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Abstract

Efficient Algorithms for Generating

Precise Binary Logarithmic Numbers

by

Yi Wan

Two algorithms for fast evaluation of binary logarithm are developed in

this paper. They provide advantages over other recent work on this problem.

The first algorithm — Two Layer Factorization Algorithm (TLFA), uses a di-

vision and a newly discovered nonlinear approximation method to provide an

improvement over the often quoted difference grouping algorithm and other

recent work on this problem, both in speed and implementation structure.

The second algorithm — Continuous Factorization Algorithm (CFA), is pro-

posed to suit high speed and high precision conversions. It uses a continuous

factorization process to reduce the problem to a division one and employs

the SRT division technique to enhance speed. The resulting conversion time

is only about three additions irrespective of word length. The error analysis

and implementation structure are developed for this algorithm.
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1 Introduction

Logarithmic number system (LNS) is an attractive alternative to the con-

ventional number system when the data need to be manipulated at very high

rate over a wide data range. The LNIS can simplify multiplication, division,

root, and power operations [2]. When logarithm is used, multiplication and

division are reduced to addition and subtraction, and power and root opera-

tions are reduced to multiplication and division. On the other hand, addition

and subtraction operations become more complex. Another major problem is

deriving logarithms and anti-logarithms quickly and accurately enough to al-

low conversions to and from the conventional number representations. These

conversions always involve slow-speed approximations. Therefore, binary

logarithms can be useful only in arithmetic units dedicated to special appli-

cations, where very few conversions are required but many multiplications

and divisions are executed; e.g., real-time digital filters [3]. The objective

of this thesis is to develop efficient algorithms that convert the conventional

number representation to binary logarithmic representation. More specifi-

cally, given a non-zero binary number X, evaluate log X. Note that such an

X can always be normalized as

X = 1.x1$2...xn x 2"



for some integer k and then

logX = log(1 + 311:2 . . .513”) + k

Therefore, this conversion problem can be re-stated as:

Given an n-bit fractional binary number

x=.x1222...:1:n

how to efficiently generate the precise binary logarithmic value of (l + :c),

i.e.,

y = log(1 + 1:) (1)

Here y = .ylyg..y,, is also an n-bit fractional binary number, i.e., y E [0, 1).

In the LNS, for logarithmic addition, let

a = log(A) and b = log(B)

i.e., A = 2“ and B = 2b.



Suppose A < B. Let r = A/B, then 0 5 1' <1 and

A

A+B—A(1+§)

= A(1 +1")

hence

log(A + B) =log[A(1+ r)]

= log(A) + log(1 + r)

= a+log(1 +7')

The problem of addition in LNS then involves the following important step:

Given an n-bit binary number 7‘ E [0, 1), it is to generate the binary

logarithmic value of (1 + 7').

Therefore, the efficient algorithms deve10ped for conversion in Eq. 1 can

also be used for the logarithmic addition problem. Recently a number of

new binary logarithmic conversion algorithms, e.g., [1][2] [4] [5], have been

proposed. The existing conversion algorithms can be roughly classified into

two categories: look-up table approach and computation approach. The

former approach adopts various approximation schemes such as linear



approximation methods so that moderate-size look-up table can be

implemented [1]. Look-up table approach generally has the advantage of

fast speed. However, the look-up table size often increases drastically as the

word length increases. The latter approach converts the binary logarithm

with multiplication and/or division operations [2] [4] However, the

applicability of such approach is limited by its slow operation speed. The

trade-off between both approaches is the speed and precision. Thus, a

feasible solution is the combination of both approaches. This study

develops two efficient algorithms using factorization scheme for binary

logarithm conversion. The first algorithm — Two Layer Factorization

Algorithm (TLFA), uses a factorization approach to reduce the look-up

table size and employs a nonlinear approximation method to reduce the

computational complexity. Simulation results on IEEE single precision (23

bits) conversion shows that the algorithm requires only a reasonable

small-size ROM. For handling long word length numbers, such as IEEE

double precision (53 hits), the second algorithm — Continuous Factorization

Algorithm (CFA) is developed. It uses a continuous factorization process to

further reduce the look-up table size and incorporates the SRT division

technique [2] to reduce computational complexity.



In the next chapter, some recent conversion algorithms are briefly reviewed.

Chapter 3 presents the proposed conversion algorithms with experimental

results. Finally, a concluding remark is given in Chapter 4.



2 Background

This chapter briefly reviews some existing conversion algorithms. The basic

easy method in the look-up table approach is the use of a simple linear

function y = as to approximate y = log(1 + x), as shown in Fig. 1 [1].

 

   

1 1 I l r r r r l r
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Figure 1: Graphs of y = :r and y = log(1 + z)



In this scheme, if we let the approximation error

A=log(1+a:)—:r

then the maximal approximation error Am“ = 0.086071 occurs at

a: = 0.442695. The number of different groups is defined by [2" - Amax],

where [*] is the ceiling function and n is the word length. Thus, it requires

23 different groups for 8-bit word length. The conversion uses a ROM with

8 inputs and 5 outputs. However, the number of different groups increases

exponentially as the word length increases. So, even though this algorithm

has very fast speed, it is only suitable for very low conversion precision and

hence has very limited use.

A multiplicative normalization algorithm is developed in [2] which uses a

relative simple convergence procedure for the conversion process. The

recursive procedure is:

At step 2',

$14.1 = 113; ° bi and yi+1 = yi —' log(bi)

The initial conditions are 2:0 = :1: where x is a fraction and yo = 0.



For the ease of using look-up table, each b,- is chosen as either 1 or (1 + 2").

It shows that if 33,,“ = 1, then

yn+1 = 108(3)

= - " log(bk)

k=1

In fact, each 3},- is a truncated conversion result of i-bit length. The

algorithm uses a small look-up table to store the values log(1 + 2“). In

addition, only the log(b,),z’ = 1, 2, . . . ,n, need to be stored for 272-bit word

length. However, this algorithm needs to compute the multiplication 3:, - b,-

and the subtraction y,- — log(b,). The former operation can be simplified

using shift-add operations because I),- is either 1’ or (1 + 2"). Carry

propagation is a speed-slowing factor in this approach. The latter operation

can be improved using carry-save adder.

An ATA (add-table look up-add) method [4] uses the truncated Taylor

series and a difference grouping method. Suppose the function f is smooth

and the 24-fraction-bit input

X = 1:0 + M21 + A2332 + A3$3



where A = 2’6 and 1:,- < 1, z' = 0, 1, 2, 3, are 6-bit in length each.

The Taylor series of f(X ) is

f(X) = i f(n)($o + A$1)(A2x2 + A3$3)n

n!

 

n=0

which, after truncating the high order terms and further expanding the

second term, can be approximated by

f(X) = f(zo + Aral) +

A

§{f($0 + A131 + A1112) — f(IIIo + /\$1 — AT2)} +

A2

—2—{f(zo + Ax1+ A333) — f(rro + Axl — Ax3)} +

2 3

A4{Ezf(2)($0) _ £sz3)($0)}

2 6

The computation of f needs only add/sub/shift operations, including at

least 5 full-length and 4 half-length addition operations. The paper

mentions the conversion error of less than 2‘29, which means the last term

$2 2:3

mime.) — firm.»

in the expression of f(X ) cannot be omitted. In this case more look-up

tables or multiplications are needed.



 

10

In [5], digit partition (DP) is used to divide a long word and Iterative

Difference by Linear Approximation (IDLA) is used to compute an

exponential function needed in the conversion.

Suppose that a fractional input

(C = 0.3301131. . .1122

of 23-bit length produces a 23-bit output

y = O-yoy1 - - - 3122

The output is partitioned as

3/ = 0.yoy1...y11y12...y22

= 0.YZ

where Y represents the first 12 bits yoyl . ..y11 and Z the remaining bits

y12y13 - - -?/22-

By experiment or simple analysis proof, Y is determined only by

$012] . . .2312. Hence a ROM with 13 inputs can be used to store the first

12-bit output Y. The remaining 11-bit output Z = y12y13 . . . ygg is
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calculated as follows.

2O'O"OZ = (1.1201131. . . {1712) X (2—0°Y) + (0.0 . . . 031311314 . . . (1322) X 2_0'Y

In the above expression, the term (1.$0$1 ...:r12) x (2”0'Y) can be obtained

by a PLA with 13-bit input $0231 . . .3312, and the second term can be

rewritten as

(0.00 _ . .033133314 . . 4322) x 2—0.Y = 210g(0.z13:t14...122)—13—0.Y

and eventually

20'0"“ = (1.x0z1...:1:12) x (TO-Y) + 2-13 x 210g(0-mzu-.-x22)—0.Y

The output bits Z = y12y13 . . . ygg can be evaluated by the IDLA algorithm.

However, the exponential evaluation is a time-consuming process, and a

full-length addition is needed for summing up the right-hand-side of the

last equation. In addition, we still need to perform a logarithmic conversion

to determine Z eventually.

A simple linear approximation plus second stage piecewise linear

approximation is developed in [7].
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Suppose y = y1 + yg is a 23-bit fraction, where yl is the first 11-bit part and

y2 is the last 12-bit part of y, then

log(1+y) zy+EyiAEy-y2

where

Ey 2108(11‘ 311) - .711

and

A311 = Edi/1+ 2’”) - Ey(y1)

This algorithm requires two look-up tables to store By and AEy. In

addition, it also requires a 12-bit multiplication which may degrade the

speed performance.

A direct computation method for converting y = log(z) is proposed in [8].

Suppose

logrr 2y

= yn—lyn—z ' ‘ 'ylyo-y—ly—z ' '°
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then

a: = 23’

: 2y"-lyn-2'”y1yo.y_1y_2...

.2n-2

= 29n—1‘2n_1 , 2yn—2 , , , 2311-2 .2310 , 2y-1-2'1 _ _ ,

The developed algorithm starts with 2' = n — 1 and does the following

recursively

Ifa3222i, then y,=l, x=zx2‘2i.

Otherwise, y,- = 0.

The procedure is repeated by setting 2' = z' — 1. In this scheme, both the

comparison and the multiplication can be efficiently operated for 2' 2 0.

The former compares the 2‘th bit of :1), while the latter shifts at to the left

by 2i bits. However, for 2' < 0, 2i is a fraction and 22‘. involves root

Operation, which is considered too time consuming. This problem can be

solved by using look-up table to store {22-1, 22-2, . . . }. But a full length

subtraction is still needed here for comparison. Since 2‘? = 1/22‘, a

division is needed in the multiplication step :r = :c x 2‘”. Again to avoid

this division another look-up table has to be used. Then a full length
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multiplication has to be performed to get the product, which seriously

degrades the speed performance.

As can be seen from the above review, current work on this conversion

problem is not very satisfactory in dealing with conversion speed and high

precision even though some involve complicated structure. The work

developed in the next chapter attempts to make further improvement on

these problems.



3 Algorithm Development

This chapter presents the development of both TLFA and CPA for binary

logarithmic conversion. The former uses a two-layer factorization approach,

while the second algorithm employs a continuous factorization process for

long word conversion. We first propose the TLFA, then develop the CFA.

3.1 Two Layer Factorization Algorithm

This section describes the development of an efficient algorithm that

generates the precise binary logarithm log(1 + 1:) for an n-bit fractional

binary number x = 4231232 . . .13". Without loss of generality, n is assumed to

be an even number, i.e., n = 2m for some integer m. The term 1+x can be

factorized as

1+$=1+.2:1:r2...:z:,,

= l +.$1$2...$m$m+1$m+2...$2m

z (1 + “751172 . . . (Em)(1+ .00...0C162 . . . Cm)

: (1+.W$1$2$m)(1+ .61C2...Cm 2‘7") (2)

15
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Let

a: .5L'11L‘2...$m

b=.xm+1xm+2...$2m

b'=b~2"'m

C: .C102...Cm

c'=c-2'm

then (1 + :r) can be expressed as

1+z=1+a+H

 

=(L+@u+w0 B)

By Eq. 3, c can be computed as

b

c _ 1 + a (4)

then the logarithmic value of (1+x) is derived as

log(1 + x) z log(1 + a) + log(1 + c’) (5)

ROM look-up table approach has been an efficient way to generate binary

logarithms. For generating the logarithm of an n-bit binary number, a

look-up table can be implemented with a 2" x n. ROM.
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By Eq. 5, two look-up tables need to be used:

one table — ROMl, for

log(1 + 331272 . . .xm)

and the other — ROM2, for

log(1+.00...0c1c2...cm)

where each table is implemented with at most a 2'" x n ROM.

In other words, instead of using a 2" x n ROM in the conventional

implementation, this approach uses two 2’" x n ROMS, whose total size is

only a small fraction of the original one, namely, ”—14.

For example, for n = 16 and m = 8, the ROM table size is reduced from

216 x 16, or 1M bits, to two 28 x 16, or a total of 8K bits. The reduction is

significant. Table 1 summarizes the ROM size reduction for various values

of n.
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n m 2"-n 2-2m-n

 

10 5 10K 640

12 6 48K 1.5K

14 7 112K 3.5K

16 8 1M 8K

18 9 4.5M 18K

20 10 20M 40K      
 

Table 1: TLFA ROM size comparison

However, the above approach requires the computation of c as in Eq. 4,

which involves a slow division process. As a result, the speed improvement

gained by the use of look-up tables for Eq. 5 may be offset by the slow

division process. Therefore, attempts are made to get around the division in

Eq. 4 to improve the speed performance. Taking advantage of the existing

look-up table ROMl used for log(1 + .$1$2 . . . mm), the slow division process
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can be simplified. More specifically, by Eq. 4, c can be expressed as

 

 

_ b

C_1+a

_1+b 1

_1+a_1+a

: 2108(1+b)—108(1+0) _
2—log(1+a)

2 2H ‘ 2"“ (6)

where A =log(1+ a.) and B = log(1+ b).

Note that the values of both A and B can be quickly retrieved from ROMl.

Therefore, the only problem remaining is the evaluation of the function 2‘.

Interestingly, the functions y = (22 — 1) and y = l — log(2 — 2), as shown in

Fig. 2, are very close to each other when 0 g 2 S 1. i.e.,

2‘—1z1—log(2—z)

or

2Z z 2 — log(2 — z) (7)

In other words, the function 2‘ can be approximated by the nonlinear

function 2 — log(2 — z) for all z 6 [0,1].
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Since

log(2 — z) = log[1 + (1 — 2)],

its value can be found from the look-up table ROMl because (1 — z) E [0, 1]

for all z 6 [0,1].

Fig. 3 plots the approximation error between 2z —— 1 and 1 — log(2 — z) for

all z 6 [0,1]. Results show that the maximum error is 0.004198, which is

much better than 0.086071 with a linear function approximation in [1].

Note that the maximum approximation error of 0.004198 is equivalent to 7

bit accuracy. To further reduce the maximum approximation error, we use

the function

1 — log(2 — z) + 2'12 + 2’13 (8)

to approximate 2‘ — 1.

As such, the maximum approximation error can be reduced to 0.0038038,

which is less than 2‘8. So m = 8 is the appropriate value suggested with

this implementation.
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Figure 3: Difference between 22 — 1 and 1 — log(2 — z)
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It should be mentioned that, since the approximation to 2" in Eq. 7 is valid

only for all z 6 [0,1], the exponents in both terms of Eq. 6 must be ranged

between 0 and 1.

Notice that A and B as in Eq. 6 are in the range of [0,1]. Hence Eq. 6 is

re-written as

c = 2B-A — 21-A/2 if A < B (9a)

01‘

c = 21+B—A/2 — 21-A/2 if A 2 B (9b)

In Eq. 9a, by Eq. 7, the second term 21‘A is approximated by the following

21—A z 2 — log(1 + A)

=2—A’ am

where A’ = log(1 + A)

and the first term 23’A is approximated by

zB-A z 2 — log(2 — (B — A))
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Letp=1—B+A,thenp< 1 and

2 —1og(2 — (B — A)) = 2 — log(1 +p)

Similarly, the first term 21+B‘A in Eq. 9b is approximated by

21+B'A z 2 — log(2 — (1+ B — A))

= 2 - log(1?)

where p Z 1 because A 2 B in Eq. 9b.

Denote p = pa + pf, where p0 and p, are the integral and fractional parts of

p respectively. If p Z 1, then p0 = 1 and p — l = pf. On the other hand, if

p<1,thenp0=0andp=pf.

InEq.9a,A<B,orp<1,

2B—A z 2 —log(1+p)

where P = log(1 -+— 1);).
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From Eq. 10,

c = 2B-A — 21—4/2

z (2—P)—(2—A')/2

i.e.,

C: (1 —P)+A’/2 ifpo =0 (11a)

Similarly, for A 2 B, or p 2 1, in Eq. 9b,

214'13‘A a: 2 — log(p)

= 2 —log(1+pf)

= 2 — P

From Eq. 10,

c = 21+B-A/2 — 21—A/2

z (2 -— P)/2 — (2 — A')/2

i.e.,

c = (—P)/2 + A'/2 ifpo =1 (11b)
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Note that the above simplification makes the comparison of A and B

unnecessary in the implementation and hence saves a subtraction of length

m. Algorithm 1.1 summarizes the procedure described above.
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Algorithm 1.1

Step 0.

Step 1.

Step 2.

2.1

2.2

2.3

2.4

Step 3.

Generate look-up tables, 2'" x n,

ROM1(x) for log(1.:r1232 . . .xm) and

ROM2(c) for log(1.00...001c2 . . -Cm)

a: = .1131232. ..zm$m+1xm+2 . . .332",

= a + b . 2""

c = £102 . . .cm

A = log(1+ a) = ROM1(a)

B = log(1 + b) = ROM1(b);

Calculate c from Eq. 11a or Eq. 11b

p=1—B+A=po+pf.

P = ROM1(pf); A’ = ROM1(A);

IF p0 = 0, THEN 0 =1— P; ELSE c = (—P)/2;

c = c + A’/2.

C = log(1 + c - 2"") = ROM2(c);

log(1+ x) =log(1+ a) +log(1+ c - 2"")

=A+C

  



28

The following examples illustrate the stepwise procedure of Algorithm 1.1.

Example 1.1

Consider a 16-bz't binary number a: = .10111011 11101010.

a = .10111011 and b = .11101010

From ROMI,

A = log(1+ a) = .11001011

A' = log(1 + A) = .11011000

and

B =log(1+ b) = .11110000

By Eq.11a,

p=1—log(1+b)+log(1+a)

= .11011011

Note that 130 = 0 and pf = p.



29

Since p0 = 0, c = .10001000.

From ROM2,

C =log(1+ c- 2"")

= ROM2(c)

2 .0000000011000100

This results in

log(1 + 3:) = .1100101101001110

The actual value is log(1 + :r) = .1100101101001101. The approximation

error is 1ulp (unit in the last position).

Example 1 .2

Consider again a 16-bit binary number a: = .10110100 01011011.

a = .10110100 and b = .01011011
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From ROM],

A = log(1+ a) = .11000101

A' =log(1+ A) = .11010011

and

B =log(1+ b) = .01110000

By Eq. 11b,

p: 1 —log(1+b) +1og(1+a)

= 1.01010101

In this case p0 =1 and p; = p — 1.

Since p0 = 1, c = .00110100.

By ROM2,

C =log(1+ c - 2"")

= ROM2(c)

= .0000000001001011
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This results in

log(1+ :c) = .1100010011110011

The actual value of log(1 + 2:) = .1100010011110101. The approximation

error is -2ulp.

To demonstrate the effectiveness of algorithm 1.1, approximation errors

have been analyzed by comparing the approximated value with the actual

value of log(1 + 2:). The simulation assumes that m = 8 and n = 16. Hence

the input fraction takes the form of .r = .x1x2 . . .5516. All possible (217 — 1)

combinations of $1332 . . .3316 are simulated for approximated values and

compared with the true values. Let DIFF denote the absolute value of the

difference between the approximated value and the actual conversion value.

Simulation results are shown in Table 2.

It can be seen that the maximum approximation error is 4ulp, or 2‘”. The

number of combinations with DIFF = 2‘14 is 27 out of (217 — 1), which is

0.041%. Because of nonlinear approximation error and look—up table

truncation, the computation of c as described in the algorithm can have an
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DIFF(ulp) Number of Cases Percentage

0 22426 34.2

1 31388 47.9%

2 10417 15.9%

3 1278 1.95%

4 27 0.041%

2 5 0 O    
 

Table 2: Simulation result of TLFA 1 with n = 16

error of up to 1-2ulp, this error can be magnified by a factor of (1 + a) as in

Eq.3, which can then be further carried into the final stage of taking

logarithm from the look-up tables.

Since none of the conversion results of these combinations produce

DIFF > 2‘”, in other words, all DIFF g 2‘13. This concludes that the

developed algorithm achieves an accuracy of 13 bits.

The two tables — ROMl and ROM2, are used and each has a size of
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28 x 16, or 4k bits. Note that

log(1 + :13) < 22:

for all :1: > 0.

It follows that the first 7 bits of the output of ROM2 must be 0. So the size

of 28 x 9, or 2.25k bits is actually enough for ROM2.

It should be mentioned that the slow division process in Eq. 4 is improved

by approximating 2’ using the existing ROM table. However, the nonlinear

approximation approach developed in this algorithm limits to m = 8 and

the accuracy of log(1 + z) to 13 bits. The accuracy can be improved by

either selecting better nonlinear approximation functions, or alternatively,

using additional ROM table for the values of 2’, where z E [0, 1).

The first alternative seems difficult due to the fact that any nonlinear

approximation function to the function 2’ itself need to be effectively

evaluated first. In this study a connection between 2‘ and available

logarithmic function is discovered and hence there is not much hardware

overhead involved. But in general, it’s not easy to find a very convenient

approximation function. As discussed in chapter 2, linear function and
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truncated Taylor series have been tried before but are not very satisfactory

because of either low precision or heavy computation involved in the

evaluation of the approximation function.

Difference grouping technique can be used in the second alternative. Let

ROM3 be the look-up table for the difference between 22 — 1 and the

nonlinear approximation function (8) with the size of 2'" x m bits. Thus,

the approximation of 2‘ can be expressed as

2z z 2 -— log(2 — z) + A(z) for z 6 [0,1] (12)

where A(z) is the difference error by the first stage nonlinear

approximation and can be stored in ROM3.

The value c in Eq. 10 can then be calculated as

(1—P)+A(1—p)+fl§‘:—Al ingB

C: (13)

Algorithm 1.2 summarizes the procedure for this implementation. It has

been developed and simulated for IEEE single precision conversion (23 bits)
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with three internal guarding digits, making the total number of bits in a

word to be 26, which corresponds to m=13. In this case, ROM1 has size

213 x 26 bits, ROM2 has size 213 x 14 bits since the first 12 bits of log(1 + c’)

are all 0, and ROM3 has size 213 x 6 since, by previous analysis, A(z) is less

than 2‘8 and hence only the last 5 bits plus a sign bit need to be stored.

 

Algorithm 1.2

Step 0.

Step 1.

Step 2.

2.1

2.2

2.3

2.4

Step 3. 

(ROM1(x) and ROM2(c) are the same as in Algorithm 1.1)

ROM3(x) for 2‘ — 2 + log(2 — :r) with size of 2'" x m

(Same as Algorithm 1.1)

Calculate c from Eq. 13

p=1—B+A=po+pf.

P = ROM1(pf); A’ = ROM1(A);

IF p0 = 0

THEN c =1— P + ROM3(1— p) + ROM1(1 — A)/2;

ELSE c = (—P + ROM3(2 — p) + ROM3(1— A))/2;

c = c + A’/2.

(Same as Algorithm 1.1)
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Simulation results show that the maximum conversion error is 2‘24 after

truncating the last two guarding digits. Note that the look-up table size

can be further reduced by using PLA and other look-up table

compactification techniques. The use of PLA in [1] reduces the size to

about 16% of the original ROM size, similar effect can also be achieved by

using PLA in this scenario.
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3.2 Continuous Factorization Algorithm

In the previous section, nonlinear approximation method is proposed to

reduce the size of ROM for look-up table. The limitation of the scheme is

that its reduction of ROM size is only one-step and hence is not suitable for

high precision conversion. Limited by the look-up table size, a natural

alternative to increase conversion speed is to use parallel processing. The

Continuous Factorization Algorithm (CFA) is proposed that uses look-up

table and SRT division technique [2] to achieve fast high precision

conversion. We first formulate the problem in this approach.

For an n-bit fractional binary number

a: =.:1:1:r:2...:r,,

we factorize 1 + a: as

1+1: = 1+.x1x2...xn

z (1+.q1)(l+.0q2)...(1+.0...0qn) (14)

where each q,- is either 0 or 1.

Then log(1 + x) can be approximated as

log(1+ x) zlog(1+.q1)+log(1 + .0q2) + . . . + log(1 + .0. . .an) (15)



38

Since each q,- is either 0 or 1, the term log(1 + .0. . . 0q,-) is either 0 or

log(1 + .0. . .01), which can be pre-stored in a look-up table. Therefore this

approach employs a look-up table of at most n x n bits. For example, if

n=64, then the ROM size is no more than 64 x 64 = 4K bits. The question

now is how to determine the qi’s.

In principle the factorization process of 1 + a: can be carried out as follows.

First

1+2: = 1+.x1z2...xn

z (1 + .$1)(1+ .00.],2013 . . . 0.1,”) (16)

where q1 = $1 and

 

.a1,2a1,3...a1,n = %—f—" (17)

In a similar way,

1 + .0a1,2a1,3 . . . a1,n 2 (1+ .0a1,2)(1 + .00a2‘3a2,4 . . .a2,,,) (18)

where q2 = am, and

.a2,3a2,4 . . .02," = .a1,3a1,4...a1,n (19)

1 + .0013
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In general, at step j, j = 1,2,... ,n — 1,

1+ .00 . . . OajJHajJ-H . . . 07',” Q: (1+.00 . . . Dam-+1) X

(1 '1' .00 . . . 0aj+1,j+2aj+1,j+3 . . . 0.341,") (20)

where q,- = aj.j+1 and

'aj1j+2aj1j+3 ' ' ' ajin (21)

.a '+1, 31.20. '+1, '+3 . . . a '+1,n :

J I I I J 1+.00...0a.,-,,-+1

For example, consider n = 6 and :r = .111101, By Eq. 21,

1.111101 z (1.1) - (1.010011) q1=1

1.010011 5:: (1.01) . (1.000011) q2 :1

1.000011 m (1.000) . (1.000011) q3 = 0

1.000011 2 (1.0000) . (1.000011) 04 = 0

1.000011 z (1.00001) . (1.000001) qs = 1

1.000001 z (1.000001) - (1.000000) qe = 0

As a result,

(1.1)(1.01)(1.000)(1.0000)(1.00001)(1.000001)=1.11101111
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In the next section we analyze the approximation error and ways to reduce

look-up table size and computation steps. In that section we give a

sufficient condition that guarantees the conversion precision. Following that

we first develop a parallel processing structure that reduces the

computation steps from 0(n2) to 0(n), then we develop a more effective

implementation algorithm which is based on the SRT division spirit.
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3.2.1 CFA Approximation Error Analysis

In this section we analyze the various approximation errors in the CFA

conversion scheme which is based on the factorization process. We assume

the number of fractional bits is n and use ulp (unit of last position) to

denote 2‘". Also we assume that in any division if the word length of the

divisor is less than that of the divident, then the divisor is truncated. This

makes the hardware structure simpler.

Theorem 1. Suppose the register has fractional length of n, then

.0. . .Oak,k+1 . --ak,n

(1+ .0...0qk)

 

gives an n-bit fraction with error less than ulp.

Proof. If g). = 0, then clearly the error is 0. If qk = 1, note that in the

division process, the quotient bits are accurate until the last A: fractional
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bits when the divisor 1 + .0 . . .qu becomes 1 due to truncation. Hence

0 - ' ° Oyn—k+lyn-k+2 - ° - yn '0 - - - Oyn—k+lyn—k+2 - - -yn

error = —

1+.0...01 1

(.0 . . .Oy._..1y.-.+2 . . .y.)(.0 . . .01)

1 + .0...01

  

 

< 2“"4‘) - 2"c

: 2_n

= ulp

Theorem 2. For any fixed n = 2m > 0, the approximation error in the

following

1 + .0 . . . 0$m+1$m+2 . . . (L'Qm

z (1+ zm+12-m-1)(1 + xm+22-m-2) . . . (1 + x2m2-2'") (22)

is less than %ulp. Here each 2:,- is either 0 or 1.

Proof. Clearly the maximum approximation error occurs when xm+k = 1

for all 1 S k g m. We assume this and proceed as follows:

For 1 S k g m, let rk denote the remainder (error) of the product of the
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first k terms on the right side of the Eq. 22, i.e.,

r), = (1+ 2""H)(1+ 2‘m‘2) . . . (1 + 2"""‘)

m k

—(1+.0...011...1)

Note that rm equals the maximum error stated in the theorem.

The first few rk’s are easy to compute. For example,

1+2—m-1=1+2‘""1+0

=> T1=0

and

(1+ 2-m-1)(1+ 2-m-2) = (1+ 2-m-1 + 2-m-2) + 2-2m—3

=> T2 = 2-2m—3

It can also be checked that

7.3 : 2—2m-3 + 2—2m—4 + 2—2m-5

< 2—2m—2

So the theorem holds for m S 3.
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To estimate the bound on rk in general, first note the following facts.

Fact 1: 1+x<e$ forallx>0.

Fact 2: e“ < 2:1: +1 for all :1: E (0, %].

Form2k24,

Tk-Tk—i

= [(1+2‘m‘1)(1+2'm‘2)...(1+2"")’° (1+M]

— [(1+ 2'm‘1)(1 + 2‘m’2) . . . (1 + 2"""+1)1+M]

= (1 + 2—m—1)(1+ 2"”) . . . (1 + 2-""-’°+1)2-"'*—’c — 2”“

= 2-m-k[(1 + 2-m-1)(1+ 2-m-2) . . . (1 + 2-m—k“) — 1]
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The term (1 + 2'm‘1)(1 + 2‘m’2) . . . (1 + 2‘m‘k“) is estimated as follows,

(1 + 2-m-1)(1+ 2"“) . . . (1 + 2-m-k+1)

00

< H(1+ 2"“)

00

-—m—i

<11e2
1'21

00 2—m—i

2 eg1 (by Fact 1)

2—m

=e

< Tm“ + 1 (by Fact 2)

Thus

7-,, — rk_1= 2—m-’=[(1 + 2-m-1)(1+ 2‘m-2) . . . (1 + 2—m-k+1)— 1]

< 2—m-k . 2—m+1

= 2-2m-k-l-I
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and it follows that for m 2 4,

m

Tm = 7'3 + :01: — Tic—1)

k=4

00

< Ts +201: — Tic—1)

k=4

m

< T3 + Z 2-2m—k-H

k=4

= T3 + 2-2m—2

< 2—2m—2 + 2—2m—2

< 2—2m—1

1

1:]

Corollary 1. For any n = 2m-bit fraction factorization as in Eq. 15, only

the first m steps are needed and

Qm+k = am,m+ka 1 S k S m

The error caused by this is less than ulp.

Proof. By theorem 2,

error < (1+.q1)(1+.0q2)...(1+.0...0qm)-rm

< 2rm

< ulp
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El

Theorem 3. For each n = 2m-bit fractional input 2:, at most m(m — 1)/2

quotient bit operations are needed and the maximal error resulting from

factorization is less than n . ulp.

Proof. From corollary 2, only m divisions are needed. Because of

truncation at the end of each division, for 1 S k S m, only m — k quotient

bit operations are needed. So the total number is

i:k=m(m— 1)/2

k=1

Note that the error caused by air—,3 is at most §ulp < ulp and is less than

2ulp for each divisor 1 + .0 . . .qu, 2 S k g m.

By theorem 2,

total error < ulp + 2ulp(m —- 1) + ulp

= 2m - ulp

= n - ulp

1:]

Corollary 2. The final conversion error due to the factorization process is

71-11!

less than —31n2 .
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Proof. Since the function log(1+x) is continuously differentiable for

x 6 [0,1], for any x and y such that 0 g x < y S 1,

dlog(1 + x)

log(1 + y) -— log(1 + x) g Max dx

x6(0,1)

 

'(y—Ir)

  

 

 

Cl

Corollary 3. In order to achieve n-bit conversion accuracy, i.e., for each

n-bit fractional input, the logarithmic conversion error is less than ulp, the

following condition on the number of internal guarding digits g is sufficient.

log(n + g) — log(ln 2) < g

Proof. Note that the error caused by factorization is positive and the error

caused by look-up table truncation is negative. So we can just restrict the

error from factorization and error from look-up table truncation to be both

less than ulp.

From Corollary 2, we have

"_l'gg-(Mg) < Q-n

ln2
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which leads to

log(n + g) — log(ln 2) < g

For the look-up table truncation error, it is less than (n + g) - ulp. So we

have

(n+g)2-(n+g) < 2-n

which leads to

log(n + g) < 9

By comparing the above two conditions we have

log(n + g) — log(ln 2) < g (23)

Example 2.1

Suppose n = 56, then by Eq. 23 we can choose 9 = 7 to guarantee the

conversion accuracy.

Note that the condition developed in this section is just sufficient and may

not be optimal. Some estimates in the analysis can be further refined. For
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example, it can be easily shown that not all qi’s can be 1 whenever n > 3;

the bounds in the proof of Theorem 1 can also be lowered. Nevertheless, as

shown in the above example, the number of guarding digits is not big,

especially in long word case. So the result can be used in designing high

precision conversion structure.

The next two theorems are developed to reduce the size of the look-up table

used to store log(1+ 2“), i = 1,2,. . ..

Theorem 4. For each i > 1, log(1 + 2") is a fraction with (i-I) leading

0’s.

Proof. From the identity

log(1 + x) <

we have

—i

ln2

 log(1 + 2") <

< 2““)
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Theorem 5. Suppose n = 2m, then for k > m,

1

log(1+ 2"’°) z ~2- log(l + 24‘“)

1

Proof. From calculus technique, we have that for x E (0, 5],

1

5 log(1 + x) — log(1 + 9]

= logv1+x—log(1+ £)]

 

 

2

\/1+x

=log 1

1+5

1 _§

-1+c 2

=log(1—8( +2 x2) where0<c<x

5  

12
<_

213

Then for x = 2"5 as in the theorem, we have that

1

510g(1+ 2"“) — log(1+ 2"“1) < 2‘2"—1

The implication of the above theorem is that only the first half of the

look-up table for

log(1 + .0...01)
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need to be stored. For the second half of the look-up table, the result is

only a shift of the middle entry.

Example 2.2

The following table for n = 8 shows that for k 2 5, log(1 + 2"“) is just a

right shift of log(1 + 2"”1), as shown in the previous theorem.

 

 

i log(1 + 2")

1 .10010101

2 .01010010

3 .00101011

4 .00010110

5 .00001011

6 .00000101

7 .00000010

8 .00000001    
Table 3: 8-bit look-up table for log(1 + 2“)
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From these two theorems we get the following corollary on the size of the

look-up table.

Corollary 4. For n = 2m word length conversion, the logarithmic look-up

table size can be as small as Egg—+12 bits.

Proof. This is a simple result from Theorems 4 and 5. El

Example 2.3

If n=64, then the look-up table size is at most

32-(3.32+1)

2

 
bits

which is less than 1.5K bits.

In the following subsections we first propose a procedure based directly on

the factorization process described before. Then we incorporate the SRT

division technique to improve the speed.
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3.2.2 Restoring Approach

To implement the factorization process described at the beginning of this

section

1+.x1332“.$n : (1 +41)“ + .OQQ)...(1+.0...0qn)

we can do n divisions with the divisor of the form 1 + 2‘j at each division

step j. Or we can do n multiplications to change the divisor at step j to be

of the form (1 + .q1)(1 + .0q2) . . . (1 + .0 . . .Oqj), which reduces the division

to a single comparison.

In the first approach, because of the special form of the divisors, at each

division step j, after certain number of quotient bits are determined, the

next division process can start. The following example shows this in detail.

Example 2.4



Suppose a fraction

.amalg . . . = "$11132 . . .

At step 1, we do the division

.00.],2013 . . .

 

— .002,202’302,402,5 . . .

Lam

at step 2, we do the division

0002,3024 . . .

1.00.23

 

= .00a3,3a3,4a3,5a3,6 . . .

Step 2 doesn’t have to wait for the completion of step 1 to start. In fact,

after am in step 1 is determined, step 2 can be carried out. Each additional

determined quotient bit from step 1 immediately participates in step 2

division in a synchronized way. Similarly, step 3 can start after a3; is

determined in step 3.

The parallel processing structure illustrated by the above example can

increase speed dramatically in high precision situation. In fact, it can be

proved that the number of total quotient bit operations is reduced from

0(n2) to 0(n). However, this erases the recursive property of the algorithm

in the hardware implementation and causes large array-like structure. So
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the trade-off here has to be weighed depending on the application

requirement.

In the rest of the section we develop the second implementation approach.

As will be seen in later subsections, it allows the design of high speed

implementation with still low hardware complexity.

We utilize the standard restoring division procedure [2] which uses

comparison and subtraction operations. Define the partial quotient DJ- and

partial remainder Rj, j = 1,2, . .. ,n, as

and

Rj = (1+.$1$2...$n) —Dj

with D0 = 0 and R0 = .x1x2 . . .xn.

Note that the choice of each q,- is to try to make DJ- to increase

monotonically from 1 to 1 + .x1x2 . . .xn which also corresponds to the

partial remainder Rj decreasing from .x1x2 . . .xn to 0. So at each step j, we
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can first try q,- = 1. If D,- turns out to be too big (Dj > 1 + .IL'1C172....’L'n or

R]- < 0), then we just reset q,- = 0 and try to choose a smaller factor

(1 + qj+12’(j+1)) and so on.

Since

R,- = (1 + .561$2...$n) — DJ-

: (1 +.x1x2...xn) — (1+.q1)(1+.0q2)..(.1+.0...0qj)

= (1 + .x1x2 . . .xn) — (1 + .q1)(1 + .0q2) . . . (1 + .0...0qj_1)

— (1 + .q1)(1 + .0q2) . . . (1 + .0. . .0q,_1) -q,2-J'

= j—1 — DH 'qu’ (24)

we have the following algorithm.

 

Algorithm 2.1

Step 0: Let R0 = .x1x2 . . .xn, D0 =1.

Step j: j=1,2,...,n

LEI. RJ' 1' Rj_1 — Dj__1 ° 2_j

If Rj 2 0111' = 1, D3“ = Dj_1+ Dj_12_j

  If Rj < 0, (13' = 0, Rj = Rj_1, DJ' = Dj_1
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Example 2.5

Table 4 shows the detailed steps for

R0 = x = .111101

implemented by algorithm 2.1.

 

j R1 (11' DJ“
 

1 .011101 1 1.1

2 .000101 1 1.111

3 .000101 0 1.111

4 .000101 0 1.111

5 .000010 1 1.111011

6 .000001 1 1.111100     
 

Table 4: Example 2.5

Note that because of truncation D6 is different from x in the above example,

the error estimation is done in the previous section.
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The restoring division nature of the procedure can be improved by a

non—restoring procedure with the use of signed digits. In fact, it will be

shown that the SRT division technique can be used to achieve the

computation complexity of 0(N) with still small chip area. In the rest of

this section the development is described.

3.2.3 Modified Restoring Approach

In this subsection we develop another version of algorithm 2.1 which is

more suitable for hardware design and also serves as a basis for the

development of SRT division techniques in the next subsection.

First note that in Algorithm 2.1 R, < 23'+1 for each j = 0,1,. . .. This

implies that for large value of j the first j — 1 fractional bits in Rj are all 0.

Secondly, R,- is only involved in the computation of

R,- _ Dj . 2-(J'+1)
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where D,- - 2'43“) has the first 3' fractional bits as 0. So it can be seen that

the first j-l fractional bits of 0’s in

R,- _ Dj . 2-(j+1)

doesn’t really contribute to the result. Plus considering the hardware

implementation structure which often uses shift registers in this situation,

we do the following modification of algorithm 2.1.

Let F,- = 23R], then from Eq. 24,

= 2’(Rj-1 —‘ Dj—l '(IjQ-j)

= 2’Rj—1 - Dj—l 'CIj

= 2Fj_1 — Dj_1 ' Qj
(25)

Thus we have the following algorithm which is more suited to hardware

implementation.
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Algorithm 2.2

Step 0: F0 = .x1x2 . . .xn and Do =1

Step 1: For each 3' = 1,2,... ,n,

1.1 F,- = 2FJ-_1— Dj-1

1.2 If F]- 2 0, then {qj =1; D,- = D,-_1+ 2"ij_1}

1.3 else {qj 2' 0; F} = 2173-1; DJ‘ = Dj_1}  
 

Example 2.6

Consider a fractional number x = .111101, the stepwise procedure of the

algorithm 2.2 is tabulated in Table 5.

Finally, (1.1)(1.01)(1.000)(1.0000)(1.00001)=1.11101111.
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j 2Fj-1 Dj—l 91' F1 D1

1 1.111010 1.000000 1 0.111010 1.100000

2 1.110100 1.100000 1 0.010100 1.111000

3 0.101000 1.111000 0 0.101000 1.111000

4 1.010000 1.111000 0 1.010000 1.111000

5 10.100000 1.111000 1 0.110000 1.111011

6 1.100000 1.111011 0 1.100000 1.111011

 

Table 5: Example 2.5
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3.2.4 Non-restoring Approach

For an n-bit factorization process, algorithm 2.2 requires 72 steps, where

each step needs two n-bit addition/subtraction operations. In the whole

process the most time consuming steps are the full length subtraction

FJ- = 2Fj_1 — Dj_1 and the full length addition Dj = Dj_1 + Dj_12‘j

because of carry propagation. Note that at each step j in algorithm 2.2 we

are essentially doing the following division problem

2153-1
Di—l = qJ- + . . . ' (26)

in which the dividend is 2FJ-_1 and the divisor is Di_1. The SRT division

technique was first invented to avoid full length subtraction and make the

quotient bit selection rule be data independent [2]. In other words, we can

make a simpler selection rule which allows the dividend and the divisor to

be in a certain range instead of being exact and still guarantees the

convergence. The use of this technique solves the carry propagation

problems just mentioned. The price paid for this technique is that sign

digit has to be used, which means that in the radix—2 case, the quotient bit

qj has to be allowed to assume value from the set {-1,0,1}. This result in

the look-up table to be doubled to also include the values log(1 — 2‘1).
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This increase is not significant since the original look-up table has a very

small size. On the other hand, the speed performance is improved

dramatically, especially in long word length situation.

In the rest of this subsection the detail of the application of SRT division

technique is developed.

 

   
Figure 4: Radix-2 P-D plot

Let the quotient digit set be {-1, 0, 1}. For simplicity of notation, let “T”

denote “-1”. Consider the P-D plot in Fig. 4, to guarantee IP — qDl < D,
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the ranges for q is

(-1+q)D __ P S (1 +q)D, where 0.5 S D < 1

i.e.,OSPS2Dforq=1;-DSP§Dforq=0;and —2DSPSOfor

q = —1. As a result, the ranges of the overlapping area 130,1 for both q = O

and q = 1 is: 0 S Pm S D, and the ranges of the overlapping area P_1,o for

both q = —1 and q = 0 is: —D g Pm g 0. Therefore, two comparison

constants, % and —%, can be chosen to determine q for divisor D between 0

and 1, and between 0 and -1 respectively.

In the implementation of Eq. 26, the divisor at each step j is 2173-1 and the

dividend Dj_1 is always in the range [1,2).

Thus, we consider D = 2121 so that 1 > D 2 0.5. The division

 

 

2Fj—1 : Fj—l

DH —

: Fj_1

D

defines P = Fj_1.

This implies that D is ranged between 0.5 and 1.0 and P is between -1.0

and 1.0. As shown in Fig. 4, two comparison constants cl = 0.2510 2 0.012
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and c_1 = —0.2510 = 1.112 (2’s complement representation) can be used.

Thus, the quotient digit qj is estimated by

1 If Fj_1 > C1

Qj = 0 If C_1 S Fj__1 S Cl (27)

_1. lfFj_1< 6.1

The improved continuous factorization scheme is summarized in the

following.

 

Algorithm 2.3

Step 02 F0 = $311132 . . .13" and D0 =1

Step 1: For each 3' = 1,2,... ,n,

1.1 Estimate g, from Eq. 27

1.2 E] = 2Fj_1— qJ'DJ'_1

  1.3 Dj = Dj_1 + Qj ' 2_ij_1

 

Example 2.7
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217,.1 D,-_1
(13' F1 Di
 

1.111010

1.110100

0.101000

1.010000

1.010000

1.011110

1.000000

1.100000

1.111000

1.111000

1.111111

1.111100
l
—
‘
I

0.111010

0.010100

0.101000

0.101000

0.101111

0.100010

1.100000

1.111000

1.111000

1.111111

1.111100

1.111101   
Table 6: Example 2.6

Let’s reconsider the previous example in this algorithm as shown in Table 6.

In this example D6 = x. In general there could be some error whose range

is analyzed in the section 3.2.1.

Note that steps 1.2 and 1.3 in algorithm 2.3 can be completed very fast by

the use of carry-save-adder (CSA), which eliminates carry propagation and

produces an approximate value, whose accuracy determines the number of

bits kept for a short length full addition.
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3.2.5 Modified Error Analysis and Hardware Implementation

Structure

Because of the simplication involved in algorithm 2.3, the error analysis in

subsection 3.2.1 needs to be modified. It is done in this subsection and the

schematic structure to implement the developed algorithm 2.3 is also

proposed.

Suppose the input word length is n bits and let g be the number of

guarding digits needed to ensure conversion accuracy of also n bits. This

means the internal register length is n + g. Let ulp = 2‘("+9). Note that in

algorithm 2.3 the only error is caused by the truncation in calculating DJ- at

each step j, which result in an error no larger than ulp. It then follows

easily that we get exactly the same result as given by Corollary 3 in

subsection 3.2.1, under the additional condition that log(1 + 2") is stored

in truncated form and log(1 — 2”) in round-up form.

In the following the implementation structure of algorithm 2.3 is deve10ped.

Suppose the input word length is n, then the look-up table used to store

log(1 :1: 2’1) will have the size of 2n2. As an example, if n = 64, then
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2n2 = 8K(bits). It’s interesting to note that by the look-up table reduction

technique developed in subsection 3.2.1, and the fact that

log(1 — 2:) z — log(1 + 1:), the look-up table size can be just n2, but this

involves a little hardware overhead. Three CSA’s are needed. one for the

addition of

Zlogu :l: qj2'j)

1:1

and two others for the factorization process. One is used for the dividend

F], the other for the divisor Dj.

Note that q1 = x1 is directly determined. For the comparison of partial

remainder F,- with comparison constant 0, note from the P-D plot that the

allowable error is i. To ensure convergence in the algorithm, we need to

retain 4 fractional bits of the CSA for Dj, plus the first integral digit and

sign bit, we need to do a full addition of 6 bits for the comparison step 2.1

in algorithm 2.3, which can be implemented by a carry-look-ahead adder to

improve speed or a usual full adder to save chip area if the carry

propagation delay is bearable in the application.
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«9 a f1f2-f4 q q. q.
 

001***101

     
Table 7: Truth table for q

After the result sa.f1f2f3f4 of full addition is produced the quotient bit q

can be determined. Table 7 shows the encoding of q and its logic function

depending on sa.f1f2f3.

The logic functions of q, and q, are then derived as

‘13 = 3(6'1' 71)

qa=a€Bs+a€Bf1

The implementation structure is shown next.
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Shift bits Shiftj bits

 

Figure 5: Block diagram of the implementation of algorithm 2.3



4 Conclusion

Logarithmic number system (LNS) is an attractive alternative to the

conventional number system when the data need to be manipulated at very

high rate over a wide data range. The major problems in dealing with the

logarithmic number system are to derive logarithm and anti-logarithm

quickly and accurately enough to allow conversion to and from the

conventional number representation.

This thesis study develops two efficient algorithms for binary logarithmic

conversion : TLFA (Two Layer Factorization Algorithm) and CFA

(Continuous Factorization Algorithm). The former uses a factorization

approach to reduce the look-up table size and employs a nonlinear

approximation method to reduce the computational complexity. Simulation

results on IEEE single precision conversion (23 bits) show that the

algorithm requires only one ROM table of 213 x 26 bits, one of 213 x 14 bits,

and one of 213 x 5 bits, or a total of 360K bits. This algorithm has

advantages over other work on this problem in both speed and

implementation structure which is mainly due to the discovery of a

convenient nonlinear approximation function. For handling long word

72
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length numbers, such as in IEEE double precision (53 bits), CFA uses a

continuous factorization process to further reduce the look-up table size

and reduces the problem to a division one which can be implemented using

the SRT division technique [2] to give a high-speed yet simple structure.

More specifically, the conversion time is about three additions irrespective

of word length.

The speed of SRT-based divisions is mainly determined by the complexity

of the quotient-digit selection [2, 15, 16]. To speed up the division process,

one may reduce the number of iteration steps by increasing the radix 6 of

the sign digit number system used in the process. Selecting ,6 = 2'" allows

the generation of m quotient bits at each step and the number of steps can

be reduced to [i] where n is the word length. However, the complexity of

the quotient bit selection and remainder updating increase for high radices,

offsetting the advantages of the reduction in the number of iterations [2].

Therefore, exploring the speed performance in this logarithmic conversion

problem using the high-radix SRT division scheme is an interesting topic

for future work.
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Appendix

A Source code of simulation program for

TLFA 1.1 (in Java)

// This program simulates algorithm 1.1 for all

// possible 16—bit input combinations.

class misc {

static int N=8;

static long one = (long) (Math.pow(2,N)+.5);

static double e=Math.pow(2,-N);

public static void toBinary(long x, int n) {

int 1;

int [J a=new int [128];

for (i=n-1; i>=0; i--) {
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long t=x&1;

a[i]= (int) t;

}

for(i=0; i<n; i++)

System.out.print(aIil);

System.out.print(" ");

public static long expconv(long x) {

double yd=Math.pow(2,x*e)-1;

return (long)(yd/e+ 5);

public static long lt1(long x, int tag) {

double xd (double) x * e;

double yd Math.log(1+xd)/Math.1og(2);

long y = (long) (yd/e/e+.5);

switch(tag) {
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case 0: return y;

case 1: return (y*2/one+1)/2;

case 2: return y%one;

};

return -1;

public static long 1t2(long x, int tag) {

double xd (double)x*e*e;

double yd Math.log(1+xd)/Math.log(2);

.long y = (long) (yd/e/e+.5);

switch(tag) {

case 0: return y;

case 1: return y/one;

case 2: return yZone;

};

return -1;
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public static long 1t(long x) {

double xd (double)x*e*e;

double yd Math.log(1+xd)/Math.1og(2);

long y = (long) (yd/e/e+ 5);

return y;

class 8 {

public static void main(String[] args) {

int N=8;

int[] diff=new inth];

long c,C,x,y,A,Aprime,B,p,pf,P,r,t,t1,cnt=0,err=0;

long one (long) (Math.pow(2,N)+.5);

one*2;long two

double xd,yd;

double e=1/(double) one;



78

for (x=0; x<one; x++) {

A = misc.1t1(x,1);

Aprime = misc.1t1(A,1);

for (y=0; y<one; y++) {

B = misc.lt1(y,1);

p = one-B+A;

pf=p%one;

P = misc.1t1(pf,1);

if (p<one) c = (one-P)+Aprime/2;

else c = -P/2 + Aprime/2;

C = misc.lt2(c,0);

r = misc.1t1(x,0)+C;

t = misc.lt(x*one+y);

t1 = r-t,

diff[(int)Hath.abs(t1)l++;



79

for (int i=0; i<N; i++)

System.out.println(i + " " + diffEiJ);



B Source code of simulation program for

TLFA 1.2 (in Java)

// This program simulates algorithm 1.2 in IEEE single precision.

class misc {

static int N=13;

static long one = (long) (Math.pow(2,N)+.5);

static double e=Math.pow(2,-N);

public static void toBinary(long x, int n) {

int 1;

int [J a=new int [128];

for (i=n-1; i>=O; i--) {

long t=x&1;

x /= 2;

a[i]= (int) t;

}

for(i=0; i<n; i++)
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System.out.print(aIiJ);

System.out.print(" ");

public static long expconv(long x) {

double yd=Math.pow(2,x*e)-1;

return (long)(yd/e+.5);

public static long lt1(long x, int tag) {

double xd (double)x*e;

double yd Math.log(1+xd)/Math.log(2);

long y = (long) (yd/e/e+.5);

switch(tag) {

case 0: return y;

case 1: return y/one;

case 2: return y%one;

};

return -1;
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public static long lt2(long x, int tag) {

double xd (double)x*e*e;

double yd Math.log(1+xd)/Math.log(2);

long y = (long) (yd/e/e+.5);

switch(tag) {

case 0: return y;

case 1: return y/one;

case 2: return yXone;

};

return -1;

public static long lt(long x) {

double xd (double)x*e*e;

double yd Math.log(1+xd)/Math.log(2);

long y = (long) (yd/e/e+.5);

return y;
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class 3 {

public static void main(String[] args) {

int N=13;

long c,x,y,x1,y1,t,t1,t2,err=0;

long one (long) (Math.pow(2,N)+.5);

long two one*2;

double xd,yd;

double e=Math.pow(2,-N);

for (x=0; x<one; x++) {

x1 = misc.lt1(x,1);

t2 = misc.expconv(one-x1)/2;

for (y=0; y<one; y++) {

// misc.toBinary(x,N);
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// misc.toBinary(y,N);

y1 misc.lt1(y,1);

t1 y1-x1;

if(t1>=0) c=misc.expconv(t1)+one/2-t2;

else c=misc.expconv(one+t1)/2-t2;

y1 = misc.1t1(x,0)+misc.lt2(c,0);

t = misc.lt(x*one+y);

// misc.toBinary(y1,N); misc.toBinary(t,N);

t1 = yl-t;

if (Math.abs(t1)>err) err = Math abs(t1);

// System.out.println(tl + " " + err);

}

System.out.println("Maxerror=" + err);
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