PLACE IN RETURN BOX to remove this checkout from your record.

TO AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

DATE DUE	DATE DUE	DATE DUE

1/98 c/CIRC/DateDue.p65-p.14

REACTIVITY AND STEREOCONTROL OF BOROHYDRIDE REDUCTIONS MEDIATED BY DIHYDROGEN BONDING AND THE UTILITY OF CHIRAL LITHIUM AMINOBOROHYDRIDES AS ASYMMETRIC REDUCING AGENTS

Ву

Sterling C. Gatling

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Chemistry

1999

ABSTRACT

REACTIVITY AND STEREOCONTROL OF BOROHYDRIDE REDUCTIONS
MEDIATED BY DIHYDROGEN BONDING AND THE UTILITY OF
CHIRAL LITHIUM AMINOBOROHYDRIDES AS ASYMMETRIC REDUCING
AGENTS

Ву

Sterling C. Gatling

The effects of dihydrogen bonding were probed to gain an understanding of how this unconventional type of hydrogen bond influence the reactivity and stereocontrol of borohydride reductions. Studies of the reductions using AM1 semiempirical calculations, FTIR, NMR, gas chromatography, and liquid chromatography provided detailed information of rates and stereochemistry of the reduction products. The results of this study showed that hydrogen bonding between a hydroxyl site and a borohydride ion can be exploited to direct the delivery of hydride in ketone reductions. Reductions of 2-hydroxycycloalkanones with tetrabutylammonium borohydride in non hydrogen bonding solvents such as dichloromethane and ortho dichlorobenzene takes place > 100 times faster than reduction of the corresponding simple cycloalkanones, and yield predominately the trans diol. Strong hydrogen .

bonding reagents inhibit the substrate-BH, interaction, causing a decrease in rate and stereoselectivity. These results appear to be the first recognized examples of reactivity control via hydridic to protonic dihydrogen bonds.

A second aspect of this dissertation involves a study of lithium aminoborohydrides as potential reagents for asymmetric reduction of ketones. Lithium aminoborohydrides can be conveniently synthesized from any primary or secondary amine. Alkylamine groups may be introduced sequentially to provide wide structural variances thus allowing control of the steric and electronic environments of these reagents. This feature makes lithium aminoborohydrides potential candidates for asymmetric reducing agents. However, the lack of conformational rigidity of these chiral reagents in solution afforded only low to moderate asymmetric induction when used to reduce acetophenone. The details of this study will be presented in chapter 4 of this dissertation.

ACKNOWLEDGEMENTS

The author wishes to thank Mrs. Jackie Kellyman and The Dow Chemical Company for providing me the wonderful opportunity to pursue this Ph.D. degree. The author also wishes to express sincere thanks to Professor James Jackson for graciously receiving me into his research group, for his guidance, and dedication as the major advisor of this work. To his wife Mary, the author wishes to express an immeasurable amount of appreciation for her steadfast love, support, and priceless encouragement especially through some of the rough times. Finally, the author gives thanks to God for His grace and sustaining Power through out this graduate school process.

TABLE OF CONTENTS

LIST OF TABLESvii
LIST OF FIGURESix
CHAPTER 1. INTRODUCTION1
1.1. Dihydrogen Bonding - A Literature Review3
1.1.1 Transition Metal Dihydrogen Bonds: Intramolecular
Examples5 1.1.2 Transition Metal Dihydrogen Bonds: Intermolecular
Examples
1.2 Substituent Directed Stereo- selective Reduction - A Review20
CHAPTER 269
2.1 Reactivity and Stereocontrol in Borohydride Reductions of Ketones Mediated by Dihydrogen Bonding
2.1.1 α -Hydroxyketones71 2.1.2 β -Hydroxyketones81
CHAPTER 396
3.1 Asymmetric Reduction Using Chiral Hydride Reagents97
3.1.1 Chiral Aluminum Hydride Reagents
3.1.3 Aminoborohydride Reagents122

CHAPTE	ER 4	L27
4.1	Asymmetric Reduction of Ketones using LiABH, as Reducing Agents	L28
СНАРТЕ	ER 5	.139
5.1	Experimental Section for Borohydride Reductions Mediated by Dihydrogen Bonding	
5.2	Experimental Section for Lithium Aminoborohydride Study	152
REFERE	ENCES	159

LIST OF TABLES

Table	е
1.1.	Reduction of α -Hydroxy Ketones 19 25
1.2.	Reduction of β -Alkoxy Ketones by LAH/LiI Method in Ether Solvent31
1.3.	Reduction of α -chiral Acyclic α -amino 85
1.4.	Reduction of Acylaziridines 8650
1.5.	Reduction of 2-aminocyclopentanones and 2-aminocyclohexanones 8952
1.6.	Lithium Aluminum Hydride Reduction of β -Chiral β -Aminopropiophenones55
1.7.	Reduction of Azabicycloketone 10256
1.8.	Diastereoselective Hydroxy Ketone Reduction with Me ₄ NBH(OAc)63
2.1.	Reduction results of 136 and 138 , and the corresponding unsubstituted ketones reference compounds
2.2.	Reduction rate data for cyclohexanones74
2.3.	Reduction Summary of α-Hydroxy cyclopentanone78
2.4.	Reduction of β-Hydroxy Cyclic Ketones85
3.1.	Asymmetric LAH Reduction of α,β -Acetylenic Ketones107
3.2.	Reduction of Acetophenone and Propiophenone using LAH Complexed with Substituted 1,2 Aminodiols 110

3.3.	Borane Reduction of Ketones Catalyzed by (S)-195	103
4.1.	Reduction of Acetophenone using Mono and Dialkoxyaminoborohydrides as Reducing Agents	129
4.2.	Asymmetric Reduction of Acetophenone	.131

LIST OF FIGURES

F	i	σι	1	r	e
-	_	9,	•	_	_

1.1.	Two early examples of complexes showing dihydrogen bond interaction with HTH distances determined by neutron diffraction studies
1.2.	Proton exchange reaction by dihydrogen bonding9
1.3.	Typical geometry for dihydrogen bond in amine boranes13
1.4.	(a) X-ray structure of NaBH, 2H, 0. (b) X-ray structure of guanidium borohydride14
1.5.	IR Studies: N-H stretch region of pyrrole hydrogen bonding to quaternary ammonium halide salts and dihydrogen bonding to tetrabutylammonium borohydride
1.6.	(a) Loss of H ₂ based on the known BH ₄ - hydrolysis mechanism. (b) Thermolysis of iridium complex with loss of H ₂ via Trans-metalation
1.7.	Dimer structure prepared from N- [2-(6-aminopyridyl)]-acetamidine cyanoborohydride resulting from dihydrogen bonding of CNBH,19
1.8.	1,2 asymmetric induction in hydride addition to carbonyl compounds

1.9.	Intramolecular hydride delivery the reduction of the phenyl-ketoaldehyde 116 with tetrabutylammonium triacetoxyborohydride in benzene solvent60
1.10.	Transition state for Me ₄ NBH(OAc), reduction of 133 66
1.11.	Examples of stereoselective hydroxy-mediated α -hydoxyketones67
2.1.	2-hydroxycyclobutanone 136, and 2-hydroxycyclopentanone 138 reduction using TBABH
2.2.	Reduction of cyclopentanone in the presence of cyclopentanol with TBABH using dichloromethane as solvent
2.3.	Dihydrogen bonding interaction of BH_4 - with α -hydroxy substituent in α -hydroxy cycloalkanones77
2.4.	Dihydrogen-bonded directed borohydride delivery: AM1 Semiemperical calculated structures and energies84
2.5.	Reduction of 155 using one equivalent of BH ₄ - in dichloromethane solvent91
2.6.	Reduction of 156 using one equivalent of BH ₄ - in dichloromethane solvent
2.7.	Rate comparison of ester and ketone functionalities in the reduction of methyl 4-oxo-3-piperdine carboxylate 157 with 2 equivalents of TBABH in dichloromethane94

3.1.	Optically active alcohol products from the reduction of their corresponding ketones using 207 as reducing agent
3.2.	Representative functional groups reduced by LiABH,126
4.1.	Illustration of bond rotations in chiral LiABH, reducing agent133
4.2.	Lithium aminoborohydride chiral reducing agents illustrating the potential complexation of lithium cation 137

CHAPTER 1

INTRODUCTION

The reactivity and stereochemistry in borohydride reactions can be dramatically influenced by a relatively new phenomenon known as dihydrogen bonding. For instance, a dihydrogen bonding interaction between a hydroxyl site and a borohydride ion can be exploited to direct the delivery of hydride in ketone reductions. Reduction of α-hydroxy cycloalkanones in non-hydrogen-bonding solvents such as dichloromethane and o-dichlorobenzene takes place > 100 times faster than reduction of the simple ketone, and yields predominantly the trans diol product. Infrared studies verify that stereocontrol and rate **enhancement** are caused by the directing effect of the -OH group via dihydrogen bonding with BH, -, as Dosed to reaction of the -OH with borohydride **followed** by intramolecular carbonyl reduction in a Covalent ROBH3 complex. AM1 semiempirical Calculations agree that both pre-complexes and ansition structures favor hydride delivery to the -OH substituted face of the substrate. These results appear to be the first recognized example of reactivity control via hydridic to protonic dihydrogen bonding.

The research described in this dissertation uses spectroscopic, chromatographic, and theoretical calculation studies to demonstrate the hydridic to protonic interaction of BH, with -OH and to show that this interaction enhances reaction rate and directs the hydride stereoselectively during ketone reduction.

Since the concept of dihydrogen bonding has only been recently described, a brief literature review of this unconventional type of hydrogen bonding will be given in chapter 1 as well as a review of substituent-directed stereoselective reduction.

1.1 Dihydrogen Bonding - A Literature Review

Conventional hydrogen bonds are formed between a proton donor, such as an OH or NH group, and a proton acceptor, such as an oxygen or nitrogen lone air^1 which acts as a weak base component. Metal atoms in complexes², 3, 4, 5, 6 and π -bonds⁷ have also been shown to act as weak proton acceptors.

A wide variety of element-hydrogen (E-H) sigma

bonds (E = transition metal or Boron), were found by

Crabtree et al. 8,9,10,11 and Morris and co
workers 12,13 to act as unexpectedly efficient

hydrogen bond acceptors toward conventional proton

donors, such as O-H and N-H groups. The resulting

E-H...H-X systems have been characterized with H...H

contacts of 1.75 - 1.9 Å and bond strengths of 3-7

kcal mol⁻¹ which lie in the range found for

conventional hydrogen bonds. This new H...H

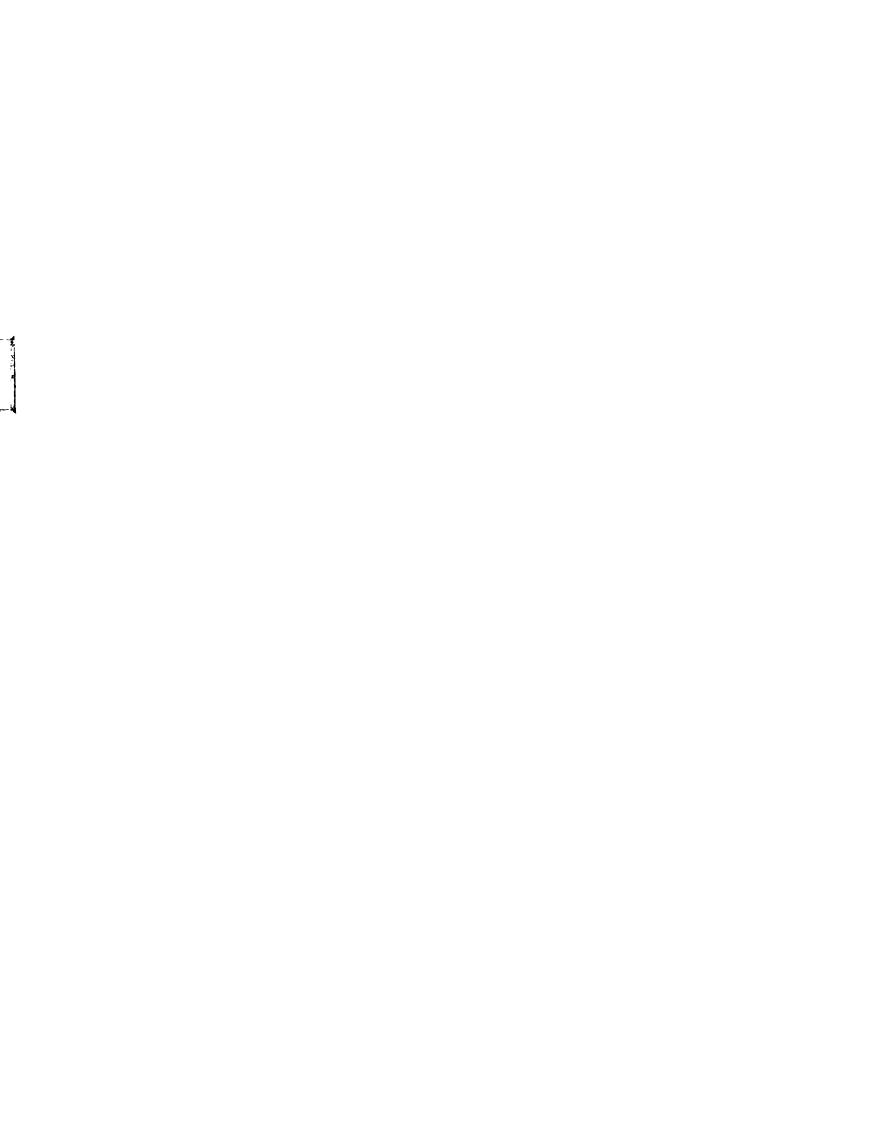
interaction was termed Dihydrogen bonding by

Crabtree. 11

The presence of hydrogen bonds between a

transition metal hydride and a hydrogen bond donor

ontaining an O-H or an N-H has been established


intramolecularly by Morris and Crabtree and

intermolecularly by Crabtree in the solid state 14,15

and Epstein and Berke in solution. 16 Such hydrogen

onds have also been studied by theoretical

calculations. 9,14,17,18,19,20,21

1.1.1 Transition Metal Dihydrogen Bonds: Intramolecular Examples

Two early examples of M-H bonds acting as

Proton acceptors were reported in 1990 by Caulton et

al.²² and Bau, Milstein, and Koetzle²³ (Figure 1.1).

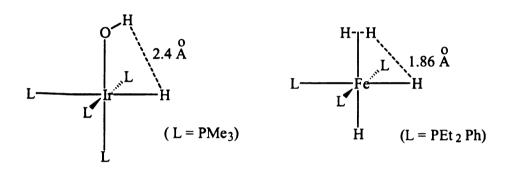


Figure 1.1 Two early examples of complexes showing dihydrogen bond interaction with H...H distances determined by neutron diffraction studies.

In the neutron diffraction structure of

[Ir(PMe₃)₄(H)(OH)] by Bau, Milstein, and Koetzle, a

H...H distance of 2.4 Å was found between the OH

proton and the Ir-H hydride. 23 A significant feature

f the structure of [Ir(Pme₃)₄(H)(OH)] shows the O-H

Toup eclipsing the hydride ligand, with a smaller

than usual Ir-O-H angle of 104.4°, suggestive of an

attractive interaction between the H atom on the

hydroxyl group and the electron-rich hydride ligand.

However, a H...H distance of 2.4 Å is too long for
this interaction to be considered a normal hydrogen
bond. The neutron diffraction structure of
[Fe(H),(H,) (PEt,Ph),] showed a close contact of 1.862
Å between one of the H, protons and the hydrogen of a
Cis Fe-H group. The fact that the H, ligand adopts a
conformation in which the H-H bond is coplanar with
and parallel to the cis Fe-H bond prompted the
authors to termed this a "cis effect" but Morris
indicated that this could also be attributed to an
intramolecular dihydrogen bond. 13

Morris and co-workers and Crabtree et al.

independently discovered a series of Ir-H···H-N

species simultaneously. Morris and co-workers

showed that reversible protonation of a pendant

pyridyl group can switch intramolecular N-H···H-M

hydrogen bonding on and off. 12 They have also

eported the preparation and characterization of an

i ridium (III) complex 1 containing a unique

bifurcated dihydrogen bonding interaction. 24

Make tind with

The state of the s

::::::

Crabtree reported evidence for an Ir-H...H-O hydrogen bond via an iridium - iminol tautomer complex 28 with a calculated H...H distance in the hydrogen bond

of 1.58 Å.

Crabtree compared the barrier for bond rotation in complexes 3 and 4 to gain information about the In drogen bond strength of an H...H bond versus a Conventional H...F hydrogen bond. 10

Taria

urri

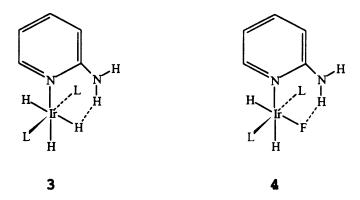
ite s

. IE []

Mat

Tear.s

(01)


3,2 k

ite d

š ti

5,]

13

Variable temperature NMR was used to determine the barrier of rotation about the C-NH, which represents the sum of the intrinsic rotation barrier and H-bond strength. The barrier of rotation for 3 was found to be 10.8 ± 0.2 kcal mol⁻¹. Since the intrinsic rotation is known to be about 6-7 kcal mol⁻¹ this means that the H-bond strength is approximately 4.3 kcal mol⁻¹. The barrier for 4 was found to be 11.0 ± 0.2 kcal mol⁻¹ with a H-bond strength of approximately 4.5 kcal mol⁻¹. This work showed that the dihydrogen bond strength fall in the same range as that of conventional hydrogen bonds.

Hydride rotational fluxionality in ReH₅(PPh₃)₂L

(5, L = N-acetyl-2-aminopyridine) is affected by

intramolecular Re-H···H-N dihydrogen bonding.²⁵

5

The presence of a M-H···H-OH dihydrogen bond also facilitates proton transfer. Crabtree has shown via variable temperature NMR studies, that the OH and MH protons exchange readily with a ΔG of 15 kcal mol⁻¹ for 6. It was proposed²⁶ that proton transfer from the acidic iminol OH group (initiated by dihydrogen bonding) to the basic hydride leads to a dihydrogen complex, which undergoes rotation²⁷ about the M-(H₂) bond, followed by back transfer of a proton (Figure 1.2).

Pigure 1.2. Proton exchange reaction facilitated by dihydrogen bonding.

lait

2. 3

<u>ن</u> چ

Eta

14 2

::::

ittia:

\$\$0**7**75

: Vitos

ાંડક્ક

1.1.2 Transition Metal Dihydrogen Bonds: Intermolecular Examples

Are intermolecular N-H···H-M bonds possible?

Crabtree proposed to answer this question by

definitively characterizing such a system. He

approached the problem by conducting a neutron

diffraction study on complex 7 in which proton donor

(D) and acceptor (A) are covalently linked.

The imidazole ligand acts as the proton donor (D) N-H function. X-ray crystallography¹⁵ showed that the D-A molecules line up head to tail in the lattice,

but the H...H distances are all > 2.4 Å and thus are

oo long to be hydrogen bonds. However the crystals

ontained free imidazole (from an impurity in the

ecrystallization solvent) which was strongly

hydrogen bonded to a ReH₅(PPh₃)₂(L) molecule with the

closest H...H contact being 1.7 Å. Strong hydrogen

bonding (estimated strength $\cong 5.3$ kcal mol⁻¹) was also confirmed by IR studies.²⁶

Shubina et al. experimentally addressed the problem of intermolecular X-H···H-M hydrogen bonding in solution. 16 A series of tungsten monohydrides 8 were systematically studied in solution in the presence of acidic alcohols (phenol, hexafluoro-

2-propanol, and perfluoro-2-methyl-2-propanol). They reported IR and NMR spectroscopic evidence for intermolecular W-H···H-O dihydrogen bonding.

The chemical and spectroscopic properties of olyhydride complexes exhibiting quantum mechanical change coupling J_{ab} between adjacent hydride ites a and b has been extensively studied. 28,29,30,31,32,33,34,35,36 Chaudret et al. showed that hydrogen bonding to Cp*(Pcy₃)RuH₃ leads

<u>i</u> \$0

excha estab

iist

react

****!

...3

Vas s

:....

inter

ie ii Resei

:42

in solution to an enhancement of the exchange coupling to this complex and have suggested that exchange couplings are good sensors for the establishment of hydrogen bonds. They discovered that the spectroscopic properties as well as the reactivity of hydride complexes could be modified by dihydrogen bonding. 37,36,38

1.1.3 B-H···H-NH Dihydrogen Bond Examples

The Cambridge Crystallographic Database (CSD)

was searched by Crabtree et al. for close

intermolecular B-H···H-N contacts of which 26 were

found¹⁷ (18 were amine-boranes) in the range of

1.7 - 2.2 Å. These distances are less than

the Van der Waals radius for H, which indicate the

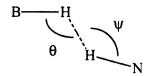
resence of an attractive interaction. Examination

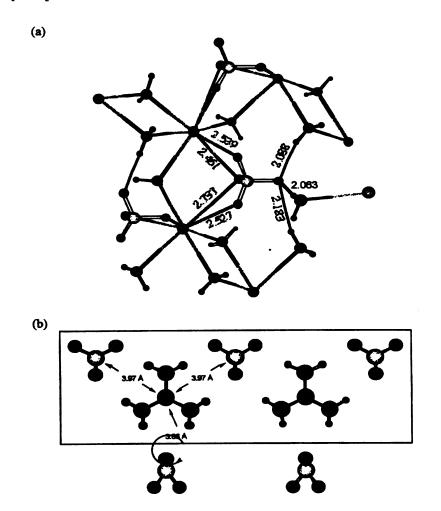
f these compounds indicated an N-H···HB angle (Ψ) of

1.7-171° (average 149°) and a B-H···HN angle (θ) of

O°-171° (average 120°), but in the majority of

amples, θ=95-120° (Figure 1.3).




Figure 1.3. Typical geometry for dihydrogen bond in amine boranes: $\theta = 95-120^{\circ}$, $\psi = 117-171^{\circ}$.

Just as conventional hydrogen bonds cause deviation in simple properties such as boiling point, dihydrogen bonds demonstrate their existence by a significant deviation in melting point. difference in melting point between BH,NH, (+104°C) and the isoelectronic ethane molecule (-181°C) is as large as 285°C. Since BH,NH, lacks lone pairs it Cannot form conventional hydrogen bonds, and therefore dihydrogen bonds must be present. One may argue that BH,NH, has a considerable dipole moment Unlike ethane, but the polar but nonbonding CH,F and The isoelectronic CH, have essentially the same elting point despite a large difference in dipole oment. This N-H···H-B dihydrogen bond interaction has been confirmed and characterized by rystallographic methods, 17,26 and by theoretical alculations.17,19,21,26,39

Jackson et al. demonstrated using ab initio

Calculations, X-ray crystallography, and IR and NMR

spectroscopic studies that the hydridic hydrogen in the BH₄ anion can serve as the electron donors in dihydrogen bonding. Figure 1.4 shows X-ray crystal structures for the hydrogen bonded compounds
NaBH₄.2H₂O and guanidine borohydride.40

igure 1.4. (a) X-ray structure of NaBH₄.2H₂O.

(b) X-ray structure of guanidinium borohydride

The sodium borohydride dihydrate contains four ydridic (B-H) and four protonic (O-H) hydrogens

alich

B-H S

CH b

corre

estin

11111

iata 1.86,

shor:

inter

E. Cond

Conta

i-ra

 Ξ_{i}

which suggest a one to one interaction. However, as illustrated in Figure 1.4a, three of the four B-H sites are occupied via binding to Na ions, but the fourth B-H site has three of the four unique 0-H bonds converging on it. The H-H contacts (after correction for the apparent shortening of X-H bonds typical of X-ray diffraction studies) were estimated at 1.86, 1.86, and 1.99 Å. The neutron diffraction structure of NaBD₄.D₂O confirmed these data showing in this case D-D distances of 1.79, 1.86, and 1.94 Å. These distances are over 1/2 Å shorter than the 2.4 Å sum of the Van der Waals radii denoting strong dihydrogen bonding interaction.

Guanidinium borohydride was used to probe the BH, ion's potential to form multi-point dihydrogen conding interactions. As shown in Figure 1.4b, the ray structure confirms the expected two point contact between guanidinium edge hydrogens and the BH, ion.

Further evidence of dihydrogen bonding between

BH; and conventional proton donors was demonstrated

Sing IR solution studies. In nonpolar organic

	\$.
	•.
	<u>.</u>
	• •
	2
	4 ;
	\$
	· .
	- ,
	*; *;
	.
	•
	\$=-
	*1 f
	₩ (₩ (
	
	•;
	74
	<u> </u>
	••
	•.
	•
	à
	\$'
	•.
	2
	:
	4

solvents, O-H and N-H vibrational bands are shifted to lower frequencies with greater integrated intensities when exposed to BH, salts, just as they are with Cl, Br, and I salts or neutral donors such as pyridine. Figure 1.5 shows a shift in the N-H stretching frequency of pyrrole with traditional hydrogen bonding reagents such as tetrabutylammonium halides as well as with the non traditional dihydrogen bonding tetrabutylammonium borohydride.

It was also shown via chemical shift variations and NOE experiments using 'H NMR that the N-H and O-H protons of pyrrole and water are in contact with those of BH, in C,D, and CD,CN solutions

Jackson suggested that this new phenomenon has

interesting implications for the rational assembly

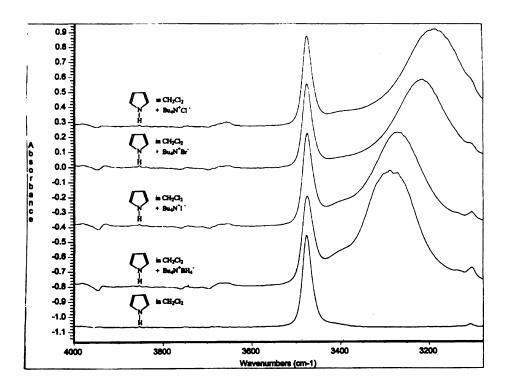
finaterials. The concept of using dihydrogen

onding as chemical "basting stitches", weak

sociations that organize and hold a molecular

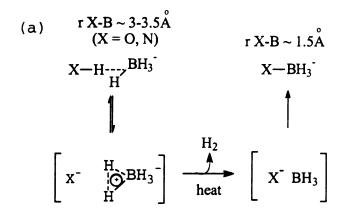
tructure's form while it is more firmly sewn

ogether, using dihydrogen bonding is being explored


Jackson's group. It is known that these systems

an lose H, leaving Lewis acidic and basic

igu galic galic solve


> sites coval

estrati Signi

Pigure 1.5. IR Studies: N-H stretch region of Pyrrole hydrogen bonding to quaternary ammonium alide salts and dihydrogen bonding to tetrabutylammonium borohydride in dichloromethane olvent.

- sites in close proximity which can combine via
- ovalent bonds, potentially reflecting the
- Onnectivity of the original network.²⁶,⁴²
- Figure 1.6 (a and b) show how these systems lose H2.

(b)
$$H_2$$
 H_2 H_2 H_2 H_2 H_2 H_2 H_2 H_3 H_4 H_4 H_4 H_5 H_6 H_7 H_8 H_8

Pigure 1.6. (a) Loss of H₂ based on the known BH₄

Pydrolysis mechanism. 43 (b) Thermolysis of iridium

Complex with loss of H₂ via transmetalation. 26

Tore recently N-[2-(6-aminopyridyl)]-acetamidine

Yanoborohydride was synthesized demonstrating the

Dility of CNBH, to form dihydrogen bonds resulting

the formation of the dimer-type structure shown

Figure 1.7.43

Figure 1.7. Dimer structure prepared from N-[2-(6-Aminopyridyl)]-acetamidine cyanoborohydride resulting from dihydrogen bonding of CNBH, .

As shown in this literature review there is significant crystallographic and spectroscopic evidence for the existence of dihydrogen bonding.

However, there have been no studies reported to date showing the role of this new type of unconventional hydrogen bond in directing chemical reactivity in solution.

We have demonstrated a substantial attraction

etween the -OH group of appropriately designed

ydroxyketones and an approaching BH, ion in the

orohydride reduction of ketones by both product

tereochemistry and reaction rate enhancement

elative to the unsubstituted ketone. 44 The details

f this study will be presented in Chapter 2.

:es

1.2 Substituent directed stereoselective reduction - A Review

The origin and magnitude of the stereoselectivity in the reduction of chiral carbonyl compounds continues to be an area of theoretical and practical study. Significant efforts have concentrated on the 1,2 asymmetric induction that occurs in the hydride addition to a carbonyl group adjacent to an asymmetric center (Figure 1.8). Cram's rule was formulated to rationalize the results of nucleophilic addition to aldehydes and ketones containing no polar groups. 45 The most Stable transition state conformation 9 arises from the minimization of the interaction between the largest group (R) and the carbonyl group, which is Coordinated to the incoming reagent. The addition of the nucleophile then occurs preferentially on the side of the smallest substituent (R). The outcome of Tam reduction of ketone 9 to alcohol 10 is ☐ llustrated in Figure 1.8.

The results for reduction of α -halo aldehydes and ketones were anomalous and led to the dipolar

model formulated by $Conforth^{46}$ as illustrated by 11, in which the dipoles due to the carbonyl group and the carbon-halogen bond were in an antiperiplanar arrangement. The incoming hydride then attacks from the less-hindered side of the ketone leading to alcohol 12. When the α -substituent is an alcohol, alkoxy, or amino group there is a possibility of chelation with the metal cation associated with the hydride reagent. Cram proposed a cyclic or chelate model to cover these cases. 47 The chelating group X and the carbonyl group are eclipsed, coordinating to the metal (M), and reduction occurs from the lesshindered side. Cram's chelate model has been used to rationalize diastereoselectivity in reduction of ketones such as 13.

Karabatsos proposed an alternative model. 48

Calculations suggested that the most favored

Conformation 15 would have the medium-sized group

(R_m) of ketone eclipsing the carbonyl group, and

addition of the hydride would occur from the side of

the less bulky substituent (R_s) to give alcohol 16.

Pigure 1.8. 1,2 asymmetric induction in hydride addition to carbonyl compounds flanked by an asymmetric center.

:
:
÷
;
:
:
:
:
:
:
:
•
į.
•
:
:
\$
:
:
ā
:
<u>;</u> ;

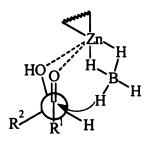
The most widely accepted model for the interpretation of 1,2-asymmetric induction in nucleophilic reactions with carbonyl compounds was proposed by Felkin.⁴⁹ Felkin directed attention to the structure of the transition state which he assumed to be very similar to the substrate. Felkin found that the transition state energies were minimized as a consequence of the anti arrangement of the bond forming to the incoming nucleophile and the bond between the adjacent carbon and the largest or most electronegative group. The nucleophile was assumed to attack perpendicular to the carbonyl group plane (plane bisecting the carbon-oxygen double bond) however, this angle of approach was later revised to the Burgi-Dunitz trajectory 50,51 derived from crystallographic studies which placed the incoming nucleophile much closer to the substituent (R) as illustrated in 17. The Felkin model was successfully applied to reduction of both acylic and cyclic ketones with and without an adjacent polar substituent and supported by ab initio calculations.⁵²

The requirements in modern total synthesis to produce single diastereoisomers⁵³ has prompted an

explosive growth in the development of reliable methods for the diastereoselective reduction of carbonyl compounds in a wide range of acyclic systems.⁵⁴

Nakata et al. reported the reduction of α -hydroxy ketones 19 to the corresponding erythrodiols 20 by zinc borohydride^{55,56,57} (eq 1) and examined the relationship between the substitution pattern of the α -hydroxy ketones and the stereoselectivity of the reduction. The results are summarized in Table 1.1.

$$R^{1} \longrightarrow R^{2} \qquad \frac{Zn(BH_{4})_{2}}{ether, 0^{\circ}C} \qquad R^{1} \longrightarrow R^{2} \qquad + \qquad R^{1} \longrightarrow R^{2} \qquad (1)$$


$$erythro - 20 \qquad threo - 21$$

Reduction is presumed to proceed through the Cram chelate transition state 22.

Table 1.1: Reduction of α -Hydroxy Ketones 19

Entry	Comp'd	R ¹	R ²	X = H ^a erythro:threo	X = TBDPS ^{b,c} erythro:threo
1	19a	n-C ₅ H ₁₁	CH ₃	77:23	39:61
2	19b	n-C ₄ H,	$n-C_2H_5$	89:11	14:86
3	19c	$n-C_3H_7$	$n-C_3H_7$	>99:1	14:86
4	19đ	C_2H_5	n-C ₄ H ₉	87:13	7:93
5	19e	CH ₃	CH ₃	85:15	2:98
6	19f	$i-C_3H_7$	n-C ₅ H ₁₁	85:15	54:46
7	19g	CH ₃	$i-C_3H_7$	96:4	4:96
8	19h	Ph	CH ₃	98:2	9:91
9	19i	СН,	Ph	90:10	24:76

Reduction with Zn(BH₄)₂ b Reduction with sodium bis
(2-methoxy)aluminum hydride (Vitride) c TBDPS =
t-butyldiphenylsilyl)oxy.

Silylation with the α -(t-butyldiphenylsilyl)oxy (TBDPS) group gave the protected derivatives 23 which were reduced by Vitride at -78°C preferentially

ę.

50

<u>:</u> :

ī.à

The state of the s

.

75

to the threo products **21** (Table 1.1) presumably via a Felkin open-chain transition state **24**.

Takahashi et al. reported analogous results for reduction of the α -benzyloxy nonynone 25 (eq 3).⁵⁸ The erythro isomer 26 was produced by zinc borohydride (95:5), presumably via chelation control, and K-selectride (having low coordinating ability) gave the threo Felkin product 27 (90:10). The lithium aluminum hydride (LAH) reduction of α -alkoxy enone 28 also favored the erythro product 29 via chelation to the benzyloxy group (eq 4) while the TBDPS ether prevented chelation so that reduction occurred via an open transition state to

 $R = CH_2OBn$, ether, -100C 98:2

 $R = t - BuPh_2Si, THF, -200C$ 5:95

give the threo-alcohol 30 (95:5).59

Hydrosilylation provided a novel alternative reduction of α -benzyloxy ketones $\bf 32$ with tunable diastereoselectivity (scheme 1).

a tetrabutylammonium fluoride

b trifliuoracetic acid

Scheme 1

Fluoride-catalyzed reduction with phenyl-dimethylsilane in HMPA provided the threo-alcohol 31 with high selectivity (87:13 - 96:4).60 The absence of a coordinating cation and the bulkiness of the reducing species combined to favor the Felkin model for these reductions. Conversely, reduction in trifluoroacetic acid (TFA) proceeded via a proton-bridged Cram cyclic transition state 34 to give the erythro product 33 (84:16 - 99:1) after basic hydrolysis.61

The stereocontrolled formation of 1,3-diols is of great interest to synthetic chemists since the

•		

;

1,3-polyhydroxylated chain forms the basic skeleton of polyene and polyol macrolide antibiotics. 62 Consequently, highly diastereoselective methods for reducing β -hydroxy ketones to either of the possible diastereomers have been developed. The β -alkoxy-directed diastereoselective reduction of acyclic β -alkoxy ketones with LAH in the presence of lithium iodide in ether was reported by Mori et al. 63 and found to provide syn-1,3 diol derivatives with high diastereoselection (eq 5). The reductions

of β -alkoxy ketones 38, 39, and 40 with LAH in the presence of LiI are summarized in Table 1.2. In all cases the major products were found to possess a syn-relationship between the newly formed hydroxy group and the β -alkoxy group of the 1,3-dioxolane ring.

Highly selective asymmetric induction can be achieved in the reduction of acyclic β -hydroxyketones via boron chelates. Narasaka⁶⁴ reported a highly diastereoselective method for reducing β -hydroxyketones to either of the possible diastereoisomers. The syn isomer was produced by attack of an external hydride reagent on a six membered chelate such as 44, the conformation of which was governed by the substituent at the alcohol center. Conversely, intramolecular delivery of hydride from a group bound to the alcohol via a chair transition state 45 gave the anti diastereoisomer. The combination of trialkylboranes and sodium borohydride in THF at -100°C was the first highly syn selective method of this type. This was later refined by using alkoxydialkylboranes to chelate the β -hydroxyketones **46** and conducting the reduction at -70°C in THF-methanol (eq 6).65 The syn 1,3-diols 47 were preferred by 98:2.

Intramolecular hydrosilylation of the carbonyl group of β -silyoxy ketones 48 via the boat-like transition state 49 induced by tin(IV) chloride

Table 1.2: Reduction of $\beta\textsc{-Alkoxy}$ Ketones by LAH/LiI Method in Ether Solvent

β-alkoxy ketone	Product	temp (°C)	syn :anti	yield (%)
OR OR 38	O OH OR	-100	96 : 4	98
→o o or	→o oh or	0	93 : 7	90
		-78	95 : 5	98
39	42	0	74 : 26	80°
1	<u> </u>	-78	95 : 5	98
	O OH	-78	82 : 18	98ª
40	43			

a Reductions were carried out ether solvent in the absence of LiI

OH O R2 + Et₂BOMe
$$+ \frac{-MeOH}{+MeOH}$$
 $+ \frac{-MeOH}{R^2}$ $+ \frac{-M$

catalysis (coordination of tin to carbonyl oxygen) at -80° C in dichloromethane generated the anti-1,3-diol **50** after desilylation with stereoselectivity >95% (eq 7).66

$$R^{1} \xrightarrow{iPr_{2}SiHCl} \xrightarrow{iPr_{2}SiHCl} \xrightarrow{R_{1}} R^{2} \xrightarrow{iPr_{2}SiHCl} R^{2} \xrightarrow{R_{1}} R^{2} \xrightarrow{R_{1}} R^{2} (7)$$

Reduction of TBDMS ethers of α -substituted- β -hydroxy ketones **51** and **53** with LAH in ether at -78°C proceeded with high 1,2 anti distereoselectivity (>96:4) to give the corresponding

OSiMe₂tBu
$$R^{1} \longrightarrow R^{2} \qquad 1. LAH, ether, -78 °C$$

$$2. H_{3}O^{+} \qquad R^{2} \qquad R^{2}$$

$$51 \qquad \qquad 52 \qquad (8)$$

OSiMe₂tBu
$$R^{1}$$

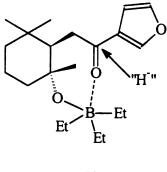
$$R^{2}$$

$$R^{2}$$

$$2. H3O+$$

$$54$$
OH OH
$$R^{2}$$

$$R^{2}$$


$$9)$$

syn,anti and anti,anti-1,3-diols **52** and **54** after acidic hydrolysis (eq 8 and 9).⁶⁷ The stereochemistry presumably results from a chelation-free Felkin transition state **55** with the bulky trialkylsilyloxy group in the perpendicular position.

Examples of asymmetric induction from more remote hydroxyl groups in the reduction of

hydroxyketones are rare. However the correct choice of reducing agent allowed complete diastereoselectivity to be achieved in the reduction of γ -hydroxy ketone **56** in a synthesis of ancistrofuran (eq 10).⁶⁸

Reduction of **56** with LiAlH, ZnBH, and NaBH, all yielded mixtures of the diols **57** and **58**.68 However reduction with two equivalents of LiEt, BH yielded diol **57** as the only product. The authors proposed that the basis for this remarkable high degree of stereoselectivity in the reduction is due to initial reaction of the reducing agent with the tertiary alcohol and subsequent chelation to the carbonyl to yield the cyclic structure **59**. However, given the fact that R-O-BEt, has a full coordination sphere, one may question the validity of boron forming a fifth bond. Attack of hydride from a second

equivalent of the reducing agent then occurred from the less-hindered β -face.

The olefinic linkage in enantiomerically pure α -methyl- β , γ -unsaturated ketones **60** exerted a powerful influence on their reduction with L-selectride, particularly when R¹ was a trimethylsilyl group. 69 As illustrated in eq 11 the anti homoallylic alcohols **61** were formed with uniformly excellent stereoselectivity (>93:7) via a Felkin transition state **62** in which the double bond occupied the perpendicular position.

$$R^2$$
 R^1
 R^1
 R^2
 R^3
 R^1
 R^2
 R^3
 R^1
 R^2
 R^3
 R^3

$$H_3C$$
 R^3
 R^2

Suzuki et al. 70 reported the reduction of α -vinyl- β -hydroxy ketones **63** and demonstrated that despite the presence of the β -OH group (which can facilitate a chelation mediated transition state) the extremely large steric bias posed by the TMS-bearing vinyl group 71 , 72 , 73 strongly favored the Felkin type transition state to give the 1,2-syndiols **64**.

Me₃Si

R¹

$$R^2$$
 R^2
 R^2

Zinc borohydride was effective for the reduction of α,β -epoxy ketones **65** to the corresponding anti- α,β -epoxy alcohols **66** in ether at 0°C irrespective of the substituents on the epoxide (eq 13).⁷⁴

$$R^{2}$$
 R^{1}
 R^{3}
 R^{2}
 R^{1}
 R^{2}
 R^{2}
 R^{1}
 R^{2}
 R^{2}
 R^{1}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{3}
 R^{2}
 R^{3}
 R^{2}
 R^{3}
 R^{2}
 R^{3}
 R^{2}
 R^{3}
 R^{2}
 R^{3}
 R^{3}
 R^{2}
 R^{3}
 R^{3

The authors rationalized the selectivity by intramolecular hydride delivery from a five-membered zinc chelate avoiding the epoxide ring. Kishi reported the steroselective reduction of γ , σ -epoxy ketones 67 with LAH and di-2(o-toluidino-methyl)-pyrrolidine in ether at -78°C which gave the desired

cis-e

14).7

avail

struc natur

Q-alk

attra

00.707

diast

'sche:

corre:

the si

ir hig

ł Pelk

terpen.

cis-epoxy alcohols 68 with a selectivity of 10:1 (eq
14).75

 α -alkyl- β -keto acid derivatives are readily available and the syn α -alkyl- β -hydroxy acid structure is often encountered in a variety of natural products. The stereoselective reduction of α -alkyl- β -keto acid derivatives also represents an attractive alternative to stereoselective aldol condensation. Yamaguchi et al. developed complementary methods for production of either diastereoisomer of α -alkyl- β -hydroxy amides from the corresponding α -alkyl- β -keto amides **69**

(scheme 2).⁷⁷ Zinc borohydride in ether at -78°C gave the syn isomer **70** with excellent selectivity (\geq 97:3) in high yield via a metal chelated transition state. A Felkin transition state **72** with the amide in the perpendicular position accounted for reduction with

potassium triethylborohydride in ether at 0°C to give the stereochemically pure anti diasteroisomer **71**. The combination of these methods with asymmetric acylation provided an effective solution to the asymmetric problems in the formation of aldol products (scheme 2). 78,79 In contrast to the case of potassium triethyl-borohydride, the reduction of α -methyl- β -keto amides with zinc borohydride was

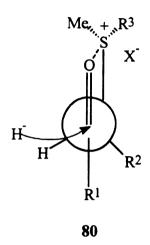
Scheme 2

highly syn selective when the ketone was aromatic or α,β -unsaturated, but less selective in aliphatic cases. ⁵⁴ Hydrosilylation also provided diastereocontrol in the reduction of α -substituted- β -keto amides (scheme 3). The fluoride-mediated reaction was anti selective (\geq 98:2) while the reduction in trifluoroacetic acid favored formation of the syn isomer (\geq 98:2) 80 with no loss of optical purity. The hydrosilane based reductions are remarkable in light of the extremely mild reaction conditions and easy handling of commercially available hydrosilanes and provide an alternative efficient approach to aldols of both three and erythro configurations.

Diastereomerically pure syn- and anti- β -alkylthicalcohols **77** and **79** are useful synthetic intermediates for the preparation of geometrically pure alkenes^{81,82,83} or single diastereoisomers of epoxides.^{84,85,86} Reduction of β -keto sulfides **76**

- ^a tris(diethylamino)sulfonium difluorotrimethylsilicate (used a fluoride source).
- b 1.3-dimethyl-3,4,5,6-tetrahydro-2-(1H)-pyrimidinone

Scheme 3


with L-selectride in THF gave the syn- β -hydroxy sulfides 77 via α Felkin transition state.⁸⁷ The selectivity was good (\geq 92:8) unless the acyl group was branched. However, in the Zn(BH₄)₂ reduction, expected to give anti selectivity, excellent results

were obtained only in limited cases. The solution for the formation of the anti diastereoisomer 79 was reduction of the sulfonium salts 78, (prepared by methylation of the β -keto sulfides 76) with sodium borohydride in dichloromethane (scheme 4). The sulfonium salt 78 is hypothesized to be in its most stable conformation 80 in which the carbonyl and the

Scheme 4

sulfonium groups are eclipsed due to the charge attraction between these closely located functional

groups. Therefore, the hydride anion may attack the ketone from the less hindered side producing the anti-79.88

The stereocontrolled reduction of optically pure β -keto sulfoxides **81** with DIBAL-H (anti selective **82**, \geq 93:7) or DIBAL-H in the presence of zinc chloride (syn selective **83**, >95:5) provided an entry to enantiomerically pure alcohols after desulfurization (scheme 5).89,90 The formation of the syn isomer **82** is presumably due to the initial complexation of the β -keto-sulfoxide moiety with ZnCl, and the subsequent attack of a hydride from DIBAL on the less hindered side of the chelated species.

Scheme 5

Geometrically pure alkenes were generated by Horner-Wittig elimination of stereochemically pure β -hydroxy diphenylphosphine oxides available from reduction of the corresponding β -keto phosphine oxides. ⁹¹ Reduction with typical reducing agents was generally syn selective according to the Felkin model however, in the presence of cerium chloride, sodium borohydride reduced sterically hindered α '-diphenylphosphinoyl enones **84** to the antialcohols **85** exclusively, presumably via a chelated transition state (eq 15). ⁹²

Diastereocontrolled reduction of amino ketones represents an attractive route to amino alcohols. The production by synthetic methods of chiral amino alcohols and the isolation of their enantiomeric and/or diastereomeric forms are of great importance in pharmacological research on anaesthetics, analgesics, etc. 93

The α - and β -aminocarbonyl systems with the chiral center in the α -position such as **85-88**, generally prefer syn-attack by hydride (with respect to the amine group) to give the anti product regardless of the reducing agent employed with the exception of α -chiral α -amino carbonyl substrates bearing a tertiary amino group preferring antiattack which appears to be associated with steric hindrance. 93

$$R^{1}$$
 R^{2}
 R^{3}
 R^{1}
 R^{2}
 R^{3}
 R^{1}
 R^{2}
 R^{3}
 R^{2}
 R^{2}
 R^{3}
 R^{2}
 R^{3}
 R^{2}
 R^{3}
 R^{2}
 R^{3}
 R^{4}
 R^{2}
 R^{3}
 R^{2}
 R^{3}

Reduction of aminocarbonyl compounds **85** has been widely investigated, due to the pharmacological relevance of amino alcohols **85-anti** as ephedrine-like systems (eq 15). The stero-chemical behavior of **85** bearing primary or secondary amino groups produced the anti-isomer predominantly except when R² = CH₂OH or CH₂NH₂ group bonded to the chiral center (Table 1.3).

$$R^{1}$$
 R^{2}
 R^{4}
 R^{4}
 R^{1}
 R^{2}
 R^{4}
 R^{4}
 R^{4}
 R^{2}
 R^{4}
 R^{4

In the latter cases, the stereoselectivity is much lowered and highly dependent on temperature variations. 94,95 The situation is more complex with tertiary amino derivatives: syn-attack, in general, is still favored, but a high number of cases exist

in which anti-attack is favored or even quantitative. The possibility of anti-attack increases with increasing steric hindrance of the amine moeity.

The reduction of acylaziridines **86** (eq 16) show a strong influence of the reducing agent on the stereochemistry of the reaction (Table 1.4). In the LiAlH, reductions, the attack is typically predominant from the syn-direction and sometimes stereospecific, with an exception for the more rigid polycyclic system **86** ($R^1-R^2=-(CH_2)_3-$). In the reductions with borohydrides, the syn-attack showed a general increase and, in some cases, is predominant.

Rigid cyclic amino systems **89-93**, show a complex sterochemical behavior due to strong effects of both reducing agent type and amino substrate structure.

Table 1.3. Reduction of $\alpha\text{-chiral Acyclic}$ $\alpha\text{-Amino }85.93$

Amino Ketone 85		Cetone 85					
R ¹	R ²	R³	R⁴	Reducing agent	Solvent	Temp °C	anti:syn ratio
C ₆ H ₅	CH ₃	Н	Н	LiAlH₄	$(C_2H_5)_2O$	r.t.	95:5
C ₆ H ₅	CH ₂ NH ₂	Н	Н	NaBH₄	C₂H₅OH	r.t.	50:50
C ₆ H ₅	СН₂ОН	н	Н	NaBH₄	C₂H₅OH	reflux	56:44
C ₆ H ₅	CH ₃	Н	C ₆ H ₅ -CH ₂	NaBH₄	СН₃ОН	r.t.	100:0
C ₆ H ₅	CH ₃	CH ₃	CH ₃	NaBH₄	C₂H₅OH	reflux	1:1
C ₆ H ₅	CH ₃	CH ₃	C ₆ H ₅ CH ₂ CH ₂	NaBH₄	DMF		100:1
C ₆ H ₅	CH ₃	CH ₃	C ₆ H ₅ (CH ₂) ₃	NaBH₄	СН₃ОН	r.t.	84:16
C ₆ H ₅	CH ₃	CH ₃	$C_6H_5(CH_2)_3$	LiAl(OtBu) ₃	THF		0:100
C ₆ H ₅	C ₆ H ₅	СН3	C ₆ H ₅	LiAlH₄	$(C_2H_5)_2O$	r.t.	75:25
C ₆ H ₅	C ₆ H ₅	-(CH ₂) ₇ -	-(CH ₂) ₇ -	LiAlH₄	$(C_2H_5)_2O$	r.t.	53:47
C ₆ H ₅	C ₆ H ₅	<u>n</u> -C ₃ H ₇	<u>n</u> -C ₃ H ₇	LiAlH ₄	$(C_2H_5)_2O$	r.t.	34:66
C ₆ H ₅	C ₆ H ₅	į-C ₃ H ₇ CH ₂	i-C₃H ₇ CH ₂	LiAlH₄	$(C_2H_5)_2O$	r.t.	0:100

In the reduction of 2-aminocycloalkanones **89** (eq 17), both ring size and the nature of the reducing agent appear to be important. In most cases reduction of aminocyclopentanones (**89**, n=1) afforded preferentially the anti-diastereomer, whereas aminocyclohexanones (**89**, n=2), on the other hand afforded preferentially the syn-diasteromer (Table 1.5). Also phenylcyclohexanone (**89**, n=2; $R^1 = C_6H_5$), bearing a primary or secondary amino group gives only the syn-diastereomer **89-syn** (eq 18). 96,97

In the group of 3-piperidones (91, n = 2), the oxobenzomorphanes and their quaternary ammonium salts behave differently: anti-attack largely predominants in reduction of the free base, but synattack largely predominates in reduction of quaternary ammonium salt. 93 The type of substrate has a profound effect on stereoselectivity of reducing agents in the case of 4-piperidone systems 93. β -substituents in the axial position with respect to the carbonyl group undergo predominant syn-attack, even by reagents usually preferring anti-attack.

Table 1.4. Reduction of Acylaziridines **86**.99,100,101,102,103,104

Acyl	aziridines 8	36					
\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	R ⁴	Reducing agent	Solvent	Temp °C	Anti:Syn ratio
CH ₃	Н	Н	t-C₄H ₉	LiAlH4	(C ₂ H ₅) ₂ O	r.t.	40:60
C ₆ H ₅	Н	Н	CH ₃	LiAlH₄	$(C_2H_5)_2O$	r.t.	93:7
C ₆ H ₅	Н	Н	CH ₃	(CH ₃) ₄ NBH ₄	i-C ₃ H ₇ OH	r.t.	12:88
C ₆ H ₅	Н	Н	t-C ₄ H ₉	LiAlH4	$(C_2H_5)_2O$	r.t.	94:6
C ₆ H ₅	Н	Н	t-C₄H9	NaBH ₄	СН3ОН	r.t.	30:70
C ₆ H ₅	C ₆ H ₅	Н	c-C ₆ H ₁₁	LiAlH₄	(C ₂ H ₅) ₂ O or C ₆ H ₆	r.t.	100:0
C ₆ H ₅	C ₆ H ₅	Н	c-C ₆ H ₁₁	NaBH4	СН₃ОН	r.t.	65:35
-(CH ₂) ₃	-(CH ₂) ₃	Н	t-C ₄ H ₉	LiAlH₄	$(C_2H_5)_2O$	r.t.	47:53
-(CH ₂) ₃	-(CH ₂) ₃	Н	t-C ₄ H ₉	NaBH.	СН₃ОН	r.t.	95:5
CH ₃	Н	CH ₃	СН3	LiAlH4	$(C_2H_5)_2O$	r.t.	74:26
CH ₃	Н	CH ₃	СН3	NaBH.	СН₃ОН	r.t.	57:43
CH ₃	Н	t-C ₄ H ₉	CH ₃	LiAlH ₄	$(C_2H_5)_2O$	r.t.	61:39
CH ₃	Н	t-C ₄ H ₉	CH ₃	NaBH4	СН₃ОН	r.t.	86:14
C ₆ H ₅	Н	C ₆ H ₅	c-C ₆ H ₁₁	LiAlH₄ or C ₆ H ₆	$(C_2H_5)_2O$	r.t.	100:0
C ₆ H ₅	Н	C ₆ H ₅	c-C ₆ H ₁₁	NaBH ₄	СН ₃ ОН	r.t.	85:15
C ₆ H ₅	CH ₃	CH ₃	Н	NaBH ₄	СН₃ОН	r.t.	9:91

For reductions of 3,5-bridged bicyclic
4-Piperidone derivatives **94** using NaBH₄ in methanol,
the steroselectivity appears to be determined by the
relative size of the ring with anti:syn ratios for n
= 1,2,3 of 91:9, 38:62, and 5: 95 respectively.⁹⁸

Cyclohexanone derivatives **95** with an axial aminomethyl group prefers anti-attack, whereas equatorial derivatives are not significantly steroselective.

Table 1.5. Reduction of 2-Aminocyclopentanones and 2-Aminocyclohexanones **89** ($R^1=H$; n=1,2) to Alcohols **89-anti,syn**. 93

Amino.	Ketone	89
MILLIO	recone	03

n	R²	R³	Reducing agent	Solvent	Temp °C	anti:syn ratio
1	CH,	CH,	NaBH,	THF	r.t.	80:20
1	CH,	CH ₃	KBH₄	C ₂ H ₅ OH		42:58
1	- (CH ₂) ₅ -	-(CH ₂) ₅ -	LiBH,	C³H²OH		84:16
1	- (CH ₂) ₅ -	- (CH ₂) ₅ -	LiBH,	THF	r.t.	100:0
2	CH ₃	CH ₃	$NaAlH_4$	C,H,N		68:32
2	CH ₃	CH ₃	LiBH,	C ₆ H ₆		15:85
2	n-C,H,	n-C,H,	NaBH,	C,H,N		11:89
2	CH,	C-C ₆ H ₁₁	NaBH,	C ₂ H ₅ OH	reflux	20:80
2	- (CH ₂) ₅ -	-(CH ₂) ₅ -	NaAlH,	THF		62:38
2	-(CH ₂) ₅ -	-(CH ₂) ₅ -	NaBH,	C,H,N		11:89
2	- (CH ₂) ₂ O(CH ₂) ₂ -	- (CH ₂) ₂ O(CH ₂) ₂ -	NaBH,	C ₂ H ₅ OH	r.t.	59:41
2	- (CH ₂) ₂ O(CH ₂) ₂ -	- (CH ₂) ₂ O(CH ₂) ₂ -	NaBH,	C ₅ H ₅ N	r.t.	15:85

$$OH_{NH}$$
 OH_{NH}
 $OH_{$

52

(n = 1) anti O syn (n = 3)
$$(H_2C)_n$$

$$CH_3$$

Aminobornanones 96 and 98 give predominantly the isomers 97 (en) and 99 (en) respectively when reduced with LAH (eq 19 and 20). On the contrary sodium/ethanol produced the opposite results giving the 97 (ex) and 99 (ex) respectively. The authors concluded that, in hydride reduction of these systems, the attack from the opposite side with respect to the amino group is preferred regardless of it's endo or exo-position contrary to sodium/ethanol which prefer endo-attack. A series of

 β -asymmetric β -amino ketones 100 (eq 21) has been investigated and the sterochemical model for hydride reduction has been studied.

In LAH reductions the stereochemical behavior of substrates with a primary or secondary amino group

differs from that of the tertiary derivatives.

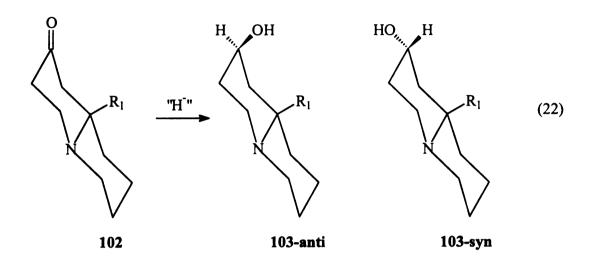

Primary and secondary keto bases are reduced nonstereoselectively, whereas tertiary keto bases show
a moderate preference for syn-attack (Table 1.6).

Table 1.6. Lithium Aluminum Hydride Reduction of β -Chiral β -Aminopropiophenones 100.114,115

R ¹	inopi R	copiophen R	one 100 R ⁴	R ⁵	anti:syn ratio
C_6H_5	Н	C_6H_5	Н	Н	57:43
CH ₃ , C ₂ H ₅	Н	C_6H_5	Н	CH ₃ , C ₂ H ₅	~50:50
t-C ₄ H _{9.} C ₅ H ₅	Н	C_6H_5	Н	2-naphthyl	~50:50
CH _{3,} C ₆ H ₅	Н	CH ₃ , C ₆ H ₅	CH ₃	CH,	25:75 - 34:66
CH_{3} , $i-C_3H_7$	Н	CH _{3,} C ₆ H ₅	- (CH ₂) ₅ -	attached to R⁴	23:77 - 40:60
CH_{3} , $i-C_3H_7$	Н	C ₆ H ₅		attached to R⁴	28:72 - 50:50
CH ₃ , C ₆ H ₅	CH ₃	CH _{3.} C ₆ H ₅	- (CH ₂) ₅ -	attached to R⁴	24:76 - 45:55

The stereochemical results of reductions of the azabicycloketones 102 (eq 22) are similar to those obtained with the analogous derivatives 92 and indicate a large preference for anti-attack by most reducing agents (see Table 1.7). Cyanoethyl-cyclohexanones 104 are reduced with hydride to give the corresponding alcohols 105 (eq 23), with a

preference for the syn-diastereomer (i.e. equatorial -OH) with **105** anti:syn ratios ranging from 36:64 to 20:80.118

Table 1.7. Reduction of Azabicycloketone 102¹¹⁶, 117.

Azabicycloketone	102			
R ¹	Reducing Agent	Solvent	Temp°C	anti:syn <u>ratio</u>
Н	LiAlH4	$(C_2H_5)_2O$	r.t.	~7:93
н	NaBH,	СН,ОН	r.t.	~7:93
н	Na	C ₂ H ₅ OH	reflux	~7:93

Hydroxyoximes 106 give amino alcohols 107⁴⁵ on reduction with various reducing agents (eq 24).

Reduction appear to take place with attack from the opposite side with respect to the hydroxy group showing a preference for the anti-diastereomer

(107 anti:syn ratio = 10:1). In contrast, reduction of the hydroxyimine 108 gives only one diastereomer 109-syn⁹⁷ deriving from attack of the hydride on the same side with respect to the hydroxyl group (eq 25).

In contrast to α -amino ketones in which stereoselectivity was rare¹¹⁹ with conventional hydride reagents, α -triazolyl ketones **110** were reduced in high stereoselectivity by tetra-alkylammonium borohydrides to the syn-alcohols **111**-syn in dichloromethane or to the anti isomers **111**-anti when titanium tetrachloride was added (scheme 6).¹²⁰

Hydrosilylation of α -amino ketones 112 and 114 showed very high levels of selectivity in either direction depending on the reaction conditions (eq 26 and 27). The syn product 113 was the exclusive product of the fluoride-catalyzed reduction⁶⁰, while trifuoroacetic acid catalysis generated the anti-isomer 138.⁶¹

$$R_4NBH_4$$
 CH_2Cl_2 , -30°C

 R_4NBH_4
 CH_2Cl_2 , -30°C

 R_4NBH_4 , TiCl₄
 CH_2Cl_2 , -30°C

 R_4NBH_4 , TiCl₄
 R_4NBH_4 , TiCl₄

Scheme 6

Several studies have been reported in the literature on face stereoselective reduction of hydroxy-aldehydes and ketones with tetraalkyl-ammonium triacetoxyborohydride. During a study on the chemoselective reduction of aldehydes, Gribble et al.¹²¹ reported the reduction of the keto-aldehyde 116 shown in Figure 1.9 with n-Bu₄NBH(OAc)₃ and postulated an intramolecular hydride delivery¹²² as illustrated by intermediate 117 in Figure 1.9.

Figure 1.9. Intramolecular hydride delivery during the reduction of the phenylketoaldehyde 116 with tetrabutylammonium triacetoxyborohydride in benzene solvent.

Several workers, beginning with Saksena, have implicated this type of intermediate in apparent intramolecular, hydroxyl-directed ketone reductions (eq 28-31).123,124,125

Evans reported studies on the hydroxyl-directed hydride reduction of acylic β -hydroxy ketones using the reducing agent Me,NBH(OAc), (eq 32). 126,127 The range of acylic hydroxy ketones studied by Evans et al. is summarized in Table 1.8. 126 As illustrated in Table 1.8 these reductions exhibit both good levels of reaction diastereoselection and a good degree of generality. It is significant that both the anti and syn aldol adducts (Table 1.8 entries 2 and 3) also exhibit high levels of anti reduction. This suggests that the asymmetric induction from the distal hydroxy-bearing stereocenter overrides the proximal α -methyl stereocenter in either configuration.

The sterochemical course of these reductions is consistent with a mechanistic postulate first suggested by Gribble¹²² and may be rationalized via the transition states illustrated in scheme 7. Ligand exchange between substrate hydroxy and the reactive borohydride ligands affords an intermediate substrate-bound alkoxydiacetoxy borohydride which is a stronger hydride donor than the parent borohydride^{134,135} and more importantly capable of intramolecular hydride delivery for stereoselective reduction.

Table 1.8. Diasteroselective Hydroxy Ketone Reduction with Me₄NBH(OAc).126,128,129,130,131,132, 133

Entry	Reactant	Product	Time (Temp)	Ratio Anti:Syn	Percent Yield
1	Me Me Me	OH OH Me Me Me Me	5h (-20°C)	96:4	86
2	Me Me Me	OH OH Me Me Me	18h (-20°C)	98:2	92
3	Me Me Me	OH OH Me Me Me Me	18h (-20°C)	98:2	84
4	OH O Me Me Me Ph	OH OH O Me	30m(+25°C)	>98.2	99
5	Mc O(CH ₂), Ph	Me OH OH OHO OHO OHO OHO OHO OHO OHO OHO	18h (-40°C)	95:5	92
6	Me O(CH ₂), Ph	Me OH OH OHO OHO OHO OHO OHO OHO OHO OHO	3h (+25°C)	92:8	89
7	Me O(CH ₂),Ph	Me OH OH OHO OHO OHO OHO OHO OHO OHO OHO	30 min(+25°C)	87:13	78
8	Me O(CH ₂),Ph	O(C H ₂) ₃ Ph	18h (-40°C)	95:5	90
9	Me O(CH ₂),Ph	Me O(CH ₂) ₃ Ph	18h (+25°C)	89:11	83
10	Me O(CH ₂) ₁ Ph	Me O(CH ₂) ₃ Ph	6h (+25°C)	92:8	69

Scheme 7

Thompson et al. employed a hydroxy-directed ketone reduction using NaBH(OAc), in the synthesis of 1,8,8a-triepicastanospermine 129 and 8-epicastanospermine 132.¹³⁶ The stereoselective reduction of the heterocyclic-derived aldol adducts 127 and 130 using NaBH(OAc), to produce the diol intermediates 128 and 131 (eq 33 and 34) were key steps in the introduction of the C-1 OH in 129 and 132.

Pansare reported studies on a stereodivergent approach to α -hydroxy acids involving substrate directed reduction of α -keto amides using tetramethyl ammonium triacetoxyborohydride (eq 35).137

They employed a chiral α -keto amide 133 bearing a pendant hydroxyl functionality that could be utilized as a directing group. The treatment of 133 with Me₄NBH(OAc), using dimethyl ether gave 134 and 135 as a 18/1 mixture of diastereomers. The observed diastereoselectivity is consistent with a transition state assembly as depicted in figure 1.10.

Figure 1.10. Transition state for Me,NBH(OAc), reduction of 133.

Assuming a coplanar syn amide-anti α -dicarbonyl conformation, intramolecular reduction from the Si-face of the ketone generates mandelic acid with "R" configuration.

Several examples of stereoselective hydroxydirected reductions of α -hydroxyketones have also been reported (Figure 1.11).138,139,140

$$\frac{\text{Me}_4\text{NBH}(\text{OAc})_3}{\text{HOAc acetone}}$$

$$\frac{23^{\circ}\text{C}}{73\%}$$

$$\text{ds} > 25:1$$

Figure 1.11. Examples of stereoselective hydroxymediated α -hydroxyketones.

This review provides only a glimpse of the vast amount of information in the chemical literature involving steroselective reductions. No information was reported employing dihydrogen bonding as a means of enhancing reaction rates or influencing the stereochemistry of reductions. However, we have discovered that dihydrogen bonding has a profound influence on reaction rate and stereoselectivity of borohydride reductions. The results of this work will be presented in chapter 2.

CHAPTER 2

2.1 Reactivity and Stereocontrol in Borohydride Reductions of Ketones Mediated by Dihydrogen Bonding.

Several reports of hydrogen bonding between hydridic and protonic hydrogen centers ("dihydrogen bonding") have explored the structural and electronic characteristics of these interactions, 9,26 demonstrated their significance in both intra- and intermolecular examples, 9,26,141 and developed estimates of the associated energetics. 142,19,20 Of particular interest is the work concerning borohydrides; the stability of these salts in water and other hydroxylic solvents has been known for six decades, and they are among the most common and versatile reducing agents in the organic chemist's toolbox.

In 1994 Jackson et al. structurally examined the HOH···BH₄- hydrogen bonds in NaBH₄•2H₂O, concluding that the three close H···H contacts (neutron diffraction internuclear distances 1.79, 1.86, and 1.94 from NaBD₄•2D₂O) could only be properly understood as true hydrogen bonds, with substantial charge transfer and interpenetration of the Van der Waals surfaces. 143 Having also observed clear hydrogen bonding behavior in solution IR

experiments, we then sought a simple example of a reactivity effect due to such associations. To study face selection in a typical borohydride reaction—ketone reduction mediated by dihydrogen bonding we have chosen to use reduction of α and β —hydroxyalkanones in non hydrogen bonding solvents as the test reaction.

$2.1.1 \alpha$ -Hydroxyketones

The substrates, 2-hydroxycyclobutanone 136, and 2-hydroxycyclopentanone 138, (Figure 2.1), were selected with the guidance of AM1 calculations and simple structural models. A particularly important feature is that intramolecular hydrogen bonding between -OH and carbonyl moieties is geometrically impossible in these constrained frameworks.

Directing or rate effects, then, could not arise from simple activation of the carbonyl group via intramolecular hydrogen bonding. The relative rigidity of these cyclic ketones also avoids conformational complexity.

Figure 2.1. 2-hydroxycyclobutanone 136, and 2-hydroxycyclopentanone 138 reduction using TBABH.

The chlorinated hydrocarbon solvent and the borohydride's tetrabutylammonium countercation were also chosen to be incapable of hydrogen bonding to either borohydride or substrate.

It is important to rule out a process in which an initial reaction of BH4⁻ with the -OH site is followed by intramolecular hydride delivery, as is the case with the triacetoxyborohydride reductions previously mentioned. Fortunately, it is easy to observe by FTIR that hydrogen bonding of -OH to BH4⁻ occurs prior to reduction, and that there is no depletion of the -OH absorption band or H₂ evolution

during the course of the reaction. This finding mirrors the behavior of the -OH group of cyclopentanol. When cyclopentanone was reduced with Bu₄N⁺BH₄⁻ (TBABH) in the presence of cyclopentanol, no reaction of the OH group was observed during the course of 32 hrs! (Figure 2.2)

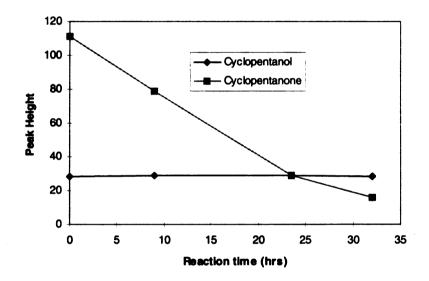


Figure 2.2. Reduction of cyclopentanone in the presence of cyclopentanol with TBABH using dichloromethane as solvent.

Table 2.1 summarizes the results of **136** and **138**, and the corresponding unhydroxylated ketone reference compounds.

Table 2.1. Reduction Results of 136 and 138, and the Corresponding Unsubstituted Ketones Reference Compounds.

Substrate	Solvent	Rxn Rate(t _{1/2})	Cis diol	Trans diol
◇	DCBª	2 hrs		
136	DCB	< 1 min	0.1	99.9
	DCB	17 hrs		
138	DCB	7 min	1.4	98.6
138	CH ₂ Cl ₂	8 min	0.1	99.9

a 1.2 dichlorobenzene

As seen in Table 2.1 the reduction of 136 and 138 gave almost exclusively the trans diol product. This finding demonstrates that the hydride is delivered from the -OH substituted face of the substrate. A sursprising result was the extent of reaction rate enhancement cause by the α -hydroxy group. Strikingly, compounds 136 and 138 reacted >100 times faster than the corresponding simple cycloalkanones. This large rate increase cannot be explained on the basis of an inductive effect by the α -substituent alone. It is known that α -substitution by an electron withdrawing group does accelerate ketone reduction. 144 Thus, reactivity of

α-substituted benzyl phenyl ketones by NaBH₄ in 2-propanol increases in the order of H < OH < OMe with reduction rates of 2.69 x 10^3 , 98.6×10^3 , and 238.6×10^3 liter mol⁻¹ sec⁻¹ respectively. Presumably the electron withdrawing nature of the substituent facilitates the nucleophilic attack of BH₄ on the carbonyl carbon. However, reduction rates are less sensitive to α-substituents in saturated cyclohexanones **139-141** as shown by the $t_{1/2}$ data in Table 2.2.

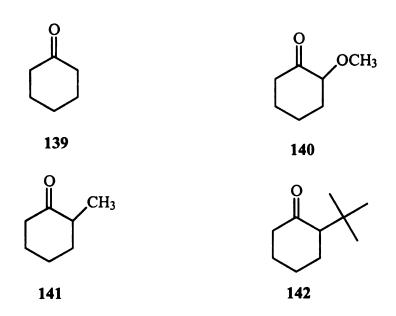


Table 2.2. Reduction Rate Data for Cyclohexanones.

Substrate	Reaction Rate t _{1/2} (Hrs)
139	22
140	21
141	24
142	35

Unlike the benzyl phenyl ketones, the rates for α -methoxycyclohexanone **140** and cyclohexanone **139** were essentially the same, while the methyl and t-butyl groups in **141** and **142** slightly slowed the reaction as expected($t_{1/2}$ decreased by factors of 1.1 and 1.5 for methyl and t-butyl respectively).

Both the stereochemical outcome and the rate acceleration induced by the presence of the -OH group in 136 and 138 are consistent with a large enhancement (a factor of >100) in the rate of attack by borohydride on the carbonyl face syn to the -OH group. In non hydrogen bonding solvents, the dihydrogen bonding interaction between BH_4^- and the α -hydroxy group facilitates delivery of the hydride to produce (after hydrolysis) the trans diol product (Figure 2.3).

Figure 2.3. Dihydrogen bonding interaction of BH4 with α -hydroxy substituent in α -hydroxy-cycloalkanones

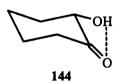
The above picture predicts a loss of rate and stereodirecting effects when an added hydrogen bonding reagents, such as an alcohol, interacts with -OH, C=O, and BH4⁻ fragments. The trans:cis diol ratio decreased from 332:1 to 22:1 when methanol was added but the reduction rate increased at least 8-fold as seen in Table 2.3, entries 3 and 4 decreasing the half-life from 8 min to < 1 min. Unlike other alcohols, methanol's acidity leads to loss of H₂ and formation of the CH₃O_nBH_{4-n}- species which is known to be more reactive than BH₄-.145,146 The hydroxylic solvent can accelerate reductions of simple ketones by hydrogen bonding

Table 2.3: Reduction Summary of $\alpha\textsc{-Hydroxy-Cyclopentanone.}$

Substrate = 0.25MTBABH = 0.25M

Entry	Substrate	Solvent	Additive (conc)	t _{1/2}	Cis diol	Trans diol
1	— 0	CH ₂ Cl ₂		17 hrs		
2	— 0	CH ₂ Cl ₂	TBABr (0.35M)	13 hrs		
3	<u> </u>	CH3OH		20 min		
4	138	CH ₂ Cl ₂		8 min	0.3	99.7
5	138	CH ₂ Cl ₂	СН ₃ ОН (15.5М)	< 1 min	4.4	95.6
6	138	CH ₂ Cl ₂	t-amyl (0.9M)	30 min	8.0	92.0
7	138	CH ₂ Cl ₂	TBABr (0.25M)	30 min	6.5	93.4
8	138	CH ₂ Cl ₂	TBABr (0.25M)		20.1	79.9
9	138	CH ₂ Cl ₂	TBAC (0.25M)	57 min	20.3	79.7
10	138	CH ₂ Cl ₂	TBAF (0.25M)	120 min	55.0	45.0
11	143	CH ₂ Cl ₂		6 Hrs	39.0	61.0

to the carbonyl group and stabilization of the developing negative charge during hydride delivery.


Thus, even for e.g. unhydroxylated cyclopentanone

(Table 2.3, entries 1 and 3) addition of methanol accelerates reduction ca. 50-fold ($t_{1/2} = 17$ hrs vs. 20 min). The bulky t-amyl alcohol (Table 2.3, entry 6) which hydrogen bonds but does not react with the borohydride, causes the expected decrease in rate $(t_{1/2} \text{ of } 138 \text{ from } 8 \text{ to } 30 \text{ min}) \text{ and regioselectivity,}$ decreasing the trans: cis ratio from 322:1 to 12:1. Tetrabutylammonium halides-fluoride (TBAF), chloride (TBAC), and bromide (TBABr) - also inhibit the reaction, presumably by competing with borohydride for hydrogen bonding to the substrate's hydroxyl group. As shown in entries 7 - 10 in Table 2.3, the stronger the hydrogen bonding nature of the reagent (TBAF > TBAC > TBABr), the greater the effect on the rate with $(t_{1/2} = 120 \text{ min}, 57 \text{ min}, \text{ and } 20 \text{ min})$ respectively) and stereoselectivity (trans:cis ratios of 0.8:1, 3.9:1, and 14.4:1 respectively). Further evidence that the -OH group is key to the rate enhancement and stereocontrol is provided by the trimethylsilyl ether 143.

143

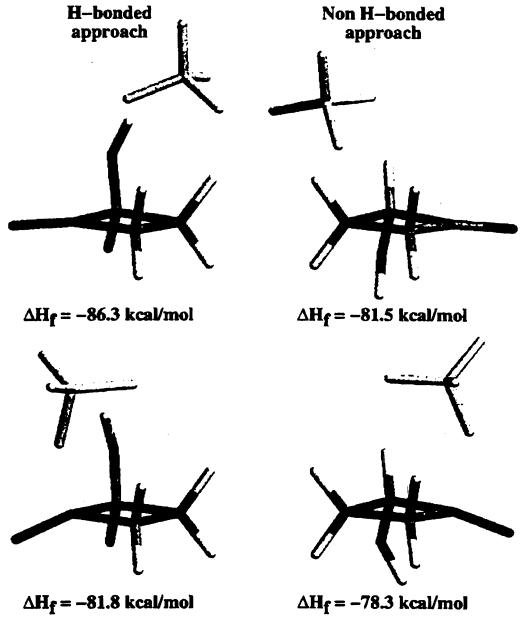
Here, the BH₄···OH- interaction (and hence any directing effect) is turned off, while the reaction half-life was increased from 8 min for **138** to 6 hrs for **143** (Table 2.3, entries 4 and 11).

In 2-hydroxycyclohexanone **144**, the -OH group caused a 300-fold rate increase ($t_{1/2}$ = 4 min for **144** and 22 hrs for **139**) over simple cyclohexanone **139**, but essentially no stereoselectivity was observed in the cyclohexanediol product (49:51 cis/trans). This can be explained in terms of the chair structure of **144**, in which the equatorial -OH activates

the coplanar carbonyl group through intramolecular hydrogen bonding, without inducing a significant facial directing effect on the BH₄-. Thus, results for the reduction of 144 give further credibility to the claim that in the conformationally rigid systems 136 and 138, where intramolecular hydrogen bonding

is not possible, the stereocontrol and rate enhancement are caused by the directing effect of the -OH group via dihydrogen bonding with BH₄-.

Figure 2.4 summarizes the results of semiempirical AM1 calculations on BH₄ reduction of **136**. Consistent with the experimental findings, the hydrogen bonded complexes are substantially lower in energy than the "Van der Waals" minimum located for approach to the unsubstituted face. The energetic preference for the -OH face also appears in the calculated transition structures for hydride transfer. For reference, the complexation energy and barrier for hydride delivery to the simple ketones are comparable to those for attack on the unhydroxylated face.


$2.1.2 \beta$ -Hydroxyketones

To expand our study we looked at hydroxyldirected stereodirecting and rate effects of β -hydroxy cyclic ketones (Table 2.4). No significant directing effects or rate enhancement were found when 2,2,4,4-tetrametyl-3-hydroxy-1-cyclobutanone 145 and 3-hydroxy-1-indanone 146 reacted with TBABH (Table 2.4 entries 1 and 2). However, 4_{ax} -hydroxy-2-

adamantanone 147 does show rate and stereodirecting effects like those found in 136 and 138, albeit weaker. The locked chair conformation of 147 forces the axial -OH closer to the carbonyl group which should place the dihydrogen bonded BH in an ideal location for effective hydride delivery to the carbonyl carbon. As seen in Table 2.4 entries 3 and 4 a 150 fold rate enhancement was observed for 147 compared to the unhydroxlated adamantanone 148 $(t_{1/2} = of 0.9 \text{ hrs and } 147 \text{ hrs respectively})$. The reduction of 147 shows the predicted preference for the trans diol but the stereoselectivity was observed to a lesser extent compared to 136 and 138 with a 20/80 cis/trans ratio for 146 compared to 1/99 cis/trans ratio for 136 and 138. The stereoselectivity for 147 was complicated by epimerization which presumably occurs via a retroaldol ring opening; rotation of the aldehyde group and subsequent recyclization then gives the epimer (scheme 8). 147 To determine if epimerization was occurring the 4_{m} -hydroxy adamantanone isomer **149** was prepared and reduced under equivalent conditions as 147. If no epimerization occurs, only the trans diol 150 and the equatorial cis diol 151 should be

produced (scheme 9). However if epimerization occurs at C-4 in 149 then the axial cis diol 152 would be formed(scheme 8). Indeed when reduction of 149 was carried out under the same reaction condition as 147 a significant amount of 152 was formed (Table 2.4 entry 5). The rate of reduction for 149 was also significantly increased compared to 148 (Table 2.4 entries 5 and 4). Unlike 147 in which the -OH group is in the axial position for which effective hydride delivery via dihydrogen bonding is possible, the equatorial -OH in 149 can not direct hydride delivery and therefore the observed rate enhancement can not be attributed to dihydrogen bonding interaction between BH₄ and -OH unless epimerization occurs.

H-Bond-Directed Borohydride Delivery: AM1 Structures and Energies*

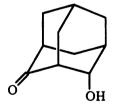
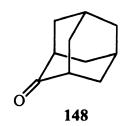
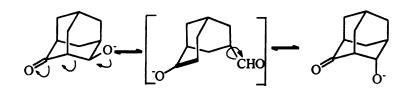
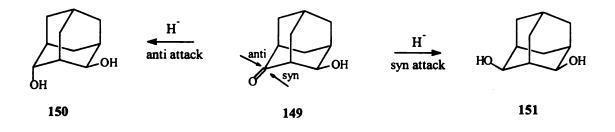

* $\sum \Delta H_f$ (fragments) = -70.9 kcal/mol

Figure 2.4. Dihydrogen-bonded directed borohydride delivery: AM1 Semiemperical calculated structures and energies.

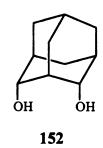

Table 2.4: Reduction of β -Hydroxy Cyclic Ketones.


Entry	Substrate	Solvent	T _{1/2} (hrs)	Cis diol	Trans diol
1	145	CH ₂ Cl ₂	10	41	59
2	146	CH ₂ Cl ₂	4	60	40
3	147	CH ₂ Cl ₂	0.9	20ª	80
4	148	CH ₂ Cl ₂	147		
5	149	CH ₂ Cl ₂	1.5	17 ^b /33 ^a	50
6	150	CH,Cl,			

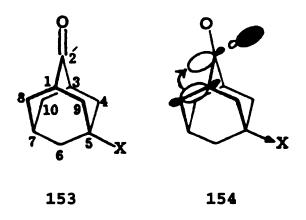
a Cis diol **152** b Cis diol **151**



147



Scheme 8



Scheme 9

The rate effect and the moderate preference for the trans diol for the reduction of 149 may also be rationalized based on Cieplak's theory of charge transfer stabilization of the transition state. 148 Le Noble et al. employed Cieplak's theory in their study of the effects of substituent modification on face selection in the reduction of 5-substituted 2-adamantanones. 149 They found it possible to account for their experimental observations by assuming that the transition states were stabilized by hyperconjugative donation of electrons into the σ^* orbital of the newly forming or breaking bond by the antiperiplanar vicinal bonds. When two of these vicinal bonds are adjacent to an electron withdrawing substituent as in 153, they are rendered electron poor by it; the two transition states are then unequal in energy, and as a result a rate effect is induced and svn attack as in 154 is favored (with a reported E/Z diol ratio of 58/42 when $X = OH).^{149}$ However the rate enhancement caused by this phenomenon were all less than a factor of 10 whereas for the case of 147 and 149 in our study the rate was increased by factors of 150 and 100 respectively. In light of the large rate

enhancement for **149** it seems reasonable that an electronic inductive effect from the $4_{\rm eq}$ -OH in **149** as well as epimerization to the axial **147** and subsequent hydride reduction may both be contributing to rate enhancement and steroselectivity. Indeed, recovered starting material for experiments starting with **149** showed the presence of some **147** in addition to the reduced products.

Although complicated by epimerization and electronic effects, the reduction results of 147 showed that the proximity of the directing group to the carbonyl functionality is crucial for rate enhancement and stereoselectivity for α and β -hydroxy cycloketones, which may explain why the β -hydroxyketones 145 and 146 showed no significant rate or stereodirecting

effect. Since these rings are relatively flat and rigid, the dihydrogen bonded BH, is presumably positioned out of range for effective hydride delivery to the carbonyl carbon.

To further demonstrate this point the bicyclic β -hydroxy-diketone 1S,6S-1-hydroxy-6-methyl-bicyclo[4.3.0]nona-3,7-dione **155** was studied.

155

The reduction of 155 with the -OH group positioned in a 1,3 relationship to both the cyclohexyl and the cyclopentyl carbonyl groups further illustrates the differences in the stereodirecting and rate effects of the 3-hydroxycyclohexanone ring in which the chair conformation positions the OH closer to the cyclohexyl carbonyl than the relatively flat 3-hydroxycyclopentyl carbonyl. Based on the reaction results of 145, 146 and 147 one would expect the carbonyl on the cyclohexanone ring to be reduced in preference to the carbonyl on the cyclopentanone ring in 155. The reaction was

carried out using one hydride equivalent of TBABH in dichloromethane as solvent. The addition of the TBABH caused a shift of approximately 7 cm $^{-1}$ in the $^{-}$ OH and the carbonyl vibrational stretching frequencies on the cyclohexanone ring (from 3597 to 3590 cm $^{-1}$ and 1750 to 1743 cm $^{-1}$ respectively) which indicates an interaction of BH₄ $^{-}$ with the $^{-}$ OH and the carbonyl site on the cyclohexanone ring as shown in 155A.

155A

The fact that there was no shift in the carbonyl frequency for the cyclopentanone ring indicates that the dihydrogen bonded BH, is too distant to interact simultaneously with the -OH and the cyclopentanone carbonyl group. This preference is manifested in the reactivity results as shown in figure 2.5.

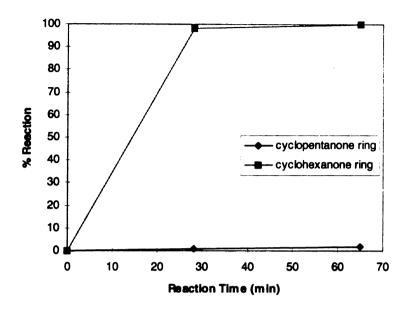


Figure 2.5. Reduction of 155 Using One Equivalent of BH, in Dichloromethane Solvent.

The results in figure 2.5 clearly show that the carbonyl on the cyclohexanone ring is preferentially reduced under these conditions. When the -OH substituent on 155 was trimethylsilylated to 156, thus turning off any directing effect, no rate enhancement was observed relative to the simple 5/6 monocylic ketones and furthermore the reactivity was reversed so that the reduction of the cyclopentanone carbonyl was preferred (figure 2.6), consistent with the relative reactivities of the simple 5- and 6-membered cycloalkanones.

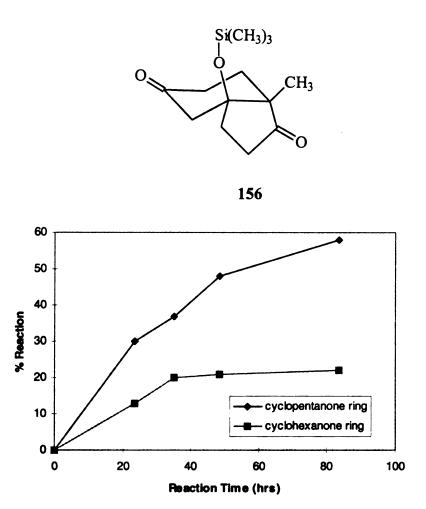


Figure 2.6. Reduction of 156 using one equivalent of BH, in dichloromethane solvent.

The silylated compound **156** did not show a shift in the carbonyl vibrational frequency for either the cyclohexanone or the cyclopentanone rings (vibrational frequencies for the cyclohexanone and cyclopentanone rings were 1750 and 1723 cm⁻¹ respectively before and after TBABH addition).

Compound **157** was used to study rate effects of BH₄ using an amine functionality as the directing group. AM1 geometry optimization calculations

favor the ester group being in the axial position which allows the -NH site to direct the BH₄ (via dihydrogen bonding) to the ester carbonyl. As shown in figure 2.7 the ester functionality was reduced in preference to the ketone. However this rate enhancement can not be totally attributed to the -NH directing BH₄ to the ester carbonyl because this compound is capable of assuming a conformation 158 that is capable of forming an intramolecular hydrogen bond between the -NH site and the ester carbonyl oxygen which would also cause an increase in reduction rate. Probably both effects are in operation here.

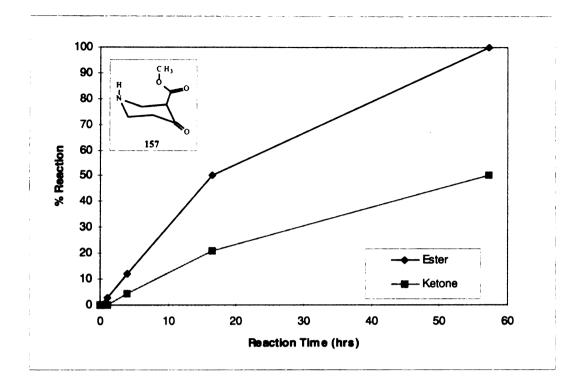


Figure 2.7. Rate comparison of Ester & Ketone functionalities in the reduction of methyl 4-oxo-3-piperidine carboxylate 157 with 2 equivalents of TBABH in dichloromethane.

We believe the results presented herein represent the first recognized instance of a directing effect specifically mediated by dihydrogen bonding. Such interactions must have exerted influences in numerous previous studies, but their

contributions have been undetectable in the context of a given substrate, or have been muddied by the presence of hydrogen bonding solvents, Lewis acidic counterions, or other stereochemical biases. The strength of the facial preference, however, suggests that this class of directing effect may offer some useful stereo- and regiocontrol of reactions involving hydride reagents.

CHAPTER 3

3.1 Asymmetric Reduction Using Chiral Hydride Reagents.

Asymmetric reduction of prochiral ketones using chiral hydride reagents has provided an efficient tool for the synthesis of optically active $alcohols^{150,151}$ which are considered one of the most important classes of substrates. 152 Lithium aluminum hydride (LAH), NaBH, and BH,: THF complexes have been modified with optically active ligands to achieve the delivery of hydride selectively to one face of the prochiral ketones. In general, the chiral hydride reagent is generated in situ by reaction of a suitable metal hydride with chiral ligands such as alkaloids, 153 sugar derivatives, 154 amino alcohols, 155 chiral oxazolines, 156 tartaric acid derivatives, 157 chiral amines, 158 chiral amineboranes, 159 and chiral diols. 160

During the past two decades there have been many papers describing research on the enantioselective reduction of ketones by a wide variety of chiral hydride reagents thus a brief review of this area is in order. For clarity the

review is arranged according to the chiral hydride reagent type.

3.1.1 Chiral Aluminum Hydride Reagents

Chiral lithium aluminum alkoxy hydrides were first studied by Bothner-By over 4 decades ago. 161
He utilized an LAH/Camphor complex which precipitated many studies to determine methods of increasing the stereoselectivity of the reductions. 162 The studies showed that stereoselectivity is dependent on the temperature, solvent, substrate, the LAH: ligand ratio and the ligand used. Poor stereoselectivity resulted due to the disportionation of the chiral alkoxy ligands which generated more than one hydride species in solution (eq 36). Primary alcohols such as

$$2LiAl(OR)H_3 \longrightarrow LiAl(OR)_2H_2 + LiAlH_4$$
 (36)

ethanol and 2-propanol have been used to convert the chiral alkoxy ligand into the trisalkoxy hydride form which is known to be more stable to

disproportionation. 163, 164, 165 When (+)-1,2,2-trimethyl-1,3-bis(hydroxymethyl)cyclopentane **159** is reacted with LAH, two hydrides remain, one hindered (syn) and one unhindered (anti) hydride (eq 37).

The effect of replacing the less hindered hydride with an achiral alcohol in the reduction of acetophenone was studied by Johnson and Klein. 166

The addition of the achiral alcohol increased the optical yield but, the best case gave only 18% ee.

Noyori has devised a chiral hydride reagent (BINAL-H) (R)-162 and its enantiomer (S)-162 by the modification of LAH with equimolar amounts of (R)-or (S)-[1,1'-binaphthyl]-2,2'-diol 161 and a simple alcohol (eq 38 & 39). 167 , 168

R = Me, Et, CH₂CF₃, etc

The reducing agents 162 exhibit high enantioface-differentiating ability in the reduction of diverse unsaturated carbonyl compounds such as aromatic ketones, alkynlic ketones, olefinic ketones, and aldehydes, etc. Reduction of acetophenone with (R)-162 (R = Et) under the conditions described in eq 40 gave the corresponding (R)-164 in 95% ee.

When R in (R)-162 was changed from Et to CH₂CF₃, the %ee of 164 decreased from 95% to 42% and the absolute configuration was inverted to the (S)-164.

Noyori's BINAL-H reagent **162** has also been successfully used to synthesize building blocks of prostaglandins (PG). 4-Hydroxy-2-cyclopenten-1-one (**166**) and compound **168**, which are part of a three component coupling process¹⁶⁹ in PG synthesis, have been prepared in 94% ee and 97% ee respectively by reducing the corresponding enones with (S)-**162** (R = Et) (eq 42 and 43).

Noyori's BINAL-H reagent has also successfully reduced deuterated aldehydes. Geranial-1-d(3,4-dimethyl-2,6-octadienal[1-2H]), **169** has been reduced to geraniol-1-d **170** in 91% yield and 84% ee (eq 44). 168

A six-membered transition state model 171 has been proposed to account for the observed stereoselectivity in ketone reduction.

171

Equatorial unsaturated (Un) and axial saturated groups (R) attached to the carbonyl function are differentiated based on their electronic nature. The alternative diastereomeric transition state is unfavorable due to the interaction of an oxygen lone pair and the unsaturated group (172).

Noyori has also developed a BINAP-Ru complex 173 for the enantioselective hydrogenation of carbonyl compounds.

173

No more will be said about 173 here, this research has been thoroughly reviewed by Noyori. 170, 171, 172

Seebach and co-workers discovered that the N- and O-substituted chiral diols prepared from tartaric acid and maleic acid were effective as chiral ligands in the reduction of aryl alkyl ketones. The diol is reacted with LAH to form the proposed cyclic structure 174. The optical yields were in the range of 0.8% to 45% ee except for the reduction of 1-(2,4,6-trimethylphenyl)-1-ethanone which gave 87% ee using 174 (R = pyrrolidine).

 $R = N(Me)_2$, pyrrolidine, piperdine, $NMe(C_8H_{17})$, NMePh, $NMe(EtO)_3Me$, OMe, OPh, etc.

174

The reduction of α , β -unsaturated ketones using a chiral complex 176 prepared from LAH, (-)-N-methylephedrine 175, and N-ethylaniline (eq 45) gave their corresponding allylic alcohols in high optical (78-98% ee) and chemical (92-100%) yields.

Vigneron and Bloy studied the reduction of α, β -acetylenic ketones with the chiral complex [LAH:N-methylephedrine:3,5-dimethyphenol] 177

which provided propargylic carbinols with 75 to 90% ee.173

The use of various LAH /carbinolamines complexes as chiral reducing agents have been extensively studied by Cohen et al. 174 Asymmetric reduction of the α,β -acetylenic ketones 178 - 183 (Table 3.1) using the Mosher-Yamaguchi (LAH - Darvon alcohol complex) 184 at -70° C produced mainly the (R)-carbinols in 62-99% yield and 34-90% ee.

Table 3.1: Asymmetric LAH Reduction of $\alpha,\beta-\text{Acetylenic}$ Ketones

$$\begin{array}{cccc}
& & & & OH \\
R-C-C = CCH_3 & & & & & R-C-C = CCH_3
\end{array}$$

Substrate	R	%R	%S	%ee	% Yield
178	(CH3) ₂ CHCH ₂	91	9	82	99
179	H _{A,C} CH ₃	82	18	64	78
180	CH _{3,1,1,1} H CH ₂	55	45	10	84
181	t-BuO CH ₂	93	7	86	94
182	PhCH ₂ CH ₃ CH ₂ CH ₃ CH ₃	67	33	34	87
183	PhCH ₂ CH ₃ CH ₃ CH ₂	95	5	90	93

This effect of remote chiral centers was studied by Morrison et al. using the substituted aminodiols 187-190 with different chirality α to the nitrogen. 175 The authors found that all chiral centers have an additive effect on asymmetric induction and centers as far away as those in 188 can induce a small (~10% ee) excess of one enantiomer. The results are shown in Table 3.2. Aminodiol 190 containing all three chiral centers of the (S)-configuration gave the highest optical yield in contrast to 189 (one (R)-chiral center, two (S)chiral centers) which has a lower optical yield. The authors proposed a transition structure 191 where the tertiary nitrogen coordinates with the Li cation which in turn coordinates with the carbonyl oxygen of the ketone.

Yamaguchi and Kabuto studied the effect of substituents and the number of methylene groups in the reduction of ketones 192.176 When n = 2 or 3, the stereoselectivity of the reduction increased when Y = OMe or NMe₂ but decreased when Y = SH. This can be rationalized by the hard/soft acid/base concept where the hard Li⁺ cation will complex with the hard oxygen and nitrogen but not with the soft sulfur. As the ability of Li⁺ to chelate increases, the transition state become more rigid which causes greater asymmetric induction.

Table 3.2. Reduction of Acetophenone and Propiophenone Using LAH Complexed with Substituted 1,2-Aminodiols.

Reducing Agent	Ketone	% Yield	%ee (Config. of Alcohol)	Authors' Comments
LAH: 187	Acetophenone	85	44(R)	Induction by carbinol centers
LAH: 187	Propiophenone	85	57(R)	
LAH:188	Acetophenone	87	10(S)	Induction by chiral center next to N
LAH:188	Propiophenone	97	10(S)	
LAH: 189	Acetophenone	90	35(R)	carbinol center induction opposed by that of chiral center next to N
LAH: 189	Propiophenone	88	19(R)	
LAH: 190	Acetophenone	98	82 (R)	carbinol center induction reinforced by that of chiral center next to N
LAH: 190	Propiophenone	98	77(R)	

The value of n is related to the stability of the cyclic transition state, when n = 2 or 3, a 5- or 6-member ring is formed as shown by the transition structure **193.**

193

The reduction of diaryl ketones was reported by Cervinka et al. using an asymmetric Meerwein-Pondorf-Verley reduction. 177 The reaction is based on the transfer of a hydride from the lithium salts of secondary amines to ketones. 178 The mechanism of

hydride transfer using the lithium salt of

(S)-(+)-2-methyl piperdine is illustrated in the structure **194**.

3.1.2. Borane Reagents

Corey and co-workers have published several papers on the catalytic reduction of ketones using oxazaborolidines. 179,180,181,182,183,184 Chiral oxazaborolidines 195 are known to induce a highly enantioselective catalytic reduction of ketones as borane is used as a source of hydrogen. Formation of the borane adduct 196 has been proposed to be the first step in the mechanism of the catalysis (eq 46).179 The catalyst (S)-195 has been tested in the reduction of several ketones, the results are summarized in Table 3.3.

Ph Ph Ph
$$H_{3B:THF}$$
 H_{3B} H_{3B}

Table 3.3. Borane Reduction of Ketones Catalyzed by (S)-195.179,180

Oxazabolidine Catatylsis		Ketone	equiv (BH ₃)	equiv (195)	reaction temp°C	config of product (%ee)
(S)- 195	(R=H)	C,H,COCH,	1	0.1	25	R(97)
(S)- 195	(R=CH ₃)	C ₆ H ₅ COCH,	0.6	0.1	2	R(96)
(S)- 195	(R=H)	C ₆ H ₅ COC ₂ H ₅	0.6	0.05	25	R(90)
(S)- 195	(R=CH ₃)	C ₆ H ₅ COC ₂ H ₅	0.6	0.1	-10	R(96)
(S)- 195	(R=H)	t-BuCOCH ₃	0.6	0.05	25	R(92)
(S)- 195	(R=CH ₃)	t-BuCOCH ₃	0.6	0.1	-10	R(97)
(S)- 195	(R=H)	lpha-tetralone	0.6	0.05	25	R(89)
(S)- 195	(R=CH ₃)	lpha-tetralone	0.6	0.1	-10	R(84)
(S)- 195	(R=H)	C°H²COCH²C1	0.6	0.05	25	S(97)
(S)- 195	(R=CH ₃)	C6H2COCH3C1	0.6	0.1	32	S(95)

The power of Corey's catalytic enantio-selective reduction in synthesis is illustrated by the examples which follow. The Corey method has been used in controlling the C-15 sterochemistry in prostaglandin (PG) synthesis. 180 The chiral ester lactone 197, a standard intermediate in PG synthesis, underwent selective reduction of the keto group upon treatment with 0.6 equivalents of borane in THF at 23°C for 2 min in the presence of 10 mol % of (S)-195 (R=CH₃) as catalyst to give 15-R alcohol 198 and 15-S diastereomer 199 in a ratio of 91:9 (eq 47).

$$n \cdot C_5H_{11}$$
(S)-195 (R=CH₃)
 $N \cdot Y$
 $N \cdot C_5H_{11}$
 $N \cdot Y$
(47)

(R)-198 X=H, Y=OH (S)-199 X=OH, Y=H

Under the same conditions but with the enantiomer of 195 as catalyst the opposite stereochemical preference was observed with the 15-S diastereomer 199 predominating in a ratio of 90:10.

Corey reported the first enantioselective route to chiral trans-2,5-diarylfurans¹⁸⁰ which are known to be potent antagonists of platelet activating factors.¹⁸⁵ Reduction of 3-(3,4-dimethoxy-benzoyl)propionate 200 with 0.6 equivalents of borane and 2 mol% of (S)-195 (R=CH₃) as catalyst at 0°C for 30 min was selective for the keto function and produced the corresponding secondary alcohol 201 (98% yield and 95% ee). The alcohol 201 was treated with NaH in THF producing the (R)-lactone 202 which was subsequently converted to the (2R,5R)-diarylfuran product 203 (scheme 10).

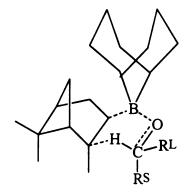
The mechanism of the oxazaborolidine catalyzed reduction has been proposed by Corey et al. and is shown in Scheme 11.179 The oxazaborolidine catalyst

Scheme 10

Scheme 11

behaves like an enzyme in the sense that it binds with the ketone and with the borane forming a complex that can hydride transfer via a six-membered transition state uniting both reducing agent and carbonyl substrate. 186 After the reaction is complete, it releases them and itself becomes free.

Trialkylboranes also embody many desirable features as reducing agents. Organoboranes are readily prepared and are tolerant of many functional groups. They do not possess an active hydrogen on boron therefore the reductions involve a Meerwein-Ponndorf-Verley type of process in which the hydrogen β to the boron is transferred to the carbonyl carbon as depicted in eq 47. Again, a sixmembered transition state is involved.


The ability to create the reducing agent by hydroboration of an olefin allows one to incorporate

a number of structural and electronic features into the reducing agent. High stereo- and regiospecificity can be achieved in hydroborations with 9-borabicyclo[3.3.1]nonane (9-BBN) and therefore optically active terpenes such as α -pinene and β -pinene can be transformed into the optically active reducing agents 204 ((R)-Alpine-Borane)and 205 (eq 48 & 49).187,188

Like other trialkylboranes, 189 the Alpine-Borane is virtually inert to various functional groups but very effective in transferring the β -hydride to one

of the prochiral faces of a labeled aldehyde (eq $50)^{187}$ and acetylenic ketones (eq 51 & 52). 190,191

A six-membered ring boat like transition state 206 has been proposed for the reduction in which the large appendage of a carbonyl group lies in the equatorial position to avoid steric interaction with the methyl group of the reagent. This model also fulfills the observation that a syn-planar B-C-C-H arrangement of the reagent leads to a faster rate of reduction. 192, 193

206

Alpine-Borane is not suitable for the reduction of aliphatic and aromatic ketones under normal conditions. This is due to a side reaction caused by the reduction of the substrate by 9-BBN formed via a slow unimolecular dissociation of Alpine-Borane 204 (eq 53). 193

One of the drawbacks of using Alpine-Borane is that it is not very reactive toward ketones.

Increasing the Lewis acidity of the boron would however increase the reactivity. In this regard, Brown investigated a variety of dialkylhaloboranes, the best of which was the chlorodisopinocampheylborane (DIP-Chloride) 207 (synthesized via eq 54). 194

DIP-Chloride is a good chiral reducing agent for aromatic alkyl and α -tertiary alkyl ketones. Placement of the halogen atom on the boron makes it more Lewis acidic resulting in an increase in reactivity toward carbonyl compounds. A variety of ketones have been reduced to optically active alcohols in high selectivity using 207 (figure 3.1).

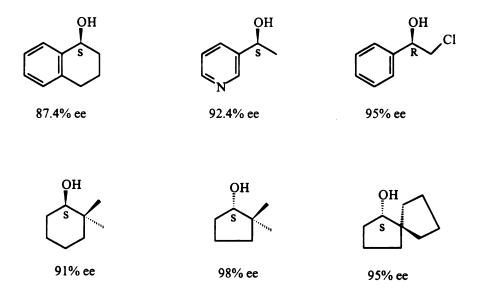


Figure 3.1. Optically active alcohol products from the reduction of their corresponding ketones using 207 as reducing agent.

The mechanism for DIP-Chloride is similar to that proposed by Midland for Alpine-Borane (see transition structure 206). 194

3.1.3. Aminoborohydride Reagents

The replacement of one or more of the hydrides on borohydride with other substituents can either increase (electron donating groups, i.e., alkyl, ¹⁹⁵ alkoxy, ¹⁹⁶ alkylamino) ¹⁵⁹, ¹⁹⁷ or temper (electron withdrawing groups i.e., CN, ¹⁹⁸ O₂CR) ¹⁹⁹, ¹²⁴ the hydride delivering ability of the resulting reagent.

(Alkylamino) borohydrides offer useful characteristics as versatile reducing agents. Due to the lower electronegativity of nitrogen compared to oxygen (3.07 vs. 3.50), 200 better donation of the lone pair of electrons toward boron from nitrogen should occur. This combination suggests that aminoborohydrides should demonstrate considerable enhancement of hydride delivering ability compared to either borohydride or alkoxy derivatives. 201 This was demonstrated by Hutchins et al. with the synthesis of sodium dimethylaminoborohydride and the study of its reduction characteristics (eq 55). 159

Me₂NH:BH₃
$$\xrightarrow{\text{NaH, 25°C}}$$
 Na⁺ [H₃BHMe₂] (55)

As expected, sodium dimethylaminoborohydride showed enhanced reducing ability. In addition to reducing aldehydes and ketones to the corresponding alcohols, it was also effective in converting esters to alcohols and primary amides to amines. Tertiary amides were reduced to either alcohols or amines, depending on the steric requirements of the amide

group. The mechanism of the tertiary amide reduction presumably involves an initial attack by hydride at the carbonyl followed by either displacement of the oxygen functionality (carbon-oxygen bond cleavage) by a second hydride to give an amine or carbon-nitrogen bond cleavage releasing an aldehyde that is reduced to an alcohol (eq 56).

RCONR₁R₂
$$\xrightarrow{MH}$$
 $\xrightarrow{RCNR_1R_2}$ $\xrightarrow{RCH_2NR_1R_2}$ $\xrightarrow{RCH_2NR_1R_2}$ (56)

The authors proposed that the second cleavage reaction (path b) may require, or be enhanced by, complexation with a boron species (i.e. 208) to augment the leaving ability of the amine.

As the N substituents become larger, such complexation is resisted and hydride substitution (path a) favorably competes to afford the amine. Reductions with the sodium aminoborohydrides were not facile and required long reaction times and harsh conditions.

Singaram et al. 197,202 reported the first synthesis of lithium aminoborohydrides (LiABH,) which are more reactive than the sodium derivatives. LiABH, are a relatively new class of powerful, selective, air stable reducing agents that reproduce virtually all of the transformations for which lithium aluminum hydride is used (figure 3.2) LiABH,'s can be synthesized in situ from any primary or secondary amine. A significant advantage of LiABH, over lithium aluminum hydride is that, once the LiABH, has been formed in situ, no precautions to exclude air need be taken when the reduction is done. Furthermore, alkylamine groups may be introduced sequentially so that the corresponding mono-, di-, and triaminoborohydrides are conceptually available with wide structural variances thus allowing control of the steric and electronic environments of these reagents.

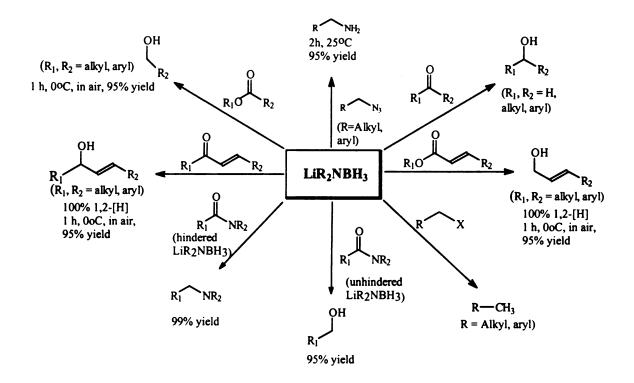
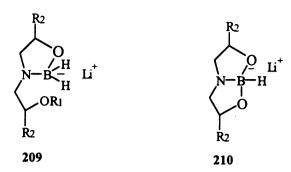


Figure 3.2. Representative functional groups reduced by LiABH,

We are interested in exploring the use of optically active lithium aminoborohydrides.


Consequently the focus of the second aspect of this research is to study the utility of chiral lithium aminoborohydrides as potential asymmetric reducing agents for ketone reductions. The results of this work will be described in Chapter 4.

CHAPTER 4

4.1 Asymmetric Reduction of Ketones using LiABH, as Reducing Agents

Sodium aminoborohydrides were first synthesized by Hutchins by deprotonating a pre-formed secondary amine-borane with sodium hydride. ¹⁵⁹ Singaram and co-workers have published several papers describing the preparation and uses of lithium aminoborohydrides. ¹⁹⁷, ²⁰², ²⁰³, ²⁰⁴, ²⁰⁵, ²⁰⁶ These compounds were described as safe and powerful reducing agents, comparable to lithium aluminum hydride, yet selective in their reducing properties. LiABH, reduce esters, lactones, and anhydrides to the corresponding alcohols, while carboxylic acids are not reduced. Although these new reducing agents have been extensively studied, the chemistry of chiral members of this class has only been briefly examined.

Kagan 207 investigated the use of mono and dialkoxyaminoborohydrides of types **209** and **210** and found that this class of reducing agents reacted with acetophenone to afford 1-phenylethanol in good chemical yields but low ee's (Table 4.1).

Table 4.1. Reduction of Acetophenone Using Mono and Dialkoxyaminoborohydrides as Reducing Agents. 159

Reducing Agent	Me Me BH, BH, OTBOMS Me IBDMSO	Ph Ph BH1 COTRONS Ph IBOMSO	Me O DO D	Ph O Li
Equivalents	1.1	1.1	1.1	1.8
% Yield	95	85	93	90
% ee	6(R)	8 (R)	9(R)	5 (R)

We have investigated a variety of optically active lithium aminoborohydride compounds as potential chiral reducing agents. The reducing reagents were prepared using Singaram's procedure 197 as illustrated in scheme 12.

R₁

$$R_1$$
 R_1
 R_2
 R_3
 R_4
 R_4
 R_5
 R_5
 R_5
 R_5
 R_5
 R_6
 R_6
 R_7
 R_8
 R_8
 R_8
 R_8
 R_8
 R_9
 R_9

Scheme 12

The chiral reagents were evaluated by the reduction of acetophenone under a variety of experimental conditions. The R/S enantiomer ratio were determined using a chiral LC column (see experimental). The results are summarized in Table 4.2.

Table 4.2. Asymmetric Reductions of Acetophenone.

Entry	Reducing Agent	Reagent equiv	Solvent	Temp°C	%ee¹	Config	% Yield'
1	213	1.2	THF	25	8.7	R	95.7
2	214	1.2	THF	25	0		77.6
3	216 ($R_1 = H;$	1.2	THF	25	0		>98.0
4	$R_2 = OCH_3$) 216 ($R_1 = H$; $R_2 = OCH_3$)	1.2	Toluene	25	0		>98.0
5	217	1.0	THF	25	11.0	R	98.6
6	217	1.2	Hexane	25	14.6	R	>98.0
7	217	1.2	Toluene	25	25.0	R	>98.0
8	217	1.2	Toluene	55	28.7	R	>98.0
9	217	1.2	Toluene	-78	21.0	R	>98.0
10	218	1.1	THF	25	1.7	R	>94.0
11	219	1.2	THF	25	11.5	R	>95.0
12	220	0.6	THF	25	0		>95.0
13	220	0.6	THF	-20	0		>95.0
14	221	1.2	THF	25	12.0	S	>95.0
15	222	1.2	THF	15	17.8	R	>95.0
16	223	1.2	Toluene	25	4.4	S	>95.0
17	223	1.2	Toluene	90	5.3	S	>95.0
18	224	1.2	Toluene	25	30.0	S	>95.0
19	OS(CH ₃) ₃ C-Ph Ph	0.6	THF	25	5.0	S	>95.0
20	225 N CH ₂ OCH ₃ H BH ₃ 'L'	1.2	THF	25	0		94.2
21	226 CH,OCH, L' 227	1.1	THF	25	0		96.3

^{1 %}ee determined by chiral LC (see experimental section for details)
2 Yield based on acetophenone

Unlike the structurally rigid borane and modified chiral LAH reagents previous discussed, the LiABH, reagents are not conformationally rigid in solution. This presents a challenge in constructing chiral LiABH, reagents capable of efficient asymmetric reduction of prochiral ketones. Introducing bulky substituents on the chiral amine has little effect on % ee due presumably to the high degrees of freedom of bond rotation in the reagent. As illustrated in figure 4.1 the bonds in the aminoborohydride reagents are free to rotate which is a characteristic not conducive to efficient asymmetric induction. Compounds 213 and 214 are examples of the type of LiABH, reagents illustrated in figure 4.1. As seen in Table 4.2 (entries 1 & 2), the reduction of acetophenone using 213 and 214 gave very low to no asymmetric induction (8.7 and 0% ee of the 1-phenylethanol respectively).

Mukaiyama and Asami studied the asymmetric reduction of various ketones with LAH modified with chiral diamines derived from (S)-proline.

They found that a chiral reagent 228 formed in situ from LAH and the chiral diamine

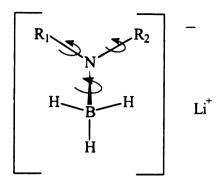


Figure 4.1. Illustration of bond rotations in Chiral LiABH, reducing agent.

(S)-2-(anilininomethyl) pyrroline is an efficient reducing agent for the reduction of acetophenone, affording (S)-1-phenylethanol in 92% ee. 152

The authors assumed that the high selectivity was accountable by considering the following factors:

1) the complex 228 is extremely rigid with cisfused 5-membered bicyclic structure, and

- 2) the reactivity of the two diastereotopic hydrogen atoms contained in this chiral hydride reagent is significantly different
- 3) the lithium cation, presumably coordinated to the nitrogen atoms on the pyrrolidine ring and/or the side chain, directs the approach of the ketone.

Based on the assumption that a conformationally restricted ring complex, constructed between the chiral ligand and reducing reagent, would create an effective chiral environment for asymmetric induction, we subsequently examined the use of chiral reagents 216 - 227 derived from (S)-prolinol (Table 4.2).

In contrast to the asymmetric reduction of acetophenone with chiral modified lithium aluminum hydride (LAH) reagents such as 228 where high ee's had been obtained, the asymmetric reduction using chiral LiABH, reagents had only low to moderate success. A maximum ee of only 30% was obtained using reagent 224 (Table 4.2, entry 18).

The difference in enantioselectivity of the LiABH, reagents compared to the modified LAH reagents can be attributed to the inability of the LiABH, reagent to form a rigid ring complex creating a chiral environment for efficient asymmetric induction. This is illustrated in the LiABH, reagent 218 and the modified LAH reagent 228.

In 228 the reactivity of the two hydrogens is remarkably different. It is plausible that only H2 is delivered in the reduction step, as H1 is sterically hindered by the pyrrolidine ring and N-phenyl substituent. In contrast, the hydrogens in 218 are equivalent due to rotation of the boron bond. Since this structure is not rigid in solution, asymmetric induction is minimal. The reduction of acetophenone with 218 (Table 4.2, entry 10) and 228¹⁵² afforded 1-phenylethanol in 1.7 and 92% ee respectively.

The influence of reaction temperature and solvent on the optical yield in the asymmetric reduction of acetophenone was examined using 217 as the chiral reducing agent (Table 4.2, entries 5-9). The effect of solvent is significant, and toluene was found to be the solvent of choice. The effect of solvent is consistent with the findings of Mukaiyama and Asami that the lithium cation (complexed to nitrogen on the pyrrolidine ring and the heteroatom on the side chain) directs the approach of the ketone. Figure 4.2 illustrates how lithium is complexed in the LiABH, reagents. The use of THF as a solvent gave a lower %ee than hexane and toluene. THF may complex the lithium cation which interferes with its ability to coordinate the ketone and direct it's approach for reduction. Hexane and toluene in contrast are not coordinating solvents and therefore do not complex with the lithium cation. reduction of acetophenone with the amineborane 216 (Table 4.2, entries 3&4) also show the importance of the lithium cation in asymmetric reduction. When the lithium cation is absent (as in 216) the %ee drops from a maximum of 28.7 to 0% (Table 4.2, entries 4 & 8) using toluene as a solvent.

Figure 4.2. Lithium aminoborohydride chiral reducing agents illustrating the potential complexation of lithium cation. The %ee values are taken from Table 4.2, entries 9, 16, & 18).

The effect of temperature was also studied and showed no significant effect. As seen in Table 4.2, entries 7-9, reductions of acetophenone carried out at 55, 25, and -78°C afforded 1-phenylethanol with similar results of 28.7, 25.0, and 21% ee's respectively.

In conclusion, lithium aminoborohydrides are a new class of powerful yet selective reducing agents that reproduce, in air, virtually all of the transformations for which LAH is now used but without the safety hazards associated with LAH. The reagents can be conveniently prepared from a variety of primary and secondary amines. The use of chiral amines can be used to prepare chiral LiABH, reducing agents but due to the apparent lack of conformational rigidity of these chiral reagents in solution, only low to moderate ee's were achieved when acetophenone was reduced to 1-phenylethanol.

CHAPTER 5

5.1 Experimental Section Borohydride Reductions Mediated by Dihydrogen Bonding.

General

All reagents were obtained from commercial suppliers and used without further purification. Reduction reactions were monitored by FTIR. IR spectra were obtained on a Perkin-Elmer 1600 FTIR spectrometer and were examined using NaCl solution cells with a path length of 0.1 or 1.0 mm.

Gas Chromatography Analyze the Silylated DIOL Product to Determine CIS: Trans Ratios.

Gas chromatography analyses were performed on a Hewlett Packard 5890 Series II Gas chromatograph.

Column: DBS, 30m x 50mm thin film (Durabond ® from

J&W Scientific)

Injection temp: 275°C

Detector temp 300°C

Initial temp: 100°C

Ramp: 20°C/min

Final temp: 280°C

Carrier Gas: Helium

Detector: FID

Silylation Conditions. Chlorotrimethylsilane (1ml) was added to a stirred solution of the alcohol or diol (50 mg) in dry pyridine (5ml). The solution was allowed to stand for 15 min at room temperature and then poured into water and extracted with dichloromethane. The extract was washed with saturated aqueous sodium hydrogen carbonate. The dichloromethane layer was separated, washed with water and dried over MgSO₄. After filtration to remove MgSO₄ the dichloromethane was removed under vacuum and the trimethylsilyl derivatives were analyzed directly by gas chromatography.

Reductions with Tetrabutylammonium

Borohydride. The following general procedure was employed for the reductions discussed in this work.

To a solution of the carbonyl compound (0.0025 mol) in 10 ml of dichloromethane was added as a solid in a single portion 0.0025 mol of tetrabutylammonium borohydride. The reaction vessel was stoppered and shaken and the homogeneous solution was allowed to stand for 0.25 - 147 hours. The reaction was quenched by the addition of 20 ml of 3% hydrogen peroxide followed by 10 ml of 10%

sodium hydroxide and the mixture was stirred for 1 - 2 hours. The layers were separated and the aqueous phase was extracted with three 30-ml portions of dichloromethane. The combined organic solutions were extracted with 20 ml of saturated sodium sulfite, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure (Note, the diol products 137 and 139 are very water soluble and therefore difficult to extract into the organic phase). The crude product was taken up in anhydrous diethyl ether, the insoluble tetrabutylammonium salts were removed by filtration, and the ether solvent was evaporated.

Preparation of 2-hydroxycyclobutanone (136).²⁰⁹ In a 250 ml, three-neck flask fitted with a magnetic stirring bar, a dropping funnel, a nitrogen bubbler and a reflux condenser was placed 115 ml reagent grade methanol. Dry oxygen-free nitrogen was vigorously bubbled through the methanol for one hour. Then 15 g (0.065 mole) of 1,2 bis(trimethylsilyloxy)-cyclobutene (purchased from Aldrich) was transferred under nitrogen to the addition funnel and added dropwise to the stirred methanol for 24 hours. The methanol and

methoxytrimethylsilane were removed under reduced pressure, and the residual 2-hydroxycyclobutanone was distilled through a short-path still as a colorless liquid, b.p. $52-57^{\circ}C$ (0.1mm.), (3.2g, $57^{\circ}E$): IR 3583, 3435, 1783 cm⁻¹; (lit. $20^{\circ}E$ IR 1780 cm⁻¹) ¹H NMR (300 MHz, CDCl₃) δ 4.9 (1H, m, C-2), 2.69 (2H, m), 2.4 (1H, m), 1.8 (1H, m); ¹³C(¹H) NMR (300 MHz, CDCl₃) δ 209.00, 105.93, 93.80, 81.80, 71.06, 38.77, 31.11, 28.87, 28.14, 24.04, 21.46. Anal. Calcd for $C_{a}H_{a}O_{a}$: C, 55.8; H, 7.0. Found: C, 54.0; H, 7.20.

Preparation of 2-hydroxycyclopentanone (138). This procedure involved an acyloin condensation in which chlorotrimethylsilane was used as a trapping agent and was based on the organic synthesis preparation used to prepare 136 above.

A. 1,2-bis(trimethylsilyloxy)cyclopentene. A 1 liter, three-neck flask was fitted with a mechanical stirrer, a dropping funnel, a nitrogen bubbler and a reflux condenser and maintained under an oxygen-free, nitrogen atmosphere. The flask was charged with 300g of reagent grade toluene (dried over MgSO₄) and 15g of freshly cut sodium (weighed under

nitrogen and transferred under toluene to the reaction flask). The temperature was slowly increased to 110°C The stirrer was operated at full speed to disperse the sodium. After the sodium was fully dispersed the stirrer was adjusted to 384 rpm. A mixture of 75g (0.69 mole) chlorotrimethylsilane, 24g (0.15 mole) dimethyl glutarate in 50 ml toluene was added over 3 hours. After reacting for 12 hours the contents of the reactor was cooled and filtered through a 75-mm. coarse glass filter. The precipitate was washed several times with anhydrous ether. Toluene was removed under reduced pressure and the crude 1,2-bis (trimethylsilyloxy)cyclopentene was distilled as above, b.p. 44°C (0.21 mm), (24.8g, 67.6%);

B. 2-hydroxycyclopentanone (138). In a 250 ml, three-neck flask fitted with a magnetic stirring bar, a dropping funnel, a nitrogen bubbler and a reflux condenser was placed 115 ml reagent grade methanol. Dry oxygen-free nitrogen was vigorously bubbled through the methanol for one hour. Then 24 g (0.1 mole) of 1,2-bis(trimethylsilyloxy)cyclopentene was transferred under nitrogen to the addition funnel and added

dropwise to the stirred methanol for 2 hours at room temperature. The methanol and methoxytrimethylsilane were removed under reduced pressure, and the residual 2-hydroxycyclopentanone was distilled as above, (7.5g, 75%) was collected: IR 3556, 1743 cm⁻¹ (lit.²¹⁰ IR 3450, 1749 cm⁻¹); ¹H NMR (300 MHz, CDCl₃) δ 3.96 (1H, br, C-2), 2.00-1.26 (6H, m, remaining cyclopentyl); ¹³C{¹H} NMR (300 MHz, CDCl₃) δ 216.00, 114.58, 87.89, 75.88, 34.10, 34.04, 33.38, 32.84, 30.68, 28.65, 22.99, 16.73, 16.67. Anal. Calcd for C₅H₈O₂: C, 60.00; H, 8.10. Found: C, 61.00; H, 7.77.

Reduction of 2-hydroxycyclopentanone (138). The reduction of 138 was carried out based on the general reduction procedure described above. The resulting diol product was compared against cis and trans cyclopentanediol standards purchased from The Aldrich Chemical Company.

Preparation of 2-hydroxycyclohexanone (144). 2-hydroxycyclohexanone was prepared by treating hydroxy cyclohexanone dimer (Adipoin purchased from Aldrich) with dilute (5 %) HCl. In a 250 ml, three-

neck flask fitted with a magnetic stirring bar and a reflux condenser were added 20 ml of 5% aqueous HCl and 0.37g (0.0016mol) of adipoin. The reaction was allowed to run for 1 hour, afterwhich dichloromethane was added to extract the 2hydroxycyclohexanne product. The dichloromethane phase was washed with water and subsequently dried over MgSO. The solvent was removed under vacuum yielding 0.3g (81% yield) of the 2-hydroxycyclohexanone product: IR 3489cm⁻¹ and 1716 cm⁻¹ $(1it.^{210} IR 3484 and 1715 cm^{-1}); {}^{1}H NMR (300 MHz)$ CDC1,) δ 4.13 (1H, t, C-2), 2.59-1.42 (8H, m, remaining cyclohexyl) $^{13}C\{^{1}H\}$ NMR (300 MHz, CDCl₃) δ 211.3, 39.5, 36.8, 27.6, 23.4 (lit. ²¹¹ ¹³C 211.0, 39.5, 36.8, 27.5, 23.5); Anal. Calcd for $C_5H_{10}O_5$: C, 63.1; H, 8.1. Found: C, 63.2; H, 8.7.

Preparation of 2,2,4,4 tetramethyl-3hydroxycyclobutanone (145). In a 250 ml, three-neck
flask fitted with a magnetic stirring bar and a
reflux condenser were added 20 ml of
dichloromethane, 5.1g (0.0357mol) of 2,2,4,4
tetramethyl-cyclobutanedione, and 2.4g (0.009 mol)
of tetrabutylammonium borohydride. The reaction was

allowed to run for 19 hours, afterwhich 6.0 g of 6.25N HCl was added and the mixture was stirred for 30 min. The dichloromethane phase was washed with water and subsequently dried over MgSO₄. The solvent was removed under vacuum yielding 0.4g (7.8% yield) of the 3-hydroxy-2,2,4,4 teramethyl cyclobutanone product: IR 3610, 1777, 1716 cm⁻¹; 1 H NMR (300 MHz, CDCl₃) δ 3.90 (1H, s, C-3) 1.21 (6H, s, 2 methyls), 1.19 (6H, s, 2 methyls); 13 C(1 H) NMR (300 MHz, CDCl₃) δ 222, 65.80, 59.94, 23.06, 17.11, 15.25; Anal. Calcd for C₈H₁₄O₂: C, 67.6; H, 9.9. Found: C, 65.8; H, 9.7.

Preparation of 3-hydroxy-1-indanone (146). In a 250 ml, three-neck flask fitted with a magnetic stirring bar and a reflux condenser were added 20 ml of dichloromethane, 2.0g (0.0135mol) of 1,3 indandione, and 0.87g (0.0034 mol) of tetrabutylammonium borohydride. The solution was allowed to stand for 1 week, afterwhich 1.0 g of 6.25N HCl was added and the mixture was stirred for 30 min. The dichloromethane phase was washed with water and subsequently dried over MgSO₄. The solvent was removed under vacuum yielding 0.74g (37% yield) of the 3-hydroxy-1-indanone product: IR 3590, 1723

cm⁻¹ (lit²¹² IR 3590, 1717 cm⁻¹); ¹H NMR (300 MHz, CDCl₃) δ 7.72-7.44 (4H, aromatic) 5.40 (1H, dd, J 6.6 and J 2.8), 3.10 (1H, m,)3.07 (1H, dd, J 7 and J 7, 2.57 (1H, dd, J 8.8 and J 3.8) (lit²¹² ¹H NMR 7.9-7.3 (4 H,m), 5.3 (1H, dd, J 7 and J 3), 2.98 (1H, dd, J 19 and J 7), 2.48 (1H, dd, J 19 and J 3) 13 C{¹H} NMR (300 MHz, CDCl₃) δ 155.3, 136.4, 135.4, 129.5, 126.0, 123.3, 68.6, 47.2; Anal. Calcd for $C_{a}H_{a}O_{3}$: C, 73.0; H, 5.4. Found: C, 72.7; H, 5.7.

Preparation of 4-hydroxy-2-adamantanone (147 &

149).¹⁴⁷ The axial and equatorial isomers of 4-hydroxy-2-adamantanone were prepared via the rearrangement reaction of 4-oxahomoadamantan-5-one in hot 50% sulfuric acid.

Preparation of 4-oxahomoadamantan-5-one.

Admantanone (12g) was added during 30 min to a stirred solution of 30% hydrogen peroxide (9g) in t-butyl alcohol (50 ml) containing selenium dioxide (0.5g) while the temperature was kept at approximately 80°C. After an additional 1.5 hrs at this temperature the solution was poured into cold

water and the mixture was saturated with sodium chloride and extracted with dichloromethane (3 x 100 ml). The extract was washed with water, dried, and concentrated, to yield the lactone (12.3g, 93%): 1 H NMR (300 MHz, CDCl₃) δ 4.48 (1H, br,), 3.07 (1H, t, J 5.6), 2.54 (1H, s), 2.11 - 1.26 (11H, m, remaining homoadamantyl) (lit. 147 1 H NMR 4.48 (1H, m,), 3.06 (1H, m, C-6), 2.1-1.7 (12H, m, remaining homoadamantyl).

Rearrangement of 4-oxahomoadamantan-5-one in 50% Sulfuric Acid. A solution of the 4-oxahomoadamantan-5-one (6.0g) in 50% v/v sulfuric acid (200 ml) was stirred at 90°C for 5 hrs. The cooled solution was poured into cold water and neutralized with 50% sodium hydroxide. The mixture was extracted with chloroform (4 x 50ml) and the extract was washed with 10% aqueous sodium chloride and dried. Evaporation gave a white solid (4.30g, 71.7%). The solids were dissolved in acetone and placed on a column of silica gel. Elution with ether-acetone (10:1) gave starting material, followed by 4_m-hydroxyadamantan-2-one (149), IR 3597, 1716 cm⁻¹ (lit. 147 3350, 1724, and

1710 cm⁻¹); ¹H NMR (300 MHz, CDCl₃) δ 3.94 (1H, m,), 2.60 (1H, br, s), 2.47 (1H,br, s) 2.31 - 1.60 (10H, m, remaining adamantyl) (lit.¹⁴⁷ ¹H NMR 3.98, (1H,m), 2.75 (1H, br, s), 2.62 (1H, br, s), 2.45 - 1.5 (10H, m, remaining adamantyl).

Further elution of the column gave 4_{ax} -hydroxyadamantan-2-one (147) IR 3597, 1723 cm⁻¹ (lit.¹⁴⁷ IR 3400, 1725, 1710 cm⁻¹); ¹H NMR (300 MHz, CDCl₃) δ 4.25 (1H, s, C-4), 2.62 (1H, br s, C-3), 2.47 (1H, br, s, C-1), 240-1.82 (10H, m, remaining adamantyl) (lit.¹⁴⁷ ¹H NMR 4.28 (1H, m), 2.65 (1H, br, s), 2.47 (br, s) 2.37 - 1.8 (10H, m, remaining adamantyl).

Reduction of 4-hydroxy-2-adamantanones (147 & 149). The reductions were carried out based on the general reduction method described above. The diol products were silylated (see silylation procedure described above) and the resultant disilylated products were analyzed directly according to the GC conditions described above: (G.C. retention time of the silylated diol: adamantanone- 2_{ax} - 4_{ax} -diol, 17.214 min., adamantanone- 2_{ax} - 4_{ax} -diol, 17.425 min.,

adamantanone- 2_{ax} - 4_{eq} -diol, 17.544 min.); ¹H NMR (300 MHz, CDCl₃) δ 4.02 (1H, s,), 3.90 (1H,s,) (4.02 & 3.90 represent C-2 & C-4 hydrogens), 2.4-1.4 (11H, m, remaining adamantyl);

Reduction of 1S,6S-1-hydroxy-6-methyl

bicyclo[4.3.0]nona-3,7-dione (155). The reduction of 155 was carried out using one hydride equivalent of tetrabutylammonium borohydride in dichloromethane solvent (see the general procedure described for the reductions discussed in this work): IR 3597, 1742 cm⁻¹; ¹³C(¹H) NMR (300 MHz, CDCl₃) & 220.3, 78.3, 65.7, 59.0, 52.9, 44.3, 34.5, 33.1, 30.9, 27.6, 19.7, 17.6, 13.6.

Reduction of 1S,6S-1-trimethylsilyloxy-6-methyl bicyclo[4.3.0]nona-3,7-dione (156). The reduction of 156 was carried out using one equivalent of tetrabutylammonium borohydride in dichloromethane solvent. (see the general procedure described for the reductions discussed in this work): IR 1743, 1723 cm⁻¹; ¹³C{¹H} NMR (300 MHz, CDCl₃) δ 217.9, 148.8, 124.1, 59.1, 53.4, 50.4, 36.6, 33.7, 29.1, 24.2, 19.8, 13.6, 2.1.

Reduction of methyl-4-oxo-3-piperdine

carboxylate (157). The reduction of 157 was carried out according to the general procedure described above. The ester and keto functionality's were followed by FTIR: IR 1743 (ester functionality), 1723 (keto functionality), and 1655 cm⁻¹ (H-bonded ester functionality).

5.2 Experimental Section for lithium aminoborohydride study

General Methods

All reagents were obtained from commercial suppliers and used without further purification.

Liquid Chromatography (Analyze the

1-Phenylethanol Product to Determine Percent

Enantiomeric Excess). Liquid chromatography

analyses were performed using a Hitachi L-4200 UV
Vis detector and a Hitachi D-2500 chromato
integrator:

Column: Chiralcel OJ

Eluent: 95% Hexane / 5% 2-propanol

Flow rate: 1.5 ml/min

Wavelength: 214 nm

Sample size: $20 \mu l$

Reductions with Liabh,. The chiral amine reducing agent was generated in-situ. The following general procedure was employed for the reduction of acetophenone using Liabh,.

To a 250 ml flask equipped with a condenser, nitrogen blanket, and magnetic stirrer were added 120 mm of a chiral amine (from which the LiABH, was prepared in situ), and 10 ml of anhydrous THF. 12 ml of 1.0M (120 mm) BH,: THF complex was added over a 30 min period via syringe through a rubber septum at 25°C. The solution was stirred for 1 hr at 25°C. The reaction mixture was charged dropwise with nbutyllithium (2.5M, 4.6 ml, 120 mm) via syringe through a rubber septum at 0°C over a 15 min period. The reaction mixture was stirred for an additional 30 min at 0°C and allowed to come to room temperature. The reaction mixture was charged with acetophenone (1.5g, 125 mm) in a single portion. The reaction mixture was stirred at 25°C for an additional 2 hrs. The reaction mixture was quenched by the slow addition of 6.25N HCl (8 ml, 480 mm).

The aqueous and organic layers were separated and the aqueous fraction extracted with Et_2O (2 x 25 ml). The combined ethereal fractions were washed with water (3 x 10 ml) and dried over MgSO₄. The solvent was removed at 25°C under reduced pressure to yield the (R),(S)-1-phenylethanol product. The percent enantiomeric excess was determine via a chiral liquid chromatographic column (see liquid chromatography method above).

Preparation of the Chiral Amines used to make LiABH, Reducing Agents employed in this Study. 208

The following general procedure was employed for the preparation of chiral amines 219, 220, 223, and 224.

Chiral amines 217, 218, 221, and 222 were purchased from The Aldrich Chemical Company.

To a solution of triphenylphosphine (3.83g, 14.6 mmol) in 40 ml of anhydrous THF at 0°C was added diethyl azodicarboxlate (2.30 ml, 14.6 mmol) dropwise. The mixture was stirred at 0°C for 30 min then brought to room temperature. (S)-1-BOC-2-pyrrolidinemethanol (1.96g, 9.75 mmol) and 14.6 mmol of either phenol, 2,6-diisopropylphenol, or 2,6-dimethoxyphenol were added to the reaction vessel,

and the mixture was stirred for 16 hrs. Solvent was removed under reduced pressure, and the residue was diluted with hexane and stirred for 30 min. The resulting precipitate was filtered and washed with hexane. The hexane was removed under reduced pressure.

mmol) in dichlormethane (2ml) at 0°C was added trifluoroacetic acid (2 ml). The mixture was stirred at this temperature for 40 min, allowed to reach room temperature, and stirred for an additional 30 min. Saturated K₂CO₃ was added, and the product was extracted with dichloromethane (3 x 10 ml). The organic layer was dried over MgSO₄. The solvent was removed under reduced pressure. The product was used without further purification for the in situ preparation of the LiABH, reducing agent and subsequent reduction of acetophenone via the general method described above.

Preparation of Chiral Amine (219). The preparation of 219 was carried out according to the general procedure described above. 2.0 g of 219

(unpurified) were collected for a yield of 81%: IR 3363, 1609, 1493 cm⁻¹; 1 H NMR (300 MHz, CDCl₃) δ 7.33-6.85 (5H, m, aromatic) 3.97 (1H, m), 3.61 (2H, m), 3.11 (2H, m), 1.92 (2H, m), 1.67 (2H, m); 13 C(1 H) NMR (300 MHz, CDCl₃) δ 159.08, 129.48, 121.03, 114.78, 46.32, 27.90, 24.97; GC/MS m/z (relative intensity) 237 (3), 205 (2), 168 (13), 138 (6), 84 (100), 70 (35); Anal. Calcd for $C_{11}H_{15}NO$: C, 74.5; H, 8.5; N, 7.9. Found: C, 73.5; H, 7.0; N, 7.7.

Preparation of Chiral Amine (220). The preparation of 220 was carried out by the silylation of (S)-(+)-2-pyrrolidinemethanol with excess chlorotriisopropyl silane in the presence of pyridine using dichloromethane as solvent. ¹H NMR (300 MHz, CDCl₃) δ 4.8 (2H, br, s), 3.7 (1H, m), 3.3-2.9 (4H, m), 1.82 (2H, m), 1.09 (21H, m); ¹³C(¹H) NMR (300 MHz, CDCl₃) δ 64.90, 60.01, 46.26, 24.93, 18.01, 11.99; GC/MS m/z (relative intensity) 257 (1), 214 (26), 170 (3), 128 (1), 103 (2), 70 (100), 59 (9); Anal. Calcd for C₁₄H₃₁NOSi: C, 65.3; H, 12.1; N, 5.4. Found: C, 61.6; H, 11.1; N, 4.8.

Preparation of Chiral Amine (223). The preparation of 223 was carried out according to the general procedure described above. 2.3 g of 223 (unpurified) were collected for a yield of 63%: IR 3605 cm⁻¹; ; ¹H NMR (300 MHz, CDCl₃) δ7.73-7.07 (3H, m, aromatic), 4.02 (1H, m), 3.93 (2H, m), 3.33 (2H, m), 2.10-1.90 (4H, m) 1.13-1.18 (14H, m); ¹³C(¹H) NMR (300 MHz, CDCl₃) δ153.05, 141.60, 125.07, 124.16, 58.75, 45.72, 27.81, 26.64, 24.06, 23.92; GC/MS m/z (relative intensity) 261 (0.5), 216 (0.5), 163 (0.5), 133 (0.5), 115 (0.5), 70 (100), 56 (5.3); Anal. Calcd for C₁₇H₂₇NO: C, 78.1; H, 10.4; N, 5.4. Found: C, 67.4; H, 8.9; N, 4.6.

Preparation of Chiral Amine (224). The preparation of 224 was carried out according to the general procedure described above. 0.75 g of 224 were collected for a yield of 23%: IR 3664, 3355 cm⁻¹; ¹H NMR (300 MHz,CDCl₃) δ 7.06-6.58 (3H, m, aromatic), 4.19 (2H, m) 4.07 (1H, m) 3.86 (6H, m, methoxy groups), 3.58 (2H, m), 2.13 (2H, m), 1.46 (2H, m); ¹³C{¹H} NMR (300 MHz, CDCl₃) δ 153.63, 125.01, 105.24, 59.17, 56.26, 24.57; GC/MS m/z (relative)

intensity) 237 (5), 205 (2), 168 (13), 138 (6), 84 (100), 70 (34); Anal. Calcd for $C_{13}H_{19}NO_3$: C, 65.8; H, 8.1; N, 5.9. Found: C, 54.3; H, 7.0; N, 4.8 (All three elements are approximately 17% below expected values. Could have contaminants from the silica gel column used to purify sample).

REFRENCES

- 1) Jeffrey, G. A.; Saenger, W. Hydrogen Bonding in Biological Structures; 2nd ed ed.; Springer: New York, 1994.
- 2) Brammer, L.; McCann, M. C.; Bullock, R. M.; McMullan, R. K.; Sherwood, P. Organometallics 1992, 11, 2339.
- 3) Brammer, L.; Charnock, J. M.; Goodfellow, R. J.; Orpen, A. G.; Koetzle, T. F. J. Chem. Soc., Dalton trans. 1991, 1789.
- 4) Brammer, L.; Zhao, D. Organometallics **1994**, 13, 1545.
- 5) Kazarian, S. G.; Hanley, P. A.; Poliakoff, M. G.
- J. Am. Chem. Soc. 1993, 115, 9069.
- 6) Albinati, A.; Lianza, F.; Pregosin, P. S.; Muller,
- B. Inorg. Chem 1994, 33, 2522.
- 7) Atwood, J. L.; Hamada, F.; Robinson, K. D.; Orr,
- G. W.; Vincent, R. L.; Atwood, J. L.; Hamada, F.;
 Robinson, K. D.; Orr, G. W.; Vincent, R. L., Ed.,
 1991; Vol. 349, pp 683.
- 8) Lee, J. C., Jr.; Rheingold, A. L.; Muller, B.; Pregosin, P. S.; Crabtree, R. H. J. Chem. Soc. Chem. Commun. 1994, 1021.
- 9) Lee, J. C., Jr.; Peris, E.; Rheingold, A. L.; Crabtree, R. H. J. Am. Chem. Soc. 1994, 116, 11014.

- 10) Peris, E.; Lee, J. C., Jr.; Crabtree, R. H. J. Chem. Soc. Chem. Commun. 1994, 2573.
- 11) Peris, E.; Lee, J. C., Jr.; Rambo, J.;
 Eisenstein, O.; Crabtree, R. H. J. Am. Chem. Soc.
 1995, 117, 3485.
- 12) Lough, A. J.; Park, S.; Ramachandran, R.; Morris, R. H. J. Am. Chem. Soc. 1994, 116, 8356.
- 13) Park, S.; Ramachandran, R.; Lough, A. J.; Morris, R. H. J. Chem. Soc. Chem. Commun. 1994, 2201.
- 14) Wessel, J.; Lee, J. C., Jr.; Peris, E.; Yap, G.
- P. A.; Fortin, J. B.; Ricci, J. S.; Sini, G.;
- Albinati, A.; Koetzle, T. F.; Eisenstein, O.; Rheingold, A. L.; Crabtree, R. H. Angew. Chem. Int. Engl. 1995, 34, 2507.
- 15) Patel, B. P.; Yao, W.; Yap, G. A. P.; Rheingold, A. L.; Crabtree, R. H. Chem. Commun. 1996, 991.
- 16) Shubina, E. S.; Belkova, N. V.; Krylov, A. N.;
 Epstein, L. M.; Gusev, D. G.; Niedermann, M.; Berke,
 H. J. Am. Chem. Soc. 1996, 118, 1105.
- 17) Richardson, T. B.; de Gala, S.; Crabtree, R. H.; Siegbahn, P. E. M. J. Am. Chem. Soc. 1995, 117, 12875.
- 18) Liu, Q.; Hoffmann, R. J. Am. Chem. Soc. **1995**, 117, 10108.

- 19) Alkorta, I.; Elguero, J.; Foces-Foces, C. J. Chem. Soc. Chem. Commun. 1996, 1633.
- 20)Gelabert, R.; Moreno, M.; Lluch, J. M.; Lledos, A. Organometallics 1997, 16, 3805.
- 21) Rozas, I.; Alkorta, I.; Elguero, J. Chemical Physics Letters 1997, 275, 423.
- 22) Van Der Sluys, L. S.; Eckert, J.; Eisenstein, O.;

Hall, J. H.; Huffman, J. C.; Jackson, S. A.;

Koetzle, T. F.; Kubas, G. J.; Verjamini, P. J.;

Caulton, K. G. J. Am. Chem. Soc. 1990, 112, 4831.

- 23) Stevens, R. C.; Bau, R.; Milstein, D.; Blum, O.; Koetzle, T. F. *J. Chem. Soc. Dalton Trans.* **1990**, 1429.
- 24) Park, S.; Lough, A. J.; Morris, R. H. Inorg. Chem. 1996, 35, 3001.
- 25) Patel, B. P.; Kavellieratos, K.; Crabtree, R. H. Journal of Organometallic Chemistry 1997, 528, 205. 26) Crabtree, R. H.; Siegbahn, P. E. M.; Eisenstein, O.; Rheingold, A. L.; Koetzle, T. F. Acc. Chem. Res. 1996, 29, 348.
- 27) Eckert, J. J. Spectrochim. Acta 1992, 48A, 363.
 28) Antinolo, A.; Chaudret, B.; Commenges, G.;
 Fajardo, F.; Morris, R. H.; Otero, A.; Schweitzer,
 C. T. J. Chem. Soc. Chem. Commun. 1988, 211.

- 29)Arliguie, T.; Border, C.; Chaudret, B.;
 Devillers, J.; Poilbranc, R. Organometallics 1989,
 8, 1308.
- 30) Arliguie, T.; Chaudret, B.; Jalon, F.; Otero, A.; Lopez, J. A.; Lahoz, F. J. Organometallics 1991, 10, 1888.
- 31) Antinolo, A.; Carrillo, F.; Fernandez-Baeza, J.; Otero, A.; Fajardo, M.; Chaudret, B. *Inorg. Chem.*1992, 31, 5156.
- 32) Antinolo, A.; Carrillo, F.; Chaudret, B.; Fernandez-Baeza, J.; Lafranchi, M.; Limbach, H.-H.; Maurer, M.; Otero, A.; Pellingbell, M. A. *Inorg.*Chem. 1994, 33, 5163.
- 33) Limbach, H. H.; Scherer, G.; Maurer, M.; Chaudret, B. Angew. Chem. Int. Ed. Engl. 1992, 31, 1369.
- 34) Gusev, D. G.; Kuhlman, R.; Sini, G.; Eisenstein, O.; Caulton, K. G. J. Am. Chem. Soc. 1994, 116, 2685.
- 35)Sabo-Etienne, S.; Chaudret, B.; Abou el Makarim, H.; Bartelat, J.-C.; Daudey, J. P.; Ulrich, S.; Limbach, H.-H.; Moise, C. J.Am. Chem. Soc. 1995, 117, 11602.

- 36) Ayllon, J. A.; Sabo-Etienne, S.; Chaudret, B.; Ulrich, S.; Limbach, H. *Inorganica Chimica Acta*1997, 259, 1.
- 37) Ayllon, J. A.; Gervaux, C.; Sabo-Etienne, S.; Chaudret, B. Organometallics 1997, 16, 2000.
- 38) Guari, Y.; Ayllon, J. A.; Sabo-Etienne, S.;
- Chaudret, B. Inorg. Chem. 1998, 37, 640.
- 39) Popelier, P. L. A. *J. Phys. Chem.* **1998**, *102*, 1873.
- 40) Sharma, M.; Bass, S.; Huang, R.; Jackson, J. E. Unpublished results .
- 41) Wilson, C.; Cousineau, J.; Jackson, J. E. Unpublished results .
- 42) Pepperberg, I. M.; Halgren, T. A.; Lipscomp, W.
- N. J. Am. Chem. Soc. 1976, 98, 3442.
- 43) Custelcean, R.; Jackson, J. E. J. Am. Chem. Soc. 1998, 120, 12935.
- 44) Gatling, S. C.; Jackson, J. E. Unpublished resulls.
- 45)Cram, D. J.; Abd Ehhafez, F. A. J. Am. Chem. Soc. 1952, 74, 5828.
- 46)Conforth, J. W.; Conforth, R. H.; Mathew, K. K. J. Chem. Soc. 1959, 112.
- 47) Cram, D. J.; Kopecky, K. R. J. Chem. Soc. **1969**, 81, 2748.

- 48) Karabatsos, G. J. J. Am. Chem. Soc. **1967**, 89, 1367.
- 49) Cherest, M.; Felkin, H.; Prudent, N. Tetrahedron Lett. 1968, 2199.
- 50) Burgi, H. B.; Dunitz, J. D.; Lehn, J.-M.; Wipff, G. Tetrahedron 1974, 30, 1563.
- 51) Burgi, H. B.; Dunitz, J. D. Acc. Chem. Res. **1983**, 16, 153.
- 52) Anh, N. T. Top. Curr. Chem. 1980, 88, 145.
- 53) Bartlett, P. A. Tetrahedron 1980, 36, 3.
- 54) Oishi, T.; Nakata, T. Acc. Chem. Res. **1984**, 17, 338.
- 55) Nakata, T.; Tanaka, T.; Oishi, T. Tetrahedron Lett. **1983**, 24, 2653.
- 56) Nakata, T.; Fukui, M.; Ohtsuka, H.; Oishi, T. Tetrahedron Lett. 1983, 24, 2661.
- 57) Nakata, T.; Oishi, T. Tetrahedron Lett. **1980**, 21, 1641.
- 58) Takahashi, T.; Miyazawa, M.; Tsuji, J.

Tetrahedron Lett. 1985, 26, 5139.

- 59) Overman, L.; McCready, R. Tetrahedron Lett. **1982**, 23, 2355.
- 60) Fujita, M.; Hiyama, T. *J. Org. Chem* **1988**, *53*, 5405.

- 61) Fujita, M.; Hiyama, T. *J. Org. Chem* **1988**, *53*, 5415.
- 62) Omura, S.; Tanaka, H. Macrolide Antibiotics:
 Chemistry, Biology, and Practice; S. Omura Ed.
 Academic Press: New York, 1984.
- 63) Mori, Y.; Kuhara, M.; Takeuchi, A.; Suzuki, M. Tetrahedron Lett. 1988, 29, 5419.
- 64) Narasaka, K.; Pai, F.-C. Tetrahedron **1984**, 40, 2233.
- 65) Chen, K.-M.; Hardtmann, G. E.; Prasad, K.; Repic,
- O.; Shapiro, M. Tetrahedron Lett. 1987, 28, 155.
- 66) Anwar, S.; Davis, A. P. Tetrahedron **1988**, 44, 3761.
- 67) Bloch, R.; Gilbert, L.; Girard, C. Tetrahedron Lett. 1988, 29, 1021.
- 68) Baker, R.; Ravenscroft, P. D.; Swain, C. J. Cem. Soc. Chem. Commun. 1984, 74.
- 69) Suzuki, K.; Katayama, E.; tsuchihashi, G.-I. Tetrahedron Lett. 1984, 25, 4279.
- 70) Suzuki, K.; Shimazaki, M.; tsuchihashi, G.-I. Tetrahedron Lett. **1986**, 27, 6233.
- 71) Suzuki, K.; Katayama, E.; tsuchihashi, G.-I. Tetrahedron Lett. 1984, 25, 2479.
- 72) Suzuki, K.; Tomooka, K.; Matsumoto, T.; tsuchihashi, G.-I. Tetrahedron Lett. 1985, 26, 3707.

- 73) Suzuki, K.; Tomooka, K.; Matsumoto, T.; tsuchihashi, G.-I. *J. Am. Chem. Soc.* **1986**, *108*, 5221.
- 74) Nakata, T.; Tanaka, T.; Oishi, T. *Tetrahedron*Lett. **1981**, 22, 4723.
- 75) Fukuyama, T.; Vranesic, B.; Negri, D. P.; Kishi, Y. Tetrahedron Lett. **1978**, 31, 2741.
- 76) Yamaguchi, M.; Ito, Y. *Tetrahedron Lett.* **1983**, 24, 5385.
- 77) Ito, Y.; Katsuki, T.; Yamaguchi, M. *Tetrahedron*Lett. **1985**, 26, 4643.
- 78) Evans, D. A.; Ennis, M. D.; T., L. *J. Am. Chem.*Soc. **1983**, 106, 1154.
- 79) DiPardo, R. M.; Bock, M. G. Tetrahedron Lett. **1983**, 24, 4805.
- 80) Hiyama, T.; Fujita, M. J. Am. Chem. Soc. **1985**, 107, 8294.
- 81) Mukaiyama, T.; Imaoka, M. Chem. Lett. 1978, 413.
- 82) Young, R. N.; Coombs, W.; Guindon, Y.; Rokach,
- J.; Ethier, D.; Hall, R. Tetrahedron Lett. **1981**, 22, 4933.
- 83) Clive, D. L. J.; Kale, V. N. J. Org. Chem. **1981**, 46, 231.
- 84) Shanklin, J. R.; Johnson, C. R.; Ollinger, J.; Coates, R. M. J. Am. Chem. Soc. 1973, 95, 3429.

- 85) Kano, S.; Yokomatsu, T.; Shibuya, S. Chem. Comm. 1978.
- 86) Pirkle, W. H.; Rinaldi, P. L. *J. Org. Chem.* **1978**, 43, 3803.
- 87) Shimagaki, M.; Maeda, T.; Matsuzaki, Y.; Hori,
- I.; Nakata, T.; Oishi, T. Tetrahedron Lett. 1984,
- *25*, 4775.
- 88) Shimagaki, M.; Matsuzaki, Y.; Hori, I.; Nakata,
- T.; Oishi, T. Tetrahedron Lett. 1984, 25, 4779.
- 89) Kosugi, H.; Konta, H.; Uda, H. *J. Chem. Soc.Chem.*Commun. 1985, 211.
- 90) Solladie, G.; Frechou, C.; Demailly, G.

Tetrahedron Lett. 1886, 27, 2867.

- 91) Buss, A.; Greeves, N.; Mason, R.; Warren, S. J.
- Chem. Soc. Perkin Trans. I. 1987, 2569.
- 92) Elliott, J.; Hall, D.; Warren, S. Tetrahedron Lett. **1989**, 30, 601.
- 93) Tramontini, M. Synthesis 1982, 605.
- 94) Koga, K.; Yamada, S. Chem. Pharm. Bull. **1972**, 20, 526.
- 95) Koga, K.; Yamada, S. Tetrahedron Lett. **1967**, 1711.
- 96) Stevens, C. L. J. Org. Chem. 1966, 31, 2593.
- 97) Stevens, C. L.; Hanson, H. T.; Taylor, K. T. J.
- Am. Chem. Soc. 1966, 88, 2769.

- 98) House, H. O.; Muller, H. C.; Pitt, C. G.;
- Wickham, P. P. J. Org. Chem. 1963, 37, 2407.
- 99) Pierre, J. L.; Handel, H.; Baret, P. *Tetrahedron*1974, 30, 3213.
- 100) Handel, H.; Pierre, J. L. Tetrahedron **1975**, 31, 997.
- 101) Deyrup, J. A.; Moyer, C. L. *J. Org. Chem.* **1970**, 35, 3424.
- 102) Wall et al, D. K. *J. Heterocyclic Chem.* **1968**, 5, 77.
- 103) Kutani, T. O.; Masuda, K. Chem. Pharm. Bull. **1974**, 22, 1498.
- 104) Jain, P. C.; Khandelwal, K.; Tripathi, O. N. J. Med. Chem. 1978, 21, 68.
- 105) Angiolini, L.; Tramontini, M. J. Org. Chem. **1974**, 39, 2056.
- 106) Angiolini, L.; Bizzarri, P. C.; Scapini, G. C.; Tramontini, M. Tetrahedron 1981, 37, 2137.
- 107) Takamatu, H.; Minaki, Y. J. Pharm. Soc. Jpn. **1956**, 76, 1230.
- 108) Adrisano, R.; Angiolini, L. Tetrahedron 1970, 26, 5247.
- 109) Angioloni, L.; Gottarelli, G. Tetrahedron 1970, 26, 421.

- 110) Lyapova, M. J.; Kurtev, B. J. Chem. Ber. **1969**, 102, 3739.
- 111) Lyapova, M. J.; Kurtev, B. J. Chem. Ber. **1971**, 104, 131.
- 112)Costes, E.; Benard, C.; Lattes, A. Tetrahedron Lett. 1976, 1185.
- 113) Beckett, A. H.; Nacci, V.; Khokhar, A. Q. J. Med. Chem. 1972, 15, 593.
- 114) Fouquey, C.; Jacques, J.; Angiolini, L.;
- Tramontini, M. Tetrahedron 1974, 30, 2801.
- 115) Brienne, M. J.; Fouquey, C.; Jacques, J. Bull. Soc. Chim. Fr. 1969, 2395.
- 116) Rader, C. P.; Wicks, G. E.; Young, R. E.; Aaron, A. S. J. Org. Chem. 1964, 29, 2252.
- 117) Bohlmann, F.; Winterfeldt, E.; Schmidt, O.;

Reusche, W. Chem. Ber. 1961, 94, 1767.

- 118) Dufey, P.; Duplan, J. C.; Delman, J. Bull. Soc. Chim. Fr. 1968, 4662.
- 119)Ookawa, A.; Soai, K. J. Chem. Soc., Perkin Trans. I 1987, 1465.
- 120) Thieme, P. C.; Sauter, H.; Reissenweber, G. Chem. Ber. 1988, 121, 1059.
- 121) Gribble, G. W. ACS Symposium Series **1996**, 641, 167.

- 122) Nutaitis, C. F.; Gribble, G. W. Tetrahedron Lett. 1983, 24, 4287.
- 123) Saksena, A. K.; Mangiaracina, P. Tetrahedron Lett. 1983, 24, 273.
- 124) Gribble, G. W.; Nutaitis, C. F. Tetrahedron Lett. 1983, 24, 4287.
- 125) Turnbull, M. D.; Hatter, G.; Ledgerwood, D. E. Tetrahedron Lett. 1984, 25, 5449.
- 126) Evans, D. A.; Chapman, K. T. Tetrahedron Lett. 1986, 27, 5939.
- 127) Evans, D. A.; Chapman, K. T.; Carreira, E. M. J. Am. Chem. Soc. 1988, 110, 3560.
- 128) Evans, D. A.; Gauchet-Prunet, J. A.; Carreira,
- E. M.; Charette, A. B. J. Org. Chem. 1991, 56, 741.
- 129) Evans, D. A.; Ng, H. P.; Clark, J. S.; Rieger,
- D. L. Tetrahedron 1992, 48, 2127.
- 130) Dondoni, A.; Perrone, D.; Merino, P. J. J. Cem. Soc. Chem. Commun. 1991, 1313.
- 131) Martin, S. F.; Pacofsky, G. J.; Gist, R. P.;
- Lee, W.-C. J. Am. Chem. Soc. 1989, 111, 7634.
- 132) Thompson, S. H. J.; Subramanian, R. S.; Roberts,
- J. K.; Hadley, M. S.; Gallagher, T. J. Am. Chem.
- Soc. Chem. Commun. 1994, 933.
- 133) Paterson, I.; Cumming, J. G. Tetrahedron Lett. 1992, 33, 2847.

- 134) Hirao, A.; Itsuno, S.; Owa, M.; Nagami, S.;
- Mochizuki, H.; Zoorov, H. H. A.; Niakamama, S.;
- Yamazaki, N. J. Chem. Soc. Perkins I 1981, 900.
- 135) Nasipuri, D.; Sakar, A.; Konar, S. K.; Ghosh, A. Indian J. Chem. 1982, 21B, 212.
- 136) Thompson, S. H. J.; Subramanian, R. S.; Roberts,
- J. K.; Hadley, M. S.; Gallagher, T. J. Chem.
- Soc. Chem. Commun. 1994, 933.
- 137) Pansare, S. V.; Ravi, G. Tetrahedron Lett. **1995**, 36, 5959.
- 138) Brown, M. J.; Harrison, T.; Herrinton, P. M.;
- Hopkins, M. H.; Hutchinson, K. D.; Mishra, P.;
- Overman, L. E. J. Am. Chem. Soc. 1991, 113, 5365.
- 139)Goldstein, S. W.; Overman, L. E. J. Org. Chem.
- **1992**, *57*, 1179.
- 140) Trost, B. M.; Greenspan, P. D.; Yang, B. V.;
- Saulnier, M. G. J. Am. Chem. Soc. 1990, 112, 9022.
- 141) Park, S.; Lough, A. J.; Morris, R. H. Inorg.
- Chem. 1996, 35, 3001.
- 142)Qiang, L.; Hoffmann, R. J. Am. Chem. Soc. 1995, 117, 10108.
- 143) Huang, R.; Sharma, M.; Echert, J.; Argyriou, D.;
- Sheldon, R. X-ray and neutron diffraction studies of
- $NaBH_4 \cdot 2H_2O$ and $NaBD_4 \cdot 2H_2O$. Manucript in preparation.

- 144) Krishnan, K.; Chandrasekaran, J. Indian J. Chem. 1982, 218, 595.
- 145) Wuesthoff, M. T. Tetrahedron 1973, 29, 791.
- 146) Wigfield, D. C. Tetrahedron 1979, 35, 449.
- 147) Faulkner, D.; McKervey, M. A. J. Chem. Soc. (C) 1971, 3906.
- 148) Cieplak, A. S. J. Am. Chem. Soc. 1981, 103, 4540.
- 149) Jones, C. D.; Kaselj, M.; Salvatore, R. N.; le Noble, W. J. J. Org. Chem. 1998, 63, 2758.
- 150) Valentine Jr., D.; Scott, J. W. Synthesis 1978, 329.
- 151) ApSimon, J. W.; Sequin, R. P. Tetrahedron 1979, 35, 2797.
- 152) Mukaiyama, T.; Mastoshi, A. Topics in Current Chemistry, Organic Chemistry; Springer-Verlag:
 Berlin, 1985; Vol. 127.
- 153) Cervinka, O.; Malon, P.; Prochazkova, H.
- Collect. Czech. Chem. Commun. 1974, 39, 1869.
- 154) Hirao, A.; Mochizuki, H.; Seiichi, N.;
- Yamakazaki, N. J. Org. Chem. 1979, 44, 1720.
- 155) Masui, M.; Shiori, T. Synlett 1996, 49.
- 156) Meyers, A. I.; Kendall, P. M. Tetrahedron Lett. **1974**, 1337.

- 157) Seebach, D.; Daume, H. Chem. Ber. 1974, 107, 1748.
- 158) Yamaguchi, S.; Yasuhara, F.; Kabuto, K. *J. Org.*Chem. **1977**, 42, 1578.
- 159) Hutchins, R. O.; Learn, K.; Farag, E.-T.;
- Stercho, Y. P. J. Org. Chem. 1984, 49, 2438.
- 160) Haller, R.; Schneider, H. J. Chem. Ber. 1973, 106, 1312.
- 161) Bothner-By, A. A. J. Am. Chem. Soc. 1951, 856.
- 162) ApSimon, J. W.; Collier, T. L. Tetrahedron 1986, 42, 5157.
- 163) Haubenstock, H.; Eliel, E. L. J. Am. Chem. Soc.
- **1962**, *84*, 2363.
- 164)Cram, D. J.; Breene, F. D. J. Am. Chem. Soc.
- **1953**, 75, 6005.
- 165) Brown, H. C.; Deck, H. R. J. Am. Chem. Soc.
- **1965**, *87*, 5620.
- 166) Johnson, T. H.; Klein, K. C. J. Org. Chem. 1979, 44, 461.
- 167) Noyori, R.; Tomino, I.; Tanimoto, Y.; Nishizawa,
- M. J. Am. Chem. Soc 1984, 106, 6709.
- 168) Noyori, R.; Tomino, I.; Tanimoto, Y.; Nishizawa,
- M. J. Am. Chem. Soc 1984, 106, 6717.
- 169) Suzuki, M.; Morita, Y.; Koyano, H.; Koga, M.;
- Noyori, R. Tetrahedron 1990, 46, 4809.

- 170) Noyori, R. Science 1990, 248, 1194.
- 171) Noyori, R. Chem. Soc. Rev. 1989, 18, 187.
- 172)Ohta, T.; Takaya, H.; Noyori, R. Inorg. Chem.
- **1988**, *27*, 566.
- 173) Vigneron, J.-P.; Bloy, V. Tetrahedron Lett.
- **1979**, *29*, 2683.
- 174) Cohen, N.; Lopresti, R. J.; Neukom, C.; Saucy,
- G. J. Org. Chem. 1980, 45, 582.
- 175) Morrison, J. D.; Grandbois, E. R.; Howard, S.
- I.; Weisman, G. A. Tetrahedron Lett. 1981, 22, 2619.
- 176) Yamaguchi, S.; Kabuto, K. Bull. Chem. Soc. Japan **1977**, 50, 3033.
- 177) Cervinka, O.; Dudek, V.; Scholzova, I. Coll.
- Czek. Chem. Commun. 1978, 43, 1091.
- 178) Schmidt, M.; Armstutz, R.; Crass, G.; Seebach,
- D. Chem. Ber. 1980, 113, 1691.
- 179) Corey, E. J.; Bakshi, R. K.; Shibata, S. J. Am.
- Amer. Soc. 1987, 109, 5551.
- 180)Corey, E. J.; Bakshi, R. K.; Shibata, S.; Chen,
- C.-P.; Singh, V. K. J. Am. Amer. Soc. 1987, 109,
- 7925.
- 181)Corey, E. J.; Bakshi, R. K.; Shibata, S. J.Org.
- Chem. 1988, 2861.
- 182) Corey, E. J.; Chen, C.-P.; Reichard, G. A.
- Tetrahedron Lett. 1989, 30, 5547.

- 183)Corey, E. J.; Link, J. O. Tetrahedron Lett.

 1989, 30, 6275.
- 184)Corey, E. J.; Bakshi, R. K. Tetrahedron Lett.

 1990, 31, 611.
- 185) Hwang, S.-B.; Lam, M.-H.; Biftu, T.; Beattie, T.
- R.; Shen, T.-Y. J. Biol. Chem. 1985, 260, 15639.
- 186) Singh, V. K. Synthesis 1992, 7, 605.
- 187) Midland, M. M.; Tramontano, A.; Zderic, S. A. J.
- Am. Chem. Soc. 1979, 101, 2352.
- 188) Midland, M. M. Chem. Rev. 1989, 89, 1553.
- 189) Brown, H. C. Organic Synthesis via Boranes;
- Wiley-Interscience: NY, 1975.
- 190) Midland, M. M.; McDowell, D. C.; Hatch, R. L.;
- Tramontano, A. J. Am. Chem. Soc. 1984, 102, 867.
- 191) Midland, M. M.; Tramontano, A.; Kazubski, A.;
- Graham, R. S.; Tsai, D. J. S.; Cardin, D. B.
- Tetrahedron 1984, 40, 1371.
- 192) Midland, M. M.; Zderic, S. A. J. Am. Chem. Soc.
- **1982**, 104, 525.
- 193)Midland, M. M.; Tramontano, A.; Zderic, S. A. J.
- Organomet. Chem. 1978, 156, 203.
- 194) Brown, H. C.; Chandrasekharan, J.; Ramachandran,
- P. V. J. Am. Chem. Soc. 1988, 110, 1539.
- 195) Brown, H. C.; Krishnamurthy, S. J. Am. Chem.
- Soc. 1973, 95, 1669.

- 196) Brown, H. C.; Mead, E. J. J. Am. Chem. Soc. **1953**, 75, 6263.
- 197) Fisher, G. B.; Harrison, J.; Fuller, J. C.; Goralski, C. T.; Singaram, B. Tetrahedron Lett. 1992, 33, 4533.
- 198) Hutchins, R. O.; Natale, N. R. Org. Prep. Proced. Int. 1979, 11, 201.
- 199) Gribble, G. W.; Lord, P. D.; Skotnicki, J.; Dietz, W. E.; Eaton, J. T.; Johnson, J. L. J. Am. Chem. Soc. 1974, 96, 7812.
- 200) Allred, A. L.; Rochow, E. G. J. Inorg. Nucl. Chem. 1958, 5, 264.
- 201) Davis, F. A.; Turchi, I. J.; Greeley, D. N. J. Org. Chem. 1971, 36, 1300.
- 202) Fisher, G. B.; Fuller, J. C.; Harrison, J.;
- Alvarez, S. G.; Burkhardt, E. R.; Goralski, C. T.;
- Singaram, B. J. Org. Chem. 1994, 59, 6378.
- 203) Fisher, G. B.; Harrison, J.; Fuller, J. C.;
- Goralski, C. T.; Singaram, B. Tetrahedron Lett.
- **1992**, 33, 4533.
- 204) Harrison, J.; Fuller, J. C.; Goralski, C. T.;
- Singaram, B. Tetrahedron Lett. 1994, 35, 5201.
- 205) Fisher, G. B.; Fuller, J. C.; Harrison, J.;
- Goralski, C. T.; Singaram, B. Tetrahedron Lett.
- **1993**, 34, 1091.

- 206) Fuller, J. C.; Fisher, G. B.; Belisle, C. M.; Goralski, C. T.; Singaram, B. Tetrahedron Lett.

 1994, 35, 5389.
- 207) Dubois, L.; Fiaud, J.-C.; Kagan, H. B. Tetrahedron **1995**, 51, 3803.
- 208) Nan-Horng, L.; Gunn, D. E.; Ryther, K. B.; Garvey, D. S.; Donnelly-Roberts, D. L.; Decker, M. W.; Brioni, J. D.; Buckley, M. J.; Rodrigues, A. D.; Marsh, K. G.; Anderson, D. J.; Buccafusco, J. J.; Predergast, M. A.; Sullivan, J. P.; Williams, M.; Arneric, S. P.; Holladay, M. W. J. Med. Chem. 1997, 40, 385.
- 209) Johnson, C.R. Organic Synthesis; Johnson, C.R., Ed.; John Wiley & Sons, Inc: New York, 1977; Vol. 57, pp 1-7.
- 210) Sheehan, J.C.; O'Neill, R.C.; White, M.A. J. Amer. Chem. Soc. 1950, 72, 3376
- 211) Creary, J. J. Org. Chem. 1979, 44, 3938.
- 212) Lacy, P.H.; Smith, D.C. *J. Chem. Soc.* (C) **1971**, 41.

MICHIGAN STATE UNIV. LIBRARIES
31293017893128