

e W

31293 01

LIBRARY

Michigan State
University

This is to certify that the

thesis entitled

HARDWARE-SOFTWARE CO-DESIGN FOR EMBEDDED SYSTEMS
IMPLEMENTATION OF A STEPPER-MOTOR CONTROLLER

presented by
Anuradha Mulukutla
has been accepted towards fulfillment

of the requirements for

Master's gegree in _Electrical Eng

Major professor

Date /%/;//f

0-7639 MSU is an Affirmative Action/Equal Opportunity Institution

PLACE IN RETURN BOX to remove this checkout from your record.

TO AVOID FINES return on or before date due.
MAY BE RECALLED with earlier due date if requested.

DATE DUE

DATE DUE

DATE DUE

1/98 c/CIRC/DateDue.p65-p.14

HARDWARE-SOFTWARE CO-DESIGN
FOR EMBEDDED SYSTEMS

IMPLEMENTATION OF A STEPPER-MOTOR CONTROLLER

By

Anuradha Mulukutla

A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

MASTER OF SCIENCE

Department of Electrical and Computer Engineering

1998

ABSTRACT

HARDWARE-SOFTWARE CO-DESIGN FOR EMBEDDED SYSTEMS

IMPLEMENTATION OF A STEPPER MOTOR CONTROLLER

By

Anuradha Mulukutla

Hardware-software co-design entails the combined specification of hardware
and software at the system level, and the use of such a specification for co-
simulation, co-synthesis and/or co-verification of the system. The co-design method-
ology is especially relevant to embedded systems which involve software with spe-
cific functionality embedded in microprocessors, often interacting with the envi-
ronment and controlling external machinery. The objective of this thesis is to
demonstrate the hardware-software co-design flow by using two implementations
of a stepper-motor controller. One approach uses a hardware chip for the pur-
pose, while the second approach is using the POLIS co-design environment and
the PTOLEMY simulator. The results of the two implementations, and a study
of hardware-software co-design considerations for system specification, architec-
ture, hardware-software partitioning and the related trade-offs are presented, with

specific reference to the stepper-motor controller experience.

DEDICATION

This work is dedicated to my parents.

ACKNOWLEDGEMENTS

This thesis would not have been possible without the guidance, encouragement,
and support of Dr. P.D. Fisher. I extend my sincere thanks to him. I am also
thankful to Ms. Roxanne Peacock and Mr. Brian Wright of the EE technical
shop for their help. My special thanks are due to Mr. Robert Yu for his help with

handy board and the introl software.

iv

Contents

1 INTRODUCTION
1.1 Objectives it e
1.2 Outline. e e e

2 HARDWARE-SOFTWARE CO-DESIGN
21 Acaseforcodesign.
2.2 Methodologyand Trends
2.2.1 Specification.

W W

2.2.2 Architecture e
223 Partitioningt ieee
2.24 Iteration Between HW/SW

2.2.5 Co-Design Tools
2.3 Embedded Systems

23.1 Specification. oo,
23.2 Architecture e
233 Partitioning

2.4 Summary

THE POLIS SYSTEM

31 Imtroduction
31.1 FormalModel
312 ThePOLISDesignFlow

3.1.2.1 Formal Specification
3.1.2.2 Translation
3.1.23 Co-Simulation
3.1.24 Partitioning
3.1.2.5 Software Synthesis
3.1.2.6 Hardware Synthesis and Prototyping
3.1.2.7 Other Capabilities
3.1.3 System Requirements For POLIS

3.2 ESTEREL

3.21 Imtroduction i i i it 25

322 LanguageFeatures 25

33 PTOLEMY ittt ittt et ee e 28
331 Imtroduction 28
3.3.1.1 The Graphical Interface 29

3312 TheDEDomain 29

34 Summary e e e e e e e e e 30

STEPPER-MOTOR CONTROLLER USING POLIS 32

41 Imtroduction e 32
42 ABasicStepper-Motor 33
4.3 Functionalityofthe MC33192 K7
43.1 MIBuscontroller A
43.11 Motordriver 35

44 SpecificationinEsterel 36
441 Levell: ExternalInterface 36
4411 Imputs, 36

4412 Outputs, 37

442 level2: SystemModules 37
4421 TIMERmodule................... 37

4422 BUSmodule 38

4423 PROGRAMmodule 39

4424 CONTROLmodule 39

45 Compilationo 40
4.6 Functional simulationin Ptolemy 40
4.6.1 Hardware/Software mapping 42
4.6.2 Software Synthesis and the RTOS 43

4.7 Summary e e e e e e e e e e 4
THE MC33192 IMPLEMENTATION 46
51 Imtroduction 46
5.2 Main Features of the MC33192 47
5.2.1 MI Bus Protocol - Message Format 48
522 MessageCoding 49
5.2.3 Address Programming 49
5231 Stepl 50

5232 Step2 e e 50

5233 Step3d e 50

5.2.4 Overwrite-bit Programming 50
5241 Stepl, 50

5242 Step2 51

vi

5.3

5.4

525 MotorControl
Implementation of the MC33192
53.1 HardwareSetup
5.3.2 MC33192 Software
5.3.3 Softwaredesign
5.3.3.1 Imtialization
5332 TimerInterrupt...................
5333 Main...........
Summary e e e e e

RESULTS, ANALYSIS AND CONCLUSIONS

6.1
6.2
6.3

6.4

6.5

Imtroduction o0,
The MC33192 implementation
The POLIS implementation
6.3.1 Ptolemy simulations
6.3.1.1 Functional Verification
6.3.1.2 Timing Analysis and HW/SW partitions
Analysis e e
641 Background
642 Co-simulation
643 TheSMCsystem00.0u...
6.4.3.1 Timingbehavior
6.4.3.2 Hardware or Software
Conclusions00 iinieeine..

7 RECOMMENDATIONS FOR FUTURE WORK
8 APPENDIX

vii

Chapter 1

INTRODUCTION

Conventional system design methods involve specification of hardware and soft-
ware separately, requiring a pre-design partition into hardware and software. The
integration of the hardware and software is pushed toward the downstream of
system design. Since problems during testing or specification changes can only
be corrected by expensive redesign, this leads to time-to-market and cost glitches.
Hardware-software co-design tries to address such problems by the use of a com-
bined or unified representation of the system, complemented by co-synthesis, co-
verification and co-simulation of the system operation across the hardware and
software boundaries. Co-design could address systems with mixed hardware-
software specifications, or a general system specification. In any case, the co-
design flow includes system level simulation, hardware-software performance and
partitioning issues.

Typical application areas of embedded systems include consumer electronics,

telecommunications applications, automotive controllers, safety critical plant or
medical instrumentation, listed in increasing order of criticality. All such sys-
tems contain a CPU running software with application-specific functionality, with
interfaces to the environment, external hardware and in some cases other supervi-
sory software on a real-time basis. These considerations make it necessary to deal
with system level design issues rather than superior computing perfomance [1];
consequently, hardware-software co-design is the only alternative.

This thesis aims to understand the motivation for hardware-software co-design,
explore available tools for co-design, demonstrate the co-design methodology for
an embedded system application, and present the results of the implementation.

POLIS [2], a hardware-software co-design environment for control-dominated
embedded systems, was selected as the design tool due to its relevance to the
stepper-motor controller application, and its availability. The POLIS preferred
specification language ESTEREL and the simulator PTOLEMY were used for the
design. A software version of the stepper motor controller was generated using
these tools and after synthesis and simulation, was tested on the 68HC11 micro-
controller. Simultaneously, the hardware implementation of the stepper-motor
controller using the MC33192 was set up and the results of the two approaches

are presented.

1.1 Objectives

The main goal of this thesis was to demonstrate the hardware-software co-design
methodology for a stepper-motor controller and establish a set of design criteria
for system specification, architectural design, and hardware-software partitioning
to facilitate the co-design process. Towards this end, some specific objectives were
involved and these are briefly described below.

The relevance of hardware-software co-design for embedded systems was to
be studied. Existing methodologies for hardware-software co-design were to be
examined. A suitable co-design environment was to be chosen and used for the
purpose of the implementation. The hardware implementation using MC33192
was to be realized and compared to the co-design implementation. The co-design
flow used in the project was to be presented, along with insights gaiﬁed into system
design, hardware-software partitioning and typical trade-off issues. Current trends

and issues in hardware software co-design were to be presented.

1.2 OQOutline

This thesis is organized into seven chapters, beginning with this introductory
chapter. This chapter is followed by an overview of hardware software co-design
in general and embedded systems in particular. The next chapter describes the

co-design environment and design flow used for this project, namely POLIS and

its associated tools. The following chapter, chapter 3, deals with the software
implementation of the stepper-motor controller using the co-design environment.
The next chapter describes the hardware implementation, using the MC33192.
Chapter six presents the results of both the approaches. The next chapter dis-
cusses the analysis and conclusions of the entire project while the final chapter

presents some recommendations for future work.

Chapter 2

HARDWARE-SOFTWARE CO-DESIGN

2.1 A case for co-design

Traditional system design follows a sequential approach, called the ”waterfall”
model [9]. The design process begins with a system specification, (which may be
simply the functional requirements of the system). Partitioning of hardware and

software is done at this stage itself.

Software Build ~_ Software fixes
Specification Software -

\

System HW/SW ’ Yes [Build
Specification lntcngaet;?n & hardware

A

Hardware o Build
Specification Hardware

\i

(Long lead time)

Figure 2.1: Traditional Method Of Design

Figure 2.1 [9], illustrates this approach. Designers try to map most of the spec-
ification to software, and use hardware only for timing and other constraints. Once
this is done, as shown in the figure, the design process forks into two independent
paths, one for hardware specification and design, and the other for software. This
amounts to sending the hardware and software designers to separate work areas,
with little interaction between them, until each team is ready with their product.
Intuitively, this is a ludicrous beginning for the next design step, which involves
integration and testing of the two products into the overall system.

Current-day digital applications involve increasingly complex systems, and
contain both hardware and software components sometimes on a single chip.
These components often include programmable microprocessors, ASICs and hard-
wired devices or FPGAs. The market is highly competitive, ever increasing the
pressure to decrease time and cost of product design. With this scenario, the

traditional method suffers from obvious drawbacks, including the following.

e The pre-design partitioning of the system into hardware and software compo-
nents prevents optimization of the design by exploring alternative partitions.

e Until integration and test, incompatibilities between the hardware and soft-
ware portions cannot be found.

e Since hardware changes are not only expensive but also take time, only
software alternatives may be explored to fix errors.

e Since problems are discovered late in the design phase and cannot be fixed
completely merely by software modification, the resultant product is far from
optimal and may not meet the specification.

In other words, we require a concurrent and not a sequential method of hardware-

software design as shown in the Figure 2.2 [9]. This is commonly called co-design,

6

Hardware/software fixes

Y Y Y
System : HW/SW Yes ™ Build
| Architecture >
Specification mapping hardware

Figure 2.2: A Concurrent Method Of Design

and could be defined in many ways depending on the application. The key con-
cept underlying these definitions is, however, “developing hardware and software
concurrently”; (Hugo De Man in [11], Vijay Nagasamy in [10]) and “facilitating
communication between hardware and software teams” (Karl Van Rompaey in
[11]). This also means that hardware and software branches of specialization es-
sentially overlap [1], and [12] and requires cultural shifts in design methodologies;

however, we restrict ourselves here to the co-design methodology itself.

2.2 Methodology and Trends

Having decided that co-design is a very desirable methodology, we now describe a
general approach for hardware-software co-design, which may vary, according to
the application.

For this purpose, the co-design methodology is broadly decomposed into four
major tasks [3]. These are, system specification, architectural design, hardware-
software partitioning and iteration between hardware and software. The co-design

process is complemented by co-simulation and co-verification which precede the

final implementation. An overview of these tasks is presented here for the general

case. The next section deals with the specifics for embedded systems.

2.2.1 Specification

The functional requirements of the system are specified as the first step. The ideal
case is to be able to arrive at architecture-independent specifications, for maximum
flexibility during implementation. However, depending on hardware or software
components involved in the system, the specification could deal with different
levels of abstraction. The key is the unified specification of the entire system,
using a suitable modelling mechanism. This is the subject of extensive research,
and different techniques, models, and specification languages are continuously
emerging both commercially and among research communities. Some of these are
extended versions of C, extensions of HDLs [11], formal specification languages
(8], [13] and [14] and recently, a unified co-design language or the CDL [15].
(Others are LOTOS and SDL for communication protocols, CSP and OCCAM
for concurrent systems, StateCharts for real time systems, C, C++ and ADA for

programming, SpecCharts for mixed hardware-software systems and so on).

2.2.2 Architecture

Architectural design may be influenced by the current application, available re-

sources, or other constraints. The hardware architecture may contain one or more

processing units, memory subsystems, application-specific hardware blocks, (IP or
intellectual property blocks) and other programmable hardware. The designer’s
job is to select an appropriate combination of such components, for the required
functionality. Some tools which automate this process using cost and size param-
eters generated for the given functionality can be found in [16], [17], [19], [20],

[21].

2.2.3 Partitioning

In general,the system specification is modelled as tasks or processes [19], interact-
ing with each other. The partitioning step assigns each of these processes to hard-
ware and software components available from the previous step. The main issues
involved here are the granularity or abstraction of these processes, inter-process
communication, and required concurrency. Different automatic partitioning algo-
rithms [18], [20], [22] are available, which are based on cost, size or performance
parameters estimated for the given hardware or software. In some cases, partition-
ing may be done manually, as in POLIS. The designer makes decisions based on
these parameters considering timing, performance and hardware-software cross-

coupling issues.

2.2.4 Iteration Between HW /SW

The hardware-software partitioning process is an iterative one, till an optimal

design is achieved under the given set of constraints. Software offers flexibility,

while hardware may be essential for standard functionality or timing constraints.

Different hardware-software mappings of the system may give different results.

The path from the co-design process to the final implementation of the system is

supported by co-simulation and co-verification environments. These tools facili-

tate integrated simulation and verification of the hardware and software compo-

nents of the system using various techniques.

Table 2.1: HW /SW Co-Design Tools - A Summary

Name

Category

Application [

Platform

Source

POLIS
2]

Research
Software

Design environment
for control-
dominated embedded
systems

Unix

POLIS Project
Cadence Berkeley
Labs

Ptolemy
(25]

Research
Software

Extensible block
diagram environment
for signal processing,

communications and
and HW/SW co-design

Unix

Ptolemy Project
ucCB

Eaglei
(28]

Commercial

Virtual Systems
integration tool

for co-verification

in Embedded systems

Unix
Windows NT

ViewLogic'

Statemate
(14]

Commercial

Graphical Simulation
and software synthesis
tool for rapid
development of
embedded systems

Unix
Windows NT

i-Logix Inc

!Formerly sourced from Eagle Design Automation Inc.

10

2.2.5 Co-Design Tools

While different tools are available with different capabilities to support co-design,
these are domain-specific and often application-specific. Current research in the
area encompasses different aspects of hardware-software co-design from specifi-
cation languages to computational models to automatic partitioning tools. The
Table 2.1 provides a brief look at some of the developmental and commercial tools
available for co-design. Details relevant to embedded systems are presented in the

following section of this chapter.

2.3 Embedded Systems

The co-design methodology outlined in the previous section is described in de-
tail for embedded systems [3], [16]. An embedded system represents a reactive
system with a fixed functionality and whose behaviour depends on its interaction
with its environment. Often such systems could be very complex, comprising of
software, ASICs, microprocessors, FPGAs and analog peripherals. Co-design al-
lows concurrent development of hardware and software, offering great reductions
of time-to-market compared to software development after hardware fabrication.

We discuss the co-design tasks from the previous section, as applied to embed-
ded system design using the example of an engine-control unit hereafter referred

to as ECU, from [24].

11

2.3.1 Specification

Initially, the functionality of the system is specified. This is a set of system
requirements or the response of the system to inputs. In case of the ECU, the
function is to control the torque produced by the engine by timing the fuel injection
and spark, with low fuel consumption and low exhaust emission. The injection
time is computed by using air pressure, air temperature, throttle position, engine
speed etc. The ECU produces a suitable output to drive the actuators based on
this computation. We can thus divide the basic functionality into subtasks. This
functionality is mapped into modules by using a conceptual model [16]. This may
be done using various models like data flow graphs or finite state machines(FSMs).
A description of this model is then generated by means of a specification language.
At this point, the specification does not reflect any implementation detail.

The choice of a model depends on the application. For instance, for a signal
processing application, a dataflow model might be suitable. The FSM model
may be more applicable to control-dominated systems. Software systems may
need to be modelled as communicating sequential processes or CSPs [16]. In
short, the model should be most appropriate for the characteristics of the system.
While embedded system applications are diverse, certain characteristics [1], [16]

are common among such systems.
e Software with application-specific functionality
e State transitions responding to inputs

e Exceptions for interaction with environment or subsystems

12

e Concurrency

These characteristics require a FSM based model, extended into a model which
also provides for concurrency. [16] describes one such model, the PSM or a
program state machine model. The specification language Esterel, used for this
thesis uses a model based on the CFSM or the co-design FSM, described in the
next chapter. Once a description is generated, the specification is verified for

functional correctness.

2.3.2 Architecture

Typical embedded systems have complex architectures, consisting of different
types of processors and their peripherals, FPGAs, ASICs, and external sensors
or electro-mechanical devices. Often, the design is incremental, using standard
hardware parts or reusable software [5]. The selection may be between 16-bit and
32-bit processors, interconnection schemes like buses, or available alternatives for
custom hardware. The criteria could involve both technical and commercial trade-
offs.

In our ECU example, we may use a 32-bit CPU which receives the analog
and digital inputs from the environment, and directly produces actuations in the
form of PWM outputs. While this may be an easy approach, timing requirements
may not be met. Alternatively, we might use a 16-bit CPU and an FPGA which

produces the actuations. The third option may be to use a DSP to process inputs,

13

and an 8-bit CPU which computes the outputs and and FPGA which controls the

actuators [24].

2.3.3 Partitioning

As mentioned previously, the partitioning task involves the allocation of architec-
tural components to the functional operations. At this stage, co-simulation of the
partitioned design can help in performance analysis. Thus, if timing information
for a processor is available, then, the performance analysis can indicate whether
the design can meet all the system requirements. The advantage of co-design is
that flaws can be detected at this stage itself, and necessary re-partitioning or
even re-design can be done.

Once again coming back to our ECU, partitioning may be dictated by one of
several criteria. For instance if a variable is defined in the DSP, while a function
using that variable is defined in the CPU, we need to design a suitable interface or
bus for this purpose. Instead, it might be easier to define both the variable and the
function in the CPU. Another example would be whether we assign some of the
data processing functions to the CPU or use it only for computation. This choice
may be dictated by the processing power available or the speed of computation
required. As described in the previous section, this process is iterative. The
design is then synthesized to generate software code and hardware netlists. The

final stage of the design is the physical implementation using prototyping and

14

testing.

2.4 Summary

In this chapter, several important issues concerning hardware-software co-design
have been discussed. The need for co-design is established. A general methodology
for co-design has been described. A brief overview of existing tools and methods is
presented. We then discussed the co-design methodology specifically for embedded
systems.

However, hardware-software co-design is also riddled with some inadequacies.
The foremost of these, is the fact that co-design techniques tend to be application-
specific and diverse. No industry standard has emerged yet and the field abounds
with specification languages, co-simulation and co-synthesis environments and ver-
ification methods. In other words, there is no universal solution [3]. This presents
a challenge for designers both in terms of the choices to make, and also the required
learning curve for changing technologies.

For this thesis, we have chosen the POLIS co-design methodology, due to its
suitability for control-dominated applications. In addition, the POLIS system cou-
pled with the PTOLEMY simulation environment provides a platform for system
level design right from specification to final implementation. In the next chapter,
we describe each component of the POLIS co-design environment, for performing

each of the co-design tasks outlined here.

15

Chapter 3

THE POLIS SYSTEM

3.1 Introduction

POLIS is a co-design environment for control-dominated embedded systems and
has been freely available on the internet since 1996. The software was created
after almost a decade of combined effort by Magneti Marelli, a major European
producer of automotive electronics, the University of California Berkeley, and
many others [2]. The motivation for the POLIS project was to find solutions for

challenges facing the embedded system industry, some of which are listed here [5].

e Formal customer specifications allowing changes during design
e Use of high level languages for software design

e Hardware-software co-design and co-simulation instead of bread-boarding
for verification

e Design reuse

16

Embedded systems have to deal with changing product specifications, and simul-
taneously attempt to lower the design costs, while trying to reduce the time-to-
market. In order to achieve these objectives and address the issues listed above,
the POLIS project was conceived and implemented.

This chapter describes the POLIS co-design environment, including the Esterel
specification language and the Ptolemy simulation environment. We begin with a

description of the formal model used in POLIS, for system specification.

3.1.1 Formal Model

As discussed in the previous chapter, we require a formal model to specify the
system. This model is called the CFSM or the Co-Design Finite State Machine.
It is based on extended finite state machines, with a finite set of variables. Each
functional module of the system is mapped to a CFSM. The CFSM specification
is implementation-independent, and could represent either hardware or software
components. Figure 3.1,shows the CFSM specification of a simple example taken
from the POLIS users manual [4]. The operation of the CFSM is described later
in this section.

In a CFSM, the states of the internal variables as well as the outputs, are
updated by state transitions. The result of the transition is propagated to other
CFSMs or the environment. The communication between CFSMs is not by shared

variables, but by events. The authors of POLIS [5] call the model “globally asyn-

17

chronous and locally synchronous.” This characteristic allows for the specification
of systems consisting of hardware and software components, which exhibit asyn-
chronous communication.

POLIS uses an intermediate language called SHIFT, (Software Hardware
Interchange FormaT) to represent CFSM networks and the individual CFSM
behavior. The designer can specify the interconnecting netlist between CFSMs
graphically by using Ptolemy or by a textual netlist file.

Events are emitted by CFSMs or the environment by means of data or control
carriers called signals. The events are detected by one or more CFSMs. As events
are not buffered, the designer needs to take explicit measures in order that events
are not overwritten if transmitting and receiving CFSMs have different speeds.

These can be handshaking mechanisms, partitioning and scheduling choices.

key_on/
start_timer

key_off or
key_on/
alarm(0)

Figure 3.1: CFSM For Seat Belt Alarm

The Figure 3.1 shows the CFSM specification for an automobile seat belt
alarm function. Five seconds after the key is on, an alarm is sounded if the seat

belt is not fastened. The alarm beeps for 5 seconds or until the key is off or belt

18

is on. The transition labels use the “/” to separate the stimulus and reaction.
This specification can be expressed in a high level specification language with
CFSM semantics, in this case Esterel. The Esterel specification for this CFSM is
described later in this chapter. The next section describes each step of the POLIS

design flow.

19

3.1.2 The POLIS Design Flow

[Formal LanguagesJ

| System Behavior |

{Estimates |<—

ooy (B Bimr

| Optimized HW |

Partitioning

| Optimized HW |

Standard Components

| Physical Prototype |

Figure 3.2: The POLIS Design Flow

The Figure 3.2 from [4] depicts the various design steps involved in the POLIS
methodology. These individual steps are described in the following paragraphs.

We begin with a formal specification of the system.

20

3.1.2.1 Formal Specification

Designers specify the system using a high level language with extended FSM
semantics, in this case, Esterel. (Other such languages could be StateCharts [6],
and the so called synthesizable subsets of VHDL or Verilog.) An example of such

a specification is described later in the section on the Esterel language.

3.1.2.2 Translation

The Esterel files with extension .strl are translated to SHIFT format using the
strl2shift translator. The input files describe the CFSM behavior and auxiliary
information like type and constant definitions. The output contains the .shift
files for the entire system and .cfsm files for individual CFSMs. The SHIFT
files are hierarchical netlists containing blocks which can be CFSMs, functions
or other netlists, and describe the signals between communicating CFSMs. More

information about SHIFT can be found in [29] and [30].

3.1.2.3 Co-Simulation

The generated files are input to POLIS which creates synthesized C code to model
all the system components, independent of their final implementation. (The PO-
LIS design flow is managed using UNIX makefiles, allowing ease of use.) The
co-simulation framework uses this C code as the basis. The Ptolemy simulator is

used for this project. (A VHDL simulator could also be used [4].) Initially, a func-

21

tional simulation is performed to find and fix bugs. Then, a clocked simulation
can be run with approximate timing. The co-simulation depends on the mappings

obtained by the software synthesis step, which is done after partitioning.

3.1.2.4 Partitioning

The next step involves partitioning the design, i.e., mapping individual compo-
nents, or CFSMs, to hardware or software. This can be iterative and uses the
same user interface as co-simulation. Any number of alternative partitions can be

tested.

3.1.2.5 Software Synthesis

The software CFSMs are mapped to software structures including CFSM proce-
dures and an RTOS(Real-Time Operating System). The synthesis is performed
in two steps.

e First, the CFSM behavior is represented using an S-graph or software-graph,
which is similar to a control/data flow graph.

e Then, the S-graph is translated into portable C-code.

This C-code is optimized in a specific micro-controller-dependent instruction set
using a suitable compiler. In addition, a timing estimator provides estimates of
program execution times on a selected target processor.

The RTOS is application-specific, with user-selected scheduling algorithms.
Hardware-software interfaces in the design are automatically synthesised as part

of the RTOS by POLIS.

22

3.1.2.6 Hardware Synthesis and Prototyping

CFSMs selected for hardware implementation are mapped into abstract hardware
description formats like BLIF(Berkeley Language Interchange Format), VHDL,
or XNF (for implementation on FPGAs). A physical prototype of the system
can be obtained using the .xnf files and Xilinx FPGAs. Since a software version
is implemented for this thesis along with a hardware implementation using an

existing chip for a stepper-motor controller, this facility is not used for this thesis.

3.1.2.7 Other Capabilities

e POLIS also facilitates formal verification through a translator from CFSM
networks to synchronous classical FSM networks, for input to formal verifica-
tion algorithms. The system recommended by POLIS is VIS or Verification
Interacting with Synthesis (7], from the University of California at Berkeley.
This project does not include formal verification.

e POLIS offers some support or use of micro-controller peripherals like timers
and A/D converters. The currently supported micro-controllers are the Mo-
torola 68HC11E9 and 68HC11gauss.

23

3.1.3 System Requirements For POLIS

Table 3.1: System Requirements

Package Availability Disk space
POLIS 0.3 | Sun OS4 20-50Mb
(2] Solaris 2
DEC Alpha
PC Linux
Ptolemy 0.7 | Solaris 2.5 350Mb
(25]) HP-UX and others
Linux!
(with X-windows)
Esterel v Sun solaris 25-30Mb
(8] DEC
Sun 0S4
IBM AIX

Table 3.1 summarizes the system requirements for the POLIS system including
Esterel and Ptolemy. For this project, all the software was installed for Sun solaris
2.5. All the above packages can be freely downloaded from the world-wide web.

In the next section, the Esterel specification language is described and the CFSM

example mentioned before, is discussed in detail.

1Binaries contributed by others

24

3.2 ESTEREL

3.2.1 Introduction

Embedded systems could be classified under a class of computerized systems called
“reactive systems”. They continuously react to external stimuli from the environ-
ment and their response is mainly input-driven. Further, the output values could
be continuously produced from the inputs, as in signal processing applications.
This is called “data handling”. On the other hand, producing discrete output sig-
nals from input signals is called “control handling”. The stepper-motor controller
system falls under the category of control-dominated systems.

Esterel [8] is a specification language aimed at the control-dominated compo-
nents of reactive systems. Esterel affords a concurrent programming environment
required for reactive systems, as they interact concurrently with the environment

and are often made of concurrent modules communicating with each other.

3.2.2 Language Features

In a sequential program, an output is produced after some computation using the
input data. The programmer specifies the order in which the program statements
are executed. However, this model is inadequate for reactive systems, which ex-
hibit real-time interaction with the environment, where input/output sequencing

is important.

25

Esterel is based on a synchronous model, which accomodates this requirement,
where the program reacts instantly or synchronously with the input. This model
results in a distinctive language style for Esterel, involving timing concepts, and a
deterministic behavior. (A deterministic program produces the same output given
a particular input any number of times.)

In Esterel, signals are called events, which can be emitted and detected. An
output event is the status of an output, computed from a given input event,
which is the status of the input. These events are communicated in Esterel, by
“broadcasting.” This means, in a system with several modules, the emission of any
event is available to any module which is interested in that event. The emitting
module need not have information about the receivers. Thus, an event need not
be replicated in the system. This “broadcast semantics” distinguishes Esterel from
languages like VHDL.

Although Esterel concurrent modules are synchronous, as POLIS semantics
are globally asynchronous, there is a difference between the two. In POLIS, syn-
chronous behavior is available only till the boundary of a single CFSM. Composi-
tion of CFSMs is asynchronous.!

The basic programming unit in Esterel [27] is a module, with an interface
declaration and a body. The language has a host of useful constructs including
signal handling, looping, control statements, parallel constructs, and a wide variety

of temporal constructs. Esterel supports external functions in two host languages,

26

namely C and Ada. C functions were used for this thesis. Since it is not possible
to treat the entire language syntax here, the following example from [4] is used to
give an introductory idea to Esterel. The module listed here, essentially performs
the seat-belt alarm function, which was represented by a CFSM in the previous
section. The end.5 and end_10 signals are received from a timer module and

indicate end of the 5 second and the 10 second intervals.
module belt_control:
input reset, key_on, key_off, belt_on, end_5, end_10;
output alarm: boolean, start_timer;
loop
abort
emit alarm(false)
every key_on do
abort
emit start_timer
await end_5;
emit alarm(true);
await end_10;
when[key_off or belt_on];
emit alarm(false);
end every
when reset
end loop

The specification consists of an interface declaration and the body of the mod-
ule. The interface consists of inputs, outputs, constants and any external func-
tions. In this example, all the inputs except alarm are pure signals, i.e., they do
not have an associated value. The alarm signal has an associated true or false
value. This module is executed as a continuous loop which is restarted when-

ever a reset signal is received. The await construct is one of the many temporal

' As a result of this, certain features of Esterel cannot be used in POLIS. Some of these are
discussed in later chapters.

27

constructs offered by Esterel.

3.3 PTOLEMY

3.3.1 . Introduction

Ptolemy [25] is a software environment supporting the design of reactive systems
using heterogeneous modelling, and was developed at the University of California,
Berkeley. Ptolemy provides support for heterogeneous prototyping of systems in
areas like signal processing, communications and real-time control applications
among others. The key principle is the use of mixed models of computation,
realized by a specialized design style called domain, includiﬁg synchronous data-
flow (SDF), dynamic data-flow (DDF) and discrete event (DE) models, the first
two being used mainly for signal processing, and the last for communications and
control applications [26]. Some other domains are also supported. These domains
could be used for simulation or code generation. We first describe the Ptolemy
user-interface and briefly discuss the DE domain, which is used in POLIS for

co-simulation.!

! Apart from Ptolemy, the POLIS documentation describes the use of commercial VHDL
simulators or software simulation [4]

28

3.3.1.1 The Graphical Interface

The Ptolemy interactive graphical interface or pigi is a design editor for Ptolemy,
and allows the graphical construction of designs by connecting icons. This is based
on vem, a graphical editor for oct, which is the Ptolemy design manager.

Each domain consists of a set of blocks, targets and associated schedulers. A
design is represented as a network of blocks. These blocks can communicate
through portholes [26]. These blocks could be hierarchical, called stars, galazies
and universes from the lowest to the highest level. A target manages the simulation
or execution of the block, and is derived from the block. The simulation performed
by the target is governed by a scheduler which controls the sequencing of the
execution of functional modules in the design.

The pigi editor provides palettes containing icons for design blocks and enables
the user to create a graphical netlist or schematic for a particular design using
the icons. A target is generated for each design, which can then be graphically
simulated with several debugging options.

Screen snapshots showing some of the available icons are included in the Ap-

pendix.

3.3.1.2 The DE Domain

In the DE domain, the events produced by the blocks, which correspond to a

change in the system state, are represented by particle. The events are processed

29

by the schedulers in the order of their chronological occurence. Each event has
a corresponding time stamp. The DE domain is useful for high level system
modelling and contains the following sets of stars.

e Sources : They generate signals and can be used to represent external inputs

to the system. They include buttons, clocks, and various signal and function
generators.

e Sinks : These correspond to system outputs and include text fields, graphs,
and interactive displays.

e Control : These stars manipulate interconnections, and include forks, merges
and switches.

e Conversion : They include type conversion stars of integer to float and vice
versa.

e Queues, servers, Delays : Include delays and stacks.
e Timing stars : These include delay measuring and time-stamping functions.

e Logic stars : As the name indicates, these stars perform logical operations.

In addition, networking and miscellaneous stars are also available. Several
menus are available in the graphical editor for design and simulation. The same
menu commands can also be typed from the vem editor. Details of the commands

and the functionality can be found in the Ptolemy users manual [26].

3.4 Summary

In the current chapter, the POLIS hardware-software co-design environment has

been described in detail. The main features of the Esterel specification language

30

and the Ptolemy simulator have been discussed. A brief overview of the system
requirements for the software is also presented.

In the next chapter, the stepper-motor controller implementation in software,
using POLIS is described. As mentioned earlier, the functionality of the MC33192
hardware chip is replicated in software as far as possible, using the hardware-

software co-design methodology of POLIS.

31

Chapter 4

STEPPER-MOTOR CONTROLLER USING

POLIS

4.1 Introduction

As discussed before, the first step in the design process is the system specification.
Before we proceed to specify the system in Esterel, we need to understand the
functionality of the system. Then we proceed to divide the functionality into
suitable modules to be translated to Esterel. Thus, we describe the functionality
of the MC33192 and show how we adapt the same to our specification. Then, the
rest of the implementation procedure is described. We begin with the operation

of a basic stepper-motor, described in the next section, to provide the necessary

background.

32

4.2 A Basic Stepper-Motor

Stepper motors are very popular in computer-controlled systems as they eliminate
the need for feeding back positional information. The power source of the stepper
needs to be continuously pulsed in specific patterns which determine the speed
and direction of a stepper’s motion. The motor consists of stator pole pieces and
a rotor shaft. The motor operation is achieved by switching the magnetic field of
the stator coils causing the magnetic rotor to rotate based on the direction of the
magnetic field. Depending on the number of stator coils, the rotation steps of the

rotor and consequently the angular frequency can be controlled.

H% Q yB
ZEAN

Figure 4.1: Bipolar Stepper Motor

The Figure 4.1 shows a stepper motor which can have fifteen degree increments
in motion by suitably wiring the stator pole pieces and switching their polarities.
Depending on the number of the segments, very small angular movements of 0.7
to 1.8 degrees are obtained in practical applications of stepper motors. Because

of this fixed stepping angle, the position of the motor can be known at any given

33

time without feedback. This is the main advantage of stepper motors over other
dc motors whose position can only be determined by using shaft encoders.

The MC33192 chip is a stepper-motor controller suitable for driving bipolar
two-phase motors. In particular, the MC33192 has applications in automotive
control systems and is suitable for controlling loads in harsh environments using

the MI bus [31]. The functionality of the chip is described next.

4.3 Functionality of the MC33192

For the purpose of this implementation, the objective is to duplicate as many
functions as possible from the MC33192. Our specification will then reflect this
functionality.

The MC33192! [31] is a serial stepper-motor controller which can be controlled
by a master micro-controller MC68HC11, hereafter called the MCU, through the
MI bus. The MC33192 sub-systems can be broadly classified into two main units,

namely the MI bus controller unit and the motor driver unit.

4.3.1 MI Bus controller

This module deals with the push-pull communication sequences with the MCU
and acts as the interface between the MI bus and the motor driver. The signal

from the MCU consists of five data and three address bits and may be program-

1Data sheet attached in Appendix

34

ming or control instructions. Programming could be address or overwrite bit
programming.

Control instructions include full step or half step modes of the motor, and
clockwise and counter clockwise direction. Full step is achieved by energizing both
coil bridges in the motor driver circuit, while half step is achieved by energizing
only one at a time. The motor direction can be changed by reversing the coil

current direction. The bus controller functions are briefly listed here.

e Listen on the MI bus
e Convert the serial input signal to parallel

e Follow programming or control instructions from the MCU and send a suit-
able signal to the motor driver.

e Convert the status signal from the motor driver to serial

e Transmit the status output signal

In addition to this, the bus controller also performs noise and biphase detection
of the input signal received from the MCU. So far, these functions have not been

duplicated in software.

4.3.1.1 Motor driver

Depending on the instruction received, the motor driver sends a status signal to
the MCU through the bus controller and outputs to the two motor coils. The
status signal could indicate the following.

e Normal operation
e Programming

e Selection Failed (the MC33192 could not be selected)

35

In addition, the status signals include two diagnostic signals for thermal and

back emf status. This functionality has not yet been incorporated.

4.4 Specification in Esterel

The functionality described in the previous section was specified using the Esterel
specification language. Initially, the external interfaces of the entire system were
defined. This is the first level of abstraction. Then, the required functionality
was divided into suitable modules, and the interfaces of each of the modules were
determined, for the second level. This is described here, along with assumptions
made whenever required. The system is called SMC, for stepper-motor controller.
(Whenever inputs or outputs are indicated without a data type next to them, they

are pure signals, which carry no value.)

4.4.1 Level 1 : External Interface

4.4.1.1 Inputs

The MCU ‘sends programming and control instructions to operate the SMC. Pro-
gramming instructions include address programming, and overwrite bit program-
ming. Control instructions can be direction control, and half step or full step
instructions. These instructions are all sent through the MI bus interface. The

MI bus mode is determined by bus voltage levels which are also inputs to the

36

SMC.

4.4.1.2 Outputs

The SMC communicates status codes to the MCU in response to the corresponding

MCU instructions. The SMC also provides drive signals to drive motor coils.

4.4.2 Level 2 : System Modules

The system is modularised based on each of the functions that it performs. These
may be subsequently combined if found necessary.

The functionality of the SMC considered here, excludes noise and biphase
detection. The remaining functions are described below as modules. As before,
the interface of each module, i.e., the inputs and outputs of each module are listed
and described briefly. Additional signals which are used for debugging purposes

only, are listed in the Appendix, but not repeated here.

4.4.2.1 TIMER module

This module generates the timeslots required for the MI bus protocol. Commu-
nication on the MI bus is performed by the MCU by sending data in a specific
format, with each bit being coded, and sent in a fixed time slot of 25 micro seconds.

The timer module generates a signal at the end of each interval.

e Inputs

Esterel has no physical time attributes. However, we use a millisecond time
unit generated by an absolute clock, provided by Ptolemy. This input is fed

37

into a 68HC11 free-running counter(frc), as the ECLK signal. Then, the
count signal is received by a 68HC11 output-compare(oc) unit, which pro-
duces signals whenever required time is elapsed. These modules are available
as ready-to-use stars from the Ptolemy palette as 68HC11 peripherals. The
oc unit receives a start time value from any other module, awaits the time
delay and emits an output.

input ECLK, OC3_START (integer) (We use the output compare unit 3 of
the 68HC11.)
e Outputs

The oc unit receives a start time value from any other module, computes
the time delay and emits an output.

output OC3_END

4.4.2.2 BUS module

This module manages the communication between the MCU and SMC and con-
tinuously watches the time and the bus voltages. For duplicating the serial signals

from the MCU, we use a parallel-to-serial converter function.

e Inputs

Depending on the MODE signal, the SMC is in programming or control
mode and accordingly the bus module receives status signals from the re-
spective modules. The BUS_SIG input determines the bus level.

input OC3_END

input MODE (boolean)

input PROGRAM_STATUS(integer)
input CONTROL_STATUS(integer)
input BUS_SIG(boolean)

input RESET

e Outputs

The PULL_FIELD value corresponds to the status signal transmitted to
the MCU. The 0o_.BUS_SIG is the bus level transmitted to the MCU. The

38

PROGRAM_CODE and CONTROL_CODE signals are transmitted to the
program and control modules respectively.

output OC3_START (integer)
output PROGRAM_CODE(integer)
output CONTROL_CODE(integer)
output PULL_FIELD(integer)
output oBUS_SIG(boolean)

4.4.2.3 PROGRAM module

This module calls a C function to perform either address or overwrite bit program-
ming. As mentioned before, this module receives the PROGRAM_CODE signal

from the bus module and returns the PROGRAM_STATUS.

e Inputs input PROGRAM_CODE(integer)

e Outputs output PROGRAM_STATUS(integer)

4.4.2.4 CONTROL module

This module calls a C function to perform control operations based on MCU
inputs. Control operations can proceed only when programming is done. As in the
case of the program module, the control module receives the CONTROL_CODE
and returns the CONTROL_STATUS to the bus module. In addition, the control

module also generates four motor output signals.

e Inputs
input CONTROL_CODE

39

e Outputs

output CONTROL_STATUS(integer)
output MOTOR_COIL_A1(integer
output MOTOR_COIL_A2(integer)
output MOTOR.COIL_B1(integer
output MOTOR_COIL_B2(integer)

4.5 Compilation

The complete Esterel file listings for the project are attached in the Appendix.
The files were compiled using the strl2shift command and input to POLIS. The
shift files are read into POLIS using the read_shift command. Then, the build_sg
and the sg_to_c commands build the software graphs (S-graphs) and synthesize
the C-code respectively. The write_pl command is used to generate the Ptolemy
simulation files. These commands can be given in POLIS manually or one can
use unix makefiles with suitable macros. The makefiles are convenient to use

especially for large projects.

4.6 Functional simulation in Ptolemy

The .pl simulation files generated previously, are input to the Ptolemy environ-
ment. At first, the pigi graphical editor is used to enter a graphical netlist of
the system, by instantiating individual modules and inter-connecting them. As

discussed before, the architectural hierarchy in Ptolemy is named with galaxies

40

and stars, with a galaxy being the top most level. Thus in this system, we have
an SMC galaxy, comprising of the timer, bus, control and program stars in
addition to some ready-to-use Ptolemy stars for timing and other utility genera-
tion.

The testing of the galaxy is performed using a target of Ptolemy, created as
a test bed, containing signal sources, and various displays. Since the SMC is
designed for communication with an MCU, the schematic includes an mcu galaxy,
consisting of the following modules. The italicized terms will be used to refer to

these modules hereafter, for convenience.

e The mcu module mcu
e The OC2 timer (output compare 2) mcu timer
e The bytein module for parallel to serial conversion ptos

e The OC1 timer (output compare 1)ptos timer

The operation of these modules is described in chapter 6, while presenting
simulation results and details. These modules comprise the driver for the SMC

software.

The schematics, or the graphical netlists are included in the Appendix, along
with simulation runs. For functional simulation, all the stars were mapped to
hardware and tested for an 8 MHz clock. The 68HC11 peripherals used are the
free-running counter and the output compare unit 3. These stars are part of
the timer module. These modules are customized by selecting suitable Ptolemy
parameters like the clock pre-scaling factor of the timer counter. The simulation
is run in the debug mode and provides textual or graphical animation of the run.
The following steps describe the functional simulation procedure in detail.

e Create the SMC schematic, by interconnecting the timer, bus, program and
control stars. These stars are created using the make star command in
Ptolemy. The timer stars, viz., frc and oc_prog_rel, corresponding to the

41

free-running counter and the output compare unit, are instantiated from
the POLIS-PERIPHERALS palette. Include the mcu galaxy, which in turn
contains the schematic of its component modules mentioned above.

e Create the test SMC universe, using the SMC galaxy, for the purpose of
running the simulation. Suitable sources and sinks are connected to the
galaxy in order to run the simulation and display the outputs. These are
chosen from the DF signals and sinks palette.

e Enter all the parameters for each item, including “HW” implementation,
CPU clock, 68HC11 processor and Round_Robin scheduler. These screen
snap-shots are also included in the Appendix.

e Verify the functional correctness of the simulation by testing the output
for various inputs. In the chapter 6, the test bench and the results of the
simulation runs are presented in a tabular form.

4.6.1 Hardware/Software mapping

Ptolemy offers a convenient platform to perform functional simulations without
actually implementing a design, by mapping each module to hardware or software.
In the SMC design, it could be noticed that once the implementation was chosen as
software, the simulation slowed down. Also, the performance of the timer module
and the bus module improved substantially with the hardware implementation.
Thus, the simulation process provides a useful aid to the decision-making process
of choosing a hardware or software implementation of a given module.

Users can test the simulations for any number of implementations and choose
the most suitable one depending on performance and timing requirements. For
this project, since the implementation is in software, this step is not explored

further, and only test cases are presented in the results.

42

4.6.2 Software Synthesis and the RTOS

Once the simulation and design partition are satisfactory, the next step is to
translate the Ptolemy netlist into a SHIFT netlist. This is done using the pt/2shift
command. Alternatively, the makefile can be modified suitably to generate this
file [4]. This shift file is read into POLIS, and synthesized into software graphs
(S-graphs) and finally C code.

An S-graph is a directed acyclic graph or dag with a set of vertices. It is
a processor-independent optimized implementation of the desired behavior and
is used for cost estimation in terms of execution time and code size, for a given
processor. Each vertex of this graph corresponds to a statement of the synthesized
C-code. The cost estimator appends the execution times against each statement
of the C-code. [4]

Then the gen_os command is used to generate application specific the real-time
operating system (RTOS). The RTOS consists of a scheduler and I/O drivers for
the design. For this project, as the target micro-controller is the 68HC11 on a
handy board, (described in the next chapter) the system setup files and hardware
initialization files in the POLIS libraries were customized accordingly. Parameters
which need to be modified include the memory map and I/O assignments. The
gen_os command offers suitable options to use modified versions of the library
files.

The steps involved in software synthesis and RTOS generation are described

43

in the following list.
e Translate the Ptolemy netlist into a SHIFT netlist.
e Read the SHIFT file in polis.

e Set the architecture to 68HC11. (These parameters are easily specified using
the makefile.)

e Use the timing and cost estimation commands in POLIS to generate cost
estimates for each module on the specified processor. This is useful if the
designer needs to choose between various processors.

e The build_sg command is used to build the software graphs for each of the
modules. These are then converted to C-code using the sg_to_c command.
The C files are generated in the user specified directory.

e The RTOS is generated using the gen_os. Each software CFSM results in a
software task. POLIS offers commands to customize the RTOS to implement
interrupt routines and configure I/O ports for the target micro-controller.
The micro-controller peripherals used in the simulation are implemented as
initialization routines called by the RTOS.

e The final step is to make executables for the target micro-controller. For
this project, the Introl compiler was used with the introl-compatible make
files generated by POLIS. The individual C files are compiled and linked
with the RTOS to make an executable for the 68HC11.

Since the SMC is entirely mapped into software, the hardware synthesis and pro-

totyping support in POLIS are not described here.

4.7 Summary

This chapter deals with the main focus of this thesis, which is the hardware-
software co-design methodology of POLIS as applied to the stepper-motor con-
troller application. To begin with, the specification of the SMC was described

in detail, for the overall system and for the individual sub-systems. Then the

44

Ptolemy simulation procedure, and hardware/software mapping were discussed.
The previous section described the software synthesis step which involves many
hardware-specific steps, in this case for the 68HC11 micro-controller. The re-
sults of this implementation are presented in Chapter 6. In the next chapter, the

implementation of the SMC using the MC33192 is described in detail.

45

Chapter 5

THE MC33192 IMPLEMENTATION

5.1 Introduction

The MC33192 stepper-motor controller generates four phase signals to drive two-
phase motors in half or full step mode. (Full-step involves enérgizing all stator
coils, while half-step provides for a smaller angle of rotation by energizing only
some stator coils of the stepper motor.) The data sheet of the MC33192 [31]
describes the operation of the chip in detail. We discuss the main aspects of
functionality here.

The MC33192 belongs to a family of the MI-bus or the Motorola Interconnect
bus devices. The MI-bus is normally used in automotive electronics to control
loads in a harsh environment. A master MCU can control several devices on a

single MI-bus.

46

5.2 Main Features of the MC33192

The functionality of the MC33192 can be divided into two main units, viz., the MI

Bus Controller and the Motor Driver [31], [32]. The MI Bus Controller

performs the communication with the MCU, while the Motor Driver converts

the MCU instruction to the appropriate motor coil signals. The figure 5.1 [32]

shows these two units in the MC33192 block diagram. We now take a closer look

at the MI bus communication between the MCU and the slave, i.e., MC33192.

Mi Bus Controfler ! Motor Driver
osc | Oscillator 1
4 T |640kHz 1
I Noise Detector '
Divider |—»{ Bi-Phase Divid
+5V vicer Bi-Phase Prog —l ﬁ_-er_ !
10k N B

' +5V R%um

Programming Logic]
on yvos . i '
ess

Programmed T 1

1 IDual Bridge Driver

Latch 3 &

I_ ——|Motor Diagnostic

Ml @ {> Serial to Parallel Register :
4

f:i]—<]— Parallel to Serial Register J-22<H2 :
L Status [e 1
Encoder e
1

Figure 5.1: Stepper Motor Controller Block Diagram [32]

47

+VBatt
Gnd

L
L12
L21
L22

5.2.1 MI Bus Protocol - Message Format

The MI bus protocol uses a Push-Pull technique for message transfer. The push
sequence is essentially the message sent to the slave device by the master, while

the pull sequence refers to the message received by the master.

Le |
r =
e Push Fed Pl o
: Push Syne Data Address : D2 End-o-Frane
—r— il —pi——pl
| o I 11 I I
M- Wre 3|'/'\/'!'!'X:X:!][XI!][X:XI[Xl.I'EIX?'\./'\./""\..ﬁ'_r_
I Iy P2 a4 ts et g ol 1l2ddl
| | [| |
:sm:wno D D2 DB D& A A AR :’0“1:828180| sun:
NRZ |
| | B-Phase Coded || Coded | Oacllakr |
| | Pul e —7¢—> Frequency
' RN
anl mps LN : |
T T i
PushPul -4— {
Funcin ——— Push " 1
| Srte e
Strabe s

Figure 5.2: Message Coding In The MI Bus Protocol [82]

The messages have a fixed format. Figure 5.2 from [32] shows these sequences.

The components of the message are as follows.

e Start bit The MCU takes control of the bus by issuing a start bit, which
holds the MI bus at a logical zero state for three consecutive time slots.

o Push Field The push field contains the MCU message with a push-sync bit,
five data bits and three address bits, followed by a pull-sync bit, as shown
in the figure 5.2.

o Pull Field The pull field contains the serial data read by the MCU from the
slave device. It contains three status bits and an end-of-frame signal.

48

5.2.2 Message Coding

The push field bits are coded using the Manchester bi-phase code. The bi-phase

code uses two time-slots to encode a single bit.

21y -

is
(Logic *17)
Push Fleld

Coded Bits | l .

01234507012345670

f__i_m-m-

PV .

Figure 5.3: Bi-Phase Code [32]

|
I
50V I
|
|

Figure 5.3 shows the logic levels “1” and “0” represented using bi-phase code.
This enables bit-wise error detection by the slave device which uses an exclusive-
OR detector circuit for the push sequence.

The pull field uses a non-return to zero or NRZ code. This encoding uses a
high value represents logic “1” and a low value represents logic “0”.

-

I

5.2.3 Address Programming

Each MC33192 on the MI bus is programmed with a specific address by the MCU.

The address programming sequence is performed in three steps.

49

5.2.3.1 Step 1
e The MI bus is supplied at 12 volts.

e The MCU pushes the address to be programmed, with the
data bits set to 0.

e The MCU checks the status bits for the programming code 110.

5.2.3.2 Step 2

e The MI bus remains at 12 volts.

e The MCU repeats the instructions in step 1.

5.2.3.3 Step 3
e The MI bus is supplied at 5 volts.

e The MCU pushes the address to be programmed, with the
data bits set to 0.

e The MCU checks the status bits for the OK code 100.

Steps 1 and 2 are repeated until the 110 code is received. All three steps are

repeated until the 100 code is received.

5.2.4 Overwrite-bit Programming

This is performed in two steps.

5.2.4.1 Step1
e The MI bus is supplied at 12 volts.

e The MCU pushes the address to be programmed, with the data bits set to
0 except D4, which is set to 1.

e The MCU checks the status bits for the programming code 110.

50

5.2.4.2 Step 2
e The MI bus is supplied at 12 volts.

e The MCU repeats the instruction in step 1.
e The MCU checks the status bits for the OK code 100.

Steps 1 and 2 are repeated until the OK code 100 is received. Programming

failure occurs if the necessary code is not received after 8 repeats.

5.2.5 Motor Control

The Motor driver unit of the MC33192 consists of two H-bridges to provide the
motor drive signals. The H-bridge circuits are described in the device data sheet
attached in the Appendix [31]. Essentially, the when only one of the bridges is
active, the motor is in half-step mode, and when both are active, the mode is
full-step. The direction of the motor is controlled by the sequence of the current
direction in the H-bridges.

Once a device is programmed, the MCU issues control instructions. The five
data bits in the push field are used to determine motor direction and the step

mode.

51

5.3 Implementation of the MC33192

5.3.1 Hardware Setup

The figure 5.4 shows the hardware setup of the implementation [32]. The MCU
board used here is a handy board [33] with a 68HC11. The figure also shows the
MI bus interface, which consists of a single npn-transistor.

Figure 5.5 [33] shows a block diagram of the handy board, while figure 5.6 [33]
shows a schematic Aof the handy board.

The user interface consists of the following:

e Inputs The program_enable is a user input to begin prbgra.mming. The
direction, address and step are user inputs to control the motor direction,
address to be programmed, and half or full step size respectively.

e Outputs The program status bits indicate the current status of the program.
The meaning of the status bits is defined as per table 5.1 [31] below.

Table 5.1: Program Status Bits
S2 S1 S0 Status

000 Not used

001 Enable programming

010 No back emf

011 Not used

100 Normal

101 Thermal

110 Programming

111 Error

The signal from PD2 of the handy board is used to set the MI bus at 12 volts for

the programming sequence.

52

5.3.2 MC33192 Software

As mentioned before, the software to drive the MC33192 was developed on the
MC68HC11 microcontroller for this project. The software was developed in as-
sembly language! and downloaded on the handy board using the Interactive-C (34]
binary format. The next few paragraphs describe the design of the software pro-

gram. A complete listing of the program is attached in the Appendix.

5.3.3 Software design

The software program is divided into three modules, viz.,
e Initialization module
e Timer Interrupt module

e Main module

These individual modules are now described.

5.3.3.1 Intialization

This module performs the following tasks.

e Initialize I/O ports, reset timer and output compare unit
¢ Initialize variables and stepper motor parameters

e Initialize timer interrupt routine

e Set controller mode to program mode or control mode

e Set initial push-sequence depending on control or programming mode and
user-inputs.

1The assembly code is written specifically for use with Interactive -C.

53

5.3.3.2 Timer Interrupt

The timer interrupt module is used to generate an interrupt request every 5 msec,
and execute the appropriate timer interrupt service routine. For this purpose,
the output compare function of the 68HC11 is used. Whenever the free-running
counter of the MCU matches the value in the output compare register, an interrupt

request is generated and it is serviced by an interrupt service routine.

5.3.3.3 Main

The main execution module consists of the core of the software program. Each
time the timer interrupt is generated, control is transferred to an appropriate
interrupt service sequence in the main module.

In the interrupt service routine the MCU issues the required instruction, reads
the status information and prepares the next instruction. Then, the address of
the interrupt service routine to execute the next instruction is updated. Then the
program control passes once again to the timer interrupt module to generate the
next interrupt.

The figure 5.7 describes the program operation in the form of a flow chart. The
key steps in the main module, which are the transmission of the push-sequence,

and the analysis of the pull-sequence, are described further here.

5.3.3.3.1 Push Sequence As shown in the figure 5.7, once the initialization

of the program is completed and the mode of the controller is set, the control of

54

the program passes to the main module at the next timer interrupt.

The first step in the main module, is to convert the push sequence to bi-phase
code, and transmit it to the slave in a fixed time. Each message time slot used
for this project is 25 micro seconds, as recommended in the MC33192 data sheet.
At the end of the push sequence, the MCU listens for the pull field sent by the

slave device and this is analyzed as follows.

5.3.3.3.2 Pull Analysis The purpose of the pull analysis is to determine the
next push sequence and display the status information to the user. The pull-field
status value returned by the slave device corresponds to one of the following two

cases:

Case I The status corresponds to programming or normal operation. In this
case, the push-sequence is updated and the status if displayed to the user. The
interrupt service routine is updated to perform the next step in the motor control

or programming, at the next timer interrupt.

Case II The status corresponds to any of the abnormal conditions listed in
table 5.1. In this case, the push-sequence is not updated, the corresponding error
code is displayed to the user, and the control is transferred to the timer interrupt
software directly. The next timer interrupt does not cause any data transmission

to the slave device. Normal operation continues only after the error is fixed and

the MCU is reset.

55

5.4 Summary

This chapter deals with the stepper-motor controller implementation using the
MC33192. To begin with, the main features of the MC33192 operation and the MI
bus protocol were explained. Then, a description of the hardware setup with the
necessary schematics was presented. We then described the design and implemen-
tation of the software program to control the MC33192. This chapter concludes
the description of the two approaches to implement the stepper-motor controller
used in this thesis. These are the software implementation using POLIS-Esterel-
Ptolemy environment, and the hardware version using the MC33192. In the next

chapter, the results of these two implementations are presented, and analyzed.

56

o

TBLEEON

O M e n U‘

sandano zo030m

Latd
—

[ewnduy zeen |

I

LATAT AT ITALT 20 AL

Figure 5.4: Hardware Setup For The MC33192

57

009%0 Peay

=0
VA = 0009%0 @3TIM *dddLx0 03 peax
€A = 0005X0 peay *810A0 e 103 mo1 ® JO s3Tq axe ur
ZA = 000SX0 @3TIM WAY3I 32103 03 Op 03 Jeym Teatbta pue suolang
1A = 000VX0 Peay SMoys aTqel STYJL "SMOT 8yl uo ,X 3Td, 3yl
0A = 000VX0 @3TIM SATIOR BIB GA YBNOIUI 0X :S930N
[P e m ” m m,d, o M ,] 91LId/dOLS LIIE/INVLS
EEE SiSeeke
= RN -3
au] SRREERIE BEEzrkic _
E LI IHEEE I
SoTeuy uz Teatha [O®
] -

y¥d/po0L

$330d I030K

Figure 5.5: Block diagram Of The Handy Board [33]

58

69

9°'¢q 2an31g

[gg] ArowLIA puy NdD JO d1yewaydg

vd [DO—

4l 2o
o1 [OD—9
10409 G971 w0 H—
Indino ozaid sooLH—

!

Janigoa) Y| tou [

201 [O—
sindu; [eybip

ZiLsyEZ 1PSNI00
9999990V PSISSE
110000dA /SO 1L
11111 1L S IR

sou [O—

sadanq ozaid
18RS

B — O

sindu|

Bouy 0"INV

il i

Ccivigs 2EYS9L Qv /1L
vesd YVYVYYYY 40820
1

ddddddd 4004

3333:1%00S8 /X
ddddAAANAYIE3

voon [+

™l T .
™ 4 38
Ague doy 111y T 111 §8
4 QxL -
x
- . ;am oewe; ‘opeay 2xp
sr &‘ia e X
wan [O— 4 ISON
- =E
"] ¢4 WOI6s Indino sojoW & - 1 S
———C1 w waes induy Bp =
? As+

s

—] ounou
| M 200
1354~
——C1
d1001-95229
J{
—g
143
! .
£4}
1) -
o0l
& I v £260HYL
« ’ v
‘ - L LY
< B |= : y 9y QL7
2 3 ast5
F: i
I' 14 Y ar
14 H g
L] 3 T4 s
LY y =
| O e LT
.) J
e——— L] L]
r 3 =
{ Z:H 5 C unevan
l
' ZCIOHNL ZELORNL
D
Y} 9 8
1)
1] un an
ZEIOHYL

v 135~ -

geTisa
an

START

r———= -—= INITIALIZATION
|
| Initialize /O and :
| Parameters |
| |
Set Mode
TIMER INTERRUPT : Program/Control | |
CENNS CNIID GENES GENSD GENED GIEED GEEND (MEED GES G L ﬂ- L
jir-——"/——/——= ___-—_-i MAIN
| | 'nterrupt Request :: Interrupt Service |
| |
: Transmit PUSH :
| |
| |
I |
| PULL Analysis |
I |
| |
| | case] :
|
| |
I Reset Timer |
| |
I |

Figure 5.7: The Software Program

60

Chapter 6

RESULTS, ANALYSIS AND CONCLUSIONS

6.1 Introduction

In the previous two chapters, two different implementations of a stepper-motor
controller have been described. One of them used an existing hardware chip,
the MC33192, and the other used a hardware-software co-design approach. In
this chapter the results of the two implementations are presented and they are
analyzed with respect to some of the issues involved in hardware software co-
design. First, we discuss the results of the MC33192 version, and then the POLIS

implementation.

61

6.2 The MC33192 implementation

The performance of the MC33192 software was verified for specific inputs and
outputs as per the specification. Table 6.1 indicates these inputs and outputs.

The motor modes are achieved as follows:

e step=0/1 indicates half/full step.
e dir=0/1 indicates clockwise/counterclockwise (cw/ccw)

e addr=0/1 indicates the chip address is 2 or 4. (arbitrary)

The step sequences shown in the table are for cw operation. They are reversed
for ccw operation.

Table 6.1: MC33192 Testing
MOTOR mode | Program status' | Coil outputs?®
Not running Programming None
Half step OK HH
HZ
HL
ZL
LL
LZ
LH
ZH
Full step OK HH
HL
LL
LH

In the next section, we discuss the POLIS implementation.

1The status codes are listed in table 5.1
2H, L, Z indicate forward, reverse and high impedance states of the coils

62

6.3 The POLIS implementation

As before, this implementation will be referred to as the SMC(stepper-motor con-
troller). The results of the SMC are presented in two sections - one the Ptolemy

simulation results for various test conditions; and the other the test results using

the 68HC11.

6.3.1 Ptolemy simulations

In order to test the Ptolemy simulation, a set of important criteria were laid
down. These were necessary to ensure that all the critical aspects of the design
were tested, before proceeding with implementation. This is in keeping with one
of the goals of this thesis, i.e., to explore the POLIS hardware software co-design
methodology.

As described in chapter 3, Ptolemy offers two useful tools, in addition to other
displays, to trace simulation runs; These are the firing file and the overflow file.
The location of these files can be specified as parameters for the test bed universe.
These files provide two key sets of information for the simulation. The firing file
indicates the time stamp of firing of all software stars. The overflow file on the
other hand, indicates all the missed events for each module, which may occur due
to asynchronous operation of the system modules. With this background, the

following objectives were to be achieved through the tests.

e Verify functional correctness.

63

e Timing analysis by varying clock frequency and communication time-slots.

e Explore various hardware software partitions. Compare an all software sim-
ulation to a combined hardware/software partition.

We now discuss each of these in detail. The second and third items in the
above list of criteria have been combined, as timing behavior is also dependent on

whether a particular module is implemented in hardware or software.

6.3.1.1 Functional Verification

The test bench for functional verification was based on the operation of the SMC
itself. This constituted testing the outputs corresponding to each input in the
control or programming modes. The control panel schematic indicating this inter-
face for the test bed is attached in the Appendix. In all cases, the operation was
as expected. Table 6.2 indicates the results obtained for the simulation. For the
functional simulation, all the modules were mapped to hardware. The overflow

file was verified to ensure that no events were missed.

6.3.1.2 Timing Analysis and HW/SW partitions

For this thesis, the final implementation of the SMC is software running on the
68HC11. Thus the clock-frequency of the target micro-controller was already
known to be 8 Mhz(crystal frequency), with a system clock (ECLK) of 2 Mhz.

However, in order to emulate a real world design, where architecture decisions have

lew: clockwise, ccw: counter clockwise, H, L, Z indicate forward, reverse and high impedance
states of the coils

64

Table 6.2: Functional Simulation Using Ptolemy

Mode Motor status' | Coil outputs A, B Comment
1 (Programming) | Not running None Pull value=6;
Addr value = 2 or 4
0 (Control) Half step HH step=0;The sequence
HZ is reversed
HL for ccw.
ZL
LL
LZ
LH
ZH
0 (Control) Full step HH step=1;The sequence
HL is reversed
LL for ccw.
LH

to be made by designers, the SMC behavior was analyzed for alternative clocks,
and with alternative partitions.
some partitions and clocks. This is followed by a brief explanation of the results.
The primary goal of this exercise is to gain insight into the uses of the Ptolemy

simulator and the criteria for design optimization. These issues are discussed

Table 6.3 indicates the results obtained for

towards the end of this chapter in the analysis and conclusions sections.

65

Table 6.3: Clocked Simulation Using Ptolemy

Partition CPU clock | Time slots | Step cycle
All HW 500ns 200/25u s | > 250u s
All SW! Sus 200/25u s | 4.5ms

2us 250/254 s | 3.6ms

1ps 250/25u s | 5.1ms

500ns 275/254 s | 10ms
All SW 500ns 50/25 us | 5ms
except mcu, bus

Table 6.3 presents the results of the time-based simulation of the SMC system.
The partition indicates which modules are mapped to hardware, and which to
software. The CPU clock corresponds to the ECLK signal. The two time slot
values correspond to the push transmission time slot and the pull reception time
slot. The step cycle corresponds to the time taken for transmitting a push sequence
and receiving status bits. All the values in the tables only specify only upper or
lower limits of the timing parameters. Any values which are suitable multiples of
the existing values would also provide similar results. The next section presents
a detailed analysis of the above results.

The all-software partition is used to generate the downloadable file for the
68hcll using the POLIS makefiles, as described in chapter 4. In the next section

a detailed analysis of each of these results is presented.

1The 68hcl1 peripherals(timers) are mapped to behavioral mode

66

6.4 Analysis

We now examine the co-design approach used for this thesis, in the light of the
results obtained for each implementation of the stepper-motor controller. In par-

ticular, the focus is on co-simulation and hardware/software partitioning.

6.4.1 Background

It is in order here, to note some important characteristics of the DE domain in

the Ptolemy simulation [26].

e Time refers to simulated time.

e The simulation is event-driven with each event being time-stamped and
queued in a chronological order.

e The DE scheduler processes events in the queue at run-time and fires or
executes the appropriate star.

As described earlier, the “firingfile” indicates the time stamps of the execution
of software CFSMs. An excerpt of the firingfile looks is included next.
test_hbSMC.hbSMC1.hbMCU1.hbmcul: 0 0 start
test_hbSMC.hbSMC1.hbMCU1.hbmcul: 290 -1 end
test_hbSMC.hbSMC1.hbbusl: 7616 0 start
test_hbSMC.hbSMC1.hbbusl: 7771 -1 end
test_hbSMC.hbSMC1.hbMCU1.hbmcul: 7771 0 start
This shows the name of the star, and the time stamp for the execution. If a

star takes too long to respond to an event, the event may be over-written by the

67

time the star is ready. These missed events or "overflows” can be tracked down
using the overflow file, which indicates which events are missed. Then the timing
parameters of the module in question can be suitably altered in order to achieve
accurate responses. It is necessary to mention however, that some missed events
could be insignificant, while others may be critical. An excerpt of the overflowfile
is included next.
test_hbSMC.hbSMC1.hbMCU1.hbbyteinl: 17690 e_clock
test_hbSMC.hbSMC1.hbMCU1.hbbytein1: 19130 e_clock
test_hbSMC.hbSMC1.hbMCU1.hbbyteinl: 20090 e_clock
Here, the star name, the time stamp of the event and the event name are indicated.
Also, as mentioned before, the POLIS system exhibits asynchronous execution
of concurrent modules. Thus, if synchronization is required between such mod-
ules, this can be achieved using explicit handshake mechanisms or other suitable

interfaces.

6.4.2 Co-simulation

In a system with hardware/software modules, the co-simulation environment pro-
vides a useful tool to verify the system behavior and optimize design criteria,
without actually building the system. Some of these are

e Choice of HW/SW implementation for any given system component.

This could be an architecture or partitioning issue. The given system may
or may not have the flexibility for major changes at the simulation stage.

68

However, various HW/SW alternatives can be explored and the system per-
formance can be accordingly evaluated.

e Synchronization between modules

This hinges on two important issues. First, the timing requirements specified
for the system. If no trade-offs are possible, then the strict synchronization
requirements must be met in order to ensure required performance. This
may mean sacrificing cost or flexibility.

Second, the interfaces designed in the system. At the design stage, some
parameters or some components may be considered more critical than others
for optimal system performance. However, it is only during the co-simulation
stage that the behavior of the system becomes clear. It is here, that the
behavior of individual modules or sub-systems containing several modules,
can be isolated to analyse their contribution to overall system performance.
This enhances the quality of the system design and increases confidence in
the final product.

e Performance vs Cost trade-offs.

Trade-off considerations arise at every stage of system design. At the speci-
fication stage, trade-offs could be about the requirements themselves. These
could be influenced by available resources and criticality of the system in
consideration. :

At the architecture stage, these decisions have a direct bearing on the final
system cost. They also determine the partitioning decisions which follow
the simulation step.

In the following sections, some of the above criteria are explored further for

the stepper-motor controller case.

6.4.3 The SMC system

It is instructive to re-organize the stepper-motor controller system solely based on

the nature of the tasks performed by each component of the system.

69

6.4.3.1 Timing behavior

The mcu sub-system and the bus sub-system perform operations involving se-
quencing, and are heavily dependent on timing performance. The program and
control modules are compute-intensive and have comparatively lighter loads. Ac-
cordingly, once these two modules were cleared during the functional simulation,
they do not significantly change their behavior when they are mapped to software.
This was demonstrated during the simulations and these modules performed as
expected.

In the mcu and the bus sub-systems, the modules in question are the mcu and
the bus modules and the timing modules.

The timing performance of these sub-systems involved two different timing
criteria. One was the response of an individual module with changing timing pa-
rameters. The other was the relative timing or synchronization between different
modules.

We illustrate each of these here. As the clock frequency was changed over 5us
to 500ns , more and more missed events occurred in the mcu subsystem with the
given timer setting. This was reflected in the overflow file. For a faster clock,
the timer settings needed to be increased in order to avoid missed events. This
problem occurs for those events where there is no explicit acknowledge.

As mentioned before, this is due to the asynchronous behavior in POLIS.

The solution is to have explicit handshake mechanisms in the code, or to space

70

important timer events sufficiently, so that clock is not too fast for the response.
In this case, we use the latter method, and increase timer periods sufficiently to
eliminate or reduce missed events. The preceding paragraphs deal with the mcu
module alone.

Now, we move on to the more complex inter-module timing dependencies. This

involves the mcu module, parallel to serial or ptos module and the bus module.

e If the parallel to serial converter module reads data too fast or too slow, the
result would be that same mcu data is re-read, or some data values may be
missed.

e Further, if the bus module is scheduled incorrectly it may read junk values
from the ptos converter, thus causing incorrect or zero outputs at the drive
signals.

A closer analysis of the above leads us to the conclusion that of these two
interdependencies, the latter is more crucial because a missed step for the motor
is more tolerable than an invalid or absent output signal. Accordingly, the timers
were adjusted to eliminate invalid data first, and then to eliminate missed events.

First the ptos timer was reset to a suitable value to eliminate erroneous reads.
This value is indicated by first time slot in the table 6.2. This could mean that
some values are missed, but all the output data is valid.

Then, the mcu timer period was increased with faster clocks, with an approx-
imate estimate. This value is denoted by “step-cycle” in table 6.2. This helped
eliminate the missed values also, though at the cost of lower speeds. This pro-

cedure worked most of the time for all the cases. However, in some cases both

71

timers needed adjustment. The ptos timer setting was also revised to achieve cor-
rect performance. In any case, the strategy proved effective in arriving at correct
functionality for the various frequencies tested.

It was previously observed there is no standard tool for hardware software
codesign. Accordingly some design aspects are very specific to the codesign en-
vironment used. This can be illustrated by the following, with respect to this
project.

If timing criteria are well known at the outset, timing interdepencies could be
reduced during the specification stage itself. Thus, in our case, the mcu mod-
ule and the ptos module could be combined, in order to eliminate their interface.
However, this defeats the purpose of an "implementation-independent” specifica-
tion. On the other hand, it could improve the system performance. Again, some
modularity would be sacrificed. This is evident in the bus module, which has a
serial to parallel converter built-in, and allows 25u s resolution.

As mentioned before, all critical interface signals could be modified to have a
built-in hand-shake mechanism to reduce missed events. This could significantly
increase code size, and result in over-specifying the system. Thus, all these deci-

sions involve several system-dependent factors.

72

6.4.3.2 Hardware or Software

As indicated before, timing analysis and hardware/software partitioning are re-
lated due to better performance of hardware under strict timing requirements.
This factor is dealt with in the next section. Here, we examine other distinguish-

ing features of hardware and software particularly in the co-design case.

e Flexibility

Since software can be altered, while hardware needs to be replaced, in general
we can consider software to be more flexible than hardware. An example
for the SMC system could be that the communication time slots could be
increased, in order to simplify the code, while achieving desired performance.
However in the MC33192, the MCU software needs to be tailor-made for
the required time slots. In this sense, software implementation obviously
provides some degree of “programmability” which hardware does not.

However, in an application-specific embedded system, this could be a more
complex issue. For instance, the software may be specially written for a
piece of hardware, and rewriting the software may need significant changes
in the hardware/software interfaces.

e Reusability

Code re-use is an important feature of system design. It may provide sig-
nificant savings in large systems. In case of the SMC, the system could be
extended for multiple motors, or multiple outputs or extended functionality
by re-using existing code. This could be at the system level or modular level.
Using co-design, the new system could be optimized for various parameters
before the final implementation. In case of hardware, the only option is
additional hardware and the system may not be upgradable easily.

Some practical considerations in replacing the MC33192 chip with the SMC
could be the following. The SMC may not match the speed of the hardware
chip, while being sufficient for the required functionality. In an actual au-
tomobile control system, it might be more desirable to separate the MCU
from the motor due to the harsh environment. On the other hand, this could
also be achieved by providing some additional driver logic at the motor end.
Thus the decision could depend on the actual use of the system.

73

In the preceding paragraphs, several aspects of the timing and performance of
the system were discussed in the hardware/software co-design context. The next

section presents conclusions obtained from this analysis.

6.5 Conclusions

Many features of the hardware/software co-design were presented in this thesis
over several chapters. The work in this thesis serves to demonstrate using the
SMC system, some of these characteristics. These include, criteria for co-design,
specification, architecture and co-simulation issues.

From these analyses, certain trade-offs in using co-design are evident. The first
of these, is the fact that the co-design process is not only application-specific, but
to a large extent, environment- specific. This was described in the previous section.
It follows, that the hardware-software co-design process, although advantageous,
may lead to certain problems. These could be the need for special resources, and
time delays for learning curves in new environments.

However, these very reasons make the co-design methodology very powerful,
and provide system designers with a number of choices and tools for optimum

design which is faster and cheaper.

74

Chapter 7

RECOMMENDATIONS FOR FUTURE WORK

The features of the POLIS co-design system used for this project provide a rea-
sonable scope and focus on certain aspects of co-design. The next step would be
to continue the SMC implementation, and generate hardware/software partitions.
These could then be used to generate .xnf files for prototyping on Xilinx boards
[4] to fully explore the capability of the POLIS environment. In addition, this
would provide the experience to develop the POLIS, Esterel, Ptolemy system into
a full-fledged and integrated co-design environment with all the associated tools

in one system, for future use in MSU.

75

APPENDIX

Program Listings

module hbbus:

constant BUS_V_TIME: integer, TIME_SLOT: integer;
input OC3_.END, MODE(boolean), PUSH_FIELD(integer),
PROGRAM_STATUS(integer),
CONTROL_STATUS(integer), RESET, BUS_SIG(boolean);
output OC3_START (integer), PROGRAM_CODE(integer), CONTROL_CODE
(integer), PULL _FIELD(integer),
PUSH_DEBUG(integer),PUSH_SYNC,PULL_SYNC, oBUS_SIG(boolean),
function Rx(integer,integer) :integer;

function Tx(integer,integer) :integer;

constant count8:integer, bitcount:integer;

signal Receive_push in

var Tcount:=0 :integer,

Bcount:=1:integer,

Curr_push :=0:integer,

Prev_push :=0:integer,

Push_bit:=0 :integer,

Pull.in:=0:integer,

Pull_out:=0:integer,

pcount:=1:integer in

loop

weak abort

await BUS_SIG do

if Bcount6 then

Bcount:=Bcount+1;

if(?BUS_SIG = false) and Bcountj5 then
Tcount:=Tcount+1;

elsif (7BUS_SIG=true) and Bcount;5 then

Tcount:=0;

end if;

if (?BUS_SIG=true) and Bcount=>5 then

if Tcount=3 then

emit PUSH_SYNC;

end if;

end if;

elsif Bcountj14 and Bcount;5 then
Bcount:=Bcount+1;

if (?BUS_SIG=true) then

Push_bit:=1

else

Push_bit:=0;

end if;

78

Curr_push := Rx(Push_bit,Prev_push);
Prev_push := Curr_push;

if Bcount=14 then

emit PUSH_DEBUG(Curr_push);

if ("MODE = true) then

emit PROGRAM_CODE(Curr_push);
else

emit CONTROL_CODE(Curr_push);
end if;

end if;

elsif Bcount=14 then
Bcount:=Bcount+1;

pause;

elsif Bcount=15 then
if(?BUS_SIG=true) then

emit PULL_SYNC;

end if;

Bcount:=1;

Prev_push:=0;

Tcount:=0;

if(’MODE=true) then

Pullin := (?PROGRAM_STATUS);
else

Pullin := (?CONTROL_STATUS);
end if;

emit OC3_START(TIME_SLOT);
await OC3_END;

emit PULL_FIELD(Pull.in);

pcount:=1;
repeat 5 times
pause;

if pcount;4 then
Pull_out := Tx(Pull.in, pcount);
if(Pull_out = 1) then
emit oBUS_SIG(true);
else

emit oBUS_SIG(false);
end if;

elsif pcount=4 then
emit oBUS_SIG(true);
else

emit oBUS_SIG(false);

79

end if;
pcount:=pcount+1;
end repeat;

end if;

end await;

when RESET

end loop

end var

end signal

80

module hbprogram:

input PROGRAM_CODE:integer;

output PROGRAM_STATUS:integer, PFUNC_DEBUG : integer;
function PROG_FUNC(integer) : integer;
loop

await immediate PROGRAM_CODE do
pause;

var PROG_N :=0: integer,
PROG_OUT:=0 : integer in

PROGIN:= 7PROGRAM_CODE;
PROG_OUT:=PROG_FUNC(PROG.N);
pause;

emit PROGRAM _STATUS(PROG_OUT);
emit PFUNC_DEBUG(PROG_OUT);

end var;

end await;

end loop

module hbcontrol:

input CONTROL_CODE :integer;

output CONTROL_STATUS:integer,
MOTOR_COIL _Al:integer, MOTOR.COIL_A2:integer,
MOTOR.COIL_Bl:integer, MOTOR_COIL_B2:integer, A_DEBUG :integer,
B_DEBUG:integer, CFUNC_DEBUG: integer;

function CONTROL_FUNC(integer) : integer, MOTOR_FUNC_A (integer) :
integer, MOTOR_FUNC_B(integer) : integer, PROG_FUNC(integer):integer;
loop

await immediate CONTROL_CODE do

pause;

var Code_in :=0:integer,

Code_out :=0:integer,

Coil A :=0:integer,

Coil B :=0 :integer in

Code_in := 7CONTROL_CODE;

Code_out:= CONTROL_FUNC(Code_in);

Coil A := MOTOR_FUNC_A(Code.in);

Coil B := MOTOR_FUNC_B(Code_in);

if (Coil_A=1) then

emit MOTOR_COIL_A1(1);

emit MOTOR_COIL_A2(0);

elsif(Coil_A=2) then

emit MOTOR_COIL_A1(0);

81

emit MOTOR_COIL_A2(1);

else

emit MOTOR_COIL_A1(0);

emit MOTOR_COIL_A2(0);

end if;

if (Coil B=1) then emit MOTOR_COIL_B1(1);
emit MOTOR_COIL_B2(0);
elsif(Coil B=2) then

emit MOTOR_COIL_B1(0);

emit MOTOR_COIL_B2(1);

else

emit MOTOR_COIL_B1(0);

emit MOTOR_COIL_B2(0);

end if;

emit A DEBUG (Coil A);

emit B DEBUG (Coil _B);

emit CONTROL_STATUS(Code_out);
emit CFUNC_DEBUG(Code._out);
end var;

end await;

end loop

82

module hbmcu:

input DIR:boolean, STEP:boolean, ADDR:boolean,

RESET;

output PUSH_VAL:integer;

constant bitcount:integer;

function Get_push(integer, integer):integer;
function Next_step(integer, integer):integer;
loop

var push_seq:=0:integer,

push_val:=0: integer,

addr:=0: integer,

step_count:=0 : integer,
prog-done:=0:integer in

weak abort

pause;

every immediate MODE do

if ?ADDR=true then

addr:=4;

elsif 7ADDR=false then

addr:=2;

end if;

if ?DIR=true and ?STEP=true then
push_seq:=1;

%fcw step_count:=7;

elsif ’DIR=true and ?STEP=false then
push_seq:=2;

%hcw step_count:=8;

elsif 7DIR=false and ?STEP=true then
push_seq:=3;

%fccw step_count:=1;

elsif ?’DIR=false and ?STEP=false then
push_seq:=4;

% hccw step_count:=1;

end if;

OC2_END, MODE:boolean,

if ’7MODE=true and prog.done=0 then %programming

push_seq:=5;
step-count:=1,;
positive repeat 5 times
pause;

await OC2_END do

if (step_countj4) then
push_val:=0;

83

step_count:=step_count+1;

elsif (step_count=4) then

push_val:=8;

step_count:=step_count-+1;
elsif(step_count=5) then

push_val:=8;

step_count:=8;

%terminate programming

prog_done:=1;

end if;

push_val:=push_val+addr;

emit PUSH_VAL(push_val);

end await;

end repeat;

elsif ?7MODE=false and prog.-done=1 then %control
loop weak abort

pause;

await immediate OC2_END;
push_val:=Get_push(push_seq,step_count);
step_count:=Next_step(push_seq,step_count);
push_val:=push_val+addr;

emit PUSH_VAL(push_val);

when MODE;

end loop;

end if;

end every;

when RESET;

end var;

end loop;

module hbbytein:

input Push_field:integer, start,clock;
output out_bit:boolean;

constant bitcount:integer;

function Tx(integer, integer):integer;
loop await immediate Push_field;
var PUSH_IN :=0:integer,
PUSH_OUT:=0:integer,

count : integer in

count :=0;

PUSH_IN := ?Push_field;

positive repeat bitcount times

84

await clock;

count := count+1;

if countj4 or count=>5 or count=14 then
emit out_bit(false);

elsif count=4 or count=15 then

emit out_bit(true);

else PUSH_OUT := Tx(PUSH_IN, (count-5));
if PUSH_.OUT=1 then

emit out_bit(true);

else

emit out_bit(false);

end if;

end if;

end repeat;

end var;

end loop;

85

/* Programming:

input 0 = 0 data + address say 101 then input byte is 5
output

110=6

input repeat as above

output

110 =6

input repeat as above

output

100 =4

*/

/* Control:

See page 6 of MC datasheet. for the 8 combinations,

we shift the push three places right to eliminate address

and we list the values of just the data bits, with the order D0,to D4.
The status output for normal operation

is 100 = 4

The coil outputs are

(Here we assume that coil A high means energise A1-A2 and low means A2-Al)
Z is high impedance

INPUT coil A coil B

2111

2012

2310

720

3100

2802

2901

521

/* This is either ovrbit programming or address programming.
as per present options, address could be 100 or 010 (A0,A1,A2).
so, pin could be 4 or 2 any other is error.

For ovrbit, the value is 12 for address 4 and 10 for address 2.*/
#define pos 1;

#define neg 2;

#define Z 3;

#define error 4;

static int prog_flag=0;

static int address=0;

int PROG_FUNC(int pin){

int pout=0;

if (progflag ==0){

86

if(pin==4——-pin==2){
address=pin;

pout = 6;
progflag=1,;

/*6*/

}}

else if(prog_flag==1){
if(pin==address){
pout=6;

/*6*/

prog_flag=2;

}

else if(prog_flag==2){
if(pin==address){
pout =4;

[*4*

prog-flag=3,;

}

}

else if(progflag==3){
if(pin==(address+8)){
pout=6;

/*6*/

prog _flag=4;

}

else if(prog_flag==4){
if(pin==(address+8)){
pout=4;

/*4*/

prog-flag=>5;

}

}

else{
prog_flag=0;
pout=7;
return 7;

}

return pout;

}
int CONTROL_FUNC(int cfin){

87

int cfout=0, cfdata=cfin;

int mask_addr=7;

mask_addr&=cfin;
if(mask_addr==4||mask_addr==2){

cfdata >=3;

if (cfdata==5||cfdata=="7||cfdata==20||cfdata==21){
cfout = 4;

} else if(cfdata==23||cfdata==28||cfdata==29||cfdata==31){
cfout=4;

}

}

else{
cfout=7;
}

return cfout;

}
int MOTOR_FUNC_A(int cfina)

{

int aout=0,cfadata=cfina;

int mask_addra=?7;

mask_addra&=cfina;
if(mask_addra==4||mask_addra==2){

cfadata >=3;

if (cfadata== 20|| cfadata == 21|| cfadata ==23){
aout= pos;

} else if(cfadata== 28|| cfadata == 29| cfadata ==31){
aout=neg;

} else if(cfadata ==5 ||cfadata ==7){

aout = Z;

}

}

else{
aout = error;

}

return aout;

}

int MOTOR_FUNC_B(int cfinb)

{ int bout=0, cfbdata=cfinb;

int mask_addrb=7;
mask_addrb&=cfinb;
if(mask_addrb==4||mask_addrb==2){
cfbdata >=3;

88

if (cfbdata== 5|| cfbdata == 21|| cfbdata ==29){
bout= pos;

} else if(cfbdata== 7|| cfbdata == 23|| cfbdata ==31){
bout=neg;

} else if(cfbdata== 20|| cfbdata == 28){

bout = Z;

}

}

else{
bout = error;

}

return bout;

}

/*Serial to Parallel converter */
int Rx(int inbit, int Prev_Frame)

{

int Frame_In=Prev_Frame;

int Mask_Msb = 256;

/* assuming LSB first transmission*/

if (inbit==0){

FrameIn >=1;

} else if(inbit==1){

Frame_In —= Mask_Msb;

Frame_In >=1;

/* cout <”\n after shifting once ” <« FrameIn <« ”\ n”;

/

}

/* else{

cout < ”\n input error \n”;

}*/ return Frame In;

} int Get_push(int push_seq, int step_count)
{ const int step_array[8]={168,160,184, 56, 248, 224, 232, 40},
int push_val, index;

if(push_seq==1)

index=(step-count+2)%8;

/¥ few */

else if(push_seq==2)

index = (step-count%8)+1;

/* hew */

else if(push_seq==3)

index = (step-count+6)%s8;

/* fcew */

89

else

index = (step-count+6)%8+1;
/* hcew */

push_val= step_array[(index-1)];
return push_val;

}

int Next_step(int push_seq, int step_count)
{

int index;

if(push_seq==1)
index=(step_count+2)%8;

[* few */

else if(push_seq==2)

index = (step-count%8)+1;
/* hew */

else if(push_seq==3)

index = (step-count+6)%S8;
/* fecw */

else

index = (step-count+6)%8+1;
/* hcew */

return index;

}

90

* Assembly code listing

* file of standard 6811 register declarations

2k 3 2k 3k 3k 5k 3k ok 3k 3 ok 3k 3k 3k e 3k 3k 3 ok ok 3 ok 5k ok K ok ok s 3 3k ok ok ok 3k 3k 3k ok ok ok ok dk K ok ok %k ok ok dk 3 3k ok ok ok ok k Xk
Control Registers

BASE EQU $1000

PORTA EQU $1000 ; Port A data register

RESV1 EQU $1001 ; Reserved

PIOC EQU $1002 ; Parallel I/O Control register

PORTC EQU $1003 ; Port C latched data register
PORTB EQU $1004 ; Port B data register

PORTCL EQU $1005 ;

DDRC EQU $1007 ; Data Direction register for port C
PORTD EQU $1008 ; Port D data register

DDRD EQU $1009 ; Data Direction register for port D
PORTE EQU $100A ; Port E data register

CFORC EQU $100B ; Timer Compare Force Register
OC1M EQU $100C ; Output Compare 1 Mask register
OC1D EQU $100D ; Output Compare 1 Data register

* Two-Byte Registers (High,Low — Use Load & Store Double to access)
TCNT EQU $100E ; Timer Count Register

TIC1 EQU $1010 ; Timer Input Capture register 1

TIC2 EQU $1012 ; Timer Input Capture register 2

TIC3 EQU $1014 ; Timer Input Capture register 3

TOC1 EQU $1016 ; Timer Output Compare register 1
TOC2 EQU $1018 ; Timer Output Compare register 2
TOC3 EQU $101A ; Timer Output Compare register 3
TOC4 EQU $101C ; Timer Output Compare register 4
TI405 EQU $101E ; Timer Input compare 4 or Output compare 5 register
TCTL1 EQU $1020 ; Timer Control register 1

TCTL2 EQU $1021 ; Timer Control register 2

TMSK1 EQU $1022 ; main Timer interrupt Mask register 1
TFLG1 EQU $1023 ; main Timer interrupt Flag register 1
TMSK2 EQU $1024 ; misc Timer interrupt Mask register 2
TFLG2 EQU $1025 ; misc Timer interrupt Flag register 2
PACTL EQU $1026 ; Pulse Accumulator Control register
PACNT EQU $1027 ; Pulse Accumulator Count register
SPCR EQU $1028 ; SPI Control Register

SPSR EQU $1029 ; SPI Status Register

SPDR EQU $102A ; SPI Data Register

BAUD EQU $102B ; SCI Baud Rate Control Register
SCCR1 EQU $102C ; SCI Control Register 1

SCCR2 EQU $102D ; SCI Control Register 2

91

SCSR EQU $102E ; SCI Status Register

SCDR EQU $102F ; SCI Data Register

ADCTL EQU $1030 ; A/D Control/status Register
ADRI1 EQU $1031 ; A/D Result Register 1

ADR2 EQU $1032 ; A/D Result Register 2

ADR3 EQU $1033 ; A/D Result Register 3

ADR4 EQU $1034 ; A/D Result Register 4

BPROT EQU 81035 ; Block Protect register

RESV2 EQU $1036 ; Reserved

RESV3 EQU $1037 ; Reserved

RESV4 EQU $1038 ; Reserved

OPTION EQU $1039 ; system configuration Options
COPRST EQU $103A ; Arm/Reset COP timer circuitry
PPROG EQU $103B ; EEPROM Programming register
HPRIO EQU $103C ; Highest Priority Interrupt and misc.
INIT EQU $103D ; RAM and I/O Mapping Register
TEST1 EQU $103E ; factory Test register

CONFIG EQU $103F ; Configuration Control Register
* Interrupt Vector locations

SCIINT EQU 8D6 ; SCI serial system

SPIINT EQU $D8 ; SPI serial system

PAIINT EQU $DA ; Pulse Accumulator Input Edge
PAOVINT EQU $DC ; Pulse Accumulator Overflow
TOINT EQU $DE ; Timer Overflow

TOCSINT EQU $EO ; Timer Output Compare 5
TOC4INT EQU $E2 ; Timer Output Compare 4
TOC3INT EQU $E4 ; Timer Output Compare 3
TOC2INT EQU $E6 ; Timer Output Compare 2
TOCI1INT EQU $E8 ; Timer Output Compare 1
TIC3INT EQU $EA ; Timer Input Capture 3
TIC2INT EQU $EC ; Timer Input Capture 2
TIC1INT EQU $EE ; Timer Input Capture 1

RTIINT EQU $FO0 ; Real Time Interrupt

IRQINT EQU $F2 ; IRQ External Interrupt
XIRQINT EQU $F4 ; XIRQ External Interrupt
SWIINT EQU $F6 ; Software Interrupt

BADOPINT EQU $F8 ; Illegal Opcode Trap Interrupt
NOCOPINT EQU $FA ; COP Failure (Reset)
CMEINT EQU $FC ; COP Clock Monitor Fail (Reset)
RESETINT EQU $FE ; RESET Interrupt

3 3k 3k o 3k 2k ok dk k ok 3 3 ok ok 3k ok ok ok 3k 3k Kk k 3k ok dk ok sk %k sk ok ok ok ek ok ok ok 3k ok %k %k ok xk X ok %k k

ORG MAIN_START

92

addr_sel FCB 0

dir_sel FCB 0

stepsel FCB 0

curr_step FCB 0

next_step FCB 0

motor_mode FCB 0 ; 1,2,4,8 for fcw,fccw,hcw,hcew
variable_program _status FDB 0

pull_val FCB 0

prog-count FCB 0

ovr_count FCB 0 ; see initialization module

ovr_step FCB 0 ; see init.. module

push_begin FCB $00,$A8,$A0,$B8,338,$F8,$E0,$E8,$28; seq for half cw
push_frame FCB 0

toc_val FCB 0 ; timer int address variable

prog-status FCB 0

info_count FCB 100

subroutine_initialize_module:

*variables to be initialized

LDAA #10

STAA toc_val ; the timer init routine

LDAA #4

STAA ovr_count

LDAA #38

STAA ovr_step

LDX #BASE

LDAA #8$3C

STAA DDRD,X ; make SPI pins outputs

BCLR PORTD,X $3C

LDAA #880

STAA PACTL,X

; enable PA7 for output

BCLR PORTA,X $80

ok ok ok ok ok ok o ok ok ok ok ok ok ok o ok sk ok ok ok ok ok sk ok o ok sk ok sk ok ok ok ok 3k ok ok ok ok ok sk ok ok ok ok ok ok K ok ok ko ok ok K
* File ”1dxibase.asm”

* Fred Martin Thu Oct 10 19:49:38 1991

* The following code loads the X register with a base pointer to
the 6811 interrupt vectors: $FF00 if the 6811 is in normal mode,
and $BFO00 if the 6811 is in special mode.

* The file "6811regs.asm” must be loaded first for this to work.
LDAA HPRIO

ANDA #840 ; test SMOD bit

BNE *+7

93

LDX #$FFO00 ; normal mode interrupts

BRA *+5

LDX #$BF00 ; special mode interrupts

3k 3k 3k 3k 3k 3k %k 3k 3k ok sk 3k ok 3 3k ok ok ok 3k 3k sk Ak sk ok ok k S sk s ok ke ok ok ok ok %k %k X ok k% % 3k 3k % % 3k % % ok %k %k %k
LDD #toc3.int

STD TOC3INT,X

LDX #BASE

LDD TCNT,X ; timer initialization

ADDD #10000

STD TOC3,X

LDAA #%00100000

STAA TFLG1,X

STAA TMSK1,X ; enable timer3 interrupt

LDAA #%00010000

STAA TCTL1,X ; test pa5 with this for 5msec waveform
CLI

RTS

3k 3k 3k 3k 3 ok 3k 3k 3k ok 3 3 ok 3 o 3k ok ok 3 5k 3 ok ok 3k ok 3k ok ok ok koK 3k ok ok 3k ok ok ok sk ok 3 ok ok ok ok ok %k k kK k ok ok

Interrupt service routine:

3k 3k 3k 3 3k 3¢ 3k 3k 3k ok ok ok 3k ok ok ok ok ok 3k ok ok ok ok 3 ok 3k 3k 5k 3 3k 2k 3k 3k 3k 5k ok %k %k %k 3k 3k % %k 5k 5K %k 5k %k 3 3K ok %k % %k %k %k
toc3.int:

LDAA #10

CMPA toc_val

BNE toc3.mid0

BSR start_timer5

BRA timer_0 ; nearest timer also if toc_val=70

2k 3k 5k 3k 3k ok 3k ok ok G ok ok 3k ok ok 3k ok ok 3k 3k ok 3k 2k 3k k 3k 5k 3k 5k 3k 3 3k 3k 3k %k 3k %k %k %k %k 3 ok 3k %k 3 3k 3k %k %k %k %k %k %k k

start_timer5:
3k 3 3k %k 3k 3k 3k sk 3k 3k %k 3k 3 3k e 5k 5k %k 3k %k 3k %k 3 %k ok %k 3k A 3k 3k 3k A 3 ok dk ok >k xk ok %k 5k ok 3k 3k 5k 5k 3k %k 5k %k 3k %k %k %k k

init section
sk 3k ok ok ok e ok 3k K A ok 3 3k ok %k %k %k 3k %k 5k 3k %k 5k 3 3k Ak 5k 3k 3k k ok 3k e 3k 3k 3k 5k 3k 3K 5k ok %k 5k 5k 3k 3 5k %k %k 3k 3 3k 5k % %k %k Xk

LDX #BASE

LDAA #1

CMPA prog.status

BEQ go_normal ; device programmed-move to normal operation
BSET PORTA,X $80 ; set PA7 to 1 indicating programming
wait_prog:

LDAA $7FFF

ANDA #3804 ; testing d12 from user for programming

BNE wait_prog

BSET PORTD,X $10 ; set PD4 (PA7) is already high(processing)
BSR set_addr

94

BSET PORTD,X $04 ; enable PD2 for 12volt
LDAB addr_sel ; this is the addr to be progmed
STAB push_frame ;

LDAA #2 ; first two steps of programming
STAA prog-count

LDAA #20 ; arbit,programming start

STAA toc.val ; toc int serviced by programming
RTS

go-normal:

wait_normal:

LDAA $7FFF

ANDA #804

BEQ wait_normal ; await d12 disable

BSET PORTD,X $08 ; set PD3,and clr PD4 and PA7 for OK code
BCLR PORTD,X $10

BCLR PORTA X $80

BRSET $7FFF $10 dir.cw ; otherwise, dir remains 0
step_set: BRSET $7FFF $20 step_full ; otherwise,step remains half
addr_set: BSR set_addr

BSR set_push ; load the next push sequence
LDAA #60

STAA toc_val ; toc int serviced by normal loop
RTS

set_addr:

BRCLR $7FFF $08 addr_other ; testing d13 from user for address
LDAB #4 ; this is 001 in reverse a0ala2

STAB addr._sel

RTS

addr_other:

LDAB #2 ; the address is 010

STAB addr_sel

RTS

dir_cw:

LDAA #1 ; setting direction to 1

STAA dirsel

BRA step.set

step_full:

LDAA #1 ; setting step to full

STAA step.sel

BRA addr_set

set_push:

TST step_sel

95

BNE full_dir_chk
half_dir_chk:

TST dir_sel

BNE half_cw

BRA half_ccw_mid
*rRRRERRRRE¥out range branch
toc3_mido0:

BRA toc3_midl
timer_0:

BRA timer_1
full_dir_chk:

TST dir_sel

BNE full_cw

BRA full_ccw
full_cw:

LDAA #1

STAA motor_mode

% % %k %

reqd steps are 1,3,5,7,1

o ok 3k ok ok X Xk k 5k

few:

LDAA curr.step

BEQ add-1

CMPA #7

BEQ add_1

CMPA #1

BEQ add_3

CMPA #3

BEQ add.5

BRA add.7
**************************OutOfrangelnanch
set_push_mid5:

BRA set_push

2k 3k 3k 3k 3k 3 3k 3k 3k o e sk 3k 3k >k ok ok 3k sk ke 3k 3k ok o 3k ok 3k ok ok ok ok sk ok ok sk ok ok ok ok ok ok ok %k %k o X Kk k
full_ccw:

LDAA #2

STAA motor_mode

fcew:

LDAA curr_step

BEQ add.7 ; reqd steps are 7,5,3,1,7,..
CMPA #1

BEQ add_.7

96

CMPA #7
BEQ add_5
CMPA #5
BEQ add_3
BRA add.1
************************Out Of range branCh
half_ccw_mid:

BRA half_ccw

3 3 3k ok 3k 3k 3k 3k 3k 3k 3k ok %k %k 3k 3 3 ok %k 3k 3k %k %k ok 3k %k % ok % 3k %k %k % %k % Xk
half_cw:

LDAA #4

STAA motor_mode

hew: LDAA curr_step
BEQ add_1

; reqd steps are 1,2,....8,1
CMPA #8

BEQ add_1

CMPA #1

BEQ add_2

CMPA #2

BEQ add_.3

CMPA #3

BEQ add_4

CMPA #4

BEQ add.5

CMPA #5

BEQ add_6

CMPA #6

BEQ add_7

BEQ add_8
**************************************Out Of range branCh
fcw_mid5:

BRA fcw

fccw_mid5:

BRA fccw

set_push_mid4:

BRA set_push_mid5

hcw_mid5:

BRA hcw

timer_1:

BRA timer_1_mi

d toc3_mid1:

97

BRA toc3_mid

% 3k ok 3 3k 3k ok 3k 3k ok 3k 3k ok ok ok ok ok ok 3k 3k ok ok ok ok ok ok ok sk ko k ok ok ok ok ok ok Xk %k % Xk ok Xk Kk Kk Kk k k
add.1:

LDAA #1

LDAB push_begin+1
BRA push_val

add_2:

LDAA #2

LDAB push_begin+2
BRA push_val

add_3:

LDAA #3

LDAB push_begin+3
BRA push_val

add_4:

LDAA #4

LDAB push_begin+4
BRA push_val

add_.5:

LDAA #5

LDAB push_begin+5
BRA push_val

add_6:

LDAA #6

LDAB push_begin+6
BRA push_val

add.7:

LDAA #7

LDAB push_begin+7
BRA push_val

add_8:

LDAA #8

LDAB push_begin+8
BRA push_val
push_val:

STAA next_step
ORAB addr.sel ; push frame=data+address
STAB push_frame ; this is the push data
RTS

timer_1_mid:

BRA timer_init0
half_ccw:

98

LDAA #8

STAA motor.mode
hcew:

LDAA curr_step
BEQ add_8 ; reqd steps are 8,7,.....1,8
CMPA #1

BEQ add_8

CMPA #2

BEQ add_1

CMPA #3

BEQ add_2

CMPA #4

BEQ add.3

CMPA #5

BEQ add_4

CMPA #6

BEQ add_5

CMPA #7

BEQ add_6

BEQ add.7

3 2k 3k dk 3k 3k 3 3 3k 3 ok e 3 ok 3 ok ok ok ok 3k % ok 3k %k ok %k ok 3k 3k %k dk 3k % ok %k o ok %k ok 3k %k ok ok %k ok %k %k k k k

out of range branches
3k 2k ok >k 3k 3 ok 3k 3k ok 3¢ 3k ok 3k 3 ok 3k 3k 3K 3 3 % ¥k 5k 3k 3k 3 3k ok ok ok %k %k 5k 3 ok ok 3k 3k %k K 3 %k 3k %k %k *k %k k k
fcw_mid4:

BRA fcw_mid5
fccw_mid4:

BRA fccw_mid5
set_push_mid3:

BRA set_push_mid4
hcw_mid4:

BRA hcw_mid5
hccw_mid4:

BRA hccw

3 3k sk >k 3k ok ok 2k o 3¢ o 3k o 3k ok 3k ok ok 3k ok 3k 3k 3k 3k ok 3k ok 3k ok ok dk ok 3 ok ok ok ok ok ok K sk ok 3k ok ok ok %k Kk k %k

end of init section

3k 3k 3k 3 3k 2k ok e ok ok ok ok 3k 3 3k 3 3k 3 ok e sk s 3k ok ok ok K ok ok ok ok sk 3k ok ok ok sk sk 3k ok ok ok sk ok ok %k ok ok kK ok k
toc3_mid:

BSR push_seq_mid0 ; nearest push_seq

LDAA #20 ; this is the pull analysis part

CMPA toc_val

BEQ step-0

LDAA #30

99

CMPA toc_val

BEQ step_3

LDAA #40

CMPA toc_val

BEQ step_4

LDAA #50

CMPA toc_val

BEQ step_5_mid

LDAA #60

CMPA toc_val

BEQ push_normall

BRA timer_init0 ; nearest timer also if toc_val=70
3 3 3 ok 3 ok ok 3k ok o e ok 3 ok ok 3 ok ok ok ok e e ok ok ok ok ko v e e Ak ok ok e 3 Ak ok ok ek ok ok ok ok ok ok k k kok
step-0

LDX #BASE

LDAA #6 ; check for 110 code

CMPA pull_val

BNE Tl step0 ; repeat until 110

BSET PORTD,X $08 ; set PD3

BSET PORTD,X $10 ; set PD4

BCLR PORTD,X $80

DEC prog_count

BEQ TI_step3 ; proceed with next step
BRA Tl stepl_2

T1 stepO:

LDAA #2 ; first two steps of programming
STAA prog_count

TI_stepl_2:

LDAA #20 ; the next step is step_0

STAA toc_val

BRA timer.initl

3 3k 3k 3 3k ok ok 3k ok o 3k 3k 3k 5k 5k 3k 3k sk dk 3k 3k 3k ok ok o ok sk sk sk sk ok ok ok ok ok ok sk ok ok ok ok ok ok ok sk sk sk ok ok Xk %k %k %k k Xk

out of range branches

3k 3k ok ok ok 3k ok ok 3 3k sk 3k 3k >k e 3 3k ok ok ok sk ok ok sk sk ok ok 3k ok ok 3k k 3k 2 sk 3k %k k ok 3 ok Kk sk ok ok ok o ok ok k k
timer_init0:

BRA timer.initl

push_seq_mid0:

BRA push_seq_mid

set_push_mid2:

BRA set_push_mid3

fcw_mid3:

BRA fcw_mid4

100

fccw_mid3:

BRA fccw_mid4

hcw_mid3:

BRA hcw_mid4

hccw_mid3:

BRA hccw_mid4

step_5_mid:

BRA step.5

ke ok o o ok ok ok ok ok K ok ok ok ok ok ki ok ok ok ok ok ok ok sk ok o ook ok ok ok ok ok ok ok ok ok ok ok ok
Tl step3:

BCLR PORTD,X $04 ; disable PD2 for 5volts
LDAA #30

STAA toc_val

BRA timer.init

1

step_3:

LDAA #4

CMPA pull_val

BNE TI_step0 ; if 100 code,proceed to ovrbit program
Tl init step4:

BSET PORTD,X $04 ; enable PD2 for 12volts
LDAB addr_sel

ADDB $08 ; setting D4 to 1 for ovrbit program
STAB push_frame ; new push for ovrbit
TI_step4:

LDAA #40 ; from second time onwards

STAA toc_val

BRA timer.nitl

step_4:

DEC ovr._step

LDAA #6

CMPA pull_val

BNE Tl_step5 ; code is incorrect

INC ovr_count ; correct code count for ovrbitprogram
BRA Tl step5

ko ok 3 ok ok %k ok ok ok K %k ok k kK k ok

out of range branches
3k 3k 3k 5K ok 3 ok 3k ok %k Xk 5k %k %k 5k %k Xk k Xk

push_normall:
BRA push_normal2
set_push_mid1:
BRA set_push_mid2

101

push_seq_mid:

BRA push_seq_midl
timer_initl:

BRA timer.init
hccw_mid2

: BRA hccw_mid3
hcw_mid2:

BRA hcw_mid3
fccw_mid2:

BRA fccw_mid3
fcw_mid2:

BRA fcw_mid3

3k 3k 3k ok 2k 3 ok ok 3k 3k 3k 3k %k 3k 3 ok 3k ok 3 3k 3k ok ok ok o e 3k ok ok ok ok ok 3k ok ok ok ok ok ok ok k k k
TI _step5:

LDAA #50

STAA toc_val

BRA timer.init
step_5:

DEC ovr.step

LDAA #4

CMPA pull_val

BNE count_skip

INC ovr_count
count_skip:

LDAA ovr_count
CMPA ovr_step

BEQ TI.normal ; we are done with programming
err_chk:

TST ovr_step ; try 4 times before error service
BNE TI_step4

BRA error_service

3k 3k 3k 3k e ok ok %k 3k 5k ok % ok k %k %k % k k k

out of range branches
3k 5k 3k 3 ok 3k ok ok ok ok %k ok ok ok 5k X ok %k %k
push_seq_mid1:
BRA push_seq

ok ok ok ook ok ok ok ok ok ok ok ok ok ok ok ok ok

TI_normal:

LDX #BASE

BCLR PORTD,X $04 ; clear PD2

BCLR PORTD,X $08 ; clear PD3- programming done.
BSET PORTD,X $10 ; set PD4 ok code

102

BSR set_push_midl ; get normal push value

LDAA #60

STAA toc_val

BRA timer._init

error._service:

BSET PORTD,X $18 ; set PD3, PD4 - for error code
LDAA #70 ; do nothing from now on. reset reqd
STAA toc.val

BRA timer_init

ook ok ok ok ok ok ok ok ok

out of range branches
3k 2k 3k 3 ok 3k 5k 3k ¥k 5k ok %k Xk ok k
push_normal2:

BRA push_normal3
timer_init:

BRA timer_init2
hccw_mid1:

BRA hccw_mid2
hcw_mid1:

BRA hcw_mid2
fccw_mid1:

BRA fccw_mid2

RTS

fcw_mid1:

BRA fcw_mid2

3k 3k %k 3k 2k 3k 3k ok 3 k ok 2k 3k k 3k 3 >k ok 5k 3k 5k ok 3 3k %k ok %k 3k 3k ok 3k ok d ok ok Xk %k %k Xk xk k%
push _seq:

*send bus violation
BSR bus_v3

send push sync

BSR push_sync

send push field

BSR push_8

send pull sync and receive pull_data
BSR pull_3

RTS

bus_v3:

LDY #3

bus_n:

BSR delayl_25

BCLR PORTD,X $20 ; PD5 push bit
BSR delay0_25

103

BSET PORTD,X $20
BSR delay1.25 ; smaller delay
DEY

BNE bus.n

RTS

push_sync:

BCLR PORTD,X $20 ; PD5 push bit
BSR delay0.25

NOP

BSET PORTD,X $20
BSR delay0.25

NOP

BSET PORTD,X $20
BSR delay0.25

NOP

BCLR PORTD,X $20
BSR delayl.25

NOP

RTS

push_8:

LDY #8

LDAB push_frame
push.n LSLB

BCC goto0

BRA goto_1

goto_0:

BSR code_1

BSR code_0

DEY

BNE push_n

RTS

goto_1:

BSR code_0

BSR code_1

DEY

BNE push_n

RTS

code_0:

BCLR PORTD,X $20
BSR delay0.25

BSET PORTD,X $20
NOP

104

RTS

code_l:

BSET PORTD,X $20
BSR delay0_25
BCLR PORTD,X $20
NOP

RTS

3% 2k ok ok ok ok %k ok %k % 5k k

out of range branches
3 2k 3k ok 3k 3k 3k 3 3k 5 ok ok %k %k %k
push_normal3:
BRA push_normal
timer_init2:
BRA timer.init3
hcew_midO:
BRA hcew_midl
hcw_midO:

BRA hcw_midl
fcew_midO:

BRA fcecw_midl
fcw_mido0:

BRA fcw_midl
push_seq_mid2:
BSR push_seq
RTS

3 3 2k ok ok 3k e 3k ok 3k sk 3k 3 3k 3k 3 ok 3k ok ok 3k 3k %k %k % e 5k 3k % %k %k % % ok 3 %k %k %k k
delay_75:

LDAA #22
loopl DECA
BNE loopl

RTS

delay0.25:
LDAA #1

loop2 DECA
BNE loop2

RTS

delay1.25:
LDAA #3

loopd DECA
BNE loopd

RTS

105

pull_3:

BSR send_1 ; sending pull sync bit

BSR delay0.25

BSR code_0

BSR delay1.25

BSR code_1

BSR delayl_25

BSET PORTD,X $20

LDY #0003 ; we read 3 bits

pull_next BSR delay_15 ; trying to read pull bit after this delay
LDAA PORTA, X ; move this label to prev line if delay rqd
ANDA #%00000001 ; test PAO pull bit

BEQ pull 0 ; the bit is zero

pull_1: LDAA pull_val

ORAA %00000001

STAA pull_val

pull_0: LSL pull_val

DEY

BNE pull_next

pull_eof:

LDAA PORTA,X ; we read end of frame. only delay is diff.
pull_eof2 BSR delay0_25 ; eof has 50micro pulse(20khz)
BSR delay_15

LDAB PORTA X

SBA

BEQ err_eof ; if both bits are same, this is an error

RTS

err_eof BSET PORTD,X $10 ; set PA7, PD4 - for error code
BSET PORTA,X $80

LDAA #70 ; do nothing from now on. reset reqd

STAA toc_val

BRA timer_init_mid

delay_15:

LDAA #1

loop3 DECA

BNE loop3

RTS

3k 3 ok ok 3 o ok ok %k %k % Xk

out of range branches
AR KA KK

timer_init3:

106

BRA timer_init_mid

3k 3 3k 3k ok o 3k 3 ok 3k 3k kK ok X 3k 3k X 3k %k Xk 5k Xk 5k k%
hccw_mid:

BRA hcew_mid0

hcw_mid:

BRA hcw_mid0

fccw_mid:

BRA fccw_mid0

fcw_mid:

BRA fcw_mid0

3 3 3 3 o 3k 3 ok Aok 3 ok X ok 3k 5k o o ok ok k% o 5k %k % 3 ok ok %k X ok %k % ok %k Xk % %k %

push_normal:

LDAA #4

CMPA pull_val ; check whether status is ok code
BNE push_set ; repeat prev step if not OK
TI_next_normal

LDAA #1

CMPA motor_.mode

BEQ mode_1

LSLA

CMPA motor_mode

BEQ mode_2

LSLA

CMPA motor.mode

BEQ mode_3

BRA mode._4

mode_1 BSR fcw_mid
BRA push_set

mode_2 BSR fccw_mid
BRA push_set

mode_3 BSR hcw_mid
BRA push_set

mode_4 BSR hccew._mid
push_set:

LDAA #60 ; next push val
STAA toc_val

LDAA next_step

STAA currstep ; overwrite currstep with the new step
BRA timer_init_mid
timer_init_mid:

no.info:

LDX #BASE

107

LDD TCNT,X

ADDD #5000

STD TOC3,X

BCLR TFLG1,X %11011111 ; this will work only if the prev
RTI ; part takes less than Smsec..

108

Ptolemy Schematics

ahostic |

i

Figure 7.1: The SMC Testbed Universe

110

111

Figure 7.2: The “SMC” Galaxy

OIS 5n° #
=
o Eou
. e
s o 3| TG [snivaswemona s [
o0+ 3505 0N + |evsavene
o3 ¥ 3000 WVHDOHd & _faoon7 _
oo uoion 5| loweoqy IS 0 oS
187300 HOLON & BcZ
[27100 HOLON * g
1V 40D HOLON ¥,
_ g4
TSR Tor R
o owad o 0/ P X
- | L o[-
| smuviswvuoud il e
)
NOW 35w
L [m0w
LN
faad
x

Figure 7.3: The “mcu” Galaxy

112

Discrete Event (DE) Stars

Figure 7.4: Ptolemy Icons

O = Signal Sources v @

I:T:T—» T > NULLb i TT '

Figure 7.5: Ptolemy Icons - Sources

113

Figure 7.6: Universe Parameters

114

Control panel for test

J Script W Debug
When to stop:]100000000 |

eroosonss
wossess

PAUSE <Space> § ABORT <Escape>

[so <hotur:

STEP EARLY END 1 i Textusl Animation
.1 Graphicsl Ankmation
-1 Time the Bun

Count: 158604

dir step addr
o i
stop]
aidr |

RESET MODE
RESET]

MODE 5

| Reset Mode dir step adr
10

0.0

0.0

00

00

at azbi b2
L

1

1

DISMISS [

Figure 7.7: The SMC Control Panel

115

Figure 7.9: The SMC Event Display

116

Order this document

MOTOROLA 83 ANATS/D
EEE SEMICONDUCTOR [
APPLICATION NOTE ‘

ANA475
Single wire Ml Bus controlling stepper motors

by Michel Burri & Dr. Pascal Renard
Senior Staff engineers, Automotive Group
Motorola SA. Geneva

1. Introduction

The Motorola Interconnect Bus (Ml Bus) is a serial bus and communications protocol which efficiently
supports distributed real time control, notably in automotive electronics. In addition to being a cost-
effective alternative to bulk wiring, it provides very high data integrity as a result of continuous Push-Pull
communication between the system controller (Master MCU) and each device on the bus. It is suitable for
medium speed networks requiring very low cost multiplex wiring with high levels of noise immunity. The
MI Bus is suitable for controlling smart switches, motors, sensors and actuators with a single-chip
controller. The process control time can be about 1ms, including diagnostics.

In automotive electronics the MI Bus can be used to contro! systems such as air conditioning, head light
levellers, mirrors, seats, window lifts, sensors, intelligent coil drivers, consoles, dashboard etc.

Figure 1-1 shows the general block diagram for the Stepper Motor Controller (SMC). The main parts of the
diagram will be discussed in the following pages.

Mi Bus Controller : Motor Driver
Oscillator
OSC @ T {es0kHz i
I Noise Detector 1
i Bi-Phase ivi
ivi
+5v |29 [5. Phase Prog Divider :
10k
?_D i +5ved aega’aw +VBatt
Programming Logic L] Gnd
Detection Address !
Programmed i
y . L1
Dual Bridge Driver L12
Latch 4 & 21
I [_ $—| Motor Disgnostic 122
M@ > {Serial to Parallel Register I :
F—Q—i Parallel to Serial Register } 20 khz :
[L— Status |
Encoder jge ')
]]

Figure 1-1 Stepper motor controller block diagram
All trademarks are recognised.

@ MoTOROLA HR

© MOTOROLA LTD., 1993

117

MC33192

MAXIMUM RATINGS (All voitages are with respect to ground, uniess otherwise noted.)
Rating Symbol Value Limit
Power Supply Voitage v
Continuous Operation Vece 25
Transient Survival (Note 1) Vip 40
Digital Input Voltage Vi 03toVce +0.3 v
Output Current (TA = — 40°C) IoLT 200 mA
Output Current (Tp = 100°C) IOHT 150 mA
Storage Temperature Tatg ~40t0 +180 c
Operating Temperature (Note 2) TA -40to+125 c
Junction Temperature TJ - 40to +160 c
Power Dissipation (TA = 100°C) Pp LY w
Load Dump Transient (Note 3)) 40 v

DC ELECTRICAL CHARACTERISTICS (Characteristics noted under conditions 8.0 V< VCC S 16.5 V, - 40°C < T < 100°C,

uniess otherwise noted.)
Cheracteristic Symbel Min Typ Mex Unit
Standby Current (Vo = 16.5 V) (Note 4) Q - - 12 mA
Output Current (VoG = 16.5 V) o - 120 - mA
H-Bridge Saturation Voitage (IQ = 160 mA) (Note 5) VO(sat) - - -
TA=-40"C - 13 18
To=26°C - 1.2 18
Ta = 100°C - 11 16
Address Programming Curent (T4 = 26°C) (Note 6) Ioc - 12 - A

CONTROL LOGIC ELECTRICAL CHARACTERISTICS (Characteristics noted under conditions 9.

100°C, uniees otherwise noted.)

OVSVCCS156V,-40°CSTAS

Cherecteriatic Symbol Min Typ Mex Unk

Oscillator (Note 7) 1ol 840 - kHz
Message Time Siot (Vo = 12 V) (Note 8) te 248 25 252 He
Urgent Output Disable (VCC = 12 V) (Note 9) tod Oxty - - Hs
Internal Mi-Bus Pull-Up Resistor Roy 6.0 - 20 kQ
Internal Mi-Bus Zener Diode Clamp Voltage Vel - 18 - v
Address Programming Voitage (Note 10) Vp 10 12 14 v
Program Energize Time topw 200 1000 us

Mi-Bus Siew Rate aviat 1.0 15 20 Vips
Mi-Bus “0" Level Input Voltage Threshoid Vi - - 13 v
Mi-Bus *1° Level Input Voltage Threshold Vih 24 - - v
Mi-Bus 0" Level Output Voiltage (/0 = 30 mA) VoL - - 10 v
Power-On Reset Time (Vcc 27.5V) toor - 250 - us

nciion o

NOTES: 1. Transient capability is defined as the positive overvoitags transient with 250 ms decay time constant. The detection on an

1o be latched “off”

Maxin i i

g

2.A sgvenasa

SI.MDunp-m- ductiy on'm

s the limiting factor.

g charge nt. The L
4. mcm:mmn—&m'dr(hm -Imz 0).

battery line as a resuk of apening the battery connection while the atemator

on an overvokage condition causes all H-Bridiges 10 be latched “off”.

5. H-Bridge S d 1o the p
Saturation

6. Address Programming Current is the current

7. Awmumommlmmcmvam
used to shitt the freq y o the y of 640 kHz.
resonator tolerance (usually +1.0%).

8. The Message Time Sict is the time required for one

device

"

of the oulput being High or Low.

Volage is supply or i H-Bridge output
vohoonlh.vohmmvmtmmmmmmmWHQh)ud!MWMbMMWLM
encourtered when the bus is at 12 V during address programming.

acitor in paraliel with
dant on the capaciior and ceramic

having a frequency of 644 kHz. An
kHz. The tre of the

"

The

b

oscillator frequency used.

" age time is eq 0 a fotal of 18 periods of the

9. nmm—&-mmuww all MC33192 outputs will be disabiled after & period of nine time siots (Stg).
d for

10. M-Bus

g eq P d

ic resonator is

MOTOROLA ANALOG IC DEVICE DATA

118

MC33192
GENERAL DESCRIPTION

The MC33182 is a serial stepper motor controller for use in
harsh automotive applications using multiplex wiring. The
MC33 192 provides all the necessary four phase drive signais
to control two phase bipolar stepper motors operated in either
hakt or full step modes. Muitiple stepper motor controllers can
be operated on a real time basis at step frequencies up to
200 Hz using a single microcontrotier (MCU). A primary
altribute of operation is the utilization of the Mi-Bus message
media to provide high noise immunity communication
ensuring very high operating reliability of motor stepping.

The MC33192 is designed to drive bipolar stepper motors
having a winding resistance of 80 Q at 20°C with a supply
voltage of 12 V. It is supplied in a SO-16L pilastic package
having eight pins, on one side, connected directly to the lead
frame thus enhancing the thermal performance to allow a
power dissipation of 0.5 W at 120°C ambient temperature.
Muitiple Simultaneous Motor Operation

Several motors can be controlied in a serial fashion, one
after the other, using the same soltware time base. The time
base determines the step frequency of the motors. A single
motor can be operated at a maximum speed of 200 Hz
pull-in with a duration of 5.0 ms per step. Three motors can
be operated simukaneously using a 68HC03868 MCU at the
same time base (200 Hz) with about 1.7 ms per step. A
68HC11 MCU can control 4 stepper motors with adequate

step time. The step frequency must be decreased to
control additional motors. To control eight motors
simultanecusly would require the motor speed to be

decreased to 100 Hz producing about 2.0 ms time duration
per siep with adequate program time.
Mi-Bus Geners! Description

The Motorola Interconnect Bus (Mi-Bus) is a serial
push—pull communications protocol which efficiently
supports distributed real time control while exhibiting a high
level of noise immunity.

Under the SAE Vehicle Network categories, the Mi-Bus is
a Class A bus with a data stream transfer bit rate in excess of
20 kHz and thus inaudible to the human ear. it requires a
single wire to carry the control data between the master MCU
and its slave devices. The bus can be operated at lengths up
to 15 meters.

At 20 kHz the time siot used to construct the message
(23 us) can be handied by software using many MCUs
available on the market.

The Mi-Bus is suitable for medium speed networks
requiring very low cost multiplex wiring. Aside from ground,
the Mi-Bus requires only one signal wire connecting the
MCU to multiple slave MC33182 devices with individual
control.

A single MI-Bus can accomplish simuktaneous automotive
system control of Air Conditioning, Head Lamp Levellers,
Mi-Bus has been found 1o be cost effective in vehicie body
electronics by replacing the conventional wiring hamess.

Figure 1 shows the intemal block diagram of the MC33192
Stepper Motor Controller.

Figure 1. MC33192 Stepper Motor Conroller Block Disgram

S
0 R
- Ovider B-Phase Owider
50V Bi-Phase Program 1
10k 50V =i n.,“.,v rﬂowccm
Programing . Lo ans
| Lovel Detecton Programmed e -_LJ 0
| Address T -
'PA"F)
Oust Bridge Oriver and |10 A12(¢)
Laich
o B (10 a1
wa [Ho 812(9
umol H SewvPwateRegewr |
|
18V H Paralel o Sedal Rogeter | 2w w—
15 —
| e
== Encoder
NOTE: (*) Pine 2,9, 10, 11, 12, 13, 14, 16 and 18 are common electrical and heatsink ground pins for the devics.

MOTOROLA ANALOG IC DEVICE DATA

119

Mi-Bus Access Method

The information on the Mi-Bus is sent in a fixed message
frame format (See Figure 4). The system MCU can take
control of the Mi-Bus at any time with a start bit which
violates the law of Manchester Bi-Phase code by having
three consecutive Time Siots (3tg) heid constantly at a Logic
“0" state.
Push-Pull Communicstion Sequence

Communication between the systsm MCU and siave
MC33192 devices always use the same message frame
organization. The MCU first sends eight serial data bits over
the Mi-Bus comprised of five control bits followed by three
address bits. This communication sequence is called a “Push
Field" since it represents command information sent from the
MCU. The sequence of the five control data bits follow the
order DO, D1, D2, D3 and D4. The three address bits are sent
in sequential order A0, A1 and A2 defining a binary address
code. The condition of MI-Bus during any of the control bit
time windows defines a specific control function as shown in
Figure 2. A “Pull Sync” bit is sent at the end of the Push Field,
the positive edge of which causes all data sent 1o the
selected device to be latched into the output circult.

Figure 2. Push Fleld Deta Bits

Control Function
inhibits H—Bridge 2
Estabiishes Direction of H—Bridge 2 Current

Energizes Bridge Coils 1 and 2

Establishes Direction of H-Bridge 1 Current

8|2|R|B|2(®
HEREBHL

Inhibits H—Bridge 1

Afer the Pull Sync bit is sent, following the Push Fieid, the
MCU listens on the Mi-Bus for serial data bits sent back from

MC33192 and received by the MCU.

The address selected MC33192 device sends dala, in
the form of status bits, back to the MCU reporting the
devices condition. At the end of the Push Field the MCU

outputs a Pull Sync bit which signals the start of the Pull
Field. In the Pull Field are three bits (S2, S1 and S0) which
of

report the status of the previously addressed MC33182
according to Figure 3.
Fgure 3. Pull Field Status Bits
82 |81 |80 Status Commants
0| 0| O | Notused
0] o] 1| Free
0] 1| 0] NoBack EMF Drivers and/or colis tailed
0] 1] 1| Free
1 0| 0| Normal/OK
110} 1] Therma Chip temperature > 160°C
1| 1] o| Programming | PROM energized
1] 1| 1 | Selectiontailed | Noise on Mi-Bus, falled or
disconnected module

The positive edge of the Pull Sync puise (set by the MCU)
causes all Push Fieid Dala sent to the selected MC33192 to
be stored in the output latch circuit in time with the strobe
pulse. This means the daia bits are emitted in real time
synchronization with the MCU's machine cycle. The strobe
pulse occurs only after the Push Field sequence is validated
by the address selected device.

Message Validstion

The communication between the MCU and the selected
MC33192 device is valid only when the MCU reads
(receives) the Pull Field Data having the corect codes
(exciuding the code “1-1-1" and “0-0-0") followed by an
End-of-Frame signal. The frequency of the End-of—Frame
signal may be a sub-muitipie of the selected devices local
oscillator or related to an internal or external analog
parameter using a Voitage 1o Frequency Converter.

Error Detection
An error is detected when the Pull Field contains the code
*1-1-1" followed by the End—of—Frame tiedto a

logic 1" state (intemally from 5.0 V through a pull-up
resistor). This means the communication between the MCU
and the selected device was not obtained.

Figure 4. Mi-Bus Timing Diagram

[Frame ol

rﬁ b |

1 Push Field L Pl Fleld)

Had |

I Push Sync [Address } Data End-ol-Frame

I — i B A M

3 Ay

: =1'z'a'4‘s'e) o|1=2'34= I

= swrt :-n-v D0 DI D2 D3 D¢ A Al A =v-1-=sz:1uso= sunl

| | Bi-Phase Coded | Coded | Osclllator |

| | M&nc—r—-‘ i Frequency |

T | !
PushPul Funcion ————— Push y —/ i

e | Swove puse .

120

MOTOROLA ANALOG IC DEVICE DATA

MC33192

There are four types of system error detections which are
not mutually exclusive; These are:
1) Noise Detection

The system MC33192 siave devices receive the Push
Field message from the MCU twice for each Time Siot (lg)
of the Bi-Phase Code. A receive error occurs when the two
message samples fail 1o “logic wise" match. Noise and
Bi-Phase detection are discussed further under Message
Coding.
2) Bi-Phase

The system slave devices receiving the Push Field
message from the MCU detect the Bi—Phase Code. A
detector error occurs when the two time siots of the Bi-Phase
Code do not contain an Exclusive-OR logic function.
3) Field Check

A field error is detected when a fixed-form bi fieid
contains an improper number of bits. A bit error can ajso be
detected by the MCU during the Push Field. The MCU can
simuitaneously monitor the Mi—Bus at the time it is sending
data. A bit error is detected if the sent bit value does not
match the value which was monitored.

4) Urgent Output Disable

Iif the MI-Bus becomes shorted to ground, the siave
device outputs will be disabled after a period of Stg. The MCU
itsslf can take advantage of this feature to “globally” disable
the outputs of all system slave devices by keeping the
Mi-Bus at a logic “0" level for a duration of Stg or more.
Nomal operation is resumed when the MCU sends a
“standard” instruction over the Mi—Bus.
Baeic Stepper Motor Construction and Operstion

Stepper motors are constructed with a permanent magnet
rotor magnetized with the same number of pole pairs as
contained in one stator coil section. Operationally, stepper
motors rotate at constant incremental angles by stepping one
step every time the current switches discretely in one stator
field coil causing the North—South stator field to rotate either
clockwise or counter—clockwise causing the permanent
magnet rotor to follow (see Figure 5). For simplicity, assume
the starting condition of the A1 to A2 stator field to be top to
bottom polarized N to S and the B1 to B2 stator fieid to be left
to right polarized N to S. The resulting stator field will produce
a vector which points in the direction of position 3. The rotor
will, in this case, be in the position shown in Figure 5 (pointing
to position 1). This inkial condition corresponds to that of
step 1 in Figure 6. As the direction of current flow in the B1 to
B2 stator field is reversed, the field polarity of the B1 to B2
also reverses and is left to right polarized S to N. This causes
the resulting stator field vector to point in the direction of
position 4. This in tum causes the N-S rotor to follow and
rotate 80° in a clockwise direction and point in the direction of
position 2. This condition corresponds to step 2 of Figure 6.
Continued clockwise rotor steps will be experienced as the
stator field continues to be incrementally rotated as shown in
steps 3, 4, 5, etc. of Figure 6. The 90° steps in this
example constitute “full stepe”. It is to be noticed that both
coils, in the foregoing full step example, were simultaneously
energized in one of two directions. It is possble to increment
the rotor in 45° “intermediate steps™ or “half steps® by
altemately energizing only one stator coil at a time in the
appropriate direction while tuming the other stator coil off.
The drive signals for Half Step operation are shown in

Figure 7. The Power output stages of the MC33192 coneist

of two H-Bridges capeble of driving two-phase bi-polar
permanent magnet motors in either half or full step
increment.

Figure 8. Permanent Megnet Stepper Motor
A

B1

Step
CaA *
AT0A2) _
cas *
@182 _
= (N[ZIN /N7
e [N ZIN| I\ /7
o | o on

Figure 7. 8-8tep “Helf Step™ Operation

Sep 1 2 314 5]6 7 8 1
ony
cag *
(B10B2) _
= NPV HN AN
dar N LZRIN L ZHEN
oroer, | com ow

MOTOROLA ANALOG IC DEVICE DATA

121

MC33192

energized. in addition, since each winding and resulting flux
conditions are not perfectly matched for each half step,
incremental accuracy is not as good as when full stepping.

Two Phase Drive Signels

The DIR1 and DIR2 bits in the Data Frame of the Push
Field determine the direction of H-Bridge curent flow, and
thus the magnetic field polarization of the stator coils, for
H-Bridge outputs A" and “B" respectively. The directional
signals DIR1 and DIR2, generated by the MCU,
communicate over the M-Bus to control the two H-Bridge
power output stages of the MC33182 to drive two phase
bipolar permanent magnet motors. Figure 8 shows the
MC33192 truth table to accomplish incremental stepping of
the motor in a clockwise or counter—ciockwise direction in
either half or full step modes. The stator field polarization and
rotor position are also shown for reference relative to the
basic stepper motor of Figure 5.

Push Field Bl
1 3 Siakor Rotor Direction
Sup oo | o0 | o2 D4 H-Eridge Outpuls St Devcor
Ft | vt | om Jom | E [ome [me | A | a2 | B | e | P | (VD | Romtion
1 1 1 0 1 [1 1 0 1 ° \ N
cow
-2 v ot x]oe|l1|o]z]z 1r l Y
2 3 1 0 1 1 1 1 [0 1 / s
- &« | o | x 1 1 1 z |z | o 1 —_ | -
3 5 1 1 1 1 1 0 1 0 1 N\ “\
-le 1 1 1] x 0 0 1) 0 l t
4 7 1 1 1 0 1 0 1 1 0 P4 / v
oW
-l e | o | x 1 0 1 z |z | 0 | o .

1

P4

1 4 z

1

1

z

4 4 1

NOTES: 1. X = Don't care; Z = High impedance; 1 = High (active “on") state; 0 = Low (inactive “off") state.
2. The stator field direction and position of the rator are shown for expianation purposes and relative to the basic

motor shown in Figure 3.

stepper
3. DIR1 establishes the direction of current flow in H—Bridge “A°.
4. DIR2 estabiishes the direction of current flow in H—Bridge B".

122

MOTOROLA ANALOG IC DEVICE DATA

MC33192

Mi-Bus interface Desecription
The Mi-Bus Interface shown in Figure 9 is made up of a
single NPN transistor (Q1). The two main functions of this
NPN transistor are:
1) To drive the M-Bus during the Push Field with
approximately 20 mA of current while also exhibiting low

WMM(VCE%
2)Toptotoalholrpm/0utpu$) pin of the MCU against
any Eloetro—Mnonouc Interference (EMI) captured on the

WMMNPNM the MCU couid be destroyed
as a result of receiving excessive EMI energy present on the
bus. In addition, the transistor blocks the MCU from receiving
EMI signals which could erroneously change the data
direction register of the MCU 1/O.

The MCU input pin (Pin), used to read the Pull Field of the
Mi-Bus, is protected by two diodes (D2 and D3) and two
resistors (RS and R6). Any transient EMI generated voitage
present on the bus is clamped by the two diodes to a
windowed vokage value not to be grealsr than the Vpp or
less than the VSs supply voitages of the MCU.

Mi-Bus Levels

The Mi-Bus can have one of two valid logic states,
recessive or dominant. The recessive stats corresponds to a
Lode'i'arldhmmw“oofaiomm
resistor (R9) to 5.0 V. The dominant state
wvmmawumosvm
created by the VCE(sat) of Q1.

Mi-Bus Overvoitsge Protection

An external 2ener diode (Z1) is incorporated in the
interface circuit 8o as to protect the MCU output pin (Pout)
from overvoltages commonly encountered in automotive
applications as a result of “Load Dump” and “Jump Stat"
conditions. LoadDmtpbdohneduﬂaneﬁanm

paralieling the installed automotive battery, through the use
of “jumper cables", to an extemal voltage source in excess
of the vehicles nominal system voitage. For 12 V
automotive systems, it is common for 24 V Jump start
voltages to be used.

When an overvoltage situation (>18 V) exists, due to a
load dump or jump start condition, the zener diode (Z1) is
activated and supplies base current to tum on the NPN
transistor Q1 causing the bus to be pulled to lees than 0.3 V
producing a Logic "0° on the Mi-Bus. After a duration
corresponding to 8tg (200 us) of continuous Logic “0" on the
bus all MC33182 devices wil disable their outputs. Normal
mummmmwmmu
sending out a “standard” meesage instruction

Mi-Bus Terminstion Network

The MI-Bus is resistively loaded according to the number
of MC33192 devices installed on the bus. Each MC33192
has an intemal 10 kQ pull-up resistor 1o 5.0 V. An extemal
pull-up resistor (R7) is recommended to be used to optimally
adjust termination of the bus for a load resistance of 600 Q.

Figure 9. Mi-Bus MCU interface

12V
ml 7£
59V Run oy MCIIR vee
R /7
j 2 (12k) 4o —= (12k) muv Programming
Voo Sh 'fnm 1 mm >‘
-O .‘.‘v Datain
r i Data
s (v % \E‘..._m
[]
s (]
: Addiional MC33192 Devicss 2
»
T ov

MOTOROLA ANALOG IC DEVICE DATA

123

MC33192
MESSAGE CODING

Bi-Phess Coding and Detsction

The Manchester Bi-Phase code shown in Figure 10
requires two time slots (2tg) to encode a single data bit. This
allows detection of a single error at the time siot level. The
logic levels “1° or “0" are determined by the organization of
the two time siots. These always have complementary logic
levels of either zero voits or plus five volts, which are
detected using an Exclusive OR detection circuit during the
Push Field sequence. A "1 bit is detacted when the first time
slot is set 1o a zero logic state (0 V) followed by the second
time siot set to a logic state one (5.0 V). Conversely, a “0" bk
is detected when the first time siot is set to the logic state
“one” (5.0 V) followed by a second time siot set to a “zero”
logic state (0 V). For these two bits are Exclusive~ORs of
each other.

The addressed devices receiving the Push Field detect
the Bi-Phase code. Bi-Phase detection involves the
sampling of the Push Field Bi-Phase code twice (a and b) for
each time siot. A code error occurs when the two time siols of
the Bi-Phase do not follow a logical Exclusive—OR function
(see Figure 10).

Noise monitoring is accomplished by sampling the Push
Field Bi-Phase code twice (a and a') and (b and b") during
each time siol. A noise error is detected if the two sample
values do not have the same logical level.

Figure 10. Noise/B-Phase Detsction

2y
. .

" Rege v T egey

50V 1

Push Reld |

|

1

Bi-Phase
Coded Bis

d — —=
01234567012345670

[b a b
t ¢ t 4 erhme
Detscion
. ‘ E
P V | _ Noise
Detecion
Each message frame consists of two fields: The Push
Field, in which data and addresses are transferred by the
MCU to the slave device; and the Pull Field, in which serial
data is transferred back to the MCU from the address
selected slave device. The message frame is broken down
into seven individual field segments as indicated in Figure 4
(Start, Push Field Sync, Push Field Data, Push Field
Address, Pull Field Sync, Pull Field Data, and
End-of-Frame). The following lists the bit size and function
of each of these segments:
1) 8tart is the start of message and consists of three time
slots (3tg) having the dominant Logic “0" state of less than
0.3 V. Holding the MI-Bus at ground for three time slots (3tg)

marks the beginning of the message frame by violating the
law of the Manchester Code.

2) Push Fleld Sync is a single bit which establighes initial
timing for the Push Fieid Data to follow.

3) Push Fleld Dsta is comprised of five serial data bit
fields (DO, D1, D2, D3 and D4) which comprise the instruction
set defining the configuration and condition of the two

output stages.

4) Push Field Address is comprised of three serial data
bit fieids (A0, A1 and A2) which define the address or name
of a MC33182 on the MI-Bus.

5) Pull Fleid Sync is a singie bit which establishes the end
of the Push Field and the initial stast timing for the Pull Field
Data o foliow.

6) Pull Fleid Deta is made up of three serial data bit fields
(S2, 81 and S0) which contain the existing status information
of an addressed MC33182.

7) End-of-Frame field is a signal which communicaiss
to the MCU that the status information sent by the MC33192
s .

The Push Field Sync bit, Push Field Data bits, Push Field
Address bits, Pull Field Sync bit are all coded by the
Manchester Bi-Phase L Code. The Pull Fieid Data bits are
Non-Return to Zero (NRZ) coded. The End—of Frame field is
a square wave signal with a frequency of 20 kiHz or higher so
a8 to avoid a condition which causes a bus violation.

The Manchester Bi-Phase L code requires two time siots
(2tg) 1o encode a single bit. This allows a single error to be
detected during the time siot.

Address Programming invoives the use of three
instructions. Refer to Figure10.

First Instruction Set the Mi-Bus continuously at 12 V.
This places the MC33192 in the programming mode.
Programming is possible only when the Mi-Bus is at 12 V.,

Next, the MCU serially enters “Logic Zeros™ in ali five Push
Field Data bit positions (D0, D1, D2, D3 and D4) followed by
the designated address value in the Push Field Address
positions (A0, A1, & A2).

The MCU now waits 2753 us before starting the second
instruction. The total of the Pull time, Delay time, and Bus
Violation time (V) of the second instruction (150 ps, 275 us
and 75 ps respectively) will cause the memory cell to be
energized for 500 us. During the first 150 ps of this time, the
MCU is checking the Pull Field Data Bits S2, S1 and SO
looking for the programming code “110” to indicate
complete activation of the memory cell.

Second Instruction (Mi-Bus vokage remaining at 12 V)

The MCU repeats the same Push Field instruction as
previously sent in the First Instruction; entering all "Logic
Zeros™ in the Push Field Data positions foliowed by the
designated Push Field Address value in the address
positions.

Again, the MCU waits for the Pull, Delay, and Bus violation
time while checking the Pull Field Data bits looking for the
programming code “110” code. The MCU must repeat the
initial Push Field Address instruction until a “110° code is
received before advancing to the Third Instruction.

Third Instruction The Mi-Bus voltage is lowered to 5.0 V.

The MCU serially loads “Logic Zeros" in all five Push Field
Data bit positions followed by the programmed address in the
Push Field Address positions. The MCU then checks the Pull
Field Address status bits looking this time for the

124

MOTOROLA ANALOG IC DEVICE DATA

MC33192

programming OK code “100" indicating the address
programming to be executed.

The First and Second Instructions must be repeated until
the MCU successfully receives the programming code
*100". Address programming is not compiete until a “100”
OK status is received by the MCU with the Mi-Bus voitage
atSoV.

Overwrite-Bit
instructions. See Figure 11.

First Instruction Have the Mi—-Bus continuously set at
12V 30 as to have the MC33182 in the programming mode.
Programming can only be accomplished with the MI-Bus at
12V.

The MCU serially enters “Logic Zeros” for the Push Field
Data bits DO, D1, D2 and D3 and a Logic “1° for D4 bit
followed by the programmed address bits A0, A1 and A2.

The MCU now waits 275 us before starting the second
instruction. The total of the Pull time, Delay time, and Bus
Violation time (V) of the second instruction (150 us, 275 us
and 75 us respectively) wil cause the memory cell to be
energized for 300 us. During the first 150 us of this time, the
MCU is checking the Pull Field Data Bits for the status of bits
82, S1 and SO looking for the programming code “110” to
indicate compiete activation of the memory cell.

Second Instruction (Mi-Bus remaining at 12 V)

The MCU repeats the first instruction outiined above until
the programming OK cods “100” is sent back to the MCU
from the selected MC33182 indicating the overwrite—bit
protection to be programmed. If after eight repeat

j the programming code “110" or the OK code
“100° is not generated four times in succession,
programming of the MC33182 has failed. If this occurs, the

ng invoives the use of two

Output
The H-Bridge output drive circuit and associated
diagnostic encoder are shown in Figure 12. The
output uses internal diode clamps (D1, D2, D3, D4) to provide
transient protection of the output transistors necessary when
switching inductive loads aseociated with stepper motors.

Back EMF Detection

Three different Back EMF currents can occur
on whether the motor is running or manner in which it is being
stopped. Referring to Figure 12; When the Dir1 bit is set to
logic 0, the direction of current fiow will be from VCC through
transistor Q2, Coil A (At 1o A2), and transistor Q4 o ground.

1) Fest Decay (when transistors Q1, Q2, Q3 and Q4 are
switched off).

When the current flowing in the coil is stopped by setting
the Inh1 bit 1o logic 0, the back EMF current will circulate
through the voitage supply (VCC) and diodes D1 and D3. At
that time, the voiltage developed across the diode D1 is
detacted by transistor Q6. The generated voitage pulse of Q8
is then encoded and sent, in the Puli-Fleld, to the

2) Siow Decsay (Q3 and Q4 are switched off)

When the current flowing in the coil is stopped by setting
the E bit to logic 0, the back EMF current will circulate through
the diode D1 and transistor Q2 which is already switched on.

3) When Motor is Running

The rotational direction of the motor whenever
the Dir bit state is changed. When the Dir bit is changed from
a logic O to a logic 1, transistors Q2 and Q4 are switched off
and transistors Q1 and Q3 are switched on. At this time, the
back EMF current will circulate from ground through diodes

Overwrite—Bit Programming sequence should be reviewed D1 and D3 to the voltage supply (VCC). In all cases, the back
and re—started from the beginning. EMF currents will be detected by transistors Q5 and Q6.
Figure 11. Addreas Programming Diegrem
Achve :
"IV nished Finished
12v | 12v
" sov 50V
Instruction Number 1 -t 2 ot 3
| |
| | Iyl | pa | Iyl | pyl
Fad vi Push !Pull Delay | V| Push | P4 | Delay M Push Iml
550 us 1%0us 275us TBus 680ps 150us 27pus TSpus :
Address |
Stk Code :-110- : | “1o° | | 100"
Overwite-Bit | | | | I
State Code :-mr { : “100° : } “100"
| ' | ' [ox
Sirobe Puise + 4 } }
| | | |
500 415 500
n) s ns
Memory Cell t

MOTOROLA ANALOG IC DEVICE DATA

125

MC33192

ngnmﬂ-awpwmcmmwcm

— OV,
1o (o]
< <
< <
() Imqr‘-‘ < D a
[+ 3 Jcs
—O Al
3230
O A2
or10 . — 3 ML g Loime
s Call 204 m"“"“ O Di2
o ¥ b3 A ——— 820 ~OE
<
& - -© Ground
EO—4
82|s1]%0 Stakus
mu 0] 0] O] NotUsed
b 0|0 1]Free
m_.__hD D Q 8 0] 1] 0] NoBackEMF
are > o[1] 1] Free
sTo c S 8 1] 0] 0| NormaoK
Programming O- 110 1] Therma
Thermal O 1] 1] o] Programming
1 | 1] 1| SeectonFalied

10

126

MOTOROLA ANALOG IC DEVICE DATA

12V O—¢-

MC33192

Fhw11mbmmcumuoflspmrm

1 I - o wcsow Stepper
sov Program *
T | Aun
Micorcontroller R1] o] Mexisow Mokr
Pout 2
NICB8HC0586 o1
MCEBHC11KA
T e = ¢+xol moxmiseow 3"
Ph AMA AAA 3
GO _{ i
= loo] Mmcmisow Prusan
A
o] wcaisow yrie
5
Hoo{ mcxieeow ris
s
Hoo| Mcasow Mo
o] mexsow Mokr
)

MOTOROLA ANALOG IC DEVICE DATA

127

MC33192

OUTLINE DIMENSIONS
DW SUFFIX
PLASTIC PACKAGE
CASE 751G—02
(SO-16L)
ISSUE A
=A=)
{=A—}
«HAAAAAAAS
NOTES:
& 1. D!’ji’f%NGANDMEWCNGPERANSI
Bl | exP 2. CONTROLLRG DMENSION: MLLMETER.
& [0.010025@| B8 @ 3 gﬁrﬁgm‘l«wam:mmwosmz
A 008) PE
'"TEEFUIERE: y 4. MAXMUM MOLD PROTRUSION 0150006
J 5. DME"EJSNDDQESNOTNCLUDEDWR
16x D

EEIECHNIES)

el

¥ C

14x G K

A

SEATING
PLANE

S

ROTI
PROTRUSION SHALL BE 0.13 (0.005) TOTALIN.
EXCESS OF D DIMENSION AT MAXIMUM
MATERIAL CONDITION.

]

e

|=[al

1

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty,

representation or guarantes regarding

the suitability of ite products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and

any and all liability, including
ficat oV aryinaiT

. “Typical ‘which may be pi in Motorola
L) oviclos

must be validated for each customer application by customer's technical

varyovertime. “Typicals®
experts. Motorola does not convey any license under its patent rights nor the rights of

others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other

applications intended to support or sustain life, or for any other application in which the failure of the Motorol
ordeath for any i i

product co P injury

y
and its officers,

affiliates, and di

i harmiess against all claims, costs, damages, and expanses, and reasonable attornay fees
arising out of, directly or indirectly, any claim of personal injury or death i i i

ith such or

use, even if such claim alleges that

Motorola was negligent regarding the design or manufactura of the part. Motorola and (&) are registered trademarks of Motorola, Inc. Motorola, In. is an Equal

Opportunity/Affirmative Action Employer.

How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;

P.O. Box 20912; Phoenix, Arizona 85038. 1-800-441-2447 or 602-303-5454

MFAX: RMFAX0@email.sps.mot.com — TOUCHTONE 802-244-6609
INTERNET: http//Design-NET.com

MOTOROLA

JAPAN: Nippon Motorola Ltd.; Te i-SPD-JLDC, 6F Seibu-Bi y
3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-81-3521-8315

Center,

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 88 Tai Ping Industrial Park,
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26829298

M33192/D

128

BIBLIOGRAPHY

Bibliography

(1] Philip Koopman, "Embedded System Design Issues(the Rest of the
Story)”,International Conference on Computer Design, IEEE Computer
Society, Los Alamitos CA, 1996, pp. 310-317.

[2] “POLIS: a framework for hardware/software co-design of embedded
systems.” [Online] Available
http://www-cad.eecs.berkeley.edu/Respep/Research /hsc/polis_files.html.

[3] “Hardware-Software Co-Design Study.” [Online] Available
http://www.mcc.com/projects/hwsw-codesign/std _prop.html.

[4] POLIS User’s Manual. [Online] Available
http://www-cad.eecs.berkeley.edu/Respep/Research/hsc/polis files.html.

[5] Felice Balarin, Massimiliano Chiodo, et al, ”Hardware-Software Co-design
Of Embedded Systems, The POLIS Approach”, Kluwer Academic
Publishers, 1997.

(6] D. Harel, A. Naamad, “The STATEMATE semantics of statecharts.”
[Online] Available
http://www.acm.org/pubs/toc/Abstracts/tosem/235322.html

[7] VIS(Verification Interacting with Synthesis). [Online]
Available“http://www-
cad.eecs.berkeley.edu/Respep/Research/vis/index.html

[8] “The ESTEREL Language.’ [Online] Available
http://www.inria.fr/meije/esterel/

[9] C. Kuttner, ”"Hardware-Software Codesign Using Processor Synthesis”,
IEEFE Design & Test of Computers, Fall 1996, pp. 43-53.

[10] "A D&T Roundtable, Hardware-Software Codesign”, IEEE Design € Test
of Computers, January-March 1997, 75-83.

[11) " ASICs and Design Tools, Design Report, '97 Paris Forum ”, Computer
Design, June 1997, pp. 53-64.

130

[12] C.A.R. Hoare, "Hardware and Software : Closing the gap”, Transputer
communications, June 1994, pp. 69-90.

(13] S. Schulz, J. Rosenblit, et al, ”Model-Based Codesign”, Computer, August
1998, pp. 60-67.

[14] K. Buchenrieder, C. Veith, ” A Prototyping Environment for
Control-Oriented HW/SW Systems”, ACM 1994, pp. 60-65.

[15] "EDA Watch, Long Overdue Unified HW/SW Co-Design Language Comes
to Light”, Electronic Design, May 13, 1998, pp. 60-62.

[16] D. Gajski, F.Vahid, “Specification and Design of Embedded Hardware
Software Systems”, IEEE Design & Test of Computers, Spring 1995, pp.
53-67.

[17] D.Gajski, F. Vahid, et al, Specification and Design of Embedded Systems,
Prentice-Hall, Englewood Cliffs, N.J.,1994.

[18] M. Srivatsava, R. Brodersen, “Rapid Prototyping of Hardware and Software
in a Unified Framework”, Proc. Int’l Conf. Computer-Aided Design, IEEE
CS Press, 1992, pp 152-155.

(19] D. Thomas, J. Adams, et al, “A Model and Methodology for
Hardware/Software Codesign”, IEEE Design & Test of Computers, Vol. 10,
No. 3, Sept. 1993, pp. 6-15.

[20] R.Ernst, J. Henkel, et al, “Hardware-Software Cosynthesis for
Micro-Controllers,” IEEE Design € Test of Computers, Vol. 10, No. 4, Dec.
1993, pp. 64-75.

[21] R.Gupta, D. Micheli, “Hardware-Software Cosynthesis for Digital Systems,”
IEEFE Design & Test of Computers, Vol. 10, No. 3, Oct. 1993, pp. 29-41..

[22] K. Buchenreider and C. Veith, “CODES: A Practical Concurrent Design
Environment,”

[23] S.L. Coumeri, D.E. Thomas, " A Simulation Environment for
Hardware-Software Codesign”,FEuro DAC, IEEE Computer Society, Los
Alamitos CA, 1995, pp. 58-63.

[24] “HW/SW Co-Design for Embedded Systems”, Alberto S-V, ILP, March
1995.

[25] “Ptolemy”. [Online] Available http://ptolemy.eecs.berkeley.edu

131

[26] “The Almagest: A Manual for Ptolemy”. [Online] Available
http://ptolemy.eecs.berkeley.edu/papers/almagest/docs/user

[27] “The Esterel v5 Language Primer”. [Online] Available
http://www.inria.fr/meije/esterel

[28] [Online]Available http://www.eagledes.com

[29] F. Balarin, H. Hsieh, et al, “Formal verification of embedded systems based
on CFSM networks,” Proceedings of the Design Automation Conference,
1996.

[30] M. Chiodo, P. Giusto, et al, “A formal specification model for
hardware/software codesign for embedded systems,” IEEE Micro,
14(4):26-36, August 1994.

[31] Motorola Analog IC Device Data, MC33192, Motorola Inc., 1996.

[32] Michel Burri and Dr. Pascal Renard, “Single wire MI Bus controlling
stepper motors”, Motorola Semiconductor Application Note, AN475,
Motorola Ltd., 1993.

[33] “The Handy Board”. [Online] Available
http://lcs.www.media.mit.edu/groups/el/Projects/handy-board

[34] “Interactive C for the Handy Board Manual”. [Online] Available
http://lcs.www.media.mit.edu/groups/el/Projects
/handy-board/techdocs/index.html

132

MICHIGAN STATE UNIV. LIBRARIES
(TMERARM A
31293017791991

