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ABSTRACT

HARDWARE-SOFTWARE CO-DESIGN FOR EMBEDDED SYSTEMS

IMPLEMENTATION OF A STEPPER MOTOR CONTROLLER

By

Anuradha Mulukutla

Hardware-software co—design entails the combined specification of hardware

and software at the system level, and the use of such a specification for co-

simulation, co—synthesis and/or co-verification of the system. The co—design method-

ology is especially relevant to embedded systems which involve software with spe-

cific functionality embedded in microprocessors, often interacting with the envi-

ronment and controlling external machinery. The objective of this thesis is to

demonstrate the hardware-software co—design flow by using two implementations

of a stepper-motor controller. One approach uses a hardware chip for the pur-

pose, while the second approach is using the POLIS co-design environment and

the PTOLEMY simulator. The results of the two implementations, and a study

of hardware-software co-design considerations for system specification, architec-

ture, hardware-software partitioning and the related trade-offs are presented, with

specific reference to the stepper-motor controller experience.
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Chapter 1

INTRODUCTION

Conventional system design methods involve specification of hardware and soft-

ware separately, requiring a pre—design partition into hardware and software. The

integration of the hardware and software is pushed toward the downstream of

system design. Since problems during testing or specification changes can only

be corrected by expensive redesign, this leads to time-to—market and cost glitches.

Hardware-software co-design tries to address such problems by the use of a com-

bined or unified representation of the system, complemented by co-synthesis, co-

verification and co-simulation of the system operation across the hardware and

software boundaries. Co—design could address systems with mixed hardware-

software specifications, or a general system specification. In any case, the co-

design flow includes system level simulation, hardware-software performance and

partitioning issues.

Typical application areas of embedded systems include consumer electronics,



telecommunications applications, automotive controllers, safety critical plant or

medical instrumentation, listed in increasing order of criticality. All such sys-

tems contain a CPU running software with application-specific functionality, with

interfaces to the environment, external hardware and in some cases other supervi-

sory software on a real-time basis. These considerations make it necessary to deal

with system level design issues rather than superior computing perfomance [1];

consequently, hardware-software co—design is the only alternative.

This thesis aims to understand the motivation for hardware-software co-design,

explore available tools for co-design, demonstrate the co-design methodology for

an embedded system application, and present the results of the implementation.

POLIS [2], a hardware-software co-design environment for control-dominated

embedded systems, was selected as the design tool due to its relevance to the

stepper-motor controller application, and its availability. The POLIS preferred

specification language ESTEREL and the simulator PTOLEMY were used for the

design. A software version of the stepper motor controller was generated using

these tools and after synthesis and simulation, was tested on the 68HC11 micro-

controller. Simultaneously, the hardware implementation of the stepper-motor

controller using the MC33192 was set up and the results of the two approaches

are presented.



1.1 Objectives

The main goal of this thesis was to demonstrate the hardware-software co—design

methodology for a stepper-motor controller and establish a set of design criteria

for system specification, architectural design, and hardware-software partitioning

to facilitate the co—design process. Towards this end, some specific objectives were

involved and these are briefly described below.

The relevance of hardware-software co-design for embedded systems was to

be studied. Existing methodologies for hardware-software co—design were to be

examined. A suitable co—design environment was to be chosen and used for the

purpose of the implementation. The hardware implementation using MC33192

was to be realized and compared to the co-design implementation. The co-design

flow used in the project was to be presented, along with insights gained into system

design, hardware-software partitioning and typical trade-off issues. Current trends

and issues in hardware software co-design were to be presented.

1.2 Outline

This thesis is organized into seven chapters, beginning with this introductory

chapter. This chapter is followed by an overview of hardware software co-design

in general and embedded systems in particular. The next chapter describes the

co-design environment and design flow used for this project, namely POLIS and



its associated tools. The following chapter, chapter 3, deals with the software

implementation of the stepper-motor controller using the co—design environment.

The next chapter describes the hardware implementation, using the MC33192.

Chapter six presents the results of both the approaches. The next chapter dis-

cusses the analysis and conclusions of the entire project while the final chapter

presents some recommendations for future work.



Chapter 2

HARDWARE-SOFTWARE CO-DESIGN

2.1 A case for co—design

Traditional system design follows a sequential approach, called the ”waterfall”

model [9]. The design process begins with a system specification, (which may be

simply the functional requirements of the system). Partitioning of hardware and

software is done at this stage itself.
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Figure 2.1: Traditional Method Of Design

 

 



Figure 2.1 [9], illustrates this approach. Designers try to map most of the spec-

ification to software, and use hardware only for timing and other constraints. Once

this is done, as shown in the figure, the design process forks into two independent

paths, one for hardware specification and design, and the other for software. This

amounts to sending the hardware and software designers to separate work areas,

with little interaction between them, until each team is ready with their product.

Intuitively, this is a ludicrous beginning for the next design step, which involves

integration and testing of the two products into the overall system.

Current-day digital applications involve increasingly complex systems, and

contain both hardware and software components sometimes on a single chip.

These components often include programmable microprocessors, ASICs and hard-

wired devices or FPGAs. The market is highly competitive, ever increasing the

pressure to decrease time and cost of product design. With this scenario, the

traditional method suffers from obvious drawbacks, including the following.

o The pre—design partitioning of the system into hardware and software compo-

nents prevents optimization of the design by exploring alternative partitions.

0 Until integration and test, incompatibilities between the hardware and soft-

ware portions cannot be found.

0 Since hardware changes are not only expensive but also take time, only

software alternatives may be explored to fix errors.

0 Since problems are discovered late in the design phase and cannot be fixed

completely merely by software modification, the resultant product is far from

optimal and may not meet the specification.

In other words, we require a concurrent and not a sequential method of hardware-

software design as shown in the Figure 2.2 [9]. This is commonly called co-design,
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Figure 2.2: A Concurrent Method Of Design

and could be defined in many ways depending on the application. The key con-

cept underlying these definitions is, however, “developing hardware and software

concurrently”; (Hugo De Man in [11], Vijay Nagasamy in [10]) and “facilitating

communication between hardware and software teams” (Karl Van Rompaey in

[11]) This also means that hardware and software branches of specialization es-

sentially overlap [1], and [12] and requires cultural shifts in design methodologies;

however, we restrict ourselves here to the. co-design methodology itself.

2.2 Methodology and Trends

Having decided that co-design is a very desirable methodology, we now describe a

general approach for hardware-software co-design, which may vary, according to

the application.

For this purpose, the co—design methodology is broadly decomposed into four

major tasks [3]. These are, system specification, architectural design, hardware-

software partitioning and iteration between hardware and software. The co—design

process is complemented by co-simulation and co-verification which precede the



final implementation. An overview of these tasks is presented here for the general

case. The next section deals with the specifics for embedded systems.

2.2.1 Specification

The functional requirements of the system are specified as the first step. The ideal

case is to be able to arrive at architecture-independent specifications, for maximum

flexibility during implementation. However, depending on hardware or software

components involved in the system, the specification could deal with different

levels of abstraction. The key is the unified specification of the entire system,

using a suitable modelling mechanism. This is the subject of extensive research,

and different techniques, models, and specification languages are continuously

emerging both commercially and among research communities. SOme of these are

extended versions of C, extensions of HDLs [11], formal specification languages

[8], [13] and [14] and recently, a unified co-design language or the CDL [15].

(Others are LOTOS and SDL for communication protocols, CSP and OCCAM

for concurrent systems, StateCharts for real time systems, C, C++ and ADA for

programming, SpecCharts for mixed hardware-software systems and so on).

2.2.2 Architecture

Architectural design may be influenced by the current application, available re-

sources, or other constraints. The hardware architecture may contain one or more



processing units, memory subsystems, application-specific hardware blocks, (IP or

intellectual property blocks) and other programmable hardware. The designer’s

job is to select an appropriate combination of such components, for the required

functionality. Some tools which automate this process using cost and size param-

eters generated for the given functionality can be found in [16], [17], [19], [20],

[21].

2.2.3 Partitioning

In general,the system specification is modelled as tasks or processes [19], interact-

ing with each other. The partitioning step assigns each of these processes to hard-

ware and software components available from the previous step. The main issues

involved here are the granularity or abstraction of these processes, inter-process

communication, and required concurrency. Different automatic partitioning algo-

rithms [18], [20], [22] are available, which are based on cost, size or performance

parameters estimated for the given hardware or software. In some cases, partition-

ing may be done manually, as in POLIS. The designer makes decisions based on

these parameters considering timing, performance and hardware-software cross-

coupling issues.



2.2.4 Iteration Between HW/SW

The hardware-software partitioning process is an iterative one, till an optimal

design is achieved under the given set of constraints. Software offers flexibility,

while hardware may be essential for standard functionality or timing constraints.

Different hardware-software mappings of the system may give different results.

The path from the co—design process to the final implementation of the system is

supported by co-simulation and co—verification environments. These tools facili-

tate integrated simulation and verification of the hardware and software compo-

nents of the system using various techniques.

Table 2.1: HW/SW Co-Design Tools - A Summary
 

  

 

 

Name Category Application Platform Source

POLIS Research Design environment Unix POLIS Project

[2] Software for control- Cadence Berkeley

dominated embedded Labs

systems

Ptolemy Research Extensible block Unix Ptolemy Project

[25] Software diagram environment UCB

for signal processing,

communications and

and HW/SW co-design
 

Eaglei Commercial Virtual Systems Unix ViewLogicI

[28] integration tool Windows NT

for co-verification

in Embedded systems
 

Statemate Commercial Graphical Simulation Unix i-Logix Inc

[14] and software synthesis Windows NT

tool for rapid

development of

embedded systems      
 

 

lFormerly sourced from Eagle Design Automation Inc.
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2.2.5 Co-Design Tools

While different tools are available with different capabilities to support co-design,

these are domain-specific and often application-specific. Current research in the

area encompasses different aspects of hardware-software co—design from specifi-

cation languages to computational models to automatic partitioning tools. The

Table 2.1 provides a brief look at some of the developmental and commercial tools

available for co-design. Details relevant to embedded systems are presented in the

following section of this chapter.

2.3 Embedded Systems

The co—design methodology outlined in the previous section is described in de-

tail for embedded systems [3], [16]. An embedded system represents a reactive

system with a fixed functionality and whose behaviour depends on its interaction

with its environment. Often such systems could be very complex, comprising of

software, ASICs, microprocessors, FPGAS and analog peripherals. Co-design al-

lows concurrent development of hardware and software, offering great reductions

of time-to—market compared to software development after hardware fabrication.

We discuss the co-design tasks from the previous section, as applied to embed-

ded system design using the example of an engine-control unit hereafter referred

to as ECU, from [24].

11



2.3.1 Specification

Initially, the functionality of the system is specified. ' This is a set of system

requirements or the response of the system to inputs. In case of the ECU, the

function is to control the torque produced by the engine by timing the fuel injection

and spark, with low fuel consumption and low exhaust emission. The injection

time is computed by using air pressure, air temperature, throttle position, engine

speed etc. The ECU produces a suitable output to drive the actuators based on

this computation. We can thus divide the basic functionality into subtasks. This

functionality is mapped into modules by using a conceptual model [16]. This may

be done using various models like data flow graphs or finite state machines(FSMs).

A description of this model is then generated by means of a specification language.

At this point, the specification does not reflect any implementation detail.

The choice of a model depends on the application. For instance, for a signal

processing application, a dataflow model might be suitable. The FSM model

may be more applicable to control-dominated systems. Software systems may

need to be modelled as communicating sequential processes or CSPs [16]. In

short, the model should be most appropriate for the characteristics of the system.

While embedded system applications are diverse, certain characteristics [1], [16]

are common among such systems.

0 Software with application-specific functionality

0 State transitions responding to inputs

0 Exceptions for interaction with environment or subsystems

12



o Concurrency

These characteristics require a FSM based model, extended into a model which

also provides for concurrency. [16] describes one such model, the PSM or a

program state machine model. The specification language Esterel, used for this

thesis uses a model based on the CFSM or the co—design FSM, described in the

next chapter. Once a description is generated, the specification is verified for

functional correctness.

2.3.2 Architecture

Typical embedded systems have complex architectures, consisting of different

types of processors and their peripherals, FPGAs, ASICs, and external sensors

or eleCtro-mechanical devices. Often, the design is incremental, using standard

hardware parts or reusable software [5]. The selection may be between 16-bit and

32-bit processors, interconnection schemes like buses, or available alternatives for

custom hardware. The criteria could involve both technical and commercial trade-

offs.

In our ECU example, we may use a 32-bit CPU which receives the analog

and digital inputs from the environment, and directly produces actuations in the

form of PWM outputs. While this may be an easy approach, timing requirements

may not be met. Alternatively, we might use a 16-bit CPU and an FPGA which

produces the actuations. The third option may be to use a DSP to process inputs,

13



and an 8-bit CPU which computes the outputs and and FPGA which controls the

actuators [24].

2.3.3 Partitioning

As mentioned previously, the partitioning task involves the allocation of architec-

tural components to the functional operations. At this stage, co—simulation of the

partitioned design can help in performance analysis. Thus, if timing information

for a processor is available, then, the performance analysis can indicate whether

the design can meet all the system requirements. The advantage of co—design is

that flaws can be detected at this stage itself, and necessary re-partitioning or

even re-design can be done.

Once again coming back to our ECU, partitioning may be dictated by one of

several criteria. For instance if a variable is defined in the DSP, while a function

using that variable is defined in the CPU, we need to design a suitable interface or

bus for this purpose. Instead, it might be easier to define both the variable and the

function in the CPU. Another example would be whether we assign some of the

data processing functions to the CPU or use it only for computation. This choice

may be dictated by the processing power available or the speed of computation

required. As described in the previous section, this process is iterative. The

design is then synthesized to generate software code and hardware netlists. The

final stage of the design is the physical implementation using prototyping and

14



testing.

2.4 Summary

In this chapter, several important issues concerning hardware-software co-design

have been discussed. The need for co—design is established. A general methodology

for co—design has been described. A brief overview of existing tools and methods is

presented. We then discussed the co—design methodology specifically for embedded

systems.

However, hardware-software co-design is also riddled with some inadequacies.

The foremost of these, is the fact that co-design techniques tend to be application-

specific and diverse. No industry standard has emerged yet and the field abounds

with specification languages, co-simulation and co-synthesis environments and ver-

ification methods. In other words, there is no universal solution [3]. This presents

a challenge for designers both in terms of the choices to make, and also the required

learning curve for changing technologies.

For this thesis, we have chosen the POLIS co—design methodology, due to its

suitability for control-dominated applications. In addition, the POLIS system cou-

pled with the PTOLEMY simulation environment provides a platform for system

level design right from specification to final implementation. In the next chapter,

we describe each component of the POLIS co-design environment, for performing

each of the co—design tasks outlined here.

15



Chapter 3

THE POLIS SYSTEM

3.1 Introduction

POLIS is a co—design environment for control-dominated embedded systems and

has been freely available on the internet since 1996. The software was created

after almost a decade of combined effort by Magneti Marelli, a major EurOpean

producer of automotive electronics, the University of California Berkeley, and

many others [2]. The motivation for the POLIS project was to find solutions for

challenges facing the embedded system industry, some of which are listed here [5].

0 Formal customer specifications allowing changes during design

0 Use of high level languages for software design

0 Hardware-software co—design and co—simulation instead of bread-boarding

for verification

0 Design reuse

16



Embedded systems have to deal with changing product specifications, and simul-

taneously attempt to lower the design costs, while trying to reduce the time-to-

market. In order to achieve these objectives and address the issues listed above,

the POLIS project was conceived and implemented.

This chapter describes the POLIS co-design environment, including the Esterel

specification language and the Ptolemy simulation environment. We begin with a

description of the formal model used in POLIS, for system specification.

3.1.1 Formal Model

As discussed in the previous chapter, we require a formal model to specify the

system. This model is called the CFSM or the Co-Design Finite State Machine.

It is based on extended finite state machines, with a finite set of variables. Each

functional module of the system is mapped to a CFSM. The CFSM specification

is implementation-independent, and could represent either hardware or software

components. Figure 3.1,shows the CFSM specification of a simple example taken

from the POLIS users manual [4]. The operation of the CFSM is described later

in this section.

In a CFSM, the states of the internal variables as well as the outputs, are

updated by state transitions. The result of the transition is propagated to other

CFSMs or the environment. The communication between CFSMs is not by shared

variables, but by events. The authors of POLIS [5] call the model “globally asyn-

17



chronous and locally synchronous.” This characteristic allows for the specification

of systems consisting of hardware and software components, which exhibit asyn-

chronous communication.

POLIS uses an intermediate language called SHIFT, (Software Hardware

Interchange FormaT) to represent CFSM networks and the individual CFSM

behavior. The designer can specify the interconnecting netlist between CFSMs

graphically by using Ptolemy or by a textual netlist file.

Events are emitted by CFSMs or the environment by means of data or control

carriers called signals. The events are detected by one or more CFSMs. As events

are not buffered, the designer needs to take explicit measures in order that events

are not overwritten if transmitting and receiving CFSMS have different speeds.

These can be handshaking mechanisms, partitioning and scheduling choices.

 

key_on/

start_timer

   

   
key_off or

key_onl

alarm(0)

Figure 3.1: CFSM For Seat Belt Alarm

   

The Figure 3.1 shows the CFSM specification for an automobile seat belt

alarm function. Five seconds after the key is on, an alarm is sounded if the seat

belt is not fastened. The alarm beeps for 5 seconds or until the key is off or belt

18



is on. The transition labels use the “/” to separate the stimulus and reaction.

This specification can be expressed in a high level specification language with

CFSM semantics, in this case Esterel. The Esterel specification for this CFSM is

described later in this chapter. The next section describes each step of the POLIS

design flow.
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3.1.2 The POLIS Design Flow
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Figure 3.2: The POLIS Design Flow

The Figure 3.2 from [4] depicts the various design steps involved in the POLIS

methodology. These individual steps are described in the following paragraphs.

We begin with a formal specification of the system.
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3.1.2.1 Formal Specification

Designers specify the system using a high level language with extended FSM

semantics, in this case, Esterel. (Other such languages could be StateCharts [6],

and the so called synthesizable subsets of VHDL or Verilog. ) An example of such

a specification is described later in the section on the Esterel language.

3.1.2.2 Translation

The Esterel files with extension .strl are translated to SHIFT format using the

strl2shift translator. The input files describe the CFSM behavior and auxiliary

information like type and constant definitions. The output contains the .shift

files for the entire system and .cfsm files for individual CFSMs. The SHIFT

files are hierarchical netlists containing blocks which can be CFSMS, functions

or other netlists, and describe the signals between communicating CFSMs. More

information about SHIFT can be found in [29] and [30].

3.1.2.3 Co-Simulation

The generated files are input to POLIS which creates synthesized C code to model

all the system components, independent of their final implementation. (The P0-

LIS design flow is managed using UNIX makefiles, allowing ease of use.) The

co—simulation framework uses this C code as the basis. The Ptolemy simulator is

used for this project. (A VHDL simulator could also be used [4].) Initially, a func-
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tional simulation is performed to find and fix bugs. Then, a clocked simulation

can be run with approximate timing. The co—simulation depends on the mappings

obtained by the software synthesis step, which is done after partitioning.

3.1.2.4 Partitioning

The next step involves partitioning the design, i.e., mapping individual compo-

nents, or CFSMs, to hardware or software. This can be iterative and uses the

same user interface as co-simulation. Any number of alternative partitions can be

tested.

3.1.2.5 Software Synthesis

The software CFSMs are mapped to software structures including CFSM proce-

dures and an RTOS(Real-Time Operating System). The synthesis is performed

in two steps.

0 First, the CFSM behavior is represented using an S-graph or software-graph,

which is similar to a control/data flow graph.

0 Then, the S-graph is translated into portable C-code.

This C-code is Optimized in a specific micro-controller-dependent instruction set

using a suitable compiler. In addition, a timing estimator provides estimates of

program execution times on a selected target processor.

The RTOS is application-specific, with user-selected scheduling algorithms.

Hardware-software interfaces in the design are automatically synthesised as part

of the RTOS by POLIS.
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3.1.2.6 Hardware Synthesis and Prototyping

CFSMs selected for hardware implementation are mapped into abstract hardware

description formats like BLIF(Berkeley Language Interchange Format), VHDL,

or XNF (for implementation on FPGAs). A physical prototype of the system

can be obtained using the .xnf files and Xilinx FPGAs. Since a software version

is implemented for this thesis along with a hardware implementation using an

existing chip for a stepper-motor controller, this facility is not used for this thesis.

3.1.2.7 Other Capabilities

o POLIS also facilitates formal verification through a translator from CFSM

networks to synchronous classical FSM networks, for input to formal verifica-

tion algorithms. The system recommended by POLIS is VIS or Verification

Interacting with Synthesis [7], from the University of California at Berkeley.

This project does not include formal verification.

o POLIS offers some support or use of micro-controller peripherals like timers

and A/D converters. The currently supported micro-controllers are the Mo-

torola 68HC11E9 and 68HC11gauss.
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3.1.3 System Requirements For POLIS

Table 3.1: System Requirements
 

Package Availability Disk space
 

POLIS 0.3

[2]

Sun 084

Solaris 2

DEC Alpha

PC Linux

20-50Mb

 

Ptolemy 0.7

[25]

Solaris 2.5

HP-UX and others

Linux1

(with X-windows)

350Mb

 

Esterel v5

[8]

  
Sun solaris

DEC

Sun 084

IBM AIX  
25-30Mb

 

Table 3.1 summarizes the system requirements for the POLIS system including

Esterel and Ptolemy. For this project, all the software was installed for Sun solaris

2.5. All the above packages can be freely downloaded from the world-wide web.

In the next section, the Esterel specification language is described and the CFSM

example mentioned before, is discussed in detail.

 

1Binaries contributed by others
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3.2 ESTEREL

3.2.1 Introduction

Embedded systems could be classified under a class of computerized systems called

“reactive systems”. They continuously react to external stimuli from the environ-

ment and their response is mainly input-driven. Further, the output values could

be continuously produced from the inputs, as in signal processing applications.

This is called “data handling”. On the other hand, producing discrete output sig—

nals from input signals is called “control handling”. The stepper-motor controller

system falls under the category of control-dominated systems.

Esterel [8] is a specification language aimed at the control-dominated compo-

nents of reactive systems. Esterel affords a concurrent programming environment

required for reactive systems, as they interact concurrently with the environment

and are often made of concurrent modules communicating with each other.

3.2.2 Language Features

In a sequential program, an output is produced after some computation using the

input data. The programmer specifies the order in which the program statements

are executed. However, this model is inadequate for reactive systems, which ex-

hibit real-time interaction with the environment, where input/output sequencing

is important.
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Esterel is based on a synchronous model, which accomodates this requirement,

where the program reacts instantly or synchronously with the input. This model

results in a distinctive language style for Esterel, involving timing concepts, and a

deterministic behavior. (A deterministic program produces the same output given

a particular input any number of times.)

In Esterel, signals are called events, which can be emitted and detected. An

output event is the status of an output, computed from a given input event,

which is the status of the input. These events are communicated in Esterel, by

“broadcasting.” This means, in a system with several modules, the emission of any

event is available to any module which is interested in that event. The emitting

module need not have information about the receivers. Thus, an event need not

be replicated in the system. This “broadcast semantics” distinguishes Esterel from

languages like VHDL.

Although Esterel concurrent modules are synchronous, as POLIS semantics

are globally asynchronous, there is a difference between the two. In POLIS, syn-

chronous behavior is available only till the boundary of a single CFSM. Composi-

tion of CFSMs is asynchronous.1

The basic programming unit in Esterel [27] is a module, with an interface

declaration and a body. The language has a host of useful constructs including

signal handling, looping, control statements, parallel constructs, and a wide variety

of temporal constructs. Esterel supports external functions in two host languages,
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namely C and Ada. C functions were used for this thesis. Since it is not possible

to treat the entire language syntax here, the following example from [4] is used to

give an introductory idea to Esterel. The module listed here, essentially performs

the seat-belt alarm function, which was represented by a CFSM in the previous

section. The end_5 and end_10 signals are received from a timer module and

indicate end of the 5 second and the 10 second intervals.

module belt_control:

input reset, key-on, key.off, belt.on, end_5, end-10;

output alarm: boolean, start_timer;

loop

abort

emit alarm(false)

every key-on do

abort

emit start_timer

await end-5;

emit alarm(true);

await end_10;

when[key-off or belt_on];

emit alarm(false);

end every

when reset

end loop

The specification consists of an interface declaration and the body of the mod-

ule. The interface consists of inputs, outputs, constants and any external func-

tions. In this example, all the inputs except alarm are pure signals, i.e., they do

not have an associated value. The alarm signal has an associated true or false

value. This module is executed as a continuous loop which is restarted when-

ever a reset signal is received. The await construct is one of the many temporal

 

1As a result of this, certain features of Esterel cannot be used in POLIS. Some of these are

discussed in later chapters.
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constructs offered by Esterel.

3.3 PTOLEMY

3.3.1 , Introduction

Ptolemy [25] is a software environment supporting the design of reactive systems

using heterogeneous modelling, and was deveIOped at the University of California,

Berkeley. Ptolemy provides support for heterogeneous prototyping of systems in

areas like signal processing, communications and real-time control applications

among others. The key principle is the use of mixed models of computation,

realized by a specialized design style called domain, including synchronous data-

flow (SDF), dynamic data-flow (DDF) and discrete event (DE) models, the first

two being used mainly for signal processing, and the last for communications and

control applications [26]. Some other domains are also supported. These domains

could be used for simulation or code generation. We first describe the Ptolemy

user-interface and briefly discuss the DE domain, which is used in POLIS for

co-simulation.1

 

1Apart from Ptolemy, the POLIS documentation describes the use of commercial VHDL

simulators or software simulation [4]
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3.3.1.1 The Graphical Interface

The Ptolemy interactive graphical interface or pigi is a design editor for Ptolemy,

and allows the graphical construction of designs by connecting icons. This is based

on uem, a graphical editor for act, which is the Ptolemy design manager.

Each domain consists of a set of blocks, targets and associated schedulers. A

design is represented as a network of blocks. These blocks can communicate

through portholes [26]. These blocks could be hierarchical, called stars, galaxies

and universes from the lowest to the highest level. A target manages the simulation

or execution of the block, and is derived from the block. The simulation performed

by the target is governed by a scheduler which controls the sequencing of the

execution of functional modules in the design.

The pigi editor provides palettes containing icons for design blocks and enables

the user to create a graphical netlist or schematic for a particular design using

the icons. A target is generated for each design, which can then be graphically

simulated with several debugging options.

Screen snapshots showing some of the available icons are included in the Ap-

pendix.

3.3.1.2 The DE Domain

In the DE domain, the events produced by the blocks, which correspond to a

change in the system state, are represented by particle. The events are processed
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by the schedulers in the order of their chronological occurence. Each event has

a corresponding time stamp. The DE domain is useful for high level system

modelling and contains the following sets of stars.

0 Sources : They generate signals and can be used to represent external inputs

to the system. They include buttons, clocks, and various signal and function

generators.

o Sinks : These correspond to system outputs and include text fields, graphs,

and interactive displays.

0 Control : These stars manipulate interconnections, and include forks, merges

and switches.

0 Conversion : They include type conversion stars of integer to float and vice

versa.

0 Queues, servers, Delays : Include delays and stacks.

0 Timing stars : These include delay measuring and time-stamping functions.

0 Logic stars : As the name indicates, these stars perform logical operations.

In addition, networking and miscellaneous stars are also available. Several

menus are available in the graphical editor for design and simulation. The same

menu commands can also be typed from the vem editor. Details of the commands

and the functionality can be found in the Ptolemy users manual [26].

3.4 Summary

In the current chapter, the POLIS hardware-software co-design environment has

been described in detail. The main features of the Esterel specification language
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and the Ptolemy simulator have been discussed. A brief overview of the system

requirements for the software is also presented.

In the next chapter, the stepper-motor controller implementation in software,

using POLIS is described. As mentioned earlier, the functionality of the MC33192

hardware chip is replicated in software as far as possible, using the hardware-

software co-design methodology of POLIS.
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Chapter 4

STEPPER-MOTOR CONTROLLER USING

POLIS

4.1 Introduction

As discussed before, the first step in the design process is the system specification.

Before we proceed to specify the system in Esterel, we need to understand the

functionality of the system. Then we proceed to divide the functionality into

suitable modules to be translated to Esterel. Thus, we describe the functionality

of the MC33192 and show how we adapt the same to our specification. Then, the

rest of the implementation procedure is described. We begin with the operation

of a basic stepper-motor, described in the next section, to provide the necessary

background.
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4.2 A Basic Stepper-Motor

Stepper motors are very popular in computer-controlled systems as they eliminate

the need for feeding back positional information. The power source of the stepper

needs to be continuously pulsed in specific patterns which determine the speed

and direction of a stepper’s motion. The motor consists of stator pole pieces and

a rotor shaft. The motor Operation is achieved by switching the magnetic field of

the stator coils causing the magnetic rotor to rotate based on the direction of the

magnetic field. Depending on the number of stator coils, the rotation steps of the

rotor and consequently the angular frequency can be controlled.

 

H§ Q i8

y [so

  
 

Figure 4.1: Bipolar Stepper Motor

The Figure 4.1 shows a stepper motor which can have fifteen degree increments

in motion by suitably wiring the stator pole pieces and switching their polarities.

Depending on the number of the segments, very small angular movements of 0.7

to 1.8 degrees are obtained in practical applications of stepper motors. Because

of this fixed stepping angle, the position of the motor can be known at any given
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time without feedback. This is the main advantage of stepper motors over other

dc motors whose position can only be determined by using shaft encoders.

The MC33192 chip is a stepper-motor controller suitable for driving bipolar

two-phase motors. In particular, the MC33192 has applications in automotive

control systems and is suitable for controlling loads in harsh environments using

the MI bus [31]. The functionality of the chip is described next.

4.3 Functionality Of the MC33192

For the purpose of this implementation, the objective is to duplicate as many

functions as possible from the MC333192. Our specification will then reflect this

functionality.

The MC331921 [31] is a serial stepper-motor controller which can be controlled

by a master micro-controller MC68HC11, hereafter called the MCU, through the

MI bus. The MC33192 sub-systems can be broadly classified into two main units,

namely the MI bus controller unit and the motor driver unit.

4.3.1 MI Bus controller

This module deals with the push-pull communication sequences with the MCU

and acts as the interface between the MI bus and the motor driver. The signal

from the MCU consists of five data and three address bits and may be program-

 

1Data sheet attached in Appendix
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ming or control instructions. Programming could be address or overwrite bit

programming.

Control instructions include full step or half step modes of the motor, and

clockwise and counter clockwise direction. Full step is achieved by energizing both

coil bridges in the motor driver circuit, while half step is achieved by energizing

only one at a time. The motor direction can be changed by reversing the coil

current direction. The bus controller functions are briefly listed here.

0 Listen on the MI bus

0 Convert the serial input signal to parallel

0 Follow programming or control instructions from the MCU and send a suit-

able signal to the motor driver.

0 Convert the status signal from the motor driver to serial

0 Transmit the status output signal

In addition to this, the bus controller also performs noise and biphase detection

of the input signal received from the MCU. So far, these functions have not been

duplicated in software.

4.3.1.1 Motor driver

Depending on the instruction received, the motor driver sends a status signal to

the MCU through the bus controller and outputs to the two motor coils. The

status signal could indicate the following.

0 Normal Operation

0 Programming

0 Selection Failed (the MC33192 could not be selected)
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In addition, the status signals include two diagnostic signals for thermal and

back emf status. This functionality has not yet been incorporated.

4.4 Specification in Esterel

The functionality described in the previous section was specified using the Esterel

specification language. Initially, the external interfaces of the entire system were

defined. This is the first level of abstraction. Then, the required functionality

was divided into suitable modules, and the interfaces of each of the modules were

determined, for the second level. This is described here, along with assumptions

made whenever required. The system is called SMC, for stepper-motor controller.

(Whenever inputs or outputs are indicated without a data type next to them, they

are pure signals, which carry no value.)

4.4.1 Level 1 : External Interface

4.4.1.1 Inputs

The MCU sends programming and control instructions to operate the SMC. Pro-

gramming instructions include address programming, and overwrite bit program-

ming. Control instructions can be direction control, and half step or full step

instructions. These instructions are all sent through the MI bus interface. The

M1 bus mode is determined by bus voltage levels which are also inputs to the
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SMC.

4.4.1.2 Outputs

The SMC communicates status codes to the MCU in response to the corresponding

MCU instructions. The SMC also provides drive signals to drive motor coils.

4.4.2 Level 2 : System Modules

The system is modularised based on each of the functions that it performs. These

may be subsequently combined if found necessary.

The functionality of the SMC considered here, excludes noise and biphase

detection. The remaining functions are described below as modules. As before,

the interface of each module, i.e., the inputs and outputs of each module are listed

and described briefly. Additional signals which are used for debugging purposes

only, are listed in the Appendix, but not repeated here.

4.4.2.1 TIMER module

This module generates the timeslots required for the MI bus protocol. Commu-

nication on the MI bus is performed by the MCU by sending data in a specific

format, with each bit being coded, and sent in a fixed time slot of 25 micro seconds.

The timer module generates a signal at the end of each interval.

0 Inputs

Esterel has no physical time attributes. However, we use a millisecond time

unit generated by an absolute clock, provided by Ptolemy. This input is fed
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into a 68HC11 free-running counter(frc), as the ECLK signal. Then, the

count signal is received by a 68HC11 output-compare(oc) unit, which pro-

duces signals whenever required time is elapsed. These modules are available

as ready-to-use stars from the Ptolemy palette as 68HC11 peripherals. The

oc unit receives a start time value from any other module, awaits the time

delay and emits an output.

input ECLK, OC3_START(integer) (We use the output compare unit 3 of

the 68HC11.)

o Outputs

The ac unit receives a start time value from any other module, computes

the time delay and emits an output.

output OC3.END

4.4.2.2 BUS module

This module manages the communication between the MCU and SMC and con-

tinuously watches the time and the bus voltages. For duplicatingthe serial signals

from the MCU, we use a parallel-to—serial converter function.

0 Inputs

Depending on the MODE signal, the SMC is in programming or control

mode and accordingly the bus module receives status signals from the re-

spective modules. The BUS_SIG input determines the bus level.

input OC3.END

input MODE (boolean)

input PROGRAM-STATUS(integer)

input CONTROLSTATUSfinteger)

input BUS_SIG(boolean)

input RESET

0 Outputs

The PULL_FIELD value corresponds to the status signal transmitted to

the MCU. The o.BUS.SIG is the bus level transmitted to the MCU. The
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PROGRAM-CODE and CONTROL-CODE signals are transmitted to the

program and control modules respectively.

output OC3.START(integer)

output PROGRAM-CODE(integer)

output CONTROL-CODE(integer)

output PULL.FIELD(integer)

output oBUS.SIG(boolean)

4.4.2.3 PROGRAM module

This module calls a C function to perform either address or overwrite bit program-

ming. As mentioned before, this module receives the PROGRAM_CODE signal

from the bus module and returns the PROGRAMSTATUS.

0 Inputs input PROGRAM.CODE(integer)

o Outputs output PROGRAMSTATUSGnteger)

4.4.2.4 CONTROL module

This module calls a C function to perform control operations based on MCU

inputs. Control Operations can proceed only when programming is done. As in the

case of the program module, the control module receives the CONTROL-CODE

and returns the CONTROLSTATUS to the bus module. In addition, the control

module also generates four motor output signals.

0 Inputs

input CONTROLCODE
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o Outputs

output CONTROLSTATUSOnteger)

output MOTOR-COIL.A1(integer

output MOTOR-COIL_A2(integer)

output MOTOR-COIL_Bl(integer

output MOTOR-COIL.BZ(integer)

4.5 Compilation

The complete Esterel file listings for the project are attached in the Appendix.

The files were compiled using the strl2shift command and input to POLIS. The

shift files are read into POLIS using the read_shift command. Then, the build_sg

and the sg_to-c commands build the software graphs (S-graphs) and synthesize

the C-code respectively. The write_pl command is used to generate the Ptolemy

simulation files. These commands can be given in POLIS manually or one can

use unix makefiles with suitable macros. The makefiles are convenient to use

especially for large projects.

4.6 Functional simulation in Ptolemy

The .pl simulation files generated previously, are input to the Ptolemy environ-

ment. At first, the pigi graphical editor is used to enter a graphical netlist of

the system, by instantiating individual modules and inter-connecting them. As

discussed before, the architectural hierarchy in Ptolemy is named with galaxies
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and stars, with a galaxy being the top most level. Thus in this system, we have

an SMC galaxy, comprising of the timer, bus, control and program stars in

addition to some ready-to—use Ptolemy stars for timing and other utility genera-

tion.

The testing of the galaxy is performed using a target of Ptolemy, created as

a test bed, containing signal sources, and various displays. Since the SMC is

designed for communication with an MCU, the schematic includes an mcu galaxy,

consisting of the following modules. The italicized terms will be used to refer to

these modules hereafter, for convenience.

o The men module mcu

o The OC2 timer (output compare 2) mcu timer

0 The bytein module for parallel to serial conversion ptos ‘

e The OC1 timer (output compare 1)ptos timer

The operation Of these modules is described in chapter 6, while presenting

simulation results and details. These modules comprise the driver for the SMC

software.

The schematics, or the graphical netlists are included in the Appendix, along

with simulation runs. For functional simulation, all the stars were mapped to

hardware and tested for an 8 MHz clock. The 68HCll peripherals used are the

free-running counter and the output compare unit 3. These stars are part of

the timer module. These modules are customized by selecting suitable Ptolemy

parameters like the clock pre-scaling factor of the timer counter. The simulation

is run in the debug mode and provides textual or graphical animation of the run.

The following steps describe the functional simulation procedure in detail.

0 Create the SMC schematic, by interconnecting the timer, bus, program and

control stars. These stars are created using the make star command in

Ptolemy. The timer stars, viz., frc and oc_prog_rel, corresponding to the
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free-running counter and the output compare unit, are instantiated from

the POLIS-PERIPHERALS palette. Include the mcu galaxy, which in turn

contains the schematic of its component modules mentioned above.

0 Create the test_SMC universe, using the SMC galaxy, for the purpose of

running the simulation. Suitable sources and sinks are connected to the

galaxy in order to run the simulation and display the outputs. These are

chosen from the DE signals and sinks palette.

0 Enter all the parameters for each item, including “HW” implementation,

CPU clock, 68HC11 processor and Round.Robin scheduler. These screen

snap-shots are also included in the Appendix.

0 Verify the functional correctness of the simulation by testing the output

for various inputs. In the chapter 6, the test bench and the results of the

simulation runs are presented in a tabular form.

4.6.1 Hardware/Software mapping

Ptolemy offers a convenient platform to perform functional simulations without

actually implementing a design, by mapping each module to hardware or software.

In the SMC design, it could be noticed that once the implementation was chosen as

software, the simulation slowed down. Also, the performance of the timer module

and the bus module improved substantially with the hardware implementation.

Thus, the simulation process provides a useful aid to the decision-making process

of choosing a hardware or software implementation of a given module.

Users can test the simulations for any number of implementations and choose

the most suitable one depending on performance and timing requirements. For

this project, since the implementation is in software, this step is not explored

further, and only test cases are presented in the results.
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4.6.2 Software Synthesis and the RTOS

Once the simulation and design partition are satisfactory, the next step is to

translate the Ptolemy netlist into a SHIFT netlist. This is done using the ptl2shift

command. Alternatively, the makefile can be modified suitably to generate this

file [4]. This shift file is read into POLIS, and synthesized into software graphs

(S-graphs) and finally C code.

An S-graph is a directed acyclic graph or dag with a set of vertices. It is

a processor-independent optimized implementation of the desired behavior and

is used for cost estimation in terms of execution time and code size, for a given

processor. Each vertex of this graph corresponds to a statement of the synthesized

C-code. The cost estimator appends the execution times against each statement

of the C-code. [4]

Then the gen_os command is used to generate application specific the real-time

operating system (RTOS). The RTOS consists of a scheduler and I/O drivers for

the design. For this project, as the target micro-controller is the 68HC11 on a

handy board, (described in the next chapter) the system setup files and hardware

initialization files in the POLIS libraries were customized accordingly. Parameters

which need to be modified include the memory map and I/O assignments. The

gen_os command offers suitable options to use modified versions of the library

files.

The steps involved in software synthesis and RTOS generation are described
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in the following list.

0 Translate the Ptolemy netlist into a SHIFT netlist.

o Read the SHIFT file in polis.

0 Set the architecture to 68HCll. (These parameters are easily specified using

the makefile.)

0 Use the timing and cost estimation commands in POLIS to generate cost

estimates for each module on the specified processor. This is useful if the

designer needs to choose between various processors.

0 The build-sg command is used to build the software graphs for each of the

modules. These are then converted to C-code using the sg_to-c command.

The C files are generated in the user specified directory.

0 The RTOS is generated using the gen_os. Each software CFSM results in a

software task. POLIS offers commands to customize the RTOS to implement

interrupt routines and configure I/O ports for the target micro-controller.

The micro-controller peripherals used in the simulation are implemented as

initialization routines called by the RTOS.

o The final step is to make executables for the target micro-controller. For

this project, the Introl compiler was used with the introl-compatible make

9 files generated by POLIS. The individual C files are compiled and linked

with the RTOS to make an executable for the 68HC11.

Since the SMC is entirely mapped into software, the hardware synthesis and pro-

totyping support in POLIS are not described here.

4.7 Summary

This chapter deals with the main focus of this thesis, which is the hardware-

software co—design methodology of POLIS as applied to the stepper-motor con-

troller application. To begin with, the specification of the SMC was described

in detail, for the overall system and for the individual sub—systems. Then the
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Ptolemy simulation procedure, and hardware/software mapping were discussed.

The previous section described the software synthesis step which involves many

hardware-specific steps, in this case for the 68HC11 micro-controller. The re-

sults of this implementation are presented in Chapter 6. In. the next chapter, the

implementation of the SMC using the MC33192 is described in detail.
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Chapter 5

THE MC33192 IMPLEMENTATION

5.1 Introduction

The MC33192 stepper-motor controller generates four phase signals to drive two-

phase motors in half or full step mode. (Full—step involves energizing all stator

coils, while half-step provides for a smaller angle of rotation by energizing only

some stator coils Of the stepper motor.) The data sheet of the MC33192 [31]

describes the Operation of the chip in detail. We discuss the main aspects of

functionality here.

The MC33192 belongs to a family of the MI-bus or the Motorola Interconnect

bus devices. The MI-bus is normally used in automotive electronics to control

loads in a harsh environment. A master MCU can control several devices on a

single MI-bus.
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5.2 Main Features of the MC33192

The functionality of the MC33192 can be divided into' two main units, viz., the MI

Bus Controller and the Motor Driver [31], [32]. The MI Bus Controller

performs the communication with the MCU, while the Motor Driver converts

the MCU instruction to the apprOpriate motor coil signals. The figure 5.1 [32]

shows these two units in the M033192 block diagram. We now take a closer look

at the MI bus communication between the MCU and the slave, i.e., MC33192.
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5.2.1 MI Bus Protocol - Message Format

The M1 bus protocol uses a Push-Pull technique for message transfer. The push

sequence is essentially the message sent to the slave device by the master, while

the pull sequence refers to the message received by the master.
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Figure 5.2: Message Coding In The M1 Bus Protocol [32]

The messages have a fixed format. Figure 5.2 from [32] shows these sequences.

The components of the message are as follows.

0 Start bit The MCU takes control of the bus by issuing a start bit, which

holds the MI bus at a logical zero state for three consecutive time slots.

0 Push Field The push field contains the MCU message with a push-sync bit,

five data bits and three address bits, followed by a pull-sync bit, as shown

in the figure 5.2.

0 Pull Field The pull field contains the serial data read by the MCU from the

slave device. It contains three status bits and an end-of-frame signal.
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5.2.2 Message Coding

The push field bits are coded using the Manchester bi-phase code. The bi-phase

code uses two time-slots to encode a single bit.
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Figure 5.3: Bi-Phase Code [32]

 

 

Figure 5.3 shows the logic levels “1” and “0” represented using bi-phase code.

This enables bit-wise error detection by the slave device which uses an exclusive-

OR detector circuit for the push sequence.

The pull field uses a non-return to zero or NRZ code. This encoding uses a

high value represents logic “1” and a low value represents logic “0”.

- "I

I

5.2.3 Address Programming

Each MCB3192 on the MI bus is programmed with a specific address by the MCU.

The address programming sequence is performed in three steps.
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5.2.3.1 Step 1

o The MI bus is supplied at 12 volts.

0 The MCU pushes the address to be programmed, with the

data bits set to 0.

o The MCU checks the status bits for the programming code 110.

5.2.3.2 Step 2

o The MI bus remains at 12 volts.

0 The MCU repeats the instructions in step 1.

5.2.3.3 Step 3

e The MI bus is supplied at 5 volts.

0 The MCU pushes the address to be programmed, with the

data bits set to O.

c The MCU checks the status bits for the OK code 100. .

Steps 1 and 2 are repeated until the 110 code is received. All three steps are

repeated until the 100 code is received.

5.2.4 Overwrite-bit Programming

This is performed in two steps.

5.2.4.1 Step 1

o The MI bus is supplied at 12 volts.

0 The MCU pushes the address to be programmed, with the data bits set to

0 except D4, which is set to 1.

o The MCU checks the status bits for the programming code 110.
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5.2.4.2 Step 2

o The M1 bus is supplied at 12 volts.

0 The MCU repeats the instruction in step 1.

o The MCU checks the status bits for the OK code 100.

Steps 1 and 2 are repeated until the OK code 100 is received. Programming

failure occurs if the necessary code is not received after 8 repeats.

5.2.5 Motor Control

The Motor driver unit of the MC33192 consists of two H-bridges to provide the

motor drive signals. The H-bridge circuits are described in the device data sheet

attached in the Appendix [31]. Essentially, the when only one of the bridges is

active, the motor is in half-step mode, and when both are aCtive, the mode is

full-step. The direction of the motor is controlled by the sequence of the current

direction in the H-bridges.

Once a device is programmed, the MCU issues control instructions. The five

data bits in the push field are used to determine motor direction and the step

mode.
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5.3 Implementation of the MC33192

5.3.1 Hardware Setup

The figure 5.4 shows the hardware setup of the implementation [32]. The MCU

board used here is a handy board [33] with a 68HCll. The figure also shows the

MI bus interface, which consists of a single npn-transistor.

Figure 5.5 [33] shows a block diagram of the handy board, while figure 5.6 [33]

shows a schematic [of the handy bOard.

The user interface consists of the following:

0 Inputs The program_enable is a user input to begin prOgramming. The

direction, address and step are user inputs to control the motor direction,

address to be programmed, and half or full step size respectively.

0 Outputs The program status bits indicate the current status of the program.

The meaning of the status bits is defined as per table 5.1 [31] below.

Table 5.1: Program Status Bits

S2 S1 SO Status

000 Not used

001 Enable programming

010 No back emf

011 Not used

100 Normal

101 Thermal

110 Programming

111 Error

 

 

 

 

 

 

 

 

     

The signal from PD2 of the handy board is used to set the MI bus at 12 volts for

the programming sequence.
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5.3.2 MC33192 Software

As mentioned before, the software to drive the MC33192 was developed on the

MC68HC11 microcontroller for this project. The software was developed in as-

sembly language1 and downloaded on the handy board using the Interactive-C [34]

binary format. The next few paragraphs describe the design of the software pro-

gram. A complete listing of the program is attached in the Appendix.

5.3.3 Software design

The software program is divided into three modules, viz.,

c Initialization module

0 Timer Interrupt module

0 Main module

These individual modules are now described.

5.3.3.1 Intialization

This module performs the following tasks.

0 Initialize I/O ports, reset timer and output compare unit

0 Initialize variables and stepper motor parameters

0 Initialize timer interrupt routine

0 Set controller mode to program mode or control mode

0 Set initial push-sequence depending on control or programming mode and

user-inputs.

 

1The assembly code is written specifically for use with Interactive -C.

53



5.3.3.2 Timer Interrupt

The timer interrupt module is used to generate an interrupt request every 5 msec,

and execute the appropriate timer interrupt service routine. For this purpose,

the output compare function of the 68HCll is used. Whenever the free-running

counter of the MCU matches the value in the output compare register, an interrupt

request is generated and it is serviced by an interrupt service routine.

5.3.3.3 Main

The main execution module consists of the core of the software program. Each

time the timer interrupt is generated, control is transferred to an appropriate

interrupt service sequence in the main module.

In the interrupt service routine the MCU issues the required instruction, reads

the status information and prepares the next instruction. Then, the address of

the interrupt service routine to execute the next instruction is updated. Then the

program control passes once again to the timer interrupt module to generate the

next interrupt.

The figure 5.7 describes the program operation in the form ofa flow chart. The

key steps in the main module, which are the transmission of the push-sequence,

and the analysis of the pull-sequence, are described further here.

5.3.3.3.1 Push Sequence As shown in the figure 5.7, once the initialization

of the program is completed and the mode of the controller is set, the control of
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the program passes to the main module at the next timer interrupt.

The first step in the main module, is to convert the push sequence to bi-phase

code, and transmit it to the slave in a fixed time. Each message time slot used

for this project is 25 micro seconds, as recommended in the MC33192 data sheet.

At the end of the ”push sequence, the MCU listens for the pull field sent by the

slave device and this is analyzed as follows.

5.3.3.3.2 Pull Analysis The purpose of the pull analysis is to determine the

next push sequence and display the status information to the user. The pull-field

status value returned by the slave device corresponds to one of the following two

C3588:

Case I The status corresponds to programming or normal Operation. In this

case, the push-sequence is updated and the status if displayed to the user. The

interrupt service routine is updated to perform the next step in the motor control

or programming, at the next timer interrupt.

Case II The status corresponds to any of the abnormal conditions listed in

table 5.1. In this case, the push-sequence is not updated, the corresponding error

code is displayed to the user, and the control is transferred to the timer interrupt

software directly. The next timer interrupt does not cause any data transmission

to the slave device. Normal Operation continues only after the error is fixed and

the MCU is reset.
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5.4 Summary

This chapter deals with the stepper—motor controller implementation using the

MC33192. To begin with, the main features of the MC33192 Operation and the MI

bus protocol were explained. Then, a description of the hardware setup with the

necessary schematics was presented. We then described the design and implemen-

tation-of the software program to control the MC33192. This chapter concludes

the description of the two approaches to implement the stepper-motor controller

used in this thesis. These are the software implementation using POLIS—Esterel-

Ptolemy environment, and the hardware version using the MC33192. In the next

chapter, the results of these two implementations are presented, and analyzed.
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Figure 5.4: Hardware Setup For The MC33192
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Figure 5.5: Block diagram Of The Handy Board [33]
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Figure 5.7: The Software Program
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Chapter 6

RESULTS, ANALYSIS AND CONCLUSIONS

6.1 Introduction

In the previous two chapters, two different implementations of a stepper-motor

controller have been described. One of them used an existing hardware chip,

the MC33192, and the other used a hardware-software co-design approach. In

this chapter the results of the two implementations are presented and they are

analyzed with respect to some of the issues involved in hardware software co-

design. First, we discuss the results of the MC33192 version, and then the POLIS

implementation.
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6.2 The MC33192 implementation

The performance of the MC33192 software was verified for specific inputs and

outputs as per the specification. Table 6.1 indicates these inputs and outputs.

The motor modes are achieved as follows:

0 step=0/1 indicates half/full step.

0 dir=0/1 indicates clockwise/counterclockwise (cw/ccw)

o addr=0/l indicates the chip address is 2 or 4. (arbitrary)

The step sequences shown in the table are for cw Operation. They are reversed

for ccw operation.

Table 6.1: MC33192 Testing

MOTOR mode Program status1 Coil output;2

Not running Programming None

Half step OK H H

H Z

H L~

Z L

L L

L Z

L H

Z H

Full step OK H H

H L

L L

L H

 

 

 

 

    
 

In the next section, we discuss the POLIS implementation.

 

1The status codes are listed in table 5.1

2H, L, Z indicate forward, reverse and high impedance states of the coils
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6.3 The POLIS implementation

As before, this implementation will be referred to as the SMC(stepper—motor con-

troller). The results of the SMC are presented in two sections - one the Ptolemy

simulation results for various test conditions; and the other the test results using

the 68HCll.'

6.3.1 Ptolemy simulations

In order to test the Ptolemy simulation, a set of important criteria were laid

down. These were necessary to ensure that all the critical aspects of the design

were tested, before proceeding with implementation. This is in keeping with one

of the goals of this thesis, i.e., to explore the POLIS hardware software co—design

methodology.

As described in chapter 3, Ptolemy offers two useful tools, in addition to other

displays, to trace simulation runs. These are the firing file and the overflow file.

The location of these files can be specified as parameters for the test bed universe.

These files provide two key sets of information for the simulation. The firing file

indicates the time stamp of firing of all software stars. The overflow file on the

other hand, indicates all the missed events for each module, which may occur due

to asynchronous Operation of the system modules. With this background, the

following objectives were to be achieved through the tests.

0 Verify functional correctness.
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0 Timing analysis by varying clock frequency and communication time-slots.

0 Explore various hardware software partitions. Compare an all software sim-

ulation to a combined hardware/software partition.

We now discuss each of these in detail. The second and third items in the

above list Of criteria have been combined, as timing behavior is also dependent on

whether a particular module is implemented in hardware or software.

6.3.1.1 Emctional Verification

The test bench for functional verification was based on the operation of the SMC

itself. This constituted testing the outputs corresponding to each input in the

control or programming modes. The control panel schematic indicating this inter-

face for the test bed is attached in the Appendix. In all cases, the operation was

as expected. Table 6.2 indicates the results obtained for the simulation. For the

functional simulation, all the modules were mapped to hardware. The overflow

file was verified to ensure that no events were missed.

6.3.1.2 Timing Analysis and HW/SW partitions

For this thesis, the final implementation of the SMC is software running on the

68HC11. Thus the clock-frequency of the target micro-controller was already

known to be 8 Mhz(crystal frequency), with a system clock (ECLK) of 2 Mhz.

However, in order to emulate a real world design, where architecture decisions have

 

lcw: clockwise, ccw: counter clockwise, H, L, Z indicate forward, reverse and high impedance

states of the coils
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Table 6.2: Functional Simulation Using Ptolemy
 

 

 

 

    

Mode Motor statusI Coil outputs A, B Comment

1 (Programming) Not running None Pull value=6;

Addr value = 2 or 4

0 (Control) Half step H H step=0;The sequence

H Z is reversed

H L for ccw.

Z L

L L

L Z

L H

Z H

0 (Control) Full step H H step=l;The sequence

H L is reversed

L L for ccw.

L H
 

to be made by designers, the SMC behavior was analyzed for alternative clocks,

and with alternative partitions.

some partitions and clocks. This is followed by a brief explanation of the results.

The primary goal of this exercise is to gain insight into the uses of the Ptolemy

simulator and the criteria for design optimization. These issues are discussed

Table 6.3 indicates the results obtained for

towards the end of this chapter in the analysis and conclusions sections.
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Table 6.3: Clocked Simulation Usin Ptolemy
 

 

 

 

Partition CPU clock Time slots Step cycle

All HW 500ns 200/25): s 2 250): 8

All SWr 5): s 200/25): s 4.5ms

2): s 250/25):s 3.6ms

1): s 250/25): s 5.1ms

500ns 275/25): s 10ms

All SW 500ns 50/25 ): s 5ms

except mcu, bus      
 

Table 6.3 presents the results of the time-based simulation of the SMC system.

The partition indicates which modules are mapped to hardware, and which to

software. The CPU clock corresponds to the ECLK signal. The two time slot

values correspond to the push transmission time slot and the pull reception time

slot. The step cycle corresponds to the time taken for transmitting a push sequence

and receiving status bits. All the values in the tables only specify only upper or

lower limits of the timing parameters. Any values which are suitable multiples of

the existing values would also provide similar results. The next section presents

a detailed analysis of the above results.

The all-software partition is used to generate the downloadable file for the

68hc11 using the POLIS makefiles, as described in chapter 4. In the next section

a detailed analysis of each of these results is presented.

 

lThe 68hc11 peripherals(timers) are mapped to behavioral mode
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6.4 Analysis

We now examine the co—design approach used for this thesis, in the light of the

results obtained for each implementation of the stepper-motor controller. In par-

ticular, the focus is on co—simulation and hardware/software partitioning.

6.4.1 Background

It is in order here, to note some important characteristics of the DE domain in

the Ptolemy simulation [26].

0 Time refers to simulated time.

o The simulation is event-driven with each event being time-stamped and

queued in a chronological order.

0 The DE scheduler processes events in the queue at run-time and fires or

executes the appIOpriate star.

As described earlier, the “firingfile” indicates the time stamps of the execution

of software CFSMs. An excerpt of the firingfile looks is included next.

test.hbSMC.hbSMC1.hbMCU1.hbmcul: 0 0 start

test_hbSMC.hbSMC1.hbMCU1.hbmcu1: 290 -1 end

test_hbSMC.hbSMC1.hbbuslz 7616 0 start

test.hbSMC.hbSMC1.hbbusl: 7771 -1 end

test_hbSMC.hbSMC1.hbMCU1.hbmcul: 7771 0 start

This shows the name of the star, and the time stamp for the execution. If a

star takes too long to respond to an event, the event may be over-written by the
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time the star is ready. These missed events or ” overflows” can be tracked down

using the overflow file, which indicates which events are missed. Then the timing

parameters of the module in question can be suitably altered in order to achieve

accurate responses. It is necessary to mention however, that some missed events

could be insignificant, while others may be critical. An excerpt of the overflowfile

is included next.

testJIbSMChbSMClhbMCUl.hbbyteinl: 17690 e.clock

test.hbSMC.hbSMC1.hbMCU1.hbbyteinl: 19130 e.clock

test.hbSMC.hbSMC1.hbMCU1.hbbyteinl: 20090 e_clock

Here, the star name, the time stamp of the event and the event name are indicated.

Also, as mentioned before, the POLIS system exhibits asynchronous execution

of concurrent modules. Thus, if synchronization is required between such mod-

ules, this can be achieved using explicit handshake mechanisms or other suitable

interfaces.

6.4.2 CO-simulation

In a system with hardware/software modules, the co-simulation environment pro-

vides a useful tool to verify the system behavior and Optimize design criteria,

without actually building the system. Some of these are

0 Choice of HW/SW implementation for any given system component.

This could be an architecture or partitioning issue. The given system may

or may not have the flexibility for major changes at the simulation stage.
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However, various HW/SW alternatives can be explored and the system per-

formance can be accordingly evaluated.

0 Synchronization between modules

This hinges on two important issues. First, the timing requirements specified

for the system. If no trade-offs are possible, then the strict synchronization

requirements must be met in order to ensure required performance. This

may mean sacrificing cost or flexibility.

Second, the interfaces designed in the system. At the design stage, some

parameters or some components may be considered more critical than others

for Optimal system performance. However, it is only during the co-simulation

stage that the behavior of the system becomes clear. It is here, that the

behavior of individual modules or sub-systems containing several modules,

can be isolated to analyse their contribution to overall system performance.

This enhances the quality of the system design and increases confidence in

the final product.

0 Performance vs Cost trade-offs.

Trade-off considerations arise at every stage of system design. At the speci-

fication stage, trade-offs could be about the requirements themselves. These

could be influenced by available resources and criticality of the system in

consideration. .

At the architecture stage, these decisions have a direct bearing on the final

system cost. They also determine the partitioning decisions which follow

the simulation step.

In the following sections, some of the above criteria are explored further for

the stepper-motor controller case.

6.4.3 The SMC system

It is instructive to re-organize the stepper-motor controller system solely based on

the nature of the tasks performed by each component of the system.
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6.4.3.1 Timing behavior

The mcu sub-system and the bus sub-system perfOrm operations involving se-

quencing, and are heavily dependent on timing performance. The program and

control modules are compute-intensive and have comparatively lighter loads. Ac-

cordingly, once these two modules were cleared during the functional simulation,

they do not significantly change their behavior when they are mapped to software.

This was demonstrated during the simulations and these modules performed as

expected.

In the mcu and the bus sub—systems, the modules in question are the mcu and

the bus modules and the timing modules.

The timing performance of these sub-systems involved two different timing

criteria. One was the response of an individual module with changing timing pa-

rameters. The other was the relative timing or synchronization between different

modules.

We illustrate each of these here. As the clock frequency was changed over 5):s

to 500ns , more and more missed events occurred in the mcu subsystem with the

given timer setting. This was reflected in the overflow file. For a faster clock,

the timer settings needed to be increased in order to avoid missed events. This

problem occurs for those events where there is no explicit acknowledge.

As mentioned before, this is due to the asynchronous behavior in POLIS.

The solution is to have explicit handshake mechanisms in the code, or to space
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important timer events sufficiently, so that clock is not too fast for the response.

In this case, we use the latter method, and increase) timer periods sufficiently to

eliminate or reduce missed events. The preceding paragraphs deal with the mcu

module alone.

Now, we move on to the more complex inter-module timing dependencies. This

involves the mcu module, parallel to serial or ptos module and the bus module.

0 If the parallel to serial converter module reads data too fast or too slow, the

result would be that same mcu data is re-read, or some data values may be

missed.

0 Further, if the bus module is scheduled incorrectly it may read junk values

from the ptos converter, thus causing incorrect or zero outputs at the drive

signals.

A closer analysis of the above leads us to the conclusion that of these two

interdependencies, the latter is more crucial because a missed step for the motor

is more tolerable than an invalid or absent output signal. Accordingly, the timers

were adjusted to eliminate invalid data first, and then to eliminate missed events.

First the ptos timer was reset to a suitable value to eliminate erroneous reads.

This value is indicated by first time slot in the table 6.2. This could mean that

some values are missed, but all the output data is valid.

Then, the mcu timer period was increased with faster clocks, with an approx-

imate estimate. This value is denoted by “step-cycle” in table 6.2. This helped

eliminate the missed values also, though at the cost of lower speeds. This pro-

cedure worked most of the time for all the cases. However, in some cases both
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timers needed adjustment. The ptos timer setting was also revised to achieve cor-

rect performance. In any case, the strategy proved effective in arriving at correct

functionality for the various frequencies tested.

It was previously observed there is no standard tool for hardware software

codesign. Accordingly some design aspects are very specific to the codesign en-

vironment used. This can be illustrated by the following, with respect to this

project.

If timing criteria are well known at the outset, timing interdepencies could be

reduced during the specification stage itself. Thus, in our case, the mcu mod-

ule and the ptos module could be combined, in order to eliminate their interface.

However, this defeats the purpose of an ”implementation-independent” specifica-

tion. On the other hand, it could improve the system performance. Again, some

modularity would be sacrificed. This is evident in the bus module, which has a

serial to parallel converter built-in, and allows 25): 3 resolution.

As mentioned before, all critical interface signals could be modified to have a

built-in hand-shake mechanism to reduce missed events. This could significantly

increase code size, and result in over-specifying the system. Thus, all these deci—

sions involve several system-dependent factors.
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6.4.3.2 Hardware or Software

As indicated before, timing analysis and hardware/software partitioning are re-

lated due to better performance of hardware under strict timing requirements.

This factor is dealt with in the next section. Here, we examine other distinguish-

ing features of hardware and software particularly in the co-design case.

. Flexibility

Since software can be altered, while hardware needs to be replaced, in general

we can consider software to be more flexible than hardware. An example

for the SMC system could be that the communication time slots could be

increased, in order to simplify the code, while achieving desired performance.

However in the MC33192, the MCU software needs to be tailor-made for

the required time slots. In this sense, software implementation obviously

provides some degree of “programmability” which hardware does not.

However, in an application-specific embedded system, this could be a more

complex issue. For instance, the software may be specially written for a

piece of hardware, and rewriting the software may need significant changes

in the hardware/software interfaces.

0 Reusability

Code re-use is an important feature of system design. It may provide sig-

nificant savings in large systems. In case of the SMC, the system could be

extended for multiple motors, or multiple outputs or extended functionality

by re—using existing code. This could be at the system level or modular level.

Using co-design, the new system could be Optimized for various parameters

before the final implementation. In case of hardware, the only Option is

additional hardware and the system may not be upgradable easily.

Some practical considerations in replacing the MC33192 chip with the SMC

could be the following. The SMC may not match the speed of the hardware

chip, while being sufficient for the required functionality. In an actual au-

tomobile control system, it might be more desirable to separate the MCU

from the motor due to the harsh environment. On the other hand, this could

also be achieved by providing some additional driver logic at the motor end.

Thus the decision could depend on the actual use of the system.
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In the preceding paragraphs, several aspects of the timing and performance of

the system were discussed in the hardware/software .co—design context. The next

section presents conclusions obtained from this analysis.

6.5 Conclusions

Many features of the hardware/software co—design were presented in this thesis

over several chapters. The work in this thesis serves to demonstrate using the

SMC system, some of these characteristics. These include, criteria for co-design,

specification, architecture and co-simulation issues.

From these analyses, certain trade-offs in using co-design are evident. The first

of these, is the fact that the co-design process is not only application-specific, but

to a large extent, environment- specific. This was described in the previous section.

It follows, that the hardware-software co-design process, although advantageous,

may lead to certain problems. These could be the need for special resources, and

time delays for learning curves in new environments.

However, these very reasons make the co—design methodology very powerful,

and provide system designers with a number of choices and tools for optimum

design which is faster and cheaper.
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Chapter 7

RECOMMENDATIONS FOR FUTURE WORK

The features of the POLIS co—design system used for this project provide a rea-

sonable sc0pe and focus on certain aspects of co-design. The next step would be

to continue the SMC implementation, and generate hardware/software partitions.

These could then be used to generate .xnf files for prototyping on Xilinx boards

[4] to fully explore the capability of the POLIS environment. In addition, this

would provide the experience to develop the POLIS, Esterel, Ptolemy system into

a full-fledged and integrated co—design environment with all the associated tools

in one system, for future use in MSU.

75



APPENDIX



Program Listings



module hbbus:

constant BUS..V.TIME: integer, TIME..SLOT: integer;

input OC3.END, MODE(boolean), PUSH-FIELD(integer),

PROGRAMSTATUSOnteger),

CONTROL.STATUS(integer),RESET, BUS.SIG(boolean);

output OC3.START(integer), PROGRAM-CODE(integer), CONTROLCODE

(integer), PULL_FIELD(integer),

PUSH.DEBUG(integer),PUSH_SYNC,PULL_SYNC, oBUS_SIG(boolean);

function Rx(integer,integer) :integer;

function Tx(integer,integer) :integer;

constant count8zinteger, bitcountzinteger;

signal Receive-push in

var Tcountz=0 :integer,

Bcount:=1:integer,

Curr-push :=0:integer,

Prev-push :=0:integer,

Push_bit:=0 :integer,

Pullin:=0:integer,

Pull.out:=0:integer,

pcount:=1:integer in

loop

weak abort

await BUS-SIG do

if Bcount6 then

Bcount:=Bcount+1;

if(?BUS.SIG = false) and BcountIS then

Tcountz=Tcount+ 1;

elsif (?BUS_SIG=true) and Bcount35 then

Tcount:=0;

end if;

if (?BUS.SIG=true) and Bcount=5 then

if Tcount=3 then

emit PUSH-SYNC;

end if;

end if;

elsif Bcountil4 and Bcountg5 then

Bcount:=Bcount+1;

if (?BUS.SIG=true) then

Push-bit:=1

else

Push-bit:=0;

end if;
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Curr-push := Rx(Push_bit,Prev-push);

Prev-push := Curr-push;

if Bcount=14 then

emit PUSHDEBUG(Curr-push);

if (?MODE 2 true) then

emit PROGRAM-CODE(Curr-push);

else

emit CONTROL-CODE(Curr_push);

end if;

end if;

elsif Bcount=14 then

Bcount:=Bcount+1;

pause;

elsif Bcount=15 then

if(?BUS_SIG=true) then

emit PULL-SYNC;

end if;

Bcount:=1;

Prev-push:=0;

Tcount:=0;

if(?MODE=true) then

PulLin z: (?PROGRAM.STATUS);

else

Pull_in z: (?CONTROL.STATUS);

end if;

emit OC3-START(TIME_SLOT);

await OC3_END;

emit PULL_FIELD(Pull_in);

pcount:=1;

repeat 5 times

pause;

if pcounti4 then

Pull_out := Tx(PulLin, pcount);

if(Pull_out = 1) then

emit oBUS.SIG(true);

else

emit oBUS.SIG(false);

end if;

elsif pcount=4 then

emit oBUS.SIG(true);

else

emit oBUS.SIG(false);
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end if;

pcount:=pcount+1;

end repeat;

end if;

and await;

when RESET

end loop

end var

end signal
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module hbprogram:

input PROGRAM-CODEzinteger;

output PROGRAM-STATUS:integer,PFUNC-DEBUG : integer;

function FROG-FUNC(integer) : integer;

IOOp

await immediate PROGRAM-CODE do

pause;

var FROG-IN :=0: integer,

PROG-OUT:=0 : integer in

PROG-IN:= ?PROGRAM-CODE;

PROG-OUT:=PROG-FUNC(PROG_IN);

pause;

emit PROGRAMSTATUS(PROG-OUT);

emit PFUNC-DEBUG(PROG-OUT);

end var;

end await;

end loop

module hbcontrol:

input CONTROL-CODE :integer;

output CONTROL-STATUS:integer,

MOTOR-COIL-AI:integer,MOTOR-COIL-A2:integer,

MOTOR-COIL-Bl:integer,MOTOR-COIL-B2:integer, A-DEBUG :integer,

B-DEBUG:integer, CFUNC-DEBUG integer;

function CONTROL-FUNC(integer) : integer, MOTOR-FUNC-A(integer) :

integer, MOTOR-FUNC-B(integer) : integer, FROG-FUNC(integer):integer;

loop

await immediate CONTROL-CODE do

pause;

var Code-in :=0:integer,

Code-out :=0:integer,

Coil-A :=0:integer,

Coil-B :=0 :integer in

Code-in := ?CONTROL-CODE;

Code-out:= CONTROL-FUNC(COde-in);

Coil-A := MOTOR-FUNC-A(Code-in);

Coil-B := MOTOR-FUNC-B(Code-in);

if (Coil-A=1) then

emit MOTOR-COIL-A1(1);

emit MOTOR-COIL-A2(0);

e1sif(Coil_A=2) then

emit MOTOR-COIL-A1(0);
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emit MOTOR-COIL-A2( 1);

else

emit MOTOR-COIL-A1(0);

emit MOTOR-COIL-A2(0);

end if;

if (Coil-8:1) then emit MOTOR-COIL-Bl(1);

emit MOTOR-COIL-B2(0);

elsif(COil_B=2) then

emit MOTOR-COIL-Bl(0);

emit MOTOR-COIL-B2(1);

else

emit MOTOR-COIL-Bl(0);

emit MOTOR-COIL-B2(0);

end if;

emit A-DEBUG (Coil-A);

emit B-DEBUG (Coil-B);

emit CONTROL-STATUS(Code-out);

emit CFUNC-DEBUG(Code-out);

end var;

end await;

end 100p
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module hbmcu:

input DIszoolean, STEP:boolean, ADDR:boolean,

RESET;

output PUSH-VAinnteger;

constant bitcount:integer;

function Get-push(integer, integer):integer;

function Next-step(integer, integer):integer;

loop

var push.seq:=0:integer,

push-val:=0: integer,

addr:=0: integer,

step-count:=0 : integer,

prog-done:=0:integer in

weak abort

pause;

every immediate MODE do

if ?ADDR=true then

addr:=4;

elsif ?ADDR=false then

addr:=2;

end if;

if ?DIR=true and ?STEP=true then

push-seqzzl;

%fcw step-count:=7;

elsif ‘?DIR=true and ?STEP=false then

push-seq:=2;

%hcw step-count:=8;

elsif ?DIR=false and ?STEP=true then

push-seq:=3;

%fccw step-countzzl;

elsif ?DIR=false and ?STEP=false then

push-seq:=4;

‘70 hccw step-countzzl;

end if;

OC2-END, MODE:boolean,

if ?MODE=true and prog-done=0 then %programming

push-seq:=5;

step-count:=1;

positive repeat 5 times

pause;

await OC2-END do

if (step-counti4) then

push-val:=0;
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step-countzzstep-count+1;

elsif (step-count=4) then

push-val:=8;

step-count:=step-count+1;

elsif(step-count=5) then

push-val:=8;

step..count:=8;

%terminate programming

prog-donezzl;

end if;

push-valzzpush-val+addr;

emit PUSH-VAL(push-val);

end await;

end repeat;

elsif ?MODE=false and prog-done=1 then %control

loop weak abort

pause;

await immediate OC2-END;

push-val:=Get_push(push-seq,step-count);

step-count:=Next-step(push-seq,step-count);

push-valzzpush-val+addr;

emit PUSH-VAL(push_val);

when MODE;

end loop;

end if;

end every;

when RESET;

end var;

end loop;

module hbbytein:

input Push-fieldzinteger, start,clock;

output out-bitzboolean;

constant bitcount:integer;

function Tx(integer, integer):integer;

loop await immediate Push-field;

var PUSH-IN :=0:integer,

PUSH-OUT:=0:integer,

count : integer in

count :0;

PUSH-IN := ?Push-field;

positive repeat bitcount times
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await clock;

count := count+1;

if counti4 or count=5 or count=14 then

emit out-bit(false);

elsif count=4 or count=15 then

emit out-bit(true);

else PUSH-OUT := Tx(PUSH-IN, (count-5));

if PUSH-OUTzl then

emit out-bit(true);

else

emit out-bit(false);

end if;

end if;

end repeat;

end var;

end loop;
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/* Programming:

input 0 = 0 data + address say 101 then input byte is 5

output -

110 = 6

input repeat as above

output

110 = 6

input repeat as above

output

100 = 4

*/

/* Control:

See page 6 of MC datasheet. for the 8 combinations,

we shift the push three places right to eliminate address

and we list the values of just the data bits, with the order D0,to D4.

The status output for normal operation

is 100 = 4

The coil outputs are

(Here we assume that coil A high means energise A1-A2 and low means A2-A1)

Z is high impedance

INPUT coil A coil B

21 1 1

20 1 2

23 1 0

7 2 0

31 0 0

28 0 2

29 0 1

5 2 1

/* This is either ovrbit programming or address programming.

as per present options, address could be 100 or 010 (A0,A1,A2).

so, pin could be 4 or 2 any other is error.

For ovrbit, the value is 12 for address 4 and 10 for address 2.*/

#define pos 1;

#define neg 2;

#define Z 3;

#define error 4;

static int prog-flag=0;

static int address=0;

int PROG-FUNC(int pin){

int pout=0;

if (prog-flag ==0){
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 if(pin== pin== ){

address=pin;

pout = 6;

prog-flagzl;

/* 6 */

} }

else if(prog-flag==1){

if(pin==address){

pout=6;

/* 6 */

prog_flag=2;

}

else if(prog_flag==2){

if(pin==address){

pout =4;

/* 4 */

prog-flag=3;

}

}

else if(prog_flag== ){

if(pin==(address+8)){

pout=6;

/* 6 */

prog-flag=4;

}

else if(prog-flag==4){

if(pin==(address+8)){

pout=4;

/* 4 */

prog_flag=5;

}

}

else{

prog-flag=0;

pout=7;

return 7;

}

return pout;

}

int CONTROL-FUNC(int cfin){
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int cfout=0, cfdatazcfin;

int mask-addr=7;

mask-addr&=cfin;

if(mask-addr==4||mask_addr== ){

cfdata >>=3;

if (cfdata==5||cfdata==7||cfdata==20[[cfdata==21){

cfout = 4;

} else if(cfdata==23|Icfdata==28[[cfdata==29||cfdata==31){

cfout=4;

}

}

else{

cfout=7;

}

return cfout;

}

int MOTOR-FUNC-A(int cfina)

{

int aout=0,cfadata=cfina;

int mask-addra=7;

mask_addra&=cfina;

if(mask-addra==4|[mask-addra== ){

cfadata >>=3;

if (cfadata== 20]] cfadata :2 21]] cfadata ==23){

aout: pos;

} else if(cfadata== 28]] cfadata :_—_ 29H cfadata ==31){

aout=neg;

} else if(cfadata ==5 ”cfadata == ){

aout = Z;

}

}

else{

aout = error;

}

return aout;

}

int MOTOR-FUNC-B(int cfinb)

{ int bout=0, cfbdatazcfinb;

int mask-addrb=7;

mask.addrb&=cfinb;

if(mask-addrb==4||mask-addrb==2){

cfbdata >>=3;
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if (cfbdata== 5|| cfbdata == 21“ cfbdata ==29){

bout: pos;

} else if(cfbdata== 7|] cfbdata == 23]] cfbdata ==31){

bout=neg;

} else if(cfbdata== 20]] cfbdata == 28){

bout = Z;

l

}

else{

bout = error;

}

return bout;

}

/*Serial to Parallel converter */

int Rx(int inbit, int Prev-Frame)

{

int Frame-In=Prev.Frame;

int Mask-Msb = 256;

/* assuming LSB first transmission*/

if (inbit==0){

Frame-In >= 1;

} else if(inbit==1){

Frame-In —= Mask-Msb;

Frame-In >= 1;

/* cout <<”\n after shifting once ” << Frame-In << ”\ n”;

/

}

/* else{

cout << ”\n input error \n”;

}*/ return Frame-In;

} int Get-push(int push-seq, int step-count)

{ const int step-array[8]={168,160,184, 56, 248, 224, 232, 40};

int push-val, index;

if(push_seq==1)

index=(step-count+2)%8;

/* fcw */

else if(push_seq==2)

index = (step-count%8)+1;

/* hcw */

else if(push_seq==3)

index = (step-count+6)%8;

/* fccw */
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else

index = (step-count+6)%8+l;

/* hccw */

push-val: step-array[(index-1)];

return push-val;

}

int Next-step(int push-seq, int step-count)

{

int index;

if(push-seq== )

index=(step-count+2)%8;

/* fcw */

else if(push-seq==2)

index = (step-count%8)+1;

/* hcw */

else if(push_seq==3)

index = (step-count+6)%8;

/* fccw */

else

index = (step-count+6)%8+1;

/* hccw */

return index;

}
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* Assembly code listing

* file of standard 6811 register declarations

**********************************************************

Control Registers

BASE EQU $1000

PORTA EQU $1000 ; Port A data register

RESVl EQU $1001 ; Reserved

PIOC EQU $1002 ; Parallel I/O Control register

PORTC EQU $1003 ; Port C latched data register

PORTB EQU $1004 ; Port B data register

PORTCL EQU $1005 ;

DDRC EQU $1007 ; Data Direction register for port C

PORTD EQU $1008 ; Port D data register

DDRD EQU $1009 ; Data Direction register for port D

PORTE EQU $100A ; Port E data register

CFORC EQU $100B ; Timer Compare Force Register

OClM EQU $1000 ; Output Compare 1 Mask register

OCID EQU $100D ; Output Compare 1 Data register

* Two-Byte Registers (High,Low — Use Load & Store Double to access)

TCNT EQU $100E ; Timer Count Register

TICI EQU $1010 ; Timer Input Capture register 1

TIC2 EQU $1012 ; Timer Input Capture register 2

TIC3 EQU $1014 ; Timer Input Capture register 3

TOCl EQU $1016 ; Timer Output Compare register 1

TOC2 EQU $1018 ; Timer Output Compare register 2

TOC3 EQU $101A ; Timer Output Compare register 3

TOC4 EQU $101C ; Timer Output Compare register 4

T1405 EQU $101E ; Timer Input compare 4 or Output compare 5 register

TCTLl EQU $1020 ; Timer Control register 1

TCTL2 EQU $1021 ; Timer Control register 2

TMSKl EQU $1022 ; main Timer interrupt Mask register 1

TFLGI EQU $1023 ; main Timer interrupt Flag register 1

TMSK2 EQU $1024 ; misc Timer interrupt Mask register 2

TFLG2 EQU $1025 ; misc Timer interrupt Flag register 2

PACTL EQU $1026 ; Pulse Accumulator Control register

PACNT EQU $1027 ; Pulse Accumulator Count register

SPCR EQU $1028 ; SPI Control Register

SPSR EQU $1029 ; SPI Status Register

SPDR EQU $102A ; SPI Data Register

BAUD EQU $102B ; SCI Baud Rate Control Register

SCCRI EQU $102C ; SCI Control Register 1

SCCR2 EQU $102D ; SCI Control Register 2
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SCSR EQU $102B ; SCI Status Register

SCDR EQU $102F ; SCI Data Register

ADCTL EQU $1030 ; A/D Control/status Register

ADRI EQU $1031 ; A/D Result Register 1

ADR2 EQU $1032 ; A/D Result Register 2

ADR3 EQU $1033 ; A/D Result Register 3

ADR4 EQU $1034 ; A/D Result Register 4

BPROT EQU $1035 ; Block Protect register

RESV2 EQU $1036 ; Reserved

RESV3 EQU $1037 ; Reserved

RESV4 EQU $1038 ; Reserved

OPTION EQU $1039 ; system configuration Options

COPRST EQU $103A ; Arm/Reset COP timer circuitry

PPROG EQU $103B ; EEPROM Programming register

HPRIO EQU $103C ; Highest Priority Interrupt and misc.

INIT EQU $103D ; RAM and I/O Mapping Register

TESTl EQU $103B ; factory Test register

CONFIG EQU $103F ; Configuration Control Register

* Interrupt Vector locations

SCIINT EQU $D6 ; SCI serial system

SPIINT EQU $D8 ; SPI serial system

PAIINT EQU $DA ; Pulse Accumulator Input Edge

PAOVINT EQU $DC ; Pulse Accumulator Overflow

TOINT EQU $DE ; Timer Overflow

TOCSINT EQU $E0 ; Timer Output Compare 5

TOC4INT EQU $E2 ; Timer Output Compare 4

TOC3INT EQU $E4 ; Timer Output Compare 3

TOCZINT EQU $E6 ; Timer Output Compare 2

TOClINT EQU $E8 ; Timer Output Compare 1

TICBINT EQU $EA ; Timer Input Capture 3

TIC2INT EQU $EC ; Timer Input Capture 2

TICIINT EQU $EE ; Timer Input Capture 1

RTIINT EQU $F0 ; Real Time Interrupt

IRQINT EQU $F2 ; IRQ External Interrupt

XIRQINT EQU $F4 ; XIRQ External Interrupt

SWIINT EQU $F6 ; Software Interrupt

BADOPINT EQU $F8 ; Illegal Opcode Trap Interrupt

NOCOPINT EQU $FA ; COP Failure (Reset)

CMEINT EQU $FC ; COP Clock Monitor Fail (Reset)

RESETINT EQU $FE ; RESET Interrupt

*************************************************

ORG MAIN-START
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addr_sel FCB 0

dir-sel FCB 0

step-sel FCB 0

curr-step FCB 0

next-step FCB 0

motor-mode FCB 0 ; 1,2,4,8 for fcw,fccw,hcw,hccw

variable-programstatus FDB 0

pull-val FCB O

prog-count FCB 0

ovr-count FCB 0 ; see initialization module

ovr-step FCB 0 ; see init.. module

push-begin FCB $00,$A8,$A0,$BS,$38,$F8,$E0,$E8,$28; seq for half cw

push-frame FCB 0

toc-val FCB 0 ; timer int address variable

prog_status FCB 0

info-count FCB 100

subroutine-initialize-module:

*variables to be initialized

LDAA #10

STAA toc-val ; the timer init routine

LDAA #4

STAA ovr-count

LDAA #8

STAA ovr-step

LDX #BASE

LDAA #$3C

STAA DDRD,X ; make SPI pins outputs

BCLR PORTD,X $3C

LDAA #$80

STAA PACTL,X

; enable PA7 for output

BCLR PORTA,X $80

*******************************************************

* File ”ldxibase.asm”

* Fred Martin Thu Oct 10 19:49:38 1991

* The following code loads the X register with a base pointer to

the 6811 interrupt vectors: $FF00 if the 6811 is in normal mode,

and $BF00 if the 6811 is in special mode.

* The file ”6811regs.asm” must be loaded first for this to work.

LDAA HPRIO

ANDA #$40 ; test SMOD bit

BNE *+7
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LDX #$FF00 ; normal mode interrupts

BRA *+5

LDX #$BF00; special mode interrupts

*******************************************************

LDD #toc3-int

STD TOC3INT,X

LDX #BASE

LDD TCNT,X ; timer initialization

ADDD #10000

STD TOC3,X

LDAA #%00100000

STAA TFLG1,X

STAA TMSK1,X ; enable timer3 interrupt

LDAA #%00010000

STAA TCTL1,X ; test pa5 with this for 5msec waveform

CLI

RTS

*********************************************************

Interrupt service routine:

********************************************************

toc3-int:

LDAA #10

CMPA toc-val

BNE toc3-mid0

BSR start-timer5

BRA timer-0 ; nearest timer also if toc-val=70

*******************************************************

start-timer5:

********************************************************

init section

*********************************************************

LDX #BASE

LDAA #1

CMPA prog_status

BEQ go-normal ; device programmed-move to normal operation

BSET PORTA,X $80 ; set PA7 to 1 indicating programming

wait-prog:

LDAA $7FFF

ANDA #$04; testing d12 from user for programming

BNE wait-prog

BSET PORTD,X $10; set PD4 (PA7) is already high(processing)

BSR set-addr
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BSET PORTD,X $04 ; enable PD2 for 12volt

LDAB addr_sel ; this is the addr to be progmed

STAB push-frame ;

LDAA #2 ; first two steps of programming

STAA prog-count

LDAA #20 ; arbit,programming start

STAA toc-val ; toc int serviced by programming

RTS

go-normal:

wait-normal:

LDAA $7FFF

ANDA #$04

BEQ wait-normal ; await d12 disable

BSET PORTD,X $08 ; set PD3,and clr PD4 and PA7 for OK code

BCLR PORTD,X $10

BCLR PORTA,X $80

BRSET $7FFF $10 dir-cw ; otherwise, dir remains O

step-set: BRSET $7FFF $20 step-full ; otherwise,step remains half

addr-set: BSR set-addr

BSR set-push ; load the next push sequence

LDAA #60

STAA toc-val ; toc int serviced by normal loop

RTS

set-addr:

BRCLR $7FFF $08 addr-other ; testing d13 from user for address

LDAB #4 ; this is 001 in reverse a0a1a2

STAB addr-sel

RTS

addr-other:

LDAB #2 ; the address is 010

STAB addr-sel

RTS

dir-cw:

LDAA #1 ; setting direction to 1

STAA dir_sel

BRA step-set

step-full:

LDAA #1 ; setting step to full

STAA step-sel

BRA addr-set

set-push:

TST step-sel
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BNE full-dir-chk

half-dir-chk:

TST dir-sel

BNE half-cw

BRA half-ccw-mid

************out range branch

tOC3-mid0:

BRA toc3-mid1

timer-0:

BRA timer-1

full-dir-chk:

TST dir-sel

BNE full-cw

BRA full-ccw

full-cw:

LDAA #1

STAA motor-mode

****

reqd steps are 1,3,5,7,1

*********

fcw:

LDAA curr-step

BEQ add-l

CMPA #7

BBQ add-1

CMPA #1

BBQ add-3

CMPA #3

BBQ add-5

BRA add-7

**************************0ut Of range branCh

set-push.mid5:

BRA set-push

***************************************************

full-ccw:

LDAA #2

STAA motor-mode

fccw:

LDAA curr.step

BEQ add-7 ; reqd steps are 7,5,3,1,7,..

CMPA #1

BBQ add-7
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CMPA #7

BBQ add-5

CMPA #5

BBQ add-3

BRA add-l

************************out of range branch

half-ccw-mid:

BRA half-ccw

************************************

half-cw:

LDAA #4

STAA motor-mode

hcw: LDAA curr-step

BEQ add-1

; reqd steps are 1,2,....8,1

CMPA #8

BBQ add-1

CMPA #1

BBQ add}

CMPA #2

BBQ add-3

CMPA #3

BBQ add-4

CMPA #4

BBQ add-5

CMPA #5

BBQ add-6

CMPA #6

BBQ add-7

BEQ add-8

**************************************Out Of range branch

few-mid5:

BRA fcw

fccw-mid5:

BRA fccw

set-push-mid4:

BRA set-pusthidS

hcw-mid5:

BRA hcw

timer-1:

BRA timer-l-mi

d toc3-mid1:
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BRA toc3-mid

********************III********************************

add-1:

LDAA #1

LDAB push-begin+1

BRA push-val

add-2:

LDAA #2

LDAB push-begin+2

BRA push-val

add-3:

LDAA #3

LDAB push-begin+3

BRA push-val

add-4:

LDAA #4

LDAB push-begin+4

BRA push-val

add-5:

LDAA #5

LDAB push-begin+5

BRA push-val

add-6:

LDAA #6

LDAB push-begin+6

BRA push-val

add-7:

LDAA #7

LDAB push-begin+7

BRA push-val

add-8:

LDAA #8

LDAB push-begin+8

BRA push-val

push-val:

STAA next-step

ORAB addr.sel ; push frame=data+address

STAB push-frame ; this is the push data

RTS

timer-l-rnid:

BRA timer-initO

half-ccw:
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LDAA #8

STAA motor-mode

hccw:

LDAA curt-step

BEQ add-8 ; reqd steps are 8,7, ..... 1,8

CMPA #1

BBQ add-8

CMPA #2

BBQ add-1

CMPA #3

BBQ add-2

CMPA #4

BBQ add-3

CMPA #5

BBQ add-4

CMPA #6

BBQ add-5

CMPA #7

BEQ add-6

BEQ add-7

***************************************************

out of range branches

**************************************************

fcw-mid4:

BRA fcw-mid5

fccw-mid4:

BRA fccw-mid5

set-push-mid3:

BRA set-push-mid4

hcw-mid4:

BRA hcw-mid5

hccw-mid4:

BRA hccw

*****************************************************

end of init section

****************************************************

toc3_mid:

BSR push_seq-mid0 ; nearest push-seq

LDAA #20 ; this is the pull analysis part

CMPA toc-val

BEQ step-0

LDAA #30
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CMPA toc-val

BEQ step-3

LDAA #40

CMPA toc-val

BEQ step-4

LDAA #50

CMPA toc-val

BEQ step-5.1md

LDAA #60

CMPA toe-val

BEQ push-normall

BRA timer-initO ; nearest timer also if toc-val=70

******************************************************

step-0

LDX #BASE

LDAA #6 ; check for 110 code

CMPA pull-val

BNE TI-step0 ; repeat until 110

BSET PORTD,X $08 ; set PD3

BSET PORTD,X $10 ; set PD4

BCLR PORTD,X $80

DEC prog-count

BEQ TI_step3 ; proceed with next step

BRA TI-step1-2

TI-stepO:

LDAA #2 ; first two steps of programming

STAA prog-count

TI-step1-2:

LDAA #20 ; the next step is step-0

STAA toc-val

BRA timer-initl

*********************************************************

out of range branches

********************************************************

timer-initO:

BRA timer-initl

push-seq-midO:

BRA push-seq-mid

set-pusthidZ:

BRA set-push-mid3

few-mid3:

BRA few-mid4
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fccw-mid3:

BRA fccw-mid4

hcw-mid3:

BRA hcw_mid4

hccw-mid3:

BRA hccw-mid4

step-5.mid:

BRA step-5

******************************************

TI-step3:

BCLR PORTD,X $04 ; disable PD2 for 5volts

LDAA #30

STAA toc-val

BRA timer-init

1

step-3:

LDAA #4

CMPA pull-val

BNE TI_step0 ; if 100 code,proceed to ovrbit program

TI-init-step4:

BSET PORTD,X $04 ; enable PD2 for 12volts

LDAB addr_sel

ADDB $08 ; setting D4 to 1 for ovrbit program

STAB push-frame ; new push for ovrbit

TI_step4:

LDAA #40 ; from second time onwards

STAA toc-val

BRA timer-initl

step-4:

DEC ovr-step

LDAA #6

CMPA pull-val

BNE TI.step5 ; code is incorrect

INC ovr-count ; correct code count for ovrbitprogram

BRA TI_step5

*******************

out of range branches

*******************

push-norma11:

BRA push-normal2

set-push-midlz

BRA set-push-mid2
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push-seq-mid:

BRA push-seq-midl

timer-initlz

BRA timer-init

hccw-mid2

: BRA hccw-rnid3

hcw-mid2:

BRA hcw-mid3

fccw-mid2:

BRA fccw-mid3

fcw-mid2:

BRA fcw-mid3

*******************************************

TI.step5:

LDAA #50

STAA toc-val

BRA timer-init

step-5:

DEC ovr-step

LDAA #4

CMPA pull-val

BNE count-skip

INC ovr-count

count-skip:

LDAA ovr-count

CMPA ovr.step

BEQ TI-normal ; we are done with programming

err-chk:

TST ovr-step ; try 4 times before error service

BNE TI-step4

BRA error-service

********************

out of range branches

*******************

push-seq-midl:

BRA push-seq

*********************

TI-normal:

LDX #BASE

BCLR PORTD,X $04 ; clear PD2

BCLR PORTD,X $08 ; clear PD3- programming done.

BSET PORTD,X $10 ; set PD4 ok code
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BSR set-push-midl ; get normal push value

LDAA #60

STAA toc-val

BRA timer-init

error-service:

BSET PORTD,X $18 ; set PD3, PD4 - for error code

LDAA #70 ; do nothing from now on. reset reqd

STAA toc-val

BRA timer-init

************

out of range branches

***************

push-norma12:

BRA push-normal3

timer-init:

BRA timer-init2

hccw-midI:

BRA hccw-mid2

hcw-midl:

BRA hcw-mid2

fccw-mid1:

BRA fccw-mid2

RTS

fcw-midl:

BRA fcw-mid2

*******************************************

push-seq:

*send bus violation

BSR bus-v3

send push sync

BSR push-sync

send push field

BSR push-8

send pull sync and receive pull-data

BSR pull-3

RTS

bus-v3:

LDY #3

bus-n:

BSR delay1-25

BCLR PORTD,X $20 ; PD5 push bit

BSR delay0-25
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BSET PORTD,X $20

BSR delay1-25 ; smaller delay

DEY

BNE bus-n

RTS

push-sync:

BCLR PORTD,X $20 ; PD5 push bit

BSR delay0_25

NOP

BSET PORTD,X $20

BSR delay0_25

NOP

BSET PORTD,X $20

BSR delay0-25

NOP

BCLR PORTD,X $20

BSR delay1_25

NOP

RTS

push-8:

LDY #8

LDAB push-frame

push-n LSLB

BCC goto-O

BRA goto-l

goto-O:

BSR code-1

BSR code-0

DEY

BNE push-n

RTS

gotO-1:

BSR code-0

BSR code-1

DEY

BNE push-n

RTS

code-0:

BCLR PORTD,X $20

BSR delay0_25

BSET PORTD,X $20

NOP
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RTS

code-1:

BSET PORTD,X $20

BSR delay0_25

BCLR PORTD,X $20

NOP

RTS

************

out of range branches

***************

push-norma13:

BRA push-normal

timer-init2:

BRA timer-init3

hccw-midO:

BRA hccw-rnidl

hcw-midO:

BRA hcw-midl

fccw-midO:

BRA fccw-midl

fcw_mid0:

BRA few-midl

push.seq-mid2:

BSR push-seq

RTS

*****************************************

delay-75:

LDAA #22

loopl DECA

BNE loopl

RTS

delay0_25:

LDAA #1

loop2 DECA

BNE loop2

RTS

delay1-25:

LDAA #3

loopd DECA

BNE loopd

RTS

105



pull-3:

BSR send-1 ; sending pull sync bit

BSR delay0_25

BSR code-0

BSR delay1-25

BSR code-1

BSR delay1-25

BSET PORTD,X $20

LDY #0003 ; we read 3 bits

pull-next BSR delay-15 ; trying to read pull bit after this delay

LDAA PORTA,X ; move this label to prev line if delay rqd

ANDA #%00000001 ; test PAO pull bit

BBQ pull-0 ; the bit is zero

pull-1: LDAA pull-val

ORAA 7000000001

STAA pull-val

pull-0: LSL pull-val

DEY

BNE pull-next

pull-eof:

LDAA PORTA,X ; we read end Of frame. only delay is diff.

pull-eof2 BSR delay0_25 ; eof has 50micro pulse(20khz)

BSR delay-15

LDAB PORTA,X

SBA

BEQ err-eof ; if both bits are same, this is an error

RTS

err-eof BSET PORTD,X $10 ; set PA7, PD4 - for error code

BSET PORTA,X $80

LDAA #70 ; do nothing from now on. reset reqd

STAA toc-val

BRA timer-initJnid

delay-15:

LDAA #1

loop3 DECA

BNE loop3

RTS

************

out of range branches

***************

timerJnitB:
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BRA timer-init-mid

*************************

hccw-mid:

BRA hccw-midO

hcw-mid:

BRA hcw-rnidO

fccw-mid:

BRA fccw-midO

fcw-mid:

BRA fcw-rnidO

*******************************************

push-normal:

LDAA #4

CMPA pull-val ; check whether status is ok code

BNE push-set ; repeat prev step if not OK

TI-next-normal

LDAA #1

CMPA motor-mode

BEQ mode-1

LSLA

CMPA motor-mode

BEQ mode-2

LSLA

CMPA motor-mode

BEQ mode-3

BRA mode-4

mode-1 BSR fcw-mid

BRA push-set

mode-2 BSR fccw-mid

BRA push-set

mode-3 BSR hcw-mid

BRA push-set

mode-4 BSR hccw-mid

push-set:

LDAA #60 ; next push val

STAA toc-val

LDAA next-step

STAA curr.step ; overwrite currstep with the new step

BRA timer-init-mid

timer-initJnid:

nO_infO:

LDX #BASE
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LDD TCNT,X

ADDD #5000

STD TOC3,X _

BCLR TFLG1,X %11011111 ; this will work only if'the prev

RTI ; part takes less than 5msec..
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Ptolemy Schematics



 
Figure 7.1: The SMC Testbed Universe
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Figure 7.2: The “SMC” Galaxy
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Figure 7.3: The “mcu” Galaxy
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Discrete Event (DE) Stars

  
Figure 7.4: Ptolemy Icons
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Figure 7.5: Ptolemy Icons - Sources
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Figure 7.6: Universe Parameters
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Figure 7.7: The SMC Control Panel
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Figure 7.9: The SMC Event Display
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MOTOROLA as ““475"?

- SEMICONDUCTORM

APPLICATION NOTE ‘

AN475

Single wire Ml Bus controlling stepper motors

by Michel Burri & Dr. Pascal Renard

Senior Staff engineers. Automotive Group

Motorola SA. Geneva

1. Introduction

The Motorola Interconnect Bus (Mi Bus) is a serial bus and communications protocol which efficiently

supports distributed real time control. notably in automotive electronics. In addition to being a cost-

effective alternative to bulk wiring. It provides very high data Integrity as a result of continuous Push-Pull

communication between the system controller (Master MCU) and each device on the bus. It is suitable for

medium speed networks requiring very low cost multiplex wiring with high levels of noise immunity. The

MI Bus is suitable for controlling smart switches, motors. sensors and actuators with a single-chip

controller. The process control time can be about Ims. Including diagnostics.

In automotive electronics the MI Bus can be used to control systems such as air conditioning. head light

Ievellers. mirrors. seats. window lifts. sensors. intelligent coil drivers. consoles. dashboard etc.

Figure 1-1 shows the general block diagram for the Stepper Motor Controller (SMC). The main parts of the

diagram will be discussed in the following pages.

+5V

1°“ +th

Programming and

Detection

L11

Bridge 00"” L12

Latch & L21

Motor Diagnostic

L22

Sen'al to Parallel Register

Parallel to Serial Register 20 kHz

Status

Encoder 
Figure 1-1 Stepper motor controller block diagram

All trademarks are recognised.

® MOTOROLA-
0 MOTOROLA LTD .. 1993
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"033192

IAXIWI RATINGS (All voltages «with reepedtoground. unless wierwlee noted.)

 

 

 

 

 

 

 

 

 

      
 

 

 

 

 

  

Ruin. w V‘I. UM!

Power Supply Voltage V

Corlinuoue Operlbon' Vcc 25

Transient Survival (Note 1) VLD 40

Digital input Voltme VI 0.3 to Vcc + 0.3 V

Output Current (TA .- — 40°C) Iocr zoo mA

Output Current (TA-100'C) IOHT 150 mA

Storage Temper-tum Tetg - 40 to +150 °C

Operding Tenperuure (Note 2) TA - 40 to +125 '0

Junction Temperature TJ — 40 to +150 '0

Pour Dissipation (TA - 100'C) P0 0.5 w

Lou Dump Tramient (Note 3) VLD 40 V

DC ELECTRICAL CHARACTERISTICS (Chmmucenoted undereonditiornDDVSVcc s155V.-40'CSTA$1m'C.

unless otherwise noted.)

W ”rebel Min 1» flea 1m

WCumnt (Vcc- 16.5V) (Nob 4) lo - - 12 111A

OutputCurrenthc-wa) lo - 120 - mA

H—Brldgesnumlonibhgeao-WOmAHNohs) Vow”) - - - V

TA .-4o'c - 1 .3 1e

TA I ”'6 - 1.2 1.‘

TA .1000 - 1.1 1.e

MdreeePiogramming comm-25°C) (Note 5) lpc - 1.2 - A     
 

CONTROL LOOIC ELECTRICAL CHARACTERISTICS (Charm nobd under conditions 0.0 V s Vcc 5 1 5.5 V. - 40'C STA s

1%. mleuotherwiee noted.)

 

 

 

 

 

 

 

 

 

 

 

 

  

W W Iln m I. Uni

Oedllator (Nae 7) Id 040 - kHz

MeeeegeTrmeSlothc-12V)(Nete0) t. 24.0 25 25.2 Ire

UWWDMBNcc-ii’VHNmfl ice “is - - 113

1mMl—Bue Pull-Up Resistor Rpu 6.0 - 20 k0

lrnemal Ml—Bue Zener Diode Clamp Voltage Vd - 10 - V

Addrumgmnmingvamormio) VI, 10 12 14 v

Program Energize Time tppw 200 10“) In

Ml-Bue Slew Rate AVIAt 1.0 1.5 2.0 VIII.-

MI—Bue '0' Level input Voltage Threshold v). — - 13 v

Mi-euu '1' Level Input Voltage Thmhold vm 2.4 - — v

Ml—Bue'O'LevelOutputVoltage(Io-mmA) VOL — - 1.0 V

Poem-On Reset Time (Vcc 2 7.5 V) Ipor - 250 - Its     
 

m: 1.TMWWimuhmmnmbMflhMmduyfimemfl-nThedfiet'nnonenmmmal

”War

zmmm'ng'ven-aoomienemuu‘munWWhmhlfimW.

landmine-the 'nduct'rvetrarniedvonageWonanmmmmwnnamldmummmbhw

amnieproducingchargecurert.TheddectiononanovervolageeendiieneeueealH—Brmbbehuied'ef.

 

 
emcmnwimmm H—anQee'ehom “ma-0).

5. H—BrldgeSetuafionVolageiereiereneedlothe peeifiwemplngmndmdflummbemmdiorm.

SdmfionwhgebtnvohgedoplmthembthepoemmmmH'gh)andtl'levolhgedrtptoyoild(wlflimw.

0.mmmimCmmnmwmmmebdIZVMmaddn-W.

7.A1ypieequ>lieebonineeenex1errnleeramrereeemtorerynal Inw'igeirequenqioMMld-lz AniMnleepeeihrhnnlelwlhoemicWie

medbefltmefreqmmybttlewomnmduokflz.mdehoedhbriWonmemwmic

mordutoleranefluemlty 11.0%).

0.TheMe.ageTrneSletisthetine”muommwwmrmmmbWDaWMMMdh

whirring-mined.

0.lllheMl—Buebeeomeeehomdbgomd.“Winmfiluwmepwdnhmmw.

10. Ml—Buvolhpreqriredloredteeeprogmmhg
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MC33192

GENERAL DESCRIPTION

TheM033192isasorlalsteppermotoroontrolierlorusein

harsh wtomotive wplcatlons using multiplex wiring. The

MC33192providosdlmenooessarylourphasodMsignds

tocontroltwophasebbolarsteppermotorsoporatodinelther

halorlullstspmodos.Multplesteppermotoroontrolersm

beoperuedonareaitimebasisustoptremenciesupto

200 Hz using a shgie microcontroller (MCU). A primary

WooloperatlonistheutllzationoltheMl-Busmeesqe

meda to provide high noise immunity oonmnlcdion

eneurhgveryhlghoperatingreliwilityolmotorstmping.

Themmzisdoslgnodtodrivebpolsstemermobrs

havingawhdngresistancsolaoaatzo'Cwlthasmply

volageoltzVJtisstppliodinaSO-laLplasticpsokme

havingelghtphs.ononeslds.oomecteddreaiytotholead

nine thus enhmcing the thermal perlorrnlmoe to alow a

powdeshationolOéWatlZO'CamblonttW.

InltlpleSlnmltsneousMotorOpsr-etlon

Saverllmotorscanbeoontrolledhaseriall-hionmne

hasedotaeminesthesteptremencyolthomobrstinde

motorcanbeoperatedatamaxknumspoodolmOl-h

pul—lnwithadnrationol5.0msperstop.Threemotorscm

bsoperuedslmulaneomlyusingasailcosBBMCUatthe

sunetimebos(200l-lz)withd:out1.7msper¢op.A

Gal-i011mUcmcontrol4steppermotorswith

progmnsteptimefihesteplremoncymustbodocreuedto

control additional motors. To control eight motors

slnwlaneouslywouldremirethemotorsposdtobe

demuedtolOOHzprowdngMZOmstlmemration

perstepwithadoqiatoprogramtine.

Ul-BusGerIsrleescrIptlon

‘l'heMobrolalntoroonnectBule—Bus)haeerial

push-pull communications protocol which el'liciently

smportsdistrbuodrealtinisoomolwhlleexhbltingahlgh

levelolnolsehimunity.

UndertheSAEVohicleNetworkcflegorietheMl—Busis

aClasAbuswithadatastreamtnnslerbltreteinexoessol

zouumdmmhmbthehumaneanltrequiresa

singiewiretocarrytheoontroldatabetweenthemasterMCU

andisslavedeviosslhebuscnnbeoperdodatiengthstp

to15meters.

N20ld-lzthetimeslotusedtoconstrualhemessne

(zaps)conbehsndodbysoltwveusingmanyMCUs

avalldileonthemtlnet.

TheMi-Busissumlelormsdumspsednetworks

reqalrlngverylawoostmultbbequldeliomgrwu.

then-Burequinsonlyoneelmalwlreoomectingthe

MCUtomultpleslavemaaiozdevioeswithW

coritrol

AsingleMl—Buscanaooormllshsirwmlswtomotive

sysbmoontrololAirCondlioning. l-leadLaanevellers.

Window um. Sensors. Intelligent Coll Drivers. etc. The

M—Bushasbeentoundbbeoostolleaiveinvehidebody

elearonicsbyreplachgthecorwentionalwiringhamess.

Flmreishowstheintemdhlockdqamolthemifl

ShmerMohrController.

ngn1.fl¢3310281spperflotor¢omllsrlloolt0lsm
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MC33192

U—BusAaeeeIethod

TheinlormationontheMl—Busissenthalixedmeesage

frame lormat (See Figure 4). The system Mcu can tale

controlottheMl—Busetanytimewithastartbitwhlch

violiesthelawolManchesterBi-Phasecodebyhevim

tlueecoriseciitlveTirneSlots(at.)heldconstmtlyataLogic

'O'sme.

Push-NICommunlcetlcnSequsnce

Comnmication between the system MCU and slave

M33192 devices always use the same meseqe frame

organization. ThemU firstsendseightseriaidetabitsover

theMl—Busconprisedolfivecontrolbleloliowedbythree

addeu bits. This corrlnunication serpence is called 1: 'Push

Field'sinceitrepresentscommendintormalonsentlrcmthe

MCU.TheseqienceolthefivecontI-oldatabitsloliowthe

orderDO.Dl.DZ.D3endD4.Thethreead¢essbltseresent

insementielordeer.A1andA2deliningebinaryadaess

code.TheconditionolMl—Busduringanyolthecontrolbl

timewindowedslineeaepeciticcontroltunctionasshownin

Figue2.A'PulSynd'bltiesentdtheendolthePushFleld.

the positive edge at which causes al data sent to the

seleaeddevicetobelatcl'iedintotheoutputcircul.

Figuell’ushFlelsttsBlts
 

tun Comet Function

 

m mun ll—Bridge 2
 

Dlr2 Establishes Diredicn cl H—Bridge 2 Currerl

 

E EnergizesBridgsCoils1and2

 

Dir1 Esublishes Direaion cl H-Bridge 1 Current

 

8
9
8
8
9
3

    Inh1 Inhibits H—Bridge 1
 

AmmePulISyncblissentJollowhgthePushFielthe

MOUietensontheMi—Buslorserleldatabitssentbackhom

theprevbuslyedrhessedMC$3192deviceThieportionol

thecomrmnicetlonsemencestertsthe‘PuI FieidDeta"

slnceitrepresentsinlormaionpulledlromtheaddiessed

WinondreceivedbytheMCU.

Theedrteeeselededmsaisedevicesenamln

theionnolstehnsbits.backtothemUreportlngthe

devicescondtlon.AttheendotthePushFieldthemU

outputsePuilSyncbitwhichslgnelsthestartolthePull

Field. inthePullFlelderethreeblts(Sz.S1andSO)whlch

reportthestatusoltl'ieprevicuslyadaesseducaalsz

mcordnngigurea.

figure 3. Pull FieldWBite
 

 

 

 

 

 

 

 

 

82 81 8 thus Occur-nu

0 0 0 Not used

0 0 1 Free

0 1 0 No Sadr EMF Drivers and/or coih tailed

0 1 1 Free

1 0 0 Normal/OK

1 0 1 Thermal Chip tempemure > 1500

1 1 0 Programming PROM energized

1 1 1 Selection tailed Noise on Nil—Bus. tailed or

disconnsasd rnoduls      
 

Thepositiveedgeol‘thePullSyncpulseuetbythemU)

mall Push FieidDatasenttotheselededmsatflzm

bestoredlnthewtputletdicircultintlmewiththestmbe

wheThbmeenstl'iedatablsereemittedinreelmie

synchronizmionwith the mU‘s machinecycls. Thestrcbe

pubeoccursonlyelterthsPushFieldeemenceisvflidued

bytheadtieeeseleaeddevlcs.

HesssgeVslldetlon

Thecornmunicetion betweenthemUmdtheseleded

MustszdeviceisvalldonlymentheMCUreacb

(receives) the Pull Field Data having the correct codes

(exchdng thecode'1-1-1'and‘o-o-0') iollowedbym

End-ol—Frame signd. ThelreqnncyottheEnd—ol—Frems

slgnaimaybeesib—numlsoltheselecteddeviceslocal

oscillatororrelatedtoanireemaiorextsrndmiog

parameterusingaVoltqebFremencyComemr.

ErrorDetsctlon

AnerroriedetededwhenthePulFieldcorweinsthecods

'1-1-1' tolowedbytheEnd-cl—Frunepennuwitlytiedba

iogic'i‘state(intemalylrom5.0Vthroughapull—ip

resistor). ThiemeensthecommmrcetionbehveentheMOU

andtheseiecteddevicewunotobteined.
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Therearelourtypesolsysternerrcrdwdionswhlchere

notnutudyexclusiveflheseue:

1)NobeDetection

ThesystemMcaaiflzslavedevicesreceivethePush

FieldrnessegelromtheMCUMcsloreachTimeSlotfl.)

oltheBi—PhaseCode.Arecelveerrorcccurewhentlietwo

messqesarrplesl‘u'lb‘logicwbe'matcthloiseend

Bi-Phese detectionledsa-sedlurtherunderMessage

Goring.

2)Bl—PhaseDetection

ThesysternslavedevicesrecelvingthePushl-‘ield

rnessqelromihemUdetedmeBl—PhaeeCodaA

detectorenorocwrswhenthetwotimeslotscltheBl-Phase

CodedonotcontainmExclusive-Ofiloglclunctlon.

3)FieldCheclr

Alielderrorhdeteaedwhenalixed-iorrnbliield

corntalnsmirrpropermmberolhlts.Ablterrorcanalsobe

detectedbytheWUchringthePush Field.TheMCUcUl

shailtaneouslymonibrtheMl—Busatthetirneitissendng

”Awmisdetectedltthssentbitvduedoesnot

matevduewhldtwasmonltored.

4)Urgent0utputDiedile

if the Ml—Bus becomes shorted to ground. the slave

dsvlcscuputswiilbedsdaledatteraperiodola..TheMCU

belcanhlusadvantageolthisleamreto'globaily'dlswle

theouucsolallsysternslavedevicesbykeepingthe

Mi—Busdalcgic‘O’ieveltoradurationolstgormore.

Norrnd operation is resumed when the MCU sent a

'standsrd'instructioncvertheM—Bus.

BaeleStepper Rotor Construction and Operation

Steppermotcrsareconstmctedwlhaperrnanentmagnet

rotarrnagnetizedwiththesamenurrberotpolepairsu

contalnedinonestatorcoilsection.®eratlonaliy.stepper

motorsrotateatconstantincrernentalanglesbystepplngone

supeverytirnethecurrentswitchescfiscretelyinonestdor

tieldcoiiceusingtheNorth—Southetatorlieldtorotateeither

clockwise or counter—clockwise causing the permanent

magnet rotorto follow (see Figure 5). For simplicity. mums

thestarthgcondtioncitheMtoAzstatorfieidbbelopb

bottompoleflzedNtoSandtheBimBZstatoriieidtobelelt

todallpolerlzedNbSJheresulthgstatorlieidwillprorhce

avectprwhichpointsinthediectlonolpoeitionaJherotor

wl.‘nthiscae.behthepositionslmninFigure5(pohtlng

toposition 1). Thlsintialconditloncorreeponcbtothuol

step1inFigtxe6.AsmedredionoicurrentllowintlieB1to

82statorfieldisreversed.thetieldpolarlyolthe81t082

deoreversesandislelttorightpolarizedStoN.Thiscauees

theresultingetatorlieldvectorbpoinththedrectionol

position4.ThisintumcausestheN—Srotortolollowand

roue90°inaclocltwbedrectionandpointinthedrectionol

MenzThbcondticncorreeponatoatepZOIFigurea.

Continueddockwherotorstepewiibeexperiencedaetl'le

strlorlieldcontlnuestobeincrementalyrotatedaeshawnin

shpe3.4.5.etc.olFigure6.The90‘stepeinthieeimplistic

exarrpleconetitute ‘lulisteps'Jtietobenoticedthatboth

code. in the foregoing lull step example. were simultaneously

energizedinoneoltwodrectlons.ltispoesbletcincrement

the rotor in 45' "interrnediate stepe' or 'halt steps' by

alternably energizing only one stator coilatatimelnthe

mpropriate direction while turning the other stator coil ol'l.

ThealveslgnablorHaltStepopemlonareshmin

Figure7.ThePoweroutputctnesoltheMC33192conelst

oltwoFl—Bridgescweoldiving til—pols

permanent magnet motors in either hall or lull step

increment.
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Permanent magnetic stepping motors exhibit the

characteristlcdlilltytohoidashdtrotorpositionwithcr

wlhout a stator coil behg energized. Normally the shit

hoUhgdailityolthemotcrwithastatorcoilenergizedls

relerredtoas'l-loldngTorme’ while 'Residual Torque'or

‘Dstent Tome” refers to the shaft hold'ng wiity when a

shot col is not energized. The Holdng Torque value b

dependentontheinteractivemagneticlorcecreatedbytl’re

resultingenergizedstatortieldswihthatoihepennment

mnetrobr.TheResidlalTorqueisalunctionoithe

physicalslzeandconposltionolthepermanentrnagnetrotor

rnderidcotpledw'ahitsintrinsicmqneticattramlonlorthe

m—energizedstabrcorernsterialandasaresul.theweeker

otthetwotorques.

itistobencbdwhenusinghallstepoperdionmnlyone

coll b energized during enemas step periods which

prowess a somewhd weeltsr Holdng Terms. Holdng

Terms is maximized when hem code are sirwltaneously

energized.lnaddtion.slnceeachwindngandresultingflux

corutionsarenctperlectlymachedloreachhaiistep.

incrernentalaccuracyisnotasgooduwhenhllsmlng.

MPhsseDrlveSigrsle

TheDlR1andDiRZbltsintheDdaFrm1eclthePush

Fleiddeterrninethed‘sectionoll-l—Bridgecurreraflow.“

thustherrmneu‘clleldpolarizationclthestaorcoiisJor

H-Bridge outputs 'A' and '8' respeaively. The dreclionel

signals Dial and DIRZ. generated by the MCU.

communicate overtheMl-Bustocontrolthetwol-l—Brldge

poweroutputstagesolthemsaisztodivetwophase

bhohrperrnanentmametmotors.Figure8showsthe

mmztrumnbb baccorrplsh hcrernental stepphgcl

themotorhaclodnviseorcounter-clockwisedireaionln

eltherhallorlulsteprnodes.Thestatorlieflpolarizationand

robrposlionarealsoshownlorrelerencerehtlvetothe

basicdepperrnotorolFigurea

ngmamnrmummmmaumsqmusupuu
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Ill-Buslntsrl‘ecsDescriptlon

Them—BulmenaceshowninFigureeismadetpoIa

slngleNPNtranslstor(Q1).Thetwonnintunctionsolthls

NPNtransistorare:

1)TodivetheMl—BusduringthsPushFleldwith

minuelyZOonlcurrentwhllealsoesMiglow

edmationcharaderlstlcchagag.

2)Toprotedthelrputl0um( )plnolthemUagdnst

my Electro-anetic lnter‘ierence (EMI) cqatured on the

buswire.

WihouttheNPNtranslstor.theMCUcouldbedestroyed

maresultolreceivingexceeeiveEMlenergypresentonthe

bus.lnaddtion.thetransistorbiocltstheMCUIromreceiving

EMI signals which could erroneously chmge the rhta

dredionregisteroltheMCUl/O.

ThemUirputpin(Ph).medtoreadthePuliFieldolthe

Mi—Bus.hprotectedbytwodiodes(02and03)mdtwo

resistors(R5ande).AnytraneientEMlgenerabdvoltme

presentonthebusisclampedbythetwododestoa

whdmvedvolagevduenottobegreebrthantheVoocr

lessthantheVsssupplyvolmesoltheMCU.

H—BusLeveis

TheMl—Buscenhaveoneoluovdldiogicstdes.

recsssivecrdorriinaraTherecessivestUscorreqaonatoa

Lodc'I'mdisobtainedthroughuseol‘awmpull-ip

resistor(F19)to5.0 V. Thedominantmcorreqaondsba

Logic‘O'whichrepresentsavolageleeinanoavm

0'“ by "'0 VCE(sat) ol Q1.

Ml-BusOvervoltagsProtectlon

An external zener dode (21) is incorporded h the

interfacedrcuiteoasbprotecttheMCUorMlePm‘)

horn overvolages commonly encountered in automotive

mplicationsasaresultclioadDunp’ md'JurrpStur

conditions. LoadDwrpisdelinedastheirulctivetransient

generatedcnthebatteryiineaearesulclopenlngthe

batteryconnectionwhilethealbrrnorsysternisprodlcing

chargecurrentJurrpStartoveNoltagesarethereeultol

paralleling the instdled automotive battery. through the use

ol'jurrpercdiles'Joanextsmalvoltagesouroeinexcsss

oi the vehicles nominal system voltage. For 12 V

whmothresystemthiscorrlnonlorZAtV'jumstut'

volmestobeused.

Whenanovenroltagesitudior1(>1aV)ezdsts.dietoa

loaddmporjunpstartcondtionJhezenerdodeRle

activatedandsippliesbssecurrenttommontheNPN

Mistermcausingthebustobepulledtolessthanoav

proaiclngaLogic‘O'ontheMI—Bus.Meradurdion

correspondngtost.(200us)olcontinuousLogic‘0'onthe

busallM033192deviceswlldsd>letheiroumuta Norrrfl

cperationisresurned. iolowingtheovervolmemytheMCU

sendngouta'standard'meesageinstruction.

fl—BusTsrmlnstlonNetworlr

‘l'heMl-Busisreslstlvelyloadedaccordngbthemnber

olM033192deviceslnstaledonthebus.EschMm3192

hasaninternal 10mpuI—up reelstorb5.0V. Anexternd

pul—upresistor(R7)isrecorrlnendsdtobsusedtoopllrndly

adhstterrnlnationolthebusloraloadreeistanceoteooa

FigureOJII-Busucumtsrlscs
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MESSAGE cosine

Bl-PhsssCodlngsndDetsctlon

TheManchesterBi—Phuecodeshownln Figure 10

remirestwotirrieslotsmdtoencodeasinglerflabitfihis

alowsdetectionolasingleerroratthetimeslotlevel.‘l’he

Iogiclevels't'or'O’aredetermhedbytheorgmizationol

thetwotimesiotthesealwayshaveccnplementarylogic

lsvelsol‘elhsrzerovoltsorpluslivevolts.whichare

debctsd ushg at Exclusive OR detection circuit airing the

PushFieldserpence.A'1'bitisdetectedwhenthelirsttlrne

slotlssetbazerologicstate(0V)lollowedbytheeecond

timeslotsettoaiogicstateone(5.0V).Conversely.a'0'bs

isdetectedwhenthelirsttimeslotissettothelogicsue

'one'(5.0V)lollowedbyasecondtimeslotssttoa‘zero'

logicstate(0V).ForthssetwobitsareExcluslve-Oflsol

eedrother.

TheaddresseddevicesreceivingthePushFielddstsct

the Bi—Phase code. Bl-Phase detection involves the

surplhgolthePushFieldBi—Phasecodetwics(aandb)lor

eachtirneslotAccdeerroroccurswhenthetwos'meslobol

tlnBl-PhaedonotlcllowalogicalExdusive-Ofllunction

(seeFigure10).

NoisemnitoringisaccorrplishedbysanplingthePush

FleirlBi—Phasecodstwics(aanda’)md(bandb')durlng

eachtimselot.AnoiseerrorisdetededilthetwosImls

valuesmnothavethesarnslogicallevel.

Flgue10.NolssIBl—Phsse0etsctlen

2':

WV) I MT)

501! . I

PishFleid I l l l

'B-Plus |

Godsdfls l _.‘

01234557012345570

s b a b m

NH»...
Eachmessagetrameconsistsoltwolislds:ThePush

Field.inwhichdatamdadaessesuetrmslerredbythe

MCUtotheslave device;andthePuliField,inwhichserid

rhtaistranslerredbacktotheMCU lromtheadrress

selededslevedevice.Themessagelrarneisbrokendown

into seven indvidual lieid segments as hdcated it Figure 4

(Start. Push Field Sync. Push Field Data. Push Field

Address. Pull Field Sync. Pull Field Data. and

End—ol—Frame). The tollowhgliststhebitslzeandfundion

oieacholthesesegments:

1)81srtisthestartolmessegeandconslstsolthreetlme

slots(3t.)havingthedominantLogic'0’stateollessthan

0.3 V. Holding the Ml—Bus at ground lorthreetlmeslots(3t.)

rnarlcsthebegimingoithemessagelrarnebyviolatingthe

lawolthsMsnchesterCode.

  

 

 

2)PushFl‘eld8yncisashglebitwhichestdzlishesinitial

timinglorthePushl-TeldDatatololow.

3)PushFlelsthiscornprisedolliveseridflabl

liela(Do.D1.Dz.03andD4)whichconprisemelnstructlon

setdefiningtheconfigurationandcondionolthetwo

H—Bridgeoutputstages.

4)PushFleldAddressisconprbedolthreeseridd¢a

balields(A0.A1andA2)whichdsthetheaddessornune

otahD331020ntheMl—Bus.

5) PullFlsldSyncisasingieblwhlchestdallshestheend

olthePushFieldandtheinltislstarttiminglorthePulField

Ddatololiow.

5)PullFlslsttsismadstpolthreeserialdatabRflelrh

($2.81and80)whichcomdntheexistlngmhlornetlon

olanadd'esseducaaisa.

7) End-ot-Frsmelieldisaslgndwhichconlruiicabs

totheMCUthathestatusinlormlionsentbytheMWlm

is .

ThePushFleldSyncbl.PushFielsttabis.PushFlsld

Adlessblts.PullFieldSyncbltaredlcodedbythe

MunchesterBi—PhaseLCode.ThePullFieldDatabitsare

Non—MsntoZeIo(NRZ)coded.TheEnd-olFramelieUis

aerparewaveslgnelwithalrequencyolZOld-lzorhigherso

ntoavoidacondtlonwhichcausesabusviolation.

TheWIchesterBi-PhaseLcodsrequirestwotimeslots

(21.)toencodeashglebit.Thisallowsasingleerrortobe

debctedmrhgthstimesiot.

Address Programming involves the use at titres

Wions. Reler to Figurelo.

FlrstlnstnwtlonSettheMl-fieconttmiydmv.

This places the “333192 in the programming mode.

ProgranmingispossbleonlywhentheMl—Bus'eatlzv.

Next.theMCUserialyenters"LogicZeros'inalilivePush

FieldDatabitpositions(D0.D1.D2.D3andD4)toilowedby

thedesignatedaddeesvalueinthePush FieldAdriess

positions (A0. A1.&A2).

ThemUnowwalts275usbslorsshrtingthesecond

instruction.Thetotalottl'iePuiltime.Delaytine.andBus

VioletiontimeMolthesecondimtruaion(150us.275us

and75usrespectlvety)wilceusethernemorycellbbe

energizedlorsoous.Duringtheiirst150usolthistlme.the

MCUischeckingthePuliFieldDataBltsSZ.Sl mdSO

looking for the programming code “110” to kidcate

corrpleteactlvationolthememorycell.

SecondlnstructloMMl-Busvolage rerndning812V)

TheMCUrepeatsthesamePush Fieldinstruaionu

previously sent in the First instruction; entering all 'i.ogic

Zeros'inthePush FieldDdaposiionslollowedbythe

designated Push Field Adriess value in the “dress

positions.

Again.theMCUsUtslorthePull.Dehy.and8usviohtlon

timewhliechecldngthePullFisldDetabitslooidnglorthe

programmingcods“110”code.TheMCU must repedthe

initial Push Field Add'ess 'nstnnion until a ‘110’ code is

received belore advancingtothe Third Instruction.

Third lnstnrctlonTheMl—Bus voitageisloweredto5.0 V.

The MCU seriallyloadsiogicZeros'inallive Push Field

Danbitpositions iollowedbythe programmed addresshthe

thFieldAdtesspostiontheMCUthenchecksthePull

Field Address status bits looking this time for the
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programming OK code “100" indcating the add'ess

progmnrningtobeesecised.

TheFirstmdSecondlnsmnionsmustberepededuntil

the WU succusluily receives the programm'ng code

'100'. Addessprogramming isnotconplete until a'100'

mmemthnMCUwiththeMi-eusvome

at5.0V.

Overwrlts-Bit Programming involves the use at two

instnnions.SeeFigure11.

FlrstlnstructlonHavetheMl—Buscontinuouslysetat

12Vsoastohavethem33192intheprogrammhgmode.

ProgrwnmingcsnonlybeacconplishedwlththeMl—Busat

12V.

ThemUseriallyenters'LogicZeros'lcrthePushFleld

DubitsD0,Dt.02and03andaLoglc'1'lorD4blt

lolorredbytheprogramnedaddessbitsADJlandM.

TheMCUnowwaits275usbelorestartingthesecond

instruction.ThetotalolthePulltime.Deiaytine.mdBus

ViolationtimeMolthesecondinstmction(150us.275us

and75usrespectively)wilcausethememoryceilbbe

energizedloramus.Durhgthelirst150usclthistime.the

MCUischecldngthePuiiFieldDataBitslorthestamsolbas

82.81and80bokinglortl'iepregrsmmlngcods“110”to

lndcateconpleteactlvationolthememoryceil.

SecondinstructloMMl—Bus remainingat12V)

TheMCUrepedsthelirstinstructionoutiinedaboveunti

theprogrsmmlngOKcods'lm”issentbaclrbtheMOU

lrom the selected M633192 indicating the overwrite-bl

protection to be programmed. ll alter eight repeat

lr'otructiorntheprograrnmingcode'ito'ortheOKcods

'100" is not generated lour times in succession.

progranlningolthem33192haslalledllthisoccurs. the

Overwrie—BltProgramrningsemenceshouldbsreviewed

mdre—etartedlromthebsginnhg.

H—Brlde- 0mm

The l-l-Bridge output dive circuit and associated

dsgnosticencoderareshominFigure 12. The

outputusesinternaldodeclanpsml. D2. 03. D4)toprovlde

transientprotectionoltheoutputransistorsneceesarywhen

swbhingindlctiveloadsassoddedwlhmermotors.

DeckEMFDetsctlon

ThreedllerentBackEMFcunentsanoccurdspendng

onwhetlnrthemoiorisrunnlngormmnerhwhichithbeing

shpped.RelerringtoFigure12;WhentheDir1bitiseetb

legic0.thedrectionolcmentllowwiilbelrochcthr01m

trunistorO2.CoiiA(AltoA2).andtrmsistorO4bground.

1)FsstDscsy(whentransistorsO1.02.03andQ48e

sedichedoll).

Whgnmecurrentliowinginthecoillsshmedbysetthg

theinhlbitblogicOJhebaclrEMFcunentwilciruflate

throughthevoltagesrpplchc)anddodesD1and03.At

thdtime.thevoltagedeveiopedacrossthedlodeDi is

detectedbytranslstorOBJhsgeneruedvoltmepulseoiOB

is then encoded and sent. in the Pull-Field. to the

2)8lowDecsy(03andO4areswitchedoli)

Whenthecurrentliowinginthecoilissnppedbysetiim

theEbitmioo’cOJhebacltEMFcurrentwillcircudelvough

thedodeDlmdtransistoervmichisaredyswitchedon.

3)thnMotorlsRunnlng

Therotationaldrection olthemctor whenever

theDirbitstateischmged.WhentheDlrbitisclw1gedlrem

alogicOioaiogic 1.trensislors02me4ueswitchedoil

mdtransisiorsOl meaareszechedonAtthistimeJhe

beck EMF current wil circulate lrom wound through dudes

DtmdDabthevolagesumly(Vcc).lnaIcmes.thebaclt

EMFcunentswilbedetededbytransisbrsmandOtl.

Figure 11. Address Programming Disgem
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Figure12.li-Brldgs0utputDriveClroultenlesgnestlcEneeder

Vcc
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Flgurs13.8lnglerre|I—BusOontroiolOSispperoters
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