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ABSTRACT

SPHINGOLIPIDS IN FOODS AND DIFFERENTIAL SENSITIVITY OF HUMAN

COLON CANCER CELLS TO SPI;I)NGOID BASES AND CERAMIDES

Eun-Hyun Ahn

Complex sphingolipids have been shown to protect against development of colon

cancer. Sphingoid bases and ceramides are bioactive metabolites of sphingomyelin and

other more complex sphingolipids found in foods. The purpose of the present study was

to quantitate sphingolipids in some common foods and investigate the effects of

Sphingoid bases and ceramides on growth and death of HT-29 and HGT-116 human

colon cancer cells. The concentrations of total sphingolipids and free Sphingoid bases

(nmng of dry weight) were approximately: nonfat dry milk (203, 146); yogurt (138,

1.2); Swiss cheese (167, 6.5); full fat soy flakes (609, 2.6); soy flour (610, 1.6); isolated

soy protein (210, 2.8). Most sphingolipids in foods were present as complex

sphingolipids and sphingosine was the predominant Sphingoid base backbone of total

sphingolipids in foods. Sphingosine, sphinganine, and Cz-ceramide inhibited grth

and caused death of HT-29 and HCT-l 16 cells in concentration- and time-dependent

manners; whereas, Cz-dihydroceramide had no effect suggesting that the 4,5-trans

double bond was necessary for the inhibitory effect of ceramide. Sphingosine and

sphinganine killed cells by inducing apoptosis; whereas, Cz-ceramide did not induce

apoptosis. The results indicate that sphingolipids are significant constituents of soy

fractions and dairy products and that the colonic concentrations of Sphingoid bases

and/or ceramide which may be achieved after consumption of the foods are sufficient to

inhibit growth and cause death ofhuman colon cancer cells.
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I. LITERATURE REVIEW

A. Colon cancer

1. Colon cancer incidence. Colon cancer is the second leading cause of

cancer mortality in the United States (American Cancer Society, 1996). In the world,

colon cancer is the fourth most common cancer mortality (World Cancer Research Fund,

1997). North America, Europe and Australia have high incidence of colon cancer;

whereas, Central and South America, Asia and Africa are areas of low incidence. Men

and women have a similar rate of incidence of colon cancer (World Cancer Research

Fund, 1997).

2. Colon cancer etiology. The adenoma-carcinoma hypothesis proposed by

Hill et al (1978) is now a widely accepted description of the pathogenesis of colorectal

cancer. The target cells of colon carcinogenesis are crypt epithelial cells (Hill et al.,

1978). According to this model, the initial colorectal lesion arises as a benign

adenomatous polyp that later undergoes further disorganization of cellular and tissue

phenotype. Bird er al (1987) suggested that hyperproliferation of the upper crypt cells

leads to the formation of aberrant crypt foci and microadenomas. Increased proliferation

and decreased differentiation of colonic epithelial cells are considered to be biomarkers

for an increased risk for developing colon cancer (Lipkin, 1990). A molecular model for

the adenoma-carcinoma sequence can be described by the multi-step process in which

cells accumulate alterations of multiple genes that control cell growth and differentiation,

resulting in the neoplastic phenotype (Vogelstein et al., 1989, Fearon er al., 1990,

Fearon and Vogelstein, 1990, Kinzler et al., 1991). The genes involved in colon



carcinogenesis are: mutations or loss of the APC gene (a tumor-suppressor gene)

(Aaltonen er al., 1993), mutation of K-ras (a prom-oncogene) and early disorganization

of DNA methylation (Feinberg and Vogelstein, 1983) and late loss of p53 (a tumor-

suppressor gene). People having familial adenomatous polyposis possess a mutation in

the APC gene and carry an almost 100 percent risk of colon adenocarcinoma (Aaltonen et

al., 1993). Hereditary nonpolyposis colorectal cancer is a syndrome which is not easily

distinguished from sporadic polyposis and cancer on physical examination. This

syndrome accounts for a larger proportion of colon cancer cases than familial

adenomatous polyposis (Lynch and Lynch, 1985). DNA hypomethylation is an early

event in colon carcinogenesis (Feinberg and Vogelstein, 1983). DNA methylation is

genetically controlled and the expression of the methyl transferase gene seems to be

increased in the normal mucosa of cancer patients and further increased in polyp and

cancer tissue (EI-Deiry et al., 1991). Several animal studies showed that isothiocyanates,

which mainly are present in cruciferous vegetables, inhibited both carcinogenesis and

DNA methylation (Wattenberg, 1977, Wattenberg, 1987, Steinmetz and Potter, 1991a, &

Steinmetz and Potter, 1991b). Although these observations are contradictory, both hypo-

and hypermethylation of DNA are considered to be hallmarks of the early stages of the

carcinogenesis.

3. Colon cancer and diet. Epidemiological studies of diet, nutrient intake and

colon cancer indicate that meat consumption which reflects fat and protein intake is

associated with high incidence of colon cancer (Wynder and Shigematsu, 1967, Wynder

et al., 1969, Drasar and Irving, 1973, Haenszel et al., 1973, Bjelke, 1973, Armstrong and

Doll, 1975, Hirayama, 1981, Heaton, 1982, Phillips and Snowdon, 1985, Potter, 1989)

 



and fruit and vegetable consumption reflecting fiber intake is associated with a protective

effect against development of colon cancer (Burkitt, 1969, Manousos et al., 1983, Stubs,

1985, Trock er al., 1990, Potter, 1990, Steinmetz and Potter, 1991a, & Steinmetz and

Potter, 1991b). Bile acid metabolism and volatile fatty acids might account for the

association of fat and fiber consumption with colon cancer. Fat increases bile acid

production and then bowel mucosa is more exposed to toxic bile acids (Hill, 1971). In

contrast, fiber binds bile acids, reduces transit time, increases stool bulk, and increases

bile acids fermentation to non-toxic volatile fatty acids (Stephen and Cummings, 1983,

Cummings, 1983).

Other factors which might affect risk of colon cancer include physical activity

(Garabrant et al., 1984, Gerhardsson er al., 1986, Slattery et al., 1988), family history

(Burt er al., 1985, Bufill, 1990), and alcohol consumption (Potter et al., 1982, Tuyns er

al., 1988, Longnecker, 1990, Choi and Kahyo, 1991). Lee et al (1991) showed that

individuals with high levels of physical activity were at the low risk for developing colon

cancer (Garabrant er al., 1984, Gerhardsson et al., 1986, Slattery et al., 1988). A family

history of colon cancer is related with increased risk of colon cancer (Burt et al., 1985,

Bufill, 1990). Although some studies showed that alcohol consumption (mostly beer)

was related with increased risk of colon cancer, cautious interpretation of these results is

recommended (Potter et al., 1982, Tuyns er al., 1988, Longnecker, 1990, Choi and

Kahyo, 1991).

Epidemiological studies suggest that dietary fat and specific dietary fatty acids are

associated with colon cancer (Potter et al., 1993); however, this association is

controversial since dietary fat is highly correlated with total energy intake. Slattery et aI

 r—_
.
_
_
—
_
-

d
"
;

.



(1997) evaluated these potential associations using detailed dietary intake data collected

in a population-based study of 1,993 colon cancer cases and 2,410 controls in three areas

of the United States. In this study population, fats added in the preparation of foods such

as fried foods or bakery products or fats added to other foods at the table were responsible

for one-third of the total diet fat intake. Interestingly, neither total dietary fat nor specific

fatty acids were associated with risk of colon cancer afier adjusting for total energy

intake, physical activity, and body size. However, fats from food preparation were

associated with increased risk of colon cancer among older women, while fats from foods

themselves or from additions to other foods were not. Taken together, it seems that the

percentage of energy fi'om fat in the diet is not a major indicator of colon cancer risk.

Several investigations suggested that soy consumption may contribute to the

lower rates of breast, prostate, and colon cancer in China and Japan (Setchell er al., 1984,

Barnes et a1, 1990, Adlercreutz, 1990). The isoflavone genistein, which is rich in

soybeans and considered as one of the most significant plant estrogens, has been reported

to protect against development of colon carcinogenesis (Akiyama et al., 1987, Ogawara

er al., 1989, Teraoka et al., 1989, Bourquin er al., 1996, Thiagarajan er al., submitted).

Other epidemiological studies indicate that regular consumption of fermented

milk products such as yogurt may be protective against some forms of cancer (Peters er

al., 1992, Karnpman et al., 1994). Some lactic acid bacteria present in fermented milk,

especially Lactobacilli, are components of intestinal microflora (Bianchi Salvadori, 1986)

and have protective effects against pathogenic microorganisms (Mutai and Tanaka,

1987). For example, a dietary supplement of Lactobacillus acidophilus reduced the

incidence of 1,2-dirnethylhydrazine-induced colon cancer in F344 rats (Goldin and

 



Gorbach, 1980). Also, epidemiological studies have reported that, despite the high fat

intake in Finland, colon cancer incidence is lower than in other countries (Malhorta,

1977, International Agency for Research on Cancer, 1983). This may be due to Finland’s

high consumption of milk, yogurt, and other dairy products. Furthermore, yogurt

fractions obtained by membrane dialysis on cultured mammalian intestinal cells

decreased cell proliferation in both IEC-6 and Caco-2 cells and reduced the number of

IEC-6 cells in the initial growth phase (Ganjarn et al., 1997).

B. Dietary sphingolipids might reduce colon carcinogenesis.

l. Sphingolipids regulate cell behavior. Sphingolipids include ceramides,

sphingomyelin, cerebrosides, sulfatides, and gangliosides, all of which are elaborations of

a long-chain (Sphingoid) base, the most common of which is an 18-carbon compound

termed sphingosine (Figure 1). Sphingosine (trans-4-sphingenine) and Sphinganine

(without the 4,5-trans double bond) are the most prevalent fi'ee long-chain bases of most

mammalian tissues (Merrill, 1991). Except for Sphingoid bases, ceramides, and

sphingomyelin, all other sphingolipids are designated glycosphingolipids since they

contain carbohydrate head groups. Glycosphingolipids include neutral glycosphingolipids

and acidic glycosphingolipids. Neutral glycosphingolipids contain from one (cerebroside)

to 20 or more glucose units (Makita and Taniguchi, 1985, Hakomori, 1983). Acidic

glycosphingolipids contain one or more sialic acid residues (gangliosides) or monoester

groups (sulfatides) (Wiegandt, 1985).

Sphingolipids are located mainly in plasma membranes and related organelles

including the Golgi apparatus, endosomes, and lysosomes which are functionally
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associated with cellular responses to external agents such as growth factors, cytokines,

extracellular matrix proteins, neighboring cells and microbial toxins and receptors (Merrill

et al., 1995b). Sphingolipids can regulate cell behavior at the surface of the cell, where

they bind to extracellular ligands, such as bacterial toxins, lectins from neighboring cells,

and antibodies. For instance, ganglioside GMl binds to cholera toxin and mediates cholera

toxin’s effects on cells by activating adenylate cyclase (Fishman, 1982) and gangliosides

GD“, Gm, and Go“, function as natural receptors for Sendai virus in host cells (Markwell

er al., 1981). In addition, carbohydrate sequences present in gangliosides are recognized

by monoclonal antibodies raised against murine teratocarcinomas (Solter and Knowles,

1978, Gooi et al., 1981, Kannagi er al., 1982), carcinomas of the pancreas, lung, colon and

stomach (Brockhaus er al., 1982) and myeloid leukemia cells and granulocytes (Skubitz er

al., 1983, Urdal et al., 1983, Magnani er al., 1984). Sphingolipids might act to form a

classical receptor-ligand interaction, or to define regions of the membrane with surface

characteristics that aid in receptor binding and responses, internalization, recycling, or in

anchoring proteins to the cell surface (Menill er al., 1993). An example of a sphingolipid

acting at the surface of the cell is the interaction between ganglioside GM, and epidermal

growth factor receptor (Bremer er al., 1986, Hanai et al., 1988a, Hanai er al., 1988b).

Ganglioside GM3 inhibits epidermal growth factor-stimulated growth of human epiderrnoid

carcinoma cells KB and A431. The mechanism involves inhibition by ganglioside GM3 of

epidermal growth factor-stimulated phosphorylation of the epidermal growth factor

receptors (Bremer et al., 1986).

Sphingolipids can regulate cell behavior by changes that take place in the plasma

membrane and/or endosomes, where complex sphingolipids and their turnover products

 



can stimulate or inhibit receptor kinases, responses of G proteins, protein kinases, protein

phosphatases, and ion transporters (Merrill, 1991). Some sphingolipid hydrolysis

products could influence both the external and internal leaflets of the plasma membrane.

For example, Hope and Cullis (1987) showed that ceramides are relatively nonpolar and

can cross membranes readily. In addition, sphingosine seems to undergo rapid movement

across membranes in the neutral form and the hydroxyls at position 2 of the Sphingoid

base backbone gives a pKa near physiological pH (Merrill et al., 1989).

Sphingolipids can regulate cell behavior at intracellular areas that are sensitive to

products of sphingolipid turnover. Some sphingolipids, such as lysosphingolipids, N-

deacylation products of sphingolipids, and free long-chain (Sphingoid) bases, can move

rapidly among membranes and might affect targets at sites distant from their locations of

formation. For example, sphingosine might be liberated in the plasma membrane but

affect protein kinase C in the nucleus (Hannun er al., 1986a, Hannun et al., 1986b).

Sphingolipids. are also able to be converted to other bioactive compounds, such as

ceramides, ceramide l-phosphate, Sphingoid bases, sphingosine l-phosphate, N-

methylated sphingosines, and lysosphigolipids which can affect multiple intracellular

targets (Zhang et al., 1991, Merrill et al., 1993).

2. Milk sphingomyelin might prevent the progression of adenomas to

adenocarcinomas in colon cancer. Recently, sphingolipids have emerged as

another component of the diet which may help to protect against development of colon

carcinogenesis. Using rodents, Schmelz et a1 (1994) showed that about 12% of dietary

sphingolmyelin passes through the small intestine to the colon. This finding raised the

possibility that consumption of sphingomyelin may provide bioactive sphingolipid



metabolites such as ceramide and sphingoid bases which could inhibit the development of

colon cancer (Figure 2 and Figure 3). This hypothesis was tested in initiation-promotion

studies conducted by Merrill’s group using sphingomyelin isolated from nonfat dry milk

(Dillehay et al., 1994, Schmelz et al., 1996). The results showed that sphingomyelin at

0.05% of the diet inhibited formation of aberrant colonic foci in CF-1 mice treated with

1,2-dimethylhydrazine (Dillehay et al., 1994). A subsequent longer term (34 weeks)

study has shown that sphingomyelin at 0.1% of the diet does not reduce the number of

tumors but causes a higher percentage of adenomas and lower percentage of the more

advanced adenocarcinomas (Schmelz er al., 1996). Also, the potential of synthetic

sphingomyelins with saturated or unsaturated sphingoid base backbones to suppress the

number of aberrant colonic foci was investigated using CF-1 mice treated with 1,2-

dimethylhydrazine (Schmelz er al., 1997). In this study, the reduction of the number of

aberrant colonic foci by synthetic dihydrosphingomyelin (N-

palmitoyldihydrosphingomyelin) (70%, p < 0.0001) was significantly greater than by

synthetic sphingomyelin (N—palrnitoylsphingomyelin) (52%, p = 0.002) and milk

sphingomyelin (54%, p = 0.002). This indicates that the 4,5-trans double bond is not

required for the suppression of colon carcinogenesis since synthetic

dihydrosphingomyelin, which lacks the 4,5-trans double bond of the sphingoid base

backbone, efficiently reduced the number of aberrant colonic foci (Schmelz et al., 1997).

3. Ceramide and sphingosine may mediate the protective effect of

sphingomyelin against colon cancer. The ability of dietary sphingomyelin to

reduce colon carcinogenesis may be the result of turnover of sphingomyelin to bioactive

metabolites such as ceramides and sphingoid bases which play important roles in signal



transduction and cell regulation (Figure 2 and Figure 3). Extracellular agonists, such as

certain cytokines, growth factors, and hormones, stimulate their cell surface receptors to

activate a sphingomyelinase which cleaves sphingomyelin to generate cellular ceramide

(Figure 2). For example, 1a,25-dihydroxyvitamin D3 (Okazaki et al., 1989), tumor

necrosis factor alpha (TNF-or) (Kim et al., 1991, Mathias et al., 1991), and y—interferon

(Kim et al., 1991, Dressler et al., 1992), which are inducers of differentiation of HL-60

human leukemia cells, cause hydrolysis of sphingomyelin to form ceramide. In addition,

interleukin-1 (Ballou et al., 1992, Mathias et al., 1993), dexarnethasone (Ramachandran

er al., 1990), complement components (Niculescu er al., 1993), fungal macrolide

brefeldin A (Linardic er al., 1992), and B-sitosterol, the main phytosterol in the diet

(Awad er al., 1998), were found to induce hydrolysis of sphingomyelin in other cell lines.

Cz-ceramide and other short-chain water-soluble analogues of ceramide induced

differentiation in HL-60 leukemia cells which mimicked the effects of lor,25-

dihydroxyvitarnin D3, tumor necrosis factor alpha (TNF-a), and y—interferon on HL-60

cells (Okazaki er al., 1990). Treatment of U937 human myeloid leukemia cells with

TNF-a caused sphingomyelin hydrolysis and resulted in elevation of level of ceramide.

In addition, ceramide analogs or TNF-a caused intemucleosomal DNA fragmentation, a

hallmark of apoptosis in myeloid and lymphoid cells (Obeid et al., 1993). Unlike tissue

necrosis, which occurs in response to severe insults and injury to cells, apoptosis involves

an orderly breakdown of cells. Apoptosis is characterized with chromatin condensation

followed by DNA fragmentation via the activation of an endonuclease, cytoplasmic

blebbing, and condensation, and finally disintegration into dense particles called

10
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apoptotic bodies (Michaelson, 1991). Ceramide serves as a second messenger for the

action of extracellular agonists by transmitting the signal to the nucleus through multiple

downstream targets such as protein kinase C (zeta isofonn), ceramide-activated protein

phosphatase (CAPP), and ceramide-activated protein kinase. For example, ceramide

induced early down-regulation of c-myc protooncogene (Kim et al., 1991). Ceramide

activated the nuclear factor kappa B (NF-kB) in permeabilized (Schutze et al., 1992) but

not in intact Jurkat T cells (Dbaibo er al., 1993). NF-kB (Schutze er al., 1992) is known

to participate in the control of cell proliferation, in the dephosphorylation of the

retinoblastoma gene product (pr), a tumor suppressor gene that plays an important role

in cell-growth suppression and regulation of cell-cycle progression. Ceramide can act as

an activator of transcription of the cyclooxygenase gene (Ballou er al., 1992).

Sphingosine (Faucher et al., 1988) caused phosphorylation ofthe epidermal growth factor

receptor on threonine 669 which was independent of protein kinase inhibition and this

action of sphingosine might be associated with the conversion of sphingosine to ceramide

(Goldkorn er al., 1991). Furthermore, this phosphorylation is mediated by a membrane

kinase (ceramide-activated protein kinase) which is activated by TNF-or in intact and in

cell-free systems (Mathias er al., 1991). Ceramide-activated protein kinase shares the

substrate specificity of mitogen-activated protein kinase (MAP kinase) (Joseph et al.,

1993). Ceramide activates MAP kinase (Raines er a1, 1993). Ceramide-activated protein

phosphatase (CAPP) acts as a mediator of the action of ceramide. Ceramide-activated

protein phosphatase (CAPP) serves as a serine/threonine protein phosphatase which is

activated directly and specifically by ceramide but not by dihydrocerarnide (Dobrowsky

l3



and Hannun, 1992) and is inhibited by okadaic acid (Dobrowsky er al., 1993), a tumor

promotor.

Sphingoid bases present in the colon may also help to protect against the

development of colon cancer. Schmelz et a1 (1998) reported that both sphinganine and

fumonisin B,, a mycotoxin which blocks de novo sphingolipid biosynthesis and causes

accumulation of sphinganine, induce apoptosis in HT-29 human colon cancer cells.

Sphingosine inhibits protein kinase C (Hannun et al., 1986a) which has been related with

tumor promotion (Weinstein, 1988) and blocks induction of ornithine decarboxylase by

phorbol esters (Gupta et al., 1988, Enkvetchakul et al., 1989). Sphingosine also inhibits

the transformation of C3H10T1/2 cells (Borek et al., 1991). Sphingosine and N-

methylated derivatives inhibit growth of various human tumor cell lines in vitro (Stevens

et al., 1990a) and in nude mice (Endo et al., 1991) and reduce the metastatic potential of

a murine melanoma cell line (Okoshi er al., 1991). In addition, Sweeney et al (1996)

showed that sphingosine and its methylated derivative N,N-dimethyl sphingosine induce

apotosis in a variety of human cancer cells including CMK-7, HL-60, U-937, HRT-l8,

MKN-74, and COLD-205. In contrast, primary cell cultures seem to be less susceptible

to sphingosine than cancer cells. Sphingosine did not induce apoptosis in normal

epithelial cells such as HUVECs or rat mesangial cells, but caused apoptosis in their

transformed counterparts (Sweeney et al., 1996). Thus, sphingolipids have the possibility

to inhibit carcinogenesis through many mechanisms.

C. Knowledge of the types and concentrations of sphingolipids in foods is

limited. Although evidence is now emerging which suggests that dietary

l4



sphingolipids may protect against the development of disease, knowledge of the types

and concentrations of sphingolipids in foods is limited. Sphingolipids are found in all

eukaryotic and some prokaryotic cells (Merrill, 1991). However little is known about

their concentrations in foods. Sphingomyelin (N-acylsphingosine-1-phosphocholine or

ceramide phosphocholine) is a phospholipid located mainly in the outer leaflet of the

plasma membrane of most mammalian cells (Parodi, 1997). The levels of sphingomyelin

have been measured in the following foods: milk (100~200 nmol/ml) (Zeisel et al.,

1986), salmon (160 nmol/g), pork and beef tissues (350~390 nmol/g) and chicken (530

nmol/g) (Blank et al., 1992). Kamath and Charles (1997) reported that the major

phospholipid components of Swiss cheese whey lipid fractions were phosphatidylcholine,

phosphatidylethanolamine, and sphingomyelin.

Total lipids in milk are composed of 0.2 to 1.0% phospholipids. Sphingomyelin

represents about 30% of total milk phospholipids and the concentration of sphingomyelin

in milk was found to be about 100~200 nmol/mL (Zeisel er al., 1986). However, the

concentration of sphingomyelin in milk is affected by season and the cow's stage of

lactation (Parodi, 1997). Lactic acid bacteria, particularly Lacrobacillus and

Bifidobacteria, are commonly used in the production of fermented milk. A study of the

lipid composition of dairy starters reported that sphingomyelin is present in Lactobacillus

bulgaricus and Lactobacillus acidophilus (Chand et aI. , 1992). Therefore, fermented

milk products may be rich in sphingolipids. Furthermore, lactic acid bacteria such as

Lactobacilli and certain components of fermented milk products have been shown to

protect against the development of diseases (Malhorta, 1977, Goldin and Gorbach, 1980,

International Agency for Research on Cancer, 1983, Bianchi Salvadori, 1986, Mutai and
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Tanaka, 1987, & Ganjam er al., 1997). Since sphingosine and ceramide can induce

apoptosis, the protective effect of fermented milk products against diseases may be

related, in part, to the dairy products’ sphingolipid content.

Many studies reported that soy foods and certain components in soy products such

as genistein protect against development of colon carcinogenesis (Akiyama et al., 1987,

Ogawara er al., 1989, Teraoka et al., 1989, Bourquin et al., 1996, Thiagarajan et al,

submitted). Ohnishi and Fujino (1982) reported that the amount of cerebroside in

soybean was about 2 umol/g. The protective effect of soy products against colon cancer

may also be related to sphingolipid concentration.
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II. OBJECTIVES

The specific objectives of this research are to:

A. Determine the concentrations of total sphingolipids and free sphingoid bases in soy

fractions, nonfat dry milk, yogurt, and Swiss cheese.

B. Determine the effects of exogenous sphingolipids on growth and death of human

colon cancer cells.
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III. MATERIALS AND METHODS

Chemicals. Sphingolipids were purchased from Sigma (St. Louis, MO) and

Matreya (Pleasant Gap, PA) and the other chemicals were obtained from Sigma (St.

Louis, MO).

Foods. Yogurt (Low fat yogurt: custard style-thick & creamy, strawberry

and vanila) was obtained from Yoplait Inc. (Minneapolis, MN). Swiss cheese was from

Amish Country Cheese (Linwood, MI), nonfat dry milk and ultra-pasteurized coffee

cream were from Kroger Co. (Cincinnati, OH). Full fat soy flakes, soy flour, and soy

protein concentrate were from Central Soya (Fort Wayne, IN). Isolated soy protein with

isoflavones was from Archer Daniels Midland Co. (Decatur, IL). The yogurt, Swiss

cheese, and coffee cream were lyophilized in a freeze drier (Freeze Dry/Shell Freeze

System, Labconco, Kansas City, Missouri). Nonfat dry milk and full fat soy flakes

(whole soybeans) and the freeze-dried pellets from yogurt, Swiss cheese, and coffee

cream were powdered using a mortar and pestle.

Colon cancer cell lines. The human colon adenocarcinoma cell line

HT-29 and the human colon carcinoma cell line HCT-116 were purchased from

American Type Culture Collection (Rockville, MD).

Determination oftotal lipids infoods. Total lipids in nonfat dry milk,

yogurt, Swiss cheese, coffee cream, full fat soy flakes (whole soybeans), soy flour,

isolated soy protein, and soy protein concentrate were extracted using

Chloroforrn/methanol (2:1, v/v). Chloroform/methanol (2:1, v/v) at 100 mL was added to

18



5g of dry materials and fat was solublized at 50 °C for 3 hours. Solvents and solubilized

lipids were removed from substrates by Whatrnan filter paper and residues were dried at

60 °C for 24 h. The amounts of lipids were determined by gravimetric analysis.

Yogurt, Swiss cheese, and coffee cream which contain large amounts of moisture

were freeze-dried to remove water. The freeze-dried materials of the foods were

powdered using a mortar and pestle for determination of total lipids and sphingolipids.

To measure moisture content in foods, raw food materials were dried at 60 °C for 24 h in

VWR Scientific 1330 F Constant Temperature Oven (Forced air or gravity) (VWR

Company, Philadelphia, PA) and the results were presented in Table 1.

Extraction of sphingolipids from foods for the determination of total

sphingolipids. Sphingolipids were isolated by the one phase extraction method

(Smith and Merrill 1995). The volume of 3 mL of chloroform/methanol (1:2, v/v) was

added to the sample to be extracted. C20 sphingosine at 300 pmol as an intemal standard

was added to each sample to determine the concentrations of total sphingolipids.

Samples were incubated at 37°C for l h in the shaker water bath (Shaker bath, Lab-Line

Instrumentals, Inc., Melrose Park, IL) at 100g. After 1 h incubation, the sample was

centrifuged at 800g for 10 min (Beckrnan Instruments, Inc., Fullerton, CA) and the clear

supernatant was transferred to a new tube. This step was repeated for twice.

Three mL chloroform/methanol (2:1, v/v) was added to the pellet. After one hour

incubation at 37°C in the shaker water bath, this extract was centrifuged and the clear

supernatant was collected in the tube from the first step. This step was repeated for twice.
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The pooled chloroform/methanol extracts from the above two steps were dried in

a speed vacuum concentrator (AES 2000 Automatic Environmental Speed Vac® with

Vapornet, Savant Instruments, Inc., Holbrook, NY). The dried extracts were dissolved in

1 mL of chloroform. After 1 h incubation at 37°C in the shaker water bath, the extracts

were centrifuged at 800g for 10 min and clear supernatant was transferred to a new tube.

One mL of chloroform was added to the pellet. After 1 h incubation at 37°C in

the shaker water bath, this pellet in chloroform was centrifuged and the clear supernatant

was transferred to the supernatant collected in the tubes from the last step. The pooled

chloroform extracts were dried in a speed vacuum concentrator.

Quantitation oftotal sphingolipids. After the one-phase extraction step, 2

mL of 0.5 N hydrochloric acid in methanol was added and the samples were incubated at

65°C in a dry bath (Barnstead/Thermolyne, Dubuque, IA) to hydrolyze the acyl groups.

After 18 h incubation, samples were neutralized with 200 uL of 5 N ammonium

hydroxide.

The samples were extracted with 1 mL of chloroform and 5 mL of water. This

resulted in two phases of the samples: the top phase consisted of water and methanol and

the lower phase consisted of lipids in chloroform. After the samples were centrifuged,

the upper aqueous phase was removed (This step was repeated for twice). The

chloroform layer was passed through a column filled with sodium sulfate to remove

residual water. The chloroform was evaporated using a Speed Vacuum Concentrator for

about 1 h. The samples were saponified by adding 1 mL of 0.1 M potassium hydroxide
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in methanol/chloroform (4:1, v/v) and incubating the samples for 1 h in a shaker water

bath at 37°C.

After the 1 h saponification, the samples were extracted with 1 mL of chloroform

and 5 mL of water. This resulted in two phases of the samples: the top phase consisted of

water and methanol and the lower phase consisted of lipids in chloroform. After the

samples were centrifuged, the upper aqueous phase was removed (This step was repeated

twice). The chloroform layer was passed through a column filled with sodium sulfate to

remove residual water. The chloroform was evaporated using a speed vacuum

concentrator for about 45 min. The samples were redissolved in 400 uL of mobile phase

(methanol: 5 mM potassium phosphate, 87:13, v/v). The sphingoid bases in samples were

derivatized with the addition of 200 uL of o-phthaldehyde in 3% borate buffer at pH 10.5.

The samples were centrifuged at 10,000g for 10 min (Microcentrifuge, IEC/Micromax®)

and the clear upper fraction was transferred to HPLC vials and the sphingoid bases were

quantitated using High-Performance Liquid Chromatography (HPLC) (Merrill et al.,

1988, Riley et al., 1994). The absolute amounts of total sphingolipids were determined

by the reference to the internal standard, Czo-sphingosine.

The elution profiles of sphingosine, sphinganine, and Czo-sphingosine on Cl8

reverse-phase HPLC with the solvent of methanol: 5 mM potassium phosphate, pH 7.4

(87:13) were shown in Figure 4. Sphingosine, sphinganine, and Czo-sphingosine

appeared at 12.5, 17.8, and 23.1 min respectively.

Quantitation of free sphingoid bases- sphingosine and sphinganine.

Chloroform/methanol (l :2, v/v) at 1.9 mL was added to samples. Czo-sphingosine at 300

21



 

  

23. 125

Czo-Sphingosine

1 7.846

Sphinganine

12.535

Sphingosine

 
     

 

Retention Time (min)

Figure 4. Elution profiles of sphingosine, sphinganine, and Czo-sphingosine on C13

reverse-phase HPLC.
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pmol was added as an internal standard to samples and samples were mixed. After the

addition of 100 uL of 2 N ammonium hydroxide, the samples were incubated at 37°C in a

shaker water bath for 1 h. After 1 h saponification, the samples were extracted with 1 mL

of chloroform and 5 mL of water. This resulted in two phases of the samples: the top

phase consisted of water and methanol and the lower phase was a mixture of lipids in

chloroform. After the samples were centrifuged at 800g, the upper aqueous phase was

removed (This step was repeated for twice). The chloroform layer was passed through a

column filled with sodium sulfate to remove residual water. The chloroform was

evaporated using a speed vacuum concentrator for about 45 min. The samples were

redissolved in 400 uL of mobile phase (methanol: 5 mM potassium phosphate, 87:13,

v/v). The sphingoid bases in samples were derivatized with the addition of 200 uL of o-

phthaldehyde in 3% borate buffer at pH 10.5. The samples were centrifuged at 10,000g

for 10 min (Microcentrifuge, IEC/Micromax®) and the clear upper fraction was

transferred to HPLC vials and the sphingoid bases were quantitated using High-

Perforrnance Liquid Chromatography (HPLC) (Merrill er al., 1988, Riley et al., 1994).

The absolute amounts of free sphingoid bases were determined by the reference to the

internal standard, Czo-sphingosine.

The elution profiles of sphingosine, sphinganine, and Czo-sphingosine on Cl8

reverse-phase HPLC with the solvent of methanol: 5 mM potassium phosphate, pH 7.4

(87:13) were shown in Figure 4. Sphingosine, sphinganine, and Czo-sphingosine were

appeared at 12.5, 17.8, and 23.1 min respectively.

23



Culture ofhuman colon cancer cells. Stock cultures of PIT-29 and HCT-

116 human colon cancer cells were grown in 100 mm culture dishes (Coming,

Cambridge, MA) containing Dulbeco’s Modified Eagle Medium (DMEM) supplemented

with 10% fetal bovine serum at 37°C and 5% C02. Dulbeco’s Modified Eagle Medium

was purchased from Gibco BRL (Life Technologies, Gaithersburg, MD).

Sphingolipid stock. Sphingosine and sphinganine were prepared as a

complex with bovine serum albumin at concentrations of 104 M, 5x10‘4 M, and 10'3 M.

Cz-cerarnide and Cz-dihydroceramide (cell permeable and short chain analog of naturally

occurring ceramide and dihydroceramide) (Figure 5) were dissolved in ethanol as a stock

solution at concentrations of 10" M, 5x104 M, 10'3 M, 2x10'3 M, and 5x10‘3 M.

Total nucleic acid assay. To assess the effects of sphingolipids on cell growth

and death, total nucleic acids were measured as previously described (Li et al., 1990) and

used as an index of cell number. Cells were seeded at a density of 3.0 x 10’ cells/mL in

6-well dishes. HT-29 and HCT-116 cells were grown in 2 mL of Dulbeco’s Modified

Eagle Medium (DMEM) with 10% fetal bovine serum for 24 or 36 h to insure that cells

were in log phase before treatment with sphingolipids. After 24 or 36 h, the medium was

replaced with DMEM supplemented with 1% fetal bovine serum and 20 uL of various

concentrations of sphingolipids were added directly to the cell culture medium.

Subconfluent cells were incubated with sphingosine, sphinganine, Cz-cerarnide, or

Cz-dihydroceramide at final concentrations of 1, 5, 10, 20 and 50 uM for 0, 3, 12, 24, and

48 h. At each culture period of time, floating dead cells were removed by aspiration and

the remaining live cells were rinsed with 1 mL ofphosphate-buffered saline (PBS). Then
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Figure 5. Structures of sphingoid bases and ceramides with or without

the 4,5-trans double bond.
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the cells were lysed with 1 mL of 0.1 M sodium hydroxide and the total nucleic acid

concentration was determined by reading absorbance of the cell lysate at 260 nm using

Gene Quant-RNA/DNA Calculator (Pharmacia Biotech, Piscataway, NJ).

Examination ofcellular morphology. Cells were treated with sphingolipids

as described above and the cells were viewed and photographed using a Nikon inverted

microscope (Nikon, Garden City, NY.) fitted with a Polaroid Micro Camera (Polaroid

Corporation, Cambridege, MA).

Microscopic detection ofapoptotic cells" To determine whether sphingoid

bases and ceramide kill cells via apoptosis or via a non-apoptotic pathway, cells were

incubated with sphingoid bases and ceramide at 10, 20, and 50 uM for 0, 15, 30, 60, 120,

or 180 min and 12, or 24 h. Cells were collected at each time and stained with acridine

orange and ethidium bromide (Mishell et al., 1980). Cells were photographed using a

fluorescence microscope equipped with a camera under 10X plus 40X magnification with

400/490 nm excitation and 520 nm emission (Nikon Labophoto, Nikon Inc. Instrument

Group, Garden City, N. Y.). Apoptotic and non-apoptotic cells were classified by the

differences in their chromatin organization (Martin and Lenardo, 1998). Viable cells with

normal nuclei appeared as containing bright green chromatin with organized structure.

Viable cells with apoptotic nuclei appeared as containing bright green chromatin with

highly condensed or fragmented structure. Nonviable cells with normal nuclei appeared

as containing orange chromatin with organized structure. Nonviable cells with apoptotic

nuclei appeared as containing orange chromatin with highly condensed or fragmented

Structure.
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Statistical analysis. Data for cell grth as influenced by sphingolipids

were analyzed by two-way factorial analysis of variance (ANOVA). After application of

ANOVA to the data, the significance of differences in the means of total nucleic acid

content in HT-29 and HCT-116 cells between control and treatment groups at specific

culture periods were evaluated by multiple comparisons using the Bonferroni method.

Differences were considered significant at p < 0.05.
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IV. RESULTS

A. Sphingolipid concentrations in foods.

Determination oftotal lipids infoods. Total lipids in foods were expressed

as percent of lipids on a dry weight basis (Table 1). Coffee cream, Swiss cheese, full fat

soy flakes, and yogurt were relatively high in fat (54.5, 36.7, 23.1, 16.2 % respectively).

Nonfat dry milk, soy flour, isolated soy protein, and soy protein concentrate contained

1.2, 2.7, 2.2, and 0.2 % fat, respectively on a dry weight basis.

Determination ofsphingolipids infoods. The present study showed that most

sphingolipids in foods are present as complex sphingolipids and little are present as flee

sphingoid bases (Table 2). The concentrations of total sphingolipids and flee sphingoid

bases (nmng of dry weight) were: nonfat dry milk (203 3: 75, 146 j; 78); yogurt (138 i

55, 1.2 i 0.3); Swiss cheese (167 i 45, 6.5 1; 7.6); full fat soy flakes (609 i 627, 2.6 i

1.1); soy flour (610 i 509, 1.6 j; 0.3); isolated soy protein (210 i 112, 2.8 i- 1.7) (mean j;

SD, n=4) (Table 2 and Figure 6). Sphingosine is the predominant free sphingoid base and

long-chain base backbone of total sphingolipids in foods. The percentage of flee

sphingoid bases and sphingoid base backbones of food complex sphingolipids that are

sphingosine and sphinganine is shown in Table 3. Sphingosine accounts for 90, 74, 91,

85, 98, and 96% of the sphingoid base backbone of total sphingolipids in nonfat dry milk,

yogurt, Swiss cheese, full fat soy flakes, soy flour, and isolated soy protein, respectively

(Iable 3). Sphingosine accounts for 97, 69, 90, 64, 77, and 73% of flee sphingoid bases

in nonfat dry milk, yogurt, Swiss cheese, full fat flake, soy flour, and isolated soy protein,

respectively (Table 3).
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Table 1. Total lipids and moisture content in foods. Lipids are expressed

on a dry weight basis. Data are mean 1; SD (n=2).

 

 

 

 

 

 

 

 

    

Foods % of lipids Water (%)

Nonfatdryrnilk 1.2 1; 0.07 5.4 i 0.3

Yogurt 16.2 3; 0.21 72.9 i 0.002

Swiss cheese 36.7 i 0.16 32.8 i 6.7

Coffee cream 54.5 3; 1.35 72.2 i 0.2

Full fat soy flakes 23.1 i 0.14 3.4 i 0.4

Soy flour 2.7 j; 0.14 4.5 i 0.07

Isolated soy protein 2.2 i 0.12 7.6 i 0.02

Soy protein concentrate 0.2 i 0.14 4.4: 0.04
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Figure 6. Total sphingolipid concentrations in foods. Data are espressed on a dry weight

basis and are mean 1 SD (n=4).
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Table 3. Percentage of flee sphingoid bases and sphingoid base backbones of food

complex sphingolipids that are sphingosine and sphinganine.

Data are expressed on a dry weight basis and are mean -_i-_ SD (n=4).

 

 

 

 

 

 

 

      

Total Sphingolipids Free sphingoid bases

Foods (%) (%)

Sphingosine Sphinganine Sphingosine Sphinganine

backbone backbone

Nonfat

Dry Milk 89.8 i 10.7 10.2 i 10.7 96.7 i 2.7 3.3 j; 2.7

Yogurt 74.0 i 9.1 26.0 1- 9.1 69.4 3; 7.5 30.6 i 7.5

Swiss

Cheese 91.2 i 4.8 8.8 :1; 4.8 90.0 i 7.7 10.4 i 7.7

Full fat soy

flake 84.5 i 12.1 15.5 i 12.1 64.4 i 22.2 35.6 i 22.2

Soy flour 98.4 j; 81.6 3.2 i 2.2 76.7 1; 4.8 23.3 -_I-_ 4.8

Isolated soy

protein 96.1 i 2.0 3.9 i 2.0 73.2 i 8.0 26.8 i 8.0
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B. Differential sensitivity of human colon cancer cells to sphingoid bases and

ceramide.

Sphingosine, sphinganine, and ceramide inhibit growth and cause death ofHT-

29 human colon cancer cells. Based upon the concentrations of total

sphingolipids that were found in milk products in this study (~138-203 nmol/g) and

assuming that the average American consumes ~730g of dairy products per day (USDA,

1994, Putnam and Allhouse, 1996), the sphingolipid concentration in the colonic lumen

could reach >20 uM. Cells were incubated with sphingolipids at the concentrations

where may be achieved after consumption ofthe foods based on this estimation.

To determine the effects of sphingolipids on growth and death of HT-29 human

colon cancer cells, subconfluent cells were treated with sphingosine, sphinganine, C2-

ceramide, or Cz-dihydroceramide and the concentration of total nucleic acids was

determined as an index of cell number. The concentration of total nucleic acids in control

cultures doubled over 24 to 36 hours. Sphingosine, sphinganine, and ceramide caused

concentration- and time-dependent decreases in total nucleic acids of HT-29 cells.

Specifically, addition of sphingosine (Figure 7A) at 20 and 50 11M significantly reduced

total nucleic acid concentrations within 24 hours by 50 and 66%, respectively (p <0.05)

compared to corresponding controls. Sphinganine (Figure 7B) at 10, 20 or 50 uM

significantly reduced total nucleic acid concentrations within 24 hours by 55, 65, and

80%, respectively (p < 0.05) compared to corresponding controls. Cz-ceramide (Figure

7C) also caused a significant reduction in the total nucleic acid concentrations at 20 and

50 uM within 48 hours (p < 0.05). Incubation with Cz-ceramide at 50 11M for 48 h killed
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Control 20 11M Sphingosine 50 uM Sphingosine

--

   

Control 20 11M Sphinganine 50 1.1M Sphinganine

Control 20 uM Cz-ceramide 50 uM Cz-ceramide

Control 20 uM Cz-dihydroceramide 50 11M Cz-dihydroceramide

 

Figure 8. Sphingosine, sphinganine, and ceramide inhibit growth and cause death of HT-

29 human colon cancer cells (photographs). Subconfluent cells were cultured with

sphingosine (A), sphinganine (B), Cz-ceramide (C), and Cz-dihydroceramide (D) at 0, 20,

and 50 11M for 24 h.
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all cells. Unlike Cz-ceramide and the sphingoid bases, Cz-dihydroceramide did not

reduce total nucleic acid concentrations (Figure 7D). Changes in cellular morphology

caused by treatment of the cells with the sphingolipids for 24 h are shown in Figure 8.

Sphingosine, sphinganine, and ceramide inhibit growth and cause death of

[JCT-116 human colon cancer cells. Additional studies were conducted to

exaxnine the effects of sphingolipids on HGT-116 human colon cancer cells. The

concentration of total nucleic acids in control cultures of HCT-l 16 cells doubled over 18

to 36 hours. Similar to the effects on HT-29 cells, sphingosine, sphinganine, and

ceratxlide caused concentration- and time-dependent decreases in total nucleic acids of

HCT—ll6 cells. Specifically, addition of sphingosine (Figure 9A) at 20 and 50 11M

. sig11ificantly reduced total nucleic acid concentrations within 24 h by 62 and 71%,

respectively (p <0.05) compared to corresponding controls. Sphinganine (Figure 9B) at

10, 20 or 50 11M significantly reduced total nucleic acid concentrations within 24 h by 55,

77, and 93%, respectively (p < 0.05) compared to corresponding controls. Cz-cerarnide at

20 RM also caused a significant reduction in total nucleic acid concentrations within 24

hours by 33% and Cz-ceramide at 50 11M for 24 h killed all cells (Figure 9C). Unlike C2-

Ceramide and the sphingoid bases, Cz-dihydroceramide did not reduce total nucleic acid

c("1'23etltrations (Figure 9D). Changes in cellular morphology caused by treatment of the

cells With the sphingolipids for 24 h are shown in Figure 10.

Sphingoid bases and ceramide difl'erentially afl'ect death of human colon

“nee!" cells. To determine whether sphingoid bases and ceramide kill cells via

apoptosis or via a non-apoptotic pathway, cells were stained with acridine orange and
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ethidium bromide and chromatin organization was examined under fluorescent light

(Martin and Lenardo, 1998). Apoptotic cells were found in HT-29 and HCT-116 cells

cultured with sphingosine at 20 11M and sphinganine at 10 and 20 11M for 12 and 24 h

(Figure 11).
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Figure 9. Sphingosine, sphinganine, and ceramide inhibit grth and cause death of

HCT-116 human colon cancer cells. Subconfluent cells were cultured with sphingosine

(A), sphinganine (B), Cz-cerarnide (C), and Cz-dihydroceramide (D) at 0 (O), 1 (O), 5

(V), 10 (V), 20 (C1), and 50 (I) uM for.3, 12, 24, or 48 h and total nucleic acid was

determined as an index of cell number. Data are from two experiments and represent

mean 1 SEM (n=8). Means at each culture period with an asterik (*) are significantly

different (P < 0.05) flom the corresponding controls.
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Control 20 uM Sphingosine 50 uM Sphingosine

Control 20 11M Sphinganine 50 1.1M Sphinganine

Control 20 1.1M Cz-ceramide 50 11M Cz-ceramide

Control 20 11M Cz-dihydroceramide 50 11M Cz-dihydroceramide

.-

Figure 10. Sphingosine, sphinganine, and ceramide inhibit growth and cause death of

HGT-116 human colon cancer cells (photographs). Subconfluent cells were cultured with

sphingosine (A), sphinganine (B), Cz-ceramide (C), and Cz-dihydroceramide (D) at 0, 20,

and 50 11M for 24 h.

    39



 
Figure 11. Sphinganine kill PIT-29 cells by inducing apoptosis (photographs).

Subconfluent cells were cultured either without sphinganine (A), or with sphinganine (B)

at 10 11M for 12 h. Cells were stained with acridine orange and ethidium bromide. The

right panels show cells under phase contrast and the left represents cells under florescent

light.
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V. DISCUSSION

Many studies suggest that specific foods and their components may protect

against development of colon cancer. For example, soy foods (Akiyama et al., 1987,

Ogawara et al., 1989, Teraoka et al., 1989, Bourquin et al., 1996, Hughes et al., 1997,

Thiagarajan et al, submitted) as well as milk and fermented milk products (Peters et al.,

1992, Karnpman et al., 1994) appear to protect against the development of colon

carcinogenesis. Studies are underway to identify the component of these foods which

provide the protective effects and their mechanisms of action. Recently dietary

sphingolipids have gained attention for their potential to protect against the development

of colon cancer (Dillehay et al., 1994, Schmelz et al., 1996, Schmelz et al., 1997);

however, little is known about the types and concentrations of sphingolipids in foods. In

the present study sphingolipids were extracted flom soy flactions, milk, and fermented

milk products and quantitated via HPLC. The concentrations oftotal sphingolipids in full

fat soy flakes, soy flour, and isolated soy protein were ~609, 610, and 210 nmng of dry

weight, respectively. Although these concentrations are lower than those previously

estimated for cerebroside (2 pmol/g) in soybeans (Ohnishi and Fujino, 1982), they

indicate that sphingolipids are significant constituents of soy flactions. Furthermore, the

data suggest that the processing steps to generate soy flour flom full fat soy flakes using

hexane extraction do not significantly influence the concentration of total sphingolipids.

The present studies also show that the concentrations of total sphingolipids in nonfat dry

milk, yogurt, and Swiss cheese are ~203, 138, and 167 nmng of dry weight,
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respectively. Assuming that sphingomyelin is the major complex sphingolipid in milk,

the concentration of total sphingolipids in nonfat dry milk (203 nmol/g) is comparable

with the value reported for sphingomyelin in milk (100-200 nmol/mL) (Zeisel et al.,

1986). The concentrations of total sphingolipids in the fermented milk products are

similar to that in nonfat dry milk suggesting that dairy starter cultures which contain

sphingomyelin (Tamine and Deeth, 1980, Banwart, 1989, Chand et al., 1992, Marshall,

1993) do not contribute significantly to the total sphingolipid concentration of the

fermented foods. Sphingolipids are present in soy flactions and milk products primarily

as complex sphingolipids; whereas, the simpler flee sphingoid bases are present at low

concentrations. Moreover, sphingosine is the predominant long-chain base accounting

for ~64-97% of the flee sphingoid bases and ~74-98% of the sphingoid base backbone of

complex sphingolipids with sphinganine accounting for the balance.

Presumably dietary sphingolipids must reach the colonic tissue in order to inhibit

the development of colon cancer. Schmelz et al (1994) reported that ~88% of dietary

sphingomyelin is absorbed via the small intestine. Therefore, one route that dietary

sphingolipids may reach the colon is via the blood. Alternatively, the remaining 12% of

dietary sphingomyelin that is not absorbed passes directly into the colonic lumen

(Schmelz et al., 1994). This provides another more direct route by which dietary

sphingolipids may reach the colonic cells. Based upon the concentrations of total

sphingolipids that were found in milk products in this study (~138-203 nmng) and

assuming that the average American consumes ~730g of dairy products per day (USDA,
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1994, Putnam and Allhouse, 1996), the sphingolipid concentration in the colonic lumen

could reach >20 11M.

The mechanism by which sphingolipids inhibit colon cancer is not clear. One

possibility is that complex sphingolipids such as sphingomyelin are hydrolyzed to

bioactive metabolites including sphingoid bases and/or ceramides. Assuming complete

hydrolysis of complex sphingolipids which reach the colon, the concentration of

sphingoid bases and/or ceramides that colonic cells may be exposed to via the lumen

could reach >20 11M. This concentration of sphingoid bases and/or ceramides has been

shown to inhibit growth and induce differentiation and/or apoptosis in a variety of tumor

cells (Faucher et al, 1988, Okazaki et al, 1990, Stevens et al, 1990a, Stevens et al, 1990b,

Michaelson, 1991, Goldkom et al, 1991, Endo et al, 1991, Obeid et al, 1993, Sweeney er

a1, 1996).

The present study showed that sphingosine and ceramide at 20 and 50 11M and

sphinganine at 10, 20, or 50 uM significantly inhibit growth and caused death of HT-29

and HOT-116 human colon cancer cells. In contrast, Czdmydmcemnnde which lacks the

4,5-trans double bond has no effects. These results suggest that the 4,5-trans double

bond is necessary for inhibition of growth and induction of death by ceramide, but not by

sphingoid bases (Figure 5). This finding is consistent with the results of previous studies

which showed that short-chain ceramides caused apoptosis in many systems, while

dihydroceramides which lack the 4,5-trans double bond were ineffective (Bielawska et

al., 1993, Obeid, et al., 1993, Tepper et al., 1995, Sawai et al., 1995, Brugg et al., 1996,

Karasavvas et al., 1996). In contrast, both sphingosine and sphinganine inhibit growth
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and induce apoptosis in a variety of cell lines and tumor xenografis (Endo er al., 1991,

Ohta et al., 1995, Jarvis et al., 1996a, Sweeney et al., 1996). Interestingly, previous

studies have indicated that synthetic dihydrosphingomyelin (N-

palmitoyldihydrosphingomyelin) (70%, p < 0.0001) was even more effective than

synthetic sphingomyelin (N-palmitoylsphingomyelin) (52%, p < 0.002) at reducing the

number of aberrant colonic foci in CF-1 mice treated with 1,2-dimethylhydrazine

(Schmelz et al., 1997). Taken together with our results, this suggests that synthetic

dihydrosphingomyelin (and perhaps sphingomyelin) inhibits colon carcinogenesis via

turnover in the colonic lumen to the flee sphingoid base (sphinganine and/or sphingosine)

which may in turn inhibit growth and cause death of colon cancer cells. Alternatively,

Jarvis et al (1996a) showed that a combination of ceramide and sublethal concentrations

of sphingosine or sphinganine was more effective at inducing DNA fragmentation in

human myeloid leukemia cell lines HL-60 and U937 than ceramide alone. Therefore,

complex sphingolipids may inhibit colon carcinogenesis via turnover to a mixture of

sphingosine, sphinganine, and ceramide.

Incubation of cells with sphingosine at 20 uM and sphinganine at 10 and 20 uM

for 12 h induced apoptosis; whereas, Cz-ceramide did not induce apoptosis. This finding

raised a possibility of the utilization of sphingoid bases as a chemotherapeutic agent since

many chemotherpeutic agents have been shown to kill susceptible cells by apoptosis

(Kauflnann, 1989, Walker et al., 1991, Shinomiya et al., 1994, Havrilesky et al., 1995,

Huschtscha, et al., 1996). Apoptosis is a form of programmed cell death which is either

launched in response to specific stimuli such as cytokines, tumor necrosis factor or, and



thefas ligand (Nagata, 1992, Smith et al., 1994), or activated in response to cell injury or

stress (Gerschenson and Rotello, 1992, Michaelson, 1991). Cancer cells have been known

to circumvent the normal apoptotic mechanisms to prevent their self-destruction due to

their many mutations (Kerr er al., 1994, Williams, 1991). Chemotherapeutic agents

which induce apoptosis appear to have less side effects since the agents can selectively

kill cancer cells with no cytotoxic effects on neighboring normal tissue (Kauflnann, 1989,

Walker et al., 1991, Shinomiya et al., 1994, Havrilesky et al., 1995, Huschtscha, et al.,

1996). The mechanisms by sphingoid bases induce apoptosis in human colon cancer

cells has not well established. Wild-type p53 protein and Bel-2 oncogene were identified

as two major endogenous regulators of apoptosis (Vogelstein and Kinzler, 1992, Oren,

1992, Lane, 1992, Reed, 1995, Korsmeyer et al., 1995). Wild-type p53 protein induces

cell death especially in response to DNA damaging events (Vogelstein and Kinzler, 1992,

Oren, 1992, Lane, 1992). In contrast, Bel-2 oncogene show anti-apoptotic function

(Reed, 1995, Korsmeyer et al., 1995). Sphingosine might affect various systems to

induce apoptosis. For example, sphingosine inhibits protein kinase C (Hannun et al.,

1986b), Na‘lKI-ATPase (Oishi et al., 1990), and phospatidic acid phosphohydrolase

(Lavie and Liscovitch, 1990, Jamal et al., 1991, Mullmann et al., 1991). Sphingosine

activates the epidermal growth factor receptor kinase (Faucher et al., 1988, Wedegaertner

and Gill, 1989) and other sphingosine-specific kinases (Pushkareva et al., 1992).

Sakakura et al (1996) showed that sphingosine induce apoptosis via down-regulation of

Bcl-2 oncogene in HL-60 cells. Thus, sphingoid bases might induce apoptosis by

affecting multiple downstream targets.
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Taken together, the results indicate that sphingolipids are significant constituents

of dairy products and soy flactions and that the colonic concentrations of sphingoid bases

and/or ceramide which may be achieved after consumption of soy flactions and

fermented milk products are sufficient to inhibit growth and cause death of human colon

cancer cells.
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