volume with respect to the SM-WRLS algorithm.

114

 



. Proved the uniqueness and a condition for existence of the optimal MW-QOBE

weights.

. Proved the uniqueness and a condition for existence of the optimal MW-SM-

WRLS weights.

. Proved the equivalence of the “forward—looking” and “backward-looking” MW-

OBE algorithms.

. Provided simulations showing the performance of both MW—QOBE and MW-

SM-WRLS.

. Suggested the application of MW—QOBE and MWSM-WRLS in linear-

prediction analysis of speech signals.

.
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(b) OBE ellipsoid center and other (ellipsoid) points.

Figure 7.2. Spectrum of the voiced /I/ phoneme (512 points). The FFT of the

sequence is shown in (a), and the FFT of the impulse response of center (0“), COV

(91,531.) and non-central estimators inside the ellipsoid (91-3,L) are shown in (b).

The speech segment is modeled by an AR(14) system. Ellipsoid volume = 1.4 x 1019

and 4.67 x 10‘1 S axes s 110.10. See Tables 7.1, 7.2, 7.3 and 7.4 for more information

on estimates and ellipsoid.
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Figure 7.3. Poles of the 14th order system based on the COV and OBE ellipsoid

center estimates (see Figure 7.2, Tables 7.3 and 7.4).
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Appendix A

A. 1 Definitions

5", an, and yn are modeled as random variables defined on a probability space

(f2, .7, P) where Q is a sample Space, .7 a o-field, and P a probability measure.

Using Lin’s [34] notation [34], define c-neighborhoods of noise bounds as:

D? = [fl - 6, W]

and

D." = l-W—n "fi+ 61-

Definition A.l [34] A random sequence {an} is called uniformly conditionally tailed

(UCT) if given 6 > 0, there exist a 6 > 0 and an infinite subsequence {t.-} C N, such

that

F(En E (D,1L U D:)[fn21)> 6 a.s. V 'n E {t,-}.

Definition A2 The sub-sequence of random vectors, {3",}, is called persistently

exciting (PE) if there exits a > 0, 6 > 0 and Tpg < 00 such that Vnk, (subsequence

in time)

k+Tpg

a] < Z xmxz < 61

i=1:

Lemma A.l fill/[Matrix Inversion Lemma]: Let the matrix H = A +BDC', where

A, D are non—singular matrices of order m, n and B, C are m x n and n x m
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matrices respectively. Then

H“ .-= A“—-A“B(D“+CA"B)”‘CA“

Lemma A.2 [41]

det Adet (D + CA-IB) = det Ddet (A + BDC’)

where A, D are non-singular matrices of order m, n and B, C are m x n and n x m

matrices respectively.

Lemma A.3 [32] If A’1 exists,

—1

A D _ A“+EA”F —EA"

0 B —A-1F A“

where A = B —— CA—ID, E = A-ID, F = CA”. If B'1 exists, the block (1,1)

can be written as [A — DB"IC]". A is known as the Shur complement of A. Also,

A D -1

det = detAdet(B+CA D).

 

CB

Lemma AA As 0 extension of Lemma A3, assuming B"1 exists,

-l

a-1 -A“F

—EA“ B" + EA‘1F

AD

CB

   

where A = A — DB“C, E = B“C', F 2 DB". If A“ exists, the block (2,2)

can be written as [B -— CA’ID]“.

Proof: Use the development of [32] starting from the top left corner of the matrix. I
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Lemma A.5 Following Lemma A4, let A; be the (K X K) symmetric and invertible

matrix and u; the (K x 1) vector as described below:

T

A] = [ ul : [11.1 no]

01 A0

 

where A0 is invertible (K — 1 x K — 1), 111 is (K — 1 x 1), a1 and b, are scalars.

Then,

A,‘1 = A,“1 ________ I __________

——A61a1 ] A1A61+(A6101)(A6101)T]  

where A1 = a1 — aTAo‘lal. It follows that

 

0 _ _ —1
l. Aflul = —1 — A11(u1- uoTAo 101) _1

2. uTAlul = unguo + 211107.110 + ufal

2

3. Alu'erl‘lul = AlugAgluo + (ug'Ao—lal — 111)

Proof: Apply Lemma A.4.

Lemma A.6 [I] Let A, B and X be matrices of appropriate dimensions. In addi-

tion, let X be invertable with elements independent of each other. Then,

fitrachX) 2 AT

gax-trachXB) = ATBT

fitracMX‘l) = ”(X-1X71)T

a—aXtrace(AX_lB) = -—(X-IBAX’1)T

fideuX) = det(X)X-T

fidquXB) = det(AXB)X’T

fidefiXT) = fidet(X)—det(X)X‘T
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where the operator

0a def[ 6a

5:? :: BIC-J] for a scalar a (see Table 1.1.)
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A.2 Matlab programs

MWOBE, August 25, 1998

Z Multiple weight OBE algorithm (MWOBE).

Z with volume and kappa minimization options (MW-SM-WRLS and MW-QDBE).

Z Dale Joachim, MSU. 1996, 09/7/97 and 6/9/98.

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

0
0
1
0
1
-
5
0

function [thet,param,stat,E11ip] = mwobe(y,w,gam,pm,opt)

y —> output sequence

observable input sequence (when not present use w=y and q=-1)w ->

gamma max: initial overestimated bound (scalar)gmax ->

pm(l) -> p, order of ’y’

pm(2) -> q, order of ’x’

pm(3) -> N, non-update maximum window length

pm(4) -> ep, ’small number’

pm(5) —> reset value of k (kappa)

pm(6) -> forgetting factor

-> digit(l) Algorithm type: O->volume (back), 1->kap (back)

2->volume (forw), 3->kap (forw)

4->volume (simp), 5->kap (simp)

-> digit(2) Number of past weight revisions

-> digit(3) Observation vector choice and adaptive K in [K,O] (adaptive K)

—> non-zero weights & variable K in {0,K}

-> non-zero weights & K fixed

-> immediate weights & K fixed

-> immediate weights 2 variable K in {0,K}

-> digit(4) Ellipsoid matrix: 0 -> none, 1-> store

Opt

thet <- parameter updates (matrix MxT)

param(1,1:T) <- epsilon, error sequence (vector le) (squared)

param(2,1:T) <- vol, ellipsoid volume (vector le)

param(3,1:T) <- kappa, kappa (min distance) (vector le)

param(4,1:T) <- gamma, estimated error bound (vector le)

param(5:7,1:T) <- last 3 weight updates (vector 3xT)

Ellip <- ellipsoid matrices (MxMxT)

stat(l) <- nup, number of data points used (scalar)

stat(2) <- gup, number of gamma updates (scalar)

stat(3) <- mup, number of mulpiple weight update points

function [thet,param,Ellip,stat] = mwobe(y,w,gam,pm,opt);
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mu = 10‘(-2); Z small number

rem(fix(opt/10‘O),10); Z function, see next.

rem(fix(opt/10‘2),10); Z choice of data.

funct

d-typ

nK = rem(fix(opt/10‘1),10) + 1; Z TOTAL weight to revise

Z INCLUDING current

do_e11 = rem(fix(0pt/10“3),10) == 1; Z 1->return each ellipsoid.

if size(y,1)>size(y,2) y=y’; end; Z column vector

if size(w,1)>size(w,2) w=w’; end; Z column vector

p = pm(l); q = pm(2); N = pm(3); ep = pm(4); ff = pm(6);

lY = 1ength(y); Z output sequence size

  
Z ARX-type model orderH = p+q+l;

l

t
if length(gam) == ,

‘.

gam = gamtones(size(y));

end;

Z -------------- Initialization -----------------------

P0 = (1/mu‘2)*eye(H); Z

P = P0; Z initial condition

param = zeros(7,1Y); Z epsilon,vol,k,g,k*G

param(2,:) = ones(size(param(2,:)));

thet = zeros(H,lY); Z model parameters

t = zeros(M,1); Z initial parameters

k0 = 1.0; k = k0; P = Ptmu; v0 = sqrt(det(kOtP0)); Z initial kappa

Ellip = inv(PO)/k; Z initial ellipsoid

v = sqrt(det( ktP )); Z volume

pub 8 O*ones(nK,1); Z TOTAL weight revisions

nup = 0; Z number of updates

mup = 0; Z number of multiple weight updates

Y = [zeros(nK-1,1);y(M)];

U = [gam(1:nK)]’; Z initial bound vector

X = [y(M+1-(1:1:p)) w(M+1-(0:1:q))]’;

for i = 1:nK-1,
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X = [zeros(M,1) X];

end;

B = Y - X’*t; Z initial error

ofile = 1; Z output device (0 = null)

Z ----------------- Recursion -------------------------

fprintf(ofi1e,’\nHWOBE, K = Zd, M = Zd: ’,nK-1,H);

for n = H+nK:lY,

fprintf(ofile,’.’);

Y1 = [Y(2:end); y(n)]; Z new candidates

U1 = [U(2:end); gam(n)]; Z same: gam(n-nK+1:n)]’;

Um = diag(U1); Z diagonal matrix

x1 [y(n-(1:1:p)) w(n-(O:1:q))]’;

X1 = [X(:,2:end) x1];

if ( sum(d_typ == [1,2]) ) l (funct > 1) Z immediate K observations

X = X1; Y = Y1; U 8 U1; Z forward algorithms

end;

B 3 Y1 - Xl’tt; Em = diag(E); Z error

6 = x1’*P*X1; Z weighted energy matrix

d_idx = nK; if(funct>1) d_idx = 1; end;

x = X1(:,d_idx); e = Y1(d_idx) - x’*t; g = x’*P*x;

Z initial error i g scalar

u = Ul(d_idx);

if sum(funct == [0,2,4J)

[L,chk,pHa,S] = mwv_weights(G,U1,E,pUb,[funct,d_typ,k,M]);

else

[L,chk,pUa,S] = qu-weights(G,U1,E,pr,[funct,d_typ,k,M]);

end;

switch(chk)

case 1

fprintf(ofile,’\b[Zd]’,n);

nup = nup + 1; Z stat: points used (any adjust.)

X = X1; Y = Y1; U = U1; 1 = L(d_idx); h = 1+l*g;
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P P - (l/h)*P*x*x’*P;

k k + (1/h)*(h*u“2 - e‘2);

if k < 10e-8, k=0.1; end;

t = t + 1*e#P*x;

case 2

fprintf(ofile.’\b<Zd>’,n);

nup = nup + 1; Z stat: no of used pts

X 3 X1; Y = Y1; U = U1;

Lm = diag(L); H = eye(nK)+Lm*G;

P P - P*X*inv(H)*Lm*X’*P;

k k + U’thtU - E’*inv(H)*Lm*E;

if k < 10e-8, k=0.1; end;

t = t + P*X*Lm*E;

mup = mup + 1;

end;

if k<0; k = 0.1; end; Z adaptation

if sum(eig(P)<O), eig(P),

fprintf(’\nHWOBE problem! negative eigenvalues! \n’);

keyboard, end;

Z -------- saving up the information ------

param(5,n) = pUa(1); Z log past 3 weights

if nK>1, param(6,n) = pWa(2); end;

if nK>2, param(7,n) = pwa(3); end;

v = sqrt(det( ktP )); Z volume

thet(:,n) = t; Z parameters

param(1,n) = Y1(d_idx) - x’tt; param(2,n) = v; Z

param(3,n) = k; param(4,n) = U(d_idx); Z

pr = [pWa(2:nK); 0]; Z updated weights

if ( sum(d_typ == [2,3]) ) & (chk==0) Z immediate K observations

X = X1; Y = Y1; U = U1; Z forward algorithms

end;
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if do_e11, Ellip = [Ellip inv(P)/k]; end;

end

param(1,1:N+nK-1) = param(l,M+nK)*ones(1,N+nK-1); Z initial error

param(2,1:H+nK-1) v0*ones(1,M+nK-1); Z initial vol

param(3,1:H+nK-1) k0*ones(1,M+nK-1); Z initial kappa

param(4,1:N+nK-1) param(4,H+nK)*ones(1,H+nK-1); Z initial gamma

stat = [nup 0 mup];
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MWOBE, August 25, 1998

Z HV-QOBE weights

Z dale joachim, msu, 6/9/98

Z function [L,chk,pWa,S] = qu_weights(G,U,E,pr,0pt)

—> weighted energy matrix (X’PX)

-> upper bound vector

-> error vector

Z pwb —> vector of past (cumulated) weights (before)

Z Opt -> opt(1): funct (see NUOBE.m)

N

N
C
O

Z 0pt(2): d-typ (see MUOBE.m)

Z opt(3): kappa from previous iteration

Z opt(4): system order M

Z

Z

Z L <- weight adjustments vector

Z chk <- weight exists ? (0:no, 1:qobe, 2:mwobe)

Z pHa <- vector of (cumulated) weights (after)

Z S <- sign vector

function [L,chk,pWa,S] = qu_weights(G,U,E,pr,0pt)

nK = size(G,1); Z

Um = diag(U); Z diagonal matrix

Em = diag(E); Z error

pWa = pwb;

ddir = opt(l) > 1;

vK = sum (opt(2) == [0,3]);

simpl = opt(l) > 3;

k = opt(3):

H opt(4):

chk = 0; L = zeros(nK,1); S = 0; Z initialization

if ddir, t 1; else t = nK; end;

e = E(t); u = U(t); g = G(t.t);

if (nK > 1)

for i = 0:0 Z (2“nK)-1 Z for this study, do all!

if rank(G) == nK
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S1 = [((dec2bin(i,nK == dec2bin(0,nK)) ...

‘ (dec2bin(i,nK) == dec2bin(0,nK)))]’;

Se = sign(E)+(E==O); Z sign E

81 = Se; Z note for now !

Sm = diag(Sl);

B = G*Um*Sm; Z other: B = Em*Gm*Em;

L1 = inv(B)*(E-(U.*Sl));

if prod(L1+pr>0)

chk = 2; S = 51; L = L1;

if simpl, Z only one weight logged

chk = 1;

pWa(t) = L(t);

else

pWa = pub + L;

end;

end;

end;

end;

end;

if ('chk) & (( abs(e) > u )) & ((nK==1)|((nK>1)&vK)) 3

Z last cond. forces nK fixed

S = e/abs(e); chk = 1;

L(t) = (abs(e) - u)/(u*g);

pHa(t) = L(t);

end;

128

 



Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

MWOBE, August 25, 1998

MH-SH-WRLS weights

dale joachim, msu, 6/9/98

function [L,chk,pHa,S] = mwv_weights(G,U,E,pr,opt)

G -> Weighted energy matrix (X’PX)

U -> upper bound vector

E -> error vector

pUb -> vector of past (cummulated) weights

opt -> opt(1): funct (see HHOBE.m)

opt(2): d_typ (see HWOBE.m)

0pt(3): kappa from previous iteration

opt(4): system order H

L <- weight adjustments vector

chk <- weight exists ? (Ozyes, 1:sm-wrls, 2:mw-sm-wr1s)

pHa <- vector of (cummulated) weights

8 <- sign vector

function [L,chk,pHa,S] = mwv_weights(G,U,E,pwb,opt)

nK = size(G,1); Z

Um.= diag(U); Z diagonal matrix

Em = diag(E); Z error

pUa = pub;

ddir = 0pt(1) > 1;

vK = sum (0pt(2) == [0,3]);

simpl = opt(l) > 3;

k opt(3):

m opt(4):

chk = 0; L = zeros(nK,1); S = 0; Z initialization

if ddir, t = 1; else t = nK; end;

e = E(t); u = U(t); g = G(t,t); Gi = inv(G);

if (e‘2 - u“2 + ktg/m > 0 ) & (nK>1)

El = 01 t E; 01 = Gi * U;

b = k - E’*21 - U’tUl;

if prod(prod((E*E’ - U*U’)*Gi + (k/m) > 0))
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Z ------------ numerical solution ----------

a1 = 0; a2 = 2*pi;

incr = (a2-a1)/SOO; tt = [incr:incr:a2];

uvec = zeros(length(tt),2);

vvec = zeros(length(tt),2);

dvec = zeros(1ength(tt),2);

tvec = 10“9*ones(1ength(tt),1);

uvec(:,l) = [U(1)*cos(tt) - U(2)*sin(tt)]’;

uvec(:,2) [U(2)#cos(tt) + U(1)*sin(tt)]’;

vvec(:,l) = [El(1)*cos(tt) - 81(2)*sin(tt)]’;

vvec(:,2) = [E1(2)*cos(tt) + El(1)*sin(tt)]’;

alfv = (uvec./vvec).*(m*uvec.*vvec - E1’*U);

betv = (vvec./uvec).*(m*uvec.*vvec + El’tU);

dvec = (b + sqrt((b‘2) + 4*(alfv).*(betv)))./(2*alfv);

idx = isrea1(dvec);

for i=1:1ength(tt)

if (isreal(dvec(i,:)))

DD = diag(dvec(i,:));

uu = uvec(i,:)’; vv = vvec(i,:)’;

f = b + uu’*DD*uu + vv’vDDtvv;

F = mthtuu*uu’*DD - ftDD - mtvvtvv’;

tvec(i) = trace(F);

end;

end;

Z tvec = (tvec < O)*10‘50 + (tvec>0).*tvec;

[val,idx] = min(tvec);

angl = tt(idx); D = diag(dvec(idx,:));

R = [cos(angl) -sin(ang1); sin(ang1) cos(angl)];

xx = R’tntfi; L1 = diag(XX - Gi);

plot(tvec);

for i = 1:1

zoom on;

agl = ginput(1); angl = ag1(1);

R = [cos(angl) -sin(ang1); sin(angl) cos(angl)];

uvec = R*U; vvec = Rtfil;

alfv = (uvec./vvec).*(m*uvec.*vvec - El’tU);
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betv = (vvec./uvec).*(m*uvec.*vvec + E1’*U);

dvec = (b + sqrt((b‘2) + 4*(a1fv).*(betv)))./(2*alfv);

D = diag(dvec); XX = R’*D*R; L1 = diag(XX - Gi);

val = prod(L1>0);

end;

if prod(L1+pr>0)&(va1>0)&isrea1(L1)

chk = 2; L = L1;

if simpl, Z only one weight logged

chk = 1;

pwa(t) = L(t);

else

pHa = pUb + L;

end;

end;

end;

end;

if ('chk) & (( m*(u“2 - 8‘2) - k*g < 0 )) & ((nK==1)l((nK>1)&vK)) ; Z

a = (m-1)*(u*g)“2;

b = u“2*g*(2*m-g)+e‘2*g-k*g‘2;

c = m*(u‘2~e“2)-k*g;

L(t) = (-b+sqrt(b‘2-4*a*c))/(2*a);

pHa(t) = L(t); chk = 1;

end;
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