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ABSTRACT

MULTICRITERIA OPTIMIZATION OF NONDIFFERENTIABLE

STOCHASTIC BIOSYSTEMS: TECHNOLOGY MANAGEMENT

OF IRRIGATED MAIZE

By

James Carl Schaper

A mathematical model of an irrigated maize enterprise, fiom preseason

manure application to the transport of grain to market, is constructed and used

to simulate crop production in southern Michigan under linguistically

categorized climatic scenarios. The simulation deploys a multi-variable

sequential-random-search algorithm that incorporates a simple adaptive

evolution strategy to optimize both economic net return and nitrate leaching

for a given soil type. The parameters of optimization describe the genetic

coeficients of maize, irrigation technology, and agricultural practices. Net

return is found to be greatest with cultivars adapted to the specific growing

season. Scheduling irrigation in conjunction with a weather forecast reduces

the amount of nitrate leached. Simultaneous scheduling of all controllable

resources is found to be beneficial for an enterprise that is managed to achieve

multiple criteria at a Pareto frontier.
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A methodology is developed which permits model-referenced optimal control

in highly nonlinear (nondifi'erentiable) representations of biological production

systems that are managed according to conflicting and environmentally-

conditioned goals. The methodology also lends itself to parameter estimation

on the enterprise model contained within a hierarchical ecological network

structure which conformally maps economic performance to the mass-energy

flows and transformations in the enterprise. Based on a definition for

compromise, the optimization continuously seeks a more desirable multi-goal

target while simultaneously searching for the management strategy which

encompasses the stochastic influences of weather. The search evolves, subject

to explicit and implicit constraints which are defined a priori by boundaries

and rules.

The traditional method to accommodate an implicit constraint requires

additional iterations of the model with a new trial solution vector each time the

constraint is violated. The implicit constraints in the irrigated maize

enterprise model that demanded this procedure were related to cumulative

environmental measures and resulted in tedious nested optimizations. A

subset of implicit constraints, characterized by the influence of weather on the

scheduling of agricultural operations, was efficiently resolved with functional

adjustments to the trial solution vector rather than with nested optimizations.
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EPIGRAPH

“All is process...there is no ‘thing’ in the universe. ‘Things’...are abstractions of

what is relatively constant fi‘om a process of movement and transformation.

They are like the shapes that children like to see in the clouds.”

D. Bohm in Towards a Theoretical Biolcgy
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CHAPTER ONE

INTRODUCTION

‘Yrrigation...is a social contract to sacrifice some environmental values... ”

J. van Schilfgaarde

The sandy-loam soils of southern Michigan are sensitive to drought.

Supplemental irrigation has made these soils highly productive for a number of

field and vegetable crops. The porous and free-draining nature of these soils,

11(>Vvever, causes them to be prone to nitrate leaching.

S‘~—11)plemental irrigation measurably contributes to increased crop production

andmay improve overall profitability. The increase in productivity may come

at the expense of the environment, or conversely, irrigation may possibly

tllitigate nitrate leaching by stimulating crop growth. It is reasonable to ask,

t'llerefore: “If, indeed, there is a trade-off between nitrate leaching and net

return, how is a reasonable compromise to be achieved?”
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One suspects that the selection of a particular irrigation technology depends

upon factors such as fertilization rates, tillage practices, crop protection

practices, harvest residual management, and plant genetics. Soil fertility is

critical for crop production and bears on nitrate leaching. Fertilizer amounts,

timing, and chemical form all have quantifiable effects on both crop production

and nitrate leaching. Animal wastes used as a nutrient source can be

intelligently scheduled if the quantifiable effects are known.

Soils are complex resources, categorized according to their physical, chemical,

and biological properties. Plants respond over time to multiple properties of

both the soil and the microclimate. Microclimates are both complex functions

of time and a primary “driving” force in any crop production enterprise. Farm

Production management is the conscious seeking of the “best” way to control

the many factors of production over time throughout the entire growing and

ha-rvest seasons, taking advantage of “good” weather and alleviating the effects

of “bad” weather. The value of a perfect weather forecast should be

quantifiable through simulation; also it should be possible to determine the

cost of assuming that the weather will be “normal.”

The commodity markets, like the weather, are stochastic. Like weather, the

market “drives” many of the decisions and outcomes of farm production. Thus,
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3

the economic stability of a farm enterprise is in principle, a complex function of

many factors of production, some ofwhich are clearly stochastic in nature.

HYPOTHESIS

“.. . when you cannot express it in numbers, your knowledge is of a meagre and

unsatisfactory kind.”

Lord Kelvin

On the basis of existing models of temperate-climate irrigated-maize

production enterprises, I hypothesize that irrigation can be managed to lessen

the impact of nitrate leaching to the environment while simultaneously

Contributing to a positive economic net return. I will show that on sandy loam

Soils, properly managed irrigation actually protects groundwater and I will

Dresent a method to quantify the tradeofi‘s between profit and environmental

11Elrm.

OBJECTIVES

Specific Objectives are as follows:



 

 

 
1, Combine the “l'

irrigated maize

predict the imp:

and economic po

1. Develop procedt;

time schedule of

and environment

3. identify from the

the negative imp.-

i AIticulate trade-o

White possible.  
'3' Quantify the econt

the major nitroger



4

1. Combine the “best” available simulation models of the various aspects of

irrigated maize production into a comprehensive enterprise model that can

predict the impact of various management alternatives on environmental

and economic performance measures.

2. Develop procedures for identifying the “best” enterprise organization and

time schedule of resources consistent with a given set of yield, economic,

and environmental impact targets.

3. Identify fi'om the model the extent to which irrigation can be used to reduce

the negative impact of nitrate leaching at acceptable economic costs.

4. Articulate trade-offs between economic return and environmental damage,

Where possible.

5. Quantify the economic and environmental impacts of using animal waste as

the major nitrogen and phosphorus source for irrigated maize production.

OVERVIEW OFAPPROACH

An enterprise, in the context of this thesis, is defined as a network of synthetic

and natural processes designed and managed to achieve a commercial goal.

The enterprise operates within a dynamic environment which serves as the

source of all resources and as the recipient of all residuals of the processing

network. In general, the limitations of the environment also restrict the goals

of the enterprise and, moreover, impose restrictions on how the goals are
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achieved. In the sequel, a model-referencing and optimization scheme is

developed for technology management describing how such enterprise goals

can be achieved.

Typically, the goals of the enterprise are set so high and the environmental

limitations are so restrictive that quantitatively articulated management

strategies are required to meet them. Management strategies are quantified in

terms of resource flows within the enterprise and between the enterprise and

its environment. Furthermore, management strategies must be evaluated over

the accounting period, or the production cycle of the enterprise. Characterizing

the resource flows of the enterprise and their change over time is the substance

of this thesis.

The enterprise is represented as an archipelago of linked processes with a

multiplicity of inter-process resource flows. The loads imposed by the

enterprise on its environment are quantified in terms of the material flow rates

between the enterprise and its environment. Some of the resource flows are

uncontrollable by human intervention, some are controllable. Uncontrolled

flows may vary with time from “drought” to “flood,” for example. Generally,

both controlled and uncontrolled resources contribute to the achievement of the

enterprise goal.
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Only a small fraction of all flows is controllable, and most flows are associated

with noncommercial co-products and/or unintended by-products. Collectively,

noncommercial co-products and unintended by-products are identified as

“unproducts”, the obverse of the desired product.

Unproduct flows are “un-natural” in the sense that they do not exist in pristine

ecosystems. Unfortunately, unproduct flows are frequently toxic to organisms

in natural ecosystems, including people. The toxicities of unproducts are

frequently unknown and are undetectable until they concentrate over time and

reach detectable levels sometimes evidenced by macro-level systemic

consequences. Hence, management requires reliable methods which anticipate

the risks of environmental degradation and provide acceptable

countermeasures integrated with the overall management strategy.

The management problem is confounded by the unproduct stream because

unproducts generally have no markets; consequently, the concept of price has

little practical meaning. In this situation, management typically attempts to

sustain economic returns of the enterprise above a minimum threshold and

environmental impacts below a maximum tolerance level. Such a management

strategy implicitly attempts to strike an acceptable balance among often-

conflicting multiple goals. Such a management strategy, whatever the

balance, is deemed “optimal.” Thus an optimal management strategy is

frequently a balance among dimensionally distinct performance measures, and
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a compromise among competing goals -- a “Goldilocks optimum.” “Best” cannot

usually be found at an extreme value of any one attribute, nor does only one

attribute provide an adequate measure of performance.

The Traditional Approach to Resource Scheduling

Traditional methods of scheduling agricultural resources consider production

practices in a piece-meal fashion; allocation decisions only indirectly consider

the linkages among production activities. Irrigation scheduling, for example,

assumes that crop growth proceeds according to a given norm, given that a

reasonable soil moisture balance will support an acceptable yield. Scheduling

of fertilizer applications likewise is based on crop growth according to historical

norms, and assuming all other resource factors are maintained at appropriate

levels. Cultivar selection is based on soil types, microclimate, and soil fertility.

Irrigation, fertilization, and cultivar selection are based on achieving yield

expectations.

Environmental concerns are usually handled by implementing “best

management practices.” Best management practices are stated in terms of

tillage tools, soil water depletion allowances, and split fertilizer treatments, all

based on soil descriptions and yield targets. Best management practices are

supposed to achieve an acceptable level of environmental impact at an

acceptable cost based on normative values. Over the long term, however,
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annual environmental impacts can accumulate. When insults to the

environment can no-longer be ignored, they become political issues to mitigate

and litigate.

A Non-traditional Approach to Resource Scheduling

If environmental sustainability is a social necessity in the same sense that a

positive economic net return is necessary to the individual commercial

enterprise, then economic and environmental issues deserve equal treatment,

if not equal priority. To be responsive and adaptable to “the way things are” as

opposed to normative values, resources and technologies ideally should be

organized into a management system directly linked to the economic and

environmental goals of the crop production enterprise. For these reasons, a

non-traditional, all-inclusive method of analysis appears warranted.
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CHAPTER TWO

LITERATURE REVIEW

The approach taken to the multicriteria optimization of the irrigated maize

enterprise draws particularly from several sub-disciplines in numerical

methods and the agricultural sciences. The first part of the literature review is

devoted to the relevant numerical methodologies:

0 Processing Networks

a Multidimensional Nonlinear Optimization

0 Adaptive Control

0 Evolutionary Algorithms

The relevant research from the agricultural sciences regarding maize

production is presented in the last part of the literature review:

0 Climatological Modeling

Crop Modeling

Irrigation

Grain Drying

Production Economics
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THE PROCESSING NETWORK

Economic enterprises, including irrigated maize production, can be

characterized as networks of natural and engineered transformations on the

structural state of matter. Network modeling techniques have broad

applicability. No case was found while conducting the literature search where

networks could not be applied to economic enterprises specifically, or to ecology

in general. To quote one prominent researcher, “Among the advances

in...operations research,...the theories of networks are among the simplest, most

elegant subjects which possess a wide variety of applications” (Emaghraby,

1971).

As for the processing network approach, each transformation within the

network is modeled as an unconstrained component process, according to the

principles of material and energy balance. The component processes are then

constrained according to the principles of conservation of matter and energy.

The result is a model of the enterprise and its environment which shows the

material (resource) flows and energy factors as explicit functions of the product

flows at the boundary (H.E. Koenig and Cantlon, 1998).

All material flows and energy factors are measured in physical units. An

economic model of the enterprise is established by multiplying each material
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flow and each energy factor in the boundary model by an economic price

parameter. The network thus becomes an ecologically conformable accounting

system (ibid.).

Ecological and economic measures of enterprise performance are expressed as

explicit functions of the technological, ecological, and organizational

parameters of the network and the economic prices at the boundary of the

enterprise network. These networks thus provide a rigorous and tractable

mathematical framework for technical design and management of agricultural

production on the basis of “both” ecological and economic measures of

performance, plus pricing alternatives. And, they provide a comprehensive

accounting system for the management of operations that is isomorphic to the

technical organization of the production network (B.E. Koenig, 1992; HE.

Koenig and Cantlon, 1998).

The changes in technical and economic performance are therefore

mathematically linked to changes in specific financial performance measures.

Since the component processes are modeled initially as unconstrained material

transformation processes, various [disciplinary] perspectives are readily

accommodated within one systemic structure. Hierarchies of multi-product

processes are constructed in which the parameters at higher levels are

rigorously computed from the parameters at the lower levels, starting with

observable single-product processes. Changes in crop production technologies,
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for example, can be mathematically mapped into changes in ecosystems;

similarly observable parameters of elementary processes are mathematically

mapped into parameters of a non-observable “hyper-processor(s)” with multiple

products and their effects integrated on multiple performance measures.

Some applications of the processing network paradigm (ibid.) are found in

Saama et al. (1994), Tummala and BE. Koenig (1991), and BE. Koenig

(1992). Saama et al. (1994) demonstrate the application of hierarchical

ecological networks in engineering design, strategic planning, and

management for the prototype of an agricultural enterprise. Tummala and

BE. Koenig (1991) focused on manufacturing enterprises. The joint ecological

and economical performance of alternative materials recycling networks were

presented by B.E. Koenig (1992). Other applications of the network paradigm

to agroecosystems (Alocilja, 1990) include the following:

1. The variation ofwater delivery to small farms from an earthen canal

distribution system as typically constructed in Senegal (Barry, Schaper and

Alocilja, 1990).

2. Nitrate leaching resulting from alternate cropping patterns and soils using

farming practices typical of Michigan, (Dadoun and Alocilja, 1990).

3. Analysis of beef feedlots, (Saama, Schipull, and Alocilja, 1990).

4. Analysis of combined swine and crop production, (Tilma, Tilma, and

Alocilja, 1990).
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5. Phosphorous loading resulting from the application of dairy-cow manure to

crop-land, (Alocilja, von Bernuth, and Beede, 1995).

Alocilja, von Bernuth, and Beede (1995) used the compromise programming

approach of Romero and Rehman (1989) to minimize three competing factors:

excess manure after fertilization, feed costs, and cropland. A similar approach

was used by Dadoun and Alocilja (1990) to manage the impact of nitrate

leaching under various cropping patterns.

MULTIDIMENSIONAL NONLINEAR OPTIMIZATION

The Process of Enterprise Optimization

The word “optimization” describes the general “process of improvement” (Box,

Davies, and Swann, 1969). The logic and mathematics of optimization are

independent of application (Beveridge and Schechter, 1970; Sawargi,

Nakayama, and Tanino, 1985). In addressing the management task of the

allocation of resources, the decisions on the control of resources may reference

a sequence of models that mimic the essential features of the real world

production enterprise (see Figure 2.1); this is an example of model-referenced

control (Sawargi, Nakayama, and Tanino, 1985).
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Yes model

"Best"

schedule

Figure 2.1. The general optimizing decision process

(after Sawaragi, Nakayama, & Tanino, 1985).

Typically an initial proposed schedule of resources is processed through a

structural model of the enterprise that characterizes all essential processes and

their results in terms of mass, energy, and monetary flow. The results from

the structural model are then processed through an impact model of the

enterprise. The impact model translates information on the mass, energy, and

monetary flow within the enterprise into performance indices. The

performance indices are formulated from various perspectives such as physical,

chemical, biological, social, and economical (ibid.). The various impact
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perspectives form a set of dimensionally distinct measures of enterprise

performance.

The performance results of the proposed resource schedule emanating from the

impact model are then processed by the enterprise evaluation model. In the

evaluation model, the distinct impact measures are merged into a merit

function of overall performance acceptability. The evaluation model is based

on a value system that includes the acceptable ranges for both individual

impact measures and any weighted combination of impact measures (ibid.).

The criteria to accept, or reject the proposed resource schedule need not be

fixed a priori, but possibly may be negotiated once an interpretation of the

impacts becomes possible. Indeed, the discovery process of assessing the

meaning of impacts may display conflicts, trade-offs, and potential resolutions

that could not be anticipated. The rules for revising the evaluation criteria

(negotiation), however, may be established a priori (ibid.). Dynamic revision of

evaluation criteria is achieved with hierarchical optimization methods such as

Cultural Algorithms (CAs) described in sequel (Reynolds, 1994).

The results from the enterprise evaluation model lead to a decision to either

accept the proposed resource schedule, or to reject it. Further decisions are

warranted if the proposal is rejected. The ultimate decision has to be made as
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to whether the decision process should be terminated, or another attempt

should be made to improve the resource schedule economics (Sawargi,

Nakayama, and Tanino, 1985).

Continuing attempts for improved resource schedules require the creation of

alternatives to previous proposals. Alternatives may be generated totally at

random; however, a strategy which extracts information arising from previous

proposals may be used within an alternative generator to guide the

formulation of further proposals. The proposal history may also provide

information that may help in negotiating revised acceptance criteria. By this

means, the search for an acceptable resource schedule may evolve and adapt to

conditions (operating and environmental) which were not, or could not be

described a priori (Back, 1996).

The optimization decision process may not necessarily find an acceptable

resource schedule for highly constrained conditions. The termination criterion

needs some means to accommodate this possibility; otherwise, the optimization

process could continue indefinitely. If one acceptable resource schedule is

discovered, other acceptable schedules will likely be discovered from the

optimization process; the one which ranks highest may then be implemented

as the “best management strategy” (Sawargi, Nakayama, and Tanino, 1985).
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Linear versus Nonlinear Optimization

Linear optimization methods tend to be mathematically sleek and

computationally fast; therefore, linear approaches to resource allocation are

often the methods of choice. Real world problems, however, must be simplified

(linearized) to a form which can be accommodated by linear methods. Whether

linear methods are appropriate for the problem at hand depends upon the

tolerance to distortion produced by the linearizing process; in other words, the

problem may become over-simplified. Nonlinear optimization methods may

produce more realistic results; but, greater accuracy comes at the cost of

greater computational effort.

The solution to a linear optimization problem is generally a “corner solution”;

that is, the solution point, or solution vector is located at the intersection of

constraints on the response surface of the modeled process which for linear

methods is a plane, or hyperplane (ibid.). If the optimum is to “maximize” and

the evaluation surface is canted from horizontal, the optimum is located at the

top corner, or top edge. Conversely, if optimizing is to minimize, the optimum

lies at the bottom corner, or edge. The top and bottom are defined by the

limiting constraints.

One difficulty for linear methods is the identification of field optima which are

optima residing within the interior of the response surface. If the evaluation is
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dead level, the optimum includes the entire evaluation surface within all the

constraints. Given the limitations of computational precision, however, a

“dead level” evaluation surface is almost impossible to obtain and a corner

solution to a linear structure will be found. In practical terms, the evaluation

plane could be “in the neighborhood” of dead level and the result from the

linear optimization may be no more than one of many workable solutions

(ibid.).

If the problem can be bounded by a set of constraints confining a small

evaluation surface, the error in applying linear methods to nonlinear field

problems can be reduced. This approach, however, requires experience specific

to the problem in order to achieve convergence and essentially emulates

nonlinear programming through successive approximation (Alocilja, 1995;

Sawargi, Nakayama, and Tanino, 1985).

Nonlinear methods, on the other hand, are not restricted to planar evaluation

surfaces. Many real world problems, especially those involving biological

systems, cannot be reasonably solved by linear methods. The repertoire of

nonlinear methods can accommodate evaluation surfaces that appear as either

smooth or cratered hyper-spheres. Derivative methods work for situations

with smooth-continuous solution vectors. Nondifferentiable methods apply

where the variables in the solution vector are non-smooth or discontinuous

(Lange, 1965) The choice of nonlinear method depends on the difficulty of the
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problem and the accuracy afforded for the solution (Box, Davies, and Swann,

1960; Shoup and Mistree, 1987).

Multidimensional Numerical Methods

All numerical optimization methods share the common “sequence of logic

steps” (as depicted in Figure 2.1) where trial vectors of input variables are

evaluated against a performance criterion, the optimization being terminated

once the criterion has been satisfied, or else the process is interrupted if no

feasible region is apparent (Beveridge and Schechter, 1970).

All but two of the classical optimization procedures gradually improve the

value of the input vector with each sequential (subsequent) iteration of the

optimization process. The tabulation method and sequential random search do

not improve the input vector with most sequential trial input vectors per se.

Both tabulation and random search, however, are direct search methods (Box,

Davies, and Swann, 1969).

Techniques that improve the value of the input vector with each iteration are

referred to as “iterative techniques.” Iterative techniques begin with an initial

point and progress in an “efficient” manner toward the optimal value with each

successive iteration. Efficient is defined in terms of the problem and the

algorithm used to solve it (Buchner, 1975). Iterative techniques are divided
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into two classes: direct search methods and gradient methods (Box, Davies, and

Swarm, 1969). Direct search methods do not require an explicit evaluation of

the partial derivatives of the objective function; these are called “derivative

free methods” (Kuester and Mize, 1973). The value of the performance

criterion is added to the history of the iteration progression to “direct” the

search efficiently toward the optimum. Some directed search methods use the

information thus obtained to generate numerical approximations to the

derivatives of the objective function. Some search methods fit low order

polynomials or surfaces through selected points in the iteration history so that

proxy partial derivatives may be processed by gradient search methods

(Kuester and Mize, 1973; Press et al., 1986).

Gradient methods select a search path based on the values of the partial

derivatives of the objective function with respect to the independent variables.

Gradient methods generally use first derivatives only; depending on the

problem and the solution algorithm; however, higher order derivatives may

also be used (Buchner, 1975; Kuester and Mize, 1973).

Numerous multivariable nonlinear optimization methods have been developed

since the introduction of the computer. Some methods are more appropriate

for particular applications than others. The guidelines for selecting an

optimization method depend firstly on the availability of derivatives from the

objective function and secondly on the “quality” of the derivatives:
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. If analytical derivatives are available, analytical methods should be

considered, especially if high precision is required (Kuester and Mize, 1973).

. If “smooth” numerical derivatives are available or easily generated,

derivative methods and direct function evaluation methods have similar

efficiencies (ibid.).

. Gradient methods incorporating numerical derivatives can be expected to

have convergence difficulties with high precision (ibid.).

. Gradient methods tend to have trouble at boundaries and ridges but

gradient methods are suited to locating field optima (Shoup and Mistree,

1987).

. Direct search methods become relatively more efficient and accurate than

gradient methods as the accuracy of numerically derived derivatives

deteriorates (Box, Davies, and Swarm, 1969).

. If the response surface of the objective function is “smooth” (not “cratered”),

direct linear search and pattern search methods are more eflicient than grid

tabulation and random search methods, (ibid.).

. Grid tabulation and random search methods are not bothered by

multimodal surfaces (more than one local optimum), cratered, and non-

smooth response surfaces, (Shoup and Mistree, 1987).

. Random search does not converge quickly and is very slow for high

precision. If the response surface permits, random search can be used in

combination with a rapidly converging method, (ibid.).



9. Grid and random -‘

lcrateied. ridged. ‘

 success is not allot-

tihid.).

The final selection of n

knowledge of the mic t

leconsidered. Models ‘

tatements, and rule ho

numerous local optima t

St'ann1969; Shoup an-

itrl'asses" and “caves" 2

ll)? .

.re.ponse
surface

(Gil  
i'uputationallv



 
 

22

9. Grid and random search methods will work with any response surface

(cratered, ridged, or gullied) and solution vector (continuous, or discreet),

success is not affected by the dimension of the space being considered,

(ibid.).

The final selection of non-linear optimization method rests with prior

knowledge of the type of problem and the behavior of the numerical model to

be considered. Models with many embedded case selections, condition

statements, and rule bases tend to produce rough response surfaces with

numerous local optima that may deceive derivative methods (Box, Davies, and

Swann, 1969; Shoup and Mistree, 1987). Similarly, optima that are hidden in

“crevasses” and “caves” as depicted in Figure 2.2 require fastidious searches of

the response surface (Gill and Murry, 1981). Both conditions imply the use of

computationally
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Local

Minimum

1

Global Minimum

 

 

\  
Figure 2.2: Example of a global minimum hidden in a crevasse.

(after Gill and Murry, 1981).

slower methods to better guarantee that the “global Optimum” is found.

Appendix A gives an overview of the more widely known multivariable

nonlinear optimization methods.
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Multidimensional Root Finding versus Multidimensional

Optimization

Numerically, a nonlinear system is a set of related nonlinear equations. Why

not, then, use a method such as Newton-Raphson to find the roots of the

system equations? The answer depends on prior knowledge of the system

behavior and the number of independent variables in the system. Having a

good first guess for the solution is crucial for implementing root-finding

methods that must iterate from a starting point. As the system to be solved

becomes larger and increasingly nonlinear, the ability to propose an initial

guess deteriorates (Press et al., 1986).

Root-finding methods do not guarantee the correct answer for optimization.

Root-finding methods may converge to the wrong root. On the other hand, no

roots may exist. In short, there are “no good general root-finding methods for

solving systems of more than one nonlinear equation” (ibid.).

The notion that root-finding is the same as optimization is actually false for

multidimensional systems. Optimization is not the same as finding a zero in a

multidimensional gradient. In the one-dimensional problem, a minimum can

always be found by “sliding-downhill.” There is “no analogous conceptual

procedure for finding a multidimensional root.” In the multidimensional
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problem, “downhill” must allow for marginal tradeofl's; how much is “downhill”

in one dimension worth in terms of performance against the “downhills” in the

remaining dimensions. Collapsing a multidimensional root-finding problem

into a composite objective function does not guarantee that the global optimum

will be found. Furthermore, in those special large systems where root-finding

is successful, the global optimum need not have any nearby roots. Moreover,

multidimensional optimization procedures have been found to be faster than

root-finding methods, (ibid.).

Which multidimensional optimization procedure to choose depends on the

nature of the system to be solved. Methods which “make no special

assumptions” about the system and the objective function, which optimize

based on direct function evaluation over the response surface can be extremely

slow. For difficult response surfaces, however, they can be “extremely robust,”

(ibid.).
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ADAPTIVE CONTROL

Adaptive control refers to the control of systems for which the full behavior or

state is only partially known in real time (Bellman, 1961; Narendra and

Annaswamy, 1989). Adaptive control systems use “feedback” in a multi-tiered

process. Feedback consists of the following:

1. Measurement of the operating system and its environment,

2. Comparison of the operating system performance against some performance

standard, and

3. Correction toward the performance standard.

The adaptive control problem is one where the parameters of an operating

system are known to a limited degree of accuracy by the system designer or

operator. In adaptive control systems, the parameters (and possibly the

structure as in evolutionary programming) of the system may change with

time during the system's operation, (Back, 1996; Fogel, 1995; Narendra and

Annaswamy, 1989; Lange, 1965).

In biological terms, “adaptation” refers to “an advantageous conformation of an

organism to changes in its environment.” The term “adaptive system” in

control theory represents control systems that monitor their own performance

and adjust their parameters toward better performance, (Drenick and
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Shahbender, 1957).

Narendra and Annaswamy (1989) have brought together the concepts of

various researchers as to what defines an adaptive system and what

constitutes adaptive control. A selection of these are presented in Appendix B.

The authors have struggled over time trying to achieve mathematical

precision on-the-one-hand and inclusion on-the-other-hand to describe what is

“adaptive.”

Adaptive control involves solving the optimal control problem over time for a

time dependent process (Kalaba and Spingam, 1982; Narendra and

Annaswamy, 1989). The determination of optimum system performance is a

multistage process; that is, an estimate of optimum performance is evaluated

and corrected during system operation. This is the concept underlying

dynamic programming which is based on Bellman's Principle of Optimality,

(Bellman, 1957). The trace of optimum system performance over time

constitutes an envelope of tangents to the solutions of the optimal control

problem at each evaluation, (Kalaba and Spingam, 1982). By extension, one

can deduce that adaptive control is Markovian (Agrawal and Heady, 1972).

Every adaptive system is merely a feedback system involving the estimation of

the current state of the system and the subsequent control response. The

complexity of adaptation increases as a parameter in a system is adjusted over
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time to cope with new uncertainty; that is, the parameter becomes a state

variable in evaluating the performance of the system, (Narendra and

Annaswamy, 1989). Properties of adaptive systems are given in Appendix C.

The Stable Behavior of Plants in Biosystems and Agroecosystems

In terms of biomass accumulation, a plant is a biological integrator of solar flux

in its environment (Schaper, 1976). Biomass accumulation is essentially linear

with respect to absorbed solar energy provided that nutrients and water are

not limiting. The change in the phenological development of plants for any

time period can serve as an indicator of the weather (heat-units, solar

radiation, effective rainfall) for that period, (Ritchie, 1993-1995). The growth

of plants from one developmental stage to another is coupled to biochemical

reactions. The rates of these biochemical reactions respond to temperature.

Phenological development, therefore, proceeds according to the accumulation of

heat units, (ibid.).

Biomass accumulation with respect to precipitation follows a general quadratic

relationship provided light and other nutrients are not limiting,

(Hexem and Heady, 1978). The ability of a plant to consume water from

precipitation for biomass production is tied to the physics of water movement

through the soil. The influence of soil media on water movement is analogous

to a resistance-capacitance (RC) electrical circuit, (Campbell, 1985). Soil water
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movement is a first-order phenomenon for which the response to transient

inputs diminishes with time (Coughanowr and Koppel, 1965; Del Tom, 1965).

Although the responses of soil and plants with respect to time are nonlinear,

the response of each is none-the-less bounded. Bounded environmental and

agronomic inputs yield bounded behavior.

EVOLUTIONARYALGORITHMS

‘Would you tell me, please, which way I ought to go from Here?’

‘That depends a good deal on where you want to get to’, said the Cat.

‘1 don’t much care where...’, said Alice.

‘Then it doesn’t matter which way you go’, said the Cat.

‘80 long as I get somewhere’, Alice added in explanation.

‘Oh, you’re sure to do that’, said the Cat, ‘Ifyou only walk long enough.’

Lewis Carroll in Alice in Wonderland

Evolutionary Algorithms (EAs) have emerged over the past thirty years as a

class of multivariable optimization methods particularly adapted to large-scale

nonlinear parameter estimation problems. The feature common to all

Evolutionary Algorithms is iterative adaptation or stepwise optimization of

successive populations of trial solutions. The structure of the adaptation
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process draws, albeit somewhat crudely, from biological paradigms (Back and

Schwefel, 1993; Schwefel and Rudolph, 1993).

Exploration of the search space proceeds on a randomized selection of trial

solutions. The search process is initiated arbitrarily with a hunt for an initial

feasible solution. The initial feasible solution can be very inferior to the goal(s)

of the optimization. The search space is then explored by successive

generations of trial solution populations. The results from individual trial

solutions within each population generation is examined for their achievement

offitness criteria. The elite(s) that have the “best” fitness is (are) selected for

the basis of the next generation of trial solutions. A random selection process

is employed to generate the next generation. Evolutionary Algorithms make

use of the concepts of mutation, and recombination (ibid.).

The theory of Evolutionary Algorithms is based on the multivariate statistics

of experimental design (Schwefel and Rudolf, 1993; Box, 1957; Box and Wilson,

1951; Brooks, 1958; Fisher, 1935; and Fisher, 1941). Both Box and Brooks

developed multidimensional optimization methods based on Fisher’s earlier

work in experimental design (Schwefel and Rudolf, 1993). Brooks studied the

application of random methods for seeking maxima and compared these to the

factorial, univariate, and steepest-ascent methods (Brooks, 1958). Brooks

found that random methods may prove more efficient for larger, more complex
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experiments than the other methods. Also, he noted that random methods

need not be applied sequentially; trials may be conducted simultaneously.

Brooks proposed further elaborations of random search which he termed the

Stratified Random Method and the Creeping Random Method (ibid.).

In 1955, G. E. P. Box proposed the statistical method of Evolutionary

Operations (EVOP) as a means to increase the productivity of chemical

manufacturing processes following the completion of plant construction and

maintenance, or in response to aging (Box, 1957; Box and Draper, 1969).

Evolutionary Operations applies multivariate statistics to measurements of

manufacturing processes to guide the successive readjustments of control

parameters. EVOP assumes that normal distributions and a linearized model

of the plant are reasonable. A practical consideration of the statistical

correlations among the control parameters is used to search for a configuration

which achieves the greatest productivity (ibid.). Under EVOP, the plant or

manufacturing process is regarded as an evolving species. “The quality of the

product advances through random mutations and selections as determined by

the [managing] committee” (Fogel, 1995). EVOP was not instituted as an

autonomous computer simulation. Random Search and Evolutionary

Operations led directly to the development in Germany by Rechenberg of a

multidimensional optimization method called Evolutionsstrattegie which he

applied to the analysis of the complex fluid mechanics describing the
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performance ofjet engines (Rechenberg, 1965; Fogel, 1995).

Three main categories of Evolutionary Algorithms that have been advanced

over the past thirty years are Genetic Algorithms (GAS), Evolution Strategies

(ESs), and Evolutionary Programs (EPs) (Back and Schwefel, 1993). A forth

category has developed within the past ten years that is essentially a

hierarchical coupling of Evolutionary Algorithms; these are referred to as

Cultural Algorithms (CAs) (Reynolds, 1994). The main characteristics of

Evolutionary Algorithms are given in Table 2.1.

Three multidimensional nonlinear search methods to network analysis were

studied by Schneider, Schuchhardt, and Wrede (1994) for their applicability to

optimization problems in biochemistry and biological processes:

0 Gradient search as implemented in neural networks,

0 Diffusive search which characterizes genetic algorithms, and

0 Evolution strategy comprising adaptive sequential random search

(Back, 1996).
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Table 2-1: Main characteristics of evolutionary algorithms

(after Back and Schwefel, 1993; Back, 1996).

 

 

ES EP GA

Evolution Evolutionary Genetic

Characteristic Strategy Programming Algorithms

Representation Real-valued Real-valued Binary-valued

Self-adaptation Standard Variances None

deviations and (in meta-EP)

covariances

Fitness is Objective Scaled objective Scaled objective

function value function value function value

Mutation Main operator Only operator Background

operator

Recombination Different None Main operator

variants,

important for

self-adaptation

Selection Deterministic, Probabilistic, Probabilistic,

extinctive extinctive preservative

Constraints Arbitrary None Simple bounds

inequality by encoding

constraints mechanisms
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They concluded that gradient search as implemented currently in neural

networks “is well suited for optimization in smooth fitness landscapes without

local minima.” Evolution strategy, adaptive sequential random search, “seems

to be the method of choice for optimization in a high-dimensional multimodal

search space.” Difi'usive search, genetic algorithms, apply to situations having

intermediate difficulty (ibid.).

CLIMATIC SCENARIOS

Climatic scenarios in this research relate to running the irrigated maize

enterprise model under a linguistically-described weather regime for the whole

of the year; some scenarios may involve splicing a forecasted weather regime

for a period into the weather for a reference year. Using scenarios,

observations can assess the impact of a particular weather regime on the model

performance. The following references provided the basis for techniques used

in the methodology presented in the next chapter: Duchon (1986), Andresen

and Stefanski (1991), and Richardson and Wright (1984).

Research by Duchon

The seminal research in the development of climatic scenarios was conducted

for Peoria, Illinois (Duchon, 1986) using a total of 36 actual weather records.

The year 1983 was used as the representative “low yielding” year and 1976
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was used as the representative “high yielding’ year. Using the CeresMaize 1.0

crop growth model, difl'erent simulations were created by inserting the record

of the portion of the growing season for each year into the record for the

reference year in order to obtain forecast periods that sequenced fi'om planting

through crop maturity. Only rainfed maize production was considered;

nitrogen was assumed adequate for all cases. Also, only one soil type and one

cultivar were used for all runs for any location. The results depicted the yield

variance versus the proportion of the growing season for which a “perfect”

weather forecast was provided.

The objective of Duchon’s work was to observe the impact of having a “perfect”

weather forecast up to any given day in the growing season. Following the last

day of the perfect forecast, a four-day transition was made from the reference

year (1976, or 1983) to each of the remaining 35 years of weather history. The

transition coeficients were based on a study of the correlation of maximum

and minimum temperatures on a given day to the corresponding temperatures

on succeeding days. Average autocorrelation coefficients were used as

weighting factors to splice the reference weather year to each of the remaining

weather records. The values used were 0.70, 0.35, 0.18, and 0.10 for the first to

the fourth transitional day, respectively. No transition was applied to

precipitation, however.
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As the change-over date was advanced through the growing season, the

variance declined from its maximum value in a sigmoidal manner toward zero.

From the sowing date until after tassel initiation, the variance remained at its

maximum value which indicates that the weather regime and, hence, the

weather forecast was not an important factor in predicting the crop yield for

rainfed maize. Beginning fiom the development of the ear through to the

early grain-filling period, the variance declined to zero; therefore, the weather

forecast proved important during these stages of crop growth.

Except for frost, weather had no influence on yield at the end of the grain

filling period. Additional observations from Duchon's research are as follows:

1. The yield variance in some cases increased fi'om one forecast period to the

next, reflecting the nonlinearity of the plant growth model, CeresMaize.

2. The effect ofweather on the model at a given time depends on the

antecedent weather.

3. The weather record must be considerably greater than 35 years to ensure

reasonable stability of the yield prediction.

4. The accuracy of yield prediction depends on the “adequacy” of the crop

model and the accuracy of the weather forecast.

Duchon attempted to assess the value of a perfect weather forecast by

considering the reduction in the yield variance for three forecast periods
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leading up to the mid grain-filling period after which weather no longer had an

effect on yield. The value of a 5, 15, and 30 day perfect forecast peaked at 0.8

T/ha, 2.1 T/ha, and 3.2 T/ha, respectively.

Duchon suggested the derivation of six or nine categories of the weather from

local weather records for above average, below average, normal weather

conditions would be useful to describe weather regimes . Additionally, the

roles of fertilizer and irrigation on yield prediction were suggested for future

investigation.

Research by Andresen and Stefanski

Andresen and Stefanski developed climatic scenario statistics over the growing

season for eight sites throughout the US. cornbelt (Andresen and Stefinski,

1991, Stefinski and Andresen, 1991). They then applied CeresMaize 1.0 in the

same manner as did Duchon. They validated CeresMaize against twenty years

of data recorded at Washington, IA. The sites chosen for their research were:

Goldwater, Michigan (25 miles south of Kellogg Biological Station)

Columbus, Indiana

David City, Nebraska

Darlington, Wisconsin
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Greenville, Ohio

Morris, Minnesota

Urbana, Illinois

Washington, Iowa

Andresen and Stefanski obtained monthly weather data for each of the sites

from the National Climatic Data Center and then used the data to develop site

parameters for the WGEN synthetic weather generator (Richardson and

Wright, 1984). They next produced twenty synthetic weather years for each of

nine weather scenarios for each location. The nine linguistically-described

weather scenarios were:

Above average temperature, above average rainfall

Above average temperature, average rainfall

Above average temperature, below average rainfall

Average temperature, above average rainfall

Average temperature, average rainfall

Average temperature, below average rainfall

Below average temperature, above average rainfall

Below average temperature, average rainfall

Below average temperature, below average rainfall
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Average conditions were defined as the forty percent of temperature and

rainfall observations about the midrange of all observations. Above and below

average conditions were defined respectively as the thirty percent of the

observations above and below the average conditions.

Andresen and Stefanski applied the climatic scenarios to three periods of

varying durations within the growing season (June to August, July to August,

and August) to twenty-one actual weather years spanning 1968 to 1988 for

each location. The highest yields were found in cool-wet scenarios (below

average temperature, above average rainfall). Conversely, the lowest yields

were observed for warm-dry scenarios (above average temperature, below

average rainfall.)

Andresen and Stefinski suggested that the 30- and 90-day extended weather

outlooks from the Climate Analysis Center be used to anticipate electric power

demand, and weather-dependent non-agricultural sales.
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THE RICHARDSON-WRIGHT WEATHER GENERATOR WGEN

The National Weather Service has extensive weather data on magnetic tape

and CD-ROM. The data can be cumbersome to use; moreover, data are not

available for all locations (Hanson et al., 1994). The WGEN model was

developed to permit generation of realistic climatic information on micro-

computers (Richardson and Wright, 1984).

The 1984 version ofWGEN uses 12 parameters to characterize the weather for

a particular location. The weather parameters for a location are interpolated

from historic weather parameters (Hanson et al., 1994). The parameter set for

Michigan’s reporting stations was based on twenty years, or more, of weather

observations (Nurnberger, 1995).

Considering the weather parameters for a location, WGEN simulates daily

weather for the specified time period, giving the following measures: daily

precipitation, daily maximum temperature, daily minimum temperature, and

solar radiation. “Daily precipitation is described by a first-order Markov chain

with precipitation amounts distributed as a mixed exponential. Additionally,

data on daily maximum and minimum temperatures and on daily solar

radiation are simulated using a weakly stationary generating process first

described by Matalas (1967) and adapted to daily weather by Richardson

(1981). The seasonal variations of parameters are described by Fourier series
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providing a very parsimonious model...” (Hanson et al., 1994).

To generate daily weather, WGEN first examines the occurrence or

nonoccurrence of precipitation based on “the dependence between wet and dry

occurrences on successive days...” “Seasonal variations are accounted in the

model by expressing the transition probabilities as a Fourier series...” (ibid.).

The maximum temperature, minimum temperature, and solar radiation values

are “conditioned on whether the day was dry or wet as determined by the

Markov chain occurrence model” (ibid.).

Several accuracy problems were found with the 1984 version ofWGEN for

several North American locations. The first problem was noticed for stations

east of the Rocky Mountains along the Canadian border and in the northern

Great Plains (ibid.) which involved duplicating mean ”minimum temperatures

less than zero degrees F. “Furthermore, the standard deviations of the

generated temperature records [for these locations] were low during the

summer and midwinter and very high during early spring and fall.” (ibid.).

The second problem involved solar radiation, daily values “did not represent

actual conditions in northern latitudes. The upper limit on solar radiation was

too restrictive for stations in the southwest generally and too restrictive for

cloudy days in the northeast” (ibid.). The problems with the 1984 version of

WGEN have been appreciated (Andresen, 1995; Numberger, 1995) and the

1994 version has been corrected for the problems mentioned. Unfortunately,
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very few stations in Michigan appear in the 1994 version, for which reason the

1984 version remains in use.

MAIZE CROP GROWTH MODELS

CeresMaize and CORNSIM are maize crop growth models orientated toward

solving particular agricultural problems; hence, they are not as detailed as

models intended solely for research. The requirements for crop models of this

type have been outlined by Whisler et al. (1986) and are listed in Appendix D.

The CORNSIM Model

CORNSIM was developed in the late 1970's for the particular purpose of

simulating the expected flow of grain at the farm or community level during

the harvest season (Van Ee and Kline, 1979). The data on grain flow at

harvest were used for a study of corn drying and storage for conditions in Iowa.

CORNSIM followed from a fifteen year succession of crop production models

that focused on how best to manage machinery resources.

Maize growth in CORNSIM was based on crop histories in Iowa; as such, a

number of simplifying empirical relationships were used (Van Ee, 1995-1996).

Rather than including a detailed model of plant growth, CORNSIM focused on

predicting the yield and moisture content at harvest, based on weather, maize
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variety, and planting date. As an example of one of the simplifications, yields

were reduced in the model if planting did not occur at the optimum time

suggested by historical records.

CORNSIM enabled the direct consideration of planting several maize varieties

with the intention of obtaining the sequential crop maturity dates across a

farm or community. Harvesting and drying capacities could then be better

utilized through linear programming and the community could achieve an

economic advantage (ibid.). The model could accommodate thirty fields of

maize with physiological maturity calculated for each. Maize development

after planting was based on heat units (growing degree-days). Yield

projections were based solely on data collected from research plots of the Iowa

Crop Association; no photosynthesis submodel was included.

The subprogram inside CORNSIM for “dry-down” of mature maize in the field

received special attention as crop-drying was a concern for the use of the

model. The effect on machinery management subject to alternative planting

plans could then be observed (Van Ee and Kline, 1979).
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The CeresMaize Model

CeresMaize is perhaps the best-documented and tested crop growth model. It

has been used worldwide for more than ten years to predict maize growth and

production for various plant genotypes, soil properties, climatic conditions, and

nutrient sources. CeresMaize 1.0, CeresMaize 2.1, and CeresMaize 3.0 have

been embedded in decision support programs such as DSSAT 2, DSSAT 3,

WEPP and DAFOSYM, all of which include subprograms for chemical forms of

nitrogen fertilizer (DAFOSYM, 1996; DSSAT, 1995; Rotz et al., 1989; Rotz et

al., 1991; WEPP, 1997). None of these versions, however, includes animal

waste within the CeresMaize model.

CeresMaize followed from a set of maize production models that focused on the

variation of yields across locations and environments (Kiniry, 1991). As

compared to CORNSIM, CeresMaize was designed to be portable; that is,

CeresMaize has been used to simulate conditions for maize growth for

numerous locations around the world (Ritchie, 1993-1995).

CeresMaize considers plant phenological development based on heat units.

Photosynthesis and carbohydrate accumulation are based on solar energy.

Root development, leaf number, and biomass accumulation by plant organ are

also calculated in addition to a yield projection at 15.5 percent moisture (wet

basis) (Kiniry, 1991).
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The program operates on a daily time-step. Likewise, only daily average

weather measures are needed. Changes in the soil profile and within the plant

can be recorded to output files on a daily basis. CeresMaize simulates much

more of the plant's activity than CORNSIM; however, it does not track field

dry-down. As opposed to research models which simulate plant processes

throughout the day, CeresMaize uses some simplifying empirical relationships

to permit use of the daily time-step in order to reduce computation time.

The photosynthetic activity and resultant distribution of biomass depend on

the phenological stage of plant development (ibid.). CeresMaize divides maize

development into seven growth stages:

Stage number Stage description

7 Prior to sowing (fallow)

8 Sowing to germination

9 Germination to seedling emergence

1 Seedling emergence to end ofjuvenile stage

2 End ofjuvenile stage to tassel initiation

(photoperiod-sensitive stage)

3 Tassel initiation stage

4 Silking to beginning of effective filling
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period of grain (lag stage)

5 Effective filling period of grain

6 End of effective filling period to

physiological maturity (black layer)

Shifting plant development from one stage to the next occurs when the

appropriate number of heat units has accrued subject to the genetic coefficients

for the cultivar in question. Therefore, weather and genetics control the

development of a normally growing plant. The general flowchart of the

CeresMaize program is given in Figure 2.3 (Kiniry, 1991). Numerous

validation studies have been performed on CeresMaize (Kiniry, 1991; Ritchie,

1993-1995); CeresMaize may well be the most popular maize growth program

in use in applied research in the United States.

The Inbred Maize Version of CeresMaize

Martin (1992) constructed a version of CeresMaize, CERES-1M, for inbred

maize to simulate seed corn growth. He also conducted a two-year lysimeter

study of nitrate movement from seed corn in sandy loam soils in St. Joseph

County, Michigan. The lysimeter studies where used to validate CERES-1M.

Martin used the validated CERES-1M to evaluate the effects of several

fertilization strategies on nitrate leaching and enterprise profit. He

considered 17 fertilizer management strategies including single fertilizer
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application, split nitrogen application, and plant response fertilization (PRF).

Martin concluded that a split application of 30 kg/ha at planting and 80

kg/ha at cultivation (growth stage 6) gave optimal results. Irrigation in

CERES-1M was performed with fixed schedules and by daily top-up.

The Animal Waste Management Version of CeresMaize

The Animal Waste Management version of CeresMaize (hereafter referred to

as AMaize) was developed by Shayya and von Bernuth (1992) to include the

various nitrogen transformations of animal manure in the soil. Swine, cattle,

or mixed slurries are included in the original version. AMaize was constructed

from CeresMaize 1.0, but includes features of later versions of CeresMaize.

AMaize considered the land area per plant but not row spacing as does

CeresMaize 2.1. AMaize does consider capillary rise and root die-back to a

rising water table. None of these models consider phosphorous directly.

Phosphorous dynamics will be included in the SALUS Model, which will

succeed CeresMaize (Ritchie, 1993-1995).
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CENTER PIVOT IRRIGATION SYSTEMS

The center pivot irrigation machine was patented in 1952 (Pair et al., 1975).

Center pivot irrigation is now common on all continents except Antarctica.

Center pivots can be found irrigating every type of crop in climates ranging

from tropical desert to temperate humid regimes.

Center pivot irrigation machines are capable of relatively high water

distribution uniformities (statistical uniformities greater than 85 percent in

low wind conditions). Center pivots are commonly operated automatically.

The reliability of center pivots is relatively good in that systems can operate

unattended for extended periods (weeks) (ibid.).

An irrigation system would have an irrigation efficiency of 100 percent if it

could provide water to exactly meet all beneficial needs (plant growth, salinity

leaching, etc.) everywhere within the irrigated area and at all times

throughout the irrigation season (Bralts and Wu, 1987; Wu et al., 1986). The

precision with which irrigation water is distributed to all areas is related to the

technology used to distribute the water spatially; this is termed the water

distribution uniformity (Bralts and Kesner, 1983). The water distribution

uniformity is affected by three factors (Elwadie, 1995; Fusco, 1995; Pair et al.,

1975X
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o Hydraulic performance of the water supply, sprinklers, and lateral,

0 Movement of the sprinkler lateral, and

0 Wind distortion of the sprinkler/spray pattern.

The center pivot irrigation machine is peculiar in that the system distributes

water by “sweeping” an are about the pivot center as water is sprinkled or

sprayed onto the soil beneath the lateral. The flow rate at which water is

distributed increases linearly from the pivot center to the distal end of the

sprinkler lateral. How well sprinklers and nozzles can be selected to match the

required water distribution along the lateral is largely a function of the

system's “hydraulic uniformity.” The constancy of the sweeping movement

about the pivot center is related to the machine's alignment and drive

mechanisms. Alignment uniformity and drive uniformity degrade if the

topography is undulating (Fusco, 1995).

Wind is a stochastic phenomenon. The orientation ofwind to the sprinkler

lateral, the variability of the Wind, and the exposure of the sprinkler/spray

pattern to the wind distorts the water distribution across the irrigated area.

Accommodating the effect ofwind involves compromises. Larger water droplet

sizes are less affected by wind, but are more erosive to bare soils. Lowering the

sprinklers nearer to the crop reduces wind distortion; however, the system

generally must accommodate several crops which vary in height. Maize, for
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example, grows to a height of 2.5 meters during the irrigation season (ibid.).

At least five manufacturers supply the North American market. Each offers a

variety of sprinkler and nozzle packages, gearboxes, tires sizes, alignment

systems, control systems, lateral diameters and overall length, truss designs,

tower designs, etc. The reliability and longevity of the center pivot systems

have increased as better designs and materials have become available. A

properly maintained center pivot can operate for several decades, thus a

market for used center pivots has developed. The performance of used systems

is inferior and highly variable with respect to distribution uniformity (Barclay,

1994-1995; Graber, 1995; Krieger, 1995; Nemec, 1995).

The maxim “you get what you pay for” generally applies to center pivot

performance with respect to overall irrigation eficiency and distribution

uniformity (Graber, 1995). Technological advances in design and materials

have made modern machines perform better than old machines. The water

distribution uniformity of a center pivot irrigation machine derives from the

design, installation, and maintenance of a particular system operating within a

particular environment. The distribution uniformity of a system is the most

critical factor determining irrigation efficiency, but it is only one factor. The

other critical factor is the ability to “best” adapt the performance capabilities

of a given system to the demands of crop production, both economical and

environmental (Sammis and Wu, 1985). Determining how best to operate an
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irrigation system in concert with crop production demands is the purview of

irrigation scheduling.

Irrigation Scheduling

The allocation of irrigation water, its timing and amounts, in accordance with

the needs of crop production is called irrigation scheduling. The ability to

schedule irrigation is constrained by the irrigation technology employed

(Howell et al., 1986; Keller et al., 1981; Replogle and Merriam, 1981).

Spatial variability in the water distribution constrains the irrigation schedule

to be based on an “average” or some “critical” irrigated condition within the

irrigated area. The critical condition is typically to provide adequate irrigation

to the least-watered area within the irrigation system. If the least-irrigated

criterion is chosen, all other locations within the system are then over-

irrigated. If scheduling is keyed to the average irrigated condition then part of

the system is over-irrigated and another part is in deficit (Bralts, 1986; Wu et

al., 1986).
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The concepts of over- and deficit-irrigation have to be referenced to crop needs

over each scheduling period. Ideally the scheduling period is keyed to crop

development, but in practice the scheduling period is frequently constrained by

the irrigation technology. High frequency, or daily irrigation scheduling may

be ideal for the crop; however, the irrigation system may have a minimum

cycle time lasting several days. The minimum cycle time together with the

water supply rate establish the minimum irrigation that may be applied for

”
fl

any scheduling period. The maximum irrigation is limited by the water

supply. During extreme droughts for example, only deficit-irrigation may be

possible because of the limited capacity of the irrigation system (Wallace,

1987). The irrigation technology employed, therefore, constrains the time step

for scheduling the irrigation and sets limits on the upper and lower bounds of

each irrigation event ((Howell et al., 1986; Keller et al., 1981; Replogle and

Merriam, 1981).

Crop development is driven by the weather. Weather is stochastic (Ritchie,

1993-1995). Irrigation scheduling demands adaptive and stochastic

optimization (Howell et al., 1986). The needs of crop production are economical

and environmental (Hoffman, 1986; Young, 1981). Hence irrigation scheduling

warrants multicriteria (conflicting criteria and compromise) optimization

(Alocilja, 1995).
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Irrigation efficiency has traditionally been keyed to factors such as root

development. Root development and stage of plant growth, while important,

are merely intermediate measures of irrigation performance. The economical

and environmental performance measures applied to a crop production

enterprise also apply to the technology employed by the enterprise. Hence,

direct economical and environmental impact measures are relevant to

optimization of the irrigation schedule.

FIELD DRY-DOWN

The drying of maize in the field following maturity reduces the need for post-

harvest mechanical drying and thus reduces the cost of production (Bakker-

Arkema, 1995). Field drying requires both favorable weather and an adequate

drying period between maturity and harvest (Van Ee, 1995-1996). Field dry-

down is not included in the CeresMaize crop growth model. Field dry-down,

however, influences the choice of cultivar to plant (Van Ee and Kline, 1979).

Therefore, the field dry-down model from CORNSIM was adapted by this

researcher to the Animal Waste Management version of CeresMaize. Schmidt

and Hallaver (1966) first made a model to calculate daily field dry-down based

on a system of four empirical relationships. The daily kernel moisture

reduction from the “milky kernel” developmental stage (75 percent moisture

content, wet basis) down to “average maturity” (30 percent MCWB) was

described as two linear functions of average daily dry-bulb temperature. From
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30 percent to 20 percent, the daily kernel moisture reduction was described by

two linear functions of average daily wet-bulb depression.

The Schmidt field dry-down model had three major problems. The transition

points selected for shifting from one empirical relationship to the next were

somewhat arbitrary and did not consider biological markers associated with

drying grain (Van Ee and Kline, 1979). The Schmidt relationships were based

on long-term averages of drying-rates over several years. Lastly, the Schmidt

model did not consider rewetting on humid days.

Van Ee improved the field dry-down model by relating the transition from

“complete dent” and “average maturity” to “black-layer development” at 37

percent moisture. Rewetting of mature kernels was also accommodated.

Adjustment coefficients were appended to the relationships to accurately

determine daily moisture change. Also a relationship was added to determine

moisture loss for grain below 20 percent moisture (Van Ee and Kline, 1979).

Both the Schmidt and Van Ee field dry-down models were developed on data

from Iowa. The Van Ee model has been applied to Michigan (Brook, 1995; Van

Ee, 1995-1996).
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HARVESTING

A number of commercial seed producers note susceptibility to lodging, ear drop,

and other factors which affect harvest losses; however, no standardized basis

for comparison of genotypes is presently available. Therefore, factors affecting

losses from mechanical grain harvesting were not considered in this research.

POST HARVEST GRAIN DRYING

The standard practice in the US. grain-marketing system assumes that

considerable stress-cracking and kernel damage will occur from post-harvest

mechanical grain-drying (Bakker-Arkema, 1995). For this reason, grain

quality as affected by drying technology was not addressed in this research.

The performance of typical commercial grain drying technology was assumed.
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IRRIGATED MAIZE ECONOMICS IN MICHIGAN

The effect on maize yield and gross margins from irrigation, nitrogen rate, and

seeding rate was studied in field research conducted on medium- to fine-

textured soils near Lansing and Saginaw, Michigan from 1987 to 1989

(Christenson, Bricker, and Murphy, 1992). The time period chosen to conduct

the research was fortuitous since 1987 had near-normal rainfall, 1988 had

below-normal rainfall, and 1989 had above-normal rainfall. In the study,

scheduled irrigation was found in general to boost yields 40 bu/acre ( 2.5 T/ha)

on loam and silty-clay soils. A yield increase of 58 bu/acre (3.6 T/ha), however,

was needed to achieve the same gross margins as non-irrigated maize on the

same soils after considering the technology and prices used in the study.

Nitrate leaching was not reported; however, the “best practices” for lessening

environmental impacts from farming were used. The recommendations were

based on field data, no crop modeling was attempted to simulate other soils,

technologies, and farming practices. Christensen et al. (1992) cited other

research which inferred that irrigation is rewarding in Michigan on coarse and

sandy soils. Strommen, Van Den Brink, and Kidder (1969) “found that drought

occurred one-third of the time during the growing season” over a 37-year period

for which records were available. “There is less than a 20 percent probability

of receiving more than one inch of moisture per week during June, July, and

August in Michigan” (Baten, Eichmeier, and Kidder, 1959). In Michigan, “corn
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requires more than one inch per week during this period” (Christenson,

Bricker, and Murphy, 1992). As coarse-textured soils such as sandy-loams

have only two-thirds the moisture holding capacity of fine textured silt-loams,

the risk of drought during critical growth stages increases the need for

irrigation on sandy-loams (Pair et al., 1975).

GRAIN MARKETING

Grain marketing and price forecasting are beyond the scope of this thesis. The

optimization of resource utilization as structured in this thesis assumes that a

decision to produce maize has already been made by the farmer.
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CHAPTER THREE

APPROACH

Simulation and optimization are used here to schedule the resource inputs for

irrigated maize production. The production process yields both desirable and

undesirable products and byproducts. The objective is to find a resource

management strategy that will provide a quantitative balance between desired

and undesired results. Such resource management strategies are based on

real-time models of maize development and production.

THE CERESMAIZE GROWTH MODEL

The Animal Waste Management version of CeresMaize is adopted here as the

crop growth model because AMaize includes subprograms in which animal

waste is used in addition to chemical nitrogen fertilizer (Shayya and von

Bernuth, 1992). Since AMaize is derived from CeresMaize, cultivar genetic

coefficients, soil properties, and micro-climate are also accessible for analysis.

Irrigation is included in CeresMaize and AMaize either by appending an

irrigation schedule file to supplement rain from the weather file in the soil

water balance subprogram, or by “topping-up” the soil profile. Different

59
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versions of CeresMaize schedule irrigation by simulating a daily top-up of the

soil profile, by simulating in fixed amounts, or by simulating top-up at specified

intervals.

I modified the irrigation subprogram in AMaize to include:

1. the spatial uniformity of irrigation as a measure used to defined a specific

level of irrigation technology thus specifying parameter values describing

the irrigation technology and operating characteristics of the irrigation

system,

2. a soil water depletion parameter which established a minimum threshold to

initiate irrigation,

3. minimum and maximum daily irrigation amounts defined by the selected

level of irrigation technology,

4. average, minimum, and maximum daily irrigation amounts as a basis for

relating crop response on a field-wide basis to the statistical uniformity of

water application,

5. and cumulative monthly irrigation amounts, monthly electrical energy

consumption, and monthly energy charges for irrigation as actually

calculated by the power utility as a consequence of the level of irrigation

technology.

Ammonium nitrate was used as a proxy for “generic” cattle manure to conduct

a comparison of the subroutines for nitrogen from manure in AMaize and for

nitrogen from fertilizer in CeresMaize. Target yields for various combinations

of fertility, soils, cultivars, weather stereotypes, and irrigation with the two

versions of the crop model were similar.
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On advice from J. Ritchie (1993-1995), the denitrification subprogram within

AMaize was updated to reflect current estimates of denitrification thresholds

for free draining sandy loam soils. The old routine set the threshold for

denitrification too low. Denitrification occurs when the soil is near saturation,

an infrequent event on free-draining sandy loams.

MODIFIED VANEE DRY-DOWN MODEL

AMaize like CeresMaize predicts the crop maturity date and the grain yield at

15.5 percent moisture content (wet basis). On the maturity date, the grain has

a moisture content in the neighborhood of 33 percent. Post-harvest grain

drying is required to reduce the grain moisture content to below 15.5 percent

for safe storage. Post-harvest drying is expensive; field drying depends on the

weather, but is essentially free. The preference is to dry the standing crop as

much as possible in the field before harvesting to reduce the expense of post-

harvest drying.

Cultivars which take full advantage of available heat and solar energy over the

growing season achieve the greatest yields. Cultivars which mature very late,

however, must be harvested at a high moisture level. Some of the revenue

gained from a high yield is thus lost in the cost of drying. Also, long season

cultivars give a stronger response to irrigation and fertilization. If animal

manure is used as a fertilizer, then high yielding, long season culitvars

potentially have an advantage that needs to be quantified.
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A model of maize field dry-down is needed to predict the harvest date because

of the impact of the choice of cultivar on net return in combination with water

and nutrient consumption. Water and nutrient uptake affect nitrate leaching.

The VanEe Dry-Down Model for the in-field drying of standing corn was

appended to AMaize so as to extend the crop management program from

preplanting through to postharvest. The drying rate of field corn depends on

the equilibrium moisture content of the corn grain at a given air temperature

and humidity. To reduce computation time, relative humidity and equilibrium

moisture content were appended to the to the weather files.

The VanEe Field Dry-Down Subprogram was originally incorporated into

CornSim, a corn production model for central Iowa (Van Ee and Kline, 1979)

and has been applied to other areas in the Midwest (Van Ee, 1995-1996; Brook,

1995). This model was chosen based on validation in a temperate, albeit drier-

than-Michigan, portion of the American Corn Belt.

The VanEe Dry-Down Model uses relative humidity as an input to the “dry-

down” (dehydration) equations. Relative humidity, however, is not provided by

the Richardson and Wright Weather Generator used here. An estimate of the

daily average humidity was constructed by assuming the dew point

temperature to be at the daily minimum temperature (Merva and Fernandez,

1985). This method looses accuracy when the mean temperature drops below

freezing in December and January, but this is after the normal harvest season.

The psychrometric submodels from SYCHART (Lerew, 1972; Bakker-Arkema,

Lerew, and DeBoer, 1974; Brooker, Bakker-Arkema, and Hall, 1974) which are
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valid to -18 °C (0 °F) were adapted here to the dry-down model. The

subprogram for the equibrium moisture content of shelled corn in the VanEe

Dry-Down Model was also replaced by the more accurate model at low

temperatures (4 °C to 60 °C, 40 °F to 140° F mean temperature) from DeBoer

(Bakker-Arkema, Lerew, and DeBoer, 1974). The average deviation from

experimental data is 0.5 percent for the DeBoer model.

Simulated field drying was initiated the first day after crop maturity as

calculated from AMaize. Every day with rainfall less than 3 mm was counted

as a drying dry, the grain moisture contents were then adjusted for the

maximum, minimum, and average irrigated conditions. No drying accrued on

days with 3 mm or more of rainfall. Grain harvest was constrained to occur

between the first day following crop maturity and Julian day 330, the 26th of

November.

CENTER PIVOT IRRIGATION MODEL

The spatial distribution of the water delivered to the maize field by a center

pivot irrigation system was quantified in terms of a symmetrical beta

distribution (Hahn and Shapiro, 1967; Hastings and Peacock, 1974). Figure 3-

1 depicts the flexibility of the density function for the beta distribution. This

statistical measure of irrigation uniformity became the key parameter

describing the irrigation technology used in any given simulation. The beta

distribution of statistical irrigation uniformity formed the link between the

irrigation technology and maize production performance measures such as

yield variability, nitrate leaching variability, and economic net return. This
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combined approach of linking irrigation uniformity with a comprehensive crop-

enterprise model to find a “best” schedule for farming activities and a “best”

selection of irrigation technology is a first.

Center pivot irrigation is the common mode of irrigation in southern Michigan.

Center pivot costs and performance were based on nominal “quarter-section”

center pivot designs (128 to 145 acres). Three center pivot designs were

selected as references for performance (Barclay, 1995; Graber, 1995; Krieger,

1995; McDonald, 1995) and are described in Table 3.1.

Controls, gear-boxes, tires, etc. were specified in packages appropriate to the

sprinkler and speed specification (ibid.). The maximum speed of rotation, area-

of-coverage, and pump flow-rate establish the daily minimum irrigation. The

pumping rate over a 24-hour rotation of the center pivot around the field

together with the area-of-coverage establish the maximum daily irrigation.

The frequency of irrigation is taken as a management parameter. Daily

irrigation is permitted only when the demand for irrigation water exceeds a

threshold deficit in soil water, the objective being to minimize the potential for

runoff and drainage resulting from the combination of irrigation and rainfall.
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Figure 3-1: Flexibility of the beta distribution density function for

the beta variate fl:v,w, after Hastings and Peacock (1974).
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Table 3-1. Reference center pivot specifications.

 

Low-tech: a twenty-year—old used center pivot

with old high pressure sprinklers

Mid-tech: a modern high-rotation speed center pivot

with low pressure sprinklers, end-gun

and booster pump

High-tech: a modern very-high-speed center pivot

with low pressure sprinklers throughout

 

Variations in water well technology and cost were not considered. Rather, on

advice from local well drilling companies and pump distributors, a single “good-

quality” long-life water well design common in southern Michigan was used for

pumping and cost calculations, with the pump discharge pressure and flow rate

matched to the characteristics of the pivot (Barclay, 1995; Burrows, 1995;

Hart, 1995; McDonald, 1995).

Electric power requirements were keyed to the area of coverage, sprinkler

package, and drive package. The cost of electric energy was taken as a

ftmction of the monthly kilowatt-hours consumed based on the power utility

(Indiana & Michigan Electric Company) rate schedules (Rodendeck, 1995).

Electric energy demand, minimum and maximum daily irrigation, combined

capital, operating, and repair costs were each expressed as a functions of the

statistical measure of uniformity.



The twenty-yea

the slowest rota

greatest runoff

pressure sprink

lowest minimur

The “mid-tech"

am With booste

rotational Speed

The low-tech, m

machine SPE‘Cific

Performance pai

high'tech machi

used to extend t

based on prev'iov

for a WOl‘mitv



67

The twenty-year old “low-tech” pivot required the least capital investment, had

the slowest rotation speed, and had the poorest measure of uniformity with the

greatest runoff/leaching potential. The “high-tech” center-pivot had low-

pressure sprinklers, high-flotation tires, a relatively high speed of rotation, the

lowest minimum daily application rate and the highest measure of uniformity.

The “mid-tech” center-pivot is equipped with low-pressure sprinklers and end-

gun with booster pump. It was in the middle in terms of uniformity, cost and

rotational speed.

The low-tech, mid-tech, and high-tech designs provided the references for

machine specifications obtained through simulation. Technical and economic

performance parameters for center-pivots between the low-tech, mid-tech, and

high-tech machines were based on linear interpolation. A power function was

used to extend the system cost beyond the low-tech and high-tech systems,

based on previous experience and the assumption that the system cost is zero

for a uniformity of zero and unbounded for perfect uniformity.

WEATHER STEREOTYPES

Inspired by recent work by Andresen and Stefanski (1991), I used the concept

of climatic scenarios to identify ten stereotypical weather years within a

sequence of 99 weather years of weather data obtained from the Richardson-

Wright Weather Generator for the Kellogg Biological Station; this is a more

rigorous test of the influence of weather on the farming enterprise than in

previous research (Christenson, Bricker, and Murphy, 1992; Martin, 1992).

The stereotypical weather years, characterized by monthly temperature and



rainfall values.
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rainfall values, are identified in Table 3.2

Table 3-2. Description of weather stereotypes.

 

 

Linguistic Description Average Total

Temperature Rainfall

°C mm

hot and dry 11.4 531

hot with moderate rainfall 11.4 970

hot and wet 11.4 1534

moderate temperature and dry 9.3 437

moderate temperature 9.3 755

with moderate rainfall

moderate temperature and wet 9.3 1011

cold and dry 7.4 520

cold with moderate rainfall 7.4 940

cold and wet 7.4 1458

normal temperature 9.5 1007

with normal rainfall

 

Moderate is defined as a year having monthly values for temperature, or

rainfall spanning the center forty percent of the 99 weather years. Normal is

defined as a year having the mean monthly temperature and rainfall of the 99

weather years.
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A stereotypical weather year of twelve consecutive hot/dry months is highly

improbable. In southern Michigan for example, two consecutive hot/dry

months have occurred during the summer only once in 50 years. Stereotypical

weather years for a given location are used to forecast the impact of

microclimates on crop production.

In the results reported here, short-term weather forecasts were either

assumed to be perfect or, assuming no other knowledge of future weather, a

normal temperature/normal rainfall stereotype was used. Long-range weather

forecasts are expressed as monthly temperatures and rainfall above, or below

normal.

The ten stereotypical weather years were constructed by sorting monthly

temperature and rainfall summaries. Insertion-sort and heap-sort routines

were modified to accommodate the large temperature and rainfall arrays of 99

years (1101 months) plus an annual summary. The heap sort routine

performed fastest and was used for all of the sorts. The simpler but slower

insertion-sort routine was used to spot-check the results.

The monthly sorts were used to compose monthly temperature and weather

templates fi'om which to knit the stereotypical weather years. The 99 years of

weather data were first sorted by temperature into hot, moderate, and cold

categories. The central 40 percent of the monthly summaries were classified as

moderate, with the upper and lower 30 percent as hot and cold, respectively.
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The variation from hot to moderate and moderate to cold was on the order of 2

degrees Celsius.

The categories of temperature were then sorted according to dry, moderate,

and wet rainfall, and mean values were calculated for each. The sort was

performed and a representative month nearest to the mean value was selected.

Frequently several months had mean rainfall values very near to the mean

value. In these cases, the month with the “most” typical rainfall fi°equency was

selected. Months with very large storms tended to be eliminated from the

stereotypes.

A “knitting” program took the temperature and rainfall templates for each

stereotypical weather year and made a weather file containing the following

daily information: Julian day, solar radiation, daily maximum temperature,

daily minimum temperature, and daily rainfall. Humidity and equilibrium

grain moisture content were then added for each day to the weather file in the

manner described previously in the section on the Van Ee Dry-down Model.

The weather file was organized to begin on Julian day 111 (21 April) and end

on Julian day 110 (20 April).
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THE PROCESSING NETWORK

The network formulation fiom graph theory and development of the matrix

algebra for a simple processing network with cross-links is described in the

Indonesian Post-Harvest Rice Processing Model posed by Handaka (1989),

Appendix D. Appendix D demonstrates how elemental processes are merged

into a network and formulated into the reduced matrix representation of the

complete system. The alpha-numeric structure developed in the course of this

research to facilitate debugging of source code is also presented in Appendix D.

The combined AMaize/VanEe DryDown model created a number of data files

which were used to calculate the parameters for the maize production process

in the enterprise network. The processing network was configured in two

modes: the mode considering the average irrigated condition only and the mode

considering beta-distributed statistical irrigation uniformity. A set of output

files from the minimum, average, and maximum irrigated conditions were

written, means and variances were calculated for crop model results.

The parameters of the maize production process were computed by the

combination of the Amaize and Van Ee Drydown models for a given set of

cultivars, soils, irrigation parameters, and weather. The model of the

processing network was then used to simulate the ecological and economic

performance of the enterprise for the network parameters. Statistical means

and variations were calculated according to a beta-distribution. The

simulation results were written to output files along with “what if’ values for

network parameters and resource inputs.
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Embedding Large Models in a Processing Network

As long as input data are available, AMaize and CeresMaize will run whenever

called by a controlling program. In this research, the results fiom AMaize

were central to the computations of the irrigated maize processing network.

In the solution structure, the design vector pertains to the combined

Amaize/DryDown model. The optimization algorithm first created the trial

design vector and then program control was chained to the average irrigated

condition ofAmaize/DryDown. After reading the initialization file, Amaize

reads the design vector. Amaize and Dry-Down developed the output files

based on computations performed for the entire weather year.

The reply (feedback with revisions fi'om individualistic constraints discussed in

the sequel) to the trial design vector was read in the optimization algorithm

and the trail design vector was updated accordingly. An irrigation schedule

file was written for the maximum and minimum irrigation versions of

Amaize/DryDown to follow. The exchange files which communicated a

summary of information on events of the entire year were created for reference

by the process network program. Figure 3.1 gives the general linkage of the

models to the optimization algorithm.

After the average irrigated condition was calculated, the maximum and

minimum irrigated conditions were calculated in turn. The maximum and

minimum irrigated Amaize/DryDown programs responded to the same

initialization file, design vector, and weather files as the average irrigated

condition. The maximum and minimum variants, however, did not
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independently develop irrigation schedules, but rather, responded to the

irrigation schedule developed fi'om the average irrigated condition.

I chose a symmetrical beta distribution to describe the statistical uniformity of

the irrigation application in this research. Depending on the irrigation

uniformity selected in the design vector, the maximum and minimum

irrigations deviated fiom the average irrigation by a uniform deviation

parameter. A symmetrical beta distribution does not exist for uniformities

below 67 percent.

The maximum and minimum irrigation conditions were calculated, with crop

and soil responses recorded in exchange files. The exchange files for each

irrigated condition carried different field prefixes so that the process network

program could collate the information.
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Upon conclusion ofAmaize/DryDown, the optimization algorithm then called

the process network program. The variation in irrigation distribution had the

potential to produce nonlinear effects throughout the enterprise model. Other

factors affected were crop developmental stages, yields, biomass production,

grain moisture at harvest, soil water and nitrogen levels. The consequence

was that all could vary according to a non-symmetrical beta distribution. The

process network processed information fiom the three irrigated conditions and

then calculated mean values and variances for the flows through the network.

Three parallel computational paths representing the maximum, average, and

minimum irrigated conditions comprised the process network. The inputs to

the three paths originated fi'om five groups of resources: the natural resource

base, biomaterials/biochemicals, plants and nutrition, preharvest agricultural

operations, and irrigation.

Natural resources included land, rain, solar radiation, growing degree-days,

and drying degree-days. All calculations were based on an area of one hectare.

The annualized price of land was a proxy cost for the use of all incident

natural resources contained in the weather scenario. If the variability due to

irrigation was being calculated, it is possible that the resultant maturity dates

difi'ered; the cumulative weather measures also may have differed.

Biomaterials included root biomass and stover biomass fiom the previous crop

and post season from the present crop. Information was included for each

stage of crop growth. Biochemicals included herbicides and insecticides.

These biochemicals were not transformed into the crop, but represented part of

the energy expended in preserving the enterprise. Current unit prices were
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multiplied by the amount used and added to the cost of production. Precise

local application of chemicals was possible in the model.

Plants and nutrition included the seed, fertilizer and manure applied. Market

prices for 1996 were used for seed and fertilizer. Manure carried no unit price,

per se.

Preharvest agricultural operations included manure spreading, primary,

secondary, and finish tillage, planting, cultivation, spraying, anhydrous

ammonia injection, and field transport operations. All operations were

considered “per treatment.” The costs of all agricultural field operations were

based on 1996 custom-hire charges for central southern Michigan (Schwab,

1995; Schwab and Siles, 1994).

Monthly cumulative irrigation and statistical uniformity were used to compute

the annual cost of irrigation per hectare. The monthly cumulative irrigation of

maximum, average, and minimum irrigation schedules were used to compute

the monthly electric energy charge based on the technology level indicated by

the statistical uniformity. The statistical uniformity also indicated values for

fixed and variable costs (per hectare per year) of the center pivot irrigation

system, including the water well, pump, and power supply.

From the inputs for crop production, results fiom the maximum, average, and

minimum crop growth were read into the process network. These results

included: runofi', evapotranspiration, drainage, growing season and post season

nitrate leaching, volatilization, and denitrification. The changes in levels of

root mass, stover mass, nitrogen, and phosphorous were also monitored.
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Figures 3-2 to 3-6 describe the maize enterprise model.

The grain moisture at maturity was assumed to be 33 percent for maximum,

average, and minimum irrigated conditions. The maturity dates may have

differed, however. Harvest was assumed to occur in a single day. Therefore,

the amount of dry-down in the field may have differed among the maximum,

average, and minimum irrigated conditions. If so, the cost of mechanical grain

drying may have differed for the three irrigated conditions. The cost of

harvesting was based on 1996 average custom hire rates. The cost of grain

drying was based on a price schedule from a local grain elevator (Jorgenson

Farm Elevator, 1994).

The effect of mechanical grain drying on grain quality could have been

included in the process network; however, it was not used because U.S. grain

markets assume that grain will be mechanically dried, and therefore the

resulting stress-cracking and breakage is expected and do not afi’ect the price of

grain (Bakker, 1995). Although some food producers pay a small premium for

grain with low stress-cracking, this was not modeled at this time.

The grain was assumed to be stored for five months before transport to a

regional market. Monthly storage charges were accumulated until marketing.

The three pathways of maximum, average, and minimum irrigated grain were

merged for transport to market. The cost of transport reflected typical cartage

distances to a regional grain elevator (Schwab, 1995; Schwab and Siles, 1994).

Output files fi‘om the process network program recorded costs; means and

variances of energy and material flows, levels, and selected durations; and the
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OPTIMIZATION

The network parameters and resource inputs for successive simulations of the

enterprise are determined by an optimization algorithm designed to interact

directly with the processing model in the “search” for the “best” taken fi'om

three input data files as follows:

1. A program initialization file contains the initial and default values for

printing output, soil properties, cultivar genetic coefficients, fertilizer

schedules, manure application schedules, and preset irrigation schedules.

2. A weather file contains daily weather measures for solar radiation,

maximum temperature, minimum temperature, precipitation, relative

humidity, and the equilibrium moisture content for maize.

3. A file contains the trial solution vector network structural parameters and

resource inputs parameters to be optimized. An optimization algorithm

which evaluates each iteration of the solution vector against a given

response-dependent objective function.

Figure 3.7 shows the model of the enterprise. Figure 3.8 shows the location of

model reference decision support within the management of the enterprise.

The optimized solution vector identifies the network parameters and the

schedule of resources required to “efficiently” produce maize under irrigation.

The process network is “best” for a given environment as characterized by

vectors of parameters taken from the initialization and weather files. Thus,

any and all irrigation schedules depend on the fertilization schedule, tillage

and
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planting schedule, harvest schedule, irrigation and other technologies, the

miroclimate parameters, the genetics of the cultivar, explicit and implicit

operational constraints, primary and secondary goals of system performance,

both economical and ecological.

In practical and real senses, there is no such thing as a single optimal

irrigation schedule, but rather, many optimal schedules, each dependent upon

the structural parameters and resource inputs of the overall enterprise. In

general, the solution vector is of large order and the performance criteria are

few, hence, there are many optimal solutions. This leads to practical questions

about the solution vector, for example: How sensitive is the irrigation schedule

to perturbations in the solution vector?

The Solution Space

Maize production enterprises operate in both a natural and an economic

environment. They are designed and managed to achieve a particular set of

production goals within these environments, even though the parameters of

these environments are sure to change over time, within limits. The natural

environment is not subject to management and control, yet it certainly

influences the performance of the production network. Micro-climate factors,

though bounded, are described as cyclic, intermittent, and stochastic.

Likewise, the economic environment, specifically the commodity markets, are

generally unpredictable and uncontrollable even though the prices for

agricultural inputs and the price of maize have been held constant in the

optimization given here.
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Commodity prices, for example, may influence the decision to allocate land to

maize production. Once the decision has been made, the farm manager must

select the best possible production parameters such as tillage and planting

technologies, fertilization protocols, irrigation schedules, plant protection and

harvesting technologies, all within the context of near-term uncertainties

regarding the microclimate and economic parameters of environment.

If the optional irrigation schedule, for example, is essentially independent of

these and other network parameters, the optimal solution is said to be global

with respect to the parameter space. Otherwise it is characterized as a local

optimal solution in the parametric space.

An objective of this research is to identify not only optimal solutions to the

maize irrigation problem, but to identify the nature of the solution in the

parameter space of the processing network. Indeed, an optimal that is

relatively stable over the entire parameter space may be more desirable than a

greater optimum that is stable over a highly restricted region of the parameter

space.

The multiple performance measures used here to judge optimality are annual

economic net return and annual nitrate leaching. In as much as net return

and nitrate leaching conflict, optimality is a compromise between the two

criteria. The goal of the optimization is, to the extent possible, to

simultaneously maximize net return and minimize nitrate leaching. The

envelope of the feasible solution space facing toward the goal is pareto optimal.
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The analytical procedure of optimization involves both the real-time maize

enterprise (RealME) and the simulation model of the maize enterprise

(SimME) operating historically, in the same parametric space, including the

microclimate to date. SimME is Operated in simulated time in advance of

RealME using projected forecasts of future microclimates. If the forecast of

future micro-climates prove to be reasonable prognostications of actual natural

parameters, then the performance of SimME and RealME should prove to be

largely equivalent.

To get the “best” performance out of RealME, the “best” performance must first

be obtained fiom SimME. Specifically, the optimization algorithm is used to

find the “best” set of values in the space of controllable parameters and/or

resources. The optimization algorithm need search only within the parameter

space for parameters and resources not already committed. It is within this

highly restricted space that yet uncommitted resources must be found.

The forecast of future micro-climate depend upon past climatic conditions. If

the forecast departs radically fiom the past, then the utility of the forecast

deteriorates. Catastrophic changes in microclimate are inherently excluded

fiom the forecasts.

Traditionally crops are managed by monitoring plant development with a

projection of yield based on the development to date; no attempt is made to

close the gap between the present date of plant development and the end date

of the production cycle. On the basis of the relationship between micro-climate

forecasts and historical weather records, the complete production cycle can be

simulated at any point in time by SimME. Thus, performance of the enterprise
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can be simulated at any point in time by SimME for any point in the

parameter space, and for performance measures, such as economic net return

and cumulative nitrate leaching evaluated for the production cycle.

Performance measures and decision rules for their use may be independent of

time, or they change over time during the production cycle. In as much as the

purpose of mathematical modeling and simulation are to explore risky

situations without being exposed to hazard, only time-depended performance

measures and decision criteria are considered in this thesis.

Prudent application of performance measures and decision criteria, however,

require that the mathematical models upon which they are based be checked

and updated against the performance of the production system they represent.

Optimization procedures in themselves are sometimes useful to establish

decision criteria. Decision criteria are necessary aspects of the optimization.

Establishing decision criteria concurrently with performance measures and

system optimization is called “adaptive goal setting’ and is a feature of the

optimization process used in this work.
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Numerical Optimization Algorithms

The numerical optimization algorithms used here are selected primarily on the

basis of numerical accuracy and iteration speed. The CeresMaize crop model

proved awkward especially when in-field drying and economic parameters were

added to the optimization. CeresMaize and AMaize are detailed plant models

based on accumulated research on plant growth, soil physics, weather events,

and nutrient transformations. If changes for these were computed second by

second for example, then derivative optimization methods might apply. Since

the time step for CeresMaize is one day, changes in system dynamics can be

abrupt, hence, convergence of derivative optimization methods is not reliable.

Discontinuities are introduced by accurately portraying production costs and

constraints on operations management. Some variables, such as electric power

costs, are taken fi'om price schedules that are nonlinear discontinuous

functions of use rate. Planting is not permitted on rainy days; the optimization

algorithm must choose a date before or after the rainy period for planting.

Furthermore, field operations are scheduled to the nearest day. For these

reasons algorithms are selected that are applicable to nonlinear,

nondifferentiable methods which accommodate constrained solution variables

and objective functions.

The two algorithms used for this research were the Box complex method and

sequential random search. Multiple optimization runs with the Box complex

method should be performed for response surfaces with multiple optima to

verify that the search has terminated at the global optimum rather than at one

of the local optima (Box, Davies and Swann, 1969). The number of confirming
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optimization runs needed is problem dependent. The initial values for the trial

solution vector is generated randomly for the Box complex algorithm; hence,

prudent application of the Box complex algorithm (and related methods)

reduces to a random search strategy.

Classical Sequential Random Search

The classical sequential random search method evaluates the performance

measure for 10 randomly selected trial values for each variable in the

parameter space, starting with the midpoint of the allowable ranges for each

parameter. After 10 random trial values have been completed for each

parameter, the search space (which was originally the entire parameter range)

is reduced by half (Shoup and Mistree, 1987).

The new search space is centered about the elite solution vector of parameter

values obtained fiom the first sequence of trail values. If any parameter is less

than one-quarter of its limited value, the search space is reduced to half of the

interval between the previous best value and the end of the allowable range.

Thus the search process continues to evolve until the termination criteria are

achieved.
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High Density Sequential Random Search

The classical sequential random search algorithm was found in the literature

to be adequate for differentiable nonlinear problems. However, in the case of

this discontinuous and nondifferentiable nonlinear model, the classical

algorithm could also miss the neighborhood of the global optimum, and

converge on a local optimum. To accommodate this situation, high density

searches were appended to the sequential random search algorithm.

Increasing the density of the search (increasing the population of trial

solutions) also increases the computation effort. Fortunately, four factors

determine the total computational effort for acceptable convergence:

0 the density of the search,

0 the dispersion of the search about the elite solution vector that propagates

the next search generations,

0 the number of search generations to achieve an acceptable convergence

within one optimization, and

0 the number of optimizations to confirm that the global optimum has

probably been discovered.

The balance among these four factors appears to be problem dependent. For

the problem at hand, an inverse relationship was observed between the density

of the search (the population of trial solutions per variable) and reduction of

the search space (reduction of search dispersion) for each generation of

searches. The combinations search densities and dispersions attempted are

given in Table 3.3. The best balance of convergence with computational effort
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was found for the combination of

10*e trials per variable and

1/e search space dispersion

Three to five search generations gave an acceptable probability of convergence

to an optimum. Likewise, three to five optimizations were adequate to confirm

that the global optimum had been located. Confirming optimizations could and

were performed simultaneously; hence, the total computation time to confirm

the results was not extended substantially.

Implicit Constraints

The allowable ranges for searching the design parameter space are restricted

by explicit and implicit constraints. Explicit constraints on parameter values

are definable at the outset of a generation of random searches. On the other

hand, implicit constraints cannot be defined a priori.

Traditionally, violations of implicit constraints are “discovered” following the

“complete execution” of the simulation model. Violations are resolved by first

generating new trial solution vectors and then reiterating the model

simulation until a simulation is achieved without violating the implicit

constraints, or until a higher level of optimization control discontinues the

search. An example of this constraint resolution procedure can be found as in

the complex algorithm by Box (1965). This approach, however, becomes a
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Table 3-3. Combinations of search densities and

dispersions attempted.

 

 

Trials per variable Search dispersion

10 1/2

10*2 1/2

10*e 1/e

10*3 1/3

10*4 1/4

10*5 1/5

10*6 1/6

 

lengthy and tedious process when working with large simulation models.

A further examination into the particular nature of the implicit constraints in

this model revealed that a considerable savings in execution time could be

achieved by implementing logical adjustments to the trial solutions through

specific adjustment functions consistent with random search that did not

require aborting an iteration of the simulation model. Subprograms for

adjusting the solution vector were appended to the optimization.

An example of a traditional implicit constraint is the balance of phosphorous

imported in the fertilizer and exported in the harvested grain. The amount of

phosphorous imported can be calculated fi‘om the trial design for fertilization.
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However, the amount ofphosphorous exported cannot be determined until the

grain harvested is known. In other words, the crop growth model has been run

to completion before a violation of the implicit phosphorous constraint can be

evaluated.

The other type of implicit constraint, for lack of a better term, shall be referred

to as “individualistic constraints” in that particular knowledge of impact of the

constraint on the simulation model leads to an individual remedy to the

violation of the constraint such that computation time is less affected. Two

examples referred to here involve the timing of agricultural operations.

Agricultural operations are affected by weather, for example, rainfall above a

certain amount can preclude field operations. A trafficability subprogram

could be evaluated, or a decision rule could be invoked to delay an operation if

the rainfall is above a certain amount (Harrigan, 1995a; Harrigan, 1995b).

The decision rule approach is a practical approach for sandy loam soils and,

thus, was invoked in this research. If rainfall was found to exceed six mm for

any spring time field operation, it was deferred to the next permissible day,

with the date revision amended to the trail solution vector.

A second example of an individual implicit constraint regards the first feasible

harvest date. Harvesting cannot commence until after the crop has reached

maturity. Maturity is not known until the crop growth model has been run

through the growing season up to calculated maturity. If the trial harvest date

has been set before maturity, a simple function can delay the trial harvest date

until the first allowable day following maturity. The crop growth model is not

affected by this procedure. The field dry-down model requires the date of
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maturity and harvest date in order to compute the grain moisture at harvest.

Therefore, the trial harvest date can be deferred to a feasible date without

extending program run-time. Again, the adjusted value must be

communicated to the optimizing algorithm to update the solution vector.

Equality and Inequality Constraints

Inequality constraints are much more easily satisfied than equality

constraints. Equality constraints can be satisfied only if it is known that an

exact value exists for the evaluation function; therefore, success depends on the

model structure.

Inequality constraints can be written in several ways; the concept of

deviational variables was found to be useful for this model. A measure X is

established and is set equal to trial resultant X' plus an allowable margin of

error E. E may be fixed according to prior knowledge, or it may be treated as

another parameter to be minimized:

X=X'+E

For the final versions of this simulation model, the error minimization

approach was used.
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MULTICRITERIA OBJECTIVE FUNCTIONS AND GOAL SETTING

The two measures of performance considered are (1) economic net return and

(2) cumulative nitrate leaching over the calendar year. A high density

sequential random search algorithm was used to find the neighborhood of the

optimum for each of the two measures as separate goals, thereby defining a

payoff matrix. Assuming a linear trade-off between nitrate leaching and net

return, the payoff matrix established the bounds for the joint optimum.

If a joint optimum exists, it may or may not be unique with respect to the

parameter space. If it is not unique, then additional measures of performance

may be added. The added measures of performance are sometimes described

as defining secondary or “adaptive” goals. Secondary or adaptive goals are

entered into the optimization algorithm only after attainment of the primary

goals has been demonstrated, thus prioritizing the goals and extending the

search process. For example, a non-negative net financial return may be

necessary to sustain the enterprise economically. Limitations on nitrate

leaching may be necessary to sustain the enterprise ecologically. In practice,

economic net return usually gets first priority, and nitrate leaching is

secondary.

Equal weight can be given to economic net return and nitrate leaching by

defining a joint objective function which for example, computes the square root

of the sum of the squares of the deviations of the individual performance

measures fi'om the goal. In the work reported here, the nitrate leaching rate is

multiplied by the sine function and the economic net return rate by the cosine.

The relative emphasis given to either nitrate leaching, or economic net return
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is thus weighted by the angle of desired compromise line originating from the

ideal adaptive goal. The “best” feasible goal is the feasible point within the

Pareto fi'ontier nearest to the desired line of compromise.

Adaptive Evolution Strategy

The numerical values describing the goals were unknown at the initiation of

optimization of any enterprise configuration. The goals for minimum nitrate

leaching and maximum net return were discovered fiom the results generated

for any population of trial solutions. Improvement in the goals was handled as

a secondary optimization. The improvement in the goals guided the evolution

of successive search generations. Convergence toward the global optimum was

affected by the size of the search population and the dispersion of the

population within any generation of the search.
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CHAPTER FOUR

RESULTS

This chapter is organized into three parts:

0 an introduction with an explanation of the common parameter settings

used for the optimizations of the model,

0 figures showing the results fiom a first series of optimizations based on

stereotypical weather years and based on the average irrigated condition

fiom a single level of irrigation technology, and

0 figures showing the results from a second series of optimizations based on

weather years composed of stereotypical summers coupled with normal

winters and a choice of irrigation technology.

The same processing model structure for the irrigated maize enterprise and

the multidimensional sequential random search algorithm were used in both

series of optimizations.

100
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The first set of figures (Figures 4-1 to 4-4) shows the results for each iteration

over the span of one optimization depicting the convergence behavior of the

search algorithm. Figure 4-1 is a plot of net return versus nitrate leaching;

the final goal and the optimum are labeled. Table 4.1 lists the initial trial

solution and best values discovered for the control parameters at the

optimum.

Table 4-1: Initial and final parameter values from optimization.

 

 

 

Parameter Initial Value Final Value

Plant Population, plants/m2 6.5 6.88

Slurry Application Date 1 17 115

Plowing Date 121 1 16

Planting Date 131 122

Sidedress NH4 Date 160 156

Sidedress Amount, kg/ha 105 131

Irrigation Depletion Parameter 0 0.72

Harvest Date 290 200

Optimum: Nitrate Leaching = 20.9 kg/ha/yr

Net Return = $540lhalyr
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The optimization performed was a two-generation search with 30 trial

solutions for each parameter, each search generation. The optimization

terminated at 487 iterations. The optimum was discovered at iteration 463.

Figure 4-2 shows a trace of the distance from the best point discovered to the

goal at each iteration. The discovery of an improved goal is indicated by a

spike in the trace. The optimum was discovered just after the last

improvement in the goal.

Figure 4-3 shows a plot of nitrate leaching for each iteration in the

optimization. As this is a plot of minimization towards zero, the effect of the

reduction in the search space about the elite vector fiom the first generation

is dramatic. The optimum at iteration 463 is also noted.

Figure 4-4 shows a plot of net return for each iteration in the optimization.

The effect of nitrate minimization is visible in the second generation of the

search. The intermediate values for net return disappear; this leaves the

higher values for net return, but also causes a string of very negative values

to be generated as well.

The next set of figures (Figures 4-6 to 4-29) within the first series were

constructed to verify that the crop-growth model and grain-drying model

were correctly linked and embedded within the processing network program.
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Figures 4-6 to 4-29 give results for (1) a range of stereotypical weather years,

(2) two commonly associated soils, and (3) three cultivars of maize grown in

Michigan. The figures for the first series conclude with a summary figure

(Figure 4-30) showing the effect of satisfying an increasing demand for

irrigation on the dual criteria of nitrate leaching and the economic net return

of the enterprise.

The second series of optimizations presents the results from a range of

stereotypical summers followed by a normal winter. Also, the level of

irrigation uniformity is included in the list of parameters to optimize. The

second series begins with a set of figures (Figures 4-31 to 4-34) which

demonstrates the consistency of the optimization algorithm. The next set of

figures (Figures 4-36 to 4-61) shows the response of the maize enterprise for

different levels of irrigation uniformity with one soil and one cultivar. The

second series also concludes with a summary figure (Figure 4-62).

Common Parameter Settings

The following parameters were fixed for both series of optimizations:

0 Seed depth: 5 cm

0 Primary tillage and slurry incorporation depth: 20 cm
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o Slurry ammonia fi'action: 0.58

0 Starter fertilizer type: Diammonium Phosphate

0 Starter fertilizer depth: 10 cm

0 Sidedress fertilizer type: Anhydrous Ammonia

o Sidedress fertilizer depth: 30 cm

Parameter Settings for the First Series of Optimizations

The following parameters were fixed in the first optimization series:

0 The economics of the irrigation system were based on a distribution

uniformity (Us) of 0.73.

0 Assessment of average irrigation condition only, beta distribution

parameters v and w both equal 1.

o The amount of nitrogen fiom manure: 120 kg/ha.

0 The amount of nitrogen in the starter fertilizer: 10 kg/ha.

0 The harvest date: Julian day 290.
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Management Regime for the First Series of Optimizations

Stereotypical weather years:

0 Hot Temperature and Dry Rainfall

0 Normal Temperature and Normal Rainfall

0 Moderate Temperature and Moderate Rainfall

0 Cold Temperature and Wet Rainfall

Sandy-loam soils (Martin 1992):

- Elston sandy-loam, predominantly fine sand and little gravel

o Oshtemo sandy-loam with fine sand and some gravel.

Genetic coefficients of maize cultivars defined for CeresMaize:

Season length Variety P1 P2 P3 P4 P5

Short Pioneer 3995 130 0.30 685 825 8.6

Medium Pioneer 3780 200 0.76 685 725 9.6

Long Pioneer 3147 255 0.76 685 834 10.0
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Parameters Estimated for the First Series of Optimizations

o Preseason soil nitrogen level: 1 percent to 100 percent of the original soil

nitrogen level fiom preseason nitrate and ammonium concentrations in all

soil layers.

0 Plant population: 4 to 9 plants per square meter.

0 Supplemental nitrogen application: 10 kg/ha to 200 kg/ha for N as

anhydrous ammonia.

0 Date for slurry application: Julian Days 112 to 122.

0 Date for primary tillage: 1 to 8 days after slurry application.

0 Date for planting: 1 to 20 days after primary tillage, latest possible

planting date was Julian day 148.

0 Date for anhydrous ammonia application: Julian Day 151 to 170.

o Deficit irrigation parameter: the values for this parameter range from -1

to 1. At a parameter value of 0, the amount of irrigation would “top-up”

the soil to field capacity. As the value approached 1, irrigation would

diminish; at a value in the near 0.9, irrigation would cease. A value

approaching -1 would produce irrigation at double the top-up amount

> 0 gives irrigation less than field capacity,

< 0 gives irrigation greater than field capacity.

Irrigation was not scheduled when the deficit irrigation parameter exceeded

values of 0.9. For irrigation to occur on any given day during the growing
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season, the product of the amount of the top-up depth and the value of the

expression (1— deficit irrigation parameter) had to exceed the minimum daily

application depth of the center pivot. The minimum daily application depth

was a function of the distribution uniformity Us.

Parameter Settings for the Second Series of Optimizations

o The preseason soil nitrogen level was fixed at 20 percent of the level

measured by Martin (1996).

o The amount of nitrogen fi'om manure was set to 80 kg/ha.

- The amount of nitrogen in the starter fertilizer was set to 3 kg/ha.

Management Regime for the Second Series of Optimizations

Weather years:

0 Hot-Dry Summer and Normal Winter

0 Normal Summer and Normal Winter

0 Moderate Summer and Normal Winter

0 Cold-Wet Summer and Normal Winter
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The summer, or growing season spanned the range of Julian days 111 to 292.

Winter, or the cold season, spanned Julian days 293 to 110.

Soil: Elston sandy-loam (Martin 1992).

Maize cultivars: long season Pioneer 3147.

Bounds on Parameters to be Estimated for the Second Series of

Optimizations

0 Plant population: 4 to 9 plants per square meter.

0 Supplemental nitrogen application: 10 kg/ha to 200 kg/ha for N as

anhydrous ammonia.

0 Date for slurry application: Julian Days 112 to 122.

0 Date for primary tillage and slurry incorporation: 1 to 8 days after slurry

application.

0 Date for planting: 1 to 20 days after primary tillage, latest possible

planting date was Julian Day 148.

0 Date for anhydrous ammonia application: Julian Day 151 to 170.

0 Amount of anhydrous ammonia per application: 10 kg/ha to 200 kg/ha.

o Deficit irrigation parameter: -1 to 1.

- Irrigation distribution uniformity (Us): 0.68 to 0.96.

0 Date for harvest: Julian Days 250 to 330.
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Figure 4-7: Normal Temperature, Normal Rainfall,

Oshtemo Sandy Loam, Short Season Cultivar.
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Figure 4-11: Cold Temperature, Wet Rainfall,

Oshtemo Sandy Loam, Long Season Cultivar.
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Oshtemo Sandy Loam, Long Season Cultivar.
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Oshtemo Sandy Loam, Average Season Cultivar.
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Figure 4-18: Normal Temperature, Normal Rainfall,

Elston Sandy Loam, Average Season Cultivar.
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Elston Sandy Loam, Short Season Cultivar.
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Figure 4-21: Hot Temperature, Dry Rainfall,

Elston Sandy Loam, Average Season Cultivar.
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Figure 4-22: Hot Temperature, Dry Rainfall,

Elston Sandy Loam, Short Season Cultivar.
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Figure 4—23: Cold Temperature, Wet Rainfall,

Elston Sandy Loam, Long Season Cultivar.
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Figure 4-24: Cold Temperature, Wet Rainfall,

Elston Sandy Loam, Average Season Cultivar.
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Figure 4-25: Cold Temperature, Wet Rainfall,

Elston Sandy Loam, Short Season Cultivar.
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Figure 4-26: Moderate Temperature, Moderate Rainfall,

Elston Sandy Loam, Long Season Cultivar.
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Elston Sandy Loam, Average Season Cultivar.
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Figure 4-30: First set of 4000 points

from 14 output files of optimizations for

Hot-Dry Summer and Normal Winter Scenario.
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Figure 4-31: Second set of 4000 points

from 14 output files of optimizations for

Hot-Dry Summer and Normal Winter Scenario.
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Figure 4-32: Third set of 4000 points

from 14 output files of optimizations for

Hot-Dry Summer and Normal Winter Scenario.
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Hot-Dry Summer and Normal Winter,

Elston Sandy Loam, Long Season Cultivar.
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Hot-Dry Summer and Normal Winter,

Elston Sandy Loam, Long Season Cultivar.
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Figure 4-36: Irrigation Uniformity 79 to 83 Percent,

Hot-Dry Summer and Normal Winter,

Elston Sandy Loam, Long Season Cultivar.
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Hot-Dry Summer and Normal Winter,

Elston Sandy Laom, Long Season Cultivar.
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Hot-Dry Summer and Normal Winter,

Elston Sandy Loam, Long Season Cultivar.



Figure 4-43: Irrigation Uniformity 95 to 96 Percent,

Hot-Dry Summer and Normal Winter,

Elston Sandy Loam, Long Season Cultivar.
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Elston Sandy Loam, Long Season Cultivar.
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Figure 4-45: Irrigation Uniformity 68 to 72 Percent,

Normal Summer and Normal Winter,

Elston Sandy Loam, Long Season Cultivar.
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Figure 4-47: Irrigation Uniformity 76 to 80 Percent,

Normal Summer and Normal Winter,

Elston Sandy Loam, Long Season Cultivar.
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Figure 4-48: Irrigation Uniformity 80 to 84 Percent,

Normal Summer and Normal Winter,

Elston Sandy Loam, Long Season Cultivar.
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Figure 4-49: Irrigation Uniformity 84 to 88 Percent,

Normal Summer and Normal Winter,

Elston Sandy Loam, Long Season Cultivar.
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Figure 4-50: Irrigation Uniformity 88 to 92 Percent,

Normal Summer and Normal Winter,

Elston Sandy Loam, Long Season Cultivar.
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Figure 4—52: Irrigation Uniformity 68 to 96 Percent,

Moderate Summer and Normal Winter,

Elston Sandy Loam, Long Season Cultivar.
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Moderate Summer and Normal Winter,

Elston Sandy Loam, Long Season Cultivar.
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Elston Sandy Loam, Long Season Cultivar.
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Moderate Summer and Normal Winter,

Elston Sandy Loam, Long Season Cultivar.
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Figure 4-58: Irrigation Uniformity 88 to 92 Percent,

Moderate Summer and Normal Winter,

Eslton Sandy Loam, Long Season Cultivar.
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Figure 4-59: Irrigation Uniformity 92 to 96,

Moderate Summer and Normal Winter,

Elston Sandy Loam, Long Season Cultivar.
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CHAPTER FIVE

DISCUSSSION

“The purpose of computing is insight, not numbers. ”

R.W. Hamming in Numerical Methods for Scientists and Eng’neers

The over-arching objective of this research was to define an appropriate

quantitative solution procedure for the management of resources and

technology according to conflicting and environmentally-conditioned goals

regarding a particular biological production system. The grand objective has

been met through the accomplishment of the set of five particulars postulated

in Chapter One.

Objective One

The first objective of this research, to combine the “best” available simulation

models of the various aspects of irrigated maize production into a

comprehensive enterprise model that can predict the impact of management

alternatives on environmental and economic performance measures, was

resolved by: (1) combining AMaize, the animal waste management version of

CeresMaize crop-growth model, and the Van Ee field dry-down model, and (2)

embedding the combined model within a hierarchical ecological network (a

169
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processing network). The combined processing network functioned as a

comprehensive enterprise model, giving results that were intuitively correct,

with few surprises. The originality in this work is that numerical estimates

accompany all results. The inclusion of animal waste and field dry-down in

the processing network of the irrigated maize enterprise greatly extends the

work by Martin (1992) in that (1) a comprehensive schedule of farming

activities and (2) a specification of irrigation technology was produced from

the optimization of economic net return and nitrate leaching criteria.

Objective Two

The second objective was to develop procedures for identifying the “best”

enterprise organization and time schedule of resources consistent with a

given set of yield, economic, and environmental impact targets. To improve

convergence to the “best” solution, adaptive goal-seeking capabilities and

high-density sampling were appended to multiple-variable sequential-

random-search. Whereas traditional sequential-random-search typically

makes ten trial solution vectors per variable in a reduction sequence, I have

defined “high-density” as making more than twenty such trial solution

vectors per search variable.

With this technique, I was able to find the “best” schedule of resources as

defined in the multicriteria objective function that was adapted to the local

environmental and operating context in parallel with the resource

optimization. In order to predict runtime and conserve file space, the first

result with the least deviation from the multiple goals was chosen as the

“elite” solution for each succeeding generation of searches within a particular
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simulation optimization. In case of a tie, the first elite was defined as the

“best.” It was conceptually possible for an equivalent elite to be discovered

during a computer run following the discovery of the first elite; the data files

were not stored for succeeding equivalent elites. Multiple equivalent elites,

therefore, were not considered within a single simulation; multiple

simulations , however, were performed for each set of initial conditions. The

‘1)est of the best” for any simulation set was obtained, as well as, the output

files for all the best results in the simulation set. Optimizations using

different random number sequences approached the performance criteria, but

could and did have different resource schedules.

Objective Three

The third objective was to identify from the model the extent to which

irrigation could be used to reduce the negative impact of nitrate leaching at

an acceptable economic cost. Irrigation played a role in achieving acceptable

economic net returns and lessening nitrate leaching for years in which the

weather required at least 200 mm of irrigation. The threshold of 200 mm

applies to southern Michigan; it is a function of weather, soil, and cultivar.

Irrigation demand depended on length of growing season, temperature, and

effective rainfall. Long season cultivars generated great irrigation demand

simply as a result of longevity. In moderate temperature-moderate rainfall

years, the crop demanded just over 200 mm for the growing season. Any

weather year hotter, or dryer would exceed the 200 mm threshold. Only cold-

wet, moderate temperature-wet, and cold-moderate rainfall weather years
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were below the threshold. Significant irrigation was required in six of the

nine stereotypical weather years.

A normal temperature-normal rainfall weather year is specific to the climate

at a particular location. The normal-normal year was found to be slightly

hotter and drier than the moderate-moderate weather year for the Kellogg

Biological Station. The normal-normal weather year was derived from the

entire set of ninety-nine weather years. Assuming no intermediate- and

long-range weather forecasts, the normal-normal weather year was taken to

be the best unbiased estimator of forecasted weather, as proposed by

Andresen and Stefanski (1991).

For the combination of weather and soils used in this research, irrigation

appears to be justified for economic and environmental reasons in sixty-eight

percent of the weather years. This corroborates the study by Strommen et a1.

(1969) who found that drought occurred generally one-third of the time in

Michigan. The study by Baten, Eichmeier, and Kidder (1959) found that

rainfall was insufficient for four-fifths of the growing seasons in Michigan.

High rainfall and/or cold temperatures diminished the ability of irrigation to

mitigate nitrate leaching for the remaining thirty-two percent of the years

because little, or no irrigation was scheduled.

The technical ability to provide resources at the optimal rate of assimilation

by the crop was limited. In terms of mass and energy, the majority of the

resources used by the crop were unscheduled (stochastic) from the natural

environment. In this context, countermeasures were required to balance the

natural availability of stochastic resources with the desired rate of
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assimilation by the crop. Irrigation was indicated for hot-dry weather and

sandy soils. Rather than causing conflict, irrigation achieved balanced

production by facilitating efficient management of resources. The conflict

arose from pressure to achieve multiple goals simultaneously and from the

manageability of resources.

Irrigation mitigated nitrate leaching by guaranteeing the achievement of

crop growth. Irrigation compensated for water shortages up to the

availability of other resources. Less rain and more evapotranspiration

created a greater role for irrigation in this regard. For example, if the

cropping plan had been based on a normal-normal year, normal irrigation

amounts would have been 250 mm for the growing season on the Elston soil.

The nitrogen requirement would have been on the order of 150 kg/ha. If a

prolonged drought ensued, the crop would lack another 250 mm. The

drought would produce disastrous yields, down from 11,000 kg/ha to 5000

kg/ha. Nitrate leaching would build from 30 kg/ha to 100 kg/ha. If on the

other-hand, the weather year became cold and wet, little or no irrigation

would occur. An irrigation of 250 mm was beyond that needed to achieve the

best growth for the cold-wet year. Because irrigation could be reduced,

leaching was limited to 50 kg/ha/yr. Therefore, where irrigation is needed for

supporting crop growth, it can also serve to improve the efficient use of other

resourceS .

Objective Four

The fourth objective was to articulate trade-offs between economic return and

environmental damage. The multiplicity of acceptable solutions resulted
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from the convex solution space and a simple multicriteria objective function.

The optimization of the objective function could not distinguish among

several solutions near the goal vertex for a convex solution space. Solutions

at the boundary of the solution space exhibited a trade-off among irrigation

schedules, fertilizer schedules, and other field operations. The trade-offs

among points nearest to the goal were usually marginal; the solutions

differed, none-the-less.

The only remaining source for the differences in solutions fi'om separate

optimizations lay in the sequence of random numbers used in the

optimization. Differences in random values used to generate trial design

vectors appeared to interact with the weather file. In the course of

developing the optimization procedure, I found that the random number

generators had to be reseeded to avoid a false sense of convergence with

optimizations of this size. The random number generator was reseeded for

search generation during the optimization. It should be noted that some

random number generators are not truly random for long numerical

sequences.

The effect of the random number sequence sometimes resulted in a subtle

shift in planting and irrigation dates. Shifting the planting and irrigation

dates altered subsequent fertilization and irrigation amounts subtly, but in

concert. The result was a multiplicity of acceptable solutions in the

neighborhood of the goal. That multiple acceptable answers exist is

beneficial to management in that it provides options. Given no additional

performance criteria, any acceptable answer will work. In actuality,

management may have preferences that cannot be known a priori. In the
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day to day management of a farming enterprise, activities peripheral to the

enterprise bring surprises. Between the time when data are collected for the

optimization and when the results of the optimization are completed,

preferences may develop that were unforeseen.

Considering the whole of the Pareto optimal frontier, an increase in

productivity defined purely as crop yield or economic net return came at the

expense of the environment. The trade-off between increased production and

nitrate leaching became more pronounced as resources shifted. See Figure 4-

60.

The highest net returns occurred in the cold-wet year ($650) for which

irrigation was minimal (100mm) and leaching was substantial (50kg). The

lowest net returns occurred in the hot-dry year ($550) for which irrigation

was greatest (450mm) leaching was lowest for crop production (10kg). See

Figure 4-30.

Indeed, a trade-off between nitrate leaching and net return was found to

exist for the 40 cases studied (10 weather scenarios, two soil types, and two

annual weather regimes). For any case, the Pareto optimal fi'ontier appeared

to be contained within a hyperbola (signifying a nonlinear trade-off for

relatively large ranges) which pointed towards the ideal goal point. The

feasible set, however, did not extend to the hyperbolic boundary along the

portion nearest the goal; but rather, the feasible points were held back along

an apparent straight line (indicating a linear trade-off for a small range

nearest the goal) which truncated the nose of the hyperbola. The trade-off

was least for the hot-dry year and became progressively greater toward the
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cold-wet year, indicating a benefit from irrigation. Figures 4-31 to 4-34 show

that this pattern was repeated over several optimizations. Figures 4-6 to 4-

29 show that each combination of weather, soil, and cultivar have a

characteristic shape for selected irrigation technology. Figures 4-35 to 4-60

show that the shapes maintain as technology and environment were changed.

The graphs of different irrigation technologies resided at distinguishable

locations along the Pareto envelope. This is summarized in Figure 4-60.

The (1) the envelope, or boundaries, of the feasible space for the system and

the (2) necessary system accomplishment (system performance) provided the

basis for achieving a reasonable compromise. As for the boundaries of the

feasible space, the phase diagrams for the various weather stereotypes

describe what is possible over a range of weather. For the range of possible

conditions, the “best” that can be achieved is bounded by the envelope of

feasible solutions, a performance envelope. The hot-dry and cold-wet weather

years describe extreme conditions. The phase diagrams of the hot-dry and

cold-wet years describe performance envelopes for the irrigated maize

production system.

The minimum necessary accomplishment must exist within the system

feasible space, otherwise acceptable system performance is not possible.

Reference thresholds need to be established. For example, the nitrogen cycle

is one of the many biochemical cycles which occur in any ecosystem. Wild or

managed, some nitrates leach to groundwater in non-agricultural ecosystems.

The question of an acceptable level of nitrates in groundwater for any

location was arbitrated by the allowable level of nitrates among all linked
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locations in the ensemble system. The simulations of all the cases

demonstrated that a level for nitrate leaching in the neighborhood of 40 kg

per/ha/yr allowed profits to approach the maximum regardless of the weather

and cultivar. The model thus seems to explain farmers’ observed propensity

to fertilize heavily; the dominant strategy for profitability considering the

range of possible weather regimes is to apply excess nitrogen.

Different soils indicated different resource schedules; however, irrigation, if

warranted, diminished the differences. High frequency irrigation (less than

six mm/day) does not leach nitrate. Topping-up to field capacity before a rain

could trigger the movement of nitrate. Through parameter estimation and

based on the weather forecast, the reserve soil capacity for rain was

calculated in the model.

Objective Five

The fifth objective was to quantify the economic and environmental impacts

of using animal waste as the major nitrogen and phosphorous source for

irrigated maize production. Based on average values fi'om several sources, I

formulated a “generic” recipe for cattle manure. The yield and leaching were

similar for applied manure and ammonium nitrate. If the manure were not

incorporated, volatilization of ammonia accounted for a significant loss of

nitrogen. Compensating for the volatilization loss by increasing the manure

application caused additional phosphorus to be applied, upsetting the

phosphorus balance with the grain yield. Either manure or chemical
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fertilizer applied well-in-advance of planting, created a situation with

excessive nitrate leaching. Nitrate carried over from the previous cropping

season posed a similar risk. The model showed, however, that in actual

practice much of the carry-over nitrate would have already leached below the

rootzone.

In essence, early season soil fertility along with preplant manure applications

and preplant chemical fertilizer must be considered in ensemble to manage

nitrate leaching. From the soil chemistry in the model, nitrate is nitrate, the

source had no particular significance. Parenthetically, snow effects are

included in AMaize, although soil freezing and thawing are not. CeresMaize

does not include snow or soil freezing effects. The annual accumulation of

' nitrate leaching calculated in CeresMaize agrees with lysimeter studies

(Martin, 1992) although the timing of leaching events differs through the

winter months.

Side-dressing of nitrogen in make-up amounts rarely contributed to leaching.

Nitrate leaching was least with long season cultivars. Long season cultivars

consumed more nutrient and water resources which would be desirable when

disposing of animal waste. Net return, however, was greatest with a

cultivar adapted to the specific growing season. A best-management

schedule within operational constraints was possible with manure slurry

used as a nutrient source. Two special considerations for using manure are

the minimizing of volatilization and runoff.
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PROOF OF THE HYPOTHESIS

The proof of the hypothesis is based on a comprehensive model of a

temperate-climate-irrigated-maize-production-enterprise system that is

controllable and measurable. The results of the multicriteria optimization

demonstrate that irrigation can be managed to lessen the impact of nitrate

leaching to the environment as well as contribute to a positive economic net

return. Irrigation was observed to lessen the impact of nitrate leaching about

sixty-eight percent of the time; for the remaining thirty-two percent of the

time, rainfall and/or cold weather obviated irrigation and thus reduced its

controlling influence on leaching.

In the wet years, irrigation helped little to boost yields. In dry years,

irrigation guaranteed a good crop yield. The basic cost of a complete center-

pivot irrigation system with water well and pump is about 200 $/ha/yr (80

$/ac/yr). The cost of pumping could be as much as 100 $lha/yr (40 $/ac/yr).

Whether the cost of irrigation (300 $/ha/yr) can be justified depends on the

market for corn. A grain price of 0.10 $lkg (about 2.50 $lbu) was used in this

research. For farmers growing corn in southern Michigan, the decision to

install irrigation appears to be based on the cropping plan for the entire

farm, rather than cash-corn production alone. This study proceeded from the

assumption that irrigation was justified a priori.

The context in which management operates ultimately determines if

irrigation will be effective in a dual role. The context depends greatly on the

natural resources of weather and soils. The sandy-loam soils used in this

research have low water holding capacities, are free draining, and thus are
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prone to leaching. The management of sandy-loams under multiple criteria

appears to be diflicult, if not impossible, without employing an irrigation

scheduling methodology which takes the multiple criteria into account.

In the cold-wet weather regime,lirrigation has little or no practical role to

play in management of net return and nitrate leaching. When exposed to the

hot-dry regime, irrigation made crop production viable, and, by guaranteeing

that a crop was produced, prevented off-season leaching which would have

occurred from crop failure. The ability of irrigation technology to ensure that

goals were achieved for high net return and low nitrate leaching varied with

the operating context.

The challenge for management is to determine the future operating context

with lead time sufficient to enhance the effectiveness of irrigation. What is

true for irrigation technology is also true for the other technologies on which

management depends. Crop nutrition, crop protection, crop genetics, and

crop harvesting technologies likewise benefit from the ability to predict the

operating context. Agricultural technologies are co-dependent on forecasts of

the state of the natural environment. As demands on an agricultural

biosystem (such as irrigated maize production in temperate climates) become

more stringent, the performance of multiple technologies become “inter-

dependent” as the management tries to extract the “best possible”

performance from the operating context.

The results of the optimizations of the comprehensive model have revealed

all this, thus proving the hypothesis. Incidental findings to the foregoing
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observations are given in Appendix E. A listing of topics for future research

is given in Appendix F.

REVELATIONS FROM THE SECOND SERIES OF OPTIMIZATIONS

The stereotypical weather years were developed to consider the “usual”

management of operations, not “exceptional” management of risk. The

stereotypes were obtained by sorting ninety-nine weather years generated for

the locale on the basis of two measures only: monthly temperature and

 

rainfall. The number of rain events and intensity of rain events yielded the

cumulative rainfall. The most common event fi'equency was used to select

stereotypical months when a cluster of months was in the neighborhood of

the value needed to fit the stereotype. This selection process tended to

exclude months with extreme rain events, “cloud-bursts,” for example.

The selection process had two impacts on the optimization. With fewer

extreme events, storm runofl' was reduced and infiltration was increased;

that is, more of the rainfall was useful for plant growth. With fewer extreme

events, rainfall was more uniformly distributed over the month; the rainfall

distribution had a “quasi-scheduled” quality which meant that infiltrated

rain was more beneficially timed for plant growth and the potential for

leaching was lessened. The cold-wet year that resulted from the selection

process happened to be a good year for crop production given the range of

possible cold-wet years.

The amount of rain available for crop production varied with factors such as

cultivar selection. The amount of rain available to the crop was
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approximately half of the annual rainfall. A cold-wet growing season could

produce a good yield with a very good net return. In simple terms, irrigation

compensates for the rainfall deficit in all drier years.

There were two consequences for crop production in drier years when using

irrigation to bridge the moisture gap. First, in order to achieve a similar net

return, yields needed to be higher to cover the costs of irrigating. Second, if it

was not raining, the sun must have been shining. Dry years tended to be

hotter with more solar radiation. Dry years, therefore, had the potential for

higher yields if irrigation was provided. Because dry years tended to be

hotter and plants could yield more, the irrigation demand was more than the

simple rain deficit between cold-wet and hot-dry years. The demand for

irrigation water in hot-dry years exceeded the typical design capacity for

water wells in the area. Table 5.1 summarizes the results of the range of

stereotypical summer with normal winters.

In round numbers, the table depicts the results obtained from the second

series of optimizations. In the second series, leaching increased in a way that

was not anticipated for the hot-dry growing season. The irrigation schedule

called for the maximum possible water application for many days throughout

the growing season. The maximum irrigation was limited by the well

capacity. The crop could not then assimilate as much nitrate which left a

larger nitrate residual at the end of the season. With a hot-dry winter,

leaching would be minimal. With a normal winter, however, the nitrate

residual was flushed from the soil profile, to contaminate the groundwater.

 





183

Table 5.1. Results from stereotypical summers with normal winters.

 
 

 

Weather Stereotype Cold-Wet Normal Moderate Hot-Dry

Annual Rainfall 1458 1007 755 530

Growing Season Rainfall 750 500 350 250

Rain Deficit O 250 400 500

Minimum Irrigation 0 250 400 500

Maximum Irrigation 1 50 400 600 *600*

 

 

All units are in millimeters

*Maximum irrigation limited by well capacity.

The decision as to what and how much to plant depends on confidence in the

commodity market over the year following planting. Selection of which

cultivar to plant is affected by the expected weather over the growing and

harvest seasons. If seed corn could be purchased just prior to planting, a six-

month long-range forecast would be sufficient to support cultivar selection.

In order to assure the availability of a specific cultivar and to take advantage

of early order discounts, the decision to purchase may be pushed forward

another six-months; this implies that cultivar selection needs a weather

forecast a year in advance of harvest. A “perfect” weather forecast would

enable the farm manager to tune the farming operation to conditions that

depart from “normal” and this was found to be worth about $20/ha/yr.



CHAPTER SIX

SUMMARY AND CONCLUSIONS

Multivariable sequential random search incorporating a simple evolution

strategy worked reliably with the irrigated maize production biosystem. The

efficient population and dispersion of trial solutions for each search

generation appears to be problem dependent. Adaptive goal-seeking was

successfully appended to the multicriteria objective function. Adaptive goal

seeking was performed in parallel with resource scheduling. The

optimization method permits the pursuit of secondary goals after primary

goals are achieved. Two types of implicit constraints were handled. The type

of implicit constraint related to cumulative environmental measures had to

be handled in the traditional way and this resulted in tedious nested

optimizations. The subset of implicit constraints characterized by the

influence of weather on the scheduling of agricultural operations was

resolved by functional adjustments to elements of the trial solution vector.

184
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The particular processing network derived from generalized hierarchical

ecological network theory accommodated Amaize and Van Ee Dry-down

models, although neither was designed to be compatible with this in

procedure.

Different soils called for different resource schedules; however, irrigation, if

warranted, diminished the differences. High frequency irrigation (less than

six mm/day) did not leach nitrate. Topping-up to field capacity before a rain

caused the movement of nitrate. Through parameter estimation, the reserve

soil capacity for rain was calculated in the model, based on the weather

forecast.

There was little financial penalty for applying excess nitrogen. The model

quantified serious leaching following heavy fertilization and large infi'equent

water events. Side-dressing of nitrogen in make-up amounts rarely

contributed to leaching. Nitrate leaching was least with long season

cultivars. Long season cultivars consumed more nutrient and water

resources which would be desirable when disposing of animal waste. Net

return, however, was greatest with a cultivar adapted to the specific growing

season.
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Optimization of the technology and management parameters in the irrigated

maize production model teaches how to schedule nitrogen to reduce winter

leaching. Scheduled irrigation can reduce the amount of nitrate leached;

scheduling of all resources in ensemble reduces nitrate leaching more.

Resource scheduling needs to be comprehensive (all resources considered

simultaneously) especially as an enterprise is managed to satisfy conflicting

criteria at the Pareto frontier.



APPENDICES



APPENDIXA

AN OVERVIEW OF MULTIVARIABLE NONLINEAR

OPTIMIZATION METHODS

Broyden-Fletcher-Goldfarb—Shanno

The Broydon-Fletcher-Goldfarb-Shanno Method is a variant of the conjugate-

gradient Davidon-Fletcher-Powell Method described in sequel. This approach

differs only in the handling of mathematical details. A brief description and

FORTRAN source code are given in Press et al. (1986, pp. 307-311).

QuickBASIC 4.5 source code is also given in Sprott (1991, pp. 237-240).

Complex by Box

The Box Complex Method is an iterative pattern search method which tends to

find the global optimum because the initial point pattern (the complex) is

randomly dispersed throughout the search space (Box 1965, pp. 42-52).

Complex is an improvement on the pattern search Simplex Method by

Spendley, Hext, and Himsworth. The geometric structure of vertices (the

complex) can adapt in shape and can conform to boundaries with more agility

188

 



189

than the structure in Simplex (Box, Davies, and Swann 1969, pp. 52-54) In

addition to explicit constraints on the allowable values for independent

variable, Complex accommodates implicit constraints derived from functions of

the independent variables. Several forms of acceleration to the optimum and

convergence criteria have been developed for Complex. No derivatives are

required. Several runs with different initial seed values may be needed for

multimodal response surfaces. Complex may stall on structures like volcano

cones and have to be restarted. Old FORTRAN source code developed by

Richardson for constrained problems is listed in Kuester and Mize (1973, pp.

368-375). A description and old BASIC source code is given in Bunday (1984,

pp. 98-107). A version of Complex rewritten in QuickBASIC 4.5 and modified

from M-OptSim by Manetsch is listed in the Ph.D. Thesis by Richard Alderfer

(1990).

Complex-Powell Optimization by Buchner

The Complex-Powell Optimization Algorithm was developed by Buchner to

take advantage of the initial global search ability of Complex and then switch

to Powell's Method to take advantage of its convergence properties. The hybrid

algorithm was tested on a large model for parameter estimation and optimal

policy estimation. The method proved to be faster than either method alone for

large simulations. The complete development and old FORTRAN code is given

in Buchner (1975, pp. 1-183).

 

 



190

Constrained Fletcher-Powell (CONMIN Algorithm)

The Constrained Fletcher-Powell Method incorporates constraints into a

modified objective function. The modified objective function is then solved by

the Fletcher-Powell Method described in sequel (Haarhofl' and Buys, 1970, pp.

178-184). Old FORTRAN source code developed by Haarhofl‘, Buys, and

Molendorff to solve the constrained problem is listed in Kuester and Mize

(1973, pp. 464-495).

Constrained Rosenbrock (Hill Algorithm)

The Constrained Rosenbrock Method is adapted from the unconstrained

“automatic” Rosenbrock Method to accommodate nonlinear inequality

constraints (Rosenbrock and Storey 1966). The starting point for the procedure

must be away from the boundaries surrounding the search space. Old

FORTRAN source code developed by Yancey and Spear to solve the constrained

problem is listed in Kuester and Mize, (1973, pp. 386-398).

 

 



191

Davidon-Fletcher—Powell

The Davidon-Fletcher-Powell Method, or simply the Fletcher-Powell Method

initially uses derivatives to calculate the steepest descent towards a minimum

beginning from a starting point (Davidon, 1959). The method uses the ideas of

the Newton-Raphson Method and conjugate direction (Bunday 1984, p. 63). A

one-dimensional search is conducted for the minimum along the original

gradient. This cycle is repeated until the minimum is located (Fletcher and

Powell 1963, pp. 163-168). The gradient with the steepest descent is only a

local property; therefore, many iterations are needed for a nonlinear response

surface. Despite the intuitive appeal of this method, it is slow to converge.

Derivatives of the objective function with respect to the independent variables

are needed. Unimodal functionality is assumed; therefore, several searches

with dispersed starting points are recommended to verify finding the global

optimum. Old FORTRAN source code developed by I.B.M. for the 360 System

to solve the unconstrained problem is listed in Kuester and Mize (1973, pp.

355-366). Old BASIC source code is listed in Bunday (1984, pp. 47-55).
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Fiacco and McCormick (SUMT Algorithm)

The Fiacco-McMormick Method uses the original objective function to form an

unconstrained objective function which is minimized by any appropriate

unconstrained, multivariable method (Fiacco and McCormick 1968). A

modified objective function is formulated from the original objective function

and penalty functions. An “error” parameter is embedded in the modified L

objective function; this parameter is minimize through the sequences of the

optimization and the solution is achieved. First and second derivatives are

required. Old FORTRAN source code developed by Mylander, Holmes, and

McCormick to solve the constrained problem is listed in Kuester and Mize,

(1973, pp. 386-398). This version of the SUMT algorithm uses one dimensional

search by Golden Section (modified by Fibonacci), modified Newton-Raphson,

Steepest Descent, and Fletcher-Powell methods. Several options are included

for convergence criteria. A description and old BASIC source code is given in

Bunday (1984, pp. 113-122).

Fletcher-Reeves

The Fletcher-Reeves Method uses derivatives to calculate the steepest descent

towards a minimum , or conversely, the steepest ascent towards a maximum

from an initial starting point (Fletcher and Reeves 1964, pp. 149-154).

Derivatives of the objective function with respect to the independent variables

are needed. Unimodal functionality is assumed; therefore, several searches
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with dispersed starting points are recommended to verify finding the global

optimum. Old FORTRAN source code developed by I.B.M. for the 360 System

to solve the unconstrained problem is listed in Kuester and Mize, (1973, pp.

344-354). Old BASIC code and a derivation is given in Bunday (1984, pp. 67-

74). The “Polak-Ribiere Variant” of the Fletcher-Reeves Method is described

and FORTRAN source code given in Press et al. (1986 pp. 301-307). The

Fletcher-Reeves-Polak-Ribiere source code in QuickBASIC 4.5 is also given in

Sprott (1986, pp. 234-237).

Hooke and Jeeves

The Hooke-Jeeves Method is a pattern search method which works fiom an

initial base point and a conducts parameterized local search about the base

point (Hooke and Jeeves 1961, pp. 212-229). No derivatives are needed.

Unimodal functionality is assumed; therefore, several searches with dispersed

starting points are recommended to verify finding the global Optimum. Old

FORTRAN source code developed by Johnson to solve the unconstrained

problem is listed in Kuester and Mize, (1973, pp. 309-319). Old BASIC source

code is listed in Bunday (1984, pp. 32-37). A modified version of Hooke and

Jeeves with constraints is described and old BASIC source code is also given in

Bunday (1984, pp.93-98).
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Grid Search

The Grid Search Method is a standard tabulation method that assumes the

minimum lies within the upper and lower bounds of the independent variables.

Points in a multidimensional search space are generated at equidistant

intervals along each dimension. Each point is evaluated sequentially and the

“optimum” value is accepted as the global optimum. Efficiency of solution

depends on the number of extraneous points evaluated as with the univariant

Total Search Method of Box, Davies and Swann (1969, pp. 16-17).

Nedler and Mead

The Nedler-Mead Method is an extension of the pattern search Simplex

Method by Spendley, Hext, and Himsworth. A regular geometric structure,

called a Simplex, forms the basis for a pattern search of the response surface

(Nedler and Mead 1964, pp. 308-313). This Simplex approach is self-adaptive

to the “local landscape” and uses reflected, expanded, and contracted points to

locate the minimum. Unimodality (singular optimum) is assumed; therefore,

the algorithm should be run several times from dispersed starting points to

better guarantee that the optimum found is indeed the global optimum. No

derivatives are required. Old FORTRAN source code developed by Bates

unconstrained problems is listed in Kuester and Mize (1973, pp. 298-308). Old

BASIC source code is listed in Bunday (1984, pp. 37-46). FORTRAN source

code is given in Press et al. (1986, pp. 289-293). QuickBASIC 4.5 source code

is also given in Sprott (1986, pp. 225-228).
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Powell

The Powell Method begins with a starting point and proceeds in search

directions parallel to the original axes of the response surface. A sequence of

single variable searches is conducted Powell 1964, pp. 155-162). No derivatives

are required. Unimodal functionality is assumed; therefore, several searches

with dispersed starting points are recommended to verify finding the global

optimum. Old FORTRAN source code developed by Powell to solve the

unconstrained problem is listed in Kuester and Mize, (1973, pp. 331-343).

FORTRAN source code is given in Press et al. (1986, pp. 294-301).

QuickBASIC 4.5 source code is given in Sprott (1986, pp. 228-234).

Random Search

The Random Search Method can be regarded as a tabulation method with a

“random grid” in the search space (Brooks 1958, pp. 244-251; Spang 1962, pp.

343-365). A number of random points is selected for each independent

variable, generally 10 points are used. Random search does not “hang-up” for

any type of response surface, ridged, rutted, cratered, unimodal, or not. There

is no guarantee that the optimum selected is the best possible if the surface is

not unimodal. Like Complex, Random Search tends to find the global optimum

of a unimodal response surface. The method is slow to converge to high

precision. No derivatives are required. Explicit and implicit constraints are

easy to include in the search. Very tight implicit constraints slow the selection

of suitable points to be included in the search. A description and old BASIC

source code is given in Shoup and Mistree (1987, pp. 65-71).
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Rosen (PROJG Algorithm)

The Rosen Method is based on gradient projection (Rosen 1960, pp. 181-217).

Derivatives of the objective function with respect to the independent variables

are needed. An initial starting point and step size are selected. The search

proceeds along the gradient to an optimum. The step size will increase on the

search path as long as linear constraints are not violated. At each gradient

projection optimum, a new gradient direction is evaluated and the process

continues. Old FORTRAN source code developed by Nichols to solve the

linearly-constrained problem is listed in Kuester and Mize (1973, pp. 399-411).

Rosenbrock

The Rosenbrock Method begins at a starting point and proceeds by

parameteratized steps along a traverse. Evaluations are performed about each

point on the traverse. The algorithm rotates the traverse and accelerates

towards the optimum (Rosenbrock 1960, pp. 175-184). No derivatives are

required. Unimodal functionality is assumed; therefore, several searches with

dispersed starting points are recommended to verify finding the global

optimum. Old FORTRAN source code developed by Johnson to solve the

unconstrained problem is listed in Kuester and Mize (1973, pp. 320-330).
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Simplex by Spendley, Hext, and Himsworth

The Simplex Method by Spendley, Hext, and Himsworth is an iterative pattern

search method (Spendley, Hext, and Himsworth (1961, pp.441-461). The term

“simplex” refers to the geometric structure, which is composed of n+1 mutually

equidistant points set in the search space where n is the number of

independent variables in the problem. These points form the vertices of a

regular simplex. The objective function is evaluated at each vertex.

The least desirable value in the simplex is identified. A line is projected from

the least desirable point through the centroid of the simplex. This projected

line is taken to be the best search direction in the neighborhood of the simplex.

A new point is located on the projection line which is equidistant from the

remaining points in the simplex. The least desirable point in the original

simplex is then discarded and the objective function is evaluated at the new

point.

Eventually the simplex structure centers itself on the optimum. Convergence

is tested by a termination parameter which is the number of iterations for

which the objective function remains unchanged. After the set iteration

number is exceeded, the distance between the points in the simplex is reduced

by half and the search process is repeated. Convergence is achieved by

exceeding the threshold of a second convergence parameter which is based on

the size of the simplex, or change in the measures of the objective function Box,
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Davies, and Swarm (1969, pp. 20-21)

The strong advantage of the Simplex Method is that it works well with

objective functions which are “corrupted by random errors” (non-smooth

response surfaces). No derivatives are required. Limitations of the Simplex

Method arise from the equal distance between vertices. Acceleration along the

favorable search direction is not possible. Simplex conforms poorly to ridges

and valleys. Simplex has no reliable method to accommodate constraints

(Buchner 1975).

The simple computer demands and adaptability of the Simplex Method spurred

several modifications to address its handicaps. Campey and Nickols modified

the Simplex Method so that size of the structure could adapt (contract and

expand) to the geometry of the response surface. The simplex would contract

to follow narrow valleys and expand over gently rolling plains (Campey and

Nickols 1961). Nedler and Meade further improved the adaptability of the

simplex by adding a “reflection coefficient” which would locate new points to

the simplex at something other than the fixed distance (Box, Davies, and

Swann 1969 pp. 22-24; Shoup and Mistree 1987, pp. 125-133). Box developed

Complex to overcome the limitations of Simplex by the choosing of randomly

dispersed points from across the expanse of the search space for the initial

vertices in the geometric structure, (Box 1965).

No samples of program code where found for the original Simplex Method by

Spenley, Hext, and Himsworth, or of the adaptation by Campey and Nickols.
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None-the-less, simplex is the benchmark method of pattern search approaches.

Univariant Search

Univariant Search Methods (Univariate in the UK.) is the simplest class of

optimization techniques consisting of a one dimensional search along a

reference axis (Buchner 1975, p. 24). Univariant searches fall into two classes:

“methods which specify an interval in which the minimum lies”, and “methods

which specify the position of the minimum by a point approximating to it,”

(Box, Davies, and Swan 1969, p. 10). The concepts of univariant searches

have been incorporated into several of the multivariable methods, sometimes

directly encoded.

INTERVAL SEARCH APPROACHES

The “Total Search Method” uses an intuitive approach to narrow the search for

an assumed unimodal optimum (a singular global optimum). The total search

interval is first subdivided into uniform segments. The objective function is

then evaluated at the nodes and possibly at the end points of entire search

interval. The optimum value of the initial function evaluations is found and

the search is narrowed to the segments to the left and right of the initial

optimum. The cycle is repeated until the subsequent search interval is less

than a preselected threshold value and convergence is assumed. The Total

Search Method is slow. Old BASIC code is listed is listed in Shoup and Mistree

(1987, pp. 29-33).
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The “Interval Halving Method”, or “Three-Point Interval Search” is a subclass

of the Total Search Method which reduces the number of extraneous searches

for each iteration. Only three uniformly spaced nodes are evaluated in each

iteration. The range of the search is reduced by halfwith each iteration,

(Shoup and Mistree 1987, pp. 33-34). By using three points, it is the most

efficient of “equally spaced” search methods and is among the easiest to

program.

The “Dichotomous Search” is another subclass of the Total Search Method

which uses only two evaluation points at each iteration and proceeds as the

Interval Halving Method (Shoup and Mistree 1987, pp. 34-36).

The “Golden Section Search”, or “Golden-Mean Search” uses one point

evaluation on each iteration. The point is strategically positioned 0.618033989

the distance from one end of the search interval. Golden Search does not give

as great an interval reduction per iteration as Fibonacci Search, but has the

advantage that the number of iterations does not need to be specified a priori,

(Box, Davies, and Swann 1969, pp. 12-13). The derivation and old BASIC

source code are given in Shoup and Mistree (1987, pp. 36-41) and Bunday

(1984, pp.18-24). FORTRAN code is given in Press et al. (1986, p. 262).

QuickBASIC 4.5 code is given in Sprott (1986, pp. 217-218).
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The “Fibonacci Search Method” makes use of a particular sequence of positive

integers called the “Fibonacci numbers” (Kiefer 1957, pp. 105-136). Fibonacci

Search achieves an interval reduction of 17 percent over Golden Section with

each iteration. Although more efiicient, it is not necessarily the most accurate,

(Box, Davies, and Swan 1969, p .p12-13). A comparison of Fibonacci Search to

other univariant methods and old BASIC source code is given in Shoup and

Mistree (1987, pp. 42-48) and Bunday (1984, pp. 12-18). The Fibonacci Method 1

does incorporate constraints. Old FORTRAN code by Voorhees is listed in J

Kuester and Mize (1973, pp. 286-295).
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CURVE FITTING APPROACHES

The “Quadratic Interpolation Method,” “Powell's Algorithm,” or “Powell's

Method in one dimension” is based on fitting a quadratic function to the

function evaluation at three points. Two problems arise with the method. If

the step-size is too large, the search may be slow. If the step-size is too large,

the initial turning point may be a maximum instead of a minimum (Box,

Davies, and Swann 1969, p. 15). Old BASIC source code is given in Bunday

(1984, pp.20-23).

The “Cubic Interpolation Method”, or “Davidon's Method” uses the function

evaluation and the gradients at two points, which improves the accuracy over

Powell's Method (Davidon 1959). Old BASIC source code and an explanation is

given in Bunday (1984, pp. 24-28).

The “Davies, Swann, and Campey Algorithm” is a minimization procedure with

uses variable step-sizes. The step-size for function evaluations increases if the

function is decreasing. The process continues until the function increases. At

this point, a quadratic is fitted to the evaluated points and an interpolation is

performed (Box, Davies, and Swann 1969, pp. 14-15)

The “Coggin's Method” incorporates two of the preceding methods to gain

efficiency and accuracy over Fiboacci Search (Box, Davies, and Swann 1969 pp.

13-15). The two step process makes use of the convergence efficiency of
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Powell's Method while avoiding its step-size drawbacks. Old FORTRAN source

code to find the unconstrained minimum by Voorhees is given in Kuester and

Mize (1973, pp. 276-285).

COMMENT ON SOURCE CODE

Test everything. Hold onto the good. Avoid every kind of evil.

1 Thess. 5:21-22

Verification of source code for optimization methods is obviously important.

Algorithms may need to be modified to adapt to particular applications. As a

practical measure, this researcher has found it is useful to retain code within

the new application for a problem to which the answer is known. Three

problems commonly used in the literature are: the cylindrical tank problem,

the post ofice problem, and the traveling salesman problem.

 



APPENDIX B

DEFINITIONS OF ADAPTIVE SYSTEMS

AND ADAPTIVE CONTROL

Definition 1: An adaptive system is a system which is provided with a means

of continuously monitoring its own performance in relation to a given figure of

merit or optimal condition and a means of modifying its own parameters by a

closed-loop action so as to approach this optimum, (Eveleigh, 1967).

Definition 2: An adaptive control system is defined as a feedback control

system intelligent enough to adjust its characteristics in a changing

environment so as to operate in an optimum manner according to some

specified criterion, (Margolis, M. and GT. Leondes 1959).

Definition 3: Adaptive control belongs to the third of three stages in the

evolution of control processes:

1. If the system to be controlled is fully specified and the controller has

complete information concerning the behavior of the inputs, the control

process is “deterministic.”

2. When unknown factors appear in the system to be controlled, or arise from

the operating environment, and appear mathematically as random
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process is “deterministic.”

2. When unknown factors appear in the system to be controlled, or arise from

the operating environment, and appear mathematically as random

variables, the control process is "stochastic". Randomness may occur in

inputs and parameter values.

3. When control of the system requires a multistage decision process in the

absence of complete information about the system and its environment for

any time period, the control process is “adaptive.”

Many control problems of the third stage are found in biology, engineering, and

 

economics, (Bellman, R. and R. Kalaba, 1959).

Definition 4: A system is adaptive if, with respect to a family of time functions

to which the system is subjected and with respect to an acceptable set of

performance criteria, the system performs acceptably well with every source in

the time functions. This definition can be written in mathematical terms,

(Zadeh, 1963).

Definition 5: An adaptive system is a system designed from an adaptive

viewpoint. “Adaptivity” is in the eye of the designer, (Truxal, 1963).



APPENDIX C

PROPERTIES OF AN ADAPTIVE SYSTEM

The adaptive control of a system considers four properties of the system:

observability, controllability, stability, and optimality (Narendra and

Annaswamy, 1989).

The property of “Observability” refers to the ability to measure all components

of all state variables that describe the system (Distefano, Stuberud, and

Williams, 1995). Observability is considered imperfect in the adaptive control

problem. Continued observation over time is used to gather updated partial

observations to reestablish control (Narendra and Annaswamy, 1989).

The property of “controllabilitY’ answers the question: If a corrective action can

be formulated, can it be implemented (Distefano, Stuberud, and Williams,

1995)? Adaptive control theory can accommodate partially-controllable system

behavior.
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The property of “stability” implies that a system essentially conforms to

Newton's Laws. A stable system remains at rest until stimulated. A stable

system returns to a “rest state” following the removal of all stimuli (ibid.). Rest

state in this context does not mean zero, but refers to some bounded behavior.

Bounded input yielding bounded output (BIBO) is the essential stability

criterion for non-linear systems (Narendra and Annaswamy, 1989). A

numerical model of a stable plant, which mimics the essentially features of the

 

plant is, by extension, bounded input bounded output (BIBO) stable.

Knowledge of system stability is valuable in evaluating whether the adaptive

control of a system is “robust” (ibid.). In this context, robustness implies that

“the adaptive system performs in essentially the same manner” when

exogenous and endogenous disturbances are present.

The property of “optimality" assumes that criteria for preferred system

behavior can be specified. Evaluation of a system's performance over time

provides information for the evaluation of corrective measures which are

administered to the system to achieve “optimality” (Distefano, Stuberud, and

Williams, 1995). For adaptive systems, optimality raises the notion of

confidence limits on the evaluation of the optimum control strategy evaluated

while the system is operating.



APPENDIX D

REQUIREMENTS FOR USABLE CROP MODELS IN

AGRONOMIC SYSTEMS

The requirements for crop simulation models in agronomic systems which are

orientated towards problem solving are outlined by Whisler et a1. (1986) as

follows:

1. Commonly available data should be required.

a. Climate: daily temperature, precipitation, wind

humidity, pan evaporation, radiation.

b. Soil: texture, depth, water availability.

c. Crop: type, cultivars, planting date, growth stages.

(1. Management: fertilizer application, tillage, irrigation.

2. The input of management factors should be emphasized and

easily accomplished.

3. The model must maintain a balance of all parts such as water
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balance, salt balance, carbon balance, nitrogen balance, etc.

Plasticity of plants (genetic difference and adaptability).

Computer requirements should be reasonable. The model should

preferably be capable of running on microcomputers or minicomputers.

The FORTRAN, or BASIC [additionally C] computer codes should be

available as part of each model. Estimates of computer time should be

made.

General variables should be required. Models should have the

minimum of site-specific factors. The model should be capable of giving

reasonable answers at a different location from where it was

developed using local data.

The model should be stable and not include hunting routines that could

hang up the computer. If hunting routines are used they should be

automatically terminated after several cycles.

The model must have been tested under field conditions on a data set

other than that on which it was calibrated.

Main assumptions and simplifications should be clearly indicated. The

principle assumptions should be clearly outlined so the user is well

aware of the range of applicability of the model.

The potential and actual data output that comes from the model should

be given.

 



APPENDIX E

THE INDONESIAN POST-PRODUCTION RICE

PROCESSING MODEL

The following rice post-production network is the result of an unpublished

study by Handaka under the direction of E.C.Alocilja in 1989. The model

follows the processing of rice from maturity to milling through alternate post-

production technologies. The processes represented in the network are:

(A) Rice Harvesting

(B) Traditional Threshing by Hand

(C) Traditional Sun Drying

(D) Mechanical Threshing

(E) Mechanical Drying

(F) Rice Milling

Figure D.1 depicts the network for the Indonesian post-harvest processing

model.
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This small network is particularly interesting as a computational example

because of the cross-linkages from traditional to mechanically assisted

processes. This network is essentially the "fractal" model for larger complex

process networks.

For process networks with a large number of processors and linkages, alpha-

 numeric labeling indicative of the processors names facilitates verification of g,- -‘

the correctness of computer program code. For this small network example, E

numeric labeling of the processors provides a logical method of subscripting the

solution procedure. Component stimulus variables (primary product) are

designated by the process number followed by zero. Response variables are

depicted by the process number plus a number greater than zero. Each

elemental process has one primary output (rice retained in the system), one

secondary output (grain losses), and one or two resource inputs (rice from

predecessor processes).
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APPENDIX F

INCIDENTAL FINDINGS

he incidental findings from the research are sorted by objective:

Objective One

I. For operations other than irrigation (e.g. fertilization, tillage, crop

protection, harvesting, or plant breeding) the approach used here can be

used to describe and manage any technology.

2. The variability of soil within the irrigated area can be treated in a

manner similar to the way multiple technologies are treated. The

potential benefit of precision farming can, therefore, be calculated.

Conversely combining soil samples for a field degrades information that

could be used.

3. The choice of the CeresMaize crop-growth model makes possible the

application of this particular enterprise model to other locations. The

method for developing weather scenarios is also generally applicable for

other locations and crops. The approach taken to assessing the variability

of irrigation distribution applies to other irrigation methods. This

enterprise model for sandy-loams in southern Michigan is generally
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applicable to irrigated sandy-loams in Nebraska, Florida, Morocco, or

Egypt.

A programming coding structure was required to facilitate debugging of

the processing network program code. Coincidentally, this coding

structure resulted in a programming heuristic which can be coupled with

a graphical user interface. Such a linkage would greatly facilitate the

writing of executable program code for large models.

Objective Two

What is true for irrigated-maize, can be extended for any biosystem driven

to achieve “best-performance”.

Further, what is true for a biosystem, is true for any nonlinear-system

employing multiple-technologies.

The optimization of the irrigated maize enterprise model demonstrates

one approach to scheduling multiple technologies employed in one

enterprise.

By extension, the hierarchical ecological network approach will apply to

the management of multiple enterprises sharing, or competing for the

same resources.

The better the long-range weather forecast, the more that can be done to

better take advantage of “good” weather, conversely, the more that can be

done to alleviate the efi'ects of “bad” weather. A good long-range weather

forecast enables the manager to synchronize all farming activities with

the trends in the weather.
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The modeling and optimization procedure used in this study is generally

applicable to multiple resource/multiple criteria problems and is limited

only by the capacity of the computing facilities.

This procedure lends itself to parallel distributed computing using local

area networks of personal computers which expands the number of

potential users.

A normal temperature-normal rainfall year (normal-normal year) was the

only weather forecast used in this model. Long range weather forecasts

are available for a year in advance. These forecasts are not precise,

merely forecasts of deviations from normal. The simple classification

used in this research is compatible with the terminology used in the long

range forecasts.

Objective Three

The individual criteria within a multicriteria objective function are

coupled in ways unique to the model configuration and operating context.

The phase diagrams of the criteria have a characteristic “fingerprint” for

the configuration and context.

All nonlinear, nonderivative optimization methods have difficulty locating

the global optimum on a relatively flat response surface. The greater the

number of independent search variables and the greater the number of

criteria in the objective function, the more likely the response surface has

flat spots and that the optimum lies on a flat spot. The result is a

multiplicity of acceptable solutions.
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Objective Four

0 Technologies embedded within the same well-managed enterprise (such as

fertilization and irrigation schedules) are not really independent when the

enterprise is expected to perform at, or near the Pareto frontier.

o Relating to irrigation efficiency, optimality seems more strongly tied to

the variance of technology behavior than to its mean, or most likely

behavior.

0 In regards to variance and the detection of change, change occurs, or is

noticed, first at the edges.

0 The analytical approach used in this research yields observations of the

technology coefficients due to environmental changes, cultivar genetics,

and management.

Objective Five

0 Nutrient losses due to runoff will be greater for soils with greater slopes

and less sand content than the soils used in this study. Conversely, the

potential for direct nitrate leaching should be less.



 



APPENDIX G

TOPICS FOR FUTURE RESEARCH

Recent and ongoing projects provide a number of opportunities for research in

biosystem optimization and technology management. For example,

marketing can be treated as one technology in a farming enterprise; for this

study, the market price was held constant. A forecaster of market conditions

can be incorporated into the optimization structure in the same manner a

weather; therefore, marketing can be similarly “scheduled.” No market

forecaster or marketing tools (hedges, options, etc.) were included in the

model for this research. For a commodity such as cash grain com, a market

forecast influences the production technology in the intermediate term and

area to plant in the short term. Once the production technology and acreage

to plant are decided, how to manage maize production is relatively

independent of market price. None-the-less, it would be useful to add a

market forecaster and a portfolio of marketing tools and observe the behavior

on optimization throughout the growing season. The coupling of economic

and environmental forecasters is expected to be of more value for crops and

livestock were a market forecast would exert more influence on production

management.
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Some other possibilities for research are:

. Other farm production enterprises

. Food processing - essence extraction (sage, onion, etc.)

. Waste handling - solids separation, handling systems design

. Animal housing - building ventilation design

1

2

3

4

5. Urban runoff water quality - storm-water BOD control

6. Machinery systems

7. Building project construction scheduling and costing

8. Economic/Environmental Sustainability

9. Environmental remediation (revisions to CALTOX)

10. Measures defining what is a “neighborhood”

11. Analysis of data streams for selecting the best method of analysis

12. Handling linguistic data concurrently with numerical data

13. Risk management

14. Long-term firm stability and evolution
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