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ABSTRACT

PREDICTING SOIL WATER CONTENT FROM TOPOGRAPHIC
WETNESS INDICES IN LOW-RELIEF TERRAIN:
VALIDATION AND EVALUATION
By

Demetrios Gatziolis

The handful of spatially distributed, terrain-based indices of soil water content
developed to date suggest the potential for characterizing a critical environmental
variable at a fine spatial scale using widely available, inexpensive digital elevation and
soils data. However, none of these indices have been validated against field observations
of soil water content. The performance of static and dynamic indices in representing field
observations of soil water content was evaluated for a 265 hectare, midwestern U.S.
watershed, using publicly available data on soil attributes and elevation, and a terrain
representation constructed via softcopy photogrammetry. Performance tests spanned a
wide range of observed soil water content, and several agricultural and forest cover
conditions. Contrary to expectation, all indices explained only a limited portion of the
observed variability in soil water content. Changes in model structure which could
improve index performance will likely sacrifice structural simplicity and parsimonious
parameterization. Specific suggestions for alterations likely to improve model

performance are presented.
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INTRODUCTION

The classical model of hillslope hydrology, based on infiltration theory (Horton,
1933), represents the first published report of an attempt to portray the downslope
movement of runoff in a spatially explicit fashion. A re-examination of the simplistic
assumptions embedded in this model led to modifications (Hillel, 1971) which ultimately
produced a more realistic, but increasingly complex series of lumped- and distributed-
parameter models (Beven and Kirkby, 1979; O’Loughlin, 1986; Vertessy et al., 1990;
Dietrich et al., 1993).

In lumped-parameter hydrological models, the sub-watershed forms the
fundamental analysis unit, and a single value is calculated for the attributes of interest for
a single location within this unit. In distributed-parameter models, the continuously
variable sub-watershed entity is discretized via tessellation into internally homogenous
areal elements, usually square grid cells, which are typically represented in a raster data
model. Each element is described individually by a set of differential mass-balance
equations referencing the inputs of distributed components, such as precipitation and
atmospheric deposition, and contributions from adjacent elements (cells). These
equations for all elements in the sub-watershed are then solved simultaneously over a
small computational time element At.

The specific distinction between the two model types is that the lumped-
parameter models predict attributes at a single location (usually the watershed outlet)

while distributed parameter models generate attribute values for each cell. Consequently,



distributed parameter models are more demanding of data storage and require input at a
far greater resolution. The distributed-parameter structure is designed to account for
spatial variability in watershed attributes (e.g., slopes, soils, vegetation) and the effects of
this variability on modeled outputs, making it well-suited to analysis of heterogenous
watersheds. The advent of geographic information systems (GIS) and increasingly
powerful computational capabilities and storage capacity have facilitated the
development of increasingly complex distributed-parameter models (Table 1).

Hydrological models can be further classified as to whether they are temporally
discrete or continuous (Table 1). Discrete event models simulate the response of a
watershed to a specific precipitation event, and require specification of the storm
parameters (e.g., intensity, duration, and distribution). Continuous, clock-driven models
often require specification of considerable additional meteorological and other
parameters, including detailed information on soils, precipitation, and solar radiation in
order to account for such processes as available water surface storage, snow
accumulation, evapotranspiration, soil water content, runoff, infiltration rates, lateral soil
water movement, pollutant accumulation, and erosion (Novotny and Olem, 1994).

Most hydrological index-based models do not provide a true accounting for water
flow from one location to another in three-dimensional (or even two-dimensional) space.
Rather, they assess the hydrologic response for each location based on the value(s) of
calculated topographic indices such that locations with equivalent index values are
assumed to exhibit the same local hydrological behavior regardless of watershed position.

The most widely used topographical index in hydrological simulations is

In(As / tanP) where A, is the specific area (sometimes referred to as upslope contributing



area), or the area drained per unit contour length (or its raster approximation), and tanp is
the local slope (Moore et al., 1991; Quinn et al., 1995). The index value is greater for
locations that receive runoff from large, upslope areas or are relatively flat. Theoretically,
soils at locations with high watershed-relative index values have relatively greater water
content content and are more likely to reach saturation during rain and snowmelt events.
The index assumes that the watershed has reached a steady state drainage condition with
each location receiving water from its entire upslope contributing area.

Topographic Wetness Indices (TWIs), such as In(A, / tanf), (also known as Static
Wetness Index [SWI] ), are usually computed from either Digital Terrain Models (DTM)
which represent elevation at irregularly spaced intervals or Digital Elevation Models
(DEMs), which represent elevation on a regular grid (raster). DEMs are usually derived
from digitized contour lines of existing topographic sheets or, more recently, directly
from automated processing of stereo aerial/satellite data through digital image correlation
techniques (Krzystek and Ackermann, 1995; Kolbl, 1996). In contour-line based DEMs
the fidelity of the resulting terrain representation is driven by the contour density (Gao,
1997), the contour interval to DEM resolution ratio, and the interpolation algorithm
employed (Carrara et al., 1997). Terrain attributes used in the calculation of TWIs are
derived from directional derivatives of the land surface represented by the elevation
model; hence choices of representation (e.g. data model and scale) are expected to have a
substantial influence on the accuracy of the index. The two most influential terrain
variables are roughness (local variability in elevation) and magnitude of relief. DEM-
extracted terrain attribute quality deteriorates as slope decreases, especially below the 5%

margin (Hammer et al., 1995). Roughness is closely related to the scale of the



representation. Coarse scale representations of terrain entail reduced information content,
result in a smoother-appearing landscape, and degrade the accuracy of terrain parameters,
including flow length and slope (which tend to be underestimated) and ultimately, TWIs.
Distribution of SWI value at different grid sizes showed that as the grid resolution
becomes coarser, the percentage of high index values increases (Quinn et al., 1991;
Vieux, 1993). Because accuracy can also be impaired by excessively fine scale
representations (because of heightened sensitivity to errors in elevation), the chosen
terrain representation scale (DEM resolution) should be comparable to terrain roughness.
Topographic parameters computed for two study areas with moderate to steep relief in
the western United States were shown to be significantly affected by the DEM resolution.
A 10-m grid provided a substantial improvement in the quality of calculated topographic
indices and hydrographs over coarser spacing (30 to 90 m), while very fine resolution (2
to 4 m) provided only marginal additional improvement (Zhang and Montgomery, 1994).

Watershed size also affects the distribution of TWI. Investigations over a wide
range of watershed sizes determined that variability in SWI distribution moments is high
in small watersheds (0.1 to 1 Km?), where tanf and A, are comparably influential on
SWI, and minimal in large ones (1 to 100 sz) (Wolock, 1995). In large watersheds, A
becomes the primary SWI controlling parameter, but its progressively increasing value
encountered for areas on or along the converging drainage network and towards the
watershed outlet, offers only a marginal increase to the natural logarithm based index
value for these areas.

SWI can also be affected by the choice of the algorithms applied to raster models

of elevation to calculate flow direction in the computation of A;. The single flow direction



(deterministic 8-node, also known as D8), algorithm assumes that the contour length used
in computing the specific area A; is given by the grid cell size. According to this method
all flow accumulated upslope of and from a given cell drains to only one of eight
neighboring cells - the one with the steepest descent (O’Callaghan and Mark, 1984). The
lack of realism in the topographic index maps generated by D8, lead to the development
of Rho8 (Random 8-node) (Fairfield and Leymaire, 1991). Rho8 introduces a stochastic
component in the D8’s flow direction determination in which the expected value of a
cell’s flow direction is determined by aspect. Further refinements produced the FD8 and
FRho8 algorithms, which allow flow divergence (i.e., routing flow to more than one cell).
The FRho8 option produces more realistic delineation of contributing areas and
eliminates parallel flow paths (a troublesome artifact of D8) (Quinn et al., 1991; Moore at
al., 1993). Costa-Cabral and Burges (1994) proposed Digital Elevation Model Networks
(DEMON) as the next iterative improvement, though the complexity of this approach and
the apparent comparative realism of its output, make this contribution more revolutionary
than evolutionary. Using a stream tube approach, DEMON-—calculated flow paths width
remains constant over planar terrain, and increases/decreases over divergent/convergent
topography. These characteristics are quite attractive for modeling areas with gentle
topography. The multiple flow direction algorithms (FD8, FRho8, and DEMON) all use
two dimensional flow routing, are suitable for computing the A in TWIs, and represent
significant improvements over the traditional D8 method (Moore, 1993). Combinations
of flow direction algorithms, where algorithm selection is conditioned by local terrain,
have emerged in hydrological modeling software packages (e.g., TAPESG [Moore and

Gallant, 1997]). Algorithms permitting flow divergence are used in the watershed's



channel initiation zone and until flow accumulation reaches a user defined threshold, to
be substituted thereafter by strictly flow-convergent algorithms that better correspond to
well defined drainage networks.

The In(A; / tanB) index is commonly known as the wetness index because of its
strong correlation with the distribution of soil water content (Moore et al., 1988). Linear
combinations of the index with other terrain attributes were shown to be correlated to
hydrological parameters (water table depth, slope, and discharge). Burt and Butcher
(1986), report that the product of the wetness index and plan curvature gave the best
correlation with soil water content potential, as compared to single parameter
alternatives.

Although topography is a dominant factor in describing water flows in soils on
steep slopes, other factors may become relatively more important in watersheds with low
topographic relief. Soil properties control the subsurface soil drainage speed and thereby
influence the spatial distribution of soil water content. Barling et al. (1994), developed a
quasi-dynamic wetness index (DWI), calculated as In(A, / tanf3) to simulate soil water
content in such terrain. This index relaxes the steady state assumption of the static
(In(A; / tan)) approach and accounts for the time it takes for water to redistribute
following a rainfall event, ultimately yielding a potentially more accurate representation
of soil water content patterns compared with the static wetness index. The dynamic index
uses the effective upslope contributing area A, instead of A, calculated for a user-
specified drainage time. DWI considers water flow accumulation over a short (typically
much shorter than for SWI) upslope distance, so even small errors in terrain

representation can lead to gross errors in flow routing and index value, particularly for



locations away from the primary drainage network and when D8 algorithm is used to
route flow.

A number of models designed to describe a watershed's hydrologic regime
combine SWI with other parameters that affect soil water content distribution (vegetation,
solar radiation, evapotranspiration). Among these are one, based on a modified version of
SWI, which accounts for the spatial distribution of evapotranspiration (Famiglietti and
Wood, 1995), a SWI-TOPMODEL based attempt to delineate locations within the Elbe
watershed likely to experience limited water availability (Muller-Wohlfeil et al., 1996),
one which incorporates SWI into a riparian non-point source pollution remediation
application (Fried et al., 1999), and one that uses TAPESC, SWI, and a canopy rainfall
interception model for soil water content modeling in humid mountainous landscapes for
which calibration with field measurements of soil water content yielded moderate model
performance (Yeakley et al, 1999).

In essence, DWI extends SWI by adding a temporal dimension in the form of a
drainage time parameter. DWI provides a range of possible soil water content conditions
for the same location and has the potential of providing a better fit to seasonal and
weather induced changes in the hydrologic regime of a watershed. Apart from the initial
work of Barling et al, 1994, the authors are not aware of any other attempts to investigate
this potential.

Undoubtedly, GIS software, digital databases, and environmental models offer
new opportunities for the collection, storage, analysis, and display of spatially distributed
biophysical data (Goodchild et al., 1996). However, in the rush to embrace the new

technology, ground-truthing has received inadequate attention (Hammer et al., 1995), and



there is a dearth of information regarding model validation. This study was undertaken to
investigate the relationships between the wetness indices DWI and SWI and in-situ
observations of surface soil water content with the objective of assessing the practical

utility of these models for applications requiring such predictive power.



METHODS

This section contains three parts: 1) descriptions of the study area selection
process, experimental design, and procedures used to collect field observations of soil
water content; 2) an explanation of the modeling process, data sources, data structures,
and guiding assumptions behind derivation of distributed topographic wetness; and 3) an
outline of the statistical procedures used to assess wetness index validity. Additional

detail on these topics can be found in appendices A-C.

Study Area

Three considerations influenced the choice of watershed for this analysis: model
performance, logistics, and representativeness.

Model performance, as judged by the accuracy of soil water content
representation, depends in part on the terrain attributes relief magnitude and roughness.
Poor performance could be expected in watersheds that are almost entirely smooth and
flat, and good performance in watersheds that are mostly rough and steep. Yet much of
the agricultural land in the U.S., identified as the principal source of non-point sediment
pollution (U.S. EPA, 1984), falls between these extremes, and for this kind of terrain,
model performance has not been tested.

DWI (heretoforth denoted as &) is determined by terrain and soil characteristics.

Poor drainage conditions on agricultural land in southern Michigan led to the



establishment of a drainage enhancement infrastructure, which included subterranean
drainage tiles, beginning in the 1950s'. Drainage tiles are typically poorly documented
and are often difficult to identify by observation, so it can be extremely difficult to
establish their absence in any given area with certainty, especially for areas with high
turnover in land tenure. Because drainage tiles can drastically alter soil hydrology in a
manner not reflected in terrain models, watersheds otherwise suitable for model
validation, were excluded if the status of subterranean drainage tiles could not be
definitively established.

The need for frequent, repeated rounds of soil water content sampling and rapid
access to the watershed within short time periods made proximity to Michigan State
University an important selection criterion. Another was the cooperation of landowners in
granting unrestricted access to soil water content monitoring sites, providing cultivated
crop history, and leaving sampling plots relatively undisturbed. Finally, for our findings
to be widely applicable (at least regionally), a watershed was sought containing terrain,
soils, crops and tillage practices which could be considered representative of agricultural
land in the midwestern U.S.

One watershed which meets these criteria is the 16.85 km? subwatershed of
Sycamore Creek known as Barnard Drain (Figure 1), located just south of the city of
Mason in Ingham County, Michigan approximately 30 km from MSU. Barnard Drain
was constructed in the early 1960s to expedite the drainage of adjacent agricultural fields,
and was cleared and widened in the late 1980s. The Ingham County Drain Commissioner

has responsibility for its management and maintenance’. Percent slopes in this

! Personal communication with Patrick Lindemann, Ingham County Drain Commissioner, February 1997.
? Information provided by the Ingham County Drain Commissioner Office, March 1997.
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subwatershed, as calculated via the finite differences algorithm® from a 10-m DEM
(Figure 2) generated from a 1:24,000 USGS digital hypsography (contour line) coverage
via Arc/Info's TOPOGRID algorithm (Hutchinson 1989), are very gentle (maximum
16.3, mean 2.5, and st.dev. 2.0). Geologic formations include till plains, moraines, and
eskers (glacially deposited gravel and sand that form ridges 9 to 12 meters in height).
Eskers, which are dominant in and adjacent to riparian areas, grade into moraines
approximately one-half to one mile wide composed primarily of sandy loam soils that
further grade into till planes with slopes of 6-18%. Organic soils can be found in
depressions and along the drainage network. Common soil series include Capac and
Colwood-Brookston loams and Marlette and Aubbeenaubbee-Capac sandy loams (Figure
3). Row crops and forests are the most common land use/cover (Table 2).

Twenty of the subwatershed's agricultural property owners and leaseholders
agreed to provide access to land under their control and information on past and planned
tillage practices and crop choices. All provided assurance that these lands were free of

subterranean drainage control structures.

Timing of soil water content sampling

Choices concerning when to sample soil water content were constrained by
considerations involving precipitation, temperature, and cropping characteristics. To
make meaningful use of the “drainage time” parameter required by the é model, some
samples had to be collected when soil was at or near saturation. Soil water content could

not be accurately measured when soil was frozen or too dry to permit insertion of the

? The finite differences algorithm estimates slope from the elevation change in the four cardinal directions



moisture probe. In the Sycamore Creek watershed, surface soil remains unfrozen from
early April to late November, and mean monthly precipitation ranges from 58.2 to 92.5
millimeters during this period (Figure 27).

In fields where soybeans and corn are grown, evapotranspiration, a parameter not
considered in the calculation of 6, becomes a significant influence on the soil water
content regime by mid-July.

These considerations suggested two potential sampling periods: April to June, and
September to November. However, the latter period appeared less favorable for two
reasons: 1) the presence of mature crop plants would hinder relocation and re-
measurement of sample plots, and 2) on average, there is less precipitation during these
months (Figure 27) - not an encouraging prospect given that the relationship between
TWI and soil water content is strongest in periods and areas with frequent rainfall (Troch
et al., 1993; Barling et al., 1994). Thus, the April to June period was selected for water

content sampling.

Soil water content sampling

Fifty-one locations were selected for establishment of soil water content sampling
plots so as to represent the full spectrum of hydrologic conditions which occur in the
Barnard Drain subwatershed. Parameters that influenced plot selection included upslope
contributing area, slope, plan and profile curvature, soil type, proximity to the drainage
network, crop, and presence/absence of tillage. The distribution of sample plots over the

ranges of these parameters roughly reflects the area-weighted distribution of these



parameters over the subwatershed (Tables 3 and 4). The suitability of candidate sites for
plot establishment was judged using ocular estimates of the aforementioned parameters,
with preference given to locations with high roughness.

The number of plots was constrained by the time required to complete a sampling
round. Attempting to measure soil water content at too many locations could result in
measurements being made at different drainage stages for a given sampling round and an
increased probability of precipitation occuring between measurement of the first and last
plots.

Soil properties are notorious for exhibiting high spatial variability (Vieira, 1981),
and where tillage is used, they are likely to be even more heterogenous. Thus, a single
water content measurement is not likely to be representative of the hydrologic regime
over an area of any size. TWIs are usually implemented in raster, so each estimated
wetness value effectively represents an area (one grid cell) rather than a zero-dimensional
point. Collecting multiple soil water content measurements within a sampling plot which
coincides with a grid cell provides a way to address scale and representational difficulties
and should provide a more stable representation of the hydrologic regime on an areal
basis. Measurement locations within each plot were established on a regular
(systemmatic) grid as described below.

On each of the 51 sampling plots established for this study (and georeferenced
with coordinates obtained using differential global positioning system to within +/- 2 m
of true position), 9 measurement locations were established on a 3-meter grid (randomly
oriented with respect to crop furrows, where present), to facilitate plot establishment and

remeasurement and to enable the assessment of within-plot soil water content variability.
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The systemmatic design proved a fortuitous choice when plot markings were lost (e.g.,
due to planting activity) and sampling locations within a plot had to be reestablished.
Plots were established within a small area (2.3 Km?) of agricultural and forested land
(Figure 4) with the goal of limiting complications from local variations in rainfall
intensity.

Soil water content was measured using a ThetaProbe, a device that relies on the
relationship between water molecule concentration and the apparent soil dielectric
constant to estimate volumetric soil water content. Periodic calibration was conducted to
ensure consistency of measurements throughout the study. Detailed calibration
information and operation principles can be found in Appendix B.

The nine observations per plot were averaged for each of the 22 sampling rounds
conducted between April 11 and June 11, 1997, to produce mean soil water content
estimates which could be assigned to the grid-cell that contains the plot. These values
were organized in a 51 by 22 element matrix M (51 plots, 22 sampling rounds).

Directional variograms calculated for each sampling round provided an estimate
of spatial autocorrelation for the observed soil water content, and an opportunity to
investigate possible direction-specific drainage patterns within the sampling area.
Analysis of variance (ANOVA) for the observed soil water content was used to assess the
influence of land use/cover on soil moisture conditions. The observed soil water content
mean and standard deviation among plots per sampling round were regressed against
drainage duration (time elapsed between sampling and the last rainfall event) to assess

possible relationship(s) between soil water content condition and drainage stage.



Precipitation and water-table monitoring

Two rain gages were installed in the sampling area (Figure 4) to monitor temporal
and spatial patterns of precipitation. Three ground water table monitoring tubes were
installed at approximately equal intervals between Barnard Drain and the drainage divide,
primarily to provide confirmation of the absence of artificial drainage patterns (e.g., from
subterranean drainage tiles). Readings from rain gages and ground water monitoring

tubes were recorded daily to ensure accurate precipitation and water table estimates

GIS Database Development

Distributed parameter inputs to and outputs from the topographic wetness index
models (TAPESG - Version 6.3, 1997 and DYNWETG - Version 2.2, 1997), were
managed as grids in an Arc/Info version 7.1.2 (ESRI, 1997) GIS database. Required
inputs were elevation and two soil properties: saturated hydraulic conductivity and
drainable porosity.

Two elevation grids were generated and used in simulations; both were
represented in the GIS as co-registered DEMs with a grid cell edge length of 10 m (the
same dimension used to define field water content measurement plots). DEM/T (Figure
2), was generated by processing a digital line graph (DLG) file, of topographic contours
(10 foot contour interval) for the hypsography layer in the Mason and Leslie, MI,
1:24,000 series topographic quadrangle map sheets®, with Arc/Info’s TOPOGRID

module. The module was executed using recommended tolerances for sink removal with



drainage enforcement to the Barnard Drain. An alternative version of DEM/T,
constructed using an intermediate Triangulated Irregular Network (TIN) elevation
structure, was also attempted, but proved inferior for purposes of this study (See
Appendix A).

DEM/P (Figure 5) was created by processing 1:24,000 scale aerial photographs,
taken from an approximate height of 2,900 m above the ground (Kucera International®,
May 1995, 203 x 203 mm diapositive film sheets) via PCI software's PPOINT, XPACE,
and ORTHOENGINE modules (PCI, version 6.2, 1997)6. GPS-georeferenced road
intersections for which elevation is displayed on USGS quads served as ground control
points. Photographs were scanned at 300 and at 600 dpi (11.8 and 23.6dpmm) resolution;
however, at 600 dpi, perhaps due to homogenous crop patterns across much of the study
area, the DEM generating algorithms frequently failed to provide an elevation solution.
The 300 dpi DEM contained a number of spurious peaks and sinks that were eliminated
via manual editing and a sink-filling routine in Arc/Info's GRID module respectively.

Comparison of the extrema and first and second moments for elevation and slope
derived from DEM/P and DEM/T revealed no significant differences (Table 5); however,
differences in local roughness as represented by comparable statistics on neighborhood
standard deviation were significant (Figure 6 and Table 6). The lack of locations with
precisely known elevation in the study area precluded direct assessment of DEM
accuracy; thus, indirect methods were used to evaluate DEM quality.

GPS-referenced locations where evidence of past surface erosion was observed

always coincided with a 12-meter buffer constructed around the drainage network

¢ obtained from USGS
% Kucera International Inc., 38133 Western Parkway, Willoughby, Ohio 44094-7589

16



extracted from DEM/P using the DEMON algorithm in TAPESG. This was not the case
for the drainage network extracted from DEM/T. Field comparisons of the sign of relative
elevation difference (positive or negative) between each plot and its nearest neighboring
plots’ within a 100 meter radius were always in agreement with DEM/P reported
elevation, but for only 79% of the 182 plot elevation comparisons in DEM/T.

The spatial distribution of SWI (heretoforth denoted as {') formed a basis for
investigating elevation correspondence between the two DEMs. Because A; varies by
several orders of magnitude across the watershed (resulting in a very wide range of {
values), a range independent proxy, {4, was calculated by a percentile rescaling of {.
Locations with {g > 95 are likely to coincide with the drainage network (Figure 7).
While the DEM/P and DEM/T based {4 maps in Figure 7 imply a common delineation of
Barnard Drain, there is no spatial correspondence in the depiction of ephemeral
tributaries. The spatial distribution of § values couldn't be used in the same context
because when g4, the percentile transform of §, exceeds 95 or even 90, the resulting
stream "network" is discontinuous.

This outcome could well be an artifact of how the DEMs were constructed. While
delineating the contour lines from which DEM/T was derived, the stereo-plotter operator
would most likely have used Barnard Drain as an elevation reference to improve
positional accuracy. The absence of patternless, homogenous areas of crops in the

riparian corridor would probably have minimized the probability of pixel-matching error

¢ PCI, 50 West Wilmot St., Richmond Hill, Ontario, Canada, L4B 1M5
" Where more than one adjacent plots were within a short (approximately 10°) viewing azimuth, only the
nearest was considered for the comparison.



in the solution of the stereo model used for the creation of DEM/P, thereby resulting in a
more accurate representation of terrain near Barnard Drain.

While positional discrepancies in the delineation of ephemeral tributaries (defined
by {% > 95) could be a result of differences in local roughness between the two DEMs
which influence the form of the local drainage direction (LDD) network, the distribution
of Ay, and ultimately, the distribution of {, this explanation is not as plausible as one
based on errors in terrain representation with greater magnitude than local roughness. A
frequency distribution of the elevation difference between the DEMs displays abrupt
peaks (Figure 8) reflecting the distinctive stair-step elevation pattern in DEM/T long
known to be associated with automated interpolation from contour lines (Eklundh and
Martensson, 1995). Such "flat terraces” along contour lines could well introduce errors in
the LDD network, particularly at locations both close to contour lines and situated
downslope from the channel initialization zone. D8, a flow-routing algorithm incapable
of representing dispersion, has been shown to perform poorly under these conditions
(Band, 1989).

Collectively, these findings and considerations make DEM/P a superior choice for
terrain representation. However, the absolute accuracy of DEM/P could not be
determined so errors in the terrain model could still exert an unpredictable influence on
terrain indices derived from elevation.

Saturated hydraulic conductivity (K) and effective porosity (P), parameters
required for the calculation of &, are both spatially heterogeneous and difficult to obtain
(Iorgulescu and Jordan, 1994). Uniform, area-weighted average values for these

parameters and distributed raster representations were estimated from surrogate measures



in the USDA NRCS Ingham County Soil Survey digital database associated with the
digitized version of the county soil survey map. Permeability, the rate of vertical -
movement of water through a soil column in inches/hour measured in laboratory
environment, served as a surrogate for K. Specifically, the weighted-by-horizon-thickness
mean permeability for all surface soil horizons was used as a proxy for K. Because soil
water distribution during the drainage process is dominated primarily by near-surface
flows, only surface soil horizons were considered. Surface horizons were identified as
those stratified above the high water table and above a fine texture horizon with minimal
permeability (less than 0.353* 10° m/s). Drainable porosity, estimated from soil texture
class and a table relating texture classifications to drainable porosity (Foth 1984, Figure
3-12), was used as a surrogate for P. Where the surrogate parameter value was available
as a range the median value was selected (Fried et al., 1999). Drainable porosity and

hydraulic conductivity were stored as grids co-registered with the DEMs.

Generation of TWIs

DEM/T and DEM/P were each processed with TAPESG to produce estimates of
slope and local drainage direction, which were then processed by DYNWETG to
compute rasters of é for both uniform and distributed soil parameter options for a wide
range of drainage times spanning 100 - 1,000,000 hours, and { (The drainage time
parameter [heretoforth denoted as 7] is a driving variable which helps determine the

extent of A.). Thus, a total of six sets of TWI Models were generated: 1) DEM/T

Dynamic Uniform Soils, 2) DEM/T Dynamic Variable Soils, 3) DEM/P Dynamic
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Uniform Soils, 4) DEM/P Dynamic Variable Soils, 5) DEM/T Static and, 6) DEM/P
Static. The distributed Wetness Indices were transferred to Arc/Info grid files using a
conversion routine in the TAPES package (TAPESTOARC), and were processed with a
3x3-cell low pass filter to ensure better spatial correspondence between modeled wetness
values and observed soil water content (given potential errors in registration of sample
plot locations). The wetness index value for each grid cell containing a sampling plot and
per simulation was extracted from the grid files and organized in a 51 by 4 by 124 matrix

PR (51 plots, 4 DEM/soil property combinations, and 124 7's; 123 in the 100 — 1,000,000

hours range plus the static [infinite 7]). Further details can be found in Appendix C.

Statistical Analysis

The performance of terrain based indices of soil water content was evaluated
through the degree of association between model predicted index values and observed
values of soil water content. Spearman’s Rho, a non-parametric rank correlation statistic,
was used to evaluate model performance because the distribution of index values is
considerably affected by the drainage time specified, the sensitivity of observed water
content to drainage stage, and the lack of normality in both predicted and observed soil
water content distributions (see results section). Because Spearman’s Rho utilizes
attribute value ranking to assess variable correlation, it requires no assumptions about the
distributional form (McClave and Benson, 1991; SPSS, 1997).

Spearman’s correlation coefficients were calculated for each model and sampling

day-- i.e., all combinations of PR;j, and M, where i represents plot ID (1-51), j
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references model assumptions (e.g., DEM choice, treatment of soil properties), k
references drainage time parameter, and m represents sampling round (Figure 9). The
resulting Spearman's Rho values, for each DEM-type and uniform/variable soil attribute
combination, were plotted against 7 to investigate model sensitivity to a) 7, b) soil

attribute treatment, and c) DEM derivation technique.
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RESULTS

This section contains three parts: 1) analysis of observed soil water content (4 )
and related parameters, 2) analysis of predicted soil water content and related parameters,

and 3) statistical evaluation of correspondence between A and TWI.

Analysis of the observed soil water content and related parameters

Both topographic wetness indices used as proxies for soil water content are
limited by the simplifying assumption of constant values for such attributes as land
use/cover, evapotranspiration and precipitation. In fact, these may well vary within the
sampled space and exert profound influences on A (Barling et al., 1994).

Precipitation recorded by two, widely separated rain gages in the study area

during the sampling period (Figure 10) was statistically identical (X2 test showed

p > 0.999). Crop vegetation was absent for the first half of the sampling period and only
seedlings were present by the end of the sampling period (maximum plant height < 12
cm), so differences in transpiration among most land use/cover conditions (except forest)
were probably negligible. Solar radiation would also have varied little over the study area
given its gentle terrain and narrow range of aspects represented (mostly north-east to
south-east); thus, evaporation would likely have been relatively uniform. Data from the

water table depth monitoring tubes (Figure 11) suggests that the water table rises for up
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to two days after a major (> 5 mm) precipitation event, followed by a slow drop,
providing additional confirmation of the absence of artificial drainage.

Analysis of variance of soil water content for the 22 sampling rounds revealed a
statistically significant (p < 0.001) land use/cover specific effect on A (Table 7). The
existence of somewhat higher significance (p > 0.005) for 3 out of 22 sampling rounds
could be traced to incomplete representation of all five land use/cover conditions in those
sampling rounds. Land cover classes in which tillage was present were drier that those
without tillage; forested plots were wettest, perhaps because of their proximity to the
Drain or reduced surface evaporation thanks to the influence of forest cover (Figure 12).

Variograms of A (Figure 13), calculated for each sampling round, showed no
evidence of directional anisotropy. Autocorrelation in A was present to a distance
(variogram range) of 450 meters. Variogram range variability between sampling rounds
was negligible (minimum to maximum range difference was < 20m). The A variability
was always smaller (low variogram sill) for sampling rounds conducted at the beginning
or end of a drainage stage (i.e., either immediately after or at least three days following
major precipitation events) than those in the interim. To explore this relationship, A was
regressed on the drainage process duration (time elapsed since the last major [> 5 mm]
precipitation event, rounded to the nearest half day). This regression (R?=0.864)
suggests a linear decrease in the soil water content with drainage process duration (Figure
14). Absence of detectable patterns in the plot of regression residuals by drainage process
duration (Figure 15) supports the assumption that surface soil drying relates linearly to

time.
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A quadratic regression of the standard deviation of A among all sampling plots on
the drainage process duration was significant (p = 0.006), showing higher among-plot
variability of A for the second and third day of the drainage process and lower for all

others (Figure 16).

Analysis of predicted soil water content

The grid of { for the study area calculated in Arc/Info GRID from A; and tanf8
derived from DEM/P via TAPESG/DEMON and finite difference algorithm, respectively
exhibits a right-skewed frequency distribution with mean 9.01, minimum 5.51, and
maximum 19.52 (Figure 17). An analogous grid calculated for the entire Barnard Drain
subwatershed had mean, minimum and maximum values of 9.17, 5.51, and 22.60,
respectively, a result consistent with Wolock's (1995) observation that the moments of {
distribution exhibit stationarity for watersheds 1 Km? and larger. Corresponding DEM/T-
based analysis results for { can be found at Figure 18.

The variety of input data choices available for each dimension in the PR matrix
produce a j, k combination-specific value range for each i vector within PR, thus
making a range independent § value transformation necessary for effective interpretation
and portrayal of the spatial distribution of 8. Thus 429, an area defined 20%-ile ordinal
transformation of & was calculated. Very narrow (sometimes 0) ranges of § caused by
gentle relief and uniform soil attributes necessitated grouping adjacent &4, classes for

low values of T.
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Where uniform soil attributes are used, § depends exclusively on terrain
attributes, and assignment of grid cells to 42 classes is determined by local slope for
small T and A, for large 1 (Figure 19). Compared to large values of t (> 100,000), A, is
small and flow paths short for T < 5,000 hours, effectively concealing the drainage
network (Figure 19). When 1 < 3,400 hours the range of § values is on the order of 0.3%
soil water content (Figure 20a); range increases rapidly until T = 25,000 hours. T = 3,400
hours marks the threshold (1) above which, for the average slope found in the sampling
area, A, can exceed the 100m? (the area occupied by a single grid cell). T = 25,000 hours
corresponds to the maximum time (Tas) needed for all locations off of the drainage
network to achieve A, = A;. The presence of distributed soil attributes widens the range of
6 for T < T (> 2% soil water content) (Figure 20b) and replaces slope as §'s controlling
factor in such cases. Figure 21 illustrates the direct spatial correspondence between large
drainable porosity (P) and membership in the upper 842 class for small T (5,000 hours),
an artifact that is not observable for large 1 (100,000 hours).

The shape of the curve that portrays the relationship of §, (plot 8, a 9 cell mean)
and 7 reveals the geomorphologic characteristics of the watershed along the flow path
above the plot location. Curves which reach an early asymptote (ex. Sampling plot 3,
Figure 20) typically represent locations proximal to local terrain maxima; continuously
rising curves signal locations on the drainage network (Plot 1). In the absence of rugged
terrain, curves featuring alternating sigmoid sections (Plot 28), suggest alternating areas
of divergent and convergent flow upslope, especially when calculated for uniform soil

attributes.
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Figure 22 illustrates the combined impact of T and uniform/distributed soil
attributes on the 6 value distribution calculated for DEM/P. For T < Ty, the distribution’s
kurtosis coefficient is large (narrow distribution), and the discrepancy between the mean
index value for uniform versus distributed soil attributes is noticeable. Even larger
kurtosis coefficients would have been calculated if the algorithm used to calculate § had
been incapable of handling sub-cell A,. As T gradually increases, the distribution form
shifts from leptokurtic to platokurtic with an abrupt reduction on the kurtosis coefficient
observed when T = T,.. The critical value is smaller for soil types that permit higher
subsurface water redistribution velocities. Finally, for large T the influence of soil
attribute representation (i.e., distributed or uniform) on the mean index value becomes

minimal.

Statistical analysis

Spearman's rank correlation probability (¢;), calculated between PRy and M, (V
i, j, k, and m) and plotted against T, showed low correspondence between predicted and
observed soil water content (Figures 23 and 24). The rate of change in the calculated ¢,
with T exhibited consistent patterns among different sampling rounds for T < T,.. Beyond

that threshold, the uniform probability change rate among different sampling rounds
disappeared. Watershed drainage stage, defined as days since last precipitation event,
affected @, but in an inconsistent fashion. Sampling rounds in initial drainage stage (less
than 2 days since last precipitation) were alternating with those in lateral stages (at least 3

days since last precipitation) when ordered by ¢, magnitude regardless of 1. For T > T, ¢;
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declined rapidly, and for T between 11,000 and 40,000 hours, virtually no association
could be detected between PR and M. For larger 7, the association improved for sampling
rounds which took place either during the first half of the sampling period, or
immediately (within a day) following a major (> 10mm) precipitation event. Soil attribute
representation affected ¢, only for t < 3,400, because of the relatively stronger influence
of terrain attributes for larger 1.

When 7 is smaller than T, 6 appears to be controlled by P. Unless roughness is
great, § increases linearly with 1, and 8, rank remains unchanged. Therefore, ¢, for T < Ty
reflects the association between observed plot water content and P, which being
stationary, causes the formation of parallel curves when plotted against t. For T > Ty §is
controlled primarily by terrain attributes, and &, rank changes considerably with
increasing T (Figure 20). However, such a terrain-induced &, value ranking is inconsistent
with corresponding plot A ranking. For T > T, § keeps increasing only for plots in the
proximity of the drainage network, which gradually populate the upper tail of §, rank.
Nearly saturated surface soil for plots on and in the proximity of the drainage network,
preserved by either snow-melt induced near-surface flow early in the sampling season, or
from runoff after intense precipitation, probably served to maintain these plots in the
upper ranks of A, thereby resulting in artificially improved ¢.

The dependence of A on land cultivation practices (as shown by ANOVA
analysis, Table 7) motivated the calculation of @, separately for tillage and no tillage
conditions (Figure 25a-d). Forested land was excluded because it contained only six
plots, too few to yield reliable rank correlation coefficients. With the exception of

distributed soil attributes and tillage combination, where @, showed smaller range of

27



variability among sampling rounds for small 7, all other input information combinations
exhibited low overall and highly variable ¢,, possibly because of the smaller sample
sizes. Observations made above concerning the effect of T on §'s performance when
information for all plots was considered, were also applicable here. There was no
indication that the tillage which occurred in the middle of the sampling period generated
any noticeable effect on the behavior of & (Figure 25a,b).

The lack of model significance for all soil attributes, land conditions, and 1
combinations, motivated investigation of the association between individual terrain
attributes and A. To this end, local slope extracted from DEM/P for each plot using the
finite differences algorithm was regressed against A. The resulting regression proved
highly insignificant for all sampling rounds (p > 0.3), which is an indication that errors in
DEM extracted slope for gentle terrain may very well contribute to the lack of strong
relationships between PR and M.

Another regression of In(A;) and In(4,) on A, showed that although A; or A,
explained only a small portion of soil water content variability (R? <0.1), their influence
was significant when the watershed was in lateral drainage stage (at least 3-4 days
without precipitation) (Table 8). Regression significance was weaker for smaller T and
absent when A; was used instead of A,, regardless of the algorithm used to compute A;

and the watershed's drainage stage.

28



DISCUSSION

The primary hypothesis underlying this study was that the previously reported
moderate relationship between static wetness index and measured soil water content
(Wilson, 1996) could be traced to the limitations of this index's embedded assumptions
that a watershed's hydrologic condition is in dynamic equilibrium (steady state
condition), and that the value and spatial variability of soil attributes don't matter. The
ability of the static wetness index {'to predict soil water content might be improved if
watershed drainage stage were added as an explanatory variable, but such improvement
would be external to { and impose considerable additional data demands to make use of
the index in predictive modeling of soil water content. A corollary to the above
hypothesis was that the inclusion of soil attributes and the user-specified drainage time
parameter T in the calculation of dynamic wetness index & would produce an index much
more closely related to observed soil water content A. This hypothesis proved difficult to
definitively accept or reject because both { and & proved at best weakly related to A,
though the relationship, as assessed by Spearman rank correlation, was slightly less weak
in the case of &. This discussion explores the possible influence of input accuracy on
model performance, offers some insights into the conceptual structure of the wetness

indices tested, and proposes new indices for further investigation.
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Influence of accuracy of terrain representation and soil attributes

DEMs derived via interpolation from digitized elevation contours or DLG files
are the most commonly used representations of terrain for a variety of applications
(Carrara et. al, 1997; Gao 1997). The U.S. Geological Survey, the primary provider of
DEMs in the U.S., reports elevation accuracy standards for every DLG file and for the
contours included on standard topographic quadrangle map series, but does not provide
accuracy estimates for extracted DEMs. Most algorithms for interpolating raster
tessellations of elevation from contour lines utilize linear or spline functions to estimate
elevation values between contours. This approach tends to produce terraces (flat spots)
along contours and uniform slopes between these terraces. In gentle terrain, where the
horizontal distance between contours often greatly exceeds the resolution of the
interpolated DEM, these algorithms produce smooth surfaces between the contour lines,
which offer not even a hint of the micro-scale perturbations found in most terrain. Terrain
derivatives like slope and curvature have been found to be highly unreliable when slope
is less than 5% (Hammer et. al., 1995). As suggested by the mean slope values in Table 5,
the majority of sampling locations in this study had slopes of less than 5%. In addition to
the obvious direct impact of slope error on { and & (for which the equations include tanf3
in the denominator) is the more subtle impact of having most slope change near source
map contours, and the consequent effects on plan curvature and flow routing. Field
observations in the study area revealed that mild plan curvature (< 2%), extending to a
distance of 30m, was sufficient to produce localized flow convergence, a condition not

observable on the raster maps of flow accumulation derived from DEM/T, even when the
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DEMON flow routing algorithm was used. Error propagation analysis has shown that
derivative GIS layers like terrain indices which are based on differences between
uncertain values (elevation, in the case of the first derivatives slope and aspect, for
example) almost always contain substantially more error than the source layer. As the
order of DEM derivatives increases (from O for elevation to 1 for slope, and on to 2 for
curvature), error can increase at an astonishing rate. For terrain indices like wetness, this
is compounded further by the aggregation of derived values that is embodied in the
calculations for upslope contributing area. Such cascading of errors may explain the lack
of correspondence between the observed and calculated drainage network for the lower
portion of the study subwatershed (Figure 7).

These considerations suggest that the information content of contour line maps,
even at a scale of 1:24,000 and with a contour interval of 3.05 m, may well be inadequate
for generating valid soil water content indices in gentle terrain.

Photogrammetrically generated DEMs are free of any reliance on interpolation,
but are comparatively difficult to obtain. Besides requiring pairs of aerial photographs,
photogrammetric techniques require detailed camera calibration information,
sophisticated and expensive software operated by experienced users, and several well-
distributed and well-defined points within the area of interest for which elevation is
known. In practice, as of the late 1990s, this combination of requirements is rarely
satisfied, and most DEM users settle for contour interpolation.

Field observations for this study suggested the superiority of DEM/P over
DEM/T, as illustrated in Figure 7, where cells with {g > 95 as calculated via DEM/P

corresponded closely with the ephemeral stream network constructed from GPS-
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georeferenced field observations. However, it is possible that the accuracy improvement
offered by DEM/P is limited to areas with distinct light reflectance patterns (e.g., where
there is evidence of past runoff or riparian forest). All spurious sinks and peaks that were
eliminated with editing during DEM/P development were located within uniform, row
crop fields, and away from the drainage network.

The spatial distribution of soil attributes used in this study was derived from
USDA NRCS County Soil Survey series, where soil types are mapped as homogenous
polygons with crisp boundaries. Transitions in soil properties, or between soil types, are
far more likely to be gradual, as suggested in the guidelines for using STATSCO data
(USDA, 1994). Moreover, existence of large, supposedly homogenous polygons is
incompatible with the widely recognized high spatial variability of soil attributes (Vieira,
1981). Many applications ignore soil transmissivity parameters, such as K, an attribute
used in calculating 6, because spatial distribution of soil transmissivity is seldom known
and often is considered to be constant over the watershed (lorgulescu and Jordan, 1994).
Yet typically, K exhibits high spatial variability and it is difficult to measure (Campbell,
1994). When used in models, K is more likely to be assigned values that will yield
reasonable model results than to reflect actual field conditions (Dorsey et al, 1990; Ahuja
et al., 1993; Mohanty et. al., 1994).

The accuracy of soil attribute and terrain information used in this study is
unknown. Detailed surveying and a dense network of soil sampling could provide the
close estimates of ground-truth needed to permit such accuracy assessment, but only at
exorbitant cost. Many others who have applied GIS in modeling report difficulties in

generating reliable, location-specific estimates for key variables, a serious problem when
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model outputs are highly sensitive to small changes in the values of these input variables
(e.g., De Roo et al., 1989; Brown et al., 1993). In this application, if { or § are to be
useful in predicting A on an operational basis, it must be possible to calculate them using

publicly available information of the kind used in this study. The rest of this discussion is

based on the premise that adequate accuracy of model inputs has been achieved.

Influence of index structure

Although { is a natural-logarithm based index, its value distribution is skewed to
the right (Figure 17). This lack of distribution symmetry emanates from the very large A
of locations on the drainage network. For the 2.3 Km? study area, values of { for such
locations are 3.5 times as large as for local elevation maxima. The observed water content
was at most (following three days without precipitation) 1.9 times greater on the wettest
plot than on the driest one and at least (one day after precipitation) 1.3 times greater.
These scale differences between observed water content and predicted TWI necessitated
the use of scale independent statistical methods (i.e., Spearman’s Rho). The performance
of { was expected to be inferior for sampling rounds with a small range in A (early or
lateral drainage stages) and better for those in intermediate drainage stages. However,
calculated ¢, showed poor model performance (corresponding p > 0.3) regardless of the
watershed’s drainage stage.

Unlike ¢, the family of ¢ distributions generated using DEM/P for different
drainage times (Figure 22), includes a subset of distributions calculated for t between

6,000 (1xc;) and 11,000 hours (Tkc2), for which the kurtosis coefficient approximates the
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coefficients of the per sampling round A distributions. The Ty to Tx.; range is included
within the Tg. and T4, interval (Figure 26). Its proper calculation requires all drainage
stages to be represented within the sampling rounds because the drainage stage affects the
distribution of A. It is watershed specific because it is affected by the values of soil
attributes and local slope. Higher values for K and slope variability shift T4, to lower 7
values, while small variability in P, leads to a rightward shift in Ty, and .. It was
believed that § would be most successful as a predictor of soil water content for

Tkel < T < Tke2 because of similar § and A distribution forms, as indicated by equal kurtosis
coefficients, in that range. Surprisingly, calculated ¢, for that range showed 6 to have the
least predictive T. A satisfactory explanation for this result has been elusive .

Barling et. al., the developers of &, evaluated their model against predictions of
the depth of a perched water table/soil depth ratio. Surface soil water content exhibits
much higher spatial and temporal variability than surrogate variables related to water
table depth, and thus may be less closely related to terrain attributes. Yet surface soil
water content is likely to be of far more interest to potential adopters of wetness indices
than such surrogates.

Although similar in topography and although all non-forested plots were in the
crop growth initiation stage for most of the study, land use/cover conditions within the
sampling area featured statistically different observed soil water content (Figure 12 and
Table 7). One possible explanation is differences in organic matter content and
cultivation-method-specific disturbance of upper soil horizons. Poor or complete absence
of association between the observed water content and both A, (Table 8) and slope

suggests problems with terrain representation accuracy.
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Potential for index improvement

The influence of flow routing algorithm on { was shown to be of importance for
locations both below and above the channel initiation zone. Unfortunately, the effect of
DEMON flow routing algorithm on & cannot be assessed because the algorithm is not an
option in DYNWETG and the module does not provide a vector or raster representation
of A, for a selected location within the watershed, even for the D8 option. If those two
options were available, it would be useful to explore the use of A as a substitute for 6,
calculating A, for each plot location via

A =e’tanf,
and observe the shape of the delineated area and the corresponding 1. The A, shape
calculated with DEMON and D8, would permit assessment of relative performance of
these algorithms and of an appropriate T range for calculating 8. It could also provide a
better estimate of the most suitable channel initialization threshold to use.

The ¢ value range calculated for large watersheds (> 1 Km?) is unrealistically
wide as compared to the range of observed soil water content. In large watersheds,
scaling of the calculated A; would result in an index value distribution equivalent to those
observed with field measurements, and would possibly contribute to the improvement of
¢ performance. A modified version of {, defined as

L = In (A" / tanp),
where v is an exponent set to 1 for A; less than or equal to the channel initiation threshold

area (Acyr), and set proportional to the Acir/ A, ratio for A; greater than Acr. The
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distribution of . wold have a kurtosis coefficient that approximates those for the A
distributions. The factor v could be defined empirically for a particular grid resolution

and terrain roughness with validation efforts similar to the one described in this study.
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CONCLUSIONS

Terrain based indices of soil water content have become increasingly popular and
are either used as components of soil erosion and non-point source pollution models
(Wilson, 1996) or independently (e.g., to calculate hydrographs and identify zones of soil
saturation). However, their ability to produce reliable predictions of surface soil water
content in gentle terrain appears doubtful, especially when terrain representation or soil
attribute accuracy are uncertain. Terrain derivatives and spatially distributed soil
attributes obtainable from publicly available sources and used for index calculation
appear to be unsuited to gentle terrain, and this hindered efforts to validate wetness
indices. In addition to the unrealistic index assumptions (e.g., continuous, uniform
precipitation for prolonged time ranges, soil water content at field capacity), the
restriction of soil water content monitoring to near-surface conditions (where
environmental parameters and anthropogenically induced disturbance such as
evapotranspiration and crop cultivation, not considered by the indices, is likely to have
introduced a level of stochasticity in soil water content variability), further frustrated
validation efforts. Although a variety of index parameter estimation choices were utilized
in this study, the set of options was not exhaustive because of technical difficulties
associated with their computation (i.e., the DEMON flow routing algorithm could not be
used to calculate effective upslope contributing area without a substantial rewrite of the
TAPES software). Observations on the computed index value distributions, believed to

be only minimally influenced by input information accuracy, although speculative in
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nature, suggested that index structural simplicity and parsimonious parameterization may
need to be sacrificed to obtain a wetness index with a closer relationship to observed soil

water content.
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Table 2. Land use/cover in the Barnard Drain subwatershed

(NRCS/CES/CFSA, 1990).

Landuse Km? Percent of Watershed
Residential 0.85 5.0
Commercial / Industrial 0.63 3.8

Crops 11.33 67.3

Pasture / Feedlot 0.56 33
Wetlands 0.33 2.0

Forest 2.73 16.2

Water 0.01 0.0

Other 0.39 24

Total 16.84 100.0

Table 3. Distribution of sampling plots by land use/cover class over the

sampling area, estimated from rectified aerial photographs
obtained in 1995 and field observations during spring 1997.

Number of Percentage Percent of Land

Land Use/Cover Plots of Plots Use/Cover Area
Corn w/ Tillage 9 17.6 16.5
Soybeans w/ Tillage 12 235 21.5
Corn w/o Tillage 11 21.6 19.5
Soybeans w/o Tillage 13 25.5 27.5
Forest 6 11.8 12.5
Other 2.5
Total 51 100.0 100.0
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Table 4. Plot frequency by soil type.

Soil Type Number of Percentage Percent of Land
P Plots of Plots Use/Cover Area

Colwood - Brookston Loam 3 59 6.8

Houghton Mack 3 5.9 5.7

Brady Sandy Loam 3 5.9 7.1

Capac Loam 42 824 71.8

Other 2.6

Total 51 100.0 100.0

Soil types determined via interpretation of orthophoto based soil maps (SCS, 1979).

Table 5. Summary statistics for slope and elevation derived from DEM/P and
DEM/T.
Elevation (m)
Minimun Maximum Mean St.dev.
DEM/P 290.0 3114 299.2 49
DEM/T 286.9 311.5 300.7 5.1
Percent Slope*
Minimun Maximum Mean St.dev.
DEM/P 0.000 12.328 1.165 0.706
DEM/T 0.000 12.109 1.156 0.704

*calculated with the finite difference algorithm in TAPESG.
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Table 7. ANOVA of observed soil water content (A1) on land
use/cover condition for each sampling day.

Sampling Sum of Mean Si

Day Squares Square g

11-Apr Among Groups 0.177 4 0.0441 14.162 0
Within Groups 0.143 46 0.0031
Total 0.320 50

13-Apr Among Groups 0.092 4 0.0229 19.984 0
Within Groups 0.053 46 0.0011
Total 0.144 50

15-Apr Among Groups 0.144 4 0.0359 14.728 0
Within Groups 0.110 45 0.0024
Total 0.253 49

18-Apr Among Groups 0.149 4 0.0374 14.365 0
Within Groups 0.120 46 0.0026
Total 0.269 50

22-Apr Among Groups 0.115 4 0.0287 13.138 0
Within Groups 0.101 46 0.0022
Total 0.216 50

23-Apr Among Groups 0.103 4 0.0258 13.675 0
Within Groups 0.087 46 0.0019
Total 0.190 50

26-Apr Among Groups 0.067 4 0.0169 6.823 0
Within Groups 0.059 24 0.0025
Total 0.127 28

6-May Among Groups 0.131 4 0.0328 14.948 0
Within Groups 0.101 46 0.0022
Total 0.232 50

7-May Among Groups 0.137 4 0.0341 13.242 0
Within Groups 0.119 46 0.0026
Total 0.255 50

10-May Among Groups 0.143 4 0.0359 13.186 0
Within Groups 0.125 46 0.0027
Total 0.269 50

12-May Among Groups 0.153 4 0.0382 13.542 0
Within Groups 0.130 46 0.0028
Total 0.283 50

15-May Among Groups 0.026 4 0.0066 2.853 0.05
Within Groups 0.049 21 0.0023
Total 0.075 25

16-May Among Groups 0.102 4 0.0256 10.398 0
Within Groups 0.113 46 0.0025
Total 0.215 50
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Table 7 (cont'd).

Sampling Sum of Mean

Day Squares df Square F Sig.
18-May Among Groups 0.156 4 0.0391 13918 0
Within Groups 0.129 46 0.0028
Total 0.285 50
20-May Among Groups 0.170 4 0.0426 18.124 0
Within Groups 0.108 46 0.0024
Total 0.279 50
22-May Among Groups 0.219 4 0.0547 18.557 0
Within Groups 0.135 46 0.0029
Total 0.354 50
25-May Among Groups 0.105 4 0.0263 16.526 0
Within Groups 0.073 46 0.0016
Total 0.178 50
27-May Among Groups 0.190 4 0.0475 15.943 0
Within Groups 0.137 46 0.0030
Total 0.327 50
3-Jun Among Groups 0.112 4 0.0281 12.239 0
Within Groups 0.105 46 0.0023
Total 0.218 50
6-Jun Among Groups 0.063 4 0.0158 5.098 0
Within Groups 0.099 32 0.0031
Total 0.162 36
7-Jun Among Groups 0.089 4 0.0223 6.549 0.01
Within Groups 0.031 9 0.0034
Total 0.120 13
11-Jun Among Groups 0.017 4 0.0043 3.069 0.11
Within Groups 0.008 6 0.0014

Total 0.026 10
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Table 8. R-squared coefficients for regression analysis of soil water content (1)
on DEM/P-derived A., calculated for three drainage times (7), and A;,
calculated using the D8 and DEMON flow routing algorithms, using
uniform and distributed soil attributes.

413!
Uniform Attributes
Distributed Attributes

4/23*
Uniform Attributes
Distributed Attributes

5/122
Uniform Attributes
Distributed Attributes

A. A
T (hours)

1,000 10,000 50,000 D8 DEMON
0.0183 0.0268 0.0275 0.008 0.009
0.0135 0.0141 0.0198

% *
0.0523 0.0717 0.0719 0.000 0.038
0.0471 0.0549*  0.0631*

%%k %k
0.0520 0.0905 0.0772 0.002 0.033
0.0575*  0.0928** 0.0817**

** Significance at the 0.1 level
** Significance at the 0.05 level

*! one day after precipitation

*2 four days after precipitation
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Figure 1. Ortho-rectified aerial photograph mosaic of Barnard Drain
subwatershed in Ingham County, Michigan. Study area is in the
south-west third of the subwatershed.
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Figure 4. Ortho-rectified aerial photograph mosaic of sampling plot allocation
in the south-west third of Barnard Drain subwatershed in Ingham
County, Michigan.
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Figure 8. Frequency distribution for the elevation difference Ep-Et between
elevations derived from photogrammetrically and contour
(TOPOGRID) interpolated DEMs on the west side of Barnard Drain.
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Figure 12. Frequency distribution of observed soil water content (1) by
land use/cover class, pooled across all sampling rounds.
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Figure 13. Omnidirectional variogram of soil water content on April
18, 1997, using Gaussian model form, 50 m lag interval,

and 25 m lag tolerance.
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Figure 14. Scatter plot of mean soil water content (for all plots) on time since
last precipitation (rounded to the nearest half-day) with fitted
regression line (R? = 0.864).
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Figure 15. Plot of the residuals from a regression of mean (all plots) soil water
content on time since last precipitation (half days).
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Figure 16. Scatter plot of the per sampling round standard deviation of soil
water content (all plots) on time since last precipitation and fitted
quadratic regression line (R? = 0.259).
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Figure 20. Dynamic wetness index (8) for a range of Drainage Times (t)
calculated for DEM/P at six sampling plots, and a) Uniform
Soil Attributes, and b) Distributed Soil Attributes.
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Figure 22. Dynamic wetness index () cell frequency distribution, calculated

for DEM/P and four combinations of soil representation and
drainage time 7.
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Figure 27. Mean minimum monthly temperature and mean monthly

precipitation, calculated from observations at the East Lansing,

Michigan, station for the period 1947-1976.
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APPENDIX A

Approaches to improving DEM quality

The quality of DEMs constructed from contour lines depends in part on the
relationship between the resolution of the DEM and the contour interval. Where steep
slopes are present, the DEM resolution should be equal to the contour interval or finer.
Otherwise, two or more contour lines can go through the same grid-cell causing
unpredictable errors in cell coding and elevation interpolation (Bitelli et al., 1993).
Although the terrain in our sampling area is very gentle, the selected resolution (10 m) is
more than three times coarser than the contour interval (10 ft or 3.05m). Thus we
investigated the option of building an intermediate TIN structure from the contour lines,
to be rasterized afterwards to a DEM with the preferred resolution. The TIN was
constructed with the ArcInfo TIN generator, with vectorized versions of the Barnard
Drain and GPS recorded drainage paths within the sampling serving as break lines.

The TIN, however, proved unable to correctly handle the terrain morphology of

local elevation maxima and of areas in the proximity of Barnard Drain, leading to large !

f

flat triangles that would ultimately result in excessive, unrealistic terraced areas in the

DEM to be derived. Thus the TIN based DEM was eliminated from further consideration.
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APPENDIX B

Calibration of soil water content measurements

Soil water content was measured using a ThetaProbe®, a soil moisture sensor
which enables estimation of volumetric soil water content, ¥J,, from changes in the
apparent soil dielectric constant €. These changes are converted into DC voltage, which is
proportional to soil water content over a wide operating range. Calibration of the

relationship between the ThetaProbe voltage output and ¢, provides volumetric soil water

3
content measurement accuracy of £0.01 ™ /n 3.

The soil dielectric constant € sensed by the probe is related to ¥ by the function:

\/E=a0+a,z9 )

(Whalley, W.R, 1993. White et al., 1994). Because the relationship between Je and

V (see below) had already been calibrated by the probe vendor, it was only necessary to
determine the ¢, and ¢ in order to calculate ¥,. Samples of soil for calibration were
collected throughout the sampling period spanning a range of drainage stages and soil

water content regimes. To minimize potential changes in soil properties such as bulk

density, samples were extracted from the ground as cores in metal cylinders. For each

sample, voltage output from the probe V, was recorded, and the sample weight W, and

¥ Model ML1-UM-2. DELTA-T DEVICES LTD, 128 Low Road, Burwell, Cambridge CB5 OEJ, England
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volume L were measured. Samples were oven-dried for 48 hours at 105°C , re-weighted

and re-sampled via ThetaProbe to obtain dry weights W, and voltages V,. The equation:

Je =1+ 625V —=5.96V2 +4.39V* ()

found by the probe vendor to fit the (¢, V) relationship precisely (R*> = 0.9993 ), was then
used to calculate ‘/E; andJe_w . In an oven-dry sample, ¥, =0, and from (1): /¢, =, .

Because

19“ — (Ww - Wo% (3)

o, can be calculated as
€, —+€
o = We e % @

By inverting (1) and substituting (2), the calibrated relationship between ¥, and

V becomes

_ [1+6.25V -5.96V* +4.39V']-«, )

«,

v

This ThetaProbe calibration procedure was applied to 140 soil samples randomly

selected from within sample plots in each of the five conditions. The &, and ¢,

coefficients thus calculated were then averaged to generate a single calibration equation
for each condition. Pre and post disturbance probe calibration equations were derived and
applied for conditions where tillage occurred during the sampling period. Calibration data

and coefficients are summarized in Figures 28a-g and Tables 9-15.
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The accuracy of calibrated ThetaProbe output was assessed via comparison with
measurements obtained using a Tectronix Time Domain Reflectometry (TDR) unit. The
%7 test statistic for goodness of fit between the ThetaProbe and TDR estimates for a
sample of 102 observations, distributed evenly across conditions, indicated no significant

(p = 0.995) difference between these methods.
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Figure 28. Observed and predicted (via ThetaProbe voltage

observations and conversion equations) soil water content
for samples collected from a) Corn / no-tillage, b) Soybeans /
no-tillage, c) Soybeans / pre-tillage, d) Soybeans / post-
tillage, e) Corn / pre-tillage, f) Corn / post-tillage, and g)
Forested Conditions.
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APPENDIX C

Computational issues associated to Topographic Wetness Index calculations

In the TAPESG processing of DEM/P and DEM/T a 5,000 m? threshold was used
as cross-grading area. This threshold was assessed from field observations as necessary
acreage to permit channel initialization. For grid cells having calculated A, contributing
area below this threshold, the DEMON flow routing algorithm was used. For all other
cells, assumed to be (at least a portion of them) members of the drainage network, and
thus unlikely to feature flow dispersion, the D8 algorithm was used to calculate flow
direction.

Local slope (tanf) was estimated with the finite difference algorithm which is
reported being superior compared to other gradient calculating algorithms (Skidmore,
1989).

Information on ephemeral flow paths from past intense rainfalls, identified in the
field and georeferenced with GPS, was used to improve the accuracy of the estimated
flow direction.

The A; calculated with the DEMON/D8 combination in TAPESG, after being
converted to raster files, were used to develop { for DEM/P and DEM/T using the

§ = In(A;/ tanf) relationship in the ArcInfo GRID environment. DYNWETG, used to

produce 6, calculates A, using the D8 algorithm. Thus we expected discrepancies between
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¢ and 6 calculated for very large drainage times, especially for locations above the
channel initialization zone.

Small soil saturated hydraulic conductivity values and very gentle slopes in the
sampling area determined 7 (100 - 1,000,000 hours) for the & simulations. For T < 100
hours, the associated A, is very small and the index becomes negative, while for more
than 1,000,000 hours, & values reach their asymptote for all grid-cells in the sampling
area. The resolution of T simulated within the specified range, was chosen to increase
progressively from the lower to the upper tail of the range because § is a natural
logarithm based index and the influence of one T unit change on the index value
decreases as T expands. A total of 124 ts (123 in the range mentioned plus { where 1 is
infinite) for each of the two DEMs and uniform/distributed soil property information
were used in the analysis, for a total of 496 simulations.

Pixel thinning was evaluated as an alternative to the 3x3 pixel low-pass filter
applied to the gridded & simulation outputs, because it does not result in grid smoothing.

The pixel thinning approach however, produced irregular soil water content patterns,

which were most obvious for cells on, or in the close proximity of, the drainage network.

The DYNWETG-based simulation output conversion and rasterization, and the
value per sampling plot extraction were performed via an ARCINFO Macro Language

(AML) script (Table 16).
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Table 16. AML script for automating TWI calculation, output conversion and
rasterization, and sampling plot index value extraction.

/* The "us" prefix in all the file/coverage stands for "Uniform Soil Attributes" and
/* the "vs" for "Distributed (Variable) Soils Attributes"

/*

/*  AML requires the following files:

/* afdem.asd TAPESG DEM/P output file in binary format

/* (253 rows x 152 cols, 10 meter resolution)

/* OR

/* dlgdem.asd TAPESG DEM/T output file in binary format

/* (827 rows x 313 cols, 10 meter resolution)

/* plotlut.dat info lookup table for converting the NorthWest to SouthEast plot
/* numbering sequence to the field plot number

/* outfloat Floating point grid (253 * 152) w/ value = 1 for the cell

/* containing a plot and "nodata" for all the other cells

/* joinfile.dat An info table, blank in the beginning of each simulation, where
/* index values per plot and simulation are recorded

/* projection_dem An empty grid file containing projection information (UTM,

/* NAD27, Zone 16, Units Meters)

/* drainage_time.txt A text file with drainage times used in the simulations
/*
[ o e e e e eeeeeeeeeaas

/* Set the Drainage Time text file as variable
&sv drainage_time = drainage_time.txt

/* Open the Drainage Times File
&sv amlunit = [open %drainage_time% openstat -READ]

/* Read from the Drainage Times File
&do &while %openstat% = 0

&sv num = [read %amlunit% readstat]
/* Create and close the Temporary file to be used in the DYNWETG commmand

&sv unit = [open vs_temp.txt openstat -write]
&sv writestat = [write %unit% vs%num%.dwt]
&sv writestat = [write %unit% Y]

&sv writestat = [write %unit% afdem.asd]

&sv closestat = [close %unit%]
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Table 16 (cont'd).

/*
/*

/*

/*
/*

/*

/*

/*

Run the DYNWETG program using the parameters specified in the Temporary
File created above

dynwetg < vs_temp.txt
Erases the Temporary File
&sv delstat = [DELETE dwt_temp.txt]

Exports the DYNWETG output to ARCINFO format and then converts it to grid
Also deals with the "Flipping" problem and defines the projection

tapestoarc -I vs%num%.dwt -n 4 -A
asciigrid vs%num%_4.asc vs%num% float
grid

vsfl%num% = flip ( vs%num%)

q
projectcopy grid projection_dem grid vsfl%num%

Calculates a 9-cell-neighbor average for each cell of the wetness grid
grid

vsfc%num% = focalmean( vsfl%num%, rectangle, 3, 3)

q

Removes all intermediate files/coverages except the vsfc%num% ones

&sys rm vs%num%_4.asc
&sys rm vs%onum%.dwt
kill vs%num% all
kill vsfl%num% all

Routine for extracting the wetness value per plot

grid

out%num% = vsfc%num% * outfloat

q

gridpoint out%num% wp%num% dyn_wet

additem wp%num%.pat wp%num%.patnl 4 5b
additem wp%num%.pat wp%num%.pat t%num% 8 12 F 3
tables

select wp%num%.pat

calculate nl = wp%num%-id

calculate t%num% = dyn_wet

joinitem wp%num%.pat plotlut.dat wp%num%.pat nl nl

98



Table 16 (cont'd).

/*

/*

q

dropitem wp%num%.pat wp%num%.pat wp%num%#
dropitem wp%num%.pat wp%num%.pat wp%num%-id
infodbase wp%num%.pat t%num%.dbf

dbaseinfo t%num%.dbf t%num%.dat

&sys rm t%num%.dbf

items t%num%.dat

dropitem t%num%.dat t%num%.dat area

dropitem t%num%.dat t%num%.dat perimeter
dropitem t%num%.dat t%num%.dat n1l

joinitem joinfile.dat t%num%.dat joinfile.dat n2 n2
infodbase t%num%.dat %num%.dbf

tables
select t%num%.dat

erase t%num%.dat
Y

Q

Kill out%num% all
Kill wp%num% all
Kill vsfc%num% all

Exports results to a DBASE ver IV format file

infodbase joinfile.dat af_vs_fc.dbf

&end

clear

143 o R e

&type DYNWETG SIMULATION RESULTS FOR EACH PLOT LOCATION

&type WHERE SUCCESSFULLY GENERATED (IN .DBF FORMAT)
&type (GROUPED BY DRAINAGE TIME)

&type - - - - s e e

&sv closestat = [close -ALL]

&return

Created by Demetrios Gatziolis, MSU Dept.of Forestry, 1998.
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