PLACE IN RETURN BOX to remove this checkout from your record. TO AVOID FINES return on or before date due. DATE DUE DATE DUE DATE DUE use WM“ INFLUENCES OF ECOLOGICAL PARAMETERS ON HERPETOFAUNAL AS SEMBLAGES IN NORTHERN MINNESOTA, WITH AN ASSESSMENT OF SAMPLING METHODOLOGIES By Gabrielle D. Yaunches A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Department of Fisheries and Wildlife 1998 ABSTRACT INFLUENCES OF ECOLOGICAL PARAMETERS ON HERPETOFAUNAL ASSEMBLAGES IN NORTHERN MINNESOTA, WITH AN ASSESSMENT OF SAMPLING METHODOLOGIES By Gabrielle D. Yaunches Incorporating herpetofauna into ecosystem management on a landscape scale is becoming increasingly important to land managers. In a coarse-filter approach, an ecosystem diversity matrix (EDM) divides a landscape into habitat type classes on one axis of the matrix and vegetation growth stages on the other axis. Where these two axes of the matrix intersect is called an ecological land unit, or ELU. ELUS in northern Minnesota were evaluated for herpetofauna] species and vegetation attributes. Herpetofaunal species numbers, richness and diversity did not vary statistically among ELUS and when they did vary, it was not in any discernible pattern on the EDM. This suggests that herps do not successfully differentiate ELUS within the EDM in northern Minnesota. Spearman rank correlations and Kruskal-Wallis tests found that the most important vegetation attributes for herps were vegetation stem densities, coarse woody debris presence and size, and litter and slash understory cover. These vegetation attributes could possibly be incorporated into BCC’s timber harvesting practices by leaving more coarse woody debris, litter and slash on the ground after harvest. In evaluating herpetofauna] sampling methods, the most effective and efficient method of capture for herps was the drifi fences with pitfall and funnel traps. ACKNOWLEDGMENTS I would like to thank my advisor, Dr. Scott Winterstein, for his help, encouragement, and humor in completing this thesis. Dr. Rique Campa also provided important and helpful guidance in this project. Dr. Tom Getty provided thoughtful input on my proposal and thesis. This project was funded by Boise Cascade Corporation, and included much help fiom Brian Kernohan in design and field work (even pulling out a few stuck trucks) and Kara Dunning for providing assistance with GIS information and much-needed maps. Many other people have also aided me, both emotionally and physically over these past years. Linda Hegstrom, who helped me keep my sanity during our first year of field work, and Colleen Trese who was a big help during the second year, both with field and office work. Also, thanks to all the technicians and interns who made the huge amount of field work possible and enjoyable: Mandy, Torie, Sarah, Alison, Matt, Dan, Kevin and Ali. I also, most importantly, need to thank my family and friends who have always been extremely encouraging and supportive of me and my accomplishments, especially my parents, sister and grandparents. iii TABLE OF CONTENTS LIST OF TABLES ............................................................................................................. vi LIST OF FIGURES ......................................................................................................... xiii INTRODUCTION .............................................................................................................. 1 Importance of studying herptiles ..................................................................................... 1 Herpetofaunal habitat associations .................................................................................. 2 Herpetofaunal sampling methods .................................................................................... 4 OBJECTIVES ..................................................................................................................... 6 METHODS ......................................................................................................................... 7 Study Site Description ..................................................................................................... 7 Herpetofaunal sampling methods .................................................................................... 8 Drift fences with pitfall and funnel traps ................................................................... 14 Time and area-constrained searches ........................................................................... 16 Vegetation sampling ...................................................................................................... 17 Data Analysis ................................................................................................................. 20 By ELU ...................................................................................................................... 20 By Unit Number ......................................................................................................... 25 RESULTS ......................................................................................................................... 26 General vegetation results ............................................................................................. 26 Herpetofaunal results ..................................................................................................... 27 ELU herpetofaunal and vegetation results ..................................................................... 29 Correlations ................................................................................................................ 29 Kruskal-Wallis tests ................................................................................................... 32 EDM Comparisons ..................................................................................................... 36 Unit number herpetofaunal and vegetation results ........................................................ 43 Correlations ................................................................................................................ 43 Kruskal-Wallis tests ................................................................................................... 46 Herptile sampling methodology results ......................................................................... 56 Time-constrained searches ......................................................................................... 56 Plot searches ............................................................................................................... 58 Traps ........................................................................................................................... 58 Incidentals .................................................................................................................. 58 General ....................................................................................................................... 59 DISCUSSION ................................................................................................................... 62 Vegetation ...................................................................................................................... 62 Herpetofauna ................................................................................................................. 63 Herpetofauna and vegetation ......................................................................................... 64 Kruskal-Wallis tests by ELU and unit number .............................................................. 67 Summary ........................................................................................................................ 71 iv Methodology Discussion ............................................................................................... 74 General Conclusions and Management Recommendations .......................................... 76 LITERATURE CITED ..................................................................................................... 78 LIST OF TABLES Table 1. Initial ecological sampling unit selection criteria for Boise Cascade Corporation’s Ecosystem Diversity Matrix, 1996‘. .................................................. 10 Table 2. Ecosystem Diversity Matrix (EDM) for northern Minnesota Boise Cascade lands with BCC'S terminology on the axes, and within the matrix, a simplified version used throughout this paper. Numbers within the matrix indicate number of replications of that ELU. See Appendix A Table l for key to EDM. ...................... ll Table 3. Number of acres of sites and number of quadrats that were searched for herps in those sites in northern Minnesota in 1997. ............................................................... 18 Table 4. Coarse woody debris decay classes used for vegetation sampling of sites. ...... 22 Table 5. Snag decay classes used for vegetation sampling of sites. If snags were burned more than 50%, letter B was added to the end of the snag decay class. ................... 22 Table 6. Stump age classes used for vegetation sampling of sites. If stumps were burned more than 50%, the letter B was added to the end of the Mp age class. .............. 23 Table 7. ELUs and species found within them in northern Minnesota, 1997 according to search method'. Numbers in parentheses indicate total number of individuals captured in that method ............................................................................................. 28 Table 8. Shannon-Weaver (S-W) diversity index mean values, Pielou’s J values, mean number of individuals captured, and species richness of each ELU in northern Minnesota, 1997 ........................................................................................................ 29 Table 9. Shannon-Weaver diversity index (S-W) , Pielou’s J, the average number of herps captured, and species richness by unit number in northern Minnesota, 1997. 30 Table 10. Significant Spearman rank correlations between the Shannon-Weaver diversity index (S-W) and/or mean number of individuals and vegetation attributes by ELU in northern Minnesota, 1997. ........................................................................................ 33 Table 11. Significant results of Kruskal-Wallis tests for differences in vegetation attributes between ELUs with (present n=7) and without (absent n=5) the spring peeper in northern Minnesota, 1997. ........................................................................ 35 Table 12. Significant results of Kruskal-Wallis tests for differences in vegetation attributes between ELUs with (present n=2) and those without (absent n=lO) the northern leopard frog in northern Minnesota, 1997. ................................................. 36 vi Table 13. Significant results of Kruskal-Wallis tests for differences in vegetation attributes between ELUs with (present n=2) and those without (absent n=10) the boreal chorus frog in northern Minnesota, 1997. ...................................................... 37 Table 14. Significant results of Kruskal-Wallis tests for differences in vegetation attributes between ELUs with (present n=7) and those without (absent n=5) the blue- spotted salamander by ELU in northern Minnesota, 1997. ...................................... 38 Table 15. Mean abundances of American toads and wood fiogs captured by ELU and overall in northern Minnesota, 1997, used to determine which ELUS were above the average, and which were below for Kruskal-Wallis tests. ........................................ 39 Table 16. Significant results of Kruskal-Wallis tests for differences in vegetation attributes between ELUs above (n=5) and those below (n=7) the mean number of American toads in northern Minnesota, 1997. .......................................................... 40 Table 17. Significant results of Kruskal-Wallis tests for differences in vegetation attributes between ELUs above (n=4) and those below (n=8) the average number of wood frogs in northern Minnesota, 1997. ................................................................. 41 Table 18. P values of comparisons of Shannon-Weaver diversity index (S-W) values and mean number of individuals between ELUs along different axes within the EDM. 43 Table 19. Spearman rank correlations by Shannon-Weaver diversity index and mean number of individuals values that were significant by unit number. ........................ 44 Table 20. Significant results of Kruskal-Wallis tests for differences in vegetation attributes between units with (present n=10) and those without (absent n=22) the spring peeper in northern Minnesota, 1997. ............................................................. 48 Table 21. Significant results of Kruskal- Wallis tests for differences in vegetation attributes between units with (present n= 2) and those without (absent n=3 0) the northern leopard frog In northern Minnesota, 1997. ................................................. 49 Table 22. Significant results of Kruskal-Wallis tests for differences in vegetation attributes between units with (present n=2) and those without (absent n=3 0) the boreal chorus frog in northern Minnesota, 1997 ....................................................... 50 Table 23. Significant results of Kruskal-Wallis tests for differences in vegetation attributes between units with (present n=1) and those without (absent n=32) the eastern garter snake in northern Minnesota, 1997. ................................................... 51 Table 24. Significant results of Kruskal-Wallis tests for differences in vegetation attributes between units with (present n=7) and those without (absent n=25) the blue-spotted salamander in northern Minnesota, 1997. ............................................ 51 vii Table 25. Significant results of Kruskal-Wallis tests for differences in vegetation attributes between units with (present n=2 8) and those without (absent n=4) the wood frog in northern Minnesota, 1997. .................................................................. 52 Table 26. Mean number of American toads by unit number and overall. ....................... 54 Table 27. Significant results of Kruskal-Wallis tests for differences in vegetation attributes between units with (present) and those without (absent) American toads in northern Minnesota, 1997. ........................................................................................ 55 Table 28. Microhabitats and herptile species found in those microhabitats by search method in northern Minnesota, 1997. ....................................................................... 57 Table 29. Shannon-Weaver diversity index values (H’) by ELU for all methods combined, traps, plot searches, and time searches in northern Minnesota, 1997. 60 Appendix A Table 1. Keys to habitat type classes and vegetation growth stages as indicated in the Ecosystem Diversity Matrix (EDM). .............................................. 84 Appendix A Table 2. Tree species codes used with scientific and common names ........ 86 Appendix B Table 1. Large trees dbh (in) and height (ft).sample size, means, variances, standard deviations, standard errors, minimums and maximums by ELU and species“. ..................................................................................................................... 88 Appendix B Table 2. Large trees dbh (in) and height (it) means, variances, standard deviations, standard errors, minimums and maximums by unit number and species'. ................................................................................................................................... 92 Appendix B Table 3. Large trees stem density (stems/plot) by ELU. ........................... 100 Appendix B Table 4. Large trees stem density (stems/plot) by unit number. ............... 102 Appendix B Table 5. Small trees diameter (in) and height (ft) means, variances, standard deviations, standard errors, minimums, and maximums by ELU and species”. ..... 104 Appendix B Table 6. Small trees diameter (in) and height (it) means, variances, standard deviations, standard errors, minimums and maximums by unit number and species“. ................................................................................................................................. l 08 Appendix B Table 7. Small trees stem density (stems/plot) by ELU and species. ........ 117 Appendix B Table 8. Small trees stem density (stems/plot) by unit number and species. Marianna...'(‘gysargagt'zaymmam... “8 deviations, standard errors, minimums, and maximums by ELU and decay“. ....... 120 viii Appendix B Table 10. Snag diameter (in) and height (ft) means, variances, standard deviations, standard errors, minimums and maximums by unit number and decay“. ................................................................................................................................. 122 Appendix B Table 1 1. Snag diameter (in) and height (ft) means, variances, standard deviations, standard errors, minimums and maximums by ELU, species, and decay“. ................................................................................................................................. 126 Appendix B Table 12. Snag diameter (in) and height (ft) means, variances, standard deviations, standard errors, minimums and maximums by unit number, decay and species“. ................................................................................................................... l3 1 Appendix B Table 13. Snag stem density (stems/plot) by ELU and decay“. ................. 137 Appendix B Table 14. Snags stem density (stems/plot) by ELU, decay and species“... 138 Appendix B Table 15. Snag stem density (stems/plot) by unit number and decay‘. ..... 140 Appendix B Table 16. Snag stem density by unit number, decay, and species‘l ............ 141 Appendix B Table 17 . Snag area by ELU and decay‘. .................................................. 143 Appendix B Table 18. Snag area by ELU, decay and speciesll ...................................... 144 Appendix B Table 19. Snag area by unit number and decay3 ........................................ 146 Appendix B Table 20. Snag area by unit number, decay and species”. ......................... 147 Appendix B Table 21. Stump diameter (in) and height (ft) means, variances, standard deviations, standard errors, minimums and maximums by ELUll ........................... 149 Appendix B Table 22. Stump diameter (in) and height (ft) means, variances, standard deviations, standard errors, minimums and maximums by unit number and age class‘I ........................................................................................................................ 151 Appendix B Table 23. Stump diameter (in) and height (it) means, variances, standard deviations, standard errors, minimums and maximums by ELU, species, and age class“ ........................................................................................................................ 155 Appendix B Table 24. Stump diameter (in) and height (ft) means, variances, standard deviations, standard errors, minimums and maximums by unit number, species and age class“. ................................................................................................................ 161 Appendix B Table 25. Stump stem density (stems/plot) by ELU and age class. .......... 168 ix Appendix B Table 26. Stump stem density (stems/plot) by ELU, age class and species. ................................................................................................................................. 169 Appendix B Table 27. Stump stem density (stems/plot) by unit number and age class".171 Appendix B Table 28. Stump stem density (stems/plot) by unit number, age class and ' species“. ................................................................................................................... 172 Appendix B Table 29. Stump area by ELU and age class. ............................................ 174 Appendix B Table 30. Stump area by ELU, age class and species. .............................. 175 Appendix B Table 31. Stump area by unit number and age class“. ............................... 177 Appendix B Table 32. Stump area by unit number, age class and species“ ................... 178 Appendix B Table 33. Coarse woody debris diameter (in) and length (ft) means, variances, standard deviations, standard errors, minimums and maximums by decay class“ ........................................................................................................................ 180 Appendix B Table 34. Coarse woody debris stem density by ELU in logs per vegetation plot. ......................................................................................................................... 183 Appendix B Table 35. Coarse woody debris density in logs per vegetation plot by ELU and decay class“. ..................................................................................................... 184 Appendix B Table 36. Coarse woody debris density in logs per vegetation plot by unit number“. .................................................................................................................. 185 Appendix B Table 37. Coarse woody debris density in logs per vegetation plot by unit number and decay class. ......................................................................................... 186 Appendix B Table 38. Understory cover means by ELU and understory cover class at strata level 0. ........................................................................................................... 188 Appendix B Table 39. Understory cover means by ELU and understory cover class at strata level 1. ........................................................................................................... 188 Appendix B Table 40. Understory cover means by ELU and understory cover class at strata level 2. ........................................................................................................... 189 Appendix B Table 41. Understory cover means by ELU and understory cover class at strata level 3. ........................................................................................................... 189 Appendix B Table 42. Understory cover means by ELU and understory cover class at strata level 4. ........................................................................................................... 190 Appendix B Table 43. Understory cover means by ELU and understory cover class at strata level 5. ........................................................................................................... 190 Appendix B Table 44. Understory cover means by unit nurnberand understory cover class at strata level 0. .............................................................................................. 191 Appendix B Table 45. Understory cover means by unit number and understory cover class at strata level 1. .............................................................................................. 192 Appendix B Table 46. Understory cover means by unit number and understory cover class at strata level 2. .............................................................................................. 193 Appendix B Table 47. Understory cover means by unit number and understory cover class at strata level 3. .............................................................................................. 194 Appendix B Table 48. Understory cover means by unit number and understory cover class at strata level 4. .............................................................................................. 195 Appendix B Table 49. Understory cover means by unit number and understory cover class at strata level 5. .............................................................................................. 196 Appendix B Table 50. Percent canopy cover summary by ELU. Tallveg is percent canopy cover above 4.88 m, and allveg is percent canopy cover when any cover at all was detected. ...................................................................................................... 197 Appendix B Table 51. Percent canopy cover summary by unit number. Tallveg is percent canopy cover above 4.88 m, and allveg is percent canopy cover when any cover at all was detected. ...................................................................................................... 198 Appendix B Table 52. Mean soil moisture and pH by ELU. ......................................... 199 Appendix B Table 53. Mean soil moisture and pH by unit number. ............................. 200 Appendix B Table 54. Results of all correlations by ELU. ........................................... 201 Appendix B Table 55. Results of all correlations by unit number ................................. 208 Appendix B Table 56. Total number of herps found in timed searches by species ....... 224 Appendix B Table 57. Total number of herps found in plot searches by species ........... 225 Appendix B Table 58. Total number of herps found in traps by species ........................ 226 xi Appendix B Table 59. Total number of herps found in incidental sightings by Species. ................................................................................................................................. 227 Appendix B Table 60. Eigenvalues of the correlation matrix for ELUs ................... 228 Appendix B Table 61. Eigenvalues of the correlation matrix for unit numbers. ........... 228 Appendix B Table 62. ELUs and corresponding symbols for principal components analyses graphs. ...................................................................................................... 229 Appendix B Table 63. Unit numbers and given symbols for principal componenets analyses graphs by unit number. ............................................................................. 230 xii LIST OF FIGURES Figure 1. Map of Minnesota with Boise Cascade Corporation lands highlighted. ............ 9 Figure 2. Diagram of drift fence array used in northern Minnesota, 1997. Lines are drift fences, rectangles are funnel traps, and circles are pitfall traps. ............................... 15 Figure 3. Diagram of vegetation plot used to sample vegetation in sites. ....................... 21 Figure 4. Shannon-Weaver diversity index values for all data combined (plot searches, timed searches, and traps) and trap data alone. ......................................................... 61 Appendix B Figure 1. Plot of the first two principal components by ELU: PRIN2*PRIN1. See Appendix B Table 60 for ELUs corresponding with symbols. ................................................................................................................................. 231 Appendix B Figure 2. Plot of the first and third principal components by ELU: PRIN3*PRIN1. See Appendix B Table 60 for ELUs corresponding with symbols. ................................................................................................................................. 232 Appendix B Figure 3. Plot of the second and third principal components by ELU: PRIN3*PRIN2. See Appendix B Table 60 for ELUs corresponding with symbols. ................................................................................................................................. 233 Appendix B Figure 4. Plot of first two principal components by unit number: PRIN2*PRIN1. See Appendix B Table 61 for unit numbers associated with symbols. .................................................................................................................. 234 Appendix B Figure 5. Plot of the first and third principal components by unit number: PRIN3’PRIN1 . See Appendix B Table 61 for unit numbers associated with symbols. .................................................................................................................. 235 Appendix B Figure 6. Plot of the second and third principal components by unit number: PRIN3‘PRIN2. See Appendix B Table 61 for unit numbers associated with symbols. .................................................................................................................. 236 xiii INTRODUCTION Importance of studying herptiles Herptiles are an important, yet frequently overlooked, taxonomic group to examine in ecological studies. They often play an essential role in forested natural communities. Salamanders, for example, have a significant role in nutrient cycling by regulating invertebrate populations that help break down the leaf litter (Burton and Likens 1975a). They are also substantial sources of energy for predators because their tissue is higher in protein than that of birds or mammals (Burton and Likens 1975a). They can be an abundant portion of vertebrate biomass in a forest as well. In a New Hampshire forest, there were more salamanders than birds or mammals (Burton and Likens 1975b). Despite these important roles, herps are generally poorly studied vertebrates. There has been a recent shifi towards examining herps in more depth in ecological studies partly due to concern about the decline of amphibian populations (Wyman 1990, Johnson 1992, Blaustein et a1. 1994, Blaustein and Wake 1995). Possible reasons for this decline range from habitat fragmentation to chemical pollutants to the depletion of the ozone layer. Whether this decline is significantly different from that of other taxonomic groups in the general biodiversity crisis has not been agreed upon, but most scientists concede that there are fewer amphibians and species of amphibians than there have been historically (Wyman, 1990, Johnson 1992, Blaustein et a1. 1994, Pechmann and Wilbur 1994, Blaustein 1994, Blaustein and Wake 1995). This decline makes the herpetofauna an even more interesting and important group to study. With more basic ecology studies on herps, we can add to the small existing knowledge base, which may eventually help find an answer to their decline. Herpetofaunal habitat associations One important aspect of herpetofaunal biology that is beginning to be studied more is habitat associations. It has been shown that herpetofaunal species distribution, abundance, and diversity may vary according to different habitats (Jones 1988, Karns 1988, Degraaf and Rudis 1990) and habitat structure (Pais et a1. 1988, Raphael 1988, Welsh and Lind 1988) within the same geographical region. These attributes of the herpetofauna may depend upon such characteristics of the habitat as biomass of nonwoody vegetation (Pais et a1. 1988), presence of coarse woody debris (Aubry et al. 1988, Bury and Corn 1988, Whiles and Grubaugh 1996), amount of leaf litter (Petranka et a1. 1993), overstory and understory vegetation species composition, canopy cover (Ash 1988, Kams 1988), and pH (Wyman and Hawksley-Lescault 1987, Kams 1992) and moisture (Welsh and Lind 1988, Dupuis et a1. 1995) of the soil. Coarse woody debris is important to herps for reproduction, feeding, tlrennoregulation, protection from dessication, and as refugia from predators (Whiles and Grubaugh 1996). Other types of cover, such as the bases of ferns, moss, and bark are also used by herptiles (Dupuis et a1. 1995). Amphibian populations and their ability to breed may be affected by pH (Degraaf and Rudis 1990, Kams 1992) and moisture (Dupuis et a1. 1995) of soil and surrounding water due to their need for water to reproduce. Karns (1988) commented that forest structural complexity is perhaps one of the most important factors in determining herpetofaunal species richness, diversity and abundance. When studying individual species, different habitat characteristics may have varying degrees of importance. One study in Kentucky, for example, found that American toads were associated with dense herbaceous cover in forest clearings (Pais et al. 1988). Another study found that 30% of individuals of Plethodon vehiculum, a terrestrial salamander species, were associated with logs (Dupuis et a1. 1995). Specific species requirements may vary somewhat, but for herptiles, it is easier to generalize requirements and habitats between amphibians and reptiles. Reptiles, for example, often favor clearcut plots over forested plots due to the increase in temperature in the clearcuts from the absence of canopy cover (Bury and Corn 1988; Phelps and Lancia 1995). This would generally not be true for most amphibians due to their need for constant moisture. Knowledge of these kinds of specific species requirements, and general taxonomic requirements, can have important implications, such as in ecosystem management. The focus of forest management has historically been towards large species and game animals, while reptiles, amphibians, and small mammals have been neglected (Bury et a1. 1980). With recent concerns about habitat fragmentation and the loss of biodiversity, land managers are attempting to adjust some of their ecosystem management practices according to requirements of these lower profile species. This study is an investigation into herpetofaunal habitat associations and is being done as part of an ecosystem management study in northern Minnesota by Boise Cascade Corporation (BCC). Unfortunately, there is a lack of literature on including herps in large-scale ecological classification systems. This ecosystem management effort is attempting to characterize a landscape as a coarse filter for ecological communities. The coarse filter approach involves investigating communities in different vegetation growth stages and habitat type classes in a region (Haufler et a1.“ 1996). Documenting distributions and abundances of herpetofauna using this coarse filter approach will allow data about these species to be incorporated in landscape planning efforts. Much of the forested lands of Minnesota have been harvested for timber use for more than a century by the state, counties, and private owners (F relich 1995). This has created a large land area with different aged, although generally young, forests (Frelich 1995). BCC owns 125,455 hectares of land in northern Minnesota, covering many habitat type classes and growth stages, making this area an important one for the study of herpetofaunal habitat associations. Herpetofaunal sampling methods Amphibians and reptiles are difficult organisms to study due to their secretive habits, making another reason relatively little research has been conducted on them. Amphibians often come to the surface of leaf litter only when they are preparing to overwinter in the fall, in the spring during breeding season, or to forage for invertebrates in the rain, and ofien at night. Because amphibians and reptiles are ectothennic, they are completely inactive during the winter. Since herps are difficult to study in their natural habitats, more work needs to be done on evaluating sampling methods for studying them. Effectiveness of search methods often depends on habitat and environmental factors, such as time of day, amount of rainfall, temperature, and acidity of the soil (Kams 1986). Some sampling methods that have been used successfully in other studies include drift fence arrays with pitfall traps, which were successful in sampling amphibians, but not reptiles in Douglas-fir forests in the western United States (Bury and Corn 1988). Other studies have found that the pitfall arrays are most efficient during periods of precipitation or soon thereafter (V ogt and Hine 1982). In fact, drift fences with pitfall traps seem to be the most efficient sampling technique for herps, although they also insert certain biases into the study, such as those due to morphology, behavior, and ecology of the organisms (Gibbons and Scmlitsch 1981). Time-constrained or plot searches are other techniques that have been employed in studies, but they generally do not provide enough animals to complete quantitative analyses (Bury and Corn 1988). These types of searches may still be necessary to determine more specific microhabitat associations (V ogt and Hine 1982) or for temporal studies (Gibbons and Scmlitsch 1981) and to attempt to avoid the biases of using only pitfall trap arrays. Therefore, the survey of all herps in an area, depending on the questions being asked, requires more than one survey technique (Corn and Bury 1990). An additional goal of this study is to examine the relative success of different sampling methods for amphibians and reptiles in northern Minnesota. OBJECTIVES The objectives of this research are the following: 1) 2) 3) 4) 5) To determine herpetofaunal species distribution and their relative abundance in different ecological land units as described by habitat type classes and growth stages in northern Minnesota. To determine herpetofaunal species richness and diversity in different ecological units as described by habitat type classes and growth stages in northern Minnesota. To compare herpetofaunal species abundance, distribution, diversity and richness with various stand characteristics such as soil pH, understory vegetation cover, and overstory canopy closure. To compare 3 sampling methods: area-constrained searches, time-constrained searches, and drift fences with pitfall traps in surveying the herpetofauna in northern Minnesota. To provide recommendations to Boise Cascade Corporation on how to continue to monitor the herpetofauna on their lands. METHODS Study Site Description This study, an extension of the cooperative ecosystem management project of Boise Cascade Corporation (BCC) and Michigan State University (MSU), was conducted in 1996 and 1997 in and around Koochiching County, Minnesota (Figure 1). International Falls, Minnesota, in Koochiching County, is found at a latitude of 48° 33’ 59” N and longitude of 93° 24’ 11” W, which is an area with extremely cold winters with much snowfall. The normal daily maximum temperature from October through March varies monthly from 51.8°F in October to 32.8, 16.6, 11.9, 19.3, and 32.8°F in March. The highest normal daily maximum temperature in the summer is 78.8°F in July. Normal snowfall from October through March is 1.9 inches in October to 11.2, 12.8, 13.4, 8.9, and 9.3 inches in March (National Oceanic and Atmospheric Administration 1998). Eight different types of sites were tentatively identified using an incomplete Ecosystem Diversity Matrix (EDM) in the 1996 field season. An EDM is a matrix with 2 axes, one for habitat type classes, and one for vegetation growth stages (Haufler et a1. 1996). Each element, or cell within the matrix is called an ecological land unit (ELU), and these ELUs characterize the northern Minnesota vegetation. Most of the ELU sites were on land owned by BCC, although some were also on state and county lands. During the 1996 field season, sites were chosen according to soil type, overstory vegetation, understory vegetation, and in the cases of the wet sites, ground vegetation, from BCC protocol (Table 1). This initial site selection was done using gross vegetation characteristics which eventually helped BCC define their full EDM, completed in the spring of 1998. Once the EDM was completed, these sites were fit into the habitat type classes and vegetation growth stages stated within it. Due to the iterative method with which the ELUs were ultimately classified, the resulting number of ELUs sampled does not represent the entire matrix, and there was not equal replication within the ELUs that were sampled. There were from 1 to 4 sites within each ELU, and a total of 12 ELUS sampled. Each ELU was designated by vegetation growth stage and habitat type, described by overstory vegetation, soil moisture and soil nutrients (Table 2, Appendix A Table 1). Herpetofaunal sampling methods Multiple sampling methods are most effective for studies of herpetofaunal species diversity (Corn and Bury 1990, Mitchell et al. 1993). Drifi fences and pitfall traps have been shown to be effective means of capturing the herpetofauna in various habitat type classes and different aged stands (Gibbons and Bennett 1974, Gibbons and Scmlitsch 1981 , Enge and Marion 1986, Corn and Bury 1990, Mitchell et al. 1993), although they alone are not sufficient to determine species diversity (Corn and Bury 1990). Therefore, this study used a combination of drifi fences with pitfall and funnel traps and time— eonstrained and area-constrained searches for the herpetofaunal survey in 1997. In addition to these trapping and search methods, incidental observations of herpetofauna were also recorded, although these animals were not marked (see below). fluke “calm flaunt: Mm“? Figure 1. Map of Minnesota with Boise Cascade Corporation lands highlighted. 9 Table 1. Initial ecological sampling unit selection criteria for Boise Cascade Corporation’s Ecosystem Diversity Matrix, 1996“. tamarack overstory tamarack, black spruce understory moss ground cover Early Successional Late Successional ’"Dry >2fi. sandy soil >2a. sandy soil aspen overstory aspen and balsam fir overstory balsam fir understory balsam fir understory Mesic clayey-loam over clay soil clayey-loam over clay soil aspen overstory aspen and balsam fir overstory balsam fir understory balsam fir understory Shallow 6-8” and no more than 2’ organic soil 6-8”Land no more than 2’ organic Wet black ash, balm of gilead, aspen soil overstory white cedar overstory white cedar understory white cedar understory sedges, herbs, ferns ground cover sedges, herbs, ferns ground cover DeepI—Net >36” organic peat soil >36” organic peat soil black spruce overstory black spruce understory moss ground cover “Scientific names of above species: Aspen Populus spp. Balm-of-Gilead Populus balsamrfera Balsam Fir Abies balsamea Black Ash Fraxinus nigra Black Spruce Picea mariana Tamarack Larix laricina White cedar Thuja occidentalis 10 v - Gave.— m - c523 ._ .5... ham 5 a - 95.5 48. Sam 4 - @zm _ - 3am _ g8. 5m N - EVBm ._ .89 5% a See a; _ 48. m5. .2 E .53 a be as _ HE .53 a be .52 e .9: 52 N - €52 .. 322 a .9: Saw V - 3:22 8 H7: Him _ #7: #38 : H7: mad 8 H7: m10.3 cm diameter) (C). For coarse woody debris, we recorded transect number, position of reading along the transect, total length of the debris, diameter at the large end of the debris, and decay class (Table 4). Species, dbh, and height of large trees 210.3 cm dbh were also recorded in each macro plot. Every snag with 210.3 cm diameter and 1.8 m tall or greater, and every stump 10.3 cm or greater in diameter and less than 1.8 m in height were recorded in each macro plot. For each snag, species, diameter, height, and decay class were recorded (Table 5). For each stump, species, diameter, height, and age class were recorded (Table 6). Moisture and pH were measured using a Kelway soil pH and moisture meter, at the north central point in each macro plot. 19 Data Analysis By ELU The herpetofaunal data were examined in 3 ways: as species presence/absence, total number of individuals recorded, and the Shannon-Weaver diversity index (Shannon and Weaver 1949). The Shannon-Weaver diversity index and total number of individuals recorded were corrected both for the number of plots searched per ELU and the number of sites within an ELU. Vegetation data were tested for normality within each ELU using the Shapiro-Wilk (W) statistic within the univariate procedure in the SAS/STAT program version 6.1 (SAS Institute Inc., Cary, NC), and for equal variances among ELUs using the modified Levene’s test (N eter et al. 1996). Spearman rank-order correlation coefficients (Siegel and Castellan, Jr. 1988) were calculated between the number of herps caught, the Shannon-Weaver diversity index value and the mean values of each of the vegetation attributes (e. g. mean large tree dbh, height and stem density). For correlation analyses involving large trees and small trees the following vegetation variables were used: mean dbh, mean height, and stem density, measured as stems per vegetation plot. The formula used to determine stem density was the total number of stems measured in an ELU divided by the number of vegetation plots measured in that ELU. To convert stems per plot to stems per hectare, the following formulas can be used: for large trees, snags and stumps, divide the stems per plot value by 0.029 ha (size of the macro vegetation plot) to obtain stems per hectare; for small trees, divide the stems per plot value by 0.004 ha (size of 4 comer plots) to obtain stems per hectare. Correlations were calculated using the overall ELU mean value of each 20 0.029 ha (294 sq. m) Macro plot with 6 - 0.004 ha (49 sq. m) Micro plot / 0.001 ha (12.25 sq. m) comer plot ‘/ ------1-------. Figure 3. Diagram of vegetation plot used to sample vegetation in sites. 21 Table 4. Coarse woody debris decay classes used for vegetation sampling of sites. my Bark #Twigs >3cm Texture Shape Color of Portion of Class in length Wood“ log on ground 1 intact present intact round original log elev. on color support points 2 intact absent intact to round original log sagging partly soft color slightly 3 trace absent hard, large round original to log sags near pieces faded ground 4 absent absent small, soft round to light brn to all of log on blocky oval faded brn or ground pieces yellow 5 absent absent soft and oval faded to It. all of log on powdery yellow or ground gray jlAbbreviations: brn = brown, lt = light Table 5. Snag decay classes used for vegetation sampling of sites. If snags were burned more than 50%, letter B was added to the end of the snag decay class. —Decay Bark Heartwood Sapwood Limbs Top Bole Class Decay Decay Breakage Form 1 tight, intact none to none to mostly may be intact minor initial present present 2 50% loose none to none to small limbs may be intact or missing advanced initial missing present 3 >75% incipient to none to few usually mostly missing advanced 25% remaining 1/3 intact 4 >75% incipient to 25%-50% few usually starting to missing advanced remaining 1/3-1/2 lose form 5 >75% advanced >50% absent usually form missing to crumbly advanced 1/2+ mostly lost 22 Table 6. Stump age classes used for vegetation sampling of sites. If stumps were burned more than 50%, the letter B was added to the end of the stump age class. Stump Age Class Description 1 Recent, 0-25 years, solid, bark still intact. 2 Old, 25-50 years, generally bark is loose, stump soft. 3 Very old, >50 years, no bark, sometimes very hard, sometimes bark exists, but no center wood. vegetation attribute measured and the mean value by ELU and species (Appendix B Tables 1-53). All vegetation mean values are corrected for both number of replicates of an ELU and for the number of vegetation plots measured within each ELU. The variables used for correlation analyses involving snags and stumps included mean diameter, mean height, stem density, and area. Area was determined to be the overall horizontal area of all snags or stumps measured in an ELU. This was calculated by the area of a circle formula: 1r*radiusz, which when applied to the data was: 1r*(dbh/2 "' dbh/2) for individual dbh measurements in an ELU. This was then corrected for the number of replicates of an ELU and number of vegetation plots, then summed by ELU to get the overall area value by ELU. Correlations with the variables for snags and stumps used the overall value for each ELU, ELU value by species, ELU value by decay class, and ELU value by species and decay class (Appendix B Tables 9-32). Coarse woody debris (CWD) variables used were diameter, length, and density, by overall ELU values, and ELU values by decay class (Appendix B Tables 33-37). Density of CWD in logs/ha was determined by the formula: X= 105 * 1r/2L * 2(l/li), where 105 is the number of meters2 in a hectare, L = length of transect, and l; = length of CWD (deVries 1986). Understory cover data were summarized by calculating the mean number of times a variable, such as grass (G), was found in each stratum level. 23 Correlation analyses used ELU mean values (Appendix B Tables 38-49). Canopy data were summarized by calculating the mean number of times there was found to be cover either above 4.88 m, or at all, by ELU (Appendix B Tables 50-51). Soil correlations were completed on the ELU mean soil pH and moisture values (Appendix B Tables 50-53). Overall stem density was calculated using the total number of large trees, small trees, snags and stumps per plot by ELU. A principal components analysis (PCA) (Neter et al. 1996) was done to test for vegetation similarities among ELUs. Pairwise plots of the first 3 principal components were constructed to determine whether the ELUs fell together when graphed using the PCA as predicted by the EDM. For each herp species, sites were divided into those that had a species and those that did not have that species. A Kruskal-Wallis test (Siegel and Castellan, Jr. 1988) was then used to test for vegetation differences between these ELUs for each herp species. The Kruskal-Wallis test was also used to compare differences in numbers of individuals of herps or Shannon-Weaver values between certain habitat type classes or vegetation growth stages within the EDM. For example, one comparison done was between LW(p) and LW(vp) ELUs, which would be a comparison to test for the effects of poor versus very poor soil in an older, wet site. These tests were completed to determine whether the herpetofaunal attributes measured followed along the same gradients as would be expected fiom the matrix For all correlations and Knrskal-Wallis tests, alpha was set at 0.10. A Bonferroni correction was used within each set of tests of the same data to maintain the overall experimentwise error rate at 0.10 (N eter et al. 1996). This strategy preserved the 24 exploratory nature of the analysis by using a fairly liberal alpha of 0.10, but reduced the probability of making a Type I error by using the Bonferroni correction. By Unit Number After completing these statistical tests on the ELUS, it seemed that the next plausible step would be to also complete these same tests on the individual sites. Although this does not allow for replication, it seemed that it might provide pertinent information about vegetation and the herpetofauna that would not otherwise be observed when constrained by the EDM. Therefore, the previously mentioned statistical tests were also performed by “unit number”, or individual site, ignoring the ELU and EDM, with the exception of the last Kruskal-Wallis test mentioned which needed the EDM in order to be completed (Appendix B Tables 1-53). 25 RESULTS General vegetation results Vegetation attributes were summarized by calculating the mean value of each attribute measured except for stem density and area, which were calculated by previously stated formulas. Two means were calculated: by ELU, and by individual site, or unit number (Appendix B). Most vegetation attributes were found to be not normally distributed, and did not have equal variances among ELUs or sites. Therefore, Spearman rank correlations and Kruskal-Wallis tests were used to examine the data. A Principal Components Analysis (PCA) was completed on the measured vegetation attributes by ELU. The PCA accounted for approximately 55% of the ELU variability within the first 3 eigenvalues. When graphed, the PCA showed a slight propensity to reflect the EDM in terms of habitat type, but not in terms of vegetation growth stage (Appendix B Table 60, Figures 1, 2, 3). The 3 ELUs on the more wet end of the matrix, MW(p), LW(p), and LW(vp), separate out well from the other 9 ELUs, but these latter 9 ELUs do not to separate out into any meaningful pattern (Table 2, Appendix B Figure 3). A PCA was also completed on measured vegetation attributes by unit number to determine if individual sites, when graphed, made any sort of discemable pattern similar to or different from the EDM, but no such pattern is discemable (Appendix B Table 61, Figures 4, 5, 6). 26 Herpetofaunal results A total of 8 herp species were observed in the ELUs. These included: American toad (Bufo americanus), boreal chorus fiog (Pseudacris triseriata maculata), gray tree frog (Hyla versicolor), northern leopard frog (Rana pipiens), spring peeper (Pseudacris crucifer), wood frog (Rana sylvatica), blue-spotted salamander (Ambystoma Iaterale), and eastern garter snake (Thamnophis sirtalis sirtalis). Only American toads and wood frogs were found in every ELU. Blue-spotted salamanders and spring peepers were found in 7 of the 12 ELUs, northern leopard frogs and boreal chorus frogs in 2 ELUs, and the eastern garter snake and gray tree frog in only 1 ELU each (Table 7). Herpetofaunal information calculated included mean number of individuals found, the Shannon-Weaver diversity index values (Shannon and Weaver 1949), and Pielou’s J evenness values (Hayek and Buzas 1997) by ELU for all search methods combined, with the exception of incidental sightings. Incidental observations were not included in these analyses because they could not be standardized the way the other search methods were, and individuals found by incidental observations were not marked. Also, all species observed in incidental observations were also found in other methods. Diversity was similar among most of the ELUs, as was richness and evenness, with American toads and wood frogs being by far the most abundant species (Tables 7 and 8). The most diverse ELU was LW(p), and least diverse was LW(vp). The ELU with the most number of individuals (mean = 63.5) was ED(p), and that with the least (mean = 9.036) was LW(pm) (Table 8). The ELUs with the highest species richness were LM(m) 27 Table 7. ELUs and species found within them in northern Minnesota, 1997 according to search method“. Numbers in parentheses indicate total number of individuals captured in 28 that method. American Blue- Boreal E. garter Gray N. Spring Wood toad spotted chorus snake treefrog leopard peeper frog ‘ salamander frog frog 1311(1)) P(1) P(1) P(1) Tr (11) Tr (5) T (8) Tr (36) MG!) P(3) Tr(1) 1‘0) PO) T (6) Tr (l) T (3) T5 (69) Tr (31) ' EW(m) T (3) Tr (1) Tr (1) T73) Tr (66) Tr (34) (In) P (7) Tr(1) Tr(1) T(Z) P(7) T (3) Tr (2) T (24) Tr. (49) Tr _ (105) LW(m) P (1) Tr (1) P (2) T (1) Tr (25) Tr (13) 'IIWTp) P(8) Tr(l) T(l) P(3) 13(1) Tr (19) T (1) F fi Tr (14) LW(pm) P(l) Tr (1) Tr (1) T(4) T (3) Tr (6) Tr (21) fivTvp) Tr (3 9) Tr (6) MM(m) T (2) Tr (1) T (1) P (2) Tr (12) Tr(l) T(3) _ Tr (17) MM(p) P (2) Tr (1) T (1) P (3) T (5) T (1) _ T rfi(2 1) Tr (l 1) MW(m) P (3) T (1) Tr (1) Trfi Tr (13) (P) P (2) P (1) T (2) T (2) Tr (26) Tr (7) “ P indicates plot search, T indicates time search, and Tr indicates trap. Table 8. Shannon-Weaver (S-W) diversity index mean values, Pielou’s J values, mean number of individuals captured, and species richness of each ELU in northern Minnesota, 1997. ELU S-W J Mean captured Richness ED(p) 0.894 0.634 63.50 4 EM(p) 0.589 0.606 28.50 4 EW(m) 0.713 0.832 54.00 3 MM(p) 0.830 0.599 46.00 4 MM(m) 0.789 0.929 14.82 4 MW(p) 0.531 0.766 20.95 2 MW(m) 0.633 0.574 11.50 4 LM(m) 0.677 0.638 51.20 5 LW(vp) 0.156 . 12.75 2 LW(p) 0.955 0.716 28.28 5 LW(pm) 0.587 . 9.04 4 LW(m) 0.653 0.754 21.50 3 and LW(p) with 5 species in each, and those with lowest species richness were MW(p) . and LW(vp) with 2 species in each (Table 8) When observed by site, or unit number, the most diverse unit number was number 9, with a Shannon-Weaver value of 1.162, and the least diverse were numbers 28 and 32, with values of 0. Unit number 9 is in ELU MM(m), and numbers 28 and 32 are LW(vp). The site with the largest mean number of individuals captured was number 40 (LM(m)), with 101.158 individuals, and that with the smallest mean was number 28, with only 1 individual captured (Table 9). ELU herpetofaunal and vegetation results Correlations Spearman rank correlations (Siegel and Castellan, Jr. 1988) were calculated between the means of the vegetation variables, stem densities and areas and Shannon- 29 Table 9. Shannon-Weaver diversity index (S-W) , Pielou’s J, the average number of herps captured, and species richness by unit number in northern Minnesota, 1997. Unit No ELU S-W J Mean Richness captured 1 MW(m) 0.940 0.678 9.75 4 2 MW(m) 0.325 0.469 9.50 2 3 EM(p) 0.667 0.962 21.80 2 4 EM(p) 0.173 0.250 24.00 2 5 MW(p) 0.689 0.994 11.00 2 6 LW(p) 0.852 0.775 27.31 3 _7 MW(p) 0.372 0.537 26.90 2 8 LW(p) 1.057 0.657 19.77 5 9 MM(m) 1.162 0.838 11.00 4 11 MM(m) 0.693 1.000 2.00 2 13 LM(m) 0.892 0.812 15.00 3 16 MM(m) 0.622 0.897 19.13 2 17 LW(m) 0.598 0.863 6.75 2 18 LW(m) 0.709 0.645 36.00 3 19 EW(m) 0.687 0.625 87.00 4 20 EW(m) 0.688 0.993 20.00 2 21 MM(p) 0.830 0.599 44.17 4 22 EM(p) 0.876 0.632 38.00 4 23 ED(p) 0.879 0.634 63.50 4 ‘ 24 EM(p) 0.639 0.582 29.80 3 28 LW(vp) 0.000 . 1.00 1 30 LW(vp) 0.173 0.250 24.00 2 31 LW(vp) 0.451 0.650 6.00 2 32 LW(vp) 0.000 . 14.00 1 34 LM(m) 0.780 0.563 36.42 4 38 MM(m) 0.679 0.979 5.13 2 39 LM(m) 0.441 0.636 44.74 2 40 LM(m) 0.595 0.541 101.16 3 45 LW(pm) 0.658 0.949 8.14 2 46 LW(pm) 0.000 . 10.00 1 47 LW(pm) 0.637 0.918 3.00 2 48 LW(pm) 1.055 0.761 14.00 4 30 Weaver diversity index values and the mean number of individuals. Even though the correlation analyses are exploratory in nature, because of the large number of correlations calculated, only those correlations that were significant at a Bonferroni adjusted alpha of 0.10 and had a sample size of at least 4 are included in these results. Twenty-one correlations were significant for analyses involving large trees, small trees, snags, stumps, coarse woody debris, and strata (Table 10, Appendix B Table 54). No significant correlations were found with canopy, soil, or all density variables. For the analyses involving small trees, large trees, snags, stumps and coarse woody debris, almost no correlations were significant without being stratified by species and/or decay class. The only exception to this was the correlation of large-trees-dbh and number of individuals in which all 12 ELUs were represented. Not all 12 ELUs were represented in the rest of the significant correlations, and not every species or decay class was represented in every ELU. For example, the tree species balsam fir (ABBA) was found in only 10 of the 12 ELUs for small trees. Overall, significance was found over three times as much for correlations between vegetation attributes and number of individuals as for the correlations with Shannon- Weaver values (16 versus 5 times). Tree species that had significant correlations for small trees, large trees, snags, and stumps for both the Shannon-Weaver diversity index and number of individuals correlations included ABBA and POBA. The only other species that showed any significance in the Shannon-Weaver correlations was BEPA, but there were additional species that were significant in the correlations with the number of individuals. These included: ACRUl, PIGL and POTRl. ACRUl and PIGL were significant in the small trees stem density correlation, and POTRl was significant in the 31 large trees diameter, snag diameter, stump diameter, stump stem density, and stump area correlations. Diameter, height, stem density, and area correlations were significant a total of 7, l, 6, and 4 times, respectively (Table 10). Coarse woody debris had 1 significant correlation: with stem density and number of individuals in decay class 2. The only correlation that was significant for strata data was litter at level 1 (Table 10). Kruskal-Wallis tests Kruskal-Wallis tests (Siegel and Castellan, Jr. 1988) were completed to test for vegetation differences between ELUs that had each herp species and ELUs that did not. Each of these was stratified according to the variable by species, decay, or decay and species, when necessary. Most significance was found when these stratifications were made. Spring peepers were found significantly more in ELUs with larger stump height. They were also found significantly more in ELUs with canopy cover both below 4.88 m and above 4.88 m than in sites without canopy cover at those places (Table 11). The northern leopard frog was found in ELUs where coarse woody debris had larger diameter (Table 12). The boreal chorus frog was found in ELUs where snag diameter was smaller, and stump height was larger. It was also found where stump stem density and area were low (Table 13). The gray treefrog and eastern garter snake had no significant ELU Kruskal-Wallis tests. Blue-spotted salamanders were found significantly more in ELUs where coarse woody debris had a smaller mean diameter. From the understory cover data, blue-spotted salamanders were found in ELUs with fewer shrubs at strata level 4 (Table 14). 32 Table 10. Significant Spearman rank correlations between the Shannon-Weaver diversity index (S-W) and/or mean number of individuals and vegetation attributes by ELU in northern Minnesota, 1997. Variable Species“/ S-W Number of Decay individuals a r 2 n r 2 Small trees by Stem density ACRUl 8 0.881 0.004 species PIGL 5 0.975 0.005 Large trees dbh 12 0.671 0.017 Large trees by dbh POTRl 9 0.883 0.002 species Snags by decay Stem density Decay 2 12 0.732 0.007 Area Decay 1 11 0.782 0.005 Snags by decay dbh and species Decay 2 POTRl 6 -0.943 0.005 Snags by species dbh POBA 6 0.943 0.005 Height BEPA 7 0.929 0.003 Stem density POBA 6 0.943 0.005 Area POBA 6 0.943 0.005 Stumps by age dbh Age class 3 11 0.718 0.013 class Stumps by age dbh class and species Age class 1 POTRl 7 0.857 0.014 Age class 2 ABBA 6 -0.943 0.005 Stem density Age class 1 POTRl 7 0.955 0.001 Age class 2 ABBA 6 0.943 0.005 33 Table 10 (Cont). Variable Species“/ S-W Number of Decay individuals 2 E 2 I.) I E Area Age class 1 POTRl 7 0.857 0.014 Stumps by Area ABBA 8 0.810 0.015 species POTRl 7 0.929 0.003 CWD by decay Stem density Decay 2 12 0.664 0.019 Strata“ L=1 12 0.809 0.001 Tor a key to species codes, see Appendix A Table 2. l’Strata level 1 is from 0.1 m to 0.98 m. L is litter 34 Table 11. Significant results of Kruskal-Wallis tests for differences in vegetation attributes between ELUs with (present n=7) and without (absent n=5) the spring peeper in northern Minnesota, 1997. Variable P value Veg Interpretation - species/decay ¢ (if appl.) Stumps by age Height 0.0091 Age class 1 found where height is larger class Present: mean=3l.35 range=23.33 to 38.70 ft. Absent: mean=29.43 range=22.7l to 34.91 ft. Canopy allveg=1 0.0493 found where there is more canopy cover above and below 4.88 m Present: mean=0.86 range=0.80 to 0.97 Absent: mean=0.74 range=0.52 to 0.83 tallveg=l 0.0145 found where there is more canopy cover above 4.88 m Present: mean=0.78 range=0.67 to 0.90 Absent: mean=0.63 range=0.48 to 0.70 35 Table 12. Significant results of Kruskal-Wallis tests for differences in vegetation attributes between ELUs with (present n=2) and those without (absent n=10) the northern leopard fi'og in northern Minnesota, 1997. Variable P value Veg Interpretation species/Decay (if appl.) CWD Diameter 0.0532 found where diameter is larger Present: mean=7.25 range=5.88 to 9.55 in. Absent: mean=4.92 range=4 to 16 in. American toads and wood frogs were found in all ELUs, therefore ELUs could not be divided in the same way they were divided for other species for this analysis. I divided the ELUs into those that had greater than the overall mean number of individuals for that species and those that had fewer (Table 15). American toads were found in greater proportions in ELUS with more slash (strata levels 0 and l) for understory cover, and in ELUs where the soil was less moist (Table 16). The wood frog had the most difficult generalities to pick out due to the more contrasting significant findings. They were found more in ELUs where large tree and stump diameter was larger, and where small tree diameter was smaller. Also, they were associated with low stem density for large trees and high stem density for small trees and stumps. They were found more in ELUs with high stump area and with more slash for understory cover at strata level 2 (Table 17). EDM Comparisons Comparisons of Shannon-Weaver diversity index values and average number of individuals values between ELUs along axes in the matrix were also completed using the 36 Table 13. Significant results of Kruskal-Wallis tests for differences in vegetation attributes between ELUs with (present n=2) and those without (absent n=10) the boreal chorus frog in northern Minnesota, 1997. Variable P value Veg Interpretation species/Decay (if appl.) Snags Diameter 0.0371 found where diameter is smaller Present: mean=5.34 range=4.25 to 9 in. Absent: mean=6.5 rangefl to 19.5 in. Stumps Height 0.0317 found where height is larger Present: mean=2.85 range=2 to 4 ft. Absent: mean=0.95 range=1 to 5 ft. Stem density 0.0367 found where stem density is lower Present: mean=238 range=183 to 293 stems/ha Absent: mean=297 range=l86 to 435 stems/ha Area 0.03 67 found where area is lower Present: mean=21.24 range=l9.05 to 23.43 in. Absent: mean=l68.64 range=l3.56 to 581.72 in. 37 Table 14. Significant results of Kruskal-Wallis tests for differences in vegetation attributes between ELUs with (present n=7) and those without (absent n=5) the blue- spotted salamander by ELU in northern Minnesota, 1997. Variable P value Veg Interpretation species/Decay I (if appl.) ‘ CWD by decay Diameter 0.1T” Decay class 1 found where diameter is smaller Present: mean=4.89 range=4 to 6 in. Absent: mean=8.03 range=5 to 11 in. Strata“ level 4 0.0056 S found where there is less S Present: mean=0.02 range=0 to 0.03 Absent: mean=0.03 range=0.03 to 0.13 “Strata level 4 is from 2.94 m to 3.92 m. S = shrubs. 38 Table 15. Mean abundances of American toads and wood frogs captured by ELU and overall in northern Minnesota, 1997, used to determine which ELUs were above the average, and which were below for Kruskal-Wallis tests. ELU American toad - ELU Wood frog mean abundance mean abundance MM(m) 3 .50 MW(m) l .00 LW(pm) 6.04 LW(vp) 1 .50 MW(m) 6.88 LW(pm) 2.25 LW(m) 7.13 MW(p) 4.55 LW(vp) 9.75 MM(m) 5.03 ED(p) 1 1.17 LW(p) 7.54 LM(m) 13.09 EM(p) 8.53 LW(p) 13.81 MM(p) 12.50 MW(p) 14.10 LW(m) 12.75 EM(p) 18.83 EW(m) 18.50 MM(p) 26.33 LM(m) 32.34 EW(m) 34.50 ED(p) 44.17 Mean 13.76 Mean 12.55 39 Table 16. Significant results of Kruskal-Wallis tests for differences in vegetation attributes between ELUs above (n=5) and those below (n=7) the mean number of American toads in northern Minnesota, 1997. Variable P value Strata“ level 1 0.0045 level 0 0.0056 Soil moisture 0.0618 Veg species/Decay (if appl.) Interpretation found where there is more H Above: mean=0.22 range=0.l3 to 0.32 Below: mean=0.15 range=0 to 0.07 found where there is more H Above: mean=0.16 range=0.10 to 0.17 Below: mean=0.03 range=0.01 to 0.10 found where soil is less moist Above: mean=44.88 range=37.5 to 53.3 Below: mean=53.l range=47.5 to 63.7 “ Strata level 0 is at ground level, and level 1 is from 0.1 m to 0.98 m. H is slash, F is forbs, and O is exposed soil. 40 Table 17. Significant results of Kruskal-Wallis tests for differences in vegetation attributes between ELUs above (n=4) and those below (n=8) the average number of wood frogs in northern Minnesota, 1997. Variable P value Veg . Interpretation species“/Decay fi (if appl.) Large trees dbh 0.0066 found where dbh is larger Above: mean=7.06 range=6.68 to 7.79 in. Below: mean=6.07 range=5.3 to 6.51 in. Stem density 0.0105 found where stem density is lower Above: mean=862 range=838 to 902 stems/ha Below: mean=1428 range=1069 to 2037 stems/ha Small trees Diameter 0.0108 found where diameter is smaller Above: mean=0.74 range=0.68 to 0.84 in. Below: mean=1.22 range=0.81 to 2.35 in. Height 0.0066 found where height is smaller Above: mean=5.51 range=5.18 to 6.1 ft. Below: mean=ll range=6.98 to 15.47 ft. Stern density 0.033 found where stem density is higher Above: mean=12578 range=10267 to 15168 stems/ha Below: mean=6448 range=2750 to 9250 stems/ha 41 Table 17 (Cont). Variable P value Veg species“/Decay (if appl.) Stumps by age Diameter 0.014 Decay 3 class Area 0.0275 Decay 3 Stumps by age Stem density 0.0323 POTRl, Decay 1 class and species Stumps Diameter 0.0066 Area 0.033 Strata“ level 2 0.0075 H Tar a key to species codes, see Appendix A Table 2. bStrata level 2 is from 0.98 m to 1.96 m. H is slash. 42 Interpretation found where diameter is larger Above: mean=11.94 range=10.47 to 15 in. Below: mean=7.88 range=5 to 10.62 in. found where area is higher Above: mean=98.09 range=58.91 to 154.53 in. Below: mean=24.98 range=21.08 to 72.01 in. found where stem density is higher Above: mean=20 range=15 to 23.1 stems/ha Below: mean=10.34 range=5.76 to 14.5 stems/ha found where diameter is larger Above: mean=10.71 range=9.5 to 12.62 in. Below: mean=7.15 range=5.3 to 9.26 in. found where area is higher Above: mean=269.64 range=97.01 to 581.72 in. Below: mean=91.06 range=l3.56 to 234.83 in. found where there is more H Above: mean=0.06 range=0 to 0.23 Below: mean=0 range=0 to 0 Kruskal-Wallis test (Siegel and Castellan, Jr.'1988). These comparisons were between: MM(m) and LM(m); EW(m), MW(m), and LW(m); MW(p) and LW(P); MW(p), MW(m), and MM(p); EW(m) and EM(p); LW(pm) and LW(m); and LW(p) and LW(vp). The comparisons that were significant at the 0.10 level were MM(m) and LM(m) for average number of individuals (p=0.0433), and LW(p) and LW(vp) (p=0.0603) for the Shannon-Weaver values (Table 18). Unit number herpetofaunal and vegetation results Correlations Spearman rank correlations (Siegel and Castellan, Jr. 1988) were completed on means of the vegetation variables, stern densities and areas by individual site, also called a unit number. Eighteen correlations were found to be significant within large trees, small trees, snags, stumps, coarse woody debris and strata data (Table 19, Appendix B Table 55). No correlations were significant in canopy or soil correlations. Within small trees, large trees, snags, stumps, and coarse woody debris the only correlations that were significant without being stratified (by species and/or decay) were small Table 18. P values of comparisons of Shannon-Weaver diversity index (S-W) values and mean number of individuals between ELUs along different axes within the EDM. Tamparisons S-W Mean indivs. MM(m) & LM(m) 0.5637L 0.0433* EW(m), MW(m) & LW(m) 1.0000 0.3679 MW(p) & LW(p) 0.1213 0.4386 MW(p), MW(m) & MM(p) 0.7408 0.1653 EW(m) & EM(p) 0.2354 0.5853 LW(pm) & LW(m) 1.0000 0.6434 LW(p) & LW(vp) 0.0603 0.1649 43 Table 19. Spearman rank correlations by Shannon-Weaver diversity index and mean number of individuals values that were significant by unit number. Variable Species“/ S-W Number of Decay individuals 11. I 12 B I 12 Large trees Stern density ABBA 23 0.69 0.0003 by species PIMA 10 -0.79 0.007 Small trees Stem density 32 0.35 0.05 Snags Stern density 28 0.4 0.037 Area 28 0.37 0.054 Snags by Stern density Decay 2 23 0.46 0.026 decay Snags by Diameter decay and species Decay 3 POTRl 5 -0.87 0.054 Stern density Decay 3 POTRl 5 0.949 0.013 Snags by Stem density PIMA 7 -0.87 0.01 species Stumps by dbh age class and species Age classl POTRl 13 0.77 0.002 Stem density Age class2 POTRl 8 0.83 0.001 Area Age classl POTRl 13 0.74 0.004 Table 19 (Cont). Variable Species“/ S-W Number of Decay individuals .11 r 2 I! I 2 Stumps by species Stem density PIMA 8 -0.93 0.001 CWD by decay Stern density Decay 4 23 0.5 0.016 Strata“ H=0 32 0.68 0.0001 L=l 32 0.6 0.0003 H=1 32 0.61 0.0002 T=3 32 0.44 0.012 “For a key to species codes see Appendix A Table 2. l’Str'ata level 0 is at ground level, level 1 is from 0.98 m to 1.96 m, and level 3 is from 1.96 m to 2.94 m. H is slash, L is litter, and T is tree live stems. 45 trees stem density and snag stem density and area with mean number of individuals. As with the ELU correlations, not all sites were represented in the rest of the significant correlations. Only those correlations with a sample size of at least 4 are included in these results, and not every species or decay class is represented in every site. The number of times Shannon-Weaver correlations were significant versus the number of times number of individuals correlations were significant was 5 and 13 times, respectively. The vegetation species that was significant in both the Shannon-Weaver and number of individuals correlations was POTRl. The vegetation species that was significant only for the Shannon-Weaver correlations was PIMA, in the correlation with large trees stem density. The vegetation species that was significant only in the number of individuals correlations was ABBA, for large trees stem density. Diameter, height, stem density and area were each significant a total of 4, 0, 8, and 2 times, respectively (Table 19). Coarse woody debris had a significant correlation only once: for density and number of individuals by decay class 4. Correlations that were significant in strata data were forbs and slash at level 0, litter and slash at level 1, and tree live stems at levels 3 and 5 (Table 19). Kruskal-Wallis tests Kruskal-Wallis tests (Siegel and Castellan, Jr. 1988) were completed to test for vegetation differences between sites that had each herp species compared to those that did not to look for differences that were not apparent in the tests by ELU. Each of these 46 was stratified when necessary according to the variable by species, decay, or decay and species, and most significance was found when these stratifications were made. Spring peepers were found in sites with higher stem density (snags, stumps) and low stump area (Table 20). northern leopard frogs were found in sites of larger coarse woody debris diameter (Table 21). Boreal chorus frogs were found in sites of smaller snag diameter, lower density of coarse woody debris, and more slash and exposed organic soil at strata level 1 for understory cover (Table 22). Gray treefrogs had no significant Kruskal-Wallis tests. The eastern garter snake was found in sites with more slash understory cover at strata level 2 (Table 23). Blue-spotted salamanders were found in sites of higher stump stem density. They were also found in sites of larger diameter and longer length for coarse woody debris (Table 24). Wood frogs were found in sites where coarse woody debris diameter was larger, length was longer, and density was higher. They were found in sites of less canopy cover both below 4.88 m, and above 4.88 m, as well in sites with more litter at strata level 1 for understory cover (Table 25). American toads were found in every site, therefore could not be divided in the same way as the other herp species. 1 divided the sites into those with a number of American toads that was either higher or lower than the overall mean for that species (Table 26). American toads were found in sites of smaller diameter (snags, stumps) vegetation. They were found in sites with more slash at levels 0 and 1, less grass at level 1, and fewer shrubs at strata levels 2 and 3 (Table 27). 47 Table 20. Significant results of Kruskal-Wallis tests for differences in vegetation attributes between units with (present n=10) and those without (absent n=22) the spring peeper in northern Minnesota, 1997. Variable P value Veg species“/Decay Interpretation (if appl.) Snags by decay Stem 0.0207 Decay 1 found where stem density is density higher Present: mean=43.45 range=1 1.38 to 103.45 stems/ha Absent: mean=34.48 range=11.38 to 137.93 stems/ha Snags Stem 0.0204 found where stem density is density higher Present: mean=l71.03 range=45.86 to 241.38 stems/ha Absent: mean=92.76 range=23.10 to 161.03 stems/ha Stumps by age Stern 0.0094 Age class 3, POTRI found where stem density is class and species density higher Present: mean=107.59 range=51.72 to 195.52 stems/ha Absent: mean=26.90 range=1 1.38 to 34.48 stems/ha Stumps Area 0.0455 PIMA found where area is lower Present: mean=0.21 range=0.l3 to 0.29 in. Absent: mean=2.01 range=0.61 to 3.43 in. “For key to species codes, see Appendix A Table 2. 48 Table 21. Significant results of Kruskal-Wallis tests for differences in vegetation attributes between units with (present n=2) and those without (absent n=30) the northern leopard frog in northern Minnesota, 1997. Variable P value Veg species/Decay Interpretation (if appl.) CWD Diameter 0.0306 found where diameter is larger Present: mean=8.98 range=8.55 to 9.4 in. Absent: mean=5.95 range=4 to 9 in. 49 Table 22. Significant results of Kruskal-Wallis tests for differences in vegetation attributes between units with (present n=2) and those without (absent n=3 0) the boreal chorus fi'og in northern Minnesota, 1997. Variable P value Snags Diameter 0.0322 CWD Stem 0.0306 density Strata level 1 0.0593 0.0001 Veg species“/Decay (if appl) Interpretation found where diameter is smaller Present: mean=4.58 range=4.5 to 4.67 in. Absent: mean=6.78 range=4.25 to 14.6 in. found where stem density is lower Present: mean=152.82 range=125.45 to 180.19 logs/ha Absent: mean=928.39 range=21.65 to 2442.25 logs/ha found where there is more H Present: mean=0.28 range=0.23 to 0.33 Absent: mean=0.06 range=0 to 0.53 found where there is more 0 Present: mean=0.04 range=0 to 0.07 Absent: mean=0 range=0 to 0 Tor a key to species codes, see Appendix A Table 2. “Strata level 1 is from 0.1 m to 0.98 m. H is slash, O is exposed soil. 50 Table 23. Significant results of Kruskal-Wallis tests for differences in vegetation attributes between units with (present n=1) and those without (absent n=3 2) the eastern garter snake in northern Minnesota, 1997. Variable P value Veg species/Decay Interpretation (if appl.) Strata“ level 2 0.0013 H found where there is more H Present: mean=0.33 Absent: mean=0 “Strata level 2 is from 0.98 m to 1.96 m. H is slash. Table 24. Significant results of Kruskal-Wallis tests for differences in vegetation attributes between units with (present n=7) and those without (absent n=25) the blue- spotted salamander in northern Minnesota, 1997. Variable P Veg species/Decay Interpretation value (if applicable) Stumps Stem 0.0495 found where stem density is density higher Present: mean=252.76 range=149.31 to 390.69 stems/11a CWD by decay Diameter 0.0204 Decay class 2 found where diameter is larger Present: mean=7.8l range=4.89 to 13 in. Absent: mean=5.28 range=4 to 6.43 in. CWD Length 0.0329 found where length is longer Present: mean=35.92 range=24.32 to 88.4 it. Absent: mean=21.22 range=6 to 37.14 ft. 51 Table 25. Significant results of Kruskal-Wallis tests for differences in vegetation attributes between units with (present n=28) and those without (absent n=4) the wood frog in northern Minnesota, 1997. Variable P value Veg species/Decay CWD by decay Diameter 0.0101 Length 0.0223 Stem density 0.0319 Canopy Allveg=0 0.0085 Tallveg=0 0.0037 (if appl.) Decay class 4 Decay class 1 Decay class 4 Interpretation found where diameter is higher Present: mean=6.34 range=5 to 9.67 in. Absent: mean=4.22 range=4 to 4.67 in. found where length is higher Present: mean=32.98 range=20 to 48 it. Absent: mean=11 range=10 to 12 ft. found where density is higher Present: mean=343.73 range=53.22 to 801.19 logs/ha Absent: mean=l43.69 range=127.73 to 159.66 logs/ha found where canopy cover is lower above and below 4.88 m Present: mean=0.79 range=0.33 to 1.00 Absent: mean=0.88 range=0.73 to 0.93 found where canopy cover is lower above 4.88 m Present: mean=0.71 range=0.33 to 0.93 Absent: mean=0.75 range=0.73 to 0.80 52 Table 25 (Cont). Variable P value Veg species/Decay (if appl.) Strata“ level 1 0.0075 L “Strata level 1 is from 0.98 m to 1.96 m. L is litter. 53 Interpretation found where there is more L Present: mean=0. 13 range=0 to 0.47 Absent: mean=0 range=0 to 0 Table 26. Mean number of American toads by unit number and overall. Unit no. Mean number 1 7 9 3 8.5 4 23 5 5 6 17.998 7 23.6 8 14.714 9 4 1 1 1 13 7 16 6 17 5 18 10 19 58 20 1 1 21 31 22 22 23 1 1.5 24 23 28 1 30 23 31 1 32 14 34 27.8181 38 3 39 7.2727 40 18.8181 45 5.1429 46 10 47 1 48 8 Overall Average 20.07407 54 Table 27. Significant results of Kruskal-Wallis tests for differences in vegetation attributes between units with (present) and those without (absent) American toads in northern Minnesota, 1997. Variable Snags by decay Diameter Snags Diameter Strata“ level 3 level 2 level 1 P value 0.003 0.0199 0.0049 0.0097 0.0075 0.0045 Veg species/Decay (if appl.) Decay 2 Interpretation found where diameter is smaller Present: mean=5.95 range=4.4 to 7 in. Absent: mean=6.67 range=4 to 13 in. found where diameter is smaller Present: mean=5.58 range=4.25 to 8.9 in Absent: mean=7.30 range=4.67 to 14.6 in. found where there is less S Present: mean=0.026 range=0 to 0.1 Absent: mean=0. 12 range=0 to 0.37. found where there is less S Present: mean=0.065 range=0 to 0.3 Absent: mean=0. 19 range=0 to 0.5 found where there is more H Present: mean=0.19 range=0 to 0.53 Absent: mean=0.063 range=0 to 0.23 found where there is less G Present: mean=0.20 range=0.03 to 0.53 Absent: mean=0.41 range=0.08 to 0.68 55 Table 27 (Cont). Variable P Veg species/Decay Interpretation value (if appl.) level 0 0.0013 H found where there is more H Present: mean=0.11 range=0 to 0.3 Absent: mean =0.03 range=0 to 0.2 “Strata level 0 is fiom ground level to 0.98 m, level 1 is from 0.98 m to 1.96 m, level 2 is from 1.96 m to 2.94 m, and level 3 is from 2.94 m to 3.92 m. G is grass, H is slash, F is forbs, and S is shrub. Herptile sampling methodology results This section presents results based on the different methodologies used to capture herps in this study. Those methodologies were drift fences with pitfall and funnel traps, time-constrained searches, area-constrained, or plot, searches, and incidental sightings. Time-constrained searches The majority of the animals captured in time-constrained searches were American toads and wood frogs. Additionally, some spring peepers and 2 boreal chorus frogs were captured with this method. This is the only method in which we captured boreal chorus frogs. No individuals were captured in the LW(vp) ELU (Table 7). Microhabitats where species were found in timed searches included: forbs, grass, litter, moss, mud, on or under logs, and near stumps. The microhabitat where the most individuals were found was on litter, with 16 American toads, 17 wood frogs, and 3 spring peepers. A number of wood fi'ogs were also incidentally seen in puddles. Boreal chorus frogs were found on litter and on moss in the timed searches (Table 28). 56 Table 28. Microhabitats and herptile species found in those microhabitats by search method in northem Minnesota, 1997. _ Plot searches Timed searches Incidentals Forbs 1 American toad 3 American toads 5 American toads 3 Wood frogs 4 Wood fiogs 1 Spring peeper Grass 3 Wood frogs Litter/Slash 19 American toads 16 American toads 39 American toads 13 Wood frogs 17 Wood frogs 45 Wood frogs 1 Blue-spotted 3 Spring peepers 4 Spring peepers salamander l Boreal chorus frog 1 E. garter snake Logs (on/in/under) 2 American toads 4 American toads 2 American toads 3 Wood frogs 3 Wood fiogs Moss 6 American toads 4 Wood frogs 11 American toads 2 Wood frogs 1 Boreal chorus frog 7 Wood frogs 3 Spring peepers 1 Spring peeper 1 E. garter snake Mossy rock 1 Wood frog 1 E. garter snake Mud 1 American toad 1 Wood frog Puddle 1 American toad 13 Wood frogs 2 N. leopard frogs l E. garter snake Soil 1 Wood frog Stump 1 Wood frog Plot searches American toads and wood frogs were also the main species captured in plot searches, with the addition of blue-spotted salamanders. Spring peepers were captured in the LW(p) ELU. No animals were captured in the LW(vp) or EW(m) ELUs using this method (Table 7). Microhabitats where species were found in plot searches included: litter, forbs, moss, and in or under logs. The microhabitat where the most individuals were found was litter, with 19 American toads, 13 wood frogs, and l blue-spotted salamander. The uncommon species found in plot searches were 3 spring peepers, found on moss, and l blue-spotted salamander found on litter (Table 28). Traps Many more individuals were caught in pitfall and funnel traps than in either the time or plot searches, including a majority of American toads and wood frogs. Additionally, more species were captured, including the gray tree frog, northern leopard frog, and eastern garter snake. Each of these species was captured using only funnel traps. All species caught in time-constrained searches or plot searches were also caught in traps, with the exception of the boreal chorus frog (Table 7) Incidentals In incidental sightings the same species were found as were found in traps, excepting the gray tree frog, but fewer numbers of individuals were found, especially for the American toads and wood frogs. Microhabitats where species were found in incidental sightings included: moss with forbs or litter, litter and slash, forbs, on or under a log, on a mossy rock, puddle, and soil. The microhabitat with the most individuals 58 found was litter and slash with 39 American toads, 45 wood frogs, 4 spring peepers, and 1 eastern garter snake. Uncommon species found and associated microhabitats were: eastern garter snake, on moss, litter and slash, a mossy rock, and a puddle; spring peepers found on moss, and litter and slash; and the northern leopard frog in puddles (Table 28). General Species least observed were the boreal chorus frog, the gray tree frog, and the northern leopard frog. The eastern garter snake was the only reptile observed; it was caught once in a LM(m) funnel trap and was observed 4 times in incidental sightings. The blue-spotted salamander was the only salamander species to be observed, and was mainly caught in pitfall traps. Spring peepers were never caught in pitfall traps, only funnel traps (Table 7) The Shannon-Weaver diversity index (Shannon and Weaver 1949) was calculated for each of the methods, as well as for all methods combined, demonstrating that the trapping data were the most similar to that of the overall data in terms of diversity (Table 29, Figure 4). 59 Table 29. Shannon-Weaver diversity index values (H ’) by ELU for all methods combined, traps, plot searches, and time searches in northern Minnesota, 1997. ELU All data Traps Plots Time H’ H’ H’ H’ ED(p) 0.8935 0.9368 1.0986 0 EM(p) 0.5888 0.5513 0.3466 0.5014 EW(m) 0.7130 0.6853 NONE 0.6931 MM(p) 0.8298 0.7598 0.6730 0.7963 MM(m) 0.7890 0.6352 0 0.1874 MW(p) 0.5306 0.5300 0.6365 0.3183 MW(m) 0.6328 0.5562 0 0 LM(m) 0.6767 0.6618 0.4587 0.1521 LW(vp) 0.1559 0.1559 NONE NONE LW(p) 0.9545 0.6192 0.6601 0 LW(pm) 0.5873 0.6730 0 0.2243 LW(m) 0.6534 0.7005 0 0 60 0.40 .4 1 DA" data “ ’ ilTrap data I Shannon-Weaver values Figure 4. Shannon-Weaver diversity index values for all data combined (plot searches, timed searches, and traps) and trap data alone. 61 DISCUSSION Vegetation An important consideration to take into account when reviewing the results of this study is the way in which the sites were chosen, and their subsequent placement in the ecosystem diversity matrix (EDM) (Table 2). Sites were chosen according to gross site characteristics (i.e. overstory vegetation, understory vegetation, soils), prior to the completion of the final EDM. Unfortunately, this resulted in many of the sites falling into similar categories in the final EDM. Had the final EDM been complete before site selection, sites could have been chosen that reflected the entire diversity inherent in the matrix, allowing differences in species composition and other characteristics to be possibly more easily observed. One result of the site selection process is that the pairwise plots of the first 3 principal components do not show many differences among sites, with the exceptions of LW(p), LW(vp), and MW(p), which separate from the other sites due to the high moisture content and apparently low nutrient content of their soil (Appendix B Figures 1, 2, 3). The rest of the 9 sites all lump together as generally mesic, medium-aged stands. This could be predicted from F relich (1995) who said that Minnesota is generally made up of young to medium-aged forests due to harvesting that has occurred over the past century. 62 Herpetofauna The general herpetofaunal results mimic the vegetation results in that there are not many differences among ELUs in terms of species presence or absence, diversity, or richness. There was no discernible pattern in species richness, diversity or abundance in terms of either vegetation growth stage or habitat type, not even for the 3 ELUs that separated in the principal components analysis, LW(p), LW(vp) or MW(p) (Table 8). Eight species were observed in the ELUs, although most of individuals were of 2 species: American toads and wood frogs (Table 7). The other species were so infrequently observed that generalizations were difficult to make about them. Despite the fact that there were not many other individuals of other species found, these species are not necessarily rare, and this area is not necessarily representative of other areas where amphibian populations are declining. It is more likely that the northern Minnesota environment is not optimal for herps, especially due to the harsh, long winters (National Oceanic and Atmospheric Administration 1998), resulting in a small herp community with few individuals and species that are generalists. Another deterrent may be pH levels that are too low for many species, although this was not typically a significant result from this study. The mean pH value by ELU in this study was 6.28, with a minimum value of 5.3 and a maximum value of 7.2 (Appendix B Table 52). Kams (1992) found that wood frogs were the only species able to reproduce in marginal fen sites with pH values of 4.5 to 5.0. Because none of our sites had values this low, the pH should not be a significant factor for these herps (Appendix B Table 53). 63 Herpetofauna and vegetation Twenty-one correlations between large trees, small trees, snags, stumps and coarse woody debris and Shannon-Weaver values and mean number of individuals were significant for the ELUs (Table 10). No correlations were significant in two likely measured attributes: canopy cover and soil. These results are somewhat surprising because herps have often been found to be sensitive to canopy cover (Ash 1988, Kams 1992, Wyman and Hawksley-Lescault 1987) and soil pH and moisture (Dupuis et al. 1995, Welsh and Lind 1988) in past studies. Also, of these 21 correlations, 16 were significant for the abundance correlations, and only 5 were significant for Shannon- Weaver diversity index correlations. Why this is true is not readily evident, although it might be because there is more variation in number-of-individuals values than Shannon- Weaver values. The low diversity of herps in northern Minnesota as explained above, may be due to weather extremes and/or low pH values. Unfortunately, most of the correlations that were significant do not have any obvious biological explanation. Most other studies have only looked at herpetofaunal general correlations with habitat type classes (Bennett et al. 1980, Jones 1988, Kams 1988, Pais et al. 1988, Degraaf and Rudis 1990, Dupuis et al. 1995), not with specific vegetation species or decay classes as was attempted in this study. Another explanation may be that the Shannon-Weaver values were very similar, whereas with a wider range of abundance values, there was more of a chance that a correlation could be significant. In the ELU correlations between vegetation attributes and herptile community attributes, there were five species that never had significant correlations: black ash (F RNI), tamarack (LALA), black spruce (PIMA), white cedar (THOC), and slippery elm (ULRU) (Table 10). The rationale for why these species would never have any significant correlations is not clear. One thing to consider is that the only time that slippery elm was found in more than 3 ELUs was for small trees, so that was the only time it could have had a significant correlation value. Another interesting fact is that these tree species are all typical of wet sites. But, because these trees had no significant correlations with the herptile community attributes, either positive or negative, the only conclusion to be drawn from this is that these trees typical of wet sites had no influence on either diversity or numbers of herps, and that trees typical of more dry sites do have an impact. Why this is so is not biologically clear, and is also not explained in the literature. One habitat variable that in past studies has often been found to influence the presence of herps is coarse woody debris. It can provide food, shelter for thermoregulation, protection from desiccation, refugia from predators, and breeding habitat (Whiles and Grubaugh 1996). In the ELU correlations, coarse woody debris had a significant correlation only once: with stem density and number of individuals in decay class 2 (Table 10). Coarse woody debris in higher decay classes have traditionally been found to have significant effects on herpetofauna, which makes it difficult to explain why this correlation was significant in only decay class 2. One explanation may be that herps often use coarse woody debris for protection fiom desiccation, and the habitats of “northern Minnesota are very moist in general, therefore herps would not need the coarse woody debris protection as much in this area. This might also provide an explanation as to why no correlations were significant for soil moisture. The northern Minnesota habitats may be above the moisture thresholds that each herp species needs. 65 The only understory cover correlation that was significant was litter at strata level 1, which is horizontal cover from 0.1 m to 0.98 m (Table 10). This correlation is biologically supported in that the presence of litter has often been found to influence the presence of herps. Litter can be used as refugia for protection from predators, for thermoregulation and as a food source (Ash 1988, Petranka et al. 1993). In the correlation results by unit number, as in the ELU results, no correlations were significant within either canopy or soil data. The number of times correlations were significant between the Shannon-Weaver diversity index and number of individuals did not vary as much with the unit number correlations as they did with the ELU correlations (5 versus 13) (Table 19). This may be due to the larger sample size used in these correlations: 32 sites instead of 12 ELUs. The correlations by unit number do not explain herpetofaunal species characteristics much more than the correlations by ELU did. There is no biological evidence as to why certain vegetation species were significant in some correlations and not in others. Species that were never significant in any correlation were: red maple (ACRUl), paper birch (BEPA), black ash (FRNI), tamarack (LALA), white spruce (PIGL), balsam popular (POBA), and white cedar (THOC). The only species that were significant in these unit number correlations were: balsam fir (ABBA), black spruce (PIMA) and quaking aspen (POTRl) (Table 19). Balsam fir and quaking aspen are 2 of the most dominant species in many habitat type classes in northern Minnesota. They are found in almost all of the sites chosen in this study. Black spruce is a common species in the wet sites, both as part of the overstory and understory vegetation. Therefore, it seems that the species with significant tests are simply the most common species. 66 Stem density correlations were significant over twice as many times as any other category of correlations (diameter, height, and area) (Table 19). One possible reason for this could be that with higher stem densities, more habitats and microhabitats suitable for herps are created. For example, more slash and litter could be added to the forest floor fiom the leaves and branches on the trees, snags, and stumps. Although no canopy cover correlations were significant, percent understory cover correlations were significant at lower strata (from 0 m to 1.96 m) for slash and litter, and tree live stems at higher strata (from 1.96 to 2.94 m). These vegetation variables, stem density and understory cover, may therefore be complementing each other in creating good habitat for the herpetofauna. As stated previously, litter is documented as being helpful for herps (Ash 1988, Petranka et al. 1993) but slash as its own category is not as readily documented. Coarse woody debris only had one significant correlation, which was for density in decay class 4 (Table 19). It is important to note that it is only in this later stage of decay that coarse woody debris had a significant effect on herps, which is also what has been found in past studies (Aubry et a1. 1988, Bury and Corn 1988, Whiles and Grubaugh 1996). Kruskal-Wallis tests by ELU and unit number Kruskal-Wallis tests were completed on ELUs that had each herp species compared to those ELUs that did not have that species. This was done to see if there were specific vegetation differences in the ELUs that might attract, or deter herps from being there. These same tests were completed on a site (unit number) basis. As with the correlations, many tests that were significant are not biologically supported and not 67 supported in the literature. Therefore, only those tests that were significant and can be biologically supported will be discussed. Spring peepers have been found in both deciduous and coniferous woodlands, mainly near wetlands (Oldfield and Moriarty 1994). In a study done by Kams (1992) on the effects of pH on breeding amphibians in northern Minnesota, spring peepers were found to be one of the more common species in bog sites. In the present study, pH did not have an influence on where they were or were not found. They were found in ELUs with good canopy cover at both low (< 4.88 m) and high (>4.88 m) heights which was not a significant variable for most other species (Table 11).“ Spring peepers were found in sites with high stem density for snags and stumps (Table 20). The boreal chorus frog, in contrast, was found in ELUs where stump stem density and area were lower (Table 13). The boreal chorus frog did not have any significant Kruskal-Wallis tests for large and small trees. In site understory cover results, the boreal chorus frog was found in sites where there was more exposed soil. Yet, in the plot and timed searches, it was not found on a microhabitat of exposed soil; it was found on litter/slash and moss (Table 28). Past studies, such as Kams (1992) found that chorus frogs (sub-species was not specified) was either uncommon or absent from bog sites. In Colorado, the boreal chorus frog is associated with both deciduous and coniferous forests, and both dry and wet habitats (Spencer 1971). In the site comparisons, boreal chorus frogs were found in areas with more slash, which is a common finding with other species also, such as the eastern garter snake and American toads (Table 23, Table 27). 68 The occurrence of more herps in areas with fewer shrubs for understory cover was found for the blue-spotted salamanders and American toads, both at higher strata (Table 24, Table 27). No species were found in sites with greater amounts of shrubs. Northern leopard frogs were found in areas where coarse woody debris diameter was larger in both ELU and site tests (Table 12, Table 21). They are usually most abundant in wet meadows and open fields, and prefer meadows with grasses 15 to 30 cm tall (Oldfield and Moriarty 1994). They have also been found in past studies to avoid forested areas (Pace 1974, Hine 1981). Unfortunately, these findings did not hold true in this study. The gray treefrog and eastern garter snake did not have any significant comparisons by ELU. The gray treefrog is a forest-associated species (Jaslow and Vogt 1977) that may perch as high as 10 m in a tree to call or feed (V ogt 1980). They spend most of their time in tree cavities, under loose bark, or in bird nest boxes (McComb and Noble 1981). With such specific needs, it is interesting that there were no significant comparisons for this species by either ELU or unit number. The eastern garter snake is a habitat generalist, and can commonly be found in deciduous and coniferous forests to peatlands and prairies. It can also withstand some habitat degradation, being found on farms and golf courses, often near water (Oldfield and Moriarty 1994). Therefore, it is not necessarily surprising that no significant results by ELU were found for this species. There was only one significant result for eastern garter snakes by site, which was slash understory cover in unit number tests at strata level 2 (Table 23). One reason for finding so few significant Kruskal-Wallis tests for these species may be because only one of each species was found. Both these species are difficult to find using the methods employed in 69 this study. The gray treefrog could easily climb out of pitfall traps and spends much of its time in trees, so it would not be easily found in ground searches. One option for surveying gray treefrogs could be to use calling surveys, and listen to calls instead of actively looking for individuals. Also, other researchers have used artificial habitat, or “frog houses”, to attract other treefrog species which could be adapted to fit northern Minnesota (Heyer et al. 1994). The eastern garter snake could not be caught in pitfall traps due to the shape and length of its body, and can easily be overlooked in searches. Blue-spotted salamanders have been found to inhabit the forest floors of both boreal forests and wet woodlands, and they use temporary ponds in woodlands for breeding (Oldfield and Moriarty 1994). Kams (1992) found that they were one of the more common species found in bog sites. In terms of microhabitats, they have been found traditionally under bark, logs, moss (Oldfield and Moriarty 1994) and leaf litter (Johnson 1992). Johnson (1992) found that the adults lived in mixed hardwood and hardwood/pine forests. In the present study, they were found in ELUs with less shrub understory cover at a higher strata level, which was also true for American toads (Table 14). In the site results, blue-spotted salamanders were found in sites with coarse woody debris that had larger diameter and longer length, which would agree with the fact that they have been found to be associated with logs for refugia as stated above (Table 24). American toads and wood frogs were the most abundant species found overall (Table 7). In past studies, American toads have been found to be uncommon in bog sites (Kams 1992), but can sometimes be found in bogs and conifer forests of wooded areas (Oldfield and Moriarty 1994). They have also been found to be associated with dense herbaceous cover in forest clearings (Pais et al. 1988). In ELU results American toads 70 were found in areas with more slash at lower “strata levels (Table 16). They were also found in ELUs with soil that is less moist, which is verified because toads generally do not need as much moisture as frogs do, being completely terrestrial species (Cook 1984). In the site tests, American toads had 5 significant results in understory cover (Table 27). They were found in sites with less grass at lower strata levels, more slash at lower strata levels, and less shrub cover at higher strata levels. The slash finding is similar to that found by ELU. There was no significant test for soil moisture by site. Wood frogs, including their eggs and larvae, are bog water tolerant (Kams 1992). They have been called the most common amphibians in northern Minnesota, which may be because of their high tolerance for acidic waters (Kams 1992, Oldfield and Moriarty 1994). They are generally found in moist, deciduous and coniferous forests (Oldfield and Moriarty 1994). Perhaps due to the fact that they are the most common amphibians in northern Minnesota, it was difficult to find generalizations for wood frogs by ELU. From the percent understory results by ELU, they were found in areas with more slash at strata level 2 (Table 17). The site tests were easier to find generalizations for, showing that the EDM does not apply well for this species. In the site tests, it was evident that wood frogs needed less canopy cover, and more litter understory cover (Table 25). They were also found in areas where coarse woody debris had higher diameter, length, and density. Summary The aforementioned conclusions are those of both the ELUs and sites. The reason that the herpetofauna was chosen to be studied in this experiment was to decide whether or not herps were good species to use to differentiate ELUs within the ecosystem 71 diversity matrix used for ecosystem management. From the above conclusions, it does not appear that herps accurately represent this EDM. Herpetofaunal species richness and diversity are low in northern Minnesota. Also, the indexes of abundance, species present, richness and diversity do not change much among ELUS, and when they do change, it is not in any discemible pattern, such as along either vegetation growth stages, soil moisture, or soil nutrient stages. Even when completing correlations on specific vegetation attributes measured for the study, it is difficult to make generalizations that make biological sense. For these reasons, it does not appear that the herpetofauna would be a good group of species to differentiate the ELUs for BCC’s ecosystem diversity matrix to help them make better management decisions. There are many possible reasons why herps did not accurately represent the EDM. It could be because we did not have enough ELUs to represent the matrix, or enough sites within the ELUs, and the ELUS were not distributed well within the matrix. Another possibility could be that the matrix is too finely defined for the herpetofauna in the area. Perhaps coarser-grained ELU designations would have yielded a more suitable EDM for reflecting the diversity and abundance of the herpetofauna. Also, herps are more related to microhabitat characteristics than macrohabitat characteristics, therefore the EDM may not be at the proper scale for herps to key into the ELUs. Along those same lines, it appears that the herpetofauna in northern Minnesota are generalist species for the area, and are not associated with characteristics that are specific to an ELU, habitat type class, or vegetation growth stage. Another purpose of this study was to see if there were certain vegetation attributes, not necessarily associated with the ELUs, that may indicate the presence or 72 absence of herps, or that herps may cue into for their own requirements. For this reason, the same statistical tests which were completed on the ELUs were also completed on a per site basis. Unfortunately, completing these tests by site did not provide many more clues as to what shapes the presence of herps in northern Minnesota Sometimes the conclusions were the same as those in the ELUs, and sometimes they were not. Sometimes the significant tests made biological sense, and sometimes they did not. However, some general conclusions can still be made regarding the herpetofauna in northern Minnesota. Correlation results for large trees, small trees, snags and stumps by species and/or decay did not generally provide useful information. Those vegetation species not significant by ELU were generally associated with wet habitats, although this was not true for correlations by site. More vegetation species had significant correlations by ELU than by site. Only 3 species were significant in the by site correlations: balsam fir, quaking aspen, and black spruce, but this could simply be a product of the most common species in the area. The most useful habitat variables measured were stem densities; coarse woody debris, overall and by decay; and understory cover. It seems that most of the herps found in northern Minnesota are habitat generalist species, which makes it difficult to find specific vegetation attributes, especially by ELU, that are associated with the species. In the Kruskal-Wallis tests, some generalizations did become apparent, both by species and generalizations that spanned several species. The most useful conclusions found across species were that herps were generally associated with coarse woody debris, whether it was for larger diameter, length, or higher stem density. The only species 73 associated with smaller diameter coarse woody debris was the blue-spotted salamander and that associated with lower density was the boreal chorus frog. Spring peepers and blue-spotted salamanders were both associated with greater vegetation stem density by site and boreal chorus fiogs were associated with smaller stump stem density and area by ELU. An important understory cover association with herps was that of litter and/or slash. No herps were negatively associated with litter or slash understory cover. Moisture does not seem to have much effect on the herps in northern Minnesota, with the exception of the American toad, found in less moist areas. For other species the northern Minnesota habitat seems to be moist enough to not have an effect on where they are or are not found. Methodology Discussion Drawing from the results of the methodology portion of this study, it is evident that the most efficient sampling method was the pitfall/funnel trap array. We expended approximately 1,980 hours on installation of the arrays and checking the traps. In contrast, the combination of traps and searches of herptiles yielded results similar to that of the traps alone, and we expended approximately 2,344 hours on this combination of methods. Drift fences with pitfall and funnel traps were the most reliable methods for observing uncommon species. Plot and time searches were beneficial for presence/absence data, but did not give useful information for species evenness. Although species were detected differentially with each of the sampling methods, the 74 most efficient and effective sampling method was the pitfall/funnel trap array. Although the cost of materials for the pitfalls and funnel traps is greater than that of the searches, the benefits of finding more individuals and species using this method outweigh those COSTS. 75 General Conclusions and Management Recommendations From the previously presented results, it is evident that the herpetofauna do not accurately represent the ecosystem diversity matrix (EDM) for northern Minnesota. This is due to the fact that their species attributes, presence/absence, diversity, and richness do not reflect the structure of the EDM in any way, either by vegetation growth stage or habitat type. Although 8 species were captured, the only species captured in enough abundance for accurate analyses were American toads and wood frogs. In correlations and Kruskal-Wallis tests, both by ELU and by site, no vegetation species emerged as being clearly important for herpetofaunal assemblages. These tests, however, did show strong herpetofaunal associations with stem density, coarse woody debris, and litter and slash understory cover. Soil pH and moisture and canopy cover were surprisingly not important factors for these herps. Among the three different herpetofaunal sampling methods examined, the most efficient and effective method was the drift fences with pitfall and funnel traps. This method captured almost all the same species as were captured in the time-constrained searches or plot searches, but did so with the most amount of confidence out of the 3 methods examined. There was a greater chance that individuals and species would be captured in the traps as compared with the other methods. This method also captured the greatest amount of each species, especially the most common species: American toads and wood fi'ogs. Although herptiles appear to be not very abundant or diverse in northern Minnesota, it is still important to think about them in ecosystem management considerations. It would be beneficial to continue to monitor this community to watch 76 fluctuations in numbers and diversity to make sure that this area does not become representative of other areas in which they are declining. American toads and wood fi'ogs should be especially watched, as they are the most abundant species in northern Minnesota. Management recommendations for BCC based on results from this study include leaving more litter, slash and coarse woody debris on the ground when harvesting timber. Another suggestion that might be helpful for herps is to remove shrubs when possible when harvesting trees, since some herps tended to have negative associations with shrub understory cover. But, these associations were correlations, and there may be additional, unmeasured factors that are actually causing the correlations. Recommendations to BCC for their continued monitoring of herps includes using pitfall/funnel trap arrays as opposed to plot or timed searches, and to use more than 1 array per site to increase the chances of capturing more of the less common species on their lands. 77 LITERATURE CITED Ash, A. N. 1988. Disappearance of salamanders from clearcut plots. Journal of the Elisha Mitchell Scientific society 104 (3):116-122. Aubry, K. B., L. L. C. Jones, and P. A. Hall. 1988. Use of woody debris by plethodontid salamanders in douglas-fir forests in Washington. Pages 32-37 'm R Szaro, K. Severson, and D. Patton, eds. Management of amphibians, reptiles, and small mammals in North America. USDA Forest Service, Pacific Northwest region, Flagstaff, AZ. Bennett, S. H., J. W. Gibbons, and J. Glanville. 1980. Terrestrial activity, abundance, and diversity of amphibians in differently managed forest types. American Midland Naturalist 103(2):412-416. Blaustein, A. R. 1994. Chicken Little or Nero’s Fiddle? A perspective on declining amphibian populations. Herpetologica 50 (1):85-97. ., D. B. Wake, and W. P. Sousa. 1994. Amphibian declines: Judging stability, persistence, and susceptibility of populations to local and global extinctions. Conservation Biology 8 (l):60-71. ., and D. B. Wake. 1995. The puzzle of declining amphibian populations. Scientific American 272 (4):52-57. Burton, T. M., and G. E. Likens. 1975a. Energy flow and nutrient cycling in salamander populations in the Hubbard Brook Experimental Forest, New Hampshire. Ecology 56:1068-1080. ., and G. E. Likens. 1975b. Salamander populations and biomass in Hubbard Brook Experimental Forest, New Hampshire. Copeia 1975 (3):541-546. Bury, R. B., H. W. Campbell, and N. J. Scott. 1980. Role and importance of nongarne wildlife. Pages 197-207 i_n_ D. L. Flath and J. R. Torres, eds. Trans. 45th North American Wildlife and Natural Resources Conf., Miami Beach, F 1a., 22-26 March 1980. Wildlife Management Inst., Washington, DC. . and P. S. Corn. 1988. Douglas-fir forests in the Oregon and Washington Cascades: Relation of the herpetofauna to stand age and moisture. Pages 11-22 m R. Szaro, K. Severson, and D. Patton, eds. Management of amphibians, reptiles, and small mammals in North America. USDA Forest Service, Pacific Northwest region, Flagstaff, AZ. 78 Campa, H., 111, S. R. Winterstein, J. Liu, L. Hegstrom, and G. Yaunches. 1996. Biodiversity description of ecological units prescribed for silvicultural treatment. Annual Report on file. Boise Cascade Corporation. 40pp. . G. Yaunches and C. Trese. 1997. Biodiversity description of ecological units prescribed for silvicultural treatment. Annual Report on file. Boise Cascade Corporation. 121pp. Cook, F. R. 1984. Introduction to Canadian amphibians and reptiles. National Museum of Natural Sciences, Ottawa, Canada. 200pp. Corn, P. S., and R. B. Bury. 1990. Sampling methods for terrestrial amphibians and reptiles. USDA Forest Service Pacific Northwest Research Station. 34pp. deVries, P. G. 1986. Sampling theory for forest inventory. Springer-Verlag Publ. New York, NY. 450pp. Degraaf, R. M. and D. D. Rudis. 1990. Herpetofaunal species composition and relative abundance among three New England forest types. Forest Ecology and Management 32:155-165. Dupuis, L. A., J. N. M. Smith, and F. Bunnell. 1995. Relation of terrestrial-breeding amphibian abundance to tree-stand age. Conservation Biology 9(3):645-653. Enge, K. M., and Marion, W. R. 1986. Effects of clearcutting and site preparation on herpetofauna of a north Florida flatwoods. Forest Ecology and Management 14: 1 77- l 92. Frelich, L. E. 1995. Old forest in the Lake States today and before European settlement. Natural Areas Journal 15(2):157-167. Gibbons, J. W., and D. H. Bennett. 1974. Determination of anuran terrestrial activity patterns by a drift fence method. Copeia 1974 (l):236-242. ., and R. D. Semlitsch. 1981. Terrestrial drift fences with pitfall traps: An effective technique for quantitative sampling of animal populations. Brimleyana 7:1-16. Haufler, J. B., C. A. Mehl, and G. J. Roloff. 1996. Using a coarse filter approach with a species assessment for ecosystem management. Wildlife Society Bulletin 24(2):200-208. Hayek, L. C. and M. A. Buzas. 1997. Diversity Indices. Pages 346-377 m Surveying Natural Populations. Columbia University Press, New York. 79 Heyer, W. R., M. A. Donnelly, R. W. McDiarrnid, L. C. Hayek, and M. S. Foster, eds. 1994. Measuring and monitoring biological diversity: Standard methods for amphibians. Smithsonian Institution Press, Washington DC. 364pp. Hine, R. L. 1981. Leopard frog populations and mortality in Wisconsin: 1974-1976. Wis. DNR Tech Bull. No. 122. 39pp. Jaslow, A. P. and R. C. Vogt. 1977. Identification and distribution of Hyla versicolor and Hyla chrysoscelis in Wisconsin. Herpetologica 33:201-205. Johnson, B. J. 1992. Habitat loss and declining amphibian populations. Declines in Canadian amphibian populations: Designing a national monitoring strategy: proceedings of a workshop, Burlington, Ontario, 5-6 October, 1991 . Christine A. Bishop and Karen E. Pettit, eds. Canadian Wildlife Service Occasional Papers, No. 76:71-75. Jones, K. B. 1988. Comparison of herpetofaunas of a natural and altered riparian ecosystem. US. For. Serv. Gen. Tech. Rep., RM-l66:222-227 Kams, D. R. 1986. Field Herpetology: Methods for the study of amphibians and reptiles in Minnesota. James Ford Bell Museum of Natural History, University of Minnesota, Minneapolis, Minn. 83pp. . 1988. The herpetofauna of Jefferson county: Analysis of an amphibian and reptile community in southeastern Indiana. Proc. of the Indiana Academy of Science 98:535-552. . 1992. Effects of acidic bog habitats on amphibian reproduction in a northern Minnesota peatland. Journal of Herpetology 26 (4):401-412. McComb, W. C. and R. E. Noble. 1981. Herpetofaunal use of natural tree cavities and nest boxes. Wildlife Society Bulletin 9:261-267. Mitchell, J. C., S. Y. Erdle, and J. F. Pagels. 1993. Evaluation of capture techniques for amphibian, reptile, and small mammal communities in saturated forest wetlands. Wetlands 13 (2):]30-136. National Oceanic and Atmospheric Administration. 1998. Normals, Means and Extremes: International Falls, Minnesota. NCDC Asheville, NC. Neter, J., M. H. Kutner, C. J. Nachtsheirn, and W. Wasserrnan. 1996. Applied linear statistical models. Irwin, Chicago, Illinois. 1408pp. Oldfield, B. and J. J. Moriarty. 1994. Amphibians and reptiles native to Minnesota. University of Minnesota Press, Minneapolis, Minnesota. 237pp. 80 Pace, A. E. 1974. Systematic and biological studies of leopard frogs of the United States. Misc. Publ. Mus. Publ. Mus. Zool. Univ. Michigan, No. 148. 140pp. Pais, R. C., S. A. Bonney, and W. C. McComb. 1988. Herpetofaunal species richness and habitat associations in an eastern Kentucky forest. Proc. Annu. Conf. Southeast Assoc. Fish and Wildlife Agencies 42:448-455. Pechmann, J. H. K., and H. M. Wilbur. 1994. Putting declining amphibian populations in perspective: Natural fluctuations and human impacts. Herpetologica 50(1):65- 84. Petranka, J. W., M. E. Eldridge, and K. E. Haley. 1993. Effects of timber harvesting on southern Appalachian salamanders. Conservation Biology 7(2):363-370. Phelps, J. P., and R. A. Lancia. 1993. Effect of timber harvest on the herpetofauna community of a bottomland hardwood ecosystem: Preliminary results. USDA For. Serv. Gen. Tech. Rep., SO-93:151-154. Raphael, M. G. 1988. Long-term trends in abundance of amphibians, reptiles, and mammals in douglas-fir forests of northwestern California. Pages 23-31 in R. Szaro, K. Severson, and D. Patton, eds. Management of amphibians, reptiles, and small mammals in North America. USDA Forest Service, Pacific Northwest region, Flagstaff, AZ. Siegel, S. and N. J. Castellan, Jr. 1988. Nonparametric statistics for the behavioral sciences. McGraw-Hill Book Co., New York. 399pp. Shannon, C. E. and W. Weaver. 1949. The mathematical theory of communication. Univ. Illinois Press, Urbana. 177pp. Spencer, A. W. 1971. Boreal chorus frogs breeding in the alpine in southwestern Colorado. Arctic and Alpine Research 3(4):353. Vogt, R. C. 1980. Natural history of amphibians and reptiles of Wisconsin. Milwaukee Public Museum, Wis. 205 pp. . and R. L. Hine. 1982. Evaluation of techniques for assessment of amphibian and reptile populations in Wisconsin. Pages 201-217 'm N. J. Scott, Jr., ed. Herpetological communities: a symposium of the Society for the Study of Amphibians and Reptiles and the Herpetological League, August 1977. US. Dep. lnt., Fish Wildl. Serv. Res. Rep. 13, Washington, DC. Welsh, H. H. and A. J. Lind. 1988. Old growth forests and the distribution of the terrestrial herpetofauna. Pages 439-456 i_n R. Szaro, K. Severson, and D. Patton, eds. Management of amphibians, reptiles, and small mammals in North America. USDA Forest Service, Pacific Northwest region, Flagstaff, AZ. 81 Whiles, M. R. and J. W. Grubaugh. 1996. Importance of coarse woody debris to southern forest herpetofauna SE General Technical Report, No. 94, Asheville, NC. Wyman, R. L. and D. S. Hawksley-Lescault. 1987. Soil acidity affects distribution, behavior, and physiology of the salamander Plethodon cinereus. Ecology 68(6):]819-1827. . 1990. What’s happening to the amphibians? Conservation Biology 4:350-352. 82 Appendix A 83 Appendix A Appendix A Table 1. Keys to habitat type classes and vegetation growth stages as indicated in the Ecosystem Diversity Matrix (EDM). Vegetation Growth dbh (inches) Stages (V GS) G15 Grass/forb/seedling 0 SSE Shrub/seedling 0.01-2.00 SAP INT Saplings; with intolerants 2.01-5.00 SMT INT Small trees; with intolerants 5.01-9.00 MET INT Medium trees; with intolerants 9.01-12.00 LAT INT Large trees; with intolerants 12+ SAP TOL Saplings; with tolerants 2.01-5.00 SMT TOL Small trees; with tolerants 5.01-9.00 MET TOL Medium trees; with tolerants 9.01-12.00 LAT TOL Large trees; with tolerants 12+ OLG Old growth Habitat Type Classes MbPi pb Xeric-Mesic/Nutrient Poor; Abies-Picea -— Pinus banksiana XMAbPi ps Xeric-Mesic/Nutrient Poor; Abies-Picea — Pinus strobus XMAbAr pb Xeric-Mesic/Nutrient Poor; Abies-A cer — Pinus banksiana XMAbAr pr Xeric-Mesic/Nutrient Poor; Abies-Acer - Pinus resinosa MAbAr ar Mesic/Nutrient Poor, Abies-Acer — Acer rubrum MAbFn pt Mesic/Nutrient Medium; Abies-Fraxinus — Populus lremuloides HMFn pb Hydric-Mesic/Nutrient Medium; Fraxinus — Populus balsamifera HMAbFnTh pt Hydric-Mesic/Nutrient Poor-Medium; Abies-Fraxinus-Thuja - Populus tremuloides HMAbFnTh to Hydric-Mesic/Nutrient Poor-Medium; Abies-Fraxinus-Thuja — Thuja occidentalis I-lMAbTh to Hydric-Mesic/Nutrient Poor; Abies-Thuja — Thuja occidentalis I-IMAbTh bp Hydric-Mesic/Nutrient Poor; Abies-Thuja — Betula papyrifera HAbTh ll Hydric/Nutrient Poor; Abies- Thuja — Larix laricina HAbTh pm Hydric/Nutrient Poor; Abies-Thuja — Picea mariana HPm pm Hydric/Nutrient Very Poor; Picea — Picea mariana 84 Appendix A Table l (Cont). Character Name Habitat Type Class Description XMAb Dry Fir Xeric-Mesi.c/Nutrient Poor; Abies MAbAr Moist Fir Mesic/Nutrient Poor; Abies-Acer MAbFn Rich, Moist Fir Mesic/Nutrient Medium; Abies-Fraxinus HMFn Moist Ash Hydric-Mesic/Nutrient Medium; Fraxinus HMAS Moist Maple Hydric-Mesic; Nutrient Medium-Rich Acer HMAbFnTh Moist Hydric-Mesic/Nutrient Poor-Medium; Abies- Fir/Ash/Cedar Fraxinus-Thuja HMAbTh Moist Fir/Cedar Hydric-Mesic/Nutrient Poor; Abies-Thuja HAbTh Wet Fir/Cedar Hydric/Nutrient Poor; Abies-Thuja HPm Poor, Wet Hydric/Nutrient Very Poor; Picea Spruce 85 Appendix A Table 2. Tree species codes used with scientific and common names. Code Scientific name Common name ABBA Abies balsamea Balsam fir ACRUl Acer rubrum Red maple ACSAl Acer saccharinum Silver maple, soft maple ACSA2 Acer saccharum Sugar maple BEAL Betula alleghaniensis Yellow birch BEPA Betula papyrifera Paper birch FRAM F raxinus americana White ash FRNI F raxinus nigra Black ash FRPE Fraxinus pennsylvanica Green ash LALA Larix laricina Tamarack “OSVI Ostrya vinginiana Ironwood, hop hombearn PIGL Picea glauca White spruce PIMA Picea mariana Black spruce PIBA Pinus banksiana Jack pine PIRE Pinus resinosa Red pine, Norway pine PIST Pinus strobus White pine POBA Populus balsamifera Balsam popular POGR Populus grandidentata Big-toothed aspen POTRl Populus tremuloides Quaking aspen QUEL Quercus ellipsoidalis northern pin oak QUMA Quercus macrocarpa Bur oak QURU Quercus rubra northern red oak THOC Thuja occidentalis White cedar, arbor vitae TIAM Tilia americana Basswood ULAM Ulmus americana American elm ULRU Ulmus rubra Slippery elm 86 Appendix B 87 Appendix B Appendix B Table 1. Large trees dbh (in) and height (ft).sample size, means, variances, standard deviations, standard errors, minimums and maximums by ELU and species“. ELU dbh/ Species N Mean Var Std m Std Err Min Max Height Ebb) d'h‘h ABBA 32 5.81 2.54 1.60 0.28 4 10 ED(p) dbh ACRU1 3 7.67 1.33 1.15 0.67 7 9 ED(p) dbh BEPA 2 6.50 4.50 2.12 1.50 5 8 ED(p) dbh FRNI 5 5.80 1.70 1.30 0.58 4 7 ED(p) dbh POTR1 18 10.06 13.47 3.67 0.86 4 16 ED(p) dbh THOC 13 10.54 5.44 2.33 0.65 8 15 ED(p) Height ABBA 32 38.78 95.27 9.76 1.73 23 63 ED(p) Height ACRU1 3 52.33 5.33 2.31 1.33 51 55 ED(p) Height BEPA 2 55.00 200.00 14.14 0.00 45 65 ED(p) Height FRNI 5 36.80 81.20 9.01 4.03 27 49 ED(p) Height POTR1 18 63.22 308.77 17.57 4.14 24 84 ED(p) Height THOC 13 39.38 52.26 7.23 2.00 22 54 EM(p) dbh ABBA 67 6.00 2.94 1.71 0.21 4 11 EM(p) dbh ACRU1 3 5.67 1.33 1.15 0.67 5 7 EM(p) dbh BEPA 34 5.12 0.83 0.91 0.16 4 7 EM(p) dbh PIBA 5 6.80 2.70 1.64 0.73 4 8 EM(p) dbh PIRE 1 19.00 . . . 19 19 EM(p) dbh POBA 13 6.08 2.58 1.61 0.45 4 10 EM(p) dbh POTR1 220 6.73 4.53 2.13 0.14 4 13 EM(p) dbh THOC 32 5.84 2.14 1.46 0.26 4 11 EM(p) Height ABBA 67 42.70 189.61 13.77 1.68 20 85 EM(p) Height ACRU1 3 47.00 109.00 10.44 6.03 40 59 EM(p) Height BEPA 34 47.85 53.40 7.31 1.25 36 65 EM(p) Height PIBA 5 48.40 46.30 6.80 3.04 41 54 EM(p) Height PIRE 1 58.00 . . . 58 58 EM(p) Height POBA 13 59.92 246.91 15.71 4.36 39 80 EM(p) Height POTR1 220 57.41 127.37 11.29 0.76 19 87 EM(p) Height THOC 32 35.00 31.61 5.62 0.99 22 47 EW(m) dbh ABBA 27 6.74 6.12 2.47 0.48 4 13 EW(m) dbh BEPA 2 9.50 40.50 6.36 4.50 5 14 EW(m) dbh FRNI 83 6.64 5.55 2.36 0.26 4 14 EW(m) dbh LALA 1 6.00 . . . 6 6 EW(m) dbh PIMA 17 7.65 5.49 2.34 0.57 4 12 EW(m) dbh POBA 16 8.94 9.40 3.07 0.77 4 15 EW(m) dbh POTR1 11 6.91 3.89 1.97 0.59 4 10 EW(m) Height ABBA 27 39.74 100.05 10.00 1.92 20 56 EW(m) Height BEPA 2 50.00 450.00 21.21 5.00 35 65 EW(m) Height FRNI 83 48.22 100.76 10.04 1.10 30 70 EW(m) Height LALA 1 40.00 . . . 40 40 EW(m) Height PIMA 17 53.00 196.38 14.01 3.40 28 75 88 Appendix B Table 1 (Cont). ELU dbh/ Species N Mean Var Std Dev Std Err Min Max Height EW(m) Height WA 16 49.50 64.67 8.04 2.01 39 60 EW(m) Height POTR1 11 64.73 33.62 5.80 1.75 52 73 LM(m) dbh ABBA 88 5.73 3.40 1.84 0.20 4 14 LM(m) dbh ACRU1 6 6.00 3.20 1.79 0.73 4 9 LM(m) dbh BEPA 9 4.67 0.50 0.71 0.24 4 6 LM(m) dbh FRNI 7 5.71 3.90 1.98 0.75 4 10 LM(m) dbh PIGL 1 7.00 . . . 7 7 LM(m) dbh POBA 19 6.00 2.89 1.70 0.39 4 10 LM(m) dbh POTR1 212 7.34 5.06 2.25 0.15 4 16 LM(m) dbh QUPR 1 5.00 . . . 5 5 LM(m) dbh ULRU 4 4.00 0.00 0.00 0.00 4 4 LM(m) dbh UNK 1 6.00 . . . 6 6 LM(m) Height ABBA 88 38.38 166.10 12.89 1.37 8 66 LM(m) Height ACRU1 6 48.00 68.80 8.29 3.39 38 59 LM(m) Height BEPA 9 47.67 133.75 11.57 3.86 32 66 LM(m) Height FRNI 7 48.14 226.48 15.05 5.69 30 78 LM(m) Height PIGL 1 46.00 . . . 46 46 LM(m) Height POBA 19 50.95 115.27 10.74 2.46 34 70 LM(m) Height POTR1 212 56.06 214.43 14.64 1.01 10 90 LM(m) Height QUPR 1 35.00 . . . 35 35 LM(m) Height ULRU 4 31.00 2.00 1.41 0.71 29 32 LM(m) Height UNK 1 46.00 . . . 46 46 LW(m) dbh ABBA 18 8.17 7.44 2.73 0.64 5 13 LW(m) dbh ACRU1 4 4.00 0.00 0.00 0.00 4 4 LW(m) dbh BEPA 6 5.50 1.90 1.38 0.56 4 7 LW(m) dbh FRNI 80 6.98 5.90 2.43 0.27 4 14 LW(m) dbh FRPE 2 5.00 2.00 1.41 1.00 4 6 LW(m) dbh PIGL 10 6.30 8.90 2.98 0.94 4 14 LW(m) dbh POBA 4 6.25 14.92 3.86 1.93 4 12 LW(m) dbh POGR 1 14.00 . . . 14 14 LW(m) dbh POTR1 10 5.80 0.40 0.63 0.20 5 7 LW(m) dbh QUMA 1 4.00 . . . 4 4 LW(m) dbh TIAM 5 6.40 2.80 1.67 0.75 5 9 LW(m) dbh ULAM 1 4.00 . . . 4 4 LW(m) dbh ULRU 6 4.83 0.57 0.75 0.31 4 6 LW(m) Height ABBA 18 42.17 124.03 11.14 2.62 20 65 LW(m) Height ACRU1 4 38.00 63.33 7.96 3.98 30 49 LW(m) Height BEPA 6 42.83 110.17 10.50 4.28 27 58 LW(m) Height FRNI 80 46.54 234.02 15.30 1.71 3 82 LW(m) Height FRPE 2 43.50 84.50 9.19 6.50 37 50 LW(m) Height PIGL 10 35.90 284.54 16.87 5.33 22 79 LW(m) Height POBA 4 45.75 98.92 9.95 4.97 34 57 LW(m) Height POGR 1 63.00 63 63 89 Appendix B Table 1 (Cont). ELU dbh/ Species N Mean Var Std Dev Std Err Min Max Height LW(m) Height POTR1 10 53.70 48.68 6.98 2.21 40 62 LW(m) Height QUMA 1 32.00 . . . 32 32 LW(m) Height TIAM 5 37.00 74.50 8.63 3.86 27 47 LW(m) Height ULAM 1 31.00 . . . 31 31 LW(m) Height ULRU 6 34.33 9.07 3.01 1.23 30 39 LW(p) dbh LALA 295 5.31 0.87 0.93 0.05 4 8 LW(p) dbh PIMA l 5.00 5 5 LW(p) dbh POBA 1 4.00 . . . 4 4 LW(p) Height LALA 295 45.24 38.28 6.19 0.36 25 61 LW(p) Height PIMA l 29.00 29 29 LW(p) Height POBA 1 51.00 . . . 51 51 LW(pm) dbh ABBA 53 5.72 2.32 1.52 0.21 4 10 LW(pm) dbh BEPA 30 5.17 1.32 1.15 0.21 4 9 LW(pm) dbh FRNI 4 10.25 24.92 4.99 2.50 5 17 LW(pm) dbh LALA 3 8.33 1.33 1.15 0.67 7 9 LW(pm) dbh PIGL 1 7.00 . . . 7 7 LW(pm) dbh PIMA 28 6.07 0.59 0.77 0.14 5 9 LW(pm) dbh POBA 11 5.36 1.25 1.12 0.34 4 7 LW(pm) dbh POTR1 2 5.50 0.50 0.71 0.50 5 6 LW(pm) dbh THOC 577 6.41 4.42 2.10 0.09 4 19 LW(pm) Height ABBA 53 39.68 54.88 7.41 1.02 26 61 LW(pm) Height BEPA 30 36.20 41.61 6.45 1.18 25 48 LW(pm) Height FRNT 4 43.25 82.25 9.07 4.53 30 50 LW(pm) Height LALA 3 54.67 6.33 2.52 1.45 52 57 LW(pm) Height PIGL 1 41.00 . . . 41 41 LW(pm) Height PIMA 28 45.86 7.98 2.82 0.53 37 48 LW(pm) Height POBA 11 38.36 21.45 4.63 1.40 30 43 LW(pm) Height POTR1 2 42.50 0.50 0.71 0.50 42 43 LW(pm) Height THOC 577 32.15 47.63 6.90 0.29 9 56 LW(vp) dbh LALA 47 5.17 2.41 1.55 0.23 4 12 LW(vp) dbh PIMA 355 5.48 1.88 1.37 0.07 4 1 1 LW(vp) dbh THOC 21 5.48 1.56 1.25 0.27 4 8 LW(vp) Height LALA 47 3 1.53 47.17 6.87 1.00 23 56 LW(vp) Height PIMA 355 38.23 62.64 7.91 0.42 18 60 LW(vp) Height THOC 21 19.71 32.01 5.66 1.23 13 32 MM(m) dbh ABBA 22 6.73 2.87 1.70 0.36 4 10 MM(m) dbh FRNI 10 7.30 1.57 1.25 0.40 6 10 MM(m) dbh PIGL 3 4.67 0.33 0.58 0.33 4 5 MM(m) dbh POBA 25 5.68 0.89 0.95 0.19 4 8 MM(m) dbh POTR1 289 6.19 3.16 1.78 0.10 4 13 MM(m) dbh ULRU 2 4.50 0.50 0.71 0.50 4 5 MM(m) Height ABBA 22 47.64 151 .29 12.30 2.62 25 63 MM(m) Height FRNI 10 50.90 259.43 16.11 5.09 13 71 90 Appendix B Table 1 (Cont). ELU dbh/ Species N Mean Var Std Dev Std Err Min Max Height MM(m) Height PIGL 3 51.33 408.33 20.21 1.67 28 63 MM(m) Height POBA 25 46.40 41.83 6.47 1.29 38 63 MM(m) Height POTR1 289 54.60 206.39 14.37 0.85 26 92 MM(m) Height ULRU 2 37.50 112.50 10.61 7.50 30 45 MM(p) dbh ABBA 110 5.70 1.40 1.19 0.11 4 10 MM(p) dbh BEPA 13 6.69 5.23 2.29 0.63 4 11 MM(p) dbh PIGL l 9.00 . . . 9 9 MM(p) dbh PIMA 3 8.67 2.33 1.53 0.88 7 10 MM(p) dbh POTR1 36 8.67 4.23 2.06 0.34 4 13 MM(p) Height ABBA 110 44.51 83.37 9.13 0.87 25 75 MM(p) Height BEPA 13 50.62 217.92 14.76 4.09 25 70 MM(p) Height PIGL 1 50.00 . . . 50 50 MM(p) Height PIMA 3 51.67 58.33 7.64 4.41 45 60 MM(p) Height POTR1 36 56.86 159.44 12.63 2.10 27 70 MW(m) dbh ABBA 2 7.50 24.50 4.95 3.50 4 11 MW(m) dbh ACRU1 26 6.27 1.80 1.34 0.26 4 9 MW(m) dbh BEPA 13 7.38 6.42 2.53 0.70 5 13 MW(m) dbh FRNI 2 5.00 2.00 1.41 1.00 4 6 MW(m) dbh POBA 27 6.37 3.78 1.94 0.37 4 13 MW(m) dbh POTR1 115 6.05 6.30 2.51 0.23 4 18 MW(m) dbh UNK l 4.00 . . . 4 4 MW(m) Height ABBA 2 40.00 0.00 0.00 0.00 40 40 MW(m) Height ACRU1 26 66.12 123.15 11.10 2.18 29 83 MW(m) Height BEPA 13 65.38 170.92 13.07 3.63 33 75 MW(m) Height FRNT 2 42.00 0.00 0.00 0.00 42 42 MW(m) Height POBA 27 44.15 170.90 13.07 2.52 25 72 MW(m) Height POTR1 115 63.39 116.06 10.77 1.00 25 90 MW(m) Height UNK 1 30.00 . . . 30 30 MW(p) dbh LALA 231 6.18 2.86 1.69 0.11 4 13 MW(p) dbh PIMA 3 6.67 21.33 4.62 2.67 4 12 MW(p) Height LALA 231 53.67 51.48 7.17 0.47 25 70 MW(p) Height PIMA 3 37.00 133.00 11.53 6.66 28 50 Ia dot (.) indicates that data was either nonexistent, or was unable to be calculated. 91 Appendix B Table 2. Large trees dbh (in) and height (ft) means, variances, standard deviations, standard errors, minimums and maximums by unit number and species“. dth N Mean Var Std Dev Std Err Min Max Unit no. Species Height 1 ABBA dbh 1 4.00 4 4 1 ABBA Height 1 40.00 . . . 40 40 l ACRU1 dbh 24 6.08 1.47 1.21 0.25 4 9 1 ACRU2 Height 24 68.42 54.17 7.36 1.50 51 83 l BEPA dbh 13 7.38 6.42 2.53 0.70 5 13 1 BEPA Height 13 65.38 170.92 13.07 3.63 33 75 1 FRNI dbh 2 5.00 2.00 1.41 1.00 4 6 1 FRNI Height 2 42.00 0.00 0.00 0.00 42 42 l POBA dbh 3 5.00 1.00 1.00 0.58 4 6 1 POBA Height 3 42.00 27.00 5.20 3.00 36 45 1 POTR1 dbh 68 5.37 1.70 1.30 0.16 4 9 1 POTR1 Height 68 66.69 27.17 5.21 0.63 51 81 l UNK dbh 1 4.00 4 4 1 UNK Height 1 30.00 30 30 2 ABBA dbh l 11.00 11 11 2 ABBA Height 1 40.00 . . . 40 40 2 ACRU1 dbh 2 8.50 0.50 0.71 0.50 8 9 2 ACRU1 Height 2 38.50 180.50 13.44 9.50 29 48 2 POBA dbh 24 6.54 3.91 1.98 0.40 4 13 2 POBA Height 24 44.42 190.17 13.79 2.81 25 72 2 POTR1 dbh 47 7.04 1 1.43 3.38 0.49 4 18 2 POTR1 Height 47 58.62 208.68 14.45 2.11 25 90 3 ABBA dbh 5 5.60 3.30 1.82 0.81 4 8 3 ABBA Height 5 35.60 23.30 4.83 2.16 30 42 3 ACRU1 dbh 3 5.67 1.33 1.15 0.67 5 7 3 ACRU1 Height 3 47.00 109.00 10.44 6.03 40 59 3 BEPA dbh 15 5.33 1.24 1.11 0.29 4 7 3 BEPA Height 15 46.20 40.31 6.35 1.64 39 60 3 POBA dbh 2 5.00 0.00 0.00 0.00 5 5 3 POBA Height 2 46.00 2.00 1 .41 1 .00 45 47 3 POTR1 Height 66 54.09 36.61 6.05 0.74 39 66 3 POTR1 dbh 66 5.92 2.50 1.58 0.19 4 11 4 ABBA dbh 2 7.50 0.50 0.71 0.50 7 8 4 ABBA Height 2 47.00 392.00 19.80 4.00 33 61 92 Appendix B Table 2 (Cont). Unit no. Species Z::1::::::\O\O\O\OOOOOOOOO\I\IO\O\O\OSMMMM#AAAA#A-h-h-h dth N Mean Var Std Dev Std Err Min Max Height BEPA dbh 1 6.00 6 6 BEPA Height 1 55.00 . . . 55 55 PIBA dbh 5 6.80 2.70 1 .64 0.73 4 8 PIBA Height 5 48.40 46.30 6.80 3.04 41 54 PIRE dbh 1 19.00 19 19 PIRE Height 1 58.00 . . . 58 58 POBA dbh 3 4.67 0.33 0.58 0.33 4 5 POBA Height 3 40.67 4.33 2.08 1 .20 39 43 POTR1 Height 76 50.75 23.04 4.80 0.55 38 60 POTR1 dbh 76 5.68 1.71 1.31 0.15 4 9 LALA dbh 130 5.27 0.99 0.99 0.09 4 8 LALA Height 130 50.85 27.29 5.22 0.46 40 60 PIMA dbh 3 6.67 21.33 4.62 2.67 4 12 PIMA Height 3 37.00 133.00 11.53 6.66 28 50 LALA dbh 174 5.20 0.90 0.95 0.07 4 8 LALA Height 174 46.05 17.59 4.19 0.32 27 55 PIMA dbh 1 5.00 5 5 PIMA Height 1 29.00 . . . 29 29 LALA dbh 101 7.35 2.85 1.69 0.17 4 13 LALA Height 101 57.30 59.53 7.72 0.77 25 70 LALA dbh 121 5.46 0.80 0.89 0.08 4 8 LALA Height 121 44.08 66.13 8.13 0.74 25 61 POBA dbh 1 4.00 4 4 POBA Height 1 51 .00 51 51 POBA dbh 1 5.00 5 5 POBA Height 1 43.00 . . . 43 43 POTR1 Height 61 37.26 44.53 6.67 0.85 28 53 POTR1 dbh 61 4.74 0.46 0.68 0.09 4 7 ABBA dbh 3 5.33 5.33 2.31 1.33 4 8 ABBA Height 3 63.00 0.00 0.00 0.00 63 63 PIGL dbh 2 5.00 0.00 0.00 0.00 5 5 PIGL Height 2 63.00 0.00 0.00 0.00 63 63 POBA dbh 24 5.71 0.91 0.95 0.19 4 8 POBA Height 24 46.54 43.13 6.57 1.34 38 63 POTR1 Height 76 54.99 109.67 10.47 1.20 26 75 POTR1 dbh 76 6.24 1.73 1.32 0.15 4 9 ULRU dbh 1 5.00 5 5 93 Appendix B Table 2 (Cont). Unit no. Species dth N Mean Var Std Dev Std Err Min Max Height 1 l ULRU Height 1 45.00 . . . 45 45 13 ABBA dbh 6 9.00 12.80 3.58 1.46 4 14 13 ABBA Height 6 44.67 215.47 14.68 5.99 24 64 13 ACRU1 Height 6 48.00 68.80 8.29 3.39 38 59 13 ACRU1 dbh 6 6.00 3.20 1.79 0.73 4 9 13 BEPA dbh 2 4.50 0.50 0.71 0.50 4 5 l3 BEPA Height 2 42.00 8.00 2.83 2.00 40 44 13 FRNI dbh 6 6.00 4.00 2.00 0.82 5 10 13 FRNI Height 6 51.17 194.97 13.96 5.70 41 78 13 POBA dbh 2 6.50 0.50 0.71 0.50 6 7 13 POBA Height 2 55.00 200.00 14.14 0.00 45 65 13 POTR1 Height 72 58.40 183 .62 13 .55 1.60 34 90 13 POTR1 dbh 72 6.63 4.38 2.09 0.25 4 l4 l3 QUPR dbh l 5.00 5 5 13 QUPR Height 1 35.00 . . . 35 35 16 ABBA dbh 7 5.86 1.81 1.35 0.51 4 7 16 ABBA Height 7 35.71 79.90 8.94 3.38 25 49 16 PIGL dbh 1 4.00 4 4 l6 PIGL Height 1 28.00 . . . 28 28 16 POTR1 Height 57 72.79 135.92 1 1.66 1.54 50 92 16 POTR1 dbh 57 8.35 3.34 1.83 0.24 5 13 16 ULRU dbh 1 4.00 4 4 16 ULRU Height 1 30.00 30 30 17 ABBA dbh 1 13.00 l3 13 17 ABBA Height 1 62.00 . . . 62 62 17 FRNI dbh 47 7.47 7.21 2.69 0.39 4 14 17 FRNI Height 47 50.55 271.64 16.48 2.40 3 82 17 PIGL dbh 9 6.56 9.28 3 .05 1.02 4 l4 l7 PIGL Height 9 37.44 293.28 17.13 5.71 22 79 17 POBA dbh 2 8.00 32.00 5 .66 4.00 4 12 17 POBA Height 2 45.50 264.50 16.26 1.50 34 57 17 QUMA dbh l 4.00 4 4 l7 QUMA Height 1 32.00 32 32 17 ULAM dbh 1 4.00 4 4 17 ULAM Height 1 31.00 . . . 31 31 17 ULRU dbh 2 5.00 0.00 0.00 0.00 5 5 17 ULRU Height 2 32.00 8.00 2.83 2.00 30 34 94 Appendix B Table 2 (COnt). Unit no. Species dth N Mean Var Std Dev Std Err Min Max Height 4 18 ABBA dbh 17 7.88 6.36 2.52 0.61 5 12 18 ABBA Height 17 41.00 105.75 10.28 2.49 20 65 18 ACRU1 dbh 4 4.00 0.00 0.00 0.00 4 4 18 ACRU1 Height 4 38.00 63.33 7.96 3.98 30 49 18 BEPA dbh 6 5.50 1.90 1.38 0.56 4 7 18 BEPA Height 6 42.83 1 10.17 10.50 4.28 27 58 18 FRNI dbh 33 6.27 3.33 1.82 0.32 4 11 18 FRNI Height 33 40.82 129.84 11.39 1.98 18 67 18 FRPE dbh 2 5.00 2.00 1.41 1.00 4 6 l8 FRPE Height 2 43.50 84.50 9.19 6.50 37 50 18 LALA dbh 2 11.50 0.50 0.71 0.50 1 1 12 18 LALA Height 2 55.50 0.50 0.71 0.50 55 56 18 PIGL dbh 1 4.00 4 4 18 PIGL Height 1 22.00 . . . 22 22 18 POBA dbh 2 4.50 0.50 0.71 0.50 4 5 18 POBA Height 2 46.00 32.00 5.66 4.00 42 50 18 POGR dbh l 14.00 14 14 18 POGR Height 1 63.00 . . . 63 63 18 POTR1 dbh 10 5.80 0.40 0.63 0.20 5 7 18 POTR1 Height 10 53.70 48.68 6.98 2.21 40 62 18 TIAM dbh 5 6.40 2.80 1.67 0.75 5 9 18 TIAM Height 5 37.00 74.50 8.63 3.86 27 47 18 ULRU dbh 4 4.75 0.92 0.96 0.48 4 6 18 ULRU Height 4 35.50 7.00 2.65 1.32 33 39 19 ABBA dbh 23 7.09 6.36 2.52 0.53 4 13 19 ABBA Height 23 41.65 87.60 9.36 1.95 21 56 19 FRNT dbh 39 6.87 6.64 2.58 0.41 4 14 19 FRNI Height 39 50.23 85.87 9.27 1.48 33 70 19 LALA dbh 1 6.00 6 6 19 LALA Height 1 40.00 . . . 40 40 19 PIMA dbh 17 7.65 5.49 2.34 0.57 4 12 19 PIMA Height 17 53.00 196.38 14.01 3.40 28 75 19 POBA dbh 4 4.75 0.92 0.96 0.48 4 6 19 POBA Height 4 43.00 23.33 4.83 2.42 39 50 19 POTR1 Height 11 64.73 33.62 5.80 1.75 52 73 19 POTR1 dbh 11 6.91 3.89 1.97 0.59 4 10 20 ABBA dbh 4 4.75 0.25 0.50 0.25 4 5 95 Appendix B Table 2 (Cont). Unit no. Species dth N Mean Var Std Dev Std Err Min Max Height 20 WA Height 4 28.75 35.58 SET 2.98 20 33 20 BEPA dbh 2 9.50 40.50 6.36 4.50 5 14 20 BEPA Height 2 50.00 450.00 21.21 5.00 35 65 20 FRNI dbh 44 6.43 4.62 2.15 0.32 4 13 20 FRNI Height 44 46.43 109.32 10.46 1.58 30 68 20 POBA dbh 12 10.33 4.06 2.02 0.58 7 15 20 POBA Height 12 51.67 61.33 7.83 2.26 40 60 21 ABBA dbh 110 5.70 1.40 1.19 0.11 4 10 21 ABBA Height 110 44.51 83.37 9.13 0.87 25 75 21 BEPA dbh 13 6.69 5.23 2.29 0.63 4 1 1 21 BEPA Height 13 50.62 217.92 14.76 4.09 25 70 21 PIGL dbh 1 9.00 9 9 21 PIGL Height 1 50.00 . . . 50 50 21 PIMA dbh 3 8.67 2.33 1.53 0.88 7 10 21 PIMA Height 3 51.67 58.33 7.64 4.41 45 60 21 POTR1 Height 36 56.86 159.44 12.63 2.10 27 70 21 POTR1 dbh 36 8.67 4.23 2.06 0.34 4 13 22 ABBA dbh 42 5.36 1.21 1.10 0.17 4 8 22 ABBA Height 42 37.83 83.56 9.14 1.41 20 55 22 BEPA dbh 8 4.88 0.41 0.64 0.23 4 6 22 BEPA Height 8 48.63 83.13 9.12 3.22 36 63 22 POBA dbh 1 7.00 7 7 22 POBA Height 1 60.00 . . . 60 60 22 POTR1 Height 36 69.36 73.84 8.59 1.43 37 83 22 POTR1 dbh 36 8.89 3.53 1.88 0.31 4 13 23 ABBA dbh 32 5.81 2.54 1.60 0.28 4 10 23 ABBA Height 32 38.78 95.27 9.76 1.73 23 63 23 ACRU1 Height 3 52.33 5.33 2.31 1.33 51 55 23 ACRU1 dbh 3 7.67 1.33 1.15 0.67 7 9 23 BEPA dbh 2 6.50 4.50 2.12 1.50 5 8 23 BEPA Height 2 55.00 200.00 14.14 0.00 45 65 23 FRNI dbh 5 5.80 1.70 1.30 0.5 8 4 7 23 FRNI Height 5 36.80 81.20 9.01 4.03 27 49 23 POTR1 Height 18 63.22 308.77 17.57 4.14 24 84 23 POTR1 dbh 18 10.06 13.47 3.67 0.86 4 16 23 THOC dbh 13 10.54 5.44 2.33 0.65 8 15 23 THOC Height 13 39.38 52.26 7.23 2.00 22 54 96 Appendix B Table 2 (Cont). Unit no. Species dth N Mean Var Std Dev Std Err Min Max fi Height J 24 ABBA dbh 18 7.44 4.14 2.04 0.48 4 11 24 ABBA Height 18 55.56 255.56 15.99 3.77 30 85 24 BEPA dbh 10 4.90 0.54 0.74 0.23 4 6 24 BEPA Height 10 49.00 56.22 7.50 2.37 38 65 24 POBA dbh 7 6.86 2.81 1.68' 0.63 5 10 24 POBA Height 7 72.14 67.81 8.23 3.11 55 80 24 POTR1 Height 42 64.45 240.94 15.52 2.40 19 87 24 POTR1 dbh 42 8.05 5.12 2.26 0.35 4 13 24 THOC dbh 32 5.84 2.14 1.46 0.26 4 11 24 THOC Height 32 35.00 31.61 5.62 0.99 22 47 28 PIMA dbh 64 4.67 0.76 0.87 0.11 4 8 28 PIMA dbh 153 5.59 1.77 1.33 0.11 4 11 28 PIMA Height 64 34.36 39.09 6.25 0.78 22 57 28 PIMA Height 153 40.40 58.18 7.63 0.62 22.7 60 28 THOC dbh 21 5.48 1.56 1.25 0.27 4 8 28 THOC Height 21 19.71 32.01 5.66 1.23 13 32 31 PIMA dbh 109 5.57 1.84 1.36 0.13 4 9 31 PIMA Height 109 37.59 74.65 8.64 0.83 18 50 32 LALA dbh 45 4.89 0.60 0.78 0.12 4 7 32 LALA Height 45 30.47 22.03 4.69 0.70 23 40 32 PIMA dbh 29 6.34 3.02 1.74 0.32 4 11 32 PIMA Height 29 37.72 38.35 6.19 1.15 29 58 34 ABBA dbh 19 5.16 1.81 1.34 0.31 4 9 34 ABBA Height 19 45.26 104.98 10.25 2.35 30 66 34 BEPA dbh 4 5.00 0.67 0.82 0.41 4 6 34 BEPA Height 4 57.25 106.25 10.31 5.15 46 66 34 PIGL dbh 1 7.00 7 7 34 PIGL Height 1 46.00 . . . 46 46 34 POBA dbh 5 5.60 2.30 1.52 0.68 4 8 34 POBA Height 5 55.40 6.30 2.51 1.12 53 59 34 POTR1 Height 64 60.00 27.49 5.24 0.66 46 66 34 POTR1 dbh 64 7.20 3.94 1.99 0.25 4 13 34 UNK dbh 1 6.00 6 6 34 UNK Height 1 46.00 . . . 46 46 38 ABBA dbh 12 7.58 1.72 1.31 0.38 5 10 38 ABBA Height 12 50.75 79.84 8.94 2.58 36 63 38 FRNI dbh 10 7.30 1.57 1.25 0.40 6 10 97 Appendix B Table 2 (Cont). Unit no. Species dbh/ N Mean Var Std Dev Std Err Min Max Height 38 TRNI Height 10 50.90 259.43 16.11 5.09 13 71 38 POTR1 Height 95 54.52 39.64 6.30 0.65 40 75 38 POTR1 dbh 95 5.78 1.64 1.28 0.13 4 10 39 ABBA dbh 29 6.59 1.97 1.40 0.26 4 10 39 ABBA Height 29 32.38 281.82 16.79 3.12 8 53 39 POBA dbh 3 5.33 2.33 1.53 0.88 4 7 39 POBA Height 3 38.67 32.33 5.69 3.28 34 45 39 POTR1 Height 21 31.24 429.09 20.71 4.52 10 65 39 POTR1 dbh 21 8.57 5.96 2.44 0.53 5 13 39 ULRU dbh 4 4.00 0.00 0.00 0.00 4 4 39 ULRU Height 4 31.00 2.00 1.41 0.71 29 32 40 ABBA dbh 34 4.74 0.56 0.75 0.13 4 7 40 ABBA Height 34 38.53 42.74 6.54 1.12 27 59 40 BEPA dbh 3 4.33 0.33 0.58 0.33 4 5 40 BEPA Height 3 38.67 34.33 5.86 3.38 32 43 40 FRNT dbh 1 4.00 4 4 40 FRNI Height 1 30.00 . . . 30 30 40 POBA dbh 9 6.33 4.25 2.06 0.69 5 10 40 POBA Height 9 51.67 149.50 12.23 4.08 38 70 40 POTR1 Height 55 57.87 136.78 11.70 1.58 35 76 40 POTR1 dbh 55 7.96 5.52 2.35 0.32 4 16 45 ABBA dbh 21 5.05 0.65 0.80 0.18 4 6 45 ABBA Height 21 39.52 25.56 5.06 1.10 32 50 45 BEPA dbh 9 5.33 0.25 0.50 0.17 5 6 45 BEPA Height 9 38.44 55.03 7.42 2.47 26 48 45 LALA dbh 3 8.33 1.33 1.15 0.67 7 9 45 LALA Height 3 54.67 6.33 2.52 1.45 52 57 45 POBA dbh 1 4.00 4 4 45 POBA Height 1 30.00 . . . 30 30 45 THOC dbh 133 6.12 2.71 1.65 0.14 4 14 45 THOC Height 133 32.48 60.95 7.81 0.68 9 49 46 ABBA dbh 8 6.25 4.50 2.12 0.75 4 9 46 ABBA Height 8 37.50 54.57 7.39 2.61 26 45 46 BEPA dbh 14 4.86 1.05 1.03 0.27 4 7 46 BEPA Height 14 34.86 38.59 6.21 1.66 25 43 46 PIGL dbh 1 7.00 7 7 46 PIGL Height 1 41 .00 41 41 98 Appendix B Table 2 (Cont). Unit no. Species dth N Mean Var Std Dev Std Err Min Max Height 46 PTMA dbh 26 6.15 0.54 0.73 0.14 5 9 46 PIMA Height 26 46.38 4.25 2.06 0.40 40 48 46 POBA dbh 10 5.50 1.17 1.08 0.34 4 7 46 POBA Height 10 39.20 15.29 3.91 1.24 30 43 46 POTR1 dbh 2 5.50 0.50 0.71 0.50 5 6 46 POTR1 Height 2 42.50 0.50 0.71 0.50 42 43 46 THOC dbh 148 5.95 3.73 1.93 0.16 4 15 46 THOC Height 148 29.62 23.91 4.89 0.40 16 42 47 ABBA dbh 10 6.60 2.71 1.65 0.52 4 10 47 ABBA Height 10 42.20 85.29 9.24 2.92 30 59 47 BEPA dbh 4 5.00 2.00 1.41 0.71 4 7 47 BEPA Height 4 32.25 4.25 2.06 1.03 30 35 47 FRNI dbh 4 10.25 24.92 4.99 2.50 5 17 47 FRNI Height 4 43.25 82.25 9.07 4.53 30 50 47 THOC dbh 140 7.44 7.53 2.74 0.23 4 19 47 THOC Height 140 35.04 70.50 8.40 0.71 15 56 48 ABBA dbh 14 5.79 2.49 1.58 0.42 4 9 48 ABBA Height 14 39.36 83.79 9.15 2.45 28 61 48 BEPA dbh 3 6.33 5.33 2.31 1.33 5 9 48 BEPA Height 3 41.00 25.00 5.00 2.89 36 46 48 PIMA dbh 2 5.00 0.00 0.00 0.00 5 5 48 PIMA Height 2 39.00 8.00 2.83 2.00 37 41 48 THOC dbh 156 6.17 2.54 1.60 0.13 4 13 48 THOC Height 156 31.69 25.22 5.02 0.40 15 49 “Fa dot (.) indicates either that data was nonexistent, or was unable to be calculated. 99 Appendix B Table 3. Large trees stem density (stems/plot) by ELU. ELU Species Stem density ELU Species Stem density 1353)) AfiA 10.6667 LW(m) POBA 0.666? ED(p) ACRU1 1 LW(m) POGR 0.1667 ED(p) BEPA 0.6667 LW(m) POTR1 1.6667 ED(p) FRNI 1.6667 LW(m) QUMA 0.1667 ED(p) POTR1 6 LW(m) TIAM 0.8333 ED(p) THOC 4.3333 LW(m) ULAM 0.1667 EM(p) ABBA 5.5833 LW(m) ULRU 1 EM(p) ACRU1 0.25 LW(p) LALA 49.1667 EM(p) BEPA 2.8333 LW(p) PIMA 0.1667 EM(p) PIBA 0.4167 LW(p) POBA 0.1667 EM(p) PIRE 0.0833 LW(pm) POBA 0.9167 EM(p) POBA 1.0833 LW(pm) POTR1 0.1667 EM(p) POTR1 18.3333 LW(pm) THOC 48.0833 EM(p) THOC 2.6667 LW(pm) ABBA 4.4167 EW(m) ABBA 4.5 LW(pm) BEPA 2.5 EW(m) BEPA 0.3333 LW(pm) FRNI 0.3333 EW(m) FRNI 13.8333 LW(pm) LALA 0.25 EW(m) LALA 0.1667 LW(pm) PIGL 0.0833 EW(m) PIMA 2.8333 LW(pm) PIMA 2.3333 EW(m) POBA 2.6667 LW(vp) THOC 1.75 EW(m) POTR1 1.8333 LW(vp) LALA 3.9167 LM(m) ABBA 6.2857 LW(vp) PIMA 29.5833 LM(m) ACRU1 0.4286 MM(m) ABBA 2 LM(m) BEPA 0.6429 MM(m) FRNI 0.9091 LM(m) FRNI 0.5 MM(m) PIGL 0.2727 LM(m) PIGL 0.0714 MM(m) POBA 2.2727 LM(m) POBA 1.3571 MM(m) POTR1 26.2727 LM(m) POTR1 15.1429 MM(m) ULRU 0.1818 LM(m) QUPR 0.0714 MM(p) ABBA 36.6667 LM(m) ULRU 0.2857 MM(p) BEPA 4.3333 LM(m) UNK 0.0714 MM(p) PIGL 0.3333 LW(m) ABBA 3 MM(p) PIMA 1 LW(m) ACRU1 0.6667 MM(p) POTR1 12 LW(m) BEPA 1 MW(m) ABBA 0.3333 LW(m) FRNI 13.3333 MW(m) ACRU1 4.3333 LW(m) FRPE 0.3333 MW(m) BEPA 2.1667 LW(m) PIGL 1.6667 MW(m) FRNI 0.3333 100 Appendix B Table 3 (Cont). ELU Species Stem density MW(m) TOBA 4.5 MW(m) POTR1 19.1667 MW(m) UNK 0.1667 MW(p) LALA 38.5 MW(p) PIMA 0.5 101 Appendix B Table 4. Large trees stem density (stems/plot) by unit number. Unit No. Species Stem density Unit No. Species Stern density SZZZZZOOOOOONQOsM‘MA-h-hA-bhwwwwwNNNN—r—t—Hr—ot—t— ABBA ACRU1 BEPA FRNI POBA POTR1 UNK ABBA ACRU 1 POBA POTR1 ABBA ACRU1 BEPA POBA POTR1 ABBA BEPA PIBA PIRE POBA POTR1 LALA PIMA LALA PIMA LALA LALA POBA POBA POTR1 ABBA PIGL POBA POTR1 ULRU ABBA 0.3333 8 4.3333 0.6667 1 22.6667 0.3333 0.3333 0.6667 8 15.6667 1.6667 1 5 0.6667 22 0.6667 0.3333 1.6667 0.3333 1 25.3333 43.3333 1 58 0.3333 33.6667 40.3333 0.3333 0.5 30.5 1 0.6667 8 25.3333 0.3333 2 13 13 13 13 l3 13 16 16 16 16 17 17 17 17 17 17 17 18 18 18 18 l8 l8 l8 l8 18 18 18 19 19 19 19 19 19 20 20 20 ACRU 1 BEPA F RNI POBA POTR1 QUPR ABBA PIGL POTR1 ULRU ABBA F RNI PIGL POBA QUMA ULAM ULRU ABBA ACRU 1 BEPA F RN 1 FRPE PIGL POBA POGR POTR1 TIAM ULRU ABBA F RNI LALA PIMA POBA POTR1 ABBA BEPA FRNI 2 0.6667 2 0.6667 24 0.3333 2.3333 0.3333 19 0.3333 _ 0.3333 15.6667 3 0.6667 0.3333 0.3333 0.6667 5.6667 1.3333 2 1 1 0.6667 0.3333 0.6667 0.3333 3.3333 1.6667 1.3333 7.6667 ' 13 0.3333 5.6667 1.3333 3.6667 1.3333 0.6667 14.6667 102 Appendix B Table 4 (Cont). Unit No. Species Stem density Unit No. Species Stem density 21 21 21 22 22 22 22 23 23 23 23 23 23 24 24 24 24 24 28 28 28 30 31 32 32 34 34 34 34 34 34 38 38 38 39 39 39 39 TPIGL PIMA POTR1 ABBA BEPA POBA POTR1 ABBA ACRU 1 BEPA FRNI POTR1 THOC ABBA BEPA POBA POTR1 THOC LALA PIMA THOC PIMA PIMA LALA PIMA ABBA BEPA PIGL POBA POTR1 ABBA FRNI POTR1 ABBA POBA POTR1 ULRU 0.3333 1 12 14 2.6667 0.3333 12 10.6667 1 0.6667 1.6667 6 4.3333 6 3.3333 2.3333 14 10.6667 0.6667 21.3333 7 51 36.3333 15 9.6667 6.3333 1.3333 0.3333 1.6667 21.3333 0.3333 4 3.3333 31.6667 9.6667 1 7 1.3333 40 40 40 40 40 45 45 45 45 45 46 46 46 46 46 46 46 47 47 47 47 48 48 48 48 ABBA BEPA FRNI POBA POTR1 ABBA BEPA LALA POBA THOC ABBA BEPA PIGL PIMA POBA POTR1 THOC ABBA BEPA FRNI THOC ABBA BEPA PIMA THOC 11.3333 1 0.3333 3. 18.3333 7 3 1 0.3333 44.3333 2.6667 4.6667 0.3333 8.6667 3.3333 0.6667 49.3333 3.3333 1.3333 1.3333 46.6667 4.6667 1 0.6667 52 103 Appendix B Table 5. Small trees diameter (in) and height (ft) means, variances, standard deviations, standard errors, minimums, and maximums by ELU and species“. “ELU Jadable Species N Mean Var Std Dev Std Err Min Max ED(p) Diameter ABBA 34 1.51 0.93 0.97 0.17 0.5 3 ED(p) Diameter ACRU1 49 0.51 0.01 0.07 0.01 0.5 1 ED(p) Diameter BEPA 5 1.80 0.70 0.84 0.37 l 3 ED(p) Diameter FRNI 57 0.63 0.16 0.40 0.05 0.5 2 ED(p) Diameter POTR1 7 0.86 0.89 0.94 0.36 0.5 3 ED(p) Height ABBA 34 10.85 68.25 8.26 1.42 l 27 ED(p) Height ACRU1 49 2.18 2.65 1.63 0.23 1 7 ED(p) Height BEPA 5 25.60 38.30 6.19 2.77 18 34 ED(p) Height FRNI 57 5.02 20.73 4.55 0.60 1 22 ED(p) Height POTR1 7 5.29 100.90 10.05 3.80 1 28 EM(p) Diameter ABBA 152 0.94 0.61 0.78 0.06 0.5 4 EM(p) Diameter ACRU1 166 0.60 0.19 0.44 0.03 0.5 4 EM(p) Diameter BEAL 5 1.10 0.30 0.55 0.24 0.5 2 EM(p) Diameter BEPA 10 2.70 0.46 0.67 0.21 1 3 EM(p) Diameter FRNI 103 0.53 0.03 0.17 0.02 0.5 2 EM(p) Diameter PIGL 4 0.75 0.08 0.29 ‘ 0.14 0.5 1 EM(p) Diameter POBA 2 0.50 0.00 0.00 0.00 0.5 0.5 EM(p) Diameter POTR1 47 2.00 1.27 1.13 0.16 0.5 4 EM(p) Diameter THOC 99 0.72 0.35 0.59 0.06 0.5 3 EM(p) Diameter ULRU 1 1 1.77 0.47 0.68 0.21 0.5 3 EM(p) Height ABBA 152 5.93 42.98 6.56 0.53 1 45 EM(p) Height ACRU1 166 3.33 43.34 6.58 0.51 1 42 EM(p) Height BEAL 5 20.20 55.70 7.46 3.34 8 25 EM(p) Height BEPA 10 34.00 26.00 5.10 1.61 25 41 EM(p) Height FRNI 103 2.45 8.70 2.95 0.29 1 24 EM(p) Height PIGL 4 7.00 36.67 6.06 3.03 1 14 EM(p) Height POBA 2 4.50 0.50 0.71 0.50 4 5 EM(p) Height POTR1 47 25.87 277.33 16.65 2.43 1 50 EM(p) Height THOC 99 4.52 23.13 4.81 0.48 1 21 EM(p) Height ULRU 1 1 20.00 45.80 6.77 2.04 2 30 EW(m) Diameter ABBA 48 1.00 0.37 0.61 0.09 0.5 3 EW(m) Diameter ACRU1 180 0.53 0.01 0.11 0.01 0.5 1 EW(m) Diameter BEAL 1 1.00 . . . 1 1 EW(m) Diameter FRNI 113 0.85 0.44 0.67 0.06 0.5 3 EW(m) Diameter PIGL 4 0.63 0.06 0.25 0.13 0.5 1 EW(m) Diameter PIMA 1 0.50 . . . 0.5 0.5 EW(m) Diameter POBA 8 0.94 0.25 0.50 0.18 0.5 2 EW(m) Diameter ULRU 9 0.61 0.05 0.22 0.07 0.5 1 EW(m) Height ABBA 48 6.58 21.35 4.62 0.67 1 20 EW(m) Height ACRU1 180 2.86 3.07 1.75 0.13 1 13 EW(m) Height BEAL 1 18.00 18 18 104 Appendix B Table 5 (Cont). ELU Variable Species N Mean Var Std Dev Std Err Min Max E_W(m) Height FRNI 113 7.86 63.43 7.96 0.75 1 35 EW(m) Height PIGL 4 1.75 2.25 1.50 0.75 1 4 EW(m) Height PIMA 1 2.00 . . . 2 2 EW(m) Height POBA 8 11.38 29.70 5.45 1.93 5 23 EW(m) Height ULRU 9 5.56 9.03 3.00 1.00 1 10 LM(m) Diameter ABBA 56 1.99 1.48 1.22 0.16 0.5 4 LM(m) Diameter ACRU1 71 0.52 0.03 0.18 0.02 0.5 2 LM(m) Diameter BEPA 4 2.75 0.25 0.50 0.25 2 3 LM(m) Diameter FRNI 397 0.58 0.12 0.35 0.02 0.5 3 LM(m) Diameter POBA 4 1.63 1.23 1.11 0.55 0.5 3 LM(m) Diameter POTR1 23 0.91 1.22 1.10 0.23 0.5 4 LM(m) Diameter QUMA 1 0.50 . . . 0.5 0.5 LM(m) Diameter THOC 3 0.67 0.08 0.29 0.17 0.5 1 LM(m) Diameter ULRU 27 0.81 0.29 0.54 0.10 0.5 2 LM(m) Diameter UNK 7 0.71 0.32 0.57 0.21 0.5 2 LM(m) Height ABBA 56 15.59 107.05 10.35 1.38 1 49 LM(m) Height ACRU1 71 2.58 4.99 2.23 0.27 1 13 LM(m) Height BEPA 4 26.75 4.92 2.22 1.11 25 30 LM(m) Height FRNI 397 3.65 34.21 5.85 0.29 1 52 LM(m) Height POBA 4 17.25 98.25 9.91 4.96 8 30 LM(m) Height POTR1 23 7.83 184.97 13.60 2.84 1 59 LM(m) Height QUMA l 1.00 . . . l 1 LM(m) Height THOC 3 7.00 1.00 1.00 0.58 6 8 LM(m) Height ULRU 27 7.52 30.03 5.48 1.05 1 20 LM(m) Height UNK 7 5.00 3.00 1.73 0.65 3 7 LW(m) Diameter ABBA 7 0.86 0.31 0.56 0.21 0.5 2 LW(m) Diameter ACRU1 44 0.51 0.01 0.08 0.01 0.5 1 LW(m) Diameter FRNI 199 0.64 0.21 0.46 0.03 0.5 3 LW(m) Diameter PIGL 2 1.50 0.50 0.71 0.50 1 2 LW(m) Diameter POBA 4 0.88 0.56 0.75 0.38 0.5 2 LW(m) Diameter POTR1 2 2.00 0.00 0.00 0.00 2 2 LW(m) Diameter QUMA 5 0.80 0.45 0.67 0.30 0.5 2 LW(m) Diameter QURU 1 0.50 . . . 0.5 0.5 LW(m) Diameter ULAM 3 1.33 2.08 1.44 0.83 0.5 3 LW(m) Diameter ULRU 26 0.92 0.75 0.87 0.17 0.5 3 LW(m) Height ABBA 7 5.14 23.81 4.88 1.84 1 13 LW(m) Height ACRU1 44 4.20 25.00 5.00 0.75 1 26 LW(m) Height FRNI 199 5.08 35.49 5.96 0.42 1 32 LW(m) Height PIGL 2 11.00 50.00 7.07 5.00 6 l6 LW(m) Height POBA 4 6.75 56.92 7.54 3.77 2 18 LW(m) Height POTR1 2 27.50 12.50 3.54 2.50 25 30 LW(m) Height QUMA 5 7.60 67.30 8.20 3.67 2 21 LW(m) Height QURU 1 3.00 . . . 3 3 LW(m) Height ULAM 3 9.67 154.33 12.42 7.17 2 24 105 Appendix B Table 5 (Cont). ELU Variable Species N Mean Var Std Dev StdIErr Min Max LW(m) Height ULRU 26 8.15 83.18 9.12 1.79 1 32 LW(p) Diameter ABBA 1 1.00 . . . l 1 LW(p) Diameter LALA 18 2.33 1.18 1.08 0.26 1 4 LW(p) Diameter PIMA 85 0.97 0.45 0.67 0.07 0.5 3 LW(p) Diameter THOC 25 0.84 0.39 0.62 0.12 0.5 3 LW(p) Height ABBA 1 8.00 . . . 8 8 LW(p) Height LALA 18 24.78 115.24 10.74 2.53 9 40 LW(p) Height PIMA 85 6.36 20.57 4.54 0.49 1 22 LW(p) Height THOC 25 6.08 25.66 5.07 1.01 2 15 LW(pm) Diameter ABBA 309 0.83 0.43 0.66 0.04 0.5 4 LW(pm) Diameter ACRU1 1 0.50 . . . 0.5 0.5 LW(pm) Diameter BEPA 2 4.00 0.00 0.00 0.00 4 4 LW(pm) Diameter FRNI 17 0.79 0.35 0.59 0.14 0.5 2 LW(pm) Diameter LALA 2 1.00 0.00 0.00 0.00 1 1 LW(pm) Diameter PIGL 1 0.50 . . ' . 0.5 0.5 LW(pm) Diameter PIMA 3 1.00 0.00 0.00 0.00 l 1 LW(pm) Diameter POBA 3 0.83 0.08 0.29 0.17 0.5 1 LW(pm) Diameter POTR1 1 1.00 . . . 1 1 LW(pm) Diameter THOC 99 2.03 1.14 1.07 0.11 0.5 4 LW(pm) Diameter ULRU 6 0.58 0.04 0.20 0.08 0.5 1 LW(pm) Height ABBA 309 5.56 35.21 5.93 0.34 1 30 LW(pm) Height ACRU1 1 2.00 . . . 2 2 LW(pm) Height BEPA 2 25.00 18.00 4.24 3.00 22 28 LW(pm) Height FRNI 17 3.18 10.40 3.23 0.78 l 15 LW(pm) Height LALA 2 4.50 12.50 3.54 2.50 2 7 LW(pm) Height PIGL 1 1.00 . . . 1 1 LW(pm) Height PIMA 3 3.33 0.33 0.58 0.33 3 4 LW(pm) Height POBA 3 6.67 16.33 4.04 2.33 2 9 LW(pm) Height POTR1 1 14.00 . . . 14 14 LW(pm) Height THOC 99 14.73 51.10 7.15 0.72 1 33 LW(pm) Height ULRU 6 2.83 6.57 2.56 1.05 1 8 LW(vp) Diameter ABBA 43 0.62 0.08 0.29 0.04 0.5 2 LW(vp) Diameter LALA 20 1 .98 1 .41 1 .19 0.27 0.5 4 LW(vp) Diameter PIMA 260 1 .01 0.76 0.87 0.05 0.5 4 LW(vp) Diameter THOC 16 0.69 0.16 0.40 0.10 0.5 2 LW(vp) Height ABBA 43 4.02 8.74 2.96 0.45 1 l 1 LW(vp) Height LALA 20 17.25 101.99 10.10 2.26 3 35 LW(vp) Height PIMA 260 7.33 78.35 8.85 0.55 1 39 LW(vp) Height THOC 16 4.81 8.83 2.97 0.74 l 10 MM(m) Diameter ABBA 41 1.15 0.77 0.87 0.14 0.5 4 MM(m) Diameter ACRU1 9 . 0.56 0.03 0.17 0.06 0.5 l MM(m) Diameter BEPA 16 1.41 0.51 0.71 0.18 0.5 2 MM(m) Diameter FRNI 258 0.53 0.03 0.18 0.01 0.5 2 MM(m) Diameter POBA 3 0.50 0.00 0.00 0.00 0.5 0.5 106 Appendix B Table 5 (Cont). ELU Variable Species N Mean Var Std Dev Std Err Min Max MM(m) Diameter POT—RT 68 1.53 1.52 1.23 0.15 0.5 4 MM(m) Diameter QUMA 1 1.00 . . . 1 1 MM(m) Diameter ULRU 5 1.10 1.18 1.08 0.48 0.5 3 MM(m) Height ABBA 41 8.44 27.60 5.25 0.82 1 25 MM(m) Height ACRU1 9 4.00 28.50 5.34 1.78 l 16 MM(m) Height BEPA 16 16.38 43.18 6.57 1.64 3 28 MM(m) Height FRNI 258 3.42 10.07 3.17 0.20 1 30 MM(m) Height POBA 3 2.33 0.33 0.58 0.33 2 3 MM(m) Height POTR1 68 17.88 189.78 13.78 1.67 1 53 MM(m) Height QUMA l 10.00 . . . 10 10 MM(m) Height ULRU 5 7.80 46.20 6.80 3.04 2 l8 MM(p) Diameter ABBA 7 3.14 0.48 0.69 0.26 2 4 MM(p) Diameter POTR1 3 0.50 0.00 0.00 0.00 0.5 0.5 MM(p) Height ABBA 7 38.29 40.90 6.40 2.42 28 45 MM(p) Height POTR1 3 3.00 3.00 1.73 1.00 2 5 MW(m) Diameter ACRU1 22 0.66 0.56 0.75 0.16 0.5 4 MW (m) Diameter BEPA 1 3.00 . . . 3 3 MW(m) Diameter FRNI 3 0.50 0.00 0.00 0.00 0.5 0.5 MW(m) Diameter PIGL 1 1.00 . . . 1 1 MW(m) Diameter POBA 25 0.94 0.88 0.94 0.19 0.5 4 MW(m) Diameter POTR1 52 1.03 0.99 1.00 0.14 0.5 4 MW(m) Diameter ULRU 9 0.50 0.00 0.00 0.00 0.5 0.5 MW(m) Height ACRU1 22 3.05 51.57 7.18 1.53 1 35 MW(m) Height BEPA l 38.00 . . . 38 38 MW(m) Height FRNI 3 2.00 0.00 0.00 0.00 2 2 MW(m) Height PIGL 1 6.00 . . . 6 6 MW(m) Height POBA 25 7.88 130.19 11.41 2.28 2 50 MW(m) Height POTR1 52 9.40 209.70 14.48 2.01 1 51 MW(m) Height ULRU 9 1.56 0.53 0.73 0.24 l 3 MW(p) Diameter PIMA 32 1.30 1.29 1.13 0.20 0.5 4 MW(p) Diameter THOC 2 1.75 3.13 1.77 1.25 0.5 3 MW(p) Height PIMA 32 9.25 159.61 12.63 2.23 1 50 MW(p) Height THOC 2 10.00 128.00 11.31 8.00 2 18 “a dot (.) indicates either that data was nonexistent, or was unable to be calculated. 107 Appendix B Table 6. Small trees diameter (in) and height (ft) means, variances, standard deviations, standard errors, minimums and maximums by unit number and species“. Unit No. Variable Species N Mean Var Std Dev Std Min Max Err 1 fiDiameter ACRU1 14 0.75 0.88 0.94 0.25 0.5 4 1 Diameter BEPA 1 3.00 3 3 1 Diameter POBA 1 4.00 . . . 4 4 1 Diameter POTR1 5 2.60 0.30 0.55 0.24 2 3 1 Height ACRU1 14 3.79 80.95 9.00 2.40 1 35 1 Height BEPA 1 38.00 38 38 1 Height POBA 1 50.00 . . 50 50 1 Height POTR1 5 40.40 163.30 12.78 5.71 25 51 2 Diameter ACRU1 8 0.50 0.00 0.00 0.00 0.5 0.5 2 Diameter FRNI 3 0.50 0.00 0.00 0.00 0.5 0.5 2 Diameter PIGL l 1 .00 . . . l 1 2 Diameter POBA 24 0.81 0.50 0.70 0.14 0.5 3 2 Diameter POTR1 47 0.86 0.78 0.88 0.13 0.5 4 2 Diameter ULRU 9 0.50 0.00 0.00 0.00 0.5 0.5 2 Height ACRU1 8 1.75 1.36 1.16 0.41 1 4 2 Height FRNI 3 2.00 0.00 0.00 0.00 2 2 2 Height PIGL 1 6.00 . . . 6 6 2 Height POBA 24 6.13 55.51 7.45 1.52 2 30 2 Height POTR1 47 6.1 1 102.75 10.14 1.48 1 35 2 Height ULRU 9 1.56 0.53 0.73 0.24 1 3 3 Diameter ABBA 11 0.55 0.02 0.15 0.05 0.5 1 3 Diameter ACRU1 72 0.69 0.39 0.62 0.07 0.5 4 3 Diameter BEAL 5 1.10 0.30 0.55 0.24 0.5 2 3 Diameter BEPA 4 2.50 1.00 1.00 0.50 1 3 3 Diameter PIGL 1 0.50 . . . 0.5 0.5 3 Diameter POTR1 27 1.76 1.35 1.16 0.22 0.5 4 3 Diameter ULRU 10 1.90 0.32 0.57 0.18 1 3 3 Height ABBA 1 1 2.27 2.22 1.49 0.45 1 5 3 Height ACRU1 72 4.82 77.95 8.83 1.04 1 42 3 Height BEAL 5 20.20 55.70 7.46 3.34 8 25 3 Height BEPA 4 34.25 42.25 6.50 3.25 25 40 3 Height PIGL l 3.00 . . 3 3 3 Height POTR1 27 21.89 324.41 18.01 3.47 1 46 3 Height ULRU 10 21.80 11.29 3.36 1.06 20 30 108 Appendix B Table 6 (Cont). Unit No. Variable Species N Mean Var Std Dev Std Min Max Err 4 flameter ABBA 30 0.67 0.16 0.40 0.W0.5 2 4 Diameter ACRU1 72 0.53 0.04 0.19 0.02 0.5 2 4 Diameter PIGL 3 0.83 0.08 0.29 0.17 0.5 1 4 Diameter POTR1 17 2.65 0.49 0.70 0.17 2 4 4 Height ABBA 30 3.20 14.03 3.75 0.68 1 l4 4 Height ACRU2 72 2.46 18.39 4.29 0.51 l 35 4 Height PIGL 3 8.33 44.33 6.66 3.84 1 14 4 Height POTR1 17 36.24 31.07 5.57 1.35 30 50 5 Diameter LALA 13 3.31 0.56 0.75 0.21 2 4 5 Diameter PIMA 10 1.45 1.41 1 . 19 0.38 0.5 4 5 Height LALA 13 37.54 85.60 9.25 2.57 18 48 5 Height PIMA 10 12.10 279.88 16.73 5.29 2 50 6 Diameter ABBA 1 1 .00 . . . l l 6 Diameter LALA l 1 3.09 0.29 0.54 0.16 2 4 6 Diameter PIMA 31 0.90 0.29 0.54 0.10 0.5 2 6 Diameter THOC 23 0.74 0.20 0.45 0.09 0.5 2 6 Height ABBA l 8.00 . . . 8 8 6 Height LALA l 1 32.45 20.27 4.50 1.36 25 40 6 Height PIMA 31 5.55 20.32 4.51 0.81 1 16 6 Height THOC 23 5.65 25.24 5.02 1.05 2 15 7 Diameter LALA 19 0.97 0.18 0.42 0.10 0.5 2 7 Diameter PIMA 22 1.23 1.28 1.13 0.24 0.5 4 7 Diameter THOC 2 1.75 3.13 1.77 1.25 0.5 3 7 Height LALA 19 11.42 58.70 7.66 1.76 2 25 7 Height PIMA 22 7.95 1 10.05 10.49 2.24 l 38 7 Height THOC 2 10.00 128.00 11.31 8.00 2 18 8 Diameter LALA 7 1.14 0.14 0.38 0.14 1 2 8 Diameter PIMA 54 1.01 0.54 0.74 0.10 0.5 3 8 Diameter THOC 2 2.00 2.00 1.41 1 .00 1 3 8 Height LALA 7 12.71 14.90 3.86 1.46 9 20 8 Height PIMA 54 6.83 20.48 4.53 0.62 2 22 8 Height THOC 2 1 1.00 8.00 2.83 2.00 9 13 9 Diameter ABBA 23 1.28 0.91 0.95 0.20 0.5 4 9 Diameter BEPA 1 0.50 . . . 0.5 0.5 9 Diameter FRNI 2 0.50 0.00 0.00 0.00 0.5 0.5 9 Diameter POTR1 24 2.79 0.43 0.66 0.13 2 4 9 Height ABBA 23 9.04 29.04 5.39 1.12 l 25 109 Appendix B Table 6. (Cont). Unit No. Variable Species N Mean Var Std Dev Std Min Max Err 9 Height BEPA 1 8.00 . . 8 8 9 Height F RNI 2 2.00 0.00 0.00 0.00 2 2 9 Height POTR1 24 29.79 1 10.00 10.49 2.14 1 44 1 1 Diameter ABBA 8 0.81 0.78 0.88 0.31 0.5 3 1 1 Diameter FRNI l 0.50 . . . 0.5 0.5 1 1 Diameter POBA 3 0.50 0.00 0.00 0.00 0.5 0.5 1 1 Diameter POTR1 4 2.63 2.23 1.49 0.75 0.5 4 1 1 Diameter ULRU 5 1.10 1.18 1.08 0.48 0.5 3 1 1 Height ABBA 8 6.13 33.84 5.82 2.06 l 20 11 Height FRNI l 4.00 . . . 4 4 1 1 Height POBA 3 2.33 0.33 0.58 0.33 2 3 l 1 Height POTR1 4 34.75 534.92 23.13 1 1.56 1 53 l 1 Height ULRU 5 7.80 46.20 6.80 3.04 2 18 13 Diameter ABBA 3 1.83 1.58 1 .26 0.73 0.5 3 13 Diameter ACRU1 59 0.50 0.00 0.00 0.00 0.5 0.5 13 Diameter FRNI 51 0.55 0.05 0.23 0.03 0.5 2 ' 13 Diameter POTR1 3 1.33 2.08 1.44 0.83 0.5 3 13 Diameter ULRU 5 1.00 0.38 0.61 0.27 0.5 2 13 Diameter UNK 3 0.50 0.00 0.00 0.00 0.5 0.5 13 Height ABBA 3 20.67 622.33 24.95 14.40 2 49 13 Height ACRU1 59 2.61 3.83 1.96 0.25 1 10 13 Height FRNI 51 3.53 55.41 7.44 1.04 1 52 13 Height POTR1 3 22.00 ###### 32.14 18.56 1 59 13 Height ULRU 5 9.60 16.80 4.10 1.83 6 16 13 Height UNK 3 4.00 1.00 1.00 0.58 3 5 16 Diameter ABBA 1 2.00 . . . 2 2 16 Diameter ACRU1 4 0.50 0.00 0.00 0.00 0.5 0.5 16 Diameter FRNI 228 0.52 0.02 0.15 0.01 0.5 2 16 Diameter POTR1 36 0.53 0.01 0.12 0.02 0.5 1 16 Diameter QUMA 1 1.00 1 1 16 Height ABBA 1 16.00 . . . 16 16 16 Height ACRU1 4 1.75 0.25 0.50 0.25 1 2 16 Height FRNI 228 3.42 10.28 3.21 0.21 1 30 16 Height POTR1 36 8.00 6.57 2.56 0.43 3 13 16 Height QUMA 1 10.00 10 10 17 Diameter ABBA 1 1.00 1 1 17 Diameter ACRU1 1 0.50 0.5 0.5 110 Appendix B Table 6. (Cont). Unit No. Variable Species N Mean Var Std Dev Std Min Max Err FF hiameter FRNI 61 0.65 0.21 0.46 0.06 0.5 3 17 Diameter PIGL 2 1.50 0.50 0.71 0.50 1 2 17 Diameter POBA 1 2.00 . . . 2 2 17 Diameter QUMA 5 0.80 0.45 0.67 0.30 0.5 2 17 Diameter QURU l 0.50 . . . 0.5 0.5 17 Diameter ULAM 3 1.33 2.08 1.44 0.83 0.5 3 17 Diameter ULRU 21 1.00 0.90 0.95 0.21 0.5 3 17 Height ABBA 1 10.00 10 10 17 Height ACRU1 1 2.00 . . 2 2 17 Height F RNI 61 5.18 31.72 5.63 0.72 l 32 17 Height PIGL 2 l 1.00 50.00 7.07 5.00 6 16 17 Height POBA 1 18.00 . . . 18 18 17 Height QUMA 5 7.60 67 .30 8.20 3.67 2 21 17 Height QURU 1 3.00 . . . 3 3 17 Height ULAM 3 9.67 154.33 12.42 7.17 2 24 17 Height ULRU 21 8.48 95.76 9.79 2.14 1 32 18 Diameter ABBA 6 0.83 0.37 0.61 0.25 0.5 2 18 Diameter ACRU1 43 0.51 0.01 0.08 0.01 0.5 1 18 Diameter F RNI 138 0.64 0.22 0.47 0.04 0.5 3 18 Diameter POBA 3 0.50 0.00 0.00 0.00 0.5 0.5 18 Diameter POTR1 2 2.00 0.00 0.00 0.00 2 2 18 Diameter ULRU 5 0.60 0.05 0.22 0.10 0.5 1 18 Height ABBA 6 4.33 23.07 4.80 1.96 1 13 18 Height ACRU1 43 4.26 25.48 5.05 0.77 1 26 18 Height FRNI 138 5.04 37.39 6.11 0.52 1 32 18 Height POBA 3 3.00 1.00 1.00 0.58 2 4 18 Height POTR1 2 27 .50 12.50 3.54 2.50 25 30 18 Height ULRU 5 6.80 38.20 6.18 2.76 1 17 19 Diameter ABBA 27 0.96 0.52 0.72 0.14 0.5 3 19 Diameter ACRU1 180 0.53 0.01 0.1 1 0.01 0.5 1 19 Diameter F RNI 66 0.91 0.53 0.73 0.09 0.5 3 19 Diameter PIMA l 0.50 . . . 0.5 0.5 19 Height ABBA 27 5.48 23.34 4.83 0.93 1 20 19 Height ACRU1 180 2.86 3.07 1.75 0.13 1 13 19 Height FRNI 66 7.91 75.81 8.71 1.07 1 35 19 Height PIMA 1 2.00 . . . 2 2 20 Diameter ABBA 21 1.05 0.20 0.44 0.10 0.5 2 lll Appendix B Table 6 (Cont). Unit No. Variable Species N Mean Var Std Dev Std Min Max Err 20 Diameter TEAL 1 1.00 . . . 1 1 20 Diameter FRNI 47 0.76 0.31 0.56 0.08 0.5 3 20 Diameter PIGL 4 0.63 0.06 0.25 0.13 0.5 1 20 Diameter POBA 8 0.94 0.25 0.50 0.18 0.5 2 20 Diameter ULRU 9 0.61 0.05 0.22 0.07 0.5 1 20 Height ABBA 21 8.00 16.10 4.01 0.88 1 15 20 Height BEAL 1 18.00 . . . 18 18 20 Height FRNI 47 7.79 47.30 6.88 1.00 1 33 20 Height PIGL 4 1.75 2.25 1.50 0.75 1 4 20 Height POBA 8 11.38 29.70 5.45 1.93 5 23 20 Height ULRU 9 5.56 9.03 3.00 1.00 l 10 21 Diameter ABBA 7 3.14 0.48 0.69 0.26 2 4 21 Diameter POTR1 3 0.50 0.00 0.00 0.00 0.5 0.5 21 Height ABBA 7 38.29 40.90 6.40 2.42 28 45 21 Height POTR1 3 3.00 3.00 1.73 1.00 2 5 22 Diameter ABBA 52 1.28 0.98 0.99 0.14 0.5 4 22 Diameter ACRU1 21 0.50 0.00 0.00 0.00 0.5 0.5 22 Diameter BEPA 6 2.83 0.17 0.41 0.17 2 3 22 Diameter FRNI 101 0.53 0.03 0.17 0.02 0.5 2 22 Diameter POBA 2 0.50 0.00 0.00 0.00 0.5 0.5 22 Diameter POTR1 3 0.50 0.00 0.00 0.00 0.5 0.5 22 Diameter THOC l 0.50 0.5 0.5 22 Diameter ULRU l 0.50 . . . 0.5 0.5 22 Height ABBA 52 8.75 72.00 8.48 1.18 1 45 22 Height ACRU2 21 1.29 0.31 0.56 0.12 1 3 22 Height BEPA 6 33.83 21.37 4.62 1.89 30 41 22 Height FRNI 101 2.38 8.62 2.94 0.29 1 24 22 Height POBA 2 4.50 0.50 0.71 0.50 4 5 22 Height POTR1 3 3.00 1.00 1.00 0.58 2 4 22 Height THOC 1 2.00 2 2 22 Height ULRU 1 2.00 . . . 2 2 23 Diameter ABBA 34 1.51 0.93 0.97 0.17 0.5 3 23 Diameter ACRU1 49 0.51 0.01 0.07 0.01 0.5 1 23 Diameter BEPA 5 1.80 0.70 0.84 0.37 1 3 23 Diameter FRNI 57 0.63 0.16 0.40 0.05 0.5 2 23 Diameter LALA 32 1.92 1.68 1.30 0.23 0.5 4 23 Diameter POTR1 7 0.86 0.89 0.94 0.36 0.5 3 112 Appendix B Table 6 (Cont). Unit No. Variable Species N Mean Var Std Dev Std Min Max Err 23 Height ABBA 34 10.85 68.25 8.26 1.42 l 27 23 Height ACRU1 49 2.18 2.65 1.63 0.23 l 7 23 Height BEPA 5 25.60 38.30 6.19 2.77 18 34 23 Height FRNI 57 5.02 20.73 4.55 0.60 1 22 23 Height LALA 32 22.03 237.06 15.40 2.72 2 48 23 Height POTR1 7 5.29 100.90 10.05 3.80 1 28 24 Diameter ABBA 59 0.86 0.45 0.67 0.09 0.5 3 24 Diameter ACRU1 1 0.50 . . . 0.5 0.5 24 Diameter F RNI 2 0.50 0.00 0.00 0.00 0.5 0.5 24 Diameter THOC 98 0.72 0.35 0.59 0.06 0.5 3 24 Height ABBA 59 5.53 27.50 5.24 0.68 l 22 24 Height ACRU1 1 2.00 . . . 2 2 24 Height FRNI 2 6.00 0.00 0.00 0.00 6 6 24 Height THOC 98 4.54 23.30 4.83 0.49 1 21 28 Diameter ABBA 43 0.62 0.08 0.29 0.04 0.5 2 28 Diameter PIMA 67 1 .38 1.04 1.02 0.12 0.5 4 28 Diameter THOC 16 0.69 0.16 0.40 0.10 0.5 2 28 Height ABBA 43 4.02 8.74 2.96 0.45 1 l 1 28 Height PIMA 67 11.19 116.43 10.79 1.32 1 31 28 Height THOC 16 4.81 8.83 2.97 0.74 1 10 30 Diameter PIMA 31 1.24 0.98 0.99 0.18 0.5 4 30 Height PIMA 31 9.03 103.83 10.19 1.83 l 39 31 Diameter LALA 2 0.50 0.00 0.00 0.00 0.5 0.5 31 Diameter PIMA 77 1.01 0.80 0.90 0.10 0.5 4 31 Height LALA 2 4.00 2.00 1.41 1.00 3 5 31 Height PIMA 77 6.61 83.93 9.16 1.04 1 35 32 Diameter LALA 18 2.14 l .29 1.14 0.27 0.5 4 32 Diameter PIMA 85 0.64 0.17 0.41 0.04 0.5 3 32 Height LALA 18 18.72 90.92 9.54 2.25 5 35 32 Height PIMA 85 4.33 14.53 3.81 0.41 1 25 34 Diameter ABBA 25 2.38 1.63 1 .28 0.26 0.5 4 34 Diameter ACRU1 1 0.50 . . . 0.5 0.5 34 Diameter BEPA 2 2.50 0.50 0.71 0.50 2 3 34 Diameter FRNI 99 0.65 0.22 0.47 0.05 0.5 3 34 Diameter POTR1 3 2.83 4.08 2.02 1.17 0.5 4 34 Diameter ULRU 1 0.50 . . . 0.5 0.5 34 Height ABBA 25 18.08 71.16 8.44 1.69 1 33 113 Appendix B Table 6 (Cont). Unit No. Variable Species N Mean Var Std Dev Std Min Max Err 34 Height ACRU1 1 2.00 . . 2 2 34 Height BEPA 2 26.00 0.00 0.00 0.00 26 26 34 Height FRNI 99 5.75 62.93 7.93 0.80 l 43 34 Height POTR1 3 20.33 264.33 16.26 9.39 2 33 34 Height ULRU 1 3.00 . . . 3 3 38 Diameter ABBA 9 1.00 0.38 0.61 0.20 0.5 2 38 Diameter ACRU1 5 0.60 0.05 0.22 0.10 0.5 1 38 Diameter BEPA 15 1.47 0.48 0.69 0.18 0.5 2 38 Diameter FRNI 27 0.65 0.1 1 0.33 0.06 0.5 2 38 Diameter POTR1 4 1.88 1.73 1.31 0.66 0.5 3 38 Height ABBA 9 8.1 1 14.86 3.86 1.29 3 15 38 Height ACRU1 5 5.80 47.70 6.91 3.09 1 16 38 Height BEPA 15 16.93 40.92 6.40 1.65 3 28 38 Height FRNI 27 3.52 9.64 3.1 1 0.60 1 13 38 Height POTRZ 4 18.50 97.00 9.85 4.92 10 28 39 Diameter ABBA 4 1.38 1.23 1.11 0.55 0.5 3 39 Diameter ACRU1 1 0.50 . . . 0.5 0.5 39 Diameter FRNI 3 0.50 0.00 0.00 0.00 0.5 0.5 39 Diameter POBA 3 2.00 1.00 1.00 0.58 1 3 39 Diameter POTR1 14 0.50 0.00 0.00 0.00 0.5 0.5 39 Diameter ULRU 4 0.75 0.08 0.29 0.14 0.5 1 39 Diameter UNK 4 0.88 0.56 0.75 0.38 0.5 2 39 Height ABBA 4 12.00 120.00 10.95 5.48 4 28 39 Height ACRU1 l 3.00 . . . 3 3 39 Height FRNI 3 5.33 2.33 1.53 0.88 4 7 39 Height POBA 3 20.33 90.33 9.50 5.49 l 1 30 39 Height POTR1 14 3.36 1.63 1.28 0.34 1 6 39 Height ULRU 4 6.75 36.92 6.08 3.04 1 12 39 Height UNK 4 5.75 3.58 1.89 0.95 3 7 40 Diameter ABBA 23 1.61 1.02 1.01 0.21 0.5 4 40 Diameter ACRU1 7 0.50 0.00 0.00 0.00 0.5 0.5 40 Diameter BEPA 2 3.00 0.00 0.00 0.00 3 3 40 Diameter FRNI 234 0.55 0.09 0.30 0.02 0.5 3 40 Diameter POBA 1 0.50 0.5 0.5 40 Diameter QUMA 1 0.50 . . . 0.5 0.5 40 Diameter THOC 3 0.67 0.08 0.29 0.17 0.5 1 40 Diameter ULRU 16 0.81 0.36 0.60 0.15 0.5 2 114 Appendix B Table 6 (Cont). Unit No. Variable Species N Mean Var Std Dev Std Min Max Err 40 Height ABBA 23 12.09 77.54 8.81 1.84 1 28 40 Height ACRU1 7 1.29 0.24 0.49 0.18 2 40 Height BEPA 2 27.50 12.50 3.54 2.50 25 30 40 Height FRNI 234 2.75 16.09 4.01 0.26 1 28 40 Height POBA 1 8.00 8 8 40 Height QUMA 1 1.00 . . . 1 1 40 Height THOC 3 7.00 1.00 1.00 0.58 6 8 40 Height ULRU 16 7.38 37.18 6.10 1.52 2 20 45 Diameter ABBA 47 1.34 0.68 0.82 0.12 0.5 4 45 Diameter ACRU1 1 0.50 0.5 0.5 45 Diameter BEPA 1 4.00 . . . 4 4 45 Diameter LALA 2 1.00 0.00 0.00 0.00 1 1 45 Diameter PIGL 1 0.50 . . . 0.5 0.5 45 Diameter PIMA 3 1.00 0.00 0.00 0.00 1 1 45 Diameter POBA 3 0.83 0.08 0.29 0.17 0.5 1 45 Diameter THOC 6 2.08 0.84 0.92 0.37 0.5 3 45 Diameter ULRU 2 0.75 0.13 0.35 0.25 0.5 1 45 Height ABBA 47 10.23 66.01 8.12 1.19 1 27 45 Height ACRU2 1 2.00 2 2 45 Height BEPA 1 22.00 . . . 22 22 45 Height LALA 2 4.50 12.50 3.54 2.50 2 7 45 Height PIGL 1 1.00 . . . 1 1 45 Height PIMA 3 3.33 0.33 0.58 0.33 3 4 45 Height POBA 3 6.67 16.33 4.04 2.33 2 9 45 Height THOC 6 14.17 52.57 7.25 2.96 1 23 45 Height ULRU 2 4.50 24.50 4.95 3.50 1 8 46 Diameter ABBA 128 0.62 0.10 0.32 0.03 0.5 2 46 Diameter BEPA 1 4.00 . 4 4 46 Diameter FRNI 1 2.00 . '. . 2 2 46 Diameter THOC 44 1.67 1.03 1.02 0.15 0.5 4 46 Height ABBA 128 3.25 9.56 3.09 0.27 1 16 46 Height BEPA 1 28.00 28 28 46 Height FRNI 1 15.00 . . . 15 15 46 Height THOC 44 11.73 42.02 6.48 0.98 1 25 47 Diameter ABBA 51 0.62 0.08 0.28 0.04 0.5 2 47 Diameter ABBA 83 1.01 0.75 0.87 0.10 0.5 4 47 Diameter FRNI 16 0.72 0.27 0.52 0.13 0.5 2 115 Appendix B Table 6 (Cont). Unit No. Variable Species N Mean Var Std Dev Std Min Max Err 47 Diameter POTR1 1.00 . 1 1 . . 47 Diameter THOC 9 3.22 0.44 0.67 0.22 2 4 47 Diameter ULRU 4 0.50 0.00 0.00 0.00 0.5 0.5 47 Height ABBA 51 4.31 9.58 3.10 0.43 1 18 47 Height ABBA 83 7.25 49.87 7.06 0.78 1 30 47 Height FRNI 16 2.44 1.20 1.09 0.27 1 47 Height POTR2 1 14.00 . . . 14 14 47 Height THOC 9 19.22 71.44 8.45 2.82 9 33 47 Height ULRU 4 2.00 0.00 0.00 0.00 2 2 48 Diameter THOC 40 2.15 1.03 1.01 0.16 0.5 4 48 Height THOC 40 17.10 40.04 6.33 1.00 1 28 “a dot (.) indicates either that data was nonexistent, or was unable to be calculated. u 116 Appendix B Table 7. Small trees stem density (stems/plot) by ELU and species. ELU Species Stem density ELU Species Stem density_ ED(p) ABBA 1 1 .3333 LW(m) QURU 0.16667 ED(p) ACRU1 16.3333 LW(m) ULAM 0.5 ED(p) BEPA 1.6667 LW(m) ULRU 4.33333 ED(p) FRNI 19 LW(p) ABBA 0.1667 ED(p) POTR1 2.33333 LW(p) LALA 3 EM(p) ABBA 12.6667 LW(p) PIMA 14.1667 EM(p) ACRU1 13.8333 LW(p) THOC 4.16667 EM(p) BEAL 0.4167 LW(pm) ABBA 25.75 EM(p) BEPA 0.8333 LW(pm) ACRU1 0.0833 EM(p) FRNI 8.5833 LW(pm) BEPA 0.1667 EM(p) PIGL 0.3333 LW(pm) FRNI 1.4167 EM(p) POBA 0.16667 LW(pm) LALA 0.1667 EM(p) POTR1 3.91667 LW(pm) PIGL 0.0833 EM(p) THOC 8.25 LW(pm) PIMA 0.25 EM(p) ULRU 0.91667 LW(pm) POBA 0.25 EW(m) ABBA 8 LW(pm) POTR1 0.08333 EW(m) ACRU1 30 LW(pm) THOC 8.25 EW(m) BEAL 0.1667 LW(pm) ULRU 0.5 EW(m) FRNI 18.8333 LW(vp) ABBA 3.5833 EW(m) PIGL 0.6667 LW(vp) LALA 1.6667 EW(m) PIMA 0.1667 LW(vp) PIMA 21.6667 EW(m) POBA 1.33333 LW(vp) THOC 1.33333 EW(m) ULRU 1.5 MM(m) ABBA 3.7273 LM(m) ABBA 3.9286 MM(m) ACRU1 0.8182 LM(m) ACRU1 4.8571 MM(m) BEPA 1.4545 LM(m) BEPA 0.2857 MM(m) FRNI 23.4545 LM(m) FRNI 27.6429 MM(m) POBA 0.27273 LM(m) POBA 0.28571 MM(m) POTR1 6.18182 LM(m) POTR1 1.42857 MM(m) QUMA 0.09091 LM(m) QUMA 0.07143 MM(m) ULRU 0.45455 LM(m) THOC 0.21429 MM(p) ABBA 2.3333 LM(m) ULRU 1.85714 MM(p) POTR1 1 LM(m) UNK 0.5 MW(m) ACRU1 3.6667 LW(m) ABBA 1.1667 MW(m) BEPA 0.1667 LW(m) ACRU1 7.3333 MW(m) FRNI 0.5 LW(m) FRNI 33.1667 MW(m) PIGL 0.1667 LW(m) PIGL 0.3333 MW(m) POBA 4.16667 LW(m) POBA 0.66667 MW(m) POTR1 8.66667 LW(m) POTR1 0.33333 MW(m) ULRU 1.5 LW(m) QUMA 0.83333 MW(p) LALA 5.3333 MW(p) PIMA 5.3333 MW(p) THOC 0.33333 117 Appendix B Table 8. Small trees stem density (stems/plot) by unit number and species. Unit no. Species Stem densityr Unit no. Species Stem density oocomwMQfl\IGGO‘QUIUI-bA-b#wwwwaWNNNNNNHI—t—‘H ACRU1 BEPA POBA POTR1 ACRU1 FRNI InGL POBA POTR1 ULRU ABBA ACRU1 BEAL BEPA lHGL POTR1 ULRU ABBA ACRU1 IHGL POTR1 LALA anA ABBA LALA PIMA THOC LALA anA THOC LALA Puma THOC ABBA BEPA FRNI POTR1 ABBA POBA ULRU ABBA 4.6667 0.3333 0.3333 1.6667 2.6667 1 0.3333 8 15.6667 3 3.6667 24 1.6667 1.3333 0.3333 9 3.3333 10 24 1 5.6667 4.3333 3.3333 0.3333 3.6667 10.3333 7.6667 6.3333 7.3333 0.6667 2.3333 18 0.6667 11.5 0.5 l 12 2.6667 2.6667 3 2.3333 11 11 11 11 13 13 13 13 13 13 16 16 16 16 16 17 17 17 l7 l7 l7 17 17 17 18 18 18 18 18 18 19 19 19 19 20 20 20 20 39 39 39 FRNI POBA POTR1 ULRU ABBA ACRU1 FRNI POTR1 ULRU UNK ABBA ACRU1 FRNI POTR1 QUMA ABBA ACRU1 F RNI PIGL POBA QUMA QURU ULAM ULRU ABBA ACRU1 FRNI POBA POTR1 ULRU ABBA ACRU1 FRNI PIMA ABBA BEAL FRNI PIGL FRNI POBA POTR1 118 0.3333 1 1.3333 1.6667 1 19.6667 17 1 1.6667 1 0.3333 1.3333 76 12 0.3333 0.3333 0.3333 20.3333 0.6667 0.3333 1.6667 0.3333 1 7 2 14.3333 45 1 0.6667 1.6667 9 60 22 0.3333 7 0.3333 15.6667 1.3333 1 1 4.6667 Appendix B Table 8 (Cont). Unit no. Species Stern density Unit no. Species Stern density 21 22 22 22 22 22 22 22 22 23 23 23 23 23 24 24 24 24 28 28 28 30 3 1 3 l 32 32 34 34 34 34 34 34 38 38 38 38 38 39 39 POTR1 ABBA ACRU l BEPA FRNI POBA POTR1 THOC ULRU ABBA ACRU1 BEPA FRNI POTR1 ABBA ACRU l FRNI THOC ABBA PIMA THOC PIMA LALA PIMA LALA PIMA ABBA ACRU1 BEPA F RNI POTR1 ULRU ABBA ACRU1 BEPA FRNI POTR1 ABBA ACRU l 1 17.3333 7 2 33.6667 0.6667 1 0.3333 0.3333 11.3333 16.3333 1.6667 19 2.3333 19.6667 0.3333 0.6667 32.6667 14.3333 22.3333 5.3333 10.3333 0.6667 25.6667 6 28.3333 8.3333 0.3333 0.6667 33 1 0.3333 3 1.6667 5 9 1.3333 1.3333 0.3333 39 39 40 40 40 40 40 40 40 40 45 45 45 45 45 45 45 45 45 46 46 46 46 47 47 47 47 47 48 48 ULRU UNK ABBA ACRU 1 BEPA F RNT POBA QUMA THOC ULRU ABBA ACRU1 BEPA LALA PIGL PIMA POBA THOC ULRU ABBA BEPA FRNI THOC ABBA FRNI POTR1 THOC ULRU ABBA THOC 1.3333 1.33333 7.6667 2.3333 0.6667 78 0.3333 0.3333 1 5.3333 15.6667 0.3333 0.3333 0.6667 0.3333 1 1 2 0.66667 42.6667 0.3333 0.3333 14.6667 17 5.3333 0.3333 3 1.33333 27.6667 13.3333 119 Appendix B Table 9. Snag diameter (in) and height (ft) means, variances, standard deviations, standard errors, minimums, and maximums by ELU and decay“. fiU Decay Diameter/ N Mean Var Std Dev Std Err Min Max Height ED(p) 1 Diameter 7 “786 10.14 3.18 1.20 5 13 ED(p) 1 Height 7 23.57 461.95 21.49 8.12 7 60 ED(p) 2 Diameter 4 13.00 38.00 6.16 3.08 4 18 ED(p) 2 Height 4 28.75 21.58 4.65 2.32 23 33 EM(p) 1 Diameter 23 6.57 4.80 2.19 0.46 4 11 EM(p) 1 Height 23 38.70 339.31 18.42 3.84 8 69 EM(p) 2 Diameter 18 5.44 1.32 1.15 0.27 4 8 EM(p) 2 Height 18 20.33 154.82 12.44 2.93 6 50 EM(p) 3 Diameter 3 6.00 1.00 1.00 0.58 5 7 EW(m) 1 Diameter 11 11.45 24.07 4.91 1.48 4 17 EW(m) 1 Height 11 34.91 179.89 ’ 13.41 4.04 9 63 EW(m) 2 Diameter 7 6.57 4.95 2.23 0.84 5 1 1 EW(m) 2 Height 7 20.29 222.57 14.92 5.64 6 50 EW(m) 3 Diameter 1 9.00 9 9 EW(m) 3 Height 1 1 1.00 . . . 1 1 1 1 LM(m) 1 Diameter 32 5.44 1.80 1.34 0.24 4 8 LM(m) 1 Height 32 38.22 260.18 16.13 2.85 7 70 LM(m) 2 Diameter 11 4.64 0.45 0.67 0.20 4 6 LM(m) 2 Height ' 1 1 26.45 207.07 14.39 4.34 6 51 LM(m) 3 Diameter 2 5.50 4.50 2.12 1.50 4 7 LM(m) 3 Height 2 25.50 60.50 7.78 5.50 20 31 LW(m) N/A Diameter 2 19.50 1 12.50 10.61 7 .50 12 27 LW(m) N/A Height 2 36.00 1250.00 35.36 25.00 1 1 61 LW(m) 2 Diameter 4 1 1.25 20.92 4.57 2.29 6 17 LW(m) 2 Height 4 20.00 36.67 6.06 3.03 14 28 LW(m) 3 Diameter 3 13.33 89.33 9.45 5.46 6 24 LW(m) 3 Height 3 16.00 13.00 3.61 2.08 12 19 LW(m) 5 Diameter 1 15.00 15 15 LW(m) 5 Height 1 32.00 . . . 32 32 LW(p) 1 Diameter 4 4.50 0.33 0.58 0.29 4 5 LW(p) 1 Height 4 24.00 130.00 1 1 .40 5.70 7 3 1 LW(p) 2 Diameter 4 4.25 0.25 0.50 0.25 4 5 LW(p) 2 Height 4 23.00 88.67 9.42 4.71 10 32 LW(pm) 1 Diameter 24 5.67 2.32 1.52 0.31 4 9 LW(pm) 1 Height 24 22.71 85.78 9.26 1.89 6 38 LW(pm) 2 Diameter 9 6.78 3.19 1.79 0.60 4 9 LW(pm) 2 Height 9 12.44 14.03 3.75 1.25 7 19 LW(pm) 3 Diameter 4 6.00 2.00 1 .41 0.71 5 8 LW(pm) 3 Height 4 1 1.00 24.67 4.97 2.48 6 17 LW(pm) 5 Diameter 1 1 1.00 1 1 1 l LW(pm) 5 Height 1 26.00 26 26 120 Appendix B Table 9 (Cont). ELU Decay Diameter/ N Mean Var Std Dev Std Err Min Max Height IWTvp) 1 Diaméter 10 5.50 1.83 1.35 0.43 4 8 LW(vp) 1 Height 10 31.10 132.54 11.51 3.64 9 45 LW(vp) 2 Diameter 1 5.00 5 5 LW(vp) 2 Height 1 20.00 20 20 LW(vp) 4 Diameter 1 4.00 4 4 LW(vp) 4 Height 1 21 .00 . . . 21 21 MM(m) 1 Diameter 27 5.59 2.71 1.65 0.32 4 9 MM(m) 1 Height 27 36.15 264.67 16.27 3.13 3 70 MM(m) 2 Diameter 5 6.00 1 1.50 3.39 1.52 4 12 MM(m) 2 Height 5 32.00 278.00 16.67 7.46 6 52 MM(m) 4 Diameter 1 1 1.00 ' 1 1 11 MM(m) 4 Height 1 24.00 . . . 24 24 MM(p) 1 Diameter 14 5.14 1.52 1.23 0.33 4 7 MM(p) 1 Height 14 27.71 87.30 9.34 2.50 7 40 MM(p) 2 Diameter 7 5.86 2.81 1.68 0.63 4 9 MM(p) 2 Height 7 17.71 148.24 12.18 4.60 6 35 MW(m) N/A Diameter 1 5.00 5 5 MW(m) N/A Height 1 51.00 . . . 51 51 MW(m) 1 Diameter 3 4.67 0.33 0.58 0.33 4 5 MW(m) 1 Height 3 23.33 8.33 2.89 1.67 20 25 MW(m) 2 Diameter 1 9.00 9 9 MW(m) 2 Height 1 20.00 . . . 20 20 MW(m) 3 Diameter 1 1 4.64 2.25 1.50 0.45 4 9 MW(m) 3 Height 11 23.82 187.56 13.70 4.13 9 52 MW(p) 1 Diameter 8 5. 13 l .84 1.36 0.48 4 8 MW(p) 1 Height 8 34.88 173.27 13.16 4.65 7 48 MW(p) 2 Diameter 2 6.00 2.00 1.41 1.00 5 7 MW(p) 2 Height 2 15.00 18.00 4.24 3.00 12 18 MW(p) 3 Diameter 1 5.00 5 5 MW(p) 3 Height 1 10.00 . 10 10 “a dot (.) indicates either that data was nonexis 121 tent, or was unable to be calculated. Appendix B Table 10. Snag diameter (in) and height (ft) means, variances, standard deviations, standard errors, minimums and maximums by unit number and decay“. Std Dev Std Err Min Max Unit Decay Diameter/ N Mean Var No. Height 1 3 Diameter 1 1 4.64 2.25 1.50 0.45 4 9 1 3 Height 1 1 23.82 187.56 13.70 4.13 9 52 1 N/A Diameter 1 5.00 5 5 1 N/A Height 1 51 .00 . . . 51 51 2 1 Diameter 3 4.67 0.33 0.58 0.33 4 5 2 1 Height 3 23 .33 8.33 2.89 1 .67 20 25 2 2 Diameter 1 9.00 9 9 2 2 Height 1 20.00 . . . 20 20 3 1 Diameter 5 6.20 3.20 1.79 0.80 5 9 3 1 Height 5 31.80 193.70 13.92 6.22 9 45 3 2 Diameter 1 5 5 5 3 2 Height 1 7 . . . 7 7 4 1 Diameter 3 5 1 l 0.58 4 6 4 1 Height 3 47 48 6.93 4 43 55 4 2 Diameter 3 5.67 1.33 1.15 0.67 5 7 4 2 Height 3 25.33 41.33 6.43 3.71 18 30 4 3 Diameter 1 7 7 7 4 3 Height 1 7 7 7 6 1 Diameter 1 5.00 5 5 6 1 Height 1 7.00 . . . 7 7 6 2 Diameter 3 4.00 0.00 0.00 0.00 4 4 6 2 Height 3 23.00 133.00 11.53 6.66 10 32 7 1 Diameter 8 5.13 1.84 1.36 0.48 4 8 7 1 Height 8 34.88 173.27 13.16 4.65 7 48 7 2 Diameter 2 6.00 2.00 1.41 1.00 5 7 7 2 Height 2 15.00 18.00 4.24 3.00 12 18 7 3 Diameter 1 5.00 5 5 7 3 Height 1 10.00 . . . 10 10 8 1 Diameter 3 4.33 0.33 0.58 0.33 4 5 8 1 Height 3 29.67 2.33 1.53 0.88 28 31 8 2 Diameter 1 5.00 5 5 8 2 Height 1 23.00 . . . 23 23 11 1 Diameter 16 5.38 2.38 1.54 0.39 4 9 11 1 Height 16 32.06 270.33 16.44 4.1 1 3 53 13 1 Diameter 8 6.25 1.64 1.28 0.45 4 8 13 1 Height 8 26.63 151.70 12.32 4.35 7 36 13 2 Diameter 4 4.75 0.25 0.50 0.25 4 5 13 2 Height 4 34.75 24.25 4.92 2.46 31 42 16 1 Diameter 7 6.29 4.24 2.06 0.78 4 9 16 1 Height 7 39.43 337.95 18.38 6.95 20 70 122 Appendix B Table 10 (Cont). Unit Decay Diameter/ N Mean Var Std Dev Std Err Min Max No. Height 16 2 mmeter 5 6.00 11.50 3.39 1.52 4 12 16 2 Height 5 32.00 278.00 16.67 7.46 6 52 17 2 Diameter 3 13.00 13.00 3.61 2.08 10 17 17 2 Height 3 17.33 12.33 3.51 2.03 14 21 17 3 Diameter 2 17.00 98.00 9.90 7.00 10 24 17 3 Height 2 14.50 12.50 3.54 2.50 12 17 18 2 Diameter 1 6.00 6 6 18 2 Height 1 28.00 28 28 18 3 Diameter 1 6.00 6 6 18 3 Height 1 19.00 19 19 18 5 Diameter 1 15.00 15 15 18 5 Height 1 32.00 . . . 32 32 18 N/A Diameter 2 19.50 1 12.50 10.61 7.50 12 27 18 N/A Height 2 36.00 1250.00 35.36 25.00 1 1 61 19 1 Diameter 5 12.00 36.50 6.04 2.70 4 17 19 1 Height 5 31.20 171.20 13.08 5.85 9 41 19 2 Diameter 5 5.80 1.70 1.30 0.58 5 8 19 2 Height 5 21.20 317.70 17.82 7.97 6 50 20 1 Diameter 6 l 1.00 18.40 4.29 1 .75 4 15 20 1 Height 6 38.00 197.60 14.06 5.74 20 63 20 2 Diameter 2 8.50 12.50 3.54 2.50 6 1 1 20 2 Height 2 18.00 50.00 7.07 5.00 13 23 20 3 Diameter 1 9.00 9 9 20 3 Height 1 11.00 . . . 11 11 21 1 Diameter 14 5.14 1.52 1.23 0.33 4 7 21 1 Height 14 27.71 87.30 9.34 2.50 7 40 21 2 Diameter 7 5.86 2.81 1.68 0.63 4 9 21 2 Height 7 17.71 148.24 12.18 4.60 6 35 22 1 Diameter 8 7.50 6.57 2.56 0.91 4 l 1 22 1 Height 8 28.75 472.79 21.74 7.69 8 69 22 2 Diameter 1 1 5.45 0.87 0.93 0.28 4 7 22 2 Height 11 19.18 146.76 12.1 1 3.65 6 50 22 3 Diameter 2 5.50 0.50 0.71 0.50 5 6 22 3 Height 2 8.00 8.00 2.83 2.00 6 10 23 1 Diameter 7 7.86 10.14 3.18 1.20 5 13 23 1 Height 7 23.57 461.95 21.49 8.12 7 60 23 2 Diameter 4 13.00 38.00 6.16 3.08 4 18 23 2 Height 4 28.75 21.58 4.65 2.32 23 33 24 1 Diameter 7 6.43 4.95 2.23 0.84 4 10 24 1 Height 7 51.43 152.29 12.34 4.66 33 65 24 2 Diameter 3 5.33 5.33 2.31 1.33 4 8 24 2 Height 3 24.00 387.00 19.67 1 1.36 6 45 28 1 Diameter 3 5.67 4.33 2.08 1 .20 4 8 123 Appendix B Table 10 (Cont). Var Std Dev Std Err Min Max Unit Decay Diameter/ N Mean No. Height 28 1 Height 3 20.00 181.00 13.45 T77 30 1 Diameter 5 5.20 1.70 1.30 0.58 30 1 Height 5 35.20. 45.70 6.76 3.02 30 2 Diameter 1 5.00 30 2 Height 1 20.00 30 4 Diameter 1 4.00 30 4 Height 1 21.00 . . . 31 1 Diameter 2 6.00 0.00 0.00 0.00 31 1 Height 2 37.50 112.50 10.61 7.50 34 1 Diameter 9 5.33 2.00 1 .41 0.47 34 1 Height 9 42.56 204.03 14.28 4.76 34 2 Diameter 2 5.00 2.00 1.41 1.00 34 2 Height 2 33.50 612.50 24.75 17.50 34 3 Diameter 2 5.50 4.50 2.12 1.50 34 3 Height 2 25.50 60.50 7.78 5.50 38 1 Diameter 4 5.25 1.58 1.26 0.63 38 1 Height 4 46.75 2.25 1.50 0.75 38 4 Diameter 1 1 1.00 38 4 Height 1 24.00 . . . 40 1 Diameter 15 5.07 1.50 1.22 0.32 40 1 Height 15 41.80 281.03 16.76 4.33 40 2 Diameter 5 4.40 0.30 0.55 0.24 40 2 Height 5 17.00 141.00 11.87 5.31 45' 1 Diameter 10 5.70 2.01 1.42 0.45 45 1 Height 10 23.90 84.54 9.19 2.91 45 2 Diameter 1 7.00 45 2 Height 1 13.00 . . . 45 3 Diameter 3 6.33 2.33 1.53 0.88 45 3 Height 3 12.00 31.00 5.57 3.21 46 1 Diameter 1 5.00 46 1 Height 1 18.00 . . . 46 2 Diameter 5 7.00 4.00 2.00 0.89 46 2 Height 5 13.20 19.20 4.38 1.96 46 3 Diameter 1 5.00 46 3 Height 1 8.00 46 5 Diameter 1 11.00 46 5 Height 1 26.00 . . . 47 1 Diameter 7 6.29 4.57 2.14 0.81 47 1 Height 7 20.57 123.29 11.10 4.20 47 2 Diameter 1 7.00 47 2 Height 1 10.00 . . . 48 1 Diameter 6 5.00 0.40 0.63 0.26 48 1 Height 6 24.00 78.80 8.88 3.62 9 4 24 5 20 4 21 6 30 4 15 4 16 4 20 4 46 pa fl ”453%\IAXZOOMfl-hgmctmaxle-hG-bahg 35 7 42 5 20 4 21 6 45 8 56 6 51 7 31 7 49 11 24 8 70 5 36 9 35 7 l3 8 17 5 18 9 l9 5 8 11 26 9 38 7 10 6 33 124 Appendix B Table 10 (Cont). Unit Decay Diameter/ N Mean Var Std Dev Std Err Min Max No. jeight 48 2 Diameter 2 6.00 8.00 2.83 2.00 4 8 8 15 48 2 HeLght 2 11.50 24.50 4.95 3.50 “a’dot (.) indicates either that data was nonexistent, or was unable to be calculated. 125 Appendix B Table 11. Snag diameter (in) and height (ft) means, variances, standard deviations, standard errors, minimums and maximums by ELU, species, and decay“. “BTU Diameter/ Species Decay N Mean Var Std Std Min Max Height Dev Err W) Diameter ABBA 1 3 6.00 3.00 1.73 1.00 5 8 ED(p) Diameter ABBA 2 1 4.00 . . 4 4 ED(p) Height ABBA 1 3 27.33 320.33 17.90 10.33 17 48 ED(p) Height ABBA 2 1 23.00 . . . 23 23 ED(p) Diameter BEPA 2 3 16.00 3 .00 1 .73 1 .00 15 18 ED(p) Height BEPA 2 3 30.67 10.33 3.21 1.86 27 33 ED(p) Diameter POTR1 1 4 9.25 12.25 3.50 1.75 5 13 ED(p) Height POTR1 1 4 20.75 685.58 26.18 13.09 7 60 EM(p) Diameter ABBA l 8 6.38 4.27 2.07 0.73 4 10 EM(p) Diameter ABBA 2 2 4.00 0.00 0.00 0.00 4 4 EM(p) Height ABBA 1 8 46.25 184.79 13.59 4.81 27 65 EM(p) Height ABBA 2 2 16.00 200.00 14.14 10.00 6 26 EM(p) Diameter BEPA 2 1 4.00 4 4 EM(p) Height BEPA 2 1 21.00 21 21 EM(p) Diameter POBA 2 l 6.00 6 6 EM(p) Height POBA 2 1 22.00 . . . 22 22 EM(p) Diameter POTR1 1 15 6.67 5.38 2.32 0.60 4 1 1 EM(p) Diameter POTR1 2 14 5.71 1.14 1.07 0.29 4 8 EM(p) Diameter POTR1 3 3 6.00 1.00 1.00 0.58 5 7 EM(p) Height POTR1 1 15 34.67 390.81 19.77 5.10 8 69 EM(p) Height POTR1 2 14 20.79 183.72 13.55 3.62 6 50 EM(p) Height POTR1 3 3 7.67 4.33 2.08 1 .20 6 10 EW(m) Diameter ABBA 2 2 6.50 4.50 2.12 1.50 5 8 EW(m) Diameter ABBA 3 1 9.00 . . . 9 9 EW(m) Height ABBA 2 2 32.50 612.50 24.75 17.50 15 50 EW(m) Height ABBA 3 1 11.00 . . . 11 11 EW(m) Diameter FRNI l 2 5.50 4.50 2.12 1.50 4 7 EW(m) Diameter FRNI 2 1 5.00 . . . 5 5 EW(m) Height FRNI 1 2 29.50 180.50 13.44 9.50 20 39 EW(m) Height FRNI 2 1 26.00 26 26 EW(m) Diameter PIMA 1 1 4.00 4 4 EW(m) Diameter PIMA 2 1 6.00 6 6 EW(m) Height PIMA 1 1 30.00 30 30 EW(m) Height PIMA 2 1 6.00 . . . 6 6 EW(m) Diameter POBA 1 7 13.57 9.62 3.10 1.17 8 17 126 Appendix B Table 11 (Cont). ELU Diameter/ Species Decay N Mean Var Std Std Min Max fiH_eight Dev Err EW(m) Diameter POBA 2 2 8.50 12.50 3.54 2.50 6 11 EW(m) Height POBA 1 7 36.29 247.57 15.73 5.95 9 63 EW(m) Height POBA 2 2 18.00 50.00 7.07 5.00 13 23 EW(m) Diameter POTR1 1 1 16.00 16 16 EW(m) Diameter POTR1 2 1 5.00 5 5 EW(m) Height POTR1 1 1 41.00 41 41 EW(m) Height POTR1 2 1 9.00 . . . 9 9 LM(m) Diameter BEPA 1 2 4.00 0.00 0.00 0.00 4 4 LM(m) Diameter BEPA 2 1 4.00 . . . 4 4 LM(m) Height BEPA l 2 31.00 512.00 22.63 16.00 15 47 LM(m) Height BEPA 2 1 8.00 . . . 8 8 LM(m) Diameter FRNI 2 2 5.00 0.00 0.00 0.00 5 5 LM(m) Height FRNI 2 2 33.00 0.00 0.00 0.00 33 33 LM(m) Diameter POBA 1 8 5.00 0.86 0.93 0.33 4 6 LM(m) Height POBA 1 8 30.75 345.64 18.59 6.57 7 52 LM(m) Diameter POTR1 1 21 5.71 2.11 1.45 0.32 4 8 LM(m) Diameter POTR1 2 7 4.71 0.57 0.76 0.29 4 6 LM(m) Diameter POTR1 3 2 5.50 4.50 2.12 1.50 4 7 LM(m) Height POTR1 1 21 42.00 212.80 14.59 3.18 15 70 LM(m) Height POTR1 2 7 26.57 270.62 16.45 6.22 6 51 LM(m) Height POTR1 3 2 25.50 60.50 7.78 5.50 20 31 LM(m) Diameter QUPR 2 1 4.00 4 4 LM(m) Height QUPR 2 1 31 .00 31 31 LM(m) Diameter UNK 1 l 6.00 6 6 LM(m) Height UNK 1 1 33.00 . . . 33 33 LW(m) Diameter FRNI 2 3 13.00 13.00 3.61 2.08 10 17 LW(m) Diameter FRNI 3 2 8.00 8.00 2.83 2.00 6 10 LW(m) Diameter FRNI 5 1 15.00 15 15 LW(m) Diameter FRNI UNK 1 12.00 . . . 12 12 LW(m) Height FRNI 2 3 17.33 12.33 3.51 2.03 14 21 LW(m) Height FRNI 3 2 18.00 2.00 1.41 1.00 17 19 LW(m) Height FRNI 5 1 32.00 32 32 LW(m) Height FRNI UNK l 11.00 11 11 LW(m) Diameter POTR1 2 1 6.00 6 6 LW(m) Height POTR1 2 1 28.00 28 28 LW(m) Diameter TIAM UNK 1 27.00 27 27 127 Appendix B Table 11 (Cont). ELU Diameter/ Species Decay N Mean Var Std Std Min Max Height Dev Err fiat/(m) Height TIAM UNK 1 61.00 61 61 LW(m) Diameter ULRU 3 l 24.00 24 24 LW(m) Height ULRU 3 l 12.00 . . . 12 12 LW(p) Diameter LALA l 4 4.50 0.33 0.58 0.29 4 5 LW(p) Diameter LALA 2 4 4.25 0.25 0.50 0.25 4 5 LW(p) Height LALA l 4 24.00 130.00 11.40 5.70 7 31 LW(p) Height LALA 2 4 23.00 88.67 9.42 4.71 10 32 LW(pm) Diameter ABBA 1 12 5.50 1.91 1.38 0.40 4 9 LW(pm) Diameter ABBA 2 4 6.50 3.67 1.91 0.96 4 8 LW(pm) Height ABBA 1 12 21.08 130.81 11.44 3.30 6 35 LW(pm) Height ABBA 2 4 15.50 6.33 2.52 1.26 13 19 LW(pm) Diameter BEPA 1 4 6.50 3.00 1.73 0.87 5 9 LW(pm) Diameter BEPA 2 1 7.00 . . . 7 7 LW(pm) Height BEPA 1 4 19.75 22.25 4.72 2.36 13 23 LW(pm) Height BEPA 2 1 13.00 . . . 13 13 LW(pm) Diameter LALA 3 2 5.50 0.50 0.71 0.50 5 6 LW(pm) Diameter LALA 5 1 11.00 . . . ll 11 LW(pm) Height LALA 3 2 15.00 8.00 2.83 2.00 13 17 LW(pm) Height LALA 5 1 26.00 26 26 LW(pm) Diameter PIMA 2 l 8.00 8 8 LW(pm) Height PIMA 2 1 8.00 8 8 LW(pm) Diameter POBA 1 1 4.00 4 4 LW(pm) Height POBA 1 1 26.00 26 26 LW(pm) Diameter POTR1 3 l 8.00 8 8 LW(pm) Height POTR1 3 1 6.00 . . . 6 6 LW(pm) Diameter THOC 1 7 5.71 2.90 1.70 0.64 4 9 LW(pm) Diameter THOC 2 3 6.67 6.33 2.52 1.45 4 9 LW(pm) Diameter THOC 3 l 5.00 . . . 5 5 LW(pm) Height THOC l 7 26.71 46.24 6.80 2.57 19 38 LW(pm) Height THOC 2 3 9.67 6.33 2.52 1.45 7 12 LW(pm) Height THOC 3 l 8.00 . . . 8 8 LW(vp) Diameter PIMA l 10 5.50 1.83 1.35 0.43 4 8 LW(vp) Diameter PIMA 2 1 5.00 5 5 LW(vp) Diameter PIMA 4 4.00 . . . 4 4 LW(vp) Height PIMA 1 10 31.10 132.54 11.51 3.64 9 45 LW(vp) Height PIMA 2 1 20.00 20 20 LW(vp) Height PIMA 4 1 21 .00 21 21 128 Appendix B Table 11 (Cont). ELU MM(m) MM(m) MM(m) MM(m) MM(m) MM(m) MM(m) MM(m) MM(m) Won) MM(m) MM(m) MM(m) MM(m) MM(P) MM(P) MM(P) MM(p) MM(p) MM(p) MM(p) MM(p) MM(p) MM(P) MM(P) MM(P) MW(m) MW(m) MW(m) MW(m) MW(m) MW(m) MW(m) MW(m) MW(m) MW(m) MW(P) Diameter/ Species Decay N Mean Var Std Std Min Max Height Dev Err Diameter ABBA 1 1 7.00 7 7 Height ABBA 1 1 46.00 46 Diameter ACRU1 4 l 1 1.00 1 l 1 1 Height ACRU1 4 1 24.00 24 24 Diameter BEPA 1 1 4.00 4 4 Diameter BEPA 2 1 4.00 4 4 Height BEPA 1 1 27.00 27 27 Height BEPA 2 1 32.00 . . . 32 32 Diameter POBA 1 7 4.71 3.57 1.89 0.71 4 9 Height POBA l 7 26.29 308.90 17.58 6.64 3 46 Diameter POTR1 1 18 5.94 2.17 1.47 0.35 4 9 Diameter POTR1 2 4 6.50 13.67 3.70 1.85 4 12 Height POTR1 l 18 39.94 229.82 15.16 3.57 6 70 Height POTR1 2 4 32.00 370.67 19.25 9.63 6 52 Diameter ABBA 1 10 5.10 1.43 1.20 0.38 4 7 Diameter ABBA 2 3 6.00 7 .00 2.65 1.53 4 9 Height ABBA 1 10 31.80 28.62 5.35 1.69 24 40 Height ABBA 2 3 l 1.67 96.33 9.81 5.67 6 23 Diameter BEPA 2 2 6.00 2.00 l .41 1 .00 5 7 Height BEPA 2 2 32.50 12.50 3.54 2.50 30 35 Diameter PIMA 1 1 4.00 4 4 Height PIMA 1 l 30.00 . . . 30 30 Diameter POTR1 1 3 5.67 2.33 1.53 0.88 4 7 Diameter POTR1 2 2 5.50 0.50 0.71 0.50 5 6 Height POTR1 1 3 13.33 42.33 6.51 3.76 7 20 Height POTR1 2 2 12.00 72.00 8.49 6.00 6 18 Diameter BEPA 2 1 9.00 9 9 Height BEPA 2 1 20.00 . . . 20 20 Diameter POBA 1 2 4.50 0.50 0.71 0.50 4 5 Height POBA 1 2 22.50 12.50 3.54 2.50 20 25 Diameter POTR1 1 1 5.00 . . . 5 5 Diameter POTR1 3 1 1 4.64 2.25 1.50 0.45 4 9 Diameter POTR1 UNK 1 5.00 5 5 Height POTR1 1 1 25.00 . . . 25 25 Height POTR1 3 11 23.82 187.56 13.70 4.13 9 52 Height POTR1 UNK 1 51.00 . . . 51 51 Diameter LALA 1 4 5.00 0.67 0.82 0.41 4 6 129 Appendix B Table 11 (Cont). ELU Diameter/ Species Decay N Mean Var Std Std Min Max Height Dev Err _ MW(p) Diameter LALA 2 2 6.00 2.00 1.41 1.00 5 MW (p) Diameter LALA 3 1 5.00 . . . 5 5 MW(p) Height LALA 1 4 38.25 106.92 10.34 5.17 27 48 MW(p) Height LALA 2 2 15.00 18.00 4.24 3.00 12 18 MW(p) Height LALA 3 1 10.00 . . . 10 10 MW(p) Diameter PIMA 1 4 5.25 3.58 1 .89 0.95 4 8 MW(p) Height PIMA 1 4 31.50 267.00 16.34 8.17 7 40 ‘adot (.) indicates either that data was nonexistent, or was unable to be calculated. 130 Appendix B Table 12. Snag diameter (in) and height (ft) means, variances, standard deviations, standard errors, minimums and maximums by unit number, decay and species'. Unit no. Decay Species Diameter/ N Mean Var Std Dev Std Min Max Height Err 1 UNK POTR1 Diameter 1 5.00 5 5 1 UNK POTR1 Height 1 51.00 . . . 51 51 1 3 POTR1 Diameter 11 4.64 2.25 1.50 0.45 4 9 1 3 POTR1 Height 11 23.82 187.56 13.70 4.13 9 52 2 1 POBA Diameter 2 4.50 0.50 0.71 0.50 4 5 2 1 POBA Height 2 22.50 12.50 3.54 2.50 20 25 2 1 POTR1 Diameter 1 5.00 5 5 2 l POTR1 Height 1 25.00 25 25 2 2 BEPA Diameter 1 9.00 9 9 2 2 BEPA Height 1 20.00 . . . 20 20 3 1 POTR1 Diameter 5 6.20 3.20 1.79 0.80 5 9 3 1 POTR1 Height 5 31.80 193.70 13.92 6.22 9 45 3 2 POTR1 Diameter 1 5.00 5 5 3 2 POTR1 Height 1 7.00 . . . 7 7 4 1 POTR1 Diameter 3 5.00 1.00 1.00 0.58 4 6 4 1 POTR1 Height 3 47.00 48.00 6.93 4.00 43 55 4 2 POTR1 Diameter 3 5.67 1.33 1.15 0.67 5 7 4 2 POTR1 Height 3 25.33 41.33 6.43 3.71 18 30 4 3 POTR1 Diameter 1 7.00 7 7 4 3 POTR1 Height 1 7.00 7 7 6 1 LALA Diameter 1 5.00 5 5 6 1 LALA Height 1 7.00 . . . 7 7 6 2 LALA Diameter 3 4.00 0.00 0.00 0.00 4 4 6 2 LALA Height 3 23.00 133.00 11.53 6.66 10 32 7 1 LALA Diameter 4 5.00 0.67 0.82 0.41 4 6 7 1 LALA Height 4 38.25 106.92 10.34 5.17 27 48 7 1 PIMA Diameter 4 5.25 3.58 1.89 0.95 4 8 7 1 PIMA Height 4 31.50 267.00 16.34 8.17 7 40 7 2 LALA Diameter 2 6.00 2.00 1.41 1.00 5 7 7 2 LALA Height 2 15.00 18.00 4.24 3.00 12 18 7 3 LALA Diameter 1 5.00 5 5 7 3 LALA Height 1 10.00 . . . 10 10 8 1 LALA Diameter 3 4.33 0.33 0.58 0.33 4 5 8 1 LALA Height 3 29.67 2.33 1.53 0.88 28 31 131 Appendix B Table 12 (Cont). Unit no. Decay Species 8 8 11 ll 11 11 13 13 13 13 13 13 13 13 13 13 13 13 16 16 16 16 16 16 16 16 17 l7 l7 17 17 17 18 18 18 18 18 wwwwNNMMNNNN—b—NNNNNNt—v—v—v—t—t—v-Iv—Ht—NN LALA LALA POBA POBA POTR1 POTR1 POBA POBA POTR1 POTR1 FRNI FRNI POTR1 POTR1 QUPR QUPR BEPA BEPA BEPA BEPA POTR1 POTR1 POTR1 POTR1 FRNI F RNl FRNI FRN I ULRU ULRU FRNI FRNI TIAM POTR1 Diameter/ N Mean Var Std Dev Std Min Max Eight Err Diameter 1 5.00 5 5 Height 1 23.00 . . . 23 23 Diameter 7 4.71 3.57 1.89 0.71 4 9 Height 7 26.29 308.90 17.58 6.64 3 46 Diameter 9 5.89 1.1 1 1.05 0.35 5 8 Height 9 36.56 223.28 14.94 4.98 6 53 Diameter 2 6.00 0.00 0.00 0.00 6 6 Height 2 7.00 0.00 0.00 0.00 7 7 Diameter 5 6.40 2.80 1 .67 0.75 4 8 Height 5 33.20 8.70 2.95 1.32 30 36 Diameter 1 6.00 6 6 Height 1 33.00 . . . 33 33 Diameter 2 5.00 0.00 0.00 0.00 5 5 Height 2 33.00 0.00 0.00 0.00 33 33 Diameter 1 5.00 5 5 Height 1 42.00 42 42 Diameter 1 4.00 4 4 Height 1 31.00 31 31 Diameter 1 4.00 4 4 Height 1 27.00 27 27 Diameter 1 4.00 4 4 Height 1 32.00 . . . 32 32 Diameter 4 6.50 13.67 3.70 1.85 4 12 Height 4 32.00 370.67 19.25 9.63 6 52 Diameter 6 6.67 3.87 1.97 0.80 4 9 Height 6 41.50 369.50 19.22 7.85 20 70 Diameter 3 13.00 13.00 3.61 2.08 10 17 Height 3 17.33 12.33 3.51 2.03 14 21 Diameter 1 10.00 10 10 Height 1 17.00 17 17 Diameter 1 24.00 24 24 Height 1 12.00 12 12 Diameter 1 12.00 12 12 Height 1 11.00 11 11 Diameter 1 27.00 27 27 Height 1 61.00 61 61 Diameter 1 6.00 6 6 132 Appendix B Table 12 (Cont). Unit no. Decay Species 18 18 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 l9 19 19 19 20 20 20 20 20 20 20 20 21 21 21 21 21 21 21 21 2 3 3 5 5 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1 l 1 1 2 2 3 3 1 1 l 1 1 1 2 2 Diameter/ N Mean Var Std Dev Std Min Max __ Height Err POTR1 Height 1 28.00 28 28 FRNI Diameter 1 6.00 6 6 FRNI Height 1 19.00 l9 l9 FRNI Diameter 1 15.00 15 15 FRNI Height 1 32.00 32 32 F RNI Diameter 1 7.00 7 7 FRNI Height 1 39.00 39 39 PIMA Diameter 1 4.00 4 4 PIMA Height 1 30.00 . . . 30 30 POBA Diameter 2 16.50 0.50 0.71 0.50 16 17 POBA Height 2 23.00 392.00 19.80 14.00 9 37 POTR1 Diameter 1 16.00 16 16 POTRl Height 1 41.00 . . . 41 41 ABBA Diameter 2 6.50 4.50 2.12 1.50 5 8 ABBA Height 2 32.50 612.50 24.75 17.50 15 50 FRNI Diameter 1 5.00 5 5 FRNI Height 1 26.00 26 26 PIMA Diameter 1 6.00 6 6 PIMA Height 1 6.00 6 6 POTR1 Diameter 1 5.00 5 5 POTR1 Height 1 9.00 9 9 FRNI Diameter 1 4.00 4 4 FRNI Height 1 20.00 . . . 20 20 POBA Diameter 5 12.40 8.30 2.88 1.29 8 15 POBA Height 5 41.60 149.80 12.24 5.47 33 63 POBA Diameter 2 8.50 12.50 3.54 2.50 6 11 POBA Height 2 18.00 50.00 7.07 5.00 13 23 ABBA Diameter 1 9.00 9 9 ABBA Height 1 11.00 . . . 11 11 ABBA Diameter 10 5.10 1.43 1.20 0.38 4 7 ABBA Height 10 31.80 28.62 5.35 1.69 24 40 PIMA Diameter 1 4.00 4 4 PIMA Height 1 30.00 . . . 30 30 POTR1 Diameter 3 5.67 2.33 1.53 0.88 4 7 POTR1 Height 3 13.33 42.33 6.51 3.76 7 20 ABBA Diameter 3 6.00 7.00 2.65 1.53 4 9 ABBA Height 3 11.67 96.33 9.81 5.67 6 23 133 Appendix B Table 12 (Cont). Unit no. Decay Species Diameter/ N Mean Var Std Dev Std Min Max 4 Height Err _ 21 2 BEPA Diameter 2 6.00 2.00 1.41 1.00 5 7 21 2 BEPA Height 2 32.50 12.50 3.54 2.50 30 35 21 2 POTR1 Diameter 2 5.50 0.50 0.71 0.50 5 6 21 2 POTR1 Height 2 12.00 72.00 8.49 6.00 6 18 22 1 ABBA Diameter 2 5.00 2.00 1.41 1.00 4 6 22 1 ABBA Height 2 35.00 128.00 11.31 8.00 27 43 22 1 POTR1 Diameter 6 8.33 5.47 2.34 0.95 5 11 22 1 POTR1 Height 6 26.67 615.47 24.81 10.13 8 69 22 2 ABBA Diameter 1 4.00 4 4 22 2 ABBA Height 1 26.00 26 26 22 2 POBA Diameter 1 6.00 6 6 22 2 POBA Height 1 22.00 . . . 22 22 22 2 POTR1 Diameter 9 5.56 0.78 0.88 0.29 4 7 22 2 POTR1 Height 9 18.11 175.36 13.24 4.41 6 50 22 3 POTR1 Diameter 2 5.50 0.50 0.71 0.50 5 6 22 3 POTR1 Height 2 8.00 8.00 2.83 2.00 6 10 23 1 ABBA Diameter 3 6.00 3.00 1.73 1.00 5 8 23 1 ABBA Height 3 27.33 320.33 17.90 10.33 17 48 23 l POTR1 Diameter 4 9.25 12.25 3.50 1.75 5 13 23 1 POTR1 Height 4 20.75 685.58 26.18 13.09 7 60 23 2 ABBA Diameter 1 4.00 4 4 23 2 ABBA Height 1 23.00 . . . 23 23 23 2 BEPA Diameter 3 16.00 3.00 1.73 1.00 15 18 23 2 BEPA Height 3 30.67 10.33 3.21 1.86 27 33 24 1 ABBA Diameter 6 6.83 4.57 2.14 0.87 4 10 24 1 ABBA Height 6 50.00 165.60 12.87 5.25 33 65 24 1 POTR1 Diameter 1 4.00 4 4 24 1 POTR1 Height 1 60.00 60 60 24 2 ABBA Diameter 1 4.00 4 4 24 2 ABBA Height 1 6.00 6 6 24 2 POTR1 Diameter 1 8.00 8 8 24 2 POTR1 Height 1 45.00 45 45 24 4 BEPA Diameter 1 4.00 4 4 24 4 BEPA Height 1 21.00 . . . 21 21 28 1 PIMA Diameter 3 5.67 4.33 2.08 1.20 4 8 28 1 PIMA Height 3 20.00 181.00 13.45 7.77 9 35 30 l PIMA Diameter 5 5.20 1.70 1.30 0.58 4 7 134 Appendix B Table 12 (Cont). Unit no. Decay Species Diameter/ N Mean Var Std Dev Std Min Max # Height k Err 30 1 PIMA Height 5 35.20 45.70 6.76 3.02 24 42 3O 2 PIMA Diameter 1 5.00 5 5 30 2 PIMA Height 1 20.00 20 20 30 4 PIMA Diameter 1 4.00 4 4 30 4 PIMA Height 1 21.00 . . . 21 21 31 1 PIMA Diameter 2 6.00 0.00 0.00 0.00 6 6 31 1 PIMA Height 2 37.50 112.50 10.61 7.50 30 45 34 l POTR1 Diameter 9 5.33 2.00 1.41 0.47 4 8 34 1 POTR1 Height 9 42.56 204.03 14.28 4.76 15 56 34 2 POTR1 Diameter 2 5.00 2.00 1.41 1.00 4 6 34 2 POTR1 Height 2 33.50 612.50 24.75 17.50 16 51 34 3 POTR1 Diameter 2 5.50 4.50 2.12 1.50 4 7 34 3 POTR1 Height 2 25.50 60.50 7.78 5.50 20 31 38 1 ABBA Diameter 1 7.00 7 7 38 1 ABBA Height 1 46.00 . . . 46 46 38 l POTR1 Diameter 3 4.67 0.33 0.58 0.33 4 5 38 1 POTR1 Height 3 47.00 3.00 1.73 1.00 46 49 38 4 ACRU1 Diameter 1 11.00 11 11 38 4 ACRU1 Height 1 24.00 . . . 24 24 40 1 BEPA Diameter 2 4.00 0.00 0.00 0.00 4 4 40 1 BEPA Height 2 31.00 512.00 22.63 16.00 15 47 40 1 POBA Diameter 6 4.67 0.67 0.82 0.33 4 6 40 1 POBA Height 6 38.67 183.07 13.53 5.52 16 52 40 1 POTR1 Diameter 7 5.71 1.90 1.38 0.52 4 8 40 1 POTR1 Height 7 47.57 330.29 18.17 6.87 16 70 40 2 BEPA Diameter 1 4.00 4 4 40 2 BEPA Height 1 8.00 . . . 8 8 40 2 POTR1 Diameter 4 4.50 0.33 0.58 0.29 4 5 40 2 POTR1 Height 4 19.25 154.25 12.42 6.21 6 36 45 1 ABBA Diameter 3 5.00 1.00 1.00 0.58 4 6 45 1 ABBA Height 3 25.33 280.33 16.74 9.67 6 35 45 1 BEPA Diameter 4 6.50 3.00 1.73 0.87 5 9 45 1 BEPA Height 4 19.75 22.25 4.72 2.36 13 23 45 1 POBA Diameter 1 4.00 4 4 45 1 POBA Height 1 26.00 . . . 26 26 45 1 THOC Diameter 2 6.00 0.00 0.00 0.00 6 6 45 1 THOC Height 2 29.00 2.00 1.41 1.00 28 30 135 Appendix B Table 12 (Cont). Unit no. Decay Species Diameter/ N Mean Var Std Dev Std Min Max Height Err 45 2 BEPA Diameter 1 7.00 7 7— 45 2 BEPA Height 1 13.00 . . . 13 13 45 3 LALA Diameter 2 5.50 0.50 0.71 0.50 5 6 45 3 LALA Height 2 15.00 8.00 2.83 2.00 13 17 45 3 POTR1 Diameter 1 8.00 8 8 45 3 POTR1 Height 1 6.00 6 6 46 1 ABBA Diameter 1 5.00 5 5 46 1 ABBA Height 1 18.00 . . . 18 18 46 2 ABBA Diameter 3 7.33 1.33 1.15 0.67 6 8 46 2 ABBA Height 3 15.67 9.33 3.06 1.76 13 19 46 2 THOC Diameter 2 6.50 12.50 3.54 2.50 4 9 46 2 THOC Height 2 9.50 12.50 3.54 2.50 7 12 46 3 THOC Diameter 1 5.00 5 5 46 3 THOC Height 1 8.00 8 8 46 5 LALA Diameter 1 11.00 11 11 46 5 LALA Height 1 26.00 . . . 26 26 47 1 ABBA Diameter 2 8.00 2.00 1.41 1.00 7 9 47 1 ABBA Height 2 7.50 0.50 0.71 0.50 7 8 47 1 THOC Diameter 5 5.60 4.30 2.07 0.93 4 9 47 1 THOC Height 5 25.80 65.20 8.07 3.61 19 38 47 2 THOC Diameter 1 7.00 7 7 47 2 THOC Height 1 10.00 . . . 10 10 48 1 ABBA Diameter 6 5.00 0.40 0.63 0.26 4 6 48 1 ABBA Height 6 24.00 78.80 8.88 3.62 8 33 48 2 ABBA Diameter 1 4.00 4 4 48 2 ABBA Height 1 15.00 15 15 48 2 PIMA Diameter 1 8.00 8 8 48 2 PIMA Height 1 8.00 8 8 'a dot (.) indicates either that data was nonexistent, or was unable to be calculated. 136 Appendix B Table 13. Snag stem density (stems/plot) by ELU and decay“. ELU Decay Stem density ED(p) 1 “771571 ED(p) 2 13 EM(p) 1 6.5652 EM(p) 2 5.4444 EM(p) 3 6 EW(m) 1 1 1.4545 EW(m) 2 6.5714 EW(m) 3 9 LM(m) 1 5.43 75 LM(m) 2 4.6364 LM(m) 3 5.5 LW(m) 2 1 1.25 LW(m) 3 13.3333 LW(m) 5 15 LW(m) . 19.5 LW(p) l 4.5 LW(p) 2 4.25 LW(pm) 1 5.6667 LW(pm) 2 6.7778 LW(pm) 3 6 LW(pm) 5 1 1 LW(vp) 1 5.5 LW(vp) 2 5 LW(vp) 4 4 MM(m) 1 5.5926 MM(m) 2 6 MM(m) 4 1 1 MM(p) 1 5.1429 MM(p) 2 5.8571 MW(m) 1 4.6667 MW(m) 2 9 MW(m) 3 4.6364 MW(m) . 5 MW(p) 1 5.125 MW(p) 2 6 MW(p) 3 5 'a dot (.) indicates either that data was nonexistent, or was unable to be calculated. 137 Appendix B Table 14. Snags stem density (stems/plot) by ELU, decay and species“. ELU Decay Species Stem density ELU Decay Species Stem density ‘E—DYp) 1 ABBA 6 LW(m) 3 ULRU 24 ED(p) 1 POTR1 9.25 LW(m) 5 FRNI 15 ED(p) 2 ABBA 4 LW(m) F RNI 12 ED(p) 2 BEPA 16 LW(m) . TIAM 27 EM(p) 1 ABBA 6.375 LW(p) l LALA 4.5 EM(p) 1 POTR1 6.6667 LW(p) 2 LALA 4.25 EM(p) 2 ABBA 4 LW(pm) 1 ABBA 5.5 EM(p) 2 BEPA 4 LW(pm) 1 BEPA 6.5 EM(p) 2 POBA 6 LW(pm) 1 POBA 4 EM(p) 2 POTR1 5.7143 LW(pm) 1 THOC 5.7143 EM(p) 3 POTR1 6 LW(pm) 2 ABBA 6.5 EW(m) 1 FRNI 5.5 LW(pm) 2 BEPA 7 EW(m) 1 PIMA 4 LW(pm) 2 PIMA 8 EW(m) 1 POBA 13.5714 LW(pm) 2 THOC 6.6667 EW(m) 1 POTR1 16 LW(pm) 3 LALA 5.5 EW(m) 2 ABBA 6.5 LW(pm) 3 POTR1 8 EW(m) 2 FRNI 5 LW(pm) 3 THOC EW(m) 2 PIMA 6 LW(pm) 5 LALA 1 1 EW(m) 2 POBA 8.5 LW(vp) 1 PIMA 5.5 EW(m) 2 POTR1 5 LW(vp) 2 PIMA 5 EW(m) 3 ABBA 9 LW(vp) 4 PIMA 4 LM(m) 1 BEPA 4 MM(m) 1 ABBA 7 LM(m) 1 POBA 5 MM(m) 1 BEPA 4 LM(m) l POTR1 5.7143 MM(m) 1 POBA 4.7143 LM(m) 1 UNK 6 MM(m) l POTR1 5.9444 LM(m) 2 BEPA 4 MM(m) 2 BEPA 4 LM(m) 2 FRNI 5 MM(m) 2 POTR1 6.5 LM(m) 2 POTR1 4.7143 MM(m) 4 ACRU1 1 1 LM(m) 2 QUPR 4 MM(p) 1 ABBA 5.1 LM(m) 3 POTR1 5.5 MM(p) 1 PIMA 4 LW(m) 2 FRNI 13 MM(p) 1 POTR1 5.6667 LW(m) 2 POTR1 6 MM(p) 2 ABBA 6 LW(m) 3 FRNI 8 MM(p) 2 BEPA 6 138 Appendix B Table 14 (Cont). ELU Decay Species Stem density MM(p) 2 POTR1 5.5 MW(m) 1 POBA 4.5 MW(m) 1 POTR1 5 MW(m) 2 BEPA 9 MW(m) 3 POTR1 4.6364 MW (m) POTR1 5 MW(p) l LALA 5 MW(p) 1 PIMA 5.25 MW(p) 2 LALA 6 MW(p) 3 LALA 5 '5 dot (.) indicates either that data was nonexistent, or was unable to be calculated. 139 Appendix B Table 15. Snag stem density (stems/plot) by unit number and decay“. Unit no. Decay Stem density Unit no. Decay Stem density 1 . 0.33333 21 1 4.66667_’ 1 3 3.66667 21 2 2.33333 2 1 1 22 1 2.66667 2 2 0.33333 22 2 3.66667 3 1 1.66667 22 3 0.66667 3 2 0.33333 23 1 2.33333 4 1 1 23 2 1.33333 4 2 1 24 1 2.33333 4 3 0.33333 24 2 1 5 . . 28 1 1 6 1 0.33333 30 1 1.66667 6 2 1 30 2 0.33333 7 1 2.66667 30 4 0.33333 7 2 0.66667 31 1 0.66667 7 3 0.33333 32 . . 8 1 1 34 1 3 8 2 0.33333 34 2 0.66667 9 . . 34 3 0.66667 11 1 5.33333 38 1 1.33333 13 1 2.66667 38 4 0.33333 13 2 1.33333 39 . . 16 1 2.33333 40 1 5 16 2 1.66667 40 2 1.66667 17 2 1 45 1 3.33333 17 3 0.66667 45 2 0.33333 18 . 0.66667 45 3 1 18 2 0.33333 46 1 0.33333 18 3 0.33333 46 2 1.66667 18 5 0.33333 46 3 0.33333 19 1 1.66667 46 5 0.33333 19 2 1.66667 47 1 2.33333 20 1 2 47 2 0.33333 20 2 0.66667 48 1 2 20 3 0.33333 48 2 0.66667 'a dot (.) indicates either that data was nonexistent, or was unable to be calculated. 140 Appendix B Table 16. Snag stem density by unit number, decay, and species“. Unit no. Decay Species Stem density Unit no. Decay Species Stem density 1 \OOOOOQQQQGO‘UI-b-h-hwwNNNt-i 3 w M fl N 9" N 9" H o Nu—anO—au—NH- wwNNN—‘HNNNHI—‘HI—OH- 90TH? POTR1 POBA POTR1 BEPA POTR1 POTR1 POTR1 POTR1 POTR1 LALA LALA LALA PIMA LALA LALA LALA LALA POBA POTR1 POBA POTR1 FRNI POTR1 QUPR BEPA POTR1 BEPA POTR1 FRNI FRNI ULRU :Laméf 0.33333 0.66667 0.33333 0.33333 1.66667 0.33333 1 1 0.33333 0.33333 1 1.33333 1.33333 0.66667 0.33333 1 0.33333 2.33333 3 0.66667 1.66667 0.33333 0.66667 0.33333 0.33333 0.33333 2 0.33333 1.33333 1 0.33333 0.33333 18 18 18 18 18 19 19 19 19 19 19 19 19 20 20 20 20 21 21 21 21 21 21 22 22 22 22 22 22 23 23 23 23 24 24 2 90781 FRNI FRNI FRNI TLMM FRNI Puma POBA POTR1 ABBA FRNI PnuA POTR1 FRNI POBA POBA ABBA ABBA Puma POTR1 ABBA BEPA POTR1 ABBA POTR1 ABBA POBA POTR1 POTR1 ABBA POTR1 ABBA BEPA ABBA POTR1 0.33333 0.33333 0.33333 0.33333 0.33333 0.33333 0.33333 0.66667 0.33333 0.66667 0.33333 0.33333 0.33333 0.33333 1.66667 0.66667 0.33333 3.33333 0.33333 1 1 0.66667 0.66667 0.66667 2 0.33333 0.33333 3 0.66667 1 1.33333 0.33333 1 2 0.33333 141 Appendix B Table 16 (Cont). Unit no. Decay Species Stem density Unit no. Decay Species Stem density 24 24 24 28 30 30 30 31 32 34 34 34 38 38 38 39 40 40 40 40 40 45 45 33333333333333 2 ##Nfl—‘NN Audi—thy—n. N—‘HMMNN—‘WWNt—I—u—au—nNNu—nu—au—o fl ABBA BEPA POTR1 PIMA PIMA PIMA PIMA PIMA POTR1 POTR1 POTR1 ABBA POTR1 ACRU 1 BEPA POBA POTR1 BEPA POTR1 ABBA BEPA POBA THOC BEPA LALA POTR1 ABBA ABBA THOC THOC LALA ABBA THOC THOC ABBA 0.33333 0.33333 0.33333 1 1.66667 0.33333 0.33333 0.66667 3 0.66667 0.66667 0.33333 1 0.33333 0.66667 2 2.33333 0.33333 1.33333 1 1.33333 0.33333 0.66667 0.33333 0.66667 0.33333 0.33333 1 0.66667 0.33333 0.33333 0.66667 1.66667 0.33333 2 48 48 2 2 ABBA PIMA 0.33333 0.33333 '5 dot (.) indicates either that data was nonexistent, or was unable to be calculated. 142 Appendix B Table 17. Snag area by ELU and decay‘. ELU Decay Area ELU Decay Area B‘mp) 1 129.067 MM(m) 1 16.333 ED(p) 2 206.821 MM(m) 2 4.034 EM(p) 1 17.95 MM(m) 4 2.16 EM(p) 2 9.098 MM(p) 1 102.102 EM(p) 3 1.8 MM(p) 2 67.282 EW(m) 1 110.218 MW(m) 1 4.32 EW(m) 2 21.729 MW(m) 2 5.301 EW(m) 3 5.301 MW(m) 3 16.952 LM(m) 1 14.053 MW(m) . 1.636 LM(m) 2 3.38 MW(p) 1 14.595 LM(m) 3 0.912 MW(p) 2 4.843 LW(m) 2 37.241 MW(p) 3 1.636 LW(m) 3 46.6 LW(m) 5 14.726 LW(m) . 57.138 LW(p) 1 5.367 LW(p) 2 4.778 LW(pm) 1 13.483 LW(pm) 2 7.183 LW(pm) 3 2.454 LW(pm) 5 1.98 LW(vp) 1 5.22 LW(vp) 2 0.409 LW(vp) 4 0.262 'a dot (.) indicates either that data was nonexistent, or was unable to be calculated. 143 Appendix B Table 18. Snag area by ELU, decay and species“. BLU Decay Species Area ELU Decay Species Area ED(p) 1 ABBA 29.845 LW(m) FRNI 9.425 ED(p) 1 POTR1 99.222 LW(m) . TIAM 47.713 ED(p) 2 ABBA 4.189 LW(p) 1 LALA 5.367 ED(p) 2 BEPA 202.633 LW(p) 2 LALA 4.778 EM(p) 1 ABBA 5.809 LW(pm) 1 ABBA 6.283 EM(p) 1 POTR1 12.141 LW(pm) 1 BEPA 2.913 EM(p) 2 ABBA 0.524 LW(pm) 1 POBA 0.262 EM(p) 2 BEPA 0.262 LW(pm) 1 THOC 4.025 EM(p) 2 POBA 0.589 LW(pm) 2 ABBA 2.945 EM(p) 2 POTR1 7.7231 LW(pm) 2 BEPA 0.802 EM(p) 3 POTR1 1 .7999 LW(pm) 2 PIMA 1 .0472 EW(m) 1 FRNI 4.254 LW(pm) 2 THOC 2.3889 EW(m) 1 PIMA 1 .047 LW(pm) 3 LALA 0.9981 EW(m) 1 POBA 88. 161 LW(pm) 3 POTR1 1 .0472 EW(m) 1 POTR1 16.755 LW(pm) 3 THOC 0.4091 EW(m) 2 ABBA 5.825 LW(pm) 5 LALA 1 .9799 EW(m) 2 FRNI 1 .636 LW(vp) 1 PIMA 5.22 EW(m) 2 PIMA 2.3562 LW(vp) 2 PIMA 0.4091 EW(m) 2 POBA 10.2756 LW(vp) 4 PIMA 0.2618 EW(m) 2 POTR1 1 .6362 MM(m) 1 ABBA 0.875 EW(m) 3 ABBA 5.3014 MM(m) 1 BEPA 0.286 LM(m) 1 BEPA 0.449 MM(m) 1 POBA 3.159 LM(m) 1 POBA 2.889 MM(m) 1 POTR1 12.013 LM(m) 1 POTR1 10.21 MM(m) 2 BEPA 0.286 LM(m) l UNK 0.505 MM(m) 2 POTR1 3.7485 LM(m) 2 BEPA 0.224 MM(m) 4 ACRU1 2.1598 LM(m) 2 FRN I 0.701 MM(p) 1 ABBA 71 .471 LM(m) 2 POTR1 2.23 MM(p) 1 PIMA 4.189 LM(m) 2 QUPR 0.2244 MM(p) 1 POTR1 26.442 LM(m) 3 POTR1 0.9116 MM(p) 2 ABBA 31.94 LW(m) 2 FRNI 34.885 MM(p) 2 BEPA 19.373 LW(m) 2 POTR1 2.3 562 MM(p) 2 POTR1 1 5.9698 LW(m) 3 FRNI 8.9012 MW(m) l POBA 2.683 LW(m) 3 ULRU 37.6991 MW(m) 1 POTR1 1.636 LW(m) 5 FRNI 14.7262 MW(m) 2 BEPA 5.301 144 Appendix B Table 18 (Cont). ELU Decay Species Area MW(m) 3 POTR1 16.9515 MW(m) . POTR1 1.636 MW(p) 1 LALA 6.676 MW(p) 1 PIMA 7.919 MW(p) 2 LALA 4.843 MW(p) 3 LALA 1.6362 ‘3 dot (.) indicates either that data was nonexistent, or was unable to be calculated. 145 Appendix B Table 19. Snag area by unit number and decay“. Unit no. Decay Area Unit no. Decay Area 1 3 2.11894 21 1 3.19068 1 . 0.20453 21 2 2.10258 2 1 0.53996 22 1 4.05789 2 2 0.66268 22 2 2.74889 3 1 1.67715 22 3 0.49905 3 2 0.20453 23 1 4.03335 4 1 0.62995 23 2 6.46317 4 2 0.80994 24 1 2.60981 4 3 0.40088 24 2 0.7854 5 . . 28 1 0.85903 6 1 0.20453 30 1 1.16173 6 2 0.3927 30 2 0.20453 7 1 1.82441 30 4 0.1309 7 2 0.60541 31 1 0.58905 7 3 0.20453 32 . . 8 1 0.46633 34 1 2.22529 8 2 0.20453 34 2 0.42542 9 . . 34 3 0.53178 1 l 1 4.07425 38 1 0.94084 13 1 2.65072 38 4 0.98993 13 2 0.74449 39 . . 16 1 2.47073 40 1 3.32158 16 2 1.84896 40 2 0.80176 17 2 4.3606 45 1 2.80616 17 3 5.53051 45 2 0.40088 18 2 0.29452 45 3 1.02265 18 3 0.29452 46 1 0.20453 18 5 1.84078 46 2 2.1353 18 . 7.14221 46 3 0.20453 19 1 7.08494 46 5 0.98993 19 2 1.43172 47 1 2.48709 20 1 6.69225 47 2 0.40088 20 2 1.28445 48 1 1.24355 20 3 0.66268 48 2 0.6545 1|Bdot (.) indicates either that data was nonexistent, or was unable to be calculated. 146 Appendix B Table 20. Snag area by unit number, decay and species'. Unit no. Decay Species Area Unit no. Decay Species Area 1 3 POTR1 2.11894 22 1 ABBA 0.42542 1 . POTR1 0.20453 22 1 POTR1 3.63247 2 1 POBA 0.33543 22 2 ABBA 0.1309 2 1 POTR1 0.20453 22 2 POBA 0.29452 2 2 BEPA 0.66268 22 2 POTR1 2.32347 3 1 POTR1 1.67715 22 3 POTR1 0.49905 3 2 POTR1 0.20453 23 1 ABBA 0.93266 4 1 POTR1 0.62995 23 1 POTR1 3.10069 4 2 POTR1 0.80994 23 2 ABBA 0.1309 4 3 POTR1 0.40088 23 2 BEPA 6.33227 5 . . 24 1 ABBA 2.47891 6 1 LALA 0.20453 24 1 POTR1 0.1309 6 2 LALA 0.3927 24 2 ABBA 0.1309 7 1 LALA 0.83449 24 2 BEPA 0.1309 7 l PIMA 0.98993 24 2 POTR1 0.5236 7 2 LALA 0.60541 28 1 PIMA 0.85903 7 3 LALA 0.20453 30 1 PIMA 1.16173 8 1 LALA 0.46633 30 2 PIMA 0.20453 8 2 LALA 0.20453 30 4 PIMA 0.1309 9 . . 31 1 PIMA 0.58905 11 1 POBA 1.44808 32 . . 11 1 POTR1 2.62617 34 1 'POTRl 2.22529 13 1 POBA 0.58905 34 2 POTR1 0.42542 13 1 POTR1 1.76715 34 3 POTR1 0.53178 13 1 UNK 0.29452 38 1 ABBA 0.40088 13 2 FRNI 0.40906 38 1 POTR1 0.53996 13 2 POTR1 0.20453 38 4 ACRU1 0.98993 13 2 QUPR 0.1309 39 . . 16 1 BEPA 0.1309 40 1 BEPA 0.2618 16 1 POTR1 2.33983 40 1 POBA 1.09628 16 2 BEPA 0.1309 40 1 POTR1 1.9635 16 2 POTR1 1.71806 40 2 BEPA 0.1309 17 2 FRNI 4.3606 40 2 POTR1 0.67086 17 3 FRNI 0.81812 45 1 ABBA 0.62995 17 3 ULRU 4.71239 45 1 BEPA 1.45626 147 Appendix B Table 20 (Cont). Unit no. Decay Species Area Unit no. Decay Species Area 18 2 POTR1 0.29452 45 1 POBA 0.1309 18 3 FRNI 0.29452 45 1 THOC 0.58905 18 5 FRNI 1 .84078 45 2 BEPA 0.40088 18 FRNI 1 . 1781 45 3 LALA 0.49905 18 . TIAM 5.96412 45 3 POTR1 0.5236 19 1 FRNI 0.40088 46 1 ABBA 0.20453 19 l PIMA 0.1309 46 2 ABBA 1.34172 19 1 POBA 4.45877 46 2 THOC 0.79358 19 1 POTR1 2.09439 46 3 THOC 0.20453 19 2 ABBA 0.72813 46 5 LALA 0.98993 19 2 FRNI 0.20453 47 1 ABBA 1.06356 19 2 PIMA 0.29452 47 1 THOC 1.42353 19 2 POTR1 0.20453 47 2 THOC 0.40088 20 1 FRNI 0.1309 48 1 ABBA 1.24355 20 1 POBA 6.56135 48 2 ABBA 0.1309 20 2 POBA 1.28445 48 2 PIMA 0.5236 20 3 ABBA 0.66268 21 1 ABBA 2.23348 21 1 PIMA 0. 1309 21 1 POTR1 0.8263 21 2 ABBA 0.998 1 1 21 2 BEPA 0.60541 21 2 POTR1 0.49905 '5 dot (.) indicates either that data was nonexistent, or was unable to be calculated. 148 Appendix B Table 21. Stump diameter (in) and height (ft) means, variances, standard deviations, standard errors, minimums and maximums by ELU'. BTU D'Tam/Hgt Age class N Mean Var Std Dev Std Err Min Max 'BTXp) Diameter 1 12 12.42 13.36 3.65 1.05 8 19 ED(p) Diameter 3 1 15.00 . . 15 15 ED(p) Height 1 12 1 .42‘ 0.81 0.90 0.26 l 4 ED(p) Height 3 1 4.00 . . . 4 4 EM(p) Diameter 1 6 8.50 17.90 4.23 1.73 6 17 EM(p) Diameter 2 6 6.00 4.00 2.00 0.82 5 10 EM(p) Diameter 3 37 8.76 18.30 4.28 0.70 4 24 EM(p) Height 1 6 3.00 2.00 1.41 0.58 1 5 EM(p) Height 2 6 1.83 1.37 _ 1.17 0.48 1 4 EM(p) Height 3 37 1.30 0.49 0.70 0.12 l 4 EW(m) Diameter 1 5 7.60 8.30 2.88 1.29 4 10 EW(m) Diameter 2 12 8.75 24.57 4.96 1.43 4 21 EW(m) Diameter 3 11 11.27 19.42 4.41 1.33 5 18 EW(m) Height 1 5 2.20 1.20 1.10 0.49 1 4 EW(m) Height 2 12 1.25 0.39 0.62 0.18 1 3 EW(m) Height 3 l 1 1.55 0.87 0.93 0.28 1 4 LM(m) Diameter 1 6 5.67 0.67 0.82 0.33 5 7 LM(m) Diameter 2 17 8.41 1 1.88 3.45 0.84 4 14 LM(m) Diameter 3 43 10.47 14.73 3.84 0.59 4 21 LM(m) Height 1 6 2.33 2.67 1 .63 0.67 1 5 LM(m) Height 2 17 1.65 0.49 0.70 0.17 1 3 LM(m) Height 3 43 1.74 0.91 0.95 0.15 1 5 LW(m) Diameter 1 1 10.00 . . . 10 10 LW(m) Diameter 2 3 12.33 44.33 6.66 3.84 8 20 LW(m) Diameter 3 15 11.00 39.00 6.24 1.61 4 24 LW(m) Height 1 1 4.00 . . . 4 4 LW(m) Height 2 3 1.67 0.33 0.58 0.33 1 2 LW(m) Height 3 15 2.20 1.46 1.21 0.31 1 4 LW(p) Diameter 1 1 5.00 . . . 5 5 LW(p) Diameter 2 9 5.33 1.25 1 . 12 0.37 4 7 LW(p) Height 1 1 4.00 . . . 4 4 LW(p) Height 2 9 2.44 1.28 1.13 0.38 1 5 LW(pm) Diameter 1 4 9.00 3.33 1.83 0.91 7 1 1 LW(pm) Diameter 2 21 9.19 19.76 4.45 0.97 4 19 LW(pm) Diameter 3 1 10 9.28 21.76 4.67 0.44 4 35 149 Appendix B Table 21 (Cont). ELU Diameter/ Age class N Mean Var Std Dev Std Err Min Max ¥ Height . LW(pm) Height 1 4 1.50 1.00 1.00 0.50 1 3 LW(pm) Height 2 21 2.14 0.93 0.96 0.21 l 5 LW(pm) Height 3 1 10 1.67 0.57 0.76 0.07 1 5 LW(vp) Diameter 1 8 5.00 1.71 1.31 0.46 4 8 LW(vp) Diameter 2 9 5.00 2.50 1.58 0.53 4 8 LW(vp) Diameter 3 8 6.25 8.50 2.92 1.03 4 12 LW(vp) Height 1 8 1.88 0.41 0.64 , 0.23 1 3 LW(vp) Height 2 9 1.67 1.00 1.00 0.33 1 4 LW(vp) Height 3 8 1.50 2.00 1.41 0.50 1 5 MM(m) Diameter 1 10 5.40 . 2.93 1.71 0.54 4 9 MM(m) Diameter 2 14 8.57 11.65 3.41 0.91 4 15 MM(m) Diameter 3 29 10.62 27.24 5.22 0.97 4 27 MM(m) Height 1 10 4.10 72.10 8.49 2.69 1 28 MM(m) Height 2 14 1.00 0.00 0.00 0.00 1 1 MM(m) Height 3 29 1.00 0.00 0.00 0.00 1 1 MM(p) Diameter 1 9 6.00 4.50 2.12 0.71 4 9 MM(p) Diameter 2 6 5.00 0.40 0.63 0.26 4 6 MM(p) Diameter 3 4 5.00 2.00 1.41 0.71 4 7 MM(p) Height 1 9 2.56 2.03 1.42 0.47 1 5 MM(p) Height 2 6 2.67 1.87 1.37 0.56 1 5 MM(p) Height 3 4 2.00 4.00 2.00 1.00 1 5 MW(m) Diameter 1 1 5.00 . . . 5 5 MW(m) Diameter 3 3 9.67 26.33 5 .13 2.96 4 14 MW(m) Height 1 1 2.00 . . . 2 2 MW(m) Height 3 3 3.00 4.00 2.00 1.15 1 5 MW(p) Diameter 1 1 8.00 . . . 8 8 MW(p) Diameter 2 2 5.50 0.50 0.71 0.50 5 6 MW(p) Diameter 3 10 5.60 0.93 0.97 0.31 4 7 MW(p) Height 1 1 2.00 . . . 2 2 MW(p) Height 2 2 2.00 0.00 0.00 0.00 2 2 MW(p) Height 3 10 2.30 2.01 1.42 0.45 1 5 '3 dot (.) indicates either that data was nonexistent, or was unable to be calculated. 150 Appendix B Table 22. Stump diameter (in) and height (ft) means, variances, standard deviations, standard errors, minimums and maximums by unit number and age class'. Unit no. Age class Diameter/ N Mean Var Std Dev SEEK Min Max Height 1 1 Diameter 1 5.0 5 5 1 1 Height 1 2.0 . . . 2 2 2 3 Diameter 3 9.7 26.33 5.13 2.96 4 14 2 3 Height 3 3.0 4.00 2.00 1 . 15 1 5 4 3 Diameter 1 18.0 18 18 4 3 Height 1 2.0 2 2 6 1 Diameter 1 5.0 5 5 6 1 Height 1 4.0 . . . 4 4 6 2 Diameter 9 5 .3 1.25 1 . 12 0.37 4 7 6 2 Height 9 2.4 1.28 1.13 0.38 1 5 7 1 Diameter 1 8.0 8 8 7 1 Height 1 2.0 . . . 2 2 7 2 Diameter 2 5.5 0.50 0.71 0.50 5 6 7 2 Height 2 2.0 0.00 0.00 0.00 2 2 7 3 Diameter 10 5.6 0.93 0.97 0.31 4 7 7 3 Height 10 2.3 2.01 1.42 0.45 1 5 9 1 Diameter 1 5.0 5 5 9 1 Height 1 1 .0 l l 9 2 Diameter 1 15.0 15 15 9 2 Height 1 l .0 . . . 1 1 9 3 Diameter 10 13.3 34.46 5.87 1.86 5 27 9 3 Height 10 1.0 0.00 0.00 0.00 1 1 1 1 1 Diameter 5 5.2 4.70 2.17 0.97 4 9 1 1 1 Height 5 1.0 0.00 0.00 0.00 1 1 1 1 2 Diameter 2 5.0 2.00 1.41 1.00 4 6 1 1 2 Height 2 1.0 0.00 0.00 0.00 1 l 11 3 Diameter 10 7.5 5.39 2.32 0.73 5 12 1 1 3 Height 10 1.0 0.00 0.00 0.00 1 1 13 1 Diameter 1 5.0 5 5 13 1 Height 1 3.0 3 3 l3 2 Diameter 1 9.0 9 9 13 2 Height 1 1 .0 1 1 13 3 Diameter 1 14.0 14 14 13 3 Height 1 3 .0 . . . 3 3 17 3 Diameter 4 15.5 33.00 5.74 2.87 12 24 151 Appendix B Table 22 (Cont). Unit no. Age class Diameter/ N Mean Var Std Dev Std Err Min Max 1 Height 1 17 3 Height 4 2.8 2.25 1.50 0.75 1 4 18 1 Diameter 1 10.0 10 10 18 1 Height 1 4.0 . . . 4 4 18 2 Diameter 3 12.3 44.33 6.66 3.84 8 20 18 2 Height 3 1.7 0.33 0.58 0.33 1 2 18 3 Diameter 1 1 9.4 33.65 5.80 1.75 4 24 18 3 Height 1 1 2.0 1.20 1.10 0.33 l 4 19 1 Diameter 4 7.3 10.25 3.20 1.60 4 10 19 1 Height 4 2.3 1.58 1.26 0.63 1 4 19 2 Diameter 12 8.8 24.57 4.96 1.43 4 21 19 2 Height 12 1.3 0.39 0.62 0.18 1 3 19 3 Diameter 1 1 1 1.3 19.42 4.41 1.33 5 18 19 3 Height 1 1 1.5 0.87 0.93 0.28 1 4 20 1 Diameter 1 9.0 9 9 20 1 Height 1 2.0 . . . 2 2 21 1 Diameter 9 6.0 4.50 2.12 0.71 4 9 21 1 Height 9 2.6 2.03 1.42 0.47 1 5 21 2 Diameter 6 5.0 0.40 0.63 0.26 4 6 21 2 Height 6 2.7 1.87 1.37 0.56 1 5 21 3 Diameter 4 5.0 2.00 1.41 0.71 4 7 21 3 Height 4 2.0 4.00 2.00 1.00 l 5 22 1 Diameter 4 9.5 25.67 5.07 2.53 6 17 22 1 Height 4 2.8 2.92 1.71 0.85 1 5 22 2 Diameter 4 5.0 0.00 0.00 0.00 5 5 22 2 Height 4 2.3 1.58 1.26 0.63 1 4 22 3 Diameter 26 7.7 9.90 3.15 0.62 4 14 22 3 Height 26 1.3 0.62 0.79 0.15 1 4 23 1 Diameter 12 12.4 13.36 3.65 1.05 8 19 23 1 Height 12 1.4 0.81 0.90 0.26 l 4 23 3 Diameter 1 15.0 . . . 15 15 23 3 Diameter 2 17.5 84.50 9.19 6.50 1 1 24 23 3 Height 1 4.0 . . . 4 4 23 3 Height 2 1.0 0.00 0.00 0.00 1 1 24 1 Diameter 2 6.5 0.50 0.71 0.50 6 7 24 1 Height 2 3.5 0.50 0.71 0.50 3 4 24 2 Diameter 2 8.0 8.00 2.83 2.00 6 10 152 Appendix B Table 22 (Cont). Unit no. Age class Diameter/ N Mean Var Std Dev Std Err Min Max Height 24 2 Height 2 1.0 0.00 0.00 0.00 1 1 24 3 Diameter 8 8.9 8.41 2.90 1.03 5 14 24 3 Height 8 1.3 0.21 0.46 ' 0.16 1 2 28 1 Diameter 3 4.7 0.33 0.58 0.33 4 5 28 1 Height 3 1.3 0.33 0.58 0.33 1 2 28 2 Diameter 6 4.8 1.77 1.33 0.54 4 7 28 2 Height 6 1.3 0.27 0.52 0.21 1 2 28 3 Diameter 5 7.2 1 1 .70 3.42 1.53 4 12 28 3 Height 5 1.8 3.20 1.79 0.80 1 5 30 1 Diameter 4 4.5 0.33 0.58 0.29 4 5 30 1 Height 4 2.3 0.25 0.50 0.25 2 3 30 2 Diameter 2 6.0 8.00 2.83 2.00 4 8 30 2 Height 2 1.5 0.50 0.71 0.50 1 2 30 3 Diameter 2 4.5 0.50 0.71 0.50 4 5 30 3 Height 2 1.0 0.00 0.00 0.00 1 1 31 1 Diameter 1 8.0 8 8 31 1 Height 1 2.0 2 2 31 2 Diameter 1 4.0 4 4 31 2 Height 1 4.0 4 4 31 3 Diameter 1 5.0 5 5 31 3 Height 1 1.0 . . . 1 1 34 1 Diameter 2 5.5 0.50 0.71 0.50 5 6 34 1 Height 2 1.0 0.00 0.00 0.00 1 1 34 2 Diameter 6 7.7 10.27 3.20 1.31 4 13 34 2 Height 6 1.5 0.30 0.55 0.22 1 2 34 3 Diameter 22 9.0 14.52 3.81 0.81 4 16 34 3 Height 22 1.1 0.12 0.35 0.07 1 2 38 1 Diameter 4 5.8 2.25 1.50 0.75 4 7 38 1 Height 4 8.8 168.25 12.97 6.49 1 28 38 2 Diameter 1 1 8.6 8.25 2.87 0.87 6 14 38 2 Height 1 1 1.0 0.00 0.00 0.00 1 1 38 3 Diameter 9 1 1.1 29.11 5.40 1.80 4 21 38 3 Height 9 1.0 0.00 0.00 0.00 l 1 39 1 Diameter 1 5.0 5 5 39 1 Height 1 5.0 . . . 5 5 40 1 Diameter 2 6.5 0.50 0.71 0.50 6 7 40 1 Height 2 2.0 2.00 1.41 1.00 1 3 153 Appendix B Table 22 (Cont). Unit no. Age class Diameter/ N Mean Var Std Dev Std Err Min Max Height 40 2 Diameter 10 8.8 14.84 3.85 1.22 4 14 40 2 Height 10 1.8 0.62 0.79 0.25 1 3 40 3 Diameter 20 11.9 11.50 3.39 0.76 6 21 40 3 Height 20 2.4 0.98 0.99 0.22 1 5 45 1 Diameter 3 8.7 4.33 2.08 1.20 7 1 1 45 1 Height 3 1 .0 0.00 0.00 0.00 1 1 45 2 Diameter 7 7.4 1 1 .29 3.36 1.27 4 12 45 2 Height 7 2.6 1.95 1.40 0.53 1 5 45 3 Diameter 20 5.6 6.99 2.64 0.59 4 15 45 3 Height 20 1.5 0.89 0.95 0.21 1 5 46 1 Diameter 1 10.0 10 10 46 1 Height 1 3 .0 . . . 3 3 46 2 Diameter 5 5 .8 0.20 0.45 0.20 5 6 46 2 Height 5 2.2 0.70 0.84 0.37 1 3 46 3 Diameter 54 9.7 15.53 3.94 0.54 4 20 46 3 Height 54 1.9 0.54 0.74 0.10 1 3 47 2 Diameter 9 12.4 19.03 4.36 1.45 5 19 47 2 Height 9 1.8 0.19 0.44 0.15 1 2 47 3 Diameter 18 12.2 51.36 7.17 1.69 5 35 47 3 Height 18 1.5 0.38 0.62 0.15 1 3 48 3 Diameter 18 9.1 6.22 2.49 0.59 4 15 48 3 Height 18 1.5 0.38 0.62 0.15 1 3 'a dot (.) indicates either that data was nonexistent, or was unable to be calculated. 154 Appendix B Table 23. Stump diameter (in) and height (11) means, variances, standard deviations, standard errors, minimums and maximums by ELU, species, and age class'. ELU Diameter/ Species Age class N Mean Var Std Dev Std Err Min Max _, .13:th ED(p) Diameter ABBA 1 1 10.00 10 10 ED(p) Diameter BEPA 3 1 15.00 . . . 15 15 ED(p) Diameter POTR1 1 2 10.00 8.00 2.83 2.00 8 12 ED(p) Diameter THOC 1 9 13.22 14.44 3.80 1.27 9 19 ED(p) Height ABBA 1 1 2.00 2 2 ED(p) Height BEPA 3 1 4.00 . . . 4 4 ED(p) Height POTR1 1 2 2.50 4.50 2.12 1.50 1 4 ED(p) Height THOC 1 9 1.11 0.1 1 0.33 0.1 1 1 2 EM(p) Diameter ABBA 2 2 8.00 8.00 2.83 2.00 6 10 EM(p) Diameter ABBA 3 9 7.44 6.78 2.60 0.87 5 14 EM(p) Diameter BEPA 1 1 17.00 17 17 EM(p) Diameter BEPA 3 1 8.00 . . . 8 8 EM(p) Diameter POTR1 1 5 6.80 0.70 0.84 0.37 6 8 EM(p) Diameter POTR1 2 4 5.00 0.00 0.00 0.00 5 5 EM(p) Diameter POTR1 3 20 9.25 27.78 5.27 1.18 4 24 EM(p) Diameter THOC 3 7 9.14 9.14 3.02 1.14 5 14 EM(p) Height ABBA 2 2 1.00 0.00 0.00 0.00 1 1 EM(p) Height ABBA 3 9 1.11 0.11 0.33 0.11 1 2 EM(p) Height BEPA 1 1 2.00 2 2 EM(p) Height BEPA 3 1 3.00 . . . 3 3 EM(p) Height POTR1 1 5 3 .20 2.20 1 .48 0.66 1 5 EM(p) Height POTR1 2 4 2.25 1.58 1.26 0.63 1 4 EM(p) Height POTR1 3 20 1.35 0.66 0.81 0.18 1 4 EM(p) Height THOC 3 7 1.14 0.14 0.38 0.14 1 2 EW(m) Diameter ABBA 2 5 4.80 1.70 1.30 0.58 4 7 EW(m) Diameter ABBA 3 2 6.00 2.00 1.41 1.00 5 7 EW(m) Diameter FRNI 2 2 17.00 32.00 5.66 4.00 13 21 EW(m) Diameter FRNI 3 3 13.67 16.33 4.04 2.33 10 18 EW(m) Diameter PIMA 3 3 11.00 28.00 5.29 3.06 7 17 EW(m) Diameter POBA 1 l 9.00 9 9 EW(m) Diameter POBA 2 1 12.00 . . . 12 12 EW(m) Diameter POTR1 1 4 7.25 10.25 3.20 1.60 4 10 EW(m) Diameter POTR1 2 4 8.75 2.25 1.50 0.75 8 11 EW(m) Diameter POTR1 3 3 12.67 12.33 3.51 2.03 9 16 EW(m) Height ABBA 2 5 1.00 0.00 0.00 0.00 1 1 EW(m) Height ABBA 3 2 1.00 0.00 0.00 0.00 1 1 155 Appendix B Table 23 (Cont). 'BLU Diameter/ Species Age class N Mean Var Std Dev Std Err Min Max Height mm) Height FRNI 2 2 2.50 0.50 0.71 0.50 2 3 EW(m) Height FRNI 3 3 2.33 2.33 1.53 0.88 1 4 EW(m) Height PIMA 3 3 1.00 0.00 0.00 0.00 1 1 EW(m) Height POBA 1 1 2.00 2 2 EW(m) Height POBA 2 1 1.00 . . . 1 1 EW(m) Height POTR1 1 4 2.25 1.58 1.26 0.63 1 4 EW(m) Height POTR1 2 4 1.00 0.00 0.00 0.00 l 1 EW(m) Height POTR1 3 3 1.67 0.33 0.58 0.33 1 2 LM(m) Diameter ABBA 2 3 6.00 7.00 2.65 1.53 4 9 LM(m) Diameter POTR1 l 6 5.67 0.67 0.82 0.33 5 7 LM(m) Diameter POTR1 2 10 8.90 13.88 3.73 1.18 4 14 LM(m) Diameter POTR1 3 17 11.29 17.85 4.22 1.02 5 21 LM(m) Diameter THOC 2 3 9.67 12.33 3.51 2.03 6 13 LM(m) Diameter THOC 3 23 9.91 10.99 3.32 0.69 5 17 LM(m) Diameter UNK 2 1 7.00 . . . 7 7 LM(m) Diameter UNK 3 3 10.00 36.00 6.00 3.46 4 16 LM(m) Height ABBA 2 3 2.00 1.00 1.00 0.58 l 3 LM(m) Height POTR1 1 6 2.33 2.67 1.63 0.67 1 5 LM(m) Height POTR1 2 10 1.70 0.46 0.67 0.21 1 3 LM(m) Height POTR1 3 17 1.88 1.61 1.27 0.31 l 5 LM(m) Height THOC 2 3 1.33 0.33 0.58 0.33 1 2 LM(m) Height THOC 3 23 1.70 0.49 0.70 0.15 1 4 LM(m) Height UNK 2 1 1.00 . . . 1 1 LM(m) Height UNK 3 3 1.33 0.33 0.58 0.33 l 2 LW(m) Diameter ABBA 1 1 10.00 10 10 LW(m) Diameter ABBA 3 1 5.00 . . 5 5 LW(m) Diameter BEPA 3 2 16.50 112.50 10.61 7.50 9 24 LW(m) Diameter FRNI 2 2 14.00 72.00 8.49 6.00 8 20 LW(m) Diameter FRNI 3 6 9.33 11.07 3.33 1.36 5 14 LW(m) Diameter PIGL 3 4 15.50 33.00 5.74 2.87 12 24 LW(m) Diameter PIMA 1 8 5.00 1.71 1.31 0.46 4 8 LW(m) Diameter PIMA 2 9 5.00 2.50 1.58 0.53 4 8 LW(m) Diameter PIMA 3 6 5.17 3.77 1.94 0.79 4 9 LW(m) Diameter THOC 2 1 9.00 9 9 LW(m) Diameter THOC 3 1 4.00 . . . 4 4 LW(m) Diameter THOC 3 2 9.50 12.50 3.54 2.50 7 12 LW(m) Diameter ULRU 3 1 5.00 S 5 156 Appendix B Table 23 (Cont). ELU Diameter/ Species Age class N Mean Var Std Dev Std Err Min Max _ Height _ LW(m) Height ABBA 1 1 4.00 4 4 LW(m) Height ABBA 3 1 4.00 . . . 4 4 LW(m) Height BEPA 3 2 2.50 0.50 0.71 0.50 2 3 LW(m) Height FRNI 2 2 1.50 0.50 0.71 0.50 1 2 LW(m) Height FRNI 3 6 1.17 0.17 0.41 0.17 1 2 LW(m) Height PIGL 3 4 2.75 2.25 1.50 0.75 1 4 LW(m) Height PIMA 1 8 1.88 0.41 0.64 0.23 1 3 LW(m) Height PIMA 2 9 1.67 1.00 1.00 0.33 1 4 LW(m) Height PIMA 3 6 1.67 2.67 1.63 0.67 1 5 LW(m) Height THOC 2 1 2.00 . . . 2 2 LW(m) Height THOC 3 2 1.00 0.00 0.00 0.00 1 1 LW(m) Height THOC 3 1 3.00 3 3 LW(m) Height ULRU 3 1 3.00 3 3 LW(p) Diameter LALA 1 1 5.00 . . . 5 5 LW(p) Diameter LALA 2 8 5.25 1.36 1.16 0.41 4 7 LW(p) Diameter PIMA 2 1 6.00 6 6 LW(p) Height LALA 1 1 4.00 . . . 4 4 LW(p) Height LALA 2 8 2.50 1.43 1 .20 0.42 1 5 LW(p) Height PIMA 2 1 2.00 . . . 2 2 LW(pm) Diameter ABBA l 2 10.50 0.50 0.71 0.50 10 11 LW(pm) Diameter ABBA 2 1 12.00 12 12 LW(pm) Diameter ABBA 3 1 4.00 4 4 LW(pm) Diameter BEPA 2 1 5.00 . . . 5 5 LW(pm) Diameter BEPA 3 6 5.33 1.87 1.37 0.56 4 8 LW(pm) Diameter LALA 3 3 5.00 3.00 1.73 1.00 4 7 LW(pm) Diameter PIMA 2 1 5.00 5 5 LW(pm) Diameter PIMA 3 1 7 .00 7 7 LW(pm) Diameter PIST 3 1 15.00 . . 15 15 LW(pm) Diameter THOC 1 2 7.50 0.50 0.71 0.50 7 8 LW(pm) Diameter THOC 2 18 9.50 20.62 4.54 1.07 4 19 LW(pm) Diameter THOC 3 98 9.67 21.93 4.68 0.47 4 35 LW(pm) Height ABBA 1 2 2.00 2.00 1.41 1.00 1 3 LW(pm) Height ABBA 2 1 1.00 1 1 LW(pm) Height ABBA 3 1 1.00 1 1 LW(pm) Height BEPA 2 1 2.00 . . . 2 2 LW(pm) Height BEPA 3 6 2.33 1.87 1.37 0.56 1 5 LW(pm) Height LALA 3 3 1.00 0.00 0.00 0.00 1 1 157 Appendix B Table 23 (Cont). ELU Diameter/ Species Age class N Mean Var Std Dev Std Err Min Max _¥ Height ' LW(pm) Height PIMA 2 1 3.00 3 3 LW(pm) Height PIMA 3 1 1.00 1 1 LW(pm) Height PIST 3 1 1.00 . . . 1 1 LW(pm) Height THOC 1 2 1.00 0.00 0.00 0.00 1 1 LW(pm) Height THOC 2 18 2.17 0.97 0.99 0.23 1 5 LW(pm) Height THOC 3 98 1.67 0.49 0.70 0.07 1 3 LW(vp) Diameter PIMA 1 8 5.00 1.71 1.31 0.46 4 8 LW(vp) Diameter PIMA 2 9 5.00 2.50 1.58 0.53 4 8 LW(vp) Diameter PIMA 3 6 5.17 3.77 1.94 0.79 4 9 LW(vp) Diameter THOC 3 2 9.50 12.50 3.54 2.50 7 12 LW(vp) Height PIMA 1 8 1.88 0.41 0.64 0.23 1 3 LW(vp) Height PIMA 2 9 1.67 1.00 1.00 0.33 1 4 LW(vp) Height PIMA 3 6 1.67 2.67 1.63 0.67 1 S LW(vp) Height THOC 3 2 1.00 0.00 0.00 0.00 1 1 MM(m) Diameter ABBA 1 2 7.00 0.00 0.00 0.00 7 7 MM(m) Diameter ABBA 2 3 11.33 9.33 3.06 1.76 8 14 MM(m) Diameter ABBA 3 2 12.50 144.50 12.02 8.50 4 21 MM(m) Diameter ACRU1 2 2 7.00 2.00 1.41 1.00 6 8 MM(m) Diameter ACRU1 3 1 14.00 14 14 MM(m) Diameter BEPA 1 1 4.00 4 4 MM(m) Diameter FRAM 2 l 4.00 . . . 4 4 MM(m) Diameter FRNI 2 5 8.20 6.70 2.59 1.16 6 11 MM(m) Diameter FRNI 3 5 10.40 17.30 4.16 1.86 6 15 MM(m) Diameter PIGL 3 1 8.00 8 8 MM(m) Diameter POBA 1 1 5.00 5 5 MM(m) Diameter POBA 2 1 6.00 . . . 6 6 MM(m) Diameter POTR1 1 3 4.67 0.33 0.58 0.33 4 5 MM(m) Diameter POTR1 2 2 10.50 40.50 6.36 4.50 6 15 MM(m) Diameter POTR1 3 4 13.50 91.67 9.57 4.79 5 27 MM(m) Diameter THOC 1 1 9.00 . . . 9 9 MM(m) Diameter THOC 3 8 7.63 6.55 2.56 0.91 5 12 MM(m) Diameter UNK 1 2 4.00 0.00 0.00 0.00 4 4 MM(m) Diameter UNK 3 8 11.75 12.50 3.54 1.25 6 17 MM(m) Height ABBA 1 2 14.50 364.50 19.09 13.50 1 28 MM(m) Height ABBA 2 3 1.00 0.00 0.00 0.00 1 1 MM(m) Height ABBA 3 2 1.00 0.00 0.00 0.00 1 1 MM(m) Height ACRU1 2 2 1.00 0.00 0.00 0.00 1 1 158 Appendix B Table 23 (Cont). ELU Diameter/ Species Age class N Mean Var Std Dev Std Err Min Max _fi Height MM(m) Height ACRU1 3 1 1.00 1 1 MM(m) Height BEPA 1 1 1.00 1 1 MM(m) Height FRAM 2 1 1.00 . . . 1 1 MM(m) Height FRNI 2 5 1.00 0.00 0.00 0.00 1 1 MM(m) Height FRNI 3 5 1.00 0.00 0.00 0.00 1 1 MM(m) Height PIGL 3 1 1.00 1 1 MM(m) Height POBA 1 1 1.00 1 1 MM(m) Height POBA 2 1 1.00 . . . 1 1 MM(m) Height POTR1 1 3 2.33 5.33 2.31 1.33 1 5 MM(m) Height POTR1 2 2 1.00 0.00 0.00 0.00 1 1 MM(m) Height POTR1 3 4 1.00 0.00 0.00 0.00 1 1 MM(m) Height THOC 1 1 1.00 . . . 1 1 MM(m) Height THOC 3 8 1.00 0.00 0.00 0.00 1 1 MM(m) Height UNK 1 2 1.00 0.00 0.00 0.00 1 1 MM(m) Height UNK 3 8 1.00 0.00 0.00 0.00 1 1 MM(p) Diameter ABBA 1 8 5.88 4.98 2.23 0.79 4 9 MM(p) Diameter ABBA 2 4 5.00 0.67 0.82 0.41 4 6 MM(p) Diameter ABBA 3 2 5.50 4.50 2.12 1.50 4 7 MM(p) Diameter BEPA 3 l 5.00 5 5 MM(p) Diameter PIMA 3 1 4.00 4 4 MM(p) Diameter POTR1 1 1 7 .00 . . . . 7 7 MM(p) Diameter POTR1 2 2 5.00 0.00 0.00 0.00 5 5 MM(p) Height ABBA 1 8 2.50 2.29 1.51 0.53 1 5 MM(p) Height ABBA 2 4 2.75 2.92 1.71 0.85 1 5 MM(p) Height ABBA 3 2 3.00 8.00 2.83 2.00 1 5 MM(p) Height BEPA 3 1 1.00 1 1 MM(p) Height PIMA 3 1 1.00 1 1 MM(p) Height POTR1 1 1 3.00 . . . 3 3 MM(p) Height POTR1 2 2 2.50 0.50 0.71 0.50 2 3 MW(m) Diameter POTR1 1 1 5.00 . . . 5 5 MW(m) Diameter POTR1 3 2 12.50 4.50 2.12 1.50 11 14 MW(m) Diameter UNK 3 1 4.00 4 4 MW(m) Height POTR1 1 1 2.00 . . . 2 2 MW(m) Height POTR1 3 2 4.00 2.00 1.41 1.00 3 5 MW(m) Height UNK 3 1 1.00 1 1 MW(p) Diameter LALA 1 1 8.00 8 8 MW(p) Diameter LALA 2 1 6.00 6 6 159 Appendix B Table 23 (Cont). BLU Diameter/ Species Age class N Mean Var Std Dev Std Err Min Max Height M)fimem T’IMA 2 1 5.00 . . . 5 5 MW(p) Diameter PIMA 3 10 5.60 0.93 0.97 0.31 4 7 MW(p) Height LALA 1 1 2.00 . . . 2 2 MW(p) Height LALA 2 1 2.00 2 2 MW(p) Height PIMA 2 1 2.00 . . . 2 2 MW(p) Height PIMA 3 10 2.30 2.01 1.42 0.45 1 5 Ira dot (.) indicates either that data was nonexistent, or was unable to be calculated. 160 Appendix B Table 24. Stump diameter (in) and height (it) means, variances, standard deviations, standard errors, minimums and maximums by unit number, species and age class'. Unit no. Diameter/ Species Age class N Mean Var Std Dev Std Err Min Max Height 1 Diameter POTR1 1 1 5.00 5 5 1 Height POTR1 1 1 2.00 . . 2 2 2 Diameter POTR1 3 2 12.50 4.50 2.12 1.50 1 1 14 2 Height POTR1 3 2 4.00 2.00 1.41 1.00 3 5 2 Diameter UNK 3 1 4.00 4 4 2 Height UNK 3 1 1.00 . . . 1 1 3 Diameter POTR1 3 2 17.50 84.50 9.19 6.50 11 24 3 Height POTR1 3 2 1.00 0.00 0.00 0.00 1 1 4 Diameter POTR1 3 1 18.00 18 18 4 Height POTR1 3 l 2.00 2 2 5 Diameter LALA 1 1 8.00 8 8 5 Height LALA 1 1 2.00 2 2 6 Diameter LALA 1 1 5.00 5 5 6 Height LALA 1 l 4.00 . . . 4 4 6 Diameter LALA 2 8 5.25 1.36 1.16 0.41 4 7 6 Height LALA 2 8 2.50 1.43 1.20 0.42 1 5 6 Diameter PIMA 2 1 6.00 6 6 6 Height PIMA 2 1 2.00 2 2 7 Diameter LALA 2 1 6.00 6 6 7 Height LALA 2 1 2.00 2 2 7 Diameter PIMA 2 1 5.00 5 5 7 Height PIMA 2 1 2.00 . . . 2 2 7 Diameter PIMA 3 10 5.60 0.93 0.97 0.31 4 7 7 Height PIMA 3 10 2.30 2.01 1.42 0.45 1 5 9 Diameter POTR1 1 1 5.00 5 5 9 Height POTR1 1 1 1.00 1 1 9 Diameter POTR1 2 1 15.00 15 15 9 Height POTR1 2 l 1.00 . . 1 1 9 Diameter POTR1 3 3 15.00 124.00 11.14 6.43 5 27 9 Height POTR1 3 3 1.00 0.00 0.00 0.00 1 1 9 Diameter UNK 3 7 12.57 8.29 2.88 1.09 8 17 9 Height UNK 3 7 1.00 0.00 0.00 0.00 1 1 11 Diameter F RAM 2 1 4.00 4 4 11 Height FRAM 2 1 1.00 l 1 1 1 Diameter PIGL 3 1 8.00 8 8 161 Appendix B Table 24 (Cont). Unit no. Diameter/ Species Age class N Mean Var Std Dev Std Err Min Max Height 1 1 1 Height PIGL 3 1 1.00 1 1 1 1 Diameter POBA 1 l 5.00 5 5 1 1 Height POBA l 1 1.00 1 1 1 1 Diameter POBA 2 1 6.00 6 6 1 1 Height POBA 2 1 1.00 1 1 1 1 Diameter POTR1 1 1 4.00 4 4 1 1 Height POTR1 1 1 1.00 1 1 1 1 Diameter THOC 1 1 9.00 9 9 1 1 Height THOC 1 1 1.00 . . . 1 1 1 1 Diameter THOC 3 8 7.63 6.55 2.56 0.91 5 12 1 1 Height THOC 3 8 1.00 0.00 0.00 0.00 1 l l 1 Diameter UNK 1 2 4.00 0.00 0.00 0.00 4 4 1 1 Height UNK 1 2 1.00 0.00 0.00 0.00 1 1 1 1 Diameter UNK 3 1 6.00 6 6 1 1 Height UNK 3 1 1.00 1 1 13 Diameter POTR1 1 1 5.00 5 5 13 Height POTR1 1 1 3.00 3 3 13 Diameter POTR1 2 1 9.00 9 9 13 Height POTR1 2 1 1.00 1 1 13 Diameter POTR1 3 1 14.00 14 14 13 Height POTR1 3 1 3.00 . . 3 3 17 Diameter PIGL 3 4 15.50 33.00 5.74 2.87 12 24 17 Height PIGL 3 4 2.75 2.25 1.50 0.75 1 4 18 Diameter ABBA 1 1 10.00 10 10 18 Height ABBA 1 1 4.00 4 4 18 Diameter ABBA 3 1 5.00 5 5 18 Height ABBA 3 1 4.00 . . 4 4 18 Diameter BEPA 3 2 16.50 1 12.50 10.61 7.50 9 24 18 Height BEPA 3 2 2.50 0.50 0.71 0.50 2 3 18 Diameter FRNI 2 2 14.00 72.00 8.49 6.00 8 20 18 Height FRNI 2 2 1.50 0.50 0.71 0.50 1 2 18 Diameter FRNI 3 6 9.33 1 1.07 3.33 1.36 5 14 18 Height FRNI 3 6 1.17 0.17 0.41 0.17 1 2 18 Diameter THOC 2 l 9.00 9 9 18 Height THOC 2 1 2.00 2 2 18 Diameter THOC 3 1 4.00 4 4 162 Appendix B Table 24 (Cont). Unit no. Diameter/ Species Age class N Mean Var Std Dev Std Err Min Max Haw _ 18 Height THOC 3 1 3.00 3 3 18 Diameter ULRU 3 l 5.00 5 5 18 Height ULRU 3 1 3.00 . . . 3 3 19 Diameter ABBA 2 5 4.80 1.70 1.30 0.58 4 7 19 Height ABBA 2 5 1.00 0.00 0.00 0.00 1 1 19 Diameter ABBA 3 2 6.00 2.00 1.41 1.00 5 7 19 Height ABBA 3 2 1.00 0.00 0.00 0.00 1 1 19 Diameter FRNI 2 2 17.00 32.00 5.66 4.00 13 21 19 Height FRNI 2 2 2.50 0.50 0.71 0.50 2 3 19 Diameter FRNI 3 3 13.67 16.33 4.04 2.33 10 18 19 Height FRNI 3 3 2.33 2.33. 1.53 0.88 l 4 19 Diameter PIMA 3 3 11.00 28.00 5.29 3.06 7 17 19 Height PIMA 3 3 1.00 0.00 0.00 0.00 1 1 19 Diameter POBA 2 1 12.00 12 12 19 Height POBA 2 1 1.00 . . . 1 1 19 Diameter POTR1 l 4 7.25 10.25 3.20 1.60 4 10 19 Height POTR1 1 4 2.25 1.58 1.26 ‘ 0.63 1 4 19 Diameter POTR1 2 4 8.75 2.25 1.50 0.75 8 1 1 19 Height POTR1 2 4 1.00 0.00 0.00 0.00 1 l 19 Diameter POTR1 3 3 12.67 12.33 3.51 2.03 9 16 19 Height POTR1 3 3 1.67 0.33 0.58 0.33 1 2 20 Diameter POBA 1 1 9.00 9 9 20 Height POBA l 1 2.00 . . . 2 2 21 Diameter ABBA 1 8 5.88 4.98 2.23 0.79 4 9 21 Height ABBA 1 8 2.50 2.29 1.51 0.53 1 5 21 Diameter ABBA 2 4 5.00 0.67 0.82 0.41 4 6 21 Height ABBA 2 4 2.75 2.92 1.71 0.85 1 5 21 Diameter ABBA 3 2 5.50 4.50 2.12 1.50 4 7 21 Height ABBA 3 2 3.00 8.00 2.83 2.00 1 5 21 Diameter BEPA 3 1 5.00 5 5 21 Height BEPA 3 1 1.00 l 1 21 Diameter PIMA 3 1 4.00 4 4 21 Height PIMA 3 1 1.00 1 1 21 Diameter POTR1 1 1 7.00 7 7 21 Height POTR1 1 1 3.00 . . . 3 3 21 Diameter POTR1 2 2 5.00 0.00 0.00 0.00 5 5 21 Height POTR1 2 2 2.50 0.50 0.71 0.50 2 3 163 ‘ ,f‘", . _I ‘1 l Appendix B Table 24 (Cont). Unit no. Diameter/ Species Age class N Mean Var Std Dev Std Err Min Max gHeight 22 Diameter ABBA 3 8 7.50 7.71 2.78 0.98 5 14 22 Height ABBA 3 8 1.00 0.00 0.00 0.00 1 1 22 Diameter BEPA 1 1 17.00 17 17 22 Height BEPA 1 1 2.00 2 2 22 Diameter BEPA 3 1 8.00 8 8 22 Height BEPA 3 1 3.00 . . . 3 3 22 Diameter POTR1 1 3 7 .00 1.00 1.00 0.58 6 8 22 Height POTR1 1 3 3.00 4.00 2.00 1 . 15 1 5 22 Diameter POTR1 2 4 5.00 0.00 0.00 0.00 5 5 22 Height POTR1 2 4 2.25 1.58 1.26 0.63 1 4 22 Diameter POTR1 3 17 7.76 12.07 3.47 0.84 4 13 22 Height POTR1 3 17 1.35 0.74 0.86 0.21 1 4 23 Diameter ABBA 1 1 10.00 10 10 23 Height ABBA 1 1 2.00 2 2 23 Diameter BEPA 3 1 15 .00 15 15 23 Height BEPA 3 1 4.00 . . . 4 4 23 Diameter POTR1 1 2 10.00 8.00 2.83 2.00 8 12 23 Height POTR1 1 2 2.50 4.50 2.12 1.50 1 4 23 Diameter THOC 1 9 13.22 14.44 3.80 1.27 9 19 23 Height THOC 1 9 1.1 1 0.1 1 0.33 0.1 1 1 2 24 Diameter ABBA 2 2 8.00 8.00 2.83 2.00 6 10 24 Height ABBA 2 2 1.00 0.00 0.00 0.00 1 1 24 Diameter ABBA 3 1 7.00 7 7 24 Height ABBA 3 1 2.00 . . . 2 2 24 Diameter POTR1 1 2 6.50 0.50 0.71 0.50 6 7 24 Height POTR1 1 2 3.50 0.50 0.71 0.50 3 4 24 Diameter THOC 3 7 9.14 9.14 3.02 1.14 5 14 24 Height THOC 3 7 1.14 0.14 0.38 0.14 1 2 28 Diameter PIMA 1 3 4.67 0.33 0.58 0.33 4 5 28 Height PIMA 1 3 1.33 0.33 0.58 0.33 1 2 28 Diameter PIMA 2 6 4.83 1.77 1.33 0.54 4 7 28 Height PIMA 2 6 1.33 0.27 0.52 0.21 1 2 28 Diameter PIMA 3 3 5.67 8.33 2.89 1.67 4 9 28 Height PIMA 3 3 2.33 5.33 2.31 1.33 1 5 28 Diameter THOC 3 2 9.50 12.50 3.54 2.50 7 12 28 Height THOC 3 2 1.00 0.00 0.00 0.00 1 1 30 Diameter PIMA 1 4 4.50 0.33 0.58 0.29 4 5 164 Appendix B Table 24 (Cont). Unit no. Diameter/ Species Age class N Mean Var Std Dev Std Err Min Max Height 30 Height PIMA 1 4 2.25 0.25 0.50 0.25 2 3 30 Diameter PIMA 2 2 6.00 8.00 2.83 2.00 4 8 30 Height PIMA 2 2 1.50 0.50 0.71 0.50 1 2 30 Diameter PIMA 3 2 4.50 0.50 0.71 0.50 4 5 30 Height PIMA 3 2 1.00 0.00 0.00 0.00 1 1 31 Diameter PIMA 1 1 8.00 8 8 31 Height PIMA 1 1 2.00 2 2 31 Diameter PIMA 2 1 4.00 4 4 31 Height PIMA 2 1 4.00 4 4 31 Diameter PIMA 3 l 5.00 5 5 31 Height PIMA 3 1 1.00 . . . 1 1 34 Diameter POTR1 1 2 5.50 0.50 0.71 0.50 5 6 34 Height POTR1 1 2 1.00 0.00 0.00 0.00 1 1 34 Diameter POTR1 2 4 6.50 5.67 2.38 1.19 4 9 34 Height POTR1 2 4 1.75 0.25 0.50 0.25 1 2 34 Diameter POTR1 3 9 10.11 16.61 4.08 1.36 5 16 34 Height POTR1 3 9 1.00 0.00 0.00 0.00 1 1 34 Diameter THOC 2 1 13.00 13 13 34 Height THOC 2 1 1.00 . . . 1 1 34 Diameter THOC 3 10 7.80 7.96 2.82 0.89 5 12 34 Height THOC 3 10 1.20 0.18 0.42 0.13 1 2 34 Diameter UNK 2 1 7.00 7 7 34 Height UNK 2 1 1.00 . . . 1 1 34 Diameter UNK 3 3 10.00 36.00 6.00 3.46 4 16 34 Height UNK 3 3 1.33 0.33 0.58 0.33 1 2 38 Diameter ABBA 1 2 7.00 0.00 0.00 0.00 7 7 38 Height ABBA 1 2 14.50 364.50 19.09 13.50 1 28 38 Diameter ABBA 2 3 11.33 9.33 3.06 1.76 8 14 38 Height ABBA 2 3 1.00 0.00 0.00 0.00 1 1 38 Diameter ABBA 3 2 12.50 144.50 12.02 8.50 4 21 38 Height ABBA 3 2 1.00 0.00 0.00 0.00 1 1 38 Diameter ACRU1 2 2 7.00 2.00 1.41 1.00 6 8 38 Height ACRU1 2 2 1.00 0.00 0.00 0.00 1 1 38 Diameter ACRU1 3 1 14.00 14 14 38 Height ACRU1 3 1 1.00 1 1 38 Diameter BEPA 1 1 4.00 4 4 38 Height BEPA 1 1 1.00 1 1 165 Appendix B Table 24 (Cont). Unit no. Diameter/ Species Age class N Mean Var 38 38 38 38 38 38 33333333333388333 $¥bc§$u§h¥$h#~h&# MMUIUIMM'JIUIUIUIUIMUOUU Std Dev Std Err Min Max Height _ L Diameter FRNI 2 5 8.20 6.70 2.59 1.16 6 1 1 Height FRNI 2 5 1.00 0.00 0.00 0.00 1 1 Diameter FRNI 3 5 10.40 17.30 4.16 1.86 6 15 Height FRNI 3 5 1.00 0.00 0.00 0.00 1 1 Diameter POTR1 1 1 5.00 5 5 Height POTR1 1 1 5.00 5 5 Diameter POTR1 2 1 6.00 6 6 Height POTR1 2 1 1.00 l 1 Diameter POTR1 3 1 9.00 9 9 Diameter POTR1 1 1 5.00 5 5 Height POTR1 1 1 5.00 . . . 5 5 Diameter ABBA 2 3 6.00 7.00 2.65 1.53 4 9 Height ABBA 2 3 2.00 1.00 1.00 0.58 1 3 Diameter POTR1 1 2 6.50 0.50 0.71 0.50 6 7 Height POTR1 l 2 2.00 2.00 1.41 1.00 1 3 Diameter POTR1 2 5 10.80 16.70 4.09 1.83 5 14 Height POTR1 2 5 1.80 0.70 0.84 0.37 1 3 Diameter POTR1 3 7 12.43 20.62 4.54 1.72 8 21 Height POTR1 3 7 2.86 1.81 1.35 0.51 1 5 Diameter THOC 2 2 8.00 8.00 2.83 2.00 6 10 Height THOC 2 2 1.50 0.50 0.71 0.50 1 2 Diameter THOC 3 13 1 1 .54 7 .60 2.76 0.76 6 17 Height THOC 3 13 2.08 0.41 0.64 0.18 1 4 Diameter ABBA 1 1 1 1.00 1 1 1 1 Height ABBA 1 1 1.00 1 1 Diameter ABBA 2 1 12.00 12 12 Height ABBA 2 1 1.00 1 1 Diameter ABBA 3 1 4.00 4 4 Height ABBA 3 1 1.00 1 1 Diameter BEPA 2 1 5.00 5 5 Height BEPA 2 1 2.00 . . . 2 2 Diameter BEPA 3 6 5.33 1.87 1.37 0.56 4 8 Height BEPA 3 6 2.33 1.87 1.37 0.56 1 5 Diameter LALA 3 3 5.00 3 .00 1 .73 1 .00 4 7 Height LALA 3 3 1 .00 0.00 0.00 0.00 1 1 Diameter PIMA 2 1 5.00 5 5 Height PIMA 2 1 3.00 3 3 166 Appendix B Table 24 (Cont). Unit no. Diameter/ Species Age class N Mean Var Std Dev Std Err Min Max 44394 L 45 Diameter PIMA 3 1 7.00 7 45 Height PIMA 3 1 1.00 1 45 Diameter PIST 3 1 15.00 15 45 Height PIST 3 1 1.00 . . 1 45 Diameter THOC 1 2 7.50 0.50 0.71 0.50 7 45 Height THOC 1 2 1.00 0.00 0.00 0.00 1 45 Diameter THOC 2 4 7.50 11.67 3.42 1.71 4 45 Height THOC 2 4 3.00 2.67 1.63 0.82 l 45 Diameter THOC 3 8 4.88 2.70 1.64 0.58 4 45 Height THOC 3 8 1.25 0.21 0.46 0.16 1 46 Diameter ABBA 1 1 10.00 10 46 Height ABBA 1 1 3.00 . . . 3 46 Diameter THOC 2 5 5.80 0.20 0.45 0.20 5 46 Height THOC 2 5 2.20 0.70 0.84 0.37 1 46 Diameter THOC 3 54 9.72 15.53 3.94 0.54 4 46 Height THOC 3 54 1.85 0.54 0.74 0.10 1 47 Diameter THOC 2 9 12.44 19.03 4.36 1.45 5 47 Height THOC 2 9 1.78 0.19 0.44 0.15 1 47 Diameter THOC 3 18 12.22 51.36 7.17 1.69 5 47 Height THOC 3 18 1.50 0.38 0.62 0.15 1 48 Diameter THOC 3 1 8 9.1 1 6.22 2.49 0.59 4 48 Height THOC 3 18 1.50 0.38 0.62 0.15 1 'a dot (.) indicates either that data was nonexistent, or was unable to be calculated. 167 Appendix B Table 25. Stump stem density (stems/plot) by ELU and age class. BTII Age class Stem density B136) 1 4 ED(p) 3 0.33333 EM(p) 1 0.5 EM(p) 2 0.5 EM(p) 3 3.08333 EW(m) 1 0.83333 EW(m) 2 2 EW(m) 3 1.83333 LM(m) 1 0.42857 LM(m) 2 1.21429 LM(m) 3 3.07143 LW(m) 1 0.16667 LW(m) 2 0.5 LW(m) 3 2.5 LW(p) 1 0.16667 LW(p) 2 1.5 LW(pm) 1 0.33333 LW(pm) 2 1.75 LW(pm) 3 9.16667 LW(vp) 1 0.66667 LW(vp) 2 0.75 LW(vp) 3 0.66667 MM(m) 1 0.90909 MM(m) 2 1.27273 MM(m) 3 2.63636 MM(p) 1 3 MM(p) 2 2 MM(p) 3 1.33333 MW(m) 1 0.16667 MW(m) 3 0.5 MW(p) 1 0.16667 MW(p) 2 0.33333 MW(p) 3 1.66667 168 Appendix B Table 26. Stump stem density (stems/plot) by ELU, age class and species. ELU Age Species Stem ELU Age class Species Stem * class density density ED(p) 1 ABBA 0.33333 LW(m) 2 THOC 0.16667 ED(p) 1 POTR1 0.66667 LW(m) 3 ABBA 0.16667 ED(p) 1 THOC 3 LW(m) 3 BEPA 0.33333 ED(p) 3 BEPA 0.33333 LW(m) 3 FRNI 1 EM(p) 1 BEPA 0.08333 LW(m) 3 PIGL 0.66667 EM(p) 1 POTR1 0.41667 LW(m) 3 THOC 0.16667 EM(p) 2 ABBA 0.16667 LW(m) 3 ULRU 0.16667 EM(p) 2 POTR1 0.33333 LW(p) 1 LALA 0.16667 EM(p) 3 ABBA 0.75 LW(p) 2 LALA 1.33333 EM(p) 3 BEPA 0.08333 LW(p) 2 PIMA 0.16667 EM(p) 3 POTR1 1.66667 LW(pm) 1 ABBA 0.16667 EM(p) 3 THOC 0.58333 LW(pm) 1 THOC 0.16667 EW(m) 1 POBA 0.16667 LW(pm) 2 ABBA 0.08333 EW(m) 1 POTR1 0.66667 LW(pm) 2 BEPA 0.08333 EW(m) 2 ABBA 0.83333 LW(pm) 2 PIMA 0.08333 EW(m) 2 FRNI 0.33333 LW(pm) 2 THOC 1.5 EW(m) 2 POBA 0.16667 LW(pm) 3 ABBA 0.08333 EW(m) 2 POTR1 0.66667 LW(pm) 3 BEPA 0.5 EW(m) 3 ABBA 0.33333 LW(pm) 3 LALA 0.25 EW(m) 3 FRNI 0.5 LW(pm) 3 PIMA 0.08333 EW(m) 3 PIMA 0.5 LW(pm) 3 PIST 0.08333 EW(m) 3 POTR1 0.5 LW(pm) 3 THOC 8.16667 LM(m) l POTR1 0.42857 LW(vp) 1 PIMA 0.66667 LM(m) 2 ABBA 0.21429 LW(vp) 2 PIMA 0.75 LM(m) 2 POTR1 0.71429 LW(vp) 3 PIMA 0.5 LM(m) 2 THOC 0.21429 LW(vp) 3 THOC 0.16667 LM(m) 2 UNK 0.07143 MM(m) 1 ABBA 0.18182 LM(m) 3 POTR1 1.21429 MM(m) 1 BEPA 0.09091 LM(m) 3 THOC 1.64286 MM(m) 1 POBA 0.09091 LM(m) 3 UNK 0.21429 MM(m) 1 POTR1 0.27273 LW(m) 1 ABBA 0.16667 MM(m) l THOC 0.09091 LW(m) 2 FRNI 0.33333 MM(m) 1 UNK 0.18182 MM(m) 2 ABBA 0.27273 MM(m) 2 POBA 0.09091 MM(m) 2 ACRU1 0.18182 MM(m) 2 POTR1 0.18182 MM(m) 2 FRAM 0.09091 MM(m) 3 ABBA 0.18182 MM(m) 2 FRNI 0.45455 MM(m) 3 ACRU1 0.09091 169 .15 Appendix B Table 26 (Cont). ELU Decay Species Stern density MM(m) 3 FRNI 0.45455 MM(m) 3 PIGL 0.09091 MM(m) 3 POTR1 0.36364 MM(m) 3 THOC 0.72727 MM(m) 3 UNK 0.72727 MM(p) 1 ABBA 2.66667 MM(p) 1 POTR1 0.33333 MM(p) 2 ABBA 1.33333 MM(p) 2 POTR1 0.66667 MM(p) 3 ABBA 0.66667 MM(p) 3 BEPA 0.33333 MM(p) 3 PIMA 0.33333 MW(m) 1 POTR1 0.16667 MW(m) 3 POTR1 0.33333 MW(m) 3 UNK 0.16667 MW(p) 1 LALA 0.16667 MW(p) 2 LALA 0.16667 MW(p) 2 PIMA 0.16667 MW(p) 3 PIMA 1 .66667 170 Appendix B Table 27. Stump stem density (stems/plot) by unit number and age class“. Unit no. Age class Stem density Unit no. Age class Stem density 1 1 0.33333 22 2 1.33333 2 3 1 22 3 8.6667 3 3 0.66667 23 1 4 4 3 0.33333 23 3 0.3333 5 . . 24 1 0.66667 6 1 0.33333 24 2 0.66667 6 2 3 24 3 2.6667 7 1 0.33333 28 1 1 7 2 0.66667 28 2 2 7 3 3.33333 28 3 1.6667 8 . . 30 1 1.33333 9 1 0.5 30 2 0.66667 9 2 0.5 30 3 0.6667 9 3 5 31 1 0.33333 1 1 1 1.66667 31 2 0.33333 11 2 0.66667 31 3 0.3333 11 3 3.3333 32 . . 13 1 0.33333 34 1 0.66667 13 2 0.33333 34 2 2 13 3 0.3333 34 3 7.3333 16 . . 38 1 1.33333 17 3 1.3333 38 2 3.66667 18 1 0.33333 38 3 3 18 2 1 39 1 0.33333 18 3 3.6667 40 1 0.66667 19 1 1.33333 40 2 3.33333 19 2 4 40 3 6.6667 19 3 3.6667 45 1 1 20 1 0.33333 45 2 2.33333 21 1 3 45 3 6.6667 21 2 2 46 1 0.33333 21 3 1.3333 46 2 1.66667 22 1 1.33333 46 3 18 47 2 3 47 3 6 48 3 6 ‘5 dot (.) indicates either that data was nonexistent, or was unable to be calculated. 171 Appendix B Table 28. Stump stem density (stems/plot) by unit number, age class and species'. Unit no. Age class Species Stem density Unit no. Age class Species Stem density 1 1 POTR1 0.33333 18 1 ABBA 0.33333 2 3 POTR1 0.6667 18 2 F RNI 0.66667 2 3 UNK 0.3333 18 2 THOC 0.33333 3 3 POTR1 0.6667 18 3 ABBA 0.33333 4 3 POTR1 0.3333 18 3 BEPA 0.66667 5 . . 18 3 FRNI 2 6 l LALA 0.33333 18 3 THOC 0.3333 6 2 LALA 2.66667 18 3 ULRU 0.3333 6 2 PIMA 0.33333 19 1 POTR1 1.33333 7 1 LALA 0.33333 19 2 ABBA 1.66667 7 2 LALA 0.33333 19 2 FRNI 0.66667 7 2 PIMA 0.33333 19 2 POBA 0.33333 7 3 PIMA 3.33333 19 2 POTR1 1.33333 8 . . 19 3 ABBA 0.66667 9 1 POTR1 0.5 19 3 F RNI 1 9 2 POTR1 0.5 19 3 PIMA 1 9 3 POTR1 1.5 19 3 POTR1 1 9 3 UNK 3.5 20 1 POBA 0.33333 1 1 1 POBA 0.33333 21 1 ABBA 2.66667 11 1 POTR1 0.33333 21 1 POTR1 0.33333 11 1 THOC 0.33333 21 2 ABBA 1.33333 1 1 1 UNK 0.66667 21 2 POTR1 0.66667 1 1 2 FRAM 0.33333 21 3 ABBA 0.66667 11 2 POBA 0.33333 21 3 BEPA 0.33333 11 3 PIGL 0.33333 21 3 PIMA 0.33333 1 1 3 THOC 2.6667 22 1 BEPA 0.33333 11 3 UNK 0.3333 22 1 POTR1 1 13 1 POTR1 0.33333 22 2 POTR1 1.33333 13 2 POTR1 0.33333 22 3 ABBA 2.66667 13 3 POTR1 0.3333 22 3 BEPA 0.33333 16 . . 22 3 POTR1 5.6667 17 3 PIGL 1.33333 23 1 ABBA 0.33333 23 1 POTR1 0.66667 40 1 POTR1 0.66667 23 1 THOC 3 40 2 ABBA 1 23 3 BEPA 0.33333 40 2 POTR1 1.66667 172 Appendix B Table 28 (Cont). Unit no. Age class Species 24 24 24 24 28 28 28 28 30 30 30 31 31 31 32 34 34 34 34 34 34 34 38 38 38 38 38 38 38 38 38 38 38 39 WN—‘WN—‘UWNHWWNH nWWWWNNNNHu—Iu—WUMNNNH' Stem density Unit no. Age class Species Stem density I‘D—m1 0.66667 40 2 THOC 0.66667 ABBA 0.66667 40 3 POTR1 2.3333 ABBA 0.33333 40 3 THOC 4.3333 THOC 2.3333 45 1 ABBA 0.33333 PIMA 1 45 1 THOC 0.66667 PIMA 2 45 2 ABBA 0.33333 PIMA 1 45 2 BEPA 0.33333 THOC 0.6667 45 2 PIMA 0.33333 PIMA 1.33333 45 2 THOC 1.33333 PIMA 0.66667 45 3 ABBA 0.33333 PIMA 0.66667 45 3 BEPA 2 PIMA 0.33333 45 3 LALA 1 PIMA 0.33333 45 3 PIMA 0.3333 PIMA 0.33333 45 3 PIST 0.3333 . 45 3 THOC 2.6667 POTR1 0.66667 46 1 ABBA 0.33333 POTR1 1.33333 46 2 THOC 1.66667 THOC 0.33333 46 3 THOC 18 UNK 0.33333 47 2 THOC 3 POTR1 3 47 3 THOC 6 THOC 3.3333 48 3 THOC 6 UNK 1 ABBA 0.66667 BEPA 0.33333 POTR1 0.33333 ABBA 1 ACRU1 0.66667 FRNI 1.66667 POTR1 0.33333 ABBA 0.66667 ACRU1 0.33333 FRNI 1.66667 POTR1 0.3333 POTR1 0.33333 1a dot (.) indicates either that data was nonexistent, or was unable to be calculated. 173 Appendix B Table 29. Stump area by ELU and age class. ELU Age class Area EDT» 1 522.813 ED(p) 3 58.905 EM(p) 1 8.558 EM(p) 2 3.862 EM(p) 3 57.203 EW(m) 1 21.075 EW(m) 2 77.82 EW(m) 3 104.196 LM(m) 1 2.749 LM(m) 2 19.537 LM(m) 3 74.725 LW(m) 1 6.545 LW(m) 2 35.67 LW(m) 3 154.527 LW(p) 1 1.636 LW(p) 2 17.41 LW(pm) 1 5.465 LW(pm) 2 35.49 LW(pm) 3 193.879 LW(vp) 1 3.469 LW(vp) 2 4.009 LW(vp) 3 6.087 MM(m) 1 5.676 MM(m) 2 21.063 MM(m) 3 72.007 MM(p) 1 94.248 MM(p) 2 39.793 MM(p) 3 27.751 MW(m) 1 1.636 MW(m) 3 21.795 MW(p) 1 4.189 MW(p) 2 3.992 MW(p) 3 21.075 174 Appendix B Table 30. Stump area by ELU, age class and species. BTU Age class Species Area ELU Age class Species Area ED(p) 1 ABBA 26.18 LW(m) 3 WC 1047‘ ED(p) 1 POTR1 54.454 LW(m) 3 ULRU 1.636 ED(p) 1 THOC 442.179 LW(p) 1 LALA 1.636 ED(p) 3 BEPA 58.905 LW(p) 2 LALA 15.053 EM(p) 1 BEPA 4.729 LW(p) 2 PIMA 2.356 EM(p) 1 POTR1 3.829 LW(pm) 1 ABBA 3.616 EM(p) 2 ABBA 2.225 LW(pm) 1 THOC 1.849 EM(p) 2 POTR1 1.636 LW(pm) 2 ABBA 2.356 EM(p) 3 ABBA 9.048 LW(pm) 2 BEPA 0.409 EM(p) 3 BEPA 1.047 LW(pm) 2 PIMA 0.409 EM(p) 3 POTR1 36.636 LW(pm) 2 THOC 32.316 EM(p) 3 THOC 10.472 LW(pm) 3 ABBA 0.262 EW(m) 1 POBA 5.301 LW(pm) 3 BEPA 2.945 EW(m) 1 POTR1 15.773 LW(pm) 3 LALA 1.325 EW(m) 2 ABBA 7.985 LW(pm) 3 PIMA 0.802 EW(m) 2 FRNI 39.924 LW(pm) 3 PIST 3.682 EW(m) 2 POBA 9.425 LW(pm) 3 THOC 184.863 EW(m) 2 POTR1 20.486 LW(vp) 1 PIMA 3.469 EW(m) 3 ABBA 4.843 LW(vp) 2 PIMA 4.009 EW(m) 3 FRNI 38.812 LW(vp) 3 PIMA 2.929 EW(m) 3 PIMA 27.423 LW(vp) 3 THOC 3.158 EW(m) 3 POTR1 33.118 MM(m) 1 ABBA 1.749 LM(m) l POTR1 2.749 MM(m) 1 BEPA 0.286 LM(m) 2 ABBA 1.711 MM(m) 1 POBA 0.446 LM(m) 2 POTR1 12.861 MM(m) 1 POTR1 1.178 LM(m) 2 THOC 4.278 MM(m) 1 THOC 1.446 LM(m) 2 UNK 0.687 MM(m) 1 UNK 0.571 LM(m) 3 POTR1 34.417 MM(m) 2 ABBA 7.211 LM(m) 3 THOC 35.09 MM(m) 2 ACRU1 1.785 LM(m) 3 UNK 5.217 MM(m) 2 FRAM 0.286 LW(m) 1 ABBA 6.545 MM(m) 2 FRNI 6.48 LW(m) 2 FRNI 30.369 MM(m) 2 POBA 0.643 LW(m) 2 THOC 5.301 MM(m) 2 POTR1 4.659 LW(m) 3 ABBA 1.636 MM(m) 2 FRAM 0.286 LW(m) 3 BEPA 43.001 MM(m) 2 FRNI 6.48 LW(m) 3 FRNI 37.83 MM(m) 2 POBA 0.643 LW(m) 3 PIGL 69.377 MM(m) 2 POTR1 4.659 175 Appendix B Table 30 (Cont). ELU Age class Species Area MM(m) 3 ABBA 8.157 W(m) 3 ACRU1 3.499 MM(m) 3 FRNI 10.888 MM(m) 3 PIGL 1.142 MM(m) 3 POTR1 17.921 MM(m) 3 THOC 9.121 MM(m) 3 UNK 21.277 MM(p) 1 ABBA 81.42 MM(p) 1 POTR1 12.828 MM(p) 2 ABBA 26.704 W(p) 2 POTR1 13.09 MM(p) 3 ABBA 17.017 MM(p) 3 BEPA 6.545 MM(p) 3 PIMA 4. 1 89 MW(m) 1 POTR1 1.636 MW (m) 3 POTR1 20.748 MW(m) 3 UNK 1.047 MW(p) l LALA MW(p) 2 LALA MW(p) 2 PIMA MW(p) 3 PIMA 176 Appendix B Table 31. Stump area by unit number and age class“. Unit no. Age class Area Unit no. Age class Area 1 1 0.2045 22 3 14.61 17 2 3 2.7243 23 1 16.3379 3 3 5.7023 23 3 1.8408 4 3 2.6507 24 1 0.6954 5 . . 24 2 1.1 126 6 1 0.2045 24 3 5.6369 6 2 2.1762 28 1 0.54 7 1 0.5236 28 2 1.219 7 2 0.4991 28 3 2.5035 7 3 2.6344 30 1 0.6709 8 . . 30 2 0.6545 9 1 0.3068 30 3 0.3354 9 2 2.7612 31 1 0.5236 9 3 25.5132 31 2 0.1309 1 1 1 1.2599 31 3 0.2045 1 1 2 0.4254 32 . . 1 1 3 4.9987 34 1 0.4991 13 1 0.2045 34 2 3.3052 13 2 0.6627 34 3 17.2215 13 3 1.6035 38 1 1.1372 16 . . 38 2 7.3876 17 3 8.6721 38 3 10.9956 18 1 0.8181 39 1 0.2045 18 2 4.4588 40 1 0.6954 18 3 10.6438 40 2 7.4286 19 1 1.9717 40 3 24.7646 19 2 9.7275 45 1 1.9144 19 3 13.0245 45 2 3.7143 20 1 0.6627 45 3 6.2177 21 1 2.9452 46 1 0.8181 21 2 1.2435 46 2 1.3826 21 3 0.8672 46 3 48.4901 22 1 3.5834 47 2 12.6482 22 2 0.8181 47 3 29.1415 48 3 13.09 lla dot (.) indicates either that data was nonexistent, or was unable to be calculated. 177 Appendix B Table 32. Stump area by unit number, age class and species“. Unit no. Age class Species Area Unit no. Age Species Area class 1 1 POTR1 0.2045 18 2 FRNI 3.7961 2 3 POTR1 2.5934 18 2 THOC 0.6627 2 3 UNK 0.1309 18 3 ABBA 0.2045 3 3 POTR1 5.7023 18 3 BEPA 5.3751 4 3 POTR1 2.6507 18 3 FRNI 4.7288 5 . . l8 3 THOC 0.1309 6 1 LALA 0.2045 18 3 ULRU 0.2045 6 2 LALA 1.8817 19 1 POTR1 1.9717 6 2 PIMA 0.2945 19 2 ABBA 0.9981 7 1 LALA 0.5236 19 2 FRNI 4.9905 7 2 LALA 0.2945 19 2 POBA 1.1781 7 2 PIMA 0.2045 19 2 POTR1 2.5607 7 3 PIMA 2.6344 19 3 ABBA 0.6054 8 . . l9 3 FRNI 4.8515 9 1 POTR1 0.3068 19 3 PIMA 3.4279 9 2 POTR1 2.7612 19 3 POTR1 4.1397 9 3 POTR1 1 1.3269 20 1 POBA 0.6627 9 3 UNK 14.1863 21 1 ABBA 2.5444 1 1 1 POBA 0.2045 21 l POTR1 0.4009 11 1 POTR1 0.1309 21 2 ABBA 0.8345 1 1 1 THOC 0.6627 21 2 POTR1 0.4091 1 1 1 UNK 0.2618 21 3 ABBA 0.5318 1 1 2 F RAM 0.1309 21 3 BEPA 0.2045 11 2 POBA 0.2945 21 3 PIMA 0.1309 1 1 3 PIGL 0.5236 22 1 BEPA 2.3644 11 3 THOC 4.1806 22 1 POTR1 1.219 1 1 3 UNK 0.2945 22 2 POTR1 0.8181 13 1 POTR1 0.2045 22 3 ABBA 4.1233 13 2 POTR1 0.6627 22 3 BEPA 0.5236 13 3 POTR1 1.6035 22 3 POTR1 9.9647 16 . . 23 1 ABBA 0.8181 17 3 PIGL 8.6721 23 1 POTR1 1.7017 18 1 ABBA 0.8181 40 1 POTR1 0.6954 23 3 BEPA 1.8408 40 2 ABBA 0.9981 178 Appendix B Table 32 (Cont). Unit no. Age class Species Area Unit no. Age class Species Area 23 24 24 24 24 28 28 28 28 30 30 30 31 31 31 32 34 34 34 34 34 34 34 38 38 38 38 38 38 38 38 38 38 38 1 wNv—wwu—wwN—wwN—e wMWNNNNHH~UWWNNNfl° b.) THOC POTR1 ABBA ABBA THOC PIMA PIMA PIMA THOC PIMA PIMA PIMA PIMA PIMA PIMA POTR1 POTR1 THOC UNK POTR1 THOC UNK ABBA BEPA POTR1 ABBA ACRU l FRNI POTR1 ABBA ACRU 1 FRNI POTR1 13.8181 0.6954 1.1 126 0.4009 5.236 0.54 1.219 0.9245 1 .579 0.6709 0.6545 0.3354 0.5236 0.1309 0.2045 0.4991 1.5217 1.3826 0.4009 8.6148 5.5632 3.0434 0.8018 0.1309 0.2045 3.3052 0.8181 2.9698 0.2945 3.7388 1.6035 4.9905 0.6627 39 40 40 40 40 45 45 45 45 45 45 45 45 45 45 45 45 46 46 45 47 47 48 1 WWNWN—‘MWWUJUJWNNNNH—‘wLQNN POTR1 POTR1 THOC POTR1 THOC ABBA THOC ABBA BEPA PIMA THOC ABBA BEPA LALA PIMA PIST THOC ABBA THOC THOC THOC THOC THOC 0.2045 5.3178 1.1 126 9.8584 14.9062 0.9899 0.9245 1.1781 0.2045 0.2045 2.1271 0.1309 1.4726 0.6627 0.4009 1.8408 1.7099 0.8181 1.3 826 48.4901 12.6482 29.1415 13.09 'a dot (.) indicates either that data was nonexistent, or was unable to be calculated. 179 Appendix B Table 33. Coarse woody debris diameter (in) and length (ft) means, variances, standard deviations, standard errors, minimums and maximums by decay class'. ELU Diam/Length Decay N Mean Var Std Dev Std Err Min Max 1130;) Diameter 1 5 5.20 1.20 1.10 0.49 4 6 ED(p) Diameter 2 5 7.80 9.70 3.1 1 1.39 4 1 1 ED(p) Diameter 3 4 6.50 4.33 2.08 1.04 4 9 ED(p) Diameter 4 4 7.25 6.92 2.63 1.31 5 1 l ED(p) Diameter 5 1 5.00 0.00 0.00 0.00 5 5 ED(p) Length 1 5 35.20 33.70 5.81 2.60 27 42 ED(p) Length 2 5 25.20 56.20 7.50 3.35 19 38 ED(p) Length 3 4 23.75 18.92 4.35 2.17 18 28 ED(p) Length 4 4 14.25 58.25 7.63 3.82 7 25 ED(p) Length 5 1 8.00 0.00 0.00 0.00 8 8 EM(p) Diameter 1 5 5.00 0.00 0.00 0.00 5 5 EM(p) Diameter 2 1 1 4.91 0.49 0.70 0.21 4 6 EM(p) Diameter 3 8 5.38 3.41 1.85 0.65 4 9 EM(p) Diameter 4 4 6.50 1.00 1.00 0.50 6 8 EM(p) Length 1 5 34.60 24.30 4.93 2.20 28 39 EM(p) Length 2 11 26.64 141.25 11.89 3.58 12 49 EM(p) Length 3 8 21.38 305.70 17.48 6.18 5 59 EM(p) Length 4 4 13.00 110.67 10.52 5.26 4 24 EW(m) Diameter 1 6 7.17 25.37 5.04 2.06 4 17 EW(m) Diameter 2 10 6.30 2.01 1.42 0.45 5 9 EW(m) Diameter 3 3 7.00 19.00 4.36 2.52 4 12 EW(m) Diameter 4 6 9.17 18.57 4.31 1.76 4 14 EW(m) Diameter 5 3 7.00 0.00 0.00 0.00 7 7 EW(m) Length 1 6 33.67 171.87 13.11 5.35 11 51 EW(m) Length 2 10 20.50 92.94 9.64 3.05 4 38 EW(m) Length 3 3 18.00 148.00 12.17 7.02 10 32 EW(m) Length 4 6 18.33 65.07 8.07 3.29 6 29 EW(m) Length 5 3 12.00 4.00 2.00 1.15 10 14 LM(m) Diameter 1 7 4.43 0.95 0.98 0.37 3 6 LM(m) Diameter 2 14 5.57 1.65 1.28 0.34 4 8 LM(m) Diameter 3 10 6.10 5.43 2.33 0.74 4 12 LM(m) Diameter 4 1 1 7.09 7.49 2.74 0.83 4 12 LM(m) Diameter 5 2 6.00 8.00 2.83 2.00 4 8 LM(m) Length 1 7 26.43 14.95 3.87 1.46 21 33 LM(m) Length 2 14 23.21 127.57 11.29 3.02 4 34 LM(m) Length 3 10 17.00 144.00 12.00 3.79 2 37 LM(m) Length 4 11 19.18 215.16 14.67 4.42 4 50 LM(m) Length 5 2 5.00 0.00 0.00 0.00 5 5 LW(m) Diameter 1 1 9.00 0.00 0.00 0.00 9 9 LW(m) Diameter 2 1 4.00 0.00 0.00 0.00 4 4 180 Appendix B Table 33 (Cont). ELU Diam/Length Decay N LW(m) LW(m) LW(m) LW(m) LW(m) LW(m) LW(m) LW(m) LW(P) LW(P) LW(P) LW(P) LW(P) LW0!) LW(P) LW(p) LW(pm) LW(pm) LW(pm) LW(pm) LW(pm) LW(pm) LW(pm) LW(pm) LW(pm) LW(pm) LW(VP) LW(VP) LW(vp) LW(VP) LW(vp) LW(VP) LW(VP) LW(VP) MM(m) MM(m) MM(m) MM(m) MM(m) MM(m) MM(m) MM(m) MM(m) MM(m) Mean Var Std Diameter 3 10 6.90 7.66 2.77 0.87 Diameter 4 4 5.00 1.33 1.15 0.58 Diameter 5 l 16.00 0.00 0.00 0.00 Length 1 1 42.00 0.00 0.00 0.00 Length 2 l 19.00 0.00 0.00 0.00 Length 3 10 21.20 234.40 15.31 4.84 Length 4 4 13.00 89.33 9.45 4.73 Length 5 1 16.00 0.00 0.00 0.00 Diameter 1 2 4.00 0.00 0.00 0.00 Diameter 2 4 4.00 0.00 0.00 0.00 Diameter 3 2 4.00 0.00 0.00 0.00 Diameter 4 2 5.00 0.00 0.00 0.00 Length 1 2 32.00 0.00 0.00 0.00 Length 2 4 23.75 70.25 8.38 4.19 Length 3 2 21.50 84.50 9.19 6.50 Length 4 2 10.00 8.00 2.83 2.00 Diameter 1 4 6.00 2.67 1.63 0.82 Diameter 2 9 7.00 9.50 3.08 1.03 Diameter 3 1 1 9.55 44.67 6.68 2.02 Diameter 4 8 5.88 3.84 1.96 0.69 Diameter 5 10 7.40 13.60 3.69 1.17 Length 1 4 42.75 550.92 23.47 1 1.74 Length 2 9 22.89 162.1 1 12.73 4.24 Length 3 1 1 15.00 79.80 8.93 2.69 Length 4 8 16.88 135.55 11.64 4.12 Length 5 10 10.50 20.06 4.48 1.42 Diameter 1 8 5.00 1.14 1.07 0.38 Diameter 2 7 4.71 2.24 1.50 0.57 Diameter 3 1 4.00 0.00 0.00 0.00 Diameter 4 1 4.00 0.00 0.00 0.00 Length 1 8 32.13 251.27 15.85 5.60 Length 2 7 22.71 191.24 13.83 5.23 Length 3 1 20.00 0.00 0.00 0.00 Length 4 1 8.00 0.00 0.00 0.00 Diameter 1 5 4.60 0.80 0.89 0.40 Diameter 2 1 1 4.91 0.89 0.94 0.28 Diameter 3 l 1 6.73 4.02 2.00 0.60 Diameter 4 14 5.00 0.77 0.88 0.23 Diameter 5 l 6.00 0.00 0.00 0.00 Length 1 5 27.60 377.30 19.42 8.69 Length 2 11 30.18 118.96 10.91 3.29 Length 3 11 55.73 11834.42 108.79 32.80 Length 4 14 29.43 185.49 13.62 3.64 Length 5 1 6.00 0.00 0.00 0.00 StdfirMmMax 4 4 16 42 19 OxUle'SiSG-hmA450080303A-h-hthQOB-hhw-h-hmGSSMh-h453031» l4 6 16 42 19 55 26 16 4 4 4 5 32 36 28 12 8 13 23 10 17 75 39 35 37 18 7 8 4 4 49 47 20 8 6 7 10 6 6 61 45 81 51 6 181 Appendix B Table 33(Cont). ELU Diam/Length Decay N Mean Var Std Std Err Min Max MM(p) Diameter 1 1 5.00 0.00 0.00 0.00 5 5 MM(p) Diameter 2 8 6.63 6.84 2.62 0.92 4 10 MM(p) Diameter 3 5 6.20 0.70 0.84 0.37 5 7 MM(p) Diameter 4 3 5.00 3.00 1.73 1.00 4 7 MM(p) Diameter 5 3 6.67 4.33 2.08 1 .20 5 9 MM(p) Length 1 1 29.00 0.00 0.00 0.00 29 29 MM(p) Length 2 8 26.63 105.98 10.29 3.64 10 37 MM(p) Length 3 5 33.20 28.70 5.36 2.40 25 38 MM(p) Length 4 3 21.00 199.00 14.11 8.14 6 34 MM(p) Length 5 3 1 1.33 76.33 8.74 5.04 4 21 MW(m) Diameter 1 1 1 1.00 0.00 0.00 0.00 1 1 11 MW(m) Diameter 2 3 8.00 13.00 3.61 2.08 5 12 MW(m) Diameter 3 1 6.00 0.00 0.00 0.00 6 6 MW(m) Diameter 4 2 6.00 0.00 0.00 0.00 6 6 MW(m) Diameter 5 1 6.00 0.00 0.00 0.00 6 6 MW(m) Length 1 1 35.00 0.00 0.00 0.00 35 35 MW(m) Length 2 3 30.67 282.33 16.80 9.70 16 49 MW(m) Length 3 1 20.00 0.00 0.00 0.00 20 20 MW(m) Length 4 2 6.00 8.00 2.83 2.00 4 8 MW(m) Length 5 1 10.00 0.00 0.00 0.00 10 10 MW(p) Diameter 1 1 8.00 0.00 0.00 0.00 8 8 MW(p) Diameter 2 3 4.00 0.00 0.00 0.00 4 4 MW(p) Diameter 3 6 4.67 0.67 0.82 0.33 4 6 MW(p) Diameter 4 2 7.00 2.00 1.41 1.00 6 8 MW(p) Length 1 1 35.00 0.00 0.00 0.00 35 35 MW(p) Length 2 3 29.67 72.33 8.50 4.91 20 36 MW(p) Length 3 6 32.17 114.57 10.70 4.37 19 43 MW(p) Length 4 2 7.00 32.00 5.66 4.00 3 1 1 la dot (.) indicates either that data was nonexistent, or was unable to be calculated. 182 Appendix B Table 34. Coarse woody debris stem density by ELU in logs per vegetation plot. ELU Density —ED(p) 40743.72 EM(p) 4837.52 EW(m) 18687.2 LM(m) 8530.04 LW(m) 15305.92 LW(p) 5671.85 LW(pm) 9159.37 LW(vp) 2702.46 MM(m) 6526.62 MM(p) 49517.19 MW(m) 6882.37 MW(p) 7841.16 183 Appendix B Table 35. Coarse woody debris density in logs per vegetation plot by ELU and decay class'. ELU Decay Density ELU Decay Density 1313(9) 139(9) 1313(9) 150(1)) ED(P) ED(p) EM(p) EM(P) EM(P) EM(P) EM(P) EW(m) EW(m) EW(m) EW(m) EW(m) EW(m) LM(m) LM(m) LM(m) LM(m) LM(m) LM(m) LW(m) LW(m) LW(m) LW(m) LW(m) LW(m) LW(p) LW(P) LW(p) L117(1)) LW(p) LW(pm) LW(pm) LW(pm) LW(pm) kWNH° tthJN-d' M-hUJNF“ UI-kWNH- AWN—‘- M-hDJNH $wNH° 5944.72 8585.41 7079.81 4024.5 5109.28 375.61 1255.94 1694.48 1511.49 2305.73 7252.66 2192.73 4332.78 2603.3 590.67 2167.69 2619.67 2276.13 875.88 243.3 537.82 9357.04 4529.1 638.66 638.66 1858.14 1046.19 2128.87 296.18 1462.81 2515.11 1990.43 LW(pm) LW(pm) LW(VP) LW(VP) LW(VP) LW(VP) LW002) MM(m) MM(m) MM(m) MM(m) MM(m) MM(m) MM(p) MM(p) MM(p) MM(p) MM(p) MM(p) MW(m) MW(m) MW(m) MW(m) MW(m) MW(m) MW(p) MW(p) MW(p) MW(p) MW(p) 5 M-bWNI—' MAWNH° MkWNH° #WN—‘° AWN—° 2894.84 1071.49 1183.91 127.73 319.33 675.31 1202.83 2274.49 1909.5 464.48 1409.46 5307.34 6302.18 9791.69 6706.53 291.96 1225.67 510.93 3831.96 1021.86 291.96 1104.43 2109.63 4335.14 'a dot () 184 indicates either that data was nonexistent, or was unable to be calculated. Appendix B Table 36. Coarse woody debris density in logs per vegetation plot by unit number'. Unit No. Density 1 180.19 2 680.1 3 212.89 4 21.65 5 . 6 583.53 7 980.15 8 125.45 9 1093.27 1 1 530.7 13 797.95 16 1017.87 17 1096.93 18 816.31 19 916.51 20 1419.39 21 1547.41 22 1622.2 23 1273.24 24 562.02 28 763.98 30 336.68 31 250.57 32 . 34 438.23 38 713.95 39 2442.25 40 1297.43 45 1743.81 46 2105.6 47 357.67 48 372.61 I'a dot (.) indicates either that data was nonexistent, or was unable to be calculated. 185 Appendix B Table 37. Coarse woody debris density in logs per vegetation plot by unit number and decay class. Unit No. Decay Density Unit No. Decay Density 1 1 36.495 18 2 67.227— 1 2 79.832 18 3 456.653 1 3 63.866 18 4 262.01 2 2 73.376 19 1 64.962 2 4 478.99 19 2 160.154 2 5 127.73 19 3 106.443 3 3 212.887 19 4 350.78 4 3 21.649 19 5 234.18 6 2 232.267 20 1 223.254 6 3 85.155 20 2 746.429 6 4 266.11 20 3 167.648 7 1 36.495 20 4 190.82 7 2 138.054 20 5 91.24 7 3 263.704 21 1 44.045 7 4 541.89 21 2 478.354 8 1 79.832 21 3 196.943 8 3 45.619 21 4 305.99 9 3 933.606 21 5 522.08 9 4 159.66 22 1 187.807 11 1 106.443 22 2 470.432 11 2 111.631 22 3 527.547 11 3 168.941 22 4 436.42 11 4 143.68 23 1 185.773 13 1 98.255 23 2 268.294 13 2 664.21 23 3 221.244 13 3 35.481 23 4 438.27 16 1 139.21 23 5 159.66 16 2 168.274 24 2 157.536 16 3 138.545 24 3 85.155 16 4 571.84 24 4 319.33 17 3 712.976 28 1 127.732 17 4 304.12 28 2 476.58 17 5 79.83 28 4 159.66 18 1 30.412 30 1 245.638 186 Appendix B Table 37 (Cont). Unit no. Decay Density 30 2 27.177 30 3 63.866 31 1 162.376 31 2 88.196 34 1 55.536 34 2 170.009 34 3 150.642 34 4 62.04 38 1 63.866 38 2 271.392 38 3 112.584 38 4 53.22 38 5 212.89 39 1 45.619 39 2 222.39 39 3 1 198.8 39 4 464.51 39 5 510.93 40 1 145.15 40 2 207.877 40 3 143.21 40 4 801.19 45 1 41.204 45 2 195.837 45 3 898.1 45 4 437.6 45 5 171.07 46 2 502.818 46 3 198.69 46 4 127.73 46 5 1276.35 47 1 77.856 47 3 85.62 47 4 194.19 48 1 29.03 48 2 32.752 48 3 75.14 48 4 235.7 187 Appendix B Table 38. Understory cover means by ELU and understory cover class at strata level 0. ELU CWD Litter Grass Forbs Shrubs Trees Rocks Soil Moss Slash 'B—D(p) 0 0.97 0.03 0.33 0.07 0 0 0 0.07 0.10 EM(p) 0.05 0.89 0.22 0.22 0.02 0.01 0 0.03 0.10 0.14 EW(m) 0.05 0.52 0.38 0.33 0.02 0 0 0.18 0.40 0.10 LM(m) 0.02 0.96 0.18 0.20 0.01 0.01 0 0 0.06 0.02 LW(m) 0.02 0.96 0.25 0.08 0 0 o 0 0.27 0.02 LW(p) 0 0.48 0.05 0.20 0.10 0 0 0.03 0.77 0.17 LW(pm) 0.01 0.65 0.31 0.17 0 0 0 0 0.60 0.01 LW(vp) 0.01 0.14 0.07 0.15 0.13 0 0 0 0.92 0.01 MM(m) 0.02 0.87 0.27 0.28 0.01 0 0 0 0.07 0.01 MM(p) 0.03 0.90 0.03 0.17 0 0 0 0 0.28 0.13 MW(m) 0.02 0.93 0.34 0.34 0.02 0 0 0.02 0.02 0.02 MW(p) 0.02 0.25 0.15 0.23 0.07 0 0 0.02 0.85 0.17 Appendix B Table 39. Understory cover means by ELU and understory cover class at strata level 1. BTU CW-D Litter Grass Pfis Shrubs frees Rocks Soil Moss Slash ED(p) 0 0.2 0.3 0.57—"W 0.1 0 0 0 0 EM(p) 0 0.23 0.3 0.54 0.19 0.2 0 0 0.08 0.21 EW(m) 0.017 0.2 0.6 0.55 0.47 0.2 0 0 0.08 0.13 LM(m) 0 0.09 0.2 0.78 0.25 0.1 0 0 0 0.04 LW(m) 0 0.07 0.7 0.69 0.24 0.1 0 0 0.18 0.02 LW(p) 0 0.17 0.2 0.42 0.55 0.1 0 0 0.32 0.32 LW(pm) 0.003 0 0.4 0.48 0.2 0.2 0 0 0.1 0.01 LW(vp) 0.002 0 0.2 0.36 0.47 0.1 0 0 0.2 0.01 MM(m) 0.01 0.02 0.4 0.80 0.36 0.1 0 0 0 0 MM(p) 0.03 0.09 0 0.26 0 0 0 0 0.01 0.16 MW(m) 0.01 0.07 0.4 0.81 0.33 0 0 0.02 0.02 0.07 MW(p) 0 0.02 0.4 0.33 0.55 0.1 0 0 0.7 0.3 188 Appendix B Table 40. Understory cover means by ELU and understory cover class at strata level 2. ELU CWD Litter Grass Forbs Shrubs Trees Rocks Soil Moss Slash BBQ» 0 0 0 0.2 0.07 0 0 0 0.03 0.23 EM(p) 0 0 0 0 0.12 0.3 0 0 0 0 EW(m) 0 0 0 0 0.23 0.2 0 0 ' 0 0 LM(m) 0 0 0 0 0.05 0.2 0 0 0 0 LW(m) 0 0 0 0 0.31 0.2 0 0 0 0 LW(p) 0 0 0 0 0.1 0.2 0 0 0 0 LW(pm) 0.002 0 0 0.005 0.08 0.1 0 0 0 0 LW(vp) 0 o o 0 0.02 0.1 0 0 0 0 MM(m) 0 0 0 0.002 0.22 0.2 0 0 0 0 MM(p) 0 0 0 0 0 0 0 0 0 0 MW(m) 0 0 0 0 0.48 0 0 0 0 0 MW(p) 0 0 0 0 0.03 0 0 0 0 0 Appendix B Table 41. Understory cover means by ELU and understory cover class at strata level 3. FLU CWD Litter Grass F orbs Shrubs Trees Rocks Soil Moss Slash BBQ» 0 0 0 0 0.03 0.3 0 0 0 0.03 EM(p) 0 0 0 0 0.07 0.4 0 0 0 0 EW(m) 0 0 0 o 0.08 0.3 0 0 0 0 LM(m) 0 0 0 0 0.04 0.3 0 0 0 0 LW(m) 0 0 0 0 0.3 0.2 0 0 0 0 LW(p) 0 0 0 0 0.03 0.1 0 0 0 0 LW(pm) 0.002 0 0 0 0.05 0.2 0 0 0 0 LW(vp) 0 0 0 0 0.03 0.1 0 0 0 0 MM(m) 0 0 0 0 0.09 0.2 0 0 0 0 MM(p) 0.01 0 0 0 0 0 0 0 0 0 MW(m) 0 0 o 0 0.36 0.1 0 0 0 0 MW(p) 0 0 0 0 0.03 0.1 0 0 0 0 189 Appendix B Table 42. Understory cover means by ELU and understory cover class at strata level 4. Bu} CWD Litter Grass Forbs Shrubs Trees Rocks Soil Moss Slash BT36) 0 0 0 0 0.03 0.3 0 0 0 0 EM(p) 0 0 0 0 0.03 0.3 0 0 0 0 EW(m) o 0 0 0 0.13 0.2 0 0 0 0 LM(m) 0 0 0 o 0.02 0.3 0 0 o 0 LW(m) 0 0 0 0 0.13 0.2 0 0 0 0 LW(p) 0 0 0 0 0 0.1 0 0 0 0 LW(pm) 0 0 o o 0.02 0.4 0 0 0 o LW(vp) 0 o 0 0 0.04 0.1 0 0 0 0 MM(m) 0 0 0 0 0.02 0.1 0 0 0 0 MM(p) o 0 0 0 0 0 0 0 0 0.01 MW(m) 0 0 0 0 0.08 0.1 0 0 0 0 MW(p) 0 0 0 o 0.03 0.1 0 o 0 0 Appendix B Table 43. Understory cover means by ELU and understory cover class at strata level 5. EU CWD Litter Grass Forbs Shrubs Trees Rocks Soil Moss Slash BD(p) 0 0 0 0 0.03 0.3 0 0 0 0 EM(p) o 0 0 0 0.03 0.3 0 0 0 0 EW(m) 0 0 0 0 0.03 0.2 0 0 0 0 LM(m) 0 0 0 0 0.01 0.3 0 0 0 0 LW(m) 0 0 0 0 0.07 0.2 0 0 0 0 LW(p) 0 0 0 0 0.02 0.1 0 0 0 0 LW(pm) 0 0 0 0 0.01 0.4 0 0 0 0 LW(vp) 0 0 0 0 0.01 0.2 0 0 0 0 MM(m) 0 0 0 0 0.01 0.1 0 0 0 0 MM(p) 0 0 0 0 0 0 0 0 0 0 MW(m) 0 0 0 0 0.01 0.1 0 0 0 o MW(p) 0 0 0 0 0.02 0.1 0 0 0 0 190 Appendix B Table 44. Understory cover means by unit number and understory cover class at strata level 0. Unit no. CWD Litter Grass Forbs Shrubs Trees Rocks Soil Moss Slash 1 0 0.9 0.2 0.43 0.1 0 0 0.07 0 0.1 2 0 0.9 0.38 0.32 0 0 0 0 0.03 0 3 0 0.9 0.2 0.27 0.07 0 0 0.1 . 0.03 0.2 4 0 0.9 0.43 0.13 0 0 0 0 0 0.1 5 0 0 0.27 0.03 0.03 0 0 0.03 0.97 0 6 0 0.6 0.07 0.13 0.1 0 0 0.07 0.87 0.1 7 0 0.5 0.03 0.43 0.1 0 0 0 0.73 0.3 8 0 0.4 0.03 0.27 0.1 0 0 0 0.67 0.2 9 0 0.5 0.28 0.32 0 0 O 0 0.08 0 1 l 0 1 0.18 0.27 0.01 0 0 0 0.04 0 13 0 1 0.5 0.57 0 0 0 0 0 0.1 16 0 1 0.1 0.37 0.1 0 0 0 0.07 0 17 0 1 0.19 0.04 0 0 0 0 0.12 0 18 0 0.9 0.35 0.15 0 0 0 0 0.52 0.1 19 O l 0.5 0.3 0.23 0.03 0 0 0.13 0.5 0.2 20 0 0.5 0.47 0.43 0 0 0 0.23 0.3 0 21 0 0.9 0.03 0.17 0 0 0 0 0.28 0.1 22 0.2 0.8 0.17 0.33 0 0 0 0 0.2 0.1 23 0 1 0.03 0.33 0.07 0 0 0 0.07 0.1 24 0 0.9 0.07 0.13 0 0 0 0.03 0.17 0.1 28 0 0.2 0.05 0.1 0.03 0 0 0 0.9 0 30 0 0.1 0.08 0.18 0.25 0 0 0 0.95 0 31 0 0.1 0.05 0.24 0.14 0 0 0 0.97 0 32 0 0.2 0.09 0.13 0.14 0 0 0 0.89 0 34 0 0.7 0.05 0.04 0 0 0 0 0.01 0 38 0 1 0.35 0.25 0 0 0 0 0.09 0 39 O l 0.33 0.27 0.07 0 0 0 0.17 0 40 0 0.9 0.3 0.23 0.07 0.1 0 0 0.23 0.1 45 0 0.6 0.29 0.1 1 0.01 0 0 0 0.63 0 46 0 0.8 0.1 1 0.06 0 0 0 0 0.63 0 47 0 0.5 0.49 0.27 0.01 0 0 0.01 0.59 0 48 0 0.7 0.52 0.34 0 0 0 0 0.47 0 191 Appendix B Table 45. Understory cover means by unit number and understory cover class at strata level 1. Unit no. CWD Litter Grass Forbs Shrubs Trees Rocks Sol Moss Slash 1 0 0.23 0.3 0.667 0.5 0.03 0 0.07 0 0.23 2 0.01 0.02 0.39 0.859 0.27 0.01 0 0 0.022 0.02 3 0 0.2 0.3 0.6 0.27 0.23 0 0 0.067 0.23 4 0 0.07 0.4 0.733 0.23 0.17 0 0 0 0.07 5 0 0.03 0.83 0.1 0.53 0.07 0 0 0.967 0.07 6 0 0.17 0.3 0.367 0.47 0.17 0 0 0.433 0.3 7 0 0 0.03 0.567 0.57 0.07 0 0 0.433 0.53 8 0 0.17 0.07 0.467 0.63 0.1 0 0 0.2 0.33 9 0 0.01 0.33 0.799 0.31 0.24 0 0 0 0 1 1 0.01 0 0.42 0.838 0.38 0.1 0 0 0.006 0.01 13 0 0.27 0.33 0.633 0.33 0.13 0 0 0 0.2 16 0 0.27 0.23 0.767 0.67 0.2 0 0 0 0 17 0 0.03 0.64 0.766 0.25 0.06 0 0 0.006 0 18 0 0.15 0.68 0.554 0.21 0.11 0 0 0.478 0.07 19 0.03 0.3 0.53 0.533 0.4 0.2 0 0 0.167 0.2 20 0 0.1 0.6 0.567 0.53 0.1 0 0 0 0.07 21 0.03 0.09 0.04 0.261 0 0.01 0 0 0.01 1 0.16 22 0 0.2 0.2 0.433 0.17 0.1 0 0 0.067 0.27 23 0 0.2 0.27 0.567 0.37 0.13 0 0 0 0.23 24 0 0.47 0.13 0.4 0.1 0.27 0 0 0.167 0.27 28 0 0 0.43 0.474 0.17 0.13 0 0 0.058 0 30 0.01 0 0.1 1 0.239 0.57 0.05 0 0 0.478 0.02 31 0 0.02 0.08 0.185 0.54 0.05 0 0 0.098 0.01 32 0 0 0.1 0.478 0.8 0.24 0 0 0.25 0.03 34 0 0 0.12 0.583 0.17 0.04 0 0 0 0 38 0.01 0 0.37 0.787 0.34 0.12 0 0 0.005 0 39 0 0.3 0.33 0.7 0.53 0.1 0 0 0 0.07 40 0 0.37 0.4 0.333 0.17 0.1 0 0 0 0.1 45 0 0.01 0.59 0.623 0.28 0.04 0 0 0.175 0.01 46 0 0 0.22 0.282 0.16 0.34 0 0 0.032 0 47 0.01 0 0.42 0.597 0.25 0.1 1 0 0 0.1 17 0 48 0 0.02 0.48 0.5 0.1 0.33 0 0 0.109 0.04 192 Appendix B Table 46. Understory cover means by unit number and understory cover class at strata level 2. Unit no. CWD Litter Grass Forbs Shrubs Trees Rocks Soil Moss Slash 0.2 0.1 0.1 0.3 0.1 0.2 0.2 0.15 0.16 0.2 0.01 0.1 11 13 16 17 18 19 20 0.33 0.2 0.2 0.3 0.2 0.44 0.2 0 0.2 0.1 0.13 0.33 0.01 0.2 0.1 21 0.3 0.03 22 23 0.1 0.2 0.03 0.06 0.5 24 28 0.1 0.1 30 31 0.1 0.1 32 34 38 39 40 0.1 0.02 0.31 0.2 0.3 0.2 0.3 0.1 1 0.1 0.07 0.01 0.01 45 0.1 46 0.1 0.1 0.02 0.01 47 0.2 48 193 Unit no. CWD Litter Grass F orbs Shrubs Trees Rocks Soil Moss Slash Appendix B Table 47. Understory cover means by unit number and understory cover class at strata level 3. 0.1 0.36 0.17 0.2 0.2 0.1 0.1 0.1 0.1 0.07 0.07 0.03 0.08 0.1 0.2 0.1 11 0.3 0.1 13 16 17 18 19 20 21 0.2 0.2 0.3 0.1 0.37 0.17 0.07 0.3 0.3 0.1 0.5 22 23 0.3 0.03 0.5 24 28 0.1 0.09 0.1 30 31 0.1 0.1 32 34 38 39 40 0.1 0.2 0.14 0.5 0.2 0.3 0.2 0.3 0.06 0.06 0.06 45 46 47 0.1 0.2 48 194 Unit no. CWD Litter Grass Forbs Shrubs Trees Rocks Soil Moss Slash Appendix B Table 48. Understory cover means by unit number and understory cover class at strata level 4. 0.1 0.27 0.02 0.03 0.07 0.1 0.2 0.2 0.1 0.1 0.07 0.2 0.2 0.1 0.02 11 13 16 17 18 19 20 21 0.2 0.2 0.07 0.16 0.2 0.3 0.1 0.07 0.2 0.2 0.2 0.5 22 23 0.3 0.03 0.4 0.1 24 28 0.1 0.1 30 31 0.1 0.1 32 34 38 39 0.1 0.1 0.02 0.4 0.5 0.2 0.4 0.5 45 0.05 0.01 0.2 47 0.4 48 195 Unit no. CWD Litter Grass Forbs Shrubs Trees Rocks Soil Moss Slash Appendix B Table 49. Understory cover means by unit number and understory cover class at strata level 5. 0.1 0.3 0.07 0.03 0.1 0.1 0.1 0.03 0.03 0.1 0.1 0.1 11 0.1 13 16 17 18 19 20 21 0.1 0.07 0.09 0.04 0.2 0.2 0.2 0 0.1 0.07 0.5 22 23 0.3 0.03 0.4 0.2 24 28 0.04 0 0.1 30 31 0.3 0.3 32 34 38 0.2 0.2 0.5 0.13 0.6 0.5 0.6 0.02 0.3 0.3 48 196 Appendix B Table 50. Percent canopy cover summary by ELU. Tallveg is percent canopy cover above 4.88 m, and allveg is percent canopy cover when any cover at all was detected. ELU Allveg=1 Tallveg=1 Tm) 0.80 0.67 EM(p) 0.93 0.85 EW(m) 0.83 0.70 LM(m) 0.88 0.78 LW(m) 0.87 0.67 LW(p) 0.80 0.77 LW(pm) 0.80 0.58 LW(vp) 0.52 0.48 MM(m) 0.84 0.78 MM(p) 0.73 0.73 MW(m) 0.97 0.90 MW(p) 0.73 0.70 197 Appendix B Table 51. Percent canopy cover summary by unit number. Tallveg is percent canopy cover above 4.88 m, and allveg is percent canopy cover when any cover at all was detected. Unit No Allveg=l Tallveg=1 1 0.80 0.80 2 0.67 0.60 3 0.67 0.67 4 0.93 0.87 5 0.67 0.53 6 0.67 0.47 7 0.87 0.73 8 1.00 0.60 9 0.73 0.67 1 1 0.93 0.73 13 0.93 0.87 16 1.00 0.93 17 0.93 0.67 18 0.80 0.67 19 0.60 0.53 20 0.47 0.47 21 0.67 0.60 22 0.33 0.33 23 1.00 0.93 24 0.87 0.80 28 0.93 0.80 30 0.93 0.87 31 0.73 0.73 32 0.73 0.73 34 0.73 0.60 38 0.93 0.93 39 0.87 0.80 40 0.87 0.87 45 0.87 0.73 46 0.93 0.73 47 0.87 0.80 48 0.80 0.67 198 Appendix B Table 52. Mean soil moisture and pH by ELU. ELU Moisture pH _E_Df(p) 49.7 6.5 EM(p) 38.5 6.2 EW(m) 48.3 6.5 LM(m) 56.7 6.2 LW(m) 63.7 6.6 LW(p) 46.8 6.3 LW(pm) 47.8 7.2 LW(vp) 56.4 5.3 MM(m) 47.5 6.6 MM(p) 37.5 5.8 MW(m) 49.6 6.2 MW(p) 53.3 6.0 199 Appendix B Table 53. Mean soil moisture and pH by unit number. Unit No Moisture pH 1 \OOOQQUI-hWN 42.67 58.33 31.67 21.67 50.67 51.67 56.00 42.00 59.67 48.00 53.33 56.67 65.33 59.33 55.00 41.67 45.00 56.67 49.67 44.00 56.67 56.33 50.00 68.33 59.33 60.67 50.67 66.00 55.00 53.33 56.50 43.67 6.17’ 6.20 5.13 6.67 5.90 6.43 6.13 6.20 5.67 6.53 6.27 6.43 6.37 6.53 6.23 6.67 5.70 6.30 6.47 6.53 5.97 5.07 5.87 5.03 6.07 6.33 6.27 6.07 7.03 6.50 6.35 6.57 200 N mam—o $3 33 2 3c :3 S ew< mg 8.? m c; 8.? m <25 Emu—o bmmaov 25 one 2 85 Rd S ewe. 88m :3 o; A one as m .63 OS 23 4 23 and a. <43 mama—o 33 2.: : 32 a; : ewe. and 43 w and N; 3 ENE «mam—o e3 :.o- 2 a; 3o 2 our. :3 8.? e So Rd- e Sam Team—o 38 3o 2 mg ”no 2 a? 23.5 $5 “:5- w 35 8.? m 55.4 86on .3 Rod and 2 23 who 2 85 .85 52 3-5 52 3-5 .588 8 6.85. m 58853 202 85 85 5 85 555 5 <88 m b55000 85 555 5 555 25 5 555 .3555 .62 3-5 52 3-5 .0580 8 6.85 m 5883 203 NW6 606 5.66 6m6 956 956- :6 2.6 5.6.6 666 66.6 mm6 6m6- N66 Nm6 5&6- 56 666 5.6.6 6m6 .5666 36 556 N56 N56 :56 5.6.6 65 .6- ~56 NN6- ~666V 66.5 m m 305 .02 WNW \O ('1me I‘M V) GIMWWC $56 65.6. 66.6 66. 7 N56 NW6- 5.556 5.m.6 5.6.6 6m6. 56 6—6- 5.m6 no.6- mm6 5.6.6 ...m66.6 566 $6 6m6 6m6 :6 36.6 5.66 55.6 h _ .6 6m .6 655.6. N _ .6 56.. 5.6.6 6m6- a u 3% WM MV‘OM \O GIMWWO <25 5755 <5mm 55 52 WNW ('1me 0 film 36 5.6.6 6 _ .6 656 66.6 3.6 66.6 5.66 _ 2.6 $6 6N6 ”N6 666 6m .6 a 6m6 6m6- 666 006 66. T 6m6 6V6- 6m6- :6 6m .6 65.6 66.6 3.6 656.. .— 3% MW MVIOM 0 film <25 5755 <5mm ..< b.5006 80% 5555 55.05.50 2.6 666 mm6 56.6 6m6 N56 .66 5.m66 .666v 5.66 6.56 6N6 N566 5.6.6 566 .566 6N6 m66- $6 666- 5N6 NN6 m66 66.6 66. .- 666- .556 6w6 $6- 666.- 6m6 .N6 5.55. .07. WFMMW Glhmmxo 66.6 556 mm6 5.66 @66 6.5.6 656 5.66 6N6 66.6 .66 66.6 36 66.6 5.66 N..6 6.5.6 666- 56.6 666- 65.6 6.56 6 N6 666 65.6- 66. .- .m6 66.. 55.6. 66. .- 666 WFMMND (5 WMVV} :lhmmxo 3.9.0.. 5.9.05. <25 .735 <5mm. 55 52 N. N. N. N. N. N. N. N. N. N. N. N. N. N. N. N. N. .m6 56.6 N66 5m6 .N6 56.6 56 .m6 356 6m .6 mm6 .N6 36 65.6 .66 mm6 M66 6.6 NN6 .66 m Nm6- N. 3.6 N. 56.6 N. 6N6 N. 606 N. .66 N. 6.6 N. .N6 N. VN6- N. NN6 N. .m6- N. 6m6 N. 56.6 N. 666- N. .66 N. .m6 N. .66 N. Nv6- N. 36.. N. N66 N. u m 3% 'IT'uT'IT U—IU 33m 85 25 .855 555 585 555- 555 555- $5 555- 555 555 555 :5- 85 555- m5 555- $5 555 $5 555- 25 :5 555 555 B5 :5 255 555 555 555- $5 555- 555 85 5 5 .355 52 \OBMMWOQ WMVV‘DI‘WFMMVO GI 56 6.5.6 6 . .6 56.6 566 $6 6V6 66.6 65.6 66.6 56.6 NN6 6N6 56.6 5m66 6.56 66.6 6.6 m . .6 9.6 656- 6m6- 6m6- NN6 $6.. 6N6- 6N6 66.. 6m6- 36 66.6 .56 66.6 666- 66. .- 6m6 HI 3% WMVWFWFMM© V Gil 5.5.05. 55 52 N. N. N. N. N.- N. N. N. N. N. N. N. 56.6 6N6 w . .6 Mv6 6N6 N66 6 M6 65.6 Nv6 NM6 6N6 N66 56.6 v . .6 66.6 66.6 m66 66.6 36 «M6 .v6- mN6 vM6- 56.6- 6N6- N. .6- 6N6 . M .6- 6V6 6. .6- .66- 3.6- M. .6- N66- N66 5 . .6 B-m N. N. N. N. N. N. N. N. N. N. N. N. N. N. N. N. N. N. .55. 23562 6“: 6H 6NO 6H5- "IT [-0 WT“ LL-UJ £55.. .555 zom 56.6 6.6 56.6 66.6 56.6 666- :6 NM6 6.6 66.6 6M6 6M6 .6666 V66 5M66 66.6- 666 66..- 566 66.6- 66.. 66.6 65.6 v.6- M66 M66- .N6 66.6 N66 6M6 56.6 66.6 56.6 66.6 N666 5.6 56.6 66.6.. m u 5.6:. .07. \Ol‘MMW [\MMWVOQ \O GIOI‘MMIOOO\ 6M.6 56.6 56.6 m .6 5N6 M56 6.6 6. .6 56.6 56.6 M66 6V6 66.6- 66.6- 666- 56.6 $6 M.6 Mv6 65.6- 66.6- 6m6- NN6 Mv6- \OBMMW [\MMWOQ \O alchmmmxocx <25 <-.<-. .795 <5mm. 606. >...6. .07. B-m .07. 3.1m .6806 00 0550 m 0.0553 213 .6666 66.56 mmw6 6N56 566.6 . 65.6 5656 M M66 6666 .6666 N566 566.6 . 5M6- 56.6- M . .6- m6 v.6- ...6 .66- 65.6 55.6- 66 >55 52 M var-522 [\ "30000 566.6 6.6 565.6 ..6- M66 5.6- 666 N6- . 6 566.6 m6- 5¢56 N6 6566 56.6 ...6 .56 66 ...6 N.66 6N6 566.6 6.6 56M6 v6- .6666 . M 6 l\ now-I52 (”@006 <25 606. >606. .07. 3-6 .07. 3-6 .680. 00 28.5 m 0.88%. 08< 6N6 .36.. 6. .N.6 Mv6- 6. <25 66.6 5N6 6 66.6 66.6 6 .05 ...66 56.6 6. N656 ..6- 6. 00.... 6.6 66.6 5 6M.6 ..V.6- 5 <.<.. 666.6 6.6 6. 6MM6 «M6 6. 3.50.. 05.66 66.6 6. 3.6 6.6 6. .75. 666.6 6.6 5 6N6 6.6- 5 <25 6M.6 .M.6 6. 56.6 6.6 6. <.mm. 566.6 6.6- M 566.6 6.6 M .75.... .M.6 6N6 5. 6N6 6N6 5. .DM.0< 50.0606 .36 66.6- 6 ...66 6.6- 6 <6m.m. .66 ...6- .N M66 66.6- .N 08. >08. 52 3-0 57. 3-0 .6800 00 0.8.5 0 0.82.3 218 eNme wehe N 6 .e- em 6nd em mmve ewe 66 ”Se mme e6 Seed 6 m mmee Nee- a Seed 6 m 6eee.e 6 m wwwe 6m.e e emme Vme- e fl weed 66.6.e mmme nae- wm6.e «We- need me Seed 6- Die hme- Ed «me o'— F!!!— \OMMWM ewne 6.e e6 6 .. a 5.55. .52 mm6.e hme em mmhe eee em 6ee.e me. See me.e Seed 6- A e6.e we. need me See me eeve hme mmve hue Need 6.e- mhme ewe mmme 5e ...6ee.e 6.? Seed 6 See me- mmme me- e6v.e mme 6 .. 3% Sec-anaemia: \Ov-n c—Iv—I \OMMWM DOE 56.6.06 (506 E66 800 5.0.0.. 5.. 60036 N 600056 .0550. 55 535.. 0 5.552.? 219 heed eeme She neve mmee name weed Ewe Nave 6 8d ”5e wae eeme NN6.e 6.e 5N 66.e em ee.e NN ewe- e6 Nee- mm wme- hm ee.e- 0N m6.e mm 3.? e6 Nme mm nee. 5N wee. 0N Ne mm 36 em .. a 355. .52 eeee «one Ewe embe 2 6e eeme 6w.e meme 6 66.e 6 :e meme meee mhe 336 6 6e. hm bee 0N me. am m6.e e6 Vme mm NNe hm wee em mme NN e- e6 ee.e mm e. um nme 0N bee mm 6.e.. em .. : >2-m 5 5585. 5 5585. . .5580 5 5850 v 60009 m 60009 N >089 6 050009 5 5580 v 5800 5 5580 5 5850 6 50009 0.585 88m 5.059. 08060.9 0.58.. 80% 600060 .3 930 m 6ee.ev 8.6 m Se 6ee.ev 86. m see 36 ee.e 5 Med hoe med. 5 Se and «ed. 66 one Se Se 5. 8e awe and. e med nee ewe- m Se Se ewe- m nee N6.e Re 6 3.6 and end m mme Ce mte- 66 3e Se ewe- 0 Se 86 ee.e m mme nee ewe m 6ee.ev 6 .. 0 6 >660... .oZ U.55... 55.5. 55.5. ee.e and. owe mme 6nd- ewe- ewe mve ee.e me.e ewe- bee m «€496 m <19 m 9799.6 h «.699 h <99< <6 ONMMVOF m 66 M 369.06 4.906 <36; «517.16 0.699 <99< 69.6.06 69.6.06 <25 <16<9 679656 N 50009 6 50009 E60606. 82m m 60009 .080. 55 2...: 0 V5.555.? 220 all 00' .35 55.5- 55 5.55 ..55 55 .u0 .55555 5.5 55 555.5 55.5 55 .u-. 55.5 55.5- 5 5.5 55.5 5 .0500 55580 55.5 5.5- 55 555.5 5.5- 55 .0 55.5 ...5 .. .55 .55- .. .0500 ..5555 55.5 55 55.5 55.5 55 5": 55.5 55.5- 5 .555v 55.. 5 <2: 555.5 ..5- 55 55.5 5.5- 55 5"... 55.5 55.5 5 .555V 55..- 5 <05 5.5.5 55.5 55 555.5 5.5 55 5n0 55.5 55..- 5 55.5 55.5- 5 .200 55.5 55.5 55 555.5 .5- 55 5u5 ..55 55.5- 5 55.5 ...5 5 <000 555.5 55.5 55 555.5 5.5- 55 515 555 5.5- 5 5.5 55.5- 5 <00< 55850 555.5 55.5 55 .5555 55.5 55 5H0 555.5 5.5- 55 5.5.5 .55 55 5"... 55.5 55.5 5. .555 55.5 5. .0500 .555 55.5 55 55.5 5.5 55 5H0 ..55 55.5 5 55.5 55.5 5 <000 55.5 55.5 55 555.5 .5- 55 5u0 5.8.5 55.5 55.5- 5 55.5 .55- 5 32.0 55.5 55.5- 5 55.5 55.5- 5 <-.<0 ..555 5.5- 55 .555 5.5- 55 5n55>..55 55.5 55.5- 5 55.5 55.5 5 <000 555.5 5.5 55 .555 .55 55 T052555 55.5 55.5 5 55.5 55.5 5 <00< .5850 ..555 ..5- 55 555.5 5.5- 55 5u55>=< 52< 55.5 ..5 55 555.5 .55 55 .u05>..< 505550 55.5 55.5 5 .355 55.5 5 .0500 55850 5.55 55.5 5. .555 ..5- 5. 55850 .585 5.5 55 555.5 5.5- 55 55850 55.5 55.5 .. 55.5 55.5- .. .0500 6 5 5. 6 .. 0 6 .. 5. 6 5 5. >555. >5... .52 3-0 .52 3-5 .0550. 55 5.555 0 5.5803 221 ev6d emd mm memd Nd Nm mu 5ed ee.e- m ee.e 86 m 0966-5. 5N6ed 35d mm Newd med Nm nub 6nd 56d- 56 5Nd wad- 56 6.9.6.96 ~356d end- mm .med 6d- mm mu V5d 3d w eNd 9d- w <906 vwd ved mm mwed ee.e mm an e5..e Ed- 5 3d 25d. 5 (.3666 med emd m m5d emd m 55.9.5.9 me6d vmd mm 65ed de Nm Nu emd evd m e6.e e5.e w 629.56 vm6d wmd mm Nwed wed mm Nu ee.e wed 5 mad end 5 «.699 5w6d qmd- mm vemd N6d mm Nu mud wmd 66 65d m6d 66 <99... 5.3603 5eed mmd- mm N6md N6d an an 222 .50d 5.? mm 35.0 ee.e mm Nu mmd 5wd m 8.. ee.e m 0966.6- mw6d vmd- mm memd mmd mm ".6 mad 6~d 56 wmd 06d 5. 6M6-6.96 ev6d emd- mm .65d 6d- mm no mmd wvd w 56d vmd w «.996 .Neeed 6ed mm mmed Sud mm .H wmed 05d- 5 60d med 5 $266 e05d med- mm «5.3 6d- mm 6" e6.e ewd- n e6.e 3.? m .6955 emvd 3.? mm w6d vmd mm 6n9 m5d end- 5 and end- m 62.66 mved wed mm 5wmd e mm 6H6. 0ed 06d- 5 60d 5nd 5 55.699 vwmd ..e- mm N5ed 6d- mm 6nm end mmd- 66 wed end- 6. «99¢. 505055.09 50.0065 55 vwed 6md- mm mwed wed mm 6" 000cm 6 5 .. 6 .. 5. 6 .. 5. 6 0 5. £605.. >660... .02 3% .02 3% .0550. 55 5.555 0 5.55500... 5eed md- m 5eed md- 0926. .v6d 5nd 56 36d mmd 56.6.06 mavd 0.5-d w mmwd 6d «.996 5mmd ad. 5 ...emed 05d «.266 vmed md m and md- 55165.9 505d Nd- m 665d md- 6206 06wd 6 6d- 5 5mmd med 55.699 mmmd ad 6 6 85.0 ..e- 229 I: J. J.'1A- '\ .2113an— Appendix B Table 63. Unit numbers and given symbols for principal componenets analyses graphs by unit number. Unit no. Symbol Unit no. Symbol 1 A 40 3 2 B 45 4 3 C 46 5 4 D 47 6 5 E 48 7 6 F 7 G 8 H 9 I 1 1 J 13 K 16 L 17 M 18 N 19 O 20 P 21 Q 22 R 23 S 24 T 28 U 30 V 31 W 32 X 34 Y 38 Z 39 2 230 'ET' I.- :- c :1 PRIN2 10 ~- I 5 .. J A B O .. K F D LG H E 5 .. 1 1 1 l l l -5 0 5 PRINl Observation C is hidden behind observation B. Appendix B Figure 1. Plot of the first two principal components by ELU: PRIN2’PRIN1. See Appendix B Table 60 for ELUs corresponding with symbols. 231 PRIN3 10 J. K 5 .. L J E F“ 0 1- G D j I B L H A F -5 .4 l I I I l -5 O 5 PRINl Observation C is hidden behind observation B. Appendix B Figure 2. Plot of the first and third principal components by ELU: PRIN3‘PRIN 1. See Appendix B Table 60 for ELUs corresponding with symbols. 232 PRIN3 10 + K 5 .. E 1. .1 -- G 0 so I H A F I I I L I I l I -5 0 5 10 PRIN2 Appendix B Figure 3. Plot of the second and third principal components by ELU: PRIN3‘PRIN2. See Appendix B Table 60 for ELUs corresponding with symbols. 233 ., 10+ PRINZ 5 R 4 T E XV F 0 Y 6 0 0 «F W U I N H G JC Z K DP 8 M A o .- I I I I 7 l I I -10 -5 0 5 PRINl 5 observations hidden. Appendix B Figure 4. Plot of first two principal components by unit number: PRINPPRINI. See Appendix B Table 61 for unit numbers associated with symbols. 234 5 .- G LT PRIN3 H R C X F KSO 3 V W 0 -- A P 0 Y N E U J D B 64 5 M I 5 .. | I T I I I -10 -5 O 5 PRIN1 3 observations hidden. Appendix B Figure 5. Plot of the first and third principal components by unit number: PRIN3‘PRIN 1. See Appendix B Table 61 for unit numbers associated with symbols. 235 PRIN3 4 observations hidden. 0‘— PRIN2 o—III— Appendix B Figure 6. Plot of the second and third principal components by unit number: PRIN3*PRIN2. See Appendix B Table 61 for tmit numbers associated with symbols. 236