
III
WIH

HIW
IHH

WWW
I!I

HWW
IWW

WLI
HHI

THESlS

Date

0-7639

lHllllllllllllllHHHUIINIUlllHlHllIIJHINJIIHHIIUII
31293 01774 9551

LIBRARY

Mlchigan State

Unlverslty

This is to certify that the

thesis entitled

Implementation and Evaluation of fic/OS

for the Handy Board

presented by

Anthony E. Pappas

has been accepted towards fulfillment

of the requirements for

Master's degree in Electrical Eng

 Mlm
Major professor

X/Io/qr

MSU is an Affirmative Action/Equal Opportunity Institution

PLACE IN RETURN BOX to remove this checkout from your record.

To AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

DATE DUE DATE DUE DATE DUE

ma www.mu

LMPLEMENTATION AND EVALUATION

OF uC/OS FOR THE HANDY BOARD

By

Anthony E. Pappas

A THESIS

Submitted to

Michigan State University

In partial fulfillment of the requirements

For the degree of

MASTER OF SCIENCE

Department of Electrical Engineering

1998

ABSTRACT

IMPLEMENTATION AND EVALUATION

OF pC/OS FOR THE HANDY BOARD

By

Anthony E. Pappas

RTOS (Real-Time Operating System) technology is a viable design option for

many embedded systems and applications. It has proven itself as a reliable and useful

tool in developing systems that have hard and soft real-time requirements. Many

engineers have written their own RTOS because nothing else has been available.

However, this often takes away from the application development time. Their RTOS

would often be inefficient, requiring maintenance and would not be scalable or

portable.

Commercial RTOSs are now available. More engineers chose them over

writing their own because commercial RTOSs are proven technology. They are

written efficiently, scale well to meet the real-time requirements and port easily to

new processors. These RTOSs allow the application to remain abstract and they take

the responsibility of handling the system details away from the application.

We investigate uC/OS, an RTOS for the MC68HC11, with the following key

objectives. First, uC/OS must be ported to the MC68HC11 and there must be a basic

understanding ofhow to use and expand its features for real-time embedded

applications. Second, applications must be developed to illustrate these features.

Also, a prototype environment must be created to test them. Finally,

recommendations for curricular use ofthe RTOS must be made and a description of

how an RTOS fits into co-design must be given.

DEDICATION

This paper is dedicated to my loving wife, Rachelle Pappas, who has given me full

support and encouragement on this thesis and to my parents, Greg and Gloria Pappas to

whom I owe so much.

iii

ACKNOWLEDGEMENTS

I would like to thank my family and friends for understanding the importance of what this

thesis means to me and for giving me their full support. I would also like to thank my

advisor, Dr. Diane Rover, for her support and leadership throughout my project. She has

been very flexible and understanding ofmy work situation and I greatly appreciate it.

I would also like to thank Seth Mosier and Andy Huang for the work on the train

simulator that is used in conjunction with my bridge control application.

iv

TABLE OF CONTENTS

LIST OF TABLES...vii

LISTOF FIGURES................ ..viii

CHAPTER] INTRODUCTION 1

1.1 PROBLEM STATEMENT... 2

1.2 APPROACH... 3

1.3 (TONIRIBLU'IONS... 4

1.4 ORG/muHON 0F THESIS... 4

CHAPTER 2 BACKGROUND 5

2.1 RTOS [Amooucnox .. 5

2.2 RTOS SPECTRUM... 8

2. 2. l 8-bit Processors... 12

2.2.2 [6-bit Processors... 16

2.2.3 32-bit Processors... 19

2.3 SUMIMRY .. 23

CHAPTER 3 DESIGN & IMPLEMENTATION OF uC/OS 24

3.1 INTRODUCTYON .. 24

3.2 YARGETARCHITECTURE.. 25

3.2.1 MC68HCII ... 25

3.2.2 Handy Board... 27

3.3 EVELOPMENTEM7ROWENT... 3!

3. 3.! Whitesmiths Too/s.. 3!

3.3.2 Support Tools .. 33

3.4 IHERIUS, pC/OS .. 33

3. 4. 1 Resources .. 34

3.4.2 'l'asks ... 35

3. 4. 3 Communication ... 40

3. 4.4 Interrupts... 43

3.5 DEVELOPMENTCHALLENGESAND SOLUTIONS.. 45

3. 5. I I'ask Argument Passing ... 45

3.5.2 Print Services .. 49

3. 5. 3 Ike Debugger Interface ... 49

3. 5. 4 Simulating Interrupts... 50

3.6 SLMMARI' .. 54

CHAPTER 4 TEST APPLICATION FOR uC/OS 56

4. I INTRODUCTION .. 56

4.2 GENERAL SPECIFICATIONS .. 56

4. 3 ENVIRONMENTAND DESIGN .. 58

4.3. I PC Components... 59

4. 3. 2 Bridge Algorithm... 59

4.3.3 Tasks ... 60

4. 4 SUMMARY .. 61

CHAPTER 5 RESULTS 62

5.1 INTRODUCTION .. 62

5.2 PERFORMANCEMETRICS... 62

5. 3 CASE STUDIES.. 64

5. 3. I Task Communication And Timing Function Application .. 64

5. 3. 2 Priority Inheritance Application .. 66

CHAPTER 6 SUMMARY AND CONCLUSION 69

CHAPTER 7 FUTURE WORK ' 70

vi

LIST OF TABLES

Table l. Real-time interrupt rate for MC68HC1 l ... 26

Table 2. Handy Board memory mapl7 .. 28

Table 3. Latch control for data bus. .. 29

Table 4. Stack snapshot, SP begin at 0x8900.. .. 46

Table 5. Interrupt bit allocation for CXBD - MC68HCI 1 ‘9 ... 51

Table 6. Task level context switching example. ... 54

Table 7. Interrupt context switching example. .. 54

vii

LIST OF FIGURES

Figure l. Task states.. 6

Figure 2. RTEK System Generation Tool. .. 19

Figure 3. Handy Board pin out .. 30

Figure 4. Task context. .. 36

Figure 5. Task states for uC/OS .. 38

Figure 6. uC/OS mailbox .. 42

Figure 7. uC/OS message queue ... 42

Figure 8. uC/OS interrupt handling .. 44

Figure 9. Train track representation. ... 57

Figure 10. PC to Handy Board interface ... 58

viii

Chapter 1 Introduction

Real-time operating systems (RTOS) live at the core ofany system that requires

applications to be logically correct and meet real-time constraints. These operating

systems support real-time applications and systems via kernel services, task and resource

management, and interrupt handling. There are two types of real-time systems, hard and

soil.

Hard real-time tasks operate correctly and in a timely fashion'. Hard real-time

requirements put strict time constraints on the system where the success of its operation

hinges on the timeliness of tasks.

Sofl real-time requirements have some time constraints but a “best effort” by the

tasks to meet their deadlines is sufficient. The real time operating system must support

one ofthese two types of real-time systems.

To support either hard or soft real-time systems, the RTOS must possess a number

of capabilities. It must be written efliciently, supporting and optimizing the use ofthe

available hardware. It must have real-time kernel services that aid the application in

meeting the real-time requirements. In essence, the RTOS must allow the application to

be more abstract, meet real-time requirements and avoid hardware or system details. To

accomplish this, the RTOS interfaces the application to resources, interrupts and timing

processes. The RTOS provides this interface through kernel services. These services

allow the application to concentrate on the specifications ofthe problem and the design

rather than deal with underlying system details.

The application can remain abstract by being broken up into tasks. These tasks

can have priorities, communicate among each other and have access to resources. They

also have access to the timing services that help meet the application’s needs.

Application portability can be maintained by choosing the proper RTOS. Keeping

the application abstract leaves the RTOS to handle the system details and provide a

standard system interface for the application. Re-writing an application for an RTOS

may not be simple but once this has been done, running it on a new system could be

trivial. Only the RTOS needs to support the new system and most are written to be

portable. This abstraction allows the application to take on new features more easily. It

could be as simple as writing a new task or using a resource in a unique way. Also,

future designs and upgrades need not be concerned with portability or system interfaces

because ofa new processor. This is made possible by the fact that RTOS kernel services

remain the same while the underlying system may change. Most ofthe time, a new

system or processor means re-working the applications (not written for an RTOS). This

often introduces new problems or extends application development time. Thus, an RTOS

may also reduce the time to market in an industry where timing, in every sense ofthe

word, is crucial.

1.1 Problem Statement

8-bit and 16-bit microprocessors support increasingly more complex embedded

applications and require RTOS support to manage them. This thesis presents the

implementation ofan RTOS written for the Handy Board, which incorporates Motorola’s

popular 8-bit embedded microprocessor, the MC68HCI 1. The MC68HC1 I thrives in

many ofthe industries’ real-time applications and has many features that fit well with an

RTOS. Many educators have also embraced this processor because of its industrial

popularity and wide spread use in educational books and publications.

Also in this thesis, we discuss the tools that aid in the implementation and

development process ofporting and writing applications for an RTOS. uC/OS by Jean

Labrosse is a well-documented and portable RTOS chosen for this thesis]. A framework

application for a classroom environment at Michigan State University has been

developed using uC/OS. This thesis intends to support future labs or assignments on

RTOS application development in embedded systems. A course that may have such labs

or assignments would be an operating systems class or a computer engineering capstone

course on embedded systems. This thesis may also serve as a tool for co-design research

involving such tools as POLIS from UC Berkeleyz.

1.2 Approach

In this thesis, we present how to implement and use an RTOS in an 8-bit embedded

environment. Implementing an RTOS such as pC/OS requires the proper tools and RTOS

knowledge as well as good programming skills. Research in the RTOS market gives

insight to what standard features are used in the development process. For this thesis to

be useful in an instructional environment, the expectations ofthe student and teacher

were explored and understood. We present a real-time train application developed for

uC/OS and other case studies to demonstration the usefulness uC/OS.

1.3 Contributions

The following lists the contributions of this thesis.

. An implementation of uC/OS for the Handy Board.

. The development of real-time applications with uC/OS.

. An analysis of the features and performance of uC/OS.

. An environment that makes RTOS development part ofMSU’s real-time systems

education and research.

1.4 Organization of Thesis

Chapter 2 gives background information on RTOS technology and the hardware

design choices that relate to them. This gives enough information to understand how

uC/OS works and what it provides to real-time applications. Chapter 3 discusses all the

components of implementing and using uC/OS. Chapter 4 explains the train application

written for uC/OS. The results of using pC/OS and a performance analysis of it are

given in Chapter 5.

Chapter 2 Background

2.1 RTOS Introduction

“When used properly, an RTOS changes your design from one of main functions

calling lots of subroutines to an event-driven, interrupt-responsive system organized by

tasks and time.”3. A transition ofan application to tasks that make use ofa real-time

operating system may not be easy but it will have great benefits.

If an application can be broken into tasks then the RTOS optimizes them for the

system and runs them in a multitask environment. Each task may not need continuous

use ofthe CPU allowing other tasks to execute. This may not have been possible in a

non-RTOS system because the application lacked any abstraction that would allow for

context switching.

Task communication can allow for synchronization ofthe tasks or provide a data

path among them via kernel services such as semaphores, message boxes and queues.

Tasks can also use timing services provided by the kernel to ensure that they meet their

real-time specifications or requirements. A task may delay its self for a specified amount

oftime or obtain the current time. This gives a task some sense oftime and allows it to

take time intensive action i.e. sounding an alarm at 6:30 AM. or waiting 30 seconds

before attempting to gain access to a printer.

To avoid resource corruption by tasks, the RTOS handles the resources of the

system. Two or more tasks may attempt to modify a resource and the RTOS will maintain

the integrity of the resource during this process. The RTOS must provide this service in a

simple and standard way. allowing the tasks to focus on their true function. Thus, a

resource can be shared among tasks without concern for misuse. The main functions of

the kernel provide context switching and management of tasks, handling the

communication among them.

To accomplish task management, the RTOS must have a scheduler that handles

various states of the task. The task states usually consist of the following: Current,

Ready, Delaying, Suspended, Timed or Blocked. Figure l is an example of how these

tasks move among the states.

Figure 1. Tu]: states.

A task begins in the Ready state and the scheduler will allow it to run when the

processor becomes available and another task is not deemed worthier based on the

scheduling algorithm. Once it begins to run, it may continue until the scheduler decides

that it must be moved to one of the other states such as Timed or Suspended. This could

occur as part ofthe scheduling algorithm. The scheduler would move the task to the

Timed state because all tasks are time-sliced to run on the processor. A task could be

moved to the Suspended state while the RTOS performs some kernel services or handles

an interrupt. The scheduler may have nothing to do with changing the state ofthe task,

the task may move itself to a Delayed or Blocked state. The task may need to wait for a

given amount oftime; thus, changing its state to Delayed. It may also attempt to obtain a

resource that another task holds; thus, changing its state to Blocked. The processing of

the states must be fast and efficient to keep overhead to a minimum. Scheduling

decisions are made based on the priority and state of the task.

An RTOS must implement one of several available scheduling algorithms and

chooses one based on the expectations ofthe kernel. Some ofthe more advanced

algorithms can be event-driven, priority-based, preemptive scheduling or can incorporate

a rate monotonic scheme. This is based on the thought that what is required ofthe real-

time software will vary over the lifetime ofthe system.4 This scheduling causes lower

priority tasks to be preempted when a higher, time-critical task needs to execute and

ensures the application performance goals are achieved. Others implement a round robin

approach or may still be priority based but not preemptive. Task priorities can either be

static or dynamic. Static priorities only have one priority that can not change throughout

its life. A dynamic priority based task can be changed during its lifetime.

Priority inheritance can be a crucial feature for resource and task management.

This scheme has the task holding a resource temporarily inherit the priority of any higher

priority task attempting to gain access to the same resource. Without this scheme,

schedule problems arise because a task holding a resource may not be scheduled in time

for other higher priority tasks to gain access to this resource; thus, preventing the tasks

from meeting their real-time requirement. In essence, a lower priority task blocks a

higher priority one, entirely contradicting the priority-based scheme. This is often

referred to as priority inversion.

It is often important to know whether the kernel supports preemptive scheduling.

Preemptive scheduling allow tasks to be interrupted to re-evaluate which task ultimately

deserves control of the system. Implementing a preemptive RTOS often results in system

overhead but its response time will often offset the overhead. A preemptive RTOS may

be the only real choice for many systems and applications with hard real-time

requirements. These applications and embedded microprocessors have found their way

into electronics devices, appliances, automobiles, industrial control systems and computer

network equipment using 8-bit processors and DSP chips.5

2.2 RTOS Spectrum

The requirements of the target architecture determine what CPU-board hardware to

implement, what software OS vendor to use, and what the architecture of the real-time

OS should be for the design.6 An RTOS interfaces the hardware system to the

application to provide a real-time environment. An RTOS can only optimize the use of

the hardware components and interface it to the application but its maximum

performance limitations lie with the hardware. Many times, the hardware constraints

should be considered before looking at the RTOS features because certain processor

features such as context switching and interrupt handling are first limited by the hardware

chosen. If the hardware suffices then an analysis of the RTOS kernel becomes the next

logical step.

Features supported by most microkemels include fast multitasking, built-in

interrupt handling support, and preemptive, non— preemptive or round robin scheduling. It

should also provide the application with timing services to aid in meeting the real-time

requirements. Memory management is often a good feature to have in an RTOS. Often a

quality feature ofan RTOS is its ability to dynamically allocate and de—allocate memory.

The microkemel design should minimize system overhead and enable fast

responses to external events. It should also provide efficient task communication

mechanisms, permitting tasks to coordinate within the real-time system and to external

systems. This can be accomplished via mailboxes, message queues and network

interfaces. Control of critical system resources is handled via various types of

semaphores.

Other RTOS features are related to its implementation. Scalability often becomes

important for a range of embedded systems. The scalability ofan RTOS allows an

application to incorporate only the functionality it requires. Where memory and system

resources are limited, some ofthe RTOS elements may have to be scaled back or

eliminated. Other larger and more powerful systems may have the resources to make use

of all the available features. Certain applications and systems may require particular

kernel services such as a network interface or priority inheritance.

Good development environments help the RTOS to be a success, reducing the

time to market. The necessary RTOS development tools include compilers, debuggers,

simulators, emulators and other development tools. Compilers and the language used for

the RTOS applications must be accepted by the industry and be in wide spread use by

developers. Most developers are familiar with developing with a known processor that

can easily be tested and controlled. In embedded systems, this type ofenvironment

should be preserved where possible to aid in the development process. These tools

should also be processor independent or be able to conform to other processors. The

embedded systems industry utilized numerous processors that are required to meet

stringent specifications; thus, not only should the tools be processor independent but so

should the RTOS. Part ofthe RTOS must be written for a particular processor but it

should be kept to a minimum.

Testing and debugging a real-time system requires special simulators or emulators

because the actual system may not be available or does not lend itselfto development.

The test environment should match the system closely and allow the developer to take

control. The same type of environment should allow the developer access to source code

and aid in debugging the application or system.

To continue the development cycle of design, test, debug, and optimize, a tool

should be available to optimize the performance of the RTOS and its applications. It

should be customizable and intuitive for the developer, who may have a system that

requires certain optimizations or run in a non-standard fashion. One such RTOS, DR

DOS has an open kernel that allows developers to fine-tune the application as needed.7

This can be accomplished by keeping to standards such as POSD(1003.1b real-time

extensions (ANSI/IEEE) and by maintaining an open environment for the developer. By

conforming to a standard such as POSIX, the developer is free to migrate to various

hardware architectures as needed, allowing him/her the option of using off-the-shelf

10

solutions.8 Without these environments and tools, the system will be more ofa “black

box” with limited information of how the system is working. This is unacceptable in a

market that demands the “faster-cheaper-better” systems with seemingly impossible

deadlines.

These systems may take on different forms, having various specification and

expectations. Some systems may have strict speed and heavy resource requirements.

Many ofthe simpler designs have very minimal requirements, needing only the basic

services an RTOS has to offer. The type of processor chosen for a real-time system

. usually reflects what kinds of features are required from the RTOS. 32-bit processors

usually reflect a system that need all the rich features an RTOS has to offer while a l6-bit

processor may require only a few and a 8-bit processor the bare minimum.

Architectural differences between 8-bit,l 6-bit and 32-bit processors are quite

pronounced. The instruction set varies the most among these processors. As the bit width

is extended, more instructions can be added that may take advantage of hardware. Also,

greater address ranges can be accomplished with greater register width. Computer

engineers incorporate all the latest architectural advances in the newer 32-bit processors,

leaving l6-bit processors with some ofthe recent advancements and 8-bit usually with

older technology. These advancements affect a processor's performance drastically and

new advancements open the door to new embedded applications that may not have been

possible a few years ago. For example, many new advanced devices may take advantage

ofnew technology such as speech recognition or image processing that makes use of

these 32-bit RTOSs. The following sections discuss other distinctions that may be more

relevant to implementing an RTOS.

ll

2.2.1 8-bit Processors

8-bit processors can often help an RTOS be configurable, efficient and stay within

a tight budget.9 On the other hand, these processors can also be limited on several fronts.

For these processors, CPU speed remains relatively low. This limits the speed

requirements ofthe application, making features such as multithreading unavailable. For

a task to meet its requirements, a task’s scheduled uninterrupted time slot must not be too

short i.e. tasks may be time sliced in milliseconds. On higher speed processors, the time

slot can be shorter because the task can achieve more work in a shorter interval i.e. tasks

may be time sliced in microseconds. However, for certain processors and applications, 8-

bit processors schedule the tasks adequately and other hardware choices need to be

considered.

Often, processor speed does not dictate the choice ofa hardware system. For

example, 8-bit processors often do not have the same number of internal registers. This

makes it difficult for tasks to accomplish much oftheir work in their scheduled time slot.

A task would be forced to use memory more often that is considerable slower than

working out of internal registers. Others have improved upon the 8-bit processor, making

large internal registers available. As an example the Intel 80386SX and the Motorola

(West Austin, TX) 68008 both have an 8-bit external data bus that feeds 32-bit wide

internal registers. ‘0

Often 8-bit processors do not have the same interrupt handling ability as other

more advanced processors. These processors may not have the same number of

interrupts that restricts the number ofexternal devices in the system. Also, CPU

12

response time to interrupts may be a limiting factor for many real-time applications.

Many times an 8-bit CPU’s interrupt system suffices and only the RTOS interrupt

services need to be evaluated.

Most 8-bit processors have ample timing functions, a feature that the RTOS

demands from the hardware. The limitation lies in the resolution ofthe timers i.e. they

may be measured only in microseconds. For some embedded systems, the timer

resolution may be adequate and system l/O must be considered.

The nature of embedded systems is often one of heavy 1/0. The speed of the I/O

device(s) often becomes a driving force in determining the hardware requirements. This

device will also determine the width ofthe data path between it and the processor. Many

times, 8-bits processors may not meet this requirement or they may have to rely on other

external devices to interface to these devices. Present 8-bit processors may have a need to

be maintained because a system has a small board area and low power requirements.

Otherwise, other higher performance processors may be more effective.

Memory requirements often dominate the choice of hardware systems. One of the

major limitations of the 8-bit processors is their addressing ability. However, special

hardware can expand the addressing range of these processors, as with the MCSSI that

expands the addressing limit to 16 Megabyte.9 Some other processors may be limited to

as little as 256 bytes of internal memory. Often the memory consists of not only RAM

but also ROM where the RTOS resides. If adding the expanded memory can eliminate

this limiting factor, then the RTOS can provide more of its microkemel services. Toshiba,

that did implement an expanded memory solution in their 807 family allows for its

13

processor to reap the benefits ofan RTOS’s ability to context-switching among tasks or

handle ISRs(1nterrupt Service Routine) within an RTOS. “

8-bit processors have other compelling advantages, at least presently, that make

them useful. First of all, they are cheap. This alone is a very compelling reason to use an

8-bit processor. Mass production ofembedded systems such as small appliances demand

that component costs remain low. In particular, portable devices not only require the parts

to be low cost but power efficient. Intelligent, low-powered devices are becoming

common place as seen in many handheld computers, mobile phones, pagers, etc. These

devices are what driver processors and the hardware they mange to shrink in size and

consume less power while maintaining their intelligence.9

Finally, most 8-bit processors have proven themselves in the industry. This also

implies that many current processors may be upgraded with an RTOS and optimized or

improved upon. This already eliminates the need to chose or design hardware, allowing

the focus to be on matching the current processor with the appropriate RTOS.

Some engineers desire a low cost 8-bit processor but need better performance.

One vendor has a solution that is a combined 8/ l 6 bit microcontroller, developed by

SGS-Thomson Microelectronics (STM) from their ST9+ core, that provides both the low

cost of the 8-bit MCU’s and improved performance with certain functions ftom their l6-

bit technology. '2

14

2.2.1.1 Example RTOS

uC/OS is the focus of this thesis and it is a kernel that can be used with 8-bit

processors because it is implemented in a small, efficient way without sacrificing many

ofthe critical real-time services. The following is a list of its features.

Supports the following processors but can be ported to almost any processor:

a AMD’s 29K; Hitachi’s H8/300H; Intel: ix86 SMALL model, ix86 LARGE

model, 80486 Protected Mode with context switching of floating-point regs;

MCS-251; Motorola: MC68HC11,68HCI6,680x0 and CPU32; Philips: XA

MEDIUM model, XA LARGE model; VLSI Technology: ARM; Zilog: Z-

80/Z-180

Event driven operation

Multitasking preemptive scheduling

Static and dynamic kernel objects

Tasks

Semaphores

Queues

Mailboxes

Timers

Interrupt Handlers

Fixed or dynamic task priorities

Inter-task communication and synchronization

o Semaphores

o Mailboxes

o Queues

Timeout options for many services

Efficient interrupt servicing

Small RAM and ROM requirements

Standard programmer interface in C on all processors

15

2.2.2 16-bit Processors

l6-bit processors have limits in some ofthe same areas as the 8-bit processors but

not to the same degree. Most l6-bit processors form a much more powerful system than

their 8-bit predecessors. Usually they contain higher speed processors that may

accommodate more powerful applications but may be inadequate for certain high

performance embedded systems. When a task is scheduled, it can complete a reasonable

amount ofwork within its allocated time slot. Higher speed processors may be able to

accomplish a heavier workload in this time but l6-bit processors may be sufficient for

many applications.

As with 8-bit processors, speed is not the only consideration in choosing a

hardware system. I6-bit processors often have more internal hardware available that can

aid in running the RTOS and its applications. More internal general registers are

available as well as more timers with higher resolutions. This can accommodate

applications that having strict timing requirements. Often other issues are more ofa

factor. l6-bit processors usually handle interrupts in a sufficient manner. They usually

have a sufficient number of interrupts or its response time meets the specifications. As

with some 8-bit processors, this is not an issue but it must be known how the RTOS

handles the interrupts with respect to microkemel services.

l6-bit processors can usually accommodate faster devices with wider data paths.

This eliminates any need for external interfaces for these devices. Limited file systems or

other forms of storage may be an option. Still, many ofthe newer devices have data paths

and speed requirements that surpass those available with a l6-bit processor.

16

l6-bit processors have several other advantages. Advancement in chip

technology has brought the price of these processors down drastically, making them a

viable Option to an 8-bit processor. Small, embedded system designs can incorporate 16-

bit processors at a marginal cost. They also get more out ofthe RTOS kernel services

and see greater improvement in system performance. The power specifications of l6-bit

processors may also meet the requirements of many portable applications. In the past

few years, l6-bit processors have been the choice for many applications and can be

considered a proven technology. Because many ofthese processors exist, the only real

cost of implementing an RTOS or real-time system environment is software and time

intensive. As with its 8-bit predecessor, l6-bit processors may lack the performance of

32-bit processors but may still meet the needs ofmany real-time applications. Motorola

has recognized this and has built the M.Core that reduces power consumption and

improves the performance by using the 32-bit architecture and a 16-bit instruction set. ‘3

17

2.2.2.1 Example RTOS

Motorola's RTEK Kernel , used in developing real-time applications, is classified as a

deterministic, multitasking real-time kernel. '4 Its API (Application Program Interface)

supports C and assembly language; thus, kernel services are accessed in a familiar way.

The following is a list of its features.

Supports AMCU microcontrollers products

Event driven operation

Multitasking with selectable scheduling methods

- Preemptive

0 Round Robin

- Time-Sliced

0 Static and dynamic kernel objects

Tasks

Semaphores

Queues

Mailboxes and Messages

Memory Partitions

Exclusive Access Semaphores (Mutexes)

Timers

Interrupt Handlers

Fixed or dynamic task priorities

Inter-task communication and synchronization

o Semaphores

o Mailboxes and Messages

0 Queues

Timer management

Timeout options for many services

Partitioned memory management

Efficient interrupt servicing

Fast context switch

Small RAM and ROM requirements

Standard programmer interface in C on all processors

Highly flexible configuration to custom fit the application

RTBngn is the development tools that handle the host development and downloading of

code to the target system. It has many default values for the RTOS such as number of

18

tasks or creation of semaphores and communication structures. It provides a comfortable

GUI to interface the RTOS to the user. Figure 2 gives a snap shot of the RTEK interface.

2» sear-W
.l.‘ .

“ .. . ‘ ' .l "a“ _ '. ' . .-.. t- G IA.‘ " .'

,l 1 STKPI‘IRT 1024 PRIORITY s SCIOO

J 2 HSGPFIRT 8O PRIORITY I 11380

3 USERPRRT 199 PRIORITY Q USEROUEO

*‘ USBROUEI

.AI'E'I‘fil-‘it‘d' um 4- :-

y‘J-GJ... \ .pl-J

_ Lz' . . SCIOSEMG SINGL

pitisr f DEMOSEHI SINGLE

sciodru J DEMOSEMZ SINGLE

“’“5*7”‘ ""ET. . DEMOSEM3 SINGLE

r‘~ " ' USERSEMG SINGLE

USERSEHI

Figure 2. RTEK System Generation Tool.

2.2.3 32-bit Processors

Most of the advanced embedded real-time systems make use of 32-bit processing

technology. Often, these same systems run most of today’s desktop computers. They out

19

perform any ofthe other available 8-bit or 16 bit processors for embedded processing and

for hosting an RTOS. 32-bit processors incorporate such features as multithreading and

advanced memory management. They can satisfy the most demanding applications.

When a task is scheduled, it completes more work than was previously possible with 8-

bit or 16-bit processors. Because of this, more advanced and feature rich tasks can be

designed.

Processing speed may not be the only factor, as previously discussed. 32-bit

processors have the most internal hardware. They have the highest resolution timers

available that can aid in running the RTOS and its applications. For those systems or

application that are extremely time sensitive, a 32-bit processor provides the best

solution.

These processors usually handle interrupts in the most optimal manner,

responding to them quickly and providing excellent interrupt handling. This leaves the

RTOS to handle the remaining overhead, such as task management and nested interrupt

handling.

A 32-bit processor can handle almost any device with a wide address and data

bus. This opens the door to newer devices and new applications. Full file systems may

be implemented ifthe application requires this feature. Other I/O such as networking

interfaces may also be part of the design.

The memory constraints of the other systems are not a concern for this 32-bit

processor. Almost any kernel service can be implemented with a 32-bit processor, the

only impediment may be either financial costs or lack of available development time.

20

Financial cost is often the major obstacle to using a 32-bit processor, but even this

changes with time and many systems with 32-bit processing can be used at a reasonable

cost. Some other obstacles include large power requirements and size restrictions. Larger

embedded system designs are now incorporating 32-bit processing and maximize the use

ofRTOS kernel services. 32-bit processors are becoming the defacto processor for

many embedded applications and most RTOSS support the majority of available 32-bit

processors. These 32-bit processors do exist in some embedded systems without an

RTOS and integrating one would prove to be beneficial.

2.2.3.1 Example RTOS

VxWorksTM of WindRiver Systems leads the RTOS market. One of its more notable

applications is NASA’S data and control application for its Mars Pathfinder. The

following gives a list ofthe powerful features of VxWorksTM.

0 Efficient task management

0 multitasking, unlimited number of tasks

0 preemptive and round-robin scheduling

0 fast, deterministic context switching

o 256 priority levels

0 Fast, flexible inter-task communications

0 binary, counting and mutual exclusion semaphores with priority inheritance

o message queues

o POSIX pipes, counting semaphores, message queues, signals and scheduling

control sockets

0 shared memory

Fast, efficient interrupt and exception handling

Optimized floating-point support

Dynamic memory management

System clock and timing facilities

21

Network Support

Complete TCP/IP networking, including Zbuf(No-Copy TCP)

Communications across various media (Ethernet, serial, backplane, custom)

Sockets

Remote login (rlogin, telnet)

Remote Procedure Calls (RPC)

Network File System (NFS) client & server

File Transfer Protocol (ftp/tltp client & server)

Remote command execution (rsh)

BOOTP booting protocol

SNMP (MlB-II support)

STREAMS

Fast, Flexible I/O and Local File System

Complete portable I/O system

POSD(asynchronous I/O and directory handling

SCSI support

Extended MS-DOS and RT-ll file systems

Raw disk file system

Target Development Features

Full ANSI C compliance and C++ support

Extensive POSIX 1003.1, .lb compatibility

Interactive, C-interpreter target shell

Symbolic debugging and disassembly

Powerful performance monitoring

Extensive kernel, task, and system information utilities

Dynamic linking loader

Libraries of over 1100 utility routines

Flexible booting from ROM, local disk or over the network

Highly scalable design allows for wide range of applications

Another advantage of VxWorksTM is its modularity and scalability. This allows

the RTOS to be tailored for a system with unique specifications or constraints. It does so

by keeping the design ofthe kernel layered, adding the support modules as needed.

22

It also has a rich set of development tools designed around a host/target

environment, using the Object Oriented C++ language for development. Host-based tools

included with VxWorksTM are a cross-compiler along with a powerful remote source-

level debugger VxGDBTM. Target tools include an interactive C-interpretive shell and

linking loader for prototyping, as well as libraries ofover 1100 utility routines. Optional

VxWorksTM accessory products include VxVM?TM for virtual memory interface,

VxMPTM for multi-processing and VX-Windows for graphics support. Optional

WindPowerTM host-based tools include the WindViewTM real-time dynamic system

Visualizer, the StethoScope real-time data monitor, WindC++ TM (including the popular

iostreams class library), WindC++ Gateway for ObjectCenter, and the VxSimTM

simulator.

2.3 Summary

A powerful RTOS is the key to a successful real-time system. It makes use of

proven hardware with a well-designed and re-useable real-time kernel. This eliminates

the nwd for development time and money toward building a custom operating system.

Often these commercial operating systems meet very high standards due to the immense

competition and stringent requirement of real-time systems. They far surpass the quality

ofmany desktop operating systems.

Yet many engineers that don’t develop an operating system for the desktop feel

they must develop their own RTOS. In the past there has been no alternative and

applications were not as sophisticated. However, widely available and high quality

RTOSs can now be incorporated into these complex embedded designs. The trend is

shifting to designers using an RTOS to develop more complex applications. '5 The task

23

may be a daunting one for those that have to port over an entire system and it may not be

practical to use an RTOS. For those that build a new system or re-design is possible, an

RTOS is a great way to improve and optimize their real-time system. Most vendors

attempt to aid in this process by developing user-friendly development tools and provide

turnkey design solutions for these complex embedded applications. '6

A RTOS aids in designing and building new systems that have real-time

requirements or optimizing and enhancing existing real-time systems. Implementing

these systems only requires that application specifications fit well with the hardware and

appropriate RTOS kernel services.

Chapter 3 Design 8. Implementation of uCIOS

3.1 Introduction

We present the implementation details of uC/OS and how it was ported to the

Handy Board. We explain some ofthe reasoning behind both our hardware and software

choices related to the implementation. A more in depth explanation of what the Handy

Board consists of and what the MC68HC11 processor has to offer is also discussed. The

development environment is presented as well. It was a key in porting uC/OS and

developing its applications.

24

3.2 Target Architecture

The MC68HC11 serves as the target architecture for this thesis and the Handy

Board’s system incorporates this processor into a more useful system. This processor is

widely used in MSU engineering labs and in products throughout the embedded industry;

thus, implementing uC/OS for this processor has merit and usefulness. Implementing

uC/OS for the Handy Board, which incorporates the MC68HC11, will help to bring a

real-time development environment to the MSU engineering labs.

3.2.1 MCSBHC11

The MC68HC11’s 8-bit embedded architecture has proven to be a solid design in

the embedded industry; thus, using uC/OS for the MC68HC11 is industry motivated.

Many robotic and control applications could make use ofthe real-time kernel services.

Some ofthe features that make the MC68HC11 a well-suited embedded controller are its

timer functions, prioritized interrupts, digital ports and on-board AIDS.

The MC68HC11’s real-time interrupt capabilities provide uC/OS with a periodic

interrupt that uC/OS uses to schedule tasks. The RTI (Real-Time Interrupt) is based off

the MC68HC11’s crystal of 8.0 MHz (E = 2.0 MHz) and can be configured for various

interrupt periods (see Table l for listing of rates). It ranges from 4.10 to 32.77

millisecond interrupt rates and is selected by two bits in a control register for the RTI.

25

A fast rate may cause too much system overhead and not allow a task to complete

a reasonable amount ofwork. On the other hand, not interrupting often enough may

affect the timeliness ofthe application. A reasonable rate of 8.19 milliseconds allows the

task to execute approximately 1700 lines ofC code(assumed average of 3 assembly

instructions per line ofC code and each instruction takes 3 cycles) , a good amount of

work for most tasks.

Table l. Real-time interrupt rate for MC68HC11

RTI Control Bits ' Rate is E Interrupt Period (in milliseconds for 8.0 MHz

RTRl *RTRO ’ divided by ., » crystal)

0 0 213 4.10

o ' V 1 2" ' 8.19

1 ' o I 215 16.38

'1 1 2“ , 32.77

The MC68HC11 saves the context ofthe processor during an interrupt by storing

the register to where the SP (Stack Pointer) points. Upon return fiom the interrupt the

registers are restored from the SP location. The 11008 scheduler is aware ofthis process

and uses it to save and restore the tasks’ context.

The MC68HC11 provides a built-in serial interface. To begin using, it only needs

to be enabled and set to the proper baud rate via a serial configuration register. The serial

interface can be used to debug and developing code throughprindO statements. It may

also be used to communicate with other devices that are part ofthe real-time design.

26

All register and ports within the MC68HC11 are memory mapped. External

devices may also be memory mapped if they have access to the processor’s data bus, as

with the Handy Board. This allows for easy access to external devices and configuration

ofthe MC68HC11.

3.2.2 Handy Board

The MC68HC11 by itself is a useful and prominent component in the embedded

systems industry but it not a complete system. The Handy Board incorporates the

processor into its design giving the MC68HC11 added value. The following is a list of

Handy Board features.

socketed 52-pin 6811

32K battery-backed static RAM that is rechargeable

digital input latch

digital output latch driving two L293 chips

14-pin LCD interface

two user pushbuttons

powered/polarized individual sensor connectors

40 kHz IR output drive

one servo motor output

External Serial Card for easy access to serial communications. It communicates with

the Handy boards on board serial interface through a standard telephone wire.

LCD Display

27

Table 2 gives the memory map that allows the Handy Board to communicate to the

outside world. First, the data bus is made available via memory mapped address ranging

from S4000-6fif. Second, other interfaces exist to facilitate expanded memory and motor

control. Also, the MC68HC11’S registers are memory mapped. Finally, the MC68HC11

interrupt vector bank is located at $bfc0 to $bfff for the Handy Board rather than the

normal range of $ffc0 to Stiff.

Table 2. Handy Board memory map"

Device ' Location ' ’ , ' Notes

6811 internal RAM SOOOO-SOOff (Alchip) Built-in

SOOOO-SOIB‘ (Elchip)

’ 6811 control mgisters SIOOO-SIOBf _ Built-in

Expansion I/O S4000-S4fif Memory reads in this range enable the Y1

Bank 0 latch selector, present on the HB Expansion

Bus. Memory writes in this range enables the

Y0 selector on the Expansion Bus. No devices

are present on a stock Handy Board.

{Expansion I/O ‘ ' SSOOO-SSIE‘ V ' Reads enable Y3; writes enable Y2. See

; Bankl, * , , . , , w ~explanationabove. '

Expansion I/O $6000-S6fi‘ Reads enable Y5, writes enable Y4. See

Bank 2 explanation above.

Digitalinputs ‘ ‘ $7000-S7flf V The digital inputs consist ofthe twoswitches

, ~ , ’f ' and sensorports lOthrough‘lS. Amemory

read from anywhere inthis range returns the

" value ofthe digital input byte from the data

- , . » bus.

Motor outputs $7000-S7flf A memory write to anywhere in this range

controls the motor outputs. The low four bits

are motor direction, and the high four bits are

motor enable (l=on).

External RAM SBOOO-Sfif f ' The 32K ofbattery—backed memory is mapped

' ’ . to the upper 32K block ofthe 6811 address

The Handy Board pin out is represented in Figure 3 and lays out the MC68HC11

interface. The YO-Yl pins control external latching ofthe data bus, DO-D7. The latch is

controlled as depicted in Table 3. For example a read from address $4000 will bring

28

The YO-Yl pins control external latching of the data bus, D0-D7. The latch is

controlled as depicted in Table 3. For example a read from address $4000 will bring

R/W’ low and will set YO. Setting YO could trigger an external latch to latch in data from

an external device.

Table 3. Latch control for data bus.

r-.~_ W L-‘x ,— .Wilt-‘7‘."Weir-us H“? ‘E’I‘flv‘“' ,.

R/W’ - AddressRange” 4 5' I/O Latch selector
MJ‘JP.‘:L:-!-;‘.. 1:- I... .I:_ur.rT_...__..L :r‘.‘ ._. : 5:.r...----r$a~u'..: .12: r; 'csv 4;..." _r-.-_. :27!

0 $4000-54FFF 0 Y0

BP'WL'*"J-‘fi- I"- -'-"' aux-I!“mmWF—h ads-an an- n... Law-1.... arm-pr ream-.1" -__-_-;......—.-wu-...-.:aE-::3

‘r. l i‘ $4000-$4FFF ' 1 Y1 *-
2 ‘ :1

. ~ r r

“a.“a...” barn- —A-‘-A' ‘ ‘- --~-- “ -‘-'- rs—r --.'-'.. l “—m- B--‘i—-¢.-LhuI-—us.rns a - Hing-Ache?!

0 $5000-$5FFF 0 Y2

f"f"f"r_-"""13‘ 7.3'. F ”F" '4" 2“3“ " "7.; "5! " "'4 ‘17 Elf " ",7 "" “’ "”7 ’3'": . l" T‘ f I .T".'. r" ‘ ."'.‘_"""""."_‘t

g; . .~ . ‘3 .‘ e,

‘ 1 ’ $5000-$5FFF ' : I - Y3 , ',, : . a
9' ~ -v). . .. - .. - i I

IN I. ESCHEJEJ'. Kid -'-. pr:téwaA—dauanMltzgc) .L...» {momma-.7 .-=. «14' In"; re. ..- -ar.A.-- ...-_-_.-.-._... and“;

0 $6000-$6FFF 0 Y4

m!"A.‘ ?‘- ' _‘_ '.‘ . ‘ 'Y A. F '-_q’+-flnp~fl

1 $6000-$6FFF 1 i Y5
”'321‘: he!3"“HI."- MA I“ -“inmuhflil 'I-'I\ cu... ~‘! 21"!» Int-P.

LMEIMWium

0 $7000-$ 7FFF 0 Y6

r-fives-03'! yrOil-TmWTfi-vwr—‘T- V” ”-11.7" YF—Tf' r-v—I-s~-- 1-1.-—-..- or.-"—"'Owfi—v‘.

1 .87000-S7FFF : I § " Y7
3n..%7.i'-'~.'r~- 't"? (E. -"- Lé ..' 451k it“--. .. -..-.'.3;-‘ I1. : .. " ' "- Ln.

29

3.3 Development Environment

The design environment consists of the Whitesrrriths tools, CodeWright and Telix.

These tools provide reading, modifying and processing of application source code. They

provide an interface to debug the application and for communication via a serial port.

3.3.1 Whitesmiths Tools

The DOS-based Whitesmiths tools cross compile, link and load into the processor

the uC/OS kernel and its applications. These tools handle the entire process of taking the

source code in standard ANSI C to the necessary Motorola S-record format (the ASCII

format downloaded to the processor). These tools also provide a debugger to aid in the

development process.

3.3.1.1 Compiler and Linker

The compiler is the key in converting the RTOS source code into object form for

conversion into machine language. In this case, it represents a key aspect in how the

RTOS functions. The compiler places pointers to ISR functions into the vector table.

This is often done via extem definitions of the functions that the programmer defines in

another source file, in this case the uC/OS source code.

30

The compiler defines how functions are called and how arguments are passed

down to them. This is important when porting the RTOS because when context

switching or scheduling a task, the RTOS must emulate how the compiler would

normally operate.

The RTOS must be concerned about stack usage because many compilers use a

stack to store local variable and pass arguments. The stack represents the context of the

processor or task and the stack must be preserved during scheduling and context

switching. The compiler also provides an assembly language interface for the RTOS to

controller the processor where high level code is inefficient or inadequate.

3.3.1.2 Debugger

The Whitesrniths’ debugger provides much insight in porting uC/OS and

developing its application. When the compiler produces code, it may also produce extra

information for debugging. CXDB, the Whitesrniths’ debugger, uses this information to

create a simulated environment that allows the developer to dissect and analyze the

RTOS and application code. It allows the programmer to step through routines, check

that the status of tasks (by reading the Task Control Block structure variable in uC/OS),

and simulate I/O or interrupts via memory reads and writes. This can be done at the high

level, C source code, or the low level, assemble code. This gives the developer insight

into the application and allows him/her full control of it.

31

3.3.2 Support Tools

A simple COM port program, Telix, provided an interface to the Handy Boards

serial interface. 'Telix captures all data from the serial port and engineers can make use of

printfl) functions to develop and debug an application.

CodeWright provides a custorrrizable editor to modify the source code for the

applications and uC/OS. This may not seem important, but a good editor can save time

and make a programmer feel more comfortable reading and modifying source code.

3.4 The RTOS, uC/OS

This kernel had originally been designed specifically for the 8-bit processor but is

capable of running on other higher performance processors. Certain portions of the

11008 are done in Motorola assembly but it is kept to a minimum to maintain the

RTOS’s portability. uC/OS only requires that the processor have a stack and its registers

be available. It also provides many of the essential kernel services that help maintain a

real-time environment. It implements the core features of many RTOSs. We present

uC/OS in this section beginning with its handling of system resources. We then discuss

how uC/OS manages its tasks and the communication among them. Interrupt handling is

discussed and we finish with the performance of the kernel services.

32

3.4.1 Resources

Real-time systems contain many resources that various applications require in

order to complete their work. This can range from I/O devices to abstract concepts such

as shared arrays. Shared resources are available to all tasks or a subset of tasks and must _

be managed to avoid corruption or other problems that may include dead lock. Deadlock

will occur when two tasks hold a resource the other needs in order to continue and each

will wait indefinitely for the needed resource.18

Semaphores provide a method by which tasks can synchronize or gain access to a

resource. Once the semaphore is obtained, the task can continue executing. Two types of

semaphores can be used. Binary semaphores follow the key/lock concept. This allows a

task to gain access to resources. Once a semaphore for a given resource is obtained by a

task its state transfers to the locked state. Any other task attempting to obtain the

semaphore for that resource will see that it is locked and wait for it to be unlocked. Thus,

the semaphore has a binary value or state of lock or unlocked.

Counting semaphores goes beyond the idea of binary semaphores and provides

multiple valued semaphores. Its size is determined by its bit width i.e. an 8-bit

semaphore would have 256 possible values. Tasks that attempt to use the semaphore

when its value is zero are put on a priority waiting list under uC/OS. On the other hand, if

the semaphore is positive then the resource is made available. When the semaphore

becomes available, uC/OS schedules the highest priority task and decrements the

semaphore. When the task releases the semaphore the scheduler increments the

semaphore’s value.

33

3.4.2 Tasks

uC/OS defines a task to be similar to a thread but the task is an independent

process. A thread often resides within a process, sharing control of allocated memory

and resources. A task, like a thread, must be concerned about resources that may be

shared among tasks. It can also synchronize with other tasks, much like threads. Tasks

are different in that they do not automatically inherit any resource as threads do. Threads

are often time sliced where tasks, in uC/OS, are priority-based. It is up to the designer to

assign these priorities based on the needs of the application.

3.4.2.1 Task Priority

The priorities within uC/OS are unique, no two tasks can have the same priority.

The highest priority matches the numerically lowest priority number; thus, the highest

possible priority is “0” and the lowest “63”. This gives the application 63 possible tasks

to accomplish its goals, the last priority is usually reserved for the “idle” task. The “idle”

task runs when all other tasks are inactive for whatever reason and uC/OS needs a task to

fill the time slice until another task is ready to run. The context of each task entails the

current CPU registers, its own stack and a priority. A task can be static or dynamic in

nature. It can be statically assigned a priority on creation and can not change. uC/OS

allows the priority to change during execution making it a dynamic priority. Figure 4

illustrates the task context within uC/OS.

34

TASK #1 TASK #2 TASK #3 TASK #n

Stack Stack Stack Stack

—>

—>

-—>

Task Priority Task Priority Task Priority Task Priority

1:21 C: [2:] E:

CPU Registers CPU Registers CPU Registers CPU Registers

SP ’7 SP | SP i S? i

Context I Context Context Context

K MEMORY \ I

CPU ¥ CPU Reggtcrs

SP i

Context

Multiple Tasks

Figure 3. Task context.

Figure courtesy of Jean J. Labrosse, © R & D Publications, 1992. All rights

reserved

35

3.4.2.2 States

To implement these tasks in a multitasking environment requires that each task be

assigned a particular state. The possible states of a task are Dormant, Ready, Running,

Delayed, Waiting For An Event or Interrupted. If a task’s state is Dormant, it is not ready

to take control of the CPU and the kernel has not made the task available to run. A task in

the Ready state wants to take control of the CPU. The kernel will allow it as soon as the

current tasks with higher priorities are not scheduled to execute. The Delayed state

translates to a task that has suspended itself for a period of time. If a task is in the

Waiting For An Event state it will not execute or attempt to execute until a particular

event has occurred such as a semaphore becoming available or a message resides in a

mailbox, etc. Lastly, the Interrupted state occurs when a task looses control because of

an interrupt that must be serviced. Figure 5 shows the flow among task states.

36

WAITING

FOR

EVENT

 Task Deleted

Wait for

Event

Event Occurred

Task Deleted

DELAYED

Delay Task

for N Ticks

Delay

Expired

Context Switch

Task Deleted

Figure 4. Task states for uC/OS

Figure courtesy of Jean J. Labrosse, © R & D Publications, 1992. All rights

reserved

37

3.4.2.3 Task Control Blocks

Because uC/OS incorporates a preemptive scheduling algorithm it must keep

track of the task control information. This is accomplished via a structure called the Task

Control Block (TCB). This contains all the necessary information to suspend or interrupt

a task and to bring it back into execution. The TCB is a table with entries that keep track

of the state of the task, priority and stack information and TCB control management

fields such as previous and next entries. This aids in the scheduling process of the tasks.

The “idle” task created by uC/OS is also placed in the table. The kernel keeps track of

available entries for new tasks and manages the deletion of tasks from the table.

3.4.2.4 Task Scheduling

A preemptive, priority-based scheduling algorithm is implemented by uC/OS.

The kernel determines the highest ready-to-run task and executes it. All other tasks are

scheduled based on their given priorities. This type of scheduling better matches real-

time applications because system response is higher. The current task will be preempted

to allow a higher priority task immediate access to the processor. Thus, the higher

priority tasks have a better chance of meeting deadlines specified for the real-time

application. This creates a more deterministic system.

38

Extra care must be taken with this design because shared functions, data and

resources can be corrupted when a task is preempted and returns to execution. For

example, a task could be operating on a global variable when it is preempted. It will

assume the value has not changed when it begins execution. However, while it is

preempted, another higher priority task may manipulate the very same global variable

causing data corruption. One can maintain the integrity of shared resources via

semaphores.

3.4.3 Communication

Frequently, tasks need to communicate among themselves. The kernel services

should provide the vehicle to communicate. [LC/OS provide this service via mailboxes

and queues. Both are consider events that a task triggers via a POST or waits for the

event via a PEND. When a task PENDs, uC/OS puts the task on a priority waiting list

similar to the semaphore list. When the event occurs, the highest priority task in the list

takes control of the processor and retrieves the message from a mailbox or queue.

3.4.3.1 Event Control Block

uC/OS uses a structure similar to the TCB called the Event Control Block to

control mailboxes, queues and semaphores. It is used in scheduling tasks for the various

events such as scheduling the next task for an available semaphore.

39

3.4.3.2 Mailboxes and Queues

Mailboxes contain messages POSTed by other tasks. The application defines

what type of message resides in the mailbox and other tasks that use the message must be

aware of the type. For example, if a character based message is stored by one task all

others must be aware that the message is character based when they retrieve it. uC/OS

provides the kernel services to create a mailbox, PEND to the mailbox and POST to it.

ISRs must never make calls to these services because an ISR does not have the required

task information i.e. they cannot be put on a priority waiting list. A timeout can be

specified when waiting for the event, but an application can specify that it will wait

indefinitely. The mailbox can only contain one message at any given time and an error

will occur if this is violated.

uC/OS implements queues to extend the mailbox concept. A queue can contain

multiple messages and operates as a standard queue with a FIFO (First-In First-Out).

Tasks manipulate queues in a similar fashion as mailboxes with a creation function and

POST/PEND functions. uC/OS manages the tasks as it did for mailboxes but allows

multiple POSTS to the queue. Figures 6 and 7 illustrate the flow of mailboxes and queues.

40

Mailbox

POST PEND

TASK % T’

x ..

Note: POST deposits a pointer size variable in the mailbox

Message Mailbox
Figure 5. uC/OS mailbox

Figure courtesy of Jean J. Labrosse, © R & D Publications, 1992. All rights

reserved

Queue

| ISR IPOST PEND

Interrupt

'0

A

Note: POST deposits a pointer size variable in the queue

Message Queue

Figure 6. 11008 message queue

Figure courtesy of Jean J. Labrosse, © R & D Publications, 1992. All rights

reserved

41

3.4.4 Interrupts

Interrupt handling often requires an assembly language interface and is handled

by an ISR. Applications often require fast interrupt response and handling, but this

depends on the specific architecture of the processor. Writing the ISR that interface to

the RTOS in the assembly language of the target processor can greatly increase interrupt

response time. When an interrupt occurs, the current task context must be saved and

other interrupt handling overhead will be incurred such as rescheduling.

The scheduler makes use of one of the processor’s periodic interrupts for a system

clock. This allows for periodic re-scheduling of the tasks i.e. multitasking. The system

designer can optimize the frequency of this periodic interrupt so that the tasks complete

their work while meeting their deadlines.

An 8-millisecond interrupt was implemented to act as uC/OS’s periodic interrupt

for scheduling the tasks. uC/OS does not handle this interrupt as it does other interrupts.

It performs a software context switch as opposed to a typical interrupt context switch.

[LC/OS expects this interrupt and knows the state of the system when this interrupt

occurs. Other interrupts can occurs at more random or unexpected times and the interrupt

handling mechanism must reflect it. uC/OS uses this periodic interrupt to provide tinting

services such as its delay and clock functions. Figure 8 reflects how uC/OS handles

interrupts.

42

TIME

Interrupt Request

TASK

TASK

CPU c te ed
°" “ S" OSIntExitO

rsn < osrannteroq
User Code

I

 Latency

K 550 CPU clock cycles)

fi—H

l‘ H Interrupt Recovery

Interrupt Response
4

(< 685 CPU clock cycles) (< 50 CPU clock cycles)

Interrupt Latency, Response and Recovery

Figure 7. uC/OS interrupt handling

Figure courtesy of Jean J. Labrosse, © R & D Publications, 1992. All rights

reserved

43

3.5 Development Challenges and Solutions

The following sections discuss some of the challenges that arose from porting

uC/OS to the MC68HC11. The following sections have been included to facilitate better

use of [LC/OS and to avoid possible pitfalls or problems when re-porting uC/OS to

another processor.

3.5.1 Task Argument Passing

Tasks are initialized in uC/OS upon creation by parameters that are passed to it as

arguments. The argument to the task function had been invalidated due to rtC/OS’s

assumptions about how the compiler passed arguments for the MC68HC11. This

problem was observed by attempting to print the parameter passed into the task. The

argument is passed a void pointer parameter in order to accommodate all data types; thus,

by default it is passed by reference. This adheres to the ANSI C language standard but is

handled by a processor dependent process. This process determines how the pointer is

stored in memory and passed to functions.

The main() function calls a TaskCreate() function for each task. This sets up the

individual tasks stack, priorities and all other TCB information including the task’s initial

parameters. Argument passing is processor dependent in the sense that the compiler uses

different architectural features to pass parameters, handle variables and other language

details; thus, setting up uC/OS and its tasks involves understanding how the compiler

operates.

For the MC68HC11, the Whitesmiths tools compiler passed arguments by

reference in the ‘D’ register. This register consists of the ‘A’ and ‘B’ accumulators. The

‘A’ accumulator is in the high order byte and ‘B’ in the low order. Each task has an

associated stack that holds the argument and context of the task. Part of the context of

the task is the value of the accumulators and PC (Program Counter) that includes the ‘A’

and ‘B’ accumulators. These two accumulators are 8-bits wide and together they form a

word, while the other accumulators and the PC are 16 bits wide; thus, when the stack is

being set up with its data (arguments), it is done so in word fashion as shown in Table 4.

The following code segment assigns the stack pointer to the argument.

*stk = pdata; where stk currently points to the beginning address of ‘A’ and pdata is the

argument.

Table 4. Stack snapshot, SP begin at 0x8900.

Mowfion..Memory...a...f....smValu.egg..........._..M..~..-_...-‘>"

0x8908 PCL (lower byte of Program Counter)

13".".31.‘ I’MHWTKW‘Q wire-P'-""l'"“.y‘ffi . ""4"WT}?.'~"‘i"' “.‘.—- ’-"”““‘m¢mfl"-l 51"!I':"-‘53 “7‘15?!

3.3.12.3? -~ ‘.L.I .‘t‘. .mp5...4.;3.4I".'? lh‘l‘ .eiu..~u:.-.Jr/e-j..ir.'.u. . --.' .4--.)..r-... ".3-.‘.e-4.11. - Ai-.-.'.:.:r'.. '

k0x8906

air-r.“ram“ m

E..- .n... ._F55583......‘

(”(8904 IXL

F“ 1"?"1’1. ~~-rrrr *" wrerw-“rm”.-""".~1~'.'ir:

B‘.‘ sg-..r. In 5. .; i..:.h.i.-'Ai—i noxfigoifim. _...-j;r......'~-.....r....<a..-4-'~---.~' .i'l

SP---> (”(8902 A
rfi‘: - v-10,-”: 20B-9;up:7",. ; , . -.- ,:~. .. f“ 4%-: ' r-.t. y'a- "-J— "I._ 5'.,'-.'r '1“ Mn:-if.” " _ . , .

EH" 3.014“...--~l‘¢ Jaw“WA'mkm]“.4136“ ‘M'm2....Ll;.4 .4—n-h. L' 4.... -9)» ”Al-7n“ "'31.; ~ «I I. .. 32'..- “4444.1...

r 'L '1‘- ‘M: ' ”oi-5.13.") ‘13:- '.'~‘~ls‘e ‘4! T; . 'JAJh-le‘7:;‘ ’93:?

Function calls use the ‘D’ accumulator, concatenation of ‘A’ accumulator (MSB)

and ‘B’ accumulator (LSB), and the stack for handling the void pointer argument. The

method used to call a task (which is a function) is to pull from the task’s stack the PC

with its associated accumulators and begin executing. The PC does not point directly to

45

the task but to some function entry code inserted by the compiler that pulls the arguments

from the ‘D’ accumulator and does other function entry work such as variable initialize.

The compiler can use the stack for local variables but the option of using local

RAM as storage was taken; thus, leaving the stack with only the return address and

function arguments. The scheduler must setup the ‘D’ accumulator and the PC to call the

function entry code. It does so by using the ‘Pull’ instruction to pull the accumulators

and PC from the task’s stack into the processors accumulators and PC. The ‘Pull’

instruction starts at the top of the stack. It then works its way down the stack. A ‘Pull’

on the ‘D’ accumulator occurs for parameter passing. In this case, the ‘A’ accumulator

is put in the lower byte and ‘B’ in the upper. This causes the pointer address to be

inverted. Thus, the pdata may be 0x8020 (actual argument address during debugging)

gets turned around when it’s pulled off the stack and it looks for the argument in 0x2080.

Stepping, via the debugger, through the task initialization and discovering the

proper pointer address order for the task’s arguments solved this challenge. After this

initialization, uC/OS executes its assembly level scheduling process that actually

performs the task level context switch. This bring the highest, ready-to-run task into the

execution state i.e. runs the task. In order to accomplish this context switch, the

scheduler pulls the task’s stack from the OSTCBPrioTb1[] (which holds the pointer to the

task’s stack) into the processors stack and begins executing the appropriate task. When

the processor’s stack is replaced with the task’s stack, it resumes executing where the

task forfeited execution.

In stepping through this process, it became apparent that the argument pointer

inverts when pulled from the stack for task execution. Initially, a print statement that

46

attempted to show the value of the argument alluded to the problem. The value should

have been an ASCII ‘1’ but printed as some unreadable character. The next step entailed

involving a debugger to discover the true root of the problem.

The debugger brought out the problem and the solution later came at the assembly

level but a first attempt came in the TaskCreate() function. In order to resolve the

problem, pointer manipulation must be used to switch the two bytes of the word-sized

pointer. The crux of this problem lied with the compiler that fails to allow any useful

manipulations of the argument pointer. The assignment could not be made any other way

(word wise) due to the fact that the stack had to be built from top down as implemented

in the MC68HC11.

The solution normally would be to fill in the stack a byte at a time but as fore

mentioned the compiler would not allow byte access or manipulation of the pointer

argument. If this feature existed in the compiler, then two byte wide variables could be

assigned to the high and low order bytes of the address respectively. The stack could then

be built with these values. Because of this roadblock, the solution lied with the assembly

level context switching process.

The first step in the assembly solution came from the fact that the processor stack

was replaced with the highest priority task’s stack; thus, the task’s SP (Stack Pointer) was

available at the assembly level. This made manipulation of the argument pointer simpler

and faster than creating a new process to manipulate the OSTCBPrioTbl[] directly.

Before the ‘RTI’ (Return from Interrupt) instruction that actually performs the processor

context switch, assembly code switched the bytes appropriately e.g. accumulators ‘A’ and

‘B’ where place in their proper order to be inserted into the ‘D’ register. This guarantees

47

that even if the argument had been a value and not a pointer, it would still be applied in

the proper sequence.

. 3.5.2 Print Services

Print services became available after configuring the serial interface on the

MC68HC11. It required that the configuration register for the SP1 (serial peripheral

interface) be set up for a given baud rate and the transmit and receive be enabled. The

compiler comes with built in functionality to handle this interface to the SP1 such as

primfl) and related routines. Because the actual hardware interface does not exist in the

debugger, these status bits must be set manually to simulate working hardware. It can be

done while stepping through the program by writing the expected status bits to the

memory mapped SP1 register.

3.5.3 The Debugger Interface

The debugger aided immensely in pointing out flaws in porting uC/OS to the

Handy Board. It also gave insight into how the RTOS operated, how it handles task

management, resources, etc. and how it handled the Handy Board/MC68HC11 interfaces

such as the SP1. In order to use the debugger, the compiler flags for producing debug

information were required. One of its uses came in simulating the status bits of the SP1.

Simulating the I/O became as simple as setting a memory location to a given value.

For example, the SP1 contains a transmit done bit in the status register. Normally

the print functions would transmit a byte to the SP1 buffer and wait until the transmit

done bit was set. It would then continue to feed the SP1 buffer. In the debugger this does

not happen because of lack of actual hardware. Because the debugger allowed memory

48

writes, the status bit could be set manually. As a result, the code could continue to

execute as if the hardware truly existed and had responded.

One difficulty arose in attempting a context switching that is performed by a

‘SWI’ instruction or by a standard interrupt. The debugger assumes that the vector table

resides at Oxffd6-Oxffff, but the Handy Board re-locates this to Oxbfd6-0bfff. The linker

assumes the code is destined for the Handy Board and places the vector table in Oxbfd6

via the linker file. Thus, when the debugger runs the code, the vector table must be

copied or inserted into the proper place for interrupt processing to be simulated correctly.

The following code segment gives the necessary instructions to modify the proper vector

table entries with the correct addresses of the interrupt handlers. The first instruction is

actually the simulation of the transmitter done bit being set. The second and third move

the vector addresses to the proper place.

>mb 0x102e 0x80

>mw Oxffio 0xf274

>mw 0xfl‘l‘6 0xf230

3.5.4 Simulating Interrupts

The debugger has the ability to simulate interrupt processing. It accomplishes this

by checking an internal debugger variable that represents the state of all of its allowed

interrupts. Once the bit is set, it maps to a particular interrupt and the debugger performs

a lookup into the vector table. Once the instruction pointer to the interrupt handler is

found, the debugger begins executing instructions/code at that location. This mimics the

MC68HC11 well enough to simulate interrupts manually i.e. they cannot be done

49

periodically. The ‘.irq’ variable maps the interrupts to each of its 16 bits, refer to Table 5

for the bit mapping.

Table 5. Interrupt bit allocation to: CXBD - MC68HC11"

gifté’g”‘“‘mmfif‘n

0 COP clock fail—

“Lanna—.4: -.—-u_- -_‘

a.""11... seems1444.14...._ '11..

2 XIRQ

lied. I" cm.“ W §m2r$tY/‘Wn—.4“..me he; I 1 , _

a 3 $9 . . 1
_.. ' ' A .4)

‘n‘m-s

4 Real Time Interrupt

7 "M

11.5.... ameréepur..1...1.11.4

6 Timer input 2

"ff-'1‘

L_ ,gT1merinput 3

8 Timer output 1

51%1._.Timeroutpulzs2.1..11...

10 Timer output 3

Fviifl‘FTfimerougput"4
wu‘fsav.1 may emu-’4‘

rl2 Timer output 5

"”Hateroverflow“:2:
A.“

M14 Pulse acc overflow

TS—T'Tse 1gputefige‘::1
Lama-wig...

16 SPI

E’iv.....sc1':i’f:.;:44....--'7‘“. .m—‘LI—l‘Iu- 4‘»... Iltifidhfil

- :‘Q

The RTI interrupt periodically interrupts the MC68HC11 based on the setup

values in its configuration registers. It’s based on the microprocessor’s crystal, dividing

it out to the desired interrupt cycle. When the interrupt occurs, uC/OS schedules the next

ready-to-run, highest priority task and handles the timing service work. An ‘SWI’

interrupts the processor at the instruction level, not the device level, and does not appear

in the debugger’s interrupt table. When executing a ‘SWI’ instruction, the debugger

indexes into the vector table and begins executing instructions/code from the interrupt

vector location. Other MC68HC11 interrupts are handled similarly, such as an illegal

instruction interrupt.

50

In order to actually simulate the interrupt, a switch to the debugger’s low-level

assembly interpretation mode requires the ‘\’ command to be executed. To switch back to

the high level of C language interpretation, simply execute the switch command again.

The following code segment shows how to simulate the RTI interrupt, the “heart-beat” of

ltC/OS.

> \qu = 16 (16 = 0x10 which is bit 4, matching the RTI bit.)

By simulating this interrupt, the scheduling and task context switching could be

dissected and monitored for insight and debugging. The failure of the RTI interrupt as it

relates to task management blocked the initial port of rtC/OS to the Handy Board

platform. Task switching corrupted the current task’s stack that created inaccurate and

fatal code execution upon return to the task. Corrupting the stack essentially modifies the

PC, taking the processor to a random location in memory to continue executing code.

The difficulty did not present itself initially due to the fact that a task ran once and

passed off execution to another task. This task would continue correctly but the problem

would occur upon return to the original task. In following the execution sequence, the

proper method of giving up execution became apparent and a correction was made to

how the scheduling algorithm worked. This came about'after much scrutiny of the state

of the individual task’s stack before and after the scheduling process.

51

The corruption occurred because rtC/OS had two context switching functions

available for task management. The one interrupt handler dealt with a task being

interrupted by some external device and the other a task level switch by the ‘SWI’

instruction. Either by oversight or lack of clarity from the author of [LC/OS, the interrupt

context switch had been implemented. The confusion may have stemmed from the fact

that an interrupt occurred to switch the task but the interrupt context switching facility

was not used because it was an expected interrupt. The interrupt handler manipulates the

stack before it returns execution to the interrupted task. The handler removes superfluous

interrupt handling functions that reside on the stack before returning to the task. In the

case of simply performing a task level switch the interrupt handler corrupted the stack

because it attempted to remove interrupt handling functions from the stack that were not

present.

Implementing the task level context switching function relieved the problem and

the task management operated correctly. This leaves the task’s stack intact and processor

execution continued correctly. Tables 6 and 7 illustrate the state of the stack in each

scenario. Keep in mind that when uC/OS schedules a new task the current processor

stack is stored as the state of the current task. If an external interrupt occurred , then in

order to restore Taskl, the stack must be cleaned of the interrupt handler functions. The

real state of the stack represents that of a non-interrupted context; thus, the task level

context switch should be executed. When the stack unwinds, it will resume execution

somewhere within Taskl and not at some random location as it did with the interrupt

context switching.

52

Table 6. Task level context switching example.

r'. ' ‘ ‘ ‘ -' ““9“ 91...... “W34":rrf'" c.“ '42P»??? rz'rfi'1W’rez-Mrh, flaw-Hf-WW'W"“'¥ "=4". 1:?

; State ofProcessor State of System Stack '

EAL-5:.-i!'” w“:m.MALLEQML'q-Oiwr «— . .44..- ...-.;..a.: £31 ...1.'3.-l:”dart-'4 6.6-:um uni-{3. emu-.3:- 72.1.94A 4 .- '.'. M.

Taskl release execution Some point within Taskl

flfiBeDelayO ei'liclsfi': ' ' ' ‘ " ' '''''TrmeDelayOreturnstatement

lL1111111-..11.1_. .-.. 1.1-1.1.--.11..111111‘11-1 1 4. 4. *1 ~ -111...3..

OS scheduleO ends OS scheduleOreturn statement

”SW-‘-processoractually switchers”, "I‘as' l5 ”Ham... ""7

L1”- .1: 3134......erWJ Amman—25.2.212.145."-.4515... ..-. .. 1111...... -_'1..- -'.1. .1 ...-3.: 3:11 .7.....L—.s...41...-... 11- 2.;a‘...1.~ a;

Table 7.1nterruptcontext”switching example.

E " ' Sfimffiocessor ' * State ofSystem Stack

Eli-_.....ssrmm4m'’7" .. “:41ne1wmim -: . .13.». as: .1. its» W314“1.41-“...J-wenbu‘fiat-fiufl“xm": ...-«.51;

Taskl interrupt Some point within Taskl

Interrupt handlerOreturn‘statement“a:

.‘ 2: .. . I .1 'a.‘ pf . q. -. .-
1 51.)4. L m I L 1 4.4- ...;

, W ..

4h -.4.-'a r'r-nqc'L-"IJI‘ n1»

Timer Services () ends Timer Services () return statement

1 ‘ .- JwrmmWw-fir' _. 1 "'71.. r-._,.'I‘1.-_..l'-. .ww—r... v-v "r. r _ . _.., _r 24"".159'113‘Il

-:proce_ssor actually switches ' Tasfi , _ . 3

g , . .

b- ' -
7‘7 7 :' _ 7.. . 4_ .. .1 1 » . _ . _ _: ‘_ >-_ -‘ - .. ,1 - . . ., ..- . _ . - ‘_._ ._ ~‘.

Er4?.-'.“rma'fliamfiuuWRm’fiwfi‘iiaataamL.134. £112.»-.. .15 baa--....wrs ...n'e. .. :u...1.-. -ru.-. ..--. . 2's, 4-1.1.1.... .. a . ‘craz4-:.a:.h.‘-. .--. .11" L21

3.6 Summary

11008 gives the 8-bit processors a taste of what RTOSs are capable of bringing to

the embedded systems world. It does so efficiently, without sacrificing system

performance or resources such as memory. It has remained fairly portable with only a

small part actually requiring an assembly interface. It only had to make use of the

MC68HC11’s stack, its accumulators (registers) and a small portion of memory to

function. All of this led to a small, efficient RTOS that helps applications written in

ANSI C for the MC68HC11 meet their hard real-time requirements.

53

Inspiration for implementing an RTOS stems from new embedded applications that

make use of new technologies in RTOS development for such work as space exploration.

The Mars Pathfinder application runs the Pathfinder’s entire system on one of the latest

RTOSs, VxWorksTM. This RTOS had not only been designed to meet the real-time

constrains of such high standard as NASA’s but it had a build in trace logging and a open

design interface that allowed for “on-the-fly” modifications to its kernel services.

Since the Pathfinder’s mission began on July 4, 1997, the system and VxWorksTM

had run flawlessly. However, a few days later the system began to periodically reset with

no obvious cause. The JPL engineers where able to use the trace log to determine that a

shared resource, an “information bus”, was causing a problem known as priority

inversion.

This rarely occurred due to the nature of priority inversion. It only became evident

after analyzing the trace log that showed a high priority task blocked on a resource held

by a low priority task. This low priority task could not be re-scheduled due to a mid-level

priority task blocking the low-level task from being scheduled and releasing the resource.

Once priority inheritance was turned on by the JPL engineers via a user interface defined

by VxWorksTM , the problem was alleviated. The low priority task inherited the high

priority task until it released the resource and unblocked the high priority task. This

inspires the development of similar RTOSs or at least to begin using some of the

technology they offer.

54

Chapter 4 Test Application for uC/OS

4.1 Introduction

We present a train control application that deals with many classic real-time issues.

The application requires its tasks to communicate and coordinate with each other as well

as perform their work by a given deadline. It makes use of the kemel’s semaphores to

coordinate the tasks to complete the work. The application relies on the task priority

scheme and preemptive scheduling to ensure that the most important tasks are completed

on time and function correctly. The specification of this application classify it as a hard

real-time application because the timeliness of the tasks is key to making the application

work.

4.2 General Specifications

Automated train control can now be accomplished due to technologies such as

radio-based train control that may make automated train control cost effective and an

industry standard.20 Because such complex real-time application will exist in the

embedded industry, it “makes sense” to implement a similar application for uC/OS that

interfaces to a simulated train environment.

The environment is as represented in Figure 9, which is an annotated screen shot of

the simulation program written by Xiao Huang and SethMosier. Two trains travel

around a given circular route of known length on separate tracks. The two tracks will

have a bridge that both trains must cross and the bridge has one single track; thus, only

one train can cross at any one time. The bridge will have a controller that can stop or

slow the trains and allows them to pass on the bridge. Slowing the trains down takes a

55

certain amount of time. Because of this, the controller must slow down the train(s) early

enough to avoid collision. Each of the train’s length is fixed, and their position along the

route is known only at certain points. At these points. each train’s passage is time

stamped and made available to the bridge controller. From this information the controller

is able to control access to the bridge.

Figure 8. Train track representation.

9' This represents the position marker with time stamps of the train.

This represents where the controller signals the train to slow or stop.

56

4.3 Environment and Design

The environment will consist of the Handy Board running a bridge control

algorithm that uses a serial interface to communicate with a PC running a simulation of a

train system. The PC will be running on Windows NTTM or Windows 95'”,1 and gives a

graphic display of the trains traveling around the track. The bridge control algorithm,

written using uC/OS and running on the Handy Board, controls the trains to keep them

from colliding with each other. The track is assumed to be 80 kilometers and the bridge

is a kilometer long. The interfaces are depicted in Figure 10.

Figure 9. PC to Handy Board interface

Hand Board’s

Serial Interface

Handy Board

"'5‘.<"iiflmt

57

4.3.1 PC Components

The PC components consist of a Visual C++ train simulation application using

one of the available COM ports. The train application runs the GUI (Graphical User

Interface) and simulates the trains running on the track and crossing the bridge. It

controls the trains based on information coming from the COM port. The port brings in

control information and the train application sends position information via the port. The

COM port interfaces to the Handy Board to acquire the control information and update

the Handy Board of the trains’ positions on the track. This information is passed to the

Handy Board via its serial interface.

4.3.2 Bridge Algorithm

When new position information is available, a time stamp is recorded for that

train to determine its speed and destination time to the bridge. This information is used

to determine when to signal a train to stop or slow in order to avoid a collision on the

bridge. These timestamps are maintained and recorded until the train enters the bridge,

then they are reset; thus, complete knowledge of the train’s speed and position can be

estimated and control can be applied as needed. The control is applied by

communicating to the external PC simulator, via a serial interface, that the train will need

to be halted or slowed.

58

4.3.3 Tasks

Three tasks run on the MC68HC11 that run the control algorithm and interface to

the PC. A main() function creates these tasks with priorities suited for a bridge control

algorithm. The gathering of position information by the Marker task is made the highest

priority because missing this information could lead directly to a crash. Actually

controlling the trains, done by the Controller task, is a lower priority because the control

algorithm takes into account the possibility of getting the train position information late.

It monitors their position and controls them before it really needs to, leaving room for

mistakes or missed information. The Logistics task has 3 intermediate level priority and

processes the information passed in from the Marker task and exports it to the Controller

task. The following gives a description of each task and pseudo code that illustrates its

function.

Marker task: This task handles the actual gather of the position data and time stamps of

the trains as they pass the markers on the track. It passes the information onto the

Logistics Task.

WHILE(1)

Wait for the PC to have data ready;

SWITCH(Input from PC)

CASE (Train 1)

Timestamp Train 1;

Signal Logistics task;

CASE (Train 2)

Timestamp Train 2;

Signal Logistics task;

ENDSWITCH

Delay, Allow other task to proceed;

ENDWHILE

59

Logistics task: Computes position and destination time of each train based on information

passed in from the Marker task. It communicates its results to the Controller task. The

following pseudo code illustrates the function of this task:

WHILE(1)

Wait for Signal from Marker task;

Compute arrival time at bridge for each train;

Signal Controller task that new train information is available;

ENDWHILE

Controller task: This signals the external simulator when a train needs to be halted or re-

started based on information received from the Logistics task.

WHILE(1)

Wait for Signal from Logistic task;

IF (Train 1 AND Train 2 Arrival Time < Control Threshold)

Control Train 1 via PC interface;

ENDIF

ENDWHILE

4.4 Summary

We’ve deve10ped a real-time application that is time critical and requires solid

software development. It’s a type of application that is exemplary of the applications that

many engineering are implementing for real-time systems. This train application may

serve as a base line application that many students can learn from, and expand on, for lab

assignments. Also, it may be studied as a lead-in to further research in the area of RTOS

development or co-design.

6O

Chapter 5 Results

5.1 Introduction

uC/OS’s power may not lie with the richness of its features but with the quality of

kernel services. It provides the core features of a solid RTOS such as preemptive

scheduling and task communication. uC/OS provides these services without much

demand for large system requirements such as large quantities of memory or 32—bit

processing capability. Its kernel has been written efficiently and provides the services in

a deterministic manner.

These quality features are attractive to engineers using 8-bit processors such as the

MC68HC11 because most of its application use assembly or small C (a subset of the full

ANSI C) and uC/OS could provide them with a real-time kernel for the first time. We

present some of the other applications that were written to test uC/OS’s features and

deterministic capabilities. One application tested some of the task communication

features and timing functions and another implement priority inheritance using uC/OS’s

ability to dynamically change a task’s priority.

5.2 Performance Metrics

Much of the metrics presented are not backed by extensive monitoring or testing

but give a general idea of how well this RTOS may perform. Metrics exist that may

relate to an RTOS but are not a measure of the kernel such as context switching; thus,

they are not included. Many of these types of metrics are important to a designer when

building a real-time system but should be kept separate from the evaluation ofthe RTOS

itself.

61

Deterministic kernel service is an important performance metric and all services

provided by uC/OS are detenrrinistic21 Its services execute in a deterministic time frame

and each kernel service such as POST, has a known execution time given in terms of

clock cycles.

Interrupt response can be crucial to a real-time application and because uC/OS has

the ability to preempt tasks the response is quite fast. A real-time kernel must provide

deterministic services to meet many of the real-time specifications.

uC/OS keeps memory usage to a minimum using the following formula to compute

a particular application’s memory needs:

RAM (in bytes): 200

+ «14» OS_MAX_TASKS)*16)

+ (OS_MAX_EVENTS*13

+ SUM(Storage requirements for each message queue)

+ SUM(Storage requirements for each task stack)

+ (OS_IDLE__TASK_STK_SIZE)

Scalability for uC/OS is limited to the number of task that can be run or the

addition of communications mechanisms such as message queues. If an application

needs more tasks and needs them to communicate, then uC/OS can provide up to 64 tasks

with mailboxes and message queue as a means to communicate. Modifying the kernel

code to meet a specific need is the only way to scale it further. The code has been well

documented and commented, making modifications to the kernel an easier task.

62

Interrupt latency and the response time to an interrupt event are important

performance metrics. uC/OS disables interrupts to handle system services and gives the

worst case interrupt latency and response by the following formula that is processor

dependant:

Interrupt latency = Maximum interrupt disable time + time to vector to the ISR

Interrupt response = interrupt latency + time to save CPU registers 4» time to

- execute OSIntEnter().

5.3 Case Studies

These next two sections discuss some case studies that test some of the features of

uC/OS. The first illustrates how tasks communicate and make use of the timing services

of the kernel. The second implements a priority inheritance solution to the serious

problem of priority inversion found in many real-time applications or systems.

5.3.1 Task Communication And Timing Function Application

Five tasks were created to illustrate the task communication: Taskl, Task2,Task3,

DispTask and KeyTask. These tasks swap messages and signal each other on certain

events to complete their work. KeyTask would either POST a message to a mailbox or

POST multiple messages to a queue depending upon user input. The following gives the

pseudo code illustrating KeyTask’s functions:

WHILE(1)

Wait for user input;

SWITCH(user input)

CASE ‘1’

POST message to a mailbox;

CASE ‘2’

POST two message to a queue;

ENDSWITCH

ENDWHILE

63

Taskl would PEND on and then print the message coming from the KeyTask. It

would then signal others that it received the message by POSTing to a semaphore. The

following gives the pseudo code illustrating Taskl ’5 functions:

WHILE(1)

Wait for KeyTask to put message in mailbox;

Print message;

Wait for access to global variable;

Increment global variable;

Release access to global variable;

ENDWHILE

Task2 operated similar to Taskl except it PENDed on the queue. Two other tasks

were created to illustrate the timing functionality, Task3 and DispTask. Task3 delays for

a second and updates a variable to keep track of the number of seconds. It then checks if

a minute has passed and updates another variable to keep track of minutes. These were

global variables that Task3 would signal to the DispTask, via a POST to a semaphore,

when they were updated. The following gives the pseudo code illustrating Task3’s

functions:

WHILE(1)

Wait for access to the global SECONDS variable;

Increment SECONDS variable;

IF (seconds variable = 60)

Increment global MINUTES variable

ENDIF

Release access to SECONDS variable;

ENDWHILE

The DispTask would PEND on the semaphore and print the time in minutes then

seconds. The following gives the pseudo code illustrating DispTask’s functions:

WHILE(1)

Wait for access to the timing and other global variables;

Make local copy of global variables;

Release access to global variables;

Print or Display global variables to user;

ENDWHILE

This application shows some of the determinism of the kernel by properly tracking the

time while providing inter-task communication services.

5.3.2 Priority Inheritance Application

Priority inversion creates a situation where a low priority task blocks a high

priority task. This occurs if the lower priority task has taken control of a shared resource

that the higher priority task requires in order to continue execution. This only becomes a

problem if the lower priority task is kept from releasing the resource by other higher

priority tasks. They would prevent the low priority task from being scheduled because

they do not require the resource to continue. This situation is referred to as priority

inversion because a low priority task blocks a high priority task, not the intent of a

priority-scheduling algorithm.

65

The solution is to implement priority inherence and allow the low priority task to

run temporarily by inheriting the priority of high priority task being blocked. It would

then release the resource and unblock the higher priority task. The application written

under uC/OS uses Taskl as the high priority task, Task2 as a medium priority task and

Task 3 as the low priority task. A Monitor task was created, at a higher priority than all

others, to implement the priority inheritance. Since two tasks can not have the same

priority in uC/OS, Task3 was temporarily changed to a higher priority than Taskl. A

semaphore was used to represent the resource that Task 3 held.

A complete implementation of priority inheritance would require modification to

the kernel code and may change some of the deterministic behavior; thus, great care must

be taken if this is to be implemented into the kernel. The following lists the pseudo code

that illustrates the function of each task in the priority inheritance scheme.

Taskl :

WHILE(1)

Delay for a second;

Wait for access to the global resource;

Release resource

ENDWHILE

Task2:

Initial Delay

WHILE(1)

Perform other work not related to global resource;

ENDWHILE

Task3:

WHILE(1)

Signal Monitor task;

Gain access to global resource;

Delay;

Release global resource;

ENDWHILE

66

Monitor:

WHILE(1)

Wait for a Task to obtain a resource

IF (Priority Inversion Exists)

Change priority of theTask holding the resource to highest priority;

Delay, the Task is allowed to run and release the resource;

Change priority of Task to its original priority;

ENDIF

ENDWHILE

Taskt was temporary blocked when it attempted to gain access to the

resource because it waited long enough for Task3 to lock it. Task2 had blocked

Task3 because it did not require the resource but then Task3 was temporary

raised to a higher priority. This was done by the Monitor task that periodically

checked the resource to see if the task holding the resource had a lower priority

than any other task waiting for it. Once the Monitor task realized that Task3

blocked Task1, it triggered the priority inheritance algorithm to alleviate the

problem.

67

Chapter 6 Summary and Conclusion

Performance and validity in real-time systems depend upon the timeliness and

logical operation of the application. Real-time operating systems aim to support such

applications and make the process of working with real-time systems easier for the

developer. It does this by removing many of the system details that engineers often deal

with and allows them to focus more on the applications.

The RTOS must be written very efficiently, making the most out of the available

hardware. It must give the developer control of the system via kernel services. The

kernel also handles all of the timing services and interrupts. This keeps the application at

a higher level, breaking the application into more logical tasks that are simpler to test and

debug. Keeping tasks modular can help to expand or scale the system and most of

RTOSs remain modular to adhere to systems’ specific needs.

These abstract, priority-based tasks can communicate with each other and gain

access to system resource. All the work that an application would normally do without

an RTOS is still accomplished but can be done via kernel services. This allows the

application to be more portable and easier to maintain and develop. Engineers should not

consider writing their own RTOS as a real design option, they should only consider

which RTOS best fits the system’s specifications. Older‘systems with pre-existing

customized operating systems may not be as easily ported but it may be worth the time

and effort. More engineers use an RTOS and it has proven to be a useful and necessary

tool in the development of real-time embedded systems.

68

Chapter 7 Future Work

This thesis provides a basis for real-time development with uC/OS as the RTOS.

Future work with uC/OS may include adding a user interface, expanding its functionality

with instructional modules, and analyzing its performance in greater depth. uC/OS may

be used for other research or educational purposes including Dr. Rover’s POLIS project

with co-design, a capstone course in embedded systems or an operating system class for

real-time application development.

69

lO.

BIBLIOGRAPHY

Labrosse, Jean J. pC/OS The Real—Time Kernel, R & D Publications,cl992, p.5

[Online] UC Berkeley, POLIS Project, http:/l

ptolemveecs.berkeley.edu/~pino/Ptolemy/thirgartyhtmlifucberkeleyPOLIS

Ganssle, Jack G. “A Question of Balance”, Embedded Systems Programming,

Buyer’s Guide 1996, p.15

Schwan, Karsten; Zhou, Hongyi. “Dynamic scheduling of hard real-time tasks

and real-time threads. (Technical)” IEEE Transactions on Sofiware Engineering,

August 1992, v18, n8, p.736(l3)

Margolin, Bob. “Smarter stuff. (embedded processors increasingly accessible and

controllable over networks) (includes related article on Internet appliances)

(Technology Information)” Byte June 1997, v22, n6, p.85(5)

Klann, David; Schultheis, Steven; Smith, David. “Match real-time OS to boards

for smooth porting; an efficient port to new single-board computers hinges on

harmonizing the workings of a real-time OS and target CPU. (real-time operating

system/single-board computer matching) (Tutorial)” Electronic Design, Feb 7

1994, v42, n3, p.75(9)

Petreley, Nicholas. “Reasons you may be using DOS again soon and actually

(gasp!) liking it. (Caldera to offer tumeky Linux/NetWare server, leverage

acquisition of DR DOS) (Product Information)”

InfoWorld, Jan 19 1998, v20, n3, p.100(1)

Rajpal, Gurjot S. “Posix: conformance versus compliance. (includes relatedarticle

on Posix definitions)” Electronic Design, Feb 21 1994, v42, n4, p.821(3)

Barrett, Tom. “RTOS maximizes productivity in portable applications. (real-time

Operating system)(Engineering Software)”

Electronic Design, May 28 1996, v44, n11, p.129(2)

Grehan, Rick. “8-bit microcontrollers grow up and down”, Computer Design,

May 1997, p.73

Grehan, Rick. “8-bit microcontrollers grow up and down”, Computer Design,

May 1997, p.75

70

11.

12.

l3.

14.

15.

l6.

17.

18.

19.

20.

“SGS sees life in 8-bit micro market. (SOS-Thomson Microelectronics’ ST9+

microcontroller platform)(ProductAnnouncement)" Electronic News (1991) Nov

3 1997, v43, n2192, p.8(2)

Santoni, Andy. “Motorola expands offerings in microprocessor cores. (M.Core

CPU with memory and I/O)(Product Announcement)”

InfoWorld Sept 22 1997, v19, n38, p.29(2)

Motorola RTEK product evaluation literature, on-line help.

Bassak, Gil. Embedded RTOSs keep pace with processing power. (real-time

operating systems)(includes directory of firms offering

embedded operating systems) Electronic Design,

Oct 14 l996,4,n21,p.80(5)

Bassak,Gil. “Embedded RTOSs keep pace with processing power (real-time

operating systems)””, Electronic Design, Oct 14 1996, v44, n21, p.85

[Online] MIT (Massachusetts Institue of Technology). The Handy Board,

http://lcs.www.media.mit.edu/groups/el/Projects/handy-board/faq/index.html

Stallings, William. Operating Systems, New York : Macmillan ;

Toronto : Maxwell Macmillan Canada ; New York : Maxwell Macmillan

International, c1992, p.113

Whitesmiths Ltd., CXDB Source Level Debugger; User’s Manual, l993,p.3-6

Pollack, Matthew. “Train control: Automating the world’s railways for safety”,

IEEE Potentials, Feb/Mar 1998, p.8

Labrosse, Jean J. rtC/OS, The Real-Time Kernel, R & D Publications,c1992, p.35

71

HICHIGRN STRTE UNIV. LIBRARIES

llllllllll lllllllllllll Illlllllllllll llllllllllllllllll
31293017749551

