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ABSTRACT

PREPARTUM SELECTION OF HOLSTEIN HEIFERS TO

MAXIMIZE PROFIT OF MICHIGAN DAIRY PRODUCERS

By

Brian R Radke

Based on the culling optimization and simulation literature, it can be concluded that the

Michigan dairy industry has an excessive cull rate. The corollary is that producers have an

excess ofheifers, dictating the need for a method of prepartum heifer selection. Selecting

heifers on the basis oflifetime profit corrected for the opportunity cost ofpostponed

replacement will maximize producer profit. While this profit measure can not be calculated

prior to death, it has moderate correlation with first lactation milk production. Estimated

brwding values (EBV) which are fimctions ofthe heifers’ parents’ predicted transmitting

abilities (PTA) are the only widely available data on which to base heifer selection

decisions. While theoretically and intuitively parents’ PTA should predict subsequent

daughter milk production, and therefore, lifetime profit corrected for the opportunity cost

ofpostponed replacement, empirical support for this relationship was lacking. Based on

the data of5, 123 Michigan Holstein heifers, parents’ PTA of milk, fat, and protein

available just prior to the heifers’ calvings account for under 7% ofthe within herd

variation in milk production. While diffuse, the distribution ofwithin herd rank

correlations between predicted mature equivalent milk production, based on genetic

evaluations, and the actual mature equivalent milk production, was skewed to the left

suggesting the evaluations may be useful in prepartum heifer selection. The omission

oflleifers Which were culled prior to first lactation, did not appear to cause selection bias in
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the sample data. It also appeared herd could be modeled as a random effect. Despite

evidence that first lactation milk production did influence producers’ culling decisions,

parents’ PTA ofmilk, fat and protein estimated after the birth of 5,619 Michigan Holstein

heifers were unable to predict heifer culling during rearing or first lactation. This also

suggested Michigan producers were not basing their culling decisions on genetics. There

appeared to be little difi‘erence in the voluntary nature ofvoluntary versus involuntary

wllings casting doubt on the existence or utility of such a culling classification scheme.

Modified Box-Complex, a search algorithm, was used to determine optimal heifer

selection rules under three scenarios. Separate data sets of 58 and 57 Michigan herds were

used to derive and test the rules, respectively. The objective ofthe rule was to maximize

average profit per heifer, summed over all herds in the data set, subject to a given

proportion of heifers being selected. Profit was a function ofthe returns to heifer sales

which varied across the four raising periods the rule operated over and lifetime profit

corrected for opportunity cost ofeach heifer estimated from first lactation milk

production. Genetic data consisted ofPTA milk, fat, protein, and associated reliabilities of

each parent in each ofthe four periods. Considerable sampling error was encountered in

terms ofrule performance between the samples used to derive and test the selection rules.

Regardless of scenario, selection based on EBV of milk in the most profitable period to

sell heifers performed comparably to the rule developed by Complex. Use of either of

these rules resulted in a $20 per heifer improvement in profit over random selection. While

heifer selection based on EBV milk is more profitable than random selection, only a

portion ofthe profit available in heifer selection is being captured.
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Chapter 1

STATEMENT OF THE RESEARCH ISSUE AND INTRODUCTION

Statement of the Research Issue

There is a lack ofthought, much less knowledge, in the area ofprepartum Holstein

heifer selection. Numerous optimization and simulation models suggest the culling rate of

cows in Michigan dairy herds is excessive, resulting in a 2% to 40% decrease in producer

profit. These studies indicate a method of heifer selection is required.

Given the need to select only a portion ofthe available heifers, it would be

desirable to select those animals which will subsequently be most profitable. This contrasts

the naive method ofrandom heifer selection employed in culling optimization studies.

Genetic information, including milk, fat, and protein estimated breeding values (EBV) and

their associated reliabilities, are the most viable data on which to base heifer selection

decisions. An EBV, the estimation ofan animal’s genetic merit for the respective trait, is

the sum ofits parents’ predicted transmitting abilities (PTA) for the trait.

However, the utility ofa profit maximizing decision rule for heifer selection based

on genetic information is not clear for a number ofreasons. Firstly, the relationship

between profitability and the genetic information is not known. Secondly, it is not clear

how the value ofthe genetic information updated every six months over the two year

period ofheifer rearing will compare to the rearing costs ofthose periods. Finally, the

decision rule is complicated by its dynamic nature - heifer selection in previous rearing



periods will alter the subsequent heifer population on which selection is practiced, and this

must be considered by the decision rule.

Random heifer selection should improve producer profitability and cash flow

versus a scenario where heifers are not selected, but may not be intuitively appealing to

producers. A profit maximizing method ofheifer selection will not only fiirther improve

producer profitability, but may also be more acceptable to managers thereby encouraging

them to utilize the management technique of heifer selection.

Introduction

Michigan milk producers face an increasingly competitive market, not only

nationally but as well internationally. Least cost and efficient production are necessary to

survive in commodity markets. The call for attention to the economically important issue

ofculling has been made (Nelson, 1994). As well “additional research is required to

determine how dairy replacement systems reflect the lifetime productivity and profitability

ofthe dairy cow” (Heinrichs, 1993).

Briefly, Chapters 2 through 5 ofthis dissertation consist of literature review.

Chapter 6 contains a summary ofthe literature review and the three hypotheses that were

generated as a result. The following three chapters (7, 8, and 9) each evaluate one ofthe

hypotheses. Chapter 10 summarizes the dissertation and discusses potential areas of

further research.

While much ofthe literature review uses mathematical explanations, intuitive

explanations ofthe concepts are also provided. Chapters 2 and 3 consider the economics



ofasset replacement theory, also known as capital budgeting. While capital budgeting is

not directly applied in this dissertation, the current research is highly predicated upon

studies which have applied this theory to dairy herds. As this wealth ofwork on optimal

culling rates in dairy herds has been largely overlooked, it is important to review this

literature along with its associated methods. Given an understanding and acceptance ofthe

results from this large body ofliterature, the logic ofthe necessity of a method ofheifer

selection will become clear.

Following a brief introduction to neoclassical production economics, Chapter 2

reviews standard replacement theory using Net Present Value analysis. While some models

ofdairy herd culling have employed this technique, it is not particularly appropriate to the

current problem for various reasons including the replacements are not identical to the

animals they replace. These models are however useful for gaining an intuitive

understanding ofthe replacement issue, as well as, stressing the importance oftime

horizon, model specification, and opportunity costs. Despite the lack of sophistication,

these models suggest dairy cow culling, at least in the Netherlands, may be greater than

that to maximize profit.

Chapter 3 considers dynamic programming optimization and simulations ofdairy

herd culling. A number of studies will be considered to stress the diversity ofthese

models, in terms ofmodeling approach, and assumptions. Despite the diversity ofthese

models (including the country modeled), the results are remarkably similar - culling rates

to optimize profitability are less than those currently employed by the dairy industry. This
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literature is tediouSIY I'eviewed because despite the consensus, it is unfortunately not well

understood by the dairy industry or its advisors.

The simulation studies help to provide some understanding ofwhy maximum

culling rates do not maximize income. The excessive culling rates used by the dairy

industry may maximize milk production and genetic gain. However, the industry and its

advisors have failed to consider the cost ofthese gains, namely the opportunity cost ofthe

heifers.

Chapter 3 concludes with a discussion ofwhy the dairy industry as a whole has too

high a culling rate. This is not a trivial concern as the research presented in Chapters 2 and

3 suggests the industry is acting inefficiently and irrationally fiom an economic

perspective. Included in the discussion ofthe potential motivations ofthe dairy industry is

my argument that involuntary culls simply rarely exist.

The conclusion to be drawn from Chapters 2 and 3 is that many Michigan dairy

producers have too high a culling rate. This directly suggests these producers have an

excess of heifers, necessitating a method of heifer selection.

The weakness ofthese culling models is their modeling of heifer selection, which

was often random or arbitrarily based on some genetic parameter. Given that all

replacement heifers are not required, Chapter 4 considers the potential methods ofranking

heifers for maximum profit. Lifetime profit corrected for the opportunity cost of

postponed replacement is revealed to be the economically correct objective in heifer

selection. This value is shown to be moderately correlated with first lactation milk

production.
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Currently estimated breeding value, based on parents’ PTA, is one ofthe few

indicators of first lactation milk production, and by association, lifetime profit corrected

for the opportunity cost ofpostponed replacement. Chapter 5 critically evaluates the

Selection Index estimation ofgenetic value.

Chapter 6 summarizes the major points from the literature review. It is apparent

that estimates ofgenetic value currently represent the only readily available means of

hdfer selection. Chapter 6 then presents the three hypotheses which were evaluated in this

research

While parents’ PTA should have some predictive ability for subsequent first

lactation milk production and therefore be usefiil in heifer selection for maximum profit,

surprisingly this theoretical relationship has not been empirically evaluated to any degree.

In keeping not only with the standard methodology of economics, but as well, the

scientific method oflogical positivism it was deemed important to empirically examine the

theory. So prior to generating a heifer selection rule based on genetic estimates it was

deemed important to return to the basics of evaluating how well genetics predicted

subsequent milk production. This research is presented in Chapter 7.

With some indication that genetics may be useful in heifer selection, the research

turned to exploring a method ofheifer selection. Producers are likely making the correct

decisions as to which animals they are culling, the problem is the late timing ofthe

decision. By waiting until after fi'eshening to decide which animals to cull, producers are

paying too high a price to make this correct decision - the value ofthe decision is less than

its cost. Ifgenetics could predict which animals the producers would subsequently cull, a
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very good heifer selection rule with a powerfirl motivational influence to lower dairy

producers’ culling rates would result. Chapter 8 considers the ability ofgenetic indices to

predict culling during rearing or the first lactation. As well, some light is shed on the

voluntary nature ofwhat has traditionally been deemed voluntary versus involuntary culls.

Following the use ofeconometric methodology to elicit a method of selecting

heifers using parents’ genetic estimates, Chapter 9 turns to an operations research

approach. Modified Box-Complex, a search algorithm, was used to derive a potentially

dynamic method ofheifer selection to maximize producer profit. This approach

incorporated the multi-period nature of heifer selection, where every six months during the

rearing process new improved genetic estimates were produced and there was an

economic consequence, either positive or negative, associated with raising the heifers for

that period. Given the proportion of heifers to be selected, the rules consisted ofthe

proportion ofheifers and the weightings for the genetic information in each period. Using

a sample ofherds which was used solely for testing the rules, Complex’s rule was tested

against the profits associated with random heifer selection and a rule based on genetic

theory.

Chapter 10 provides a summary ofthis dissertation, and discusses potential

avenues offurther research.
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Chapter 2

PRESENT VALUE MODELS

livestock culling is fundamentally a replacement issue. This chapter will briefly

introduce the standard neoclassical production economics approach to input selection.

Finding this technique inadequate in the assessment ofdurable assets, the Net Present

Value (NPV) method ofcapital budgeting will be employed to optimize increasingly

complex replacement models. The flexibility ofthese models will be showcased by

addressing the issue ofthe optimal calving interval, before turning to the animal

replacement decision. It will become apparent that the dynamic and complex nature of

replacement in general, and dairy cattle in particular, is frequently underestimated. For

example, these results highlight that the approach of collecting milk production data on

dairy cows with the goal ofassessing the most profitable time for insemination is so

simplistic as to be meritless.

While even the moderately complex analytical models presented in this chapter are

not fully adequate to address replacement decisions in dairy herds these models and their

applications do provide some insight into the problem. These models provide intuition into

the understanding ofcapital asset replacement theory decisions including the importance

ofchoosing the appropriate model and time horizon for a given problem, as well as,

considering the opportunity costs ofreplacement. Applying standard replacement theory, I

also explain why ifgenetics is useful in heifer selection, such a selection scheme should be

associated with a higher culling rate among the cows than a herd which randomly selects
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heifers. Turning to applications ofthese NPV models in the literature, numerical versions

ofthe models which suggest that as ofthe mid-1980s, culling strategies in the Netherlands

were undesirable and associated with excessive culling rates are reviewed. Applying an

understanding ofNPV models and replacement economics, the result that the profit

maximizing culling rates were most sensitive to the price ofthe replacement relative to the

cow and minimally influenced by milk price or rate ofgenetic improvement are explained.

Finally, Van Arendonk’s (1991) application ofreplacement theory revealing that neither

lifetime profit nor profit/day correctly rank animals based on profit is reviewed along with

the economically correct method of ranking cows.

Production economics is the area of neoclassical economies which considers the

selection and application ofconstrained inputs to maximize an objective, commonly profit.

Inputs used in production can be classified according to their functional life span:

expendables are instantaneously and completely consumed in the production process,

while durable inputs or assets have the potential to supply services for multiple periods

(Robison and Barry, 1996). Production economics tends to focus on the comparative

static analysis ofinstantaneous production firnctions utilizing expendable inputs; all

dynamic or intertemporal components are ignored (Beattie and Taylor, 1993). Feeding a

dairy cow to produce milk is an example ofsuch a production function, and can be

mathematically represented as

m = fa (2. 1)

where m = milk production

f= level offeed supplied
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or = the productivity offeed in milk production.

The profit (1:) fi'om such a production fiinction is a fiinction ofthe prices ofmilk (P) and

feed (A).

1t=Pf°‘—Af (2.2)

Equating the marginal cost ofthe feed with the marginal value product ofthe milk reveals

the profit maximizing level ofthe feed input. As we will see in the next chapter, failure to

understand or use this simple static profit maximizing decision rule has resulted in poor

advice on optimal culling rates fi'om dairy industry advisors.

Given the optimal input level, static analysis can then be conducted to assess the

efi‘ects ofchanges in any ofthe parameters on the optimal level of feed.

However, even simple extensions ofthe above problem can not be adequately dealt

within a standard production economics fi'amework. Consider a situation where the

amount offeed available is limited for a given period oftime, for example the inventory of

feed is fixed at level F until time period Twhen the next harvest will occur. Intuitively it

can be reasoned that the production functions are now temporally related. Decisions made

in any time period will have ramifications on subsequent periods. So the feed available in a

given period (t) is a function ofthe total amount available and the amount previously fed.

t-1

05f,sF-§fl 15,3T (2.3)

Equations (2.1) and (2.2) then become

m, = f, (2. 4)

10
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20f,“ -Af,) s.t. Equation (2.3) (2-5)

r=1

The solution will then consist ofa time path ofoptimum feed levels in each period. Static

analysis ofthis problem is rarely appropriate given that changes inf, will have

ramifications on the amount fed in time periods greater than 1. Comparative static analysis

is apropos in a dynamic system only in the special situation in which the time periods are

uncoupled. This requires, at a minimum, a nonbinding feed constraint which reduces the

problem to solving Equation (2.2) Ttimes.

Given that static analysis may not be suitable for solving situations involving

expendable inputs, it is not surprising that this technique is inadequate for dealing with

production using durable assets, which by definition have multiple period lives. Consider a

feed wagon purchase decision, the initial cost ofthe wagon will be home when purchased

in the first period, while returns and expenses associated with operation ofthe wagon will

be realized in subsequent periods. And finally, at the end of its usefiil life, a return or cost

will likely be associated with retirement ofthe asset.

Capital budgeting is one technique used to analyze the economics ofassets or

inputs which generate costs and returns over multiple periods. While payback, accounting

return on investment (i.e., return on equity, or return on assets), benefit-cost analysis (or

profitability index), and internal rate of return have all been used to assess the profitability

ofcapital assets, net present value is the method ofchoice. NPV is the only method which

unambiguously considers all the cash flows generated by an asset, the time value of

money, does not make overly rigid reinvestment assumptions, and provides a unique

solution (Robison and Barry, 1996). The formula for NPV in discrete time is

11
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,.1(1+r)’ (1+r)" ( )

where Vo = the initial investment in the asset

R, = is the net cash flow in time period t

n = the life span ofthe asset

V(n) = the (salvage) value ofthe asset in time period n

r = the discount rate of the challenger.

The challenger is the next best alternative use ofthe investment, while the defender is the

asset explicitly being considered and for which the NPV is being calculated. The discount

rate which is associated with a particular challenger and should be adjusted for risk and

taxes (Robison and Barry, 1996). While the challenger may be a interest bearing

investment, it is incorrect to generally define r as the interest rate. This incorrect definition

ofr in not uncommon. Ifnothing else such a definition begs the question which interest

rate - that associated with a chequing account, savings account, certificate ofdeposit,

treasury bill, grade ofprivate or public bond?

Equation (2.6) can be equivalently expressed in continuous time as

NPV = -V0 + }R(t)e'"dt + e‘”V(n) (2. 7)

0

Now consider the simple decision ofwhen to sell a cull dairy cow, assuming no

replacement (Perrin, 1972). The decision mle is derived by setting the derivative ofthe

objective function (NPV in Equation (2.7)) with respect to the choice variable (time) equal

to zero (Beattie and Taylor, 1993).

12
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dn = R(n)e"" + V'(n)e’”' — re'"'V(n) = O (2. 8)

Equation (2.8) can be simplified to

R(n) + V'(n) = rV(n) (2. 9)

Negativity ofthe second derivative is required for a global maximum. Equation (2.9)

reveals that the optimal time to sell is the period in which the current period return, R(n),

plus the change in salvage value, V’(n), are equal to the opportunity cost ofthe salvage

value, rV(n). The original cost ofthe animal does not influence the decision ofwhen to sell

the animal. This is an application ofthe economic principle of ignoring fixed cost in

subsequent decision making. Clearly then, optimizing the decision ofwhen to cull the

animal does not necessarily result in a non-negative net present value.

More complex replacement problems will now be considered. The vehicle for this

analysis will be the selection ofthe optimal lactation length ofa dairy cow. This problem is

appropriate to consider not only because it is the focus of a large body ofcontemporary

research, but as well, it will serve to highlight some other issues. Namely, that the solution

technique must be customized to the problem being considered —- static analysis is not

necessarily appropriate for all expendable inputs, and capital budgeting is not limited to

only strict capital assets. The lactation length decision also makes apparent the complexity

ofeven a seemingly simple problem, and the necessity ofthe optimal lactation length as an

input to optimal culling decisions.

Consider first that, assuming a constant dry period length, the optimal lactation

length can be equivalently stated as the optimal calving interval or time ofconception.

This problem then is one ofoptimal replacement, but the factor being considered for

13
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replacement, the lactation, does not fit the strict definition ofa capital asset, since it is not

a separate physical entity with investment and salvage values. In contrast, the animal itself,

is a strictly defined capital asset. As this optimal calving interval problem is explored it

should become apparent that solving this problem is integral to solving the problem of

actual cow replacement.

Consider a simple model ofa lactation which accounts only for the daily net

returns (1(1)) ofa single lactation.

NPV = Tl(t)e'"dr (2. 10)

O

For a global maximum, strict concavity(NPV' > 0, and NPV" < 0), is required in the

neighborhood ofthe solution to the first order condition (Beattie and Taylor, 1993). Ifit

can be assumed that daily returns, which are equivalent to net marginal profit, follow the

same general shape as the lactation curve, a global maximum is assured.

The profit maximizing decision ofwhen to end the only lactation will obviously be

the equimarginal rule of static production -- continue milking the cow until the net return

is zero (Equation (2.12)).

Lg" =1(m)e-- = o (2.11)

I(m)=0 (2. 12)

This simple single lactation model overlooks the reality that a lactation is often

ended in preparation for a subsequent lactation. The problem is truly one of optimal
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replacement ofa cyclical production function, namely lactations. A more realistic NPV

model can then be respecified in Equation (2.13). It includes a constant dry period cost

and arbitrarily assumes culling after the third lactation, and, similar to the problem above,

assumes all lactations are identical. Notice that while multiple lactations ofa single animal

are considered, the fundamental decision is lactation length, as animal replacement is not

considered.

NPV = --Vo + Erma-"d: + 5"" [:I(t)e'"dt -— c] + (“at”) [I](t)e‘"dt - c]

+e"("‘+"2+"3)SV

(2. 13)

where V0 = the initial purchase price ofthe animal

[(1) = the net lactational returns

c = the cost associated with the constant length dry period

SV = the salvage value ofthe cow at the end ofthe third lactation

n, = the length oflactation i.

The cost ofthe dry period is accrued at the beginning ofthe subsequent lactation. Note

that the cost ofthe dry period in the third lactation had been omitted since with a constant

salvage value the animal would be sold prior to the dry period. Making 6 a firnction oft

would permit the cost ofthe dry period to vary with the length ofthe lactation. Taking the

derivative ofNPVwith respect to each n,

(Hi/PV

d" = (“mallow-"'3 - re"‘"1+"2+"3’SV = o (2.14)

3

 

WV

412

 = e"""l(n2 )e’m2 — re"("‘*"2)[?l(t)e’"dt - c] - re"("‘+"2+"3)SV = O

o
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(2.15)

"3

M= «n, )e'"'1 — re'”" [imam — c] — re"‘"‘”’“[ 1 l(t)e’"dr — c]

(1711 o o (2. 16)

—re"("‘+"2+"3)SV = 0

These first order conditions for a maximum can be restated as

[(713) = rSV (2. 17)

n:

[(112) = r [1(r)e'"dr + e'"'3SV — c (2. 18)

o

101,) = r[?l(t)e'"dt - c + e'"'2 {Tl(t)e'"dt - c + e'"’3SVB (2. 19)

o 0

Equation (2.17) suggests that the animal should be sold in that period ofthe third lactation

in which the net profit is equal to the opportunity cost of salvage. Comparing the decision

rules for the third lactation (Equation (2.17)) and the single lactation (Equation (2.12))

reveals that since the right hand side (RHS) ofEquation (2.17) is positive, I(n;)>1(m).

Recall that in the neighborhood ofthe optimal length of lactation the profit function must

be increasing at a decreasing rate (i.e., the function must be strictly concave) so the

marginal profit is decreasing. Therefore, a higher net marginal profit function (1013))

corresponds to a shorter lactation length and unambiguously n3<m. Intuitively this makes

sense since the RHS is the opportunity cost ofpostponed culling in the last lactation. Once

sold the salvage value could be invested in the challenger at rate r. So once marginal profit

16

 



i
t
!

‘u.



drops to this level it is optimal to sell. Obviously this will occur prior to the net lactational

returns dropping to zero. There is a cost associated with not culling the animal, and as a

result the level ofprofit at which the animal is sold will be higher than if this cost is not

considered.

Solving for SV in Equation (2.17) and substituting into Equation (2.18) results in

Equation (2.20).

1(n2) = r[?l(t)e'"dt - c] + e""3 [(113 ) (2. 20)

0

From Equation (2.20) it can be deduced that n2< n3, for the RHS ofEquation (2.20)

includes not only the discounted salvage value opportunity cost ofEquation (2.17), but

also the opportunity cost ofthe third lactation less the cost ofthe dry period. Since the

marginal profit ofthe last day ofthe second lactation must be greater than that ofthe third

lactation, the second lactation must be shorter than the third.

Dividing Equation (2.18) by r and substituting into Equation (2.19) results in

Equation (2.21) which reveals that m< n2, since again, the first lactation confronts all

those opportunity costs that the second faced, discounted back another lactation, as well

as the opportunity cost ofthe second lactation itself.

I(n,) = r[?l(t)e'"dt - c) + e’"'21(n2) (2. 21)

o

The optimal lactation length is then a fimction ofthe number ofsubsequent lactations with

n1<n2<n3 <m. Clearly then, the simple lactation decision rule ofEquation (2.12), by
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ignoring the cost ofthe dry period and the opportunity cost offuture lactations,

overestimates the optimal length of all lactations, and therefore, calving intervals.

Even intuitively, it is apparent that the calving interval decision is dynamic. The

rationale behind shorter calving intervals is to forego the lower returns associated with the

end oflactation, in order to return the animal to peak production when returns are

supposedly higher, ignoring the peri-parturient risks for the animal. Using this reasoning, it

should be apparent that the consideration ofa single lactation is an inappropriate method

of problem formulation.

This simple model can provide insight into what factors should be considered when

assessing when to breed a cow. Given identical milk and profit functions, which would

approximate production ofmature cows, the optimal calving interval is a function ofthe

rate ofdecline ofmilk production and profit, in other words, persistency of milk

production. Peak level ofmilk production, which is felt to be a good indicator ofthe area

under the lactation curve, is relevant only when levels of production will vary in

subsequent lactations as occurs with animals in their first or second lactation. In terms of

first lactation animals the breeding decision is now a function ofboth persistency and total

production - when to end the generally highly persistent, but lower yielding first lactation

to enter the higher production, lower persistency mature lactations. Notice that assuming a

constant length dry period, the shorter the calving interval the greater the proportion of

time spent in the dry period. So even with poorly persistent mature cows, very short

lactations which maximize the amount oftime the animal spends in or near peak

production may not be economically optimal. Thus, the rationale for the argument that

18



given the ability to maintain persistency, such as with bovine somatotropin, the optimal

calving interval will be extended. (Ofcourse this assumes that the use ofbST is

economically sound, and ignores issues such as the shift in the proportion ofthe herd

milking and dry at any point.) The simple model indicates as the cost ofthe dry period

increases, ceteris paribus, the lactation length increases. This cost could included not only

obvious items such as feed, but as well, the potential cost ofperiparturient disease. It

should also be apparent that the suggestion ofa single optimal calving interval for all the

animals in a herd is inappropriate, as is the “cost of a day open” concept.

Given this analysis, the inappropriateness of collecting empirical milk production

data on cows to then determine the optimal insemination period is obvious. At a minimum

for such an analysis, as the previous models showed, all future lactations would need to be

considered. Practically such an analysis would need to account for the censored nature of

the data due to culling.

Also, consideration ofonly a single animal’s lactations is only appropriate ifthat

animal is not replaced. In reality, most dairy herds operate under a binding herd size

constraint, and the sale of a current asset is required for the introduction ofa new asset.

So ultimately the insemination decision includes not simply when to inseminate but as well

who to breed, and at what point breeding should no longer be continued. To address the

issue ofasset replacement, infinite replacement models will now be considered. While

these models can apply to any asset, the finite lives and therefore lactations of individual

cows, are not particularly suitable for such examples, so attention will focus on animal
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replacement. Following the review of infinite models, the role ofindividual animal

lactations in these models will the broached.

Assuming an infinite time horizon ofidentical replacement, this problem can be

modeled as

"I "3

NPV = [g(t)e‘"d1 + e""" Tam-"dz + exists) I g(t)e’"dt + (2. 22)

O 0 O

Whereg(t)=netcashflowinperiodt

g(n) = -Vo + Ig(t)e’"dt + e'"'V(n)

0

andn,-=thelife span ofanimalj, j=1,...oo.

The optimal life span ofeach asset is again determined by taking the derivative ofNPV

 

withrespect to eachnj.

dNPV _ - "2 _,, _, , "3 -
—dn—1—=g(n,)e "" —re "'1 Ig(t)e dl-re ("1 ”“IgMe "d1+”°=0 (2°23)

0 O

"3 "4

“E, = g(n2)e‘"" —re-'"2 {grower - re""'=*"3’ {nae-"d: + = 0 .

(2. 24)

Due to the infinite time horizon all the first derivatives are the same and therefore n, = n;

= "3 = = na. Equation (2.22) can then be restated as
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NPV = (1 +e'"' ”"2" +e"3" )Ig(t)e'"dt (2.25)

0

 

 

1 " -,,
'(1-e'”)ig(t)e d: (2.26)

with first order condition

My ( 1 j -n, '9‘". " -rr__= m g(n)e ——— g(r)e d1 = 0 (2. 27)

dn 1-e (1_e-r~)2i

g(n) = ——r——? g(r)e"'dt (2. 28)

(1-e‘")o

The integral in Equation (2.28) is simply the present value of a replacement, while

(7%,?)- is the annuity factor. As a result, the right-hand side is the annuity or average

- e

return fiom future replacements. Equation (2.28) then represents the standard decision

rule ofasset replacement - replace when the marginal (annual) value ofthe defender (the

LHS ofEquation (2.28)) equals the average (annual) present value ofthe challenger

(Paris, 1960). The maximum average value ofa subsequent replacement can be considered

the opportunity cost ofpostponed replacement. As alluded to in the lactation replacement

model, as the number offuture replacements increases so does the opportunity cost of

replacement, so the optimal life span ofan asset with infinite replacement will be shorter

than if a finite number ofreplacements were available.
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Finally consider the case ofcontinuous improvement ofthe asset (Robison and

Barry, 1996) as is expected in livestock due to genetic improvement.

NPV, = Tam-"d: +(1+h)e'""" Tam-"dz +(1+h)2e*'lw+m)Tg(t)e-~d, +

O 0 O

(2. 29)

Where 11 represents the rate ofimprovement between successive assets. The optimal life

span ofeach asset is again determined by taking the first derivative ofNPVwith respect to

each 71,), where the i subscripting simply serves to distinguish this NPVmodel with

improvement fiom that ofEquation (2.22) without improvement of replacements.

 

 

my "21‘ "31'

' = g(n1,. )e‘mv -(1+h)re'""" Ig(t)e'"dt—(1+h)2re"(""'+"2‘) jg(z)e'"dz +.-. = o

dnu o o

(2.30)

M” =(1+h)g<n2.)e'"'2‘ -(1+h)2re‘""" "liaise”:

2‘ ° (2. 31)

Mr

- (1 + h)3m-'('m+"3‘) j g(t)e’"dt + = o

O

Dividing both sides ofEquation (2.31) by (1+h),

(0va

4'12:

 

"31 "41'

= g(n2, )e'W —(1+h)re'"’2" jg(r)e'"dz —(1+h)2re“'<"2i*"=i’ Ig(t)e'"dt + = o

O 0

(2.32)
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Comparing Equations (2.30) and (2.32), it is again apparent that the first order derivatives

are identicaland nu =n2, =n3, =---.

Equation (2.29) can then be restated as

NPV, =[1+(1+h)e'""' +(1+h)2e"2"" +(1+h)3e"3"" +---]Tg(t)e‘"dt (2.33)

O

 

 
  

 

1 “1 .,

=[1—(1+h)e""’]£gme d! (2'34)

withfirstordercondition

WVr=[ 1 J ' —n.,._ “kW-m . t '"dt=0 235

d». 1-<1+h)e-'~ 3"” (1-(1+h)e""')2]:g()e ‘ ’

gin,)= "1”) lane“ (2.36)
(1-(1+h)e""")o

This first order condition assumes the function is well behaved (h>0, g’(t) > 0

andg" < O ). By comparing Equations (2.28) and (2.36), it is apparent that n)<n. Having

previously seen the efi‘ect ofopportunity costs on the optimal length of asset life, it is not

surprising that the length ofeach assets’ life is shorter with improvement than without.

And that the greater the rate ofimprovement the greater the decrease in length ofasset

life.

 
 

dg(n ) r "‘ - d"
’ = g(t)e "dt > 0 -—'- < 0 (2. 37)

‘fl’ (1-(1+h)e""')2ii db
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A constant optimal asset life (e.g., n“. = 21,, = 21,, = -- -) with constant improvement is not

as intuitive a result.

The inverse relationship between the rate ofimprovement ofthe asset and the

optimal asset lifetime bears emphasizing and will be used in Chapter 3. In Chapter 3,1

review herd culling models which employ two different methods ofheifer selection:

random and based on genetics. Now due to genetic improvement fiom generation to

generation even with random selection the potential replacement heifers are improving.

However, ifgenetic indices are usefirl in heifer selection, then by definition the rate of

improvement under this selection scheme should be greater than that under random

selection. Ifthis is the case, then the optimal length ofthe cows’ lives should be shorter

than under random selection. Ceteris paribus, failure to find a shorter cow life (i.e., higher

culling rate) with genetic selection as opposed to random selection would suggest genetic

indices are not usefirl in heifer selection.

Burt (1965) showed that under conditions ofuncertain replacement (i.e.,

involuntary culling) and risk neutrality, the decision rule for the infinite horizon was simply

to replace when the expected net current period return equaled the expected weighted

average net return fiom the potential replacement.

While the preceding results have provided analytical results which aid in

understanding the culling problem and solutions, they present limited application to

solving actual culling decisions for two reasons. First, recall that the opportunity cost of

postponed replacement is the average present value ofpotential replacements. This then

requires optimization ofall future replacements with respect to all choice variables. For
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example Equation (2.13), the NPV for a single animal derived from it’s three potential

lactations, could then be substituted for g(t) in Equation (2.25). Even with identical

replacement, solving this problem would then require simultaneous consideration of four

first order conditions, one each for n, m, rig, and n3. Analytical solutions then become

tedious due to the large number ofsimultaneous equations. Second, the net revenue flows

ofa dairy cow are very variable throughout a given lactation and across lactations. At the

extreme, consider the negative returns during the dry period, which are in fact preparatory

for the subsequent lactation. This lack of identical net return or profit firnctions over time

and between challenger and defender realistically removes the possibility ofanalytical

sohrtions. As we shall see this also presents difficulties in numerical analysis ofthese

problems.

The numerical technique ofcomparing the marginal profit ofthe defender versus

the average annual profit ofthe challenger, also known as the marginal net revenue

approach, has been modeled for replacement decisions. Renkema and Stelwagen (1979)

developed the primary model used for NPV analysis ofthe culling decision.

In their model the earned income, under Dutch conditions, for a lactation was

calculated as gross revenue from milk and calves, less cost of feed and sundries, the

change in slaughter value was also considered. Assuming a 12 month calving interval and

a constant mature equivalent milk production, the earned income was calculated for

lactations 1 through 14. Incorporating the probability of disposal at the end ofthe next

lactation, the expected marginal profit associated with the next year was calculated. With

the cost ofthe replacement heifer and the marginal expected earned income for every
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lactation, the non-discounted average annual income ofthe replacement heifer associated

with successive lactations could have been calculated, permitting the determination ofthe

optimal lifespan ofthe replacement. However, instead the replacement’s lifespan was

assumed to be 4.2 lactations, approximating the average productive life ofthe typical

Dutch Friesian. The analysis was repeated with a higher level of milk, and as well, the

assumption ofidentical replacement was relaxed by repeating the analysis using a 1% rate

ofgenetic improvement in milk production.

Many ofthe assumptions ofthe model are unsatisfying and potentially biasing. For

example, the assumption ofculling at the end ofthe lactation versus at day 205 was

subsequently found to overestimate profitability by 30% (Van Arendonk, 1984). Care is

needed in extrapolating this model ofa single challenger and defender to a herd situation.

To make this extension all animals in the herd are required to be homogeneous with

respect to the 12 month calving interval and mature equivalent milk production. While the

model can compare a genetically superior replacement to a cow, it cannot represent a herd

with multiple levels ofgenetic capability. This is a drawback of all such marginal revenue

models (Van Arendonk, 1984).

Although the decision rule approximated that ofthe marginal revenue optimization

model, note the lack ofdiscounting, without having optimized the length ofthe

replacement’s life, it could easily be argued that this model is actually a simulation rather

than an optimization. Simulation versus optimization will be more fully discussed in

Chapter 3.
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Given the shortcomings ofthis model, the result nonetheless are interesting. It was

determined that increasing herdlife from an average productive life of 3.3 to 5.3 lactations

increased annual earned income by 20%. This simplified model suggests the benefit of

prolonged productive life, this benefit was minimally affected by genetic improvement.

The economic return fi'om longer life was much more sensitive to the net cost of

replacement (i.e. cost ofreplacement heifer less salvage value ofthe culled cow) than

changes in the milk price.

The realism ofthis model was increased by assuming culling at day 245 oflactation

and used in a traditional simulation model (Korver and Renkema, 1979) which will be

discussed under simulations in Chapter 3.

The model was also further updated and expanded to include the time value of

money and optimal insemination decisions (Dijkhuizen, Renkema and Stelwagen, 1984).

The potential calving interval was 345 to 525 days, and at 20 day intervals the replacement

decision as well as the insemination decision for the current lactation was made.

Replacement was possible in future lactations only at day 225. At each heat (20 day

interval) the animal was to be inseminated ifthe sum ofher expected future marginal

revenues in the case ofpregnancy, less the annuity ofthe average replacement, was

greater than zero. The correlation between length of successive calving intervals was 0.6.

This cumulative future difference between the defender and challenger is actually the

decision rule used in the original model, in place ofthat stated. Full numeration of

expected returns for each animal are then required.
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Ifit was deemed uneconomical to inseminate, the animal was not culled until the

point in her lactation where the expected returns for the remainder ofthe lactation were

less than the annuity ofthe replacement. A 1% annual genetic increase in milk production

was assumed.

While it is not clear, it appears that similar to the original model, the lifespan ofthe

replacement has not been optimized, but rather arbitrarily chosen.

The results were in the form of critical production levels by lactation, and days at

insemination below which it is not optimal to inseminate a cow. These guides indicate that

a young cow which is average or above average in level ofproduction can profitably be

inseminated up to 8 to 9 months post partum, suggesting the culling strategy in the

Netherlands was not optimal. While the results were not sensitive to the price ofmilk,

since this afi‘ected the returns ofboth replacements and defenders, changes in the cost of a

replacement did afi‘ect the critical production level. As expected from theory, the model

found the greater the persistence ofmilk production, the longer it was profitable to

inseminate open cows. The authors never calculated the distribution of productive lives in

the herd to determine whether rational expectations were firlfilled (i.e., ifthe assumed

length ofthe replacement’s productive life equaled that ofa herd resulting fiom following

the guide). Failure to fulfill the self-expectation nullifies any apparent solution. This may

have been what the authors were referring to as “more insight is desired into the economic

consequences ofmaking replacement decisions over a number ofyears with different herds

on the above mentioned criteria”. Also note that future replacements are a fimction ofthe

animals currently in the herd and management, including culling. So the simple static
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comparison ofa defender with a genetically superior heifer is over simplified. The dynamic

nature ofthe problem is clear - decisions made today affect future decisions.

While the realism ofthe model has been increased through the modifications some

unrealistic assumptions, such as the timing offirture culling still remain. These

simplifications are a direct function ofthis marginal method ofanalysis. As was discussed

previously, permitting net return or profit firnctions to vary over time and between

challenger and defender would require calculation of all expected net revenue for all

potential future decisions. As the number of potential decisions increases, the complexity

and number ofcalculations quickly become overwhelming.

Kuipers (1980) also produced a marginal net revenue model to evaluate the

expected marginal profit ofa challenger over the remainder ofthe current lactation and

first six months ofthe subsequent one. This poor choice in time horizon for consideration

ofthe marginal value ofthe challenger underestimated the value ofyounger animals, since,

as noted earlier, production and net revenue increase over the initial lactations.

It is only recently that the concepts fiom replacement theory models have been

applied to other avenues such as cow ranking for profitability (Van Arendonk, 1991). A

large amount ofliterature has focused on the contributions of such factors as increased

length ofherdlife and milk yield on cow profitability. The most common profit firnctions

used to determine the dependent proxy variable for profit have been lifetime profit and

profit per day of life. Van Arendonk realized that the former implies no replacement or

implicitly a non-binding herd size constraint. Profit per day oflife implies identical

replacement, which is unrealistic due to genetic improvement and the lack of systematic
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difi‘erences between heifers available for replacement of different cows. The failure to

account for the opportunity cost offuture replacement has resulted in the possible

millification ofa large amount ofprevious work. This area will be considered further in

Chapter 4.

In summary, this chapter focused on the optimal calving interval decision, as well

as, animal replacement. It was apparent that even these simple problems are complex and

increasingly dificult to solve due to the number ofchoice variables, the intertemporal and

often dynamic nature ofthe problem. The importance of considering model specification

and time horizon also were evident. While these models provided some intuitive insight

into some ofthe underlying principles ofthese solutions, such as the importance of

opportunity costs, ultimately they were unable to answer the complex question ofthe

optimal herd level culling and replacement strategies. Simplified numerical models

suggested the potential for improvement in culling strategy, at least under Dutch

conditions. The difiiculty with numerical analysis was the requirement to consider all

potential firture decisions and returns. A subset of these dynamic problems, namely those

that can be recursively stated, can be solved with greater ease through dynamic

programming. This technique and the results ofreplacement models using this technique

will be addressed in Chapter 3.
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Chapter 3

DYNAMIC OPTIMIZATION AND CULLING MODELS

From Chapter 2 it was evident that while the traditional NPV approach to animal

replacement lent some intuition to the understanding ofthe problem, it was not

particularly well suited to actually solving these problems. In this chapter another solution

technique, dynamic programming, will be reviewed. Afier defining the model through an

example, analytical dynamic programming will be covered to gain familiarity with the

model and its methods. Numerical dynamic programming solutions, a much more practical

approach to complex dynamic problems such as livestock replacement will follow. Given

this foundation the results ofdairy cattle culling studies utilizing dynamic programming

and optimization will be reviewed. While tedious, consideration ofthese models, in at least

a superficial way, is necessary for two reasons. First, in order to draw proper conclusions

about the culling issue based on the results ofthese models, the diversity ofthe models

must be realized. And second, these models should be reviewed for this area of

management tends to be overlooked by the industry despite the wealth ofknowledge in

this area. These studies are summarized in Tables 3.7 and 3.8 at the end ofthe chapter.

The issues ofvoluntary and involuntary culling and simulation versus optimization will

also be considered. The conclusion will be that the market is operating inefficiently

through excessive culling, corroborating evidence ofthis inefficiency is presented. I then

try to resolve why the market is operating in an economically irrational manner.
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To introduce dynamic programming an analytical solution to a simple replacement

model will be used. Analytical models tend to be quite general, utilizing symbols rather

than numbers. The advantage ofthis method is that it will provide some insight into the

solution, as the models in Chapter 2 did. Numerical analysis, where the values ofthe

parameters are used, is easier to Operationalize to get actual results especially in complex

problems.

Consider the problem ofwhen, in its lifetime, to sell an animal without

replacement. This is an example ofa simple optimal st0pping problem. Reconsider

 

 

Equation (2.6) from Chapter 2

NPV = -V(, + Z R' + V‘") (3. 1)

,.1 (1+ r)‘ (1+ r)"

The objective is to maximize the profit given that the animal is present so the initial

investment may be omitted

R' + V‘") (3. 2)
,.1 (1+ r)‘ (1+ r)"

The net cash flow in any lactation (m) can be denoted as

1r,=R(n,)+d,V, 1sr.<_T (3.3)

The notation has been altered slightly so R(nJ explicitly recognizes that the returns in a

lactation fi'om milk production are a fimction ofthe lactation number m. As was discussed

in Chapter 2, in order to optimize the culling decision, the length ofthe lactation needs
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also to be optimized. To maintain simplicity assume that the R(nJare already optimized

with respect to lactation length.

Let d. be a dichotomous choice or control variable with

(3. 4)

0 if the animal is not culled at t

' - 1 ifthe animal is culled at r

V, remains the salvage value ofthe animal in period t, and T is the maximum potential

lifespan ofthe animal, after which the animal has no value, Vm =0.

Equation (3.2), in dynamic programming termed the objective functional, can then

be generically restated

maxBn,(n,,d,)+ B'*’1t,+1(n,+,,d,+1 ) + + Warmer” (3.5)

wherefl= 1/1+r, and [:1 Sn.

In traditional dynamic programming terminology, It, is the return function

representing the immediate period return associated with n,, the state variable, and d,, the

control variable. The state variable or vector, if more than one state variable, define the

state ofthe system in period t. In period t, the decision maker cannot affect the state

variables, they are taken as given. The decision maker has direct control over the control

variable or vector, (1,, in period t. The transition equation, which links the state and control

variables, for this problem is

"1+1 = "1+ ] lfdg=0

n...= 0(151’5 T-t) ifd,=l (3.6)
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This simple transition equation states that if the animal has not been culled, it will proceed

to the next lactation. Obviously once the animal has been culled, there can be no

subsequent returns. Notice that the current state variable is a function ofthe previous

control variable

"1+1 = 8101:1613) (3. 7)

This then defines the problem as being recursive (i.e., the current controls are only a

function ofprevious, not future, controls). To see this note that

"r = gl-1(nI-1rd(-1)
(3. 8)

".4 = g.-2(n.-2.d,-z) (3. 9)

"2 = 81011.0’1) (3. 10)

Sequential substitution ofEquations 3.8 through 3.10 into 3.7 reveals

n,+1 = §,(n,,d1,d2,...,d,_,,d,) (3. ll)

Lagging Equation (3.11) one period and substituting into Equation (3.5) reveals

r

maxZB'i,(n1,d1.d2,...,d,_1,d,) (3. l2)

t-l
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The return firnction in any period is then only a firnction ofthe current and previous

controls. Since dynamic programming solves problems recursively, this specialized

recursive problem structure is required for this technique. Calculus ofvariations and the

maximum principle are other techniques appropriate for solving recursive dynamic

optimintion problems. The former requires the transition equation have the restrictive

form ofdepending solely on the current control and not the current state (i.e.,

nm=g.(d.)). The maximum principle is usefirl in continuous time formulations, where it is

also known as control theory. Control theory utilizes the Hamiltonian as a method to solve

difi‘erential equations. Solving stochastic infinite horizon problems using control theory is

quite complex and not well suited to numerical analysis. In discrete time the Hamiltonian

reduces to the Lagrangian, which gives the same results as dynamic programming.

Dynamic programming then reduces to selecting the optimum set ofpolicy

fiinctions from a space offiinctions, d,=h{nJ. This formidable task is made easier through

the use ofthe principle of optimality.

Suppose {In L; is a set of policy functions that solve the recursive problem

Equation (3.5). Now consider the modified problem

maxiB'rrAnndfl (3. 13)

[-1

Let {h,' }T lbe the optimal policy functions for the modified problem. The principle
(-

ofoptimality states that for the periods 1' to T, h,= f. Notice that it is the optimal policy

function that is being chosen, not the optimal control choice. The principle of optimality
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then suggests that the optimal policy functions are invariant to the earlier time periods.

The optimum firnction is selected such that it is unaffected by changing circumstances.

Notice that as the state variables change the control variables will change but not the

policy function. Also the principle of optimality does not necessarily suggest the policy

function is time invariant (i.e., h,=h.+,). These points will become more clear with an

example.

Based on the principle of optimality Equation (3.5) can be restated in Bellman’s

current period value function.

V. (n. l = mflwnnd. ) + 13214., (n... l} (3. 14)

subject to the transition Equations (3.6), [St S T, and given m.

The principle ofoptimality and the recursive nature ofthe problem pemrit a simple

technique to solve for the optimal policy functions over a space offunctions. Dynamic

programming starts at the terminal period and solves for the optimal policy function for

each time period in a sequentially recursive fashion. The result will be a time path of

control variables given an initial value ofthe state variable.

Substituting the specific form ofthe return function (Equation (3.3)) into Equation

(3.14) reveals

m». > = my{BR(nr 1+ 134V, + Bszl'hn )} (3. 15)

subject to the transition Equations (3.6), 15.1 _< T, and given 11,.

The terminal period value function is denoted
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Vr ("r) = "2"{BRlnrl1’ BdrVr + BZVT+1(nT+1)} (3. 15)

Tdenotes the end ofthe animal’s life, and as a result Vrt1(nrt1)=0. So the decision rule

will be to cull the animal at T, if it has not occurred previously. The terminal period policy

fimctions are:

(3. 17)

O ifnT =0

dT =

1 if», = T

Due to the categorical nature ofthe control variable, the solution technique to this

problem does not involve the standard technique of differentiation, since due to its

discontinuous nature the equation is not differentiable. This then presents another problem

with analytical results, including NPV techniques, which was not addressed in the previous

chapter.

Notice that the solution is a policy fimction; the control variable being a firnction

ofthe state variable. As the state variable changes the optimal control variable will

correspondingly change. This optimal policy function for the terminal period will,

however, never change regardless ofhow far back into time the problem is worked.

Substituting Equation (3.17) into (3.16), the terminal period value function is

BR(T)+BVT ifn, = T

V1011): , (3. 18)
if n, = 0

At r=T-1, Bellman’s equation becomes

Vanni-m ax{sRm+Bdr-iVT-. «Liszt/Tim} (3.19)
T-1
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Ifculling has not already occurred there are two possible options for the period T-1. Ifthe

animal is not to be culled, d1.) =0, and culling occurs in the final period, so

Vr.r("r-I)=flR(77+BilRm+Vr] (3.20)

Or the animal may be culled, d“ =1, and V’(nr) =0. The returns generated would then be

Vr-I("r-1)= 13R”'1)+ 5V“-

The decision rule for T-l, then is

o if V,_, < spam + V,]

d,_1 = (3. 21)

1 if VH 2 [411(7) +VT]

This decision rule is similar to those from Chapter 2, cull the animal now ifthe salvage

value today is greater than or equal to the discounted returns from lactation and salvage

value in the next lactation. Culling when the terms are equal has arbitrarily been assumed.

BRU’) + smax{V,_,,p[R(7) + V,]} if n,_, = T-1

0 if"M = 0

19.101“) = { (3. 22)

Notice from Equation (3.18) that fiRfl)+ fiVT = V’(nr) so all terms from Equation (3.19)

are represented in Equation (3.22).

Similarly, for period T-2, the animal can be culled in which case the returns are

16R”'2) + flVr-z (3. 23)

or alternatively, culled later with returns

fiRfl-2)+fi’(R(T—1)+max{VT_,,B[R(T)+VT]}) (3.24)
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which can be restated using Equation (3.22) as

5R”'2)+fl2Va!”'1) (3. 25)

The decision rule is then

0 if Vr-z < BVT-1inT-1)

d,_2 = . (3. 26)

1 ‘f Vr-z 2 BVr-r ("r-1)

With the current period value function being

BMW-2) + Bmax{V7--2, BVT-t ("r-1 )} if "r-z = T’ 2

Vr-z ("r—2) = (3- 27)

Ifn7-_2 = O

In general then, Bellman’s equation becomes

BR“) + BmaX{Vr rBVr+1 ("1+1 )} if "r = t

V102. ) = (3. 23)

if n, = 0

The optimal decision rule or policy function is characterized as

0 if Vt < BVr+1("r+1)

d, = . (3. 29)

1 if V: 2 BVr+1(nr+1)

The rule is then to cull now ifthe optimized discounted returns from all firture periods are

less than or equal to the current salvage value. Despite the recursive nature ofthe solution

technique the results are forward looking considering the possible future returns.
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This analytical approach can be easily modified to include replacement and efi‘ects

ofuncertainty ofthe state variables. Uncertainty is introduced to dynamic programming

through making the transition equation dependent on an identically and independently

distributed random variable with a mean of zero, 6.1,. In the context ofthe present

example this error term could include the probability ofunplanned death. Equation (3.7)

would be modified to

"1+1 = gr(nrvdrrer+1) (3° 30)

Since the random shock is unknown when the control variable is chosen, the future path of

the state variables is uncertain. The stochastic version ofEquation (3.15), the current

period value fimction with the specific return function is

14(n.)= mJX{BR(ni)+ 134V. + Eamon, )} (3. 31)

where E. is the expectation operator conditional on information available at time I. At 1,

R011) and V, are known with certainty. Since the expectation ofam is zero, the stochastic

aspect ofthe problem is eliminated (Bellman, 1957). The approach to solving the problem

is again one ofdetermining the set of optimal policy firnctions, d,=h,(n.). Notice however

that since n, is a stochastic variable and d, is a fimction ofthe state variable, the time path

ofthe control variables is itself a stochastic process.

Substituting the policy function into the transition equation reveals

"1+1 = gr ("1 1hr ("1 )1814-1) (3' 32)
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The sequence of state variables then follows a Markov process, in that the current state

contains all the relevant information for predicting future states. While this may seem quite

restrictive, using vectors, autoregressive processes can also be represented as Markov

processes.

It is a simple matter to introduce the returns fiom multiple animals into the

objective functional to represent replacement. Iteration ofBellman’s equation would

simply continue for more periods. Solving dynamic programming problems through

iterations requires some consideration for the time horizon ofthe problem. As the example

illustrates the farther back in time one goes the less critical the generally arbitrary value of

the terminal state becomes. As iterations continue into the past it is possible for the system

to enter a steady state, where the policy firnctions are time invariant (i.e., h,= h"1).

Analytical problems are not easily adjusted to solve for multiple state and control

variables. Rather numerical analysis is more amicable to such complex problems. There are

a number ofmethods for numerical analysis ofdynamic programming problems. The firll

enumeration offirture possible states will be examined here.

The terminal value function is a vector with the number ofelements equal to the

number ofpossible states. The state and control variables are members ofa finite defined

set. For numerical analysis, a finite state Markov chain is used. A probability matrix

contains the probabilities ofbeing in a certain vector ofthe state variables in H 1 given a

present vector ofthe state variables. For a given state vector the terminal period value

fimction is calculated through consideration ofthe return function and terminal value

function for every possible control vector. The control vector associated with the
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maximum value ofthe terminal period value firnction is the optimal control policy for the

given state vector at T-1. This is repeated for every value ofthe state vector, resulting in

an optimal control vector for every possible state vector for the terminal period.

In this full enumeration approach iteration occurs backwards in time. The period

value function for T-1, is calculated similarly to the original iteration. The terminal period

(T) value fimction, is determined by using the finite state Markov chain to weight the

possible value functions in Tby the probability ofthe respective state vector occurring

given the state vector in T-I . (This is simply an application of Burt’s (1965) idea fi'om

Chapter 2 that the expected value is a fi1nction ofthe summation of each possible value

weighted by it’s probability of occurrence.) Summing the current return firnction, and the

terminal value function gives the current period value firnction in T-l. The optimal policy

fimction for period T-1, is a vector of state variables and the associated control variables

which maximize the respective state variable’s current period value function. The policy

firnction from the first iteration is then the Optimal policy function for the next period (i.e.,

I).

By assuming identical future replacement the marginal net revenue approach from

Chapter 2 is a special case ofdynamic programming (Burt, 1965).

The advantages of numerical solutions are the relaxation ofthe model

requirements such as continuous difi‘erentiability. Also there is no need to solve numerous

analytical simultaneous equations. The disadvantages are the lack of intuition provided by

the model, which is important not only in gaining insight into the general or specific

problem, but as well, greater difficulty in realizing errors in the problem formulation or

 



solution technique. These models also require a large body of information which is

commonly not available. For example transition probabilities between all possible

combinations of states are required.

Highly complex dynamic optimization programs are available to solve for

management decisions in dairy herds. Van Arendonk’s model (Van Arendonk, 1985a; Van

Arendonk and Dijkhuizen, 1985) will the be primary focus as it is the most sophisticated

and widely used model. While components ofthe model have been validated at least for

Dutch conditions (Van Arendonk, 1985), in general the complexity ofdynamic

optimization models make their evaluation quite difficult, for due to their large size firll

disclosure ofthe model is not possible. Furthermore, the accuracy ofthose parts presented

is often not obvious, for example, there is little data on which to base evaluation of

probabilities of conception for each combination of days in milk, and animal age. Model

evaluation will then be based, not only on the inputs used in the model, but also on how

well its description ofthe herd matches generally accepted parameters (i.e., income over

fwd cost). Some ofthe inputs and assumptions, as well as, outputs not necessarily directly

related to the culling issue will then be reported. Sensitivity analysis will reflect the

robustness ofmodel results to input changes. Following this the last source of model

validation - comparison ofthe results with other optimization and simulation models will

be considered. Tables 3.7 and 3.8 contain selected results of some ofthe optimization and

simulation models, respectively, that will be reviewed in this chapter.

The objective ofVan Arendonk’s stochastic dynamic programming model is to

maximize the expected present value ofthe monthly net revenue stream for a replacement
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heifer and her replacements over a 15 year planning horizon. The control variables are the

replacement and insemination decisions. The model operates recursively, starting in the

final month ofthe planning horizon, where the terminal value of animals was carcass

(salvage) value. The optimization then proceeds backwards, at each month making the

decision to replace or keep the animal based on which decision coupled with the

respective subsequent optimum decisions yielded the greater expected value ofnet

revenue. In considering the insemination decision, the probability of conception, cost of

insemination, and expected net revenues calculated from milk and fat yields, calfvalues, .

carcass values, feed costs, health costs and housing costs (Van Arendonk, 1985) were

considered. The model has been updated numerous times.

One collaboration was with Rogers and McDaniel (1988) to adjust the model to

US dairy conditions. Briefly, the state variables and the number oflevels ofeach variable

 

  

were:

lactation number 12

stage of lactation 16

milk yield in past lactations 15

milk yield in present lactations 15

time of concergion 6
 

Cows were considered for insemination in months 2 through 7 oflactation.

V°luntary replacement was defined as replacement due to the decision making ofthe

model. Involuntary culling reasons included mastitis, other health disorders, milking speed,

tempefllment, pendulous udders, other husbandry related disorders, and death. The

monthly probabilities ofinvoluntary culling and associated economic costs by parity were

ex0861mm to the model. The proportion of involuntary culling ranged from 20% in the
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first month oflactation to 4% in the last month. First lactation animals had the lowest

probability ofinvoluntary culling at 10%, while the parity 12 animals had a 30% chance.

Cows were not considered for voluntary culling prior to the second month oflactation,

and sale ofan animal was not necessarily concurrent with the decision to cull the animal.

The repeatability ofmilk yield was assumed to be 0.55 for adjacent records and

0.50 for those two years apart. Conception rates were assumed to be independent ofthe

previous calving interval and milk yield in the previous and present lactation. The marginal

probabilities ofconception decreased with increased parity and increased from month two

to five ofa given parity before declining slightly in the sixth and seventh months of

lactation. For example the marginal probabilities of conception in the second and fifth

month for a first parity animal are respectively 0.30 and 0.52, whereas the comparable

numbers for a fifth parity animal are 0.29 and 0.49. Genetic improvement in first lactation

cows was assumed to be SlO/year. Improvement in older cows was calculated based on a

0.9 genetic correlation between first and later lactations, and age factors for milk yield.

The annual discount rate of4% was used in determination ofthe expected net

present value fi'om a replacement heifer over the 15 year planning horizon, in earlier use of

the model the optimum replacement policy was not influenced by a reduction in the

planning horizon from 20 to 15 years (Van Arendonk, and Dijkhuizen, 1985). This present

value was then converted to a yearly annuity for purposes of comparison among various

management alternatives. Strictly speaking, reinvestment at the discount rate and an

infinite time horizon are required for an annuity to be an appropriate measure of

profitability (Robison, and Barry, 1996). Prices and parameters were chosen to be
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representative ofAmerican Holstein dairy farms in 1986. Milk price was $24.64!100 kg

with a 80.3696 fat difi‘erential. The base price ofa mixed ration with 16% crude protein

and 1.72 Mcal NEJkg DM was $0.084/Mcal NE.. Energy requirement, after accounting

for mobilization ofbody reserves, limited DMI. Average 305 d mature equivalent milk

yield was 8000 kg with 3.6% fat test. Price per unit of semen was $13.

All calves were sold at one week ofage, with heifers being valued at $75 more

than bull calves. Carcass values were calculated from body weight, dressing percentage

(46.4 to 49.2%), and price per kilogram ofcarcass weight ($1.793 to $3.032) and varied

fiom $571 to 3521. An unlimited supply offreshening 24 month old heifers, at a real cost

of$1100 each, was assumed.

Ofthe 259,200 potential combination of state variables, profit after conception

was calculated for 14,940 combinations and fiiture profitability for 174,300 (Van

Arendonk, 1988). Cost ofmanagement and labor for milk harvest were not included.

The optimum average culling rate was 25.1% (8.6% voluntary and 16.5%

involuntary), which was lower than the estimated national average of 3 1%. Following first

lactation, where 35% ofreplacements were voluntary, the marginal voluntary culling rate

declined until the sixth lactation. Only high producing cows were kept for many lactations

because otherwise the net revenues fi'om the lower producing cows were sufficient to

compensate for the decline in fertility and increased probability of involuntary culling. The

optimum policy resulted in an average calving interval of 377 days, with 38% ofthe cows

having intervals ofgreater than 13 months. Table 3.1 is a reproduction from the paper.
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Table 3.1. Production, as a percent ofthe mean production for that parity, below which

insemination would not be optimum by parity for the base scenario (8000 kg ME).

Month in lactation
 

 

Parity 3 5 7

1 78 82 86

2 78 82 86

3 78 82 90

4 82 86 90

5 86 90 94

6 9O 94 102

7 94 98 106

8 98 106 110

9 106 1 10 1 18

10 1 10 1 18 126

11 122 126

12
 

Feed costs represented 42% ofthe value of milk yield for an average cow, and

marginal feed costs represented about 24% ofany additional amount ofmilk yield for a

cow.

Table 3.2. Selected results of sensitivity analysis of altering basel scenario assumptions on

the optimum culling policy.
 

 

 

Yearly Culling Rates (%)

Scenario Annuity (S) Overall Involuntary Voluntary

Base 443 25.1 16.5 8.6

9600 kg ME 732 26.8 16.3 10.5

$19.71/100 kg milk 73 23.5 16.8 6.7

”957/100 kg milk 814 27.6 16.2 11.4

$0.067/Mcal NE. 599 25.8 16.4 9.4

$0.101/Mcal NE. 286 24.8 16.6 8.2

SlOOO/freshening heifer 476 28.0 16.0 13.0

$1200/fi'eshening heifer 412 23.7 16.8 6.9
 

1. 8000 kg ME, $24.64/100 kg milk, $0.084/Mcal NE), 31 IOO/freshening heifer.

The efi‘ect ofthe sensitivity analysis on the yearly annuity is as expected with

increased output or output price, or decreased input prices being associated with increased
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profitability and vice versa. The overall optimum culling rates maintain a narrow range and

never attain the estimated current national average.

The unexpected increased voluntary culling rate associated with increased milk

production is due to an increased absolute difference in production between younger and

more mature animals as a result ofestimating production on a proportional basis relative

to the mature equivalent (Rogers, Van Arendonk, et al., 1988b). Nevertheless, the

difi‘erence in the optimal policy is minimal. This insensitivity ofoptimal policy to herd level

ofproduction is expected, contrary to conventional wisdom, by simply reflecting on the

earlier replacement models. The choice is between the current animal and the replacement,

increasing the production and profit ofeach has no effect on the relative difl‘erence and

therefore little effect on the replacement policy.

Similarly, altering milk price or feed cost had little effect on the optimal policy. In

contrast, the culling rates were highly sensitive to the cost ofthe replacement. Lowering

bdfer costs by 9% increased voluntary culling in all lactations, but none more so than the

doubling in first lactation.

The authors concluded “culling rates in the US may be higher than optimum. Our

model suggests they should be near 25% in most situations. Perhaps farmers who manage

well could eliminate rearing of replacements with undesirable pedigrees or purchase less

replacements and improve their profits....increased culling to improve yield per cow may

not be justified due to an increased number ofreplacements needed.”

These results are consistent with the optimum policies generated by the same

model under Dutch conditions (Van Arendonk, and Dijkhuizen, 1985) which tend to have
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lower beefprices, calfvalues and feed costs than the US. The model suggested the

optimal Dutch culling rate was 28%, and sensitive to a change in the difference between

heifer price and carcass value, but insensitive to changes in milk, feed or calf prices or

conception rate. This study compared modeling animals with 15 levels ofmilk production

on a mature equivalent basis versus simply assuming average production, corrected for

age, ofall animals. The variation in production between present and replacement cows

was important when considering the effects ofchanges in production or price situations on

optimum replacement policies. Doubling then quadrupling the rate ofgenetic improvement

in milk revenues minus feed costs resulted in minimal effects on culling rate. This failure

for genetic progress to affect the optimal policy is not surprising given Equation (2.37).

For given a low rate ofimprovement (i.e., h 5 1%) it can be seen that the efi‘ect on the

optimal life will be minimal. Also, as expected based on the explanation in Chapter 2,

insemination continued longer with higher persistency ofmilk production but again the

efi‘ect on herd life was slight.

A sister paper provides some interesting insight into the dynamics oftotal culling

rate, involuntary and voluntary culling (Rogers, Van Arendonk, et al., 1988b). As is

evident in Table 3.3, increased voluntary culling partially compensated for the lowered

involuntary culling. The increase in yearly annuity associated with a lowered involuntary

culling rate was due to lower net replacement costs (cost of heifer less carcass value),

decreased frequency oflow yielding cows and increased productive life ofhigh yielding

cows. The latter two efi‘ects were responsible for over 50% ofthe increase in the armuity

indicating that forced reduction in the intensity ofvoluntary culling is a major cost
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associated with excessive involuntary culling. This fact is firrther highlighted by the last

two rows ofTable 3.3 where the economic loss associated with involuntary cows was

removed. Ofthe $113 gain in yearly annuity associated with reducing the base level of

involuntary culling to only infertile cows, only $32 was associated with the direct financial

losses ofthose involuntarily culled, while the remainder was associated with reductions in

net revenues due to limited opportunities for voluntary culling. Once the coeficient of

variation for milk yield was made consistent, altering the involuntary culling probabilities

using the 9600 ME level ofproduction as the base had similar results as the 8000 kg ME

base. Lowering involuntary culling by one cow per year in a 100-cow herd improves net

revenue by approximately $750 to $900/yr (a 1.6% to 1.3% increase). This finding that

lowering the involuntary culling rate resulted in a considerable increase in the annuity, and

a lesser decrease in the overall culling rate due to a somewhat compensatory rise in

voluntary culls, was also produced under Dutch conditions (Van Arendonk, 1985a). This

suggests that management should concentrate on the lowering of involuntary culls as a

method ofachieving lower culling rates. As with any model, prior to embracing

recommendations the model and its assumptions must be compared with reality. The

evaluation ofwhether management should focus on decreasing involuntary culls will be

postponed until a general discussion ofvoluntary and involuntary culling which follows

later in the chapter.
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Table 3.3. Resulting yearly annuity and culling rates when average ME was 8000 kg,

including and not including the financial losses1 associated with cows involuntarily culled.
 

 

 

Percent ofbase involuntary Yearly Culling Rates (VQ

culling probabilities Annuity (8) Overall Involuntary Voluntary

120 420 27.2 19.4 7.8

100 443 25.1 16.5 8.6

so 465 23.4 13.6 9.8

o 556 16.8 1.62 15.2

100‘ 475 24.5 16.8 7.7

80‘ 492 23.9 13.8 9.1
 

1. All financial losses fiom reduced carcass value, idle production factors, lowered milk

yield prior to disposal, and health costs associated with involuntary culling.

2. Cows still not pregnant at the eighth month of lactation.

The results ofthe model appear valid, and the general conclusion that the optimal

culling rate should be under 30% for US conditions can be made, and the potential for

sizable economic loss is present due to non-optimal culling policy.

Van Arendonk (1987) subsequently investigated the effects ofignoring variation of

variables in the optimal culling rate as determined by his dynamic programming model.

The base culling rate was 23.8%. The resulting optimal culling rates, in parentheses,

follow the respective omitted variables. It was determined that excluding the variation in

carcass value due to age, stage of lactation, and reason for replacement (25.1%), or

ignoring the feed cost (27.8%) variation increased culling especially among the first

lactation animals. The results were similar when the objective was maximization of milk

revenues (26%), or the scenario where all cows were inseminated and kept ifthey

conceived (16.8%).

Congleton and King (1985) estimated future incomes from an extremely

sophisticated biological simulation model (Congleton, 1984) which only assumed culling

at 180 days if open and a maximum of4 services. All other culling reasons were simulated.
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Voluntary culling occurred if the NPV ofa heifer was greater than that ofthe cow

currently in the herd. The NPV ofa cow was the sum ofher own discounted cash flows

for the time horizon weighted by their probability of occurrence, and the sum ofher

potential replacements’ discounted cash flows for the time horizon weighted by their

probability ofoccurrence. Similarly, the NPV ofthe potential replacement heifer included

her and all her potential replacements’ weighted discounted cash flows. Using a dynamic

program they found relatively few cows (21%) were culled compared to most commercial

dairy herds. Their results suggest culling of first lactation animals should be limited to that

due to involuntary culling. They also found that increasing the time horizon beyond two

calving intervals increased the culling rate to its maximum of21% at the maximum six

lactation time horizon.

A simple dynamic program of Irish conditions (Killen and Kearney, 1978) included

a twenty-year time horizon, no variation in production within a lactation was modeled and

culling was assumed to occur prior to the initiation of a lactation. The optimal culling rate

was found to vary from 1/5 to 1/6 as the price of milk, level of herd production, and

involuntary culling rates were varied to represent conditions in the industry over the

previous two decades.

A Canadian dynamic programming culling model also illustrated the efl‘ects of

model time horizon, as well as, modeling animal weight (Stewart, Burnside et al., 1977).

The state variables consisted oflactation number (7 levels), estimated 305-day nrilk yield

(1 1 levels), average 305-day milk fat % (7 levels), and body weight (5 levels). A 12 month

calving interval was used, culling occurred at 60 days post partum. The probability of
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culling and some ofthe transition probabilities were based on Canadian cow records.

Annual genetic improvement ofmilk production of0.9% per year was included.

Heavier cows required higher milk production to be kept. Increasing milk price or

decreasing feed price resulted in more intensive culling of lighter cows, although

subsequently this efi‘ect was deemed to have such a minor impact on profit that it could be

omitted from the model. In contrast to most other studies the optimal policies were

insensitive to net cost ofreplacement (replacement cost less salvage value). Use ofa 5

year rather than 10 year time horizon resulted in more intensive culling. Altering the

feeding regimen from corn silage and hay providing the roughage to haylage as the sole

source altered the optimal policy for only 6% ofthe states. The actual optimal culling rates

were not mentioned.

A subsequent paper (Stewart, Burnside et al., 1978) also found that the policies

did not change when the efi’ect of genetic improvement in production was removed. The

simplification ofan average replacement heifer was overcome by incorporating a

probability distribution of possible replacement heifers into the model. The probabilities of

weight, milk production and fat test ofthe heifer were included. The authors found that

the specification ofan average replacement tends to underestimate the replacement value,

but the effect appeared minor as the optimal policies changed for only 3.3% ofthe states.

This issue ofa standard replacement is not new. Ben-Ari et a1. (1983) recognized

that unlike traditional replacement theory heifers cannot be considered standard

replacement items. Kristensen (1987), in his dynamic programming replacement model for

dairy cows, incorporated this concept by including the breeding value ofthe sire as a state
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variable. The advantage ofusing each parents’ genetic information was suggested. The

model predicted heavier culling among animals oflower genetic value.

There is general agreement among the optimization models that the optimal culling

rate is between 20 to 30% ofthe herd. This assumes that culls are sold for beefand not

dairy. This suggests that most herds will not need all their potential replacement heifers.

The optimal culling rates were sensitive to the relative cost ofa replacement versus that of

the culled animal, but was not sensitive to most other parameters including genetic trend

or herd level ofmilk production. The greatest economic gain from reduced culling is

lowering that due to involuntary reasons.

Initially it may be curious that all the models, except for Congleton and King

(1985), assumed a base rate ofinvoluntary culling when in fact the purpose ofthe models

was to optimize culling decisions. This assumption is pragmatic. While all culling has an

economic component, in order to optimize involuntary culling it must be modeled. The

modeling ofthe reasons for involuntary culling require a very detailed, data intensive

model. For example, consider the disease of mastitis. To incorporate this disease

occurrence one would need to know the transition probability from each state vector to all

the potential state vectors. The later would reflect the varying severity and duration of

potential mastitis episodes. While survival analysis can assist with determination ofthe

transition probabilities the economic impacts in terms oftreatment costs are also required.

While dynamic optimization models including the stochastic occurrence and optimal

culling decisions related to single diseases such as mastitis are starting to be developed

(Houben, Huirne, et al., 1994) they are not very prevalent. The biological and economic
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data required for these models are generally not available. The issue ofvoluntary versus

involuntary culling as it applies to actual dairy famrs will be addressed further in the

chapter.

The model ofRogers et al. did not include the effect of seasonality. Two models

suggest the potential impact of season on the optimal culling policies. Under Dutch

conditions (Van Arendonk, 1986) the optimum policy for inseminating and replacing cows

was greatly afi‘ected by the seasonal variation in production, and to a much smaller extent,

in calf prices and feed costs. Variation in prices of replacement heifers and salvage

animals, as well as, conception rate played a minimal role in causing the new policies

under the efi‘ect of seasonality. Under southern US conditions (DeLorenzo, Spreen et al.,

1992) seasonality ofmilk price, replacement cost, and conception rate were included in

the model. The resulting decision rules were significantly different than those generated

without seasonality. Use ofthe new policies resulted in monthly milk over and

underproduction that mimicked that actually found in Florida. The seasonal efi‘ects on

conception rates and lactational performance are the main factors determining the seasonal

pattern and optimal culling rate nearer 40% (McCullough and DeLorenzo, 1996).

Another management problem which should ideally be solved with the replacement

problem is the optimal feeding regime (Kennedy, 1986). If feed prices are not stochastic,

the optimum ration need only be optimized once for each possible state vector.

The dairy dynamic programming models only considered optimization of

insemination and culling policy ignoring the effects ofother management decisions. Similar

simplified models are the norm in beefcow replacement as well. A recent beefcow
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replacement paper (Frasier and Pfeiffer, 1994), however, also included the decisions of

breeding season length and winter nutrition. A sensitivity analysis oflong-term capital

gains exclusions, feed costs, cost of replacement females and returns from weaned calves

and cull cows, showed very stable feeding and breeding policies. Similar to the results

fiom the dairy models, the optimal culling policy varied drastically with a unilateral change

in the cost ofreplacement, while simultaneous changes in the prices for both cows and

calves had little efi’ect on the policy. The study also highlighted the effects the relative

easing ofcapital gains taxes can have on optimal replacement, since the returns fi'om

home-raised replacements culled from the beef herd are considered capital gains.

Tronstad and Gum (1994) in their study, cited the use of stochastic rather than

deterministic livestock prices as the reason that their model ofbeefcow culling found it

may be profitable to keep nonpregnant cows in contrast to previous models.

Congleton (1988b) considered the effect ofuncertainty offuture production and

milk price state variables in estimation offuture income. It is possible that the optimal

decisions will vary with the realized future state. The example used is that with a drop in

future milk price the mature cow, with higher production in the next few lactations, would

be preferred over the younger animal. In a highly simplified analysis the advantage of

increased predictive value ofanimal performance far outweighed the benefit ofmore

accurate prediction offirture milk prices.

Another problem with dynamic programming is that unless producers have the

capacity to run these programs for their specific situation, the ability to apply the results is

questionable. For McCullough and DeLorenzo (1996) showed that while varying
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individual inputs rarely caused meaningful changes in optimal policy, varying multiple

inputs consistently resulted in meaningful changes. While with the advancement of

computer technology, repeating the computer runs is not as great an impediment as it was

a decade ago, this approach still provides little into insight into the reasons for the culling

decisions or the cost ofnot following the recommendations. Tronstad and Gum (1994)

used Classification and Regression Trees (CART), to provide advice on culling decisions.

The process generates two binary decision trees, one each for open and pregnant cows,

which provides an easy to understand set ofculling rules, with the associated cost of

ignoring the recommended action. While the percent of animals correctly classified by

CART, as compared to the DP, at the terminal node ofthe decision tree was as low as

64%, the overall accuracy ofCART was 95% and 99.5% ofcorrectly classified “open”

and “pregnant” cows respectively. Using the decision rule ofCART yielded over 99% of

the expected returns from the DP. The use ofCART in conjunction with spring and fall

calving increased expected wealth by 10% over the simple rule ofthumb ofculling all

open cows in the fall with spring-only calving.

Finally, a difiiculty with optimization models is that only a point estimate ofthe

retums fi'om the policy is given, with no indication ofthe variation in the potential returns.

Repeated simulation is a method to evaluate the distribution.

This is an appropriate place to make the distinction between simulation and

optimization. Notice that all Optimization models contain simulations. Generally a

mathematical model is being used to simulate some phenomenon (i.e., the profits

generated by a Holstein cow in her third lactation.) However not all simulation models are
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able to optimize. While this may seem so obvious as to be trivial, it is often overlooked.

Some ofthe confusion may be due simply to that fact that computers are often used to

solve both types ofproblems.

The advantages of simulations are their ability to compare results between optimal

policies and with those currently used, validate dynamic models and describe the transition

to optimized structure ofthe herd (DeLorenzo, Spreen et al., 1992).

Consider a recent (1996) paper by Galton, Everett, Van Amburgh and Dauman

concerning the economics ofextended calving intervals with use ofbST. The result ofthis

study is “a 18.0 month calving interval is recommended for improved animal performance

and herd profitability”. The simple fact that this was a simulation, not an optimization

study, appears to have escaped the authors. At best, the correct conclusion fiom this study

is that under the conditions and assumptions ofthe simulation the bST cows with an

extended calving interval had greater returns than the traditional management group with a

13.2 month calving interval. (Even this result is suspect due to a number offirndamental

flaws in the study design, including, but not limited to, ignoring the increased physical and

economic pressure bST treatment places on the milking cow facilities, using a single point

estimate for length ofherd life rather than a distribution, assuming different culling rates

between treatments, and a time horizon bias that favors the bST animals.) Assuming that

bST does impart an economic benefit, it is entirely possible that a 17, 19, 20, or even a

13.2 month calving interval is superior to one of 18 months. Consider that ifthe goal of

the study was not simply to promote bST but rather increase producer profitability there

are a myriad ofother potential management changes that could be considered, some of
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which may have less associated risk. Such a biased and misinterpreted study only provides

disinformation and misleads those without the expertise or time to assess the study.

Unfortunately confusion over simulation and optimization and the correct interpretation of

equally simplistic studies are not uncommon. Obviously the appeal of such models is their

simplicity, but it is not clear what is being accomplished by oversimplifying a complex

problem.

Other simulations have been more fi'uitful. Dijkhuizen and Stelwagen (1988)

revealed the robustness ofthe culling guide generated by Van Arendonk’s dynamic

program among varied reproductive efficiencies. Their simulation model included

stochastic production, heat detection, conception rate and involuntary disposal. Feed

intake, body weight and prices were deterministic. The culling guide produced a higher

return over the policies ofretaining all cows which conceive within 240 days, or no

insemination beyond 160 days of lactation, under all combinations of heat detection rate

(HDR) (50, 70, 90%) and conception rate (40, 60, 80%). But the difference was small

under conditions ofpoor reproductive performance due to the limited ability to make

culling decisions. Updating the guide which was created assuming 70% HDR and average

conception rates per lactation that varied from 0.47 to 0.63 (Van Arendonk and

Dijkhuizen, 1985) to reflect the poor reproductive performance had minimal improvement

on the returns.

A deterministic model ofIrish conditions (Allaire, and Cunningham, 1980)

provides insight into the effects ofvoluntary culling based on level ofproduction. Three

levels ofinvoluntary culling (15, 20, 25%), and three levels of replacement cost relative to
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beefprice (0.94, 1.26, 1.57) were simulated for 16 years. Maximum allowable levels of

voluntary culling were 26, 19, and 11%, for involuntary levels of 15, 20, and 25%,

respectively. Replacement occurred at the beginning ofthe following year. Results

presented are for the final year. The greater the involuntary culling level the lower the

annual milk production per cow, as mature high producing cows are replaced with lower

producing heifers. For a given level ofinvoluntary culling the increase in milk production

per cow rises then plateaus and may then decrease as voluntary culling increased. Also as

the involuntary culling decreased, the voluntary level to maximize production increased.

Table 3.4. Simulated level oftotal culling to maximize objectives under varying

 

 

conditions.

Level ofinvoluntm filling

15% 20% 25%

Maximum culling 42% 39% 36%

Culling to maximize milk production 33% 38% 36%1

Culling to maximize annual NPV per cow, low 42%1 39%‘ 36%‘

rearing costs2

Culling to maximize annual NPV per cow, medium 30% 34% 36%‘

rearing cost3

Culling to maximize annual NPV per cow, high 23% 27% 30%

rearing cost4

 
1. Maximum allowable.

2. Ratio ofheifer cost to cull value of 0.94.

3. Ratio ofheifer cost to cull value of 1.26.

4. Ratio of heifer cost to cull value of 1.57.

The authors conclude that the intensity ofvoluntary culling should at most be 3 to 8% in

addition to the involuntary replacement rate when the market price for a replacement

exceeds 1.5 times their cull value. Under the high rearing cost, the maximum culling rate

lowered NPV by about 10% from its maximum.

Allaire (1981) subsequently updated the model to study the effect ofgenetic

improvement. Six policies were modeled:
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Replacements enter with no change in genetic merit for yield.

(1) Involuntary culling only at a rate of20%.

(2) Voluntary culling above the 20% base rate of involuntary culling.

Replacements enter at genetic merit for yield reflecting expected response from selection.

(3) Voluntary culling, replacements from random sample ofdams, no change in

sire merit.

(4) Voluntary culling, replacements fi'om best of potential dams, no change in sire

merit.

(5) Voluntary culling, replacements from best of potential dams, sire merit

increases 0.5% annually (5 28 kg milk).

(6) Voluntary culling, replacements from best of potential danrs, sire merit

increases 1.0% annually (-:- 56 kg milk).

All voluntary culling was for milk yield based on estimated real producing ability. Potential

replacements were selected based on their estimated breeding values using only dam

information, as for a given policy sire merit was constant. Replacement rates of20 to 39%

were considered over a 20 year time horizon. The rearing cost of a replacement was 1.3

times her beefvalue. All replacements entered the milking herd at 2 years ofage, all

culling occurred at the end ofeach year.

The 30 to 35% replacement rate which maximized milk production exceeded that

ofthe 25 to 27% rate which maximized NPV per cow. A 40% culling rate lowered NPV

by approximately 15 to 20% versus the rate to maximize NPV per cow. The greater the

genetic progress the higher the NPV, but “cow replacement rates necessary to maximize

NPV ofthe herd are insensitive to the influence ofa continuously genetic trend in milk

between 0% to 1.0% per year”. The results appeared insensitive to the relative cost of
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replacements. The author noted that in 1979, Ohio Dairy Herd Improvement herds

consisted of30% first lactation cows.

The net marginal revenue model reviewed in Chapter 2, was used to compare

various strategies of selecting cows during the first lactation (Korver and Renkema, 1979).

Given a particular strategy, the culling decisions were optimized. It was assumed that

potentially 40% ofthe herd could annually be replaced by heifers. Four culling policies

were considered:(1) Ill-health or insufficient production are reasons for disposal. (2)

Removal only for ill-health. (3) Low producing cows are removed at the highest possible

rate during the first lactation. (4) Similar to 3 but no calves are raised from cows that

leave the herd due to low production. Policy one was considered to reflect typical Dutch

culling policy. The effect ofthe culling policies on future genetics ofthe herd was ignored.

The results are presented in Table 3.5.

Table 3.5. Results ofDutch simulation of four selection policies during first lactation.

Cullin Poli

 

1 2 3 4

Percent ofAvailable Heifers Used 58% 51% 100% 85%

Ave. Culling rate 23% 20% 40% 34%

Ave. Productive Life (lact.) 4.3 4.9 3.5 3.9

Ave. Annual Earned Income per Cow (Dfl) 1363 1351 1246 1315

Percent Increase in Income Over Policy 3 9.4% 8.4% 0.0% 5.5%
 

While the authors correctly note that these results do not imply policy one is

optimal (since this is a simulation study), the disadvantage ofheavy culling policies (3 and

4) is apparent, at least under the assumptions and conditions ofthe study. The higher milk

production ofthe older animals is insufficient to compensate for the higher cost ofrearing

young stock and the unfavorable age distribution (more younger animals in the herd). Also

 



the critical production levels, relative to the average first lactation production for the herd,

below which first lactation cows should be culled were calculated. Using this information

and assuming a normal distribution of milk production with a 15% standard deviation of

phenotypic intra-herd milk yield, about 20% ofthe first lactation cows should be culled

based on production.

The authors suggested that instead ofassuming replacement heifers have average

productive capacity, they could be ranked according to their estimated breeding value.

This ranking, as well as, lower rearing cost or higher salvage values will increase the

culling offirst lactation cows.

Pearson and Freeman (1973) used a deterministic model to simulate the efi'ect of

four culling systems on the milk production ofUS commercial Holstein operations. The

four cow selection systems were: (1) only enough females were raised to replace

involuntary losses, estimated breeding value (EBV) was used to select those calves to

raise; (2) selection on EBV based only on the cow’s own record; (3) selection ofthe

youngest cows; (4) all voluntary selection during the first lactation based on EBV. Under

systems 2 to 4 all females were allowed to fi'eshen. Each herd was simulated for twenty

calvings with 13 month calving intervals. Profit functions were quite complete including

returns from milk, bull and cull heifer calves, cull dairy cows and those sold for dairy,

fixed costs per herd, interest costs for livestock, expenses associated with artificial

insemination, feed, rearing ofheifers and an additional cost of milk for higher production

based on rolling herd average. While the study included the effects of different herd sizes

and levels ofherd production, the rank of selection systems remained unchanged.
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Table 3.6. Results ofUS simulation of four selectionpolicies'.
 

 

 

Culling Policy

1 2 3 4

Genetic gain/period (kg) 56 57 53 56

Actual production gain/period (kg) 67 68 62 69

Ave. Profit with low rearing oosts’~3 $211 $229 $192 $218

Ave. profit with medium rearing costs“ $189 $188 $151 $218

Ave. profit withflh rearing costs?"5 $167 $147 $110 $136
 

1. Using intense sire selection (equivalent to PD>363 kg).

2. Salvage values held constant.

3. Estimated ratio ofreplacement cost to salvage value of cull is 1.3.

4. Estimated ratio of replacement cost to salvage value of cull is 1.5.

5. Estimated ratio ofreplacement cost to salvage value of cull is 1.9.

Selection can be characterized as: (1) high intensity low accuracy; (2) accuracy increases

with each lactation, but intensity decreases; (3) selection pressure is zero; (4) intensity and

accuracy of selection are high. Policies 1, 2, and 4 result in genetic improvement at nearly

the same rate. The higher production of2 and 4 is due to the positive environmental efi'ect

resulting fi'om selecting on the cows’ own records. With sire selection intensity equal to

the 2% theoretical rate ofgenetic improvement, policy 1 had the slowest rate ofgenetic

and phenotypic improvement.

System 1 was more profitable than expected by its lower production due to the

smaller cost of replacements. The advantage of system 1 increased with the cost of

replacements as this overshadowed the increased returns associated with higher milk

production. The low and medium rearing costs appear inappropriate for application to the

present day. The effect ofthe sire selection system (2% genetic gain/year, sires with PD >

363 kg, or sires 91 kg 2 PD 2 -91 kg) on profits were greater than that ofthe cow

selection. The authors note that if calf selection is required, some selection should be

reserved to remove the mistakes made earlier and allow for an adverse sex ratio.
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A simulation model estimated milk yield based on dams’ and sires’ breeding

values, the efl‘ects ofhealth problems including reproductive disorders and mastitis were

included (Congleton and King, 1984). It is not clear why culling was based on cost per

unit ofproduction during present lactation including the preceding dry period. This basis

for the culling decision would likely be biased against first lactation animals and increase

their culling. Pregnant cows could be culled at the end oflactation, while infertile cows

could be culled after 305 days oflactation. The time horizon was 30 years. Using this

questionable decision criterion the optimum culling rate was 20% to maximize discounted

retums. Increasing herd life fiom 3.4 lactations to 4.2 linearly increased discounted income

by $518.96 per lactation.

Congleton (1988a) conducted a simulation on the effect of culling on predicted

production or income on herd profitability and genetic trend. Future production was

estimated using previous performance and repeatability of complete lactation production.

Culling on profitability was a two stage affair. First the herd was screened with Kuiper’s

short-term MaxAMR to identify potential cull candidates (estimate returns from cows

through the next ten months ofthe next lactation). These animals were then ranked on

long-term income using cow attrition data. The order ofthe use ofthe two screens seems

intuitively backwards.

One ofthese two criteria were used to select a cow for culling when a heifer

fieshened (20% as many bred heifers as milking cows were targeted for cow replacement

resulting in a constant herd life regardless of culling method, heifers were selected on

breeding values). Since this would entail culling many cows afier breeding, the third
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culling option was not to breed the lowest producing cows and remove them when

maximum income had been produced for the lactation. Herds were simulated with varying

intensities ofnonbreeding on production and then culled on either production or income.

A 20 year time horizon was simulated.

Culling on projected income increased herd income by 4.3 to 4.8%, and decreased

the genetic gain to 65.3 to 86.2% ofthat observed with cow selection on production.

(Breeding only the highest producing cows increased herd income by 4.3% to 5.7%).

Even the simulation model ofKuipers (1980) which, as discussed in Chapter 2,

underestimated the value ofyounger animals by using an inappropriately short time

horizon, found selling 30% ofthe heifer calves, rather than raising them all, gave higher

returns to management ofabout $50/cow/year for all selection methods. This simulation

model considered culling ofcows based on their genetic index.

The results ofthese simulation studies agree with those ofthe dynamic

programming models. The cost of replacements is such that maximizing genetic progress

or milk production through increased culling is not economical. The realization that the

use ofall replacements does not maximize profit is comforting fiom an economic

perspective. These models are simply portraying the firndamental, at least under certainty,

decision rule ofprofit maximization which appeared trivial in the previous chapter since it

was so obvious. Narnely continue to use more ofan input (heifers) until the cost ofdoing

so exceeds the return (i.e. use an input until the marginal input cost exceeds the marginal

value product).
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Marginal value product is the product of the physical marginal product and the

additional gross revenue generated by the employment ofthe extra unit ofinput. In a

competitive market the cost of inputs and outputs is constant, so the marginal physical

product essentially drives the profit maximizing decision. These studies then suggest that

as more and more heifers are used their returns decrease, this is simply a statement ofthe

well accepted theory ofdiminishing marginal productivity of inputs.

By focusing on using all potential replacements the industry is reflecting its output

bias. To maximize output, inputs will be used as long as they contribute anything to output

(i.e. as long as the marginal physical product is greater than zero). Obviously this decision

rule will result in more use ofthe input than the profit maximizing level of input. This is

supported by the studies which found that the replacement rate which maximizes milk

production exceeds that which maximized economic returns. The two levels of input will

be equal only ifthe price ofthe input is zero. The traditional biological focus ofherd

management then has implicitly assumed zero cost of inputs.

The optimal culling rates are sensitive to the cost ofthe replacements relative to

the salvage value ofthe cull. However, if replacement rates are excessive it appears the

greatest gain to be made is through lowering involuntary culling.

Prior to considering the actual culling rates in Michigan and whether all

replacements are being used, a more careful assessment ofthe definition of culling rate is

required. Up until now culling rate has been loosely defined. Following this, the

partitioning of culling into voluntary and involuntary will be critically considered.
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Many ofthe studies mentioned previously focused on average productive herd life

as a measure ofculling rate. Productive herd life is the average length oftime an animal

spends in the herd starting with the first calving. Average productive life can also be

considered the expectation of life (Rendel and Robertson, 1950). They state “if one-

quarter ofthe population is replaced each year, then obviously the expectation of life is 4

years.”

The definition ofculling rate (C) is not explicitly defined in the optimization papers.

Rather the studies report the culling rate (i.e. 25%) and the optimal average herd life (i.e.

47.8 months). The average herd life (H) is actually the average productive life ofthe

animals in the herd. This is calculated as the summation ofthe proportion ofthe herd in

each respective lactation, assuming the distribution of ages is in a steady state.

H = in}, (3. 33)

1-1

where n, = the length oflactation number i in months,

P,- = proportion ofherd in lactation 1'.

Pi is equal to the marginal culling rate for lactation 1' (Ci) multiplied by those animals that

have not been previously culled.

Equation (3.33) can then be restated as

H=1C,+2C2(1—C,)+3C3(1—C1)(1—C2)+..........+nC,,fi(1—C,) (3.34)

181
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To calculate the average culling rate based on the average herd life, the marginal

propensity ofculling in each lactation is assumed equal.
5

H = 1C + 2C(1- C) + 3C(1— C)2 + 4C(1- C)3 +..........+ nC(1- C)"'1 (3. 35)

H = inC(1- c)"" (3. 36)

m1

Equation (3.35) reveals the sum to be an infinite linear geometric series. Using the

notation ofRobison and Barry (1996, pg 95) R = 0, and a= r = C/(l-C) so (1+r) =

(1.0".

H(1- c) = 1C(1— C) + 2C(1- C)2 + 3C(1- C)3+..........+ nC(1- C)" (3.37)

Subtracting (3.37) fiom (3.35),

H-H(1-C)=C+C(1—C)+C(1-C)2 +C(1-C)3+..........+ C(1-C)”‘1

HC=C[1+(1—C)+(1-C)2+(1—C)3+..........+(1—C)"“]—nc(1-C)"

=-1—f—C[(1-C)+(1—C)2+(1-C)3+..........+(1—C)"]-nc(1-C)"

Dividing by C, and substituting b for (I-C),

H = 1[b+62 +b3+........+b"]—nb"
b
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= g-US,[——1;b.n] - nb"

where Lbb-=1-(1-C):1-1
+C:_

C

1-C 1-C 1-C

 

As n :3 co, US,(1-b/b,n) =5 b/1— b.

Since C > 0. (1 — C) < 1. as n a co, n(1— C)" :5 0. Therefore as the potential number of

lacations approaches infinity, the value of the series converges to

_ 1 .1-C_l

1—c C C

 

Ifthe average culling rate is 25%, the average herd life should then equal the inverse of

the culling rate which is 4.0 years or 48 months which is that predicted. The 47.8 in the

article differs slightly because not all culling is done at the end ofa year and the marginal

culling rates per lactation are not all equal. The age structure ofthe herd is a function of

the marginal culling rate each lactation or year, so herds with identical culling rates can

vary in average age (Sattler and Dentine, 1989). This then establishes the definition of

culling rate to be the number of animals culled in a year divided by the average herd size.

The average culling rate among Michigan herds on official DHIA test was 37% in

1996 (Michigan Dairy Herd Improvement Association, 1996). However, few Michigan

DHIA herds will have this high a number reported on their production records. For

Michigan DHIA calculates the culling rate as the number culled divided by all the animals
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that were present in the herd at anytime through the year (Ferris, 1987), this is commonly

referred to as the herd turnover rate (T0).

 

S S
- ——

20—1 VCI'SUSC—I

where S is the number ofanimals sold, and I is the average herd inventory.

1 _I+S or1.70 _1_

T0 5 T0 3

 Therefore, the culling rate, C, equals 1 T0

80 a herd turnover of30% is equivalent to a culling rate of43%. It is likely that

Rogers et al. (1988a) in stating the average US culling rate was 31%, and thus not

significantly difi‘erent than their determined optimal culling rate, assumed this was directly

comparable to their definition of culling rate (i.e. C). Whereas, this 31% truely represented

the herd turnover, with a resulting C of45% which is considerably higher than the optimal

culling rate as determined by the dynamic program.

The proportion offirst lactation animals in a herd is not an appropriate indicator of

herd culling. For consider that while at any one time only a single first calf heifer may be in

the herd, one could actually have culled 52 in a year if they were, on average, kept in the

herd for only 1 week. It does, however, represent the minimum culling rate.

Evidence from Ontario (Ontario DHI Corporation, 1997) suggests the distribution

ofculling rates across herds is symmetrical. So it is quite possible that over halfthe

Michigan dairy herds have culling rates significantly in excess ofthe suggested optimum.
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Only a high death loss or sales of heifer calves would prevent the average producer from

possessing an excessive heifer inventory. The presence of excess heifers is supported by a

survey of heifer management practices of producers comprising 78% ofthe US dairy cow

population and calfrearing p0pulation (Heinrichs, Wells et al., 1994). This survey found

that only 25.8% ofherds sold any heifers prior to parturition.

Ifproducers are interested in selecting heifers to lower their culling rate, it must be

recognized that this culling rate is dynamic. In making the transition to freshening fewer

heifers, the culling rate among the heifer population will decrease as the number ofheifer

calves produced by first calf heifers drops.

Assuming herd size is constant and no heifer culling in practiced, 00, is the number

ofofi‘spring (as a percent ofherd size) in period 0 due to calve in the next year, and Co is

the excessive nonoptimal herd culling rate in period 0. In period one a level ofheifer

culling, C,, , is required to achieve the desired adult herd culling rate C. in period 1 (i.e., C1

=C‘)

C' = 00(1- CM)

C.

C :1-

” 0

 

1

0

As a result of heifer culling prior to their calving, there will be a smaller subsequent heifer

population, 0,.

 01 = 0, -[C° 5C] (3. 38)

The denominator accounts for the sex ratio.
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Because after the first period the culling rate in the adult herd equals the optimal

rate, ifthe optimal herd culling rate remains constant, so too will the number ofoffspring

  

    

andtheheifercullingrate.

02=o,-[C"C]=0,-[C ’C J=0,, .-.0,=02=03=.......... =0,,

2 2

C’ C’ C’ C’ ,
Ch2=1-01=1-02=1-03=.......... =1"0n, "Ch2=Ch3=Ch4:.......... =Ch"

Heifer culling settles into a lower steady state rate after the initial period of higher culling,

noting that in this context a period is the length of time for a heifer to freshen.

IfCo = 43%,C' = 30% and 0,, =5

3 =1-%=o.40=40%C =1—
”1 , 0.5

 

0,.00_[£q;_0].o,5_(932%<13_0).014.44%

C’ 0.3
=1——= 0.32 = 32%

01 0.44

 

C112 =1“

Algebraic manipulation reveals the relationship between the initial heifer culling

rate and the subsequent steady state level.

  (3. 39)
(1"Ch1) =1_[C, —C’]

(1’92) 20°

As discussed previously the culling models assumed a base level ofinvoluntary

culling for the pragmatic reason ofnot having to model the underlying biological

processes. Consideration ofTable 3.1 is disturbing because it suggests that many
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producers have been culling animals for infertility, generally accepted as an involuntary

cull, when the optimal choice would have been to continue to inseminate. In analyzing

culling records ofCanadian dairy cows, Dohoo and Dijkhuizen (1993) determined that

reproductive culling was occurring too early, and that it was economically justifiable to

persist in breeding dairy cows much later into lactation than is often considered feasible.

The recommendations ofthe optimization and simulation models were to lower culling

rate preferably by decreasing the rate of involuntary culls. It would appear that this is

possible, simply by reconsidering the definition ofvoluntary and involuntary culling.

Webster (1994) defines involuntary as “not done ofone’s own fiee will, not done

by choice” or “not consciously controlled, automatic”, an example given for the latter is

sneezing. I propose that in the use of the term involuntary with regards to culling, the first

definition reflects the accepted meaning ofthe adjective. However, the second definition

actually portrays involuntary culling in the US dairy industry.

It is apparent that with the exception ofdeath and absolute sterility there is no such

thing as an involuntary cull. Culling is solely an economic decision. To recognize this

consider the following question: given a four year old cow rated excellent in

conformation, with a 30,000 lb ME would you cull her for reason X? Where reason X is

any reason for which an animal may be culled. If she has mastitis or infertility, commonly

cited reasons for involuntary culling, and yet you would not sell her then by definition it

can not be an involuntary cull.

The recognition that culling is fundamentally an economic issue has been proposed

(Fetrow, 1987). However, this distinction purely for the purpose of semantics serves little
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purpose. The distinction is important if the involuntary/voluntary culling paradigm is

resulting in “not consciously controlled” culling decisions. Stressing the economic nature

ofculling decisions may be a method to encourage the dairy industry to critically evaluate

their culling decisions.

The presence ofproducers who purchase the culls of others at beefprice and then

milk these cows is empirical evidence that many in the dairy industry are not correctly

valuing their culls. This incorrect valuation could be due to their failure to critically

evaluate their assumptions and beliefs concerning the optimal culling rate and involuntary

culls.

I am troubled by my suggestion that the market is operating ineficiently by having

too high a culling rate. I base this irrationality on the following arguments: as the past few

chapters have highlighted, the optimal culling rate is highly complex and not intuitively

obvious, furthermore its relation to profit is even less clear. The behavior ofproducers is

consistent with bounded rationality, where knowledge ofthe optimal cull lies outside the

bounds. Milk output is easier to measure and maximization ofmilk production is often

used as a proxy for profit maximization. The suggestion that the higher than optimal

industry culling rates are the result of attempting to maximize milk production is

supported by some ofthe culling studies. Then we need to resolve why we never realized

that at these higher culling rates the marginal value product ofa heifer was less than her

marginal cost. I believe this is due to overestimation ofthe value ofgenetic improvement

in the heifer and her potential future offspring. As the models show, the rate ofgenetic

improvement has little effect on the optimal culling rate and vice versa. Finally, the focus
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by veterinarians and animal scientists on herd health and heifer rearing has resulted in

increased survivability of heifers and thereby provided the potential fire] to fire the

excessive culling rates due to increased heifer pressure.

In summary, the evidence is overwhelming that the optimal culling rates for

Michigan dairy producers are 20 to 30%, assuming culls are sold for salvage value. This

assumption is appropriate for most commercial herds. Despite varying models with

varying assumptions and conditions, as well as, different solution techniques these results

are very robust. Perhaps the greatest criticism of these models, in terms oftruely

optimizing the culling rate, is in the widespread use ofthe industry involuntary culling rate

as a baseline parameter. Despite the uniformity ofthe studies’ results the industry has been

slow to adopt the recommendation oflower culling rates. In order to lower the culling rate

some potential replacements must be culled. The models described assumed random

selection or arbitrary selection of heifers based on some genetic estimate ofpotential for

milk production. Selected results ofthe culling optimization and simulation studies are

presented in Tables 3.7 and 3.8, respectively. Chapter 4, will explore the issue of heifer

selection.
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Chapter 4

HEIFER SELECTION

In order to lower the replacement rate, not all heifers can enter the milking herd.

The models reviewed in Chapter 3 generally assumed random selection ofheifers or

selection based on genetic parameters. The failure ofproducers to accept random selection

may be one reason for the industry’s failure to reduce the culling rate. The discovery ofa

method to predicting culling or production of heifers in the first lactation may encourage

producers to select heifers and thereby reduce their culling rate. This chapter will review

the goal ofheifer selection, namely profitability, and the parameters available to estimate

animal profit. Methods of selection for profitability will then be reviewed.

The goal of heifer selection is to maximize profitability. Given a choice among

heifers, those with the highest profit are desirable. Unfortunately it is not a simple matter

to assess which animals are most profitable. Absolute profit is not available for any

animals, rather the dairy industry uses profit fiinctions to estimate the profit ofa given

animal so the importance ofvarious traits in the explanation ofanimal profit can be

determined. These profit fimctions vary in method of estimation and completeness

(Pearson and Miller, 1981). As will be discussed in Chapter 5, these equations are also

used to weight the genetic value oftraits used in multiple trait selection indices.

Tigges et al. (1984) found relative net income (RNI), calculated using information

available from dairy herd improvement associations, to be highly correlated with total

profit (r = 0.97) and profit per day of herd life (r = 0.92) calculated using more extensive
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economic information such as returns from protein yield and cost of mastitis and breeding.

In comparing varying measures ofprofitability Cassell et al. (1993) found such high

correlations between relative net income and discounted relative net income, the latter was

oflittle utility.

Aside fiom the issue ofthe completeness ofthe profit firnction, the measure of

profitability is a contentious issue. As discussed in Chapter 2, Van Arendonk (1991)

noticed that use of lifetime profit implied no replacement while profit per day implicitly

assumed identical replacement. He noted that each ofthese ignore the opportunity cost of

replacement and therefore neither is an appropriate measure ofanimal profitability. Van

Arendonk showed these erroneous assumptions have drastic ramifications on the value

estimates ofthe two traits, production and herd life (Weigel et al., 1995a), most important

in the determination ofprofit. He showed that using total lifetime profit as the dependent

variable, the regression coefficient for first lactation milk production was correct, while

using profit per day ofproductive life as the dependent variable correctly estimated the

herd life coefficient. But in each case the value of herd life relative to production was

greatly overestimated. Weigel et al. (1995b) further refined this point by estimating an

opportunity cost for each lactation, removing the assumption ofa constant opportunity

cost.

Considerable confirsion exists in the literature over results comparing measures of

profit that don’t include opportunity cost and those that do. Weigel et al. (1995a)

determined the genetic correlation between RNI and relative net income corrected for

opportunity cost (RNIOC) to be 0.97. The phenotypic correlation between RN] and
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RNIOC has been reported as 0.95 (Cassell et al., 1993), and 0.92 (Weigel et al., 1995a).

Some (Norman et al., 1996) have incorrectly interpreted these results as evidence for

ignoring the opportunity cost adjustment. This despite Cassell et al.’s (1993) conclusion

that remlts ofherd management or selection practices using RNI corrected for

Opportunity cost could difi'er from those using RNI. This is not surprising given that the

variance ofthe RNI has been reported as 2.5 (Cassell et al., 1993), and 3.5 (Weigel et al.,

1995a) times that ofthe corrected RNI. Correcting the profit increased its heritability to

0.17 fi'om 0.12 (Weigel et al., 1995a). Since the validity ofthe literature using profit

equations not corrected for opportunity cost is questionable, and studies using the

adjusted equations are available, the results ofthe former will not be considered.

Another source ofconfirsion exists in the literature concerning Van Arendonk’s

paper (1991). He showed the regression coefiicient between profit not including

opportunity cost, and herd life was overestimated. Since this result was in the context of

multiple regression, including milk production as an independent variable, this implies that

the partial correlation between profit not including opportunity cost and herd life, given

production, was overestimated. It does not necessarily imply that the simple correlation

between profit not including opportunity cost and herd life was overestimated as has been

reported (Cassell et al., 1993).

Given, that lifetime profitability is not apparent until the end ofan animal’s life, it is

not a useful method of selection prior to the end ofthat life. The literature has tended to

focus on indicators oflifetime profitability that are apparent early in the productive life of

milk cows. No work has considered indicators apparent prior to productive life.
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The phenotypic correlations between first lactation actual milk and total lifetime

milk are 0.54 and 0.88 for RNIOC, and 0.52 and 0.96 for RNI (Cassell, Smith and

Pearson, 1993). First lactation milk production was found to have a 0.86 genetic

correlation, and a 0.57 phenotypic correlation with lifetime production among Canadian

Holsteins (Jairath et al., 1995). Weigel et al. (1995a) determined the genetic correlation

between the RNI corrected for opportunity costs and first lactation ME milk production to

be 0.80, and similar to the previous study, a phenotypic correlation of0.51. Some physical

traits such as dairy form and udder depth had reasonably high correlations with RNIOC

(Weigel et al., 1995a). Age at first calving has a small negative correlation with RNIOC

(Cassell, Smith and Pearson, 1993). Both Weigel et al. (1995a) and Cassell et al. (1993)

found herd life had a correlation ofapproximately 0.70 with RNIOC.

Weigel et al. (1995a) considered the reliability of indirect prediction of sires’

RNIOC using type, first lactation yield, and proxies for herd life. Table 4.1 is a partial

reproduction ofa table in the paper.

Table 4.1. Approximate reliabilities ofRNIOC from combination ofmature equivalent

yield ofmilk and fat during first lactation (yield), 14 linear type traits and final score

(type), and total months in milk to 84 months ofage (MIM), and MIM predicted from 36

months ofage (PMIM).

Approximate reliability ofRNIOC

 

 

Variables Maximum 80 EPN‘

Type .48 .32

Yield .67 .59

Yield and type .75 .64

Type and PMIM .70 .36

Yield and PMIM .75 .60

Yield, type and PMIM .80 .65
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Table 4.1 (cont’d).

Yield and MIM .90 .70

Yield, type and NIIM .91 .72

1. Efl’ective progeny number, represents the accuracy of a first-crop evaluation of a well-sampled AI bull.

 

Type characteristics provide little additional information in the prediction of

RNIOC, and are unsuitable as a method of heifer selection as only animals that have

fieshened are evaluated.

Herd life, or a proxy, is an important variable in the determination of profit.

However, it is unsuitable as a method of heifer selection. Its heritability is low, and while

the USDA is producing productive life genetic evaluations for cows and bulls, heifer

evaluations ofproductive life are not produced.

To restate, ideally heifer selection would be based on lifetime profit corrected for

the opportunity cost of postponed replacement. While RNIOC can not be measured and is

not recorded, first lactation milk production is widely available and moderately correlated

to RNIOC. This then suggests that selection of the highest producing first lactation heifers

will likely result in selection ofthe most profitable animals. We then turn to prediction of

first lactation milk production.

Compared to herd life, the yield traits have higher heritability. And studies have

been completed on the ability to predict future production. These studies fall into general

types of predictors - genetic and physiological. As few studies have considered the ability

ofgenetic estimates fi'om the USDA’s current Animal Model to predict subsequent heifer

performance, performance ofestimates fiom the earlier Modified Contemporary

Comparison will also be considered.
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Dams’ genetic index for milk production from the Modified Contemporary

Comparison was found to have a 0.18 correlation with daughter first lactation ME

production deviated from herdmates. This result was slightly less than the 0.20 expected

(McGilliard and Freeman, 1976). Linear regression ofthe measure of daughter first

lactation production on dam index was 1.15 which differed from the expected unity.

Powell et al. (1977) determined the average correlation between actual daughter

performance for milk production, deviated from contemporaries, and that predicted fiom

sire pedigree index using the Modified Contemporary Comparison was 0.40 for Holsteins,

slightly below the expected 0.45. The regression coefficient between the two was near the

expected 1.0 suggesting selection based on sire predicted differences should be successfirl.

Powell and Norman (1988) found an average correlation of 0. 19 between the

daughter’s deviation ofmilk yield from contemporaries and the dams’ genetic index for

milk production from the Modified Contemporary Comparison, which was lower than

expected. The correlation increased as the repeatability ofthe dams’ indices increased, as

the number ofdaughter records rose, and with a higher level of herd milk production.

Selection was expected to be effective given a regression coefiicient ofapproximately one

between daughters’ deviation and the dams’ index.

A problem with each ofthe preceding studies is that a considerable period oftime

was used to collect the data, so parent indices were calculated years after a daughter’s

production. In heifer selection, it is the estimate of the parents’ indices at the time of

selection that is relevant.
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Since 1989, when the USDA began using the Animal Model for estimating genetic

merit, only two domestic empirical studies have considered the ability of parents’ PTAs to

predict a heifer’s subsequent performance. Estimated genetic indices are produced for all

dairy animals with identified parents who are on a production test program. The indices,

which are updated every six months, and are generally provided at no extra cost to those

enrolled in a production test program.

Other empirical studies (Ferris and nggans 1990, 1991; Samuelson and Pearson,

1995) have considered the ability of parents’ PTAs to estimate the performance of

artificial insemination sires, through the performance ofthe sires’ daughters. Since these

sires tend to have genetically elite parents, with generally high reliabilities, the results of

these studies are not directly applicable to daughter performance.

Based on 76,871 daughters, VanRaden et al. (1989) found the regression

coeficients of daughter performance on EBVs “were near the (theoretically) expected

value of 1.0” with correlations that ranged from 0.20 to 0.49. Performance ofdaughter a

was measured as yield deviation (YD,) which according to Wiggans and VanRaden (1989)

is defined as

YD. = y, - M. - PE, - (siren-herd“)

such thaty represents standardized milk yield; M, PE and sire ~herd are the effects of

management group, permanent environment and herd-sire interaction, respectively for a.

Management group includes effects for herd, year and season of calving, parity and

registration status, as well as their interaction. This equation for YD can be compared with

the USDA animal model of milk yield standardized for season and age at first calving,
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y, = G, + M, + PE, + (sire, herd.) + U, + e,

where G is EBV, U is unknown parent group, and e is the error for a.

In heifer selection the producer is interested in predicting y,. While the use of YD

as a dependent variable serves to decrease the error variance, the results are not directly

applicable to heifer selection. For a producer is paid based on is unlikely to know the value

ofM., PE, (sire, -herd,) and therefore, can not derive I’D, from y,. The prediction ofy,,

not 1D,, is ofprimary importance to the farmer because this is the basis on which the

producer is paid.

On a small sample of37 Holstein heifers, Mao et al. (1991) measured the serum [3-

lactoglobulin from 16 to 1 week prepartum. They found consistent positive correlations (r

s 0.3 to 0.6) between the serum protein over this 16 week period and first lactation,

second lactation or the sum ofthe two, ME milk yield. In a subsequent paper (Mao and

Bremel, 1995), the 0.034 coefficient of determination for prediction offirst lactation 305d

milk yield (i.e., y,) of26 Holstein heifers using only parent average ofgenetic merit for

milk production was improved to 0.211 with the inclusion ofthe serum B-lactoglobulin

level at the 26th week of pregnancy. Stating the residual (u,) from the Mao and Bremel’s

regression in terms of effects accounted for in the VanRaden study, the lower multiple

coefiicient of determination ofthe former is expected.

a, = M, + PE, + (sire, -herd,) + U, + e, - herd,

The correlations between 305d milk yield and the log of B-lactoglobulin, and

parent averages for milk, protein and fat were, respectively, 0.456, 0.185, 0.149, and -

0.003. The authors note “The PA (parent average) is normally used as a selection criterion
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for heifer replacements.” Similar suggestions have been made to sell heifer calves from

inferior parents (Jones and Rogers, 1995; Franck, 1994) however no specific

recommendations as to what method or when to conduct selection is presented.

While physiological measurements present potential methods for heifer selection

they are not routinely collected on heifers, and B-lactoglobulin is not produced until late in

the rearing period when the animal is pregnant.

Weight gain from 350 to 462 days ofage had a genetic and phenotypic

correlations of0.33 and 0.67 with first lactation 308 day milk yield (Lin, McAllister et al.,

1985)

The ability of at least the genetic indices for milk to predict production, which is a

major component ofanimal profitability, suggests their potential utility in heifer selection.

However, two issues are not resolved. Firstly, there is no proofthat the heifers’ milk index

which equally weights the PTA milk of each parent is optimal. Furthermore, given the

potential 5 genetic indices for each parent in each period it is not clear how each ofthese

should be used. Lastly, the genetic indices are simply estimates which are updated over

time. It is not clear when in a heifer’s life selection should occur. Specifically, which ofthe

10 pieces ofgenetic information, available every six months during rearing, should be used

and how they should be used in heifer selection.

There are also other benefits from heifer selection besides increasing herd

profitability. Aside fi'om short-term improvement in cash flow, heifer selection will also

reduce the nutrient loading on the land, this issue will become increasingly important as
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environmental restrictions become more prevalent and strict (Schmit and Knoblauch,

1995).

The importance ofopportunity cost has resurfaced in this chapter. Likely, due to

the industry’s ignoring the work on the optimal culling rate, and therefore the need for

heifer selection, no work has been completed on heifer selection for maximum profit.

From the literature it can be determined that production is important to animal

profitability. Genetic indices for milk have been shown to hold some promise for the

selection ofhigher producing animals. The current availability and ease ofaccess make

genetic indices a potential method of heifer selection. While the use ofgenetic indices for

heifer selection has been suggested, details and empirical results to support these

statements are lacking. Chapter 5 will consider the estimation ofgenetic values ofanimals.
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Chapter 5

SELECTION INDEX THEORY

From Chapter 4 it is apparent that genetic evaluations currently present the only

potentially viable methods on which to base selection ofheifers prior to calving. A

familiarity with the methods and assumptions made in estimating an animal’s genetic value

is then warranted. This chapter will start with a brief review ofgenetic efi‘ects and the

assessment ofgenetic variance and covariance. The goals, methodology, and assumptions

ofthe Selection Index (81) model for a single trait are examined. The effects ofthe various

assumptions on the model are explored. Multiple trait selection is then reviewed, followed

by miscellaneous issues which firrther cast doubt on the optimality of SI. By the

conclusion ofthis chapter it will be apparent that, due to the assumptions made, SI

evaluation ofan animal’s value is not optimal, even more critical to heifer selection, it is

not clear that heifers will even be correctly ranked. Based on this inability to correctly rank

heifers for selection, combined with the effect ofMendelian sampling which greatly

increases the prediction error ofthe index, the value of genetic indices in heifer selection is

questionable.

The approach to genetic evaluation and SI in this chapter is heavily based on

Selection Index and Introduction to Mixed Model Methods by Van Vleck (1993),

supplemented with relevant information from the literature. Given the context ofthis

chapter is understanding the estimation of a heifer’s value based on her parents’

information, examples will appropriately focus on such estimations.
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The theoretical composition ofgenotype, as well as, the determination ofgenetic

covariance between individuals is firndamental to understanding selection theory and its

assumptions. So each ofthese issues will be addressed prior to reviewing selection theory.

The genotype ofan animal can be broken down into linear genetic efl‘ects and

epistatic or nonlinear genetic interaction efi‘ects. An additive genetic effect is the aggregate

efi‘ect ofallelic substitution at a particular locus. The sum of all additive genetic effects

over all loci is the additive genetic value (0,) ofthe animal, also known as the estimated

breeding value (EBV).

Let A; = 5, A2 = 2 where A, is the 1‘” allele ofgene A. If only additive efi‘ects exist,

the phenotypes resulting fi'om each allelic combination are:

ArAr = 5 + 5 = 10

ArAz = 5 + 2 = 7

AzAz = 2 + 2 = 4

A dominance genetic effect is the average effect of allelic substitution at a

particular locus less the additive genetic effects. The sum of all dominance genetic effects

over all loci is the dominance genetic value (Go) ofthe animal.

Suppose, similar to the above example, B; = 5, B; = 2 but a dominance effect of

+1 occurs then

8.8, = 10

B182 = 7 + 1 = 8

B23; = 4

An additive by additive genetic effect is the average effect of substituting a pair of
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alleles at different loci less the additive genetics effects. The sum of all specific efi‘ects of

non-allelic gene pairs is the additive by additive genetic value (GM) ofthe animal.

Expanding the first example, let A. = 5, A2 = 2, C; = 1, C2 = 0, and an additive by additive

efi‘ect of+3 occurs when A; and C1 are in common.

 

 

 

 

AtAr A1A2 AzAz

C1C| 12+6=18 9+3=12 6

C1C2 11+3=14 8+3=11 5

C2C2 10 7 4

     
 

An additive by dominance genetic effect is the average efi‘ect of substituting an

allele at one locus and an allelic pair at another locus. It is calculated as the difference

from the additive, dominance, and additive by additive genetic effects. The sum ofall such

effects is the additive by dominance genetic value (GAD) ofthe animal.

As in the second example, let B, = 5, B; = 2, C1 = 1, C2 = 0, with a dominance efl‘ect of

+1 on the B locus, and an additive by dominance effect of -4 when the genotype BrBzCr is

present.

 

B181 Ble B232

 

 

 

CrCr 12 10-4=6 6

C1C2 l 1 94:5 5

C2C2 10 8 4

     
 

Further higher order epistatic effects can be defined. Given the number ofgenes
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and alleles in any mammal’s genome, the number of potential effects quickly approaches

infinity.

The total genetic value ofan animal can then be represented by

G=GA+GD+GM+GDD+GAD+GAM+GMD+GADD+HH (5.1)

Selection theory also relies on the genetic variance or covariance. “fith the

reasonable assumption ofindependence among the different type ofgenetic efi'ects, the

genetic variance can be represented by

2 _ 2 _ 2 2 2 2 2 2 2

HG 1-00 “00‘ +000 +00“ +00” +00“ +00” +0.64“) 4"” (5. 2)

where E is the expectation operator, and the genetic value is defined to have zero mean.

Now consider the genetic covariance between individuals 1' andj.

_ _102 012 202 022112
E[G,-Gj] — 06,0, — a”. d” ‘70.. “’0 (1,1000 «ray. duo 00.“ «ray. d”. 0600a,]. d” 0'60

(5. 3)

3 0 2 2 l 2 1 2 2

+0” d0 06‘“ +00 d0 OGMD +0061” OGADD +‘"

where a, = the fraction of additive gene effects in common between individuals 1' andj,

and d, = the fraction of dominance effects in common by descent.

These coefiicients are calculated using simple probability theory. Equation (5.4) is the

model ofgenetic covariance between a parent (P) and an offspring (0).

1 ' 1 ° 1 2 1 ° 1 ‘
0,0,, = (5] 0°oé‘ {3) 0'02,” {5) 0°03,“ {5) ozogw {5) 0'03” +

1 3 l 2 l I

(a) °°"3~« {5) “03» ”‘(al 0’03- ’2'"

Given that the offspring receives half of its genes from each parent there is a (0.5)“
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probability that the two share 21 non-allelic genes in common. Notice the fiaction of

dominance effects in common by descent is zero between this pair. In fact this null

coeficient for a biallelic locus is used for all but fitll siblings for whom it is 0.25. Given

that at least one parent has a heterozygous genotype and exhibits dominance efi‘ects, the

probability ofan ofi'spring having the same genotype at this locus is 0.50 not zero,

regardless ofthe other parent’s genotype.

The unexpected null coemcient is the result ofthe model used to determine the

relationship between individuals. These coefficients consider only genes in common which

source from a common ancestor. This is certainly a reasonable assumption for additive

genes which are simply linear interactions. The null coefficient is appropriate when using

the identical by descent criteria, since heterozygosity is required for dominance efi‘ects and

one allele ofeach locus is transmitted fiom parent to offspring there is no opportunity for

the dominance efi‘ect to be identical by descent. Considering the purpose ofEquation (5.3)

is to quantify the similarity ofthe genetic effects ofthe two individuals, regardless ofthe

source ofthat similarity, ignoring the identical in state genes, those not fi'om a common

ancestor, misrepresents the true composition ofgenetic covariance and hence the interest

in DNA sequencing.

It is also clear that as the number ofnon-allelic genes and/or allelic pairs increases

the coefficients decrease in magnitude. This is the frequently cited reason for routinely

ignoring any higher order epistatic effects. However, in determining whether a right hand

side element ofEquation (5.3) is so small as to be ignored, the variance ofthe genetic

effect itself should also be considered.
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The result ofthis assumption ofno interaction effects oforder two or higher, and

the assumption of identical by descent is to reduce Equation (5.4) to

1

0006,. = 506,, (5. 5)

This simplification is used for all but firll sib genetic covariances for whom a dominance

efi‘ect may be included.

Reliable estimation ofvariance/covariance components for genetic parameters is

one ofthe major tasks for any livestock improvement scheme. Maximum likelihood is a

method ofestimation that empirically results in asymptotically unbiased estimates in the

face ofselection (Rothschild, Henderson, and Quaas, 1978; Schaeffer, and Song, 1978). A

major drawback ofthis method is the variance estimates of a mixed model are biased since

the fixed effects are treated as known, resulting in overestimation ofthe degrees of

fieedom. According to Meyer (1983) and Harville (1972) restricted maximum likelihood

(REML) overcomes this problem by maximizing only that part ofthe likelihood that is

independent ofthe fixed effects. Empirically REML also appears to remove any selection

bias fi'om the estimates (Meyer, 1983). In the genetics literature it is common to ignore the

potentially complex distributional properties ofthe estimator. This may be due to the work

by Harville (1972) where it was suggested that the REML estimates derived under

normality may be reasonable estimators even when the form ofthe distribution ofthe

estimate is unspecified.

The REML covariance estimate is then set equal to the product ofthe additive

genetic variance and the appropriate a,~. The result is a potentially exaggerated additive
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genetic variance for all relationships, since all the elements ofthe right hand side of

Equation (5.3) are allocated to either the additive genetic variance or the residual term.

Tempelman and Burnside (1990) showed that this exaggeration can be sizable.

Their study revealed the identical in state dominance variation for Canadian Holsteins’ first

lactation milk and fat were, respectively, 15 and 75 percent ofthe additive genetic

variance. Despite similar standard errors for each ofthe estimates, the former was not

statistically significant due to a high coefficient ofvariation (i.e., standard error divided by

the mean).

A second Canadian paper (McAllister, Lee, Batra, et al., 1994) indirectly

investigated the presence ofdominance effects between dairy breeds. In acceptance with

previous studies, this experiment showed a significant heterotic effect in Holstein x

Aryshire Fr females. Heterosis is defined as the realized phenotype less the expected

phenotype calculated as the average additive effect ofthe two breeds. The necessary

conditions for a heterotic or crossbreeding effect are the presence ofdominance efi‘ects

and difi‘erent gene fiequency between the two breeds.

This paper is of interest for two reasons. Firstly, while heterotic effects were

generally accepted to occur, conventional wisdom among animal breeders held that the

dominance efl‘ects ofcrossbreeding were insufficient to compensate for the much lower

production ofthe Aryshire parent. As a result it was accepted that, despite heterosis, the

F; would have lower production than the higher producing Holstein parent. This study

found no significant difference between the Holstein x Aryshire Fr female and the purebred

Holstein line for lifetime milk production. This suggests the presence of a much stronger

107



dominance efi'ect than generally accepted by the industry. This paper also gave evidence of

how heterosis may vary with the period over which a given trait is considered, thereby

bringing into question the ability to extrapolate the aforementioned first lactation results of

Tempelman and Burnside to production in general. For example the heterosis effect was

3.7% for first lactation yield and 16.5% for lifetime milk production. Lifetime heterosis

efi'ects were 20.0, 17.2, 17.9 and 20.6% for lifetime fat yield, protein yield, milk value and

annualized discounted returns.

Clearly it is extremely difficult if not impossible to estimate dominance efi‘ects

rearlting fi'om identical in state genes. Estimation of other variance effects would require

supplemental equations to solve for the extra parameters. It is only recently that inroads

have been made in the inclusion of dominance effects in genetic evaluations (Misztal,

1997). Furthermore, the number ofequations required to estimate higher order genetic

variance components is overwhelming. This model, as all others is a tractable

simplification ofreality, and should not be judged on its realism. As with any model it

should be judged on its performance, this may include theoretical results or the ability of

the model to mirror reality. It is in this assessment ofthe model that its assumptions

become critical. For failing to recognize the assumptions, and their effects on the results,

leads to the model being accepted as reality, and therefore beyond reproach.

Given these theoretical models, the fundamental challenge in selection is to choose

those individuals with the greatest genetic merit for the trait(s) of choice to be used as

parents ofthe next generation (1.10.), i.e.,

maxAG=ug.-uq (5.6)
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where no is the average genetics ofthe total population.

This challenge is heightened by the fact that rarely can the genetic effects be

directly observed, and this is especially common in economically important production

traits. Rather the breeder must attempt to deduce the genetic value ofthe animal when

only phenotype (P) is apparent.

Pa. Ep+G, +PE, +712, (5. 7)

Where P, = the phenotype ofindividual i in periodj

p = the population mean

G, = the total genetic value of r' deviated from the population mean

PE, = the permanent environmental effect on P, deviated from the population

mean

7E, = the temporary environmental effect of periodj on P.- deviated fi'om the

population mean.

E,- the total environmental effect on P,- is equal to the sum of 773,,- and PE,

Heritability in the narrow (h’) and the broad (hf) sense can now be defined, the former is

the most common definition,

 

O

h’ = a"; (5.8)

P

2 06
h, z? (5.9)

P

where a}. is the phenotypic variance in the population, and is easily estimated.
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Notice that overestimation ofthe additive genetic variance results in overestimation of

narrow heritability.

Armed with an understanding ofthe various genetic effects and an understanding

ofthe assumptions made in estimating genetic covariance we can proceed to review

selection theory. Two models have been used for animal selection: Selection Index (SI)

and the Animal Model, the latter is the current method ofgenetic analysis used by the

USDA. Hazel et al. (1994) and Philipsson et al. (1994) provide reviews ofthe past,

present and future of SI. SI employs all the same assumptions as the Animal Model. For

81 all phenotypic and genetic variances and heritabilities, genetic and phenotypic

covariances for using multiple traits are assumed known (Vandepitte, and Hazel, 1977).

The former also requires all fixed factors be known. Fixed factors include all those

nongenetic factors, excluding temporary and permanent environmental effects, which

afi'ect phenotype. Fixed factors, represented by p in Equation (5.7), include effects due to

year and age ofthe animal. Despite this one difference in the practical application ofthe

models, all the theoretical assumptions and results ofeach model are identical. Since these

assumptions are more explicit in the SI, it will be the method reviewed here.

The goals ofthe SI are:

1) Minimize the prediction error variance or E[T-l]2 where T is the true value and

I is the index. This is equivalent to maximizing m, the correlation between the true

value and its prediction.

2) Maximize the probability of correctly ranking animals.

3) Maximize the true value ofthe selected group.
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In the development of selection theory the main emphasis, rightly so, was on goals 2 and

3. However, the solution to even a simple formulation of this problem was mathematically

intractable without the assumption that the P.-, the phenotype of individual i, and Tmust

have a bivariate normal distribution (Williams, 1962). Under these conditions, goals two

and three can be maximized through maximizing r77. Clearly selection will result in a

truncated distribution ifthe r17 > 0, and as a result the normality assumption will be

violated to some degree, and goals 2 and 3 may not be realized. Potential violation ofthis

normality assumption is not a trivial problem, fi'om the perspective ofindividual animal

breeders it is the correct parametric ranking of animals which is of importance, and will

permit maximum genetic progress. Under certain conditions the SI indices are unbiased

when the population consists of individuals who were themselves selected (Gomnet,

1983).

Geneticists have considered the effect of ignoring the changing population

parameters as selection occurs. This change is frequently ignored, and the selection

coemcients are not updated as the population changes. Under conditions ofan

infinitesimal genetic model and an infinite population size, the effect ofupdating the

selection coefficients was found to be negligible with less than a 1.5% loss of aggregate

genetic progress per generation (Villanueva and Kennedy, 1993).

The only data available to predict an animal’s true genetic value is the phenotype

of relatives, and perhaps its own phenotype. By definition, relatives are expected to have

more genes in common with the individual than the population at large. The general linear

selection index model for individual a (1,.) can then be expressed as dependent on the

111



phenotypes ofa number ofanimals (X1. X2, XN ), where a is not necessarily a member

ofN.

1a=b1X1+ b2X2+ . . . +bNXN (5. 10)

WhereX1=Pi'fl.

All that remains then is to determine the values of the bs.

an
max r = (5. 11)

{511311 T] Jafiaf

A logarithmic transformation results in a linear objective firnction.

l 1

{“123} 108021 ) = 108(011) ’ 3103(0% ) " 3108(012 ) (5- 12)

t -l

where BUY] = or, = bran. + b207,): +- - -+ bNO'rxN (5. l3)

2 _ 2 2 2 2

(5. l4)

‘1""1‘ ”szaxsz +"'+ b13032“

This unconstrained maximization problem is solved by taking the first derivative ofthe

objective function with respect to each b, recognizing that the variance of T is independent

ofthe current bs. (Notice, however, that a; is a firnction ofthe index, assuming the index

is at all usefirl (rn>0) and has been used for selection, the variance of T is then dependent

on previous bs.)

2

6108077) = ”TX. _b‘axl +b20'Xlx2 +.+bNaX1XN

2 =0

($1 an a,
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2
610g(rn) _ 012', _ 5102.112, +b20'x, +"'*’bN‘7x,xN

2

‘92 or! 01

  = 0 (5. 15)

 

2

6log(r,,)_ 0m, _ b10232,” +b2‘7x,x,, +°+bN0XN

2 :0

&N on 01

 

Redefining this system of simultaneous equations in standard linear notation, with the

primed symbol designating a transpose, reveals

Pb = kc (5. 16)

where

P = variance - covariance matrix of the X,. = E(XX')

X=[X, X2 XNI

b=lbl b2 bNI

2

k = thescalargl—

0n

c = covariance vector of T and X,-

Since the scalar It does not affect the relative magnitude of b, it can arbitrarily be set equal

to unity. Equation (5. 10) can then be restated in linear notation as

"r = I = rm (5. 17)

with

b = P"c (s. is)

Since the b vector is a firnction ofP and c it is important to consider how each ofthese

matrices are estimated. Once an understanding ofthe assumptions made in estimating b

are gained, we will turn to actual use of an index. First derivation of c, the covariance
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between the true value and the phenotypes, is reviewed. This covariance is a function of

the desired true value which is being selected for. The most commonly used true value in

the dairy cattle industry is estimated breeding value (EBV) or the additive genetic efi‘ect of

individual a, then the first element of c is

on. =00“,
(5.19)

=E[G,,.X,]

=E[GAOG,]+E[GAUE,]

=E[GA,GA, +0400. +GA,GAA. +GA.GAD. +GA,GDD, +GA.GMA1

+GAaGMDl +041qu +"°]+E[GAnE-l]

072’, = .103, (s. 20)

where an, is defined analogously to that used in Equation (5.3).

In arriving at the final expression ofEquation (5.20), the phenotype ofindividual 1

has been decomposed into a genetic and environmental effect. Using the results of

Equations (5.2) and (5.3), the covariance ofthe true breeding value and 1’s genetic efi‘ect

is estimated to be represented by Equation (5.20). Since the strong assumption ofzero

expected additive genetic-environmental effect covariance was made, the genetic

covariance equals the covariance between the EBVand X1. Clearly this later assumption

abstracts fi'om reality. It is not hard to imagine additive genetic-environmental interaction.

Intuitively, consider a genetic trait such as nervousness or shyness, individuals possessing

such a trait will perform better with a quiet gentle manager (environment) than not. The
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independence between the genetics and environment is then refined and firrthermore, a

role ofmanagement is to capitalize on this potential interaction. Preferential treatment,

which will be discussed more later in the chapter, can be considered selective exploitation

ofa environment-genetic interaction. While a model to account for this genetic-

environment covariance has been developed by Schaeffer and Henderson (1983), it is not

employed by the USDA

Even ignoring the assumption of zero additive genetic-environmental covariance,

Equation (5 .20) does not accurately represent the covariance between the additive genetic

value ofa and the genotype of individual 1 for the desired trait. Recall that earlier in the

discussion ofestimation ofgenetic covariance it was shown that the additive genetic

covariance was overestimated because, it in effect, included some genetic covariance other

than the additive portion. Tempelman and Burnside (1991) showed that omitting the

dominance portion from an animal model resulted in a 4% overestimation ofthe additive

variance for milk. Ifthe goal of selection is to maximize progress in the additive genetic

effect ofa trait, the net effect on c is ambiguous, since ignoring the genetic-environment

covariance underestimates c, while the additive genetic covariance is slightly

overestimated.

The diagonal elements ofP are phenotypic variances while the remaining elements

are covariances. Each type of element may be calculated using individual records or the

average of multiple records. The estimation of each will be assessed in turn, starting with

estimations using single records.

Since the phenotypic variance of an individuals single record is the expectation of
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the population variance, the variance elements ofP based on single records per individual

are readily available from the population being studied and therefore no extra estimation is

required for SI. However, this assumes homogenous variance among all lactations. Van

der Werfet al. showed that ignoring variance heterogeneity resulted in sire evaluations for

milk based on progeny records being 157 kg lower than that expected based the sires’

EBVs.

The nondiagonal elements ofP estimated fiom the data are again unbiased, and are

represented by Equation (5.21). However, as can be seen fiom (5.22), in SI the

assumptions made in the estimation ofthe non-diagonal elements ofP are similar to those

used in determining c. Specifically, SI assumes that the only source ofphenotypic

covariance is additive genetic variance, and as a result the additive genetic variance is

overestimated.

om, = E[(G, + 5,)(0, + E,)]

(s. 21)

= E[G,G2 + 6.1:, + (3,15, + 5,15,]

=a120é‘ (5.22)

Equation (5.22) then does not accurately reflect the additive genetic covariance.

Also, many strong assumptions are made concerning the environmental interactions. If; as

argued previously, the environment ofan animal may interact with its genotype, given that

the genotypes ofthe animals are related, it would not be surprising to find that the

genotype ofone animal covaries with the environment ofthe other. The assumption ofno

covariance between the environmental effects ofthe two animals may also be strong.
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These assumptions will result in the underestimation ofthese non-diagonal elements ofP.

The elements ofP may themselves be an average if multiple records are available.

The source ofthese multiple records include an individual with more than a single record,

or records from a homogenous group of relatives (i.e., 20 daughters all with comparable

single records). Taking the first example ofmultiple records on an individual animal, the

phenotypic variance ofthis individual is then actually the squared standard error (i.e. the

variance ofa mean), which will be less than the variance of a single record. The initial

assumptions made in estimating the standard error are: the variance ofeach record is the

same, and the covariance between each pair of records is identical.

2

_ noJr +n(n-1)ax‘x‘. _ a; +(n-1)a'x‘x‘.
  a}! n, n (5. 23)

The covariance between records of a single animal, X.-, can be represented as

a”; = 1~:[(G, + PE, + 715,, )(G, + PE, + 773,. )]

(5. 24)

_ 2 2

- 06 + 0P5 + 01750715, +0073, + arm, +0012}, +OPETE0 + 20'6”

Making the strong assumption ofzero covariance among all terms leads to

2 2 2

axx;=aG+OPE-=-0A (5.25)

I

Where A, the animal effect, is the sum of all permanent effects on the animal (i.e., G +

PE). While Equation (5.23) can then accurately be denoted as

2 _ 2

a}! = ”X +0; 00, (5.26)
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geneticists commonly employ the concept of repeatability (R) in this calculation where

 

2 2 2

RE 200 :O'PE 2 :9? (5.27)

By ignoring the interaction effects in Equation (5.24), Equation (5.23) is then

underestimated through the use of

2 02. + (n —1)Ra2

a - = 3 X (5. 28) 

X, n

When X.- is the average ofa single group of equally related relatives then Equation

(5.24) becomes

arr; = Elm.- + PE. + TEr-XGr + pa. + mall

(5.29)
= 00,0, + “mm + aTEuTEr; + ”OPE: + 06:73; + 01’5"!!!

‘1' 00,125, + 06,175,, '1' “195,115,,

The strong assumption that all terms, other than the first, are zero is generally made. Note

this implies no environmental covariance even though animals may be in the same herd

(i.e., environment). The inclusion ofherd in the model would account for this

environmental covariance. Given that genetic-environmental interactions occur for a given

animal, that the environments oftwo animals aren’t independent, and that genetic

covariance exists it logically follows that the genetic-environmental interactions in

Equation (5.29) are not zero either. The assumption of importance only of additive genetic

effects is invoked to arrive at

a —. = 0.03;" (5. 30)
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It is then apparent that P , is an unbiased estimate of P. However, in using these

estimates ofphenotypic variance, SI makes simplifying assumptions. Given the bias in E ,

the estimate ofc, and that many ofthe elements of P are not equivalent to that required

for SI theory, 6 is not equal to the optimal b, however the degree ofinoptimality is

indeterminant. Progress in selection will then be less than potentially possible, but more

importantly, it is likely that the level ofbias in the relative values ofthe I; s (the elements

of b) will vary across individuals so the paramount makings ofindividuals may be

incorrect and less reliable than suggested by S1 theory.

Having assessed the RHS and LHS ofEquation (5.16), b for EBV can now be

derived. Consider estimating the EBV ofa heifer (H) for milk production given the single

milk production record of her dam (D) and the effect ofthe sire. Since the sire cannot

produce milk, his effect is represented by his relatives. For this simple example, we

consider that the sire has a daughter who has completed a record. This daughter is a half

sib (S) to H, as they are assumed to have different dams. This example can be extended to

consider multiple records on multiple relatives ofeach ofH’s parents. The index can then

be represented as

1,, = [6,, 124:2] (5.31)

From Equation (5.16)

Pb 11

a

where
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2

0 0x

0.5a2

c = G;
02500,,

The oE-diagonal elements ofP are zero since the dam and half sib, are assumed to be

unrelated (i.e. aDS= 0). From Equation (5.20), the elements of c are expressions ofthe

additive genetic variance weighted by one halffor D as the heifer receives halfofher

genes fi'om each parent. The weight for S is one quarter, reflecting that she and H have

difi'erent dams.

b = P"c

=[af 0 I 0.563,, H 0.522] (5.32)

0 of 0.2503,, 0.25}:2

Upon reviewing the definition of heritability in Equation (5.8), it is not surprising that the

bs will always be firnctions ofthe heritability ofthe trait (in this case, milk production)

since P is the phenotypic variance-covariance matrix, while c contains the additive genetic

variance. Equation (5.33) represents the more general index coefficients for a parent, as

derived by Van Vleck, where n is the number of records ofthe parent, and R is

repeatability.

0.5nlr2

boa... =_—1+ (n _1)R (5. 33)

The relative size ofb, is proportional to the strength ofthe relationship between

the individual being indexed and individual I. Ceteris paribus, the size of b, will also

increase as the number of l ’5 records increase. In reality, each parent would likely have
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more than a single record so the bs would vary among parents. In general, sires would be

expected to have more records and therefore contribute more information to their

daughters’ EBV.

The estimation ofthe average additive genetic value that will be transmitted to

progeny is widely used in the dairy industry. Every six months the USDA calculates the

equivalent of bDXD, and bsXs and labels them predicted transmitting abilities (PTAs). In

other words, PTAs are one halfthe estimated additive value ofan individual. 80 to

determine the milk EBV ofa heifer all that is required is to sum the PTA milk ofthe dam

and sire. PTAs are routinely published for pounds of milk, fat, and protein, as well as,

dollar value ofmilk and fat yield in cheese production.

The EBV ofan animal is an estimate ofthe mean additive genetic value. We are,

therefore, not only interested in the variance ofthat estimate, but as well, its accuracy, or

the degree ofcorrelation between the estimate and the true value.

Since X is a random variable, I is also a random variable with a variance. Recalling

the linear notation for I used in Equation (5.17) and the definitions ofP and c fi'om

Equation (5.16),

a} = E[b'XX'b] = h'E[XX')r = b'Pb (5. 34)

0,, = E[Tb'X] = b'E[TX] = b'c (s. 35)

As a result the variance ofthe index and the covariance between the trait and index can be

shown to be equal.

a} = b'Pb = c'P"PP"c = c’P"'c = b'c = 6,, (s. 36)
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0'1 b'c b'c
r17 = —-—I— :——= —

2 2 2
Jena, Jb'ca} 0,

However, since b at hp",2 at a}, and 6,, at an and therefore, FT, t r”. The variance ofI

(5. 37)

and the covariance ofIT are also firnctions ofh), the relationship weighting and the

additive variance, while accuracy is a function ofh’. For a given trait, heritability is

constant, as is the additive genetic variation. Accuracy is then a firnction ofthe strength of

the relationship between the 1 and or, with increased records helping to increase accuracy.

As a pedagogical device in deriving the accuracy ofthe heifer’s EBV index, it will be

assumed that sires have records. Then the accuracy ofthe heifer’s EBV index based on her

parents’ records is

 

  

[ 0.5nDIr2 + 0.5nsh2 05062;,

b'c 1+(nD -I)RD 1+(ns -1)RS : 0.50é“

a, 65,,

(s. 38)

 

  

1 21th ugh2

=\/4[1+(nD-1)RD ’ ”(n—rm]

where n, and R, are respectively the number ofrecords and repeatability of parentj. The

previously determined values ofthe b and c vectors were inserted into Equation (5.37),

and since the true value being estimated is additive genetic value, EszJ: ElGiJ= aé‘ .

Notice that Equation (5.38) can be explicitly stated as a firnction ofthe accuracy of

the parents’ own estimated additive genetic value. The index to predict parentj’s additive

genetic value using only its own records is simply twice its PTA or b,. And the equivalent
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ofEquation (5.37) to determine the accuracy of j’s PTA is

 

  

  

, A A 064 2

r25 = 23 = ”i"! '1 I = "I” - (s. 39)
a} 0% 1+(nJ.—11Rj

where r}, is the accuracy of parentj’s own additive genetic value.

The coeficient on c is one since, in the absence of inbreeding, this is the relationship ofan

animal to itself.

Equation (5.38) is then equivalent to

1 2 2

r7, = J: (7,-3 + r}; ) (s. 40)

 

As will be shown, while sires don’t have phenotypic records, their squared accuracies are

widely reported and available.

The accuracy ofa progeny’s record is considerably less than that ofher parents’.

Even ifthe parents’ values are known with certainty, the EBV ofprogeny would explain

only 50% ofthe variation in the animals’ true additive genetic value. This perhaps

surprising finding is the result ofMendelian sampling. Even ifthe genetic effects ofthe

parents are known with absolute accuracy and certainty, a progeny is the summed effects

of its entire genome. In the production ofgametes a distribution ofgenotypes is produced,

with a mean equal to the respective parents’ genotype.

Now consider the prediction ofthis daughter’s first record. Returning to Equation

(5.18), since the previous relatives, in this example the dam and half sib, are still the only

‘ individuals upon which the index is based the phenotypic variance-covariance matrix P and
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its inverse will be the same as that used in the estimation ofEBV. c represents the

covariance between each relative and the trait of interest, namely the heifer’s phenotype.

axx

c=[ ””] (5.41)

0X5)!“

Making the standard selection theory assumptions of:

-zero expected covariance between genetic efi‘ects;

-only the expected genetic variance due to the additive portion is non zero;

-no expected genetic-environmental covariance;

-no environmental covariance despite the fact that heifer and dam may be in the

same herd;

-if either parent has multiple records no covariance between animal efi‘ects and TE,

and zero TE variance;

the first element of c in Equation (5.41) can be expanded as

oxflxk = EKG,” + PE, + 7F” XGAD + PED + IE,)]

(5. 42)

= 0.503,.

The elements ofI"l and c, and therefore also b, are all the same for estimation ofa heifer’s

EBV or next record. This is the result ofthe assumptions made as well as the inability to

predict the random variable of environmental effects. Since the indices are identical so are

their variances.

Now consider the variances ofthe true values. The variance ofEBV“ is simmy

- the additive genetic variance, while for the first milk record it is the phenotypic variance.
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The ratio ofthese two variances is then the heritability of milk production. The USDA

uses a heritability ofmilk production for all lactations of0.25 (personal communication,

George Wiggans, Animal Improvement Programs Laboratory, Agricultural Research

 
 

Center, USDA).

0.5}:203;

’mvrd... 0)? “G: J}?

r _ 2 2 - 2 .-
BV‘. 0.5h 06 0x

CG:

(5. 43)

fawn,“ = ‘1 hiilk rBV = V 0.251191, = 0502's,,“

So while the accuracy of estimating an offspring’s additive genetic value was low,

the accuracy of estimating a heifer’s first record is only half as large.

Had the assumptions made in calculating P and c held true, I would have been an

unbiased estimate of T, but the index would still have prediction error. The variance in the

true value given a particular index, or the prediction error is

_o=(1-r,’,)r; (5.44)

The USDA calculates reliability ofPTAs which is defined as the squared

correlation ofan animals predicted transmitting ability and its true transmitting ability

variance (Van Raden and Wiggans, 1991). Reliability is then equivalent to our previous

definition ofaccuracy (see Equation (5.38)) squared. The confidence interval for an index

 

is then \[1 - Reliability * a "' Z , combining this with Equation (5.40) the confidence

. interval can be expressed as a function ofparent reliabilities
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J4 - Rehabrlrt yD._,,, - Relrabllrt 3,115 41 a t z , where o' is the population standard deviation
4

ofthe index, and Z is the appropriate standard normal probability for the specified

confidence interval width.

Table 5.1 presents for EBV milk and first lactation production indices the 95%

confidence intervals ofthe indices based on various combinations ofparents’

repeatabilities ofmilk PTA These combinations of reliabilities are what can be expected in

the population. The mean of all indices is 20,000 lb.

Table 5.1. Estimated breeding value, and first lactation production 95% confidence

intervals for the range ofparent reliabilities ofmilk production genetic value.

1 :

 

 

  

   

 

 

 

 

 

  

 

 

 

  
   
 

 

  

 

          

Milk Production (lb) 20,000 1 ;

l , l

Repeatability 95% Confidence htervals

Breeding Value Milk tst Lactation Production

Sire Darn Within Herd l , Eetween Herds

Variance‘: 8,880,400 Variance”: 12,882,870] éVariance‘: 18,404,100

0.99 0.6 15,466 24,534 14,539 25,461 13,473 26,527

0.8 0.6 15,291 24,709 14,328 25,672 1 13,221 26,779

0.6 0.6 15,113 24,887 14,114 25,886 I f 12,965 27,035

0.4 0.6 14,942 25,058 13,908 26,092 12,718 27,282

0.99 0.5 15,373 24,627 14,427 25,573 ' 13,339 26,661

0.8 l 0.5 15,201 24,799 14,220 25,780 _ 13,092 26,908

0.6 0.5 15,027 24,973 14,010 25,990 1 12,841 1 27,159

0.4 0.5 14,858 25,142 13,807 26,193 1 12,598 1 27,402

0.99 0.4 15,282 24,718 14,317 25,683 13,208 26,792

0.8 0.4 15,113 24,887 14,114 25,886 12,965 1 27,035

0.6 0.4 14,942 25,058 13,908 26,092 12,718 l 27,282

0.4 0.4 14,776 25,224 13,708 26,292 12,479 1 27,521
  
1) From INTERBULL Centre Routine Genetic Evaluation, August 1996. Table2. Estimated sire standard

deviation and genetic correlations between countries consideredin the INTERBULL Centre evaluation of

August 1996. The sire standard deviation multiplied by four results in the genetic standard deviation

(personal communication, George Wiggans, Animal Improvement Programs Laboratory, Agricultural

Research Center, USDA).

2) Within herd variance assumed to be 70% ofbetween herd variance.

3) Jairath et al. (1995) phenotypic variation first lact production 1950 kg with a mean of5155.

or Weigel et al. phenotypic variance first lactation milk ME 1686 kg mean 8500.

The phenotypic variance ofmilk production in the population was taken from the
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literature. Weigel et al.’s (1995) estimate ofthe variance offirst lactation ME milk was

13,758,165 lb’. Notice that the genetic variance is only 48% ofthe phenotypic variance,

while a heritability of0.25 implies that it should be 25%. The confidence intervals reported

may then be too narrow.

Even the most accurate confidence intervals are quite wide. With the range ofthe

expected or mean EBV milk being :t 1,000 lb in the population there will be considerable

overlap ofthe prediction intervals for all animals in the population. While the intervals do

narrow as the reliabilities ofthe parents increase, given the still considerable width ofthe

interval for the progeny ofeven the most reliable parents, it is not clear whether this

increase is practically significant.

Despite SI or the equivalent animal model evaluations being theoretically superior

to previous methods of predicting genetic merit, this did not stop Samuelson and Pearson

(1995) from recently investigating this very issue. They explored whether the daughter

yield deviation and EBV ofyoung A] bulls were more accurately predicted through the

use ofthe parents’ PTAs (i.e. EBV as defined earlier in the chapter), use of sire PTA, sire

PTA and dam PTA or a pedigree index based on the PTA ofthe young sires’ sire and

maternal grandsire. EBV was found to explain the most variation in both the young sires’

PTA based on daughter information, as well as, his daughters’ actual yield deviations.

Although, the regression coeflicients were less than the expected 0.5, with sire coefiicients

generally slightly greater than dam coefficients, and “accuracy ofprediction appeared to be

declining erratically with time”. They also investigated the change in the EBV over 3

periods prior to the realization of daughter information. Over this time, the R2 between
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EBV and young sires’ PTA and daughter yield deviation increased, with the increase being

due to improving accuracy ofthe dams’ PTAs.

The genetic improvement per year under normality and other assumptions is

AG/yr = (”fwd/L (5. 45)

Where D is a measure of selection intensity and L is the generation interval.

The rate ofgenetic gain has consistently been less than theoretically possible and

expected using SI (Van Tassel], and Van Vleck, 1991). While numerous reasons for this

shortfall have suggested, incorrect assumptions in the genetic models has not been

included. Given the assumption violations, resulting in unoptimal indices, it is not

surprising that fiequently actual genetic progress lags that which is expected from the

model. However, the method of calculating the gain must also be questioned. From

Equation (5.37), the estimated m is not equal to the true correlation, and this is assuming

correct estimation of of. The inverted variance ofthe true value will likely be unbiased if

the trait is observable, while if unobservable, such as additive genetic effect, this estimate

may be biased as well. Inaccurate estimation ofpopulation parameters can lead to high

overprediction ofexpected gains and loss in the efficiency ofthe index (Villanueva, and

Kennedy, 1993; Hill, and Myer, 1984). The appropriateness ofEquation (5.45) as a

measure ofgenetic improvement is then unclear.

Until now only selection for a single trait using that single trait has been

considered. Selection using multiple traits will now be briefly reviewed. Selection for

multiple traits presents an analogous problem to that encountered previously, but now we
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are concerned not only with estimating the weights for different individuals, but also, how

to weight the different traits in the index. Again Van Vleck’s development ofthe solution

is followed.

Let g = vector ofgenetic values ofm economically important traits for animal a,

v = vector ofeconomic values for the traits in g,

G = E(gg') = E(Xg') = the genetic variance-covariance matrix for m traits,

Consider the derivation ofm single trait index equations analogous to Equation (5.17),

'I‘J = IJ = bjx (5. 46)

If T, is additive genetic values, g ,- can replace c in Equation (5.18), where

E[X(genetic value oftrait j)] = gj.

Equation (5.18) can then be restated as

bJ = P“gJ (5. 47)

wherej = l, ..., m.

Notice that b; = (P"g,) = g’,(P") = g3(P')" = ggP'l , recalling since it is a symmetric

matrix P' = P.

The overall index (I) is the sum ofthe 1, weighted by v,

  

11 bi ( Sip--i i

I b' r -l

I=v f =v } sz' 311: X=v'GP"X=B'X (5.4s)

1.. b2. 18:3“;

. Van Vleck shows that
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a} = v'Gv

r _ ’B'Gv

Tl V'Gv

r = v'g (5. 49)

The true value is now expressed in economic units, while only relative economic value of

the traits is required for selection. Applying Equation (5.45), if progress (AT) is to be

measured in dollars, absolute economic values are required.

AT = rnDoT = Do, (5. 50)

The response ofa traitj, whether included in the index or not, to selection can be

measured, by regressing G, on I.

  

a 0

AG, = “foo, = 6’10 (5.51)

01 a,

where

a = G.,BX+---+BX
0,) E( 1 l 1 N N) (5.52)

= 310616. + 820616) +° ' .BNOGIGN

As portrayed in Equation (5.53), selection can still be practiced for a single trait by

setting the economic value of all other traits equal to zero.

ifv, =0Vi¢j,thenlet v}. =1

(5. 53)

06,1 = 1100,63, +bj'2acp, +"°b}NaGJGN

The use of other traits will result in more progress being made than if selection was

130



conducted using only the trait ofinterest. This incremental progress is a firnction ofthe

heritability ofthe other traits as well as the genetic correlation between the trait ofinterest

and the other traits

Intuitively, in order to make progress in selection, variance is required in the trait

ofinterest, such that individuals can be difi‘erentiated and selection can occur. Ifother

traits are heritable and genetically correlated with the trait of interest, they can aid in the

assessment ofan individual’s genetic value of the trait of interest and therefore aid

selection. As shown in Table 5.2, first lactation dairy production traits of interest tend to

be highly correlated.

Table 5.2. Heritabilities (on diagonal), phenotypic (above diagonal) and genetic (below

diagonal) correlations among first lactation yield traits (Jairath et al., 1995).

 

 

Trait Milk Fat Protein

Milk .25 .95 .98

Fat .89 .23 .97

Protein .96 .92 .22

   

To make economic progress through SI, the economic weights must be equi-

proportional to their net marginal value per unit per trait. To measure selection progress in

actual dollar units the absolute values are required. Generally the national per unit price of

a trait (i.e., Slpound of milk) is used as the respective weight. Prices resulting from

perfectly competitive markets meet the above requirements for measurement of selection

progress. For in such markets, price equals the marginal cost of production, with the latter

1 including an allowance for “normal profit”.

131



The criteria for a perfectly competitive market are:

I) complete markets;

2) more is preferred to less;

3) numerous consumers and producers;

4) no increasing returns to scale;

5) no externalities;

6) perfect information;

The market for raw milk meets the first two criteria, the last four are questionable.

Firstly, there is concern in the dairy industry that the dairy processors, who purchase the

milk from dairy producers, are few in number and possess potential market power.

Recently Krafi Foods Inc. has come under investigation for manipulation ofthe exchange

price ofcheddar cheese. This price forms the basis ofthat received by farmers for their

product.

A topic ofmuch debate among the dairy industry has been whether increasing

returns to scale exist. Increasing returns to scale implies that marginal costs are

decreasing. The literature generally does not reject the null hypothesis that the industry

possesses constant returns to scale. Continued nation wide expansion trends among

producers appear to support the concept of increasing returns to scale.

Externalities are prevalent in agriculture in general. Externalities may be defined as

production by a firm affecting the preferences of a consumer or vice versa. It is important

to recognize that this is a direct effect, not one transmitted through the price mechanism.

Examples of externalities in dairy production are neighbor displeasure with the smell of
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manure, and animal welfare concerns.

lastly, for this market to be perfectly competitive all market participants must be

omniscient. Consumers must be fully aware ofthe value of dairy products and all others,

and producers must have perfect knowledge about their own operations as well as that of

others. Given that a significant number ofproducers are not even aware oftheir cost of

production per hundred weight of milk, much less their marginal cost ofproduction for

milk fat, milk protein, and milk less the components, the perfect information criteria can be

refuted. Clearly then the dairy market is not perfectly competitive. What is not so clear is

whether the violations are significant enough to suggest the withdrawal ofprices as the

economic weights, even to the point ofnot using any weights under the auspices that more

harm may be ensuing under this inappropriate plan than without.

A simulation revealed that a i 50% error in any single economic weight in a seven

trait swine selection index caused less than a one percent loss in relative efficiency ofthe

index (Vandepitte, and Hazel, 1977). The study showed that underestimation ofeconomic

weights generally caused greater errors than overestimation, and the effect were nonlinear,

and could be sizable with greater than 50% error. As the authors point out the results are

specific to the P and G matrices and economic weights used in the example and any

generalization must be approached cautiously. It is not clear how well these results

extrapolate to stableness ofan index such as PTAS with fewer traits, different covariances,

and difi‘ering relative magnitudes ofthe economic weights.

Lin and James also found that errors in relative economic weights result in loss of

efficiency with selection index, but the predicted losses are not highly sensitive to this type
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oferror (Villanueva, and Kennedy, 1993).

While S1 is based on linear estimations, Dekkers, Van Erp, and Schukken, (1996)

showed that the economic weight for savings in penalty costs by reducing somatic cell

count in Ontario were not linear. The authors recognized that penalty costs are only a part

ofthe savings associated with improved SCC, however, there is no mention ofthe

importance ofconsidering the cost ofattaining lowered somatic cell counts. The authors’

recommendation ofa target SCC appears quite arbitrary. Similarly, the use ofthe average

marginal value of SCC reduction across herds is suggested as the proper economic weight

for use in a population wide breeding program. It is not clear what objective firnction this

suggestion is intended to maximize or the basis on which this decision was made. Given

the availability ofthe marginal economic value oflowered SCC for a given herd SCC

level, and the advent ofpersonal computer it is surprising that the creation ofindividually

customized indexes based on farm customized economic weights was not proposed.

Sampling error variance in estimating economic weights has been noted to also

increase the estimated genetic gain, overestimate the attainable genetic gain, as well as, the

realized gain (Vandepitte, and Hazel, 1977).

Other pragmatic problems also arise with the use of price as the economic weights.

Many traits of interest do not have readily available prices, for example somatic cell count

and type traits. The weights for these traits appear to be arbitrarily chosen. Clearly the net

marginal returns per trait is a function of individual operations. This is not however

reflected in the price. Furthermore, national price estimates are used despite many regions

ofthe country increasingly having separate milk pricing formulas, especially with the
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advent ofcomponent pricing. Hazel (1943), a pioneer in SI development, recognized that

the proper economic values may vary by region. The relationship of national prices to the

true net economic values appears ambiguous. He also suggested that since the results of

current selection are not apparent until the future that the economic values should

represent the anticipated firture values.

A number oftechnical difficulties are also encountered by the USDA in doing the

calculations. The USDA Animal Model includes a sire x herd interaction term. Recent

work (Dimov, Albuquerque, Keown, et al., 1995) suggests that the estimate used in the

model may overestimate the true effect of this interaction term by a magnitude offive to

ten. Overestirnation of this effect may lead to underestimation ofgenetic merit ofsuperior

sire and dams, and therefore incorrect animal ranking. Differences in the heritability of

milk yield (0.21 versus 0.28) were also recorded among different regions ofthe country.

Preferential treatment of animals also appears to be a problem in the US.

Preferential treatment can include any management practice that increases production and

is applied to one or several cows but not contemporaries (i.e. 06,5 at 0, for some

individuals). Assuming preferential treatment among dams with high cow indexes, Powell

and Norman (1988) found the milk yield deviations of daughters ofthese dams were

higher than expected. This underestimation ofdaughter performance was thought to have

occurred due to preferential treatment ofthis group of daughters. There is also evidence

that such effects occur in the animal model estimation ofcow PTAs (Kuhn, Boettcher, and

Freeman, 1994). The bias ofPTAs resulting fiom preferential treatment can be sizable,

with 0.06 to 0.39 ofthe increased production resulting from the special treatment being
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transferred to her estimate ofPTA. Preferential treatment is also considered to occur in

genetic evaluations ofcows for selection oftheir sons as sires (Murphy, Everett, and Van

Vleclg 1982). Such work has resulted in the suggestion to consider only the first record of

a sire’s dam be used in predicting a bull’s evaluation.

In estimating the EBV ofanimals, an adjustment must be made to remove the

variation in yield records due to systematic environmental effects. “Genetic trend in milk

yield was sensitive to the choice of adjustment procedure”(Khan, and Shook, 1996). The

current method ofadjustment by USDA biases the estimates ofpoor sires downwards and

good sires upward, although it is not clear whether the rankings ofcows or bulls are

changed.

Up until this point only nuclear genetics have been considered. While the embryo

receives half of its nuclear genetic material from each the sperm and ovum, the latter

contributes all the cytoplasm. This maternal cytoplasm which contains mitochondrial DNA

can contribute to the offspring’s genome. While the effects of cytoplasmic inheritance on

dairy production traits is disputed in the literature, failing to account for cytoplasmic

variance, if present, causes overestimation ofadditive genetic variance and

underestimation of permanent environmental variance, as a result heritability is

overestimated (Boettcher, Kuhn, and Freeman, 1996). This also causes slight errors in the

accuracy of selection of cows. The USDA Animal Model does not currently include

cytoplasmic effects.

The purely tactical application of SI can also present some problems. There are a

number ofcommonly used indices in which may include such factors as production, type
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traits, and possibly genetic evaluations of somatic cell counts and herd life. Even

overlooking the caveats from chapter 2 on the effect of ignoring opportunity costs on the

relative value ofherd life and production, it is not clear how the value ofherdlife can be

assessed when, based on the information on optimal culling rates in Chapter 3, it would

appear that in general herdlifes are less than optimal. There are still other pragmatic

problems with the determination ofwhich ofmany indices to use. Despite similar

correlations between Canadian indices, the reranking ofanimals was found to be

substantial (Dekkers, Kolstad, Jairath et al., 1996).

It has been noted that the average gain expected from use ofan index is not

appropriate for comparison ofindexes since sampling is only occurring once. Rather the

variance and expected gain should be considered when comparing indexes (Williams,

1962). Expected gain is an average of realized gain over all samples and is unaffected by

the sample-to-sample index variance. The probability of correctly ranking individuals is a

function ofthe error variance ofthe index. So while two indices can vary in expected

genetic gain there may be only negligible differences in the probability of correctly making

ofindividuals, and therefore little real difference between indices. In terms ofheifer

selection there is little to indicate what index would best rank animals on firture profit.

The dynamics of selection have not been totally ignored by geneticists. Weigel,

Cassel, and Pearson (1995) considered what proportion of each decile of potential AI

bulls, ranked by EBVS at l and 3 years ofage, subsequently proved to be above the 85th

percentile oftheir sampling group. The analysis was simplistic and unsophisticated ofien

relying on inaccurate charts. The final recommendations ofpercentages ofbulls to cull at
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each age are arbitrary. Conclusions were made as to the economic impact on the AI

centers, this despite the fact that neither the costs of raising the bulls, nor the costs ofthe

incorrect classifications were considered. All incorrect classifications were considered

equal despite the great range in returns generated by the bulls.

Fortunately, more sophisticated and appropriate techniques have been used to

assess the dynamics ofanimal selection. Interest has stemmed fiom the potential economic

savings of sequentially selecting animals as traits of interest are revealed over time, rather

than the traditional selection index approach ofwaiting until all traits of interest can be

measured before selection occurs. Given the multivariate normally distributed traits of

interest and their economic weights(v), P, G, the number of stages over which selection is

to occur, and the total proportion to be selected numerical integration can be used to

optimize an objective function such as aggregate breeding value. The information on those

individuals which haven’t been culled in previous periods is accumulated and used in

selection at subsequent periods. Conventional independent culling, multistage index

selection, multistage selection, and selection index updating are equivalent terms used to

denote this technique which will solve for the for the optimal truncation points at each

selection period.

An orthogonal transformation procedure of the traits has recently been developed

(Xu and Muir, 1992). Since subsequent distributions are no longer a function ofprevious

selection, numerical integration is not needed, with the concomitant saving in CPU time.

However, the required computer time with numerical integration was not inhibitive. The

relative efficiency ofthis transformation compared to numerical integration in maximizing
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aggregate breeding value for various scenarios was reported at 87% to 300% (Xu and

Muir, 1991). Given that the transformation places a restriction on the solution space, it is

not clear how it can result in increased efficiency. The cited references do not support the

explanation provided in the paper.

Given the cost ofmeasuring the various traits, the objective firnction ofmultistage

index selection can include indicators of profit. For a particular example it was shown that

when the objective function included the cost ofthe increase in aggregate breeding value,

the results ofmultistage index selection varied greatly from the results where the focus

was purely on increasing aggregate breeding value without regard to cost (Xu and Muir,

1992). In particular, both the aggregate breeding value and costs were lower when cost

was included in the firnction to be maximized. However, it should be noted that the profit

function used in the study was incorrect.

There is no record ofthese techniques having been used for selection. It would

seem that an approach that lies between the lax method of analysis used by Weigel et al.

and the restrictiveness of multistage index selection would be appropriate. Note that the

latter maintains the hypotheses of multivariate normal distributions and uses estimates of

P, G, and v, which as discussed earlier in the chapter will not result in the optimal indices

in each period, and the level ofbias across individuals may well vary. Also multistage

index selection requires the intertemporal phenotypic and genetic correlations among the

traits used for selection. These correlations are currently unknown and genetic theory is

silent on potential values.

In summary the methodology of selection index for single and multiple traits has
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been considered. Even assuming optimal weights for the indices, the proportion of

explained variance ofan animal’s EBV, much less first record, is very low due to

Mendelian sampling. Furthermore, based on all the assumptions made in deriving the

variances, covariances, and economic values, the index weights clearly are not optimal.

But even more worrisome is the fact that, the level ofinoptimality may vary across

individuals resulting in inconsistent rankings. SI will also fail to correctly rank individuals

ifthe genetic and phenotypic values ofthe trait of interest are not normally distributed.

Given these difficulties, it is not clear whether any genetic indices will be ofgreater

value in heifer selection than their cost. Furthermore, should they be ofsome value, it is

unknown which indices should be used and at what time periods in a heifer’s prepartum

life they should be applied to permit heifer selection to maximize producer profit.
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Chapter 6

LITERATURE SUMMARY AND HYPOTHESES

Literature Summary

The literature review can be summarized by the following points:

1) Optimal culling rates in dairy production are a complex economic question. This issue is

best structured as an infinite capital asset replacement model with nonidentical

replacement. The question is best solved with stochastic dynamic programming.

2) Stochastic dynamic programming and simulation models suggest the optimal culling

rate is between 20 and 30%, assuming risk neutrality ofproducers, a constant herd size,

culls are sold for beefnot dairy, and no strong seasonal effects on milk production or

reproduction. Higher culling rates are associated with increased milk production but not

increased profit. Optimal culling rates are not impacted by the assumed rate ofgenetic

improvement. Mth the cost ofreplacements being high relative to the cost of culls, as

occurs in North America, maximizing genetic progress or milk production through

maximum culling rates is not economically optimal.

3) The excessive culling rate in Michigan indicates producers have excess heifers, and a

means ofheifer selection is required. To maximize profit, heifers should be selected for

lifetime profit corrected for the opportunity cost of postponed replacement. First lactation

milk is a proxy for lifetime profit corrected for the opportunity cost ofpostponed

replacement.

4) Genetic evaluations by the USDA are the only widely available means of selecting
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heifers. Theoretically, animal model genetic evaluations should be useful in predicting first

lactation milk production, and therefore, lifetime profit corrected for the opportunity cost

ofpostponed replacement. However, there is little empirical support for the ability of

Holstein parent PTAs to predict subsequent daughter milk production.

5) Given that parent PTAs are intuitively useful in heifer selection, no consideration has

been given to a selection scheme for heifers. This scheme would need to address not only

which ofthe potential genetic evaluations (i.e., milk, fat, protein, reliabilities) ofeach

parent would be used, and how they would be used, but also, in which period(s) would

they be used, for the dynamic nature ofthe selection process needs to be accommodated.

New genetic estimates are produced every six months providing 4 complete sets of

estimates over the course a heifer being raised.

Based on the literature review the following hypotheses were generated:

Statement of Hypotheses

Hypothesis 1: Parents’ PTAs from the last rearing period will not predict first lactation

milk.

Hypothesis II: Genetic indices based on parents’ PTAs from the first rearing period will

be of little value in estimating whether culling occurred prior to, or during, the first

lactation.

Hypothesis III: Prepartum heifer selection based on their parents’ PTAs and associated

reliabilities, of milk, fat, and protein fi'om throughout the rearing process, will be

more profitable than random heifer selection.
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Hypothesis 1, along with various estimation methods are evaluated in Chapter 7.

Chapter 8 considers hypothesis H, again evaluating various methods to estimate the

relationship between culling and parents’ PTA. And the value ofgenetic evaluations in

prepartum heifer selection is addressed in Chapter 9.
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Chapter 7

PREDICTION AND RANKING OF FIRST LACTATION MILK USING PARENT

PTA

ABSTRACT

The objectives ofthis study included determining the ability of parents’ PTA for milk, fat

and protein to predict subsequent first lactation milk production ofdaughters; the ability

ofthe predictions of first lactation milk production to correctly rank heifers based on

actual milk production; and finally whether, in estimating this relationship, the herd efi'ect

needed to be estimated as fixed efi‘ects. The data consisted offirst lactation mature

equivalent milk production of 5,123 Mchigan Holstein heifers, and the heifers’ parents’

animal model evaluations immediately prior to the heifers’ fi'eshenings. While statistical

comparison ofthe estimates resulting from treating herd as a fixed or random efi‘ect

revealed they were different, the practical differences were not as clear. Regardless of

modeling technique, parents’ genetic evaluations explained less than 7% ofthe variation in

subsequent daughter first lactation milk production. A nonparametric comparison ofthe

within herd rankings ofthe predictions from the random and fixed effect models suggested

the rankings were substantially similar. While diffuse, the distribution ofwithin herd rank

correlations between predicted mature equivalent milk production, based on parents’

genetic evaluations, and the actual mature equivalent milk production, was skewed to the

left and suggested the evaluations may be usefirl in prepartum heifer selection. The

omission of heifers which were culled prior to first lactation, did not appear to cause
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selection bias in the sample data.

(Key words: random effect, fixed effect, prediction first lactation mature equivalent)

Abbreviation key: FE = fixed effect, MEM = mature equivalent milk, OLS = ordinary

least squares, RE = random effect.

INTRODUCTION

Given a constant herd size, no seasonal effects on reproduction and production,

and culled cows being sold for meat (not dairy) purposes, optimization (5, 18, 23, 28, 33)

and simulation (1, 2) studies were unanimous in their conclusions that a culling rate of

20% to 30% optimizes producer profit. While other simulation studies (4, 19, 20, 25),

which considered subjectively selected culling rates or strategies for comparison, indicated

that profit would be increased with culling rates below the average 37% culling rate1 in the

Michigan dairy industry in 1996 (24). Comparability ofthe actual culling rate and those in

the studies assumes no herd contraction or internal expansion. The results ofthese

multiple studies are compelling because, not only did the various models employ difi‘erent

assumptions and analytical techniques, but as well, the models operated under economic

conditions representative ofa number ofcountries (i.e., the U.S.A, England, Ireland,

Netherlands). In the models, the increased profit associated with use ofthe lowered culling

rates varied from 2% to 40%.

Comparison ofonly the mean profit by the studies implies risk neutrality, whereas

a majority ofMichigan and Dutch dairy producers are risk adverse (17). The risk

 

' Culling rate, annually defined as, the number of animals leaving the herd due to sale or death divided by

the average herd size.
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preferences of decision makers can have significant effects on their choices, so the optimal

rule assuming risk neutrality cannot necessarily be extrapolated to those who are risk

averse.

At least under risk neutrality, one direct ramification ofMichigan’s excessive

culling rate, assuming herd sizes have at least been constant, is that Michigan dairy

producers do not need all potential replacement dairy heifers to enter the lactating herd,

necessitating a method of heifer selection.

This need for heifer selection is in direct contrast to the present situation in which

most producers rear and fieshen the majority of heifers produced on the farm (6, 14). The

simulation studies revealed that while this practice maximizes genetic progress and milk

production, the economic performance is lower due to failure to consider the opportunity

costs ofhigher culling rates.

While the culling models suggest the need for heifer selection, they lend little

insight into how selection should be conducted. Most optimization studies employed

random replacement selection. Some simulation studies arbitrarily selected replacements

based on their simulated EBV of milk. While this approach to selection has intuitive

appeal and indeed theoretical justification (15), empirical support for heifer selection on

this basis is lacking. If a heifer selection rule more profitable than those used in the

optimization and simulation models can be developed, producer profit may increase more

than 2% to 40%.

While use ofgenetics to select heifers is appealing, application offinance theory

may suggest otherwise. A standard result of capital asset replacement theory is that as the
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expected profitability ofthe potential replacements rises relative to the existing assets, the

optimal length ofthe utilized assets’ lives decrease (27) which is equivalent to an increase

in the replacement rate. Therefore, ifEBV were valuable in selecting more profitable

heifers, the simulation model which utilized this method ofheifer selection should have

had higher optimal culling rates than those studies which used random heifer selection.

However, the study (1) which based replacement selection on EBV had a lower optimal

culling rate than all ofthe studies which randomly selected heifers (2, 5, 18, 28, 33),

except one (23). One possible explanation for the similarity between the most profitable

culling rates ofthe studies, despite the use of selection based on EBV milk versus random

replacement selection, is that the genetic information is not highly valuable in selecting

heifers for profitability. An alternative explanation is that differences among the models

may preclude the recognition ofthe value ofEBV in heifer selection.

Given that heifer selection is required, the first step in determining a method of

selection is defining the objective. The objective ofheifer selection is to choose the most

profitable animals. Van Arendonk (32) showed that lifetime profit corrected for the

opportunity cost ofpostponed replacement is the correct method for ranking animals in

terms ofprofitability. Unfortunately, corrected lifetime profit ofanimals is generally not

available and furthermore, can not be determined prior to the culling ofthe animals.

However, the literature has focused on indicators of lifetime profitability that are apparent

early in the productive life of milk cows. No studies have considered the relationship

between information available prior to productive life and any measure of subsequent

lifetime profit, much less lifetime profit corrected for the opportunity cost ofpostponed
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replacement.

The phenotypic correlation between first lactation actual milk and lifetime profit

corrected for opportunity cost has been reported at 0.54 (3). Weigel et al. (3 5) determined

the phenotypic and genetic correlations between corrected lifetime profit and first lactation

mature equivalent milk production to be 0.51, and 0.80, respectively. For purposes of

heifer selection, first lactation milk production may then be a suitable proxy for corrected

lifetime profit.

Presently, alternative predictors of subsequent milk production, such as the

concentration of serum B-lactoglobulin 26 weeks prepartum (22) and genetic molecular

markers (7, 8), are not widely available. From Lush and Hazel (13) to the more recent

mixed model genetic prediction by Henderson (15), there is a strong theoretical basis for

using EBV in predicting most probable producing ability. EBV provide estimates ofthe

genetic merits for milk production which should on average manifest as phenotypic

performance. Prior to utilizing any management technique, including heifer selection,

managers reasonably require, if possible, some evidence ofthe technique’s expected

performance.

Since 1989, when the USDA began using the animal model for estimating genetic

merit, only two domestic empirical studies have, in a temporally correct sense, considered

the ability of parents’ PTA to predict a heifer’s subsequent milk production (22, 31).

These studies are temporally correct for the purpose of heifer selection in that the parents’

PTA were those available prior to the heifers’ production. Contrast this with the situation

in which the parents’ PTA were generated some years after the heifers calved and
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therefore were based on information that was unavailable at the time ofprepartum heifer

selection. Notice this information unavailable at the time of selection would likely include

the very production records ofthe daughters which the parents’ PTA were to predict.

Neither ofthe two temporally correct studies included EBV fat or EBV protein, along

with EBV milk, in the prediction of daughter performance.

Based on 76,871 daughters, VanRaden et al. (31) found the correlations of

average parent animal model evaluations with daughter milk and fat performance ranged

fi'om 0.20 to 0.49. Daughter performance was measured as yield deviation ofstandardized

milk yield.

In heifer selection the producer is interested in predicting standardized milk yield.

While the use ofyield deviation as a dependent variable serves to decrease the error

variance, the results are not directly applicable to heifer selection for a producer is unlikely

to know the value ofmanagement group, permanent environment and herd-sire interaction

efl'ects for each heifer prior to parturition, and therefore, could not derive predicted milk

yield fi'om predicted yield deviation. Given that producers are paid based on milk yield,

their interest would lie in prediction ofmilk yield, perhaps standardized for age and season

0f calving. Even ifthe expectation ofyield deviation was identical to the expectation of

milk yield, the accuracy ofthe milk yield predictions would affect producers’ acceptance

Of this method ofheifer selection.

The second study (22), based on a small group of 26 heifers in a single herd, found

that the EBV milk had negligible value (R2 = 0.034) in prediction of first lactation 305d

milk yield.
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\Vrth heifer rearing, and the associated potential costs and revenues, occurring

over the span ofmany months and new genetic information provided by USDA quarterly,

heifer selection utilizing genetic evaluations is potentially a dynamic issue. As suggested by

Quinton and Smith (26), there has been little empirical checking ofthe efficacy ofgenetic

evaluations. They found that the rank correlations with progeny phenotype were 36% and

27% higher for parental BLUP genetic evaluation than for parental phenotypes offat

depth and days to 100 kg, respectively. Prior to developing a dynamic heifer selection rule

to maximize profit based on EBV, the empirical ability ofEBV to predict milk production

should be ascertained.

A producer, prior to making an informed decision about implementing a heifer

selection scheme based on parents’ PTA, would prefer to see empirical evidence ofthe

scheme’s performance in the real world. This preference is only reasonable especially since

some selection has already occurred in terms ofwhich sires and dams to breed. Managers

are faced with limited time to complete a potentially nearly infinite number ofmanagement

tasks. With some understanding ofthe rule’s potential performance, the producer could

eVilllrate whether the performance was sufficient to warrant foregoing some other

mimagement task in order to employ the selection scheme.

Given the high genetic correlations between milk and fat, and between milk and

PTOtein, inclusion of parents’ PTA fat and PTA protein, along with PTA milk, would

increase the ability to predict first lactation milk production of daughters. The

disadvantage of selecting for the real producing ability of a single trait (i.e., milk) based on

mUItiple traits (i.e., milk, fat, and protein) is the theoretical weights for the index are
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unique for each combination ofthe number and source of records that contributed to each

parents’ PTA. Specifically, the nondiagonal elements ofthe variance-covariance matrix of

the multiple traits are firnctions of the number and source of records that contribute to the

records ofthe traits. Furthermore, given that the weights for any type ofrecord (i.e., milk,

fat, protein) would rarely be the same for sire and dam, there is no theoretical basis to

equally weight the same type ofrecord of each parent and base multitrait analysis ofMEM

0n heifers’ EBV.

This inability to determine the theoretical weights is not critical in an empirical

analysis where the focus is on the ability of information, available to producers, to predict

heifer milk production. Furtherrnore, this recognition that there is not a single optimal

Vector oftheoretical weights for an analysis, while explicit, is not unprecedented in

Selection Index or mixed models. Relaxing assumptions in genetic evaluations can easily

result in multiple optimal values for any single theoretical weight. For example, the bias in

breeding values resulting from assuming homogeneity ofvariances at a minimum dictate

the need for herd level corrections, if not animal level corrections in the weights (Van der

we“). The assessment ofwhether to base milk production prediction on a single trait

”ms multiple traits reduces to whether the theoretical ability to derive a single vector of

Optimal weights is preferred over the additional information provided by the additional

tl’ilits.

In selection schemes the actual prediction ofperformance is not as important as the

‘1’th to correctly rank the animals in relative terms. Parents’ PTA would be useful in

heifer, Selection if models using this information resulted in within herd heifer rankings
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identical to those based on actual first lactation milk production.

Finally, the pragmatic issue of appropriate estimation technique must be

considered. The apparent paradox of estimating herd effect, which intuitively can be

considered a random variable, as a fixed effect (FE) is explained by Henderson (16). He

stated that, should the other independent variables be correlated with the herd efi‘ect, the

bias in estimation can be eliminated through estimating the herd efi‘ects as fixed, though at

the price oflarger variance ofthe estimates.

It can be inferred that Henderson recognized that estimates resulting fiom treating

the unobserved effect, or categorical variable, as random or fixed were not necessarily

difl‘erent (21). Specifically, as herd size increases, or the variance ofthe herd efi‘ect

increases relative to the variance ofthe error term, the estimates from random effects

(RE) and fixed effects estimation converge, even if the herd effect is correlated with the

independent variables. A priori, it is difficult to assess whether RE will converge to FE. So

SiVen a likely correlation between genetics of a herd and the herd effect, and small herd

sizes, Henderson reasonably opted for the more conservative FE estimation. A few years

3381' Henderson’s publication, Hausman (12) developed a statistical test ofthe equivalence

“RE and FE estimates, permitting statistical evaluation ofwhether RE is consistent, or if

FE is required.

The objectives ofthis study were to determine: 1) the ability of parents’ PTA for

millg fat and protein to predict subsequent first lactation milk production ofdaughters; 2)

the ability ofthe predictions offirst lactation milk production to correctly rank heifers

based on actual milk production; and 3) whether, in estimating the relationship in objective
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one, the herd effect needed to be estimated as fixed effects.

MATERIALS AND METHODS

Data Collection

A total of 10,854 Holstein heifer records were collected from Michigan DHI. Only

Holstein heifers that met all the following criteria were included: 1) as ofJune 30, 1995,

identified as prepartum with at least one parent’s PTA for milk, fat, or protein recorded;

2) born between July 1, 1992 and December 31, 1992; 3) a calving date between July 1,

1994 and December 31, 1994; 4) first lactation mature equivalent milk (MEM)

production ofgreater than zero.

Genetic data were the heifers’ parent PTA for milk, fat and protein from the July

1994 sire and dam animal model evaluations calculated by the Animal Improvement

Programs Laboratory, USDA (Beltsville, MD). Heifer information including birthdate and

“Wing date were collected from Michigan DHI animal identification records. The

Pf0duction data, which consisted ofMEM production, were collected fi'om Michigan DHI

COW production records. MEM, standardizes production for age and season ofat calving.

After deleting heifers that were culled or missing the genetic information of either

pareat, records of 5,123 heifers were available for estimation ofthe empirical selection

index weights. In effect then this data sample consisted of, for each ofthe 716 herds, a

00mm of heifers which were born within a six month window, and then, two years later,

calved in a six month window. The number of heifers in a cohort for a given herd varied in
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size fi'om 1 to 165 heifers with median and mean sizes of4 and 7.2, respectively.

Estimation of Empirical Model

The unbalanced general population model to empirically estimate the relationship

between parents’ PTA and standardized (i.e., deviated from the mean and divided by the

standard deviation) first lactation MEM was:

Yb. = lit-B ‘1' Ch '1' Uhr

where

y... = standardized first lactation MEM ofanimal a in herd h;

x... = l x 6 row vector. The six elements of x... are the standardized milk, fat

and protein PTA of individual a’s parents, fiom the July 1994 animal

model evaluations calculated by the Animal Improvement Programs

Laboratory, USDA;

B = vector ofempirical regression coefficients;

c2. = unobserved random variable representing the efi‘ect ofherd h;

u... = the idiosyncratic error term.

Three estimation techniques were considered to determine the nature ofthe

unobserved herd effect. The first method ofanalysis was ordinary least squares (OLS)

pooled over all observations. In the OLS regression, MEM was regressed on parents’

PTA ignoring the herd effect. This technique results in the herd effect being included with

the idiosyncratic error term, to create a composite error term. Standard OLS regression

mechanics indicates the estimates ofthe empirical selection weights will be consistent if,
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for each heifer, neither component ofthe composite error term is correlated with the PTA

ofthe heifers’ parents. A variance estimator robust to correlation among the residuals was

required to account for the presence ofthe unobserved herd effect in the composite error

term.

Making the assumption that the herd effects all originated from the same

distribution, and therefore had a common variance, generalized least squares was used to

estimate a RE model. The estimates will be asymptotically consistent and more eficient

than OLS ifthe unobserved herd effect and the idiosyncratic error term for any heifer in a

herd were uncorrelated with the parents’ PTA ofall heifers in the same herd.

Finally, the herd effect was estimated as a FE. Fixed Effects estimation or within

estimation in the econometrics literature (10), can be viewed as conducting OLS

estimation on transformed data. Because the value ofthe herd effect was not ofinterest,

the data were transformed to eliminate the unobserved effect. The transformation, also

known as herdmate deviation or within herd deviation, involved herd demeaning each

observed variable in the regression (e.g., y», 1...). For example, the value of sire PTA milk

averaged over all heifers in a given herd was subtracted from the sire PTA milk ofeach

heifer in the herd. Because the mean ofa constant is itself, and by definition the herd efi‘ect

is constant for all heifers in the herd, this transformation removed the unobserved herd

efi'ect. The resulting FE estimates were identical to those from a regression where a

dummy variable was inserted for each herd. These estimates will be consistent assuming

the idiosyncratic error of each heifer in a herd is uncorrelated with the parents’ PTA ofall

heifers in the same herd.

159



The RE estimator lies within the continuum spanned by OLS and FE (21). The RE

estimates approach the OLS estimates as the ratio ofthe unobserved effect variance to the

idiosyncratic error variance approaches zero. In contrast, the RE estimates approach those

ofthe FE as the ratio ofthe variances approaches infinity, or as the number ofanimals in

each herd gets large.

Statistical Comparison of Empirical Regression Coefficients

Hausman (12) developed a general specification test for the null hypothesis that an

asymptotically efiicient estimator must have zero asymptotic covariance with its difi‘erence

fi'om a consistent but asymptotically inefficient estimator. The Hausman test is a Wald

based test. The Hausman test can be applied in the comparison ofthe RE estimates with

either the FE or OLS estimates. Maintained hypotheses ofthe Hausman test are that the

idiosyncratic errors are homoskedastic, are not correlated with themselves, and are not

correlated with the independent variables.

Ifthe unobserved effect and the idiosyncratic error are uncorrelated with the

independent variables, the OLS and RE estimates should be asymptotically consistent,

with RE being efficient, and the Hausman test would not be expected to reject the null

hypothesis. Should either ofthese assumptions be false, each set of estimators would be

inconsistent with generally different probability limits, and the Hausman test should have

some power to detect this.

The more traditional use ofthe Hausman test is in comparison ofthe RE and FE

estimates. Ifherd is uncorrelated with PTA, both sets of estimates would be
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asymptotically consistent, and RE estimators efficient, again assuming the independent

variables are uncorrelated with the idiosyncratic error. However, should herd be correlated

with PTA, the FE estimates would still be consistent while the RE estimates would not,

and the Hausman statistic should reject the null hypothesis.

To assess the practical significance ofdifi‘erent empirical weights in prediction of

milk production, a nonparametric approach was used. For with the focus ofusing these

weights to select animals, it is the resulting within herd rankings ofanimals, not the

prediction error, that is paramount. Spearman’s within herd rank correlations, compared

the predicted first lactation MEM based on the RE and FE estimators to each other, as

well as, to the rankings based on actual MEM.

Statistical Evaluation for Potential Selection Bias

Ofthe total 10,854 Holstein heifer records collected from Michigan DHI, it was

determined that 1,546 heifers with complete parent PTA fi'om the USDA July 1994 animal

model evaluations were culled prior to first lactation. A heifer was identified as culled

based on the following criteria: 1) as ofJune 30, 1995, identified as prepartum with at

least one parent’s PTA for milk, fat, or protein recorded; 2) born between July 1, 1992

and December 31, 1992; 3) if culled, the culling date was prior to July 1, 1994; 4) if

culled, a culling code was recorded; 5) as ofJanuary 4, 1996 no first lactation MEM

record.

Culled animals were then born within the same time window as the 5,123 heifers

which had a first lactation. The culled heifers were either identified as culled prior to first
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lactation, or had not initiated their first lactation by at least three years ofage. Heifer

information including birthdate, calving date, culling date and culling code were collected

from Michigan DHI animal identification records. The MEM values were collected from

Michigan DHI cow production records.

“0th 23% ofthe heifers with parent PTA being culled prior to first lactation, the

potential for selection bias existed. Selection or sample bias exists ifthe presence ofMEM

is based on the idiosyncratic error (i.e., the portion ofMEM not explained by parent

PTA). For example, selection bias could exist if producers assessed heifers’ milk

production, then kept and identified to Michigan DHI for record evaluation only the

higher producing heifers. In the presence of selection bias, the model results are applicable

only to the sample, rather than to the population in general.

To be representative ofthe population in the presence of selection bias, the model

based on the selected sample has another term, denoted the inverse Mills ratio (36). The

inverse Mills ratio reflects that only the selected animals have been included in the sample.

The addition ofthis term, in effect, transforms the population model into a tobit model or

censored model (Greene) which, in the canonical form, explicitly recognizes that the

dependent variable is observed only if it exceeds some value (e.g., y... > 0).

Following the approach ofWooldridge (36), the sample was examined for

evidence of selection bias using a standard two step estimation procedure. In the first step

the inverse Mills ratio was estimated using a pooled probit, accounting for the herd efi‘ect

as a FE. In this first step, the data sample consisted of6,669 animals, the 1,546 culled and

the 5,123 not culled. Specifically, the dependent variable for the probit model was whether
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or not the heifer was culled prior to first lactation. Technically, the inverse Mills ratio is

the linear prediction, in the Z metric, from this estimated probit selection model evaluated

at the standard normal probability density function divided by the linear prediction

evaluated at the cumulative normal distribution function.

The second step ofthe procedure used only the data ofthe 5,123 heifers which had

a first lactation. In the second step the linear FE model, including the inverse Mills ratio

term, was re-fitted. Statistical significance ofthe inverse Mills ratio in the second step,

suggests selection bias is present, otherwise the sample can be considered to be

representative ofthe general population.

In the presence of selection bias with an unobserved effect, the estimates ofthe

second stage model would not be consistent for the population parameters. Therefore, this

procedure is appropriate only for testing, not correcting, sample selection bias. The FE

analysis was chosen over the RE in each ofthe two steps due to consistency ofthe

estimates in the presence ofarbitrary correlation between the unobserved effect and either

selection or the independent variables.

All models and tests were conducted with Stata Statistical Sofiware (30), except

for the Spearman’s rank correlations which were computed by SAS (29).

RESULTS AND DISCUSSION

Means, standard deviations, minima and maxima for parent genetic information,

including reliabilities, and first lactation MEM are in Table 7.1.

Regression coefficients, and standard errors for each ofthe three regressions of
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standardized parent PTA ofmilk, fat and protein on standardized MEM are in Table 7.2.

The addition ofPTA fat and protein of each parent as independent variables

increased the predictive ability for first lactation milk. Though the inclusion ofthese

variables likely resulted in multicollinearity, best linear unbiased estimates were still

produced by regression analysis (9). While the variance ofthe estimates would have been

smaller if correlation among the independent variables was not present, the point estimates

and their variance estimators remain unbiased. The large standard errors ofthe estimates

did, however, cause larger P values.

In comparing the estimates from the OLS and RE models, the relative change in

the PTA fat of sire coefficient was considerably larger than for the other independent

variables, but the estimate was still not significantly different than zero. As expected, the

standard errors ofthe RE estimates were less than the respective OLS estimates. In the

RE analysis the coefiicient on PTA fat ofdam was statistically significant at P s 0.05.

The FE estimates were similar to those from RE. The standard errors ofthe FE

model were much closer to those from the RE model, as opposed to the considerably

higher OLS standard errors. The level of significance among the FE estimates was similar

to those ofRE except PTA fat and protein ofdam were now significant at the 0.01 level.

As indicated by the R2 listed in Table 7.2, parents’ PTA explained 6.86%, 6.80%,

and 6.69% ofthe within herd variation in first lactation MEM using the OLS, RE, and FE

models respectively. The low coefiicient of determination of all models was consistent

with sampling error in genetic evaluations and the large environmental variance relative to

genetic variance in first lactation milk production. Estimating an OLS model which
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included the unobserved herd effect as 8 FE by including a dummy variable for each herd

resulted in an R2 of0.4692. This indicates that parents’ PTA and herd explain 46.92% of

the variation in first lactation MEM. In other words, within the herds parents’ PTA explain

less than 7% ofthe variation. Then conditional on parent PTA, herd explains roughly 40%

ofthe variation in first lactation MEM among heifers fi'om difi‘erent herds.

The Hausman test ofthe OLS and RE estimates was rejected at the 0.0154 level,

rejecting the null hypothesis that the two vectors ofestimates varied only due to sampling

error. The presence ofa unobserved effect which is correlated with the independent

variables, would cause inconsistency among the OLS estimates and the RE estimates and

would be compatible with the rejection, implying that the OLS and RE estimates varied

significantly from each other.

The Hausman test ofthe RE and FE estimates was rejected at less than the 0.0001

level. Thus statistically rejecting the null hypothesis that the asymptotically eficient RE

estimates had a zero asymptotic covariance with its difference fiom the asymptotically

ineficient FE estimates. This would be compatible with the herd effect being correlated

with the independent variables, causing inconsistency among the RE estimates. Either of

the Hausman test rejections could also be due to the idiosyncratic error being correlated

with PTA which would result in the OLS, RE and FE estimates being inconsistent.

Statistically, the results ofeach ofthe above tests suggest herd is correlated with

parerrts’ PTA, necessitating a FE model. However, it is not as clear that the RE and FE

estimates difi'er in practically important ways, rather the rejection may be a vestige ofthe

large sample size. The closeness ofthe estimates is surprising given the median and
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average number ofanimals in each cohort was only four and 7.2, respectively. Also, the

ratio ofthe variance ofthe herd efl‘ect to the variance ofthe idiosyncratic error was only

2.2 and 1.2 for the RE and FE models, respectively.

To investigate the practical effect ofthese different weights on heifer selection, the

within herd rankings ofthe heifers based on their predicted MEM by the RE and FE

models were compared using Spearman’s rank correlation. Based on the similarity ofthe

RE and FE estimates, it was hypothesized that, within herd, heifers would be ranked the

same, resulting in a rank correlation of one.

Figures 7.1 through 7.3 present histograms ofthe rank correlations. The

distributions are bounded by plus and minus unity, the minimum and maximum potential

values ofthe Spearman’s rank correlation. A rank correlation could not be computed for

herds ofa single heifer and thus 139 herds were excluded from the analysis for this reason.

A herd which consisted ofa pair of identical twins was also excluded as the tie in the

rankings precluded calculating the correlation. The within herd rank correlations between

the predicted MEM based on the RE and FE models are presented in Figure 7. 1. The four

herds with a correlation of -1 each consisted oftwo heifers, and as a result, the possible

values ofrank correlation were limited to -1 or +1. All ofthe rank correlations less than

0.70 were associated with herd sizes offour or less. Based on the within herd rank

correlations, the RE and FE estimates appear much more similar in a pragmatic sense than

indicated by the statistical Hausman test.

Figures 7.2 and 7.3 present the within herd rank correlations between actual MEM

and its estimates based on RE or FE, respectively. The distributions of rank correlations
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were difi‘use in each case. Each ofthe distributions were skewed to the lefl, with

approximately 65% ofthe herds having a positive rank correlation between the actual

MEM rankings and the predicted MEM rankings. This suggests that, while the amount of

MEM phenotypic variation explained by genetic evaluations is low, the evaluations may,

nevertheless, be useful in heifer selection. The utility ofgenetic estimates may be increased

by evaluating the estimates as they are updated over the course of heifer rearing.

Finally, no evidence of selection bias was found as the level of significance ofthe

inverse Mills ratio in the FE equation ofthe second stage ofthe test for sample selection

bias was 0.440. This suggests these results are applicable to those heifers which were

culled prior to first lactation.

CONCLUSIONS

Estimation ofthe empirical selection weights for each parent PTA ofmilk, fat, and

protein using a RE model resulted in more efficient estimates than OLS as expected. While

the RE and FE empirical weights appeared quite similar numerically, this was strongly

rejected statistically. However, an investigation ofthe comparability ofwithin herd heifer

rankings based on predictions from the RE and FE models supported the similarity ofthe

estimates with over 96% ofthe herds having a Spearman’s rank correlation between the

rankings ofpredicted MEM from the models ofgreater than 0.90. Given the similar

performance ofthe two models, consideration should be given to modeling the herd effect

as a random efi‘ect due to the corresponding increased efficiency ofthe estimates.

It is important for producers to temper any expectations of heifer selection for
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MEM based on genetic evaluations with the realization that parents’ PTA explain only a

small amount ofthe variation in MEM. However, the within herd rank correlations

between predicted MEM, based on genetic evaluations, and the actual MEM suggest the

evaluations may be usefirl in prepartum heifer selection.

The omission ofheifers which were culled prior to first lactation, did not appear to

cause selection bias in the sample data. As a result, these results were applicable to all

heifers enrolled in Michigan DHI.
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Table 7.1. Parent PTA of milk, fat and protein, reliabilities for milk-fat, and first lactation

mature equivalent milk production for 5,123 animals.
 

 

Variable‘ 7 SD Minima Maxima

PTAMilkofSire, kg 916.5 261.1 -947.1 1518.2

PTA Fat of Sire, kg 28.4 9.8 -39.9 57.2

PTA Protein of Sire, kg 24.7 8.1 -29.9 42.6

PTA Milk ofDam, kg 409.0 298.6 -819.7 1579.9

PTA Fat ofDarn, kg 12.2 11.4 -32.2 64.9

PTA Protein ofDam, kg 11.4 8.7 -25.4 47.6

REL of Sire Milk-Fat, % 93.7 10.8 17 99

REL ofDam Milk-Fat, % 49.3 6.0 14 85

MEM, kg 11084.7 2451.6 1362.6 18875.2
 

lMature equivalent milk production (MEM), reliability (REL).
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Table 7.3. Frequency distributions ofwithin herd Spearman’s rank correlations comparing

predictions and actual first lactation milk production for 576 herds.

Variables Compared with Spearman’s

 

 

Rank Correlations

Midpoint of RE‘, 171-:2 RE, Actual3 FE, Actual

category

-095 2 44 45

-0.85 0 4 4

.075 o 4 3

-0.65 0 1 3

-055 0 5 5

.045 o 28 26

.035 0 12 7

.025 0 18 17

.015 0 27 28

-005 0 23 25

0.05 o 41 45

0.15 0 39 43

0.25 o 47 41

0.35 1 42 44

0.45 o 43 39

0.55 4 48 48

0.65 0 25 27

0.75 3 20 20

0.85 12 23 26

0.95 554 82 80
 

‘ Predicted MEM from the RE model.

2 Predicted MEM from the FE model.

3 Actual MEM.
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Chapter 8

PREDICTION OF CULLING PRIOR TO SECOND LAC'I’ATION BASED ON

PARENTS’ PREDICTED TRANSMITTING ABILITIES

Abstract

The objective ofthis study was to determine the ability of parents’ PTA for milk, fat and

protein to predict subsequent culling ofheifers during rearing or first lactation. The data

consisted ofthe culling outcome of 5,619 Michigan Holstein heifers during rearing or first

lactation, and the heifers’ parents’ animal model evaluations fi'om the period in which the

heifer was born. To ensure asymptotic unbiasedness ofthe estimates the unobserved herd

efi‘ect was modeled as a fixed effect. Despite evidence that first lactation milk production

did influence producers’ culling decisions, the PTA of milk, fat, and protein for each

heifers’ parents did not predict subsequent culling dun'ng rearing or first lactation. This

result was not surprising given that first lactation milk production explains less than 20%

ofthe variation in culling and from Chapter 7 is was apparent that parents’ genetic

estimates explained less than 7% ofthe variation in first lactation milk production. This

poor predictive ability was consistent regardless ofthe distributional specification. Weak

evidence for the necessity ofmodeling the herd efi‘ect as fixed was present. Furthermore,

the inability to correctly predict culling reason broken down into voluntary and involuntary

reasons, coupled with the counterintuitive effects of parents’ PTA on the probability of

being called for each ofthe reasons raised questions as to the existence and utility of

classifying culling reasons according to the voluntary nature ofthe culling decision. Also,
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it can be concluded that Michigan producers are not using parents’ genetics in heifer

culling decisions.

Keywords: dairy culling, prediction, fixed effect

1. Introduction

Given a constant herd size, no seasonal effects on reproduction and production,

and culled cows being sold for meat (not dairy) purposes, optimization (McCullough and

DeLorenzo, 1996; Rogers et al., 1988; Congleton and King, 1985; Van Arendonk and

Dijkhuizen, 1985; Killen and Kearney, 1978) and simulation (Allaire, 1981; Allaire and

Cunningham, 1980) studies were unanimous in their conclusions that a culling rate of20%

to 30% optimizes producer profit. While other simulation studies (Congleton, 1988;

Kuipers, 1980; Korver and Renkema, 1979; Pearson and Freeman, 1973), which

considered subjectively selected culling rates or strategies for comparison, indicated that

profit would be increased with culling rates below the average 37% culling rate1 in the

Michigan dairy industry in 1996 (Michigan Dairy Herd Improvement Association, 1996).

Comparability ofthe actual and optimal culling rate assumes no herd contraction or

internal expansion. The results ofthese multiple studies are compelling because, not only

did the various models employ different assumptions and analytical techniques, but as well,

the models operated under economic conditions representative ofa number ofcountries

(i.e., the USA, England, Ireland, Netherlands). In the models, the increased profit

 

' Culling rate, annually defined as, the number of animals leaving the herd due to sale or death divided by

the average herd size.

180



associated with use ofthe optimal culling rates varied from 2% to 40%.

Comparison ofonly the mean profit by the studies implies risk neutrality, whereas

a majority ofMichigan and Dutch dairy producers are risk averse (Huime et al., 1993).

The risk preferences ofdecision makers can have significant effects on their choices, so

the optimal rule assuming risk neutrality cannot necessarily be extrapolated to those who

are risk averse.

At least under risk neutrality, one direct ramification ofMichigan’s excessive

culling rate is that Michigan dairy producers do not need all potential replacement dairy

heifers to enter the lactating herd, necessitating a method ofheifer selection.

This need for heifer selection is in direct contrast to the present situation in which

most producers rear and freshen the majority ofheifers produced on the farm (Connor et

al., 1989; Heinrichs et al., 1994). Animals are then selected largely on the basis ofthe level

offirst lactation and expected future milk production. The simulation studies revealed that

while this practice maximizes genetic progress and milk production, the economic

performance is lower due to failure to consider the opportunity costs ofhigher culling

rates.

The ultimate objective ofheifer selection is to choose the most profitable animals.

Van Arendonk (1991) showed that lifetime profit corrected for the opportunity cost of

postponed replacement is the correct method for making animals in terms ofprofitability.

Unfortunately, corrected lifetime profit of animals is generally not available and

furthermore, can not be determined prior to the culling ofthe animals. However, the

literature has focused on indicators of lifetime profitability that are apparent early in the
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productive life of milk cows. No work has considered indicators apparent prior to

productive life.

The phenotypic correlation between first lactation actual milk and lifetime profit

corrected for opportunity cost has been reported at 0.54 (Cassell et al., 1993). Weigel et

al. (1995) determined the phenotypic and genetic correlations between corrected lifetime

profit and first lactation mature equivalent milk production to be 0.51, and 0.80,

respectively. For purposes of heifer selection, first lactation milk production may then be a

suitable proxy for corrected lifetime profit. Then by choosing animals based on first

lactation milk production producers have selected the correct animals.

However, this strategy of milking all heifers and heavily culling the herd to select

the highest producing animals is costly. Given the large price differential between a heifer

just prior to entering milk production and her value as a cull cow, the increased profit

fi'om even randomly selling some heifers prior to milking, and thereby lowering the culling

rate, more than compensates for the decreased ability to identify and select the highest

producing animals. In addition, with fewer heifers in the milking herd the proportion of

older, more profitable cows in the herd rises.

Currently the information provided to Michigan producers upon which to base

culling predictions is limited to the heifers’ estimated breeding values (EBV) of milk, fat

and protein production. The EBV are the average ofthe parents’ predicted transmitting

abilities (PTA). Because EBV milk provide estimates ofthe genetic merits for milk

production which should on average manifest as phenotypic performance, EBV milk may

have a role in heifer selection. While the culling models suggest the need for heifer
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selection, they lend little insight into how selection should be conducted. The optimization

studies employed random replacement selection, and many simulation studies selected

replacements based on their simulated EBV milk. While this latter approach to selection

has intuitive appeal and indeed theoretical justification (Henderson, 1963), empirical

support for heifer selection on this basis is lacking. Working with swine, Quinton and

Smith (1997) found the within herd rank correlation with progeny performance was higher

for parents’ genetic estimates than for parents’ phenotypes. However they warn the

benefits ofgenetic estimates over phenotype in selection may be less in practice than in

theory.

Due to the positive correlation between EBV fat and protein with EBV milk,

genetic selection index theory, as well as statistical theory, suggest prediction ofmilk

production will be improved by incorporating information on the components. Because

selection is based on milk production, it is possible that the EBV or, alternatively, parents’

PTA ofmilk, fat and protein can explain subsequent culling in first lactation.

The objective ofthis study was to determine the ability of parents’ PTA ofmilk,

fat and protein to explain culling prior to, or during first lactation.

2. Materials and methods

2.1 Data collection

A total of 15,116 Michigan Holstein heifer records were collected from Michigan

DHI. Only Holstein heifers that met the following criteria were included in the data set to
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evaluate the ability of parents’ genetic estimates to predict culling: 1) as ofJanuary 1,

1995, identified as prepartum; 2) born between July 1, 1992 and December 31, 1992; 3) at

least one parent’s PTA for milk, fat, or protein recorded; 4) either a calving date between

July 1, 1994 and June 30, 1995, or ifno calving date, a culling date prior to July 1, 1994;

5) if culled, a culling code was recorded.

The 15,116 heifer records were also used to generate a second data set to

evaluate the ability of first lactation mature equivalent milk production (MEM) to predict

culling in first lactation. To be included in this second data set, records were required to

meet criteria 1, 2, 3 and 5 from above as well, the heifer must have calved between July 1,

1994 and June 30, 1995.

Genetic data were the heifers’ parent PTA ofmilk, fat and protein fi'om the

January 1993 sire and dam animal model evaluations calculated by the Animal

Improvement Programs Laboratory, USDA (Beltsville, MD).

Culled heifers included those that died or were culled prior to second lactation.

Therefore, heifers considered culled included those animals that were sold or died during

first lactation, as well as, those heifers without a reported calving date.

After deleting heifers that were missing the genetic information of either parent,

records of 5,619 heifers were available for statistical analysis ofthe relationship between

parents’ genetic estimates and culling. These heifers were present in 781 herds. In efi‘ect

then, this data sample consisted of, for each herd, a cohort of heifers which were born

within a six month window, and then either calved in a six month window or were culled

in the two years that separated the windows. The number of heifers in a cohort for a given
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herd varied in size from 1 to 157 heifers with median and mean sizes of4 and 7.2,

respectively.

The second data set ofMEM and culling outcome in the first lactation contained

12,128 heifers in 1,100 herds. Again, each herd was represented by a single cohort of

heifers which were born and calved within the prescribed time frames. The cohorts of

heifersvaried from 1 to 244 heifers, withamediansizeof 7and mean of11.0.

2.2 Estimation technique

2.2.1 Population Model

Consider the unbalanced general population panel data or cluster probability model

P[Culled... =1 I pm, Herdh] = G(PTA..B + Herdj.) (1)

a = 1, ..., A1,; )2 == , ..., H.

where

P[Culled i. =1 IPTA., Herd..] is the response probability ofbeing culled conditional on

PTA and the unobserved herd efi‘ect. Culled... is equal to one ifanimal a in herd h

was culled during the rearing period or first lactation, and zero otherwise;

G is a binary response firnction with values in the open unit interval;

PTA. is a 1 x 6 row vector. The six elements of PTA... contain the first milk, fat and

protein PTA of individual a’s parents, generated following a’s birth;

and Herd. is an unobserved random variable representing the effect ofherd h.
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Given the need to empirically estimate the relationship between culling and parent

PTA, the pragmatic issue ofappropriate estimation technique must be considered. This

consideration should include the distribution ofthe response probability as well as the

nature ofthe unobserved herd effect.

As is often the case, it was unclear, a priori, whether a normal or logistic

cumulative distribution function (cdf) best represented the probability of culled conditional

on the independent variables. The normal cdfwould imply a probit model is appropriate,

while a logistic cdfwould lead to a logit model. Pragrnatically, the probability density

firnctions ofthese two distributions differ only in the thickness ofthe tails and are

generally considered to be sufficiently similar that either is appropriate. Given the

ambiguity over the a priori appropriate distributional assumption, probit and logit models

were each considered.

However, decisions with regard to modeling the herd effect are potentially not so

innocuous. The herd effect, more generally termed an unobserved effect, cluster effect, or

repeated measure indicator, denotes that this effect captures similarity among some

observations in the data set. A priori, the magnitude ofthis effect is unobservable or

unquantifiable. With regard to the herd effect, the issue to be resolved is whether it should

be modeled as a random effect (RB) or a fixed effect (FE), with the former being used if

' the unobserved effect is assumed to have a distribution and the latter if the effect has no

distribution. But this classification of an unobserved effect based on its theoretical

distributional assumption ignores the pragrnatically more important issue ofwhether the

unobserved effect is uncorrelated with the independent variables. Notice that, by
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definition, if an unobserved effect is thought to be fixed (i.e., not have a distribution) it can

not be correlated with anything, including the independent variables.

Modeling unobserved effects in linear probability models is relatively straight

forward. Ifthe effect is considered random, it can be accounted for through generalized

least squares estimation, or least squares with a variance estimator robust to serial

correlation among the error term. But notice that, ifthe RE is correlated with any ofthe

independent variables, the resulting coefiicients are biased (Greene, 1993), due to an

omitted variable, namely the RE. Ifthe unobserved effect is considered to be

distributionless, or ofmore pragmatic importance, to be correlated with the independent

variables, it can be modeled in a variety ways as a FE resulting in unbiased regression

coeficients. Finally, the assessment ofthe preferred modeling technique has been aided

through the test developed by Hausman (1978) to determine ifFE estimation is required.

Unfortunately, for maximum likelihood estimation (MLE) ofmodels with a

dichotomous dependent variable, no such general test is available to determine whether an

unobserved effect should be modeled as a RE or FE. While tests comparing the parameter

estimates fi'om RE and FE specifications may be available for specific models, the

modeler’s judgement must often guide the estimation.

Modeling an unobserved effect as a RE in a nonlinear probability model assumes

the unobserved effect has a distribution and is independent ofthe explanatory variables

(Hsiao, 1986, pp. 164-167). The FE approach does not reqmre the latter assumption. RE

estimation of nonlinear probability models generally involves integrating the unobserved

. efi‘ect out ofthe response firnction. Intuitively, if the unobserved effect is a firnction ofthe
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independent variables, performing such an integration must also affect the independent

variables. Given that it is unclear what the independent variables would then represent, it is

even less clear how to interpret the resulting regression coemcients.

In considering the nature ofthe herd effect, it must be recognized that this efi‘ect

includes a cohort effect in addition to a herd management efl'ect, which in turn selects the

herd’s genetics. It is therefore plausible that the herd effect is correlated with the

independent variables. This suggests a FE estimation technique is appropriate, for the

results fi'om a RE model would be asymptotically biased.

While the unobserved effect can technically be modeled as a RE or FE, modeling it

with a dummy variable should generally be avoided. This assumes that software that can

add the potentially large number ofdummy variables is available. To model an unobserved

efi‘ect, herd effect, cluster effect or repeated measures indicator as a dummy variable

results in all parameter estimates, including those associated with the independent

variables, being asymptotically biased. This result is not dependent on the unobserved

efl‘ect being correlated with the explanatory variables.

In a limited set ofMonte Carlo experiments, Heckrnan (1981) showed that

inclusion ofa dummy variable to represent an unobserved effect in a probit specification

resulted in asymptotically biased estimates for the coefficients ofthe independent

variables. While the bias varied with the value ofthe coefficient, with 8 observations

contributing to each dummy variable and as long as no lagged values ofthe dummy

variables were included in the model, the bias was never more than ten percent. The bias

was towards zero, and increased as the variation ofthe unobserved effect increased. Of
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course to permit predictions an estimate ofthe coefficient ofthe dummy variables is

required. This may be problematic for out of sample predictions.

Abrevaya (1997) generalizing the work ofHsiao (1986, pp. 159-161) and

Chamberlain (1984, pp. 1275-1276) showed that, for the case oftwo observations

contributing to each dummy variable, the maximum likelihood logit estimates ofthe

coeficients associated with the independent variables are asymptotically twice their true

value. While a closed form prooffor the case ofgreater than two observations

contributing to an unobserved efl‘ect has not been discovered, there is evidence that the

bias may be minimal for sufficiently sized clusters. Monte Carlo simulation revealed that

when 20 observations contributed to each dummy variable the estimates were virtually

unbiased compared to those from FE logit (Hsiao, 1986, pp. 228).

In general, the use ofdummy variables does not necessarily result in asymptotic

bias ofthe estimators. For example, inclusion of a gender dummy variable in a nonlinear

model will not adversely affect the properties ofthe estimators, as the gender coefficient is

based on the entire sample. IfMLE is being used, this implies the sample size is

sufiiciently large for asymptotic analysis to be appropriate.

The bias originates with the fact that there are a limited number ofobservations

associated with any given unobserved effect. In a panel data set, the asymptotic properties

ofthe estimates are derivable only if the number ofobservations per unobserved efi‘cct are

held fixed, while the number ofunobserved effects gets large. As a result, any estimation

ofthe coefficient associated with a dummy variable for an unobserved effect is dubious

. given that maximum likelihood results in large sample estimators. While statistically the
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number ofobservations per unobserved effect can be large with the number of efl‘ects

fixed, a data structure traditionally dealt with in time series analysis, other issues arise such

as the stationary properties ofthe variables. Taking the example where the unobserved

effect is a herd efi‘ect, letting herd size tend to infinity is intuitively objectionable. It is

much more natural to assume the number ofanimals per herd is fixed and the number of

herds is large, than the reverse.

All analyses discussed will be asymptotic, making the reasonable assumptions that

herd sizes are fixed, while the number of herds is large, and the herd effect is potentially

correlated with the independent variables.

2.2.2 Probit model

While the FE probit can be conducted using firll maximum likelihood which

requires specifying the joint distribution of (Culledm, ..., CulledM), a common alternative

is that proposed by Chamberlain (1984). In general, he suggested assuming the

relationship between the unobserved effect and independent variables was such that the

expectation ofHerd.I conditional on PTA.i was linear. A parsimonious form ofthis

assumption is

Herdh = w + m. a + d, (2)

where it is further assumed d.., the error term, is distributed Normal(0, 0'3 ).

PTAr. represents, for herd h, the herd average values ofeach ofthe six elements ofthe

PTA]. VGCIOI'.
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If it is assumed that G, the binary response firnction fiom Equation (1), is the

normal cdfthe assumed conditional expectation ofthe unobserved effect (2) can be

substituted into the population model (1) resulting in

P[Cuned.= 1 iPTAa,Herdh]=G(PTAqu+ wufixru) (3)

where a. = p/(1+af, )°-’, w. = w/(1+a§)°-’, and a, = um03 )°-’.

With this approach, only the probability ofan individual animal being culled, and

not the joint probability distribution of all the animals in a herd being culled, is assumed to

be correctly specified. For this partial ML function to be correctly specified, P[Culled 1..

=1] conditional on the genetics of all the animals in the herd must be uncorrelated with all

firnctions ofthe independent variables for all other animals in the same herd, a reasonable

assumption. If the unobserved effect truly is a RE then M = 0. This can be tested with a

likelihood ratio test.

The normality assumption ofthe probit specification is met since the addition of

the two normally distributed variables ( i.e., the error terms from the population model and

(1..) results in a normally distributed composite variable (i.e., error term). Equation (3) can

then be estimated by running probit on all the observations pooled together. However, as a

result ofusing pooled probit, the residuals will necessarily be conditionally correlated

within herd due to the presence of d.., necessitating a robust variance estimator.

The presence of (1.. also causes attenuation bias in the resulting coefficients. As

shown above, the 34 are biased away from B towards zero. In considering the

interpretation of B and 34. the attenuation biased estimates are likely preferable. B, ifthey

' were possible to estimate, would reflect the effect of changing PTA... evaluated at the
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mean herd effect which is assumed to be zero. As few, if any ofthe herds, actually have

the mean herd efi‘ect, the representativeness of such a result is unclear. In contrast, B.

represents the efl’ect ofa change in PTA... averaged across the distribution ofthe herd

efi‘ect in the population, a more appropriate evaluation for a random heifer.

To further evaluate performance ofthe probit model, alternative firnctional forms

were considered. First, quadratic terms ofeach element ofPTA... were added. A

likelihood ratio test was used to test the hypothesis that the coefficients ofthe quadratic

terms are jointly zero. Second, the assumption that the binary response firnction, G, in the

population model ofEquation (1) was symmetrical was relaxed through specifying it to be

a log-log link function. Specifically the negative natural logarithm ofone minus the

probability ofbeing culled is equal to the exponential of PTA...B. The herd average values

were excluded as this approach to modeling the herd effect is specific to G being the

normal distribution. By ignoring the herd effect, the estimates that resulted fiom this link

firnction may have been biased.

2.2.3 Logit model

If it is assumed that the idiosyncratic errors have a logistic distribution, a PE logit

approach has the advantage of not imposing any restrictions about the nature ofthe

arbitrary relationship between Herd. and PTA... It does however, require that within a

herd the outcomes are independent. In the present analysis this amounts to assuming that

after controlling for genetics, the culling of each heifer is independent ofthe culling of all

. other heifers in a given herd. Violations ofthis assumption would include a producer
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predetermining the number of members ofthe cohort to be culled, or a common

environmental shock among some, but not all, heifers increasing their probability ofbeing

culled. Ofcourse, the errors are also assumed to follow a logistic distribution.

Beginning with the joint distribution of (Culled..., Culled...) which is then

A.

conditioned on the genetics of all animals in a herd, the herd effect, and zCulledh , the

.21

FE logit model can be derived. The resulting estimates of B are asymptotically unbiased.

The outcomes, for a given herd size, are the different possible combinations ofculled

heifers that result in the total number of heifers sold. Those animals in herds in which all or

none ofthe animals in the sample were culled do not contribute information to the

estimation since their likelihood firnction is one. As Chamberlain (1984) shows, due to the

logistic function, for each combination of herd size and number ofanimals culled the result

is a multinomial logistic distribution where the independent variables are differences ofthe

right hand side variables of equation (1). As a result, the unobserved herd efi‘ect cancels,

leaving the joint distribution ofthe outcomes conditional on the data and number of

successfirl outcomes. This approach is also termed conditional logistic, presumably due to

the conditioning on the herd outcomes. See Appendix A for a fixed efi‘ect logit

(conditional logistic) proof for a cluster of 3 with one success.

The FE logit estimates are for the observations evaluated at the level ofthe

average herd. The average herd effect where, for a given PTA..., the estimate is averaged

across the distribution ofHerd. in the population, requires a distributional assumption on

the unobserved herd effect.
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In summary, the FE probit has the disadvantage ofrequiring strong assumptions

about the relationship between the unobserved effect and the independent variables, it

does however result in the average treatment effects. In contrast, the FE logit

specification, while not requiring any assumption about the relationship between the Herd.

and PTA.., or the distribution ofthe herd efi‘ect, does demand conditional independence

ofthe outcomes. The FE logit discards all data for clusters with invariant outcomes, and

the coeficients are evaluated at the average unobserved efl'ect. Finally, to be usefirl in

prediction the FE logit requires a priori knowledge ofthe herd size and number to be

culled.

2.2.4 Multinomial logit and ordered probit models

The ability to correctly classify culls conditional on PTA... and the fact that the

animals had been culled was evaluated with a multinomial logit model and an ordered FE

probit model. These models are extensions oftheir respective logit or FE probit models

with a dichotomous dependent variables generalized to encompass multiple positive

outcomes (Greene, 1993) which in the case of ordered models follow a logical ordering.

For these models the dependent variable was recoded into culling classifications from most

to least valuable animal where 0, 1, 2, 3 corresponded to not culled, culled during first

lactation for reasons other than low production, culled during first lactation for low

production, and culled prior to first lactation, respectively. A value of 1 then represented

what has traditionally been considered an involuntary cull, and a 2 corresponded to a

_ voluntary cull.
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Theoretically, the ordered model, by utilizing the information contained in the

ordering ofthe outcomes, should result in performance superior to the multinomial

specification. Among the ordered models, the probit was selected over the logit because

the probit permitted modeling ofthe fixed herd effect. Failure to account for a herd efi‘ect

which was correlated with the independent variables would result in biased estimators.

Assuming the herd efl‘ect existed, even if it is not correlated with PTA, it is unclear how a

the logistic distributional assumption could be true for a general model such as Equation

(1) extended to categorical responses. For there are no known distributions for the

population model error term and the herd effect which when summed will result in a

logistic distribution. Instead an approximate two step analysis ofrandom effects ordered

logit estimation with an extra distributional assumption has been developed (Stiratelli et

al., 1984). In the first stage the within cluster variation is modeled assuming a logistic

distribution, followed by modeling ofthe assumed normally distributed random efi‘ect in

the second stage.

2.2.5 Prediction offirst lactation culling based on first lactation MEM

The assumption that producers based selection on milk production can be

represented by the following model

P[CulledLact .. =1 IMEM.., Herd..] = G(pMEM .. + Herd.) (4)

where
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P[CulledLact .. =1 iPTA.., Herd..] is the response probability ofbeing culled conditional on

MEM and the unobserved herd efi’ect. CulledLact .. is one if animal a in herd h

was culled during first lactation;

MEM... is the first lactation mature equivalent milk production for animal a in herd h;

and Herd. is an unobserved random variable representing the effect ofherd h.

Using an approach similar to that discussed earlier in the estimation ofequation

(1), G in equation (4) was assumed to be either a normal or logistic distribution and the

unobserved herd effect was modeled as a fixed effect.

2.2.6 Model evaluation

Prior to considering culling predictions, evaluation ofthe marginal efi‘ects ofparent

PTA on the probability ofbeing culled serves as another measure ofmodel performance.

To evaluate the efiem ofa change in one element ofPTA... on the probability ofbeing

culled requires taking the derivative ofthe probability with respect to the element of

interest. This resulting expression will be a firnction of all the elements ofPTA... As is

typical when dealing with continuous variables, the function was evaluated at the mean of

each ofthese elements, including the mean heifer cohort size for the probit estimates.

As the primary focus ofthese analyses were to ascertain the ability ofparent PTA

to predict subsequent daughter culling during rearing or the first lactation, the predictive

value ofeach model was of interest. For each model the predicted probability ofbeing

culled was generated. However, for the FE logit the predicted probabilities were limited to

. those animals in cohorts where a single animal was culled. This limitation is due to the fact
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that the calculation ofpredicted probabilities, which is a firnction ofthe all the potential

combinations of culling outcomes for all animals in the cohort that results in the total

number ofanimals culled, is difficult for cases where more than a single animal was culled

in each cohort. Specifically, as is apparent fi'om simple extension ofAppendix A to larger

cohort sizes, the predicted probabilities are functions ofdifi‘erent independent variables for

each combination ofcohort outcome. The 95% confidence intervals ofthe FE probit

predicted probabilities ofbeing culled were also calculated and evaluated.

A threshold of0.5 was used in assigning the predicted probabilities to predicted

outcomes. The predicted outcomes ofeach model were then compared with the actual

culling outcome.

3. Results and Discussion

Means, standard deviations, minima and maxima for parent genetic information are

in Table 8.1. Notice that the mean PTA for fat and protein is less than 30 kg for sires and

under 12 kg for dams. Ofthe 5,619 animals, 9.0% were culled prior to first lactation and

15.4% were culled during first lactation for a total culling rate prior to second lactation of

24.4%.

Table 8.2 reports the results ofthe regression analyses with dichotomous

outcomes of culled on parent PTA. The Chi-square near the bottom ofthe table reveals

each model explains a statistically significant amount ofthe total variation. However, the

pseudo R2 values suggest the models explain little ofthe variation in culling prior to

second lactation. This result ofmodel statistical significance, in the face ofpoor
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explanatory nature ofthe models, is consistent with large sample size driving the statistical

significance. As explained earlier, one drawback ofthe logit specification over the probit

in a FE fiamework is the potential loss of observations. In the present analysis, 967

observations could not be used in the logit analysis as these animals belonged to cohorts

which were invariant with respect to culling prior to second lactation.

The likelihood ratio test of A... = 0 resulted in a Chi-square statistic of 10.64, with 6

degrees offieedom or a level of significance of 10.0%. While this provides only weak

evidence that the herd effect nwded to be modeled as a FE, this conservative approach is

appropriate given the alternative of potentially biased estimates fiom the RE specification.

The absolute size ofthe respective model coefiicients reported in Table 8.2 are not

directly comparable due to scale differences, attenuation bias in the probit estimates, and

evaluation ofthe herd effect at different values. The coefficients ofthe FE logit model

indicate the direction ofthe change in the probability ofbeing culled given an increase in

the independent variable. Care must be taken in making the same assessment in the FE

probit models due to the presence ofthe herd mean variables. To assess the efi’ect ofan

independent variable in the FE probit model on the response probability, its indirect

influence through the herd mean ofthe respective variable must also be considered. Sire

protein, darn milk and darn protein pose potential problems because their signs difi‘er fi'om

their respective herd mean coefficients. The sire protein coefficient dominates the herd

mean effect, so the direction of this effect will remain negative. And since the efl‘ect

mediated through the herd mean effect will be divided by the size ofthe heifer cohort, for

‘ the average cohort size of 7.2 and for all but the smallest cohorts, the signs on dam milk
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and dam protein will not change. The signs ofthe coefficients between the FE probit and

FE logit models are then identical, suggesting the qualitative results are not sensitive to the

differing assumptions made between the models. Ignoring the effects ofthe herd mean

PTA, the coefi'rcients’ levels of statistical significance were also similar between the two

models, thereby supporting the robustness ofthe results. The high degree of correlation

between PTA for milk, fat and protein likely contributed to the lack of statistical

significance ofmany ofthe variables. In the presence of multicollinearity the coeficients

remain unbiased (Greene, 1993, pp. 266) although the standard errors are increased over

the situation where multicollinearity is not present.

Three ofthe PTA, namely sire fat, darn fat and darn protein, each possess a

positive sign, suggesting increases in any ofthese, keeping all other independent variables

the same, resulted in an increased probability ofbeing culled prior to second lactation.

This selection against fat, while not significantly different fiom zero at a P value of 5%, is

consistent with component milk pricing. However, component milk pricing which places

higher relative value on protein should have resulted in sire and dam protein PTA having a

protective efi'ect. The weak statistical significance ofthe positive sign ofdam PTA protein

is then unexpected. Rational expectations, or the ability ofMichigan producers to survey

the operating environment and surmise component pricing would be forthcoming, could

explain why selection may have been consistent with such a pricing scheme although the

scheme was not in effect at the time of selection.

To evaluate the practical significance of a 100 kg change in a parent’s PTA on the

probability ofbeing culled, the derivative ofthe respective model was taken with respect
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to the PTA ofinterest. This in effect rescales the logit and probit coeficients from their

logistic and Z scales, respectively. Table 8.3 represents the mean efi‘ect and 95%

confidence intervals for a 100 kg change in a parent’s PTA on the probability ofbeing

culled prior to second lactation.

As expected, based on the discussion ofthe signs ofthe coefficients in Table 8.1,

the signs ofthe derivatives are identical between the two models. The size ofthe

derivatives, for a given PTA, are the same order ofmagnitude for the FE probit and FE

logit models. The attenuation bias evident in Equation (3) caused the FE probit estimates

averaged over the herd effect distribution to be smaller in absolute size than estimates

evaluated at the average value ofthe herd efi‘ect, as were the FE logit estimates. With the

exception of sire milk, the FE probit estimates were smaller in absolute size than the

respective FE logit derivatives. Given the difference in the evaluation ofthe herd efi'ect,

along with the other variant assumptions including the distributional assumption, and the

relationship between the herd effect and the independent variables, the effect ofa change

in a given PTA on the probability ofbeing culled is strikingly similar between the two

models. This similarity suggests the results ofthe models are robust to the assumptions

made.

Increasing the milk PTA of sire and dam by 100 kg decreased the probability of

being culled by less than one percent and less than three percent respectively with narrow

95% confidence intervals. While changing the fat and protein PTA ofeither parent appears

to have a large efl‘ect on the probability ofbeing culled, reconsideration ofTable 8.1

reveals that with respective means of less than 50 kg, the effect of changes in PTA on
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probability ofbeing culled is minimal. The evaluation ofthe derivative for what amounts

to a very large change in the independent variable explains why the upper bound ofthe

95% confidence interval ofthe FE logit derivative with respect to dam protein extends

beyond unity. The confidence intervals for the derivatives with respect to fat and protein

ofeach parent were quite wide.

Care should be taken in the ceteris paribus interpretation ofthe efi‘ect ofPTA on

the probability ofbeing culled. Due to the high correlation between the PTA ofa given

parent, single PTA do not generally change in isolation. When evaluating the relative

probability oftwo heifers being culled, the joint effect ofchanges in all ofa parents’ PTA

should be considered. However, the summing of positive and negative effects tends to

cancel the effects leaving little change in probability ofbeing culled with difi‘erent parents.

This finding is consistent with the low pseudo R2 ofthe models. The multicollinearity also

widened the confidence intervals listed in Table 8.3.

Table 8.4 represents the predictive ability ofthe FE probit model. The model’s

performance is poor. The probit model did not predict the culling of any animals much less

the 1,370 animals that were actually culled. The poor predictive ability ofthe FE probit

model is consistent with the low pseudo R2 reported in Table 8.2, and the small efi‘ect of

reasonabley sized changes in the PTA on probability ofbeing culled. Model performance

is just as poor when the confidence intervals ofthe probabilities ofbeing culled were

considered. The 95% confidence intervals of only five animals included 0.5. Ofthese five

animals, three were actually culled.
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Use ofthe traditional 0.5 threshold in classifying predicted probabilities into

predicted outcomes does afi‘ect the predictive ability ofthe models. The low pseudo R2

suggests the models are explaining little ofthe variation in culling beyond the mean. Using

a threshold of0.5 when the mean level ofculling ofwas 24.4% predisposed the models to

low specificity, and thus predictive value. This is simply an application ofthe well known

result that the prevalence afi‘ects the predictive ability ofa model.

To further evaluate the poor performance ofthe model, alternative firnctional

forms ofthe model were considered. First, the addition of quadratic terms ofeach element

ofPTA... did not alter the coefiicient signs ofthe original variables, nor did the predicted

culling outcome change for any animal. The hypothesis that the coefficients ofthe

quadratic terms were jointly zero was not rejected at a probability of 0.38 by a likelihood

ratio test with a chi squared statistic of 6.43 and 6 degrees offreedom. Second, G, the

binary response function, in the population model ofEquation (1) was specified as the

asymmetrical log-log link function. Again, the coefficient signs ofPTA..., and the culling

predictions were identical to the FE probit model.

Given the inability ofthe FE probit model to predict culling prior to second

lactation, the predictive ability ofparent PTA conditional on more information was

explored. First predictions from the FE logit model were considered. Unlike the FE probit

model which made predictions conditional on PTA... and the herd average ofPTA, the FE

logit predicts conditional on PTA... and the number ofanimals in the herd that were culled.

Due to the conditioning on the latter the FE logit is not usefirl in a priori prediction of
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Table 8.5 presents the culling predictions for cohorts in which a single animal of

the heifer cohort was culled prior to second lactation. The difficulty in calculating

predicted probabilities where more than one animal is culled ji’mher problem with using

the FE logit model for out of sample predictions ofwhich animals would subsequently be

culled. Ofthe 174 cohorts that culled a single animal the FE logit model correctly

predicted the number ofanimals culled in 35 cohorts. However, for 13 ofthose 35 cohorts

the incorrect animal was predicted to have been culled. The poor predictive abilities ofthe

models are again consistent with the low pseudo R2 reported in Table 8.2, the small efi'ect

ofreasonable changes in the PTA on probability ofbeing culled, and the FE probit

predictions.

It was considered that the poor predictive ability ofthe model may be due to the

attempt to predict voluntary and involuntary culling. Specifically, since the producer

presumably has little choice with regards to involuntary culls, or alternatively, the culling is

not due to an animal’s genetics but rather a random environmental shoclsparent’s PTA

would be expected to predict voluntary but not involuntary culling. This ability to

correctly classify culls conditional on PTA.. and the fact that the animals had been culled

was evaluated with a multinomial logit model and an ordered probit model. Pragrnatically

the multinomial logit model was rejected for the nonsensical results that the probability of

being culled for low production increased with sire PTA milk, and that increasing darn

PTA milk increased the probability ofa heifer being culled prior to first lactation. Ifthe

herd efi‘ect was correlated with PTA the estimates from the multinomial logit model would

. be asymptotically biased.
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Theoretically, the ordered FE probit by accounting for the herd efi‘ect and utilizing

the information contained in the ordering ofthe outcomes, should result in performance

superior to the multinomial specification. The results ofthe ordered FE probit model are

presented in Table 8.6.

The coefiicients fiom ordered models are very difficult to interpret (Greene, 1993).

While in general, even the signs ofthe coefiicient can not be interpreted, in the present

case the coemcient signs do represent the direction a change in the respective independent

will have on the probability of each type of cull. The signs of all the coefiicients except for

that associated with sire PTA milk are identical to those fi'om the FE probit. As the

standard errors have not been corrected for correlation among the residuals, the true P

values will be larger than those reported. Table 8.7 represents the mean efi‘ect and 95%

confidence intervals ofa 100 kg change in PTA on the probability ofbeing culled for each

culling classification evaluated at the mean cohort size. Except for the effect ofdam PTA

protein, the efi‘ects fi'om the ordered FE probit model were ofthe same sign and similar

magnitude as those efl‘ects from the FE probit and logit models. The reason for the

negative effect ofdam protein is that negative herd mean dam protein effect overwhelms

the positive individual dam protein. The standard errors ofthe derivatives are generally

large relative to the mean effects, multicollinearity would increase the standard errors

while leaving the mean effects asymptotically unbiased.

Table 8.8 represents the predicted culling classification fi'om the ordered FE probit

model versus the actual culling classification for only those animals which were actually

. culled. Similar to the dichotomous FE probit model predictions, the predicted outcomes
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performed poorly and fell overwhelmingly into the most prevalent classification which for

the ordered FE probit model was culled for other reasons.

The results in Table 8.7 suggest that the direction ofthe effect of changing a given

parent’s PTA is consistent for each ofthe three culling classifications. In general the

magnitude ofthat effect is lowest for production culls and highest for heifers culled prior

to lactation, although it is doubtful that the differences among the classifications are

practically significant. The relatively large standard errors indicate the difl‘erences among

the classifications are not statistically different either. While it is plausible for genetics to

have the greatest efi‘ect on heifer culling, one would have expected genetics to have

greater effects on culling for production than other culling reasons. The results in Table

8.7 indicate that genetics play a greater role in culling of first lactation animals for what

has traditionally been considered involuntary reasons and that genetics play a lesser role in

culling for low production which has generally considered a voluntary culling decision.

This result is dificult to accept. A more plausible conclusion is that, at a minimum, the

' classification of culls into voluntary and involuntary for lactating animals is inappropriate

and rather these results are a function of modeling nonexistent classifications. The failure

to correctly predict the culling classification supports this argument. Ofcourse, the

alternative explanation for the unexpected results with regard to Table 8.7 is classification

error. But again this explanation by suggesting producers have such difficulty classifying

animals into voluntary and involuntary classes further supports the lack ofutility ofthis

approach.
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Upon reconsideration, the failure to find results consistent with the concept of

voluntary and involuntary culling is not surprising. Every culling decision involves a

voluntary choice as supported by Grohn et al. (1998) whose “research indicates dairy

farmers consider many factors, including diseases, milk yield, conception status, parity,

and stage oflactation, when deciding whether and when to cull a cow.” The dairy industry

must resolve this intuitively obvious statement by Grohn et al. with another equally

generally accepted view that “Dairy cows may be culled for either involuntary reasons

(i.e., death, acute disease, infertility) or voluntary reasons (i.e., low yield)” which is

included in their introduction. Sudden death and sterility, but not infertility, are the only

afilictions ofa milk cow which result in a producer having no choice in the culling

decision. This is not to suggest animal removal reasons have no place in herd management,

but rather the concept ofthe voluntary nature ofthe removals has little place, particularly

in culling and replacement strategies.

Moreover, the issue ofvoluntary versus involuntary culling is not merely a matter

ofschematics, but rather may have practical importance in improving producers’

decisions. The concept ofinvoluntary and voluntary culls may be the greatest impediment

to producers realizing increased profit through the strategy oflower culling rates. For if

producers and their advisors continue to believe they have no choice in many oftheir

culling decisions, their opportunity to change these decisions and their culling rates is

severely inhibited.

Table 8.9 contains the results ofregressing culling on MEM using the FE probit

. and logit models. As expected in each model the coefficient associated with MEM is
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negative indicating higher production has a protective effect on the probability ofbeing

culled. The probability ofbeing culled drops by 7.3% and 0.1% for every extra 1,000 kg.

ofMEM for the FE probit and FE logit models, respectively. In the FE probit model, first

lactation milk production is explaining almost 15% ofthe variation in the probability of

first lactation culling, and when conditioned on the number of heifers in the cohort that

were culled during first lactation, MEM explained over 20% ofthe variation in milling in

the FE logit model.

While first lactation production did not explain a large portion ofthe variation in

first lactation milk production it’s predictive ability, as presented in Tables 8.10 and 8.11,

was fair and improved over the predictive ability of parents’ genetics. Ofthose animals the

model predicted would be culled 71.5% actually were, while 83.0% ofthe animals

predicted to be kept were correct. The primary shortcoming ofthe FE probit model’s

predictive performance was predicting only 656 (5.4%) ofthe heifers would be culled.

While 469 ofthese predictions were correct, the predictions underestimated the 20%

culling that actually occurred in the population. Among the 238 cohorts with a single

animal culled, the FE logit model correctly predicted a single animal was culled in 106 of

these heifer cohorts. And for 73.6% ofthese 106 cohorts the FE logit model correctly

predicted which animal was actually culled.

So despite a mean probability ofbeing culled of20%, using MEM the models still

had reasonable predictive performance. This suggests the poor predictive ability ofthe

models based on parents’ genetics was not due to the low mean culling outcome of0.24,

. but rather the poor model performance was due to the inability of parents’ genetic
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estimates to explain the variation in culling.

Inability of parents’ genetic estimates to predict culling, despite milk production

afl‘ecting producers culling decisions can be explained based on Chapter 7 results. While

milk production plays a role in producers’ culling decisions, since fi'om Chapter 7 it was

revealed that parents’ genetic estimates explained less than 7% ofthe variation in first

lactation milk production, it is not surprising that genetics explaining virtually none ofthe

culling decisions.

4. Conclusion

Despite evidence in the present data set that first lactation milk production plays a

role in producer culling decisions, parents’ PTA ofmilk, fat, and protein available

following the daughters’ births did not predict subsequent culling during rearing or first

lactation. Even when conditioning on information that would not be available for culling

predictions, parents’ PTA were still unable to predict culling. Given that first lactation

milk production explains less than 20% ofthe variation in culling, the poor predictive

ability of parents’ PTAs for subsequent culling are consistent with the Chapter 7 results

that parents’ genetic estimates explain less than 7% ofthe within herd variation in first

lactation milk production. Furthermore, the failure to predict whether a culled animal was

culled for voluntary or involuntary reasons, along with the unexpected effects that parents’

genetics had on the probability ofbeing culled for each of these classifications suggest

voluntary and involuntary culls do not exist, and may be a barrier to management.

Moreover, the consistency ofthe result across the unordered FE probit and logit models,
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as well as the ordered FE probit model suggests these results are not a firnction ofthe

distributional and other assumptions made in each ofthe models. These results also

suggest that Michigan producers are not using parent genetics in heifer culling decisions.
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Table 8.1.

 

 

 

Parent PTA ofmilk, fat and protein for 5,619 animals.

Variable’ i so Minima Maxima

PTA Milk of Sire (100 kg) 8.43 2.38 -9.53 14.02

PTA Fat of Sire (100 kg) 0.26 0.09 -0.40 0.53

PTA Protein of Sire (100 kg) 0.23 0.07 -0.30 0.43

PTA Milk ofDam (100 kg) 3.66 2.71 -8.54 14.24

PTA Fat ofDam (100 kg) 0.11 0.10 -0.35 0.57

PTA Protein ofDam (100 kg) 0.10 0.08 -0.29 0.41

Table 8.2.

Coeficients and their standard errors from the FE probit and logit models ofregressing

culling on parent’s PTA.

 
 

 

FE Probit FE Logit

Variable b SE‘ b SE

Sire Milk -0.001 0.012 -0.005 0.023

Sire Fat 0.221 0.270 0.427 0.515

Sire Protein -O.799' 0.461 -1.478 0.905

Darn Milk -0.056" 0.018 -0.106“ 0.034

Dam Fat 0.690" 0.298 1.332“ 0.634

Dam Protein 1.248' 0.684 2.327' 1.258

Herd Mean Sire Milk -0.026 0.031

Herd Mean Sire Fat 0.471 0.732

Herd Mean Sire Protein 0.535 1.328

Herd Mean Dam Milk 0.118“ 0.057

Herd Mean Dam Fat 0.696 0.970

Herd Mean Darn Protein -4.376' 2.313

x2 28.6" 12 df 18.6" 6 df

Pseudo R2 0.0045 0.0048

n 5,619 4,652
 

lRobust to correlation among the residuals.

'P S 0.10; ‘P S 0.05; "'P S 0.01.
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Table 8.3.

Mean effect ofa 100 kg change in PTA on probability ofbeing culled, and associated 95%

confidence intervals (CI)

 

  

 

 

 

 

 

 

FE Probit FE Logit

Variable Mean 95% CI M 95% I

Sire Milk -0.002 (-0.009, 0.005) -0.001 (-0.012, 0.010)

Sire Fat 0.090 (-0.064, 0.244) 0.105 (-0.146, 0.355)

Sire Protein -0.227 (-0.493, 0.039) -0.363 (-0.794, 0.069)

Dam Milk -0.012 (-0.023, -0.001) -0.026 (-0.042, -0.010)

Dam Fat 0.246 (0.063, 0.429) 0.327 (0.021, 0.633)

Dam Protein 0.200 (-0.217, 0.617) 0.571 (-0.034, 1.181)

Table 8.4.

Predictive ability ofFE probit model.

Actual

Predicted Culled Kept Total

Culled O 0 0

Kept 1370 4249 5619

Total 1370 4249 5619

Table 8.5.

Predictive ability ofFE logit model for the 174 heifer cohorts with a single animal culled.

Predicted Number of Number ofHerds Percentage of

 

Animals Culled per Herd Herds

0 137 78.7

1 35 20.1

2 2 1.1

Total 174 99.9
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Table 8.6.

Coefficients and their standard errors from the ordered FE probit model ofregressing

culling classification orgarent’s PTA.
 

 

Variable b‘ 51-:

Sire Milk 0.001 0.012

Sire Fat 0.237 0.274

Sire Protein -0.750 0.484

Darn Milk -0.040" 0.018

Darn Fat 0.724" 0.341

Dam Protein 0.554 0.681

Herd Mean Sire Milk -0.025 0.024

Herd Mean Sire Fat 0.672 0.558

Herd Mean Sire Protein 0.322 0.972

Herd Mean Darn Milk 0.111" 0.042

Herd Mean Dam Fat 0.462 0.786

Herd Mean Dam Protein -3.998* 1.686

p. 0.673 0.111

p. 1.140 0.112

p. 1.325 0.112

x2 244* 12 df

Pseudo 1?.2 0.0027

n 5,619
 

‘P s 0.05; "P s 0.01. As the standard errors have not been corrected for correlation

among the residuals the reported P values understate the true values.

Table 8.7.

Mean effect and standard errors (SE) of a 100 kg change in PTA on the probability of

beingculled for each culling classification.
 

 

Culling Classification
 

  

Variable Otherl Production2 Heifer3

Mean .SE Mean SE Mean SE

Sire Milk -0.0003 0.0012 -0.0001 0.0005 -0.0004 0.0018

Sire Fat 0.0367 0.0271 0.0132 0.0104 0.0469 0.0409

Sire Protein -0.0783 0.0478 -0.0283 0.0182 -0. 1000 0.0715

Darn Milk -0.0027 0.0018 -0.0010 0.0007 -0.0035 0.0027

Dam Fat 0.0874 0.0342 0.0316 0.0131 0.1116 0.0528

Dam Protein -0.0001 0.0935 -0.0001 0.0263 -0.0002 0.1005
 

I Culled during first lactation for reasons other than low production.

2 Culled during first lactation for low production.

3 Culled prior to first lactation.
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Table 8.8.

Predictive ability of ordered FE probit model for those animals which were actually culled.
 

 

 

Actual

Predicted Otherl Productiori2 Heifer3 Total

Other1 678 187 502 1367

Production2 0 0 0 0

Heifer’ 0 2 1 3

Total 678 189 503 1370
 

’ Culled during first lactation for reasons other than low production.

2 Culled during first lactation for low production.

3 Culled prior to first lactation.

Table 8.9.

Coeficients and their standard errors from the FE probit and logit models ofregressing

culling on MEM.
 

 

 

 

 

 

 

 

FE Probit FE Logit

Variable b SE' b SE

MEM -0.032“* 0.001 -0.060"* 0.002

Herd Mean MEM 0023"“ 0.002

x2 1023.3m 2 df 1798.46"* 1 df

Pseudo R2 0148 0.209

n 12,128 10,760

lRobust to correlation among the residuals.

"*P s 0.001.

Table 8.10.

Predictive ability ofPE probit model of regressing culling on MEM.

Actual

Predicted Culled Kept Total

Culled 469 l 87 656

Kept 1,952 9,520 1 1,472

Total 2,421 9,707 12,128
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Table 8.11.

Culling predictive ability ofFE logit model using MEM for the 238 herds with a single

animal culled.

Predicted Number of Number ofHerds Percentage of

 

 

Animals Culled per Herd Herds

0 132 55.5

1 106 44.5

Total 238 100.0
 

217



Chapter 9

COMPLEX SOLUTION TO THE VALUE OF GENETIC INFORMATION IN

PREPARTUM HOLSTEIN HEIFER SELECTION

Introduction

Genetics is a source ofinformation that aids livestock producers in animal breeding

and selection decisions. Like other information sources, the value ofgenetic information is

dificult to discern. Previous studies on the value ofgenetic information have addressed

the issue ofhow genetic information should be valued, but did not address the value ofthe

genetic informationper se. Hedonic pricing has been used to marginally value genetic

traits of sires to form a pricing mechanism for semen (Schroeder et al. 1992; Richards and

Jeffrey, 1996). At a more aggregate level, consideration has been given to assessing the

proper economic weights ofvarious genetic traits to maximize producer income (Harris

and Freeman, 1993). But again the value ofthis genetic information was not directly

addressed.

The value ofinformation (Antonovitz and Roe, 1987; Nerrnuth, 1982) is a natural

fiamework to assess the value ofgenetics in producer decision making. In this fiamework

the information is represented by some arbitrarily accurate signal ofan underlying random

variable or event. Based on the signal, the information user makes a decision. The value of

the information is represented by the increase in the decision maker’s welfare by using the

signal versus not using the signal in the decision. This framework suggests that the value

ofthe information is dependent on the signal and the decision to be made based on the
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signal.

Genetic evaluations are signals ofan animal’s true genetic ability. Furthermore

these signals are dynamic — as more information is collected on the animals and their

relatives more informative signals are produced. The value ofthe genetic information is

specific to the context ofthe decision, here we focus on the value ofgenetic information in

selection ofprepartum Holstein heifers.

Given a constant herd size, no seasonal effects on reproduction and production,

and culled cows being sold for meat (not dairy) purposes, optimization (McCullough and

DeLorenzo, 1996; Rogers et al., 1988; Congleton and King, 1985; Van Arendonk and

Dijkhuizen, 1985; Killen and Kearney, 1978) and simulation (Allaire, 1981; Allaire and

' Cunningham, 1980) studies were unanimous in their conclusions that a culling rate of20%

to 30% optimizes producer profit. While other simulation studies (Congleton, 1988;

Kuipers, 1980; Korver and Renkema, 1979; Pearson and Freeman, 1973), which

considered subjectively selected culling rates or strategies for comparison, indicated that

profit would be increased with culling rates below the average 37% culling rate1 in the

Michigan dairy industry in 1996 (Michigan Dairy Herd Improvement Association, 1996).

The results ofthese multiple studies are compelling because, not only did the

various models employ different assumptions and analytical techniques, but as well, the

models operated under economic conditions representative ofa number ofcountries (i.e.,

the U.S.A, England, Ireland, Netherlands). In the models, the increased profit associated

with use ofthe optimal culling rates varied from 2% to 40%.

 

‘ Culling rate, annually defined as, the number ofanimals leaving the herd due to sale or death divided by

the average herd size.
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Comparison ofonly the mean profit by the studies implies risk neutrality, whereas

a majority ofMichigan and Dutch dairy producers are risk adverse (Huime et al., 1993).

The risk preferences of decision makers can have significant effects on their choices, so

the optimal rule assuming risk neutrality cannot necessarily be extrapolated to those who

are risk averse.

At least under risk neutrality, one direct ramification ofMichigan’s excessive

culling rate is that Michigan dairy producers do not need all potential replacement dairy

heifers to enter the lactating herd, necessitating a method of heifer selection.

This need for heifer selection is in direct contrast to the present situation in which

most producers rear and fieshen nearly all of heifers produced on the farm (Connor et al.,

1989; Heinrichs et al., 1994). Animals are then selected largely on the basis ofthe level of

first lactation and expected future milk production. The simulation studies revealed that

while this practice maximizes genetic progress and milk production, the economic

performance is lower due to failure to consider the opportunity costs ofhigher culling

rates.

The culling models can lend little insight into heifer selection. For while the

lactating herd, which was the primary focus ofthese studies, was modeled with

sophistication, the heifer modeling was simplistic. None ofthe culling studies dealt with

the issue ofwhen in the rearing period was the most profitable time to make the selection

decision. Generally the models assumed that replacement heifers were available when

required. This was operationalized in the studies through either the sale of all animals at
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birth and purchase ofrequired replacements, or raising of all young stock with subsequent

sale ofthe excess animals.

Regardless ofthe method of heifer procurement, most optimization studies

assumed naive expectations with respect to future heifer profitability, and as a result

employed random replacement selection. Many simulation studies arbitrarily selected

replacements based on their simulated estimated breeding value (EBV) ofmilk. The EBV

milk, which represents the animal’s estimated genetic ability to produce milk, is the

average ofthe parents’ potential transmitting abilities (PTAs) for milk. PTAs, which are

estimated by the USDA, represent the genetic ability the parents are expected to transmit

to their ofi‘spring.

While selection based on genetics has intuitive appeal and indeed theoretical

justification (Henderson, 1963), empirical support for heifer selection on this basis is

lacking.

The objective ofthis study was to determine the value of parents’ PTAs of milk,

fat and protein and their associated reliabilities in the prepartum selection ofHolstein

heifers, and assess whether this value was sufficient to prompt producers to select heifers

on this basis. In order to accomplish the above objective it was necessary to derive an

optimal heifer decision rule.

Theoretical Framework for the Value ofGenetic Information in Prepartum Heifer

Selection

The ultimate objective of heifer selection is to choose the most profitable animals.
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Van Arendonk showed that lifetime profit corrected for the opportunity cost ofpostponed

replacement is the correct method for ranking animals in terms ofprofitability. This

measure ofan animal’s lifetime profit explicitly recognizes that, in retaining the animal in

the herd, the average potential replacement’s profit was foregone.

With perfect information, heifer selection would be a two step procedure for

producers. Given that they desire to select N number ofheifers, the heifers would be

ranked by lifetime profit corrected for opportunity cost and the top N selected. The

remaining heifers would then be culled. The second decision is when in the rearing period

these remaining heifers should be sold. The profit maximizing producer would sell the

animals in the period in which the gross sale price less the cumulative average variable

rearing cost is the greatest. This can be mathematically represented as

(1)

"13"“5'” = 14%—2m}, +23% -z(l-§s,},], a=1,...,A,,;t =1,...,r;
r 1 1:1

subject to

5;: s‘, 6 (0,1)

25,, = n,

0

Where

11., is the profit ofherd h from heifer selection

{1 if animal a is not selected (i.e. is culled) in period t

s _

0 otherwise

it. is the lifetime profit ofanimal a corrected for opportunity cost
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r. is the revenue fi'om the sale ofa heifer in period t

c. is the average variable rearing cost ofa heifer in period 1

n. is the number ofheifers, in herd h, to be sold

A. is, for herd h, the total number ofheifers which form a cohort for selection purposes

Tis the total number ofperiods in the rearing process.

The simplicity ofthe objective function (1) is apparent when animals to be culled

and those not culled are separately considered. For that portion ofthe herd culled in

period 1’ the profit filnction simplifies to

1'1?“ =Z[r, -:c,], a=1,...,A,f""‘"; r=1,...,T.

[=1

While for the portion ofthe heifer herd that enters the lactating herd the profit function is

T

HW=Z[7ra-Zc,:l, a=1,...,A,f""“"; t=1,...,T.

n (:1

Unfortunately, corrected lifetime profit ofanimals is generally not available and

firrthermore, can not be determined with certainty prior to the culling ofthe animals.

However, the literature has focused on indicators of lifetime profitability that are apparent

early in the productive life of milk cows. No work has considered signals apparent prior to

productive life.

The correlation between first lactation actual milk and lifetime profit corrected for

opportunity cost has been reported at 0.54 (Cassell, Smith and Pearson, 1993). While

Weigel et al. determined the correlation between corrected lifetime profit and first

lactation mature equivalent milk production, which is actual milk production standardized

for efi‘ect ofage and season of calving, to be 0.51. For purposes ofheifer selection, first
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lactation milk production may then be a suitable proxy for corrected lifetime profit. Then

by choosing animals based on first lactation milk production producers have selected the

correct animals.

However, this strategy of milking all heifers and heavily culling the herd to select

the highest producing animals is costly. Given the large price difi‘erential between a heifer

just prior to entering milk production and her value as a cull cow, the increased profit

fiom even randomly selling some heifers prior to milking, and thereby lowering the culling

rate, more than compensates for the decreased ability to identify and select the highest

producing animals. In addition, with fewer heifers in the milking herd the proportion of

older, more profitable cows in the herd rises.

Curremly the information provided to Michigan producers upon which to base

culling predictions is limited to the heifers’ EBV of milk, fat and protein production. The

accuracies ofthese signals, termed reliabilities, are also estimated by the USDA Reliability

is the squared correlation ofan animal’s estimated genetic value and its true genetic value.

Thus reliabilities are the measures ofthe genetic signal’s infonnativeness. Because EBV

milk provide signals ofthe genetic merits for milk production, which should on average

manifest as actual performance, EBV milk or alternatively parents’ PTA milk, may have a

role in heifer selection.

Working with swine, Quinton and Smith found the within herd rank correlation

with progeny performance was higher for parents’ genetic estimates than for parents’

phenotypes. However they warn the benefits ofgenetic estimates over phenotype in

selection may be less in practice than in theory. From Chapter 7 it was apparent heifers
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parents’ PTAs explained less than 7% ofthe within herd variation in subsequent first

lactation milk production, and Pearson rank correlations between the linear model

predictions offirst lactation milk production and actual production cluster around the

value ofone-third.

This result is not surprising for, due to Mendelian sampling and environmental

variance, the reliability of a prepartum heifer’s genetic estimated producing ability is only

one-sixteenth ofthe parents’ summed PTA reliabilities. At a maximum, a heifer’s parents’

PTAs will have reliabilities of0.40 and 0.10 in predicting the daughter’s genetic ability to

produce milk, and actual subsequent milk production, respectively. So genetics can be

considered a distorted or incomplete signal of lifetime profit corrected for the opportunity

cost ofpostponed replacement.

Due to the positive correlation between PTA fat and protein with PTA milk,

genetic selection index theory, as well as statistical theory, suggest the signal will be

improved by incorporating information on these three PTAs ofthe parents. Moreover, by

indicating the degree of distortion in the PTA signals, the reliabilities may themselves be

valuable in heifer selection. Following the definition ofNerrnuth, the signal incorporating

information on the parents’ three PTAs and associated reliabilities must be more

informative than a signal based solely on parents’ PTAs of milk, given that the latter is a

subset ofthe former. Furthermore, regardless ofthe source ofinformation for the signal,

the signal will improve in inforrnativeness over the course ofthe rearing period ofthe

heifers as the genetic estimates are periodically re-estimated as more information on the

heifer’s relatives are collected.
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The application of capital asset replacement theory presents a caution, in addition

to that provided by Quinton and Smith, in the utility ofgenetics in heifer selection. The

study (Allaire, 1981) which based replacement selection on EBV had a lower optimal

arlling rate than all ofthe studies which randomly selected heifers (Allaire, and

Cunningham, 1980; Congleton, and King, 1985; Killen, and Kearney, 1978; Rogers, van

Arendonk, and McDaniel, 1988; Rogers, van Arendonk, McDaniel, 1988), except one

(McCullough, and DeLorenzo, 1996). Standard capital asset replacement theory indicates

ifthe profitability ofthe replacements selected based on genetics was higher than those

selected randomly, the optimal length ofthe more profitable heifers’ lives would decrease

(Robison and Barry) which is equivalent to an increase in the culling rate ofthe simulation

studies relative to those ofthe optimization studies. Then one possible explanation for the

similarity between the most profitable culling rates ofthe optimization and simulation

studies, is that the genetic information is not valuable in heifer selection.

Uncertainty in predicting a heifer’s subsequent profitability can be incorporated

into the initial objective filnction by noting that lifetime profit corrected for opportunity

cost is a firnction offirst lactation milk production (L) which in turn is a function ofthe

heifer’s estimated genetic information (G...) which should increase in inforrnativeness over

time.

(2)

niaxII. = Z[(1'st)”a(La(G~ ))+ str, -Z[1- H sq},], a =1,...,A,,;r =1,...,T

' a t r r lj:

The profit associated with random selection can be represented as
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:Hr“ =ZKI—ZSJEIZIIJLJGJH-P:57,-;(1-§sj]c,}, a =1,...,A,;r =1,...,T

1-1

The lifetime profits corrected for opportunity costs is the expectation (E) ofthe heifer

cohort, and the only selection decision is with respect to which period to sell the excess .

heifers.

The ex ante value ofgenetics in heifer selection can then be assessed by IT. -

TIT“. Ifgenetics are ofno value in heifer selection then H. = 1'17”“. The expost value

ofgenetic information in heifer selection is represented by I'lf'fi“ -— 1'12"“.

Theoretical Decision Rule for use ofGenetic Information in Prepartum Holstein Heifer

Selection

To assess the value ofgenetic information in prepartum Holstein heifer selection, a

decision rule transforming the information into action by the decision maker is required.

Given genetic theory’s silence on how to optimally select heifers based on dynamic genetic

information, a decision rule was developed.

Let the optimal decision rule for prepartum Holstein heifer selection be s.,(I, p)

subject to

05p.sl

T

S=Hp.
1:1

Where
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I is a partitioned matrix ofdimension .4. by T, composed ofelements g..w., where g. is a 1

x B vector, containing the B pieces ofgenetic information for animal 0 available at

time t, w. is a B x 1 vector ofweights for the B pieces ofgenetic information in

time period. g..w. then is a composite signal ofanimal a’s genetic information at

time t.

p is a 1 x Tvector whose elements, p., are the proportions of animals to be selected in

period t.

Sis the overall proportion of animals to be selected.

The decision rule begins with the first period (r=1) in which the heifers are ranked

by g..w. and the top p. -A. are selected, and the remaining (I-p.) A. are sold. The number

ofanimals to be selected, p. 44., is rounded to the nearest integer. The remaining animals

are then re-rankcd in the second period (1 =2) by the second period composite signals, with

p;- @.-A..) selected and the remaining sold. This process continues to the T"' period, by

which time only the desired overall percentage ofheifers remain. These animals will then

realize their first lactation and associated estimated profit. Heifer selection can then be

considered in a dynamic value ofinformation issue, weighing the value ofthe more

informative signal versus the cost of its attainment.

Deriving and Testing the Optimal Decision Rule - Empirical Methods

Mth the herd, as opposed to the individual animal, being the unit ofinterest, and

without knowledge ofeither the temporal relationship among the genetic information or

between the information and lifetime profit, the dynamic decision rule ofhow and when to
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select heifers is not amenable to standard optimization techniques such as dynamic

programming. Rather Modified Box-Complex, a derivative free non-linear search

technique was employed. This method of sequential searching has been found useful in

globally optimizing nonlinear multivariable objective filnctions subject to constraints

(Harris, 1981).

Based on the description by Harris, Kuester and Mize’s procedure for Box’s

original Complex algorithm was modified to include Nelder-Mead’s flexible polyhedral

procedures.

In exploring the effect ofthe input parameters on the objective value it was noted

Modified Box-Complex was not consistently converging to a global optimum. Rather,

over a set of 10 runs with a given set ofparameters and 100 randomly generated vertices

or vectors of search variables it was noted the final objective values varied by as much as

4.4%. The random creation of 1,000 initial vertices, ofwhich only the 100 with the highest

objective values were subsequently used in the algorithm improved the consistency ofthe

results. Using this technique, for the same set of input parameters, the range ofthe

objective values decreased 25% despite increasing the number ofruns to 20. The search

variables were limited to three decimal places for the 10 runs and then two decimal places

for the runs of20.

The data set consisted ofMichigan Holstein heifers that were born between July 1,

1992 and December 31, 1992 and first calved between July 1, 1994 and December 31,

1994. Genetic information collected consisted ofthe heifers’ parents’ PTA for milk, fat

and protein along with the milk-fat reliability and protein reliability fiom the 1993 to 1994
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semi-annual sire and dam animal model evaluations calculated by the Animal Improvement

Programs Laboratory, USDA (Beltsville, MD), the exception being the dam genetic

estimates fi'om July 1993 which were unavailable. Heifer birth dates, calving dates and first

lactation mature equivalent milk production were collected fi'om Michigan DHI.

In efi‘ect then the data sample consisted of, for each herd, a cohort ofheifers that

were born within a six month window oftime and calved within a six month window of

time, with the two windows being separated by two years. Herds whose heifer cohort

contained less than 10 heifers were deleted, leaving a sample consisting of 1,982 heifers in

115 herds. The lifetime profit corrected for opportunity cost, associated with a given level

ofmature equivalent first lactation milk production, was deterrninistically estimated for

each heifer based on information provided by Weigel et al. Generation ofthis profit

measure likely misrepresented the true distribution of heifer profits in two ways. The use

ofa linear relationship between lifetime profit corrected for opportunity cost and first

lactation milk production assumed a constant marginal profit for milk, and as a result over

estimated the profit ofhigh producing animals. Secondly, Weigel et al. generated the

relationship based on nonoptimal culling practices, which corresponded to lower heifer

profits. The resulting distribution of heifer profits would be narrower than the true

distribution due to compression ofthe upper tail ofthe distribution.

Table 9.1 contains descriptive statistics for g.., g“, L., and 7t. fiom the data

sample. The milk PTAs are one to two orders ofmagnitude greater than the other genetic

information. Relative to their mean, the reliabilities have less variation than the PTAs. The

respective means ofthe genetic information rose consistently over the four periods. Within
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herd, It. generally had a range ofunder $2,500.

Thirty-eight search variables then impacted the objective value: the ten weights for

the genetic information in periods one, three and four, along with the five weights in

period two, and the proportion ofheifers to be selected in each ofperiods one through

three.

The number ofanimals selected in the fourth and final period was equal to S, so

the number sold in the final period wasp. ‘p2*p3"A. - $94.. ifthe result was positive. To

increase eficiency ofthe algorithm, the implicit constraint on the number selected, was

incorporated in the objective function as an artificial activity. Specifically, during the last

ofthe four periods, ifS‘Ar. >p, ‘p2*p3‘A.. heifers could be purchased for $1,000 and a $0

lifetime profit corrected for opportunity cost. To prevent difiiculties with finding corner

point solutions, p.. p; and p3, were permitted to be greater than one, however the number

ofanimals available in periods prior to the fourth was constrained to be less than or equal

to the number in the previous period.

The input parameters required for the heifer selection problem included S and the

r.. To make the transition from Michigan’s 1996 average culling rate of37% to a 30%

culling rate suggests 80% of heifers need to be selected. In their calculation of 1994 7a.,

Weigel et al. included the cost ofrearing, so only the net revenue from the sale ofheifers

in each period was required for the empirical objective filnction. To generate the net

revenues associated with heifer sale in a given period, it was assumed that fixed costs,

such as building and machinery overhead, were sunk. Based on dairy heifer budgets for

1993 by Karszes, the total cost to raise a heifer in each period were calculated. The net
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return per period from sale ofa heifer was then the 15% sunk portion oftotal cost to raise

the animal in the respective period.

Given that the USDA genetic estimates are overwritten when re-estimated, an

extended time fi'arne would be required to collect multiple heifer cohorts for each herd in

order to generate an optimal selection rule for each herd. Rather a cross-sectional

approach to generate a single decision rule, which maximizes the summed profit ofthe

individual herds was opted for. The advantage ofthis method, besides the decreased data

requirements, is greater ease ofdecision rule implementation. However, the herd profits

generated with the cross-section approach cannot be greater than those ofthe time-series

approach. The new objective firnction associated with the cross-section approach can then

be represented as

(4) maxZQ,, h =1,...,H.
S. h

Where Q). = I'l.,/A...

The use ofomega, the average herd profit per heifer, imposes equal weighting of

each herd, regardless of its size, in the objective function.

Sample size calculations determined the requisite number ofherds for one-tailed

analysis ofpaired 1 tests to detect a $20 difference in profit per heifer between random

selection and that associated with some selection rule which required information. Based

on the calculations, to detect a $20 difference the 115 herds were randomly divided in two

groups following stratification on herd size. For the average herd in Michigan, a $20

difi'erence would result in roughly a $1,000 annual increase in herd profit which we felt

would be suficient to interest producers in collecting the necessary information and using
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the rule. The 58 herds used by Complex to derive the optimal decision rule, denoted as the

rule deriving sample, were comprised of 1,034 animals and ranged in size fiom ten to one-

hundred and thirty-two heifers, average of 17.8 and median of 14. The remaining 948

hdfers in 57 herds often to seventy-three heifers, average of 16.3 and median of 14,

termed the nrle testing sample, was used to test the performance ofthe heifer selection

rules.

To evaluate the effect ofthe input parameters S and r. on rule performance the

three difl'erent scenarios listed in Table 9.2 were considered. In scenario 2, the efl‘ect of

the percentage ofheifers selected on the optimal rule was evaluated through specifying a

70% selection percentage. This latter selection rate represents the lower selection

percentage required by producers with minimal heifer death loss or desiring a lower cow

culling rate than 30%. While in scenario 3 the effect ofthe r, were evaluated. Specifically,

later sale ofheifers incurred increasing losses and the absolute difference between r. and

rs, and r; and r, was less relative to the other scenarios. Modified Box-Complex was used

to develop an optimal heifer selection rule for each scenario using the rule deriving sample

of 58 herds. Complex was used to generate twenty solutions for each scenario. The

optimal rule for each scenario, was the one ofthe twenty runs with the highest value ofthe

objective filnction.

Using a simulation program and the rule testing sample of 57 herds, the Complex

selection rule was compared with random selection and another selection rule under each

scenario. The simulation program simply calculated the average profit per heifer for each

herd given S, n, w., p and the animal information. Members ofthe dairy industry felt
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random selection was naive, and suggested a rule based on static genetic Selection Index

theory which consisted ofzero weights on all the genetic information except the parents’

PTA milk which were equally weighted. This was the same rule used in many ofthe

culling simulation studies. The signal based on PTA milk was less informative than the

composite signal consisting ofPTA milk, fat, protein, and associated reliabilities. For both

the random and theoretical genetic rules, all selection was assumed to occur in the period

during which the net revenue from heifer sales was the greatest, which was period four for

scenarios 1 and 2, and period one for scenario 3. It was assumed that heifers were sold in

the same periods that the decision that they would not be selected to remain in the heifer

herd was made. In comparing Complex’s rules with the theoretical genetic selection rule

paired 1 tests were again employed, however, a zero difference was tested using a two-

tailed distribution.

Results

Unless otherwise stated, all results presented are evaluating the performance ofthe

rules on the 57 herd rule testing data which was not used in deriving Complex’s optimal

rules. The artificial activity of purchasing heifers did not enter the solution ofany ofthe

rules generated by Complex indicating the constraint on the number selected was met.

The rules with the highest objective value for each scenario developed by Complex

using the rule deriving sample, along with the rule from selection index theory, are listed in

Table 9.3.
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In conducting the twenty runs of each scenario occasionally rules, but never the

rule with the highest objective value, would generate the same value ofthe objective

firnction but with difi‘erent p and w.. Instances were found where a given herd’s profit

varied between the two mics, suggesting selection rules that make different selection

decisions for a considerable portion ofthe herds can result in the same value of(4).

More interestingly, in scenario 1 a case also existed where the profit for each herd

was identical between the rules suggesting more than a single vector of search variables

existed which resulted in the same animal selection decisions, w. for these rules are

reported in Table 9.4 (each rule conducted all selection in the fourth period). A rule

created by the average ofthe weights resulted in the same profit as the original rules for

each herd but one which experienced a relative loss of$58. This suggested the search

space between these two local optima was a shallow valley. The great similarity ofthe

values ofthe elements ofw. which correspond to each parents’ milk PTA, and to a lesser

extent sire protein reliability and dam milk-fat reliability suggest these weights are driving

the similar results.

Averaging the weights from the twenty scenario 1 runs, which varied in objective

values fi'om $9,926 to $9,653, and applying the rule to the rule deriving sample resulted in

a value ofan objective function of $9, 191 which was above random selection’s objective

value of $8,008. This suggests the valley between the local optima could be quite deep,

extending almost halfway down to the floor ofrandom selection. This low value ofthe

average also suggests why Complex encountered difficulty optimizing this objective
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function, for this average, denoted as the centroid in Complex, is used extensively as a

reference point for movement ofthe vertices.

Optimal selection of each herd would have resulted in an objective filnction of

$15,519, however focusing on the final period data for even a single herd it was

sometimes unclear how to derive a nrle to optimally rank the animals. So this figure only

represents the absolute maximum any optimal rule could ever achieve, and it is highly

unlikely that any cross-section rule would approach this level ofperformance. Using the

genetic information, Complex accounted for approximately 25% ofthe range in profit

between perfect selection and random selection. This performance is consistent with the

low positive rank correlations between predictions of first lactation production and actual

production (presented in Chapter 7), and therefore lifetime profit corrected for the

opportunity cost ofpostponed replacement. For a given herd in the rule deriving sample,

Complex accounted for between -63% and 100% ofthe range in profit between perfect

selection and random selection.

For scenario 1, the optimal Complex nlle selected all heifers in the final period.

Figure 9.1 presents a comparison ofthe performances of Complex’s optimal rule derived

under scenario 1 conditions and the theoretical genetic selection rule with random

selection. Specifically, the difference in average heifer profit for each herd for each rule

less the profit fi'om random selection is presented.

Random selection was not dominated in the first nor second degree by either ofthe

rules which utilized the information. While for the majority of herds random selection was

inferior to at least one ofthe other two selection rules, random selection provided the
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highest profit of all three rules for ten ofthe 57 herds. Including ties, Complex’s rule had

the highest objective value for 39 herds under scenario 1, while for 33 herds the highest

average profit per heifer was associated with the theoretical genetic selection rule.

Table 9.5 presents the means and sample variances ofthe increase in herd average

profit per heifer for each ofthe two rules utilizing genetic information over random

selection for the three scenarios. Using a one-tailed r-Test the hypothesis that Complex’s

rule was not $20 more profitable than random selection was rejected at P = 0.045 (r

statistic = 1.73). The mean profit difference of $27.39 between selection based on genetic

theory and random selection was not significantly greater than $20 (P = 0.12, r statistic =

1.20).

Figure 9.2 presents the increase in average profit per herd through use of

Complex’s rule versus the rule based on genetic Selection Index theory. For the majority

ofherds the difi‘erence in profit is minimal, although a few herds would greatly benefit

fi'om use ofone rule over the other. The less than $4 difference in mean profit ofthe rules

was not significantly difi‘erent statistically (P = 0.28 two-tailed, 1 statistic = 1.09) nor

magnetically.

For scenario 2, Complex was used to generate a new optimal selection rule with

the 58 herds in the rule deriving sample. Again, this rule conducted all animal selection in

the fourth period.

First this rule was evaluated against the Complex rule generated under scenario 1

by specifying in the simulation ofthe scenario 1 rule on the 57 herd rule testing sample

that 30% ofthe heifers would need to be sold in the final period rather than 20%. While a
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few herds in the rule testing sample would geatly profit over the use ofone rule over the

other, the average loss per heifer by using the Complex rule derived under scenario 1

when applied to scenario 2 was $2.46 per heifer as opposed to using the optimal rule for

scenario 2. (Under scenario 2 with the rule deriving data sample the optimal rule derived

under scenario 2 was $4.76 more profitable than the optimal rule derived under scenario

1.) This small difi‘erence was not statistically different than zero (P = 0.45 two-tailed, 1

statistic = 0.76) and was not felt to be sufficient to warrant the industry employing another

rule for the difi‘erent proportion to be selected.  
The Complex optimal rule derived under scenario 1 was then tested against the

theoretical genetic and random selection rules under the conditions of scenario 2. The

comparison ofthe performances ofComplex’s optimal rule and the theoretical genetic

selection rule with random selection under scenario 1 was substantially similar to that

under scenario 1 presented in Figure 9.1. The distribution was slightly wider and flatter

than that in Figure 9.1, with random selection being the most profitable method ofheifer

selection for 15 herds, 5 ofwhich random selection was the most profitable method of

selection under scenarios one and two. Neither Complex’s rule nor the theoretical genetic

selection rule exhibited first or second degee stochastic dominance over random

selection. Including ties, Complex’s rule and the selection rule based on genetic theory

represented the maximum profit for 32 and 33 herds, respectively.

The $32.07 increase in mean profit associated with Complex’s rule was not

statistically $20 greater than random selection (P = 0.06, 1 statistic = 1.54). However, the

238



mean herd $35.21 increase in average profit per heifer as a result of selection based on

genetic theory was statistically geater than $20 (P = 0.03, 1 statistic = 1.96).

Again, while slightly flatter and wider, the histogarn comparing the average profit

per herd through use ofComplex’s rule versus the rule based on genetic theory was very

similar to that ofFigure 9.2. Similar to the results under scenario 1, the $3.14 difi‘erence in

profits associated with the two rules which make use ofthe information were not

statistically (P = 0.45 two-tailed, 1 statistic = -0.76) nor practically different.

However, this result that the profit resulting fi'om selection based on genetic theory

was geater than the profit ofeven the rule derived by Complex under scenario 2 to

maximize the objective filnction was unexpected. This result suggested the existence ofa

rule within Complex’s search space superior to the rules Complex found. Applying the

static theoretical genetic selection rule to the 58 herds which Complex used to derive its

selection rules resulted in a herd average profit per heifer of $166 versus $177 for

Complex’s best rule under scenario 2. Applying Complex’s optimal rule fi'om scenario 1 to

the conditions of scenario 2 and the rule deriving data sample resulted in simulated profits

of $1 72. As such, the suggestion that Complex did not find a global maximum can not be

supported. Rather this unexpected result is due to sampling error among the choice

variables, such that the apparently optimal w. and p fi'om the rule deriving sample were

not optimal for the rule testing sample.

The presence of sampling error then indicates the existence of sampling variation

between the rule deriving and rule testing samples. However, it is unclear whether

sampling variation is necessarily the sole or primary source ofthe sampling error. The
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creation ofthe two samples through random assignment of herds following stratification

on herd size, and the reasonably large size ofthe data samples would decrease the

probability oflarge sampling variation. It is possible that the level of sampling variation

was not great, but the variation was magrified by over-fitting Complex to the rule deriving

data resulting in the difi‘erent optimal choice vectors for the two samples.

However it is not clear that over-fitting ofthe model would be expected to

account for these results either. Over-fitting could be due to exploiting individual herd

efi‘ects in the rule deriving sample or by over-pararneterization across the entire rule

deriving sample. With 57 or 58 randomly assigned herds in each sample and equal

weighting ofeach herd in the objective filnction, any individual, or goup ofidiosyncratic

herd efi'ects would be expected to be countered by other herd effects in the sample and as

a result it is not clear that herd effects could have been exploited in rule development. In

terms ofmodel parameterization, of the 38 search variables, only thirteen parameters, the

ten ofw. and the three of p, played any role in the scenario 1 and 2 results. Furthermore,

within we the ten variables are not independent. While sire PTAs were expected to be

uncorrelated with darn PTAs, within each parent the PTA for sire, fat and protein were

highly correlated, and the reliabilities were also highly correlated, and as discussed

previously, the reliabilities also had limited variability. Given the modest number of

parameters, the high degee ofcorrelation between many ofthem, and data sample sizes of

nearly 1,000, it was not clear to what degee the model was over-parameterized. So it was

unclear to what degee over-fitting ofthe optimal rule to either individual herd efi‘ects or

the entire rule deriving data sample was possible.
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By way ofanalogy, assume that interest lies in forecasting using either a simple

rule or complicated rule, each ofwhich are optimized through linear regession. Further

assume that the simple rule is the globally optimal rule, and is within the parameter space

ofthe complicated rule. It is very possible that the more complicated rule derived using

the rule deriving sample data could exploit the idiosyncrasies contained in that data sample

to produce a model with a higher R2. Statistically, the more complicated rule cannot result

in a lower R2 (although the adjusted R2 may in fact be lower).

However, when applied to the out of sample rule testing data the forecast ability of

the more complicated rule will be worse as the idiosyncrasies ofthe rule deriving data

sample will not be present in the out of sample data. In general, increases in the number of

parameters in the complicated rule’s parameter space increases the probability ofover

fitting the rule to the in sample data. Increasing the size ofthe samples would lower the

probability ofgetting samples which differ in important ways, and would also minimize the

efi‘ect ofany one observation or cluster of observations on the deriving ofthe optimal

weights for the complicated rule.

Under scenario 3 with the increasingly negative returns to heifer rearing, only one

ofthe twenty rules generated by Complex completed all the necessary heifer selling in the

first period, and this rule had the third lowest value ofthe objective firnction. The

remaining rules generally selected 83 to 93% ofthe heifers from the rule deriving sample

herds in the first period, the remaining majority ofthe selection occurred in the second

period in 11 ofthe rules and in the third period in three rules. Commonly, a few herds sold

animals in the fourth period. As the latter tended to occur primarily in the larger herds, the
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efi’ect on the objective firnction would be small as the loss in profit was averaged over the

entire herd before entering the objective function. The optimal rule selected 0.9, 0.91, 1.0

proportion ofthe heifers in periods one to three respectively, with a few herds selling

heifers in the fourth period. Ofthe three scenarios, this one had the geatest range in

objective values at 5.1%.

The variability ofthe periods in which selection occurred under the various r. may

reveal the factors that impacted the simple appearing trade-ofi‘s made in heifer selection.

“fithin a herd, the range in It. was generally between $1,000 to $2,500, so the profit fiom

making a better choice in terms ofwhich animals were selected could potentially more

than compensate for conducting some selection in periods which were nonoptimal in terms

ofmaximizing the herd profit from 1'. Under scenarios 1 and 2, with the improved

information in the fourth period and the $44 cost to total herd profit for each animal

selected in the third period all selection was conducted in the fourth period. However,

under scenario 3, Complex was routinely willing to pay $20 and occasionally $50 to attain

the improved genetic information and/or simply spread selection out over multiple periods

to improve those selected. It is not clear which effect dominated.

Similar to the approach taken with scenario 2, the Complex rule fi'om scenario 1

was adapted to operate in scenario 3 by forcing all selection to occur in the first period

based on w... The resulting rule, applied to the rule testing data, was $9.72 more profitable

per heifer for the average herd than using the Complex rule developed under scenario 3

conditions. In contrast, simulating the profit from use ofthis adapted rule on the rule
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deriving sample data resulted in a loss of $1 1.80 as compared to the scenario 3 developed

Complex rule. This again suggested the increased profit was the result ofsampling error.

The modified rule fiom scenario 1 was compared against selection based on

genetic theory and random selection. The distributions for scenario 3 corresponding to

Figure 9.1 were again substantially similar. The selection rules based on the information

were not first or second order stochastic dominant to random selection. The majority of

herds profited from at least one selection rule based on the information versus random

selection. Interestingly, ofthe 15 herds for whom random selection was the most

profitable selection method under this scenario, for 5 ofthese herds random selection was

the superior rule regardless of scenario. Under scenario 3, the rule generated by Complex

accounted for the highest profit per heifer in 35 herds and while selection based on genetic

theory resulted in the highest profit for 34 herds.

Complex’s rule’s $32.04 was statistically geater than $20 more profitable per

heifer than random selection (P = 0.04, 1 statistic = 1.76), while the $25.09 difference

between the theoretical genetic selection rule and random selection was not (P = 0.21, t

statistic = 0.82).

The $6.95 difference in mean average profit per heifer between the two selection

rules which used the information was not statistically different than zero (P = 0.12 two-

tailed, t statistic = 1.58), and similar to previous scenarios a few herds would profit geatly

from use of one rule over the other.
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Summary and Conclusions

Modified Box-Complex had some difficulty in optimizing the heifer selection rule,

which is not surprising given the 38 potentially relevant search variables and the

discontinuous nature ofthe objective filnction. Even more troubling was the sampling

error which was sumciently large that the optimal decision rule derived under one sample

was clearly non-optimal when applied to the other sample. It was not clear whether the

sampling error was due solely to sampling variation, or whether the variation was

magnified through over-fitting ofthe model to the rule deriving data sample. The sampling

error not only makes interpretation ofthe profits resulting fiom rule use difficult, but also

does not bode well for herd individualized rules. For even under the USDA’s current

quarterly schedule ofgenetic data estimation, a decade of prospective data collection

could easily be necessary to amass sufficient information for developing and testing

individual herd rules.

The suggestion that for some herds random heifer selection would consistently be

more profitable than selection based on the genetic information warrants reconsideration.

While a priori it was plausible that genetics may have been of little value in heifer

selection, it is dificult to understand how, for a given herd, genetics could have negative

value resulting in random selection of heifers consistently providing higher profits than

selection based on genetics. It is possible that the single cohorts ofheifers which

represented these five herds experienced a random event which led to poor performance of

the genetically superior heifers. In this situation, it is not surprising that selection based on

_ genetics would consistently have resulted in lower profits for this cohort of heifers
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regardless of scenario. This suggests some ofthe differences between herds in terms of

profit per heifer was likely due to systematic herd effects and some was due to random

noise.

While the relative profit distributions evaluated were for a cross-section ofherds,

with each herd consisting ofa single cohort ofheifers, the profit distribution ofa given

herd for a number ofcohorts would be ofprimary interest to dairy producers. The random

noise experienced across the herds would also be present across cohorts ofa given herd.

However, the systematic herd effects can be decomposed into individual cohort efi‘ects

and a herd management effect constant across cohorts. Then for a given herd while the

herd management efl‘ect would afl‘ect the mean ofthe distribution ofprofits fi'om repeated

rule use on numerous cohorts it would not contribute to the width ofthe profit

distribution resulting in a narrower distribution than displayed in Figures 9.1 and 9.2.

As mentioned in the introduction, the selection ofreplacements which are more

profitable than the current defenders dictates the replacement rate should rise

concomitantly. However, it is difficult to determine to what degee the optimal culling rate

in the cow herd and therefore the selection rate in the heifer herd would change. Following

the initial period ofheifer selection the rate of heifer selection would enter a steady state.

It is unclear what this steady state rate would be because it depends on the relative

fecundity ofthe cows, which are no longer being culled, compared to the heifers which are

now being sold. These are issues best addressed through linking the output ofa heifer

selection model into a stochastic dynamic progamming model ofthe cow herd.

24S



With the similar performance ofthe two rules, the rule suggested by genetic theory

of selecting on EBV ofmilk is preferred over Complex’s rule which is more complex and

requires information not currently reported to producers. It can be concluded that while

the composite siglal based on parents’ PTAs ofmilk, fat and protein and associated

reliabilities was more informative than the signal based solely on parents’ PTA ofmilk, the

values ofthe two signals were pragnatically equivalent. This similar performance ofthe

two rules which utilized the information suggests the value ofthe genetics information

presides primarily in the parents milk PTA, while the other PTAs and reliabilities have

relatively little value in prepartum Holstein heifer selection.

While it is likely that the solids PTAs are not valuable in heifer selection due to the

high correlation with PTA milk, the limited value may also have sourced from limited

variability in the data, this is likely more relevant for the reliabilities. Given that Complex’s

performance did not suffer when the decimal places for the weights was limited fiom three

to two it is unlikely that the apparent unimportance ofthe genetic information other than

PTA milk was due to scale problems whereby the one to two larger order ofmaglitude of

PTA milk relative to the other genetic information simply overwhelmed the siglal.

Complex’s optimal selection rule from scenario I appeared robust to adaptation to

the various other scenarios. For any of the three scenarios there appeared to be little

systematic difference between the distribution of profits resulting from the rules derived by

Complex and that suggested by genetic Selection Index theory. The robustness ofthese

results suggests genetic information is valuable in heifer selection, and the ex ante value is

estimated at geater than $20 per heifer realized over the course ofthe heifers’ lives. The
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herd profit associated with a $20 per heifer increase in profit would make non-random

heifer selection a potentially worthwhile endeavor for Michigan producers.

While profitable, selection based on EBV ofmilk is likely capturing only a portion

ofthe profit potentially available through heifer selection. Recalling that lifetime profit

corrected for the opportunity cost ofpostponed replacement was a deterministic filnction

offirst lactation milk production, this low capture ratio is then consistent with the results

presented in Chapter 7 revealing a diffuse distribution ofwithin herd rank correlations

between parent PTA based predictions of first lactation milk production and actual

production. To capture this elusive profit the dairy industry needs to continue to explore

potential information sources other than EBV on which to base methods ofheifer

selection.
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Table 9.1. Genetic information for the first and fourth periods, along with first lactation

milk production and lifetime profit corrected for the opportunity cost ofpostponed
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replacement.

Variable‘ : SD Minima Maxima

an

PTA Milk of Sire, lb 1,894.2 470.1 -1086 3093

PTA Fat of Sire, lb 59.3 19.6 -28 110

PTA Protein of Sire, lb 51.0 14.2 -19 94

REL of Sire Milk-Fat, °/o 88.8 8.6 24 99

REL of Sire Protein, % 88.2 8.9 24 99

PTA Milk ofDam, lb 874.4 574.7 -1269 2575

PTA Fat ofDam, lb 25.6 21.5 -44 109

PTA Protein ofDarn, lb 23.8 16.5 -39 82

REL ofDam Milk-Fat, % 47.9 6.2 12 74

REL ofDam Protein, % 47.7 6.2 12 74

8-4

PTA Milk of Sire, lb 2,084.1 515.0 -1073 3347

PTA Fat of Sire, lb 64.0 21.0 -28 116

PTA Protein of Sire, lb 55.1 16.8 -19 94

REL of Sire Milk-Fat, % 95.3 7.1 28 99

REL of Sire Protein, °/o 95.1 7.3 28 99

PTA Milk ofDam, lb 928.2 647.6 -1240 2912

PTA Fat ofDam, lb 27.1 24.6 -57 117

PTA Protein ofDarn, lb 25.4 18.8 -35 103

REL ofDam Milk-Fat, °/o 51.4 5.23 26 85

REL ofDarn Protein, °/o 51.3 5.2 24 85

L., lb 25,9956 5,293.1 6,746.0 41,612.0

_l7t_a, 3 142.0 602.9 -2,050.6 1,920.7

Reliability (REL).



Table 9.2. Scenarios used to develop and test heifer selection rules.

 

 

 

 
  

Scenario

Parameter‘ 1 2 3

S 0.8 0.7 0.8

n $41 $41 410

r: $75 $75 430

r, $114 $114 4150

r4 $158 $158 -$140

 

‘ S - Overall proportion of heifers to be selected in each herd.

r, - Net revenue fiom sale of heifer in period 1.

r2 - Net revenue from sale of heifer in period 2.

r3 - Net revenue from sale of heifer in period 3.

r4 - Net revenue from sale of heifer in period 4.
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Table 9.4. Fourth period weights, and their average, for two scenario 1

rules with identical selection decisions for the 58 rule deriving herds.

Variable

1». Number Rule A Rule 8 Average

sire milk X(40) = 0.69 0.70 0.70

sire fat X(41) = 0.50 0.43 0.47

sire protein X(42) = 0.52 0.43 0.48

sire reliability milk-fat X(43) = 0.01 -0.06 -0.03

sire reliability protein X(44) = -0.24 -0.26 -0.25

dam milk X(45) = 0.29 0.30 0.30

dam fat X(46) = -0.05 -0.03 -0.04

dam protein X(47) = 0.41 0.23 0.32

dam reliability milk-fat X(48) = 0.13 0.11 0.12

dam reliability protein X(49) = -0.14 0.25 0.06
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Table 9.5. Means and variances of the increase in herd average heifer profit ofthe

selection rules utilizing genetic infomation over random selection for the three scenarios.
 

 

  

 
  

Mean and Variance ofProfit/Heifer

Scenario Profit from Heifer Sale % fi'om Rule vs Random Selection

Selected Rule

Period Complex Genetic Difi‘erence

1 2 3 4 Theory

1 $45 $71 $114 $158 80% 331* $27 $4

2443 2159

2 $45 $71 $114 $158 70% $32 335* -$3

3497 3413

3 -510 -$30 -$60 -Sl40 80% 332‘ $25 $7

2660 2184
 

‘Significantly different (P s 0.05) than 520, using one-tailed t-Test.
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Chapter 10

CONCLUSIONS

In terms ofdairy production, the literature revealed that assuming risk neutrality, a

constant herd size, culls are sold for beef not dairy purposes, and no strong seasonal

efl‘ects on milk production or reproduction, the optimal culling rate is likely between 20

and 30%. Prior to addressing the research conducted for this dissertation, it is worthwhile

considering why Michigan apparently has a higher than optimal culling rate, for until

producers recognize they may have an excessive culling rate no consideration will be given

to heifer selection. While a violation ofany ofthe four assumptions could support the

Michigan DHI average culling rate of37%, these four assumptions are not as restrictive as

perhaps they initially appear.

While the objective functions ofthe stochastic dynamic programs and simulations

implicitly assumed risk neutrality, the decision to lower the culling rate by selling

prepartum heifers also has advantageous risk characteristics- early positive cash flow and

highly reversible in the short and long term. Turning to the second assumption, while for

herds which are contracting in size, a higher culling rate could be accepted as the herd is

liquidated, the majority ofMichigan dairy herds which are not maintaining a constant herd

size are likely expanding. The high average culling rate is more difficult to explain in these

herds where, due to expansion, the facility is under capacity. As a result, the zero

opportunity cost ofpostponed replacement should result in lower culling rates which

would be expected to rise as livestock capacity is reached.
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In terms ofthe third assumption, while some producers certainly can sell their

culled first lactation heifers as dairy instead ofbeef, the logic ofthis is unclear. Assume

that, despite having been culled (i.e., is inferior to the majority ofnon-culled animals in the

seller’s herd), the culled animal has higher milk production than the average animal in a

potential buyer’s herd.

It is possible that the better performance ofthe culled animal relative to the buyer’s

herd is due to genetics. “fith the heritability ofmilk being between 0.25 to 0.30, genetics

account for less than one-third ofthe variation in milk production. However, from Chapter

7 it was evident that only 7% ofthe within herd variation in first lactation production was

explained by estimates of parents’ genetics. This poor performance ofthe parents’

predicted transmitting ability (PTA) is due to the fact that the PTA are only estimates of

the parents’, and therefore their daughters’, additive genetic values of milk production.

Once she has produced milk, and thereby contributes to her own PTA, the

accuracy ofthe culled animal’s estimated genetic ability to milk will likely improve to

explaining over 10% ofthe variation in milk production. So while it is possible that the

cull may be genetically superior, given the large estimation error in the cull’s estimated

genetic value it is difficult to tell how much ofher performance is due to genetics and how

much is due to environment.

The amount ofvariation explained by genetic estimates is small compared to the

40% ofvariation in first lactation milk production that herd, conditional on parent PTA,

explained in the Chapter 7 analysis. So unless a large part ofthis herd effect is permanent
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(i.e., is a permanent environmental efl‘ect) it is highly likely that the culled animal would

rank similarly in the buyer’s herd as in the seller’s herd, namely at the bottom.

Furthermore, initially it would seem that having been identified as a cull, the

animal’s value would be less than one not so identified. However, given the altered

probability distribution ofthe animal’s potential returns following calving, as no

uncertainty exists as to whether the animal will survive calving and come to milk, it is

possible the animal may be worth the same or more.

Turning to the last assumption ofno strong seasonal effects, it is accepted that

compared to areas such as Florida and Texas, the level ofheat stress encountered by

Michigan cattle can be effectively managed so it does not have prolonged efl‘ects on

reproduction or milk production.

With this literature on optimal culling rates being applicable to much ofthe North

American dairy industry, it is certainly disconcerting that this wealth ofinformation,

concentrated in the Journal ofDairy Science and Livestock Production Science, could

have been overlooked by the academics ofthe dairy industry. My only explanation for this

is agricultural economists tend not to subscribe to such applied journals, while the

biologically based veterinarians and animal scientists are not versatile in the techniques

used in these studies. The other potential impediment to embracement and dissemination

ofthese studies is that the results may not have coincided with some ofthe scientists’

assumptions and beliefs that maximizing the inflow of heifers, which represent the best

genetics and thus milk production potential ofthe herd, would maximize profit.
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Ofcourse, as discussed in Chapter 3, the other reason the industry may not have

recognized the nonoptimality of its culling rates is simply failure to recognize that the

culling rates in the models and those reported by many dairy herd improvement

associations are defined and calculated differently.

The suggestion, based on this information of optimal culling rates, for producers

and their advisors to consider lowering their culling rates is generally not embraced, at

least not initially. My explanation for this resistance is that culling and culling rates are not

largely an active decision. Rather rules ofthumb have been developed to guide under what

conditions animals should be culled. These culls are then usually designated as involuntary

and account for roughly a 20% culling rate. According to another rule ofthumb the

producer then culls an extra 10 to 15% for voluntary purposes. Some ofthe culling studies

(see Chapter 3, especially Table 3.1) suggest these rules ofthumb for involuntary culling

are wrong, resulting in the culling ofanimals that should not have been. More

fimdarnentally, as discussed, the category of involuntary culls is so small as to be

negligible. Rather producers must focus on culling the least profitable animals and not

worry about classifying the culled animals into categories ofvoluntary and involuntary

culls. Results fi'om Chapter 8 support the finding that there is little difi‘erence in the

voluntary nature of culls classified as voluntary or involuntary. As long as producers and

their advisors are convinced that they have no choice in the culling decisions ofthe

majority oftheir cows they will be ill prepared to critically evaluate their culling decisions.

Certainly, it is worthwhile for producers to monitor why cows are being culled but for the

purposes ofmonitoring management and not to aid in culling decision making.
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A counter argument to the above explanation is that producers and their advisors

are making active decisions concerning culling, and based on the poor milk production of

the current assets and/or the low probability ofthe current animals’ reproductive success

the producer is making the optimal decision to maximize the inflow ofheifers. While this

argument is logical in the short-term, the fact that this actively assessed culling rate always

exactly equals the number ofavailable heifers leaves this argument ringing hollow.

Furthermore, if heifers were sold or purchased this was likely the result ofan active

decision with regard to individual heifers and not reflective ofan active decision at the

herd level.

It is quite possible, that heifer pressure is driving the high culling rate. It may be

that the culling rules ofthumb were developed in response to the need to cull suficient

cows to make room for the first lactation animals. A prescription to lower the culling rate

then simply starts with determining a target culling rate. Keep a sufficient number of

heifers to meet this target rate and then rank the cows in terms ofthe order that they

would be culled. Starting at the bottom ofthe list with the cows the producer would most

prefer to cull, cows are designated to be culled until the proper number to meet the target

rate has been reached. The optimization and simulation studies on culling rates suggest 5%

ofthe first calf heifers should be culled for low production.

We then arrive at the issue ofhow to select those heifers. Certainly random

selection is one option. The derivation ofa heifer selection method which can select the

better heifers would result in more than the 5 to 10% increase in profit for the average

Michigan producer through use of a 20 to 30% culling rate and random heifer selection.
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First, I define better as higher lifetime profit corrected for the opportunity cost of

postponed replacement. Ofthe production traits apparent early in life, first lactation milk

production has the highest correlation with this profit number. Based on genetic Selection

Indextheory, heifers’ parents’ PTA should be unbiased predictors ofdaughters’

subsequent first lactation milk production. Therefore, the parents’ PTA should also be

usefirl in predicting heifers’ lifetime profit corrected for the opportunity cost ofpostponed

replacement.

However, there is little in the genetics literature to suggest how well parents’ PTA

actually predict daughters’ subsequent milk production. Based on a sample of 5,123

Michigan heifers, parents’ PTA available just prior to the heifers’ calvings explained less

than 7% ofthe within herd variation in first lactation mature equivalent milk production.

Despite geneticists consideration ofherd as a fixed effect, my Chapter 7 analysis revealed

that it can be treated as random resulting in greater efliciency ofthe estimates.

To be usefiil in heifer selection it is the rankings of heifers based on predicted first

lactation production that is of importance, not how much ofthe variation is explained.

That PTA may be useful in heifer selection was suggested by the results that the within

herd rank correlations between predicted and actual first lactation mature equivalent were

positive for 65% ofthe herds, and clustered in the area of 0.3. The omission ofheifers

which were culled prior to first lactation, did not appear to cause selection bias in the

sample data suggesting that these results are not limited only to the sample used in the

statistical analyses.
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Given some evidence that parents’ PTA may be useful in predicting milk

production and therefore lifetime profit corrected for the opportunity cost ofpostponed

replacement, I next turned to the evaluation ofan optimal heifer selection rule.

First, in Chapter 8 I considered whether parents’ PTA from the period in which a

cohort of5,619 heifers were born could predict subsequent heifer cullings during rearing

or first lactation. The logic behind such an approach is that producers are currently likely

making optimal decisions with regard to which heifers to cull and which to keep in the

herd. However, by waiting to freshen the heifers to make this decision they are in essence

paying too high a price to make this decision. Rather the culling literature reviewed in

Chapter 3 suggests making the heifer selection decisions prior to calving would be more

profitable even after taking into account the cost of decreased ability to pick the most

profitable heifers. Then ifgenetics could be used to identify the heifers which subsequently

would be culled, an optimal heifer selection rule would largely be accomplished.

Regardless ofthe model specification, including the distributional assumption for

the probability ofbeing culled, PTA ofmilk, fat, and protein for each heifer’s parents did

not predict subsequent culling during rearing or first lactation. This despite evidence that

first lactation milk production did influence producers’ culling decisions. This inability of

genetic estimates to predict culling outcomes surprisingly also indicated producers were

not using genetics in their culling decisions. The culling reasons were classified into the

broad categories ofsupposed voluntary and involuntary, and then the ability ofgenetics to

predict culling in each ofthese classifications, as well as, the effect ofa change in PTA on

the propensity ofa heifer being culled were evaluated. Based on these analyses it was
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concluded that there was no difference in the voluntary nature ofthe culling decisions in

the two classifications, and thus no evidence of involuntary or voluntary culls.

Given the failure of regression techniques to predict which heifers would be culled.

I turned to Modified Box-Complex to solve the issue ofhow to select heifers to maximize

profit and assess the expected increase in profit versus random selection. The objective of

the heifer selection rule was to maximize herd profit, given the proportion ofheifers to be

selected. Herd profit then consisted ofthe returns fiom those heifers that were sold and

the lifetime profit corrected for the opportunity cost ofpostponed replacement ofthose

that were selected. Due to data limitations, herd profit was summed over a number of

herds, resulting in a single rule for all farms. Herd profit was on a per heifer basis so each

herd, regardless ofherd size, had equal weighting in the objective function.

While Complex was used to generate an optimal rule for each ofthree scenarios, it

was found the performance ofthe rules varied little when adapted to a particular scenario,

suggesting robustness ofthe rule. As a result, the performance ofa single Complex rule

was tested against random selection and selection based on estimate breeding value (EBV)

ofmilk under three scenarios. EBV milk is the average ofthe parents’ PTA ofmilk.

Generally selection was assumed to occur at the most profitable time in terms ofreturns

from those sold.

Regardless of scenario, Complex’s rule and the EBV ofmilk selection rule

performed very comparably, suggesting parents’ PTA fat, protein and the associated

reliabilities provide little value in heifer selection. Given the decreased information
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requirements for heifer selection on EBV ofmilk versus Complex’s rule, EBV ofmilk is

the recommended method ofheifer selection.

Generally, for every heifer in the cohort, selection based on EBV ofmilk was $20

more profitable than random selection. While the performance ofthe rule would vary by

cohort, on average a producer with a herd of 100 cows would benefit by roughly 31,000

per annum. This increase in profit, due solely to heifer selection, would be realizediover

the course ofthose selected heifers’ lives. Other profit would also accrue if, in addition to

the heifer selection, movement was made to a more optimal culling rate among the cow

herd.

The derivation and testing ofthe heifer selection rules on different data sets also

provided some insight into the presence and potential causes of sampling error. The 115

herds were randomly assigned, following stratification on herd size, to one ofthe two data

sets resulting in nearly 1,000 animals in each data set. Despite the size ofthese randomly

created data sets, the optimal rule derived under one sample was non-optimal when

applied to the other data sample. This presence of sampling error indicated the existence

of sampling variation between the rule deriving and rule testing data samples. It was not

clear whether the sampling error was due solely to sampling variation, or whether the

variation was magnified through over-fitting ofthe model to the data sample used to

derive the selection rule.

The sampling error not only makes interpretation ofthe profits resulting fi'om rule

use difficult, but also does not bode well for herd individualized rules. For even under the

.USDA’s current quarterly schedule ofgenetic data estimation, a decade ofprospective
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data collection could easily be necessary to amass sufficient data for developing and

testing individual herd rules. The possibility ofthe sampling error being due to samming

variation serves as a caution to anyone basing conclusions on data analysis of single

medium size or small data sets, especially in the absence ofa rigorous theoretical basis to

aid assessment ofthe results.

If parents’ PTA and reliabilities were the only information available to select

heifers, Complex revealed that EBV milk represented a nearly optimal method ofusing

this genetic information in heifer selection. While heifer selection based on EBV milk is

certainly worthwhile, evidence was presented that this method of selection is capturing

only a fraction ofthe profit potentially available though heifer selection. Given that the

lifetime profit corrected for the opportunity cost ofpostponed replacement was

deterministically estimated fi'om first lactation production, this then suggests EBV are not

optimally ranking the heifers in terms ofmilk production which is consistent with the

results presented in Chapter 7. More accurate methods of identifying a heifer’s lifetime

profit corrected for the opportunity cost ofpostponed replacement, or alternatively her

subsequent milk production would enable producers to profit more fiom heifer selection.

Serum B-lactoglobulin, discussed in Chapters 4 and 7, and genetic molecular markers,

mentioned in Chapters 5 and 7, each have potential as more accurate information on which

to base selection. Whereas the molecular markers could likely be identified at birth or

earlier, the serum protein has the interesting dynamic component ofnot being available

until mid-pregnancy.
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The present work does not address the issue ofthe optimal heifer selection rate,

rather it is taken as given. This rate is impacted by two factors: the desired optimal culling

rate in the cow herd, and the second is the number of heifers available. As the profitability

ofthe heifers rise, due to more accurate selection, the culling rate in the cow herd should

also rise, but it is not clear to what degree. The answer to the optimal cow culling rate is

then best answered through integrating a heifer selection model into the dynamic

optimization models discussed in Chapter 3.

The percentage of heifers selected will also be a function ofthe number available.

Clearly, once selection has occurred in a cohort of heifers, those heifers who were sold

prior to calving will not have contributed a calfto the farm so the number ofheifers will

drop. But this will be compensated, to some degree, by calvings ofthose cows which

otherwise would have been culled to make room for the heifers. This issue would most

easily be addressed through a simulation model ofa cow herd which could track animal

numbers.

Selection based on EBV milk also has future potential applications when sexed

semen becomes commercially available. By largely removing the uncertainty ofwhich

pregnancy will result in a heifer, the selection decision turns to selecting the parents ofthe

heifer.

Aside fiom the issue of heifer selection, a number ofinteresting aberrations of

animal valuation have become apparent. As discussed earlier, this has included producers

being able to sell cull first calf heifers at the same price as springing heifers. Another

example is the ability of producers to buy cull cows and then proceed to milk these cows
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and then eventually re-sell these cows as culls. While the latter example can be explained

by producers exploiting the dairy industry’s nonoptimal culling strategy it is nonetheless

interesting that the phenomenon persists. These observations indicate the need for firrther

work on the valuation of cattle. Real options, a method which unlike traditional net

present value analysis, explicitly accounts for the ability to sell the asset throughout its life

may be a fruitful extension of the current cattle valuation work.

In summary, it is my hope that this research has provided two fimdarnental pieces

ofinformation to the Michigan dairy industry. Firstly, there is an optimal culling rate of

20% to 30%, and I expect the upper half ofthis range would be an appropriate starting

target for many herds. Where culling rate is defined as the number ofanimals sold in a year

divided by the average herd inventory. This range of optimal culling rates assumes a

constant herd size, so for a herd undergoing expansion an even lower rate is dictated.

Studies suggest moving from an non-optimal to optimal culling rate will likely improve

profit by 2% - 40%. My feeling is that for most Michigan herds 5% to 10% is the more

likely return associated with moving from, say a 40% culling rate to a 30% culling rate.

Secondly, as a result ofthe lower culling rate, producers will have excessive

heifers. This dissertation provides empirical support for those suggesting selection based

on EBV milk. The prescription for heifer selection is then to, based on a heifer enterprise

budget, determine the raising period in which the maximum return from selling heifers is

achieved. Then sell the heifers with the lowest EBV of milk. I expect this to return $20

more per heifer in the group than picking them randomly. This return will be generated

over the course ofthe lifetimes ofthe animals in the cohort.
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Ifthe history ofthe culling literature is any indication, these results will need an

active extension efi‘ort to disseminate the information to producers and their advisors. This

dissertation can serve as the basis for an intuitive understanding ofthe important issues of

cow culling and heifer selection. But I would suggest an appropriate place to begin any

extension effort directed to dairy producers, their advisors, or extension educators would

be with the following two questions:

“What isyour current culling rate? ”

66W? 9’
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APPENDIX A

FIXED EFFECT LOGIT (CONDITIONAL LOGISTIC) PROOF FOR A CLUSTER OF

3 WITH ONE SUCCESS
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The log-likelihood function for clusters of 3 (i.e., t= 1, T. and T= 3),

conditioning on fly“, for i = 1, N (where N is assumed to approach infinity) is  
N

L(fi)=er(/3)

where r, = In[exp(fiéx,y,) Zex flixldt)}
dd; '81

K, = {a = (d,,d,,d,)|d, e {0.1} and id, =gy,}

i=1

 

 

  

Preliminaries:

let P(y = 1|X) =A(XB) = 13:32”

a) if A, B, and C are independent then P(ABC) = P(A)-P(B) - P(C)

b) P(ABCID) = Fag?)

_ _ exp<xm _1+exp(xm— exp<xm _ 1

°) Mm” '1 [Hexptxm] " 1+exp<xm ’1+exp(xm

d) E;- = eH

6

3

Assume one success in the cluster ofthree (i.e., 2 y, = 1), as a result there are

[:1

three possible alternative outcomes. Notice that if the value ofthe dependent variables are

invariant within a cluster, the value of y. is completely determined. As a result, these

observations are dropped from the analysis as they contribute no information to the log-
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likelihood function. In general the number of potential outcomes (combinations) can be

calculated from

 

In step one, ofthe following proof (a) and (b) are used. An assumption offixed

effect logit is that $1.712. ye are independent conditional on 11. Cr. and Ly“, as a result, (a) is

assumed to be true. In step two the probabilities are reported in the logistic distribution.

Notice that in step two the denominator is the sum ofthe numerators since, by definition,

3

zy, = 1. In step three the exponential formulation ofthe logit model is explicitly stated,

1:1

and (c) is applied. (Steps two and three have been omitted for the second and third joint

conditional probabilities.) Step four results fiom arithmetic simplification ofthe expression

in step three, notice the denominators ofeach fraction are the same and, as a result,

cancel. The final step involves dividing both the numerator and denominator by the

independent variables ofone of the observations raised to the power of e. This is

equivalent to dividing by one. In this case, those ofthe third observation (i.e., X13 + e) have

arbitrarily been chosen. As a result ofthe logistic function, namely the property noted in

(d), the unobserved effect falls out, leaving differences ofthe observed independent

variables. Notice that, within cluster, the independent variables are being difl'erenced

between observations. As a result, explanatory variables which do not vary among

observations within a cluster do not contribute information to the assessment of B for that
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variable (i.e., observations that are concordant with respect to a epidemiological risk

factor are dropped fi'om the calculation of B for that risk factor).
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APPENDIX B

MODIFIED BOX-COMPLEX FORTRAN CODE FOR THE HEIFER SELECTION

PROBLEM
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