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ABSTRACT

PROPERTIES OF SHELL-MODEL WAVEFUNCTIONS AT HIGH EXCITATION ENERGIES

By

Njema Jioni Frazier

Within the framework of the nuclear shell model with a realistic residual hamil-

tonian one can obtain the exact solution of the many-body problem. This makes it

possible to study the interrelation between regular and chaotic features of dynamics in

a generic many-body system with strong interaction. As an important application, we

analyse the fragmentation of simple configurations as a function of excitation energy

and interaction strength and examine the transition strengths induced by simple op-

erators as a function of excitation energy. The analysis is performed for two systems;

that of 12 valence particles in the sd—shell, or 288i, and that of 8 valence particles

in the sd-shell, or 24Mg. For the system of 12 valence particles in the sd—shell, we

examine the fragmentation of shell-model basis states. For the system of 8 valence

nucleons in the sd—shell, we examine the fragmentation associated with single—nucleon

transfer and Gamow-Teller transitions.

For the fragmentation of basis states, we use our statistics to establish the generic

shape of the strength function distribution in the region of strong mixing. For the

realistic interaction, the strength function distribution is close to Gaussian in the

central part of the energy spectra. The width of the distribution is larger than

predicted by Fermi’s golden rule [4].

We then take this one step further and examine the strength distributions associ—



ated with the one-nucleon transfer operator, a1, and the Gamow-Teller (GT) operator,

Zulwurihyalay. The spectroscopic factor, which is proportional to the square of

the matrix element for the a: operator, is the simplest quantity used in predicting

experimental observables. In our discussion of Gamow-Teller transitions, we examine

both the GT strength function distribution and the values of total strength B(GT).

For all the cases we examine, we take advantage of the reliability of our model

for low-lying levels and our statistics to explore the behavior of total strengths and

strength distributions for high—lying states.
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Chapter 1

Introduction

1 .1 Overview

To gain insight into the dynamics of complex nuclear systems we have two primary

tools: (1) experimental data and (2) the theoretical solution of the many-body prob-

lem within the framework of the nuclear shell model. With these tools we can study

the characteristics of a quantum many-body system by examining nuclear wavefunc-

tions and nuclear matrix elements.

Because of the nuclear shell model’s ability to predict various experimental ob-

servables and its broad range of applicability to different nuclear transitions from

low-lying states, we are encouraged to extend its use into the region of high-lying

states, where we have no experimental data from which to draw. Going beyond the

lowest energy region we rely on the shell-model predictions in the analysis of highly-

excited states whose individual properties are inaccessible by current experimental

tools of nuclear spectroscopy. Ideally, we would like to reach some conclusions about

statistical features of these more complicated high-lying states.

The properties of shell-model wavefunctions at high excitation energy are interest-

ing physically for a number of reasons. First, they aid in our understanding of nuclear

reactions, for which we need to know the statistical properties of highly-excited states.

1



Secondly, transitions from excited states are important for our understanding of astro-

physical processes. And while astrophysical reactions of this nature are not addressed

directly in this work, the results of our studies should provide guidance for future in-

vestigation. And lastly, the systems we have chosen are two of the best examples of

quantum many-body systems where we have a good, although approximate, solution

of the many-body problem. From these systems we try to study general properties of

quantum chaos; insomuch as the same approach we apply here may be used in atomic

and solid state physics.

The main objectives of this work are (1) to study the fragmentation of simple shell-

model configurations, or the splitting of the strength of simple shell-model states over

more complicated excited states, as a function of excitation energy and interaction

strength, (2) to determine the effect that basis-state mixing has on the distribution

of the strengths associated with simple one-body operators, a] and [(auri) A,vala1:],

and (3) to analyse the behavior of the total Gamow-Teller strength as a function of

excitation energy. This work is intended to give theoretical information about excited

states of the nucleus and transitions from those excited states.

The rest of chapter 1 will touch upon the organization of the paper, the motivation

for this work, and a brief introduction of our main topics: the spreading of basis states,

single-nucleon transfer, and Gamow-Teller transitions.

The reliability of the shell model with realistic residual interactions is widely

accepted [1, 2]. Calculations of nuclear energy spectra and various other observables

show good agreement with the growing body of data. In chapter 2 we will review

the basis of shell-model theory, explain how the calculations are carried out, and

demonstrate the surety of the technique for various nuclei in the 0d — 13 shell-model

space.



As excitation energy and level density increase, incoherent mixing converts in-

dependent particle configurations into complex eigenstate configurations. The basis

states associated with the independent particle configurations then become spread

over many eigenstates. We begin chapter 3 with a review of the basic definitions

and the standard model for the spreading width of the strength function (sect. 3.1).

We will define the limits of “strong” versus “weak” coupling and use these limits to

analyze the results for the strength function shown in section 3.2. At the realistic

interaction strength, the generic shape of the strength function is close to a Gaussian

in the central part of the energy distribution. Up to high accuracy, the wings of the

distribution display exponential behavior. The spreading width considerably exceeds

the Fermi golden rule value. In our calculations, we approach the weak coupling limit

by artificially suppressing the interaction. The strength function evolves as the inter-

action strength changes. In the limit of “weak” coupling, we return to the domain of

validity of the standard model for spreading widths where the shape of the strength

function is usually assumed to be of Breit-Wigner type. The spreading width depen-

dence on the interaction strength changes from linear to quadratic as one proceeds

from strong to weak coupling.

Nuclear spectroscopy provides some of the most reliable and abundant data avail-

able. The spectroscopic factors in single-nucleon transfer provide us with impor-

tant information on the fragmentation of single-particle configurations. However,

the abundance of data is concentrated in the low-energy region. Chapter 4 deals

with the effect that mixing has on the width of the one-nucleon transfer distribution

|(f [al|i)|2. The creation operator a'r creates a particle in the initial state, and the

resultant wavefunction is then overlapped with the final state eigenfunction. By ex-

amining the width of the distribution we gain insight into excited-state single-nucleon

transfer. We relate the widths of single-particle transfer distributions to the widths



for basis state strength functions and Gamow-Teller strength functions. The width of

the distribution for single-nucleon transfer is considerably smaller than that for the

fragmentation of basis states.

Chapter 5 addresses the characteristics of the Gamow-Teller strength function

distribution and the total Gamow-Teller strength. The matrix elements for the GT

operator for low-lying states are measured against the experimental results for beta

decay. This allows us to test the accuracy of and provide us with important informa-

tion about nuclear structure. The Gamow-Teller (GT) operator 211401174) ,\Maia,v

is another simple operator that we can use to examine the behavior of shell-model

wavefunctions. Here, one nucleon is created by the a’f operator and one is destroyed

by the a operator. The spin and isospin operators, 0,, and Ti, then act on the inter-

mediate state and the that wavefunction is then overlapped with the final eigenstate

wavefunction. We are especially interested in the question of GT transitions from ex-

cited states since these results cannot be studied experimentally. It is well known that

the GT strength present in experimental data is consistently smaller than theoretical

predictions. Within the 0d — ls shell-model space, the main factor contribution to the

suppression is the mixing of the basis-state wavefunctions. The GT strength is highly

sensitive to spin-isospin correlations. The residual interaction strongly mixes the or-

bital and spin components of angular momentum, but in general, the energetically

lowest states prefer spatial symmetry and, accordingly, spin-isospin asymmetry of the

many-body wave functions. Relative to the single-particle estimate, model calcula-

tions for Gamow-Teller strengths in transitions from the ground state are reduced.

This is seen consistently when compared with experimental data. Contrary to that,

at high excitation energy the GT strength increases. This shows the regular change

of dominating orbital symmetry in coexistence with chaotic features of dynamics.

Since the pioneering work by Wigner 60 years ago [3], spin-isospin symmetry and



the properties of the nuclear interaction related to the GT strength have been studied

in detail [4]. Although considerable work has been done for low-lying states, see for

example [5], shell-model calculations examining GT transitions from excited states

remain virtually non-existent. Such calculations give us important information about

the behavior of a simple excitation mode in a realistic environment of incoherent

nuclear interactions.

Finally, in chapter 6, I will summarize our findings for the spreading of basis

states, the transfer of a single-nucleon, and Gamow-Teller transitions. We will also

summarize our overall results for the spreading width for simple operators and our

analysis of GT quenching. Finally, we will suggest interesting avenues that have yet

to be explored.

1 .2 Motivation

The two sd-shell nuclei we focus on, 2“Si and “Mg, are thoroughly studied nuclei,

both experimentally and theoretically. Supported by the previous success of the shell

model, we are confident in our ability to reproduce numerous observables for these

nuclei in transitions from low-lying states. As far as the calculations are concerned,

the space dimensions are of the order of 103 and are easy to handle computationally.

In addition to supplementing the information given by certain models for this

mass region, our studies of these light nuclei are meant to serve as prototypes of

general nuclear properties, including those for heavier nuclei. Certain observables for

heavier nuclei remain beyond the scope of shell-model calculations due to the increase

in the dimensionality of shell-model space. For example, 54Fe has a model space with

dimension of z 105 for 0+0 states alone, which is too large to be handled by standard

laboratory computers. In cases such as these, there are alternative methods, such as



the Shell-Model Monte Carlo (SMMC) method [7], however these methods have their

own limitations.

One can compare results of shell-model calculations for GT transitions from ex-

cited states to the rates of certain astrophysical reactions, especially for those reac-

tions involved in the late stages of supernovae. In fact, the fl-decay strength function

averaged over the final states of the daughter nucleus , and the level densities avail-

able for ,B-decay to excited states of the final nucleus are questions relevant to the

r-process in stars.

For the most part, we are limited to A _<_ 50 for exact calculations. This being

the case, we choose to use two systems with which we are very familiar, to get an

indication of the behavior of heavier nuclei. The exploration of basis-state mixing

and spreading width, distributions for single-nucleon transfer, and total strength for

Gamow-Teller transitions for excited states is extremely important for heavier nuclei.

Our hope is that these studies will prove useful in understanding the general features

of many-body quantum systems with strong interactions between constituents.

1 .3 Background

One of the most important characteristics of the highly—excited states is given by the

strength function of simple modes. An external field, for “example of electromagnetic

nature, acts by a simple one-body operator and excites, in the independent particle

shell model, one particle — one hole (1p — 1h) states. In reality, such an excited

state is a wave packet of many close stationary states. Each component carries a

fraction of the strength of the original simple mode. An experiment with a resolution

insufficient for the analysis of the dense fine structure spectrum displays a strength

function related to the envelope of the strength distribution. Using the language of



time evolution, this is interpreted as damping of the simple mode [8]. With reasonable

statistical assumptions about the nearest level-spacing distribution and the strength

distribution among the invisible fine structure states, it is possible [9] to reconstruct

their level densities and to recover the strength missing in the experiment with poor

resolution.

The transitions that we are concerned with are those that can be described by the

simple operators: (1] and [(auri),\,\:al\ay]. By looking at the shape of the strength

function and measuring the spreading width for basis states, one-nucleon transfer

distributions, and GT strengths, we hope to reach some general conclusions as to the

effect the mixing of basis states has on transitions.

1.3.1 Basis State Spreading Widths

The most elementary aspect of the strength distribution is the relationship between

the basis states and the eigenstates. One of the most widely accepted models, the

standard model for the spreading width, predicts a Breit-Wigner strength distribu-

tion. However, he assumptions of the standard model for the spreading width break

down when the width 1‘, obtained by Fermi’s golden rule grows larger than the energy

interval over which the background level density and/or the coupling matrix elements

can be considered as approximately constant. The existence of this limit of “strong

coupling” was recognized long ago by Wigner [10] and discussed in the banded ran-

dom matrix models [11]. The deviations from the standard model are responsible

[12, 13] for the narrow width of the double giant resonances [14]. The formulation

of the general approach, which contains the standard model and strong coupling as

particular limiting cases, was presented in [16].

As we stated earlier, each stationary state, or eigenstate, carries a fraction of the

strength of the original simple mode. The strength function is then, a representation



of the strength distribution. Our analysis is of the shape of the strength distribution

and the factors which contribute to the shape of the distribution; level density, weight,

and interaction strength.

1.3.2 Spectroscopic Factors

The simplest type of transition is associated with the transfer of a single nucleon.

The characteristics are given by the spectroscopic factor, Sj,

1
.= l ' 2

8.? 2Jf+1l<fla¢lz>l - (1-1)
 

As we have already stated, the creation operator al creates a particle in the initial

state, and the resultant wavefunction is then overlapped with the final state eigenfunc-

tion. In contrast to basis—state wavefunctions being overlapped with the eigenstate

wavefunctions, in single-nucleon transfer we are considering initial and final states

which are both eigenstates of their respective nuclei. Since the residual interaction

has already been accounted for in the initial and final eigenstate wavefunctions, we

suspect that the spreading width, which is an indication of the effect of mixing, will

be smaller than that for basis state strength functions. The effect of one nucleon

interacting with a well-defined many—body system, is smaller than the effect of Au

nucleons interacting in a system defined by indeprendent nucleons in a central field.

If there were no mixing and the nucleons did not interact, then the initial state with

a single nucleon added would be equivalent to a single final eigenstate and the width

of the distribution would be zero.

In single-nucleon transfer reactions, the projectile either gains (pickup) or loses

(stripping) a single nucleon as a consequence of interaction with the target nucleus.

These transfer reactions are the focus of many experiments and their results form the

large body of spectroscopic data available. What the data cannot tell us, due to the



short lifetimes and dense spectrum of excited states, are the amplitudes and cross-

sections for these highly-excited states. Since this cannot be done experimentally, it

is useful to use theoretical calculations for this as well. In chapter 4 we study the

distributions resulting from one-nucleon transfer.

1.3.3 Gamow-Teller Strengths

One of the most useful methods for testing the scope of nuclear shell models, comes

through the study of Gamow-Teller (GT) transitions. Experimentally, it is fortunate

for us that there is a large pool of data for Gamow-Teller fl-decay. Theoretically,

it is to our benefit that the or operator is “simple” enough to allow for detailed

calculations.

There are a number of reasons to study GT transitions from excited states. One

of the most well known being its obvious application to nuclear astrophysics. In high

temperature astrophysical environments, nuclei exist in excited states in accordance

with the Maxwell-Boltzmann distribution. Hence, one needs to understand the re-

action rates and decay properties of these excited states. In nuclear reactions, the

Hauser-Feshbach calculations give acceptable results for reaction cross sections for

N z Z nuclei in stars [6]. But one must try to achieve better accuracy in determin-

ing abundances in supernovae. These abundances are directly dependent on binding

energies, statistics, and fl-decay rates. For A S 30, where transition rates may be

determined by a single state, the statistical Hauser-Feshbach formalism breaks down.

Therefore, the results of shell model calculations for GT transitions from excited

states are particularly important.

Although considerable work has been done for low-lying states, work done using

shell-model calculations to examine Gamow-Teller transitions from excited states re-
 

mains virtually non-existent. Here we do not account for the configurations outside
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of the 0d — 13 shell model space and A-particle admixtures. My work concentrates

instead on the dependence of the Gamow-Teller strength on the configuration mixing

within the 0d — ls shell-model space and its evolution as a function of excitation

energy.



Chapter 2

Shell Model Calculations

2.1 The Shell Model

The shell model with semi-empirical residual interactions is currently the most reliable

approach to microscopic calculations of nuclear properties. It is especially successful

in relatively light nuclei. The matrix elements of the two-body interactions are fit by

the known spectroscopic data for low-lying levels (see table A). With these matrix

elements it is possible to reproduce numerous observable quantities for nuclei in the

region of the sd—shell (160 —+4°Ca). Because of this success, the nuclear shell model

appears to be one of the most promising candidates for theoretical probing of the

structure of complicated wave functions.

Shell-model basis states are related to the motion of independent nucleons in a

static potential well. Assuming spherical symmetry of the potential, each nucleon

moves in an “orbit” characterized by a definite energy and angular momentum. The

shell model successfully reproduces the magic numbers. These numbers - 2, 8, 20, 50,

80, and 126 - are nucleon numbers that produce particularly stable nuclei. The shape

of the ground states for these “closed shell” nuclei is indeed spherical. The correct

11
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order and spacing is achieved by (1) using the Woods-Saxon (WS) potential

V0
 

V r = — 2.1

( ) 11+ ewpur - Ryan ( )

and (2) incorporating a strong spin-orbit(SO) interaction

V50 = €(7‘)(l ' S). (2.2)

Each single-particle state is characterized by a specific (71, l, j, m) set. The single-

particle wavefunction is can be written in the following form,

\Ila = Rn,,(r)Y},m(0, (15). (2.3)

The angular dependence of the wavefunction is given by the spherical harmonics

Y1,m(0, 45). The quantum number n, which corresponds to the number of nodes in the

radial wavefunction Rn,1(r) has values of n = 1,2,3, . . .. In spectroscopic notation,

the orbital angular momentum l is denoted with a single letter 3, p, d, f, g, h and so on

for I = 0, 1, 2, 3, 4, 5, . . .. The total angular momentum j is a conserved quantity in the

presence of the SO interaction and couples the spin and orbital angular momentum

- i = T+ 3'. Each nucleon with orbital angular momentum I can have total angular

momentum values of j = (l d: %) as permitted by the triangle relation and magnetic

projection values of m,- = ( —j, —j + l, . . . , j — 1, j). The strong spin-orbit interaction

produces large level splittings between j = I + % and j = l — % orbits. The projection

values m of the single-particle orbits allow a maximum occupancy of Q = (2j + 1).

Figure 2.1 is a schematic diagram of single-particle energy level positions for the

spherical shell model. As an example, we take the lowest single-particle orbit 131/2.

This orbit has (71, 1,3) = (1,0,1/2), possible m values of :l:1/2, and therefore a max-

imum occupancy of Q = 2. From left to right figure 2.1 shows (1) the harmonic

oscillator major shell quantum number N where

E=hw(N+g) andN=2n+I—2, (2.4)



13

(2) the Woods-Saxon levels without SO interaction, nl, (3) the Woods-Saxon levels

with SO interaction, 121,-, and (4) to the far right, the maximum occupation, II =

(2j + 1). The circled numbers denote the sum 2 (I with and without SO interaction.

Shell model calculations are comprised of three main components: (1) a choice

of single-particle basis, (2) an active model space that depends on the nearest closed

shell, and (3), an “effective” two-body interaction between nucleons. The three re-

gions that must be determined are the inert, or ”core”, model space, that is fully

occupied, the active model space, in which the valence nucleons above the core in-

teract, and the empty model space which is never occupied by nucleons. This cutoff,

or truncation, of the active shell-model space, means that the residual interaction

must be renormalized in such a way that the effect of the space excluded due to the

truncation is approximately included in the “effective” interaction.

The effective shell-model hamiltonian can be written in the form,

H 2 Ho + H’ (2.5)

Where H0 is the independent-particle one-body term due to the inert core of 160, in

the case of the sd—shell model space, plus the single-particle energies of the valence nu-

cleons and H’ is the two-body term due to the two-body antisymmetrized interaction

of the valence nucleons.

The independent hamiltonian H0 describes noninteracting fermions in the mean

field of the appropriate spherical core. The single-particle orbitals IA) have quantum

numbers A = (ljmr) of orbital (l) and total (j ) angular momentum, projection 3', = m

and isospin projection T. The eigenvalues ck of Ho,

Hulk) = eklk), (2-6)
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Figure 2.1: Schematic diagram of single-particle energy level positions for the spher-

ical shell model (taken from [17]).
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are highly degenerate. They are the sums

ck = ; ein,\(k) (2.7)

of energies e,\ of all orbits |A) occupied in a many-body configuration Ik) with occu-

pation numbers 721(k), equal to 1 or 0.

Within our Hilbert space we have a truncated set of shell-model nuclear configura-

tions. Within each configuration, there are a number of ways to occupy the magnetic

substates of the j-levels in the active model space. These variations give rise to the

m-scheme Slater determinants. The m-scheme wave function for n nucleons can be

expressed as

1

111,, = W ;(—1)PP‘1’j1.m1 (1)‘I’jz.m2 (2) - - - ‘I’jnmn (")1 (2-8)

where P is the permutation to be summed over. Expressed as a Slater determinant,

\pjl 1m] (1) \Dj2’m2 (1) ' ° ' wjnvmn (1)

1 \II-hm1 2 \II-M,2 2 \II-mmn 2,n=_,..() ..(1. ..() (2.9)

m I I I I

‘I’jl.m1(n) ‘I’jz.m2(n) ‘I’j...m..(n)  

Our basis states, [k) are combinations of numerous m-scheme determinants that

result in good quantum numbers, J, M, 7r, T and T3, which are the total angular

momentum, its projection, the parity, the isospin and its projection.

One can introduce configurations (partitions) ”P defined by the occupancies n1(k)

of single-particle orbitals. All states lk) belonging to a partition 73 have the same

number of particles in each orbital 711(k). For all partitions, 2.x 721(k) 2 Av, where

A, is the total number of valence particles. The organization of the model space

in partitions presents two useful features. First, a subspace of the m-scheme states,
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defined by a given configuration ’P, is invariant with respect to the projection onto

good total angular momentum J and total isospin T,

IJT; k c 79) = ET | MT3; 171;, c 79) = 2 X5,“ | MT3; m). (2.10)

mC1>

This can be easily seen using the exact expression for the projection operator

Jmaz j-j+ + jg + j3 _ J(J+1)Tma1 T_T+ + 132+ T3 — T(T+ 1).

Par. = H

J¢J. J°(Jo +1) — JU +1) HT. T0(To + 1) — T(T +1)

  (2.11)

Secondly, the m—scheme states and, as a consequence of the invariance of the pro-

jection, the projected states (2.10) also, are degenerate with respect to the one-body

part of the hamiltonian, Ho.

To construct the many-body wave functions with good spin J and isospin T quan-

tum numbers, we start with the m-scheme determinants which have, for given J and

T, the maximum spin and isospin projection,

I M = JT3 = T; m), (2.12)

where m spans the m-scheme subspace of states with M = J and T3 = T.

The J — T projected states Ik) and the effective hamiltonian, (2.10) and (2.5),

are used to construct the hamiltonian matrix, (JT; k [H [JT; k ). Once diagonalized,

this matrix produces our eigenvalues and eigenvectors;

Hla) = Eala). (2.13)

The necessity of using the J—T projected states with the appropriate total angular

momentum, parity and isospin (J"T) instead of the simple m-scheme determinants

was demonstrated already in the first studies of quantum chaos in the nuclear shell

model [19]. The popular cranking model [20] does not preserve the angular momen-

tum. It operates with quasiparticle configurations similar to those of the m-scheme of
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the spherical shell model but taken for a deformed uniformly rotating field. Absence

of correct premixing (or angular momentum projection) implies artificial mixing by

the residual interaction since angular momentum selection rules are lifted. In the shell

model the number of particles is conserved, and the quantum numbers characterizing

a given state are those of exact integrals of motion, total angular momentum, parity

and isospin.

2.2 The 03 — 1d Shell Interaction

We use the Wildenthal hamiltonian [1] which defines the single-particle energies and

the interaction between the valence particles by fitting close to 450 binding energies

and excitation energies for the sd—shell nuclei. In this work we carry out calculations

exclusively for the states with total angular momentum (J), parity(7r), and isospin

(T) of J”T = 0+0 in the many-body systems of 12 and 8 particles above the inert

core of 160. The A, = 12 system can be considered as a model for the 2“Si nucleus.

Examples of other shell model applications for similar purposes can be found in [21].

The 0+0 class contains N = 839 states (see table B.1). They are partitioned into the

shell model configurations according to the occupation numbers 121(k) of the spherical

single-particle orbits {(7111)} = Dds/2,0d3/2 and 131/2. For A, = 8, or 24Mg, the 0+0

class contains N = 325 states (see table B.2).

It is good to note here that spatial symmetry is energetically favorable. The

central potential dominates the two-body interaction, producing a finite short-range

attraction for states that have 11 = 12 and no short-range attraction for 11 ¢ 12.

Expressed as a complete set of functions, the interaction can be written as

V(r) = Z vk(r1,r2)Pk(co.90), (2.14)

k=0



18

where P1,,(c030) are the Legendre polynomials

Pk(c036) = Z47r/(2k +1)Yk’;(fll)qu(92). (2.15)

9

Where qu are the spherical harmonics mentioned earlier (Sect. 2.1).

Table A lists the two-body reduced matrix elements of the residual interaction

within the sd shell-model space. It shows the attractive behavior of the T = 1 states

with even angular momenta. All of the matrix elements with T = 1 and J = 0,2

and 4 are negative. These T and J values are the only ones allowed for identical

nucleons in the same j-orbit. There is also a strong attractive diagonal component

for isoscalar T = 0 pairs. In contrast to that, the T = 0 off-diagonal matrix elements

are mainly repulsive in nature. In all, most of the large matrix elements of the residual

interaction are negative. The diagonal part of the interaction attractive and results

in a downward shift of the energy spectrum. In our discussion of total Gamow-Teller

strengths, we will return to the issue of spatial symmetry and asymmetry.

Our shell model calculations are carried out using the Oxford-Buenos-Aires-Shell-

Model (OXBASH) code [2] with the Wildenthal (USD) two-body interaction. The

original configurations are described in the m-scheme. This requires, as a prerequisite

for the diagonalization, the construction, with the help of the projection operators,

of the proper linear combinations of the m-states within a partition which have the

desired values J”T. These superpositions form the basis states Ik). The OXBASH

computer program uses (1) m-scheme basis states and (2) angular momentum pro-

jection operators (13”), to build and diagonalize matricies with good J and T in

the isospin formalism. As discussed in [21], the projection procedure already creates

fairly complex non-determinantal states which still have very close bare energies.

OXBASH contains seven major computer codes: ‘BASIS’, ‘PREDICT’, ‘PROJ’,

‘MATRIX’, ‘LANCZOS’, ‘MVEC’, and ‘TRAMP’. Appendix C is the output from
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the ‘BASIS’ computer code. ‘BASIS’ generates an m-scheme Slater determinant

basis for a particular number of particles with a particular JITz. A file is created

to store the single-particle states, and restrictions can be placed on the J-orbits and

the major shells. The output details the number of partitions, the placement of

valence nucleons into single-particle j-levels for each partition, and the m-scheme

and j-scheme dimension for each partition. It also gives the number of states with a

certain spin(J) and isospin(T).

2.3 The Scope of the Shell Model

As stated earlier, with the correct order and spacing of the nucleon energy levels, the

shell model reproduces a host of observables. To that end, we examine figures 2.2 and

2.3 which compare experimental energies and predicted energies using the Wildenthal

(W) interaction [1].

Figure 2.2 shows the experimental (left) and theoretical (right) energy spectra for

27Al, 28Si, and 29Si. The experimental and theoretical values are connected by a line

for each of the three nuclei. The slopes of the lines correspond to rms deviations

on the order of 180—190 keV. Figure 2.3 shows the values for two-neutron separation

energy obtained with the W interaction. The isotopes are connected by solid lines

and the deviations between experiment and theory [32,,(th) -— Sgn(ea:p)] are indicated

by the diameter and placement, relative to the lines, of the circles. With the notable

exception of 31Na, 31Mg, and 32Mg, the circles are consistent with the discrepancy of

180-190 keV [22].

In addition to the single-particle energy levels, the nuclear shell model with realis-

tic interactions is successful in predicting r.m.s. radii, magnetic moments, quadrupole

moments, electromagnetic moments, electron scattering, and beta decay.
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On the left side of figure 2.4 the GT strength obtained from either ,3+ or B" decay

of 0d — ls shell nuclei is compared with theory. T(GT), usually denoted B(GT),

represents the summed strength normalized by the sum-rule value of 3(N — Z). It is

usually less than unity because the fl-decay Q-value limits the decay to the lower part

of the Gamow-Teller strength function. Theoretically the configurations outside of

the 0d — ls shell-model space as well as A-particle admixtures are responsible for this

reduction [18]. These higher-order effects can be approximately taken into account by

the introduction of an effective GT operator, 0(GT)eff = 0.77 x 0(GT)f,-ec, where

0(GT)f1-ee is the free—nucleon operator. Comparisons of experiment with the effective

operator calculations are shown on the right side of figure 2.4.



21

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
  

 

8]- . msux-es-m

O

7- 4X :

r E 34*
7 _f —-— /

6r 9g 3 7333:::EE

% r 15%; 9W
3 59 o 7

{55' §,\ \ lg _

Z4”— 3 fl

0 l

E h
5\

X

11.1 .. 5 3

2F 2 5“ ‘—
\

. 3\

Ir- ?5

[.

0L 5 O I

27 28 . .

Al SI 2981

Figure 2.2: Energy levels - experiment (right) vs. theory (left) for three sd—shell nuclei

using the W interaction (taken from [22]).



22

 

   

     
  
    

MSUX-B3-l52

+ I I I I I I I I I I I

1- Si P 8 Cl Ar K ‘

30 —- Mg —
L Ne _

25 -— \ ——

— —[

20 a

a _ i
E 15— a

E — -1

(I) _ O __

IOE '—

: i

5 .—

o \

—[

I I l l I I l l I l I 1

1o 11 12 13 14 15 IS 17 IS 19 20

Figure 2.3: Two-neutron separation energy, 52,, for sd—shell nuclei - experiment vs.

theory, as a function of neutron number N (taken from [22]).



23

 

  
 

T(GT)

1.0 ' *v'1"'*1""1*‘**1"-rfivvavvwlv...‘n.4,“...

FREE—NUCLEON EFFECTIVE

0.8 '1

E-* ’ 1

g i
a 0.6 ° I I 0 j

0:: . 1

E 0.4 i ' ' -€

0.2 ' ~

0 L.L.l ...l.4..11L41l.... 4.41.11Ll..k.l..4.l.nmn

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 1

THEORY

Figure 2.4: B(GT) for ground states of different sd—shell nuclei; experiment versus

theory for the free-nucleon, panel a, and the effective, panel b, GT operator (taken

from [1]).



Chapter 3

Spreading Width of Shell Model

Basis States

3. 1 Background

3.1.1 Definitions

We consider a quantal system governed by the hamiltonian H in a truncated space

spanned by the finite set of the basis states Ik). In the independent-particle shell-

model basis, the hamiltonian (2.5) contains the unperturbed configuration energies,

given by Ho, and the residual interaction, given by H’. In the actual nuclear diagonal-

ization, the integrals of motion, total angular momentum (J), parity (7r) and isospin

(T), are exactly preserved by the projection of the simple shell model m-scheme Slater

determinants so that all states under consideration have the same exact quantum

numbers J"T.

The residual interaction has both diagonal 1:1 and off—diagonal H matrix elements;

~ A

H=H+H. an

It is convenient to include the diagonal part of the residual interaction H in the unper-

turbed hamiltonian. The single-particle eigenfunctions Ik) then satisfy the expression

H.111) = (H. + H1111 = E1114 (3.2)

24
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By including H, we remove the strict degeneracy of the pure shell-model configura-

tions corresponding to a single partition.

If we now diagonalize the full hamiltonian matrix, including the off-diagonal ma-

trix elements H1211 we deviate from the basis states Ik) and obtain the eigenstates Ia)

and their energies Ea,

Hla) = Eula). (3.3)

The eigenstates are complicated superpositions of the basis states;

la) = Z Cflki (3-4)
I:

The fragmentation of basis states, lie) = 20, Cflu), is described by the same trans-

formation coefficients 0,3, which can be taken as real in our case of time reversal

invariance.

In contrast to the Gaussian Orthogonal Ensemble (GOE), where the all basis

states are uniformly mixed, the actual shell-model hamiltonian matrix does not couple

each individual state with all others. The two-body interaction leads to the specific

selection rules which allow the matrix elements only between configurations which

differ in orbits of not more than two particles. This brings the matrix closer to the

type described by the banded random matrix ensembles (BRME)[11]. However our

many-body matrix elements are determined by a much smaller number of independent

two-body matrix elements (63 for the sd-shell), and therefore cannot be considered

as uncorrelated, which is the case in the BRME. The ensembles based on two-body

random interactions in a many-body system were discussed in [23, 24].

The fragmentation, or distribution of strength, of the basis states over the eigen-

states Ia) is determined by the transformation coefficients C}: of eq.(3.4). More

specifically, it is determined by the weights of the components

W“ 5 (C3)”. (3.5)
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This fragmentation is the focus of our studies in section 3.2.

Using completeness arguments, the average characteristics of the fragmentation

can be expressed directly in terms of the matrix elements of the hamiltonian (2.5).

For a given basis state Ik), the centroid, or mean value, of the strength distribution

coincides with the unperturbed energy (3.2),

E1. = ZaEaWé" =Eaal(k|a>(alHla’>(a’|k).. 3.6

= HH: = 61: + Hick ( )

We define the higher (central) moments of the strength function as

at") = 2(5),, — Ek)"w,f. (3.7)

O

The second moment of the strength distribution is determined by the sum of all

off-diagonal matrix elements (starting at a given basis state) squared,

0135 2(Cf)2(Ea - E1:)2 = Z(H,’,,)2. (3-8)
a (#1:

Note that this clearly demonstrates the relationship between the dispersion 0k and

the residual interaction, Hi1» for a given unperturbed initial state. We will use the

notation

—2 1 2 1 2 '2
a =NZak21—V—(ZEa—2Ek) (3.9)

k a k

for the average dispersion of the states [k). The centroids and dispersions can also be

obtained for a subclass of the states Ik), for example, for each partition ’P separately.

For Av = 12, the energy dispersion (3.8) of individual 0+0 basis states turns out

(Fig. 3.1) to be remarkably uniform, with 0;, R5 6 z 10 MeV over the entire space.

Similarly, for the system of A, = 8 we have 6 z 9 MeV. The dispersion a), is closely

related to the spreading width defined more precisely in Sect. 3.2.1. The uniformity

of the dispersion supports the idea of saturation of the spreading width [25, 16] which

has important consequences for understanding the damping of giant resonances.
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Figure 3.1: Energy dispersions 0,, of J" 0+, T = 0 basis states of 2“Si.
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Our objective is to describe how the amplitude for a particular basis state Ik) may

be distributed over the stationary states Ia) of a complex many-body system. Once

accurately described, the distribution tells us what fraction of the original strength

is in each excited state. If the distribution were described by a Gaussian

f(1:) = foemp [M] (3.10)
202

then it would have a Full Width at Half-Maximum(FWHM) of

Pym = «81112 a = 2.355 a. (3.11)

Theoretically, all the moments of the strength distribution can be found from the

strength function

17,.(13) = Z(C;:)25(E — Ea). (3.12)

Q

As compared to the full density of states

p(E) = 26(1) — Ea), (3.13)

the strength function (3.12) is frequently called the “local density of states”. Fk(E)

determines the contribution of the basis state [10) to p(E) at E = Ea,

F1(E) = P(E)((C3)2)E0=Eo (3-14)

The level spectrum for excited states is very dense. As the energy increases the level

density progresses from the number discrete states within a infinitesimal energy range

to an envelope of states within a small energy region. This smearing, or , of the states

is approximated Eq.(3.14) by a histogram where we sum over the eigenstates within

a narrow energy bin. Each bin contains many states with close degrees of complexity.

The functions are normalized according to

dep(E) = N, jdEFk(E) = 1. (3.15)

Here N is the total dimension of the Hilbert space.
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3.1.2 The “Standard Model” of the Spreading Width

The definition of the spreading width traditionally assumes that the decomposition

of the simple state in terms of the stationary components with energies E, has the

Breit-Wigner shape. This would correspond to the pure exponential decay of a simple

excitation with the mean lifetime 7' ~ h/F. This is the case in the “standard” model

[4] of the strength function, where a simple mode is coupled with the infinite picket

fence of complicated background states through constant (or weakly fluctuating) ma-

trix elements.

In the standard derivation of the spreading width [4], there are two steps.

1. Express the many-body hamiltonian in an intermediate basis in which a single

state is coupled to the ”background” of remaining states.

To do this, one singles out a state [k) which is removed from the hamiltonian

matrix.

( H1,1 H13 H13 HlJc \

H2,1 H23 H2,3

H H 3

H = j’" ,3” , , , (3.16)

Hkl ... ... ... Eh
I

(s s s s s a)  

Once this state is excluded, the (N — 1) x (N — 1) submatrix of the hamilto-

nian is fully diagonalized to give intermediate eigenvectors IV) and eigenvalues

EV. This diagonalization defines the transformation matrix (k’lu). The full

matrix expressed in the basis (|k),{|1/)}) has the unperturbed energy E, and

intermediate energies E, on the main diagonal and off-diagonal matrix elements

V)“, = pk = Z HLkIUCIIV) (3.17)

k';ék
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in the 117‘” row and the 11th column, V 7é 11:, due to the coupling between the

single state [k) and the background.

I E1». Vk,2 Vk,3 Vk,u )

V2,): E2 0 0 0 ..

V3,]. 0 E3 0 0

H: 5 0 0 0 (3.18)

v.4. 0 0 0 Eu

K E i 3 5 E )  

The advantage of this approach is that the omission of a single state cannot

significantly change the statistical properties of the dense spectrum. We can

expect that the level density of the background is the same as in the exact

solution including all N states.

2. Diagonalization of the intermediate hamiltonian.

The problem of interaction of a single state with background states is easily

solved. The exact energies E 2 E, are the roots of the secular equation (poles

of the Greens function G(E))

2

l“— — 0. (3.19)G-1(E)EE—Ek—ZE_E _

The intermediate energies E, and the matrix elements (3.17) do depend on the

choice of the removed state [10) but the roots E0, do not.

The eigenstates Ia) are the combinations

IO) = Oil/C) + Z Bill/)1 (3-20)

where the amplitudes Cf, which coincide with those in (3.4), determine the

fraction of the strength of a simple state Ik) carried by an eigenstate Ia).
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Eliminating the coefficients Bf} with the use of the Schrédinger equation

(leIO) = (leCE‘lk) +(leZuBfIl1/l

 

E0, CI? = Ek Cf-l- Z” Vim/B3 (3’21)

and normalizing the wave function, we obtain the weights

(16?"1 —1 V2 —1
a _ a 2 _ _ __k.__V

Wk = (0“) _ ( dE )E=E.. — l1+;(Ea — E,)2l 1 (3'22)

or the residues of C(E).

The results of the standard model are based on additional assumptions.

(a) The background spectrum is dense and rigid so one can consider instead

an equidistant sequence of levels with the mean spacing D. (E, = VD;

V=0,:l:1, i2,...)

(b) This spectrum does not considerably change due to the removal of a single

state Ik).

(c) The mixing is sufficiently strong, (V2)/D2 >> 1.

(d) The coupling intensities V3,, are uncorrelated with the energies E, of the

background states and weakly fluctuate around the mean value (V2).

According to (3.14) the dense uniform background is characterized by the level density

p(E) 2 0'“. Therefore, one can introduce a smooth strength function Fk(E) of the

state Ik),

11.02) = ZWME — E.) = p(E)<W:>E.=E (3.23)

where the average is taken over several eigenstates in the vicinity of energy E. The

assumptions of the standard model allow one to substitute V3,, effectively by the

appropriate average value (V2). The following summation over the infinite picket

fence of the background states implies the infinite energy dispersion.
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Under these assumptions, and using (3.19) and (3.22), it is easy to calculate the

sums over the intermediate states 11 (see appendix D) and to obtain a strength function

(3.14) of Breit—Wigner shape

1 1‘,

ME) = '23? (E — E.)2 + I‘g/4 (3'24)

 

where the spreading width I“.J is given by the “golden rule”

(V’)
D . F, = 27r (3.25)

The expressions (3.24) and (3.25) are sometimes taken for granted although they are

valid under the above-mentioned assumptions only.

3.2 Strength Functions of Shell Model States

There are 63 independent two-body interaction matrix elements which define all

many-body matrix elements ( see Appendix ??) for the 0d — ls shell-model space.

Therefore, the many-body matrix elements cannot be considered uncorrelated as in

the GOE or BRME. The global properties of the mixing interaction are seen [21] by

inspection of the matrix H’ prior to the actual diagonalization. The second moment

0;, (3.8) stays essentially constant for the majority of the states Ik). Its fluctuations

are presumably of statistical character. The constancy of 0;, (figure 3.1) is one of the

manifestations of the N-scaling [26, 27] in that, as the mixing proceeds, involving the

increasing number N of fine structure states, each coupling matrix element diminishes

o< 1/\/N keeping the sum (3.8) constant. The same phenomenon is responsible for

the saturation of the damping width of giant resonances [28, 29] and isobaric analog

resonances [30, 31].
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3.2.1 Strong Coupling Limit

As discussed in [21], (d) is the most vulnerable assumption of the standard model.

That the coupling intensities V1121; are uncorrelated with the energies E, of the back-

ground states is correct only as long as the resulting standard spreading width is

relatively small. In general, the matrix elements decrease as one moves away from

the centroid of the original state. This can be understood from the band-like struc-

ture of the shell-model hamiltonian. Therefore, I’, should be compared with the

energy range AE over which the level density and the coupling matrix elements can

be considered as approximately constant.

In the framework of the shell model, the two-body interactions are capable of

admixing the close configurations of gradually increasing levels of complexity. The

shell-model selection rules define, for each basis state, its doorway states as those

participating in the first mixing step. In the exciton (particle-hole) language these

doorway states belong to the same or next level of complexity. Because doorway

states have their own finite spreading widths, their strength covers a finite range of

energy AE. Outside of this interval the magnitude of the coupling matrix elements

V1“, decreases. As discussed in [12, 15], this restricts the validity of the standard

model and can bring the shape of the strength function closer to Gaussian.

The finiteness of this energy interval plays no role if I“, < AE. The formal limit

of AE ——> 00 corresponds to the standard model. But as the coupling strength and

the spreading width increase, the finite size of the doorway strength interval becomes

important. One can estimate what happens in this limit assuming that the coupling

V1121; suddenly disappears at some finite distance AE 2 EV — E1c from the centroid

Ek. The strength distribution is then determined by the outer roots of the secular
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equation (3.19) which are located at the distance

(E0, — E1)2 = Z V1121; = 0,”: (3.26)

where the last equality follows from the definition (3.8), the expression for the trans-

formed coupling matrix elements (3.17), and the completeness of the set of the inter-

mediate states IV) in a space of dimension (N — 1).

The result (3.26) allows one to say that the bulk of the distribution lies between

+01: and —01,. From there we can give a simple estimate

P50 z 20k (3.27)

for the spreading width in the limit of complete mixing. Written as (3.27), the

expression for the spreading width does not refer to the specific form of decrease of

the coupling matrix elements V1“, as one moves away from the centroid Ek. Using the

idea of uniformity of complicated states in a given energy region [16, 21] we expect

small variations of the width for various states lie) in this limit. Indeed, the quantity

0;, is found to be roughly constant for all states.

The new and important property of the strong coupling limit (3.27) is that the

quadratic dependence of the spreading width on the interaction strength is replaced

by the linear dependence. Such a prediction was first made on qualitative grounds [12]

in relation to the problem of the damping width of the double giant resonances. In

the harmonic approximation for the giant mode, the matrix elements V1", of coupling

between the collective n-phonon state lie) and the compound states IV) scale as fl.

Therefore, in agreement with data [14], the ratio F(n)/F(1) of the widths of the

multiple and single excitations should increase oc \fii in the strong coupling limit

(3.27) rather than or n as predicted by the golden rule (3.25) with the quadratic

dependence on the coupling matrix elements.
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The detailed behavior of the spreading width as a function of the interaction

strength depends on the explicit dependence of (1) the level density and (2) the

coupling matrix elements on energy of thebackground states. The general theory

which incorporates this behavior as input and then predicts the strength function

and the value of the spreading width was developed in [16], see also [21]. When going

from weak to strong coupling, the strength function evolves from a Breit-Wigner

distribution, eq.(3.24), to a nonuniversal shape with a finite second moment. The

spreading width (defined as the FWHM) undergoes a transition from the standard

golden rule quadratic expression to the linear dependence, similar to our estimate

(3.27).

In the region of chaotic dynamics one defines a generic strength function, F(E),

of the basic states where the basis state label 11: is omitted. Of course, there can be

fluctuations of the spreading width from one basis state to another one. The case of

the collective state with a nongeneric strength function was studied in [16].

Figure 3.2a shows a total energy level spectrum of 325 0+0 states (see table R2)

for 8 valence particles (“Mg nucleus) as a function of a parameter A (in percent) taken

as a common factor in front of the residual off-diagonal interaction hamiltonian H

(H' = H + A H), where A = 1 corresponds to the realistic strength. One can also see

the overall repulsive effect of the interaction on the spacing of the levels. Figure 3.2b

shows the same set of levels on an unfolded number scale, and a magnified fragment

containing about 30 levels in the middle of the spectrum is shown in 3.2c. The uniform

level spacing of the unfolded scale allows us to concentrate on the fluctuations of each

state as a function of interaction strength. The avoided crossings, being very frequent

at A S 0.4, become more rare at larger A. As discussed in [32], as A increases, the

“gas” of levels with finite N is expanding. This general expansion is clearly seen in

Fig. 3.2a. It goes approximately linearly with A. In this region the increase of A
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mainly rescales the energies rather than mixes the states.

The direct diagonalization of the hamiltonian matrix results in the energies E, of

the eigenstates Ia) and their wave functions expressed as the superpositions (3.4) of

the basis states. The level density (3.13) has a Gaussian shape with the variance which

broadens by 5 Mev from A = 0 to A = 1. The mean level spacings near the middle of

the spectrum are D0 = 24 keV and D = 40 keV for A = 0 and A = 1, respectively. It

is known [23, 33] that the Gaussian shape occurs mainly due to combinatorial reasons

for the two-body interaction in the many-body system, irrespectively of the random

or deterministic nature of the two-body matrix elements. In contrast, the Wigner

semicircle level density is obtained for the uncorrelated many-body matrix elements

in a full or banded (but sufficiently wide) matrix [21].

The local level statistics display an onset of chaos already for the weak interac-

tion, A z 0.2. The complexity of the eigenstates and the related localization length

measured in the original basis continue to regularly evolve beyond this point. This

manifests the greater sensitivity, compared to energy levels, of the wave functions to

the deviations from the chaotic limit. Below we concentrate on the structure of the

individual eigenstates which will allow us to extract the generic strength function.

3.2.2 Shape of the Strength Function

The presence of single-particle and collective motion (shape vibrations, rotation and

giant resonances in nuclei) associated with simple excitation modes displays the reg-

ular mean field component of dynamics persisting in the stochastic region. Of course,

those states are highly fragmented and the concept of the localization length of an

eigenstate can be translated into the conventional notion of the spreading width [4]

of a basis state.



E
(
l
a
v
)

37

W
S
t
i
l
t

N
u
m
b
l
r
S
e
u
-

 

°__________JJ—»1

14 RAMs—La>J—A—L—A—A—A3o 1 1.

7101110 20 M to so so 70 no 1101011110

 

     
£1

 

__L..J_L_._1__L_L_L._L_.4 M14...

[0010 ll) 39 ‘0 50 BO 70 all ID 100110

Pomonl int-"cum: Slrunlth Pm.“ lnuruliun 5W?! Percent Inldl'nt'llen Slr'n‘lh
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One of the main conclusions of the analysis given in [21] was that of similarity of

individual wave functions in the chaotic region, in accordance with Percival’s conjec-

ture [34]. The degree of complexity of the eigenstates measured by the moments of

the distribution function of the amplitudes Cf,” was found to saturate in the central

part of the spectrum. The average properties of the eigenstates with approximately

the same degree of complexity can be related to thermodynamical entropy and tem-

perature of the equilibrium thermal ensemble [35]. These properties can be extracted

by averaging out the fluctuations. We expect that the closely related problem of the

fragmentation of the basis states over the eigenstates can be solved similarly.

There are three obvious possibilities for the shape of the strength function dis-

tribution; (a) a sharp peak, (b) a smeared distribution of finite width, and (c) a

constant distribution of infinite width. Options (a) and (c) are the extremes of either

complete order, in which case Cf:r = 5;“, and lie) 2 la), or complete chaos where

C}: = C0 = 1/\/_1\7 for N dimensions. Option (b) implies a relation between the

strength function Fk(E) and the energy difference of E — Ek. All three possibilities

are shown in figure 3.3a - c.

Figure 3.3 clearly displays the relation between localization and spreading width;

with 3.3a being completely localized, and 3.3a being completely _d_elocalized. Fig. 3.4

shows the “empirical” strength functions Fk(E), eq.(3.14), for nine individual basis

states Ik) with centroids Ek located in the middle of the spectrum.

The histograms obtained with the bin size of 1 MeV are plotted as a function of

the energy distance from the corresponding centroid. Taking the basis states in this

high-density, mid—energy range as members of a statistical ensemble, we superimpose

their strength functions in order to reduce the statistical fluctuations and produce

a smooth “generic” strength function. In Fig. 3.4 this averaging is performed over
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10, 100 and 400 basis states, parts 3.5a, 3.5b and 3.5c, respectively. The resulting

strength function is already very smooth at the step b.

Fig. 3.6a demonstrates that the Breit-Wigner curve does not fit particularly well

in any region. For the detailed fit we use the histograms with the finer bin size of

100 keV. The wings of the curve are decreasing much faster than expected for the

Breit-Wigner distribution. Our attempt, Fig. 3.6b, to fit only the central region

results in an extremely poor fit to the tails, Fig. 3.6c. The poor fit implies that the
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Figure 3.6: The overall Breit-Wigner fit (solid lines) to the strength function of Fig.

3.5, c (histograms), panel a, to the central part of the strength function of Fig. 3.5,

c (histograms), panel b, and the same fit on the logarithmic scale, panel c. The bin

size is 100 keV.
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Figure 3.7: The Gaussian fit (solid lines) to the strength function of Fig. 3.5, c

(histograms), panel a, and the same fit on the logarithmic scale, panel b. The bin

size is 100 keV.

strong coupling case is closer to reality for the states in the middle of the spectrum

at the actual interaction strength.

Although the BW fit can be used to determine the FWHM, the overall Gaussian

fit, Fig. 3.7a, is a better fit to the distribution. The variance of the basis-state strength

functions obtained from the Gaussian fit, 01,”, = 8.3i0.3 MeV, the typical spreading

width (FWHM) of the central 0+0 states equals I‘ba,,-_, = m05“,, = 19.6 :l: .7

MeV. This agrees with the estimate (3.27), PM”, = 26 = 20 MeV made for the strong

coupling limit. Again we observe deviations from the Gaussian shape in the tails of

the strength function, Fig. 3.7b.

Because of the breakdown of both the Gaussian and the Breit-Wigner fits for the

tails of the strength function, it becomes necessary to examine both the central region

and the tails of the distribution more closely. If we fit a Gaussian to the only central
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Figure 3.8: The Gaussian fit (solid lines) to the strength function of Fig. 3.5, c

(histograms), panel a, and the same fit on the logarithmic scale, panel b. The bin

size is 100 keV.

portion of the distribution (figure 3.8), the variance increases to abw, = 8.921207 MeV,

and the spreading width (FWHM) of the central 0+0 states equals Fba,,, = 21.0 :1: 1.6

MeV.

According to eq.(3.14), the strength function histograms actually involve two fac-

tors, the average value ((C,f‘)2) of the eigenfunction components corresponding to the

basis state lk), and the level density p(E). The level density itself is described [21] by

the Gaussian curve of Fig. 3.9. This is typical [23] for the many-body systems with

two-body interactions in the finite Hilbert space. The level density effects dominate

the central part of the strength function distribution. Eliminating the level density

from the strength function, we come to the “pure” weight function W: = ((C£)2) of

Fig. 3.10.

We see that the Breit-Wigner shape that fit poorly to the strength function (Fig.
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function averaged over 400 states, panel a, and the same fit on the logarithmic scale,

panel b. The bin size is 1 MeV.
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3.6a) is noticeably improved in the central region for the pure weight function of

Fig. 3.10a. The tail of the weight distribution on a logarithmic scale shows a linear

behavior, Fig. 3.10b. It is clear from Fig. 3.11, especially from the logarithmic plot

of Fig. 3.11b, that such an exponential fit does, in fact, represent the tails of the

strength distribution. The final form of this fit is

 

E—Ek)
Fk(E — Ek) 2 F0 exp(— E1 (3.28)

where the energy localization length is E1 = 5 MeV. Of course, the expression (3.28)

is valid only for the tails of the distribution, (E — E.) > F. The exponential behavior

holds for at least three orders of magnitude.
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Figure 3.11: The exponential fit of eq.(3.28), solid lines, to the wings of the strength

function of Fig. 3.5, c (histograms), panel a, and the same fit on the logarithmic

scale, panel b. The bin size is 100 keV.

One could, in fact, construct a function that would be a weighted combination

of an exponential and Breit-Wigner or Gaussian. The problem with this approach is
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interpretation. It would not be possible to form an interpretation of any consistent

nature with our present knowledge. The strength function falling off much faster than

the Breit-Wigner distribution was also seen in a study of atomic levels [36] where it

was difficult to establish the generic shape of the actual distribution because of the

lack of statistics.

The exponential localization is the part of the folklore accompanying studies of

complicated wave functions [37]. To the best of our knowledge, there is no general

proof of this notion. The exponential localization of the wave functions in real space

is known [38] in disordered solids. The situation in this case is different because the

localized functions of nearly the same energy do not overlap if the distance between

their centroids exceeds the spatial size of the wave function. In our case the exponen-

tial wings of the strength function coexist with the perfect chaotic level statistics.

3.3 Spreading Width

3.3.1 Two-Step Diagonalization and the Spectral Function

In order to observe the spreading widths of individual shell-model states, we per-

formed the procedure of the two-step diagonalization described earlier (section 3.1.2)

in relation to the standard model. Taking out an arbitrary basis state lie) and per-

forming the diagonalization of the remaining matrix we obtain the intermediate basis

(Ik),{|u)}) with energies (Ek,{E,,}) and coupling matrix elements ka, eq.(3.17),

between the single excluded state and intermediate fine structure states. As we dis-

cussed, in the realistic situation these matrix elements are correlated with the energy

distance Ek — Eu. To characterize the distribution function of the coupling matrix

elements, we introduce, for each removed state Us), the spectral function (form-factor)

gk(Ek, Eh + w) = Z Isz/I26(Ek — EV + ca). (3.29)

V
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This function can be presented by a histogram with the help of the density fik(EI,)

of the intermediate states available for the mixing with the single state Ik). Intro-

ducing the average coupling intensity (II/M2), we get for the spectral form-factor

(3.29)

gk(Ek, Ek + w) z ,5k(Ek + w)(|Vk,,]2). (3.30)

According to (3.26), this function is normalized as

fdwgk(Ek, E}, + w) = 0,3. (3.31)

The spectral form-factor gk(Ek, E, + w) is shown in Fig. 3.123 for a single state

|k) taken in the middle of the spectrum. It is concentrated around the unperturbed

energy, E, z Ek. Using the same arguments of uniform complexity, we expect to

be able to extract the “generic” spectral function y(w), depending on the transition

frequency 02 only, from the superposition of the form—factors gk derived for different

original states [10).

As the interval of averaging increases, the average form-factor rapidly evolves

to the Gaussian shape. The form-factor averaged over 100 close states is shown in

Fig. 3.120. The Gaussian fit to the average distribution for 100 states is shown in

figure 3.13a. The dispersion of the Gaussian is equal to 09 = 17 MeV. The fitted

normalization leads to the integral f dw§(w) = 104 MeV2 which agrees, see eq.(3.31),

with the average value of 0;, z (3 z 10 MeV.

Dividing out the level density of the intermediate basis states from the average

form-factor (Fig. 3.13a), we determine the average coupling intensity (Fig. 3.13b),

(II/kylz), eq. (3.30). Except for the excess corresponding to the highest and, less

pronounced, lowest states IV), the matrix elements are nearly constant on the level

(lVl’) 1. 0.149(62) Mev2.
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The value of the average coupling strength substituted into the golden rule, F, =

27r‘V32-z, along with the average level spacing ~ 100 keV would result in the spreading

width 1‘ z 9.4 MeV which is less than the value of 21 MeV found directly from the data

by a factor 2.2. The evident disagreement demonstrates that the golden—rule estimate

based on the standard model is not reliable when dealing with the fragmentation and

spreading widths which are of the order or larger than the scale of the change of the

level density. Taking a significantly larger level density in the center of the spectrum,

p(E) 2 213, with D z 40 keV instead of 100 keV, we would get the golden-rule width

of 23 MeV, which is closer to the actual value.

This means that the realistic coupling is strong and involves remote parts of the

spectrum with a different level density which mainly determine the shape of the form-

factor. Recall that in our discussion of mixing and width 0k, N-scaling was the scale

by which we measured the extent of the mixing. That is, as the number N of fine

structure states involved increases, each coupling matrix element diminishes, keeping

the sum (3.8) constant. So, in agreement with the idea of N—scaling, the matrix

elements are bigger and display stronger fluctuations near the edges where the states

of lower complexity are located.

Finally, we show in Fig. 3.14 that, in the intermediate basis, the wings of the

strength function Fk(E) can be actually calculated by perturbation theory using in

eq. (3.14) the weight coefficients

((CI‘W) -+ (CD2 ( V’” (3.32)
)2

Eh — Eu '

The agreement with the original calculation in the peripheral regions is seen by coin-

cidence of the two logarithmic plots in these regions (Fig. 3.15).
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3.3.2 Dependence on the Interaction Strength

Here we study the evolution of the strength function and the spreading width as

functions of the strength of the residual interaction A. As we mentioned, the level

statistics reveal standard signatures of quantum chaos already at A z 0.2. The mixing

of the wave functions, the growth of the degree of complexity and the evolution of

the strength function are parallel aspects of the stochastization process.

In agreement with the general trends discussed in Sect. 3.3.2, at weak interaction

strength the shape ‘of the strength function becomes closer to the Breit-Wigner one.

Figure 3.16 clearly shows the Breit-Wigner behavior for A = 0.1,0.2 and 0.3, panels

10a, 10b and 10c, respectively.

The whole evolution pattern is seen in the logarithmic plots of Fig. 3.17, a through

1". The curve evolves in the direction of the Gaussian in the central part with expo-

nential tails. The Breit-Wigner description of the main part of the strength function

can be considered as satisfactory up to A z 0.4. In this region the narrow strength

function is not strongly influenced by the change of the level density. As seen from

Fig. 3.18, the quality of the Gaussian fit clearly improves as one goes to the strong

coupling limit; the last panel, 13d, corresponds to A = 1.2.

Using “empirical” generic strength functions, we can trace the evolution of the

spreading width (FWHM) as a function of the intensity of the residual interaction.

Figure 3.19 shows the results for the values of A between 0 and 1.2. The dependence of

the spreading width on the interaction changes from quadratic for the weak coupling

limit to linear for strong coupling.

At this point we limit ourselves with the simple interpolation formula for the
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Figure 3.17: Breit-Wigner fit (solid lines) to the strength function averaged over 400

0+0 mid-energy states for A = 0.1, 0.2, and 0.3, panels a, b, and c, respectively, and

A = 0.5, 0.7 and 0.9, panels d, e, and f, respectively, on a logarithmic scale. The bin

size is 100 keV.



 

 

 

  

    

 

 

I I I I I I I I I I I I I I I I I I I T I I I

I (a) A = 0.6 d

0.008 — —

0.0 _ __

0.006 —— (b) A = 0-8 —

A

5 h I
,3: 0.0

L“ — (c) x = 1.0 -

0.004 — —-

— 4

0.0 g

0.004 — (d) A 1.2 A

00 1 1 L l l J l .4. 4h;

—60 —40 —20 0 _ 20 40 60

E — Ek(MeV)

Figure 3.18: Gaussian fit to the strength function averaged over 400 0+0 mid—energy

states for A = 0.6, 0.8, 1.0, and 1.2, panels a, b, c and d, respectively.
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spreading width as a function of the strength of the residual interaction A,

7A2
1‘: .

1+yA

 (3.33)

The parameters 7 and y of eq.(3.33) are related to the weak and strong coupling

limits. For the weak interaction case, the comparison of (3.25) and (3.33) determines

_ ELMO»
_ DO A, (3.34)

where Do is the mean level spacing for the unperturbed system. The strong coupling

limit determines, according to (3.27),

 

_ fl ... 7r(V2)

where (V2) and the mean value 6 of the quantity (3.9) are taken at A = 1 under the

assumption that the actual value of the interaction strength belongs to the chaotic

regime.

Our results are nicely described by the simple interpolation (3.33) with parameters

7 m 44.9 MeV and y z 1.32. Our estimates (3.34) and (3.35), using the value of the

average level spacing at weak interaction Do z 21 keV, predict for these parameters

7 = 44.6 MeV and y = 1.23.

3.4 Summary

We conclude our analysis of basis state spreading widths by enumerating our findings.

Our primary goal was to describe the shape of the distributions as a function of

excitation energy. We also calculated the widths of these distributions as a function

of interaction strength.

Our main points relating to basis-state strength functions, as far as the shape of

the “average” distribution is concerned, are as follows:
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1. An overall Gaussian fit, Fig. 3.7a, is consistent with the central region of the

strength function.

2. The variance obtained from the Gaussian fit is 05m, = 8.3 :l: 0.3 MeV giv-

ing a spreading width (FWHM) of the central 0+0 states equal to F508,, =

Wabash = 19.6 MeV. This width agrees with the estimate (3.27), FSC 2

26 = 20 MeV made for the strong coupling limit. It is clear that the Breit-

Wigner shape predicted by the standard model of the strength function does

not hold in the realm of strong coupling.

3. The central part of the distribution is successfully fit with a Gaussian, but

we observe deviations from the Gaussian shape in the tails (Fig. 3.7b) of the

strength function. Figure 3.11 shows that the wings can be described by an

exponential fit Fk(E — Ek) z F0 exp(—E—E§i). The exponential tails of the

strength function Fk(E) can be reproduced by perturbation theory.

Next, our results pertaining to the interaction strength.

1. The quadratic dependence of the spreading width on the interaction strength

is replaced by the linear dependence as we go from weak to strong coupling, or

as A goes from 0 —> 1.

2. Just as we can artificially suppress the interaction to retrieve the standard

golden rule, we can enhance the interaction. By setting A = 1.2 we see the

continuation of the linear trend. We also see that the Gaussian level density

determines the shape of the strength function distribution, even for the wings

which were formerly described by an exponential curve (Fig. 3.18).



Chapter 4

Spectroscopic Factors

4.1 Introduction

As a bridge from calculations of the basis-state strength functions (ch. 3) to calcula-

tions of Gamow-Teller strength functions (ch. 5) we examine the spectroscopic factor,

Sj. In this section we carry out calculations for the transitions from the J"T = 0+0

1+

initial states of 8 particles above the inert core of 16O to the J"T = 2 % final states of

9 particles above the inert core of 160 (see table 3.3). The system can be considered

as a model for the transfer reaction leading to the transition from the 24Mg nucleus

to the 25Mg or 25Al nucleus. We look closely at the width of the distribution, both

for insight into excited-state single-nucleon transfer and in relation to the widths for

basis-state strength functions and Gamow-Teller strength functions.

In single—nucleon transfer reactions, the projectile either gains (pickup) or loses

(stripping) a single nucleon as a consequence of interaction with the target nucleus.

This process has three integral steps:

(i) the projectile moves in an average field of the target nucleus,

(ii) a nucleon is transferred from the projectile to an orbit in the target,

(iii) the outgoing particle proceeds in the average field of the final nucleus.

The final state of the residual nucleus is formed from the addition of the transferred
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nucleon to the initial state of the target. From stage (ii) we garner information about

the structure of the nuclear states of the final nucleus.

Strong excitations in stripping reactions indicate a state in the projectile nucleus

with dominant single-particle features. The nucleon is tightly bound to projectile

nucleus and has to be highly excited to remove a nucleon from the highest filled

single-particle orbit. In pickup reactions, dominant single-particle features of the

target mean a state in the projectile nucleus that is strongly coupled to the loosely

bound target nucleon it picks up. The nuclear matrix elements of these transfer

reactions are commonly expressed in terms of the spectroscopic factor 5,,

1
_ t '

S.- — 2,, +1|<fla,-,.lz>|2- (4.1)
 

Single-nucleon transfer has a definite spreading width determined by the overlap

between the initial and final nuclei, denoted by the Coefficient of Fractional Parentage

(CFP) (f Iaitlz'). In terms of the reduced matrix elements of the creation operator aI,

we can express the amplitude 0,- as

(f, Jillalillia Ji)

I/ZJf‘i‘l .

0J(Ji7‘]f) =

 (4.2)

Since aitlz') is overlapped with (f I, we can view the raising operator as a filter

between the initial and final eigenstates. The initial and final states considered in

the one-nucleon transfer are both eigenstates of their respective nuclei. In dealing

with single-nucleon transfer, we are not looking at how the basis states are spread

over eigenstates as in chapter 3, we are instead looking at how the state K) = ahli)

is spread over the eigenstates. This being the case, it is plausible that the spreading

width for single-nucleon transfer will be smaller than that for basis states. The

simplicity of the one-body raising operator implies that the excitation caused by a},
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will not appreciably change the original eigenstate wavefunction |i), which already

contains the full dynamics of A, particles.

Our calculations involve only the creation of a single particle in the 3% orbital.

+ for all shell-Single-nucleon transfer transition is from JET,- 2 0+0 to .1fo = -;- %

model eigenstates in the 0d — 13 shell model space. The 0+0 class contains N = 325

states and the 3+3 class contains N = 1434 states (see table B.3) partitioned into the

shell model configurations according to the occupation numbers of the three active

spherical orbits in the sd—shell.

4.2 Spreading Widths

As with the fragmentation of shell-model basis states, and later with Gamow-Teller

strength distributions, the width of the distribution gives us insight into the role of

the residual interaction. In cases of strong coupling this is especially important as a

means of determining the extent of stochastization and chaos in high-lying levels.

Figure 4.1 shows the ground state distribution for the A —> (A + 1) single-nucleon

transfer. It is centered on the mean value of the difference (E; — E?) between the

initial A = 24 and final A = 25 nuclei. When compared to the experimental re

sult of figure 4.2, we see the agreement between the theoretical and experimental

distributions for the ground state and first excited state.

In figure 4.3, we see the distribution of strengths of the spectroscopic factors for

the excited levels. Panels a - c of figure 4.3 show the distributions summed over the

ground and excited J”T = 0+0 states 1 — 100, 101 — 200, and 201 — 325 respectively.

From the distributions we see that the amplitude is fairly constant in all three energy

sectors. There is also a relatively small change in the width from 4.33 to 4.3c. This

is consistent with a conclusion that the transition strengths depend on the relative 
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Figure 4.1: The calculated spectroscopic strength functions—for A = 24 —» A = 25

plotted as a function of difference in excitation energy (E;1 - E}1) between the ground

state of the initial nucleus and all states of the final nucleus. Energy in MeV.
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Figure 4.2: The experimental [39] spectroscopic strength for A = 24 —> A = 25

plotted as a function of excitation energy Eh. Energy in MeV.
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energy between the initial and final state energy levels (EL), but not on the specific

level from which the nucleon transfer occurs.
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Figure 4.3: The spectroscopic strength functions for A = 24 —> A = 25 plotted as a

function of difference in excitation energy (E;: — 7) between the initial and final

nucleus for states 1-100, panel (a),101—200, panel (b), and 201-325, panel (c). Energy

in 100 KeV.

There is an obvious low-energy tail for the i = 101 — 200 distribution. To fit this

distribution we make a cut that doesn’t weight the low end of the distribution. By

doing this, we get a more accurate fit ( fig. 4.4) to the central portion of the spec-
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Figure 4.4: Gaussian fit to the spectroscopic strength function distribution for a

superposition of 100 mid—energy states excluding the low—lying tail. Energy in MeV.
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troscopic strength function. This cut gives a Full Width at Half-Maximum (FWHM)

value of Fat = 8.55(34) MeV. The error here is that given from a X2 fit to the data

after the cut. At this point, the low-energy tail is not fully understood. The width for

the middle set of spectroscopic amplitudes ( fig. 4.5) is Fa: = 8.73(76) MeV without

the low—energy cut. The width for this distribution is less than half the width seen

for the basis state distributions of section 3.2.2.
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Figure 4.5: Gaussian fit to the spectroscopic strength function distribution for a

superposition of 100 mid-energy states. Energy in MeV.
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4.3 Summary

We will now conclude our analysis of spectroscopic spreading widths. Our primary

goal was to describe the shape of the average distributions as a function of excitation

energy. We also calculated the widths of these distributions in order to observe the

width relative to basis-state strength functions and, later, Gamow-Teller strength

functions. So, for spectroscopic factors, we conclude by saying

1. The width of the set of spectroscopic amplitudes corresponding to the middle

100 states is Pa: = 8.73(76) MeV. A better fit to the curve is obtained if we

fit the mid-to high-lying region of the spectrum using a Gaussian curve. The

FWHM is then fa. = 8.47(25) MeV.

2. Both the Gaussian shape and the decrease in width relative to basis state

strength functions, F503;, = 20 MeV to Pa: = 8.7 MeV are reasonable results.

(a) The Gaussian character of the distribution follows from the fact that we

are again in the region of strong mixing.

(b) The final state wavefunctions are interpreted as being closer to initial—state

wavefunctions that have been acted on by a simple operator, than basis

states are to these shell-model eigenstates. These eigenstate wavefunctions

already include effects of the strong interaction between A, particles.



Chapter 5

Gamow-Teller Transitions

5.1 Introduction

Gamow-Teller (GT) transitions represent a typical one-body process in which one

nucleon is destroyed and another is created. It is distinguished from another class of

weak transitions, the Fermi (F) transitions, by the fact that GT decays involve the

transfer of one unit of spin angular momentum 5. GT matrix elements are important

in that they give us information about the coupling of the nucleon spins, and spin-

dependent effects of weak interactions.

The Gamow-Teller operator is defined as a sum over nucleons (j)

OuGT(i) = 2 ”was (5-1)
1

The Gamow-Teller strength function is obtained by calculating the matrix element

squared for the (f IaTli) transition,

BGT(i;i —* f) = Z W: JfTJIOuGTIi; JJ'TZUI2 (5-2)
it

between the eigenstates of the initial Ii; JET.) and final (f; Jfol nuclei. Fermi tran-

sitions can be described in a similar form by

BF(i;i —* f) = Hf; UTA; Tsjli; «UMP. (5-3)

.7
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The GT operator changes both the intrinsic spin, S, of the nucleus and the

isospin T. S' is altered by the 3 operator, constructed from the Pauli spin matricies,

(ax, ay, 02), and related to the 5' operator by 3 = g. T is altered by the 7'" operator,

A

T = 2: j. (5.4)

i=1

In nuclear physics we deal primarily with neutron rich nuclei. For this reason “r...

acting on a proton will produce a neutron. In general, our single-particle isospin

operators act in the following manner:

T+|P> = I”) T+|nl = 0

T—lp) = 0 T-ln) = IF)-

Using the Wildenthal hamiltonian, we construct the realistic wavefunctions and

use them to calculate the amplitudes for Gamow-Teller transitions. I will be exam-

ining the transitions from J,-"T.- = 0+0 to Jfo = 1+1 for all initial eigenstates in

the 0d — ls shell-model space, where J, 7r, and T are good total angular momentum,

parity, and isospin quantum numbers. In addition to the transfer of a unit of spin

angular momentum (AS = 1), single-particle GT transitions have the following se-

lection rules:

AI = 0

Aj = 0,1 J,- = 0 —-> Jf = 0 transitions forbidden

At = 0,1 T.- = 0 —> T] = 0 transitions forbidden

An = 0

,B‘-decay and (n,p) charge-exchange reactions are transitions that we associate with

OGT(-)
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n—>p+e‘+I/_e-

One can also have a 6+ or (p,n) reaction, which along with the (p,p’) reaction, fall

under the heading of Fermi or Gamow-Teller transitions. In the case of a (p,n)

reaction, a nucleus A is bombarded with a beams of protons. A proton is absorbed

by the nucleus A and a neutron is emitted in the exchange.

A(Z,N)+p —) A’(Z+1,N—1)+n + e++ u...

As shown in the examples above, GT transitions emit leptons. These leptons have

parallel spins which sum to S = 1. A level diagram for the initial JET.- = 0+0 states

and the final .7fo = 1+1 states for all shell-model eigenstates can be seen in figure

5.1.

Although we have a full range of theoretical B(GT) values, the experimental values

for B(GT) are limited in a number of ways. First and foremost, we know that excited

states are too short lived to be seen experimentally. Therefore, the experimental

strength values can be obtained for the ground state only. Added to that are the

energetic limitations. Decay is allowed only if the initial state is higher in energy

than the final state. The experimental sum for the ground state only includes those

final states which lie within the Q value window.

In shell-model calculations, a proton or neutron in a nucleus of definite angular

momentum, spin, and parity is destroyed and another nucleon is created in keeping

with the rules of charge, space, spin, and isospin conservation rules for GT transitions.

Our primary objective is to look at the behavior of the total Gamow-Teller strength

as a function of excitation energy. We calculate the Gamow-Teller transitions for the

system of 8 valence particles within the sd—shell or 24Mg. This is the initial nucleus

from which we will have either (p,n) or (n,p) reactions, corresponding to the OGT(+)
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Figure 5.1: Energy spectra for the J"T = 0+0 states of the initial 24Mg nucleus and

the J”T 2 1+1 states of the final 24Na and 24Al nuclei. Plotted as energy versus

proton number, Z.
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or OGT(—) operator respectively. We will also examine the effect of the coherence

induced by the residual interaction. Finally, we will determine the contribution to

the total strength from each orbital in the active model space.

5.2 Gamow-Teller Strength Distribution

Before we address the total strength, we take a closer look at the fragmented strength

function distribution,

BGT(i;i —* f) = Zl<f;1+1|Zamli;0+0)lz- (5-5)

Because of the strong fragmentation that occurs, we obtain a distribution whose

characteristics will give us insight into beta decay (6i) and charge exchange reactions

at high temperatures. If a reaction occurs that changes the charge state, (p,n),

(7+,7r°), or (7r°,7r'), but does not excite the nucleon to a different single-particle

orbit, then the final state can be described as the isobaric analogue state (IAS) of

the initial target state. Members of an isobar have the same A but different N

and Z. Isobaric analogue states are states in a neighboring nucleus that are related

by a rotation in the isospin space. Although they belong to different nuclei, they

are members of the same isobaric multiplet and as such they have similar properties.

When one discusses isobaric analogue resonances they are referring to the sharp peak,

or resonance, located at an energy which corresponds to the difference in binding

energy for the two nuclei, mainly due to the coulomb interaction.

5.2.1 Nucleon—Nucleon Interaction

The N-N interaction strongly mixes the L and 5 components of angular momentum.

This means that instead of a GT transition going from one initial state to one final

GT analog state, as it would if the intrinsic spin was conserved, the GT strength,
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Figure 5.2: Schematic showing the fragmentation over final states for the Gamow-

Teller transition from an arbitrary state Ii;0+0) to all possible final states I f; 1+1).

Plotted as energy versus proton number, Z for the J”T = 0+0 states of the initial

24Mg nucleus and the J”T = 1+1 states of the possible final 24Na and 24Al nuclei.

B(G’T), is strongly split amongst many states. In fact the GT strength is related

to the spin-isospin term of the NN-interaction (2.2). With the inclusion of the SO

interaction, only J, 7r, and T are invariant. A schematic view of the B(GT) strength

fragmentation is shown in figure 5.2.

5.2.2 Spreading Width

This strength distribution is interesting because its width is related to the chaoticity

of the wavefunctions involved in the GT transitions. The widths can also be compared

to the results for the fragmentation of shell-model basis states (section 3.2) and the

fragmentation induced by the raising operator (section 4.2).
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With the previous arguments for the spreading width of the spectroscopic factor,

finding a width for the GT strength distribution PCT in the same system consistent

with that of spectroscopic strength functions would be understandable. The overlap

between the final and initial state such that [al(j ) <8) &(j)] acting on the initial states

is very similar to the overlap that occurs for the [af(j )] operator acting on the initial

states. In fact, following the reasoning for the spreading width of single-nucleon

transfer, we might expect a slightly larger width. This is because [ai(j ) (8) &(j')] is a

more complex operator than [aI(j )] and therefore able to alter the initial eigenstate

to a larger degree.

As in chapter 2, the distributions have been superimposed to reduce the statistical

fluctuations and get an idea of the general shape of the distribution. We notice right

away that the distribution for the first 100 states is asymmetric (see figure 5.3a). We

will address the issue of the asymmetry in this distribution in a later section. Oddly

enough, the effects due to our finite Hilbert space that one would expect to contribute

to this asymmetry does not affect the top 100 states to the same extent (Fig. 5.3b).

For the superposition of all states (Fig. 5.4) the high-energy tail is still evident.

To continue with our analysis of spreading widths, we must remain consistent in

our sampling of the states in the mid-energy, high-density region. For this reason,

we superimpose states 101 through 200. Figure 5.5 shows a Gaussian fit to the

central part of the distribution. Again we see the high energy tail reminiscent of the

basis state and single-nucleon transfer distributions of chapter 3. The width of this

distribution is FGT = 9.5(6) MeV.

If we further separate the regions and look at bins of 10 initial states spread over

all final states, we see a definite trend. Figure 5.6 shows that the widths clearly

decrease with increasing excitation energy. The widths of the distributions range
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Figure 5.4: Gaussian fit (solid line) to the Gamow-Teller strength function,

B(GT;i —> f), for 24Mg plotted as a function of AE, between the all 325 initial

24Mg (J’T = 0+0) and all 1413 final 24Na (J’rT 2 1+1) states.
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Figure 5.6: Gamow-Teller strength function, B(G'T;i —-> f), for 24Mg plotted as a

function of A E, between the initial 24Mg (J’rT = 0+0) and the final 24Na (J’T = 1+1)

states. Solid lines represent Gaussian fits to the histograms.
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from F = 14.6 MeV for states 1 — 10 to F = 6.8 Mev for states 316 — 325. This

decrease of the spreading width is qualitatively understood: as B(GT) increases, the

states get more collective with respect to the GT operator and less chaotic.

5.2.3 Restricted Transition Strength Distribution

Recall the asymmetry of the GT strength function distribution for the first 100 states

(5.3 a). Obviously, the first question such a distribution raises is whether this lack of

symmetry is related to the probable transitions in this energy region.

This can be understood by examining the level spacing of the three active orbitals

in the sd—shell (Fig. 5.7). The lowest d5/2 level is highly populated at lower energies,

thus making transitions from that orbital highly probable. In contrast, the higher d3/2

level is weakly populated at lower energies and one does not expect transitions from

unoccupied levels. The situation reverses itself for highly excited states, at which

point we see the switch in the role of these strengths.

Because the d5/2 orbital is so highly populated at lower energies, we expect that

transitions from that orbital are the most active and contribute the most to the

distribution.

The non-zero values for the sd—case correspond to the following (Ij, lj’) transitions:

(ls/2 —* ds/z

(ls/2 —'* d3/2

d3/2 —" 613/2

613/2 —+ 615/2

31/2 —* 81/2

These transitions correspond to the terms in the calculation of the strength that

contribute to the coherent pattern. By restricting j and j ', we observe these contribu-

tions in the absence of interference. This is done within the OXBASH code, by taking
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Figure 5.7: Level spacing of the three active orbitals in the sd—shell on the single-

particle energy scale.

single-orbit transition densities. Numerically the strength comes from squaring the

sum over orbitals, j, j', of the following matrix element

M(GT;i —» f) = Z OBTD(f. z'.j.j')(jl0..74|j'> (5.6)
. .I

JIJ

where, (jlauri If) is the single-particle matrix element or SPME(j,j'), and the one-

body transition density (OBTD) is given by

 

OBTDUJJJ') = (fllllaIU) ® &(j')](AJ’AT)|||i)/\/(2AJ + 1)(2AT + 1) (5-7)

From 5.6 one can clearly see that depending on the phase of the OBTD(f, i , j, j I) and

the SPME(j,j'), or more specifically, the phase of the product of OBTD(f, i,j,j') x

5PME(j, j '), one can achieve either constructive or destructive interference,

B(GT;2’ —. f) = |M(GT;2’ —+ f)|2. (5.8)
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Figure 5.8 reveals that the greatest contribution to both the amplitude and the

asymmetry of the distribution for the first 100 states is from the d5/2 ——+ d3/2 tran-

sition. The relative size of this restricted transition is not unexpected when one

considers the occupation of the d5/2 orbital at low excitation energy. The asymmetry

can be understood by the change in spin. The GT operator cannot change the orbital

angular momentum, but it can, and does in this case change the spin angular mo-

mentum. Figure 5.8 shows the transitions responsible for the pronounced asymmetry

as well as the regions within the spectrum in which the various transitions dominate

the strength. The d5/2 —+ d3/2 distribution has its mean at a higher energy than

the d5/2 —+ d5/2, in accordance with the larger amount of energy needed to excite a

particle into the d3/2 orbital.

5.3 Total Gamow-Teller Strength

5.3.1 Introduction

The total strength of the Gamow-Teller distribution is important to our understanding

of the transition rates to excited states of the daughter nucleus. Without this informa-

tion, we cannot accurately discern the relative abundances in stars. This carries over

into our estimates for the mass and lifetime of pre-supernova stars. Granted, these are

only theoretical calculations, but the information obtained from the magnitude and

enhancement of the total strength as a function of excitation energy (temperature)

might prove to be invaluable in probing the structure of the nucleus and the structure

of stars.

Having already discussed the fragmentation of the strength resulting from the

strong mixing of simple configurations (section 5.2), we now move on to our study

of the strength function summed over all final states | f) which gives the total GT
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strength, BGT, of the initial state li),

83196)=ZB(il(i—>f)-=Zl<i>lfl0‘*)l =(il0‘*”0‘*’li) (5.9)

f

where the closure summation over If) was used.

The sum rule tells us that the difference in total strength of the BGT(+; z) and

the BGT(—; i) is directly related to the number of protons and neutrons in the initial

nucleus

S(GT) = 35.3) — Baa) = 3(N.- — z.) (5.10)

24Mg has N = Z = 12, therefore

XI:BC—}T(i—’f) =;B5T(i_+f) (5-11)

From this result we can cease to denote B§T(i), and concentrate on the behavior of

the total strength, BGT(z)= B(GT) as a function of excitation energy (Fig. 5. 9).

5.3.2 Single-Particle Estimate

In the absence of the obvious interference that results from residual interaction, one

can obtain a reasonable idea of the value expected for the total strength. This result

is based on the fact that a bare nucleon has B(GT) = 3, and that the nucleons,

being fermions, have a limited number of orbital spaces, or holes, they can occupy,

{2. Within the sd—shell, there are 24 spaces, 0,, = 12 and 9,, = 12, available.

Assuming that the very complicated eigenstates have nearly random phases of

components [21, 43], we can substitute the one-body transition densities by their

 

mean values for the heated Fermi-liquid, \/njq(1 — pfl) in terms of neutron and proton

mean occupation numbers (the GT operator does not change the orbital momentum

I). For the occupancies which on average do not depend on the projection mj, we
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estimate (SPE). Plotted as a function of initial energy.
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obtain

. 1 ., 2

B(GT)(—) : 12,-3%,!“ — pj1)6(2j + l)(2j’ + l){ J2 I 1‘7/2 } . (5.12)

This approximation neglects all coherent effects and leads to a very weak energy de-

pendence of the strength. In particular, the lowest unperturbed state with 4 particles

in the d5/2 level would have 1245/2 = p.15” = 2/3 and B(GT) = 8.3 while the highest

unperturbed state with the filled d3/2 orbit would have B(G'T) = 9.6.

The middle of the shell-model spectrum corresponds to the equipopulation of the

orbitals (“infinite temperature”, [21, 35]). Then (5.12) simplifies to the universal

result

B(GT)(-) = 3N (1 —- 5‘) (5.13)

where the Pauli blocking factor is just the average proton population of available (2,,

orbitals; eq. 5.13 gives 8 in the case under study. Precisely the same result (5.13)

follows from the statistical spectroscopy [42] as an average for all states allowed for

given N and Z in a truncated shell-model space, regardless of their exact quantum

numbers. This number is close to what we see in the middle of the spectrum.

5.3.3 Coherence of Total Strength

The reduction present in the model calculations for Gamow-Teller strengths from

the ground state is well established. That it is even stronger in the experimental

data supposedly reveals a part of the GT strength related to the excitation of the

configurations outside of the shell-model states or delta-isobar excitation. The shell-

model suppression is related to the sensitivity of the GT strength to spin-isospin

correlations. Although the residual interaction strongly mixes the orbital and spin

components of angular momentum, in general the energetically lowest states prefer

spatial symmetry and, accordingly, spin-isospin asymmetry of the many-body wave
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functions. This asymmetry hinders the GT transitions involving spin-isospin flip

components which become partly forbidden by the Pauli blocking. Therefore one

should expect the opposite effect of enhanced GT strength to be revealed for the

high lying states with spatially asymmetric wave functions. Indeed, our calculations

in the sd-shell model show that the magnitude of the reduction decreases for higher

excitation energies and turns into enhancement for transitions in the mid- to high-

energy region of the spectrum.

The reduction at lower excitation energies and enhancement at higher excitation

energies is a direct result of the residual interaction. The qualitative explanation

becomes obvious when the probabilities of the nucleon pairs of different symmetry

are considered for the many-body wave functions. Defined as a sum over the nucleons,

the GT operator can be written as

0th) = E: (201471) = :(0uTi),\yaj\ay (5.14)

nucleons AA’

where the equivalent form is given in second quantization, A means a complete set of

single-particle quantum numbers including the isospin projection. According to the

GT sum rule (5.10), the difference in total strength is directly related to the number

of protons and neutrons in the initial nucleus. For N = Z nuclei it is sufficient to

consider one of those sums, let us say B(GT)('). Using the anticommutator relations,

the expression for the strength (5.9) can be split into single-particle (~ ala) and pair

(~ (afal)(aa) ~ 2 AETAST) parts where ALT and AST correspond to the pairs with

total spin and isospin of S and T, respectively. The Pauli principle determines the

spatial symmetry (—)L of a pair according to (—1)8+ T+L = —1. After a little algebra

we obtain the general equation [59]

l 1

3(GT)(-) = 311—12 + Bpair = 3{N “(1)/0.1) — 3(N1.0)+(N0.0>+ 3(N1.1)} (5-15)

where 3N would be the result for a pure system of N neutrons whereas (N53) gives



90

an expectation value of the number of pairs with quantum numbers S, T, T3 = 0 in

the state lz). The spatially symmetric p — 72 pairs give a negative contribution while

the spatially anti-asymmetric pairs contribute positively. For example, in the case of

J = 0 states of one valence p— n pair, we have T = 1, so the exact prediction of (5.15)

is 0 for a spin singlet, S = L = 0, and 4 for a spin triplet, S = L = 1. Without going

into details of the nuclear structure we see that, depending on correlations, the result

for a many-pair state, roughly speaking, ranges from B(GT) = 0, for (No.1) = N,

to B(GT) = 6N, for (Nap) = N. These estimates can be further improved by

taking into account the nonorthogonality of the components of the many-body wave

functions with different pair contents.

The total GT strength (5.9) is shown in Fig. 5.9 as a function of excitation energy

for all 325 individual J“T = 0+0 states in 24Mg found in the sd-shell model. We see

the clear trend of the monotonic increase of the B(GT) with excitation energy. The

lowest and the highest possible values are close to the borders of the range predicted

by eq. (5.15), 0 and 24, for N = Z = 4.

In the jj-coupling scheme the SU(4) symmetry is violated by the spin-orbit inter-

action. The matrix element (f l0lz) of any one-body operator between complicated

many-body states is the coherent sum of the products of single-particle matrix ele-

ments, (jllauLHj’) in our case, and the one-body transition densities (fIIaIaHi).

As stated earlier, there are 5 non-zero values of the product SPME x OBTD,

and we have an interference between these terms. The statistical consideration ne-

glects the interference effects between these 5 partial transitions contributing to the

total GT strength. This interference, destructive at low energies and constructive at

higher energies, is responsible for the regular behavior seen in Fig. 5.9. The partial

contributions to the total GT strength for all 5 groups of transitions can be seen in
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Fig. 5.11. The transitions with (j = j') have relatively flat distributions while those

that involve two different orbitals (j # 3"), have strengths that slightly increase and

decrease with excitation energy. In agreement with (5.12), this reflects an average

population of d5/2 and 113/2 orbitals according their single-particle energy levels in the

sd—shell with spin-orbital coupling. The sum of the partial strengths, shown in Fig.

5.12 b, is close to the single-particle estimate and the energy behavior is noticeably

flatter than that of the original, unrestricted strength (Fig. 5.12 a). This is a direct

result of the omission of interference.

Since the coherence effects for the GT operator are related to the interplay of

spatial and spin-isospin symmetry, they can be revealed in the appropriate basis,

namely the Wigner supermultiplet basis characterized by the Young tableaux [f],

quantum numbers (Au) of the SU(3) group, orbital L, spin S and total angular

momentum J, isospin T and additional quantum numbers for multiple occurrences.

Components of the Gamow-Teller operator are among the generators of the SU(4)

group which allows one to calculate their matrix elements using the Racah algebra

for the SU(4) group developed by Hecht and Pang [44], see also [45].

The result for the B(GT) is very simple for T = 0 initial states. Namely, for pure

supermultiplet states with the total spin S, the sum rule is [60]

2

B(GT) = §{C[SU(4)] — S(S +1)} (5.16)

Here C[SU(4)] are the eigenvalues for the Casimir operator of the SU(4) group

(quadratic sum of the generators). They are given by [60]

C(SU4) = [P(P + 4) + P’(P’ + 2) + (P”)2] (5.17)

where, for the Young tableaux [f] (see also Appendix E),

P = %(f1+f2—fs—f4), 1" = $(f1—f2+f3—f4). P" = $(f1—f2—f3+f4)- (5.18)
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Since C[SU(4)] increases with decreasing spatial symmetry, this explains the re—

sulting increase in the total GT strength. The strong space-exchange component in

the two-body effective interaction is going to order the states in this way before the

spin-orbit force disrupts the symmetry. The GT sum-rule for the shell-model ground

states of 24Mg will be a linear combination of the values in Eq. (5.16) weighted by the

intensities for each [f] and S in the wave function. In a sense, the total GT strength

is a measure of the SU(4) symmetry breaking and of the strength of the spin-orbit

interaction. For the states J = T = O in 24Mg the minimum strength is zero, and

the maximum is B(GT) = 76/3, in agreement with our findings. The maximum is

reached for [f] = [62] and S = 2; the [62] symmetry with S = 0 which would corre-

spond to even bigger value B(GT) = 88/3 does not occur for J = 0 since the only

allowed SU(3) representation (An) = (21) is incompatible with L = 0.

The shell-model hamiltonian consists of the independent particle (one-body) part

and the two-body residual interaction, H = H0+H'. The almost perfect antisymmet-

ric pattern of the B(GT) reduction at lower excitation energies and enhancement at

higher excitation energies can be mimicked by using a “mirror reflected” hamiltonian

If in which we change the sign of the residual interaction,

~

Hzm—H' mm)

In the finite Hilbert space the transition occurs in the mid energy region along with

the transition [35] to the negative temperatures and decreasing complexity of the

eigenstates.

Finally, we are able to compare the complementary behavior of the Gamow-Teller

strength for our original hamiltonian to that of the Gamow-Teller strength for a

hamiltonian (5.19) where the sign of the residual interaction H’ is changed. From

this conclude that the effective sign of the two-body interaction becomes negative once
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we begin considering initial-state configurations that correspond to higher excitation

energies. In fact, this change occurs in the mid-energy region where the total strength

begins to exceed the single-particle estimate.

5.4 Summary

Our main points relating to Gamow-Teller strength functions, as far as the shape of

the “average” distribution is concerned, are as follows:

1. For the Gamow-Teller strength distribution for the states in the mid-energy,

high-density region, states 101 through 200, we have a Gaussian fit to the central

part of the distribution (figure 5.5). The width of the distribution is I‘GT =

9.5(6) MeV.

2. We see the high energy tail reminiscent of the basis state and single—nucleon

transfer distributions of chapter 4.

3. The greatest contribution to both the amplitude and the asymmetry of the

distribution for the first 100 states is the d5/2 —+ d3/2 transition.

4. The relative size and position of this restricted transition is not unexpected

when one considers (1) the occupation of the d5/2 orbital at low excitation

energy, and (2) the larger amount of energy needed to excite a particle into the

d3/2 orbital.

We have three major points that have been made about the total strength, both

unrestricted and restricted.

1. The spatially symmetric p—n pairs give a negative contribution to total Gamow-

Teller Strength while the spatially anti-symmetric pairs contribute positively.
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The exact prediction of B(GT) in terms of (N51) is B(GT)(’) = 3{N— (No,1) —

%(N1'0) + (N010) + %(N1,1). This equation yields 0 for a spin singlet, S = L = 0,

and 4 for a spin triplet, S = L = 1. So the result for a many-pair state ranges

from B(GT) = O, for (NM) 2 N, to B(GT) = 6N, for (Nap) = N.

. The transitions with (j = j') have relatively flat distributions while those that

involve two different orbitals (j aé j'), have strengths that slightly increase and

decrease with excitation energy, reflecting an average population of d5/2 and

d3/2 orbitals according to their single-particle energy levels in the sd—shell with

spin-orbital coupling.

. The incoherent sum is close to the single-particle estimate and the energy be-

havior is noticeably flatter than that of the original, unrestricted strength. This

is a direct result of the omission of interference.

. The narrow width and strongly enhanced B(GT) value for highly excited states

shows the coherent collectivity of the GT mode and the strength concentration

in the region of predominantly odd orbital symmetry.



Chapter 6

Conclusion

The proven sucess of the nuclear shell model in predicting various experimental ob-

servables in the region of low-lying states encourages us to extend its use into the

region of high-lying states in order to reach some conclusions about statistical fea-

tures of the more complicated states. Our studies of these light nuclei are meant to

serve as prototypes of general nuclear properties, including those for heavier nuclei

whose observables remain beyond the scope of shell-model calculations due to the

increase in the dimensionality of shell-model space.

We set out to (1) study the fragmentation of simple shell-model configurations as

a function of excitation energy and interaction strength, (2) determine the effect that

basis state mixing has on the distributions of the strengths associated with simple

operators, a] and [(apri) AMala1:], and (3) analyze the total Gamow-Teller strength as

a function of excitation energy in order to gain theoretical information about excited

states of the nucleus.

Table 6.1 shows the values for Full-Width at Half-Maximum (FWHM) taken

from both the average interaction with F z 25 for strong coupling, where 011211313 =

20(Cf)2(Ea — Ek)2, and the fits to the various strength distributions for the ba-

sis states I‘bam, single-nucleon transfer Pat, and GT transitions FGT. Note that the

97
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A, = 12 system cannot be compared to the A, = 8 without taking into account the

different number of valence nucleons present. For this reason we take PM“, ~ 18 for

Av=8.

Table 6.1: Energy dispersion and widths for 12 and 8 valence nucleons in the 0dls

shell-model space.

From average interaction From X2 fit
 

A, &(MeV) F(MeV) PM... 1“,. I‘m
 
 

12 9.8 19.6 20 - —
 

      8 9.2 18.2 (18) 8.6 9.5

6.1 Strength Function

The strength function for simple configurations of independent particles was, for

the first time, extracted from the exact solution of the many-body problem in the

truncated Hilbert space of shell-model configurations. Taking the most complicated

states near the middle which could be considered as uniform in their properties, we

examined the shape and the width of the strength function. For realistic interaction

strengths the results are not satisfactorily described by the standard Breit-Wigner

model of the strength function. Rather, the generic shape of the compound states at

high excitation energy is close to a Gaussian but with exponential wings. In order

to better understand this we investigated evolution of the strength function from the

region of “strong” to“weak” mixing. The uniformity of the dispersion supports the

idea of saturation of the spreading width [25, 16] which has important consequences

for understanding the damping of giant resonances.
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The variance obtained from the Gaussian fit is 0503;, = 8.3 :I: 0.3 MeV giving a

spreading width (FWHM) of the central 0+0 states equal to Fbasgs =W01mm 2

19.6 MeV. This width agrees with the estimate (3.27), FSC 2 26 = 20 MeV made

for the strong coupling limit. It is clear the the Breit-Wigner shape predicted by

the standard model of the strength function does not hold in the realm of realistic

coupling.

We observe deviations from the Gaussian shape in the tails of the strength func-

tion, Fig. 3.7b. Fig. 3.11 shows that the wings can be described by an exponential fit

Fk(E — Ek) m F0 exp (— 5%9. The exponential tails of the strength function Fk(E)

can be reproduced by perturbation theory.

The transition to the weak coupling case at the artificially suppressed strength

of the residual interaction shows how the shape of the strength function regularly

changes from the Gaussian to the “normal” Breit-Wigner as A changes from 1 —-+ 0.

This is accompanied by the reduction of the spreading width and the smooth transi-

tion from the linear interaction dependence characteristic for the strong coupling limit

to the ordinary quadratic dependence predicted by the golden rule. This transition is

seen for the first time in realistic calculations. The detailed behavior of the spreading

width as a function of the interaction strength depends on the explicit dependence

of the level density and the coupling matrix elements on energy of the background

states. Just as we can artificially suppress the interaction to retrieve the standard

golden rule, we can enhance the interaction. By setting A = 1.2 we see the continua-

tion of the linear trend. We also see that the Gaussian level density determines the

shape of the strength function distribution, even for the wings which were formerly

described by an exponential curve (Fig. 3.18).
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6.2 Spectroscopic Factors

As with the fragmentation of shell-model basis states, and later with Gamow-Teller

strength distributions, there is a distribution of strength for spectroscopic factors. Its

spreading width turns out to be smaller than that for basis states. The simplicity of

the raising operator a), precludes it from changing the initial eigenstate wavefunction

Ii) to the extent that (fIaI|z) E (flk’) is not spread as much as (flk) (recall that Ik)

are the original shell-model basis states).

The small change in the width of the three average strength distributions (1 — 100,

101 — 200, 201 — 325) is consistent with a conclusion that the transition strengths

depend on the energy spacing between the initial and final state energy levels (E;,-),

but not on the level from which the nucleon transfer occurs.

We also achieve a more accurate Full Width at Half-Maximum, F“: = 8.55(34), by

making a low-energy cut on the distribution of the spectroscopic factor. The width

for the middle set of spectroscopic amplitudes (Fig. 4.5) is Pa: = 8.73(76) without

the low-energy cut.

The decrease in the width of the spectroscopic factor strength distribution confirms

our assessment that final-state wavefunctions are closer to initial-state wavefunctions

that have been acted on by a simple operator, than they are to basis states.

Both the Gaussian shape and the decrease in width relative to basis-state strength

functions, F503;, = 20 MeV to Pa: = 8.7 MeV, are to be expected. The Gaussian

character of the distribution follows directly from the fact that we are again in the

region of strong mixing.
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6.3 Gamow-Teller Strengths

Gamow-Teller strength distributions for the states in the mid—energy, high~density

region have a Gaussian fit to the central part of the distribution. We see the high

energy tail reminiscent of the basis state and single-nucleon transfer distributions of

chapter 4 and the width of the distribution is I‘GT = 9.5(6) MeV.

The greatest contribution to both the amplitude and the asymmetry of the dis—

tribution for the first 100 states is the d5/2 ———+ d3/2 transition. The relative size and

position within the spectrum of this restricted transition is not unexpected when one

considers (l) the occupation of the d5/2 orbital at low excitation energy, and (2) the

larger amount of energy needed to excite a particle into the d3/2 orbital.

Clearly our calculations show the well established reduction in the total strength

for transitions from low-lying states. In the model, this reduction arises from two-

body interactions, dominance of orbital symmetry in the low end of the spectrum, and

the mixing of shell-model eigenstates. The calculations also show enhancement for

highly-excited states. The spatially symmetric p—n pairs give a negative contribution

to total Gamow-Teller strength while the spatially anti-symmetric pairs contribute

positively. The result for a many-pair state yields a B(GT) that ranges from B(GT) 2

0 to B(GT) = 24.

The entire picture of the GT strength is determined by the main features of the

residual interaction related to the spatial and spin-isospin symmetry. This picture

is seen clearly against the background of the incoherent collision-like interactions.

The coexistence of regular nuclear motion with chaotic single-particle dynamics was

discussed in a different context in [55]. Exotic N x Z nuclei can supply additional

information concerning the role of symmetry in nuclear stability [54].

We have also garnered information by restricting the allowed transitions. We have
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seen the behavior of the five non-zero single-particle transitions; the level behavior of

the three transitions that involve one orbital and the mirror-like behavior of the two

that involve two different initial and final orbitals. This reflects an average population

of d5/2 and d3/2 orbitals according their single-particle energy levels in the sd—shell

with spin-orbital coupling. The sum is close to the single-particle estimate and the

energy behavior is noticeably flatter than that of the original, unrestricted strength.

This is a direct result of the omission of interference.

6.4 Notes

Clearly, more work remains to be done in this area, but I take these open questions

to be promising hints of what this train of investigation can lead to. New effects

will enter when the presence of real decay into continuum is taken into account. The

competition of the internal mixing, external decay and interaction through common

decay channels makes the whole problem more complicated. This interplay of various

mechanisms will determine the physics of compound states at high excitation energy

in stable nuclei and at lower excitation energy in weakly-bound nuclei.
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Appendix A

Matrix Elements for the 03 — 1d

Shell Model Space

 

 

 

T = 1 J = 0 3f/2 (lg/2 515/2

.3?” -2.l25 -1.084 -1.325

dg/z -2.185 -3.186

d§/2 -2.820

 
  

T = 1 J =flI d3” I (lg/2 I d3/231/2 I d5/231/2 I d5/2d3/2
 

 

 

 

 

 

«13,, —0.067 -1.622 —0.515 -0404 -0.615

dgl, -1002 -0.620 -0.862 -0.283

(13,231,. -0.406 -1941 -0525

d5/281/2 -0.818 -0.477

115/2%,. -0.325     

T =1 J = 4 II d§,2 I d5/2d3/2
 

 

din -0.164 -1.236
 

d5/2d3/2    -1.450

T = 1 J = 1 II d3/231/2 I d5/2d3/2
 

 

d3/231/2 [1 +0.60? +0.187
 

d5/2d3/2
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T = 1 J = 3 || dmsl/g d5/2d3L

d5/231/2 [| +0.762 +0.674

d5/2d3/2 II +0.589

T = O J =1 II 3%,.) I d3,” I d§,2 I d3/231/2 I d5/2d3/2

 
 

 

 

 

      

 

 

 

      

 
 

 

 

 

3:12 -3.263 +0.028 -1.176 +1.250 +2.104

rig/2 -1.415 +0.722 +0.398 +0.565

d§,, —1.632 -1.103 +2.543

d3/2sl/2 -4.293 -1.710

d5/2d3/2
-6.506

T = 0 J = 3 (13,2 (lg/2 d5/231/2 d5/2d3/2

d?”2 -2.884 +1.895 +0.189 +2.034

dglz -1.501 ~1.242 +2.222

d5/231/2 ~3.860 +1203

d5/2d3/2 -O.538

T = 0 J = 5 II dglz

d§,, I -4.226

T = 0 J = 2 d3/231/2 d5/231/2 d5/2d3/2

613/231/2 -1.819 +2.066 +0283

d5/281/2 -l.447 +0.097

d5/2d3/2 -3.825   

T = 0 J = 4 II d5/2d3/2

d5/2d3/2 H -4.506



Appendix B

Subspaces for Nucleons in the

08 — 1d Shell Model Space
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Table B.1: Dimensions of subspaces J"T for 12 particles in the 3d shell.

 

 

 

          

T\J 0 1 2 3 4 5 6 7 8

0 839 2135 3276 3711 3793 3278 2667 1848 1205

1 1372 3985 5768 6706 6562 5755 4434 3097 1882

2 874 2319 3434 3804 3700 3059 2285 1462 844

T\JII 9 |10|11|12|13|14
 

 

 

0 657 334 126 48 8 1

1 1023 462 178 48 9 0

2 393 160 44 9 0 0

 

  
     

Table B.2: Dimensions of subspaces J1'.T for 8 particles in the 3d shell.

 

         

2T\2J 0 2 4 6 8 10 12 14 16 18

0 325 779 1206 1304 1311 1070 835 531 329 154

2 481 1413 1992 2268 2131 1791 1293 843 460 222

4 287 721 1068 1135 1071 826 581 330 169 62

  

Table B.3: Dimensions of subspaces J7rT for 9 particles in the sd shell.

 

       

2T\2J 1 3 | 5 | 7 9 11 13 15 17 19

1 1434 2581 3281 3444 3144 2544 1839 1168 657 315

3 1273 2299 2874 2958 2643 2063 1421 857 444 188

5 482 850 1042 1029 873 631 397 207 90 28

  
  



Appendix C

Output of BASIS code for

OXBASH

Output of BASIS

9-JUN-97 12:08:19

OXBASH (Feb 1992)

The Oxford-Buenos-Aires-MSU Shell-Model Code

: contributors: W.A.R.ichter and C.H.Zimmerman

MSU version : B.A.Brown, W.E.Ormand, J.S.Winfield, L.Zhao

I

I
I OXBASH82 : A.Etchegoyen, W.D.M.Rae and N.S.Godwin

|

|

| : and E. K. Warburton

|

Macro versions of extended-integer subroutines are being used

Present versions limited to 256 m-states and 24 j-states

No. of m states : 24

No. of j levels : 3

No. of states/level : 8 12 4

No. of major shells : 1

No. of levels/shell : 3

Labels of j-levels

1D3/21D5/2 2S1/2

total number of particles : 12

no. restrictions in filling j levels

nuclear spin : JZ = 0.0

isospin : TZ = 0.0

parity (0=+VE) = 0

name of BASIS output data file : BOOOCW
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No., partition, m-dim, j-dim

J J+1 J+2

1 8 4 0 29 2 0 3

2 7 5 0 276 3 9 13

3 6 6 0 1004 15 22 44

4 5 7 0 1648 15 42 62

5 4 8 0 1342 19 31 59

6 3 9 0 536 7 18 25

7 2 10 0 104 4 3 9

8 1 11 0 8 O 1 1

9 0 12 0 1 1 0 0

10 8 3 1 48 1 2 3

11 7 4 1 656 , 7 20 29

12 6 5 1 3164 27 76 112

13 5 6 1 6896 53 148 219

14 4 7 1 7392 56 159 237

15 3 8 1 3956 34 96 141

16 2 9 1 1024 12 32 46

17 1 10 1 116 2 6 8

18 0 11 1 4 0 0 1

19 8 2 2 28 2 1 3

20 7 3 2 476 6 17 24

21 6 4 2 3070 35 72 122

22 5 5 2 8832 67 191 282

23 4 6 2 12490 103 243 390

24 3 7 2 8832 67 191 282

25 2 8 2 3070 35 72 122

26 1 9 2 476 6 17 24

27 0 10 2 28 2 1 3

28 8 1 3 4 0 0 1

29 7 2 3 116 2 6 8

30 6 3 3 1024 12 32 46

31 5 4 3 3956 34 96 141

32 4 5 3 7392 56 159 237

33 3 6 3 6896 53 148 219

34 2 7 3 3164 27 76 112

35 1 8 3 656 7 20 29

36 0 9 3 48 1 2 3

37 8 0 4 1 1 0 0

38 7 1 4 8 0 1 1

39 6 2 4 104 4 3 9

40 5 3 4 536 7 18 25

41 4 4 4 1342 19 31 59

42 3 5 4 1648 15 42 62

43 2 6 4 1004 15 22 44

44 1 7 4 276 3 9 13

45 0 8 4 29 2 0 3
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N0. OF TRIAL PATTERNS : 1449979

M-SCHEME BASIS DIMENSION : 93710

NO. OF BASIS PARTITIONS STORED : 45

NO. LOOPS FOR TABLE LOOKUP : 88374

NO. OF STATES WITH

2*J :| 0 2 4 6 8 10 12 14 16 18

2*1‘: 0: 839 2135 3276 3711 3793 3278 2667 1848 1205 657

2*T= 2: 1372 3985 5768 6706 6562 5755 4434 3097 1882 1023

2*T-_— 4: 874 2319 3434 3804 3700 3059 2285 1462 844 393



Appendix D

Derivation of the Standard Model

of the Spreading Width

The derivation of the standard model for the Breit-Wigner spreading width is outlined

in [4]. Here, we fill in the details of that derivation. From equation 3.19, our assump-

tion of the coupling intensities V3,, weakly fluctuating around some mean value 122,

and with E, = 1/ D, we can manipulate the energy difference E0, — Ek into a certain

form.

Making the substitutions (1) szy x v2 and (2) E, = V D, equation ??

 

2

Ea‘E—‘kzz VkV D.1V Ea—EV ( )

becomes,

_ 2 1

Ea_Ek — ’U 2V Ear-EV

 

«v2 1 (D2)

5‘
3

I

D
d

a
n H

:
1

C

M

O Q (
N
-

A

:
1 Lbs
V72" D
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Giving,

 cot (”5) WI:2(E-E,,). (D.3)

Now we can incorporate the weight, (Cf)2 into our next step.

—-1

(sz [1 + 2,, flag—)2]

—1

2 1

[1+ ’0 Z:V(Ea—1/D)§]

 = [1+ (1’5)2 2,, Lgaiw)2j_l (D4)

1

[1+ (45)2¢sc2( —,E,a )]‘

[1 + (“,7”)? (1+ cozt2(%a))]"1

Making the substitution from D2 and taking into account that (('ur")/D2 >> 1), (C?)2

can be written as

(0,?)2 [1+ (”3)2)(1+ [m(E —E,,)] 2)]—l

(11.5)

I
2 [(117) (1+ [:23(Ea — 4612))”



112

So,

(02)? = (3)2 +
(Ea — Ek)2 _1

D .
r02

 (D.6)

The strength function then, expressed in terms of mean weight (from D.4) and level

density,

ME) = p(E)<(Cz?)2>Ea=E (D7)

can be written as

ME) = p(E) [W + (MW

1 ,, (D.8)
 

Next we set F, = 2332-): and multiply by unity it"?

, I‘s

[r30(%)2+ rsD—Q—k—(Eaf)2

 

(11.9)
__

P8Fk(E) — (2,415.1)? + 27r(Ea'—Ek)2

 

And finally, we have the strength function of Breit-Wigner shape predicted in the

standard model of the spreading width,

 

Fk(E) = — (D10)

for

’1)

F, = 2 —. D.114,, < >



Appendix E

Young Diagrams

The eigenfunctions la) of H can be classified according to the irreducible represen-

tations of the group of permutations under which they transform among themselves.

The various symmetries (symmetric, antisymmetric, or mixed ) may be characterized

by Young Diagrams or tableaux.
 

Young Diagrams are composed of k rows of squares of length f,-. The restrictions

are as follows:

k

f1 3 f2 _<_ f3 _<_ ...fk 2f,- 2 n = number of particles (E.1)

i=1

with a notation of [f1f2f3 . . . fk] or [f]. An example of a Young diagram is shown

in figure E.1. Each square is associated with a nucleon. For any la), the symmetry

is obtained by symmetrizirg with respect to the nucleons numbers in the same row.

The resulting function is then antisymmetrizing with respect to the nucleons whose

numbers appear in the same column.

 

 

Fully symmetric states are characterized by f1 = n and f2 = f3 = . . . = fk = 0, or

one row of length n, denoted by [n]. Fully antisymmetric states are characterized by

f1 =f2 =f3 = = fn =1 and fn+1 = =f;c =0, ornrows oflength 1, denoted

by [111...1].

The number of “standard” arrangements is determined by the number of inde-

pendent functions of a symmetry type for a given Young diagram. A “standard”

arrangement has its nucleon numbers increasing from left to right in each row and

from top to bottom in each column (see fig. E2). Each “standard” arrangement of

a Young diagram has a “standard” arrangement of the dual diagram when rows and

columns are switched.

Spin and isospin wavefunctions are multiplied by spatial wavefunctions to form

states which are fully antisymmetric. In other words, the spin-isospin functions de-

termine the symmetry of the spatial function. Spin and isospin states of a single

nucleon can be characterized by (mt, m,) which provides four possible states for each

113
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Figure E.1: A Young diagram.
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Figure E2: A Young diagram for AU 2 8.
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nucleon. Since the Young diagrams characterize the symmetry, they cannot have

columns which contain more than 4 squares. Some of the diagrams yield zero when

the spin-isospin functions are antisymmetrized. The allowed diagrams have four rows

which have the restrictions

f12f22f32~~f4 2:15:71 (E?)

where n is equal to AU.

The group transformations U(4) have irreducible representations associated with

this set of Young diagrams.S'U(4) is a subgroup of U(4) whose matricies have deter-

minants equal to unity. The SU(4) generators

(mtmsl 0,- lmtm’s)

(mtm,| T,- |QO,) (E3)

(mtmsl Ti O'j Imimil

lead to the quantum numbers P, P’, and P” of chapter 5. These three numbers

uniquely determine the irreducible representations of SU(4)
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