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ABSTRACT 
 

MACROECOLOGY OF BREEDING BIRDS OF NEW YORK STATE. INFLUENCES OF 
CLIMATE CHANGE, LANDSCAPE MATRIX, AND SPATIAL SCALE. 

 
By 

 
Marta Anna Jarzyna 

 
Climate change has the potential to greatly affect biodiversity and there is convincing evidence 

that most taxonomic groups are already responding to the recent climate warming. Even though 

the impacts of climate change on biodiversity are felt across a wide range of ecosystems, the 

severity and sometimes the direction of these impacts are likely to differ across space because 

factors other than climate will influence how biodiversity responds to climate change. For 

example, composition and configuration of land cover may play significant roles in the relative 

vulnerabilities of biodiversity to changing climate. However, despite some initial investigations, 

empirical evidence for the influence of land cover is lacking because studies that integrate both 

land cover and climate are rare. The overarching goal of my dissertation was to assess the 

relative roles of climate change and land cover in the observed changes in avian biodiversity. 

Specifically, I was interested in the influences of land-cover composition and configuration on 

relative vulnerabilities of different avian groups to climate change and spatial scales at which 

such influences are relevant. Chapter 1 focuses on testing the utility of the spatially-varying 

coefficients (SVC) model to quantify the influence of non-stationarity on relationships between 

temporal community change in avian assemblages and environmental covariates. Chapter 2 

investigates bioclimatic relationships of grassland and forest breeding birds across varying 

gradients of grassland and forest habitat. Chapter 3 investigates the relationship between 

temporal changes in avian assemblages and the interaction of climate change and land-cover 

fragmentation. Chapter 4 explores scale-dependence of temporal changes in avian communities 



 
 

and investigates relevant environmental drivers of the community change at different spatial 

scales.  

The collective works in these chapters contribute four primary conclusions for better 

understanding of the implications of the interaction of land use and climate change to avian 

diversity. First, relationships between changes in biodiversity and environmental factors are 

often spatially non-stationary, i.e., the relationship between a response variable and the predictor 

covariates varies across the spatial extent of the study. Second, the amount of suitable land cover 

can significantly alter species responses to climate change, but this effect of land cover depends 

on the type of habitat. Third, impacts of climate change on ecological communities are more 

pronounced in regions of unfragmented landscapes than in locations with fragmented habitats. 

Fourth, temporal changes in community composition are scale-dependent and so are the 

mechanisms driving these changes. Specifically, climate change operates at smaller spatial scales 

than landscape fragmentation.  

The implications of these findings suggest that current conservation strategies may be 

insufficient to protect biodiversity in the face of climate change. Existing biodiversity 

conservation generally focuses on conserving large regions with undisturbed and contiguous 

habitats that generally support high species diversity. My results suggest that ecological 

communities of such habitats will undergo the most drastic compositional changes as a result of 

climate change. Thus, it is critical that the existing conservation strategies are placed in the 

context of climate change. My work suggests that successful biodiversity conservation needs to 

consider both the individual species’ vulnerabilities to climate change based on their habitat 

association or life-history strategies and relative vulnerabilities of entire communities based on 

the landscape in which these communities persist.  



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Copyright by 

MARTA ANNA JARZYNA 
2014 

 



v 
 

ACKNOWLEDGMENTS 
 
 

I thank my advisor, Dr. Porter, for his excellent guidance, caring, patience, and providing me 

with a superb atmosphere for doing research. I also thank my committee members, Drs. Finley, 

Maurer, and Zuckerberg for their support and guidance throughout the entire process. Dr. Finley 

patiently taught me hierarchical Bayesian modeling approaches and their applications in a spatial 

context. Dr. Maurer introduced me to the fascinating world of macroecology, for which I could 

not be more grateful. Dr. Zuckerberg provided excellent suggestions regarding climate change 

implications for biodiversity.  

I thank the faculty and students in the Quantitative Wildlife Laboratory that provided 

insight and support, especially Dr. Snow, who was not only a fair critic of my work but also a 

great friend. This research was funded in part by the National Aeronautics and Space 

Administration, the Boone and Crockett Club, and the Graduate School at Michigan State 

University. I also thank Michigan State University for support. 

Last but not least, I am grateful for the love and support from my family and friends. 

Special thanks go to my husband, Jim, without whose love and encouragement I would not have 

completed this work. 

  



vi 
 

TABLE OF CONTENTS 
 
 

LIST OF TABLES ......................................................................................................................... ix 
 
LIST OF FIGURES ...................................................................................................................... xii 
 
PROLOGUE ................................................................................................................................... 1 
 
ACCOUNTING FOR THE SPACE-VARYING NATURE OF THE RELATIONSHIPS 
BETWEEN TEMPORAL COMMUNITY TURNOVER AND THE ENVIRONMENT ............. 6 

ABSTRACT ................................................................................................................................ 6 
1.1 INTRODUCTION ................................................................................................................. 7 
1.2 DATA AND METHODS .................................................................................................... 10 

1.2.1 Site description ............................................................................................................. 10 
1.2.2 Breeding Bird Atlas ...................................................................................................... 11 
1.2.3 Temporal turnover ........................................................................................................ 12 
1.2.4 Model covariates ........................................................................................................... 13 

1.2.4.1 Climatic trends ....................................................................................................... 13 
1.2.4.2 Habitat fragmentation ............................................................................................ 14 
1.2.4.3 Survey effort .......................................................................................................... 16 

1.2.5 Statistical analysis......................................................................................................... 16 
1.3 RESULTS............................................................................................................................ 20 

1.3.1 Temporal turnover ........................................................................................................ 20 
1.3.2 Covariates ..................................................................................................................... 22 
1.3.3 Statistical analysis......................................................................................................... 22 

1.3.3.1 Model fit and predictive ability.............................................................................. 22 
1.3.3.2 Coefficient estimates .............................................................................................. 25 

1.4 DISCUSSION ..................................................................................................................... 28 
1.5 ACKNOWLEDGMENTS ................................................................................................... 33 

 
SYNERGISTIC EFFECTS OF CLIMATE AND LAND COVER: ARE GRASSLAND BIRDS 
MORE VULNERABLE TO CLIMATE CHANGE? ................................................................... 34 

ABSTRACT .............................................................................................................................. 34 
2.1 INTRODUCTION ............................................................................................................... 35 
2.2 METHODS.......................................................................................................................... 38 

2.2.1 Breeding Bird Atlas and chosen species....................................................................... 38 
2.2.2 Model covariates ........................................................................................................... 40 
2.2.3 Habitat amount ............................................................................................................. 40 
2.2.4 Statistical analysis......................................................................................................... 41 

2.3 RESULTS............................................................................................................................ 43 
2.3.1 Model comparison ........................................................................................................ 43 
2.3.2 Bioclimatic relationships .............................................................................................. 44 
2.3.3 Heterogeneity of bioclimatic relationships across habitat amount ............................... 49 

2.4 DISCUSSION ..................................................................................................................... 54 
2.4.1 Bioclimatic relationships .............................................................................................. 54 



vii 
 

2.4.2 Heterogeneity of bioclimatic relationships across habitat amount ............................... 55 
2.5 ACKNOWLEDGMENTS ................................................................................................... 59 

 
LANDSCAPE FRAGMENTATION AFFECTS RESPONSES OF AVIAN COMMUNITIES TO 
CLIMATE CHANGE ................................................................................................................... 61 

ABSTRACT .............................................................................................................................. 61 
3.1 INTRODUCTION ............................................................................................................... 62 
3.2 METHODS.......................................................................................................................... 65 

3.2.1 Site description ............................................................................................................. 65 
3.2.2 Breeding Bird Atlas ...................................................................................................... 66 
3.2.3 Temporal turnover ........................................................................................................ 67 
3.2.4 Habitat fragmentation ................................................................................................... 68 
3.2.5 Climatic trends .............................................................................................................. 69 
3.2.6 Survey effort ................................................................................................................. 70 
3.2.7 Statistical analysis......................................................................................................... 70 

3.3 RESULTS............................................................................................................................ 73 
3.3.1 Relationships with climate change and habitat fragmentation ..................................... 73 

3.3.1.1 Temporal turnover ................................................................................................. 73 
3.3.1.2 Extinction ............................................................................................................... 79 
3.3.1.3 Colonization ........................................................................................................... 83 

3.3.2 Responses of different migratory groupings ................................................................ 85 
3.3.2.1 Temporal turnover ................................................................................................. 85 
3.3.2.2 Extinction ............................................................................................................... 87 
3.3.2.3 Colonization ........................................................................................................... 89 

3.4 DISCUSSION ..................................................................................................................... 91 
3.4.1 Relationships with climate change and habitat fragmentation ..................................... 91 
3.4.2 Responses of different migratory groupings ................................................................ 93 
3.4.3 Conclusions .................................................................................................................. 95 

3.5 ACKNOWLEDGMENTS ................................................................................................... 95 
 
SCALE-DEPENDENCE OF TEMPORAL CHANGES IN AVIAN COMMUNITIES ............. 97 

ABSTRACT .............................................................................................................................. 97 
4.1 INTRODUCTION ............................................................................................................... 98 
4.2 METHODS........................................................................................................................ 100 

4.2.1 Breeding Bird Atlas .................................................................................................... 100 
4.2.2 Spatial scaling of community change ......................................................................... 101 
4.2.3 Factors influencing community change across spatial grains .................................... 102 

4.3 RESULTS.......................................................................................................................... 106 
4.3.1 Spatial scaling of community change ......................................................................... 106 
4.3.2 Factors influencing community change across spatial grains .................................... 113 

4.3.2.1 Temporal turnover ............................................................................................... 113 
4.3.2.2 Extinction ............................................................................................................. 113 
4.3.2.3 Colonization ......................................................................................................... 114 

4.4 DISCUSSION ................................................................................................................... 117 
4.4.1 Spatial scaling of community change ......................................................................... 117 
4.4.2 Factors influencing community change across spatial grains .................................... 119 



viii 
 

4.4.3 Conclusions ................................................................................................................ 124 
4.5 ACKNOWLEDGMENTS ................................................................................................. 124 

 
EPILOGUE ................................................................................................................................. 125 
 
APPENDIX ................................................................................................................................. 130 
 
LITERATURE CITED ............................................................................................................... 162 
 
  



ix 
 

LIST OF TABLES 
 
 
Table 1.1 Comparison of the non-spatial, spatially-varying intercept (SVI), and spatially-varying 
coefficient (SVC) models for four migratory groupings using Deviance Information Criterion 
(DIC), estimated number of parameters pD, and Relative Mean Square Error (RMSE). Predictive 
performance of the models was evaluated by calculating RMSEpred of the observed values from 
the hold-out set and the predicted values resulting from all three models………………….…....23 
 
Table 1.2 Coefficient estimates resulting from the non-spatial and spatially-varying intercept  
(SVI) models for all model covariates: intercept (β0 ), magnitude of the 25-year (1980-2005) 
trend in average maximum temperature of the breeding season (βTMAX), magnitude of the 25-year 
(1980-2005) trend in average minimum temperature of the breeding season (βTMIN), magnitude of 
the 25-year (1980-2005) trend in average total precipitation of the breeding season (βPRECIP), 
percent developed land (βDEVEL), edge density (βED), and effort (βEFF). 50% indicates the mean of 
the posterior distribution, while 2.5% and 97.5% are the lower and upper quantiles of the 
posterior distribution…....……………………………………………………………………..…25 
 
Table 2.1 Coefficient estimates resulting from the spatially-varying intercept (SVI) models for 
the intercept (INTERCEPT), 2000-05 average maximum temperature of the breeding season 
(TMAX), 2000-05 average minimum temperature of the breeding season (TMIN), 2000-05 
average total precipitation of the breeding season (PRECIP), and 2000-05 survey effort (EFF) for 
grassland and forest birds. Species occurrence data were retrieved from the 2000-05 New York 
State Breeding Bird Atlas………………………………………………………………..………45 

Table 2.2 Relationships between amount of habitat (percent of grassland cover, GPLAND, and 
percent of forest cover, FPLAND, for grassland and forest birds, respectively) and spatially-
varying coefficient estimates for 2000-05 average maximum temperature of the breeding season 
(TMAX), 2000-05 average minimum temperature of the breeding season (TMIN), and 2000-05 
average total precipitation of the breeding season (PRECIP). The “*” symbol indicates that less 
than 10% of the spatially-varying coefficient estimates (i.e., TMAX, TMIN, PRECIP coefficient 
estimates resulting from the SVC models) had the 95% credible intervals not overlapping zero. 
Species occurrence data were retrieved from the 2000-05 New York State Breeding Bird 
Atlas………………………………………………………………………………...………..…..51 
 
Table 3.1 Comparison of five competing models of temporal turnover for all four avian 
groupings (i.e., all species, long-distance migrants, short-distance migrants, and resident 
species). Models included the following covariates: magnitude of the 25-year (1980-2005) trend 
in average maximum temperature of the breeding season (TMAX), magnitude of the 25-year 
(1980-2005) trend in average minimum temperature of the breeding season (TMIN), magnitude 
of the 25-year (1980-2005) trend in average total precipitation of the breeding season (PRECIP), 
edge density (ED), percent developed land (DEVEL), interaction between the magnitude of the 
25-year (1980-2005) trend in average maximum temperature of the breeding season and edge 
density (TMAX*ED), interaction between the magnitude of the 25-year (1980-2005) trend in 
average minimum temperature of the breeding season and edge density (TMIN*ED), interaction 
between the magnitude of the 25-year (1980-2005) trend in average total precipitation of the 
breeding season  and edge density (PRECIP*ED), and survey effort (EFF). Model comparison 



x 
 

was done using Deviance Information Criterion (DIC); pD indicates the effective number of 
parameters………………………………………………………….…………………………….75 
 
Table 3.2 Comparison of five competing models of extinction for all four avian groupings (i.e., 
all species, long-distance migrants, short-distance migrants, and resident species). Models 
included the following covariates: magnitude of the 25-year (1980-2005) trend in average 
maximum temperature of the breeding season (TMAX), magnitude of the 25-year (1980-2005) 
trend in average minimum temperature of the breeding season (TMIN), magnitude of the 25-year 
(1980-2005) trend in average total precipitation of the breeding season (PRECIP), edge density 
(ED), percent developed land (DEVEL), interaction between the magnitude of the 25-year 
(1980-2005) trend in average maximum temperature of the breeding season and edge density 
(TMAX*ED), interaction between the magnitude of the 25-year (1980-2005) trend in average 
minimum temperature of the breeding season and edge density (TMIN*ED), interaction between 
the magnitude of the 25-year (1980-2005) trend in average total precipitation of the breeding 
season  and edge density (PRECIP*ED), and survey effort (EFF). Model comparison was done 
using Deviance Information Criterion (DIC); pD indicates the effective number of 
parameters……………………………………………………………………………………......81 
 
Table 3.3 Comparison of five competing models of colonization for all four avian groupings 
(i.e., all species, long-distance migrants, short-distance migrants, and resident species). Models 
included the following covariates: magnitude of the 25-year (1980-2005) trend in average 
maximum temperature of the breeding season (TMAX), magnitude of the 25-year (1980-2005) 
trend in average minimum temperature of the breeding season (TMIN), magnitude of the 25-year 
(1980-2005) trend in average total precipitation of the breeding season (PRECIP), edge density 
(ED), percent developed land (DEVEL), interaction between the magnitude of the 25-year 
(1980-2005) trend in average maximum temperature of the breeding season and edge density 
(TMAX*ED), interaction between the magnitude of the 25-year (1980-2005) trend in average 
minimum temperature of the breeding season and edge density (TMIN*ED), interaction between 
the magnitude of the 25-year (1980-2005) trend in average total precipitation of the breeding 
season  and edge density (PRECIP*ED), and survey effort (EFF). Model comparison was done 
using Deviance Information Criterion (DIC); pD indicates the effective number of 
parameters……..............................................................................................................................84 
 
Table A 1.1 List of all bird species (N = 256) from the New York State Breeding Bird Atlas 
(BBA)…………………….…...………………….…………………………………………......131 
 
Table A 2.1 Comparison of the spatially-varying intercept (SVI) and spatially-varying 
coefficients (SVC) models for grassland and forest birds recorded during the 2000-05 New York 
State Breeding Bird Atlas………………………………………………………………………138 
 
Table A 3.1 Coefficient estimates (βs) of each covariate resulting from all tested models of 
temporal turnover (starting with the best model as indicated by DIC) for four avian groupings: all 
species, long-distance migrants, short-distance migrants, and resident species. Covariates 
included intercept (INT), magnitude of the 25-year (1980-2005) trend in average maximum 
temperature of the breeding season (TMAX), magnitude of the 25-year (1980-2005) trend in 
average minimum temperature of the breeding season (TMIN), magnitude of the 25-year (1980-



xi 
 

2005) trend in average total precipitation of the breeding season (PRECIP), edge density (ED), 
percent developed land (DEVEL), interaction between the magnitude of the 25-year (1980-2005) 
trend in average maximum temperature of the breeding season and edge density (TMAX*ED), 
interaction between the magnitude of the 25-year (1980-2005) trend in average minimum 
temperature of the breeding season and edge density (TMIN*ED), interaction between 
magnitude of the 25-year (1980-2005) trend in average total precipitation of the breeding season  
and edge density (PRECIP*ED), and survey effort (EFF). 50% indicates the mean of the 
posterior distribution, while 2.5% and 97.5% are the lower and upper quantiles of the posterior 
distribution……………………………………………………………………………………...140 
 
Table A 3.2 Coefficient estimates (βs) of each covariate resulting from all tested models of 
extinction (starting with the best model as indicated by DIC) for four avian groupings: all 
species, long-distance migrants, short-distance migrants, and resident species. Covariates 
included intercept (INT), magnitude of the 25-year (1980-2005) trend in average maximum 
temperature of the breeding season (TMAX), magnitude of the 25-year (1980-2005) trend in 
average minimum temperature of the breeding season (TMIN), magnitude of the 25-year (1980-
2005) trend in average total precipitation of the breeding season (PRECIP), edge density (ED), 
percent developed land (DEVEL), interaction between the magnitude of the 25-year (1980-2005) 
trend in average maximum temperature of the breeding season and edge density (TMAX*ED), 
interaction between the magnitude of the 25-year (1980-2005) trend in average minimum 
temperature of the breeding season and edge density (TMIN*ED), interaction between 
magnitude of the 25-year (1980-2005) trend in average total precipitation of the breeding season  
and edge density (PRECIP*ED), and survey effort (EFF). 50% indicates the mean of the 
posterior distribution, while 2.5% and 97.5% are the lower and upper quantiles of the posterior 
distribution……………………………………………………………………………………...145 
 
Table A 3.3 Coefficient estimates (βs) of each covariate resulting from all tested models of 
colonization (starting with the best model as indicated by DIC) for four avian groupings: all 
species, long-distance migrants, short-distance migrants, and resident species. Covariates 
included intercept (INT), magnitude of the 25-year (1980-2005) trend in average maximum 
temperature of the breeding season (TMAX), magnitude of the 25-year (1980-2005) trend in 
average minimum temperature of the breeding season (TMIN), magnitude of the 25-year (1980-
2005) trend in average total precipitation of the breeding season (PRECIP), edge density (ED), 
percent developed land (DEVEL), interaction between the magnitude of the 25-year (1980-2005) 
trend in average maximum temperature of the breeding season and edge density (TMAX*ED), 
interaction between the magnitude of the 25-year (1980-2005) trend in average minimum 
temperature of the breeding season and edge density (TMIN*ED), interaction between 
magnitude of the 25-year (1980-2005) trend in average total precipitation of the breeding season  
and edge density (PRECIP*ED), and survey effort (EFF). 50% indicates the mean of the 
posterior distribution, while 2.5% and 97.5% are the lower and upper quantiles of the posterior 
distribution……………………………………………………………………………………...150 
  



xii 
 

LIST OF FIGURES 
 
 

Figure 1.1 Observed temporal turnover in communities of breeding birds in New York 
expressed using Diamond-May index (A) and the fitted temporal turnover values resulting from 
the non-spatial model (B), spatially-varying intercept (SVI) model (C), and spatially-varying 
coefficients (SVC) model D).…………..………………………………………………………..21 
 
Figure 1.2 Observed temporal turnover of the holdout data set (A) compared with the surfaces of 
the predicted values resulting from the non-spatial model (B), spatially-varying intercept (SVI) 
model (C), and spatially-varying coefficients (SVC) model (D)……………………..…..……...24 
 
Figure 1.3 Coefficient estimates resulting from the spatially-varying coefficient (SVC) models 
of (A) the intercept, (B) the magnitude of the 25-year (1980-2005) trend in average maximum 
temperature of the breeding season (βTMAX), (C) the magnitude of the 25-year (1980-2005) trend 
in average minimum temperature of the breeding season (βTMIN), (D) the magnitude of the 25-
year (1980-2005) trend rates in average total precipitation of the breeding season (βPRECIP), (E) 
percent developed land (βDEVEL), (F) edge density (βED), and (G) effort (βEFF). Black point 
symbols identify grid cells with posterior 90% credible intervals that include zero. The surface 
colors identify the direction of the regression coefficients' sign……………………………..….27 
 
Figure 2.1 Mean values of the coefficient estimates of 2000-05 average spring maximum 
temperature (TMAX), 2000-05 average spring minimum temperature (TMIN), and 2000-05 
average total spring precipitation (PRECIP) for both avian groups: grassland birds (circles) and 
forest birds (triangles). 95% confidence intervals indicate whether the mean value of the 
coefficient estimates is significantly different from zero. On each plot from left to right: 
American kestrel, northern harrier, eastern bluebird, eastern kingbird, horned lark, grasshopper 
sparrow, savannah sparrow, vesper sparrow, bobolink, brown-headed cowbird, eastern 
meadowlark, blue-gray gnatcatcher, blue-headed vireo, golden-crowned kinglet, great crested 
flycatcher, red-breasted nuthatch, tufted titmouse, veery, black-and-white warbler, black-throated 
blue warbler, black-throated green warbler, blackburnian warbler, and Canada warbler. Species 
occurrence data were retrieved from the 2000-05 New York State Breeding Bird Atlas…….…48 
 
Figure 2.2 Mean values of the associations between the percent habitat (percent grassland cover, 
GPLAND, and percent forest cover, FPLAND, for grassland and forest species, respectively) and 
coefficient estimates of 2000-05 average spring maximum temperature  (TMAX), 2000-05 
average spring minimum temperature (TMIN), and 2000-05 average total spring precipitation 
(PRECIP) for both avian groups: grassland birds (circles) and forest birds (triangles). 95% 
confidence intervals indicate whether the mean value of the associations is significantly different 
from zero. On each plot from left to right: American kestrel, northern harrier, eastern bluebird, 
eastern kingbird, horned lark, grasshopper sparrow, savannah sparrow, vesper sparrow, bobolink, 
brown-headed cowbird, eastern meadowlark, blue-gray gnatcatcher, blue-headed vireo, golden-
crowned kinglet, great crested flycatcher, red-breasted nuthatch, tufted titmouse, veery, black-
and-white warbler, black-throated blue warbler, black-throated green warbler, blackburnian 
warbler, and Canada warbler. Species occurrence data were retrieved from the 2000-05 New 
York State Breeding Bird Atlas………………………………………………………………….53 



xiii 
 

Figure 3.1 Temporal turnover, extinction, and colonization observed between 1980-85 and 
2000-05 for communities of (A) all recorded species regardless of their migratory status, (B) 
long-distance migrants, (C) short-distance migrants, and (D) resident birds. Temporal turnover 
was calculated as a proportion of all species gained or lost between 1980-85 and 2000-05 in a 
particular site (i.e., Breeding Bird Atlas block) relative to all species recorded across both time 
periods; extinction was calculated as a proportion of species lost between 1980-85 and 2000-05 
in a particular site relative to all species present in a block in 1980-85; colonization was 
calculated as a proportion of species gained between 1980-85 and 2000-05 in a particular site 
relative to all species recorded across both time periods. High values of all three metrics indicate 
high temporal turnover, extinction, and colonization…...…………………………………….....74 
 
Figure 3.2 Coefficient estimates (i.e., mean values of the posterior distribution and associated 
credible intervals) of the best model for each avian grouping for (A) temporal turnover, (B) 
extinction, and (C) colonization. Abbreviations for the covariates are as follows: magnitude of 
the 25-year (1980-2005) trend in average maximum temperature of the breeding season 
(TMAX), magnitude of the 25-year (1980-2005) trend in average minimum temperature of the 
breeding season (TMIN), magnitude of the 25-year (1980-2005) trend in average total 
precipitation of the breeding season (PRECIP), edge density (ED), percent developed land 
(DEVEL), interaction between the magnitude of the 25-year (1980-2005) trend in average 
maximum temperature of the breeding season and edge density (TMAX-ED), interaction 
between the magnitude of the 25-year (1980-2005) trend in average minimum temperature of the 
breeding season and edge density (TMIN-ED), interaction between magnitude of the 25-year 
(1980-2005) trend in average total precipitation of the breeding season  and edge density 
(PRECIP-ED)…………………………………………………………………...……………......77 
 
Figure 3.3 Effects size plots resulting from the best temporal turnover models for (A) the 
interaction of magnitude of the 25-year (1980-2005) trend in average minimum temperature of 
the breeding season (TMIN) and edge density (ED) for all species, (B) the interaction of 
magnitude of the 25-year (1980-2005) trend in average minimum temperature of the breeding 
season (TMIN) and edge density (ED) for long-distance migrants, (C) the interaction of 
magnitude of the 25-year (1980-2005) trend in total precipitation of the breeding season 
(PRECIP) and edge density (ED) for long-distance migrants, (D) the interaction of magnitude of 
the 25-year (1980-2005) trend in average maximum temperature of the breeding season (TMAX) 
and edge density (ED) for resident birds, and (E) the interaction of magnitude of the 25-year 
(1980-2005) trend in average minimum temperature of the breeding season (TMIN) and edge 
density (ED) for resident birds. The interaction terms shown here are the ones whose credible 
intervals did not overlap zero. Green points are the observed data points and are plotted to 
indicate levels of confidence for the predicted surface……………………………………..……78 
 
Figure 3.4 Effects size plots resulting from the best extinction models for (A) the interaction of 
magnitude of the 25-year (1980-2005) trend in average minimum temperature of the breeding 
season (TMIN) and edge density (ED) for all species, (B) the interaction of magnitude of the 25-
year (1980-2005) trend in average minimum temperature of the breeding season (TMIN) and 
edge density (ED) for long-distance migrants, (C) the interaction of magnitude of the 25-year 
(1980-2005) trend in total precipitation of the breeding season (PRECIP) and edge density (ED) 
for long-distance migrants, (D) the interaction of magnitude of the 25-year (1980-2005) trend in 



xiv 
 

average minimum temperature of the breeding season (TMIN) and edge density (ED) for short-
distance migrants, and (E) the interaction of magnitude of the 25-year (1980-2005) trend in 
average minimum temperature of the breeding season (TMIN) and edge density (ED) for 
resident birds. The interaction terms shown here are the ones whose credible intervals did not 
overlap zero. Green points are the observed data points and are plotted to indicate levels of 
confidence for the predicted surface……………………………………………………..………82 
 
Figure 4.1 Spatial scaling of temporal turnover, extinction, and colonization observed between 
1980-85 and 2000-05 for avian communities in New York State across five different spatial 
grains (i.e., 5x5 km, 10x10 km, 20x20 km, 40x40 km, and 80x80 km). Temporal turnover was 
calculated as a proportion of all species gained or lost between 1980-85 and 2000-05 in a 
particular site (i.e., 5x5 km Breeding Bird Atlas block or a scaled-up version of it) relative to all 
species recorded across both time periods; extinction was calculated as a proportion of species 
lost between 1980-85 and 2000-05 in a particular site relative to all species present in a site in 
1980-85; colonization was calculated as a proportion of species gained between 1980-85 and 
2000-05 in a particular site relative to all species recorded across both time periods. High values 
of all three metrics indicate high temporal turnover, extinction, and colonization.……………107 
 
Figure 4.2 Patterns of temporal turnover observed between 1980-85 and 2000-05 for avian 
communities in New York State across five different spatial grains (i.e., 5x5 km, 10x10 km, 
20x20 km, 40x40 km, and 80x80 km). Temporal turnover was calculated as a proportion of all 
species gained or lost between 1980-85 and 2000-05 in a particular site (i.e., 5x5 km Breeding 
Bird Atlas block or a scaled-up version of it) relative to all species recorded across both time 
periods. High values indicate high temporal turnover………………………………..……...…108 
 
Figure 4.3 Patterns of extinction observed between 1980-85 and 2000-05 for avian communities 
in New York State across five different spatial grains (i.e., 5x5 km, 10x10 km, 20x20 km, 40x40 
km, and 80x80 km). Extinction was calculated as a proportion of species lost between 1980-85 
and 2000-05 in a particular site (i.e., 5x5 km Breeding Bird Atlas block or a scaled-up version of 
it) relative to all species present in a site in 1980-85. High values indicate high proportion of 
extinction events……………………………………………………..…………………………111 
 
Figure 4.4 Patterns of colonization observed between 1980-85 and 2000-05 for avian 
communities in New York State across five different spatial grains (i.e., 5x5 km, 10x10 km, 
20x20 km, 40x40 km, and 80x80 km). Colonization was calculated as a proportion of species 
gained between 1980-85 and 2000-05 in a particular site (i.e., 5x5 km Breeding Bird Atlas block 
or a scaled-up version of it) relative to all species recorded across both time periods. High values 
indicate high proportion of colonization events………………………………………………...112 
 
Figure 4.5 Coefficient estimates (i.e., mean values of the posterior distribution and associated 
credible intervals) resulting from the models for (A) temporal turnover, (B) extinction, and (C) 
colonization. Abbreviations for the covariates are as follows: magnitude of the 25-year (1980-
2005) trend in average maximum temperature of the breeding season (TMAX), magnitude of the 
25-year (1980-2005) trend in average minimum temperature of the breeding season (TMIN), 
magnitude of the 25-year (1980-2005) trend in average total precipitation of the breeding season 
(PRECIP), edge density (ED), percent developed land (DEVEL), and elevation (ELEV)…….116 



xv 
 

 
Figure A 1.1 Spatial distribution of (A) magnitude of the 25-year (1980-2005) trend in average 
maximum temperatures [ºC], (B) magnitude of the 25-year (1980-2005) trend in average 
minimum temperatures [ºC], (C) magnitude of the 25-year (1980-2005) trend in total 
precipitation [mm], (D) percent developed land [%], (E) edge density [m/ha], and (F) survey 
effort [h]……………………………………………………………...…………………...…….155 
 
Figure A 1.2 Deviations of the spatially-varying coefficient estimates from the global mean for 
(A) the intercept, (B) the magnitude of the 25-year (1980-2005) trend in average maximum 
temperature of the breeding season (βTMAX), (C) the magnitude of the 25-year (1980-2005) trend 
in average minimum temperature of the breeding season (βTMIN), (D) the magnitude of the 25-
year (1980-2005) trend rates in average total precipitation of the breeding season (βPRECIP), (E) 
percent developed land (βDEVEL), (F) edge density (βED), and (G) effort (βEFF)…...……..…….156 
 
Figure A 2.1 The relationships between the amount of habitat (GPLAND and FPLAND for 
grassland and forest birds, respectively; left-hand panel of each column) and spatially-varying 
coefficient estimates (right-hand panel of each column) of 2000-05 average spring maximum 
temperature (TMAX, left column), 2000-05 average spring minimum temperature (TMIN, 
middle column), and 2000-05 average total spring precipitation (PRECIP, right column) for 
[from top to bottom] American kestrel (AMKE), northern harrier (NOHA), eastern bluebird 
(EABL), eastern kingbird (EAKI), horned lark (HOLA), grasshopper sparrow (GRSP), savannah 
sparrow (SAVS), vesper sparrow (VESP), bobolink (BOBO), brown-headed cowbird (BHCO), 
eastern meadowlark (EAME)], blue-gray gnatcatcher (BGGN), blue-headed vireo (BHVI), 
golden-crowned kinglet (GCKI), great crested flycatcher (GCFL), red-breasted nuthatch 
(RBNU), tufted titmouse (ETTI), veery (VEER), black-and-white warbler (BAWW), black-
throated blue warbler (BTBW), black-throated green warbler (BTNW), blackburnian warbler 
(BLBW), and Canada warbler (CAWA). Dark blue symbols represent coefficient estimates with 
95% credible intervals not overlapping zero in locations where species was detected; black 
symbols represent coefficient estimates with 95% credible intervals not overlapping zero in 
locations where species was not detected; light blue points represent with 95% credible intervals 
overlapping zero coefficient estimates in locations where species was not detected; grey points 
represent coefficient estimates with 95% credible intervals overlapping zero in locations where 
the species was not detected. Black dashed line represents the slope of the relationship between 
the coefficient estimates and GPLAND and FPLAND. The right-hand panel shows coefficient 
estimates of TMAX, TMIN, and PRECIP resulting from the spatially-varying coefficients 
models. Grayed-out locations indicate coefficient estimates with 95% credible intervals 
overlapping zero. Species occurrence data were retrieved from the 2000-05 New York State 
Breeding Bird Atlas.……………………………………………………...……….……………157 
 
Figure A 3.1 Model validation using plots of predicted vs observed values for temporal turnover, 
extinction, and colonization observed between 1980-85 and 2000-05 for communities of (A) all 
recorded species regardless of their migratory status, (B) long-distance migrants, (C) short-
distance migrants, and (D) resident birds. Model validation was done for the best model 
only……………………………………………………………………………………………..161



1 
 

PROLOGUE 
 
 
Climate change has potential to greatly affect biodiversity and there is convincing evidence that 

most taxonomic groups are already responding to the recent climate warming (e.g., Jarzyna et al. 

2013). Among those ecological responses most often reported are shifting population sizes and 

distributions (Jiguet et al. 2010, Zuckerberg et al. 2009), changes in breeding performance 

(Ahola et al. 2009, Husby et al. 2009), and changes in the timing of breeding (Root et al. 2003, 

Dunn and Winkler 2010), migration (Jones and Cresswell 2010, Tottrup et al. 2010), and 

hibernation (Inouye et al. 2000). However, even though the impacts of climate change on 

biodiversity are felt across a wide range of ecosystems, the severity and sometimes the direction 

of these impacts are bound to differ across space because factors other than climate will 

influence how biodiversity responds to climate change. Land cover is among the main factors 

with the potential to alter biodiversity’s responses to climate change. 

National Aeronautics and Space Administration (NASA) became interested in assessing 

the roles of recent climatic and land cover changes in observed landscape-scale shifts in 

biodiversity and an evaluation of the relative contributions of each as well as their interaction. 

Indeed, research conducted to date suggests that land cover plays a significant role in the relative 

vulnerabilities of biodiversity to changing climate. For example, simulation studies have shown 

that habitat loss reduces species ability to adjust to changing climatic conditions and thus 

exacerbate the detrimental effects of climate change (Travis 2003). Similarly, an increase in the 

amount of habitat has been shown to slow down species extinction rates associated with 

changing climate (Jeltsch et al. 2011). Habitat fragmentation is also thought to influence species 

responses to climate change by affecting the rate of distributional shifts, allowing species in less 

fragmented habitats to disperse faster and farther (Opdam and Wascher 2004). However, despite 
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these initial investigations, empirical evidence is lacking because studies that integrate both land 

cover and climate are rare. 

The overarching goal of my dissertation was to assess the relative roles of climate change 

and land cover in the observed changes in avian biodiversity. Specifically, I was interested in the 

influences of land-cover composition and configuration on relative vulnerabilities of different 

avian groups to climate change and spatial scales at which such influences are relevant. I used 

the 1980 and 2000 New York State Breeding Bird Atlas. All chapters for this research were 

conducted with approval of the Michigan State University, Institutional Animal Care and Use 

Committee for use of digital records (approval date 11-01-2013). 

Chapter 1 focuses on testing the utility of the spatially-varying coefficients (SVC) model 

to quantify the influence of non-stationarity on relationships between temporal community 

change in avian assemblages and changes in climate and land cover. This chapter has been 

accepted for the publication in Ecography. Spatial non-stationarity is present when the strength 

and nature of the relationship between a response variable and the predictor covariates vary 

across the spatial domain (Fortin and Dale 2009, Miller 2012). This spatial variation might be 

produced by interactions or feedbacks among covariates or presence of inherently different 

mechanisms that impact the outcome in different parts of the study region (Miller 2012). Given 

the ubiquity of space-varying relationships in nature (e.g., Bini et al. 2009), it is often unrealistic 

to assume that relationships between biodiversity and changes in climate and land cover can be 

captured by a set of stationary regression coefficients (i.e., coefficients that are constant across 

space). My objective is to compare inferences drawn from the SVC models to that obtained from 

space-varying intercept models (i.e., models that account for spatial autocorrelation, but not 

spatial non-stationarity) and also models that do not acknowledge any spatial structure beyond 
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what is introduced by the covariates. If the SVC models are superior to the other two tested 

models, they will be incorporated in the subsequent chapters to account for spatial non-

stationarity of ecological relationships. 

Chapter 2 builds on Chapter 1 by incorporating SVC models to investigate bioclimatic 

relationships of grassland and forest breeding birds across varying gradients of grassland and 

forest habitat. Research suggests that the quantity and quality of available habitat might be 

important in shaping bioclimatic relationships of species and thus their responses to climate 

change (Opdam and Wascher 2004, Kampichler et al. 2012). For example, habitat loss has been 

shown to reduce species ability to adjust to changing climatic conditions and thus exacerbate the 

detrimental effects of climate change (Travis 2003, Jeltsch et al. 2011). Thus, we can expect the 

bioclimatic relationships of species to be altered by the amount of habitat within a landscape. 

Specifically, populations of the same species found in regions with abundant suitable cover 

should display weaker responses to climatic variability in comparison with populations found in 

regions characterized by less available habitat.  Here, I explore whether an increasing amount of 

habitat affects avian responses to climatic variability and if the potential effect of more extensive 

habitat differs for birds inhabiting grassland and forest lands. 

Chapter 3 extends the work done in Chapter 2 by focusing on temporal changes of entire 

communities. Specifically, it investigates the relationship between temporal changes in avian 

assemblages and the interaction of climate change and land-cover fragmentation. To date, the 

majority of research regarding the implications of climate change to biodiversity has focused on 

responses of individual species (e.g., La Sorte and Thompson 2007). Variation in the individual 

species responses is predicted to lead to disruptions of communities and ecosystems, but the 

complex nature of ecological interactions makes it difficult to extrapolate from the scales of 
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individuals and populations to the community or ecosystem level (Walther et al. 2002). 

Consequently, in order to fully understand consequences of climate change to ecological 

communities it is imperative that a direct link between changes in community composition and 

changes in climatic conditions is established. Furthermore, the relationship between community 

change and climate change will likely be influenced by the landscape matrix surrounding the 

community; thus, landscape context needs to be considered when quantifying responses of 

ecological communities to climate change. My objective is to investigate the relationship 

between temporal change in avian biodiversity and changes in climatic conditions, and to assess 

the role of landscape fragmentation as a factor affecting this relationship. 

Chapter 4 builds on Chapter 3 by investigating temporal changes in avian assemblages 

across multiple spatial scales. Key biodiversity patterns vary with spatial scale of observation 

and mechanisms driving these patterns are inherently scale-dependent (e.g., Storch et al. 2004, 

Keil et al. 2011). Thus far, studies investigating scaling of biodiversity and the mechanisms 

relevant at each spatial scale have mostly focused on one time step. Measures of temporal 

changes in biodiversity have been commonly used as indicators of environmental change (e.g., 

Calvarheiro et al. 2013); thus, it is imperative that we understand how these measures depend on 

the spatial scale. Furthermore, in the advent of recent global change, a thorough investigation of 

mechanisms relevant to temporal biodiversity dynamics across spatial scales is perhaps more 

important than ever. My goal is to evaluate spatial scaling patterns of temporal changes in avian 

communities and investigate relevant environmental drivers of the community change at each of 

the investigated spatial scales.  

The collective works in these four chapters improve our understanding of the impacts of 

climate change on avian biodiversity and the role that land-cover composition and configuration 



5 
 

play in the responses of birds to climate change. I believe that by establishing a link between 

climate change impacts on biodiversity and land cover, I provide a much-needed and major step 

in global change science. 

 

  



6 
 

ACCOUNTING FOR THE SPACE-VARYING NATURE OF THE RELATIONSHIPS 
BETWEEN TEMPORAL COMMUNITY TURNOVER AND THE ENVIRONMENT 

 
 
Published in Ecography: 
Jarzyna M.A., Finley A.O., Porter W.F., Maurer B.A., Beier C.M. and Zuckerberg B. 2014. 

Accounting for the space-varying nature of the relationships between temporal community 
turnover and the environment. Ecography, 37, 001-011. 

 

ABSTRACT 

Non-spatial regression models are rarely adequate for exploring ecological phenomena, 

especially in settings where the processes operate at large spatial scales and when model 

covariates do not explain all variation present in the ecological response. Given the complexity 

of ecological processes, it is often unrealistic to assume a set of stationary regression coefficients 

can capture space-varying and scale-dependent relationships between covariates and an outcome 

variable. Spatially-varying coefficients (SVC) models fit within a Bayesian inferential 

framework provide a statistically robust method to explore potential space-varying and scale-

dependent impacts of covariates. My study objective was to assess the utility of SVC models for 

capturing non-stationary relationships between temporal community dynamics in avian 

assemblages and variation in environmental factors. I also wanted to compare the inference 

drawn from SVC models to that obtained from space-varying intercept models and also models 

that do not acknowledge any spatial structure beyond what is introduced by the covariates. My 

analysis examines the temporal turnover, expressed as a proportion, of avian communities across 

New York State, USA. Given the expected outcome is non-Gaussian, I detail a generalized linear 

model specification of the proposed model structures. My results show the SVC model 

outperformed the spatially-varying intercept and non-spatial models in terms of model fit and 

model predictive inference. Further, by fitting these models within a Bayesian inferential 

framework, I was able to make inferences about the spatial impact of covariates and other 
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process parameters, as well as obtain full posterior predictive inference about the rate of turnover 

at new, unobserved locations. I conclude that SVC models provide a flexible framework for 

exploring and accounting for non-stationary mechanisms driving ecological patterns. 

1.1 INTRODUCTION 

Ecological relationships are often explored using non-spatial regression models, even though this 

method is rarely adequate in settings where ecological phenomena exhibit spatial structure that 

cannot be explained by model covariates (Cressie et al. 2009, Hoeting 2009). This is especially 

true for data collected and modeled across large-scale spatial domains where locations in close 

proximity will have similar outcomes, a phenomenon called spatial autocorrelation. Spatial 

autocorrelation is prevalent in ecology. For example, community composition at any given 

location is usually influenced by the species assemblage structure at surrounding localities and 

local environmental factors (Legendre 1993) resulting in species abundances being more similar 

than expected by chance in locations closer to each other (Lichstein et al. 2002). Ignoring such 

spatial autocorrelation results in dependence among model residuals, which violates assumptions 

of most regression models and can lead to erroneous parameter estimates and, ultimately, 

incorrect ecological inferences and predictions (Dormann et al. 2007, Hoeting 2009, Finley 

2011).  

Commonly, spatial autocorrelation in ecological phenomena is accommodated by adding 

a spatial random effect to the model mean. Such random effects are often specified to follow a 

multivariate normal distribution with a mean of zero and spatially structured covariance matrix. 

Such specifications provide local adjustment, with spatial structure, to the model intercept 

(Diggle et al. 1998, Banerjee et al. 2004). When the outcome is Gaussian, such spatially-varying 

intercept models can partition the residual variance into two components - spatial and non-
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spatial. For a non-Gaussian outcome (e.g., binomial, Poisson), the residual error term is omitted 

from the model equation; thus, spatially-varying intercept models integrate all of the residual 

variance into the spatial component. Partitioning of residual uncertainty (for a Gaussian 

outcome) or attributing the residual uncertainty to a spatial process (for a non-Gaussian outcome) 

can improve inference, increase accuracy and precision of model predictions, and reveal missing 

covariates. 

While adding a space-varying intercept to the model accounts for spatial dependency and 

often improves inference, it does not explicitly deal with spatial non-stationarity and its 

associated influence on model covariates. Spatial non-stationarity is present when the strength 

and nature of the relationship between a response variable and the predictor covariates vary 

across the spatial domain (Fortin and Dale 2009, Miller 2012). Interactions or feedbacks among 

unobserved and observed covariates or presence of inherently different mechanisms that impact 

the outcome in different parts of the study region can produce non-stationarity (Miller 2012). 

Non-stationary relationships are common in ecology (e.g., Bini et al. 2009). For example, Foody 

(2004) showed that the relationships between avian species richness and total annual 

precipitation, mean annual temperature and terrestrial land cover in sub-Saharan Africa were 

strongly non-stationary. Other large-scale studies support these findings (e.g., Grotan et al. 2009, 

Martin-Queller et al. 2011, McNew et al. 2013). Thus, given this complexity of ecological 

phenomena across large spatial scales, it is often unrealistic to assume a set of stationary 

regression coefficients (i.e., coefficients that are constant across space) can capture space-

varying and scale-dependent relationships between covariates and outcome variables (Finley 

2011). In other words, a global ecological relationship is often affected by local processes 

yielding a heterogeneous pattern, and would be described more accurately by local model 
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parameter values that differ from the global values (Miller 2012). Ignoring spatial non-

stationarity can have similar consequences to those resulting from ignoring spatial 

autocorrelation. In a strongly non-stationary system, estimates of model parameters and 

inferences and predictions resulting from models that do not adequately account for spatial 

heterogeneity are likely to be flawed. Despite the importance of the problem and apparent 

ubiquity of the space-varying nature of ecological phenomena, few methods provide an 

opportunity to evaluate and account for potential spatially varying relationships between 

ecological responses and environmental covariates. Bayesian spatially-varying coefficients 

(SVC) models are one of the more flexible and robust approaches for accommodating non-

stationarity (Gelfand et al. 2003). SVC models use a valid probability model that affords full 

posterior inferences for model parameters and subsequent prediction of the outcome and 

covariate processes at any new location. While spatially-varying coefficient models have been 

developed and tested for data that follow a Gaussian distribution (e.g., Finley 2011), models for 

non-Gaussian outcomes, e.g., binomial or Poisson distributions, have not yet been widely applied 

to ecological questions, with a few exceptions that focus on statistical methodology development 

(i.e., Finley et al. 2009, Finley et al. 2011). Here, I consider a SVC model for evaluating the 

relationships between the temporal turnover (i.e., changes in community composition across 

time) in avian biodiversity and a set of environmental covariates. 

 I chose to focus on temporal turnover in community composition for two reasons. First, 

patterns and changes in biological diversity are an indication of the underlying mechanisms that 

control biodiversity and are one of the fundamental fields of investigation in ecology. 

Consequently, understanding patterns of biodiversity and their environmental determinants have 

been at the center of recent ecological research (e.g., Buckley and Jetz 2008, Jost 2009, Baselga 
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2010, Kraft et al. 2011). While traditionally community turnover has been used to describe 

biodiversity patterns across space rather than time, it can also be viewed in terms of a temporal 

change in species composition occurring over a specified time period. Indeed, describing 

temporal changes in communities is of increasing importance because of the global 

environmental threats such as climate change and land-cover change, both of which have a 

strong temporal component. Understanding temporal relationships between biodiversity patterns 

and environmental variability is necessary to accurately forecast the consequences of 

environmental change and design sound conservation strategies.   

Second, the often observed space-varying nature of temporal community turnover and the 

kinds of inference we seek encourages the use of new, more flexible, tools such as generalized 

linear SVC models. Further, because biodiversity dynamics are often summarized using indices 

such as Jaccard, Sorensen, or Diamond-May, there is a need for development of methods 

appropriate for such non-Gaussian outcomes.   

My objective was to test the utility of the SVC model to quantify the influence of non-

stationarity on relationships between temporal community dynamics in avian assemblages and 

changes in environmental factors such as climate variability and patterns of landscape 

fragmentation. Specifically, I sought to assess the merits of a Bayesian spatially-varying 

coefficients approach in comparison with non-spatial and spatially-varying intercept models. 

1.2 DATA AND METHODS 

1.2.1 Site description 

The study area is the State of New York, USA. New York covers 128,401 km2, including 4,240 

km2 of inland water (excluding of the boundary-water areas of Long Island Sound, New York 

Harbor and lakes Ontario and Erie). Most of the state lies between latitudes 42 and 45°N and 
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between longitudes 73.5 and 79.75°W. Climate of New York is affected by the state’s broad 

elevation gradient as well as by the proximity to lakes Erie and Ontario, and the Atlantic Ocean. 

Adirondack and Catskill Mountains in the east are among the highest regions of the state, with 

elevation varying between 600 and 1,500 m. South-western New York is located in the northern 

portions of the Allegheny Plateau and its elevation ranges from approximately 300 to 900 m. 

North-western New York as well as Hudson River valley and New York City are low-elevation 

regions with elevation ranging from approximately 0 to 200 m. 

The state's land-cover is approximately 51.2% forest (deciduous, evergreen, and mixed 

forests), 13.4% pasture and hay, 8.2% cultivated crops, 2.9% scrub and shrub, 1.0% grassland 

and herbaceous, 8.0% wetland cover, 8.7% developed land, and 0.2% barren land (Homer et al. 

2004). Forested areas dominate the Adirondack, Catskill and Allegany regions, while agriculture 

is prevalent on historic glacial lake plains south of Lake Ontario.   

New York offers a broad gradient of landscape fragmentation. The regions of the 

Adirondack and Catskill Mountains are the least fragmented. The Hudson River valley runs 

through the eastern part of the state and is more fragmented in terms of land-cover. The 

landscapes of western New York are more fragmented and characterized mostly by agriculture-

forest mosaic. Because of these heterogeneous patterns in landscape fragmentation, elevation 

gradients, and diversity of ecosystems, we might expect space-varying impacts of covariates to 

explain variation in ecological outcomes of interest. 

1.2.2 Breeding Bird Atlas 

I used the New York State Breeding Bird Atlas (BBA) as our model dataset to characterize 

changes in avian communities through time. BBA is a statewide survey that documented the 

distribution of breeding birds in New York. The BBA has been conducted in two time periods, 
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1980-85 (hereafter, BBA1980; Andrle and Carroll 1988) and 2000-05 (hereafter, BBA2000; 

McGowan and Corwin 2008). For both BBAs, a grid system was used to define the basic unit for 

reporting data. The entire State of New York was divided into approximately 1,300 squares, each 

measuring 10 km x 10 km. The BBA reporting unit (a block) was one quarter of this square and 

measured 5 km x 5 km and a total of 5,335 blocks covered the entirety of New York State. This 

data set represents one of the largest and finest resolution atlases in the world (Gibbons et al. 

2007). 

A total of 242 species were recorded for BBA1980 and 248 species were recorded for 

BBA2000 (Appendix 1.1). Avian breeding was recorded at three levels of certainty of breeding 

occurrence based on the behavior of birds observed: possible, probable, and confirmed (Andrle 

and Carroll 1988, McGowan and Corwin 2008). Observations were made by skilled birders who 

spent at least 8 hours in each block, visited all cover types in each block, and included at least 

one nighttime visit to document nocturnal species. Observer effort was recorded for each BBA 

and reported as a number of person hours (McGowan and Zuckerberg 2008). A block was 

considered sufficiently surveyed when at least 76 species were documented (with exceptions of 

blocks that might be expected to have fewer species). The BBA represents a presence/absence 

dataset, although absence indicates that species could not be found given search criteria 

(McGowan and Corwin 2008). 

1.2.3 Temporal turnover 

While many different indices for quantifying community turnover has been developed over the 

years (Gaston et al. 2004, Magurran 2004, Tuomisto 2010a, Tuomisto 2010b), we used 

Diamond-May (DM) index (Gaston et al. 2004). DM index is calculated as a proportion and 

designates turnover as high when the proportion of species shared between two sites (or two time 
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steps) is low (Gaston et al. 2004). From a statistical perspective, DM is a binomial outcome, 

where the number of species lost and gained across space or time is the number of successes, 

while the total number of species is the number of trials. DM index has traditionally been used to 

quantify spatial turnover, but it can be easily adapted to reflect temporal turnover as follows:  

𝐷𝑀 =  𝐸+𝐶
𝐸+𝐶+𝑃

 ,         Eqn. 1.1 

where E is the number of species that went extinct in the block between BBA1980 and 

BBA2000 (i.e., extinction), C is the number of species that colonized the block between 

BBA1980 and BBA2000 (i.e., colonization), and P is number of species in the same block 

common to both BBAs (i.e., persistence). The values of DM are bounded by 0 and 1; values 

approaching 0 indicate low temporal turnover in a block between BBA1980 and BBA2000, 

while values approaching 1 indicate high temporal turnover in a block between BBA1980 and 

BBA2000.

1.2.4 Model covariates 

Environmental factors that I deemed especially important in shaping changes in community 

composition were trends in climatic variables and landscape fragmentation. I also considered 

survey effort (number of survey hours) as a variable potentially affecting the observed temporal 

community turnover. 

1.2.4.1 Climatic trends 

The climate data was derived from the PRISM (Parameter-elevation Regressions on Independent 

Slopes Model) climate mapping system (Daly and Gibson 2002). PRISM consists of interpolated 

monthly maximum and minimum temperatures and precipitation at a 2.5-arcmin resolution from 

1891-2010 for the entire contiguous United States. 
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I calculated the magnitude of the 25-year (1980-2005) trend in average monthly 

maximum and minimum temperatures and in total monthly precipitation using Ordinary Least 

Squares regression. The slope of the OLS regression indicates the magnitude of the trend and 

reflects the amount of change in climatic variables that occurred between 1980 and 2005. I then 

interpolated the trend magnitudes for each BBA block and averaged the monthly values to reflect 

breeding season (May through September) trend magnitude in maximum and minimum 

temperatures (TMAX and TMIN, respectively) and in total precipitation (PRECIP). The trend 

magnitudes of TMAX and TMIN were expressed in °C/25 years, while the units of the trend 

magnitudes of PRECIP were in mm/25 years. 

1.2.4.2 Habitat fragmentation 

Even though amount of suitable habitat is often cited as one of the most important factors driving 

patterns of species occurrence, it is difficult to quantify suitable habitat while dealing with a 

group of species with vastly different habitat requirements. Habitat fragmentation has been 

shown to also be a significant driver of songbird community dynamics (e.g., Kennedy et al. 

2011). Hence, I chose landscape fragmentation as the primary land-cover factor associated with 

community turnover.  

Habitat fragmentation variables were derived using the 30x30 m National Land Cover 

Data (NLCD, Homer et al. 2004) product. Because there is no land-cover data readily available 

for the time period of BBA1980, I used a space-for-time substitution to assess whether temporal 

turnover is related to landscape fragmentation (Pickett 1989, Zuckerberg and Porter 2010). 

Space-for-time substitution assumes that spatial variation is equivalent to a temporal variation, 

and relationships between variables (e.g., species occurrence and land-cover) derived for one 

time step across a large spatial extent will be equivalent to that derived for two time steps. Thus, 
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I quantified landscape fragmentation for one time step only and looked for the relationship 

between the temporal turnover and the observed spatial variation in landscape fragmentation.  

I used the 2001 NLCD, because it coincided well with the time of BBA2000. The 2001 

NLCD consists of 16 land cover classes. Prior to landscape analysis, I consolidated open space 

developed, low intensity developed, medium intensity developed, high intensity developed into 

one class of developed land; cultivated crops and pasture/hay into one class of agriculture; and 

deciduous forest, evergreen forest, mixed forest, and forested wetland into one class of forest. 

We decided to consolidate these land-cover types to improve accuracy of classification and to 

simplify the environment for purposes of our evaluation. Upon consolidation, I examined nine 

land cover classes: water/ice, developed, barren land, forest, scrub/shrub, grassland/herbaceous, 

agriculture, and wetlands.  

Landscape fragmentation was quantified using FRAGSTATS 4.1 (McGarigal et al. 2002) 

and the Geospatial Modelling Environment (GME, http://www.spatialecology.com/gme/). I 

recognize that there are multiple ways to measure fragmentation and that careful characterization 

of landscape fragmentation for a diverse suite of species often requires multiple metrics. 

However, my purpose was not comprehensive ecological analyses, but rather evaluation of the 

space-varying qualities of fragmentation. Therefore, I chose a landscape-scale variable to capture 

broad-scale variation in habitat fragmentation and best represent requirements of a diverse suite 

of species with varying habitat requirements. Specifically, I chose Edge Density (ED) as a 

measure of landscape fragmentation because an increase in habitat edge is a primary outcome of 

habitat fragmentation (Hargis et al. 1998). ED was also reported as an effective tool for 

evaluating landscape fragmentation and performed better than other popular landscape 

fragmentation indices (Hargis et al. 1998). However, in situations when landscape consists 

http://www.spatialecology.com/gme/
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entirely of one cover type, the ED would be 0 regardless of the type of land-cover present. 

Therefore, in order to differentiate between landscapes that consisted entirely of natural land 

cover (e.g., forest) and those mostly developed (e.g., urban areas), I also included the proportion 

of developed land (DEVEL) metric in our models. 

1.2.4.3 Survey effort 

Increasing survey effort often results in a higher number of recorded species (Tobler et al. 2008). 

Different survey effort between BBA1980 and BBA2000 could decrease the value of the DM 

indicating high temporal turnover, which could be a result of different number of recorded 

species rather than actual changes in species identities throughout time. Despite the fact that 

concerted attention was invested to minimize the effects of survey effort in the BBA surveys, I 

wanted to recognize the need to control for survey effort bias. To account for potential survey 

effort bias, I calculated the absolute difference in the number of person hours between BBA1980 

and BBA2000 (EFF=|EFF1980-EFF2000|) for each BBA block and included it as a covariate in 

our models. 

1.2.5 Statistical analysis 

I evaluated three statistical models, each of which included main effects of all the covariates 

(TMAX, TMIN, PRECIP, ED, DEVEL, and EFF). I standardized all the covariates to ease the 

comparison and interpretation of the coefficient estimates. Since the temporal turnover (DM) is a 

proportion, I used a binomial regression model. I started with a non-spatial regression 

specification (hereafter, non-spatial model) and then increased the level of model complexity by 

adding spatially structured random effects first to the intercept to form a spatially-varying 

intercept (SVI) model, then to the regression parameters associated with the covariates to form 

the SVC model. 
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More formally, for a given BBA grid cell the regression outcome variable y(s) is the 

numerator in Eqn. 1, where s represents the grid cell's spatial coordinates. Given the denominator 

in Eqn. 1, denoted N(s), we assume y(s) follows a binomial distribution. For the given grid cell 

π(y(s)│η(s)) ~ Binomial(N(s), p(η(s))), where p(η(s)) is the probability of success at location s 

and η(s) is model’s regression equation, which for the SVC model is equal to x(s)β + x(s)w(s) 

with x(s) representing the vector comprising an intercept and location specific covariate values. 

The parameters to be estimated are the global regression coefficients, β = (β0, βTMAX, βTMIN, 

βPRECIP, βED, βDEVEL, βEFF)T, and associated spatially-varying adjustments, w(s) = (w0(s), wTMAX(s), 

wTMIN(s), wPRECIP(s), wED(s), wDEVEL(s), wEFF(s))T. A logit link function η(s) = log[p(s)/{1-p(s)}] 

was used for this model.  

I assume each element in the spatially-varying coefficients vector, w(s), arises from a 

spatial Gaussian Process (GP) (see, e.g., Banerjee et al. 2004 or Cressie and Wikle 2011 for more 

details). Specifically, the j-th spatially-varying coefficient at location s is wj(s) ~ GP(0, Cj(s, s’)), 

where s and s’ are any two locations within the study area, the spatial covariance Cj(s, s’) = 

σ2
jρj(s, s’; ϕj) with variance parameter σ2

j, correlation function ρj(·; ϕj), and spatial decay 

parameter ϕj. The spatial decay parameter ϕj controls the decay in spatial correlation; lower 

values of the parameter indicate shorter range in spatial correlation. The exponential spatial 

correlation was assumed for ρj(·). 

Prior distributions on the remaining parameters complete the hierarchical model, see, 

e.g., Gelman et al. 2004 for detail on Bayesian model specification. Here, I specified 

uninformative prior distributions. The regression coefficients, β j’s followed a Normal 

distribution N(0, 100), while the variance components σ2
j’s were assigned inverse-Gamma IG(2, 

1) priors, where 2 and 1 are shape and scale hyper-parameters, respectively. This specification of 
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the IG provides a prior distribution with infinite variance that is centered on 1. The spatial decay 

parameters, ϕj 's, followed an informative Uniform prior, with support that ranged from 1 km to 

the maximum distance between any two grid cells. Exploratory analysis using different hyper-

parameters suggested prior specification had little influence on parameter and predictive 

inference. This is not surprising given the large size of the data set and choice of prior 

distributions. My sensitivity analysis did suggest that given an IG shape hyper-parameter of 2, 

very large scale parameter values, e.g., greater than 10, resulted in poor MCMC chain 

convergence by forcing an unreasonable amount variability in the GP. For the SVC model, I ran 

three MCMC chains for 60,000 iterations each. I ran 10,000 iterations for the non-spatial and 

SVI models, as those required less time to converge. Convergence was diagnosed using the 

Gelman-Rubin diagnostic (Gelman and Rubin, 1992). 

Given the Bayesian framework, candidate models fit to the observed data were assessed 

using the Deviance Information Criterion (DIC; Spiegelhalter et al. 2002). I computed the 

expected posterior deviance as D(Ω) = EΩ|Y{-2logL(Data| Ω)}, where Ω is the set of parameters 

estimated for each model and L(Data| Ω) is the first stage Gaussian likelihood from the 

respective models. I computed the effective number of parameters as pD = 𝐷(𝛀)������� – D(𝛀�), where 

𝛀�  is the posterior mean of the model parameters. The DIC was then computed as D(Ω)+ pD. 

Lower values of DIC indicate improved fit. Model accuracy was compared using Root Mean 

Square Error (RMSE) that was calculated as the square root of the mean squared deviations 

between fitted and observed outcomes. Lower values of RMSE indicate improved accuracy.  

Candidate model performance for out-of-sample prediction was assessed using a 

randomly selected 10% holdout dataset. While there is no convention on how much of the 

original data should be held out for model validation, we believe that 10% of the data is 
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sufficient as it amounts to approximately 500 observations. Also, while several other approaches 

to verify model’s predictive ability are available, holding-out a set of randomly selected 

observations is a common model validation technique (e.g., Pearson et al. 2002, Finley 2011). 

An alternative approach to verifying model’s predictive ability would be bootstrapping, where 

the original dataset is sampled randomly with replacement (e.g., Austin and Tu 2004). 

Bootstrapping requires building and running multiple models and in each case predictive 

performance is assessed against the corresponding test data. While bootstrapping is a robust 

approach, it is computationally costly, particularly in situations when models are complex. Given 

that fitting a single SVC model is very computationally intensive in itself, repeating this 

procedure multiple times for bootstrapping would be prohibitive and thus was not feasible in our 

case. Hold out set predictions were compared to the observed values using Root Mean Square 

Error (RMSEpred) where lower values indicate improved performance. 

Prior to statistical analysis, I removed all blocks that did not have continuous land cover 

coverage; those were mainly blocks at the periphery of the study area, which extended farther 

than the NLCD layer. Also, blocks with more than 50% open water coverage and those that did 

not have survey effort data were removed. Ultimately, I used a total of n = 4,271 blocks to fit the 

models and nho = 473 holdout blocks to test the models’ predictive ability. The non-spatial and 

SVI models were run in R 2.15.1 statistical package (R Development Core Team 2013, 

http://www.r-project.org/) using package spBayes (Finley and Banerjee 2013). In close 

collaboration with Dr. Andrew Finley, I wrote and compiled the SVC model in C++ 

programming language and R 2.15.1 (R Development Core Team 2013, http://www.r-

project.org/). Summaries of parameter estimates were generated using the R CODA package.

http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
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1.3 RESULTS 

1.3.1 Temporal turnover 

The mean grid cell value of the DM index was 0.39, which indicates that on average 

approximately 39% of species had either colonized or become extinct and 61% of the species 

were common to both BBAs (Fig. 1.1A). Northern regions of the state (i.e., Adirondack 

Mountains) experienced the highest temporal community turnover, with values reaching 1.0 (i.e., 

complete turnover in species assemblage) in several locations (Fig. 1.1A). Western (agricultural) 

and Eastern (urbanized) parts of the state also showed slightly higher than average temporal 

turnover, while the central regions of the state generally underwent the lowest temporal turnover 

(Fig. 1.1A). The lowest values of temporal turnover was approximately 0.11. 
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Figure 1.1 Observed temporal turnover in communities of breeding birds in New York 
expressed using Diamond-May index (A) and the fitted temporal turnover values resulting from 
the non-spatial model (B), spatially-varying intercept (SVI) model (C), and spatially-varying 
coefficients (SVC) model (D). 
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1.3.2 Covariates 

The north-eastern and south-western parts of the state experienced the largest warming trend, 

while the southern and central New York generally underwent decreases in average maximum 

temperatures (Appendix 1.2). Minimum temperatures increased across most of the state, though 

some small regions have experienced a cooling trend (Appendix 1.2). Northern (i.e., region of 

the Adirondack Mountains), western and southern New York experienced drier conditions, while 

the rest of the state experienced wetter conditions (Appendix 1.2). 

Regions of Adirondack and Catskill Mountains as well as some locations in the south and 

south-western parts of the state had the lowest edge density (i.e., lowest habitat fragmentation; 

Appendix 1.2). The percentage of developed land was low across most of New York, with 

exception of large urban centers such as New York City, Albany, Syracuse, Rochester, and 

Buffalo. Survey effort was relatively constant across the study region (Appendix 1.2). 

1.3.3 Statistical analysis 

1.3.3.1 Model fit and predictive ability 

As suggested by the DIC, RMSE, and RMSEpred values provided in Table 1.1, adding spatial 

random effects to the posited model improves fit to the observed data, model accuracy, and 

predictive performance for new, unobserved, locations. The improvements to fit and model 

accuracy suggest there was substantial spatial dependence among the non-spatial models 

residuals - a generalized linear model assumption violation - and clear indication that a more 

complex spatial model was warranted. The pD in Table 1.1 is the effective number of parameters 

and is used in the DIC calculation to penalize more complex models. For example, the non-

spatial model has only seven regression coefficients, hence, pD is approximately seven. The 

increasing number of spatial random effects added to SVI and SVC, respectively, is reflected by 
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larger penalties. Despite the larger number of effective parameters, the SVC model has lower 

DIC than the non-spatial and SVI models. 

Table 1.1 Comparison of the non-spatial, spatially-varying intercept (SVI), and spatially-varying 
coefficient (SVC) models for four migratory groupings using Deviance Information Criterion 
(DIC), estimated number of parameters pD, and Relative Mean Square Error (RMSE). Predictive 
performance of the models was evaluated by calculating RMSEpred of the observed values from 
the hold-out set and the predicted values resulting from all three models. 

Model ΔDIC pD RMSE RMSEpred 
SVC 0.00 458.90 0.076 0.072 
SVI  1,063.84 106.30 0.082 0.079 
Non-spatial 2,871.31 7.20 0.090 0.088 

 
All candidate models provide a close visual approximation to the observed data (see Fig. 

1.1 for the candidate model fitted value surfaces). For the SVI model (Fig. 1.1C), the addition of 

the spatial random effect to the model intercept provides a smooth process that captures spatial 

discrepancies between observed values and those estimated with the additive linear trend 

involving the covariates. The SVC model fitted surface (Fig. 1.1D) provides the closest 

approximation to the observed data because the regression coefficients processes are able to 

estimate the covariates’ local and regional impact on temporal turnover. For example, the 

variation in the temporal turnover in the north-east New York is better represented on the SVC 

model fitted surface (Fig. 1D) than on surfaces resulting from the other two models (Fig. 1.1B 

and 1.1C). 

In terms of model predictive performance, all models’ predicted surfaces approximated 

the holdout data relatively well (Fig. 1.2). However, by not relying only on the smooth process 

on the intercept, the SVC model is able to accommodate more local-scale variation than the SVI 

model (Fig. 1.2D). For example, several locations of high temporal turnover in the western part 

of the study area were picked up by the SVC predictive model, but not by either the non-spatial 

or the SVI predictive models (Fig. 1.2D). 



24 
 

Figure 1.2 Observed temporal turnover of the holdout data set (A) compared with the surfaces of 
the predicted values resulting from the non-spatial model (B), spatially-varying intercept (SVI) 
model (C), and spatially-varying coefficients (SVC) model (D). 
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1.3.3.2 Coefficient estimates 

All regression coefficients in the non-spatial model were statistically significant (Table 1.2), i.e., 

the 95% credible intervals did not include zero. For spatially-varying intercept models, all of the 

regression coefficients remained significant (Table 1.2), but their magnitude and credible 

intervals changed in comparison with the non-spatial model (the magnitude of the coefficient 

estimates was assessed by simply comparing the direction and  absolute value of the mean 

estimates resulting from both models). The magnitude of β0, βTMAX, βTMIN, βPRECIP, and βED 

decreased after the residual spatial dependence was accommodated, while βDEVEL and βEFF 

increased in magnitude. 

Table 1.2 Coefficient estimates resulting from the non-spatial and spatially-varying intercept  
(SVI) models for all model covariates: intercept (β0 ), magnitude of the 25-year (1980-2005) 
trend in average maximum temperature of the breeding season (βTMAX), magnitude of the 25-year 
(1980-2005) trend in average minimum temperature of the breeding season (βTMIN), magnitude of 
the 25-year (1980-2005) trend in average total precipitation of the breeding season (βPRECIP), 
percent developed land (βDEVEL), edge density (βED), and effort (βEFF). 50% indicates the mean of 
the posterior distribution, while 2.5% and 97.5% are the lower and upper quantiles of the 
posterior distribution. 

Model Coefficient Coefficient Estimates 
50% 2.5% 97.5% 

Non-Spatial  

β0 -0.492 -0.499 -0.486 
βTMAX 0.063 0.055 0.070 
βTMIN 0.041 0.034 0.048 
βPRECIP -0.052 -0.059 -0.045 
βDEVEL 0.017 0.010 0.024 
βED -0.092 -0.099 -0.086 

 βEFF -0.010 -0.016 -0.004 

SVI 

β0 -0.375 -0.435 -0.275 
βTMAX 0.018 0.007 0.029 
βTMIN 0.026 0.014 0.038 
βPRECIP -0.015 -0.031 -0.001 
βDEVEL 0.032 0.022 0.042 
βED -0.047 -0.057 -0.036 

 βEFF -0.014 -0.020 -0.008 
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For a SVC model, it is typically not instructive to focus on a covariate's regression 

coefficient mean, i.e., β, but rather assess the variability of the coefficient over the study area. 

That is, we draw inference by looking to maps of β + w(s) (see Fig. 1.3 for β + w(s) associated 

with each covariate). All SVC model coefficient estimates were spatially heterogeneous both in 

terms of the magnitude of the coefficient estimate as well as the direction of the relationship 

between the covariate and the outcome variable (Fig. 1.3). Here too, grid cells where the 90% 

credible intervals of the given β + w(s) include zero are identified with a black point. Or 

conversely, those regions with no black points differ significantly from zero in the direction 

indicated by the grid cell color. Some caution needs to be taken when considering the hypothesis 

tests implied in Fig. 1.3. In a testing situation, where we encounter a very large number of 

hypotheses, controlling Type-1 errors would be required, hence raising the question of multiple 

comparisons. However, we do not pursue such a formulation here and simply look to Fig. 1.3 to 

identify regions of substantial deviations of the spatial coefficients from the global mean (see 

also Fig. S2 in the Supplementary Material for maps of deviations of the spatially-varying 

coefficient estimates from the global mean). 
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Figure 1.3 Coefficient estimates resulting from the spatially-varying coefficient (SVC) models of (A) the intercept, (B) the magnitude 
of the 25-year (1980-2005) trend in average maximum temperature of the breeding season (βTMAX), (C) the magnitude of the 25-year 
(1980-2005) trend in average minimum temperature of the breeding season (βTMIN), (D) the magnitude of the 25-year (1980-2005) 
trend rates in average total precipitation of the breeding season (βPRECIP), (E) percent developed land (βDEVEL), (F) edge density (βED), 
and (G) effort (βEFF). Black point symbols identify grid cells with posterior 90% credible intervals that include zero. The surface 
colors identify the direction of the regression coefficients' sign. 
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1.4 DISCUSSION 

We found that the SVC model outperformed both the non-spatial and SVI models in terms of 

model fit, despite the large number of parameters it had to estimate, and predictive performance. 

We feel confident that the increase in model fit is not a result of over parameterization, although, 

like any highly flexible random effect model, the SVC models can occasionally over fit the 

observed data. However, compared to models with unstructured random effects, the flexible 

process imposed by the spatial Gaussian Process reduces the possibility of over fitting. 

Additionally, the penalizing qualities of the DIC metric account for the potential favoring the 

parameter rich SVC model. Furthermore, over fitting generally results in reduced predictive 

performance compared to simpler models; however, we did not find lower predictive 

performance of the SVC model. Anecdotally, while working with other data sets, we have 

noticed that the propensity to over fit the observed data is greater when the number of observed 

locations is small (e.g., n < 100), sparsely sampled, and when the range of spatial dependence is 

short. In these settings, the interpolating qualities of the Gaussian Processes reduce the predictive 

power of the SVC model. When the data set is large, however, observations densely cover the 

domain, and the parameters of the underlying spatial processes associated with the regression 

coefficients are well estimated, then the risk of over fitting is reduced and prediction does not 

suffer. 

The improvement in model fit suggests the relationship between temporal community 

turnover and environmental covariates is more spatially-varying in nature than it is stationary. 

Indeed, by allowing the regression coefficients to vary spatially over the domain and 

accommodate local impact of the covariates, the SVC model was able to explain more local-

scale variation in temporal community turnover than the other two models. The assumption that 
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regression coefficients are stationary results in poor fit and misleading inference about the 

impact of the covariates on temporal turnover. The assumption of scalar regression coefficients is 

pervasive in the literature. In the SVC model, any component of model spatial residual pattern 

due to non-stationarity of the impact of covariates is apportioned to the coefficients. Thus, the 

SVC model, despite being an intrinsically correlative approach, provides the richer opportunity 

for ecological interpretation.  

We commonly see that once residual spatial dependence is accommodated, e.g., via a 

spatial random effect, regression coefficients differ from those resulting from a non-spatial 

model. In the non-spatial model, all covariates were significant predictors of temporal 

community turnover. Once spatial dependence was taken into account in the SVI model, the 

covariates remained significant but the magnitude of their coefficient estimates changed. For 

example, the association of the TMAX, TMIN, PRECIP, and DEVEL with the temporal 

community turnover was weaker for the SVI model than for the non-spatial model, while that of 

ED and EFF became stronger. Such results suggest the non-spatial model violated the 

assumption of independent and identically distributed residuals and imply that ecological 

inferences drawn from these models will be different. Other research corroborates our findings. 

For example, Record et al. (2013) found that climatic variables were significant predictors of 

presence-absence of two tree species in non-spatial models, but in the spatial models the 

magnitude and sign of some parameter estimates changed. Foody (2004) found  the magnitude of 

relationships between species richness and the explanatory environmental variables changed 

when spatial dependency and non-stationarity were accounted for, even though statistically 

significant relationships were established using a conventional global regression analysis.  
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When the space-varying nature of the regression coefficients is accommodated, different 

regions within the study area might exhibit conflicting relationships between the outcome and 

covariate, causing the study-area-wide mean of the associated regression coefficient to be similar 

to those seen in the SVI models. In our case, spatial heterogeneity of the relationships between 

covariates and temporal community turnover became apparent after accounting for non-

stationarity. Some regions were characterized by negative relationships, other regions displayed 

positive relationships, yet another showed no significant relationships at all. For example, a 

positive relationship between temporal community turnover and the magnitude of the trend in 

minimum temperatures was found in the eastern New York, while this relationship was negative 

in the central part of the state. Such spatial pattern might indicate that communities in eastern 

New York are responding stronger or faster to increasing temperatures resulting from climate 

change than those found in central New York. Similarly, we found that the strongest negative 

influences of landscape fragmentation were in eastern part of the state, i.e., in regions dominated 

by the Adirondack Mountains and the Hudson River valley. Perhaps in those historically forested 

and contiguous habitats, small levels of landscape fragmentation have a much more detrimental 

effect on community composition than elsewhere within the state. Furthermore, given that the 

strongest influences of these two covariates were detected in similar geographic regions, it is also 

plausible that these two ecological factors interact in driving temporal community turnover. The 

remaining covariates showed similar heterogeneous patterns. These heterogeneous surfaces 

illustrate the complexity of impact and interplay among the covariates in explaining variability in 

temporal community turnover.  

Other research provides evidence for non-stationarity of ecological relationships (e.g., 

Bini et al. 2009, Martin-Queller et al. 2011, McNew et al. 2013) and thus corroborates findings 
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from our study. For example, Grotan et al. (2009) found the proportion of variance in local 

recruitment of great tit explained by spring temperature differed nearly 10-fold among four 

Dutch populations. Sæther et al. (2008) showed that population dynamics of eight species of 

prairie ducks showed pronounced latitudinal gradient; depending on the location, influence of 

increased spring temperature or winter precipitation on population dynamics was either positive 

or negative. Anders and Post (2006) found that NAO affected populations of the migrant yellow-

billed cuckoo (Coccyzus americanus) only in southern and eastern parts of the US, while El Nino 

Southern Oscillation (ENSO) affected populations in northern and central US. Martin-Queller et 

al. (2011) found relationships between species richness of woody plants and environmental and 

biotic factors to also be spatially heterogeneous. Given this apparent ubiquity of space-varying 

relationships in nature, we suggest that researchers studying large-scale ecological phenomena 

should be especially cognizant of the need to evaluate and account for potential non-stationarity.  

The three models we tested yielded different results despite the fact that the same 

covariates were included in all of them. By ignoring spatial dependency in model residuals, the 

non-spatial model produced relationships between the covariates and temporal community 

turnover. In the SVI model, the relationships between covariate and outcome variable generally 

weakened as a result of accommodating the spatial autocorrelation in model covariates via 

spatial random effect. By allowing the coefficient estimates to vary spatially, the SVC model 

yielded heterogeneous patterns and often conflicting relationships between the outcome and 

covariate. The heterogeneity of the model covariates themselves (e.g., the magnitude of the 

climatic trends) might be partly responsible for driving such space-varying relationships. 

Applying the SVC model enabled us to detect and account for these spatial differences. 
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It must be noted that other approaches exist to evaluate and account for potential non-

stationarity of ecological phenomena. One of the more common options is a frequentist method 

called geographically-weighted regression (GWR, Fotheringham et al. 2002), which uses spatial 

weights to estimate spatially adaptive coefficients. GWR has been the leading statistical method 

to account for spatial non-stationarity (e.g., Ma et al. 2012a, Ma et al. 2012b, Miller 2012), in no 

small part due to its availability in several popular Geographic Information Systems, e.g., ESRI 

products, and statistical computing environments, e.g., spgwr package in R statistical program 

(Bivand and Yu 2013). However, recently it has been shown that GWR is not robust to 

collinearity among the covariates and the presence of complex spatial correlation structures 

(Wheeler and Waller 2009, Finley 2011) and it tends to provide less accurate and more 

correlated regression coefficient estimates than those resulting from SVC models (Wheeler and 

Cadler 2007). Furthermore, Ma et al. (2012a) used GWR to model species richness derived from 

the same dataset as ours and concluded that GWR performed poorly the larger the spatial scale of 

investigation. Another central shortcoming of GWR, from an inferential standpoint, is the lack of 

a legitimate probability model in the sense that the joint distribution linking the parameters and 

the data is not a valid probability distribution. This is problematic for inference because the 

standard errors computed from such models may not be justifiable. Asymptotic arguments may 

be supplied but are complicated in spatial contexts because of the divergent paradigms of infill 

and expanding domain asymptotics. Thus, GWR can be a useful tool for exploratory data 

analysis, but generally should not be used in settings where one seeks inference about the 

importance of model parameters or in prediction. 

Given the growing wealth of space and time indexed ecological data (Kelling et al. 2009, 

Reichman et al. 2011, Schimel 2011) deeper insight into ecological processes is contingent upon 
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our ability to specify valid and tractable models able to accommodate often complex spatio-

temporal relationships between outcomes and posited environmental drivers. Because the 

propensity for non-stationary relationships increases over larger spatial domains and time 

periods, need for more sophisticated models also increase as we begin looking at macro-system 

questions. This study represents an important case assessing the utility of SVC models for 

capturing non-stationary relationships between non-Gaussian biodiversity dynamics and 

environmental changes. We suggest that SVC models are especially appropriate for studying 

macro-scale (i.e., regional or global) systems where we can expect the ecological processes and 

environmental drivers to be strongly heterogeneous across the spatial domain. As such, SVC 

models provide a unique opportunity to explore pressing environmental questions about impact 

of global environmental change on biodiversity.  
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ABSTRACT 

Quantity and quality of available habitat will affect the way species respond to climatic 

variability. My goal was to investigate bioclimatic relationships of grassland and forest breeding 

birds along varying gradients of grassland and forest habitat. Specifically, I sought to investigate 

whether: (i) bioclimatic relationships of birds breeding in grasslands differ from those of forest 

species, (ii) an increasing amount of habitat affects avian responses to climatic variability, and 

(iii) the potential effect of more extensive habitat differs for birds inhabiting grassland and forest 

lands. I used the New York State Breeding Bird Atlas as a model dataset and I chose 11 

grassland and 12 forest birds. To evaluate bioclimatic relationships along varying amounts of 

habitat, I created spatially-varying coefficients models (SVC) by adding spatially-structured 

random effects to the regression parameters associated with each of the model covariates. The 

resulting spatially-varying coefficient estimates of all climatic covariates were then regressed 

against the habitat amount for each individual species. I found that grassland and forest birds 

exhibited divergent bioclimatic relationships. On average, grassland birds were more likely to 

occur in regions characterized by higher temperatures and lower precipitation when compared to 

forest breeding birds. I also found that both groups exhibited heterogeneous bioclimatic 

relationships across a range of habitat amount, though the influence of land cover differed for 

grassland and forest birds. I conclude that increasing amount of forest cover likely will buffer the 

negative consequences of climate change, whereas extensive open grasslands will likely 
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exacerbate the impacts of climatic variability on bird populations. Thus, grassland birds might be 

particularly at risk of a changing climate due to the diminished buffering capacity of grassland 

systems. 

2.1 INTRODUCTION 

Global temperature increase resulting from anthropogenic climate change will have far-reaching 

consequences for biodiversity, and there is growing evidence that most taxonomic groups are 

already responding to recent climate warming (Walther et al. 2002, Parmesan and Yohe 2003, 

Jarzyna et al. 2013). However, despite the evidence that climate change is impacting 

biodiversity, there is still a need to better understand which species and ecosystems are most 

vulnerable, and under what conditions (Lawler 2009).  

Deriving bioclimatic relationships is a critical component of determining the potential 

impacts of climate change on species and communities (e.g., Guisan and Thuiller 2005, Araújo 

and Peterson 2012) and remains the most widely used tool for forecasting changes in species 

distributions (e.g., Miller 2010). However, using bioclimatic relationships as a sole predictor of 

species’ distributional changes is limited (Pearson et al. 2004, Huntley et al. 2010) because 

factors other than climate will affect the way species respond to climate change (Thomas et al. 

2004). For example, research suggests the quantity and quality of available habitat might be 

important in shaping bioclimatic relationships of species and thus their responses to climate 

change (Opdam and Wascher 2004, Kampichler et al. 2012). In simulation studies, habitat loss 

has been shown to reduce species ability to adjust to changing climatic conditions and thus 

exacerbate the detrimental effects of climate change (Travis 2003), while an increase in the 

amount of habitat has been shown to slow down species extinction rates (Jeltsch et al. 2011). 

Empirical evidence, however, is lacking because studies that integrate both kinds of impact (land 
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cover and climate) are rare (but see Kampichler et al. 2012). Moreover, no studies that explicitly 

evaluate species bioclimatic relationships across a broad range of habitat amount, to the best of 

our knowledge, have yet been conducted. Gaining a better understanding of the synergistic 

effects of climate and habitat will provide a deeper understanding of which species are more or 

less vulnerable to climate change.  

Given that decreasing habitat is likely to alter responses of species to climatic variability 

and thus potentially exacerbate the negative consequences of climate change (Travis 2003, 

Jeltsch et al. 2011), we expect the bioclimatic relationships of species to be altered by the amount 

of habitat within a landscape. Populations of the same species found in regions with abundant 

suitable cover should display weaker responses to climatic variability in comparison with 

populations found in regions characterized by less available habitat. Vulnerability to climate 

change can then be assessed based on the observed strength of bioclimatic associations. Species 

exhibiting weaker responses to climatic variability and those whose habitats provide modulating 

capacity against changing climatic conditions (i.e., where increasing amount of habitat weakens 

species’ bioclimatic relationships) would be considered less vulnerable to changing climatic 

conditions. 

The modifying characteristics of habitat amount on bioclimatic relationships are likely to 

differ depending on the type of land cover. Recent research suggests that forest canopies 

moderate the impact of climate warming on understory plants by creating cooler microclimatic 

conditions during the summer months (Bonan 2008, De Frenne et al. 2013). On the other hand, 

open habitats, such as old fields, agricultural, and pasture land (hereafter called grasslands), 

generally create warmer, drier, and more variable microclimates than forests (Geiger et al. 2009) 

and are therefore less likely to provide a similar moderating effect (Villegas et al. 2010). Given 
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these differences in climatic regimes of both types of cover, and the fact that thermal and habitat 

niches of species are often correlated (Barnagaud et al. 2012), we might expect that species 

inhabiting grasslands and forests will display divergent bioclimatic relationships. We can also 

expect that the presence, absence, and magnitude of the potential mitigating effect of land cover 

will be different for these two groups of species.  

The comparison of grassland and forest species is timely. The velocity of climate change 

has been shown to be greater along latitudinal than elevational gradients (Dobrowski et al. 2013). 

Forests are generally found in regions of higher altitudinal gradient than grasslands, which in 

turn are generally found in low laying and flat areas. Thus, given a similar latitudinal extent, 

grasslands are likely to experience more rapid changes under future climatic conditions than 

forested regions. However, how exactly grassland species will respond to this higher rate of 

climatic variability is largely unknown. Quantifying the range of bioclimatic relationships across 

a gradient of available habitat would be the first step in determining potential impacts of climate 

change on these two groups of species. 

Here, I used data from the New York State Breeding Bird Atlas to investigate bioclimatic 

relationships of grassland and forest birds across a range of habitat. I focus on relationships with 

temperature and precipitation, as the main climatic factors driving distributions and breeding 

success in bird populations (e.g., Moss et al. 2001). Specifically, I seek to evaluate three 

interrelated questions: (i) do bioclimatic relationships of birds breeding in grasslands differ from 

those of forest species? (ii) do increasing amounts of habitat modify responses of grassland- and 

forest-breeding birds to climatic variability? and (iii) is the effect of increasing habitat amount 

different for grassland and forest birds? First, I predict that grassland and forest birds will exhibit 

divergent bioclimatic relationships. Specifically, forest birds will have stronger negative 
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relationships with temperatures due to their preference for cooler habitats than grassland birds, 

while grassland birds will be found in warmer and drier regions. Second, I predict that an 

increasing amount of forest cover will abate the negative responses of forest birds to climatic 

variability (Cox et al. 2013). Lastly, I predict no change in the magnitude of bioclimatic 

relationships of grassland birds as the amount of their habitat increases. If my predictions 

regarding the mitigating qualities of each land cover hold true, we can expect grassland birds to 

be particularly vulnerable to changing climate due to the diminished modulating capacity 

provided by their habitat. 

2.2 METHODS 

2.2.1 Breeding Bird Atlas and chosen species 

The New York State Breeding Bird Atlas (NYSBBA) is a statewide survey of the distribution of 

breeding birds in New York that has been conducted to date in two time periods, 1980-85 

(Andrle and Carroll 1988) and 2000-05 (McGowan and Corwin 2008). For both atlases, a grid 

system was used to define the basic unit for reporting data; each unit (a block) measured 5 km x 

5 km and a total of 5,335 blocks covered the entirety of New York State. The NYSBBA 

represents one of the largest and finest resolution atlases in the world (Gibbons et al. 2007) and, 

in comparison with other datasets of avian distributions, provides a full state coverage in a form 

of a spatial grid that allows for thorough and systematic evaluation of species’ distributional 

patterns. The NYSBBA is a detection/non-detection dataset, where non-detection indicates that 

species could not be found given search criteria (McGowan and Corwin 2008). 

I used the 2000-05 BBA (hereafter, BBA) to quantify species bioclimatic relationships 

and to investigate whether birds show spatially-varying (i.e., dependent on the amount of habitat) 

responses to climatic variability. I chose 11 grassland birds: American kestrel (Falco sparverius), 
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northern harrier (Circus cyaneus), eastern bluebird (Sialia sialis), eastern kingbird (Tyrannus 

tyrannus), horned lark (Eremophila alpestris), grasshopper sparrow (Ammodramus 

savannarum), savannah sparrow (Passerculus sandwichensis), vesper sparrow (Pooecetes 

gramineus), bobolink (Dolichonyx oryzivorus), brown-headed cowbird (Molothrus ater), and 

eastern meadowlark (Sturnella magna). Most of the selected species are grassland generalists 

and breed in a diversity of different open habitats, including old fields, pastures, hayfields, and 

cultivated fields (DeGraaf and Yamasaki 2001). In 2000-05, the 11 species occupied the 

following portion of all BBA blocks: 56% (kestrels), 17% (harriers), 73% (bluebirds), 83% 

(kingbirds), 13% (larks), 9% (grasshopper sparrows), 58% (savannah sparrows), 11% (vesper 

sparrows), 60% (bobolinks), 75% (cowbirds), and 49% (meadowlarks). 

I chose 12 forest species: blue-gray gnatcatcher (Polioptila caerulea), blue-headed vireo 

(Vireo solitaries), golden-crowned kinglet (Regulus satrapa), great crested flycatcher 

(Myiarchus crinitus), red-breasted nuthatch (Sitta canadensis), tufted titmouse (Baeolophus 

bicolor), veery (Catharus fuscescens), black-and-white warbler (Mniotilta varia), black-

throated blue warbler (Setophaga caerulescens), black-throated green warbler (Setophaga 

virens), blackburnian warbler (Setophaga fusca), and Canada warbler (Cardellina canadensis). 

Most of these forest birds breed in a variety of forest habitats (deciduous, coniferous, and mixed 

deciduous-coniferous forests) rather than being restricted to one forest type (DeGraaf and 

Yamasaki 2001). In 2000-05, the selected forest birds occupied  20% (gnatcatchers), 52% 

(vireos), 22% (kinglets), 79% (flycatchers), 45% (nuthatches), 59% (titmice), and 80% (veeries), 

53% (black-and-white warblers), 38% (black-throated blue warblers), 60% (black-throated green 

warblers), 40% (blackburnian warblers), and 26% (Canada warblers) of all BBA blocks. 
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2.2.2 Model covariates 

The climatic covariates included in all the models were 5-year (2000-05) average values of 

maximum and minimum temperatures (TMAX and TMIN, respectively) and average total 

precipitation (PRECIP) of the breeding season (April-August). The climate data were derived 

from the PRISM (Parameter-elevation Regressions on Independent Slopes Model) climate 

mapping system (Daly and Gibson 2002). Though values of TMAX and TMIN are expected to 

be correlated with each other (here, Pearson product moment correlation coefficient r = 0.65), 

both metrics are biologically meaningful and thus often included together in one model (e.g., 

Stralberg et al. 2009). Correlation between TMAX and PRECIP and TMIN and PRECIP was 

much lower (r = -0.18 and r = -0.22, respectively). To account for potential survey effort bias, I 

included survey effort (EFF, number of person hours; McGowan and Zuckerberg 2008) as a 

variable in all the models. 

2.2.3 Habitat amount 

Grasslands and forests were identified using the 2001 National Land Cover Data (NLCD) 

derived from the Landsat Thematic Mapper satellite data (Homer et al. 2004). I used the 2001 

NLCD because it coincided well with the time of the BBA. To derive the amount of the 

grasslands, for nine out of 11 species, I consolidated grassland/herbaceous, cultivated crops, and 

pasture/hay into one class of grasslands. Due to the more specialized habitat requirements of 

some grassland species, I implemented further classification rules to the land cover data. For 

bobolinks, I consolidated grassland/herbaceous and pasture/hay into one class (Martin and Gavin 

1995, DeGraaf and Yamasaki 2001), while for harriers, I consolidated grassland/herbaceous, 

cultivated crops, pasture/hay, and emergent herbaceous wetlands (DeGraaf and Yamasaki 2001, 

Smith et al. 2011).  



41 
 

To derive the amount of forest within an atlas block, I consolidated deciduous forest, 

coniferous forest, and mixed forest into one class of forest. I implemented further land-cover 

classification rules for gnatcatchers and titmice, for which I consolidated deciduous and mixed 

forest classes (Grubb and Pravasudov 1994, DeGraaf and Yamasaki 2001, Kershner and Ellison 

2012), and for kinglets, for which I consolidated coniferous and mixed forest classes (DeGraaf 

and Yamasaki 2001, Swanson et al. 2012).  

The land-cover was quantified using FRAGSTATS 4.2 (McGarigal et al. 2012) and the 

Geospatial Modelling Environment (GME, http://www.spatialecology.com/gme/). We used 

Percent Land Cover (PLAND) metric to quantify the amount of grassland (GPLAND) and 

forested habitats (FPLAND). GPLAND and FPLAND quantify the proportional abundance of 

each patch type in each BBA block (McGarigal et al. 2012).  

2.2.4 Statistical analysis 

I evaluated two statistical models for each species, both of which included all climate covariates 

(TMAX, TMIN, PRECIP) and survey effort (EFF). My first model was a stationary spatial 

regression, where I added spatially-structured random effects to the intercept to form a spatially-

varying intercept (SVI) model. The SVI models accounted for spatial autocorrelation in the 

residuals, but did not allow slope coefficients to vary across the spatial domain. Second, I created 

a spatially-varying coefficients model (SVC) by adding spatially-structured random effects to the 

intercept and slope coefficients associated with each of the climatic covariates and survey effort. 

By relaxing the assumption that covariates have the same impact across the domain, the SVC 

models allowed for evaluation of potential changes in bioclimatic relationships across space.  

For a given BBA grid cell the regression outcome variable y(s) is the detection or non-

detection of a particular species (i.e., 1 or 0), where s represents the grid cell's spatial 

http://www.spatialecology.com/gme/
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coordinates. We assumed y(s) follows a Bernoulli distribution. For the more general SVC model, 

π(y(s)│η(s)) ~ Bernoulli(p(η(s))), where p(η(s)) is the probability of occurrence at s and η(s) is 

x(s)β + x(s)w(s) with x(s) representing the vector comprising an intercept and location specific 

covariate values. The parameters to be estimated were the global regression coefficients, β = (β0, 

βTMAX, βTMIN, βPRECIP, βEFF)T, and associated spatially-varying adjustments, w(s) = (w0(s), 

wTMAX(s), wTMIN(s), wPRECIP(s), wEFF(s))T. We used a logit link function η(s) = log[p(s)/{1-p(s)}] 

for this model.  

I assumed each element in the spatially-varying coefficients vector, w(s), arises from a 

spatial Gaussian Process (GP) (Banerjee et al. 2004, Cressie and Wikle 2011). Specifically the j-

th spatially-varying coefficient at location s is wj(s) ~ GP(0, Cj(s, s’)), where s and s’ are any two 

locations within the study area, the spatial covariance Cj(s, s’) = σ2
jρj(s, s’; ϕj) with variance 

parameter σ2
j, correlation function ρj(·; ϕj), and spatial decay parameter ϕj. The exponential 

spatial correlation was assumed for ρj(·). The SVI sub-model comprises a single GP on the 

intercept, i.e., η(s) is x(s)β + w0(s). 

Prior distributions on the remaining parameters completed the Bayesian formulation of 

the hierarchical model (e.g., Gelman et al. 2004). The regression coefficients, β j’s followed a 

normal distribution N(0, 100), while the variance components σ2
j’s were assigned inverse-gamma 

IG(2, 1) priors. The spatial decay parameters, ϕj's, followed an informative Uniform prior, with 

support that ranged from 1 km to the maximum distance between any two grid cells (i.e., 

approximately 325 km). Parameter estimates were based on post burn-in samples from three 

MCMC chains of 10,000 iterations each. Burn-in and convergence were diagnosed using the 

Gelman-Rubin diagnostic (Gelman and Rubin 1992). Candidate model fit to the observed data 



43 
 

was assessed using the Deviance Information Criterion (DIC; Spiegelhalter et al. 2002). Lower 

values of DIC indicate improved model fit.  

To investigate whether species bioclimatic relationships are related to the amount of 

habitat, I regressed the resulting spatially-varying coefficient estimates of TMAX, TMIN, and 

PRECIP against the values of GPLAND and FPLAND (hereafter, TMAX-GPLAND, TMIN-

GPLAND, and PRECIP-GPLAND for grassland birds, and TMAX-FPLAND, TMIN-FPLAND, 

and PRECIP-FPLAND for forest birds).  

Prior to statistical analysis, I removed all blocks with more than 50% open water 

coverage and  those that did not have continuous land cover coverage or survey effort data. 

Ultimately, I used a total of n = 4,490 blocks for birds of open lands and n = 4,492 blocks for 

forest birds to fit the models. I standardized all the covariates to ease the comparison and 

interpretation of the coefficient estimates. The SVI models were run in R 2.15.1 statistical 

program (R Development Core Team, http://www.r-project.org/) using package spBayes (Finley 

and Banerjee 2013). In close collaboration with Dr. Andrew Finley, I wrote the SVC models in 

C++ programming language. Summaries of parameter estimates were generated using the R 

CODA package (Plummer et al. 2012). 

2.3 RESULTS 

2.3.1 Model comparison 

For all species, the SVC model provided improved fit to the data (Appendix 2.1), suggesting that 

birds are responding to climatic variation in a spatially-dependent manner. This spatial 

heterogeneity allowed for evaluation of bioclimatic relationships across the changing amount of 

habitat. 

http://www.r-project.org/
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2.3.2 Bioclimatic relationships 

For grassland birds, TMAX coefficient estimates resulting from the SVI models were positive 

for six species (Table 2.1). For five forest birds, TMAX coefficient estimates were negative for 

black-throated blue warblers, black-throated green warblers, blackburnian warblers, vireos, 

Canada warblers, and nuthatches (Table 2.1). TMAX estimates were positive for gnatcatchers, 

kinglets, flycatchers, titmice, and veeries, suggesting that these birds preferred warmer locations. 

As a group, grassland birds occurred in landscapes of higher maximum temperatures than forest 

breeding birds (Fig. 2.1).  

For most grassland birds, 95% credible intervals of the TMIN coefficient estimates 

overlapped zero, with exception of kingbirds for which the estimate was positive (Table 2.1). For 

forest birds, TMIN coefficient estimates were negative for seven species, with exception of 

kinglets, flycatchers and titmice, for which TMIN was positive. As a group, forest birds in 

general occurred in landscapes of lower minimum temperature than grassland birds (Fig. 2.1). 

PRECIP coefficient estimates were negative for almost all grassland birds (Table 2.1, 

Fig. 2.1). PRECIP coefficient estimates were positive for seven forest birds and negative for one 

forest species (Table 1). In general, grassland birds occurred in locations of lower precipitation 

than forest birds (Fig. 2.1). 
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Table 2.1 Coefficient estimates resulting from the spatially-varying intercept (SVI) models for 
the intercept (INTERCEPT), 2000-05 average maximum temperature of the breeding season 
(TMAX), 2000-05 average minimum temperature of the breeding season (TMIN), 2000-05 
average total precipitation of the breeding season (PRECIP), and 2000-05 survey effort (EFF) for 
grassland and forest birds. Species occurrence data were retrieved from the 2000-05 New York 
State Breeding Bird Atlas. 

Habitat 
Guild Species Coefficient Coefficient Estimates 

50% 2.5% 97.5% 
 

American Kestrel  
(Falco sparverius) 

INTERCEPT -0.277 -0.816 0.353 
 TMAX 0.198 -0.044 0.458 

Grassland 
Birds  

TMIN 0.175 -0.098 0.413 
PRECIP -0.584 -0.827 -0.386 
EFF 0.281 0.184 0.379 

Northern Harrier  
(Circus cyaneus) 

INTERCEPT -2.142 -2.704 -1.616 
TMAX 0.086 -0.205 0.364 
TMIN 0.001 -0.268 0.313 
PRECIP -0.438 -0.744 -0.163 
EFF 0.487 0.387 0.596 

Eastern Bluebird  
(Sialia sialis) 

INTERCEPT 0.205 -0.691 1.022 
TMAX 0.531 0.285 0.819 
TMIN -0.045 -0.343 0.210 
PRECIP -0.399 -0.642 -0.126 
EFF 0.242 0.152 0.345 

Eastern Kingbird  
(Tyrannus tyrannus) 

INTERCEPT 2.156 1.623 2.566 
TMAX 0.451 0.124 0.801 
TMIN 0.413 0.094 0.734 
PRECIP -0.770 -1.049 -0.452 
EFF 0.683 0.489 0.900 

Horned Lark  
(Eremophila alpestris) 

INTERCEPT -2.588 -3.341 -1.507 
TMAX -0.008 -0.360 0.322 
TMIN 0.354 -0.016 0.764 
PRECIP -0.617 -0.978 -0.222 
EFF 0.029 -0.103 0.134 

Grasshopper Sparrow  
(Ammodramus 
savannarum) 

INTERCEPT -3.545 -4.075 -2.857 
TMAX 0.235 -0.133 0.613 
TMIN 0.269 -0.087 0.627 
PRECIP -0.291 -0.602 -0.007 
EFF 0.206 0.112 0.304 

Savannah Sparrow  
(Passerculus 
sandwichensis) 

INTERCEPT 0.142 -0.724 0.647 
TMAX 0.288 0.009 0.589 
TMIN -0.181 -0.491 0.102 
PRECIP -0.577 -0.879 -0.308 
EFF 0.178 0.096 0.270 

Continued on next page 
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Table 2.1 (cont’d) 

Habitat 
Guild Species Coefficient Coefficient Estimates 

50% 2.5% 97.5% 

Grassland 
Birds 

Vesper Sparrow  
(Pooecetes gramineus)  

INTERCEPT -3.026 -3.768 -2.322 
TMAX 0.025 -0.336 0.431 
TMIN 0.353 -0.038 0.704 
PRECIP -0.277 -0.612 0.035 
EFF 0.067 -0.060 0.165 

Bobolink  
(Dolichonyx oryzivorus) 

INTERCEPT -0.680  -1.431 -0.202 
TMAX 0.475 0.219 0.833 
TMIN -0.334 -0.598 0.056 
PRECIP -0.614 -0.930 -0.311 
EFF 0.166 0.065 0.267 

Brown-headed Cowbird  
(Molothrus ater) 

INTERCEPT 1.399 0.264 2.059 
TMAX 0.493 0.229 0.808 
TMIN 0.219 -0.121 0.538 
PRECIP -0.544 -0.854 -0.200 
EFF 0.348 0.197 0.507 

Eastern Meadowlark  
(Sturnella magna) 

INTERCEPT 0.175 -1.018 1.227 
TMAX 0.326 0.057 0.611 
TMIN 0.020 -0.300 0.295 
PRECIP -0.607 -0.898 -0.289 
EFF 0.155 0.060 0.236 

 

Blue-gray Gnatcatcher  
(Polioptila caerulea) 

INTERCEPT -2.402 -2.955 -1.620 

Forest Birds  

TMAX 0.670 0.406 0.952 
TMIN 0.235 -0.042 0.526 
PRECIP -0.457 -0.676 -0.198 
EFF 0.248 0.156 0.343 

Blue-headed Vireo  
(Vireo solitaries) 

INTERCEPT -0.684 -1.927 0.182 
TMAX -0.367 -0.624 -0.094 
TMIN -0.746 -1.011 -0.459 
PRECIP 0.602 0.374 0.830 
EFF 0.210 0.120 0.309 

Golden-crowned Kinglet  
(Regulus satrapa) 

INTERCEPT -2.254 -2.681 -1.812 
TMAX -0.916 -1.174 -0.678 
TMIN -0.573 -0.871 -0.249 
PRECIP 0.345 0.091 0.589 
EFF 0.203 0.112 0.296 

Great Crested Flycatcher  
(Myiarchus crinitus) 

INTERCEPT 0.896 -0.003 2.162 
TMAX 0.422 0.194 0.652 
TMIN 0.257 0.020 0.482 
PRECIP -0.231 -0.480 0.040 
EFF 0.185 0.079 0.303 

Continued on next page 
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Table 2.1 (cont’d) 

Habitat 
Guild Species Coefficient Coefficient Estimates 

50% 2.5% 97.5% 

Forest Birds 

Red-breasted Nuthatch  
(Sitta Canadensis) 

INTERCEPT -1.089 -1.816 -0.437 
TMAX -0.386 -0.634 -0.150 
TMIN -0.587 -0.842 -0.333 
PRECIP 0.328 0.108 0.548 
EFF 0.316 0.225 0.404 

Tufted Titmouse  
(Baeolophus bicolor)  

INTERCEPT -0.008 -0.815 0.713 
TMAX 1.119 0.743 1.451 
TMIN 0.247 -0.092 0.557 
PRECIP 0.014 -0.311 0.288 
EFF 0.177 0.064 0.299 

Veery  
(Catharus fuscescens) 

INTERCEPT 1.515 0.799 2.247 
TMAX 0.284 0.024 0.541 
TMIN -1.000 -1.396 -0.736 
PRECIP -0.122 -0.403 0.222 
EFF 0.275 0.166 0.389 

Black-and-white Warbler  
(Mniotilta varia) 

INTERCEPT -0.654 -1.939 0.273 
TMAX -0.157 -0.337 0.060 
TMIN -0.236 -0.544 0.002 
PRECIP 0.128 -0.101 0.339 
EFF 0.301 0.200 0.403 

Black-throated Blue 
Warbler  
(Setophaga caerulescens) 

INTERCEPT -1.402 -2.097 -0.670 
TMAX -0.540 -1.010 -0.292 
TMIN -0.799 -1.065 -0.387 
PRECIP 0.919 0.657 1.215 
EFF 0.232 0.140 0.340 

Black-throated Green 
Warbler  
(Dendroica virens)  

INTERCEPT 0.192 -0.485 0.806 
TMAX -0.874 -1.173 -0.587 
TMIN -0.884 -1.182 -0.562 
PRECIP 0.752 0.476 0.993 
EFF 0.188 0.080 0.281 

Blackburnian Warbler 
(Dendroica fusca) 

INTERCEPT -0.827 -1.308 -0.116 
TMAX -0.565 -0.884 -0.250 
TMIN -0.734 -1.067 -0.397 
PRECIP 0.845 0.581 1.091 
EFF 0.225 0.126 0.325 

Canada Warbler  
(Cardellina Canadensis) 

INTERCEPT -1.757 -2.247 -1.395 
TMAX -0.274 -0.553 -0.033 
TMIN -0.550 -0.849 -0.241 
PRECIP 0.414 0.194 0.607 
EFF 0.143 0.060 0.233 
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Figure 2.1 Mean values of the coefficient estimates of 2000-05 average spring maximum 
temperature (TMAX), 2000-05 average spring minimum temperature (TMIN), and 2000-05 
average total spring precipitation (PRECIP) for both avian groups: grassland birds (circles) and 
forest birds (triangles). 95% confidence intervals indicate whether the mean value of the 
coefficient estimates is significantly different from zero. On each plot from left to right: 
American kestrel, northern harrier, eastern bluebird, eastern kingbird, horned lark, grasshopper 
sparrow, savannah sparrow, vesper sparrow, bobolink, brown-headed cowbird, eastern 
meadowlark, blue-gray gnatcatcher, blue-headed vireo, golden-crowned kinglet, great crested 
flycatcher, red-breasted nuthatch, tufted titmouse, veery, black-and-white warbler, black-throated 
blue warbler, black-throated green warbler, blackburnian warbler, and Canada warbler. Species 
occurrence data were retrieved from the 2000-05 New York State Breeding Bird Atlas. 
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2.3.3 Heterogeneity of bioclimatic relationships across habitat amount  

After incorporating covariate-specific spatial random effects in the SVC models, coefficient 

estimates of all variables became strongly spatially varying (Appendix 2.2). There was a clear 

variation in the values of the TMAX coefficient estimates across the habitat gradient (Table 2.2), 

but there was no visible pattern that would differentiate responses of grassland birds from those 

of forest species (Fig. 2.2). The strongest relationship was recorded for black-and-white warblers 

(posterior mean 0.0089, Table 2.2), followed by larks (posterior mean -0.0082, Table 2.2), 

Canada warblers (posterior mean 0.0065, Table 2.2), and harriers (posterior mean 0.0052, Table 

2.2). The TMAX-GPLAND and TMAX-FPLAND associations were positive for 13 and 

negative for 9 out of 23 species (Table 2.2).  

The strongest TMIN-GPLAND and TMIN-FPLAND associations were recorded for 

bobolinks (posterior mean -0.0388, Table 2.2), followed by veeries (posterior mean 0.0247, 

Table 2.2), flycatchers (posterior mean 0.0231, Table 2.2), and savannah sparrows (posterior 

mean -0.0214, Table 2.2). Most of the associations for grassland birds were negative, with 

exception of grasshopper sparrows, larks, and vesper sparrows (Table 2.2; Fig. 2.2). The 

negative TMIN-GPLAND associations suggested that positive values of TMIN coefficient 

estimates were generally found in localities where grasslands were scarce, and declined steadily 

towards negative values in regions with abundant grasslands (Appendix 2.2). Thus, only in 

regions where grassland habitat was limited, birds were more likely to be found when average 

temperatures were higher, whereas we generally saw the reverse relationship in regions with 

extensive grasslands.  

For forest birds, the TMIN-FPLAND associations were generally positive, with exception 

of gnatcatchers, kinglets, nuthatches, and black-throated blue warblers (Table 2.2, Fig. 2.2). The 
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two strongest TMIN-FPLAND associations among forest birds were found for flycatchers and 

veeries (Table 2.2), both of which were positive. For these two species, the estimates of TMIN 

coefficients were negative in localities with scarce forests and positive in highly forested regions. 

Thus, only in regions where forests are scant, flycatchers and veeries are less likely to be found 

when average temperatures are higher, whereas we will generally see the reverse relationship in 

extensively forested regions. For the remaining species with the positive TMIN-FPLAND 

associations, TMIN coefficients were almost exclusively negative (Appendix 2.2). These species 

are thus least likely to be found when average temperatures are high, though this relationship is 

the strongest in scarcely forested habitats and diminishes with increasing amount of forest.  

The eight strongest associations between PRECIP coefficient estimates and land cover 

were recorded for grassland birds (in the order of strength: meadowlarks, harriers, bobolinks, 

kestrels, kingbirds, vesper sparrows, savannah sparrows, larks; Table 2.2, Fig. 2.2), all of them 

positive. Positive associations indicate that PRECIP coefficient estimates were negative in 

locations with low GPLAND, suggesting in those places the likelihood of species occurrence 

will be low if precipitation is high. With increasing GPLAND, we recorded a weakening of this 

relationship (Appendix 2.2). The PRECIP-FPLAND associations for forest species were 

generally weaker than those of grassland birds (Fig. 2.2). 
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Table 2.2 Relationships between amount of habitat (percent of grassland cover, GPLAND, and 
percent of forest cover, FPLAND, for grassland and forest birds, respectively) and spatially-
varying coefficient estimates for 2000-05 average maximum temperature of the breeding season 
(TMAX), 2000-05 average minimum temperature of the breeding season (TMIN), and 2000-05 
average total precipitation of the breeding season (PRECIP). The “*” symbol indicates that less 
than 10% of the spatially-varying coefficient estimates (i.e., TMAX, TMIN, PRECIP coefficient 
estimates resulting from the SVC models) had the 95% credible intervals not overlapping zero. 
Species occurrence data were retrieved from the 2000-05 New York State Breeding Bird Atlas. 

Habitat 
Guild Species Coefficient Coefficient Estimates 

50% 2.5% 97.5% 

Grassland 
Birds  

American Kestrel (Falco 
sparverius) 

TMAX -0.0041 -0.0043 -0.0041 
TMIN -0.0155 -0.0165 -0.0144 
PRECIP 0.0158 0.0147 0.0189 

Northern Harrier (Circus 
cyaneus) 

TMAX 0.0053 0.0048 0.0057 
TMIN -0.0188 -0.0198 -0.0178 
PRECIP 0.0281 0.0263 0.0300 

Eastern Bluebird (Sialia 
sialis) 

TMAX -0.0013 -0.0014 -0.0011 
TMIN -0.0111 -0.0123 -0.0100 
PRECIP 0.0033 0.0029 0.0037 

Eastern Kingbird (Tyrannus 
tyrannus) 

TMAX 0.0015 0.0014 0.0016 
TMIN -0.0133 -0.0144 -0.0123 
PRECIP 0.0141 0.0133 0.0149 

Horned Lark (Eremophila 
alpestris) 

TMAX -0.0082 -0.0085 -0.0079 
TMIN 0.0051 0.0050 0.0053 
PRECIP 0.0055 0.0053 0.0057 

Grasshopper Sparrow 
(Ammodramus savannarum) 

TMAX -0.0020 -0.0021 -0.0019 
TMIN* 0.0025 0.0024 0.0026 
PRECIP* -0.00024 -0.00025 -0.00022 

Savannah Sparrow 
(Passerculus sandwichensis) 

TMAX* -0.0003 -0.0004 -0.0002 
TMIN -0.0214 -0.0223 -0.0205 
PRECIP 0.0105 0.0093 0.0177 

Vesper Sparrow (Pooecetes 
gramineus)  

TMAX* 0.0012 0.0009 0.0015 
TMIN 0.0023 0.0021 0.0025 
PRECIP 0.0106 0.0101 0.0111 

Bobolink (Dolichonyx 
oryzivorus) 

TMAX 0.0026 0.0024 0.0029 
TMIN -0.0576 -0.0616 -0.0534 
PRECIP 0.0256 0.0234 0.0278 

Brown-headed Cowbird 
(Molothrus ater) 

TMAX -0.0041 -0.0044 -0.0037 
TMIN -0.0177 -0.0186 -0.0168 
PRECIP -0.0021 -0.0026 -0.0015 

Eastern Meadowlark 
(Sturnella magna) 

TMAX 0.0048 0.0046 0.0050 
TMIN -0.0099 -0.0106 -0.0093 
PRECIP 0.0316 0.0302 0.0328 

Continued on next page 
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Table 2.2 (cont’d) 

Habitat 
Guild Species Coefficient Coefficient Estimates 

50% 2.5% 97.5% 

Forest Birds  

Blue-gray Gnatcatcher 
(Polioptila caerulea) 

TMAX 0.00007  0.00001 0.00014 
TMIN 0.0001 -0.0002 0.0004 
PRECIP -0.00005 -0.00004 0.0003 

Blue-headed Vireo (Vireo 
solitaries) 

TMAX 0.0025 0.0022 0.0029 
TMIN 0.0049 0.0046 0.0051 
PRECIP -0.0032 -0.0035 -0.0029 

Golden-crowned Kinglet 
(Regulus satrapa) 

TMAX 0.0017 0.0013 0.0020 
TMIN -0.0013 -0.0019 -0.0008 
PRECIP -0.0017 -0.0033 -0.00009 

Great Crested Flycatcher 
(Myiarchus crinitus) 

TMAX -0.0017 -0.0021 -0.0014 
TMIN 0.0231 0.0221 0.0241 
PRECIP 0.0048 0.0046 0.0050 

Red-breasted Nuthatch 
(Sitta Canadensis) 

TMAX 0.0010 0.0008 0.0012 
TMIN -0.0013 -0.0015 -0.0011 
PRECIP 0.00075 0.0003 0.0012 

Tufted Titmouse 
(Baeolophus bicolor)  

TMAX 0.00045  0.00009 0.00089 
TMIN 0.0094 0.0079 0.0108 
PRECIP 0.00006 -0.00006 0.00018 

Veery (Catharus 
fuscescens) 

TMAX 0.0042 0.0039 0.0045 
TMIN 0.0247 0.0234 0.0261 
PRECIP -0.0011 -0.0013 -0.0008 

Black-and-white Warbler 
(Mniotilta varia) 

TMAX 0.0089 0.0084 0.0094 
TMIN 0.0013 0.0011 0.0014 
PRECIP -0.0008 -0.0011 -0.0005 

Black-throated Blue 
Warbler (Setophaga 
caerulescens) 

TMAX -0.0020 -0.0021 -0.0019 
TMIN -0.00011 -0.00014 -0.00009 
PRECIP 0.00164 0.00155 0.00172 

Black-throated Green 
Warbler (Dendroica virens)  

TMAX -0.0004 -0.0008 -0.00001 
TMIN 0.0037 0.0033 0.0041 
PRECIP -0.0022 -0.0024 -0.0020 

Blackburnian Warbler 
(Dendroica fusca)  

TMAX 0.0037 0.0034 0.0039 
TMIN 0.0119 0.0113 0.0125 
PRECIP -0.0025 -0.0038 -0.0013 

Canada Warbler (Cardellina 
Canadensis) 

TMAX 0.0065 0.0060 0.0070 
TMIN 0.00603 0.00558 0.00648 
PRECIP -0.0024 -0.0028 -0.0021 
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Figure 2.2 Mean values of the associations between the percent habitat (percent grassland cover, 
GPLAND, and percent forest cover, FPLAND, for grassland and forest species, respectively) and 
coefficient estimates of 2000-05 average spring maximum temperature  (TMAX), 2000-05 
average spring minimum temperature (TMIN), and 2000-05 average total spring precipitation 
(PRECIP) for both avian groups: grassland birds (circles) and forest birds (triangles). 95% 
confidence intervals indicate whether the mean value of the associations is significantly different 
from zero. On each plot from left to right: American kestrel, northern harrier, eastern bluebird, 
eastern kingbird, horned lark, grasshopper sparrow, savannah sparrow, vesper sparrow, bobolink, 
brown-headed cowbird, eastern meadowlark, blue-gray gnatcatcher, blue-headed vireo, golden-
crowned kinglet, great crested flycatcher, red-breasted nuthatch, tufted titmouse, veery, black-
and-white warbler, black-throated blue warbler, black-throated green warbler, blackburnian 
warbler, and Canada warbler. Species occurrence data were retrieved from the 2000-05 New 
York State Breeding Bird Atlas. 
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2.4 DISCUSSION 

My findings supported the notion that grassland and forest birds exhibit divergent bioclimatic 

relationships. Forest breeding birds were more likely to occur in cooler and wetter regions, while 

grassland birds preferred warmer and drier conditions. I also found support for our second 

prediction that increasing amounts of forests will mitigate the negative responses of forest 

breeding birds to climatic variability. Contrary to my prediction that the magnitude of 

bioclimatic relationships would remain constant for grassland birds, I found that the bioclimatic 

relationships of grassland birds are highly heterogeneous across the habitat gradient. Notably, the 

evidence suggests that the negative consequences of climate change are likely to be intensified in 

regions with extensive grasslands. Taken together, my results support our initial hypothesis that 

grassland birds will be more vulnerable to a warming climate than birds of forested habitats. 

2.4.1 Bioclimatic relationships 

Space-varying intercept models allowed comparison of the spatially-homogeneous bioclimatic 

relationships of grassland and forest birds. In general, there were differences in the way 

grassland and forest birds responded to each of the climatic covariate. Six grassland birds 

responded positively to maximum temperatures, indicating that in general these birds prefer 

warmer regions. The likelihood of occurrence of seven forest birds was negatively associated 

with maximum temperatures, suggesting the higher likelihood of forest birds in cooler locations. 

Most forest species also had a strong negative response to minimum temperatures, while almost 

none of the grassland birds responded to this covariate. The spatially-homogeneous bioclimatic 

relationships suggest that only a portion of grassland birds might benefit from increasing 

temperatures resulting from climate change. On the other hand, evidence from stationary models 

suggests that most forest species will be negatively affected as temperatures continue to rise. My 
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results therefore corroborate other findings, which suggest that forest birds are generally cold-

dwelling species (Clavero and Brotons 2010) and thus, all else being equal, potentially more 

vulnerable to rising temperatures than grassland birds. However, caution is advised here as the 

results of the space-varying intercept models do not take into account the potential influences of 

habitat and thus lead to conclusions that differ from those arising from the models accounting for 

the spatial heterogeneity of bioclimatic relationships.  

I found that grassland birds had a strong negative response to precipitation. This finding 

fits well with the notion that open habitats generally exhibit drier microclimatic conditions 

(Geiger et al. 2009), thus supporting fauna more sensitive to high precipitation regimes (Skagen 

and Adams 2012). On the contrary, the likelihood of occurrence of forest birds was positively 

affected by precipitation. Thus, my results suggest that precipitation will be an important 

climatic variable, albeit less predictable than temperature, in shaping responses of breeding birds 

to climate change. Furthermore, given the disparate relationships of grassland and forest birds 

with precipitation, we can expect that changing precipitation patterns will likely affect these two 

avian groups in a contrasting way. In situations when climate change causes precipitation to 

increase, grassland birds will likely be adversely affected, while forest species will generally 

benefit from increasing rainfall. 

2.4.2 Heterogeneity of bioclimatic relationships across habitat amount 

Evaluation of spatial variation in bioclimatic relationships using space-varying coefficients 

models allowed a richer ecological interpretation and painted a different picture of potential 

vulnerabilities of grassland and forest birds to climate change. My results supported the 

expectation that bioclimatic relationships of forest birds exhibit strong spatial variation, which 

was associated with the amount of available forest cover. As I predicted, the relationships 
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between forest birds and maximum and minimum temperatures showed mostly positive 

associations with the amount of forest cover. Regions with limited forest cover were 

characterized by the strongest negative relationships with temperature, and these relationships 

became weaker or positive as the amount of forest increased. Thus, more extensively forested 

regions might successfully mitigate the increasing ambient temperatures associated with climate 

change. Such modulating effect is likely due to the cooler microclimatic conditions created by 

the forest canopy closure, which decreases summer ground-level temperatures via increased 

shading (De Frenne et al. 2013). These counteracting effects of forest canopies on climate 

warming are likely to persist into the future as long as the structure of forest canopies remains 

undisturbed. My results are also in agreement with studies suggesting that expansion of forests 

will potentially compensate or reverse responses of communities to climate change (Clavero et 

al. 2011) by leading to the dominance of cold-dwelling assemblages. 

The amount of forest cover in general did not affect the occurrence-precipitation 

relationships of forest birds. This finding corroborates the results from the spatially-stationary 

framework, where positive relationships of forest birds with precipitation were recorded. The 

lack of spatial heterogeneity in the occurrence-forest cover relationship affirms that forest birds 

will be more likely to occupy wetter regions regardless of the amount of habitat they have 

available. Thus, the effects of precipitation changes resulting from climate change on forest 

species will likely be homogenous throughout the species’ geographic extent.  

I found that bioclimatic relationships of grassland birds were spatially heterogeneous, but 

the associations between occurrence-climate relationships and habitat were different than the 

ones found for forest birds. Relationships of grassland species with maximum and minimum 

temperatures generally showed mostly negative associations with the amount of grassland cover. 
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Interestingly, responses of grassland birds to maximum temperatures across the increasing 

amount of their habitat were not consistent across all species within the group, with some species 

showing negative relationships (kestrels, cowbirds, bluebirds, grasshopper sparrows, and larks) 

and others having positive associations (bobolinks, kingbirds, meadowlarks, and harriers). For 

the species exhibiting positive associations, we see an increase in the strength of the relationship 

between likelihood of species occurrence and maximum temperatures as the amount of 

grasslands increases. This indicates that birds in localities with abundant grasslands might 

benefit from climate change-induced temperature increases more than those found in regions 

with scarce suitable cover. Species exhibiting negative associations will likely benefit from 

temperature increases in regions with scarce grasslands. 

The associations between species responses to minimum temperatures and the amount of 

grassland cover were more consistent across all grassland species. I found that likelihood of 

occurrence of grassland birds is greater when minimum temperatures are higher, but only in 

locations where their habitat is relatively limited. On the other hand, locations characterized by 

extensive grasslands show decreasing probability of occurrence associated with higher minimum 

temperatures. Thus, I suggest that extensive grasslands might exacerbate, rather than mitigate, 

the negative consequences climate change might have on birds of those habitats. One possible 

explanation may be that smaller patches of grassland habitat are likely to be surrounded by cover 

types with cooler microclimates, thus creating more benign environmental conditions in the face 

of increasing temperatures. On the other hand, large and unfragmented grassland patches will be 

deprived of the potential counteracting effects of surrounding patches on climate warming and 

thus might be more susceptible to rapid temperature increases. Hence, species found in those 

habitats will likely experience higher rates of extreme weather events (e.g., heat waves, 



58 
 

flooding), potentially making them more vulnerable to the impacts of climate change. This 

potential influence of landscape matrix on species bioclimatic relationships is not surprising. 

Indeed, studies have shown that the quality of the surrounding matrix influences species 

persistence (e.g., Prugh et al. 2008, Willis and Bhagwat 2009) and has a strong influence on 

species responses to environmental conditions (Pervedello and Vieira 2010). My results thus 

reinforce the need to acknowledge the importance of the entire landscape when evaluating 

bioclimatic relationships and their interactions with land cover, rather than focusing only on the 

perceived suitable habitat.  

Grassland birds also showed strong variation in precipitation relationships across their 

habitat gradient. For the majority of grassland species, their occurrence was negatively affected 

by high precipitation regimes in regions with scarce grassland habitat. This relationship 

weakened with increasing amount of grasslands. Thus, increasing rainfall would be most 

detrimental to grassland birds in regions with low amounts of their habitat, whereas populations 

in regions with abundant grasslands should be less affected by increasing precipitation. Given the 

uncertainty of future precipitation trends (IPCC 2013), forecasting how grassland birds will be 

affected by changing precipitation patterns is difficult. However, regardless of whether rainfall 

increases or decreases, my study indicates that the direction and magnitude of responses of these 

birds will be heavily dependent on the quantity of available habitat.  

In summary, I found evidence that grassland and forest birds exhibit divergent 

bioclimatic relationships. I also found that the responses of both avian groups to climatic 

variability are affected by the amount of habitat, though the influence of land cover differs for 

grassland and forest birds. An increasing amount of forest cover might mitigate negative effects 

of climate change, especially rising temperatures, in populations of forest breeding birds. 
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However, contrary to my expectations, I found that grasslands will likely exacerbate, rather than 

mitigate, the negative consequences of increasing temperatures in locations where this habitat is 

prevalent. Our work thus shows that the interaction of climate and land cover can produce 

unexpected relationships and needs to be carefully evaluated to make sound forecasts of 

consequences of climate change to natural communities.  

Grassland birds already show almost universal pattern of decline across both North 

American and European continents (Reif 2013). The decline in area of agricultural lands 

associated with abandonment of agricultural fields and their conversion to woody successional 

stages is one of the most important factors responsible for decline of these birds (Fuller et al. 

1995, Brennan and Kuvlesky 2005). Recent studies suggest that climate change will likely add to 

declines of grassland birds (e.g., Kleijn et al. 2010). My work corroborates the results from these 

studies but also stresses the importance of considering both climate and land cover as synergistic 

factors shaping avian responses. In terms of grassland birds, the impacts of both climate and land 

cover are difficult to reconcile. While regions of extensive grasslands generally benefit 

populations of grassland birds by providing suitable breeding habitat, they are also likely to 

increase the vulnerability of birds to changing climatic conditions. Thus, climate change will 

threaten grassland birds mostly in habitats, in which they would otherwise be able to persist. My 

findings therefore add another dimension to the knowledge of potential vulnerabilities of 

grassland birds to the environmental change and stress the importance of considering 

implications of climate change while designing future conservation strategies.   
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ABSTRACT 

Accurate forecasting of the consequences of climate change is contingent upon our 

understanding of the relationship between biodiversity patterns and climatic variability. While a 

range of implications of climate change to individual species have been well documented, 

understanding of the community-level consequences of changing climate is still limited. 

Additionally, factors other than climate will affect the way communities respond to climate 

change. My objectives were to investigate the relationship between temporal turnover in avian 

biodiversity and changes in climatic conditions, and to assess the roles of landscape 

fragmentation and migratory behavior as factors affecting this relationship. Using data from the 

1980 and 2000 New York State Breeding Bird Atlas, I quantified temporal turnover in the entire 

avian biodiversity and in diversity of different migratory groupings. I applied Bayesian spatially-

varying intercept models to evaluate the relationship between temporal turnover and covariates 

of temporal trends in climatic conditions as well as landscape fragmentation. The DIC statistic 

designated the models including interaction terms between climate change and landscape 

fragmentation to be superior to the models without the interaction terms, suggesting that the 

relationship between temporal turnover and changes in climatic conditions was affected by the 

level of landscape fragmentation. Specifically, I found weaker associations between temporal 

turnover and climatic change in regions with prevalent habitat fragmentation. I suggest that avian 

communities in fragmented landscapes are more robust to climate change than communities 
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found in contiguous habitats because they comprise of species with wider thermal niches and are 

thus less susceptible to temperature increases. I conclude that highly fragmented regions are like 

to undergo less pronounced changes in composition and structure of faunal communities as a 

result of climate change, whereas those changes are likely to be greater in contiguous and 

unfragmented habitats. 

3.1 INTRODUCTION 

Accurate forecasting of the consequences of climate change and sound conservation strategies 

resulting from these forecasts are contingent upon our understanding of the relationship between 

biodiversity patterns and climatic variability. To date, the majority of research regarding the 

implications of climate change to biodiversity has evaluated responses of individual species (e.g., 

Parmesan and Yohe 2003, La Sorte and Thompson 2007, Marini et al. 2009, Zuckerberg et al. 

2009). Variation in the individual species responses is predicted to lead to disruptions of 

communities and ecosystems (Brotons and Jiguet 2010), but the complex nature of ecological 

interactions makes it difficult to extrapolate from the scales of individuals and populations to the 

community or ecosystem level (Walther et al. 2002). However, in order to fully understand 

consequences of climate change to ecological communities it is imperative that a direct link 

between changes in community composition and changes in climatic conditions is established.  

Measuring species turnover has potential to offer a useful and simple way of evaluating 

the implications of climate change to ecological communities (e.g., Tuomisto 2010a, Tuomisto 

2010b, Barton et al. 2013). Species turnover can be quantified in multiple ways but generally is 

an aggregate of gains and losses of species comprising a community (e.g., Tuomisto 2010b). 

Traditionally, turnover has been used to describe biodiversity patterns across space rather than 

time (i.e., spatial turnover), but it can also be viewed in terms of a temporal change in 
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community composition that has occurred at the same site across a particular time period (i.e., 

temporal turnover). Given that spatial turnover in species composition is thought to be at least 

partially related to spatial variation in environmental variables (Gaston et al. 2007, Buckley and 

Jetz 2008, Gutiérrez-Cánovas et al. 2013, Siefert et al. 2013), it is expected that temporal 

turnover is related to temporal changes such as climate and thus could be a useful indicator of 

impacts of climate change on biodiversity.  

Even though impacts of climate change on biodiversity will be felt across a wide range of 

ecosystems, different communities are likely to respond to climate change in a disparate way 

because a wide range of environmental factors will influence species’ vulnerabilities to climate 

change. For example, past research suggests that the interaction between climate and land cover 

will affect the way in which biodiversity responds to climate change (Opdam and Wascher 2004; 

Jeltsch et al. 2011). Specifically, habitat fragmentation is thought to affect the rate of 

distributional shifts associated with climate change, allowing species in less fragmented habitats 

to disperse faster and farther (Opdam and Wascher 2004). If species in contiguous (i.e., 

unfragmented) habitats respond quicker to climate change than species in fragmented habitats, 

then changes in communities should also follow the same pattern. Thus, higher rates of temporal 

turnover in contiguous habitats are expected compared to temporal turnover in fragmented 

habitats. Stronger association of the temporal turnover with changing climatic conditions in 

contiguous habitats is also expected.  

Beyond influences of land cover, some behavioral traits are likely to affect species’ 

responses to climate change (e.g., Jones and Cresswell 2010). Migratory strategy is one of such 

traits (Lehikoinen and Sparks 2010). For example, some resident species of birds are expected to 

respond relatively fast to changing climate on their breeding and wintering grounds because they 
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are exposed to year-round climatic conditions of the same site. Similarly, short-distance migrants 

are likely to adjust the timing of migration to changing temperatures because they are thought to 

rely more on weather conditions. On the other hand, long-distance migratory birds are cued by 

photoperiod (Forchhammer et al. 2002, Saino et al. 2009, DeLeon et al. 2011), thus are unlikely 

to be able to track changing climatic conditions as closely as short-distance migrants or resident 

species (e.g., Lemoine et al. 2007, Doxa et al. 2012). Indeed, resident birds have undergone 

increases in occupancy and abundance in recent decades, while migratory birds (long-distance 

migrants in particular) have experienced population losses (e.g., Lemoine and Böhning-Gaese 

2003). However, the consensus what proportion of the decline in migratory bird populations, if 

any, can be attributed to climate change has not been reached. If migratory traits indeed affect 

birds’ responses to climate change, we can expect different migratory groups to show different 

associations with changing climate. Specifically, temporal turnover in long-distance migrant 

communities is expected to show weaker association with changes in climatic conditions than 

temporal turnover in short-distance migrants or resident birds communities.  

Despite some initial investigations into recent temporal changes in community 

composition (e.g., Kampichler et al. 2012), the relationship between temporal turnover in 

biodiversity and the interaction of climatic changes, land-cover, and migratory behavior, to the 

best of my knowledge, has not yet been evaluated. The paucity of research in this arena has 

likely been caused by the scarcity of long-term, large-scale ecological data. I intend to fill this 

research gap by investigating the drivers of temporal turnover in avian biodiversity across New 

York using Breeding Bird Atlas data (Andrle and Carroll 1988, McGowan and Corwin 2008). 

Specifically, I sought to evaluate two hypotheses: (1) temporal turnover in avian assemblages is 

related to climate change, but the strength of the relationship between temporal turnover and 
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changes in climatic conditions varies with the degree of habitat fragmentation, and (2) temporal 

turnover in communities of long-distance migrants show weaker association with changing 

climatic conditions than temporal turnover in short-distance migrants and resident birds 

communities. 

3.2 METHODS 

3.2.1 Site description 

The study area is the State of New York, USA. New York covers 128,401 km2, including 4,240 

km2 of inland water. Climate of New York is affected by the state’s broad elevation gradient as 

well as by the proximity to lakes Erie and Ontario, and the Atlantic Ocean. Adirondack and 

Catskill Mountains in the east are among the highest regions of the state, with elevation varying 

between 600 and 1,500 m. The elevation of the south-western New York ranges from 

approximately 300 to 900 m, while north-western New York as well as Hudson River valley and 

New York City are low-lying with elevation ranging from approximately 0 to 200 m. 

In general, New York state is covered by approximately 51.2% forest (deciduous, 

evergreen, and mixed forests), 13.4% pasture and hay, 8.2% cultivated crops, 2.9% scrub and 

shrub, 1.0% grassland and herbaceous, 8.0% wetland cover, 8.7% developed land, and 0.2% 

barren land (Homer et al. 2004). New York offers a broad gradient of landscape fragmentation. 

The regions of the Adirondack and Catskill Mountains are the least fragmented, with expansive 

regions of forest land. The land cover of the Hudson River valley is fragmented by residential 

and commercial development, whereas the landscapes of western New York are characterized 

mostly by agriculture-forest mosaic. 
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3.2.2 Breeding Bird Atlas 

I used the New York State Breeding Bird Atlas (BBA) to characterize changes in avian 

communities through time. BBA is a statewide survey that documented the distribution of 

breeding birds in New York. To date, BBA has been conducted in two time periods, 1980-85 

(hereafter, BBA1980; Andrle and Carroll 1988) and 2000-05 (hereafter, BBA2000; McGowan 

and Corwin 2008). For both BBAs, a grid system was used to define the basic unit for reporting 

data. The entire State of New York was divided into approximately 1,300 squares, each 

measuring 10 km x 10 km. The BBA reporting unit (a block) was one quarter of this square and 

measures 5 km x 5 km and a total of 5,335 blocks covered the entirety of New York State. This 

data set represents one of the largest and finest resolution atlases in the world (Gibbons et al. 

2007). 

A total of 242 species were recorded for BBA1980 and 248 species were recorded for 

BBA2000 (Andrle and Carroll 1988, McGowan and Corwin 2008). Observations were made by 

skilled birders who spent at least 8 hours in each block, visited all cover types in each block, and 

included at least one nighttime visit to document nocturnal species. Observer effort was recorded 

for each BBA and reported as a number of person hours (measured as the sum of the number of 

hours spent in each block x the number of people surveying each block; McGowan and 

Zuckerberg 2008). The BBA represents a detection/non-detection dataset, although non-

detection indicates that species could not be found given search criteria (McGowan and Corwin 

2008).  
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3.2.3 Temporal turnover 

I quantified temporal turnover (TURN) as an aggregate of species gains (hereafter called 

colonization) and species losses (hereafter called extinction) within a particular site. Specifically, 

temporal turnover was calculated as follows:  

𝑇𝑈𝑅𝑁 =  𝐸+𝐶
𝐸+𝐶+𝑃

 ,         Eqn. 3.1 

where E is the number of species that went extinct in the block between BBA1980 and 

BBA2000, C is the number of species that colonized the block between BBA1980 and 

BBA2000, and P is number of species in the same block common to both BBAs (i.e., 

persistence). 

In addition to temporal turnover, I quantified its components: proportion of colonization 

events (i.e., proportion of species gained a particular site between BBA1980 and BBA2000; 

COL) and proportion of extinction events (i.e., proportion of species lost a particular site 

between BBA1980 and BBA2000; EXT) in each block between BBA1980 and BBA2000. COL 

and EXT were calculated as follows: 

𝐶𝑂𝐿 =  𝐶
𝐸+𝐶+𝑃

,         Eqn. 3.2 

𝐸𝑋𝑇 =  𝐸
𝐸+𝑃

,          Eqn. 3.3 

For TURN and COL, I used the sum of E, C, and P as the denominator of the Eqns. 3.1 

and 3.2. I recognize that species already present in a block in BBA1980 could not have colonized 

that block and that species other than those included in E, C, and P metrics could have 

potentially colonized a site. However, I was simply interested in the proportion of species that 

colonized the site relative to all the species found within the block; thus I deem the sum of E, C, 

and P as an appropriate choice for the denominator of both equations. For EXT, I used the sum 

of E and P as the denominator, because only species present in a block in BBA1980 could have 



68 
 

gone extinct. The values of TURN, COL, and EXT are bounded by 0 and 1; values approaching 

0 indicate low temporal turnover, colonization, or extinction in a block between BBA1980 and 

BBA2000, while values approaching 1 indicate high temporal turnover, colonization, or 

extinction in a block between BBA1980 and BBA2000. 

I calculated TURN, EXT, and COL for four groups of birds: all species regardless of 

their migratory strategy (hereafter, all species), long-distance migrants, short-distance migrants, 

and resident species. I used The Birds of North America Online to classify birds to migratory 

groupings (http://bna.birds.cornell.edu/bna/, Appendix 1.1). I considered a species a resident if at 

least a part of its wintering range is located in New York. I considered a species a long-distance 

migrant if it crosses a body of water (i.e., either the Gulf of Mexico or both the Gulf of Mexico 

and the Caribbean Sea) to reach its wintering grounds. 

3.2.4 Habitat fragmentation 

Habitat fragmentation was identified using the National Land Cover Data (NLCD) derived from 

the Landsat Thematic Mapper satellite data. Even though the NLCD is available for three time 

periods (i.e., 1992, 2001, and 2006), there is no land-cover data readily available for the time 

period of BBA1980. Thus, I used a space-for-time substitution to assess whether temporal 

turnover is related to landscape fragmentation (e.g., Pickett 1989). Space-for-time substitution 

assumes that spatial variation is equivalent to a temporal variation, and relationships between 

variables (e.g., species turnover and land-cover) derived for one time step across a large spatial 

extent will be equivalent to that derived for two time steps. I used the 2001 NLCD, because it 

coincided well with the time of BBA2000.  

Prior to landscape analysis, I consolidated the following land cover classes: open water 

and perennial ice and snow classes into one class of water/ice; open space developed, low 

http://bna.birds.cornell.edu/bna/
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intensity developed, medium intensity developed, high intensity developed into one class of 

developed land; cultivated crops and pasture/hay into one class of agriculture; and deciduous 

forest, evergreen forest, mixed forest, and forested wetland into one class of forest. 

Consolidation of these land-cover types improved accuracy of classification and simplified the 

environment for purposes of our evaluation. Upon consolidation, I examined the following land 

cover classes: water/ice, developed, barren land, forest, scrub/shrub, grassland/herbaceous, 

agriculture, and wetlands.  

I used FRAGSTATS 4.1 (McGarigal et al. 2012) and the Geospatial Modelling 

Environment (GME, http://www.spatialecology.com/gme/) to quantify landscape fragmentation. 

Because I focused my analysis on a diverse suite of species with varying habitat requirements, I 

chose a landscape-scale variable to capture broad-scale variation in habitat fragmentation. I 

chose Edge Density (ED) as a measure of landscape fragmentation because an increase in habitat 

edge is a primary outcome of habitat fragmentation (Hargis et al. 1998). ED was also reported as 

an effective tool for evaluating landscape fragmentation and performed better than other popular 

landscape fragmentation indices (Hargis et al. 1998). However, in situations when landscape 

consists entirely of one cover type, the ED would be 0 regardless of the type of land-cover 

present. Therefore, in order to differentiate between landscapes that consisted entirely of natural 

land cover (e.g., forest) and those mostly developed (e.g., cities), I also calculated the proportion 

of developed land (DEVEL) metric and included it as a covariate in our models. 

3.2.5 Climatic trends 

The climate data was derived from the PRISM (Parameter-elevation Regressions on Independent 

Slopes Model) climate mapping system (Daly and Gibson 2002). PRISM consists of interpolated 

http://www.spatialecology.com/gme/


70 
 

monthly maximum and minimum temperatures and precipitation at a 2.5-arcmin resolution from 

1891-2010 for the entire contiguous United States. 

I calculated the magnitude of the 25-year (1980-2005) trend in average monthly 

maximum and minimum temperatures and in total monthly precipitation using Ordinary Least 

Squares regression. The slope of the OLS regression indicates the magnitude of the trend and 

reflects the amount of change in climatic variables that occurred between 1980 and 2005. I then 

interpolated the trend magnitudes for each BBA block and averaged the monthly values to reflect 

breeding season (May through September) trend magnitude in maximum and minimum 

temperatures (TMAX and TMIN, respectively) and in total precipitation (PRECIP). The trend 

magnitudes of TMAX and TMIN were expressed in °C/25 years, while the units of the trend 

magnitudes of PRECIP were in mm/25 years. 

3.2.6 Survey effort 

Increasing survey effort often results in a higher number of recorded species (Tobler et al. 2008). 

Drastically different survey effort between BBA1980 and BBA2000 could increase the values of 

TURN, EXT, and COL indices indicating high temporal turnover, which could be a result of 

different number of recorded species rather than actual changes in species identities throughout 

time. To account for potential survey effort bias, I calculated the absolute difference in the 

number of person hours between BBA1980 and BBA2000 (EFF =  |EFF1980 − EFF2000|) for 

each BBA block and included it as a covariate in the models. 

3.2.7 Statistical analysis 

For each of the four groupings (all species, long-distance migrants, short-distance migrants, and 

resident species), I evaluated five competing statistical models. All five models included all 

climatic variables (TMAX, TMIN, and PRECIP) as well as survey effort (EFF), one model 
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additionally included ED, one included interaction terms between all climatic covariates and ED, 

one included both ED and DEVEL, and one included interaction terms between all climatic 

covariates and ED as well as the main effect of DEVEL. I standardized all the covariates to ease 

the comparison and interpretation of the coefficient estimates.  

We used a Bayesian model estimation procedure. Each response variable (temporal 

turnover TURN, extinction EXT, or colonization COL) at each location (s) was modeled as a 

binomial random variable. Let y(s) be a response variable, then y(s) ~ B(ρ(s),N(s)) where N(s) is 

the total number of species found at least once in a block from the first to the second atlas count 

(for TURN and COL) or the total number of species found in first atlas count (for EXT). For 

each BBA block, let p(s) = y(s)/N(s). Also, let x(s) be a vector containing the explanatory 

variables for each model. All models had spatially varying intercepts, which were created by 

adding spatially structured random effects to the model intercept.  A generalized linear model 

approach was used to relate responses to explanatory variables. Using the logit link η(s) = 

log[p(s)/{1-p(s)}] the SVI model was 

𝜂(𝑠) = 𝑤(𝐬) + 𝜷𝐱(𝑠)         Eqn. 3.4 

where β is a vector of regression coefficients and w(s) is a random effect representing 

spatially varying adjustments to the intercept. We assume each element in w(s) arises from a 

spatial Gaussian Process (GP) (see, e.g., Banerjee et al. 2004 or Cressie and Wikle 2011 for more 

details). Specifically, w(s) ~ GP(0, C(s, s’)), where s and s’ are any two locations within the 

study area, the spatial covariance C(s, s’) = σρ(s, s’; ϕ) with variance parameter σ2, correlation 

function ρ(·; ϕ), and spatial decay parameter ϕ. The exponential spatial correlation was assumed 

for ρ(·).  
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Prior distributions on the parameters complete the hierarchical model specification (e.g., 

Gelman et al. 2004). The global regression coefficients, β’s followed a Normal distribution N(0, 

100), while the variance component σ2 was assigned inverse-Gamma IG(2, 1) priors. The spatial 

decay parameter, ϕ, followed an informative Uniform prior, with support that ranged from 1 km 

to the maximum distance between any two grid cells (i.e., approximately 350 km). I ran three 

MCMC chains for 20,000 iterations each. Convergence was diagnosed using the Gelman-Rubin 

diagnostic (Gelman and Rubin 1992). As appropriate for a Bayesian framework, candidate model 

fit to the observed data was assessed using the Deviance Information Criterion (DIC; 

Spiegelhalter et al. 2002). Lower values of DIC indicate improved fit. 

Prior to statistical analysis, I removed all blocks that did not have continuous land cover 

coverage, blocks with more than 50% open water coverage, and those that did not have survey 

effort data. I withheld 10% of the data for model validation. Ultimately, I used a total of N = 

4,271 blocks to fit the models and 473 blocks to validate the models. The models were run in R 

2.15.1 statistical package (R Development Core Team 2013, http://www.r-project.org/) using 

package spBayes (Finley and Banerjee 2013). In a Bayesian framework, parameter estimates 

have valid posterior distributions and inferences are made using mean or median as well as the 

credible intervals of these posterior distributions. Credible intervals overlapping zero imply that 

the parameter in question is not different from zero. Summaries of parameter estimates were 

generated using the R CODA package (Plummer et al. 2012). 

  

http://www.r-project.org/
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3.3 RESULTS 

3.3.1 Relationships with climate change and habitat fragmentation 

3.3.1.1 Temporal turnover 

For all species, the mean value of TURN was 0.384 (95% confidence intervals resulting from 

10,000 non-parametric bootstrap samples: LCI 0.381, UCI 0.387). This indicates that on average 

approximately 62% of the species were common to both BBAs and 38% of species had either 

colonized or become extinct within the average block (Fig. 3.1). The north-eastern part of the 

state, which is the location of the Adirondack Mountains, experienced the highest rates of 

temporal turnover across BBA1980 and BBA2000 (Fig. 3.1). Central and north-western New 

York underwent lowest temporal turnover (Fig. 3.1). 

Model selection indicated that the variation in temporal turnover of all species was best 

accounted for by the most complex model (Table 3.1). The selection of the most complex model 

points to the importance of the interactions between landscape fragmentation and change in 

climatic conditions in explaining temporal turnover in species composition between BBA1980 

and BBA2000. Model validation indicated relatively good abilities of the best model to predict 

temporal turnover in all species, though low values of TURN tended to be over-predicted, while 

high value tended to be under-predicted (Appendix 3.1). 
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Figure 3.1 Temporal turnover, extinction, and colonization observed between 1980-85 and 2000-05 for communities of (A) all 
recorded species regardless of their migratory status, (B) long-distance migrants, (C) short-distance migrants, and (D) resident birds. 
Temporal turnover was calculated as a proportion of all species gained or lost between 1980-85 and 2000-05 in a particular site (i.e., 
Breeding Bird Atlas block) relative to all species recorded across both time periods; extinction was calculated as a proportion of 
species lost between 1980-85 and 2000-05 in a particular site relative to all species present in a block in 1980-85; colonization was 
calculated as a proportion of species gained between 1980-85 and 2000-05 in a particular site relative to all species recorded across 
both time periods. High values of all three metrics indicate high temporal turnover, extinction, and colonization. 
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Table 3.1 Comparison of five competing models of temporal turnover for all four avian 
groupings (i.e., all species, long-distance migrants, short-distance migrants, and resident 
species). Models included the following covariates: magnitude of the 25-year (1980-2005) trend 
in average maximum temperature of the breeding season (TMAX), magnitude of the 25-year 
(1980-2005) trend in average minimum temperature of the breeding season (TMIN), magnitude 
of the 25-year (1980-2005) trend in average total precipitation of the breeding season (PRECIP), 
edge density (ED), percent developed land (DEVEL), interaction between the magnitude of the 
25-year (1980-2005) trend in average maximum temperature of the breeding season and edge 
density (TMAX*ED), interaction between the magnitude of the 25-year (1980-2005) trend in 
average minimum temperature of the breeding season and edge density (TMIN*ED), interaction 
between the magnitude of the 25-year (1980-2005) trend in average total precipitation of the 
breeding season  and edge density (PRECIP*ED), and survey effort (EFF). Model comparison 
was done using Deviance Information Criterion (DIC); pD indicates the effective number of 
parameters. 

Grouping Model ΔDIC pD 

All Species 

TMAX*ED + TMIN*ED + PRECIP*ED + 
DEVEL + EFF  

0.0 106.7 

TMAX + TMIN + PRECIP + ED + DEVEL + 
EFF 

20.0 104.3 

TMAX*ED + TMIN*ED + PRECIP*ED + EFF 33.9 106.2 
TMAX + TMIN + PRECIP + ED + EFF 55.9 103.6 
TMAX + TMIN + PRECIP + EFF 109.9 102.6 

Long-distance 
Migrants 

TMAX*ED + TMIN*ED + PRECIP*ED + 
DEVEL + EFF  

0.0 96.1 

TMAX + TMIN + PRECIP + ED + DEVEL + 
EFF 

10.8 93.6 

TMAX*ED + TMIN*ED + PRECIP*ED + EFF 53.9 95.1 
TMAX + TMIN + PRECIP + ED + EFF 69.1 93.3 
TMAX + TMIN + PRECIP + EFF 72.3 92.3 

Short-distance 
Migrants 

TMAX + TMIN + PRECIP + ED + DEVEL + 
EFF  

0.0 88.9 

TMAX*ED + TMIN*ED + PRECIP*ED + 
DEVEL + EFF 

2.3 92.5 

TMAX + TMIN + PRECIP + ED + EFF  22.8 89.3 
TMAX*ED + TMIN*ED + PRECIP*ED + EFF 25.9 92.4 
TMAX + TMIN + PRECIP + EFF 57.1 83.5 

Resident 
Species 

TMAX*ED + TMIN*ED + PRECIP*ED + 
DEVEL + EFF  

0.0 95.0 

TMAX*ED + TMIN*ED + PRECIP*ED + EFF  1.6 94.5 
TMAX + TMIN + PRECIP + ED + DEVEL + 
EFF 

7.5 91.4 

TMAX + TMIN + PRECIP + ED + EFF 12.6 91.4 
TMAX + TMIN + PRECIP + EFF 103.6 93.6 
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Parameter estimates of the top model indicated that temporal turnover was positively 

related to TMAX, suggesting that higher temporal turnover was observed in regions where 

maximum temperatures increased the most (Fig. 3.2; also see Appendix 3.2 for parameter 

estimates of all models of temporal turnover). Temporal turnover was also positively associated 

with TMIN, but the effect of minimum temperatures on TURN was affected by the value of ED 

(Fig. 3.3). In regions of low landscape fragmentation, large increases in minimum temperatures 

were associated with high temporal turnover, but the effect of TMIN diminished or reversed in 

locations with high landscape fragmentation. There was a negative association of temporal 

turnover and ED, but the presence of multiple ED interaction terms in the model makes it 

difficult to interpret the main effects of ED on temporal turnover. There was a positive 

relationship between temporal turnover and DEVEL (Fig. 3.2), indicating that highly urbanized 

regions generally experienced increased temporal turnover.  
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Figure 3.2 Coefficient estimates (i.e., mean values of the posterior distribution and associated credible intervals) of the best model for 
each avian grouping for (A) temporal turnover, (B) extinction, and (C) colonization. Abbreviations for the covariates are as follows: 
magnitude of the 25-year (1980-2005) trend in average maximum temperature of the breeding season (TMAX), magnitude of the 25-
year (1980-2005) trend in average minimum temperature of the breeding season (TMIN), magnitude of the 25-year (1980-2005) trend 
in average total precipitation of the breeding season (PRECIP), edge density (ED), percent developed land (DEVEL), interaction 
between the magnitude of the 25-year (1980-2005) trend in average maximum temperature of the breeding season and edge density 
(TMAX-ED), interaction between the magnitude of the 25-year (1980-2005) trend in average minimum temperature of the breeding 
season and edge density (TMIN-ED), interaction between magnitude of the 25-year (1980-2005) trend in average total precipitation of 
the breeding season  and edge density (PRECIP-ED). 
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Figure 3.3 Effects size plots resulting from the best temporal turnover models for (A) the interaction of magnitude of the 25-year 
(1980-2005) trend in average minimum temperature of the breeding season (TMIN) and edge density (ED) for all species, (B) the 
interaction of magnitude of the 25-year (1980-2005) trend in average minimum temperature of the breeding season (TMIN) and edge 
density (ED) for long-distance migrants, (C) the interaction of magnitude of the 25-year (1980-2005) trend in total precipitation of the 
breeding season (PRECIP) and edge density (ED) for long-distance migrants, (D) the interaction of magnitude of the 25-year (1980-
2005) trend in average maximum temperature of the breeding season (TMAX) and edge density (ED) for resident birds, and (E) the 
interaction of magnitude of the 25-year (1980-2005) trend in average minimum temperature of the breeding season (TMIN) and edge 
density (ED) for resident birds. The interaction terms shown here are the ones whose credible intervals did not overlap zero. Green 
points are the observed data points and are plotted to indicate levels of confidence for the predicted surface. 
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3.3.1.2 Extinction 

The mean value of EXT for all species was 0.210 (LCI 0.206, UCI 0.213), which indicates that 

on average approximately 21% of species of the original assemblage had become extinct within 

the average block (Fig. 3.1). North-eastern part of the state (i.e., the Adirondack Mountains) and 

regions surrounding the Finger Lakes displayed higher than average rates extinction (Fig. 3.1). 

Extinction was lower in remaining parts of New York. 

Model selection indicated that the most complex model provided the best fit to the 

variation in the proportion of extinction events (Table 3.2). Selection of the most complex model 

indicates that interactions between land cover fragmentation and change in climatic conditions 

contribute to explaining extinction rates observed in avian communities. Model validation 

indicated the best model in general under-predicted the low values of extinction and over-

predicted high values of extinction (Appendix 3.1). 

Parameter estimates of the top model indicated that extinction in communities of all 

species was positively related to TMIN, though the effect of minimum temperatures on 

extinction rates was affected by ED (Fig. 3.4; also see Appendix 3.3 for parameter estimates 

resulting from all models of extinction). In regions of low landscape fragmentation, large 

increases in minimum temperatures were associated with high proportion of extinction events, 

but the effect of TMIN diminished or reversed in locations with high landscape fragmentation 

(Fig. 3.4). Extinction was positively associated with PRECIP (Fig. 3.2), indicating that regions 

with increasing precipitation experienced higher rates of extinction. This positive relationship 

between extinction and PRECIP was not influenced by ED. There was a negative association of 

extinction and ED, but the presence of multiple ED interaction terms in the model makes it 

difficult to interpret the main effects of ED on extinction in long-distance migrant communities. 
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There was a positive relationship between extinction and DEVEL (Fig. 3.2), indicating increased 

proportion of extinction events in highly urbanized regions. 
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Table 3.2 Comparison of five competing models of extinction for all four avian groupings (i.e., 
all species, long-distance migrants, short-distance migrants, and resident species). Models 
included the following covariates: magnitude of the 25-year (1980-2005) trend in average 
maximum temperature of the breeding season (TMAX), magnitude of the 25-year (1980-2005) 
trend in average minimum temperature of the breeding season (TMIN), magnitude of the 25-year 
(1980-2005) trend in average total precipitation of the breeding season (PRECIP), edge density 
(ED), percent developed land (DEVEL), interaction between the magnitude of the 25-year 
(1980-2005) trend in average maximum temperature of the breeding season and edge density 
(TMAX*ED), interaction between the magnitude of the 25-year (1980-2005) trend in average 
minimum temperature of the breeding season and edge density (TMIN*ED), interaction between 
the magnitude of the 25-year (1980-2005) trend in average total precipitation of the breeding 
season  and edge density (PRECIP*ED), and survey effort (EFF). Model comparison was done 
using Deviance Information Criterion (DIC); pD indicates the effective number of parameters. 

Grouping Model ΔDIC pD 

All Species 

TMAX*ED + TMIN*ED + PRECIP*ED + 
DEVEL + EFF  

0.0 118.2 

TMAX*ED + TMIN*ED + PRECIP*ED + EFF 33.4 117.9 
TMAX + TMIN + PRECIP + ED + DEVEL + 
EFF 

45.1 115.3 

TMAX + TMIN + PRECIP + ED + EFF 75.7 114.6 
TMAX + TMIN + PRECIP + EFF 165.8 115.9 

Long-distance 
Migrants 

TMAX*ED + TMIN*ED + PRECIP*ED + 
DEVEL + EFF  

0.0 110.6 

TMAX + TMIN + PRECIP + ED + DEVEL + 
EFF 

22.8 107.3 

TMAX*ED + TMIN*ED + PRECIP*ED + EFF 49.3 108.9 
TMAX + TMIN + PRECIP + EFF 78.6 106.7 
TMAX + TMIN + PRECIP + ED + EFF 78.7 106.6 

Short-distance 
Migrants 

TMAX*ED + TMIN*ED + PRECIP*ED + 
DEVEL + EFF  

0.0 97.1 

TMAX + TMIN + PRECIP + ED + DEVEL + 
EFF 

4.7 94.4 

TMAX + TMIN + PRECIP + ED + EFF 15.9 93.4 
TMAX*ED + TMIN*ED + PRECIP*ED + EFF 17.4 97.3 
TMAX + TMIN + PRECIP + EFF  77.15 94.8 

Resident 
Species 

TMAX*ED + TMIN*ED + PRECIP*ED + 
DEVEL + EFF  

0.0 104.5 

TMAX*ED + TMIN*ED + PRECIP*ED + EFF  2.3 102.5 
TMAX + TMIN + PRECIP + ED + EFF 20.5 99.5 
TMAX + TMIN + PRECIP + ED + DEVEL 
+EFF 

20.9 101.5 

TMAX + TMIN + PRECIP + EFF 93.4 100.7 
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Figure 3.4 Effects size plots resulting from the best extinction models for (A) the interaction of magnitude of the 25-year (1980-2005) 
trend in average minimum temperature of the breeding season (TMIN) and edge density (ED) for all species, (B) the interaction of 
magnitude of the 25-year (1980-2005) trend in average minimum temperature of the breeding season (TMIN) and edge density (ED) 
for long-distance migrants, (C) the interaction of magnitude of the 25-year (1980-2005) trend in total precipitation of the breeding 
season (PRECIP) and edge density (ED) for long-distance migrants, (D) the interaction of magnitude of the 25-year (1980-2005) trend 
in average minimum temperature of the breeding season (TMIN) and edge density (ED) for short-distance migrants, and (E) the 
interaction of magnitude of the 25-year (1980-2005) trend in average minimum temperature of the breeding season (TMIN) and edge 
density (ED) for resident birds. The interaction terms shown here are the ones whose credible intervals did not overlap zero. Green 
points are the observed data points and are plotted to indicate levels of confidence for the predicted surface. 
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3.3.1.3 Colonization 

For all species, the mean value of COL was 0.214 (LCI 0.211, UCI 0.218), indicating that on 

average 21% of all the species present in a block across both time periods are the ones that had 

colonized the site. Colonization was in general higher in eastern and western parts of the state, 

while central and southern New York underwent lower colonization rates (Fig. 3.1). However, 

the spatial pattern of colonization rates was less clumped than the one displayed by temporal 

turnover or extinction. 

Model selection procedure selected more than one model as the top model accounting for 

the variation in the proportion of colonization events. The top two models included the most 

complex model (i.e., containing all the interaction terms) and the model with main effects of all 

covariates but without the interaction terms (Table 3.3). However, despite the fact that the most 

complex model was selected among the top models, none of the interaction terms was associated 

with COL (see Appendix 3.4 for parameter estimates resulting from all models of colonization). 

Model validation indicated the top models under-predicted the low values of colonization and 

over-predicted high values of colonization (Appendix 3.1). Colonization was positively related to 

TMAX and negatively related to PRECIP, indicating that highest proportions of colonization 

events were found in regions where maximum temperatures increased the most and precipitation 

decreased the most (Fig. 3.2). There was a positive relationship between colonization and 

DEVEL (Fig. 3.2), which indicates that highly urbanized regions experienced highest 

colonization rates. 
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Table 3.3 Comparison of five competing models of colonization for all four avian groupings 
(i.e., all species, long-distance migrants, short-distance migrants, and resident species). Models 
included the following covariates: magnitude of the 25-year (1980-2005) trend in average 
maximum temperature of the breeding season (TMAX), magnitude of the 25-year (1980-2005) 
trend in average minimum temperature of the breeding season (TMIN), magnitude of the 25-year 
(1980-2005) trend in average total precipitation of the breeding season (PRECIP), edge density 
(ED), percent developed land (DEVEL), interaction between the magnitude of the 25-year 
(1980-2005) trend in average maximum temperature of the breeding season and edge density 
(TMAX*ED), interaction between the magnitude of the 25-year (1980-2005) trend in average 
minimum temperature of the breeding season and edge density (TMIN*ED), interaction between 
the magnitude of the 25-year (1980-2005) trend in average total precipitation of the breeding 
season  and edge density (PRECIP*ED), and survey effort (EFF). Model comparison was done 
using Deviance Information Criterion (DIC); pD indicates the effective number of parameters. 

Grouping Model ΔDIC pD 

All Species 

TMAX*ED + TMIN*ED + PRECIP*ED + 
DEVEL + EFF  

0.0 117.0 

TMAX + TMIN + PRECIP + ED + DEVEL + 
EFF  

1.25 114.1 

TMAX + TMIN + PRECIP + EFF 7.5 111.6 
TMAX*ED + TMIN*ED + PRECIP*ED + EFF 8.5 116.7 
TMAX + TMIN + PRECIP + ED + EFF 11.5 114.4 

Long-distance 
Migrants 

TMAX*ED + TMIN*ED + PRECIP*ED + 
DEVEL + EFF  

0.0 112.0 

TMAX + TMIN + PRECIP + ED + DEVEL + 
EFF 

0.19 109.0 

TMAX*ED + TMIN*ED + PRECIP*ED + EFF 10.5 110.8 
TMAX + TMIN + PRECIP + ED + EFF 14.4 108.4 
TMAX + TMIN + PRECIP + EFF 22.1 106.9 

Short-distance 
Migrants 

TMAX + TMIN + PRECIP + EFF  0.0 92.3 
TMAX + TMIN + PRECIP + ED + DEVEL + 
EFF 

1.3 95.9 

TMAX*ED + TMIN*ED + PRECIP*ED + 
DEVEL + EFF 

4.2 97.8 

TMAX + TMIN + PRECIP + ED + EFF 5.3 95.8 
TMAX*ED + TMIN*ED + PRECIP*ED + EFF 8.1 98.2 

Resident 
Species 

TMAX + TMIN + PRECIP + ED + DEVEL 
+EFF  

0.0 104.8 

TMAX + TMIN + PRECIP + ED + EFF  0.5 104.9 
TMAX*ED + TMIN*ED + PRECIP*ED + EFF 1.3 108.0 
TMAX*ED + TMIN*ED + PRECIP*ED + 
DEVEL + EFF 

5.2 109.8 

TMAX + TMIN + PRECIP + EFF 26.6 103.7 
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3.3.2 Responses of different migratory groupings 

3.3.2.1 Temporal turnover 

The mean temporal turnover in long-distance migratory communities was 0.381 (LCI 0.377, UCI 

0.384). Short-distance migrants displayed lower average temporal turnover than long-distance 

migrants, with the mean TURN value of 0.349 (LCI 0.345, UCI 0.353). Resident birds 

underwent higher temporal turnover than other migratory groupings, with the mean value of 

TURN of 0.423 (LCI 0.419, UCI 0.427). For all three migratory groupings, the Adirondack 

Mountains underwent the highest temporal turnover across BBA1980 and BBA2000 (Fig. 3.1). 

Additionally, resident birds also displayed high temporal turnover in the Catskills Mountains, as 

well as in the western parts of New York. This high-turnover pattern, however, was not found for 

long- or short-distance migratory birds in these regions (Fig. 3.1). Rather, migratory birds 

showed higher temporal turnover also in more urbanized areas surrounding New York City; 

temporal turnover in resident species was low in this region. The remaining regions of the state 

generally underwent the lower temporal turnover (Fig. 3.1).  

The most complex model was selected as the top model for long-distance migrants and 

resident species (Table 3.1). For resident birds, the second best model (i.e., the model with 

interaction terms but without main effects of DEVEL) can also be considered viable given the 

values of ΔDIC (Table 3.1). The selection of the most complex model indicates that interactions 

between landscape fragmentation and some aspects of climatic change are important to 

explaining the temporal turnover of in communities of long-distance migrant and resident birds. 

For short-distance migrants, the top selected model was the one with main effects of all 

covariates, but lacking the interaction terms (Table 3.1), suggesting that interactions between 

land cover and climate do not contribute importantly to explaining the changes in the 
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communities of short-distance migrants. Model validation indicated that temporal turnover was 

best predicted for long-distance migrants and resident birds (Appendix 3.1 for model validation 

plots), while the top model for short-distance migratory birds performed relatively poorly. 

Based on the results from the top model for long-distance migrants, temporal turnover in 

long-distance migrant communities was positively associated with TMIN (Fig. 3.2), but the 

effect of minimum temperatures on TURN was affected by the value of ED (Fig. 3.3). Similarly 

to results for all species, we found that in regions of low landscape fragmentation, large increases 

in minimum temperatures were associated with high temporal turnover, but the effect of TMIN 

diminished or reversed in locations with high landscape fragmentation. Temporal turnover was 

also related to the interaction between PRECIP and ED (Fig. 3.2). In regions of low landscape 

fragmentation, increasing precipitation is associated with decreasing temporal turnover; on the 

other hand, in regions of high landscape fragmentation, temporal turnover increases with 

increasing precipitation. The effect size of the PRECIP-ED interaction on temporal turnover, 

however, is lower than that of TMIN-ED interaction (Fig. 3.3). There was a positive relationship 

between temporal turnover and DEVEL (Fig. 3.2), indicating that high temporal turnover is 

associated with highly urbanized regions. 

Parameter estimates of the top model for short-distance migrants indicated that temporal 

turnover in short-distance migrant communities was positively related to TMAX. Thus, higher 

temporal turnover was observed in regions where maximum temperatures increased the most 

(Fig. 3.2). The relationship between temporal turnover in short-distance migratory communities 

and ED was negative, while the relationship between temporal turnover and DEVEL was 

positive. These parameter estimates suggest that low temporal turnover was generally found in 
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regions with high landscape fragmentation, though highly urbanized regions generally 

experienced increased temporal turnover. 

Parameter estimates of the top model for resident species indicated that the effect of both 

maximum and minimum temperatures on TURN in resident birds was affected by the value of 

ED (Fig. 3.2, Fig. 3.3). In regions of low landscape fragmentation, large increases in maximum 

and minimum temperatures were associated with high temporal turnover, but the effect of TMIN 

diminished or reversed in locations with high landscape fragmentation. Temporal turnover was 

also negatively associated with PRECIP (Fig. 3.2), indicating that higher temporal turnover was 

observed in regions where precipitation decreased the most. This relationship between temporal 

turnover and PRECIP was not affected by the level of landscape fragmentation. There was a 

negative association of temporal turnover and ED, but the presence of multiple ED interaction 

terms in the model makes it difficult to interpret the main effects of ED on temporal turnover. 

TURN in resident birds communities was negatively related to DEVEL, indicating that low 

temporal turnover in resident birds was generally found in highly developed regions. 

3.3.2.2 Extinction 

Average extinction in long-distance migrants equaled 0.226 (LCI 0.221, UCI 0.230). Short-

distance migrants displayed slightly lower average extinction than long-distance migrants, with 

the mean values of EXT of 0.187 (LCI 0.183, UCI 0.190). The mean EXT for resident birds was 

0.203 (LCI 0.198, UCI 0.207). For all three migratory groups, higher than average extinction was 

displayed in the north-eastern part of the state, approximately in the location of the Adirondack 

Mountains (Fig. 3.1). Long- and short-distance migrants also underwent higher extinction in the 

Finger Lakes region (Fig. 3.1). 
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The most complex model was selected as the top model for all three migratory groupings 

(Table 3.2). Selection of the most complex model suggests that interactions between landscape 

fragmentation and trends in climatic factors contribute to explaining extinction rates observed in 

disparate migratory groupings. Similarly to models of temporal turnover, model validation 

indicated that extinction was best predicted for long-distance migrants and resident birds (see 

Appendix 3.1 for model validation plots), while the top model for short-distance migratory birds 

performed relatively poorly. 

Based on the results from the top model for long-distance migrants, extinction was 

negatively associated with TMAX (Fig. 3.2), indicating that higher extinction in long-distance 

migrant communities was observed in regions where maximum temperatures decreased the most. 

The relationship between extinction and TMIN was affected by ED (Fig. 3.4). In regions of low 

landscape fragmentation, large increases in minimum temperatures were associated with high 

proportion of extinction events, but the effect of TMIN diminished in regions with pervasive 

landscape fragmentation (Fig. 3.4). PRECIP was positively associated with extinction (Fig. 3.2), 

though this effect was also affected by the level of landscape fragmentation (Fig. 3.4). In regions 

of low landscape fragmentation, increasing precipitation was associated with slowly decreasing 

extinction rates; while in highly-fragmented regions, extinction increased sharply with increasing 

precipitation (Fig. 3.4). There was a positive association between extinction and DEVEL (Fig. 

3.2), suggesting increased extinction in long-distance migrants in highly urbanized regions. 

Parameter estimates of the top model for short-distance migrants suggested the 

importance of the interaction of TMIN and ED (Fig. 3.2). In regions of low landscape 

fragmentation, large increases in minimum temperatures were associated with high proportion of 

extinction events in short-distance migratory birds, but the effect of TMIN reversed and 
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diminished in highly fragmented regions (Fig. 3.4). Extinction was also positively related to 

DEVEL (Fig. 3.2), suggesting that high rates of extinction were expected in highly urbanized 

regions.  

Based on the results from the top model for resident birds, extinction was positively 

associated with TMAX (Fig. 3.2), indicating that extinction increased with increasing maximum 

temperatures. Extinction was related to the interaction of TMIN and ED (Fig. 3.2). Specifically, 

in regions of low landscape fragmentation, large increases in minimum temperatures were 

associated with high proportion of extinction events, but the effect of TMIN reversed and 

diminished in highly fragmented locations (Fig. 3.4). Extinction was also negatively related to 

DEVEL, indicating that highly developed regions experienced lower rates of extinction in 

resident birds.  

3.3.2.3 Colonization 

Mean colonization for long-distance migratory birds was 0.192 (LCI 0.188, UCI 0.195), while 

short-distance migratory birds showed slightly lower rates of colonization, with a mean COL 

value of 0.155 (LCI 0.152, UCI 0.159). In comparison, resident birds displayed the highest 

colonization rates, with the mean value of COL of 0.268 (LCI 0.264, UCI 0.272). Resident 

species underwent high colonization throughout most of the state, with exception of central and 

southern parts of New York (Fig. 3.1). Long- and short-distance migrants showed relatively low 

colonization rates throughout New York, with exception of several isolated locations in the 

Adirondack Mountains (Fig. 3.1).  

More than one model was selected as the top model for all three avian groupings (Table 

3.3). For long-distance migrants, the most complex model along with the model with main 

effects of all covariates but without the interaction terms were selected as top models (Table 3.3). 
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For short-distance migrants, the simplest model along with the model with main effects of all 

covariates but without the interaction terms were selected as the top models (Table 3.3). For 

resident birds, the top three models included the model with main effects of all covariates but 

without the interaction terms (the best model), the model with main effects excluding the 

DEVEL covariate (second best model), and the model with interaction terms excluding the main 

effects of DEVEL (third best model). Model validation indicated that colonization was best 

predicted for resident birds (see Appendix 3.1 for model validation plots), while the top models 

for long- and short-distance migratory birds performed relatively poorly. 

Given that none of the interactions terms from the top model was associated with 

colonization in long-distance migrants, we make inferences based on the model without the 

interaction terms. Proportion of colonization events in long-distance migrant communities was 

positively associated with TMAX and negatively associated with PRECIP (Fig. 3.2), indicating 

that higher colonization was observed in regions where maximum temperatures increased the 

most and where precipitation decreased the most. There was a positive relationship between 

colonization and both ED and DEVEL (Fig. 3.2), suggesting higher colonization rates in regions 

with high landscape fragmentation and those highly urbanized.  

For short-distance migrants, we did not find any relationships between proportion of 

colonization events and any of the tested covariates in the best model (Fig. 3.2). Based on the 

results from the top model for resident birds, colonization was negatively associated with 

PRECIP (Fig. 3.2), indicating higher colonization in regions where precipitation decreased the 

most. Colonization in resident bird communities was also negatively related to ED (Fig. 3.2), 

indicating that low colonization in resident birds was generally found in regions with pervasive 

landscape fragmentation. 
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3.4 DISCUSSION 

My findings supported my first hypothesis that changes in avian community composition are 

related to changes in climate, but the strength of the relationship between temporal turnover and 

climate change is affected by the level of landscape fragmentation. Associations were weaker 

between community change and climatic change in regions with prevalent habitat fragmentation. 

However, my findings did not support my second hypothesis regarding the differences in 

responses of long-distance migrants and other migratory groupings to climate change. 

Associations of temporal turnover and climate change were generally similar among all 

migratory groupings. 

3.4.1 Relationships with climate change and habitat fragmentation 

There are at least two alternative interpretations for the pattern of associations between 

community dynamics, climatic change, and landscape fragmentation. One, communities in 

contiguous landscapes might be able to respond more quickly to changes in temperatures and 

precipitation, perhaps due to potential for unimpeded movement. Such interpretation would fit 

well with research suggesting that unfragmented habitats allow higher rates of species 

distributional shifts associated with climate change (e.g., Opdam and Washer 2004). If that were 

the case, communities in fragmented habitats would be likely to lag behind changing climatic 

conditions and, therefore, be less capable of adapting in the face of climate change. This lag 

would initially be reflected in communities being compositionally similar across time and thus 

showing no temporal turnover. However, through time, it is likely that species will eventually 

disappear from locations in which they can no longer find suitable climatic conditions. Such 

localized species extinctions will ultimately result in higher community temporal turnover and 
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higher extinction rates, perhaps on par with those currently observed in unfragmented 

landscapes.  

How plausible is the unimpeded movement explanation in New York State? Using the 

same dataset, Zuckerberg et al. (2009) documented shifts in breeding ranges of 129 species of 

birds. They found that the birds exhibiting shifts in their range boundaries all had different 

breeding habitat associations, suggesting that land cover was not a factor in the observed range 

expansion. Specifically, they found no evidence for more pronounced range shifts of forest 

breeding birds in unfragmented habitats such as those of the Adirondack and Catskill Mountains. 

Given their findings, it seems unlikely that contiguous habitats facilitating the climate change-

driven range shifts may be at the root of the higher rates of temporal turnover, extinction, and 

colonization I am observing.  

An alternative interpretation is that avian communities in fragmented landscapes are 

more robust to changes in temperatures and precipitation resulting from climate change than 

communities found in contiguous habitats. If that were the case, we would expect little or no 

temporal change in community composition and weaker associations with changing climatic 

conditions in fragmented landscapes. Indeed, heterogeneous and fragmented habitats are often 

composed of a large proportion of habitat generalists (e.g., Tscharntke et al. 2012, Estavillo et al. 

2013). Habitat generalists tend to have wider thermal breadths than habitat specialists 

(Barnagaud et al. 2012), which potentially allows them to tolerate greater changes in climatic 

conditions. On the other hand, narrower thermal niches of habitat specialists (Barnagaud et al. 

2012) might make them vulnerable to even small increases in temperatures. Thus, in this 

scenario, we would expect communities in contiguous or less fragmented habitats (i.e., 

comprised mainly of habitat specialists) to continue to undergo relatively large compositional 
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changes as a result of climate change, while those found in fragmented regions (i.e., comprised 

largely of generalists) to show relatively small changes, until perhaps some thermal threshold is 

reached. 

A post hoc analysis revealed that temporal turnover in generalist birds was lower than 

that of birds with any other habitat associations (mean temporal turnover of 0.238 [LCI 0.234, 

UCI 0.242] for generalist birds in comparison with 0.384 [LCI 0.381, UCI 0.387] for all breeding 

birds, 0.444 [LCI 0.440, UCI 0.448] for forest, 0.317 [LCI 0.131, UCI 0.321] for shrubland, 

0.439 [LCI 0.432, UCI 0.446] for grassland, and 0.536 [LCI 0.532, UCI 0.541] for wetland 

breeding birds). Rates of extinction and colonization events were also lower for generalists than 

for any other habitat grouping (extinction: 0.122 [LCI 0.119, UCI 0.126; generalists], 0.210 [LCI 

0.206, UCI 0.213; all breeding birds], 0.233 [LCI 0.228, UCI 0.237; forest], 0.181 [LCI 0.177, 

UCI 0.186; shrubland], 0.331 [LCI 0.323, UCI 0.339; grassland], 0.307 [LCI 0.301, UCI 0.313; 

wetland]; colonization: 0.132 [LCI 0.128, UCI 0.135; generalists], 0.214 [LCI 0.211, UCI 0.218; 

all breeding birds], 0.265 [LCI 0.261, UCI 0.269; forest], 0.159 [LCI 0.156, UCI 0.163; 

shrubland], 0.148 [LCI 0.143, UCI 0.152; grassland], 0.309 [LCI 0.304, UCI 0.314; wetland]). 

Lower values of temporal turnover, extinction, and colonization in these communities perhaps 

suggest that generalist birds are indeed more robust to climatic changes, lending support to the 

second interpretation of the pattern of stronger associations between community change and 

climatic change in unfragmented regions. 

3.4.2 Responses of different migratory groupings 

I found differences in the rates of temporal turnover in communities of resident, long-, and short-

distance migratory birds. For example, communities of long-distance migrants showed higher 

proportion of extinction events than the other two avian groupings. Resident birds displayed 
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higher temporal turnover and higher proportion of colonization events than long- and short-

distance migratory birds. Despite these differences in community change, I found little evidence 

to support our second prediction that temporal turnover in communities of long-distance 

migrants would show weaker associations with changing climatic conditions. In fact, I found that 

the strength of the associations of temporal turnover with climatic changes was similar across all 

avian groupings. Thus, it is unlikely that the disparities in the observed rates of community 

change in this ecological system can be explained by the variation in responses of different 

migratory groupings to changing climatic conditions. 

Similarly, I found few differences in responses of different migratory groupings to 

landscape fragmentation, though strong interaction between climatic and habitat fragmentation 

variables might have obscured a potential relationship. Interestingly, however, I found that 

increasing amount of urban development was associated with high temporal turnover in long- 

and short-distance migratory communities, but resident species underwent lower temporal 

turnover in highly urbanized regions. It is likely that highly developed and residential areas 

might be beneficial to some resident birds, especially during the wintering months when 

supplemental feeding is provided. Thus, it is plausible that the observed higher proportion of 

colonization events in resident birds is driven by factors other than climatic changes. 

Alternatively, higher proportion of colonization events in resident species can be 

associated with less benign climatic conditions during winter months rather than climatic 

changes that occurred during the breeding season. Winter temperatures in higher latitudes have 

shown larger increases than temperatures during spring or summer months and are expected to 

continue to rise more drastically (IPCC 2013). In contrast, temperatures in lower latitudes have 

not increased as drastically (IPCC 2013); thus climatic conditions for migratory birds on their 
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wintering grounds remained relatively stable. Milder winters in higher latitudes combined with 

increases in supplemental feeding would contribute to higher survival of resident birds, thus 

potentially increasing chances of colonization of new sites by these birds. It is likely then that 

future avian communities will become more homogenous by increasing in proportion of resident 

species and decreasing in proportion of migratory birds. 

3.4.3 Conclusions 

My study provides new insights into the drivers of temporal turnover in avian communities. I 

showed that while changes in avian community composition are closely related to changes in 

climatic conditions, this association is strongly influenced by the level of landscape 

fragmentation. Specifically, highly fragmented regions are likely to undergo smaller changes in 

composition and structure as a result of climate change, whereas those changes are likely to be 

more pronounced in contiguous and unfragmented habitats. I suggest that relative contributions 

of habitat generalists and specialists in ecological communities might be one of the leading 

factors explaining these divergent patterns.  

My findings have significant implications for conservation theory and practice. Current 

conservation strategies commonly focus on conserving large regions with undisturbed and 

contiguous habitats that generally support high species diversity. My research suggests that 

faunal communities of such habitats will undergo the most drastic compositional changes as a 

result of climate change. Thus, my research stresses the importance of putting the existing 

conservation strategies in the context of climate change. 
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ABSTRACT 

It has long been acknowledged that key biodiversity patterns vary with spatial scale and the 

mechanisms driving these patterns are inherently scale-dependent. Studies investigating scaling 

of biodiversity and the mechanisms pertinent at each spatial scale have mostly focused on one 

time step. My goal was to evaluate spatial scaling patterns of avian assemblages through time 

and to identify environmental drivers of the change. I used temporal turnover, proportion of 

extinction events, and proportion of colonization events as measures of temporal change in avian 

communities at 5 spatial resolutions (5x5, 10x10, 20x20, 40x40, and 80x80 km). I applied 

Bayesian spatially-varying intercept models to evaluate the relationships among community 

change and change in climatic conditions, landscape fragmentation, and elevation at each of the 

spatial scales. I found that temporal turnover, extinction, and colonization declined with 

increasing spatial scale, but this decline was steeper for extinction than for colonization. 

Specifically, mean temporal turnover decreased from 0.384 at 5x5 km to 0.144 at 80x80 km 

spatial scale. Mean extinction decreased from 0.210 at 5x5 km to 0.036 at 80x80km scale. Mean 

colonization decreased from 0.214 at 5x5 km to 0.110 at 80x80 km scale. I also found that the 

influence of different environmental drivers to changes in avian communities was scale-

dependent. Specifically, climate change covariates were important at smaller scales (i.e., 5x5 and 

10x10 km), while landscape characteristics were relevant across coarser scales. My findings 
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suggest that climate change will initially affect communities at fine spatial scales, though the 

magnitude of these changes is likely to be facilitated by landscape fragmentation at larger scales. 

4.1 INTRODUCTION 

Patterns of biological diversity through space and time are an indication of the underlying 

mechanisms that control biodiversity and as such are of key interest to ecology. It has long been 

acknowledged that key biodiversity patterns vary with spatial scale of observation (e.g., Storch et 

al. 2004, Keil et al. 2011). This scale-dependence is perhaps best demonstrated in patterns of 

species richness (e.g., Arrhenius 1921, Rahbek 2005), but other attributes of biodiversity have 

also been shown to be contingent upon the spatial scale of investigation. For example, spatial 

turnover in species composition (i.e., an aggregate of gains and losses of species comprising a 

community) has been demonstrated to have scaling properties (Gaston et al. 2007), as have 

patterns of extinction risk (Hartley and Kunin 2003), immigration and emigration (Englund and 

Hamback 2007), colonization and biological invasions (Menendez and Thomas 2000, Davies et 

al. 2005, Powell et al. 2013). Given such pervasive scale-dependence of biodiversity patterns, it 

is to be expected that mechanisms controlling these patterns are also conditional on the scale of 

investigation (e.g., Ricklefs 1986, Currie 2004, Storch et al. 2004). For example, many attributes 

of biological communities at the continental scales are thought to be driven primarily by 

evolutionary factors (Ricklefs 2004, Keil and Jetz 2014), whereas climate variability and 

regional land cover dynamics are pertinent across spatial grains of tens or hundreds of kilometers 

(Willis and Whittaker 2002, Field et al. 2009). At yet finer grains, specific habitat characteristics 

and intra- and inter-specific interactions are thought to become the primary drivers of 

biodiversity (Wiens 1989, Tilman 2004, Belmaker and Jetz 2011). However, while research to 

date has provided insight into scale-dependence of biodiversity patterns, the majority of studies 
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were limited to one time step and few have looked at spatial scaling of temporal biodiversity 

change.  

Measures of temporal changes in biodiversity have been commonly used as indicators of 

environmental change (e.g., Calvarheiro et al. 2013, Chapter 3 of this volume); thus, it is 

important that we understand how these measures depend on the spatial scale. Furthermore, 

given the widespread use of biodiversity as a measure of ecosystem response to global change, a 

thorough investigation of mechanisms relevant to temporal biodiversity dynamics across spatial 

scales is perhaps more important than ever. A few examples of scaling of temporal changes in 

biodiversity do exist. For example, Keil et al. (2011) found that temporal change in species 

richness decreased with increasing spatial grain, while Calvarheiro et al. (2013) showed spatial 

turnover in species composition to be decreasing across time, indicating ongoing homogenization 

of biological communities. Despite these initial investigations into the scaling properties of 

temporal biodiversity change, limitations to the understanding of this phenomenon persist. First, 

studies that explicitly look at scale-dependence of temporal biodiversity change generally focus 

on species richness as a measure of biodiversity. However, consequences of biodiversity change 

will extend much beyond changes in species richness (Barbet-Massin and Jetz 2014). Thus, it is 

important to examine measures that explicitly take species identities into account, such as 

temporal turnover and the underlying processes contributing to temporal turnover, i.e., extinction 

and colonization. Second, to the best of my knowledge, none of the studies has yet investigated 

the relative importance of environmental factors influencing temporal changes in biodiversity at 

different spatial scales. Indeed, climate and land-cover change are currently considered the two 

biggest threats to biodiversity (e.g., de Chazal and Rounsevell 2009), but the spatial scales at 

which these two factors are relevant to biodiversity are not yet fully known.  
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Here, I used data from the New York State Breeding Bird Atlas to evaluate spatial scaling 

patterns of temporal changes in avian assemblages. I define temporal change through measures 

of temporal turnover, proportion of extinction events, and proportion of colonization events. 

Though spatial scaling often refers to either the resolution (i.e., grain) of the investigation or the 

geographic extent of the study, I focus on the resolution only and refer to it as spatial scale or 

spatial grain interchangeably throughout the paper. I sought to evaluate two interrelated 

questions: (1) how do patterns of temporal changes in avian assemblages vary across spatial 

scales? and (2) at what spatial grains do different environmental factors influence temporal 

turnover, extinction, and colonization? 

4.2 METHODS 

4.2.1 Breeding Bird Atlas 

The New York State Breeding Bird Atlas (BBA) is a statewide survey that documented the 

distribution of breeding birds in New York. To date, BBA has been conducted in two time 

periods, 1980-85 (hereafter, BBA1980; Andrle and Carroll 1988) and 2000-05 (hereafter, 

BBA2000; McGowan and Corwin 2008). For both BBAs, a grid system was used to define the 

basic unit for reporting data; the BBA reporting unit (a block) measures 5x5 km and a total of 

5,335 blocks covered the entirety of New York State. This data set represents one of the largest 

and finest resolution atlases in the world (Gibbons et al. 2007). 

A total of 242 species were recorded for BBA1980 and 248 species were recorded for 

BBA2000 (Andrle and Carroll 1988, McGowan and Corwin 2008, see Appendix 1.1). 

Observations were made by skilled birders who spent at least 8 hours in each block, visited all 

cover types in each block, and included at least one nighttime visit to document nocturnal 

species. Observer effort was recorded for each BBA and reported as a number of person hours 
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(measured as the sum of the number of hours spent in each block x the number of people 

surveying each block; McGowan and Zuckerberg 2008). The BBA represents a detection/non-

detection dataset and non-detection indicates that species could not be found given search criteria 

(McGowan and Corwin 2008).  

4.2.2 Spatial scaling of community change 

To quantify temporal change in avian assemblages, I calculated temporal turnover (TURN) as an 

aggregate of species gains (hereafter called colonization) and species losses (hereafter called 

extinction):  

𝑇𝑈𝑅𝑁 =  𝐸+𝐶
𝐸+𝐶+𝑃

 ,         Eqn. 4.1 

where E is the number of species that went extinct in the block between BBA1980 and 

BBA2000, C is the number of species that colonized the block between BBA1980 and 

BBA2000, and P is number of species in the same block common to both BBAs (i.e., 

persistence).  

In addition to temporal turnover, I quantified its components: proportion of extinction 

events (i.e., proportion of species lost at a particular site between BBA1980 and BBA2000; 

EXT) and proportion of colonization events (i.e., proportion of species gained at a particular site 

between BBA1980 and BBA2000; COL) in each block between BBA1980 and BBA2000. Here, 

I use terms extinction and colonization to refer to the gain or loss of a species from a defined 

point in space (in this case, a spatial grain of 5x5 km, 10x10 km, 20x20 km, 40x40 km, or 80x80 

km; Gaston and Blackburn 2002). EXT and COL were calculated as follows: 

𝐸𝑋𝑇 =  𝐸
𝐸+𝑃

,          Eqn. 4.2 

𝐶𝑂𝐿 =  𝐶
𝐸+𝐶+𝑃

,         Eqn. 4.3 
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For TURN and COL, we used the sum of E, C, and P as the denominator of the Eqns. 1 

and 2. We recognize that species already present in a block in BBA1980 could not have 

colonized that block and that species other than those included in E, C, and P metrics could have 

potentially colonized the site. However, we were simply interested in the proportion of species 

that colonized the site relative to all the species found within the block; thus we deem the sum of 

E, C, and P as an appropriate choice for the denominator of both equations. For EXT, we used 

the sum of E and P as the denominator, because only species present in a block in BBA1980 

could have potentially gone extinct. The values of TURN, EXT, and COL are bounded by 0 and 

1; values approaching 0 indicate low temporal turnover, extinction, or colonization while values 

approaching 1 indicate high temporal turnover, extinction, or colonization in a block between 

BBA1980 and BBA2000. To account for unequal sampling effort, we followed Chao et al. 

(2005) and used individual-based probabilistic approach to calculate E, C, and P. 

We calculated TURN, EXT, and COL at the following spatial grains: 5x5 km, 10x10 km, 

20x20 km, 40x40 km, and 80x 80 km. To estimate the mean of each metric and construct the 

95% confidence intervals, we applied a non-parametric bootstrap procedure (10,000 

resamplings) at each of the spatial grains. 

4.2.3 Factors influencing community change across spatial grains 

We included temporal trends in climatic conditions across the 1980-2005 time period and 

landscape fragmentation as potential correlates of temporal turnover, extinction, and 

colonization. We included elevation in all the models to account for topographical variation of 

New York State. To quantify trends in climatic conditions, we used the PRISM (Parameter-

elevation Regressions on Independent Slopes Model) climate mapping system (Daly and Gibson 

2002). I calculated the magnitude of the 25-year (1980-2005) trend in average maximum and 
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minimum temperatures of the breeding season (TMAX and TMIN, respectively; expressed in 

°C/25 years) and in total monthly precipitation of the breeding season (PRECIP; expressed in 

mm/25 years) using Ordinary Least Squares regression.  

I used the National Land Cover Data (NLCD) derived from the Landsat Thematic 

Mapper satellite data to quantify landscape fragmentation. There is no NLCD available for the 

time period of BBA1980; thus, I used a NLCD2001 and space-for-time substitution to assess 

whether temporal turnover, extinction, and colonization are related to landscape fragmentation 

(for more information on space-for-time substitution see Pickett 1989). Because I focused our 

analysis on a diverse suite of species with varying habitat requirements, I chose a landscape-

scale variable to capture broad-scale variation in habitat fragmentation. Edge Density (ED) is a 

good measure of landscape fragmentation because an increase in habitat edge is a primary 

outcome of habitat fragmentation (Hargis et al. 1998). However, in situations when landscape 

consists entirely of one cover type, the ED would be 0 regardless of the type of land-cover 

present. Therefore, to differentiate between landscapes that consisted entirely of natural land 

cover (e.g., forest) and those mostly developed (e.g., cities), I also calculated the proportion of 

developed land (DEVEL). Landscape analysis was conducted using FRAGSTATS 4.1 

(McGarigal et al. 2012) and the Geospatial Modelling Environment (GME, 

http://www.spatialecology.com/gme/).  

I used Digital Elevation Models for New York State to quantify mean elevation in each 

block and for each spatial grain (ELEV). To account for potential survey effort bias, I calculated 

the absolute difference in the number of person hours between BBA1980 and BBA2000 

(EFF =  |EFF1980 − EFF2000|) for each BBA block and included it as a covariate in my 
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models. I standardized and centered all the covariates to ease the interpretation of the parameter 

estimates. 

To estimate the importance of environmental factors in driving temporal turnover, 

extinction, and colonization at each of the spatial grains (i.e., 5x5, 10x10, 20x20, and 40x40 km), 

I built a statistical model that included the main effects of all the covariates (TMAX, TMIN, 

PRECIP, ED, DEVEL, ELEV, and EFF). I did not run a model for the largest spatial grain (i.e., 

80x80 km) because of the insufficient sample size. We used a Bayesian model estimation 

procedure. Each response variable (temporal turnover TURN, extinction EXT, or colonization 

COL) at each location (s) was modeled as a binomial random variable. Let y(s) be a response 

variable, then y(s) ~ B(ρ(s),N(s)) where N(s) is the total number of species found at least once in 

a block from the first to the second atlas count (for TURN and COL) or the total number of 

species found in first atlas count (for EXT). For each BBA block, let p(s) = y(s)/N(s). Also, let 

x(s) be a vector containing the explanatory variables for each model. All models had spatially 

varying intercepts, which were created by adding spatially structured random effects to the 

model intercept.  A generalized linear model approach was used to relate responses to 

explanatory variables. Using the logit link η(s) = log[p(s)/{1-p(s)}] the SVI model was 

𝜂(𝑠) = 𝑤(𝐬) + 𝜷𝐱(𝑠)         Eqn. 4.4 

where β is a vector of regression coefficients and w(s) is a random effect representing 

spatially varying adjustments to the intercept. We assume each element in w(s) arises from a 

spatial Gaussian Process (GP) (see, e.g., Banerjee et al. 2004 or Cressie and Wikle 2011 for more 

details). Specifically, w(s) ~ GP(0, C(s, s’)), where s and s’ are any two locations within the 

study area, the spatial covariance C(s, s’) = σρ(s, s’; ϕ) with variance parameter σ2, correlation 
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function ρ(·; ϕ), and spatial decay parameter ϕ. The exponential spatial correlation was assumed 

for ρ(·).  

Prior distributions on the parameters complete the hierarchical model specification (e.g., 

Gelman et al. 2004). The global regression coefficients, β’s followed a Normal distribution N(0, 

100), while the variance component σ2 was assigned inverse-Gamma IG(2, 1) prior. The spatial 

decay parameter, ϕ, followed an informative Uniform prior, with support that ranged from 1 km 

to the maximum distance between any two grid cells. I ran three MCMC chains for 20,000 

iterations each. Convergence was diagnosed using the Gelman-Rubin diagnostic (Gelman and 

Rubin 1992). 

Prior to statistical analysis, I removed all blocks that did not have continuous land cover 

coverage, blocks with more than 50% open water coverage, and those that did not have survey 

effort data. Ultimately, I used a total of N5x5 = 4,742 blocks to fit the models for the 5x5 km 

grain; N10x10 = 1,186 blocks to fit the models for the 10x10 km grain; N20x20 = 226 blocks to fit 

the models for the 20x20 km grain; and N40x40 = 54 blocks to fit the models for the 40x40 km 

grain. The 80x80 km spatial grain included only N80x80 = 7 blocks. All models were run in R 

2.15.1 statistical program (R Development Core Team 2013, http://www.r-project.org/) using 

package spBayes (Finley and Banerjee 2013). In a Bayesian framework, parameter estimates have 

valid posterior distributions and inferences are made using mean or median as well as the credible 

intervals of these posterior distributions. Credible intervals overlapping zero imply that the parameter in 

question is not different from zero. Summaries of parameter estimates were generated using the R 

CODA package (Plummer et al. 2012). 



106 
 

4.3 RESULTS 

4.3.1 Spatial scaling of community change 

Mean TURN decreased with increasing spatial grain (Fig. 4.1A). At 5x5 km spatial grain, mean 

value of TURN was 0.384, indicating that on average 38% of species had either colonized or 

become extinct within the average 5x5 km block and approximately 62% of the species persisted 

across both time periods. At 10x10 km, mean value of TURN decreased to 0.266. At 20x20 km 

grain, mean TURN further decreased to 0.201; while at 40x40 km it was 0.160. At the largest 

spatial grain (i.e., 80x80 km), mean value of TURN was 0.144, which indicates that on average 

only 14% of species had either colonized or become extinct within the average 80x80 km block 

and approximately 86% of the species persisted over time. In terms of its spatial distribution, the 

highest temporal turnover at the 5x5 km and 10x10 km spatial grains was in the north-eastern 

part of the state, where the Adirondack Mountains are (Fig. 4.2). At the 20x20 km grain, the 

spatial patterns of temporal turnover became more homogenous, with central New York showing 

lower temporal turnover than eastern or western regions. At the 40x40 km spatial grain, most 

sites showed temporal turnover between 0.1 and 0.2, with a few exceptions in the north-eastern 

New York. At the 80x80 km spatial scale, temporal turnover exceeded 0.2 in only one block 

(Fig. 4.2).  
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Figure 4.1 Spatial scaling of temporal turnover, extinction, and colonization observed between 1980-85 and 2000-05 for avian 
communities in New York State across five different spatial grains (i.e., 5x5 km, 10x10 km, 20x20 km, 40x40 km, and 80x80 km). 
Temporal turnover was calculated as a proportion of all species gained or lost between 1980-85 and 2000-05 in a particular site (i.e., 
5x5 km Breeding Bird Atlas block or a scaled-up version of it) relative to all species recorded across both time periods; extinction was 
calculated as a proportion of species lost between 1980-85 and 2000-05 in a particular site relative to all species present in a site in 
1980-85; colonization was calculated as a proportion of species gained between 1980-85 and 2000-05 in a particular site relative to all 
species recorded across both time periods. High values of all three metrics indicate high temporal turnover, extinction, and 
colonization. 
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Figure 4.2 Patterns of temporal turnover observed between 1980-85 and 2000-05 for avian communities in New York State across 
five different spatial grains (i.e., 5x5 km, 10x10 km, 20x20 km, 40x40 km, and 80x80 km). Temporal turnover was calculated as a 
proportion of all species gained or lost between 1980-85 and 2000-05 in a particular site (i.e., 5x5 km Breeding Bird Atlas block or a 
scaled-up version of it) relative to all species recorded across both time periods. High values indicate high temporal turnover. 

 
  



109 
 

I detected a decrease in mean EXT with increasing spatial grain (Fig. 4.1B). At 5x5 km 

spatial grain, mean value of EXT was 0.210, indicating that on average 21% of species had 

become extinct within the average 5x5 km block between 1980 and 2005. At 10x10 km spatial 

scale, mean value of EXT declined to 0.132. At 20x20 km grain, mean EXT was 0.096; while at 

40x40 km, it decreased further and equaled 0.071. At the largest spatial grain (i.e., 80x80 km), 

mean value of EXT was 0.036, which indicates that on average only 4% of species had become 

extinct within the average 80x80 km block. Similarly to TURN, the highest proportion of 

extinction events at the 5x5 km and 10x10 km spatial grains was found in the location of the 

Adirondack Mountains (Fig. 4.3). At the 20x20 km and 40x40 spatial grains, EXT also was 

higher in the north-east. At the 80x80 km grain, extinction became more spatially homogeneous 

and never exceeded 0.1 (Fig. 4.3). 

In general, mean COL also decreased with increasing spatial grain (Fig. 4.1C). At 5x5 

km, mean COL took a value of 0.214, indicating that approximately 21% of all species found 

across both time periods in a 5x5 km block were detected only during the second BBA. At the 

10x10 km spatial scale, mean COL was 0.152. Starting at the 20x20 km grain, the decline in the 

mean COL values tapered off and the values stabilized around 0.1. Mean COL was 0.116  at 

20x20 km, 0.094 at 40x40 km, and 0.110 at 80x80 km spatial grain. High proportion of 

colonization events for the 5x5 km and 10x10 km spatial grains were found in the north-eastern 

and western parts of the state (Fig. 4.4). However, unlike in the case of temporal turnover and 

extinction, COL values were less spatially clumped and more dispersed (Fig. 4.4). At 20x20 km, 

colonization rates were homogeneously distributed throughout the state; at the 40x40 km, lower 

colonization values were found in north-eastern (i.e., Adirondack Mountains) and south-central 
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(i.e., Allegany Plateau) New York. At the 80x80 km grain, colonization rates were generally low, 

with the exception of the most northerly block (Fig. 4.4). 
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Figure 4.3 Patterns of extinction observed between 1980-85 and 2000-05 for avian communities in New York State across five 
different spatial grains (i.e., 5x5 km, 10x10 km, 20x20 km, 40x40 km, and 80x80 km). Extinction was calculated as a proportion of 
species lost between 1980-85 and 2000-05 in a particular site (i.e., 5x5 km Breeding Bird Atlas block or a scaled-up version of it) 
relative to all species present in a site in 1980-85. High values indicate high proportion of extinction events. 
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Figure 4.4 Patterns of colonization observed between 1980-85 and 2000-05 for avian communities in New York State across five 
different spatial grains (i.e., 5x5 km, 10x10 km, 20x20 km, 40x40 km, and 80x80 km). Colonization was calculated as a proportion of 
species gained between 1980-85 and 2000-05 in a particular site (i.e., 5x5 km Breeding Bird Atlas block or a scaled-up version of it) 
relative to all species recorded across both time periods. High values indicate high proportion of colonization events. 
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4.3.2 Factors influencing community change across spatial grains 

4.3.2.1 Temporal turnover 

At the 5x5 km spatial grain, TMAX was positively associated with TURN, indicating that 

increasing maximum temperatures were associated with high temporal turnover (Fig. 4.5). There 

was a negative association of temporal turnover and ED, suggesting that temporal turnover was 

higher in less fragmented regions. There was a positive relationship between temporal turnover 

and DEVEL as well as temporal turnover and ELEV (Fig. 4.5), indicating that highly urbanized 

regions and locations in higher elevations generally experienced increased temporal turnover.  

At the 10x10 km spatial grain, TMAX was positively related to TURN (Fig. 4.5). I also 

found a negative relationship between temporal turnover and ED and a positive relationship 

between temporal turnover and DEVEL (Fig. 4.5). I detected no relationship between TURN and 

ELEV at this spatial grain. At the 20x20 km spatial grain, I found no relationships between 

TURN and any of the climate change covariates. I found a negative relationship between TURN 

and ED and a positive relationship between TURN and DEVEL (Fig. 4.5). I also detected a 

negative relationship between TURN and ELEV, suggesting that temporal turnover was higher 

in lower elevations. At 40x40 km grain, there I found no relationships between temporal turnover 

and any of the covariates (Fig. 4.5). 

4.3.2.2 Extinction 

At the 5x5 km spatial grain, I found positive relationships between EXT and TMIN (Fig. 4.5), 

indicating that increasing minimum temperatures were associated with high proportion of 

extinction events. Extinction was also positively related to PRECIP (Fig. 4.5), suggesting higher 

extinction in regions where precipitation increased the most. I found a negative association of 
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extinction and ED and a positive association of extinction and DEVEL, indicating that extinction 

was highest in contiguous landscapes and in highly urbanized regions. There was a relationship 

between extinction and ELEV (Fig. 4.5).  

At the 10x10 km spatial grain, TMIN was positively associated with EXT, but I no longer 

found relationships between extinction and TMAX or PRECIP. Extinction was negatively 

associated with ED and positively related to DEVEL. I found no relationship between extinction 

and ELEV at this spatial grain. At the 20x20 km spatial grain, none of the climate change 

variables was associated with EXT. I found a negative relationship between EXT and ED (Fig. 

4.5) and a positive relationship between EXT and DEVEL. I found no relationship between 

extinction and ELEV at this spatial grain. At the 40x40 km spatial grain, I found no relationships 

between extinction and any of the tested covariates (Fig. 4.5).  

4.3.2.3 Colonization 

At the 5x5 km spatial grain, colonization was positively related to TMAX, indicating that regions 

where temperatures increased the most experienced highest proportion of colonization events 

(Fig. 4.5). Colonization was also negatively related to PRECIP (Fig. 4.5), indicating that regions 

with decreasing precipitation on average experienced higher proportion of colonization events. 

COL was positively associated with DEVEL (Fig. 4.5), indicating that colonization was 

generally higher in highly urbanized regions.  

 At the 10x10 km spatial grain, I found a positive relationship between colonization 

and DEVEL. However, I did not find associations between COL and climatic change variables, 

ED, or ELEV at this spatial scale. At the 20x20 km spatial grain, I found a positive relationship 

between colonization and TMAX and a negative relationship between colonization and TMIN 

(Fig. 4.5). I also found a positive association of colonization and ED, indicating that highest 
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colonization occurred in regions of highest fragmentation. I found no relationships between 

colonization and DEVEL or colonization and ELEV at 20x20 km. At the 40x40 km spatial grain, 

I found no relationships between colonization and any of the tested covariates (Fig. 4.5). 
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Figure 4.5 Coefficient estimates (i.e., mean values of the posterior distribution and associated credible intervals) resulting from the 
models for (A) temporal turnover, (B) extinction, and (C) colonization. Abbreviations for the covariates are as follows: magnitude of 
the 25-year (1980-2005) trend in average maximum temperature of the breeding season (TMAX), magnitude of the 25-year (1980-
2005) trend in average minimum temperature of the breeding season (TMIN), magnitude of the 25-year (1980-2005) trend in average 
total precipitation of the breeding season (PRECIP), edge density (ED), percent developed land (DEVEL), and elevation (ELEV). 
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4.4 DISCUSSION 

I sought to address the issue of scale-dependence of temporal changes in avian assemblages by 

evaluating temporal turnover, extinction, and colonization across different spatial grains and 

investigating potential environmental drivers of these changes in assemblages at each of the 

scales. I found that temporal turnover, extinction, and colonization declined as the spatial grain 

increased, indicating that community change is smaller at coarse scales. This decline with 

increasing spatial grain, however, was faster for temporal turnover and extinction than it was for 

colonization. I also found that the relevance of different environmental drivers to changes in 

avian communities was scale-dependent. Specifically, I found that climate change covariates 

were pertinent at smaller spatial grains than landscape characteristics. 

4.4.1 Spatial scaling of community change 

I found that temporal changes in community composition decreased with increasing spatial scale 

of investigation. This result is not surprising given that increasing spatial grains will encompass 

larger areas and higher number of species, thus reducing both the likelihood of individual species 

extinction or colonization (e.g., Gaston et al. 2004) and the proportion of extinction and 

colonization events. However, while this decline was relatively steady for temporal turnover and 

extinction, the decline in the proportion of colonization events tapered off at 20x20 km grain and 

remained relatively constant across the three coarsest spatial grains (i.e., 20x20 km, 40x40 km, 

and 80x80 km). While there is little direct evidence that patterns of extinction and colonization 

exhibit different spatial scaling, there are reasons to suspect that it might be so. For example, 

Wilson et al. (2004) suggested that processes of range retraction and expansion, and perhaps by 

extension extinction and colonization, affect species distributional patterns in a disparate way. 

Declining species generally leave sparse distributions because they tend to retract their ranges to 
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either optimal habitats or regions where extinction forces are not operating (Johnson 1998). 

Thus, it is expected that contracting ranges would result in substantial species loss at fine spatial 

grains and relatively little loss at coarse grains (Wilson et al. 2004, Keil et al. 2011). The results 

from my study lend support to this expectation because I showed that there is substantial 

extinction at fine grains and relatively little species loss at coarser scales.  

On the other hand, species expanding their ranges tend to form more aggregated 

distributions because range expansion is often dispersal-limited (Shigesada and Kawasaki 1997). 

Therefore, it is expected that expanding range would involve substantial gain at fine scales as 

coarse-grain areas are slowly colonized (Wilson et al. 2004). My results showing substantial 

colonization at the finest grain fit well with this expectation. However, I suggest that low 

colonization at coarse spatial grains proposed by Wilson et al. (2004) is characteristic of species 

with relatively low mobility and low dispersal abilities, such as investigated in their study 

butterflies. Birds, as highly mobile and far-dispersing organisms, would likely display a different 

expansion signature, characterized by relatively high rates of colonization even at coarse grains. 

Indeed, Gaston and Blackburn (2002) found that birds which exhibited higher colonization rates 

in the UK tended to disperse farther during both their juvenile and adult life stages. Other 

examples of a positive relationship between colonization rate and dispersal abilities abound (e.g., 

Brown and Kodric-Brown 1977, Juliano 1983, Mouquet and Loreau 2003). Consequently, I 

propose that far-dispersing birds are able to colonize distant coarse-grain areas, resulting in 

relatively high and constant proportion of colonization events across coarser grains explored in 

this study (i.e., 20x20, 40x40, and 80x80 km).  
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4.4.2 Factors influencing community change across spatial grains 

I found that the main drivers of avian biodiversity change are not only often specific to the 

spatial scale of investigation, but also differ in their likely impacts among the different metrics of 

community change. For example, changes in climatic conditions were relevant to both temporal 

turnover and extinction only at finer spatial grains of 5x5 and 10x10 km. I detected no impacts of 

climate change on these two measures of biodiversity change across coarser spatial scales. On 

the other hand, colonization was associated with changes in climate both at fine grains as well as 

at the intermediate spatial scales (i.e., 20x20 km). This association of colonization with climate 

change at coarser grains might further explain why I detected stabilizing of colonization values at 

coarser spatial grains. Perhaps changing climatic conditions in combination with dispersal 

abilities are facilitating slightly higher colonization rates at coarser spatial grains in comparison 

with those of temporal turnover and extinction.  

Research to date suggests that while patterns of species richness are associated with 

climate mostly at coarse spatial grains (> 500 km2; Field et al. 2009, McGill 2010), species 

turnover is related to climatic variability at much smaller grains. For example, Gaston et al. 

(2004) found that the single best environmental predictor of spatial turnover at 10x10 km spatial 

grain was temperature. In their study, the influence of temperature decreased as the spatial scale 

increased and became a non-significant predictor of turnover at spatial grains larger than 30x30 

km (Gaston et al. 2004). My analysis corroborates their study and extends their results by 

demonstrating that influences of temporal climate change diminish at spatial scales larger than 

20x20 km.  

In general, higher rates of temporal turnover, extinction, and colonization were associated 

with increases in temperatures recorded during the same time period at the two smallest spatial 
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scales (i.e., 5x5 and 10x10 km). This association indicates that climate change might have 

partially driven the observed changes in avian communities across New York. As temperatures 

increased, thermal requirements of some species were no longer met while new thermal niches 

became available for other species, resulting in higher extinction and colonization, respectively. 

As temperatures continue to rise in the next decades, we can expect further reshuffling of 

community composition through processes of extinction and colonization and perhaps even 

development of novel species assemblages (i.e., assemblages with no modern analogue; 

Stralberg et al. 2009). My analysis suggests that these novel or close-to-novel communities 

would initially form at the smallest spatial grains (i.e., up to 100 km2), but given enough time 

coarser spatial scales might also undergo pronounced changes in community composition. Other 

studies corroborate my results. For example, Stralberg et al. (2009) predicted that up to 57% of 

California might be occupied by novel bird assemblages by 2070 as a result of individualistic 

shifts in species distributions driven by changing climate. The percentage of novel assemblages, 

however, was highly dependent on the spatial scale of investigation and decreased with 

increasing spatial grain. At the largest spatial scales, novel species assemblages were predicted to 

occupy only up to 3.5% of California (Stralberg et al. 2009). My results suggest that climate 

change might induce similar scale-dependent changes in community composition across New 

York.  

Interestingly, I found that colonization was negatively related to minimum temperatures 

at the 20x20 km spatial grain. This negative association with minimum temperatures indicates, 

perhaps counterintuitively, that avian communities underwent highest colonization rates in 

regions where temperatures changed the least, while colonization was lowest in regions that 

experienced substantial increases in minimum temperatures. I also found a positive association 



121 
 

of maximum temperatures with the proportion of colonization events at this spatial scale. Given 

that minimum temperatures have shown larger increases than maximum temperatures and are 

expected to continue to rise more drastically (IPCC 2013), we might expect that changes in 

minimum temperatures will have stronger impact on avian communities than increasing 

maximum temperatures. Thus, my results suggest that future changes in temperatures may 

contribute to lower levels of immigration and colonization from surrounding assemblages, 

further indicating that climate change-induced temperature increases might reduce colonization 

rates at the 20x20 km spatial grain. This result might provide further support for the findings 

from my previous works (Chapters 1 and 2 of this volume). Specifically, I showed that 

influences of climate change are often spatially non-stationary and depend on other 

environmental factors, such as land-cover. Thus, while the global coefficient estimate might be 

indicating a negative association between changing temperatures and colonization, it is likely 

that this association varies through space and takes both positive and negative values. 

My analysis suggests that land-cover is pertinent to changes in avian communities at all 

spatial grains, with exception of the largest scale (i.e., 40x40 km). These findings indicate that 

landscape matrix matters over larger spatial scales than changing climatic conditions. Research 

to date provides conflicting accounts of the relative importance of climate and land-cover as 

drivers of biodiversity change. Some studies showed that landscape matrix indeed influences 

species turnover at larger spatial scales (e.g., Krawchuk and Taylor 2003), while other research 

suggests that landscape structure is a valid predictor at smaller spatial scales than climatic 

variability (e.g., Rahbek 2005). My results point to the importance of landscape matrix as a 

potential facilitator of species responses to climate change. While climate change will likely 

affect ecological communities at smaller spatial grains, landscape matrix might influence the 
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strength of these responses by facilitating or limiting the dispersal and movement of species 

through the landscape. Indeed, I showed that responses of avian communities to climate change 

are influenced by the level of landscape fragmentation (Chapter 3 of this volume). My results 

add another dimension by showing that these landscape influences are likely to operate at scales 

larger than climate change. 

In general, highly fragmented regions experienced smaller changes in community 

composition (especially temporal turnover and extinction), while these changes were more 

pronounced in contiguous landscapes. I suggest that there are at least two alternative 

interpretations for this pattern. It is plausible that communities in contiguous landscapes might be 

able to respond quicker to changes in the environment due to potential for unimpeded movement. 

Indeed, research suggests that unfragmented habitats might allow higher rates of species 

distributional shifts associated with climate change (Opdam and Washer 2004, Jeltsch et al. 

2011), which would ultimately result in more pronounced changes in community composition. 

Alternatively, avian communities in fragmented landscapes may be more robust to 

environmental disturbance than communities found in contiguous habitats because they comprise 

largely of habitat generalists (e.g., Tscharntke et al. 2012, Estavillo et al. 2013), which tend to 

have wider habitat and thermal breadths than habitat specialists (Barnagaud et al. 2012). These 

wider niches potentially allow generalist birds to tolerate greater changes in environmental 

conditions, thus resulting in lower rates of community change. I suggested the latter as more 

plausible explanation for this ecological system (Chapter 3 of this volume) because communities 

comprised of generalist species underwent smaller changes than those comprised of habitat 

specialists.  
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I found that high levels of development were associated with higher values of temporal 

turnover, extinction or colonization and this relationship held across most spatial scales. 

Developed areas generally provide unsuitable conditions for a wide variety of different species 

due to increasing pressure of human activities on the remaining patches of natural habitat (e.g., 

Huste and Boulinier 2007). This combination results in high extinction rates. This expectation is 

supported by my study because I show that development influenced extinction to a higher degree 

and over larger spatial grains than it did colonization. We can thus expect that increasing human 

development of natural habitats will result in increased rates of extinction in the future. 

I found temporal turnover to be associated with elevation, but this relationship was not 

found for either extinction or colonization. At the finest spatial grain (i.e., 5x5 km), the 

association of elevation with temporal turnover was positive, indicating that community change 

was highest in high elevation regions. Gaston et al. (2007) found a similar relationship for world 

avifauna. A plausible explanation for this increase in community change with elevation is the 

relationship between turnover and species richness. Communities that are less species rich tend 

to undergo higher rates of turnover (e.g., Lennon et al. 2001). In New York, high-elevation 

regions of the Adirondack or Catskill Mountains generally support lower species richness than 

low-laying agricultural plains, thus potentially exhibiting higher temporal community change. 

Perhaps surprisingly, the influence of elevation on temporal turnover either disappeared or 

became negative with increasing spatial grain. The negative association at coarser grains 

indicates that high elevation regions experienced smallest changes in composition of avian 

assemblages. Perhaps the topographical variability at the coarser spatial grains is no longer 

associated with species richness, thus resulting in the lack of or reverse relationship between 

elevation and temporal turnover.    
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4.4.3 Conclusions 

My study contributes new insights into the patterns of temporal change in avian communities 

across different spatial grains and drivers relevant to these changes. Changes in community 

composition are scale-dependent and in general diminish with increasing spatial grain. This 

decline is steeper for extinction than for colonization, likely due to two factors: (i) differences in 

spatial patterns of range retraction and expansion and (ii) high mobility and dispersal abilities of 

birds. The influences of climate change, landscape matrix, and elevation on temporal changes in 

avian assemblages are scale-dependent. Impacts of climate change are relevant at small spatial 

grains, whereas influences of landscape matrix remain important also at larger spatial grains. I 

suggest that, as climate change progresses, avian assemblages will undergo increasing re-

shuffling at local scales, perhaps resulting in novel species assemblages. The magnitude of these 

biodiversity changes resulting from climate change, however, is likely to be facilitated by 

landscape fragmentation at larger scales. By establishing a link between changes in biodiversity 

and environmental processes controlling these changes across different spatial scales, my study 

provides a major contribution to the global change science. 
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EPILOGUE 
 
 
In my dissertation, I sought to address the need expressed by NASA to assess the relative roles of 

climate change and land cover in the observed changes in avian biodiversity. Specifically, my 

goal was to examine influences of land-cover composition and configuration on the way avian 

biodiversity responds to climate change and to investigate spatial scales relevant to the 

understanding of the impacts of global change. In Chapter 1, I tested the utility of the spatially-

varying coefficients (SVC) models to quantify the influence of spatial non-stationarity on 

relationships between temporal community change and changes in climate and land cover. In 

Chapter 2, I evaluated bioclimatic relationships of grassland and forest breeding birds across 

varying gradients of their habitat. In Chapter 3, I investigated relationships between temporal 

changes in community composition and the interaction of climate change and land cover 

fragmentation. In Chapter 4, I investigated temporal community change across different spatial 

scales and determined factors relevant to changes in avian assemblages at each of the scales. 

The collective works in these chapters contribute four primary and novel conclusions for 

better understanding of the implications of the interaction of land use and climate change to 

avian diversity. First, relationships between changes in biodiversity and environmental factors 

are often spatially non-stationary, i.e., the relationship between a response variable and the 

predictor covariates varies across the spatial extent of the study. Second, the amount of suitable 

land cover can significantly alter species responses to climate change, but this effect of land 

cover depends on the type of habitat. Specifically, extensive forest land has potential to mitigate 

the negative consequences of climate change to forest breeding birds, whereas expansive open 

lands are likely to exacerbate climate change impacts on populations of grassland birds. Third, 

impacts of climate change on ecological communities are more pronounced in regions of 
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unfragmented landscapes than in locations with fragmented habitats. The differences are likely 

caused by the fact that communities in fragmented habitats generally tend to be comprised of 

species with wider climatic niches, thus being less vulnerable to changing climatic conditions. 

Fourth, temporal changes in community composition are scale-dependent and so are the 

mechanisms driving these changes. Specifically, climate change operates at smaller spatial scales 

than landscape fragmentation. Consequently, as temperatures continue to rise in the next 

decades, we can expect reshuffling of community composition and perhaps development of 

completely novel species assemblages, which will initially form at the smallest spatial grains. 

Chapter 1 addressed the issue of spatial non-stationarity in ecological relationships. It is 

widely recognized that the assumption of stationary regression coefficients results in poor fit and 

misleading inference about the impact of the covariates on the response variable. However, the 

current methods for accounting for non-stationarity tend to provide inaccurate and correlated 

regression coefficient estimates because they are not robust to collinearity among the covariates 

and the presence of complex spatial correlation structures. I tested the usefulness of spatially-

varying coefficient (SVC) models to detect and account for spatial non-stationarity between 

temporal community changes in avian assemblages and changes in climate and land cover. The 

SVC method provides an improvement over methods that ignore spatial non-stationarity in terms 

of model fit and model predictive performance. Further, by fitting these models within a 

Bayesian inferential framework, I was able to make inferences about the spatial impact of 

covariates and other process parameters, as well as obtain full posterior predictive inference 

about the rate of turnover at new, i.e., unobserved locations. 

Chapter 2 addressed the issue of variation in bioclimatic relationships of forest and 

grassland birds across gradients of forest and grassland habitats. Simulation studies suggest that 
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quantity and quality of available habitat affect the way species respond to climatic variability, 

but empirical evidence is lacking because studies that integrate both land cover and climate are 

rare. I identified the spatial variation in bioclimatic relationships of forest and grassland breeding 

birds and related this variation to changing amount of forest and grassland cover. My analysis 

indicated that increasing amounts of forests weaken the negative responses of forest breeding 

birds to climatic variability, while expansive grasslands strengthen these negative relationships. 

My work suggests that extensive forests will mitigate consequences of climate change to avian 

populations, but these negative consequences are likely to be intensified in regions with 

extensive grasslands. It is thus likely that the ongoing field abandonment and reforestation in 

New York will compensate or reverse the negative consequences of climate change by leading to 

the dominance of cold-dwelling assemblages (Clavero et al. 2011). 

Chapter 3 addressed the lack of understanding in how climate change and landscape 

fragmentation interact to influence temporal changes in communities. Landscape fragmentation 

is likely to influence the way communities respond to climate change, for example by affecting 

the rate of species distributional shifts associated with climate change. My findings suggested 

that avian communities in regions with prevalent habitat fragmentation were affected by changes 

in climate to a lesser degree than communities found in unfragmented landscapes. I suggested 

that avian communities in fragmented landscapes must be more robust to climate change than 

communities found in contiguous habitats because they comprise of species with wider thermal 

niches and are thus less susceptible to temperature increases. 

Chapter 4 addressed the issue of spatial scaling of temporal community change measured 

as temporal turnover, extinction, and colonization. It is widely recognized that patterns of 

biodiversity vary with spatial scale of investigation, but very few studies have investigated such 
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scaling patterns across more than one time step. My analysis suggested that temporal changes in 

community composition diminish with increasing spatial scales of investigation. The decline, 

however, is steeper for extinction than for colonization, likely due to two factors: (i) differences 

in spatial patterns of range retraction and expansion and (ii) high mobility and dispersal abilities 

of birds. I showed that processes driving temporal changes in community composition also vary 

with spatial scale. Impacts of climate change are relevant at small spatial grains, whereas 

influences of landscape matrix remain important also at larger spatial grains. I suggested that, as 

climate change progresses, avian assemblages will undergo increasing re-shuffling at local 

scales, perhaps resulting in novel or close-to-novel species assemblages. The magnitude of these 

changes associated with climate change, however, is likely to be facilitated by landscape 

fragmentation at larger scales. 

The collective works offer several novel contributions to the understanding of the impacts 

of the interaction of climate change and land cover on biodiversity. First, I showed that changes 

in ecological communities will be more severe in open, contiguous and unfragmented habitats 

than in regions with expansive landscape fragmentation. Second, contrary to the popular belief, I 

showed that climate change will operate at relatively small spatial scales. The implications of 

these findings suggest that current conservation strategies may be insufficient to protect 

biodiversity in the face of climate change. Existing biodiversity conservation generally focuses 

on conserving large regions with undisturbed and contiguous habitats that generally support high 

species diversity. My results suggest that ecological communities of such habitats will undergo 

the most drastic compositional changes as a result of climate change. Thus, it is critical that the 

existing conservation strategies are placed in the context of climate change. My work suggests 

that in order to develop successful biodiversity conservation, one needs to consider both the 
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individual species’ vulnerabilities to climate change based on their habitat association or life-

history strategies and relative vulnerabilities of entire communities based on the landscape in 

which these communities persist. I believe that my works provide the first step into developing 

such sound conservation strategies. 

  



130 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

APPENDIX 
 
 
  



131 
 

Table A 1.1 List of all bird species (N = 256) from the New York State Breeding Bird Atlas 
(BBA) used in the analysis. 

BBA Code Common Name Scientific Name 
ABDU American Black Duck Anas rubripes 
ACFL Acadian Flycatcher Empidonax virescens 
AGWT Green-winged Teal Anas crecca 
ALFL Alder Flycatcher Empidonax alnorum 
AMBI American Bittern Botaurus lentiginosus 
AMCO American Coot Fulica americana 
AMCR American Crow Corvus brachyrhynchos 
AMGO American Goldfinch Spinus tristis 
AMKE American Kestrel Falco sparverius 
AMOY American Oystercatcher Haematopus palliatus 
AMRE American Redstart Setophaga ruticilla 
AMOR American Robin Turdus migratorius 
AMWI American Wigeon Anas americana 
AMWO American Woodcock Scolopax minor 
AWPE American White Pelican Pelecanus erythrorhynchos 
BAEA Bald Eagle Haliaeetus leucocephalus 
BANS Bank Swallow Riparia riparia 
BAOR Baltimore Oriole Icterus galbula 
BARS Barn Swallow Hirundo rustica 
BAWW Black-and-white Warbler Mniotilta varia 
BBCU Black-billed Cuckoo Coccyzus erythropthalmus 
BBWA Bay-breasted Warbler Setophaga castanea 
BBWO Black-backed Woodpecker Picoides arcticus 
BCCH Black-capped Chickadee Poecile atricapillus 
BCNH Black-crowned Night-Heron Nycticorax nycticorax 
BDOW Barred Owl Strix varia 
BEKI Belted Kingfisher Megaceryle alcyon 
BGGN Blue-gray Gnatcatcher Polioptila caerulea 
BHCO Brown-headed Cowbird Molothrus ater 
BHPA Black-hooded Parakeet Nandayus nenday 
BHVI Blue-headed Vireo Vireo solitarius 
BITH Bicknell’s Thrush Catharus bicknelli 
BLBW Blackburnian Warbler Setophaga fusca 
BLGR Blue Grosbeak Passerina caerulea 
BLJA Blue Jay Cyanocitta cristata 
BLPW Blackpoll Warbler Setophaga striata 
BLRA Black Rail Laterallus jamaicensis 
BLSK Black Skimmer Rynchops niger 
BLTE Black Tern Chlidonias niger 

Continued on next page  
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Table A 1.1 (cont’d) 

BBA Code Common Name Scientific Name 
BLVU Black vulture Coragyps atratus 
BNOW Barn Owl Tyto alba 
BOCH Boreal Chickadee Poecile hudsonicus 
BRBL Brewer’s Blackbird Euphagus cyanocephalus 
BRCR Brown Creeper Certhia Americana 
BRTH Brown Thrasher Toxostoma rufum 
BRWA Brewster’s Warbler Vermivora chrysoptera x V. 

cyanoptera 
BTBW Black-throated Blue Warbler Setophaga caerulescens 
BTGR Boat-tailed Grackle Quiscalus major 
BTNW Black-throated Green Warbler Setophaga virens 
BUFF Bufflehead Bucephala albeola 
BHWA Broad-winged Hawk Buteo platypterus 
BWTE Blue-winged Teal Anas discors 
BWWA Blue-winged Warbler Vermivora cyanoptera 
CAEG Cattle Egret Bubulcus ibis 
CAGO Canada Goose Branta Canadensis 
CANV Canvasback Aythya valisineria 
CARW Carolina Wren Thryothorus ludovicianus 
CATE Caspian Tern Hydroprogne caspia 
CAWA Canada Warbler Cardellina Canadensis 
CCSP Clay-colored Sparrow Spizella pallid 
CEDW Cedar Waxwing Bombycilla cedrorum 
CERW Cerulean Warbler Setophaga cerulean 
CHSP Chipping Sparrow Spizella passerine 
CHSW Chimney Swift Chaetura pelagic 
CLRA Clapper Rail Rallus longirostris 
CLSW Cliff Swallow Petrochelidon pyrrhonota 
CMWA Cape May Warbler Setophaga tigrina 
COEI Common Eider Somateria mollissima 
COGO Common Goldeneye Bucephala clangula 
COGR Common Grackle Quiscalus quiscula 
COHA Cooper’s Hawk Accipiter cooperii 
COLO Common Loon Gavia immer 
COME Common Merganser Mergus merganser 
COMO Common Moorhen Gallinula galeata 
CONI Common Nighthawk Chordeiles minor 
CORA Common Raven Corvus corax 
COSN Wilson’s Snipe Gallinago delicate 
COTE Common Tern Sterna hirundo 
COYE Common Yellowthroat Geothlypis trichas 
CSWA Chestnut-sided Warbler Setophaga pensylvanica 

Continued on next page 
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Table A 1.1 (cont’d) 

BBA Code Common Name Scientific Name 
CWWI Chuck-will’s-widow Antrostomus carolinensis 
DCCO Double-crested Cormorant Phalacrocorax auritus 
DICK Dickcissel Spiza Americana 
DOWO Downy Woodpecker Picoides pubescens 
EABL Eastern Bluebird Sialia sialis 
EAKI Eastern Kingbird Tyrannus tyrannus 
EAME Eastern Meadowlark Sturnella magna 
EAPH Eastern Phoebe Sayornis phoebe 
EASO Eastern Screech-Owl Megascops asio 
EATO Eastern Towhee Pipilo erythrophthalmus 
EAWP Eastern Wood-Pewee Contopus virens 
ECDO Eurasian Collared-Dove Streptopelia decaocto 
ETTI Tufted Titmouse Baeolophus bicolor 
EUST European Starling Sturnus vulgaris 
EVGR Evening Grosbeak Coccothraustes vespertinus 
FICR Fish Crow Corvus ossifragus 
FISP Field Sparrow Spizella pusilla 
FOTE Forster’s Tern Sterna forsteri 
GADW Gadwall Anas strepera 
GBBG Great Black-backed Gull Larus marinus 
GBHE Great Blue Heron Ardea Herodias 
GBTE Gull-billed Tern Gelochelidon nilotica 
GCFL Great Crested Flycatcher Myiarchus crinitus 
GCKI Golden-crowned Kinglet Regulus satrapa 
GHOW Great Horned Owl Bubo virginianus 
GLIB Glossy Ibis Plegadis falcinellus 
GOEA Golden Eagle Aquila chrysaetos 
GRAJ Gray Jay Perisoreus Canadensis 
GRCA Gray Catbird Dumetella carolinensis 
GREG Great Egret Ardea alba 
GRHE Green Heron Butorides virescens 
GRPA Gray Partridge Perdix perdix 
GRSC Greater Scaup Aythya marila 
GRSP Grasshopper Sparrow Ammodramus savannarum 
GWWA Golden-winged Warbler Vermivora chrysoptera 
HAWO Hairy Woodpecker Picoides villosus 
HERG Herring Gull Larus argentatus 
HESP Henslow’s Sparrow Ammodramus henslowii 
HETH Hermit Thrush Catharus guttatus 
HOFI House Finch Haemorhous mexicanus 
HOLA Horned Lark Eremophila alpestris 
HOME Hooded Merganser Lophodytes cucullatus 

Continued on next page 
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Table A 1.1 (cont’d) 

BBA Code Common Name Scientific Name 
HOSP House Sparrow Passer domesticus 
HOWA Hooded Warbler Setophaga citrine 
HOWR House Wren Troglodytes aedon 
INBU Indigo Bunting Passerina cyanea 
KEWA Kentucky Warbler Geothlypis Formosa 
KILL Killdeer Charadrius vociferous 
KIRA King Rail Rallus elegans 
LAGU Laughing Gull Leucophaeus atricilla 
LAWA Lawrence’s Warbler Vermivora chrysoptera x V. 

cyanoptera 
LBHE Little Blue Heron Egretta caerulea 
LEBI Least Bittern Ixobrychus exilis 
LEFL Least Flycatcher Empidonax minimus 
LEOW Long-eared Owl Asio otus 
LESC Lesser Scaup Aythya affinis 
LETE Least Tern Sternula antillarum 
LISP Lincoln’s Sparrow Melospiza lincolnii 
LOSH Loggerhead Shrike Lanius ludovicianus 
LOWA Louisiana Waterthrush Parkesia motacilla 
MALL Mallard Anas platyrhynchos 
MAWA Magnolia Warbler Setophaga magnolia 
MAWR Marsh Wren Cistothorus palustris 
MBDH Mallard x American Black Duck 

Hybrid 
Anas platyrhynchos x A.rubripes 

MERL Merlin Falco columbarius 
MODO Mourning Dove Zenaida macroura 
MOPA Monk Parakeet Myiopsitta monachus 
MOWA Mourning Warbler Geothlypis Philadelphia 
MUSW Mute Swan Cygnus olor 
MYWA Yellow-rumped Warbler Setophaga coronate 
NAWA Nashville Warbler Oreothlypis ruficapilla 
NOBO Northern Bobwhite Colinus virginianus 
NOCA Northern Cardinal Cardinalis cardinalis 
NOGO Northern Goshawk Accipiter gentilis 
NOHA Northern Harrier Circus cyaneus 
NOMO Northern Mockingbird Mimus polyglottos 
NOPA Northern Parula Setophaga Americana 
NOPI Northern Pintail Anas acuta 
NOWA Northern Waterthrush Parkesia noveboracensis 
NRWS Northern Rough-winged Swallow Stelgidopteryx serripennis 
NSHO Northern Shoveler Anas clypeata 
NSTS Nelson’s Sharp-tailed Sparrow Ammodramus nelson 

Continued on next page 
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Table A 1.1 (cont’d) 

BBA Code Common Name Scientific Name 
NSWO Northern Saw-whet Owl Aegolius acadicus 
OROR Orchard Oriole Icterus spurious 
OSFL Olive-sided Flycatcher Contopus cooperi 
OSPR Osprey Pandion haliaetus 
OVEN Ovenbird Seiurus aurocapilla 
PBGR Pied-billed Grebe Podilymbus podiceps 
PEFA Peregrine Falcon Falco peregrinus 
PHVI Philadelphia Vireo Vireo philadelphicus 
PIPL Piping Plover Charadrius melodus 
PISI Pine Siskin Spinus pinus 
PIWA Pine Warbler Setophaga pinus 
PIWO Pileated Woodpecker Dryocopus pileatus 
PRAW Prairie Warbler  Setophaga discolor 
PROW Prothonotary Warbler Protonotaria citrea 
PUFI Purple Finch Haemorhous purpureus 
PUMA Purple Martin Progne subis 
RBGR Rose-breasted Grosbeak Pheucticus ludovicianus 
RBGU Ring-billed Gull Larus delawarensis 
RBME Red-breasted Merganser Mergus serrator 
RBNU Red-breasted Nuthatch Sitta Canadensis 
RBWO Red-bellied Woodpecker Melanerpes carolinus 
RCKI Ruby-crowned Kinglet Regulus calendula 
RECR Red Crossbill Loxia curvirostra 
REDH Redhead Aythya Americana 
REVI Red-eyed Vireo Vireo olivaceus 
RHWO Red-headed Woodpecker Melanerpes erythrocephalus 
RNDU Ring-necked duck Aythya collaris 
RODO Rock Pigeon Columba livia 
ROST Roseate Tern Sterna dougallii 
RPHE Ring-necked Pheasant Phasianus colchicus 
RSHA Red-shouldered Hawk Buteo lineatus 
RTHA Red-tailed Hawk Buteo jamaicensis 
RTHU Ruby-throated Hummingbird Archilochus colubris 
RUBL Rusty Blackbird Euphagus carolinus 
RUDU Ruddy Duck Oxyura jamaicensis 
RUGR Ruffed Grouse Bonasa umbellus 
RWBL Red-winged Blackbird Agelaius phoeniceus 
SACR Sandhill Crane Grus Canadensis 
SAVS Savannah Sparrow Passerculus sandwichensis 
SCJU Dark-eyed Junco Junco hyemalis 
SCTA Scarlet Tanager Piranga olivacea 
SEOW Short-eared Owl Asio flammeus 

Continued on next page 
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Table A 1.1 (cont’d) 

BBA Code Common Name Scientific Name 
SESP Seaside Sparrow Ammodramus maritimus 
SEWR Sedge Wren Cistothorus platensis 
SNEG Snowy Egret Egretta thula 
SORA Sora Porzana Carolina 
SOSP Song Sparrow Melospiza melodia 
SPGR Spruce Grouse Falcipennis Canadensis 
SPSA Spotted Sandpiper Actitis macularius 
SSHA Sharp-shinned Hawk Accipiter striatus 
SSTS Saltmarsh Sharp-tailed Sparrow Ammodramus caudacutus 
SUTA Summer Tanager Piranga rubra 
SWSP Swamp Sparrow Melospiza Georgiana 
SWTH Swaison’s Thrush Catharus ustulatus 
TEWA Tennessee Warbler Oreothlypis peregrine 
TRES Tree Swallow Tachycineta bicolor 
TRHE Tricolored Heron Egretta tricolor 
TRUS Trumpeter Swan Cygnus buccinators 
TTWO American Three-toed Woodpecker Picoides dorsalis 
TUVU Turkey Vulture Cathartes aura 
UPSA Upland Sandpiper Bartramia longicauda 
VEER Veery Catharus fuscescens 
VESP Vesper Sparrow Pooecetes gramineus 
VIRA Virginia Rail Rallus limicola 
WAVI Warbling Vireo Vireo gilvus 
WBNU White-breasted Nuthatch Sitta carolinensis 
WEKI Western Kingbird Tyrannus verticalis 
WEME Western Meadowlark Sturnella neglecta 
WEVI White-eyed Vireo Vireo griseus 
WEWA Worm-eating Warbler Helmitheros vermivorum 
WFIB White-faced Ibis Plegadis chihi 
WIFL Willow Flycatcher Empidonax traillii 
WILL Willet Tringa semipalmata 
WIPH Wilson’s Phalarope Phalaropus tricolor 
WITU Wild Turkey Meleagris gallopavo 
WIWA Wilson’s Warbler Cardellina pusilla 
WIWR Winter Wren Troglodytes hiemalis 
WODU Wood Duck Aix sponsa 
WOTH Wood Thrush Hylocichla mustelina 
WPWI Whip-poor-will Antrostomus vociferous 
WTSP White-throated Sparrow Zonotrichia albicollis 
WWCR White-winged Crossbill Loxia leucoptera 
WWTE White-winged Tern Chlidonias leucopterus 
YBCH Yellow-breasted Chat Icteria virens 

Continued on next page 
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Table A 1.1 (cont’d) 

BBA Code Common Name Scientific Name 
YBCH Yellow-breasted Chat Icteria virens 
YBCU Yellow-billed Cuckoo Coccyzus americanus 
YBFL Yellow-bellied Flycatcher Empidonax flaviventris 
YBSA Yellow-bellied Sapsucker Sphyrapicus varius 
YCNH Yellow-crowned Night Heron Nyctanassa violacea 
YPWA Palm Warbler Setophaga palmarum 
YSFL Northern Flicker Colaptes auratus 
YTVI Yellow-throated Vireo Vireo flavifrons 
YTWA Yellow-throated Warbler Setophaga dominica 
YWAR Yellow Warbler Setophaga petechia 
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Table A 2.1 Comparison of the spatially-varying intercept (SVI) and spatially-varying 
coefficients (SVC) models for grassland and forest birds recorded during the 2000-05 New York 
State Breeding Bird Atlas. 

Habitat 
Guild 

Species Model ΔDIC 

Common Name Scientific 
Name  

Grassland 
Birds  

American 
Kestrel 

Falco 
sparverius 

Spatially-Varying Coefficients 0 
Spatially-Varying Intercept  175.575 

Northern 
Harrier Circus cyaneus Spatially-Varying Coefficients 0 

Spatially-Varying Intercept  156.97 
Eastern 
Bluebird Sialia sialis Spatially-Varying Coefficients 0 

Spatially-Varying Intercept  132.33 
Eastern 
Kingbird 

Tyrannus 
tyrannus 

Spatially-Varying Coefficients 0 
Spatially-Varying Intercept  79.087 

Horned Lark Eremophila 
alpestris 

Spatially-Varying Coefficients 0 
Spatially-Varying Intercept  42.339 

Grasshopper 
Sparrow 

Ammodramus 
savannarum 

Spatially-Varying Coefficients 0 
Spatially-Varying Intercept  30.121 

Savannah 
Sparrow 

Passerculus 
sandwichensis 

Spatially-Varying Coefficients 0 
Spatially-Varying Intercept  169.515 

Vesper Sparrow Pooecetes 
gramineus 

Spatially-Varying Coefficients 0 
Spatially-Varying Intercept  52.299 

Bobolink Dolichonyx 
oryzivorus 

Spatially-Varying Coefficients 0 
Spatially-Varying Intercept  240.449 

Brown-headed 
Cowbird Molothrus ater Spatially-Varying Coefficients 0 

Spatially-Varying Intercept  87.519 
Eastern 
Meadowlark 

Sturnella 
magna 

Spatially-Varying Coefficients 0 
Spatially-Varying Intercept  162.862 

Forest 
Birds  

Blue-gray 
Gnatcatcher 

Polioptila 
caerulea 

Spatially-Varying Coefficients 0 
Spatially-Varying Intercept  73.544 

Blue-headed 
Vireo Vireo solitaries Spatially-Varying Coefficients 0 

Spatially-Varying Intercept  112.179 
Golden-
crowned 
Kinglet 

Regulus 
satrapa 
 

Spatially-Varying Coefficients 0 

Spatially-Varying Intercept  18.148 

Great Crested 
Flycatcher 

Myiarchus 
crinitus 

Spatially-Varying Coefficients 0 
Spatially-Varying Intercept  99.505 

Red-breasted 
Nuthatch 

Sitta 
canadensis 

Spatially-Varying Coefficients 0 
Spatially-Varying Intercept  114.246 

Continued on next page 
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Table A 2.1 (cont’d) 

Habitat 
Guild 

Species Model ΔDIC 

Common Name Scientific 
Name  

Forest  
Birds  

Tufted 
Titmouse 

Baeolophus 
bicolor 

Spatially-Varying Coefficients 0 
Spatially-Varying Intercept  138.906 

Veery Catharus 
fuscescens 

Spatially-Varying Coefficients 0 
Spatially-Varying Intercept  133.793 

Black-and-
white Warbler Mniotilta varia Spatially-Varying Coefficients 0 

Spatially-Varying Intercept  115.553 
Black-throated 
Blue Warbler 

Setophaga 
caerulescens 

Spatially-Varying Coefficients 0 
Spatially-Varying Intercept  50.915 

Black-throated 
Green Warbler 

Dendroica 
virens 

Spatially-Varying Coefficients 0 
Spatially-Varying Intercept  82.678 

Blackburnian 
Warbler 

Dendroica 
fusca 

Spatially-Varying Coefficients 0 
Spatially-Varying Intercept  154.844 

Canada Warbler Cardellina 
canadensis 

Spatially-Varying Coefficients 0 
Spatially-Varying Intercept  96.563 
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Table A 3.1 Coefficient estimates (βs) of each covariate resulting from all tested models of 
temporal turnover (starting with the best model as indicated by DIC) for four avian groupings: all 
species, long-distance migrants, short-distance migrants, and resident species. Covariates 
included intercept (INT), magnitude of the 25-year (1980-2005) trend in average maximum 
temperature of the breeding season (TMAX), magnitude of the 25-year (1980-2005) trend in 
average minimum temperature of the breeding season (TMIN), magnitude of the 25-year (1980-
2005) trend in average total precipitation of the breeding season (PRECIP), edge density (ED), 
percent developed land (DEVEL), interaction between the magnitude of the 25-year (1980-2005) 
trend in average maximum temperature of the breeding season and edge density (TMAX*ED), 
interaction between the magnitude of the 25-year (1980-2005) trend in average minimum 
temperature of the breeding season and edge density (TMIN*ED), interaction between 
magnitude of the 25-year (1980-2005) trend in average total precipitation of the breeding season  
and edge density (PRECIP*ED), and survey effort (EFF). 50% indicates the mean of the 
posterior distribution, while 2.5% and 97.5% are the lower and upper quantiles of the posterior 
distribution. 

Avian 
Grouping Model Coefficient Coefficient Estimates 

50% 2.5% 97.5% 

All Species 

TMAX*ED + 
TMIN*ED + 
PRECIP*ED + 
DEVEL + EFF 

βINT -0.368 -0.442 -0.294 
βTMAX 0.018 0.005 0.030 
βTMIN 0.020 0.008 0.032 
βPRECIP -0.014 -0.034 0.005 
βED -0.043 -0.053 -0.032 
βDEVEL 0.034 0.023 0.045 
βTMAX-ED -0.003 -0.012 0.006 
βTMIN-ED  -0.017 -0.025 -0.008 
βPRECIP-ED 0.070 -0.002 0.018 
βEFF -0.016 -0.022 -0.009 

TMAX + TMIN + 
PRECIP + ED + 
DEVEL + EFF 

β0 -0.397 -0.466 -0.318 
βTMAX 0.019 0.008 0.031 
βTMIN 0.024 0.012 0.037 
βPRECIP -0.019 -0.038 -0.002 
βED -0.041 -0.054 -0.030 
βDEVEL 0.035 0.024 0.046 

 βEFF -0.016 -0.022 -0.009 

TMAX*ED + 
TMIN*ED + 
PRECIP*ED + EFF 

βINT -0.351 -0.433 -0.267 
βTMAX 0.014 0.002 0.025 
βTMIN 0.020 0.007 0.032 
βPRECIP -0.012 -0.028 0.004 
βED -0.046 -0.056 -0.035 
βTMAX-ED -0.001 -0.011 0.008 
βTMIN-ED  -0.015 -0.025 -0.006 
βPRECIP-ED 0.012 0.002 0.021 
βEFF -0.015 -0.022 -0.008 

Continued on next page 
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Table A 3.1 (cont’d) 

Avian 
Grouping Model Coefficient Coefficient Estimates 

50% 2.5% 97.5% 

All Species 

TMAX + TMIN + 
PRECIP + ED + EFF 

β0 -0.366 -0.431 -0.299 
βTMAX 0.014 0.002 0.028 
βTMIN 0.022 0.010 0.034 
βPRECIP -0.017 -0.033 -0.002 
βED -0.043 -0.054 -0.031 
βEFF -0.015 -0.022 -0.009 

TMAX + TMIN + 
PRECIP + EFF 

β0 -0.379 -0.451 -0.327 
βTMAX 0.019 0.007 0.031 
βTMIN 0.023 0.010 0.034 
βPRECIP -0.027 -0.041 -0.009 
βEFF -0.015 -0.021 -0.009 

Long-distance 
Migrants 

TMAX*ED + 
TMIN*ED + 
PRECIP*ED + 
DEVEL + EFF 

βINT -0.417 -0.507 -0.188 
βTMAX 0.016 -0.003 0.034 
βTMIN 0.033 0.015 0.050 
βPRECIP -0.001 -0.028 0.026 
βED 0.008 -0.008 0.024 
βDEVEL 0.074 0.058 0.092 
βTMAX-ED 0.002 -0.011 0.016 
βTMIN-ED  -0.016 -0.030 -0.003 
βPRECIP-ED 0.019 0.003 0.030 
βEFF -0.016 -0.026 -0.006 

TMAX + TMIN + 
PRECIP + ED + 
DEVEL + EFF 

β0 -0.433 -0.523 -0.303 
βTMAX 0.015 -0.003 0.032 
βTMIN 0.035 0.018 0.049 
βPRECIP -0.012 -0.038 0.011 
βED 0.011 -0.006 0.027 
βDEVEL 0.074 0.057 0.092 
βEFF -0.016 -0.026 -0.006 

TMAX*ED + 
TMIN*ED + 
PRECIP*ED + EFF 

βINT -0.370 -0.447 -0.285 
βTMAX 0.009 -0.009 0.026 
βTMIN 0.027 0.012 0.044 
βPRECIP 0.006 -0.018 0.030 
βED 0.005 -0.010 0.022 
βTMAX-ED 0.006 -0.008 0.019 
βTMIN-ED  -0.015 -0.028 -0.003 
βPRECIP-ED 0.024 0.009 0.038 
βEFF -0.014 -0.024 -0.003 

Continued on next page 
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Table A 3.1 (cont’d) 

Avian 
Grouping Model Coefficient Coefficient Estimates 

50% 2.5% 97.5% 

Long-distance 
Migrants 

TMAX + TMIN + 
PRECIP + ED + EFF 

β0 -0.277 -0.407 -0.125 
βTMAX 0.009 -0.008 0.026 
βTMIN 0.032 0.014 0.050 
βPRECIP -0.010 -0.036 0.017 
βED 0.010 -0.006 0.027 
βEFF -0.014 -0.025 -0.005 

TMAX + TMIN + 
PRECIP + EFF 

β0 -0.405 -0.493 -0.263 
βTMAX 0.007 -0.013 0.023 
βTMIN 0.031 0.014 0.050 
βPRECIP -0.008 -0.033 0.014 
βEFF -0.014 -0.024 -0.003 

Short-distance 
Migrants 

TMAX + TMIN + 
PRECIP + ED + 
DEVEL + EFF 

β0 -0.598 -0.656 -0.513 
βTMAX 0.029 0.005 0.051 
βTMIN 0.015 -0.004 0.037 
βPRECIP 0.001 -0.028 0.027 
βED -0.068 -0.089 -0.046 
βDEVEL 0.058 0.039 0.079 
βEFF -0.008 -0.022 0.004 

TMAX*ED + 
TMIN*ED + 
PRECIP*ED + 
DEVEL + EFF 

βINT -0.584 -0.640 -0.529 
βTMAX 0.027 0.003 0.050 
βTMIN 0.016 -0.008 0.035 
βPRECIP 0.000 -0.033 0.032 
βED -0.070 -0.093 -0.046 
βDEVEL 0.058 0.037 0.079 
βTMAX-ED 0.004 -0.014 0.022 
βTMIN-ED  -0.014 -0.032 0.004 
βPRECIP-ED -0.004 -0.022 0.017 
βEFF -0.009 -0.022 0.003 

TMAX + TMIN + 
PRECIP + ED + EFF 

β0 -0.579 -0.656 -0.518 
βTMAX 0.019 -0.004 0.042 
βTMIN 0.009 -0.015 0.033 
βPRECIP 0.002 -0.030 0.033 
βED -0.072 -0.094 -0.046 
βEFF -0.007 -0.020 0.006 

Continued on next page 
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Table A 3.1 (cont’d) 

Avian 
Grouping Model Coefficient Coefficient Estimates 

50% 2.5% 97.5% 

Short-distance 
Migrants 

TMAX*ED + 
TMIN*ED + 
PRECIP*ED + EFF 

βINT -0.562 -0.632 -0.456 
βTMAX 0.021 -0.002 0.042 
βTMIN 0.011 -0.011 0.033 
βPRECIP 0.003 -0.029 0.039 
βED -0.072 -0.094 -0.050 
βTMAX-ED 0.008 -0.011 0.026 
βTMIN-ED  -0.012 -0.031 0.006 
βPRECIP-ED 0.002 -0.019 0.021 
βEFF -0.007 -0.020 0.005 

TMAX + TMIN + 
PRECIP + EFF 

β0 -0.501 -0.576 -0.385 
βTMAX 0.032 0.009 0.053 
βTMIN 0.010 -0.013 0.031 
βPRECIP -0.008 -0.048 0.024 
βEFF -0.009 -0.024 0.004 

Resident 
Species 

TMAX*ED + 
TMIN*ED + 
PRECIP*ED + 
DEVEL + EFF 

βINT -0.232 -0.331 -0.101 
βTMAX 0.026 0.005 0.046 
βTMIN 0.009 -0.013 0.028 
βPRECIP -0.041 -0.071 -0.016 
βED -0.105 -0.128 -0.086 
βDEVEL -0.027 -0.047 -0.010 
βTMAX-ED -0.016 -0.032 -0.002 
βTMIN-ED  -0.017 -0.034 -0.002 
βPRECIP-ED 0.002 -0.015 0.021 
βEFF -0.024 -0.036 -0.012 

TMAX*ED + 
TMIN*ED + 
PRECIP*ED + EFF 

βINT -0.169 -0.349 -0.072 
βTMAX 0.024 0.004 0.047 
βTMIN 0.009 -0.012 0.033 
βPRECIP -0.044 -0.074 -0.014 
βED -0.104 -0.123 -0.085 
βTMAX-ED -0.018 -0.035 -0.003 
βTMIN-ED  -0.018 -0.035 -0.002 
βPRECIP-ED -0.001 -0.018 0.017 
βEFF -0.025 -0.037 -0.014 

TMAX + TMIN + 
PRECIP + ED + 
DEVEL + EFF 

β0 -0.244 -0.350 -0.097 
βTMAX 0.028 0.006 0.051 
βTMIN 0.014 -0.005 0.035 
βPRECIP -0.045 -0.071 -0.019 
βED -0.103 -0.122 -0.083 
βDEVEL -0.027 -0.046 -0.009 
βEFF -0.024 -0.037 -0.012 
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Table A 3.1 (cont’d) 

Avian 
Grouping Model Coefficient Coefficient Estimates 

50% 2.5% 97.5% 

Resident 
Species 

TMAX + TMIN + 
PRECIP + ED + EFF 

β0 -0.202 -0.337 -0.112 
βTMAX 0.032 0.011 0.052 
βTMIN 0.015 -0.005 0.034 
βPRECIP -0.041 -0.070 -0.008 
βED -0.102 -0.121 0.082 
βEFF -0.025 -0.037 -0.013 

TMAX + TMIN + 
PRECIP + EFF 

β0 -0.274 -0.429 -0.201 
βTMAX 0.042 0.021 0.063 
βTMIN 0.012 -0.009 0.036 
βPRECIP -0.064 -0.093 -0.035 
βEFF -0.025 -0.037 -0.014 
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Table A 3.2 Coefficient estimates (βs) of each covariate resulting from all tested models of 
extinction (starting with the best model as indicated by DIC) for four avian groupings: all 
species, long-distance migrants, short-distance migrants, and resident species. Covariates 
included intercept (INT), magnitude of the 25-year (1980-2005) trend in average maximum 
temperature of the breeding season (TMAX), magnitude of the 25-year (1980-2005) trend in 
average minimum temperature of the breeding season (TMIN), magnitude of the 25-year (1980-
2005) trend in average total precipitation of the breeding season (PRECIP), edge density (ED), 
percent developed land (DEVEL), interaction between the magnitude of the 25-year (1980-2005) 
trend in average maximum temperature of the breeding season and edge density (TMAX*ED), 
interaction between the magnitude of the 25-year (1980-2005) trend in average minimum 
temperature of the breeding season and edge density (TMIN*ED), interaction between 
magnitude of the 25-year (1980-2005) trend in average total precipitation of the breeding season  
and edge density (PRECIP*ED), and survey effort (EFF). 50% indicates the mean of the 
posterior distribution, while 2.5% and 97.5% are the lower and upper quantiles of the posterior 
distribution. 

Avian 
Grouping Model Coefficient Coefficient Estimates 

50% 2.5% 97.5% 

All Species 

TMAX*ED + 
TMIN*ED + 
PRECIP*ED + 
DEVEL + EFF 

βINT -1.016 -1.088 -0.923 
βTMAX 0.007 -0.008 0.022 
βTMIN 0.044 0.027 0.061 
βPRECIP 0.036 0.014 0.061 
βED -0.079 -0.093 -0.063 
βDEVEL 0.043 0.029 0.058 
βTMAX-ED -0.002 -0.014 0.011 
βTMIN-ED  -0.040 -0.052 -0.025 
βPRECIP-ED 0.010 -0.003 0.026 
βEFF -0.031 -0.040 -0.022 

TMAX*ED + 
TMIN*ED + 
PRECIP*ED + EFF 

βINT -1.039 -1.105 -0.963 
βTMAX 0.000 -0.017 0.019 
βTMIN 0.040 0.025 0.055 
βPRECIP 0.039 0.016 0.063 
βED -0.082 -0.098 -0.068 
βTMAX-ED 0.000 -0.013 0.013 
βTMIN-ED  -0.038 -0.052 -0.026 
βPRECIP-ED 0.014 0.001 0.027 
βEFF -0.030 -0.039 -0.020 

TMAX + TMIN + 
PRECIP + ED + 
DEVEL + EFF 

β0 -0.948 -1.086 -0.832 
βTMAX 0.010 -0.007 0.026 
βTMIN 0.053 0.039 0.070 
βPRECIP 0.029 0.008 0.051 
βED -0.074 -0.088 -0.059 
βDEVEL 0.043 0.029 0.056 
βEFF -0.030 -0.039 -0.021 

Continued on next page 
  



146 
 

Table A 3.2 (cont’d) 

Avian 
Grouping Model Coefficient Coefficient Estimates 

50% 2.5% 97.5% 

All Species 

TMAX + TMIN + 
PRECIP + ED + EFF 

β0 -0.984 -1.079 -0.887 
βTMAX 0.004 -0.012 0.021 
βTMIN 0.052 0.037 0.066 
βPRECIP 0.029 0.007 0.051 
βED -0.075 -0.091 -0.061 
βEFF -0.030 -0.038 -0.021 

TMAX + TMIN + 
PRECIP + EFF 

β0 -1.014 -1.114 -0.843 
βTMAX 0.013 -0.006 0.030 
βTMIN 0.053 0.038 0.070 
βPRECIP 0.012 -0.012 0.033 
βEFF -0.031 -0.040 -0.022 

Long-distance 
Migrants 

TMAX*ED + 
TMIN*ED + 
PRECIP*ED + 
DEVEL + EFF 

βINT -1.063 -1.176 -0.977 
βTMAX -0.024 -0.049 -0.001 
βTMIN 0.056 0.033 0.083 
βPRECIP 0.044 0.010 0.080 
βED -0.029 -0.050 -0.006 
βDEVEL 0.087 0.065 0.109 
βTMAX-ED -0.008 -0.026 0.011 
βTMIN-ED  -0.032 -0.050 -0.013 
βPRECIP-ED 0.026 0.007 0.046 
βEFF -0.024 -0.037 -0.010 

TMAX + TMIN + 
PRECIP + ED + 
DEVEL + EFF 

β0 -1.101 -1.171 -1.044 
βTMAX -0.021 -0.047 0.004 
βTMIN 0.069 0.047 0.093 
βPRECIP 0.030 0.000 0.060 
βED -0.023 -0.044 0.001 
βDEVEL 0.087 0.066 0.110 
βEFF -0.024 -0.037 -0.011 

TMAX*ED + 
TMIN*ED + 
PRECIP*ED + EFF 

βINT -0.985 -1.065 -0.896 
βTMAX -0.031 -0.056 -0.009 
βTMIN 0.054 0.030 0.084 
βPRECIP 0.051 0.012 0.082 
βED -0.034 -0.056 -0.012 
βTMAX-ED -0.005 -0.023 0.013 
βTMIN-ED  -0.028 -0.046 -0.010 
βPRECIP-ED 0.035 0.017 0.054 
βEFF -0.023 -0.035 -0.010 

Continued on next page 
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Table A 3.2 (cont’d) 

Avian 
Grouping Model Coefficient Coefficient Estimates 

50% 2.5% 97.5% 

Long-distance 
Migrants 

TMAX + TMIN + 
PRECIP + EFF 

β0 -1.009 -1.134 -0.850 
βTMAX -0.023 -0.046 -0.004 
βTMIN 0.066 0.042 0.091 
βPRECIP 0.029 -0.003 0.061 
βEFF -0.022 -0.035 -0.010 

TMAX + TMIN + 
PRECIP + ED + EFF 

β0 -1.125 -1.398 -0.962 
βTMAX -0.027 -0.051 -0.005 
βTMIN 0.065 0.042 0.090 
βPRECIP 0.031 -0.004 0.061 
βED -0.024 -0.044 -0.002 
βEFF -0.023 -0.037 -0.010 

Short-distance 
Migrants 

TMAX*ED + 
TMIN*ED + 
PRECIP*ED + 
DEVEL + EFF 

βINT -1.302 -1.441 -1.215 
βTMAX 0.031 -0.001 0.060 
βTMIN 0.024 -0.007 0.059 
βPRECIP 0.040 -0.005 0.078 
βED -0.126 -0.153 -0.097 
βDEVEL 0.067 0.042 0.096 
βTMAX-ED 0.014 -0.010 0.040 
βTMIN-ED  -0.037 -0.062 -0.010 
βPRECIP-ED -0.013 -0.038 0.013 
βEFF -0.032 -0.050 -0.013 

TMAX + TMIN + 
PRECIP + ED + 
DEVEL + EFF 

β0 -1.307 -1.423 -1.181 
βTMAX 0.031 0.001 0.062 
βTMIN 0.027 -0.001 0.059 
βPRECIP 0.039 0.000 0.087 
βED -0.125 -0.156 -0.094 
βDEVEL 0.068 0.038 0.096 
βEFF -0.032 -0.050 -0.015 

TMAX + TMIN + 
PRECIP + ED + EFF 

β0 -1.179 -1.285 -1.108 
βTMAX 0.023 -0.010 0.053 
βTMIN 0.027 -0.003 0.057 
βPRECIP 0.039 -0.002 0.077 
βED -0.127 -0.157 -0.099 
βEFF -0.031 -0.049 -0.012 

Continued on next page 
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Table A 3.2 (cont’d) 

Avian 
Grouping Model Coefficient Coefficient Estimates 

50% 2.5% 97.5% 

Short-distance 
Migrants 

TMAX*ED + 
TMIN*ED + 
PRECIP*ED + EFF 

βINT -1.300 -1.389 -0.981 
βTMAX 0.022 -0.009 0.059 
βTMIN 0.021 -0.015 0.054 
βPRECIP 0.035 -0.007 0.073 
βED -0.129 -0.159 -0.101 
βTMAX-ED 0.016 -0.010 0.042 
βTMIN-ED  -0.034 -0.060 -0.008 
βPRECIP-ED -0.007 -0.034 0.019 
βEFF -0.030 -0.050 -0.011 

TMAX + TMIN + 
PRECIP + EFF 

β0 -1.223 -1.397 -1.014 
βTMAX 0.035 0.005 0.065 
βTMIN 0.029 -0.006 0.062 
βPRECIP 0.008 -0.031 0.056 
βEFF -0.032 -0.050 -0.014 

Resident 
Species 

TMAX*ED + 
TMIN*ED + 
PRECIP*ED + 
DEVEL + EFF 

βINT -1.209 -1.351 -1.015 
βTMAX 0.035 0.003 0.068 
βTMIN 0.019 -0.011 0.052 
βPRECIP 0.035 -0.009 0.071 
βED -0.144 -0.174 -0.133 
βDEVEL -0.032 -0.058 -0.005 
βTMAX-ED -0.010 -0.033 0.014 
βTMIN-ED  -0.047 -0.073 -0.019 
βPRECIP-ED 0.010 -0.019 0.034 
βEFF -0.041 -0.058 -0.024 

TMAX*ED + 
TMIN*ED + 
PRECIP*ED + EFF 

βINT -1.210 -1.347 -1.055 
βTMAX 0.039 0.011 0.068 
βTMIN 0.023 -0.010 0.054 
βPRECIP 0.036 -0.010 0.082 
βED -0.143 -0.172 -0.115 
βTMAX-ED -0.010 -0.033 0.011 
βTMIN-ED  -0.048 -0.071 -0.024 
βPRECIP-ED 0.008 -0.018 0.034 
βEFF -0.042 -0.061 -0.025 

TMAX + TMIN + 
PRECIP + ED + EFF 

β0 -1.206 -1.300 -1.034 
βTMAX 0.046 0.012 0.079 
βTMIN 0.034 0.005 0.061 
βPRECIP 0.021 -0.016 0.064 
βED -0.131 -0.160 -0.104 
βEFF -0.041 -0.059 -0.024 

Continued on next page 
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Table A 3.2 (cont’d) 

Avian 
Grouping Model Coefficient Coefficient Estimates 

50% 2.5% 97.5% 

Resident 
Species 

TMAX + TMIN + 
PRECIP + ED + 
DEVEL + EFF 

β0 -1.194 -1.308 -1.044 
βTMAX 0.040 0.007 -0.074 
βTMIN 0.033 0.000 0.065 
βPRECIP 0.026 -0.017 0.069 
βED -0.136 -0.165 -0.110 
βDEVEL -0.034 -0.063 -0.007 
βEFF -0.041 -0.059 -0.025 

TMAX + TMIN + 
PRECIP + EFF 

β0 -1.253 -1.394 -1.135 
βTMAX 0.059 0.029 0.092 
βTMIN 0.035 0.005 0.064 
βPRECIP -0.009 -0.045 0.033 
βEFF -0.044 -0.061 -0.027 
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Table A 3.3 Coefficient estimates (βs) of each covariate resulting from all tested models of 
colonization (starting with the best model as indicated by DIC) for four avian groupings: all 
species, long-distance migrants, short-distance migrants, and resident species. Covariates 
included intercept (INT), magnitude of the 25-year (1980-2005) trend in average maximum 
temperature of the breeding season (TMAX), magnitude of the 25-year (1980-2005) trend in 
average minimum temperature of the breeding season (TMIN), magnitude of the 25-year (1980-
2005) trend in average total precipitation of the breeding season (PRECIP), edge density (ED), 
percent developed land (DEVEL), interaction between the magnitude of the 25-year (1980-2005) 
trend in average maximum temperature of the breeding season and edge density (TMAX*ED), 
interaction between the magnitude of the 25-year (1980-2005) trend in average minimum 
temperature of the breeding season and edge density (TMIN*ED), interaction between 
magnitude of the 25-year (1980-2005) trend in average total precipitation of the breeding season  
and edge density (PRECIP*ED), and survey effort (EFF). 50% indicates the mean of the 
posterior distribution, while 2.5% and 97.5% are the lower and upper quantiles of the posterior 
distribution. 

Avian 
Grouping Model Coefficient Coefficient Estimates 

50% 2.5% 97.5% 

All Species 

TMAX*ED + 
TMIN*ED + 
PRECIP*ED + 
DEVEL + EFF 

βINT -1.337 -1.408 -1.276 
βTMAX 0.020 0.006 0.035 
βTMIN -0.011 -0.025 0.003 
βPRECIP -0.058 -0.076 -0.038 
βED -0.005 -0.017 0.009 
βDEVEL 0.021 0.007 0.033 
βTMAX-ED 0.000 -0.011 0.011 
βTMIN-ED  0.011 0.000 0.022 
βPRECIP-ED 0.011 -0.001 0.023 
βEFF 0.002 -0.006 0.010 

TMAX + TMIN + 
PRECIP + ED + 
DEVEL + EFF 

β0 -1.323 -1.422 -1.269 
βTMAX 0.017 0.003 0.032 
βTMIN -0.011 -0.025 0.002 
βPRECIP -0.059 -0.077 -0.040 
βED -0.004 -0.019 0.012 
βDEVEL 0.022 0.009 0.035 
βEFF 0.002 -0.006 0.010 

TMAX + TMIN + 
PRECIP + EFF 

β0 -1.320 -1.401 -1.260 
βTMAX 0.017 0.000 0.031 
βTMIN -0.013 -0.026 0.001 
βPRECIP -0.061 -0.077 -0.042 
βEFF 0.003 -0.005 0.010 

Continued on next page 
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Table A 3.3 (cont’d) 

Avian 
Grouping Model Coefficient Coefficient Estimates 

50% 2.5% 97.5% 

All Species 

TMAX*ED + 
TMIN*ED + 
PRECIP*ED + EFF 

βINT -1.355 -1.412 -1.247 
βTMAX 0.016 0.000 0.030 
βTMIN -0.013 -0.028 0.003 
βPRECIP -0.056 -0.075 -0.037 
βED -0.005 -0.019 0.010 
βTMAX-ED 0.001 -0.011 0.012 
βTMIN-ED  0.011 0.000 0.022 
βPRECIP-ED 0.013 0.002 0.026 
βEFF 0.003 -0.006 0.011 

TMAX + TMIN + 
PRECIP + ED + EFF 

β0 -1.317 -1.364 -1.254 
βTMAX 0.015 0.001 0.031 
βTMIN -0.012 -0.025 0.002 
βPRECIP -0.060 -0.079 -0.041 
βED -0.006 -0.019 0.007 
βEFF 0.002 -0.006 0.010 

Long-distance 
Migrants 

TMAX*ED + 
TMIN*ED + 
PRECIP*ED + 
DEVEL + EFF 

βINT -1.410 -1.471 -1.296 
βTMAX 0.046 0.026 0.068 
βTMIN -0.006 -0.027 0.016 
βPRECIP -0.045 -0.078 -0.013 
βED 0.043 0.018 0.063 
βDEVEL 0.041 0.020 0.062 
βTMAX-ED 0.015 -0.002 0.034 
βTMIN-ED  0.008 -0.009 0.026 
βPRECIP-ED 0.015 -0.004 0.034 
βEFF -0.002 -0.016 0.011 

TMAX + TMIN + 
PRECIP + ED + 
DEVEL + EFF 

β0 -1.423 -1.503 -1.358 
βTMAX 0.043 0.017 0.066 
βTMIN -0.007 -0.029 0.014 
βPRECIP -0.056 -0.083 -0.023 
βED 0.042 0.022 0.065 
βDEVEL 0.042 0.020 0.064 
βEFF -0.003 -0.016 0.011 
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Table A 3.3 (cont’d) 

Avian 
Grouping Model Coefficient Coefficient Estimates 

50% 2.5% 97.5% 

Long-distance 
Migrants 

TMAX*ED + 
TMIN*ED + 
PRECIP*ED + EFF 

βINT -1.432 -1.518 -1.369 
βTMAX 0.042 0.019 0.067 
βTMIN -0.008 -0.028 0.012 
βPRECIP -0.047 -0.078 -0.016 
βED 0.041 0.022 0.060 
βTMAX-ED 0.019 0.000 0.036 
βTMIN-ED  0.008 -0.008 0.026 
βPRECIP-ED 0.018 -0.003 0.036 
βEFF 0.000 -0.013 0.011 

TMAX + TMIN + 
PRECIP + ED + EFF 

β0 -1.421 -1.491 -1.361 
βTMAX 0.037 0.012 0.059 
βTMIN -0.010 -0.031 0.013 
βPRECIP -0.057 -0.083 -0.028 
βED 0.040 0.018 0.064 
βEFF -0.001 -0.014 0.011 

TMAX + TMIN + 
PRECIP + EFF 

β0 -1.418 -1.484 -1.355 
βTMAX 0.033 0.012 0.056 
βTMIN -0.010 -0.030 0.012 
βPRECIP -0.047 -0.077 -0.019 
βEFF -0.001 -0.015 0.012 

Short-distance 
Migrants 

TMAX + TMIN + 
PRECIP + EFF 

β0 -1.436 -1.507 -1.362 
βTMAX 0.009 -0.019 0.040 
βTMIN -0.006 -0.034 0.019 
βPRECIP -0.029 -0.066 0.009 
βEFF 0.014 -0.003 0.029 

TMAX + TMIN + 
PRECIP + ED + 
DEVEL + EFF 

β0 -1.429 -1.530 -1.361 
βTMAX 0.014 -0.014 0.040 
βTMIN -0.006 -0.036 0.021 
βPRECIP -0.028 -0.063 0.015 
βED -0.003 -0.028 0.023 
βDEVEL 0.027 0.000 0.052 
βEFF 0.013 -0.003 0.028 
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Table A 3.3 (cont’d) 

Avian 
Grouping Model Coefficient Coefficient Estimates 

50% 2.5% 97.5% 

Short-distance 
Migrants 

TMAX*ED + 
TMIN*ED + 
PRECIP*ED + 
DEVEL + EFF 

βINT -1.457 -1.564 -1.383 
βTMAX 0.016 -0.016 0.043 
βTMIN -0.006 -0.033 0.022 
βPRECIP -0.027 -0.066 0.009 
βED -0.003 -0.029 0.026 
βDEVEL 0.026 -0.004 0.052 
βTMAX-ED 0.000 -0.021 0.020 
βTMIN-ED  0.009 -0.012 0.031 
βPRECIP-ED 0.007 -0.016 0.030 
βEFF 0.013 -0.002 0.028 

TMAX + TMIN + 
PRECIP + ED + EFF 

β0 -1.448 -1.583 -1.371 
βTMAX 0.011 -0.018 0.045 
βTMIN -0.011 -0.036 0.015 
βPRECIP -0.026 -0.064 0.009 
βED -0.006 -0.031 0.019 
βEFF 0.014 -0.002 0.028 

TMAX*ED + 
TMIN*ED + 
PRECIP*ED + EFF 

βINT -1.475 -1.552 -1.396 
βTMAX 0.013 -0.018 0.044 
βTMIN -0.010 -0.036 0.021 
βPRECIP -0.028 -0.071 0.015 
βED -0.002 -0.028 0.022 
βTMAX-ED 0.001 -0.021 0.023 
βTMIN-ED  0.013 -0.010 0.035 
βPRECIP-ED 0.012 -0.011 0.034 
βEFF 0.014 -0.001 0.030 

Resident 
Species 

TMAX + TMIN + 
PRECIP + ED + 
DEVEL + EFF 

β0 -0.989 -1.137 -0.829 
βTMAX 0.000 -0.025 0.026 
βTMIN -0.014 -0.038 0.011 
βPRECIP -0.090 -0.126 -0.050 
βED -0.062 -0.085 -0.040 
βDEVEL -0.016 -0.039 0.006 
βEFF -0.006 -0.019 0.006 

TMAX + TMIN + 
PRECIP + ED + EFF 

β0 -0.976 -1.113 -0.864 
βTMAX 0.000 -0.024 0.025 
βTMIN -0.012 -0.037 0.012 
βPRECIP -0.091 -0.122 -0.057 
βED -0.061 -0.084 -0.037 
βEFF -0.007 -0.019 0.007 
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Table A 3.3 (cont’d) 

Avian 
Grouping Model Coefficient Coefficient Estimates 

50% 2.5% 97.5% 

Resident 
Species 

TMAX*ED + 
TMIN*ED + 
PRECIP*ED + 
DEVEL + EFF 

βINT -1.072 -1.200 -0.950 
βTMAX -0.002 -0.025 0.025 
βTMIN -0.012 -0.035 0.012 
βPRECIP -0.090 -0.127 -0.060 
βED -0.060 -0.086 -0.036 
βDEVEL -0.015 -0.038 0.007 
βTMAX-ED -0.014 -0.033 0.006 
βTMIN-ED  0.013 -0.007 0.031 
βPRECIP-ED 0.004 -0.014 0.025 
βEFF -0.006 -0.020 0.008 

TMAX*ED + 
TMIN*ED + 
PRECIP*ED + EFF 

βINT -0.974 -1.079 -0.819 
βTMAX -0.001 -0.024 0.023 
βTMIN -0.011 -0.033 0.012 
βPRECIP -0.090 -0.121 -0.055 
βED -0.058 -0.080 -0.035 
βTMAX-ED -0.015 -0.034 0.005 
βTMIN-ED  0.013 -0.007 0.031 
βPRECIP-ED 0.003 -0.017 0.022 
βEFF -0.006 -0.021 0.007 

TMAX + TMIN + 
PRECIP + EFF 

β0 -0.951 -1.170 -0.681 
βTMAX 0.006 -0.016 0.031 
βTMIN -0.011 -0.034 0.013 
βPRECIP -0.099 -0.128 -0.070 
βEFF -0.007 -0.022 0.007 
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Figure A 1.1 Spatial distribution of (A) magnitude of the 25-year (1980-2005) trend in average maximum temperatures [ºC], (B) 
magnitude of the 25-year (1980-2005) trend in average minimum temperatures [ºC], (C) magnitude of the 25-year (1980-2005) trend 
in total precipitation [mm], (D) percent developed land [%], (E) edge density [m/ha], and (F) survey effort [h]. 
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Figure A 1.2 Deviations of the spatially-varying coefficient estimates from the global mean for (A) the intercept, (B) the magnitude of 
the 25-year (1980-2005) trend in average maximum temperature of the breeding season (βTMAX), (C) the magnitude of the 25-year 
(1980-2005) trend in average minimum temperature of the breeding season (βTMIN), (D) the magnitude of the 25-year (1980-2005) 
trend rates in average total precipitation of the breeding season (βPRECIP), (E) percent developed land (βDEVEL), (F) edge density (βED), 
and (G) effort (βEFF). 
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Figure A 2.1 The relationships between the amount of habitat (GPLAND and FPLAND for 
grassland and forest birds, respectively; left-hand panel of each column) and spatially-varying 
coefficient estimates (right-hand panel of each column) of 2000-05 average spring maximum 
temperature (TMAX, left column), 2000-05 average spring minimum temperature (TMIN, 
middle column), and 2000-05 average total spring precipitation (PRECIP, right column) for 
[from top to bottom] American kestrel (AMKE), northern harrier (NOHA), eastern bluebird 
(EABL), eastern kingbird (EAKI), horned lark (HOLA), grasshopper sparrow (GRSP), savannah 
sparrow (SAVS), vesper sparrow (VESP), bobolink (BOBO), brown-headed cowbird (BHCO), 
eastern meadowlark (EAME)], blue-gray gnatcatcher (BGGN), blue-headed vireo (BHVI), 
golden-crowned kinglet (GCKI), great crested flycatcher (GCFL), red-breasted nuthatch 
(RBNU), tufted titmouse (ETTI), veery (VEER), black-and-white warbler (BAWW), black-
throated blue warbler (BTBW), black-throated green warbler (BTNW), blackburnian warbler 
(BLBW), and Canada warbler (CAWA). Dark blue symbols represent coefficient estimates with 
95% credible intervals not overlapping zero in locations where species was detected; black 
symbols represent coefficient estimates with 95% credible intervals not overlapping zero in 
locations where species was not detected; light blue points represent with 95% credible intervals 
overlapping zero coefficient estimates in locations where species was not detected; grey points 
represent coefficient estimates with 95% credible intervals overlapping zero in locations where 
the species was not detected. Black dashed line represents the slope of the relationship between 
the coefficient estimates and GPLAND and FPLAND. The right-hand panel shows coefficient 
estimates of TMAX, TMIN, and PRECIP resulting from the spatially-varying coefficients 
models. Grayed-out locations indicate coefficient estimates with 95% credible intervals 
overlapping zero. Species occurrence data were retrieved from the 2000-05 New York State 
Breeding Bird Atlas. 
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Figure A 2.1 (cont’d) 
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Figure A 2.1 (cont’d) 
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Figure A 2.1 (cont’d) 
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Figure A 3.1 Model validation using plots of predicted vs observed values for temporal turnover, 
extinction, and colonization observed between 1980-85 and 2000-05 for communities of (A) all 
recorded species regardless of their migratory status, (B) long-distance migrants, (C) short-
distance migrants, and (D) resident birds. Model validation was done for the best model only. 

  



162 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

LITERATURE CITED 
  



163 
 

LITERATURE CITED 
 
 
Anders A.D. and Post E. 2006. Distribution-wide effects of climate on population densities of a 
declining migratory landbird. Journal of Animal Ecology, 75, 221-227. 
 
Andrle R.F. and Carroll J.R. 1988. The Atlas of Breeding Birds in New York State. Cornell 
University Press, Ithaka, NY. 
 
Araújo M.B. and Peterson T.A. 2012. Uses and misuses of bioclimatic envelope modeling. 
Ecology, 93(7), 1527-1539. 
 
Arrhenius O. 1921. Species and area. Journal of Ecology, 9, 95-99. 
 
Austin P.C. and Tu J.V. 2004. Bootstrap methids for developing predictive models. The 
American Statistician, 58(2), 131-137. 
 
Banerjee S., Carlin B.P. and Gelfand A.E. 2004. Hierarchical modeling and analysis for spatial 
data. Chapman & Hall/CRC, Boca Raton, FL. 
 
Barbet-Massin M. and Jetz W. In review. The effects of range changes on the functional 
turnover, structure and diversity of bird assemblages under future climate scenarios. 
 
Barnagaud J.-Y., Devictor V., Jiguet F., Barbet-Massin M., Le Viol I. and Archaux F. 2012. 
Relating habitat and climatic niches in birds. PLoS ONE, 7(3), e32819. 
 
Barton P.S., Cunningham S.A., Manning A.D., Gibb H., Lindenmayer D.B. and Didham R.K. 
2013. The spatial scaling of beta diversity. Global Ecology and Biogeography, 22, 639-647. 
 
Baselga A. 2010. Partitioning the turnover and nestedness components of beta diversity. Global 
Ecology and Biogeography, 19, 134-143. 
 
Belmaker J. and Jetz W. 2011. Cross-scale variation in species richness-environment 
associations. Global Ecology and Biogeography, 20, 464-474. 
 
Bini L.M., Diniz-Filho J.A.F., Rangel T.F.L.V.N., Akre T.S.B., Albaladejo R.G., Albuquerque 
F.S., Aparicio A., Araújo M.B., Baselga A., Beck J., Bellocq M.I., Böhning-Gaese K., Borges 
P.A.V., Castro-Parga I., Chey V.K., Chown S.L., De Marco P.Jr, Dobkin D.S., Ferrer-Castan D., 
Field, R., Filloy J., Fleishman E., Gomez J.F., Hortal J., Iverson J.B., Kerr J.T., Kissling W.D., 
Kitching I.J., Leon-Cortes J.L., Lobo J.M., Montoya D., Morales-Castilla I., Moreno J.C., 
Oberdoff T., Olalla-Tarraga M.A., Pausas J.G., Qian H., Rahbek C., Rodriguez M.A., Rueda M., 
Ruggiero A., Sackmann P., Sanders N.J., Terribile L.C., Vetaas O.R. and Hawkins B.A. 2009. 
Coefficient shifts in geographical ecology: an empirical evaluation of spatial and non-spatial 
regression. Ecography, 32, 193-204. 
 



164 
 

Bivand R. and Yu D. 2013. spgwr: Geographically weighted regression. R package version 0.6-
24. 
 
Bonan G.B. 2008. Forests and climate change: forcings, feedbacks, and the climate benefits of 
forests. Science, 320(5882), 1444-1449.  
 
Brennan L.A. and Kuvlesky W.P. 2005. North American grassland birds: an unfolding 
conservation crisis? Journal of Wildlife Management, 69, 1-13. 
 
Brotons L. and Jiguet F. 2010. Bird communities and climate change. In: Effects of climate 
change on birds (eds: Moller A.P., Fielder W. and Berthold P.). Oxford University Press, 
Oxford. 
 
Buckley L.B. and Jetz W. 2008. Linking global turnover of species and environments. 
Proceedings of the National Academy of Sciences of the United States of America, 105, 17836-
17841. 
 
Carvalheiro L.G., Kunin W.E., Keil P., Aguirre-Gutiérrez J., Ellis W.N., Fox R., Groom Q., 
Hennekens S., van Landuyt W., Maes D., van de Meutter F., Michez D., Rasmont P., Ode B., 
Potts S.G., Reemer M., Roberts S.P.M., Schaminee J., Wallis de Vries M.F. and Biesmeijer J.C. 
2013. Species richness declines and biotic homogenization have slowed down for NW-European 
pollinators and plants. Ecology Letters, 16, 870-878. 
 
Chao A., Cahzdon R.L., Colwell R.K. and Shen T. 2005. A new statistical approach for assessing 
similarity of species composition with incidence and abundance data. Ecology Letters, 8, 148-
159. 
 
Clavero M. and Brotons L. 2010. Functional homogenization of bird communities along habitat 
gradients: accounting for niche multidimensionality. Global Ecology and Biogeography, 19, 
684–696. 
 
Clavero M., Villero D. and Brotons L. 2011. Climate change or land use dynamics: Do we know 
what climate change indicators indicate? PLoS ONE, 6(4), e18581. 
 
Cox W.A., Thompson III F.R., Reidy J. and Faaborg J. 2013. Temperature can interact with 
landscape factors to affect songbird productivity. Global Change Biology, 19, 1064-1074. 
 
Cressie N., Calder C.A, Clark J.S., ver Hoef J.M. and Wikle, C.K. 2009. Accounting for 
uncertainty in ecological analysis: the strengths and limitations of hierarchical statistical 
modeling. Ecological Applications, 19, 553-570. 
 
Cressie N. and Wikle C.K. 2011. Statistics for Spatio-Temporal Data. John Wiley and Sons, 
Hoboken, NJ. 
 



165 
 

Currie D.J. 2004. Regional-to-global patterns of biodiversity, and what they have to say about 
mechanisms. In: Scaling Biodiversity (eds: Storch D., Marquet P.A. and Brown J.H.). Cambridge 
University Press, Cambridge, UK. 
 
Daly C. and Gibson W. 2002. Parameter-estimation on Independent Slopes Model (PRISM). The 
PRISM Climate Group, Oregon.  
 
Davies K.F. Chesson P., Harrison S., Inouye B.D., Melbourne B.A. and Rice K.J. 2005. Spatial 
heterogeneity explains the scale dependence of the native-exotic diversity relationship. Ecology, 
86, 1602-1610. 
 
de Chazal J. and Rounsevell M.D.A. 2009. Land-use and climate change within assessments of 
biodiversity change: A review. Global Environmental Change, 19, 306-315. 
 
De Frenne P., Rodríguez-Sánchez F., Coomes D.A., Baeten L., Verstraeten G., Vellend M., 
Bernhardt-Romermann M., Brown C.D., Brunet J., Cornelus J.,  Decocq G.M., Dierschke H., 
Eriksson O., Gilliam F.S., Hedl R., Heinken T., Hermy M., Hommel P., Jenkins M.A., Kelly 
D.L., Kirby K.J., Mitchell F.J.G., Naaf T., Newman M., Peterken G., Petrik P., Schultz J., 
Sonnier G., Van Calster H., Waller D.M., Walther G.-R., White P.S., Woods K.D., Wulf M., 
Graae B.J. and Verheyen K. 2013 Microclimate moderates plant responses to macroclimate 
warming. Proceedings of the Royal Society B-Biological Sciences, 110(46), 18561–18565. 
 
DeGraaf R.M. and Yamasak, M. 2001. New England Wildlife; Habitat, Natural History, and 
distribution. University Press of New England, Hanover, NH. 
 
DeLeon R.L., DeLeon E.E. and Rising G.R. 2011. Influence of climate change on avian 
migrants' first arrival dates. Condor, 113, 915-923. 
 
Diggle P.J., Tawn J.A. and Moyeed R.A. 1998. Model-based geostatistics. Journal of the Royal 
Statistical Society Series C Applied Statistics, 47, 299-326. 
 
Dobrowski S.Z., Abatzoglou J., Swanson A.K., Greenberg J.A., Mynsberge A.R., Holden Z.A. 
and Schwartz M.K. 2013. The climate velocity of the contiguous United States during the 20th 
century. Global Change Biology, 19, 241-251. 
 
Dormann C.F., McPherson J.M., Araújo M.B., Bivand R., Bolliger J., Carl G., Davies R.G., 
Hirzel A., Jetz W., Kissling D.W., Kuhn I., Ohlemuller R., Peres-Neto P.R., Reineking B., 
Schrider B., Schurr F.M. and Wilson R. 2007. Methods to account for spatial autocorrelation in 
the analysis of species distributional data: a review. Ecography, 30, 609-628. 
 
Doxa A., Robert A., Crivelli A., Catsadorakis G., Naziridis T., Nikolaou H., Jiguet F. and 
Theodorou K. 2012 Shifts in breeding phenology as a response to population size and climatic 
change: A comparison between short- and long-distance migrant species. Auk, 129, 753-762. 
 
Englund G. and Hamback P.A. 2007. Scale dependence of immigration rates: models, metrics 
and data. Journal of Animal Ecology, 76, 30-35. 



166 
 

 
Estavillo C., Pardini R. and da Rocha P.L.B. 2013. Forest loss ad the biodiversity threshold: Am 
evaluation considering species habitat requiremens and the use of matrix habitat. PLoS ONE, 
8(12), e823369. 
 
Field R., Hawkins B.A., Cornell H.V., Currie D.J., Diniz‐Filho J.A.F., Guégan J., Kaufman 
D.M., Kerr J.T., Mittelbach G.G., Oberdorff T., O’Brien E.M. and Turner J.R.G. 2009. Spatial 
species-richness gradients across scales: a meta-analysis. Journal of Biogeography, 36, 132–147. 
 
Finley A.O., Banerjee S. and McRoberts R.E. 2009. Hierarchical spatial models for predicting 
tree species assemblages across large domains. Annals of Applied Statistics, 3, 1052-1079. 
 
Finley A.O. 2011. Comparing spatially-varying coefficients models for analysis of ecological 
data with non-stationary and anisotropic residual dependence. Methods in Ecology and Evoluion, 
2, 143-154. 
 
Finley A.O., Banerjee S. and MacFarlane D.W. 2011. A hierarchical model for quantifying forest 
variables over large heterogeneous landscapes with uncertain forest areas. Journal of the 
American Statistical Association, 106, 31-48. 
 
Finley A.O. and Banerjee S. 2013. spBayes: Univariate and multivariate spatial-temporal 
modeling. R package version 0.3-7. 
 
Foody G.M. 2004. Spatial nonstationarity and scale-dependency in the relationship between 
species richness and environmental determinants for the sub-Saharan endemic avifauna. Global 
Ecology and Biogeography, 13, 315-320. 
 
Fortin M.J. and Dale M.R.T. 2009. Spatial autocorrelation in ecological studies: A legacy of 
solutions and myths. Geographical Analysis, 41, 392-397. 
 
Fotheringham A.S., Brunsdon C. and Charlton M. 2002. Geographically Weighted Regression: 
The analysis of spatially varying relationships. John Wiley and Sons, Hoboken, NJ. 
 
Forchhammer M.C., Post E. and Stenseth N.C. 2002. North Atlantic Oscillation timing of long- 
and short-distance migration. Journal of Animal Ecology, 71, 1002-1014. 
 
Fuller R.J., Gregory R.D., Gibbons D.W., Marchant J.H., Wilson J.D., Baillie S.R. and Carter N. 
1995. Population declines and range contractions among lowland farmland birds in Britain. 
Conservation Biology, 9(6), 1425-1441. 
 
Gaston K.J. and Blackburn T.M. 2002. Large-scale dynamics in colonization and extinction for 
breeding birds in Britain. Journal of Animal Ecology, 71, 390-399. 
 
Gaston K.J., Evans K.L. and Lennon J.J. 2004. The scaling of spatial turnover: pruning the 
thicket. In: Scaling Biodiversity (eds: Storch D., Marquet P.A. and Brown J.H.). Cambridge 
University Press, Cambridge, UK. 



167 
 

 
Gaston K.J., Davies R.G., Orme C.D.L., Olson V.A., Thomas G.H., Ding T.-S., Rasmussen P.C., 
Lennon J.J., Bennett P.M., Owens I.P.F. and Blackburn T.M. 2007. Spatial turnover in the global 
avifauna. Proceedings of the Royal Society B-Biological Sciences, 274, 1567-1574. 
 
Geiger R., Aron R.H. and Todhunter P. 2009. The climate near the ground. Rowman & 
Littlefield Publishing Group, Lanham, MD. 
 
Gelfand A.E., Hyon-Jung K., Sirmans C.F. and Banerjee S. 2003. Spatial modeling with spatially 
varying coefficient processes. Journal of the American Statistical Association, 98, 387-396. 
 
Gelman A. and Rubin D.B. 1992. Inference from iterative simulation using multiple 
sequences. Statistical Science, 7, 457–511. 
 
Gelman A., Carlin J.B., Stern H.S. and Rubin D.B. 2004. Bayesian Data Analysis, 2nd edn. 
Chapman & Hall/CRC, Boca Raton, FL. 
 
Gibbons D.W., Donald P.F., Bauer H.-G., Fornasari L. and Dawson I.K. 2007. Mapping avian 
distributions: the evolution of bird atlases. Bird Study, 54, 324-334. 
 
Grotan V., Sæther B.E., Engen S., van Balen J.H., Perdeck A.C. and Visser, M.E. 2009. Spatial 
and temporal variation in the relative contribution of density dependence, climate variation and 
migration to fluctuations in the size of great tit populations. Journal of Animal Ecology, 78, 447-
459. 
 
Grubb Jr T.C. and Pravasudov V.V. 1994. Tufted Titmouse (Baeolophus bicolor). In: The Birds 
of North America Online (ed: Poole A.). Cornell Lab of Ornithology, Ithaca, NY. Retrieved from 
the Birds of North America Online: http://bna.birds.cornell.edu/bna/species/086 
 
Guisan A. and Thuiller W. 2005. Predicting species distribution: offering more than simple 
habitat models. Ecology Letters, 8, 993-1009. 
 
Gutiérrez-Cánovas C., Millan A., Velasco J., Vaughan I.P. and Ormerod S.J. 2013. Contrasting 
effects of natural and anthropogenic stressors on beta diversity in river organisms. Global 
Ecology and Biogeography, 22, 796-805. 
 
Hargis C.D., Bissonette J.A. and David J.L. 1998. The behavior of landscape metrics commonly 
used in the study of habitat fragmentation. Landscape Ecology, 13, 167-186. 
 
Hartley S. and Kunin W.E. 2003. Scale dependency of rarity, extinction risk, and conservation 
priority. Conservation Biology. 17, 1559-1570. 
 
Hoeting J.A. 2009. The importance of accounting for spatial and temporal correlation in analyses 
of ecological data. Ecological Applications, 19, 574-577. 
 

http://bna.birds.cornell.edu/bna/species/086


168 
 

Homer C., Huang C., Yang L., Wylie B. and Coan M. 2004. Development of a 2001 National 
Landcover Database for the United States. Photogrammetric Engineering and Remote Sensing, 
70(7), 829-840. 
 
Huntley B., Barnard P., Altwegg R., Chambers L., Coetzee B.W.T., Gibson L., Hockey P.A.R., 
Hole D.G., Midgley G.F., Underhill L.G. and Willis S.G. 2010. Beyond bioclimatic envelopes: 
dynamic species’ range and abundance modelling in the context of climatic change. Ecography, 
33, 621-626. 
 
Huste A. and Bouliner T. 2007. Determinants of local extinction and turnover rates in urban bird 
communities. Ecological Applications, 17(1), 168-180. 
 
Intergovernmental Panel on Climate Change. 2013. Working Group I Contribution to the IPCC 
Fifth Assessment Report (AR5). Climate Change 2013: The Physical Science Basis. Cambridge 
University Press, Cambridge, UK.  
 
Jarzyna M.A., Zuckerberg B. and Porter W.F. 2013. Climate Change and Wildlife. In: Wildlife 
Management and Conservation: Contemporary Principles and Practices (eds: Krausman P.R. 
and Cain III J.W.). Johns Hopkins University Press, Baltimore, MD. 
 
Jeltsch F., Moloney K.A., Schwager M., Körner K. and Blaum N. 2011. Consequences of 
correlations between habitat modifications and negative impact of climate change for regional 
species survival. Agriculture, Ecosystems and Environment, 145, 49-58. 
 
Johnson C.N. 1998. Species extinction and the relationship between distribution and abundance. 
Nature, 394, 272-274. 
 
Jones T. and Cresswell W. 2010. The phenology mismatch hypothesis: are declines of migrant 
birds linked to uneven global climate change? Journal of Animal Ecology, 79, 98-108. 
 
Jost L. 2007. Partitioning diversity into independent alpha and beta components. Ecology, 88, 
2427-2439.  
 
Juliano S.A.1983. Body size, dispersal ability, and range size in North American species of 
Brachinus (Coleoptera: Carabidae). The Coleopterists Bulletin, 37(3), 232-238. 
 
Kampichler C., van Turnhout C.A.M., Devictor V. and van der Jeugd H.P. 2012. Large-scale 
changes in community composition: determining land use and climate change signals. PLoS 
ONE, 7(4), e35272. 
 
Keil P., Biesmeijer J.C., Barendregt A., Reemer M. and Kunin W.E. 2010. Biodiversity change 
is scale-dependent: an example from Dutch and UK hoverflies (Diptera, Syrphidae). Ecography, 
34, 392-401. 
 
Keil P. and Jetz W. 2014. Downscaling the environmental associations and spatial patterns of 
species richness. Ecological Applications, 4, 82-94. 



169 
 

 
Kelling S., Hochachka W.M., Fink D., Riedewald M., Caruana R. and Hooker G. 2009. Data-
Intensive Science: A new paradigm for biodiversity studies. BioScience, 59, 613-620. 
 
Kennedy C.M., Campbell Grant E.H., Neel M.C., Fagan W.F. and Marra P.P. 2011. Landscape 
matrix mediates occupancy dynamics of Neotropical avian insectivores. Ecological Applications, 
21, 1837-1850. 
 
Kershner E.L. and Ellison W.G. 2012. Blue-gray Gnatcatcher (Polioptila caerulea). In: The 
Birds of North America Online (ed: Poole A.). Cornell Lab of Ornithology, Ithaca, NY. 
Retrieved from the Birds of North America Online: http://bna.birds.cornell.edu/bna/species/023 
 
Kleijn D., Schekkerman H., Dimmers W.J., Van Kats R.J.M., Melman D. and Teunissen W.A. 
2010. Adverse effects of agricultural intensification and climate change on breeding habitat 
quality of Black-tailed Godwits Limosa l. limosa in the Netherlands. Ibis, 152(3), 475-486. 
 
Kraft N.J.B., Comita L.S., Chase J.M., Sanders N.J., Swenson N.G., Crist T.O., Stegen J.C., 
Vellend M., Boyle B., Anderson M.J., Cornell H.V., Davies K.F., Freestone A.L., Inouye B.D., 
Harrison S.P. and Myers J.A. 2011. Disentangling the drivers of beta diversity along latitudinal 
and elevational gradients. Science, 333, 1755-1758. 
 
Krawchuk M.A. and Taylor P.D. 2003. Changing importance of habitat structure across multiple, 
spatial scales for three species of insects. Oikos, 103, 153-161. 
 
La Sorte F.A. and Thompson F.R. 2007. Poleward shifts in winter ranges of North American 
birds. Ecology, 88, 1803-1812. 
 
Lawler J.J. 2009. Climate change adaptation strategies for resource management and 
conservation planning. Annals of the New York Academy of Sciences, 1162, 79-98. 
 
Legendre P. 1993. Spatial autocorrelation – trouble or new paradigm. Ecology, 74, 1659-1673. 
 
Lehikoinen E. and Sparks T.H. 2010. Changes in migration. In: Effects of climate change on 
birds (eds: Moller A.P., Fielder W. and Berthold P.). Oxford University Press, Oxford. 
 
Lemoine N. and Böhning-Gaese K. 2003. Potential impacts of global climate change on species 
richness of long-distance migrants. Conservation Biology, 17(2), 577-586. 
 
Lemoine N., Schaefer H.-C. and Böhning-Gaese K. 2007. Species richness of migratory birds is 
influenced by global climate change. Global Ecology and Biogeography, 16, 55-64. 
 
Lennon J.J., Koleff P., Greenwood J.J.D. and Gaston K.J. 2001. The geographical structure of 
British bird distributions: diversity, spatial turnover and scale. Journal of Animal Ecology, 70, 
966–979. 
 

http://bna.birds.cornell.edu/bna/species/023


170 
 

Lichstein J.W., Simons T.R., Shriner S.A., Franzreb K.E. 2002. Spatial autocorrelation and 
autoregressive models in ecology. Ecological Monographs, 72, 445-463. 
 
Ma Z., Zuckerberg B., Porter W.F. and Zhang L. 2012a. Spatial Poisson models for examining 
the influence of climate and land cover pattern on bird species richness. Forest Science, 58, 61-
74.  
 
Ma Z., Zuckerberg B., Porter W.F. and Zhang L. 2012b. Use of localized descriptive statistics 
for exploring the spatial pattern changes of bird species richness at multiple spatial scales. 
Applied Geography, 32, 185-194.  
 
Magurran A.E. 2004. Measuring biological diversity. Blackwell Publishing, Oxford, UK. 
 
Marini M.A., Barbet-Massin M., Lopes L.E. and Jiguet F. 2009. Predicted climate-driven bird 
distribution changes and forecasted conservation conflicts in a neotropical savanna. 
Conservation Biology, 23, 1558-1567. 
 
Martin S.G. and Gavin T.A. 1995. Bobolink (Dolichonyx oryzivorus). In: The Birds of North 
America Online (ed: Poole A.). Cornell Lab of Ornithology, Ithaca, NY. Retrieved from the 
Birds of North America Online: http://bna.birds.cornell.edu/bna/species/176 
 
Martin-Queller E., Gil-Tena A. and Saura S. 2011. Species richness of woody plants in the 
landscapes of Central Spain: the role of management disturbances, environment and non-
stationarity. Journal of Vegetation Science, 22, 238-250. 
 
McGarigal K., Cushman S.A. and Ene, E. 2012. FRAGSTATS v4: Spatial Pattern Analysis 
Program for Categorical and Continuous Maps. Computer software program produced by the 
authors at the University of Massachusetts, Amherst.  
 
McGill B.J. 2010. Matters of scale. Science, 328, 575-576. 
 
McGowan K.J. and Zuckerberg B. 2008. Summary of results. In: The Second Atlas of Breeding 
Birds in New York State (eds: McGowan K.J. and Corwin K.). Cornell University Press, Ithaka, 
NY. 
 
McGowan K.J. and Corwin K. 2008. The Second Atlas of Breeding Birds in New York State. 
Cornell University Press, Ithaka, NY. 
 
McNew L.B., Gregory A.J. and Sandercock B.K. 2013. Spatial heterogeneity in habitat selection: 
Nest site selection by greater prairie-chickens. Journal of Wildlife Management, 77, 791-801. 
 
Menendez R. and Thomas C.D. 2000. Metapopulation structure depends on spatial scale in the 
host-specific moth Wheeleria spilodactylus (Lepidoptera: Pterophoridae). Journal of Animal 
Ecology, 69, 935-951. 
 
Miller J. 2010. Species distribution modeling. Geography Compass, 4, 490–509. 

http://bna.birds.cornell.edu/bna/species/176


171 
 

 
Miller J.A. 2012. Species distribution models: Spatial autocorrelation and non-stationarity. 
Progress in Physical Geography, 36, 681-692. 
 
Moss R., Oswald J. and Baines D. 2001. Climate change and breeding success: decline of the 
capercaillie in Scotland. Journal of Animal Ecology, 70, 47-61. 
 
Mouquet N. and Loreau M. 2003. Community patterns insource-sink metacommunities. The 
American Naturalist, 162(5), 544-557. 
 
Opdam P. and Wascher D. 2004. Climate change meets habitat fragmentation: linking landscape 
and biogeographical scale levels in research and conservation. Biological Conservation, 117, 
285-297. 
 
Parmesan C. and Yohe G. 2003. A globally coherent fingerprint of climate change impacts 
across natural systems. Nature, 421, 37-42. 
 
Pearson R.G., Dawson T.P., Berry P.M. and Harrison P.A. 2002. SPECIES: A spatial evaluation 
of climate impact on the envelope of species. Ecological Modelling, 154, 289-300. 
 
Pearson R.G., Dawson T.P. and Liu C. 2004. Modelling species distributions in Britain: a 
hierarchical integration of climate and land-cover data. Ecography, 27, 285-298. 
 
Pickett S.T.A. 1989. Space-for-time substitution as an alternative to long-term studies. In: Long-
term studies in ecology. Approaches and alternatives (ed: Likens G.E.). Springler-Verlag New 
York, Inc., New York, NY. 
 
Plummer M., Best N., Cowles K., Vines K., Sarkar D. and Almond R. 2012. coda: Output 
analysis and diagnostics for MCMC. R package version 0.16-1. 
 
Powell K.I., Chase J.M. and Knight T.M. 2013. Invasive plants have scale-dependent effects on 
diversity by altering species-area relationships. Science, 339, 316-318. 
 
Prevedello J.A. and Vieira M.V. 2010. Does the type of matrix matter? A quantitative review of 
the evidence. Biodiversity Conservation, 19, 1205–1223. 
 
Prugh L.R., Hodges K.E., Sinclair A.R.E. and Brashares J.S. 2008. Effect of habitat area and 
isolation on fragmented animal populations. Proceeding of the National Academy of Sciences of 
the United States of America, 105(52), 20770-20775. 
 
Rahbek C. 2005. The role of spatial scale and the perception of large-scale species-richness 
patterns. Ecology Letters, 8, 224-239. 
 
Record S., Fitzpatrick M.C., Finley A.O., Veloz S. and Ellison A.M. 2013. Should species 
distribution models account for spatial autocorrelation? A test of model projections across eight 
millennia of climate change. Global Ecology and Biogeography, 22, 760-771. 

http://dx.doi.org/10.1016/S0304-3800%2802%2900056-X


172 
 

 
Reichman O.J., Jones M.B. and Schildhauer M.P. 2011. Challenges and opportunities of open 
data in ecology. Science, 331, 703-705. 
 
Reif J. 2013. Long-term trends in bird populations: a review of patterns and potential drivers in 
North America and Europe. Acta Ornithologica, 48(1), 1-16. 
 
Ricklefs R.E. 1986. Community diversity – relative roles of local and regional processes. 
Science, 235, 167-171. 
 
Ricklefs R.E. 2004. A comprehensive framework for global patterns in biodiversity. Ecology 
Letters, 7, 1-15. 
 
Saino N., Rubolini D., Lehikoinen E., Sokolov L.V., Bonisolo-Alquati A., Ambrosini R., 
Boncoraglio G. and Moller A.P. 2009. Climate change effects on migration phenology may 
mismatch brood parasitic cuckoos and their hosts. Biology Letters, 5, 539-541. 
 
Sæther B.E., Lillegard M., Grotan V., Drever M.C., Engen S., Nudds T.D. and Podruzny K.M. 
2008. Geographical gradients in the population dynamics of North American prairie ducks. 
Journal of Animal Ecology, 77, 869-882. 
 
Schimel D. 2011. The era of continental-scale ecology. Frontiers in Ecology and the 
Environment, 9, 311.  
 
Shigesada N. and Kawasaki K. 1997. Biological invasions: Theory and practice, Oxford 
University Press, Oxford, UK. 
 
Siefert A., Ravenscroft C., Weiser M.D. and Swenson N.G. 2013. Functional beta-diversity 
patterns reveal deterministic community assembly processes in eastern North American trees. 
Global Ecology and Biogeography, 22, 682-691. 
 
Skagen S.K. and Adams A.A.Y. 2012. Weather effects on avian breeding performance and 
implications of climate change. Ecological Application, 22(4), 1131-1145. 
 
Smith K.G., Wittenberg S.R., Macwhirter R.B. and Bildstein K.L. 2011. Northern Harrier 
(Circus cyaneus). In: The Birds of North America Online (ed: Poole A.). Cornell Lab of 
Ornithology, Ithaca, NY. Retrieved from the Birds of North America Online: 
http://bna.birds.cornell.edu/bna/species/602 
 
Spiegelhalter D.J., Best N.G., Carlin B.P. and van der Linde A. 2002. Bayesian measures of 
model complexity and fit (with discussion). Journal of the Royal Statistical Society, Series B, 64, 
583–639. 
 
Storch D., Marquet P.A. and Brown J.H. 2004. Scaling Biodiversity. Cambridge University 
Press, Cambridge, UK. 
 

http://bna.birds.cornell.edu/bna/species/602


173 
 

Stralberg D., Jongsomjit D., Howell C.A., Snyder M.A., Alexander J.D., Wiens, J.A. and Root T. 
2009. Re-shuffling of species with climate disruption: A no-analog future for California birds? 
PLoS ONE, 4(9), e6825. 
 
Swanson D.L., Ingold J.L. and Galati R. 2012. Golden-crowned Kinglet (Regulus satrapa). In: 
The Birds of North America Online (ed: Poole A.). Cornell Lab of Ornithology, Ithaca, NY. 
Retrieved from the Birds of North America Online: http://bna.birds.cornell.edu/bna/species/301 
 
Thomas C.D., Bodsworth E.J., Wilson R.J., Simmons A.D., Davies Z.G., Musche M. and 
Conradt L. 2001. Ecological and evolutionary processes at expanding range margins. Nature, 
411(6837), 577–581. 
 
Thomas C.D., Cameron A., Green R.E., Bakkenes M., Beaumont L.J., Collingham Y.C., Erasus 
B.F.N., de Siqueira M.F., Grainger A., Hannah L., Hughes L., Huntley B., van Jaarsveld A.S., 
Midgley G.F., Miles L., Ortega-Huerta M.A., Peterson A.T., Phillips O.L. and Williams S.E. 
2004. Extinction risk from climate change. Nature, 427, 145-148. 
 
Tilman D. 2004. Niche tradeoffs, neutrality, and community structure: A stochastic theory of 
resource competition, invasion, and community assembly. Proceedings of the National Academy 
of Sciences of the USA, 101, 10854-10861. 
 
Tobler M.W., Carrillo-Percastegui S.E., Leite Pitman R., Mares R. and Powell G. 2008. An 
evaluation of camera traps for inventorying large- and medium-sized terrestrial rainforest 
mammals. Animal Conservation, 11, 169-178. 
 
Travis J.M.J. 2003. Climate change and habitat destruction: a deadly anthropogenic cocktail. 
Proceedings of the Royal Society B-Biological Sciences, 270, 467–473. 
 
Tscharntke T., Tylianakis J.M., Rand T.A., Didham R.K., Fahrig L., Batary P., Bengtsson J., 
Clough Y., Crist T.O., Dormann C.F., Ewers R.M., Frund J., Holt R.D., Holzschuh A., Klein 
A.M., Kleijn D., Kremen C., Landis D.A., Laurance W., Lindenmayer D., Scherber C., Sodhi N., 
Steffan-Dewenter I., Thies C., van der Putten W.H. and Westphal C. 2012. Landscape 
moderation of biodiversity patterns and processes – eight hypotheses. Biological Reviews, 87(3), 
661-685. 
 
Tuomisto H. 2010a. A diversity of beta diversities: straightening up a concept gone awry. Part 1. 
Defining beta diversity as a function of alpha and gamma diversity. Ecography, 33, 2-22. 
 
Tuomisto H. 2010b. A diversity of beta diversities: straightening up a concept gone awry. Part 2. 
Quantifying beta diversity and related phenomena. Ecography, 33, 23-45. 
 
Villegas J.C., Breshears D.D., Zou C.B. and Royer P.D. 2010. Seasonally pulsed heterogeneity 
in microclimate: Phenology and cover effects along deciduous grassland–forest continuum. 
Vadose Zone Journal, 9(3), 537-547. 
 

http://bna.birds.cornell.edu/bna/species/301


174 
 

Walther G.R., Post E., Convey P., Menzel A., Parmesan C., Beebee T.J.C., Fromentin J.-M., 
Hoegh-Guldberg O. and Bairlein F. 2002. Ecological responses to recent climate change. Nature, 
416, 389-395. 
 
Wheeler D.C. and Cadler C.A. 2007. An assessment of coefficient accuracy in linear regression 
models with spatially varying coefficients. Journal of Geographical Systems, 9,145-166. 
 
Wheeler D.C. and Waller L.A. 2009. Comparing spatially varying coefficient models: a case 
study examining violent crime rates and their relationships to alcohol outlets and illegal drug 
arrests. Journal of Geographical Systems, 11, 1-22. 
 
Wiens J.A. 1989. Spatial scaling in ecology. Functional Ecology, 3, 385-397. 
 
Willis K.J. and Bhagwat S.A. 2009. Biodiversity and climate change. Science, 326, 806-807.  
 
Wilson R.J., Thomas C.D., Fox R., Roy D.B. and Kunin W.E. 2004. Spatial patterns in species 
distributions reveal biodiversity change. Nature, 432, 393-396. 
 
Zuckerberg B., Woods A. and Porter W.F. 2009. Poleward shifts in breeding bird distributions in 
New York State. Global Change Biology, 15, 1866-1883. 
 
Zuckerberg B. and Porter W.F. 2010. Thresholds in the long-term responses of breeding birds to 
forest cover and fragmentation. Biological Conservation, 143, 952-962. 
 
 
 


	LIST OF TABLES
	LIST OF FIGURES
	PROLOGUE
	ACCOUNTING FOR THE SPACE-VARYING NATURE OF THE RELATIONSHIPS BETWEEN TEMPORAL COMMUNITY TURNOVER AND THE ENVIRONMENT
	ABSTRACT
	1.1 INTRODUCTION
	1.2 DATA AND METHODS
	1.2.1 Site description
	1.2.2 Breeding Bird Atlas
	1.2.3 Temporal turnover
	1.2.4 Model covariates
	1.2.4.1 Climatic trends
	1.2.4.2 Habitat fragmentation
	1.2.4.3 Survey effort

	1.2.5 Statistical analysis

	1.3 RESULTS
	1.3.1 Temporal turnover
	1.3.2 Covariates
	1.3.3 Statistical analysis
	1.3.3.1 Model fit and predictive ability
	1.3.3.2 Coefficient estimates


	1.4 DISCUSSION
	1.5 ACKNOWLEDGMENTS

	SYNERGISTIC EFFECTS OF CLIMATE AND LAND COVER: ARE GRASSLAND BIRDS MORE VULNERABLE TO CLIMATE CHANGE?
	ABSTRACT
	2.1 INTRODUCTION
	2.2 METHODS
	2.2.1 Breeding Bird Atlas and chosen species
	2.2.2 Model covariates
	2.2.3 Habitat amount
	2.2.4 Statistical analysis

	2.3 RESULTS
	2.3.1 Model comparison
	2.3.2 Bioclimatic relationships
	2.3.3 Heterogeneity of bioclimatic relationships across habitat amount

	2.4 DISCUSSION
	2.4.1 Bioclimatic relationships
	2.4.2 Heterogeneity of bioclimatic relationships across habitat amount

	2.5 ACKNOWLEDGMENTS

	LANDSCAPE FRAGMENTATION AFFECTS RESPONSES OF AVIAN COMMUNITIES TO CLIMATE CHANGE
	ABSTRACT
	3.1 INTRODUCTION
	3.2 METHODS
	3.2.1 Site description
	3.2.2 Breeding Bird Atlas
	3.2.3 Temporal turnover
	3.2.4 Habitat fragmentation
	3.2.5 Climatic trends
	3.2.6 Survey effort
	3.2.7 Statistical analysis

	3.3 RESULTS
	3.3.1 Relationships with climate change and habitat fragmentation
	3.3.1.1 Temporal turnover
	3.3.1.2 Extinction
	3.3.1.3 Colonization

	3.3.2 Responses of different migratory groupings
	3.3.2.1 Temporal turnover
	3.3.2.2 Extinction
	3.3.2.3 Colonization


	3.4 DISCUSSION
	3.4.1 Relationships with climate change and habitat fragmentation
	3.4.2 Responses of different migratory groupings
	3.4.3 Conclusions

	3.5 ACKNOWLEDGMENTS

	scale-dependence of TEMPORAL CHANGES IN AViaN COMMUNITIES
	ABSTRACT
	4.1 INTRODUCTION
	4.2 METHODS
	4.2.1 Breeding Bird Atlas
	4.2.2 Spatial scaling of community change
	4.2.3 Factors influencing community change across spatial grains

	4.3 RESULTS
	4.3.1 Spatial scaling of community change
	4.3.2 Factors influencing community change across spatial grains
	4.3.2.1 Temporal turnover
	4.3.2.2 Extinction
	4.3.2.3 Colonization


	4.4 DISCUSSION
	4.4.1 Spatial scaling of community change
	4.4.2 Factors influencing community change across spatial grains
	4.4.3 Conclusions

	4.5 ACKNOWLEDGMENTS

	EPILOGUE
	APPENDIX
	LITERATURE CITED

