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ABSTRACT

POWER AND ACCURACY OF DETECTING LINKAGE BETWEEN
QUANTITATIVE TRAIT LOCI AND GENETIC MARKERS

By

Zhiwu Zhang

Power of testing additive effects of quantitative trait locus (QTL) linked to
genetic markers and accuracy of the parameter estimators from a QTL and
polygenic additive mixed model were evaluated through simulations. The
underlying conditions included QTL location, additive genetic variance due to
QTL linked to markers, additive genetic variance due to polygenic effects
unlinked to markers, and residual effects.

Granddaughter population designs were simulated under a mixed model
with additive polygenic and QTL effects for various combinations of factors at
various levels. Items of interest included: selection schemes, marker intervals,
number of daughters, magnitude of QTL effects and heritability of traits. Sons in
the design were selected by 4 alternative schemes of random, disruptive,
truncation and stabilized. Fifty replicates were generated for each of the
populations and analyzed separately by restricted maximum likelihood.

Estimates of QTL location, variance due to QTL, and polygenic and

residual effects were unbiased in unselected populations. In fact, estimates of



QTL location were unbiased in populations under all selection schemes.
However, estimates of variances due to QTL, polygenic and residual effects were
biased in populations under nonrandom selection schemes. Magnitude of the
biases were dependent on marker intervals, numbers of daughter, magnitudes of
QTL effect and heritability levels.

Selection schemes had a significant influence on the power of testing
linkage between genetic markers and QTL using restricted maximum likelihood.
Disruptive selection generated higher power than random selection, whereas
truncation and stabilizing selections have less power than random selection.

Power of test using restricted maximum likelihood also depends on the
number of daughters of each sire, marker intervals, magnitude of QTL effect and
heritability. Power of test was higher with more daughters per sire, smaller
marker intervals, larger magnitude of QTL effect, and higher heritability. The
magnitude of the differences due to changing a factor was larger when power

was less saturated by other factors.
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GENERAL INTRODUCTION

For many years, Animal breeders have changed the genetic composition
of farm animals through selection without knowledge of the underlying genes
(Bovenhuis et al., 1997). This approach is based on the assumption that a trait is
controlled by infinitive genes each having an equally small effect. Due to the
environmental effects and the segregation of genes from parent to offspring,
accurate estimation of the breeding value of an animal depends on the amount of
records on the phenotype of the individual itself and/or relatives. In general, the
requirement of a large number of records postpones the age at which the animal
can be selected as a parent and therefore, restricts the annual genetic progress
(Bovenhuis et al., 1997).

However, genes with large effects on economically important traits have
been identified. Notable examples are the double muscling gene in cattle
(Hanset and Michaux, 1985a and 1985b), the gene determining halothane
sensitivity in swine (Smith and Bampton, 1977), and the estrogen receptor
genes influence a litter size in swine (Rothschild et al., 1994).

The possibility of finding major genes affecting economically important
traits has been greatly increased due to the development of methods to detect
polymorphism at the DNA level, for examples, RFLP (Paterson et al., 1988;

Visscher et al., 1990; Soller and Beckman, 1990; Georges et al., 1995). Genetic
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linkage maps of polymorphic molecular markers have been developed in many
domestic animal species. It was possible for the first time to begin the systematic
search for individual loci affecting quantitative traits of economic importance.

Unfortunately, the majority of genetic markers, especially DNA based
polymorphism, are not likely to affect animal performance. They may be located
closely to the genes affecting quantitative traits (Soller and Beckman, 1990).

The detection of QTL linked to genetic markers is a statistical inference. It
is structured around the formal test of the null hypothesis, which proposes that
the recombination rate between genetic markers and QTL is 50%. Experiments
are designed to test the null hypothesis against a alternative hypothesis.
Statistical analysis may either reject null hypothesis, suggesting the existence of
the linkage, or may not reject it, suggesting that genetic markers are not linked to
the QTL.

A statistical interface involve two kinds of errors: Type |, when a true null
hypothesis is rejected, and Type Il, when a false null hypothesis is accepted. The
probabilities of committing Type | and Il errors are denoted by ¢ and g,
respectively. The probability of not committing a Type |l error is called power of
test, which is (1- p).

Power of test is more important when nonsignificant results are obtained,
since in this case, a valid assertion of those results is only possible if the power is
high. On the other hand, higher power leads to larger sample size in general,

which can be costly. Powers of 0.8 to 0.9 are generally used to accept null
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hypotheses (Searcy-Bernal, 1994). Therefore, it is crucial to predetermine the
desired power of the linkage test in evaluating candidate markers.

Once marker linked QTL effects are detected, the use of the linkage
between marker loci and QTL provide additional information for increasing the
accuracy of selecting the genetic difference between individuals. Efficiencies
were compared between purely phenotype selection and marker assisted
selection (Kashi et al., 1990; Meuwissen and Van Arendonk, 1992; Meuwissen
and Goddard, 1996; Smith and Simpson, 1986; Stam, 1986; van der Beek and
Van Arendonk, 1996). Marker assisted selection was more efficient than
selection without using marker information in 1) early generations; 2) lowly
heritability traits; 3) large populations and 4) close linkage between marker and
QTL.

This conclusion is based on the assumption that the parameters of
quantitative trait loci are known without error. Simulations demonstrated that
overestimation of QTL variance decreased genetic gain for marker assisted
selection (MAS) over the long term. For an error of 15 centiMorgan (cM) on the
location of QTL, genetic superiority of MAS was reduced by 80% in the first
generation than MAS without error on QTL location (Spelman and Van
Arendonk, 1997b).

The power to detect linkage and accuracy of estimates of QTL parameters
depended on several factors, including statistical method, sampling strategy,
sample size, marker density and magnitude of QTL effects. Powers have been

examined for the statistical method of ANOVA (Weller, 1990a), maximum
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likelihood (Knott and Haley, 1992b; Le-Roy and Elsen, 1995; Carbonell et al.,
1993; Jensen, 1989; Lander and Botstein, 1989; Knapp and Bridges. 1990;
Elsen et al., 1997) and regression (Moreno-Gonzalez, 1992). Knowledge power
using restricted maximum likelihood remains unknown.

The accuracy and precision of estimates using restricted maximum
likelihood (REML) were evaluated in many studies for additive polygenic models
in unselected and selected populations (Henderson, 1975a; Banks et al., 1985;
Gianola et al., 1986; Beaumont, 1991; Sorensen and Kennedy, 1984). Grignola
et al., (1996b) evaluated accuracy and precision of estimates using REML with
QTL and polygenic mixed models in unselected populations.

The objective of this study was to evaluate parameter estimates from QTL
and additive polygenic mixed models and to examine power of detecting QTL
using restricted maximum likelihood method in combinations of different selection
schemes, marker intervals, magnitude of QTL effect, heritability, and number of

daughters in a granddaughter design.



Chapter 1

LITERATURE REVIEW

Introduction

For many years, Animal breeders have changed the genetic composition
of farm animals through selection without knowledge of the underlying genes.
Recent developments in molecular biology have changed this situation and have
allowed the genes controlling traits or genetic markers linked to the genes to be
identified (Bovenhuis et al., 1997).

Classical animal breeding approaches to estimate the additive genetic
value of an individual depends on phenotypic observations on the individual itself
and/or relatives. This approach is based on the assumption that a trait is
controlled by infinitive genes each having an equally small effect. The action of
individual gene cannot be observed directly and a trait is generally described in
terms of summary statistics such as the heritability.

For most of the traits of interest to animal breeders, differences in
phenotypic observations are determined by both genetic and environmental
differences. Further more, segregation of genes takes place each time genes are

transmitted from parent to offspring. As a result of these factors, accurate
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estimation of the breeding value of an animal is possible only if a large number of
records on the phenotype of the individual itself and/or relatives are available. In
general, the requirement of a large number of records postpones the age at
which the animal can be selected as a parent and therefore, restricts the annual
additive genetic progress.

However, some genes with a large effect on economically important traits
have been identified. Notable examples are the dwarfing gene in poultry, the
Booroola gene affecting ovulation rate in sheep, the double muscling gene in
cattle (Hanset and Michaux, 1985a and1985b), the gene determining halothane
sensitivity in swine (Smith and Bampton, 1977), and estrogen receptor gene
controlling litter size in swine (Rothschild et al., 1994).

Unfortunately, most genetic markers, especially DNA based
polymorphism, for example, RFLP, are not likely to be the alleles that affect the
performance of animals. But they may be linked to the genes affecting
quantitative traits. Several studies have shown that individual loci affecting
quantitative traits can be detected if linked to genetic markers (Soller and
Beckman, 1990). For example, a genetic marker on chromosome 8 was found to
be linked to a QTL with an additive effect of 3 ova (Rathje et al., 1997).

Once genetic marker, QTL linkage is established, information of linkage
provides additional information for increasing accuracy of selection, especially for
the traits that are difficult to improve when using traditional selection methods
(Kashi et al., 1990; Meuwissen and Van, 1992; Meuwissen and Goddard, 1996;

Smith and Simpson, 1986; Stam, 1986; van der Beek and Van Arendonk, 1996).
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The earliest usage of linkage between genetic marker and QTL was
demonstrated by Sax (1923). However, it was restricted by the limitation of the
number of genetic markers. Genetic markers are available now due the
development of methods to detect polymorphism at the DNA level (Kashi et al.,
1990). The genetic linkage maps of polymorphic molecular markers have been
developed in many domestic animal species. It is possible, for the first time, to
begin the systematic search for individual loci affecting quantitative traits of
economic importance (Paterson et al., 1988; Visscher et al., 1990; Soller and
Beckman, 1990; Georges et al., 1995).

There are several activities involved in identifying and utilizing the linkage
between genetic markers and QTL. These include recording animals for the
character of interest, typing them for genetic markers, testing for statistical
associations between genetic markers and phenotypic score and, if associations
are found, applying marker assisted selection in breeding schemes (Paterson et
al., 1988). Two statistical inferences are involved in these activities. One is the
power of test. The other is the estimation of QTL location, QTL variance,
polygenic variance and residual variance.

Identification of linkage between a genetic marker and QTL is structured
around the formal test of a null hypothesis (H,), which assumes genetic markers

are not linked to QTL. Statistical inference is to test H, against the alternative

hypothesis, which propose that genetic markers are linked to the QTL. Statistical

analysis may either reject H,, suggesting the existence of the linkage, or may not

reject it, suggesting that genetic are not linked to the QTL at some level of
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confidence. This statistical inference involves two types of errors: Type | error,
the rejection of a true null hypothesis, and Type Il error, the acceptance of a false
null hypothesis. The probabilities of not committing type |l is called power of test.

Statistical power is more important when nonsignificant results are
obtained. In this case a valid assertion of those results is only possible if the
power is high.

In order to decrease the probability of making Type Il error, power of test
must reach a certain level. Levels of 0.05 and 0.01 are accepted as popular
significance levels for rejecting the null hypothesis, while powers of 0.8 to 0.9 are
required for acceptance of a null hypotheses (Searcy-Bernal, 1994).

Power of testing linkage between genetic markers and QTL depends on
many factors (e.g., statistical procedures, sample size, population structure,
magnitude of QTL effect, recombination rate, heritability of traits, and sampling
strategies). Because of the expense in both genotyping and generating a
experimental population, efforts have been spent in optimizing the design of
experiments for a optimal power.

A quasi-theoretical numerical method can be used to predict power of
detecting QTL from the shape of the multidimensional expected likelihood
surface (Mackinnon and Weller, 1995). However, theoretical calculations of
power are not always empirically possible. Computer simulation can be
employed in the situation.

Once a genetic marker associated QTL effect is detected, it is of interest

to find the location of QTL in the genome, and to determine the effects of the
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QTL by estimating the phenotypic variance explained by QTL linked to markers.
All of these parameters are required in predictions of the breeding values in
cooperating genetic marker information.

An overview is given for the characteristics of the affecting factors in
identification and utilization of linkage between marker and QTL, including
different resource populations; statistical methods strategies of selective

genotyping and marker assisted selection.

Resource Populations

There are two primary types of data used for mapping a quantitative trait
locus: data derived from linecrosses that include backcross and F, populations
(Soller et al., 1976) and data from outcross populations (Soller and Genizi, 1978;

Weller, 1990Db).

Line Crosses

Most successful QTL mapping efforts described to date have exploited F,
or backcrosses obtained from parental populations divergent for the traits of
interest (Paterson et al., 1988). The main reason is that line crosses generate

disequilibrium.
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Linkage disequilibrium between genetic markers and QTL creates
difference on a trait across marker genotypes. One way of introducing linkage
disequilibrium in a population is by crossing lines that differ with respect to their
allele frequencies at marker loci and QTL. Associations between genetic markers
and QTL can be studied by comparing the phenotypic performance of F, or back
cross individuals with different marker genotype configurations.

In ideal situation, all F, individuals are heterozygous for the marker as well
as QTL. There is complete linkage disequilibrium between the marker and QTL in
the F,. All F, individuals have the same linkage phase. An empirical case of such
a design is the use of inbred lines.

Linecrosses are frequently used in laboratory animals (e.g., mice) and
plants. For farm animals, however, inbred lines are seldom available. In addition,
rearing large numbers of F, and F, individuals is possible for some farm animals
(e.g., chicken) but not for others (e.g., cattle) because of the long generation
intervals and costs of the experiment.

Power to detect QTL has been described for crosses of inbred lines
(Soller et al., 1976; Weller, 1986; Jansen, 1993; Lander and Botstein, 1989; Luo
and Woolliams, 1993; Simpson, 1989; Knott et al., 1992b and Darvasi et al.,
1993).



11

Outbreed Lines

Linkage disequilibrium in an outcross population between a marker and
linked QTL is more likely within families (Neimann-Sorensen and Robertson,
1961).

In commercial dairy cattle populations, sires often have hundreds or even
thousands of daughters produced by artificial insemination. Thus, a segregating
QTL can be detected by analyzing the progeny of heterozygous sires. Daughters
inheriting the different sire marker alleles should also display a difference for the
quantitative trait.

There is more power to perform this analysis over multiple sires rather
than a single sire. Even if a sire is heterozygous for the genetic marker, he may
still be homozygous for the QTL. Different marker genotypes can not show any
difference on the QTL genotypes.

Further more, if the sire is heterozygous for both marker and QTL loci,
linkage phase between the marker and QTL alleles may be different from
different sire. Thus, analysis should be performed within sires.

The analysis can be performed within paternal half-sib families using
either the daughter design or the granddaughter design (Weller, 1990a). The
basic idea of the daughter design is to trace marker alleles from the sires to his
daughters and to determine whether daughters that inherited alternative sire
alleles differ with respect to the quantitative trait. In the daughter design,

daughters of a sire are scored for markers and evaluated for the quantitative trait.
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However, in the granddaughter design, the sons of a proven sire are scored for
genetic markers and granddaughters are evaluated for the quantitative trait. In
this latter case, the observations on the granddaughters are used to estimate the
breeding value of the sons. This breeding value has a lower residual variance
compared to a single observations which increases the power of the experiment
(Weller et al., 1990b; Van der Beek et al., 1995).

In granddaughter design, marker associated effects measured in
granddaughter generation will be halved with respect to marker associated
effects measured in the daughter generation. Nevertheless, the standard error of
the contrasts are smaller, so that granddaughter designs may be able to deliver
equivalent power while scoring fewer individuals for the markers, the most costly
part of the program. Also, it may be easier to collect blood or semen samples
from sons of sires, concentrated in Al centers, than from their daughters,
scattered over many farms. Power to detect QTL has been described for
outbreeding populations (Knott et al., 1992b; Bovenhuis and Weller, 1994).

Because of different linkage relationship among sires, outcross
populations (e.g. the daughter design) have less statistical power than line
crosses. To detect a QTL with a substitution effect of 10-30% of a phenotypic
standard deviation, it is necessary to determine the genetic marker genotype of
thousands of daughters (Weller, 1990a). With inbred lines, the same power can
be obtained by determining the genetic marker genotypes of less than 1000

progeny (Soller et al., 1976).
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Statistical Methods

Statistical methods of mapping QTL vary depending the structure of
populations and interpretation of the nature of QTL effect. Effect of QTL can be
considered as either fixed effect or random. This leads to a different choice of
statistical approaches. Fixed effect is only one that t test (Simpson, 1989),
ANOVA and regression methods can deal with, while, maximum likelihood
method, as well as BLUP based methods are suitable for both (Simpson, 1989;
Lander and Botstein, 1989; Cowan et al., 1990; Weller, 1990a; Haley et al., 1994

Lander and Botstein, 1989; Knott and Haley, 1992a).

ANOVA

ANOVA is performed by contrasting marker genotype effects by (Soller et
al., 1976). This method of analysis yields estimates of marker allele substitution
effects. However, the analysis does not provide any information about the
location of the QTL (e.g., the method cannot distinguish between a slightly linked
QTL with a large effect and a closely linked QTL with small effect). Another
disadvantage of this type of analysis is that some of the progeny cannot be
assigned to one of the two parental alleles. These animals have to be excluded
from the analysis, which results in reduced power. Weller and Wyler, (1992)

evaluated the power of ANOVA in daughter design and granddaughter design.
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Regression

Haley and Knott (1992) and Martinez and Curnow (1992) independently
introduced a regression method. Regression is performed on the probability of an
individual having a QTL genotype, given the genotype for the flanking markers.

ANOVA is identical to regression with specific protonts. If the probability
that an animal has inherited a particular QTL allele from its parent is based only
on information from single flanking informative marker, regression is equivalent to
an analysis of variance. The position and the effect of the QTL cannot be
disentangled.

However, QTL location can be estimated by utilizing marker bracket. This
method results in an estimate of the QTL position as well as the variance
explained by genotype contrasts. The probability of an individual having a QTL
genotype, given the genotype for the flanking markers depends upon the location
of the QTL. By moving a putative QTL along the chromosome, the most likely
position of the QTL corresponds to the position with minimum residual sum of
squares (Whittaker et al., 1996).

Once QTL genotype probability by marker genotype is determined,
standard statistical software packages can be used for regression part of the
analysis (Spelman et al., 1996; Weller et al., 1990b; Hoeschele, 1990; Cowan et
al., 1990; and Goddard, 1991). Power of using regression was investigated by
(Moreno-Gonzalez, 1992 and Jansen, 1994a). The distribution of the statistics of

testing marker associated QTL effect was studied (Hyne and Kearsey, 1995).
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Maximum Likelihood

Weller (1986) developed maximum likelihood methods to detect marker
associated QTL effects. It involves maximizing and comparing the likelihood of
the data under different genetic models to ascertain the most likely genetic
structure. The maximum likelihood of the data under a additive polygenic model
is compared with that under the combined model containing a major gene linked
to markers and additive polygenic component. A significant improvement in the
likelihood obtained by incorporating a major gene in the model provides evidence
for a linkage between QTL and genetic markers.

Maximization is usually with respect to five parameters: mean, the additive
and dominant QTL effect, recombination rate between marker and QTL, and
within QTL genotype residual variance (Weller, 1986; Bovenhuis and Weller,
1994).

Interval mapping is more accurate than a single marker in estimating QTL
location. The advantage depends upon the heterozygosity of the markers and the
position of the QTL within the flanking markers (Darvasi et al., 1993; van der
Beek et al., 1995)

The power of test depends on family size (Knott et al., 1992b), QTL
effect, recombination between marker and QTL (Le-Roy and Elsen, 1995) and

heritability of quantitative trait (Carbonell et al., 1993 and Jensen, 1989).
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Currently, the most popular analytical method to investigate QTL is carried
out by either regression, or by the maximum likelihood approach. The two
methods yield very similar results (Lander and Botstein, 1989; Haley and Knott,
1992; Martinez and Curnow, 1994), the regression approach applies a more
straightforward test of significance and is programmable using standard

statistical packages.

BLUP Based Methods

Method of ANOVA, regression and ML were developed mainly for line
cross populations. They can not fully account for the more complex data
structures in outcross populations ( e.g. data on several families with
relationships across families, unknown linkage phases in parents, unknown
number of QTL alleles in the population, and varying amounts of data information
on different QTL or in different families). Best linear unbiased prediction (BLUP)
based methods were developed to overcome these drawbacks.

For data that does not contain genetic marker information, BLUP has
proved to be a very flexible method. BLUP can handle data with many
nongenetic effects (e.g. season), with arbitrary pedigree structure, and with
nonrandom mating and selection. Currently BLUP is effectively used for the
prediction of breeding values of farm animals.

The prediction of an animal's breeding value is based on phenotypes of

the animal itself and relatives. When only phenotypes are considered, the
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contribution of observations on relatives to an animal's breeding value depends
on the additive genetic relationship, e , the average proportion of genes shared
in common by descent, and the heritability of the trait. The additive relationship
between individuals is formed without knowledge of the actual gene contributed
from parent to its offspring.

Recently, the concept of the additive genetic relationship has been
extended to the gametic relationship where paternal and maternal gametes of an
animal are considered separately. The gametic relationship has been used for
constructing the relationship due to dominance effects and for the analysis of
gametic imprinting effects (Schaeffer et al., 1989). For these reasons it is also
likely to be useful for analyzing data containing information on genetic markers, if
the assumptions of BLUP are reasonably satisfied (Grignola, 1996a).

Information on an animal's genotype at a marker locus provides
information on transmission of a chromosomal region from parent to offspring. If
QTL are located in the chromosomal region, this information can be used to
obtain a more accurate estimate of breeding values because the inheritance of
alleles at the chromosomal region can be traced more precisely than inheritance
at an unmarked QTL. In this case, the additive genetic value of an animal can be
partitioned into additive genetic value at the marked chromosomal region and the
sum of additive genetic effects of polygenes linked to markers.

Construction of variance and covariance of QTL effects linked to markers
is the key factor to apply BLUP in QTL analysis. Fernando and Grossman (1989)

showed that information on a single marker can be used in an animal model by
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fitting additive effect for alleles at QTL linked to a genetic marker and additive
polygenic effects for alleles at the remaining quantitative trait loci. Goddard
(1991) extended the model to include information from more than one marker.
Wang et al. (1995) presented an algorithm for additive relationship matrix
construction without the requirement on the information of origin of alleles.
Meuwissen and Goddard (1996) presented a method in which the covariance
matrix of effects at the marked QTL is approximate&. This approximation reduces
the computational requirements.

The linear mixed model equation is greatly enlarged by including QTL
effect linked to markers. The size of the equation can be reduced by use of a
reduced animal model (Goddard, 1991). In this case, effects are only predicted
for animals that are parents. Breeding values and additive QTL effects for non-
parents can be obtained by back solving.

Another way of reducing the size of equation is to link phenotypes to the
total additive effects and link total additive effects to QTL. An animal model
method to reduce the number of equations per animal to one was presented by
Van Arendonk et al. (1994) combining information on marker linked QTL and
QTL unlinked to marker into one numerical relationship matrix. A reduced animal
model version of Van Arendonk et al. (1994) is also developed by Saito and
Iwaisaki (1996).

Hoeschele and VanRaden (1993a and 1993b) indicated that if some of
the animals to be evaluated do not have marker data and do not provide

relationship ties among genotyped descendants with known marker data, the
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marker linked QTL equations for such animals can be eliminated. The inverse of
a covariance matrix among total additive polygenic effects and the additive
effects of the QTL alleles can be obtained directly. When only a small fraction of
the animals are genotyped for markers and the remaining fraction do not provide
marker data, the procedure of Hoeschele and VanRaden (1993a and 1993b)
has the advantage of reducing the number of equations to be solved.

All of the algorithms above are based on an unknown parameter, which is
the recombination rate between genetic markers and QTL. One solution is to
maximize the log likelihood at each point at the marker interval by using
restricted maximum likelihood with respect to the other parameters, e.g. additive
variance due to allele at QTL linked to marker, additive variance due to alleles at
the remaining quantitative trait loci, and residual variance. The location of QTL
was estimated at the point corresponding the maximum log likelihood over the
entire marker interval (Van Arendonk et al., 1994; Grignola et al., 1996a)

Restricted maximum likelihood (REML, by Patterson and Thompson,
1971) has become the method of choice for estimating the variance components
in animal breeding. The first attempt for estimating position and variance
contribution of a single QTL together with additive polygenic and residual
variance components by REML was undertaken by Van Arendonk et al. (1994)
with a single marker. Grignola et al., (1996a) extended this method to multiple

markers.
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Sampling Strategy

Most of the studies of detection of QTL and marker assisted selection
assumed that individual sampled are randomly chosen from population. This
assumption is seldom true. In detection of QTL effects linked to markers,
individual with extreme phenotypic values are selected for genotyping to increase
the power of test. In most livestock species, data must be obtained from existing
commercial populations. Usually, such populations have been selected for many
generations toward a desired breeding goal. The impacts of selection on power

and estimates of parameters of QTL effects are discussed in following section.

Random Selection

Random selection assumed that individuals are randomly chosen from
generation to generation. Sampled individuals share the same gene pool with

base population.

Disruptive Selection

To increase power of detecting marker associated QTL effects, animals
for genotyping were selected with extreme phenotypic values. The statistical
power of selective genotyping for the purpose of detecting linkage between QTL

and markers was investigated by Lander and Botstein (1989); Darvasi and Soller
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(1992). It was found that power to detect a QTL effect is increased by selectively
genotyping individuals with extreme values for the quantitative trait (Weller and
Wyler, 1992; Lin and Ritland, 1996).

Mackinnon and Georges (1992) found that selection by truncation for the
trait of interest significantly reduces the genetic variance of the trait, thus
reducing the power to detect linked quantitative trait loci.

In the absence of selection, the estimates of QTL location, variance due to
QTL and polygenic effects, and residual variance are unbiased by using REML
(Grignola et al., 1996b). In another simulation study, bias of the estimated QTL
effects was less than 2% in the absence of selection (Meuwissen and Goddard,
1997). The selection bias using BLUP based methods are needed to be

investigated for polygenic and marker linked QTL mixed model.

Truncation Selection

Theory indicates the effects of selection can be accommodated by an
appropriate model that includes all data upon which selection decisions were
based, tracing back to the unselected base generation (Henderson, 1975b;
Gianola et al., 1986). Sorensen and Kennedy (1984) simulated several
generations of selection and omitted data from earlier generations. They
concluded that the estimate of the additive genetic variance before selection was
nearly unbiased when their model acknowledged all relationships that developed

in previous generations.
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However, results in a similar study, Van der Werf and De Boer (1990)
showed that there were small biases in estimates of additive genetic variance of
the base unselected generation in some cases, even with all relationships tracing
back to base generation.

Impact of selection on the estimates under additive polygenic and marker
linked QTL mixed models were also carried out for ANOVA, regression and
maximum likelihood. Biases were found for both the population under going
selection and population with selective genotyping. The bias is a function of
selection intensity and the magnitude of QTL effects. Lin and Ritland (1996)
showed selective genotyping can bias estimates of the recombination frequency
between linked QTL. The QTL effects linked to markers tend to be overestimated
increasingly with decreasing family size and true QTL effect (Georges et al.,
1995). Bias of the estimate of linkage increased when parents were not a random

sample from a population in linkage equilibrium (Uimari et al., 1996).

Stabilizing Selection

Stabilizing is applied when standard production of livestock is required.

The individuals with large or small observation are excluded. Genetic

homogeneous is desirable.
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Marker Assisted Selection

The usage of linkage between genetic marker and quantitative trait loci
was shown earliest by Sax (1923). However, the low number of genetic markers
available has been a limiting factor for application of marker assisted selection

until the recent discovery of molecular technology.

Genetic Markers

The first molecular markers used were allozymes, protein variants
detected by differences in migration on starch gels in an electric field. Since
1960s, this class of markers has been extensively applied to population genetic
problems. This approach was largely replaced by the method of evaluating
variation directly at DNA level in mid of 1980s. A simplest approach is to digest
DAN with a variety of restriction enzymes, each of which cuts the DNA at specific
sequence. When the digested DNA is run on a gel under an electric current the
fragment separated out according to size. The individual bands can be isolated
by using labeled DNA probes that base pair complementarily to particular region
of genome. This approach is called restriction fragment length polymorphisms
(RFLPs). Each RFLP probe generally scores a single marker locus. The marker
alleles are codominant. Herterozygotes and homozygotes can be distinguished.

Another approach is uses short primers for DNA replication via the

polymerase chain reaction (PCR) to delimit fragment sizes. The fragment flanked
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by primers is amplified. The primers are random short sequence. This approach
is called randomly amplified polymorphic DNAs (RAPDs). RAPDs have
advantages over RFLPs in that a single probe can reveal several loci once. They
also require small amount of DNA.

The number of genetic markers has increased rapidly in recent years. The
advent of techniques to detect molecular variation, beginning with protein
electrophoresis and genetic polymorphism at level of DNA, has increased the
number of markers now. These markers include multisite restriction fragment
length polymorphism (RFLP) haplotypes, variable number of tandem repeat
(VNTR) sequences, and polymerase chain reaction (PCR) based polymorphism
(Mullis, 1990). The huge amount of genetic variability revealed by these
techniques in many agriculturally important species has allowed the construction
of detailed genetic maps evenly spaced throughout the genome (Paterson et al.,
1988; Visscher et al., 1990; Soller and Beckman, 1990; Georges et al., 1995).
Polymorphism at DNA level makes it possible to identify genotypic differences
among individuals at many genomic sites. The use of information on markers is
expected to accelerate genetic progress through increasing accuracy of
selection, reduction of generation interval and increased selection differentials
(Kashi et al., 1990). The advantages and limitations of marker assisted selection

are described in following.



25

Advantage of MAS

Regression and BLUP are currently methods used to integrate phenotype
with marker information. Lande and Thompson (1990) proposed an index
incorporating the phenotype value and molecular score of individuals. The
molecular score is computed from the effects attributed to markers by multiple
regression of phenotype on marker genotype. BLUP, incorporating marker
information, was described by Fernando and Grossman (1989). The total
additive genetic value composed of the prediction of the sum of two QTL alleles
linked to marker and polygene effect at remanding loci unlinked to markers.

The efficiencies were compared between purely phenotype selection and
marker assisted selection (Lande and Thompson, 1990; Gimelfarb and Lande,
1994; Ruane and Colleau, 1996; Hospital and Moreau, 1997). Zhang and Smith
(1992 and 1993) conducted similar simulations of marker assisted selection.
However, they compared MAS not with purely phenotypic selection but rather to
selection based on the BLUP estimate of an individual's breeding value. The
common conclusion was that marker assisted selection was more efficient than
selection without using marker information in 1) early generations; 2) low
heritability traits; 3) large populations; 4) close linkage between marker and QTL.

Marker assisted selection can still be effective in populations that have
been highly selected for many generations on phenotype or predicted breeding
values. Georges et al. (1995) demonstrate that loci with considerable effects on

milk production are still segregating in highly selected populations.
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Limitations of MAS

First of all, the limitation of MAS comes from the nature of genetic
composition of traits. The genetic variance may be controlled by many genes
with small effects even though there may be a few loci with large effects
(Shrimpton and Robertson, 1988). Traditional methods will be effective to identify
the effect of these genes. Further more, due to arising of variance within
populations by high mutability of polygene, traditional methods is effective to
improve whatever previous gains have been made (Hill, 1982).

Another factor limiting efficiency of MAS is the error of QTL parameter
estimates. The QTL parameters in MAS studies have assumed to be known
without error when genetic and economic responses to MAS were estimated.
However, this situation is not generally true. The variance associated QTL effects
was overestimated when the analysis had low power (Wang et al., 1995).

Deduction on selection response can result from the error of the estimates
of QTL parameters. For a simulated error of 15 cM on the location of QTL,
genetic superiority of MAS was reduced by 80% in the first generation. Zhang
and Smith (1993) showed that poorly estimated QTL effects added noise to the

system and reduced selection response in marker assisted selection.



Chapter 2

METHODOLOGY

Data is generated given specified underlying parameters for a marked
QTL and polygene mixed model. The estimates of the parameters are obtained
by analyzing the simulated data using REML. The design of the breeding
populations simulated, the simulation of genotypes on markers and QTLs,
simulation of phenotypes, selection schemes, and the statistical model for

analysis are described below.

Population

The granddaughter design, together with daughter design was proposed
for the purpose of identifying genetic markers associated with QTL (Weller,
1990). Granddaughter design requires the genotyping of sires and their sons at
polymorphic loci and the recording of phenotypes on granddaughters. There are
two generations involved in daughter design: sires and daughters. Phenotyping is
on daughters. Genotyping is on both sires and daughters (see figure 1).

One of the advantages of granddaughter design over daughter design is

that it may be easier to collect blood or semen samples from sons of sires,

27
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Figure 1 - Population Structure of Granddaughter Design
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Figure 2 - Pedigree of 20 Sires in Simulated Granddaughter Design Population
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concentrated in Al centers, than from their daughters, scattered over many
farms. In this study, granddaughter design populations are simulated. Each
population consisted of 20 sires from 9 different grandsires, just as Grignola et al
(1996b). Each sire had 100 sons for a total of 2000 sons. The number of

granddaughters per son is set to either 50 or 100 (see figure 2).

Simulation of Genotypes

Five equally spaced marker loci on an autosomal chromosome are
simulated (see Figure 3). There are five alleles with equal frequency (20%) on
each locus. A single QTL is set to the midway between the third and fourth
marker loci. There are two alleles at the QTL. The gene frequencies of the two
alleles are set to equal (50%). The effect of one allele is set to a, and -a for the
other allele. There is no dominant effect. Therefore, the additive genetic variance

due to QTL is 202

Simulation of DYDs

Instead of individual yield on each daughter of son (granddaughter), the
daughter's yield deviation (DYD) of is used for analysis. The values of DYDs can
be generated from each daughters' yield or generated for each son directly. A

model with a mixture of polygenic effects and the allelic effect due to the QTL
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linked to marker is defined for the phenotypic observations on granddaughters

below. The trait that is recorded is called “daughter yield deviation”.

N
DYD, =NL2(VQj +v1)+ 0.5, +¢,

d j=I

where DYD; is the evaluation on son i; Ng is the number of daughters per son; v}j
was the additive genetic effect of one allele at QTL linked to genetic markers of
granddaughter j of son ; vfj was the additive genetic effect of the other allele at
QTL of granddaughter j of son i; u, was the additive genetic effect of the
polygene unlinked to genetic markers of son i; and g; was the random residual
effect corresponding to DYD;. The variances of v}j and vfj were both assumed
to be o, which was the additive genetic variance due to the QTL allele linked to
genetic markers. Therefore, the total additive genetic variance was o’=20?+0?.
The u, was generated from a normal distribution with zero mean and a (co)
variance matrix of lo? with o being the additive genetic variance due to

polygenic effects unlinked to genetic markers. The residual effect (g;) was

generated from normal distribution with mean of zero and variance of

%—(0.75 ol + o), where ¢! is the environmental variance of the
d

granddaughters’ yield. All covariances between v;, v:, u;, and & were assumed

0_2

to be zero. The heritability of the yield trait was defined as h? = ——.
oL +0;
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M1 M2 M3 M4 MS

Figure 3 - Genetic Marker Loci and One QTL on an Autosomal Chromosome.
Five marker loci are equally spaced. A single QTL is at the midway between the

third and fourth marker loci.
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The QTL and marker alleles were generated in linkage equilibrium across
base population animals and each offspring inherited a QTL-marker haplotype
subject to chance recombination between the loci.

Five marker loci on an autosomal chromosome with equally spaced
marker intervals were simulated. A biallelic QTL with equal frequencies (.5) was
located midway between the third and fourth marker loci. This location
assignment associated higher power of test than the midway location between
the fourth and fifth. The two QTL allelic effects were set to a and -,

respectively, i.e., gene action was assumed to be additive. Therefore, the

variance due to QTL (202) was 202, and thus the value of o was set to be the

square root of o’

The magnitude of QTL effects was denoted by the ratio of QTL allelic

variance to the total additive genetic variance:

2
o
vz-a;.

The maximum value of vZ is .5, in which case, o? equals to zero.

Selection Schemes

The selection schemes refer to alternative strategies of sampling
phenotyped individuals for genotyping. The idea behind selective genotyping is

that scoring characters is often much less expensive than scoring genetic
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markers. Hence, those may be merit in choosing a subset of phenotyped
individuals for genotyping.

Most of the studies assumed that genotype individual are randomly
chosen from population. However, the situation is not true in commercial
populations. Usually, such populations have been selected for many generations
toward a desired breeding goal. The selection could be truncated in most cases
or stabilizing occasionally. The typical selection scheme for detection of QTL is
disruptive, in which the uppermost and lower most fractions of scored individuals
are genotyped.

The 100 sons of each sire in granddaughter design in this study are
selected on their daughter yield deviations (DYD) (Van Raden and Wiggans,
1991) according to the following alternative selection schemes:

1. Random selection: Sons are randomly chosen from the population;

2. Disruptive selection: Those sons with their DYD away from the population
mean by one standard deviation (SD) in either direction are chosen;

3. Truncation selection: Sons with DYD greater than the mean are chosen.

4. Stabilizing selection: Sons with DYD within the range of one positive and

negative SD from the mean are chosen.

Statistical Analysis

A reduced animal model including QTL effects linked to markers and

polygenic effects was used to analyze the simulated data:
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y=Xp+ZT,u+2ZDT\wv +e
where y was an Nx1 vector of DYD evaluations on sons with N being the number
of DYDs, which was equal to the number of sons; B was a vector of fixed effects;
X was the design matrix relating B to y; u was an Npx1 vector of the polygenic
effects unlinked to the markers with N, being the number of sires; Z was the
incidence matrix relating elements in y to sons; T, was a transformation matrix
relating sons to sires for polygenic effect; v was a 2Npx1 vector of the QTL allelic
effects linked to the markers; D was the incidence matrix relating each animal to
its two QTL alleles; T, was the transformation matrix relating sons to sires for
QTL effect; and e was the vector of residual effects. The random effects were

assumed to follow a normal distribution with a (co)variance structure of

u] [A,62 0 0
Variance|v|=| 0 Aol 0

e 0 0 R
where A, was the numerator additive polygenic relationship matrix (Henderson,
1975); o> was the additive polygenic variance; A, was the relationship matrix of
QTL effects linked to markers; o’ was the QTL allelic variance; and
R= Ioe2 + Auaf + Avaf
where I is an identity matrix of NxN, A, is the correlation matrix of Mendelian

polygenic effects and Ay is the correlation matrix of Mendelian QTL effects. The

theory of building A, and A, was presented by Wang et al. (1995).
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An algorithm of REML by Grignola et al. (1996a) was adapted for the estimation
of variance components in this study. The analysis was conducted at a number

of successive positions along a chromosome. Then, the likelihood was
maximized with respect to o’ o2, o2 and r (recombination rate) at each

position. The estimated location of QTL was determined by the largest likelihood

value over the grid of possible QTL locations.

Experimental Design

The objective of this study is to investigate the effects of different selection
schemes, lengths of marker interval (r), magnitudes of QTL effects (v?),
heritability levels (h?), and number of daughters (ng) in a granddaughter design
on the estimates of QTL location and variance components of QTL, polygenic
and residual effects. A sub-population is defined by each combination of r (10 or
30 cM), v2 (.125 or .25), h? (.05 or .4), nq (50 or 100) and selection schemes
(random, disruptive, truncation and stabilizing), for a total of 64 combinations.

For each sub-population, fifty replicates are generated and are analyzed
separately. Phenotypic variance (o +0?) is set to 10,000. Bias of estimation is

defined as the difference between true parameter value and its estimate. The
bias rate is defined as the ratio of bias to the true value of parameter. The
median bias rate from 50 replicates is used as the measurement for each sub-
population. Power on each combination is estimated by the proportion of

significant results over the total replicates.



Chapter 3

BIASES IN GENETIC PARAMETER ESTIMATION FROM A POLYGENE AND
QTL MIXED MODEL UNDER GRANDDAUGHTER DESIGN

Abstract

Statistical biases in the estimation of quantitative trait loci (QTL) location,
additive genetic variance due to markers linked to QTL, additive genetic variance
due to polygene unlinked to markers, and residual variance were evaluated in a
simulation study. Genetic populations with a granddaughter design were
simulated under a mixed model with polygenic effects and QTL effects for
various combinations of selection schemes, marker intervals, numbers of
daughters, magnitudes of QTL effects and heritability levels with respect to a
single trait. For each of the combinations, 50 replicate populations were
generated and analyzed separately by a restricted maximum likelihood algorithm.

Estimates of QTL location, variance due to segregating QTL, and
polygenic and residual effects were all unbiased in unselected populations.
Estimates of QTL location were unbiased not only in unselected populations, but
also in populations under various selection schemes. However, estimates of

variances due to QTL, polygenic and residual effects were biased significantly in
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populations under nonrandom selection schemes. The magnitudes of the biases
were dependent on marker intervals, numbers of daughters, magnitudes of QTL

effect and heritability levels.

Introduction

The advantages of marker assisted selection (MAS) in breeding schemes
have been discussed rigorously recently (Lande and Thompson, 1990; Gimelfarb
and Lande, 1995; Hospital and Moreau, 1997; Spelman and Garrick, 1997).
However, when genetic and economic responses to MAS were estimated in
these studies, genetic parameters were assumed known without error.
Simulation studies (Zhang and Smith, 1993 and Wang et al., 1995) have
demonstrated that the overestimation of variance due to QTL effects would
decrease estimated long term genetic gain under MAS. For an error of only 15
cM in the location of QTL, estimated genetic superiority of MAS would be
reduced by 80% after the first generation of selection (Spelman and Van
Arendonk, 1997).

The major difference between the classical polygenic animal model and a
mixture model of marker-associated QTL effects and polygenic effects is the
additional (co)variance matrix of QTL effects linked to markers. The algorithm to
construct this matrix for a single marker was presented by Fermando and
Grossman (1989), with multiple marker extensions provided by Goddard (1991).
Wang et al. (1995) proposed an algorithm for the case of incomplete information

of the origin of marker genes, which was required in the algorithm by Fernando.
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Variances of single marker associated QTL effects, additive polygenic
effects, and residual effects can be estimated by restricted maximum likelihood
(REML) as shown by Van Arendonk et al. (1994). Grignola et al. (1996a)
expanded their method for multiple marker associations.

The accuracy and precision of the estimates using REML have been
evaluated in many studies for the polygenic model in unselected and selected
populations (Henderson, 1975a; Banks et al., 1985; Gianola et al., 1986;
Beaumont, 1991; Sorensen and Kennedy, 1984). Grignola et al. (1996b)
evaluated the accuracy and precision of the estimates using REML in a single
marked QTL and polygenic mixed model in unselected populations.

In most livestock species, data for linkage analysis must be obtained from
existing commercial populations. Usually, such populations had been selected for
many generations toward a desired breeding goal (Vukasinovic et al., 1998). One
sampling strategy that has been advocated to increase power of marker
associated QTL effect detection, given limited resources, is to select animals with
extreme phenotypic values for genotyping. However, the frequency of favorable
alleles and genetic variances are plausibly changed under selection (Mackinnon
and Georges, 1992; Keightley and Bulfield, 1993), thereby potenfially causing
large biases in estimates of QTL effects.

Granddaughter design (GDD) proposed by Weller in 1990, together with
daughter design, are two typical designs proposed for the purpose of identifying
genetic markers associated with QTL. A GDD requires the genotyping of

grandsires and their sons at polymorphic loci and the recording of phenotypes on
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granddaughters. One practical advantage of GDD over daughter design is that it
may be easier to collect blood or semen samples from sires and sons which are
normally concentrated in Al centers than from their dauéhters which are normally
scattered over many commercial farms.

The objective of this study was to investigate the effects of different
selection schemes, lengths of marker interval, magnitudes of QTL effects,
heritability levels, and number of daughters in a granddaughter design on the
estimation of QTL location and variance components of QTL, polygenic and

residual effects.

Materials and Methods

Data was generated given specified underlying parameters for a marked
QTL and polygene mixed model. The estimates of the parameters were obtained
by analyzing the simulated data using an algorithm of REML. The design of the
breeding populations simulated, the genetic model for simulation, and the

statistical model for analysis are described below.

Population

Each simulated GDD population consisted of 20 sires from 9 different
grandsires as in the study by Grignola et al (1996b). Each sire had 100 sons for
a total of 2000 sons. The number of granddaughters per son was set to either 50

or 100. The 100 sons of each sire were selected based on their daughter yield
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deviations (DYD) (Van Raden and Wiggans, 1991) according to the following
alternative selection schemes:
1. Random selection: Sons were randomly chosen from the population;
2. Disruptive selection: Those sons with their DYD away from the population

mean by one standard deviation (SD) in either direction were chosen;

3. Truncation selection: Sons with DYD greater than the mean were chosen.
4. Stabilizing selection: Sons with DYD within the range of one positive and

negative SD from the mean were chosen.

Genetic Model

A model with a mixture of polygenic effects and the allelic effect due to the
QTL linked to marker was defined for the purpose of evaluation of the sons
based on the phenotypic observations on granddaughters. The evaluation

criterion was called daughter yield deviation, or DYD:

N
DYD, =§1—Z(Vi|j +vi)+0.5u; +¢

d j=1

where DYD,; is the evaluation on son i; Ng is the number of daughters per son; v}j
was the additive genetic effect of one allele at QTL linked to genetic markers of
granddaughter j of son i; vi’j was the additive genetic effect of the other allele at
QTL of granddaughter j of son Ji; u, was the additive genetic effect of the
polygene unlinked to genetic markers of son /; and &; was the random residual

effect corresponding to DYD,. The variances of v:j and vfj were both assumed
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to be o, which was the additive genetic variance due to the QTL allele linked to
genetic markers. Therefore, the total additive genetic variance was o’=202+0c?..
The u; was generated from a normal distribution with zero mean and a

(co)variance matrix of lo with o being the additive genetic variance due to

polygenic effects unlinked to genetic markers. The residual effect (g)) was

generated from normal distribution with mean of zero and variance of

—15—(0.75 ol + o), where o? is the environmental variance of the
d

granddaughters’ yield. All covariances between v, v:, u,, and € were assumed

02

to be zero. The heritability of the yield trait was defined as h’ = — : >
al ae

The QTL and marker alleles were generated in linkage equilibrium across
base population animals and each offspring inherited a QTL-marker haplotype
subject to chance recombination between the loci.

Five marker loci on an autosomal chromosome with equally spaced
marker intervals were simulated. A biallelic QTL with equal frequencies (.5) was
located midway between the third and fourth marker loci. This location
assignment associated higher power of test than the midway location between

the fourth and fifth. The two QTL allelic effects were set to o and -,
respectively, i.e., gene action was assumed to be additive. Therefore, the

variance due to QTL (20 ) was 2a?, and thus the value of a was set to be the

square root of o.
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The magnitude of QTL effects was denoted by the ratio of QTL allelic

variance to the total additive genetic variance:

?= 2

0_2

The maximum value of v? is .5, in which case, o2 equals to zero.

Statistical Model

A reduced animal model including QTL effects linked to markers and
polygenic effects was used to analyze the simulated data:
y=Xp+ZT,u+2ZDT\wv +e
where y was an Nx1 vector of DYD evaluations on sons with N being the number

of DYDs, which was equal to the number of sons; B was a vector of fixed effects;
X was the design matrix relating p to y; u was an N,yx1 vector of the polygenic
effects unlinked to the markers with N, being the number of sires; Z was the
incidence matrix relating elements in y to sons; T, was a transformation matrix
relating sons to sires for polygenic effect; v was a 2Nyx1 vector of the QTL allelic
effects linked to the markers; D was the incidence matrix relating each animal to
its two QTL alleles; T, was the transformation matrix relating sons to sires for
QTL effect; and e was the vector of residual effects. The random effects were

assumed to follow a normal distribution with a (co)variance structure of
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where A, was the numerator additive polygenic relationship matrix (Henderson,
1975); o was the additive polygenic variance; A, was the relationship matrix of
QTL effects linked to markers; o2 was the QTL allelic variance; and

R=10! + Ayo! + Ayo!
where I is an identity matrix of NxN, A, is the correlation matrix of Mendelian
polygenic effects and A, is the correlation matrix of Mendelian QTL effects. The
theory of building Ay and A, was presented by Wang et al. (1995).

An algorithm of REML by Grignola et al. (1996a) was adapted for the

estimation of variance components in this study. The analysis was conducted at

a number of successive positions along a chromosome. Then, the likelihood was
maximized with respectto o’ o, o and r (recombination rate) at each

position. The estimated location of QTL was determined by the largest likelihood

value over the grid of possible QTL locations.

Design

A sub-population was defined by each combination of marker density (10
or 30 cM), v2 (.125 or .25), h? (.05 or .4), number of daughters (50 or 100) and
selection schemes (random, disruptive, truncation and stabilizing), for a total of

64 combinations. For each sub-population, fifty replicates were generated and
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were analyzed separately. Phenotypic variance (o’ +o?) was set to 10,000.

Bias of estimation was defined as the difference between true parameter value
and its estimate. The bias rate was defined as the ratio of bias to the true value
of parameter. The median bias rate from 50 replicates was used to assess the

relative degree of bias for each parameter within each sub-population.

Results and Discussions

QTL Location

Mackinnon and Weller (1995) showed that maximum likelihood estimation
of recombination rate was inaccurate compared to estimation of other
parameters. Accuracy of estimation can be improved by using interval mapping
(Knott and Hally, 1992). Grignola et al. (1996b) showed that the estimates of QTL
location were unbiased using REML within an interval mapping framework.
Spelman and Van Arendonk (1997) showed that genetic gain by marker assisted
selection with 5 cM error was significantly less than that achieved when the QTL
position was estimated correctly. In the framework of our study, estimates of the
location of QTL were unbiased in all sub-populations, and selection schemes did
not affect the estimate of QTL location. The median biases in all sub-populations
ranged from -1.3 to 1.1 cM and were not significantly different from zero

(P>0.05).
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Figure 4 - Estimates of Polygenic, QTL and Residual Variances

The estimates were from populations with various combinations of underlying
heritability (h?) levels, magnitudes of QTL effect (v2), numbers of daughters (Nq),
and lengths of maker interval (in cM) when undergone alternative selection
schemes. L denotes the populations with .05 for h?, .125 for v2, and 50 for Ng; H

denotes the populations with .4 for h?, .25 for v2, and 100 for Ng.
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Random Selection Scheme

Unbiased estimates of o2, o and o were obtained under the random

selection scheme. These results were consistent with those of Grignola et al.
(1996b), who also found that estimates of the variance components were

unbiased for different underlying marker intervals, number of daughters, v? and

2
v

h? levels under random selection. The bias rates of the estimates of o2, o2 and

o’ in each sub-population were not significantly different from zero (P>0.05).

Disruptive Selection Scheme

Disruptive selection is usually used in selective genotyping for QTL
mapping where individuals with observations of extreme values were chosen for

genotyping. Under this selection scheme, those individuals with deviant

polygenic or QTL effects, or both, were chosen. We found that estimates of o

and o’ tended to be biased upwards for sub-populations based on this selection
protocol (Figure 4). The magnitude of bias depended on number of daughters
per son (Ng), and the levels of underlying v> and h?. The bias rates of ol and o’

decreased significantly with more daughters and higher v? and h? values (Table 1

and 2). An increase in the number of daughters from 50 to 100 led to a significant
reduction of bias in the estimates of &> (p<0.01), but not for o2 (p>0.05).

Residual variance estimates could be reduced due to a decrease in

heterozygosity of QTL. For the mating of sire (QQ) with dam (qq) for example,
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Table 1 - Median* and SE of Bias Rates (%) in the Estimation of QTL Allelic
Variance. The estimates were from populations subjected to disruptive selection
where the populations differed in different levels of heritability (h?) and

proportions of additive genetic variance due to QTL effect (V).

Marker interval (cM)

V2 h2 10 30
No. of daughters No. of daughters
50 100 50 100
125 .05 412° 1 20 405 1+ 21 441° + 28 365> 4+ 29
4 284°% + 20 284%° 1+ 16 3115 4 18 208% + 19
25 05 418° + 23 396> + 17 423° 1+ 20 364° + 20
4 234 + 8 19" + 7 237" + 13 198" + 11

*Medians with the same superscripts were not different significantly (P>0.05).
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Table 2 - Median* and SE of Bias Rates (%) in the Estimation of Polygenic
Variance. The estimates were from populations subjected to disruptive selection
where the populations differed in different levels of heritability (h?) and

proportions of additive genetic variance due to QTL effect (v).

Marker interval (cM)

v h? 10 30
Number of daughters Number of daughters
50 100 50 100
125 05 376° + 23 286 + 13 379* + 24 302™ + 16
4 93° + 6 61% + 4 9° + 6 64° + 5
25 05 379° : 35 182° + 2 432 + 3 204° + 21
4 9° + 6 7° + 6 6% + 1 -28° + 9

*Medians with the same superscripts were not different significantly (P>0.05).
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Table 3 - Median* and SE of Bias Rates (%) in the Estimation of Residual
Variances. The estimates were from populations subjected to disruptive selection
where the populations differed in different levels of heritability (h?) and

proportions of additive genetic variance due to QTL effect (V).

Marker interval (cM)

v h2 10 30
Number of daughters Number of daughters
50 100 50 100
125 05 379* + 15 304° + 9 385" + 18 308° + 9
4 146° + 3 1199 + 3 146° + 3 122¢ + 3
25 05 402° + 14 291°® + 8 402* + 13 310® + 8
4 1259 + 3 94° + 3 135% + 4 100° + 3

*Medians with the same superscripts were not different significantly (P>0.05).
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the probability of tracing “Q” of offspring back to sire is 100% if no recombination
exists between QTL and markers. However, the probability reduces to 50% if the
genotypes of sire and dam are both “Qq". As the proportion of homozygotes with
high or low genotypic values was increased under disruptive selection, the
certainty of knowing the identity by descent of markers in parent to an offspring
was increased. Johnson (1992) and Wright (1991) showed that estimates of

residual variance were greater with relationship coefficients set not equal to zero

than set to zero. Estimates of o in this study showed an upward bias under

disruptive selection. The bias rates of o’ estimates were smaller with greater

number of daughters, v? and h? values (Table 3).

Truncation Selection Scheme

Individuals selected under truncation selection scheme were those with

large genetic effects. Mackinnon and Georges (1992) showed that selection may

lead to underestimation of QTL effects. This study found that estimates of o

and o’ were generally biased downwards (p<0.01) in populations that underwent
truncation selection, but they were not influenced significantly by daughter
numbers, marker interval length, and v and h? levels.

The situation of estimation biases in ¢ under truncation selection is

opposite to that under disruptive selection. The increased uncertainty of tracing
QTL from parents to progeny lead to a decrease in the relationship coefficients

on QTL effects, and thus an underestimation of residual variance. This was
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because the homozygotes with large effects became a larger portion of the
population under the truncation selection. Estimates of o2 were generally biased

downwards (p<0.01) in populations that underwent truncation selection, but also
they were not influenced significantly by daughter numbers, marker interval

length, and v2 and h? levels.

Stabilizing Selection Scheme

The individuals with either large or small QTL or polygene effects are
excluded under stabilizing selection, in which individuals within the range of a
defined SD from the mean were chosen. Polygene and QTL variances from
populations that underwent stabilizing selection appeared to be underestimated
in this study.

The individuals favored under stabilizing selection scheme were
heterozygotes at QTL. The certainty of knowing the parent-offspring relationship
with respect to a genetic marker was reduced from matings between
heterozygous individuals. The result was similar to matings between
homozygotes with large effects under the truncation selection scheme. This may
help explain why no difference was found (p>0.05) between populations

underwent stabilizing selection and those undergoing truncation selection in

2

v

estimates of o, o and o!.
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Conclusions and Implications

By using the REML method, QTL locations can be estimated without
significant bias in populations under a wide array of sampling strategies.
However, there were significant biases in estimates of variances due to QTL,
polygene and residual effects from populations subjected to selection schemes
except from those subject to only random selection. Variances due to QTL,
polygene and residual effects were overestimated from populations subjected to
disruptive selection, but were underestimated from populations subjected to
truncation and stabilizing selection schemes.

The biases in variance estimates for QTL, polygene and residual effects
declined with more daughters per sire, higher levels of underlying heritability and
greater proportion of additive genetic variance that was due to QTL effects.

This study confirmed the results by Grignola et al. (1996b) that QTL
location, variances of QTL, polygenic and residual effects could be unbiasedly
estimated from populations that did not undergo selection. Furthermore,
estimates of QTL location from populations undergone disruptive, truncation or
stabilizing selection schemes were also unbiased. From populations undergone
the same selection schemes, however, biases were evident in estimates of
variances of QTL, polygenic and residual effects. Since biases in variance
components can potentially reduce the advantage of marker assisted selection,

which is the ultimate application of QTL discovery, estimation biases for
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variances of QTL, polygenic and residual effects in various circumstances need

to be monitored.



Chapter 4

POWER OF DETECTING MARKER ASSOCIATED QTL EFFECTS
IN GRANDDAUGHTER DESIGN

Abstract

Power was examined by simulation for the test of marker linked QTL effect
using restricted maximum likelihood. Granddaughter design populations were
simulated from a mixed model with polygenic and QTL effects for each
combinations of following characteristics: selection scheme, marker interval,
number of daughters, magnitude of QTL effect and heritability of trait. Sons in the
design were selected by four alternative selection schemes of random,
disruptive, truncation and stabilized. Fifty replicates were generated for each
population and were analyzed using restricted maximum likelihood. Results
indicated that selection scheme has significant influence on the power of testing
linkage between genetic markers and QTL using restricted maximum likelihood.
Disruptive selection generated higher power than random selection, whereas
truncation and stabilizing selection had less power than randorh selection. Power
of test using restricted maximum likelihood also depended on number of
daughters of each son, marker interval, magnitude of QTL effect and heritability.

Power of test was higher with more daughters per sire, smaller marker interval,

56
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larger magnitude of QTL effect, and higher heritability. The magnitude of the
difference due to changing a factor was larger when the power was less

saturated by other factors.

Introduction

Several studies have shown that individual loci affecting quantitative traits
can be detected via linkage to genetic markers (Soller and Beckman, 1990;
Weller and Wyler, 1992). Notable examples were the QTL gene for ovulation rate
in swine linked to a marker on chromosome 8 with an additive effect of 3 ova
(Rathje et al., 1997), the QTL gene of fat percentage linked to markers clustered
on chromosome 4 of pig (Andersson et al., 1994) and the QTL with a significant
effect on protein yield in dairy cattle linked to beta-lactoglobulin (Bovenhuis and
Weller, 1994)

Identification of quantitative trait loci involves many animals to be
genotyped and performance tested. Consequently, experimental designs need to
be optimized to minimize the costs of data collection and genotyping for an
appropriate power (van der Beek et al., 1995).

Most successful QTL mapping efforts described to date have exploited F,
or backcrosses obtained from parental populations divergent for the traits of
interest (Soller et al., 1976; Paterson et al., 1988). This method results in more
power by introducing linkage disequilibrium and can be analyzed by standard
software. Linkage analysis for outcross data structure is more complicated and

more complex designs and analyses are needed.
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ANOVA is the traditional method, which was performed by comparing
marker genotype effects (Weller et al., 1990a; Mackinnon and Georges, 1992).
The shortage of ANOVA is that no information on QTL location can be provided.
Weller (1986) developed a maximum likelihood method to detect marker
associated QTL effect. Location of QTL was estimated by maximization of
likelihood with respect to recombination rate and other parameters (e.g., mean,
additive QTL effect, and within QTL genotype residual variance). Haley and
Knott (1992) and Martinez and Curnow (1992) independently introduced a
regression method. Regression is performed on the probability of an individual
having a QTL genotype, given the genotype for the flanking markers. The QTL
location is estimated by the recombination rate with minimum residual sum
square. Generally, regression generated similar result as maximum likelihood.

Method of ANOVA, regression and maximum likelihood method were
developed mainly for linecross populations. They can not fully account for the
more complex data structures in outcross populations, such as data on several
families with relationships across families, unknown linkage phases in parents,
unknown number of QTL alleles in the population.

For polygenic effects without marker information, BLUP had proved to be
a very flexible metho<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>