
V. "no an...“

o..

THESIS

. ’\ 1,)

llUllllllllIllllllllllllllllllllllllllllllllllillllllUllllll
1293 01789 3151

LIBRARY

Michigan State

University

This is to certify that the

dissertation entitled

MATRIX-BASED RESTRUCTURING COMPILERS

presented by

Ron Sass

has been accepted towards fulfillment

ofthe requirements for

g Ph.D. _degreein Computer Science

and Engineering

_ five/MI
Major professor

Matt Mutka

Date RM? 3‘) [fl

MSU i: an Affirmative Action/Equal Opportunity Institution

0-12771

PLACE IN RETURN BOX to remove this checkout from your record.

To AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

DATE DUE DATE DUE DATE DUE

1/98 chiRC/DatoOmpGS—p.“

MATRIX-BASED RESTRUCTURING COMPILERS

By

Ron Sass

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Computer Science

1999

ABSTRACT

MATRIX-BASED RESTRUCTURING COMPILERS

By

Ron Sass

Scientists and engineers requiring high-performance computing systems have faced the

same problem for the last thirty years: to get more performance, mainly in the form of

reduced time-to-completion, software has to be re-coded with every major hardware and

system advancement. Restructuring compilers help address this fundamental problem by

extensively analyzing the users’ code and mapping it to a high-performance machine, giv-

ing the user more hardware independence. Matrix-based restructuring compilers accom-

plish this by using transformation frameworks. In the matrix-based frameworks, vectors

represent the dependence between loop iterations and matrices represent the transforma-

tions. By using a measure of performance in the abstract framework, algorithms can be

written for these frameworks that — in polynomial time — find an ordering of transfor-

mations that maximizes the performance metric. This is a significant improvement over

brute-force algorithms used prior to this development.

This dissertations aims to improve restructuring compilers that use matrix-based frame-

works. Namely, we address a serious limitation of matrix-based frameworks that prevents

them from transforming imperfectly nested loops. We offer two approaches to address this

limitation. First, we develop a new loop classification scheme which we use to analyze

25,000 lines of scientific kernel and benchmark programs. As a result of this analysis, we

show that the composition of two existing, slightly-modified transtrmations can be used to

create perfectly nested loops from imperfectly nested loops. We also present a technique,

called the phase method, which allows matrix-based transformations to operate directly on

doubly-nested, imperfect loops.

Also in support of restructuring compilers, we look at the problem of mapping applica-

tions to a relatively new high-performance architecture, networks of workstations (NOWs).

Commodity parts used in NOWs make the cost/performance ratio very attractive, but also

complicate the development of a suitable performance measure for matrix-based transfor-

mations. In this dissertation we develop and test a model that uses feedback from calibra-

tion runs on the hardware to automatically determine such a measure. To test its effec-

tiveness we consider both statistical evaluation and the success of a practical application

(determining the number of useful processors in a parallel program).

As high-performance computers come to rely more on parallelism for increases in per-

formance, the role of the restructuring compiler becomes more crucial. This dissertation,

and the investigations described within, propose improvements to the design of the modern

restructuring compiler.

© Copyright February 11, 1999 by Ron Sass

All Rights Reserved

ACKNOWLEDGMENTS

Many people have contributed in many ways to bringing this dissertation to fruition. I

am indebted to my very patient advisor, Dr. Matt Mutka, for his guidance on all matters

of my scholarly career. Even though I have not unfailingly followed his advice, I have

come to regret the times I didn’t. I would also like to thank my committee. I was very

fortunate to have an interested, helpful, and very competent committee. I would like to

thank the Department of Computer Science and Engineering for employing me throughout

my degree and for providing me with a truly outstanding education.

There are many students who have contributed indirectly to this work. By their friend-

ship and goodwill, I have kept in good spirits for my duration at MSU. This includes Joe

Sharnowski, my roommate at Owen Graduate Center, who always kept me on track that

first quarter, recommended me for the systems manager job, and who welcomed me into

his group of friends. Goodness gracious! I’m done! Edgar Kalns, Marie-Pierre Jolly, Chris-

tian Trefftz, and the rest of the “lunch crowd” were delightful company. I never imagined

such stimulating discussions over lunch. Lynn Kubinec showed me, perhaps unknowingly,

that great advantages of a well-organized, focused work habits. Others suggested that I

“stay focused” but Lynn set an example. I also appreciated her frequent cultural outings.

For less cultural outings, I have to thank the Llama Pad for hosting numerous Halloween

and hot-tub parties. Steve Tumer has been supportive as both a technical and a nontechnical

partner; I hope we can continue in both partnerships. Stephen Wagner has also been a true

V

friend and has seen me through some rough times. The students and Rick Erickson at the

Wesley Foundation have provided me with programs, companionship, and guidance while

I was in school.

I owe a special word of gratitude to Kelly S. Mack. We started this together and you

contributed in so many ways I cannot record them all here. I will forever remember the

sacrifices you made for me.

Some people have contributed directly towards this dissertation. Martha Sorbet de-

serves a great deal of appreciation. Not only was she a source of encouragement, but she

stayed up many late nights with me and learned vi and Hljfi just so that she could help type

and edit my papers and dissertation. Thank-you. My father, Joe Sass, also contributed di-

rectly to this work. He read the dissertation several times and made numerous suggestions.

Much of what I know about written communication, I owe to him.

Finally, I’d like to thank my friend and colleague, Barb Gannod. From start to finish,

you were my closest friend throughout my time in graduate school.

vi

TABLE OF CONTENTS

LIST OF TABLES

LIST OF FIGURES

1 Introduction

2 Restructuring Compiler Basics

2.1 Restructuring Compilers

2.2 Survey of Developments

2.2.1 University of Illinois

2.2.2 Rice University

2.2.3 Systolic and VLSI Architectures

2.2.4 Transformation Frameworks

2.2.5 Data-Parallel Compiler Developments

2.3 Loop Nest Transformations

2.3.1 Preliminaries

2.3.2 Matrix-Based Transformations

2.3.3 Other Transformations

2.3.4 Performance Metrics

3 Loop Nests: Taxonomy, Statistics, and Compiler Design

3.1 Loop Statistics

3. l . 1 Definitions

3.1.2 Discussion

3.2 Compiler Design

3.3 Summary

4 Phase Method

4. 1 Algorithm

4.2 Example

4.3 Summary

5 Performance Metric for NoWs

5.1 Experimental Set-Up

5.1.1 Data-Parallel System

5.1.2 Applications

5.1.3 Hardware Platforms

5.2 Instrumentation and Analysis

vii

x

l

10

10

12

14

15

16

17

20

21

21

24

25

3O

33

34

35

38

46

51

54

55

61

64

65

...... 69

70

7O

5.2.1 Compile-Time Measurements 74

5.2.2 Assumptions 76

5.2.3 Run-Time Measurements 77

5.2.4 Skewed Observations 78

5.3 Formulating a Metric 82

5.3.1 Statistical Tests 82

5.3.2 GeneralFormula.....................; 87

5.4 Calibration and Experimental Results 91

5.4.1 Multiple Linear Regression 92

5.4.2 Adequacy of Model 94

5.5 Validation 107

5.6 Other Applications 1 14

5.7 Summary 115

6 Conclusion 117

6.1 Summary 118

6.2 Future Directions 121

APPENDICES 125

A Restructuring Compilers 125

Al Fortran 125

A.2 Toolkits 128

B Data-Parallel System and Applications 130

B. 1 Data-Parallel System 1 30

B.2 Heat Transfer Application 134

B3 Fingerprint Matching Application 136

BA Texture Segmentation Application 136

B5 Spatial Decomposition Technique (SDT) 137

BIBLIOGRAPHY 138

viii

3.1

3.2

3.3

5.1

5.2

5.3

5.4

5.5

5.6

5.7

LIST OF TABLES

loop statistics with various transformations applied 39

listing of subroutines included in each package 41

loop characteristics that cause SFS and LD to fail and their frequency 44

summary of x2 goodness-of-fit tests 86

summary of 90% confidence intervals for overall execution time 87

several inadequate models of communication time 105

results for each application on each platform 107

results of minimizing the execution time for ATM 1 10

results of minimizing execution time for Fast Ethernet 11 1

results of minimizing execution time for Ethernet 1 12

ix

1.1

2.1

2.2

2.3

3.1

3.2

3.3

3.4

4.1

4.2

4.3

4.4

4.5

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

5.14

6.1

8.1

B2

B.3

LIST OF FIGURES

typical performance curve for a small data-parallel application 8

organization of restructuring compilers 13

four steps in Wolf’s approach 28

SFS method demonstrated 29

three examples of general loop nests that are not apperfect 36

relationships between perfect, apperfect, general, and imperfect 37

loop nests from sample 45

optimal ordering of transformations recommended in this chapter 52

Banerjee’s algorithm 56

three simple cases 58

three phases for doubly-nested loops 60

example code for phase method 62

resulting code 63

typical performance curve for parallel processing 67

actual execution times and the predicted performance ‘..... 69

one timing record 78

skewed observations of communication delays 80

histograms of measured communication/computation times and Gaussian pdfs 84

probability distributions for Ethernet 85

number of iterations v. computation time 96

number of messages v. communication time 98

communication time v. message volume and number of messages 100

communication time v. message volume and number of messages 101

number of messages v. communication time 103

number of processors and problem size v. communication time 104

residuals plotted against explanatory variables 106

measured execution times of all three applications 113

with and without the camera operating 123

changing serial loops to data-parallel loops 133

pseudocode for scatter/gather operations 134

simulated environment 135

Chapter 1

Introduction

“Flaios cubicosl” he says, with a vengeance. Cube roots!

It's hard to find a more difficult fundamental problem in

arithmetic How did the customer [Feynman] beat the

abacus? The number was 1729.03. l happened to know

that a cubic foot contains 1728 cubic inches, so the answer

is a tiny bit more than 12. The excess, 1.03, is only one

part in nearly 2000, and I had learned in calculus that for

small fractions, the cube root’s excess is one-third of the

number's excess. So all I had to do is find the fraction

1/1728, and multiply by 4 (divide by 3 and multiply by 12).

So I was able to pull out a whole lot of digits that way.

Richard Feynman [27]

Engineers and scientists use a number of tools to perform computations. For some com-

plicated problems, high performance computers (HPCS) are needed because the time to

complete the computation can take hours or days. This slow tum-around time diminishes

the value of the results. A large decrease in execution time justifies the cost of HPCs and

the development of sophisticated tools. One of the tools in this arena is the restructuring

compiler. A restructuring compiler is a compiler that not only translates source to object

code but also improves the performance of the application by analysis that is beyond what

is necessary for direct semantic translation. Frequently, the restructuring compiler is de-

signed to improve the performance by reorganizing the code to find parallelism and to place

data in memory more effectively. Matrix-Based restructuring compilers implement the

code-improving transformation framework by modeling applicatiOns and transformations

as mathematical structures such as vectors and matrices. It has been shown by Banerjee [9]

that matrix-based frameworks have the ability to use the same mechanisms to compile for

different goals.

Although the source code could be written with the code improvements explicitly noted,

restructuring compilers are still very important tools because they address three concerns.

First, manually finding the parallelism in an algorithm is initially a rote exercise for the pro-

grammer but the problem becomes increasingly difficult after the easy cases have been dis-

covered. Second, a significant body of code already exists in serial notation (commonly re-

ferred to as “dusty deck” code). Finally, high performance computers are changing rapidly

and good object code for one machine may not be good for subsequent machines. Restruc-

turing compilers address all three of these concerns because the human effort involved in

each concern is usually much more expensive than using an automated tool.

The machinery of I-IPCs has changed continually over the years. While the demand for

higher performance has not diminished, many vendors that have manufactured HPCs in the

last fifteen years have either scaled back the HPC division or failed. While the underlying

reasons for these failures are still being debated (as noted by Kuck [42]) the problem on

the surface is one of economics. First, the hardware cost was too expensive to support

continued sales. And second, expensive hardware hurts the cost/performance ratio of the

HPC.

One place where parallelism — the heart of many HPCs — has succeeded is at the

instruction level [16]. The success of the workstation microprocessor and its instruction-

level parallelism has fueled interest in HPC systems built from workstations and local area

networks. Such a system is often called a network of workstations (NoW) when all of

the individual workstations in the system are equivalent or a cluster computer when the

workstations vary in power or architecture. 1 For both, the chief attraction is the (potential)

cost/performance ratio. Central to the NoW’s cost/performance advantage is its use of off-

the-shelf components. By using commodity components — microprocessors, operating

systems, and networks —— the cost is kept low while still taking advantage of the advances

in microprocessor instruction-level parallelism.

Compiling for NoWs is especially interesting because of the unique problems it presents.

The off-the-shelf components, by their very nature, are general-purpose. Different vendors’

components can be interchanged and intermixed. The compiler does not know what to ex-

pect of the hardware. The performance successes of the microprocessor are outpacing the

advances in networks, which means the compiler cannot rely on a constant performance

ratio between the two. Furthermore, local area networks today are designed for video and

audio traffic; it is likely that future network improvements will continue to address multi-

media demands while parallel computing issues —— such as reducing the message startup

costs and latency — are likely to be of secondary concern.

Thus, our thesis is that matrix-based restructuring compilers, operating on two levels,

are instrumental in the cost-effective use of NoWs as HPCs. Specifically, at one level, the

1 Our distinction is not universal. For example, at UC Berkeley they refer to one apparatus “for cluster

computing” as the Berkeley NOW [48].

compiler needs to find sufficient fine-grain parallelism to fully utilize the modern micro-

processor. On a second level, the compiler needs to find coarse-grain parallelism under the

unique conditions of the NoW environment. To advance this goal, this dissertation focuses

on two concems. First, we address the limitation of perfectly neSted loops, which was a

general limitation of matrix-based restructuring compilers. And second, we describe how a

restructuring compiler can naturally adapt to the variable nature of NoWs. Below, we dis-

cuss these two aspects of the dissertation’s work in more detail, describe the fundamental

problems, and state our specific contributions.

Imperfect Loop Nests An early concern expressed by the research community with

matrix-based transformation frameworks was that the framework was only applicable to

perfectly nested loops (see Banerjee [10]), such as the loop nest below.

DO I=1,N

DO J=1,M

X(I,J)=A(I,J)*V(J)

END DO

END DO

For performance reasons, a restructuring compiler may transform this loop in a number

of ways. For reasons described in Chapter 2, matrix-based restructuring compilers are

very effective for this loop nest structure and several algorithms exist for matrix-based

frameworks that exploit a particular HPC’s architectural features. Occasionally though,

loops are not perfectly nested. The following loop is imperfectly nested:

DO K=1,N

AiK,K)=A(K,K)**O.5

DO I=K+1,N

A(I,K)=A(I,K)/A(K,K)

DO J=K+1,I

A(I,J)=A(I,J)-A(I,K)*A(J,K)

END DO

END DO

END DO

Prior to our work, matrix-based restructuring compilers always assumed perfectly nested

loops. If the loop was not perfectly nested, it was not parallelized. Even for general re-

structuring compilers, there have only been a few techniques developed over the years. In

[68], Wolf and Lam mention that general loops remain an open problem (for the matrix-

based approach). In the technical report [37], Kelly and Pugh partially address the problem

of imperfectly nested loops, but their technique does not embrace the loop transformation

ordering abilities of the matrix-based approach. The author was first aware of the problem

when Banerjee posed it [10].

Our first contribution is to analyze and classify the types of imperfectly nested loops

for a large body of FORTRAN codes. We found a great deal of overlap in most of the (non-

matrix-based) transformations developed previously to convert imperfectly nested loops

into perfectly nested loops. We call the loops commonly transformed, the class of apper-

fectly nested loops. Another contribution, shown in Chapter 3, is a demonstration of how

all matrix-based frameworks can be augmented to handle apperfect loops. This establishes

that matrix-based techniques are not, in general, less powerful because the original theory

did not include imperfectly nested loops.

Furthermore, we Show that there is a simple procedure for extending the unimodular

framework to include imperfectly nested loops, when the goal is fine-grain parallelism.

This technique, called the phase method, is described in Chapter 4.

Restructuring for NoWs Returning to the second aspect, all restructuring compiler frame-

works share two common features that distinguish them from other restructuring compilers.

All frameworks are based on some mathematical model of loop nests (and transformations)

and some implicit (or explicit) performance estimator. The latter is usually expressed as

some goal, such as, “maximum parallelism transformation” or “communication-free trans-

formation.” In these cases, the goal represents some general understanding of performance

for a particular architecture. The problem with the performance estimators mentioned

above is that they are too general for NoWs. While maximum parallelism may be the

best solution for some applications, it is certainly not the best solution for all. The other

extreme, that of no communication (at the cost of parallelism), is also too general. Further-

more, both assume that the architecture is generally fixed and has few options available.

The problem is more complex when we desire to compile for a NoW built from commod-

ity processors, off-the-shelf operating systems, and third-party networks. It is difficult or

impossible to determine how the different manufacturers’ components will effect message

start-up times, latency, and possible contention. Distributed memory multicomputers with

dedicated interconnection networks do not have this variability.

We have investigated the use of a new performance estimator to be incorporated into

matrix-based transformation frameworks in Chapter 5. This approach is especially suit-

able for NoWs. Another contribution of this dissertation is to show that NoWs do have

properties that can be pararneterized and used in a performance estimator for matrix-based

restructuring compilers. Our procedure uses a calibration step to determine the properties

and then uses the results as a performance metric in subsequent compilations. With a better

performance estimator, a more precise goal for the framework can be defined.

Finally, we use this measure to solve one specific problem. Figure 1.1 shows a speedup

curve that is familiar to researchers who study parallel processing. It embodies the general

rule that performance will improve as the number of processors increase — up to a point.

After that, communication costs cause the performance to decrease. One use of the perfor-

mance estimator is to identify the shape of the performance curve prior to execution. The

final contribution of this work is to show that, after calibration, our metric predicts when

communication costs will dominate and additional processors are unneeded or will hinder

performance. The metric chooses the best number of workstations to use on a Specific

problem.

One application of the previous solution is in a High Performance Fortran (HPF) com-

piler, where the user is responsible for choosing the number of virtual processors and the

distribution of the data, but the compiler must decide how many physical processors to use.

For a NoW, the choice “all of the available workstations” may not be an efficient use of

the facilities nor an ideal choice (as Figure 1.1 indicates). Also, the compiler still needs to

choose the number of physical processors for non-HPF compilers, where the compiler is

responsible for the data distribution and translation.

The remainder of this dissertation is organized as follows. In Chapter 2, we discuss the

basics of restructuring compilers. We give a brief survey of developments, a description

Execution Time v. Number of Processors

heat—pr!

1.

477 _ Size: 100x100

Measure: Normalized

398 _

fig 318 —

E
.—

159 —

79 T

Number or Processors

Figure 1.1: typical performance curve for a small data-parallel application

of the usual loop transformations, and work related to this dissertation. In Chapter 3, we

describe how to handle the class of apperfectly-nested loops in a matrix-based restructuring

compiler. In Chapter 4, we describe how to use the phase method to handle imperfectly-

nested loops for fine-grain parallelism. In Chapter 5, we discuss compiling for NoWs. We

describe our data-parallel testbed, the development of a cost function for NoWs, and the

results of using the cost function to determine the critical point of speedup curves, a priori.

Conclusions and future work are presented in Chapter 6.

Chapter 2

Restructuring Compiler Basics

Good order

is the foundation

of all good things.

Edmund Burke [17]

In this chapter we discuss the basics of restructuring compilers. We define the major types

of restructuring compilers, present a brief survey of restructuring compiler advances, and

describe the loop transformations used throughout the dissertation. Fundamental to all

framework-based restructuring compilers is their ability to order the transformations. This

is the key technical point of the chapter.

2.1 Restructuring Compilers

As mentioned in the introduction, a restructuring compiler is one that, besides translating

the source code to object code, does additional analysis to improve the performance. It is

10

similar to an optimizing compiler because both improve the source code’s performance for

a particular architecture. But generally, a restructuring compiler does more. The restructur-

ing compiler finds parallelism in large code structures and attends to the problem of access-

ing the memory hierarchy efficiently. The distinction between Optimizing and restructuring

compilers is informal and blurring as they converge, sharing technology and terms. In-

deed, most optimizing compilers search for parallelism and change reference patterns to

use the memory hierarchy efficiently. Likewise, restructuring compiler transformations are

frequently called optimizations.l

There are three main groups of restructuring compilers, distinguished by how they or-

der their transformations. Early designs allowed restructuring compilers to perform a large

number of transformations. But each transformation was applied individually, one after

the other. The intention was that, as new transformations are developed, they could be

integrated easily. New transformations were being developed frequently so having a com-

piler that performed a static list of transformations was the most convenient research tool.

A problem arises when researchers try to establish a “best” order for the transformations.

One solution that we call the ad hoc approach, is to simply fix an order based on past expe-

rience. A second solution to the best-order problem is to generate a sequence of transfor-

mations and then evaluate the result based on some performance estimate, to determine if

the transformation was profitable. Subsequently, the compiler generates another sequence

and re-evaluates the result. This philosophy of generate-and-test is a brute-force approach

to finding the best order. The third approach is to use a mathematical framework to model

lFrequently, researchers use “optimizations” in place of transformations. Although ubiquitous, only a

few researchers are finding transformations that can be shown to be locally optimal. It is nearly impossible

to prove that any transformation is globally optimal.

11

the transformations and then, based on the model, generate a single transformation. This

group of compilers can be further subdivided into those that use matrices to represent trans-

formations and those that manipulate data dependence equations directly. The drawback to

the matrix-based approach is that currently only a few transformations can be modeled and

only perfectly nested loops are transformed. An important advantage to using frameworks

is that with the model, one can establish precise metrics. Polynomial-time algorithms can

be designed to solve the best-order problem to optimize for particular goals. Finding the

best order is further complicated when more than just parallelism is needed— for example,

when compiling for improved parallelism and reduced communication.

The two subtypes of matrix-based restructuring compilers depend on what set of matri-

ces are used to represent the transformations. The older unimodular matrices encode three

loop transformations. The new non-singular matrices encode four loop transformations.

The latter was developed to include more efficient use of the memory hierarchy.

The hierarchy of restructuring compilers just described is given in Figure 2.1. The

leaves are examples of restructuring compiler projects of that type.

2.2 Survey of Developments

In this section we discuss the important developments that have led to unimodular trans-

formations and other matrix-based transformations. Restructuring compiler developments

came from a number of different sources. We begin with a brief history of vectorizing

and restructuring compilers. Then we summarize specific works that have had a significant

influence on matrix-based transformations.

12

restructuring

compilers

[gen-and-testJ

fixed-order framework

Parafrase-2 Kelly 8‘ PughR

9d[W“°”ff’°“l

Amarasinghe

[new] pram] 8‘

Lam

Banerjee Wolfe Lam Li & Pingali

Figure 2.1: organization of restructuring compilers

l3

The first restructuring compilers were designed for vector computers. Vector computers

increase performance by pipelining a set of data through a functional unit; different stages

of the computation of the function operate on different data in parallel. The compiler’s main

responsibility for vector computers was to make loops suitable forthis type of computation.

Thus converting singly-nested loops and the inner loop of a nest to a suitable form for the

vector units was sufficient to fully utilize the architecture.

2.2.1 University of Illinois

We begin our survey with the work of David Kuck [41] and his students at the University

of Illinois. With Kuck came data dependence analysis. Data dependence is the criterion we

use to mark the start of restructuring compiler research. Prior to Kuck’s work, researchers

discussed compiler techniques to execute code in parallel, but none of the techniques were

able to handle subscripted array references. The one exception is Leslie Lamport’s oft-

cited paper [43]. Larnport’s hyperplane method accepts loops of a very specific form and

generates parallel code, but it does not use the concept of data dependence. This is a

very important exception because the hyperplane method (after data dependence was es-

tablished) became the basis of the wavefront transformation which is fundamental to many

matrix-based frameworks.

Data dependence, as mentioned above, is key to all the current restructuring compilers.

The dependence relation is frequently represented pictorially as a directed graph. Internally,

it is represented as a vector. By using this formalism, Kuck and his associates developed

14

algorithms that remove inter-statement dependences, such that statements within a basic

block can be executed in parallel [41].

2.2.2 Rice University

At Rice University in Houston, Texas, Ken Kennedy and his research group [38, 39] also

pioneered restructuring compiler techniques. Kennedy and his associates’ work includes

PFC (Parallel Fortran Converter) which is a FORTRAN-TO-FORTRAN compiler, a depen-

dence browser (PTOOL), and ParaScope, an interactive parallel programming environment.

Additionally, this research team developed FORTRAN D, which has strongly influenced the

specification of HPF (High Performance Fortran). Similar to the work at Illinois, the re-

searchers at Rice used an ad hoc approach, not a matrix-based approach.

Researchers have continued to spend considerable time investigating data dependence.

It continues to attract the the attention of new researchers in an attempt to develop faster,

more accurate analysis. For a treatise on dependence analysis, many of the researchers

reference Banerjee [8]. However, we suggest Banerjee’s book [11] for those interested in

matrix-based transformations. For an excellent bibliography on dependence testing, see

Pugh’s Omega Test [56]. The dependence analysis in PFC is described in [31]. Another

approach to performing dependence analysis is proposed by Maydan, Hennessy, and Lam

in [49]. For investigators with little or no background in this field of research, we recom-

mend Hans Zima’s Supercompilersfor Parallel and Vector Computers as a launching point

[74].

15

The strategy of Kuck’s compiler group was to perform source-to—source translations

based on data dependence analysis. Code transformations are applied in a fixed order

— the ad hoc approach. While some interactive aspects have been added recently, their

approach does not easily include user feedback in future compilations. Wolfe’s thesis and

book Optimizing Supercompilersfor Supercomputers [72] is a comprehensive summary of

this approach. Parafrase-Z, a research compiler, is another excellent representative example

of this approach [55].

2.2.3 Systolic and VLSI Architectures

Research that targeted systolic computation and specialized (parallel) VLSI architectures

was instrumental in the next development phase of matrix-based compilers. Starting with

Lamport’s hyperplane method, several researchers established a number of important re-

sults.

One of the first goals was, given a set of index points with a dependence relation, to

find an independent partition of the set of index points. An index point is simply a vector

that represents one iteration of a loop nest. An independent partition is a partition of the

index set such that no dependences exists between any two subsets of the partition. With

an independent partition, it is easy for the compiler to produce parallel threads of execution

with no synchronization primitives except at the end. The independent partition problem

was proposed in Padua’s thesis [33]. He presents the Greatest Common Divisor solution in

his thesis.

16

For the independent partition problem, a partition with larger cardinality is a better

partition because it increases the parallelism. Peir and Cytron discuss a method called

Minimum Distance in [54], which finds better solutions than the Greatest Common Divisor

method but with added cost at compile time. Shang and Fortes present a solution in [62]

that is a compromise between (compile-time) algorithmic complexity and good partitions.

Although the researchers find an independent partition, they lacked a a technique to output

the transformed code. D’Hollander’s work also solves the independent partition problem

and he includes a labeling algorithm which outputs the transformed code [21]. However,

his resulting code is unnecessarily complex and carries extra run-time overhead. The final

missing piece is in Ancourt and Irigoin’s paper [5], which (discussed below) includes an

elegant solution for outputting the transformed code.

2.2.4 'h'ansformation Frameworks

The next group of developments in restructuring compilers came as researchers started

to develop frameworks. This work emenates directly from the research described in the

previous section. The main distinction is that the papers in the previous section targeted

primarily systolic-type machines or specialized VLSI architectures while the papers in this

section target multiprocessor machines.

“Supemode Partitioning” by Irigoin and Triolet was one of the early papers and is of

great significance [36]. In supemode partitioning, the authors describe algorithms that

cluster nodes (the authors’ term for index points) into supemodes, where supemodes have

certain desirable properties. Two such properties include nodes that may be executed in

17

parallel and nodes that exploit the memory hierarchy. This is the start of a systematic form

of loop tiling. Irigoin and Triolet show that for any loop nest, transformations exist that

create a loop nest with (at most) one sequential outer loop nest and one or more inner loops

that execute in parallel. They sketch an algorithm that outputs transformed code for doubly

nested loops.

In [5], Ancourt and Irigoin expand the work by Irigoin and Triolet [36] and discuss

how to solve the problem of outputting simple, transformed loop nests, a problem which

a number of previous papers ignored. Even as recently as 1992, D’Hollander’s solution to

the problem of outputting loop nests [21] was awkward because it introduced extra lOOpS.

The elegant solution shown in [5] is based on Fourier’s pair-wise elimination.2 The new

solution produces new loop bounds based on the transformed iteration space. Missing from

both [5] and [36] is a decision algorithm that finds the transformation matrix.

In the same time period that Ancourt and Irigoin were developing their ideas, Banerjee

was devising a unified theory to represent three transformations [9]. This theory contains

the results of the work presented above (in Irigoin and Triolet and in Ancourt and Irigoin)

and also expands the theory to allow compiler designers to set performance measures and

develop algorithms to optimize the transformation matrix. Banerjee presents this theory

for doubly-nested loops, but later extends it in [11] and [12]. Banerjee also requires that

the loop nest’s dependences must all be uniform (that is, the set of distance vectors must

be finite). Banerjee, for example, offered two algorithms in [9]. One algorithm maximized

fine-grain parallelism; the second one algorithm maximized course-grain parallelism. The

algorithms correspond to two different (reasonable) approximations of performance on gen-

2The solution is also known as Fourier-Motzkin Elimination and other names (see Schrijver [61]).

18

eral parallel machines, which is valuable for demonstration. But they are too general in

practice because they ignore communication costs and other important factors.

In the same proceedings, Wolf and Lam [69] present a similar theory with the same

benefit: a polynomial-time algorithm can be developed to maximize architecture-specific

goals. They also present example algorithms that determine the transformation matrix. An

important difference is that their framework is not limited to uniform dependences and their

work discusses the theory for arbitrarily-deep nested loops. Wolf and Lam also discuss

the theory in terms of loop tiling. One of their primary concerns is optimizing memory

references for the memory hierarchy of a given architecture.

Both of these papers model transformations with unimodular matrices. Their models

are limited to perfectly nested loops.

A number of researchers have extended the work of Banerjee and the work of Wolf and

Lam. In [44] and [45], Li and Pingali discuss a framework based on non-singular matrices

that provide an additional transformation, which is useful in NUMA architectures. The

framework also eases the computation of the transformation matrix because it has fewer

restrictions.

Other matrix-based approaches include an extension proposed by Ayguadé and Torres

[7], which is similar to Li and Pingali [44]. Kelly and Pugh push for a generate-and-test

decision algorithm with an artificial intelligence approach to reduce the search space [37].

In [47], Lu presents a formal transformation framework based on affine functions called

“loop transformers.” In addition to the usual three transformations, Lu includes statement

reordering. Although Lu does not model the transformations with matrices, his ideas are

similar to the matrix-based approach.

19

Chesney [19] used a formal approach to adapt matrix-based frameworks to support

other transformations, such as loop distribution. His framework, however, requires more

mathematical structures than just vectors and matrices. This complicates the task of finding

a decision algorithm needed to order the transformations and no decision algorithm has yet

been found for this system.

2.2.5 Data-Parallel Compiler Developments

Communication costs are extremely important. Even on specialized parallel computing

hardware, the communication issue has received detailed attention. The earliest FOR-

TRAN D implementations relied on compiler transformations to reduce and hide communi-

cation overhead [34]. Other researchers, such as Lim [46] and Huang [35], have considered

communication so troublesome that they chose goals to address communication first and

parallelism second. Both are communication-free transformations. The works by Ama-

rasinghe [4] and Anderson [6] describe more advanced frameworks to address the critical

issue of communication costs in a distributed memory machine. Other HPF-related papers,

such as the work by Gupta and Schonberg [32], describe communication analysis and novel

techniques for reducing communication by adjusting the protocol. The technique described

by Garza-Salazar and Bohm recompute values to avoid communicating them [30].

20

2.3 Loop Nest Transformations

It is well known that programs tend to spend most of their execution time in a small portion

of the code.3 Execution time is not proportional to the amount of code because programs

can loop and re-execute a portion of the code. Most restructuring compilers exploit this

property by concentrating their search for parallelism in loops.

In this section, we introduce loop transformations. Loop transformations are the re-

structuring compiler’s primary means of finding parallelism in serial code. This section is

not intended to be a comprehensive list of transformations. Instead, we provide an intro-

duction to our notation and definitions (2.3.1), concentrate on loop transformations that are

important to matrix-based restructuring compilers (2.3.2), introduce several non—matrix-

based transformations that are referenced in the dissertation (2.3.3), and discuss existing

performance metrics (2.3.4).

2.3.1 Preliminaries

For scalar computers, the order of execution comes from the relative order of the statements

as they appear in the source file (the lexical order of the statements) and the language pre-

scribed sequential order of a loop (the semantics of the loop). A restructuring compiler

looks at other orderings that produce identical results (a legal ordering) yet increase the

amount of parallelism. In this section, we define a perfect loop nest and develop the con-

cepts of data dependence and iteration space.

3This is commonly known as the 90/10 Locality Rule. See Hennessy and Patterson’s work [53] for more

information about temporal locality while executing code.

21

An explicit loop statement in a language may occur by itself or nested within the scope

of another as shown below.

DO I=1,N

DO J=1,M

Sl

END DO

END DO

A loop nest is perfect if the loop’s body meets one of two conditions: either (I) the

body consists of a sequence of non-loop statements with a single-entry point and single—

exit point (SESE) or (II) the body consists of exactly one perfect loop nest. This definition

agrees with Abu-Sufah’s definition of basic loops [1] and with the concept of perfectly

nested loops used by Banerjee [9], Wolfe [72], and others. ‘Tightly-nested” has also been

used by Lamport to describe perfect loop nests [43].

Symbolically, we can describe any perfect loop nest with the following notation. Given

a nest of p loops, we have p lower bounds (denoted as lbl, lbz, lbp), p. upper bounds

(denoted as ubl, ubz, ..., ubp), and p index variables (denoted as i1, i2, ..., ip). The

bounds lbvub1 refer to the outer loop and 1bp,ubp refer to the inner loop. The value of

the loop indices at any given iteration is stored in a vector (of length p) called an index point

I = [iv 12, ..., ip], where :11 and ip refer to the outer- and inner-most loop, respectively.

The set of index points for all iterations of a nest is called the iteration space. For any given

nest of loops there is a prescribed order for executing the index points, namely the serial

(or sequential) order. For perfectly nested loops, this matches a lexicographical ordering of

the index points.

22

Although the serial ordering is the execution order assumed by the programmer, the

restructuring compiler — based on dependences between the index points — considers

other orderings that produce semantically equivalent results. A dependence exists between

two index points I1 and I; when both use the same memory location and at least one index

point writes to it. (Usually, dependences are further classified based on which index point

is writing to the location, but we do not need that distinction here.) Assurrring 11 appears

before 12, lexicographically, and there is a dependence between the two, we can define a

(dependence) distance vector as D = [2 — I1. Furthermore, we can define a direction vector

corresponding to a given distance vector by applying the sign4 function to each element

(that is, the corresponding direction vector of the distance vector [4, -—3] is [1, — 1]).

For a significant number of problems (which includes a number of linear algebra codes

and all systolic array algorithms as described by Wolf and Lam [68]), there is a uniform

pattern to all the distance vectors in the iteration space. Given a uniform pattern, the union

of all of the distance vectors form a finite set — the dependence distance set. This set and

the loop nest are the input to matrix-based transformation algorithms.

Finally, we define a dependence graph. A dependence graph is constructed by letting

the index points be the vertices of the graph and the dependences be directed edges. A

directed edge from I1 to I2 means that there is dependence from 11 to I2. To aid the reader,

we always display dependence graphs in a p-dimensional Cartesian coordinate system with

each vertex located such that its index point is its coordinate.

--1 if x is negative

“The sign function is sig(:r:) = 0 if x is zero

+1 if x is positive

23

2.3.2 Matrix-Based 'ITansformations

Banerjee [9] developed a unified, matrix-based theory by showing that three important

loop transformations can be modeled by unimodular matrices. This allows us to approach

specific problems with a rigorous theory to maximize goals in lieu of ad hoc techniques

or the “generate-and-test” approach. It is our intention in this section to provide a brief

overview of Banerjee’s theory and other matrix-based transformations.

Unimodular matrices have several beneficial properties. They are integer matrices and

have a determinant of i1. They are closed under matrix multiplication. For each of the

three elementary loop transformations, which include permutations, skewing, and reversal,

there is an elementary unimodular matrix that represents each transformation. Further-

more, it can be shown that every unimodular matrix corresponds to a (finite) sequence

of elementary transformations and, conversely, that every (finite) sequence of elementary

transformations can be represented by a unimodular matrix.

If I represents any n x n identity matrix, we can form the three elementary transforma-

tions easily. Loop permutation interchanges two DO loops in the nest; the corresponding

unimodular matrix interchanges two rows of I. Loop skewing effectively maps an index

point [21,232, ...,iq, ...,z’,, ...,ip] to [i1,i2, ...,iq, ...,i,+piq, ...,z',] where p is the skewing fac—

tor and loop r is being skewed with respect to loop q. This is accomplished in a unimodular

matrix by replacing a zero in I with)1. Loop reversal switches the lower and upper bounds

of a single loop so that the order of the iterations is reversed. This is accomplished by

negating a diagonal element of I.

24

The final step is to transform the loop limits to output the new DO statements based

on the transformation matrix. The loop limits are mapped to new values (based on the

transformation matrix) and any expressions that use the new index variables inside the loop

are modified to map hack to the original values (using the inverse of the transformation

matrix). These steps are critical to work presented here but the details are unimportant. The

interested reader is directed to the work by Banerjee [9] for an introduction and Banerjee’s

book [11] for extensive coverage of the topic.

One of the example algorithms that Banerjee proposes [9] finds transformations that are

suited for fine-grain parallel architectures. He proves that this algorithm guarantees that the

transformed loop nest is legal and

e the inner loop can be executed in parallel, and

s the number of iterations in the outer loop is minimized.

We will use this result in Chapter 4.

2.3.3 Other 'ITansformations

Matrix-based transformations are relatively new. Before matrix-based transformations were

developed, restructuring compilers were constructed using a large number (dozens) of ad

hoc transformations that were applied individually. (The three transformations of the previ-

ous section were all general transformations developed before matrix-based transformation

frameworks came into existence.) In this section, we describe several transformations that

are not matrix-based, but we find useful in later chapters. Since a major component of our

25

work deals with loops that are not perfect, we also provide an overview of some of the ad

hoc transformations that make loop nests perfect.

Loop distribution (LD) as described by Padua [52] is a popular technique for making

loops suitable for automatic conversion to vector or parallel form. The technique is also

known as loop fission. Although the technique has many uses, a major problem is that loop

distribution cannot break a strongly-connected component in a dependence graph. It is this

problem that most researchers have attempted to address. In addition, a minor problem is

that loop distribution can make one loop nest into a large number of nests. If each of these

nests needs a barrier synchronization, then loop distribution can be expensive. (Several

compilers use loop fusion to counteract this, but loop fusion is difficult if the loop nests

are transformed with unimodular transformations because the compiler may not be able to

match the resulting loop bounds.)

There is a simple method for making perfect loop nests from imperfect loop nests by

introducing conditional statements. This technique is understood with an example:

l D0 i1 = nerl

D0 ‘il = 11.1,N1 DO i2 = n2,N2

P2ii1] DO i3 = n3,N3

DO i2 = n2,N2 IF i3 :3 n3 THEN

P3[i1,i2] I]? i; =n2 THEN P2[i1]

DC is = 713le i => Paiirlizl

S[i1,i2,i3] END IF

END DO S[i1,i2,i3]

END DO END DO

END DO END DO

1 END DO
Most researchers cite Abu-Sufah’s non-basic-to-basic loop transformation [1] when re-

ferring to this technique, but it is probably much older. (Lamport [43] mentions the tech-

26

nique as early as 1974.) M. E. Wolf [67] points out an important condition for the legality

of the non-basic-to-basic loop transformation; one that has frequently been omitted. The

condition asserts

for all loop nests j,

1b:- S ij 5 ubj => 1bj+1(ij) S “bl-.101)

must be true. Essentially, this states that we cannot move the statements into the body of

a loop if there exists the possibility that the loop body will not be executed. This method

has the advantage that it is easy to perform and it is legal for a broad range of imperfect

loop nests. It has the serious disadvantage that it shifts the decision making from compile-

time to run-time and the extra computation takes place in the body of the innermost loop.

For some architectures (superscalar, for example) these conditionals can have a significant

effect on the execution speed.

M. J. Wolfe briefly discusses imperfect loop nests in [72]. He begins with the non-basic-

to-basic approach but points out that the same dependences that prevent loop distribution

will frequently prevent loop interchange.5 Regardless, he recognizes that there is a class

of loops for which loop interchange is still legal and presents the (complex) conditions

needed to interchange these imperfect loop nests. The legality conditions make this method

difficult to perform plus the smaller class of loop nests that are suitable is a drawback.

In his Ph.D. thesis, M. E. Wolf [67] discusses imperfect loop nests. Similarly, he starts

with Abu~Sufah’s non-basic-to-basic method but he states that under certain conditions,

after the unimodular transformations, some of the i f statements can be moved out of the

5Although Wolfe discusses loop skewing, he does not indicate that this problem can be avoided by the

combined effects of loop skewing and loop interchange.

27

DO 1'1 = MINI

DO i2 = n2(i1).N2(i1)

D0 i3 = n3(i1,i2),N3(i1.i2)

IF i2 = 1120]) /\ is = "3(5rti2)

DO i1 = 11th

Hill]

D0 52 = fl2(ir).N2(i1)

DO. i3 = "3(ilrizer3(ir.52)
. . .

THEN P2 2'1
=>S[zr,12,%3]

S[i1,i2,i3] []
ENBODO

END DO
END

END DO
END Do

ENDDO

.
"
.
r
-
¢
‘
.

"
I
.
”
.
1

DO i’l = n’1,N{

DO ‘5 = “5(ii).Né(i'1)

DO ’3 = "3(‘III‘I2)IN§('III"2)

IF 1'1 = n2(t’2) A If, = n3(t’2,t’1)

DO i’l = n’1,N{

DO i’2 = "5(i'1),Né(i’1)

IF i’1=n2(i’2) THEN Pfli’l]

DO ‘3 = "$(i’1,i’2),Né(i’r,i’2)

 THEN PUi’ => . . .
Sub" 3" {’12 i1] SU[zl,t2,¢3] i“

1’ 2’ 3 END Do ‘
END Do

END Do END DO
END Do

ENDDO

Figure 2.2: four steps in Wolf’s approach

innermost loop and part of the condition removed. In Figure 2.2, we have Shown the four

steps needed to transform a loop this way: shown first is the loop nest before transforma-

tion; then it is shown after the non-basic—to-basic transformation; next, it is shown with a

unimodular transformation (interchanging the two outer loops); and finally it is shown with

the moving of the conditional.

Moving the if in this example hinges on the fact that the inner loop is not changed by the

transformation. That is, i; = n3(i§, i’l) is only true at the beginning of the execution of the

if, loop. See Wolf [67] for more details.

Wolf claims (p. 51) that “if the unimodular transformation is a skew, then the non-

perfectly [sic] nested portions would simply be moved in and moved out again [to their

28

% 1

DO I=LBl,UB1

TEMP=C*Y(I)-2

DO J=LBZ,UB2

%

DO I=LBl,UB1

DO J=LBZ,UB2

=TEMP*X(I,J) >=> =(C*Y(Il-2)*X(I,J)

END DO

END DO

END DO

END DO

Figure 2.3: SFS method demonstrated

original positions].” This makes performing the transformation (on imperfect loop nests)

for loop skewing easy, but it remains complex for general unimodular transformations.

Plus, the transformation may only improve upon the non-basic-to-basic transformation in

certain cases.

In Chapter 3, we find one of the ad hoc techniques called Scalar Forward Substitution

(SFS) useful. This transformation has also been called Expression Folding and Scalar

Propagation. In certain cases, this technique is useful for making loop nests perfect. SFS

will propagate an expression forward within a scope (in our case, a DO loop) when there is

exactly one def (that does not involve the previous value of the variable) and one or more

subsequent uses. The meaning of def and use are given in the text by Aho, Sethi, and

Ullman [2]. The SFS method is demonstrated in the example in Figure 2.3.

SFS is useful in parallel environments because it removes data dependences. As a side-

effect, SFS can make an imperfect loop nest perfect. Frequently, SFS will enable a loop to

be executed in parallel. SFS actually increases the amount of computation, but the negative

29

effect of the extra computation is usually much smaller than the positive effect of parallel

execution. In fact, SFS is the inverse of common subexpression elimination [2], which is

used in many optimizing compilers for scalar machines to remove the extra computation.

To summarize, each of the above transformations handles Some imperfect loop nests

and each transformation has its own restrictions on when it may be used. No single trans-

formation technique has proven to be clearly superior.

2.3.4 Performance Metrics

Even before restructuring compilers were developed, optimizing compilers have used mod-

els and functions as a criteron for performing transformations. Some static models are

intuitive or come from the technical data available about the hardware. For example, re-

placing a branch to an unconditional branch instruction sequence with a single branch is

clearly performance-improving. For simple microprocessors, it is easy to determine from

the hardware reference when replacing a multiply with multiple additions will yield a per-

formance improvement.

Higher level decisions, such as whether to distribute data or how to order loop transfor-

mations or even how many processors to use, cannot be made with simple, static perfor-

mance models. Many systems have used run-time data to guide compiler decisions. In this

subsection, we discuss some of the work related models we have developed for restructur-

ing compilers in Chapter 5.

The use of prior performance data to predict future performance and, ultimately, to

improve performance is not novel. Analysis and predication have been used to under-

30

stand parallel algorithms for some time. For example, Bodin et al. [15] extend a modeling

method to the BBN GP1000 shared-memory multicomputer that was originally developed

by Wijshoff et al. [28] for the Alliant FX/8. Both of these studies were interested in re-

vealing the behavior of the memory subsystem. The results were not intended to guide a

compiler algorithm.

Mehra et al. [50] model the operations of a simulation language BDL for two parallel

applications on a iPSC/860 hypercube. They use profiling information to build two analyti-

cal models, one for each parallel application. Since these particular applications are re-used

often, the prediction tool gives the user the ability to determine in advance how long the

program is likely to take and then tune the application to make more effective use of the

machine for simulations.

More recently, Fahringer [25] and Fahringer et al. [26] used several of the parameters

we are using plus cache and specific network information to accurately estimate the per-

formance of loop nests. This information is used to drive a tool that is part of the Vrenna

Fortran Compilation System (VFCS). The researchers document the fact that the predic-

tion tool can be used to discriminate between different transformations to determine the

best one for performance. Their accuracy is derived from the detailed understanding of the

communication subsystem and the effects of cache on their multicomputer. Unfortunately,

that information varies in NoWs. The VFCS does support NoWs but the NoW version does

not include the performance prediction tool.

A. Dierstein et al. [22] also uses run-time information to direct compiler transformation

decisions. They use their performance metric to successfully perform automatic data dis-

tribution and parallelization on an iPSC/860. Similar to the VFCS, their metric depends on

31

detailed information about communication times in the iPSC/860. In our problem domain,

compiling for NoWs, this information is not available because communication subsystems

vary and the network’s actual performance cannot always be inferred from the reported

performance figures.

More recently, K. Kennedy and U. Kremer have introduced a tool for automatic data

layout for distributed memory machines [40]. Their approach is to use performance in-

formation in conjunction with a search algorithm to present to the programmer, prior to

compilation, a set of possible data layouts. Their goals are similar to ours, especially with

respect to using prior performance data, but they focus soley on the data layout issue and

(apparently) leave the code transformations to the compiler. Others [20] have shown that

data and code transformations cannot be considered separately without loss of performance.

32

Chapter 3

Loop Nests: Taxonomy, Statistics, and

Compiler Design

Errors using inadequate data are much less than those

using no data at all.

Charles Babbage

A majority of the performance-increasing techniques developed over the last twenty

years assume that loop nests are perfect. Researchers, including Kelly and Pugh [37], have

begun to question this assumption as new developments— such as the various matrix-based

transformations — continue to be limited to perfectly nested loops. This assumption was

not a concern with the older techniques because restructuring compilers performed a large

number of transformations and some of the ad hoc transformations would convert a portion

of the imperfect loop nests into perfect loop nests. If restructuring compilers are based on

the application of a single transformation — such as a unimodular transformation — then

imperfect loop nests are ignored. In this chapter, we analyze how often perfect loop nests

33

occur in scientific FORTRAN codes, analyze the effects of specific transformations on the

codes, and describe a compiler that is fundamentally based on unimodular transformations

but is not as restrictive with respect to perfectly nested loops.

A preliminary study suggested that two well-known transformations could be used ef-

fectively to make loop nests perfect. In the first half of this chapter, we follow up on this

study by coding these two transformations in a FORTRAN compiler and measuring their ef-

fectiveness on a large number of scientific FORTRAN programs. The results are presented

in 3.1. We measure effectiveness by counting the number of perfectly nested loops before

and after the application of the transformations. Our concern here is with the ability to

enable other performance-increasing transformations, such as the unimodular transforma-

tions, and not with the direct benefits (increased performance) of these transformations.

In the second half of this chapter, we discuss the high-level design of a restructur-

ing compiler that is not restricted to perfect loop nests. We discuss how to integrate the

apperfect-to—perfect transformations and unimodular transformations withoUt violating the

basic philosophy behind unimodular transformation theory.

3.1 Loop Statistics

In this section we present the results of a static analysis of loop nests. First, we state the

definitions used to classify loop nests. Next, our methodology is described. Finally, we

present the data gathered and discuss its implications.

Our preliminary investigation indicated SFS and LD were promising techniques to con-

vert imperfect loop nests into perfect loop nests. We hypothesized that combining these two

34

would be sufficient. We did not include the other transformations because of the previously

mentioned disadvantages, the complexity of the transformation, or the inherent limited po-

tential. Our goal is to identify which loops are handled effectively by the composition of

SFS and LD and determine the significance of the loops that are not handled.

3.1.1 Definitions

We defined a perfect loop nest earlier. In this section we expand upon this definition and

build a hierarchy of loop nest classes. Our definitions are pragmatic and therefore, may

lack a sense of mathematical elegance. The techniques used to handle loop nests that

are not perfect are limited to certain loop structures. We establish a class based on this

characteristic. This class is a superset of the perfect loop nests but still does not encompass

all loop nests. We call this class of near-perfect loops apperfect.l (While not all techniques

handle all of the loops in this class, we are not aware of any automatic techniques that

handle loops outside of this class.) Our definition of an apperfect loop nest is one whose

body consists of any combination of SESE sequences of non-loop statements and apperfect

loops.

The third class is general and includes all legal FORTRAN loops. The examples in

Figure 3.1 are general loop nests but not apperfect. The imperfect class of loops includes

all general nests that are not perfect. This definition of imperfect matches the common

usage of the term. Figure 3.2 shows the relationships between these classes.

lWe have created this word using the prefix ap- to suggest that these loops are almost perfect. The

definition implies that some transformation exists that will make the loop nest perfect.

35

C This example shows a loop

C nest within the structure of

C a conditional.

DO I=1,N

IF (T(I).EQ.0) THEN

DO J=1,N

S

END DO

END IF

END DC

(a)

C This example shows a loop body

C that is not SESE. (There is

C is branch out of the loop body.)

DO I=1,N

DO J=1,N

S

IF (ALPHA.LT.ERR) THEN

GOTO 10

END IF

END DO

ENDDO

(b)

C This example shows a loop body that is not

C SESE because the RETURN is effectively a

C branch out of the loop body.

DO I=1,N

DO J=1,N

S

IF (ALPHA.LT.ERR) THEN

RETURN

END IF

END DO

END Do

(C)

Figure 3.1: three examples of general loop nests that are not apperfect

36

CL? imperfect

Figure 3.2: relationships between perfect, apperfect, general, and imperfect

In addition to the formal classes described above, we give special consideration to cer-

tain loops. The first of these special classes is loop nests that have sequential I/O statements.

The execution order of the iteration space for these loops is critical because transforming

these loop nests requires a number of assumptions that may be unreasonable. (We assume

that the input records are ordered; we also assume that the order of the output records is

significant.) Because we are concerned primarily with unimodular transformations and be-

cause singly-nested loops cannot be transformed with unimodular transformations, we also

separate loops nests of depth one (singly-nested loops).

Methodology. We examined 25,000 lines of scientific FORTRAN code and classified all

of the loop nests. In order to process the sample data, we developed a program to parse

37

FORTRAN, perform the necessary transformations, and classify the loop nests. We used

the parser and database library from the Sigma Toolbox 0.2a (which, in turn, was based

on the SIGMACS project) [14, 29, 63]. Although the library included subroutine calls to

do loop distribution and scalar forward substitution, we rewrote these calls to make them

more comprehensive and robust. We relied on the toolkit’s data dependence tests, def/use

calculations, and unparse routines to complete our source-to—source compiler.

When classifying the loops, our program first checks each loop to see if the loop con-

tains any I/O statements. If so, the loop is classified “Order-Critical.” Otherwise, it checks

the depth of the loop and singly-nested loops are marked as such. Finally, it tests for perfect,

apperfect, and general, in that order. The summarized results are listed package-by-package

in Table 3.1.

3.1.2 Discussion

The packages we have selected are well-known FORTRAN codes that are available to the

public on the Internet. (We retrieved these via Netlib [23].) Linpack is a collection of lin-

ear algebra subroutines. The Misc package includes subroutines that were collected from

various sources -—- for example, samples used in other research papers to demonstrate their

techniques. The Nascodes is a collection of five NAS benchmarks. The Svdpack contains

a number of singular value computation subroutines. Toeplitz is a package that performs

Toeplitz matrix computations (Toeplitz matrices are special cases of persymmetric matri-

ces). In all cases, if multiple versions of the routines existed (for example, single precision

version, double precision version, complex version, etc.), we chose only to include one ver-

38

Table 3.1: loop statistics with various transformations applied

Loop Distribution

#Order- #Singly-

Application #Nests #Perfect #Apperfect #General Critical nested

linpack.f 150 4 6 3 0 137

misc.f 179 23 14 2 11 129

nascodes.f 91 24 13 2 3 49

svdpack.f 154 19 16 21 8 90

toeplitz.f 60 1 l 3 4 0 42

TOTAL 634 81 52 32 22 447

Scalar Forward Substitution followed by Loop Distribution

#Order- #Singly-

Application #Nests #Perfect #Apperfect #General Critical nested

linpack.f 152 7 3 3 0 139

misc.f 183 31 6 2 1 1 133

nascodes.f 95 34 3 2 3 53

svdpack.f 155 l9 16 21 8 91

toeplitz.f 56 11 3 4 o 38

TOTAL 641 102 31 32 22 454

39

sion. Normally, the double precision version was chosen. Our intent is to keep the original

relative proportions. In addition, if a package uses the same subroutines for different algo-

rithms, we only include the subroutine once. The programs TSVDl and TSVD2 in Svdpack

both call DGEMM. Since TSVDl and TSVD2 come in separate, stand-alone FORTRAN files,

DGEMM appears twice. To avoid skewing our results, we applied the following rule: if two

subroutines have the same name and are textually (line-by-line) identical, we removed one

of the routines from our sample. If the two routines performed the same function but were

slightly different (perhaps written by different authors), we left both subroutines intact. All

of the subroutines included in this study are listed in Table 3.2.

There is a practical consideration to take into account regarding these results. First, we

are using Sigma’s data dependence tests. These routines are fast but not exact. We have

observed that the Parafrase-2 compiler distributes a loop nest when ours does not because

Parafrase-Z’s extensive data dependence tests indicate that LD is legal. Since we cannot

safely distribute the loop nest based on Sigma’s data dependence test, we have to leave the

loop nest apperfect. This means our analysis may err by being overly conservative.

It is important to note that the general class does not change under any of these trans-

formations. This is to be expected since these loops are distinguished by the fact that we

do not have an automatic loop transformation to handle them.

An encouraging result is that the two transformations (SFS and LD) are fairly effective.

More encouraging is that together they are significantly better than either one alone. The

data does not validate our hypothesis at the beginning of this section — SFS and LD are not

sufficient -— but it does suggest we have made progress. In fact, we can observe that a large

number of the troublesome apperfect loops (16 of 31) are from a single package, Svdpack.

40

Table 3.2: listing of subroutines included in each package

misc.f

lOOOd.f:

ddasrt.f:

nal .f:

na2.f:

ode.f:

wolfe.f:

linear equation solver

differential/algerbraic eq. of the form F(T, Y, Y’) = 0

solution to sys of linear equations (avoiding near breakdown)

generate B-nets of any box splines on a 3D mesh

integrates a sys of It first order differential equations of the form if}? =

f(t. y(1). y(2). y(n))

example from [72]

nascodes.f

buk.f:

cgm.f:

embar.f:

fftpde.f:

mgrid.f:

bucket sort

conjugate gradient method

embarassingly parallel

3D FFT PDE

simple multigrid solver (3D potential field)

svdpack.f

la52.f:

blsl .f:

b152.f:

sisl .f:

sis2.f:

trns 1 .f:

tms2.f:

blas.f:

Single vector Lanczos for A’A eigensystems

Block Lanczos for equivalent 2-cyclic eigensystems

Block Lanczos for A’A eigensystems

Subspace iteration (Rutishauser’s ritzit) for equiv. 2-cyclic eigensystems

Subspace iteration (Rutishauser’s ritzit) for A’A eigensystems

Trace nrinimization for shifted 2-cyclic eigensystems using Ritz-shifting

Trace minimization for shifted A’A eigensystems using Ritz-shifting and

Chebyshev polynomial acceleration

Level 1, 2, and 3 Basic Linear Algebra Subroutines

linpack.f

dchdc.f:

dchdd.f:

dchex.f:

dchud.f:

dgbco.f:

dgbdi.f:

dgbfaf:

dgbsl.f:

dgeco.f:

Cholesky decomposition

augmented Cholesky decomposition

updates the Cholesky factorization

updates an augmented Cholesky decomposition

factors a real/complex band matrix by Gaussian elimination

computes the determinant of a band matrix

factors a band matrix by elimination

solves the real/complex band system Ax = b or ATT = b

factors a matrix by Gaussian elimination

41

Table 3.2: listing of subroutines included in each package (continued)

linpack.f (continued)

dgedi.f:

dgefaf:

dgesl.f:

dgtsl.f:

dpbco.f:

dpbdi.f:

dpbfaf:

dpbsl.f:

dpoco.f:

dpodi.f:

dpofa.f:

dposl.f:

dppco.f:

dppdi.f:

dppfaf:

dppsl.f:

dptsl.f:

dqrdc.f:

dqrsl.f:

dsico.f:

dsidi.f:

dsifaf:

dsisl.f:

dspco.f:

dspdi.f:

dspfaf:

dspsl.f:

dsvdc.f:

dtrco.f:

dtrdi.f:

dtrsl.f:

computes the determinant and inverse of a matrix

factors a real/complex matrix by Gaussian elimination

solves the real/complex system Ar: = b or ATT = b

solves a general tridiagonal matrix given a rhs

factors a real/complex symmetric pos. definite band matrix

computes determinant of symmetric pos. definite band matrix

factors a symmetric positive definite band matrix

solves the symmetric positive definite band system Ac 2 b

factors a symmetric positive definite matrix

computes determinant and inverse of symmetric pos def matrix

factors a symmetric positive definite matrix

solves the real/cmplx symmetric pos definite system An: = b

factors a real/cmplx symmetric pos definite packed matrix

computes det and inverse of a symmetric pos definite matrix

factors a real/cmplx symmetric pos definite packed matrix

solves the real/cmplx symmetric pos definite system Ax = b

given a pos definite tridiagonal matrix and a rhs will find solution

Householder transformations to compute QR factorization

computes coord. transfonn., project, & least squares solutions

factors symmetric/symmetric/Hermitian matrix by elimination

computes det, inertia and inverse of a sym/sym/Herm matrix

factors a symmetric/symmetric/Hermitian matrix by elimination

solves the symmetric/symmetric/Hermitian system Ax = b

factors a symmetric/symmetric/Hermitian packed matrix

computes det, inertia and inverse of a sym/sym/Herm matrix

factors a symmetric/symmetric/Hermitian packed matrix

solves the symmetric/symmetric/Hermitian system Ax = b

reduces matrix to diagonal by orthogonal/unitary transform.

estimates the condition number of a triangular matrix

computes the determinant and inverse of a triangular matrix

solves triangular systems of the form Ta: = b or Tra: = b

toeplitz.f

tsld.f:

tsldl .f:

tslz.f:

tslzl .f:

cslz.f:

cqrd.f:

cqrz.f:

tgsld.f:

Toeplitz (real) (user interface to TSLDl)

Toeplitz (real)

Toeplitz (complex) (user interface to TSLZl)

Toeplitz (complex)

Circulant (complex)

Column-Circulant (real orthogonal factorization)

Column-Circulant (cmplx orthogonal factoriz.)

Block-Toeplitz (real general blocks)

(interface to tgsldl)

42

Table 3.2: listing of subroutines included in each package (continued)

toeplitz.f (continued)

tgsld1.f: Block-Toeplitz (real general blocks)

tgslz.f: Block-Toeplitz (complex general blocks)

(user interface to tgslzl)

tgslzl.f: Block-Toeplitz (complex general blocks)

ctslz.f: Block-Circulant (complex Toeplitz blocks)

ccslz.f: Block-Circulant (complex Circulant blocks)

cgslz.f: Block-Circulant (complex general blocks)

salwz.f: Block-Circulant (complex service routine for computing direct or inverse

discrete Fourier transformations)

ctgslz.f: 3-level block-Circulant (TG blocks)

cctslz.f: 3-level block-Circulant (CI‘ blocks)

cccslz.f: 3-level block-Circulant (CC blocks)

ccgslz.f: 3-level block-Circulant (CG blocks)

This suggests that many users will find SFS and LD useful but selected users who require

a package such as Svdpack, may observe poor performance. If the Svdpack package is

ignored, we see that of the 109 relevant loops (perfect, apperfect, and general) shown in

Table 3.1, three-quarters are perfect after both transformations are applied. When Svdpack

is included, 31 loop nests remain apperfect. This surprising result led us to investigate

further the application and its loops.

We extended our compiler to write the apperfect loops into a separate file after both

transformations were applied. Next, we inspected the loops manually. We noticed a number

of similarities and decided to further classify these loops. We searched for characteristics

that would cause both transformations to fail. We identified four characteristics of loop

bodies: (I) presence of a recurrence statement; (11) presence of an induction variable; (III)

multiple DO loops; and (IV) the presence of very complicated data dependences. We have

43

Table 3.3: loop characteristics that cause SFS and LD to fail and their frequency

Recurrence: 24

Induction Variables: 8

Multiple DO’s: 8

Complex Data Dependences: 2

included samples of the four cases in Figure 3.3. The number of times each of these cases

occurred is shown in Table 3.3. Note that the total exceeds 31 because some nests exhibited

more than one of the characteristics.

These characteristics are not new discoveries. Recurrence statements are discussed by

Eigenmann, et al. [24] and Allen and Kennedy [3]. These statements tend to be difficult

to parallelize. Usually, the most effective technique is to replace the statement with a

machine-optimized library call. In essence, change the algorithm. In [24] the authors

referenced a study by Meier and Eigenmann [51] that showed this library-call solution

yielded a 50% increase in performance for a Conjugate Gradient algorithm on the Cedar

architecture. In [3], Allen and Kennedy include an example that has an induction variable

and mention a transformation “induction variable substitution” (described by M. J. Wolfe

[73]). This transformation removes the induction variable by computing its value from

the normal loop index and loop constants. (Induction variables are actually a special case

of recurrence statements.) When multiple DO loops occur, as in Figure 3.3(c), it is either

do j = 1, ip

acc = 0.0d0

do i = 1, ip

if (iflag .eq. 0) then

acc = acc+a(j,i)*

b(ibstar+i)

else

acc = acc+a(i,j)*

b(ibstar+i)

end if

end do

c(icstar+j) =

end do

acc

(a)

do j = 1, n

temp = zero

do i = 1, m

temp = temp+a(i,

ix = ix+incx

end'do

Yle) = Y(jy)+alpha*temp

jy = jy+incy

end do

J')*X(ix)

(1))

do kb = 1, nml

do i = n-kb+1, n

work(i) = a(i,

a(i, n-kb) =

end do

do i = n-kb+1, n

t = work(jl

call daxpy(n,t,a(1,j).

1,a(1,n—kb).1)

end do

end do

n-kb)

0.0d0

«9

do i = k+1, n

a(i, k) = a(i-l, k+1)*

a(k+1, k+1)

do j = k+1, n

a(i, j) = a(i,.j)+

a(i, k)*a(k, j)

end do

end do

(6)

Figure 3.3: These loops come from our sample of FORTRAN codes. The nest (a) has a

recurrence statement, the nest (b) has an induction variable (and a recurrence statement),

the nest (c) has multiple DO’s, and the dependences in the nest ((1) made it impossible to

apply any of our transformations.

45

because the loops are in the same strongly connected component or the data dependence

tests could not establish that the loops belong in separate strongly connected components.

Either a change in the algorithm is required or a more accurate dependence test is needed.

Likewise, cases with the characteristic of very complicated data dependences may only

benefit from an algorithmic change. In general, these problems are beyond any of the

loop transformations commonly available. An interactive tool may be important for these

situations: analysis and transformations could be handled in bulk, automatically, but the

difficult cases — ones that require a different algorithm — could be highlighted by the

tool.

We have found that of the remaining 31 apperfect loop nests, most require changes

to the algorithm. Additional apperfect-to-perfect transformations have little potential for

improvement over SFS and LD. Thus, we conclude that most of the loops in the apperfect

class no longer represent a challenge to researchers.

3.2 Compiler Design

The data in 3.1 is important because it allows us to design a restructuring compiler that is

based on unimodular transformations (UT5) but is not limited to perfect loop nests. In this

section, we discuss the differences between restructuring compilers that are based on UTs

and others based on generate-and-test. We show how to integrate scalar forward substitu-

tion and loop distribution with UTs and argue that the resulting compiler is still essentially

a UT-based compiler.

46

Generate-and-Test versus Unimodular Transformation Theory. Before the emergence

of unimodular transformation theory, restructuring compilers either allowed the user to se-

lect the order in which to apply the loop transformations or the compiler had to generate

its own order. As researchers advanced the state of restructuring compilers, it was real-

ized that a single, static ordering decided a priori will not be good in all cases — certainly

not optimal. Whitfield and Soffa [66] discuss this in terms of transformations enabling (or

disabling) other transformations. In practice, over a large collection of loops, one might

observe that transformation X will frequently enable transformation Y and at the same

time observe that transformation Y will sometimes enable transformation X. Thus, we

should not give a fixed order to these two transformations. M. J. Wolfe [70] shows exam-

ples involving scalar and parallel transformations where a particular ordering is good in

one case and bad for another. Likewise, Wolfe gives two examples where the same is true

for the reverse ordering. Thus, a restructuring compiler that desires optimal or near optimal

transformations needs to follow a “brute force” algorithm: generate an order, test for legal-

ity and optimality, generate another ordering, test, and so on. This approach is necessary

because of the large number of transformations and because the transformations’ ad hoc

and special nature make the interactions too complex to manage.

In contrast, compilers with algorithms based on unimodular transformation theory avoid

the brute force approach. By limiting the transformations to just three elementary trans-

formations, the theory disencumbers the complex interactions. Thus, a complex unimod-

ular transformation composed of many elementary transformations becomes manageable.

Specifically, we can determine the legality of the transformation, the new loop bounds, and

the new loop body with case. And most important, one can choose very precise goals and

47

design algorithms to find the desired unimodular transformation that maximizes that par-

ticular goal in polynomial time. This is a substantial development over compilers based on

generate-and-test.

Each approach has its advantages and disadvantages. Thereare a large number of trans-

formations available to a generate-and-test compiler. Some of these are crucial for convert-

ing apperfect loop nests to perfect loop nests. But with the generate-and-test compilers, we

only have the brute force approach to ordering the transformations. Compilers based on

unimodular transformations have polynomial time algorithms that guarantee optimality for

particular goals, but unimodular transformations can only be applied to perfect loop nests.

Thus, if we can join the apperfect-to-perfect loop transformations discussed in the pre-

vious section with unimodular transformations then we have removed the disadvantage to

compilers based on unimodular transformation theory. We indicate how this can be done

in the next section.

Integrating SFSILD with Unimodular Transformations. There are two options to con-

sider when joining new transformations to the unimodular transformation theory. The first

option is to make these transformations part of the elementary transformations and re-

establish the proofs and algorithms that are principal to the theory. The second option is to

determine if there is a fixed order that can be applied to the transformations to assure op-

timality. Although it may be possible to incorporate these transformations into the theory,

it would significantly modify the framework. Also, the changes to the proofs would not be

trivial. Instead, we show that SFS followed by LD is never worse than any other ordering

sequence.

48

To establish this ordering, we consider the four possibilities: no transformations, SFS

only, LD only, and LD followed by SFS. We will show that SFS followed by LD is always

as successful as any other ordering. We define successful to mean that the transformed loop

nests: (l) are perfect, if possible; (11) result in the fewest number of nests (i. e., fewest barrier

synchronizations); and (III) contain the minimum extra computation. We assume that (I)

is the most important because it means that unimodular transformations will succeed at

parallelizing the loop and that (111) is the least important.

No Transformation. SFS is always as good as or better than no transformations be-

cause we are able to remove the bad effects of SFS (extra computation) if needed. If we

find that after applying SFS that the unimodular transformation is unable to parallelize the

loop, then common subexpression elimination and strength reduction (both are well-known

transformations [2]) will undo SFS. So either SFS contributes to the parallelization or it is

equivalent to not applying any transformations.

Similarly, LD is always as good as or better than no transformations. If LD has been

applied and does not contribute to the parallel execution of the DO loop, it is easy to undo

LD with loop fusion. (If the loop is parallelized by a unimodular transformation, then it is

unlikely loop fusion will succeed because of the new loop bounds.) This, too, is common

practice as noted by Sarkar [57].

Therefore, if SFS followed by LD is applied to a loop nest, the composition of these

two will either contribute to the parallel execution of the loop or we can undo the effects.

Thus, it is never worse than no transformations.

49

SFS Alone. As in the previous argument, the effects of LD can be removed by loop

fusion if LD does not contribute to the parallel execution of the loop nest. Thus, SFS

followed by LD is for all cases no worse than SFS alone.

LD Alone. Loop distribution uses data dependences betWeen statements to build a

dependence graph. The strongly connected components of this graph become separate loop

nests. If we are relying on loop distribution to make loop nests perfect, then we desire the

graph to be as “weakly” connected as possible. If SFS is legal, then it will always remove

at least one dependence (between the “def” statement and one or more subsequent “use”

statements). Removing a dependence will never increase the strength of a dependence

graph. Thus, performing SFS followed by LD is no worse than performing LD by itself.

LD followed by SFS. Suppose that there exists an example E, where LD followed by

SFS is better than SFS followed by LD. Then both transformations must contribute because

we have shown that one or the other alone could not have out-performed SFS followed by

LD. This condition in conjunction with the fact that SFS cannot disable LD (the previous

argument), implies that LD must have enabled SFS. Since LD neither creates nor destroys

statements, it must have separated some statements into different loops such that it is now

legal to apply SFS. Such separation is impossible because all the occurrences of the scalar

being substituted that would make SFS illegal must appear in the same strongly connected

component. Therefore, LD could not have separated them. Consequently, example E

cannot exist.

Since our intent is to use SFS and LD to make loop nests suitable unimodular trans-

formations, clearly these two come before the unimodular transformation is applied. Thus,

we have argued that SFS followed by LD is an optimal ordering. We include loop fu-

50

sion, common subexpression elimination (CSE), and strength reduction to ensure that our

transformations are successful for all cases. This order is shown in Figure 3.4.

3.3 Summary

This chapter has three significant results, presented here and elsewhere [58]. First, analy-

sis of our data has led us to formulate three classes of loop nests (perfect, apperfect, and

general) whereas others have only considered two: perfect and imperfect. Although using

three classes instead of two is a simple change, it is important because it allows us to iden-

tify the relative significance of the loop nests that current restructuring compilers handle

well and the loop nests that they do not. A second result is that a significant number of

apperfect loop nests can be transformed into perfect loop nests by just two existing trans-

formations. The third result is that loops in our general class, which includes loops for

which no automatic general-to-perfect transformation is known, occur frequently in scien-

tific codes. Therefore, we have identified a class of loops that deserves more attention from

researchers and suggests that less work on apperfect-to-perfect transformations is needed.

Presented with these results, we draw three conclusions. First, while unimodular trans-

formations assume that loop nests are perfect, this is not a practical limitation for a compiler

based on unimodular transformation theory. With the use of scalar forward substitution and

loop distribution, we have shown that compilers based on unimodular transformations are

no more limited than any other proposed framework.

Second, we found that new apperfect-to-perfect loop transformations have very little

potential unless they specifically address the problems shown in Table 3.3. After apply-

51

Scalar

Forward

Substitution

l

Loop

Distribution

1

Unimodular

Transformations

Strength

Reduction -
Figure 3.4: optimal ordering of transformations recommended in this chapter

52

ing scalar forward substitution and loop distribution, most apperfect loops become perfect

loops. Since the remaining loops require an algorithmic change, we believe that it is un-

likely that these loops will be handled by a loop transformation. They are significant,

though, and we believe they do require some form of transformation.

By distinguishing the apperfect loops from the general loops, we established our third

result. There are a significant number of loops outside of the apperfect class for which there

are no loop transformations available. We suspect that a certain number of these loops have

potential and thus deserve more attention from the research community.

53

Chapter 4

Phase Method

The main finding presented in this chapter is a new algorithm called the phase method. It is

closely allied to other unimodular transformation algorithms such as Banerjee’s [9] except

for the important distinction that it accepts imperfectly nested loops.

The result presented is significant for two reasons. Although other techniques exist

to convert imperfect loop nests into perfect loop nests — loop distribution as detailed by

Padua, Kuck, and Lawrie [52] being the most notable— they cannot always be applied or it

may be undesirable to apply them. (Loop distribution, for example, cannot break strongly

connected components in a data dependence graph.) The phase method can parallelize code

that previous techniques cannot.

Secondly, some researchers are proposing alternative frameworks because unimodular

transformations are limited to perfectly nested loops (see Kelly and Pugh [37]). Although

this algorithm only handles loop nests of depth two, it strengthens the argument that uni-

modular transformations are amenable to generally nested loops. This is also significant

because others, including Banerjee [11], have expressed interest in solving this problem.

54

This chapter has two main sections. In 4.1, we show how we generate the data depen-

dence vectors and describe our algorithm. The algorithm is demonstrated with an example

in 4.2. We summarize the results of this chapter in 4.3.

4.1 Algorithm

In this section we describe the phase method. First, we calculate the dependence distance

vectors for imperfect loop nests such that they include our enlarged iteration space. The

next step is to invoke Banerjee’s algorithm in Figure 4.1 to produce a unimodular trans-

formation matrix and new loop bounds. Using these outputs we characterize the loop nest

and generate code. The most important feature of this approach is that by characterizing the

loop nest, our algorithm determines at compile time when to execute the leading statements

and trailing statements.

Calculating data dependence vectors has been studied extensively (see the references

by Pugh [56]) and no algorithm has emerged as clearly the “best.” Thus, in our initial

efforts we tried to distance ourselves from any single algorithm. To accomplish this goal,

we gave our source program to the dependence analyzer and then adjusted its output to

fit our iteration space. Although this was usually effective for doubly nested loops, we

have since adopted the method used by M. E. Wolf [67], which is more robust and easily

extended to n dimensions.

At the heart of most dependence analyzers, there is an integer constraint solver. We

can extract the dependence information in the form we want directly by augmenting the

input to the constraint solver within the dependence analyzer. For doubly nested loops, the

55

INPUT: set of dependence distance vectors and direction vectors and the

original loops’ bounds

OUTPUT: a matrix U such that the transformed inner loop may be executed in

parallel and the transformed outer loop has the minimum number of

iterations; specifically these variables are set:

U a unimodular matrix that transforms the distance vec-

tors and leading, body, and trailing statements

m1, M1 the lower and upper bounds of the transformed outer

loop

m20, M20 functions for the lower and upper bounds of the trans-

formed inner loop

SUMMARY: Banerjee’s Algorithm works by considering a list of possible trans-

formations, removing the illegal ones, adding a specific skewing

transformation, and then choosing the best remaining choice from

the list.

Figure 4.1: An algorithm for finding a loop transformation for fine-grain parallelism is

summarized in this figure. The detailed algorithm is labeled “Algorithm 6.2” in [9].

56

additional constraints are: P; executes only when 2'; = n2(i1) and E2 executes only when

I“; = N2(i1). (As Wolf notes [67], this is conceptually the same as Abu-Sufah’s non-basic-

to-basic transformation.) For n—nested loops, the constraints for the leading statements

(2 s q 5 p) would be: P,' executes only when

54+: = nq+1(iq) A I'm = nq+2(iqr iq+1) A ' ‘ ' A i? = "a(iqr n+1. ‘ ' ' Iip)

and constraints for the trailing statements would be similar. The effect of augmenting

the input to the constraint solver is that all of our dependence vectors are of length p.

Otherwise, a dependence involving Pa, for example, would only be of length q (where

qsm.

Once we have the distance and direction vectors, we can invoke the algorithm sum-

marized in Figure 4.1. Although the algorithm was meant for perfectly nested loops, the

dependence distance set that we are passing includes dependencies involving the leading

and trailing statements. Our only remaining task is to generate the code, based on the re-

sulting matrix and new loop bounds, with the understanding that each index point in the

iteration space is not necessarily the same sequence of statements. (It may be P2, E2, or

S.) We generate the code by characterizing the iteration space. For doubly-nested loops,

the characterization is represented with a single variable.

The key to the phase method is the recognition that the “wave” (the outer loop of the

transformed code) travels through the iteration space in phases. For a doubly-nested loop,

there are three phases. The first phase may be vacuous or both leading and body statements

are executed. The middle phase has three exclusive possibilities: only body statements

57

AAA A

\AT‘A A A A A 5A A A A Dele

bites. six! \ KKK?

---v--* szK* g \\§\
0 e [o o o o '0 sue" ea

‘ o e do; 0 as"

Figure 4.2: There are three simple cases that arise, based on the shape of the dependence

graph. The first occurs when the middle phase hits both the leading statements and the

trailing statements. The second occurs when the middle case is vacuous. The last case is

when we have one or more waves that have neither leading nor trailing statements. (The 0

represents P2, the 0 represents S, and the A represents E2.)

are executed; leading, trailing, and body statements are executed; or it is vacuous. The

third phase, similar to the first, may be vacuous or both trailing and body statements are

executed. The characterization of the phases comes from the shape of the iteration space.

Consider the same wave on the three different iteration spaces in Figure 4.2: for each

case, the middle phase is different. Since the angle of the wave depends on the amount of

skewing, it may be the case that in a given phase there may be more waves than the leading

or trailing statements. That is, these examples do not illustrate that the leading statements

may only be executed once every n waves during the first two phases of execution.

We characterize the iteration space by looking at the middle phase. We use share

to indicate the shape of the iteration space. When share is negative, it indicates that the

leading, trailing, and body statements are part of the middle phase. When share is positive,

the middle phase has only body statements. In all cases |share| is the number of waves in

the middle phase. To determine the value of share, we must first determine the last wave

58

to execute a leading statement (A2) and the total number of waves (tum). Therefore, we

calculate share with the following expressions:

A2 =|u12 I (N; — n1) number of leading waves that may execute P2

02 =Ag number of trailing waves that may execute E2

tum =|uu|(N1 -n1)+ [U12|(N2 —n2)+ 1 total number of waves

sharawm - 2|u12|(N1 - n1) characterizes the middle phase

p =u12 this is the slope of the wave (or p the skew)

Once we know how many leading statements there are in the middle phase, we can

calculate the remaining waves in the first and third phases.

a; =min{A2, A2 + share} number of waves in the first phase

w; =min{flz, 02 + share} number of waves in the last phase

At this point we are ready to generate code. Code generation is simply a matter of

generating code for each of the three phases. There are several alternatives to choose from

when generating the phases; we chose the simplest one here. The first phase is shown in

Figure 4.3(a). When generating code for the middle phase, share determines the code. If

share is zero, then nothing is generated. If share < 0 then the code of Figure 4.3(c) is

generated. If share > 0 then the code of Figure 4.3(d) is generated. The last phase is

shown in Figure 4.3(b).

We have presented this algorithm in its simplest form to make the concepts clear. There

are variations that we would make in an implementation. The conditional statements in

Figure 4.3(a,b,c) can be avoided by replicating the inner loop p times and changing the step

size of the outer loop. Each instantiation of the inner loop would use W, W + 1, ..., W +

p - l. The step size would be p. This is feasible because u is known at compile-time and

tends to be small.

59

 par-v

P2[n1,n2 — 1]

DO W=m1,m1 +02 -1

PAR Do X = m2(W),M2(W)

SU[W,X]

END

IF MOD(W+1,p)=p-1 THEN

P,U[W + 1,m2(W + 1) — 1]

END

END Do

(a)

DO W=m1+a2,m1+az+|share|—1

IF M0D(M1—W,p)=p-1 THEN

El’1W. M2(W) + 11

END

PAR DO X =m2(W),M2(W)

S"[W.X1

END

IF MOD(W+1,fl)=p-1 THEN

P20[W + l,m2(W + 1) - 1]

END

END DO

(e)

DO W = m1 + a2 + IshareI, M1

IF MOD(M1 — W,p) =p — 1 THEN

EI’IW. M2(W) + 11

END

PAR Do X = m2(W),M2(W)

S”[W, X]

END

END Do

EgUVth + 1]

(b)

DO W = m1 + ag,m1 + 02 + lsharel — 1

PAR Do X = m2(W),M2(W)

SU[W, X]

END

END DO

(6)

Figure 4.3: For doubly nested loops, there are three phases of output during code gener-

ation. The first and third phases are shown in (a) and (b), respectively. The middle phase

depends on the variable share. If share < 0 then (c) is output. If share > 0 then (d) is

output.

60

Another improvement can be made when the original loop does not have any trailing

statements. In this case, the “wave” only travels through two distinct phases (the second

and third phases may be merged). If the leading statements are missing, the first and second

phases are merged. If both the leading and trailing statements are rrrissing, then all three

phases are merged and we get code identical to Banerjee’s original algorithm.

4.2 Example

In this section we illustrate the algorithm with an example. The original code is listed with

line numbers in Figure 4.4 along with the dependence information. (We used a well—known

program, Tiny, by M.J. Wolfe to generate the distance vectors [71] and then used the

constraints described in the previous section to arrive at these distance vectors.)

Passing the vector set {(0,1), (3, 0)} and the loop bounds to Banerjee’s algorithm

[9] results in the following transformation matrix U and new loop bonnds m1..M1 and

m2()..M2():

__ 1 1 7711qu = 4.20

U _ (l 0) m2(1:)..M2(a:) = [max{3,x — lO}]..[min{10,x — 1}]

Next we calculate:

A2=1(10-3)=7 02:7

wtot = 1(10 — 3)1(10 — 1) + 1 = 17 share = 17 — 2(1)(10 — 3) = 3

a2 = min{7, 10} = 7 w; = min{7, 10} = 7

Now, using the templates from Figure 4.3(a,c,d), we get the code in Figure 4.5.

61

 MW

code

.
.
.
r

m
o
o
o
m
o
o
q
m
m

flow

flow

outp

flow

flow

DO I = 3,10

C(I) = 1/(A(I-3,1)*A(I-3,l)-1)

COLSUM(I) = 0

DO J = 1,10

A(I,J) = C(I)*X(I,J)

COLSUM(I) = COLSUM(I)+A(I,J)

END DO

END DO

Dependence Information

6:C(I) -+ 9:C(I) (OJ).

7:COLSUM(I) -+ 9:COLSUM(I) (OJ)

10:COLSUM(I) -+ 7:COLSUM(I) (OJ)

9:A(I,J) —> 6:A(I-3,J) (3,0)

10:COLSUM(I) ~+ 10:COLSUM(I) (OJ)

Figure 4.4: example code for phase method

62

a in.

Enter phase 1

C13) = 1/(A(0,1)*A(0,1)-1)

COLSUM(3) =0

DO w=4,10

PAR DO x=MAX(3,W-10),MIN(10,W-1)

A(X,W-X)=C(X)*X(X,w-X)

COLSUM(X) =COLSUM(X) +A (X, W-X)

END DO

T1=MAX(3,W-9)-1

C(T1)=1/(A(T1-3,1)*A(T1—3,1)-1)

END DO

Enter phase 2

D0 w=11,13

PAR DO X=MAX(3,w—10),MIN(10,W-1)

AlX,W-X)=C(X)*X(X,W—X)

COLSUM(X) =COLSUM(X) +A(X,W-X)

END DO

END DO

Enter phase 3

DO W=14,20

PAR DO X=MAX(3,W-10),MIN(10,W—l)

AfX,W-X) =C (X) *X (X,W-X)

COLSUM(Xl=COLSUM(X)+A(X,w-X)

END DO

END DO

Figure 4.5: resulting code

63

“
a
s
;

Notice in the code, when the skew (p) is one or zero, the condition is not needed (it

is always true). We introduce T1 and reduce constant expressions to simple values for

readability.

4.3 Summary

In this chapter, which appreared previously in a shortened form [59], we argue that unimod-

ular transformations on loop nests are not fundamentally limited to perfectly nested loops.

We extend the notation of an iteration space to include imperfectly nested loops and present

a unimodular transformation algorithm that generates parallel code for imperfectly nested

loops of depth two. Furthermore, this algorithm automatically produces parallel code in

cases where previous work on automatic imperfect loop transformations could not.

“
I
.

"
‘
“
a

Chapter 5

Performance Metric for NoWs

The Shape of Things to Come

H.G. Wells [65]

Typically, researchers use the speedup curve or performance curvel to show the effec-

tiveness of a parallel solution. The execution time for several runs of an application are

graphed against the number of processors while keeping the size of the problem fixed.

Although the general shape is well-recognized and its cause well-understood, it is not

simple to identify the critical characteristics of the performance curve of an application

prior to its execution. The precise shape of the curve depends on many aspects of the system

but the primary factors are the amount of parallel computation, communication required by

the application, and the hardware characteristics of the NoW. A typical speedup curve is

shown in Figure 5.1 with the number of workstations on the abscissa and the execution time

‘Sometimes the speedup curve is shown with execution time inverted since performance is the reciprocal

of execution time. Throughout the chapter we refer to the components of the execution time, so it is natural

to not invert the execution time. In this chapter, we continue to call it a performance curve.

65

on the ordinate axis. The overall execution time is marked with a solid line at the top of the

bar. The time spent doing parallel computation and interprocess communication are shown

as the dark and light shaded areas, respectively. The gap between the two is overhead that

is not measured as communication or computation by our system but does contribute to

the overall execution time of the application. By developing a metric that models these

main components and the overall execution time, a restructuring compiler framework can

make better transformation decisions. Identifying the cost of communication is especially

important, as evidenced by the large number techniques developed to address this issue

[30, 32, 18, 46, 35].

To develop a metric, we need to understand the performance curve in terms of a variable

number of processors and a variable problem size. Whereas the number of workstations is

a simple parameter to identify, the problem size is not. Researchers typically choose one

dimension of an important array as a reference to the problem’s size. The size is important

because it effects the communication costs and the number of loop nest iterations for the

parallel solution. Rather than trying to establish a technique to estimate the size of the

problem, we simply consider the problem size in terms of its main components: the timing

requirements for computation and communication.

We measure properties of the source code of an application, such as the number of loop

iterations, the number of communication periods, and the volume of messages sent. We use

these measurements to estimate the ratio of computation time to communication time for an

application. We propose that this ratio can be used to form a metric which, when combined

with information gathered about the target NoW will permit us to make important decisions

66

Execution Time v. Number of Processors

heet-pvrn-OT-le

I
1

Size: 100x100

477
Measure: Normalized I

l
398

I

l

3 318

: fl
g I: .

l

I

V 238

ig
I

159

‘

l

79

‘
’2 3 4 5‘6 7 8 9101112131415

NumberofProeessors

Figure 5.1: typical performance curve for parallel processing

within a restructuring compiler framework. We address one specific decision in this chapter

— determining the fewest number of physical processors that minimizes execution time.

Consider an application that runs on a specific NoW. If the user fixes certain variables

in the application that dictate the problem size, then based on the number of processors the

compiler chooses, the compiler knows at compile-time how many loop iterations will be

executed, how many messages will be sent, and the volume of messages transmitted per

67

process. Assuming the model has been calibrated for the specific NoW, we now have a

vector of coefficients that parameterize the performance of the different components of the

NoW.

By supplying the compile-time measures and the vector, oirr metric will produce a value

proportional to the execution time as the number of processors varies. Using results from a

specific application described later in the chapter, we can compare the performance metric

to the measured execution times of the actual application. The measured times are obtained

by running this application 15-20 times for each of the specified number of processors and

averaging the execution times. For a fixed problem size, we illustrate the actual execution

times and the predicted performance as the number of processors are varied in Figure 5.2.

Note that while the predicted performance is not perfect, it does capture the first-order

effects and reveals important information about the shape of the curve.

In this chapter, we Show that the predicted performance curve can be determined prior

to execution and used to improve the compiler transformations. One specific technique is

to use the predicted curve to have the compiler choose the fewest number of workstations

needed to minimize the execution time. Several assumptions, which are explored in 5.2,

are required to take full advantage of the techniques described. These assumptions are

commonly employed in current performance prediction research papers [26, 25, 13, 22].

Note also that the techniques described here have been performed manually on the source

code for testing purposes — a compiler has not been implemented to automatically add the

instrumentation.

68

5m I i r 1 V

"predicted" -0—

45000 ' "measured" -+— 1

A 40000 - .

i3 ,
8 35000 -

1

g 3m 1'
c1

.2

E

V 25000 b r

is:
E 20000 t '

o
-::I

§ 15000 1' 4

X

0

10000 i 1

5000 r 1

O k j l 1 l

0 2 4 6 8 10 12

number of processors

Figure 5.2: actual execution times and the predicted performance

5.1 Experimental Set-Up

To calibrate and test our model-based metric, we developed four data-parallel applications.

We chose to use complete applications rather than a set of artificial or synthetic loops to

calibrate our function. By doing so, we are able to capture the effects of intra-application

network contention, the influence of medial I/O, and a natural mixture of loop nests. Sets

of synthetic loops usually attempt to address the last issue but rarely do they address the

first two. By taking this approach, we allow any application to calibrate the system, which

may be useful in specific production environments. Below is a brief summary of our data-

parallel system, the test applications, and the hardware platforms. A more detailed descrip-

tion of our system and the test applications appear in Appendix B.

69

5.1.1 Data-Parallel System

To implement the test applications on a NoW, we developed a simple C-l-l- data-parallel

library to interact with PVM 3.3.11. The library has classes to handle distributed arrays,

spawning and managing of SPMD processes, group/neighbor communications, and timing

the gathering of timing information. Like most data-parallel systems, our system uses static

scheduling based on the owner—computes rule.

The library facilitates the instrumentation and calibration of the programs with a timing

class. All of the applications were compiled manually because, in order to make the nec-

essary changes automatic, we would require access to the source code of the data-parallel

compiler, which we did not have while conducting the experiments. The library is unob-

trusive. It adds one collective communication which appears at the end. Time spent in the

support library is neither counted towards computation nor communication times. From

the overhead shown in the graphs, it is clear that the library is not a significant factor in the

overall execution time.

5.1.2 AppliCations

We used four complete applications to test our work and calibrate the metric. All of the

programs were originally written as ordinary serial applications which were then converted

to parallel, SPMD programs.

0 Heat Transfer Application (heat)

The first application calculates a sequence of images (a video) that indicates the tran-

sient heat transfer through materials with different thermal coefficients. Thus, an

70

engineer can observe the heat transfer through the design. Unlike many video appli-

cations, this application does not have frame-level parallelism because frame (2' — 1)

is needed to calculate the ith frame. 80, instead of performing each frame calculation

in parallel, we distribute the columns of the array representing the image (and other

associated arrays) across the processors. Since these slices are not independent, a

data-parallel compiler, such as FORTRAN D or HPF, will generate the necessary com-

munication, which we manually insert. A higher level compiler with automatic data

decomposition would likely produce similar communication patterns. This applica-

tion includes a number of different loop nests involving multiple distributed arrays,

I/O procedures that gather individual frames to be written to disk, and messages to

move columns of data between neighbors and global reductions.

Fingerprint Matching Application (fprint)

The second application searches a database to match the features of an unidentified

fingerprint. In previous stages of the identification process, fingerprint features are

extracted from digitized images and stored in a database. Since two digitized images

of the same fingerprint are unlikely to have precisely the same features, a “scoring”

function determines how closely the features match, which requires a global, dis-

tributed sort.

Texture Segmentation Application (gbank)

At another stage in the automatic fingerprint identification process, features are ex-

tracted from a digitized image. One technique uses a bank of Gabor filters to extract

71

the feature, which involves a series of convolutions. Besides feature extraction, Ga-

bor filters are also used in other applications such as texture segmentation.

Spatial Decomposition Technique (sdt)

The fourth application applies a spatial decomposition technique (SDT) to the elec-

tromagnetic analysis of electrically large objects, such as various geometries for

antenna. The straight-forward formulation of the problem leads to densely-filled,

numerically-intensive, complex-valued matrices. The SDT allows total operation

count to be reduced by introducing subobjects which are simpler to compute. Cal—

culations local to the subobjects are readily performed in parallel, but the subobjects

need to synchronize frequently as the whole system converges to a steady-state solu-

tion.

Hardware Platforms

Part of the challenge of compiling for NoWs is the varied nature of NoWs. The networks

can be configured with different speeds and protocols, and may or may not use a bus-based

medium to communicate. To capture this variability, we ran our experiments on three

platforms. All of the platforms were homogeneous and every workstation had a single

processor running Solaris 2.5.1. Each platform is described below.

0 ATM

The first platform is a NoW with 12 Sun Ultra SPARCs connected by a Fore ATM

switch. Our data-parallel system does not use the ATM API because an unreliable

72

service is inappropriate for parallel computing. In its place, we use the vendor-

supplied TCP/IP interface, which is not as fast as the ATM API, but is more suitable

for our tests. The designation fa is used in the figures to represent this system be-

cause it is the name of the Unix device driver. The bit rate of the network is 155 Mb/s

per workstation.

0 Fast Ethernet

Another NoW configuration we tested has 12 Sun Ultra SPARCs connected by a Fast

Ethernet switch. The bit rate is lOOMb/s per workstation. We use the designation

1e2 for this system (from the Ethernet device driver 1e and the magnitude of the bit

rate 102).

0 Ethernet

The last system has 12 Sun (40 Mhz) SPARC 10’s connected by Ethernet. These

machines are connected by a switch that gives a 10 Mb/s bit rate to each workstation.

Our designation for this network subsystem is 1el.

5.2 Instrumentation and Analysis

In addition to the serial-to-parallel transformations we perform on these applications, we

also instrument our code to gather timing and count information. The former is a run-

time measure used in calibration. The latter is a compile-time measure of loop iteration

and messages. We instrument all of our test cases, but in a production compiler, only

applications used for calibration would be fully instrumented. For applications not used for

73

calibration, we follow the same procedure described below, without modifying the code, to

reveal the loop counts.

While it is theoretically undecidable to ascertain the number of iterations prior to ex-

ecution, we offer approaches and simplifying assumptions to make the problem tractable

for a broad class of scientific and engineering problems. Crucial to any reasonable model

of the communication/computation ratio is an understanding of the phenomenon we call

observation skew. We describe this phenomenon in 5.2.4 and show how our model adapts

to it.

5.2.1 Compile-Time Measurements

The measurements we make prior to executing the code include a count of the number loop

iterations, the number of communication periods, and the number of bytes transferred.

Since the compiler inserts the communication primitives, it is simple to count any single

message the compiler inserts. The number of times that message is transmitted, though,

depends on the number of loops that enclose it. The number of loop iterations is more

difficult. Determining the number is what we concentrate on here. We start by describing

the counts for loops and then how to extend the counts over procedure boundaries. We

describe some limitations that can be addressed by known compiler transformations and

some that cannot. This discussion leads into the statement of our assumptions.

For a single loop, the count is calculated directly from the bounds and step size. To

combine two loops, the iterations are summed if the loops are executed sequentially. They

74

are multiplied if the loops are nested. Loops within procedures are similar to nested loops

but require global analysis.

To perform the global analysis, we build an interprocedural loop nest tree to count

iterations for the whole application. We start at the leaves 0f the tree and work our way

toward the root. A loop nest tree is the ideal structure. However, some calling sequences

will form structures that are not trees. If a procedure is called in more than one place, then

the interprocedural structure becomes a directed acyclic graph. Under these circumstances,

a call site is chosen arbitrarily and the call parameters from that site are used. If there is

recursion, the interprocedural loop tree becomes a structure with cycles. While it is still

possible to count iterations with some recursive calls, that is beyond the scope of this work.

Difficulty arises in the model when loop bounds are not immediately available. Con-

stant folding can be used to propagate values, when needed, to determine individual loop

bounds. The iterations of while loops with simple expressions and simple induction

variables can be counted by induction variable recognition methods. But even with these

well-known compiler techniques, the determination of an iteration count is not always pos-

sible. Because the dimension of an important array may be an input to the program, it

is unknown at compile-time. Based on the input data, branches in the loop nest tree may

be executed conditionally, producing a varied effect on the iteration counts. Also, many

numerical methods require looping until a tolerance is met, which means the number of

iterations is not known until after the loop has been executed.

75

5.2.2 Assumptions

The limitations just mentioned above restrict use of our metric but they are not as severe as

they may appear. The compiler can easily maintain a symbolic expression of the number

of iterations. If these symbols are constant or are set once during execution, the metric can

still be useful. Symbolic comparisons can be made between loop nests within the program.

If the variables are constant and the transformation framework resolves the transformations

to a binary decision, such as “12 processors or 24?”, both versions could be placed in the

object code and the appropriate one selected at run-time. The expression at the top of the

loop nest tree describes the number of iterations in the whole program. Critical variables

unknown at compile-time can be presented to the user with the statement, “specify these

variables and the compiler will perform advanced transformations” (a/k/a partial evalua-

tion). When ascending from a conditionally executed branch of the loop nest tree, one

estimate is to assume the branch is always taken. For mutually exclusive branches, the

maximum of all branches is a reasonable estimate. These worst-case decisions will be

consistent in the calibration and use of the model.

The efficacy of the simplifications described above were not tested because they did not

appear in our test cases. From this point, we will tacitly assume that we can count the loop

iterations.

We also assume that we have exclusive access to the NoW — workstations and local

network. The workstations might be used periodically as general time-sharing machines

but we assume that when we are calibrating or running as a NoW, that all other users are

denied access. Although we have not documented it formally, our experience has led us

76

i
t

to conclude that our techniques would fail if users shared the machines during our experi-

ments.

5.2.3 Run-Time Measurements

To fit our model to a specific NoW, we need to gather performance information about the

NoW. We gather this information by instrumenting an application and executing it on the

platform. One run of the application generates a record with several pieces of data. We keep

track of the date (in the usual internal Unix style: the number of seconds since January 1,

1970), the number of processors involved, the size of the application, the average size of a

message, and for each processor, the time for computation, time for communication, and

the overall time for the entire application. We also keep a precise count of the iterations per

processor, corresponding to each of the three time measurements. There is also a provision

for distinguishing individual loop nests within the application but that feature is not used

in this set of experiments. The pertinent information is stored locally on the workstations

in a small data structure until the application ends. At the end of the run, all of the data

is gathered on one machine and a single record representing the run is output. One file is

used to store all of the records related to a single configuration. The filenarne encodes the

application and version number, the communication protocol, and the network interface.

As an example, consider one record, shown in Figure 5.3, generated by the heat ap-

plication running on the ATM network of Ultra SPARCs. This record is in a file named

heat-pvm—OB-fa . data which indicates the network, the current version of the heat

program (08), and the base communication system in use. We have utilities to parse and

77

#date: Mon Jun 23 04:34:39 1997

867054879 6 200 encl { # 27.385775 avg msg size

77267/28158 185804/46159244 270215/8 (00)cerium

102903/28167 154323/46084844 263899/8 (03llithium

102434/28167 155294/46084844 263924/8 (02)helium

95123/28167 155367/46084844 257397/8'(04)ca1cium

95514/28158 162016/47479112 263924/8 (01)magnesium

82671/28167 173494/45204932 263769/8 (05)californium

Figure 5.3: one timing record

process the files with records in the form of Figure 5.3. The ‘#’ indicates a comment that

runs to the end of the line. The last column in the fields (within braces) is the workstation

name and its logical process number. Process 00 is the I/O process and master. The process

to the right of the master is 01.

5.2.4 Skewed Observations

Measuring communication and computation times for the system requires careful attention

because the measurable run-time aspects of the system can give misleading results. Our

instrumentation measures the computation by noting the time at the beginning of a loop

nest and at the end. The difference is accumulated for the entire execution time and the

iterations are recorded. The communication time is measured in a similar way — the time

is noted at the beginning and the end of a section of communication code. The number of

messages and the size of the message is also recorded. Consequently, a program appears

as a sequence of alternating communication and computation periods. Martin et al. [48]

studied the effects of latency, overhead, and bandwidth in a NoW. One of their results is

78

that applications are most sensitive to overhead and even if latency is completely hidden

by overlapping of the transmission time of messages with computation, the overhead will

still cause an application to appear to alternate between periods of communication and

computation. Thus, whether the compiler can or cannot overlap messages is unimportant

to our model. If the compiler does overlap messages, we are simply modeling the overhead.

These measures accurately represent the delays that the individual processes observe,

but these numbers do not accurately measure the time spent actually doing the computation

or communication. For computation, the operating system may interrupt the process so

that computation delay is longer than the actual computation time. For communication,

the time doing the communication may not even be the most significant portion of the

communication delay. Specifically, the communication delay will include at least three

factors: ,waiting for the corresponding process, the actual communication time, and the

time that the process may sit in the ready queue waiting to be rescheduled. In Figure 5.4,

we illustrate these factors for two processes. Note that in the two-processor case, one

process will finish before the other and the t1 factor will only be reflected in one processor’s

delay. Also note that the nondeterministic t3 factor will occur for every message since

sending a message always deschedules a process in general-purpose operating systems.

Consequently, each processor observes different delays during a single execution of an

application. Furthermore, this analysis assumes perfect load balancing. Even a slight load

imbalance will make skew more pronounced.

Incorrectly summarizing these multiple views of the system leads to statistically unex-

plainable fluctuations. We call this phenomenon observation skew. We take a pragmatic

79

.
.
c
fl
‘
t
i
‘
r

V
a
c
s
.

approach to masking its effects. Our concern here is how to produce a single number to

represent the whole system communication time or the whole system computation time.

”E

”Y

:WSwain

Figure 5.4: skewed observations of communication delays

We censidered three ways of addressing the skew issue. Let m be the number of pro-

cessors in sample 1' and, for 1 S j S m, tggmmd- be the jth processor’s observation. One

solution is to choose the maximum,

tggmm = max {193mmJ} (communication)

tgtimp_— max {tggmp.1} (computation)

combg'

-—mJax{ } (overall)

but this leads to inconsistencies (for example, tcomm + tcomp > tcomb is possible) that

are hard to model. Another approach is to look at one processor. In our application, the

first task created is responsible for starting all other tasks and the handling of the I/O. It

80

will always be the final task running. The processor running this task is a likely candidate

because its overall time is what the user observes, which in a sense, makes it the “truest”

overall time. But its computation time might not represent the system well because of load

imbalance. Also, this process has more responsibilities in collective communications. A

third technique uses a normalized observation that amounts to a weighted average,

- t

thmm = max {1128mm.1} Z({+mm") (communication)

1 wcomma'

(i)

tCOl’II ' .

:1... = max {w::m,,,} z(a, P») (comma...)

wcompg'

t0) b

(t) __ com ,j

tcomb - max {wcomba'} :10“) (overall)

wcombg'

where 10::ng represents the number of iterations for processor j, 1 _<_ j < m. This takes

into account both sources of skew. We are satisfied with its ability to model the state of

the system because from experience we have found that a simple average is best for the

overall times. For the computation, we used a normalized average. For communication,

we have found the I/O node’s time to be the best number to summarize the system’s state.

Otherwise, imbalances in the workload created fluctuating statistical properties that made

it difficult to model the system.

81

5.3 Formulating a Metric

By developing a metric, we are analyzing the relationship among several variables, in-

cluding execution time and compile-time measures. This is called regression analysis, a

well-known statistical too]. To use the regression equation, we need to check that our data

meet the standard assumptions for regression analysis. Namely, we want to show that the

two main components of our metric, computation times and communication times, for a

NoW approximate a normal distribution. Also, to effectively use the model, we want to

Show the practical result that the variance of the overall execution times are small so that

it is not likely a random perturbation will render our results meaningless. Following those

checks, we develop a general performance metric based on a model where the explanatory

variables are compile-time measurements. Performance will, of course, depend on the spe-

cific platform. We incorporate platform-specific information when we calibrate the model

in 5.4.

5.3.1 Statistical Tests

Below, we Show that distribution of execution times of a program of fixed size and num-

ber of processors is approximately normal. We calculate an interval for the variance such

that we are 90% confident the true variance falls within the interval. Strictly, we know

that execution times are not normal. There is an absolute minimum time that gives a left-

hand boundary to the probability distribution function. This asymmetry violates a Gaussian

distribution. Nonetheless, by performing these tests, we are showing that the actual distri-

bution is statistically close.

82

We start with the hypothesis that variations in computation and communication times

follow a normal or Gaussian distribution. We test this hypothesis by fixing the problem

size at 300 and looking at the actual distributions of a large number of executions (21 to 37

runs each) when the number of processors is 2, 6, and 12. Measured execution times are

grouped into five regions and the frequencies for each region are graphed in Figure 5.5 and

Figure 5.6 for the ATM platform and the Ethernet platform, respectively. The solid blue

line shows a normal distribution with the mean and variance determined by the sample

mean and variance. The red lines form a histogram of the relative frequencies for the five

regions.

We test our hypothesis that computation and communication times are normally dis-

tributed using a x2 goodness-of-fit test. The samples are divided into five regions. Since

every region needs at least five samples for the test, adjacent regions were merged so that

the number of samples in each region are greater than four (leaving 3 degrees of freedom in

each case). Then, we compare the observed frequencies of execution times per region with

the frequencies expected for a normal distribution. This approximates a chi-square distri-

bution with u = 3 degrees of freedom. By using the critical value x335 = 5.991, we can

reject the null hypothesis with 95% degree of confidence and conclude that the fit is good.

The calculations for each population (the platforms and the number of processors are var-

ied -— each configuration is a population) are summarized in Table 5.1. Every population

tested passed the test for computation and for communication. From the graphs, though, the

distribution of communication times appears slightly asymmetrical, as we would expect.

Once we accept that we have a normal distribution of computation times, it is desirable

to know the accuracy of the sample variance. To determine this, we used the x2 distribution

83

COMPUTATION TIMES(WATM/UlnSPARCs'

0.04

normel(x) —

'compdat' — 0.035

0.03

0.025

0.02

0.015

0.01

0.1115

o ,

1443 1453 1463

execuion time (seconds)

COMPUTATION TIMES (mime ATM/UlraSPAI-‘le'

0.08

normal(x) —

0.07 'compdat' —

0.06

0.05

0.04

0.03

0.02

0.01

0 - - I -

400 496 502 see 514

exeeuion time (seconds)

0 00 COMPUTATION (rproc-Io ATM/UltrsSPARCs)

0.07

0.00

0.05

norrnal(x) —

'compdet' —

0.04

0.03

0.02

0.01

291 294 207 300 300 7306

execuiontirne (seconds

Figure 5.5: histograms of measured

COMMUNlCATION (fume-=2 ATM/UlreSPARCe)

0.1

normal(x) —

0.12 'eommdat' —

0.1

0.08

0.06

0.04

0.02

o - L ,

2123 25 27 29 3133

execraion time (seconds)

COMMUNICATION (rproc-B ATM/UlrsSPAFle)

0.025

normal(x) —

'commdat —

0.02

0.015

0.01 /

0.005 /

345 387 389 411 433‘

execulon time (seconds)

COMMUNICATION (mute-10 ATM/UllmSPARCs)

normal(x) —

'commdal' —

203 2112 7301 320 see

exeeuiontime (seconds)

Al I a. A.

times and Gaussian pdfs

CWPUTATION TIMES (nproc-2 Ethernet/SPARC10s) COMMUNICATION (npromz Ethernet/SPARC10s)

0.012 0.012

normal(x) — normal(x) —

001 'comp.dat' — 001 'commdar' —

0.006 0.008

0.006 0.006

0.004 0.004

0.002 I 0.002

0 , 0

2778 2852 2926 104 176 248

execrrion time (acorns) execuion time (seconds)

CWPUTATION (race-6 Ethernet/SPARC10s) COMMUNICATION (nproc-G Ethernet/SPARC10s)

0.04 0.025

normal(x) — normal(x) ——

0.035 'compdat' -— 'comm dat' —

0.02

0.03 I

0.125
0.015

4

0.02

0.015 0.01

0.01

0.005

0.005

0 j o .

930 944 958 142 158 174 190 206

execuion time (seconds) execuion time (seconds)

COMPUTATION TIMES (19:01:12 Ethernet/SPARCIOs) COMMUNICATION (rprom12 Ethernet/SPARCIOs)

0.18 0.018

norml(x) — normal(x) —

0-1‘ ‘ wwpdat' — 0:018 'commdat' —

0.12 0.014

0.1 0.012

0.01

0.08

0.006

0'06 0.006

°~°‘ 0.004

0.02 0.002

0 0 -

470 472 474 476 478 141 162 183 204 25

execrtion time () execuion time (seconds)

Figure 5.6: probability distributions for the same size problem with different numbers of

processors on an Ethernet

85

Table 5.1: summary of x2 goodness-of-fit tests

x2 for ATM/UltraSPARC Platform

COMPUTATION

Processors 11 Mean Std Dev. V X; Result

2 24 14535 10.33 3 4.010 pass

6 24 4988 9. ls 2 0.246 pass

10 21 2985 5.68 2 0.371 pass

COMMUNICATION

Processors It Mean Std Dev. V)9 Result

2 24 25.6s 3.75 2 0.8853 pass

6 24 369$ 287$ 2 1.863 pass

10 21 2795 25.88 2 2.536 pass

)8 for Ethemet/SPARCIO Platform

COMPUTATION

Processors It Mean Std Dev. V x2 Result

2 39 2876s 54. Is 2 0.283 pass

6 38 9473 1 18$ 2 3.889 pass

12 37 4745 2.65 3 5.016 pass

COMMUNICATION

Processors It Mean Std Dev. V x2 Result

2 39 1973 54.03 2 2.867 pass

6 38 1855 18.35 3 2.178 pass

12 37 295s 46.25 2 2.772 pass

86

‘
5
’
.

2'
.

1'

Table 5.2: summary of 90% confidence intervals for overall execution time

Platform, #proc. measured Standard Deviation Avg. Execution Time

ATM/UltraSPARC, n = 2 7.68 5.71 < a < 11.9 30078

n = 6 22.18 17.2 < a < 31.3 11168

n = 10 29.88 23.4 < o < 41.7 7908

Ethernet/SPARCIO, n = 2 146.28 113.3 < a < 210.1 14878

n = 6 37.08 28.7 < a < 53.2 8588

n = 12 8.38 6.4 < 0‘ < 12.2 5828

again to calculate a 90% confidence interval for the variance (and subsequently the standard

deviation). The results for the overall execution time are shown in Table 5.2. In each case,

the range of the standard deviation is a small percentage of the average computation time.

Thus, these results suggest that it is statistically unlikely that a fast two-processor sample

will be faster than a slow fouerrocessor sample. \Vrthout this assurance, any statistically

based metric would be moot.

5.3.2 General Formula

As we have suggested, the general shape of the performance curve comes from the two

major components, communication and computation. We treat both as functions of the

problem size and the number of processors involved. Below we describe our metric and

articulate our choices for the general scheme.

87

First, we consider the computation alone. For our SPMD data-parallel applications

static scheduling is used. The iterations are divided among the processors based on the

distribution of the data using the owner-computes rule. Thus, if the number of distributed

elements is evenly divided by the number of processors, "and every element is updated

inside the loop, then the work is evenly divided. If the number of elements is not evenly

divided by the number of processors and every element is updated inside the loop, then

one or more processors will do an extra iteration to make up the deficit. When none of the

elements are updated inside the loop, the load balance is determined by the application.

The last case is important because it can be a major cause of skewing. Using the worst-

case, this leads to the simple approximation of w/p iterations, where p is the number of

processors and w is the total number of iterations. Since the execution time is nonlinear

in terms of p in this equation and the mathematics is simpler with linear functions, we

immediately transform this expression to the iterations per process, or ml, which can be

directly measured at compile-time. For programs we are modeling, we will assume that

every iteration takes approximately 61 time units, so our cost function of computation is

tcomp = 51331

The assumption that all iterations are the same is clearly false. But we are willing to make

this assumption because all programmers tend to write loop nest bodies that are of the

same order of complexity. It is unlikely that one loop body will be 100 times or 1000 times

bigger than another loop body in the same program. Furthermore, we are more concerned

with the shape of the function, not the specific execution time. That is, we will be making

88

relative, not absolute, judgments with this function. As demands increase for more precise

functions, this may need to be investigated as noted in the future work in Chapter 6.

Estimating communication is not as simple as computation. The effects of a message

are less deterministic because they require interaction with the operating system (and pos-

sibly the scheduling algorithm of the operating system) and interaction with the network

interface. The type of communication is also a factor. A common type of communication

in a data-parallel solution moves columns of data between neighbors. Ideally, this com-

munication cost should be independent of the number of processors, but in practice it is

not. If the processors are connected by a bus-based network, as is typical with traditional

Ethernet, then contention for the medium would certainly be an issue and a source of non-

deternrinism. Another type of communication is global reductions. The cost of a global

reduction may increase logarithmically or linearly (with respect to the number of proces-

sors), depending on the implementation. Our system is not logarithmic. We considered

a number of models which were deemed inadequate. Several failures. are documented in

the following section. Originally, we approximated communication costs by counting the

loop-induced communication periods, per process. Our reasoning was that communication

costs are dominated by message startup times. We speculated that that would be sufficient.

Instead, we found that the number of messages and the volume of messages, per process,

was a better estimate. If we included the number of processors involved, to account for

bus-based networks and global reductions, then we had a slightly better approximation. So

our approximation of communication time is

tcomm = 132552 + 3333 + 54534

89

where 1:, is the number of messages, .23 is the volume of messages, and x4 is the number

of processors involved. The constants, 6,, are the relative proportions of each factor. We

discuss these more fully in 5.4.

Since the compiler inserts the messages, it knows which loops enclose it and the mes-

sage sizes. Thus, the number of messages and the average size are kept in two scalars while

traversing the loop nest tree at compile-time.

Our cost function is the sum of the communication and computation costs in the loop

nests of the program. Written as a single equation, y is

y = 130 + @131 +€2$2 +5333 +54$4+ , u , (5-1)

overhead computation communication nondeterrn.

where ml is the number of iterations of computation, 2:2 is the number of messages, .23 is

the volume of the messages, and x4 is the processors. The constants)8,- represent a relative

weighting of the factors. All activity outside of loops is represented by the lone constant 60

and the u term is a random variable introduced to represent the nondeterrninistic delays —

factors not modeled. Finally, y is a dependent variable proportional to the execution time.

All of the explanatory variables (13,-’8) are functions of the problem size and the number

of processors. Thus, we have a function that meets our requirements for a transformation

framework metric. In the next section, we describe how to determine the 638 and how we

tested the metric.

Although these two components were established separately, strictly speaking they are

not always necessarily independent. Some compilers will transform loops such that mes-

sages overlap with computation and this relates variables 2:1 and :03, a violation of an as-

90

sumption made in the next section. We believe this to be a minor effect that does not

disturb the first-order effects we are attempting to model. The results that follow support

this belief.

5.4 Calibration and Experimental Results

The function previously described is not complete; the 6,8 must be specified. In order

to use an empirically-based metric for a NoW. it is necessary to make measurements on

the active system because, clearly, a single program will perform differently on different

platforms. We call the process of determining the 6’s for a specific platform calibrating

the metric.

The calibration stage involves running an instrumented application multiple times with

different parameters for the number of processors and the size of the problem. At the end

of each execution, the timing results for each process are gathered and written as a single

record to a file (see 5.2.3). For development purposes, we execute several runs 80 that

for each problem size and number of processors combination, we have 12 samples. In

this section, we use these samples to determine the specific)6 constants of Eq. 5.1. These

constants relate the performance of the major subsystems in a specific NoW system. To

test this, we designed a number of experiments to check the sampled data. We combined

the general formula and our sampled data to determine the constants using the standard

approach of multiple linear regression. Next we examined suitability of our metric and the

adequacy of the model. We focus on two standard goodness-of-fit tests. First, we look at

the proportion of total variability. Second, we inspect the graphs of residuals against the

91

important variables in the model and system. This helps to establish the homoscedasticity

condition necessary to use linear regression. We also point out the inadequacy of some less

specific models.

5.4.1 Multiple Linear Regression

To generate a collection of samples, we execute the instrumented application twenty-four

times varying the size of the problem (100, 200, 300, and 400) and the number of proces-

sors (n = 2, 4, 6, 8, 10, 12). We call each combination a configuration. A collection of all

possible configurations is called a run. This produces samples of various ratios of commu-

nication and computation. We perform several runs to generate twelve samples for each

configuration.

For each sample, we calculate a normalized overall time and store it as an entry in

the vector y. From the compile-time measures, we can also obtain the computation (x1),

number of messages (2:2), the volume of the messages (2:3), and the number of processors

(34). If we have It executions of the application, we can arrange these data in a k x 5

matrix, X, where each row of data comes from one execution. (Note, the first column of

X is all 1’8 and corresponds to the constant 80 in Eq. 5.1. In terms of our model, 60 is the

total overhead outside the loop nests that occurs once in every sample.) Our problem of

determining b is a matter of solving

Xb : y (5.2)

92

Since one run generates twenty-four samples, it is unlikely that all the samples will per-

fectly fit the model. The rank of the matrix will certainly exceed five. Thus, we have an

overdeternrined system and the best we can do is to choose a vector 6 to approximate the so-

lution. Common practice in this case is to minimize the squares of the errors (least-squares

solution), where the errors (called residuals) are defined as

ezy—Xb

Geometrically, this means projecting the samples y onto a 5-dimensional subspace de-

fined by b. We want the projection that minimizes the distance. This will be a line orthog-

onal to every column of X,

XTe=O or XT(y—Xb)=0

01'

xT xi = XT y (5.3)

Our calibration program reads from the data file of samples and stores them in X and

y. Weforma5 x 5matrixA = XTX andanew vectorc = XTy. SinceAisformedfrom

XT X, it is always symmetric, which means there is a stable, fast decomposition of A:

A = LDLT

93

where L is a lower triangular matrix. Thus, we solve for 5 by substituting A and c into

Eq. 5.3 to get

LDLTE=c

By doing a forward substitution, dividing by the diagonals, and a backward substitution,

we can quickly solve for 5 which is also the solution to the vector 3 in Eq. 5.1. This is

our calibration vector. The independent variables (x) are measured at compile-time. The

calibration is done once for a configuration (5 is calculated), and y is determined by these

two:

In terms of compiling for a NoW, the vector 5 represents the performance relationship

between the communication and computation components of the workstations. The vector

2: represents factors measured in a particular application. The resulting value y can be used

in comparisons with other y’s for the same application but with different problem sizes or

numbers of processors. Below, we test the accuracy of the model.

5.4.2 Adequacy of Model

Two steps remain. First, we need to establish that the model adequately describes the sam-

ple points. This alone gives an important result: an application can be used to calibrate the

model and then the model will predict that application’s performance (for other configura-

94

tions). The second step extends the result to show that the calibration with one application

can be used to predict the number of processors required to minimize the execution time of

another program.

We test the adequacy of the model by examining the two major components separately,

lest we risk the case that one component’s good fit masks the other’s poor fit. If each

component fits its part of the model and the whole model fits, then we can be relatively

sure that we have chosen an accurate model on which to base our metric. We also show

that models which do not include as many factors, do significantly worse.

Although we discuss only one application (heat) on one platform (ATM/UltraSPARC)

throughout this subsection, we summarize the results of the same tests for all the applica-

tions and all the platforms at the end.

To test the computation component, we simply use the number of iterations factor, 3:1,

and a simple linear regression equation for computation:

tcomp($1) = ,50 + 51531

First, we calculate the coefficients (the 5 vector) for this equation such that the sum of

the squares of the residuals is minimized (5 = (XT X)'1XT y), where y is the measured

computation times and X is the iteration counts. “With these constants, we graph team, and

the actual samples in Figure 5.7. As can be observed, the model is close at both ends of

the scale. Despite a few outliers, the data support the obvious relationship: computation

time is proportional to the number of iterations. Note that in this model, A represents the

average time it takes to execute one loop iteration. This time will vary from application to

95

computation v. time (ATM/UltraSPAFiCs)

3500 T I f f l

comp(x) —~~+‘-
licomp.p|OtI’I//,.Zl

i“

2500 - ' i

3000

I J

2000 a ~ _ .

1500 ~ .~’ .

t
i
m
e
(
s
e
c
o
n
d
s
)

1WD 0 "

. 0

500 a. 0 -4

0

0’0
0

I
I

 w l l l l J_

0 100000 200000 300000 400000 500000 600000

iterations (thousands)

 0

Figure 5.7: number of iterations v. computation time

application, but our use of the model tolerates a wide variance in this coefficient. We also

consider the other coefficient, 30. For our working example, it is very small (£0 = —46.120

us). When we take the model to the extreme case x1 = 0, the computation time for zero

iterations is appropriately naught.

Visual inspection will detect gross model violations, so it is a useful and necessary step.

However, it alone is not sufficient. A more formal means of judging the adequacy of the

model is to assess the square of the multiple correlation coefficient, R2,

, 2

R2 = 1 _ 2(63) 2

(5)

Z (tcomb _ ”comb)

which is the proportion of total variability for simple linear regression. We will also use

it as a goodness-of-fit test for multiple linear regression. When errors are small compared

to a simple estimate of the mean, R2 approaches 1.0 and indicates a good fit. An R2 close

to 0.0 suggests no relationship between the model and 0bServed samples. Along with the

visual inspection and an analysis of residuals,2 the proportion of total variability makes a

fairly strong case for the adequacy of the model. The proportion of total variability for the

computation component of our working example is R2 = 0.9858 (based on 361 samples).

This is interpreted to mean we have described 98% of the variability in the data.

For the communication component, the model is not as simple. A number of models

were tested and found to be inadequate. Shown in Figure 5.8 is the distribution of com-

munication times as measured by the communication delay observed by the I/O processor.

We can see a fair amount of variation across the different configurations of processors and

problem sizes. Note that when the problem size, which is related to the image resolution

for the heat application, increases, the amount of computation time-and communication

time increase exponentially. This is not reflected in the figure because we do not calculate

the same number of video frames in the heat application as the resolution increases. This

is consistent with the way the application would be used and to do otherwise would result

in an unmanageable range of execution times. A small problem size would be too short in

duration to be statistically useful while a single execution of the large problem size would

be too long in duration to make repeated tests practical.

While Figure 5.8 uses axes that are familiar, a more instructive graph shows the com-

munication delay as a function of the number of communication periods and the volume of

2A thorough analysis of the residuals for the whole model is presented on page 102.

97

Summary of Measured Communication Time (heat-pvm—OS-fa)

"measured-average" «1*—

"measured-samples" +

commun. time (s)

150 r .
a it

_ 1' fr---“ ; I. i

" + “‘,L$~-\._ ’
y-

- 1.: l./ ,r’ ,"x.

1m ..~' _' , W‘zatéfai“‘ y‘"—1_ .4 4'1/ . ,/ ‘

V’ ‘i “ w'_.s’;~- ’/

O -

400

300

200

8 roblem size
10 ,2 P

number of processors 100

Figure 5.8: number of messages v. communication time

98

messages injected in the network. Figure 5.9 shows the individual samples and a measured

average calculated per configuration. The measured average is a set of points where each

point corresponds to an average of all of the samples of the same configuration. For exam-

ple, one point is generated by averaging all of the communication delays for samples where

the problem size is 100 and the number of processors is 2. Another point is generated for

the configuration of size 100 and 4 processors. This is helpful for visually inspecting the

fit. However, the measured averages are not used in determining the model coefficients.

The clear non-linearity around 750 thousand doubles is a concern. It highlights an im-

portant assumption in our model. It is well known that large messages are more efficient

than small messages because of a start-up cost. But there are also other discontinuities in

message time formulas for real systems. For some distributed processing systems, such as

p4, large messages are handled differently than small messages. Often at the network in-

terface, messages are split into packets, which may cause discontinuities as message sizes

vary. One additional byte to a single message can require an additional packet. By assum-

ing messages are related to just communication volume and the number of messages, we

are ignoring many sources for discontinuities, such as message size. Despite the disconti-

nuity, we still attempt to model the communication as linear, accepting the fact that there

will be a loss of accuracy.

The result of fitting the data of Figure 5.9 is shown in Figure 5.10. The metric tends to

be a little flatter but captures the essence of the curve. The multiple correlation constant,

R2 = 0.7027 suggests that roughly 70% of the variability is explained by our model. A

more advanced model would consider factors such as individual message size which may

address the unexplained 30%.

99

Summary of Measured Communication Time (heat-pvm—08-fa)

"measured-average" +—

'mcasured-samples" +

commun. time (s) x;

. the??? :1/1 \ i-
. r43~;‘/’/, .-«/' I, \ 1‘ I1

100 - ,./ . \ l, x .
. ,-///""i \l t, -0 wax,

or”! //-q‘ \ x‘ “as,“ y, '

”:—"”"" x. ,,/” ,“yv
50 *' var-«f \ _,.. LH‘ _ ‘/

x‘ , t

0 .

50000

0 30000
500

1000 number of messages

10000

volume (thous. of doubles) 1500

Figure 5.9: communication time v. message volume and number of messages

100

Predicted v. Measured Communication Time (heat-pvm-08-fa)

"measured-average" *—

"metric" “——

commun. time (s) 1

150 - g: 711.!«j'j’7'f'/ \ 0' i
.. ~11” ‘ 1

100 * 5/w \ : "3:7: -

. n g .4 ' ._ d f” I‘rI' \)L g i ‘ 'r
__; __ -— .

C‘ x ‘‘‘‘‘

I

, ‘1 I” ‘ ' ,,_

50 ../’ ,m _, , ~ : <\ A-rf‘ "
4‘ '4 ;:"-~"’—:- __ A" "x' ,“KH‘x

-‘"'” _- - , x . \, it» “m .

0_

50000

30000

500

number of messages

1000

volume (thous. of doubles) 1500 10000

Figure 5.10: communication time v. message volume and number of messages

101

Now consider the whole model. Combining the two components and the general equa-

tion developed previously,

y = 50 + filxi + 52332 + flsxa +3434,

we can test the fit of the sample execution times. Note that we use the total execution time

for the y values now, not the sum of the computation and communication times. Conse-

quently, our 00 is now the sum of the computation component’s 00, the communication

component’s Ho, and a constant factor that represents the general overhead of all the com-

putation outside of loop nests.

Viewing the samples along all five axes simultaneously is not possible but we can graph

the samples based on their configuration of number of processors and problem size. In Fig-

ure 5.11 we show the individual samples for the overall execution time and an average for

each configuration, as we did with the communication component. After fitting the func-

tion to these samples, we show the measured execution times with the predicted execution

times in Figure 5.12. Although the scale is very large and it is difficult to measure absolute

errors from the graph, the graph shows that the general shape matches. A closer observation

of a “slice” of this graph reveals that long execution times are fairly well matched, but the

short execution times are not. With the multiple correlation coefficient at 0.9744 (based on

354 samples) for the overall model, we are reasonably confident our model is reasonably

accurate.

As an important final check, we examine the residuals. Systematic variations indicate

structure in the data that is not unaccounted for by the model. We graphed the residuals

102

Summary of Measured Execution Times (heat-pvm—08-fa)

. "measured-average" +—

, ’ "measured-samples"

execution time (s) ..7 V .

3”) F
‘7 (A , o\

2500 P _ . ~ . 0*

2000 ~ ‘ ‘4 e .

15m "
‘ “\el._*‘“\\ ..

1000 " ‘ \ ...,1
#7. --.,K V‘

500 r - ,

0 t

8 10 12 100 problem size

number of processors

Figure 5.11: number of messages v. communication time

103

Measured and Predicted Execution Times (heat-pvm-OS-fa)

"measured-avera
ge" _.~,,_

/
"metric" -+—

execution time (s)

3000

500

p

I-

i I H \u 7 {X ’ /V "

. a 4 x,»
-

/ (‘ "HZHT- , f I z .1 j.

A“ .r ’ , ‘ k7. ‘ ‘~~'~L.:.. . x , f v

.K . , , I ,

\V‘ .7 / x , 7‘

1W _ I A ‘ ‘7‘ \ ‘I‘ / II", I . V (I

_ . 1; " , ’r 7 V“ ~~—-.‘:- ‘ . ‘ /

O -

 8 10 12 100 problem size

number of processors

Figure 5.12: number of processors and problem size v. communication time

104

Table 5.3: several inadequate models of communication time

explanatory variables R2

num. of msgs (per processor) 4.05 x 10"

num. of msgs x mum. of procs - 3.39 x 10‘5

vol. of msgs (per processor) 0.0009919

vol. of msgs, num. of msgs 0.6314

vol. of msgs, num. of msgs, num. of procs 0.7172

against the four explanatory variables: the number of processors, the number of messages,

the volume of the messages, and the number of iterations. We also considered several

system variables. Since the number of iterations, number of messages, and volume of

messages are related by the problem size, we also graphed the residuals against the problem

size. Finally, we graphed the residuals against the dependent variable, execution time. The

results are recorded in Figure 5.13. In our plots, the vertical alignment simply indicates

that we have multiple samples for that x-coordinate.

To put the results in perspective, we present some “broken” models and the proportions

of total variability in Table 5.3. These models omit some of the factors we ultimately

decided to include and their R2 value reflect the diminished accuracy. For example, using

the number of communication periods alone to model the communication time did poorly

(a very low E”). This suggests that from the set of factors we chose to investigate, all are

necessary.

All of the results thus far are for the heat application running an ATM network of Ultra

SPARCs. We repeated all of the experiments for each platform and each application. The

105

R
e
e
i
d
u
e
l
e
(
e
e
c
o
n
d
e
)

R
e
e
i
d
u
d
(
s
e
c
o
n
d
s
)

H
e
d
d
a
-
l
(
e
e
c
o
n
d
e
)

Rem v. Number of Iterations

250 . . . a . f . fi

2m _ 'heat-pvm-OB-la-xlplot' ‘ 4

150 > J

100 ~ *

w b0.. . I I :4

3.39-___! -l°---._--_- 1m-- _- I
0 : f3 '

-50 ~ I

.1w .

-150 - «

-2oo » I

.2” l A A A 1 L L L L

0 50100150200250300350400450500

Nun'berotltemionumillione)

ReeidualevMeeeage Volume

250

2m P 'heat-pvm'OB-la-xliplot'

1w . J

100 - i

w ‘0 . S 4

0 __..I.-u._..--__-_-___---i0' :xlé.-.‘-‘Ix---

.50 . ° 3

.1m . 4

~150 - 1

-200 - I «

.zw A 1 A J L A

200 400 600 000 1000 1200 1400 1600

Menage Volume (thousnde ot detblee)

Residuals v. Problem Size

250 . . r .

200 T 'heat-pvm-OS-ta-sizeplot' . J

150 L

100 - °

so - 1 ' <

o : g .

~50 - 3

.1m P' d

.150 .

-2oo » I

.250 i l . i

100 200 300 400

PrablemSize

Residual v Hunter 01 Menage:

250 .

200 _ 'heat~pvm-08—la-x2.plot' .

150 ~

A 100 I .

' .8

so i 2 I ' i l 1e 0 0

E o ___-W: _- Mi“--- ..-_ 3.--.1'. _- 1----..” a.

. ~50 ~ I °
3 400 .

.1m ..

-2oo » I

-250 L 1 - L

0 10 20 30 40 50 60

WMMeeeegeetthomende)

250 Residual v. Numberot Proceeeore

2m r 'hoat-pvm-OB—fa-x4plot" ‘ J

1m 1' 1

A 100 i . 4

5° ‘ 5 i 1 ‘’ e

V o h......‘. . l ‘fi

1 , Q
3 .m 1- . J

‘3 -100 »

.1m .

-200 ~ I

-25” 1 L m i i .

0 2 4 6 8 10 12

NumberotProceeeore

Residuals v. Execuion Time

i 'Mat-pvm-OB-fa-timeplot' ° 1

R
e
e
i
d
m
l
(
n
i
c
r
o
e
e
c
o
n
d
e
)

Figure 5.13: residuals plotted against explanatory variables

106

Table 5.4: results for each application on each platform

ATM network of Ultra SPARCs

Application samp R2

heat 354 0.974399

fprint 338 0.997946

gbank 374 0.999972

sdt 580 0.983224

Fast Ethernet network of Ultra SPARCS

Application samp R2

heat 342 0.975191

fprint 340 0.998786

gbank 370 0.999974

sdt 600 0.985542

Ethernet network of SPARC lOs

Application samp R2

heat 321 0.998651

fprint 405 0.995880

gbank 260 0.999853

sdt it *

* not available

results are summarized in Table 5.4. Note that the Ethernet of SPARC 103 Now was out of

commission when the last application was being tested.

5.5 Validation

The calibration and statistics of the previous section verify, in an abstract sense, that the

model is behaving as we intended it to behave. The work described in this section is meant

to validate that the model can be applied to our specific problem: guiding compiler transfor-

mations. This section is meant to assay the adequacy of the model. To produce substantial

107

results here would require the development of a transformation algorithm within some ex-

isting framework and then judgment of the metric and the algorithm’s effectiveness. That

is not our goal, however. We merely want to show that it is possible to use the metric and so

we have chosen a modest test. We ask, ”after calibration, can the metric predict the fewest

number of processors needed to maximize performance?” To answer this, we have orga-

nized an experiment using our four test applications. For each platform, we use run-time

information to calibrate a metric. Then we use this metric to predict the performance of the

four applications. Specifically, we compare the predicted number of processors and mea-

sured number of processors that minimize execution time. These results are summarized

in Table 5.5 for the ATM NoW, Table 5.6 for the Fast Ethernet NoW, and Table 5.7 for the

Ethernet NoW. Note that the last NoW was not available when the fourth application was

tested, so there are fewer results in this table. Also note that one of the machines in the

other two platforms was unavailable which limited the number of processors to 10. A * is

used to indicate when the minimum was mispredicted.

There are several features in the data presented that warrant discussion. First, note that

every application did well at predicting itself. This may not be surprising but is in itself

a useful result in a setting where the same application is used repeatedly. Second, many

configurations identified 12 as the minimum number of processors because 12 is the maxi-

mum available in our system. Although the first three applications would not be considered

“embarrassing parallel” there is still a performance advantage for them to use more pro-

cessors if they were available. While the model correctly predicts this for most cases, it is,

unfortunately, only a partial validation of our approach. The fourth application, SDT, was

considerably more communication-intensive. For the smaller data sets, the performance

108

slowed down after exceeding a critical number of processors within our system’s capabili-

ties. Certain applications, (such as GBANK and FPRINT) when used to calibrate the model,

did a poor job of predicting SDT’s performance. On the other hand a model calibrated

by SDT did correctly choose the maximum number of processors for GBANK and FPRINT.

Certainly, we can conclude from this that some applications are unsuitable for calibrating

the metric. But also from this, we speculate that SDT successfully predicts GBANK and

FPRINT because it meets a minimum criterion that some of its samples have communica-

tion times that significantly influence the execution time. Until GBANK and FPRIN'I‘ have

enough samples where communication plays a significant part of the execution time, they

will be unsuitable applications to calibrate the metric.

The last thing to consider when reflecting on the data presented is the consequence of a

misprediction. It is the nature of multiple linear regression that there will be errors, but the

errors are introduced such that they minimize the effects on the dependent variable. In our

case, the dependent variable is execution time. Consider the case when HEAT’s run-time

information is used to calibrate a metric which is subsequently used to predict the other

applications’ performance. (Take, for example, the first row of blocks in Table 5.5.) The

model mispredicts size 100 for HEAT. The model says to use four processors but we know

from direct measurement that twelve minimizes execution time. In fact, a line tangent to

the performance curve at four processors is approximately horizontal. Using the actual

run-time measurements and the relative error in the number of processors, we have a fairly

flat slope:

109

Table 5.5: results of minimizing the execution time for ATM

APPLICATION PREDICTED

M=measured min. num. of processors; *=misprediction

HEAT FPRINT GBANK SDT

SzPM SzPM SzPM SzPM

100 4 12ar 100 4 12* 1008 12.1r 100 4 4*

E g 200 12 12 200 8 12* 200 8 12* 200 8 6*

5 m 300 12 12 300 12 12 300 12 12 300 10 8*

_J 490 12 12 400 12 12 400 12 12 490 1910

‘3 SzPM SzPM SzPM SzPM

o :— 100 12 12 100 12 12 100 12 12 100 10 4*

2 E 200 12 12 200 12 12 200 12 12 200 10 6*

B 6: 300 12 12 300 12 12 300 12 12 300 10 8*

g 400 12 12 400 12 12 400 12 12 400 10 10

a SzPM SzPM SzPM SzPM

:3 g 100 12 12 100 12 12 100 12 12 100 10 4*

U :5 200 12 12 200 12 12 200 12 12 200 10 6*

g o 300 12 12 300 12 12 300 12 12 300 10 8*

a 400 12 12 400 12 12 400 12 12 400 10 10

5‘, EPM SzPM SzPM SzPM

D 1— 100 4 12* 100 12 12 100 6 12* 100 4 4

g 8 200 6 12* 200 12 12 200 10 12..r 200 8 6*

a 300 10 12* 300 12 12 300 12 12 300 8 8

5 400 12 12 400 12 12 400 12 12 400 10 10

..l

E Sz=Size; P=predicted min. num. of processors;

76.226 — 80.873

8

= —0.581

Note, the execution times at that size are about 75 s but the absolute error in execution time

due to the misprediction is 4.647 s. Similar results can be established throughout the tables

by looking at the actual run-time measurements.

110

A
P
P
L
I
C
A
T
I
O
N
U
S
E
D
T
O
C
A
L
I
B
R
A
T
E
M
O
D
E
L
W
I
T
H

H
E
A
T

G
B
A
N
K

F
P
R
I
N
T

S
D
T

Table 5.6: results of minimizing execution time for Fast Ethernet

APPLICATION PREDICTED

HEAT FPRINT GBANK SDT

SzFM SzPM SzPM SzFM

100 4 12* 100 4 12* 100 4 12..r 100 2 6*

200 12 12 200 8 12* 200 8 12* 200 8 8*

300 12 12 300 12 12 300 12 12 300 10 10

400 12 12 400 12 12 400 12 12 400 10 10

SzPM SzPM SzPM SzPM

100 12 12 100 12 12 100 12 12 100 10 6*

200 12 12 200 12 12 200 12 12 200 10 8*

300 12 12 300 12 12 300 12 12 300 10 10

400 12 12 400 12 12 400 12 12 400 10 10

SzPM SzPM SzPM SzPM

100 12 12 100 12 12 100 12 12 100 10 6*

200 12 12 200 12 12 200 12 12 200 10 8*

300 12 12 300 12 12 300 12 12 300 10 10

400 12 12 400 12 12 400 12 12 400 10 10

SzPM SzPM SzPM SzPM

100 2 12* 100 12 12 100 6 12* 100 4 6*

200 8 12* 200 12 12 200 12 12 200 8 8

300 10 12* 300 12 12 300 12 12 300 8 10..r

400 12 12 400 12 12 400 12 12 400 10 1o

Sz=Size; P=predicted min. mum. of processors;

M=measured min. num. of processors; *=misprediction

111

Table 5.7: results of minimizing execution time for Ethernet

Ethernet of SPARC lOs

min.by min.by

size slope (s/proc) Ierrl (s)

metric measure

100 12 1o 183-6835178783 =—2.447 4.895

2 200 12 12

,_ g 300 12 12

g 400 12 12

:1:

5. [_ 100 12 10 w=4£345 1.269

a 200 12 12

E E 300 12 12

.n 400 12 12

'3 g 100 12 12

5 200 12 12

an 300 12 12

0 400 12 12

100 12 10 133-“3:731“ = —2.447 4.895

I; 200 12 12

g g: 300 12 12

a 400 12 12

g; [_ tor 12 1o

3 a 200 12 12

E 300 12 12

E 400 12 12

.4: g 106 12 12

i z 200 12 12

5 300 12 12

400 12 12

100 12 1o W=2447 4.895

2- 200 12 12

u g: 300 12 12

E 400 12 12

8 1— 100 12 1o

3.; a 200 12 12

g E 300 12 12

400 12 12

.n g 100 12 12

5 z 200 12 12

25 300 12 12

‘9 400 12 12

112

Measured Execution Times

execut. time (s)
"gbank" -__

num. of proc.

Figure 5.14: measured execution times of all three applications

113

5.6 Other Applications

Throughout this chapter, we discuss the use of the metric for one particular application. In

this section, we present a number of applications that may take advantage of the features

of the metric.

Our metric can be viewed as a metric describing the size-processor relationship. In this

chapter, we discuss the specific application where the size of a given problem is known and

we want to find the optimal number of processors. In other situations, it may be desirable,

given the platform, to know the size of a problem that can be solved efficiently. Bigger

problems can be solved, but an engineer may prefer to know, “what precision do we get

before my system starts degrading in performance?”

In certain languages, the compiler has to make decisions about when to re-organize the

data layout between different phases of the program. For example, the optimal distribution

of data for one loop nest may not be optimal for the next loop nest. The compiler has to

decide whether to redistribute the data between loop nests or execute one of the loop nests

with a less-than-optimal organization of the data. A third possibility is for the compiler

to find a layout that is optimal for the sequential combination of the loops, which may be

sub-optimal for both nests individually but requires no redistribution. The problem is more

complicated when several loop nests are involved. These questions can be addressed if the

compiler has a strong predictor of performance. Even in HPF, where the user makes many

of these decisions, the issue still arises when library routines are called.

Finally, as mentioned in the introduction, early frameworks used goals such as “maxi-

mum parallelism.” Later, due to communication costs, researchers showed that it is impor-

114

tant to reduce or eliminate communication to make the parallelism worthwhile. Huang and

Sadayappan [35] and Lim and Lam [46] have proposed algorithms to produce communication-

free programs. The algorithms are driven by goals to reduce or eliminate communication.

This approach assumes a fixed number of processors and the goal is to find parallel tasks

that have no communication costs. An important contribution of our metric is that it in-

cludes problem size, the number of processors, and hardware characteristics that make

striking a balance between the two extremes feasible. When necessary, an algorithm might

choose to find a communication-free partition of the loop iterations that use a subset of the

processors available. (A single processor is always communication-free.)

5.7 Summary

Our goal in this chapter is to show that a performance metric can be developed for a NoW

that will determine the ideal number of processors needed to execute a program. A perfor-

mance metric is challenging because of the large number of variations in a NoW that do

not exist for dedicated distributed memory multiprocessors. We highlight the importance

of observation skew. The work on observation skew and the statistical analysis was intro-

duced in [60]. We showed that any system that models NoW will need to carefully measure

the different components.

Our experimental results verify that the model can statistically describe the behaviors of

our test applications. Alternate models were considered and rejected for statistical reasons.

Finally, we performed a simple experiment to validate that this approach can be applied

to performance prediction in NoWs. The validation results were mixed but nonetheless

115

several conclusions can be drawn. One is that applications were able to predict subsequent

runs of the same application when their parameters were varied. This fairly limited result

is the stated goal of some projects and is important for some settings that do run the same

applications repeatedly. Another conclusion from the validation experiment is that certain

applications are significantly worse at predicting other applications’ behaviors. Identifying

what makes a good application for calibrating this model is unanswered.

We believe this approach is an important step in compiling high performance applica-

tions for Networks of Workstations. By including run-time information, our metric can

respond to an important feature of NoWs. Namely, that NoWs can take advantage of the

latest off-the—shelf components to improve their performance characteristics.

116

Chapter 6

Conclusion

As HPCs continue to advance, their performance characteristics change and either the ap-

plications or the compilers need to change with them. Applications written for vector com-

puters will not — without adjustment — immediately perform best on a NoW. But with

advances in restructuring compiler frameworks, applications written previously can be effi-

ciently executed on today’s HPCs and applications written today can be efficiently executed

on tomorrow’s HPCs. Addressed in this work are two issues fundamental to strengthening

and broadening this statement. We focus in Chapters 3 and 4 on increasing the number of

loops that can be transformed by the restructuring compiler frameworks. In Chapter 5 we

develop an advanced metric to drive compiler frameworks for NoWs. As NoWs are on the

verge of becoming a mainstay HPC, the metric of Chapter 5 is especially important because

it adapts to the performance characteristics of 8 NOW.

In this final chapter, we summarize this work, state its contributions, and discuss some

future directions.

117

6.1 Summary

Imperfect Loop Nests The first issue addressed by this dissertation is the problem of ex-

tending matrix-based frameworks to imperfectly nested loops. We present two approaches.

The first starts with an analysis of loop nests in existing FORTRAN codes and then shows

how to use transformations that are not specifically matrix-based to design a compiler with

the same reordering abilities of a matrix-based restructuring compiler but which handles

a larger class of loop nests (the apperfect class). Using the information gathered from

an analysis of loops in engineering and scientific programs, we describe the design of a

matrix-based restructuring compiler.

Our analysis of 641 loop nests revealed a number of interesting characteristics. First,

of all the techniques developed to convert imperfect loop nests into perfect loop nests, only

the composition of two (loop distribution and scalar forward substitution) are necessary.

Integrating other techniques will not increase further the number of loop nests converted.

Second, these two techniques handle a large number of the cases that occur in scientific

code. Of the 31 loop nests that remained imperfect, after applying the transformation

techniques discussed, most were still imperfect. This is due to limitations of the algorithms

chosen by the users. (Thus either the compiler or the user must change the user’3 algorithm

to execute the loop in parallel.) Some of the loops remained imperfect because of induction

variables. It appears likely that future improvements in compiler transformations can be

developed for this case. Another eight cases remained imperfect because of the nesting

structure of the loop. Also, there were 32 loop nests that could not be analyzed because of

118

fundamental loop and if/then/else structure problems or the presence of GOTOs. Finally, 22

loops had I/O statements. Thus, we could not reorder their iteration space.

Using the information from the study, we discuss an optimal ordering of transforma-

tions for a restructuring compiler. Our order maximizes-the number of perfect loop nests

(based on known transformations) and lets the matrix-based transformation algorithms gen-

erate maximum parallelism. Loop nests that did not benefit from the matrix-based trans-

formation procedure are restored to their original form. Thus, the code is never adversely

affected by applying the transformation sequence.

The phase method is a novel, matrix-based approach that integrates the class of im-

perfectly nested loops and Banerjee’s theory of unimodular transformations. It has the

advantage of restructuring loops that other techniques cannot while maintaining the proofs

of optimality in the original theory. The technique works by incorporating data depen-

dence information from all levels in the loop nest, and then, after applying any standard

transformation algorithm, the code generation part of the algorithm can be replaced by an

algorithm that correctly outputs the transformed code in three phases. In this dissertation

we apply the phase method to doubly-nested loops only.

Performance Metric The second matrix-based restructuring compiler issue addressed in

the dissertation is the topic of Chapter 5. Namely, it is the development of a performance

metric to guide a framework-based restructuring compiler. Performance metrics have been

used for many years to implicitly or explicitly guide restructuring compilers. But for NoWs,

many of these approaches are ill-suited because they require detailed information about the

communication subsystem. We propose a system that uses instrumented applications to

119

gather information about the communication and computation performance of a specific

NoW. This information is used to calibrate a model of the system which is then used as a

performance metric for that NoW. If the NoW changes or a different NoW is considered, the

metric is recalibrated. This ability to adapt is extremely important for NoWs since they rely

heavily on commercial, off-the-shelf components that necessarily do vary. Furthermore,

this is a complication that does not exist for traditional distributed memory multiprocessors.

Towards this goal, we establish several specific results in this paper. We document a

process for instrumenting application codes and analyzing the resulting data. We formulate

a generic model upon which to base a metric and show that such a model could be formu-

lated with the necessary statistical properties needed to do the multiple linear regression in

the calibration stage.

Crucial to modeling 8 Now is an understanding that measurements made by individual

workstations during the calibration stage may be skewed by workload imbalance and oper-

ating system delays. We show that a metric can be developed to model the performance of

an application on a specific NoW if the measurements made by individual workstations are

summarized correctly. We show that the metric can be calibrated such that the performance

of an application on a specific NoW can be modeled.

In addition to checking that linear regression is statistically valid, we show that the

model we develop accurately represents measured samples of a real application by a visual

inspection of the graphs, an analysis of residuals, and by checking the proportion of total

variability. We found that a model can be developed, using prior runs of an application, to

predict the performance of new runs with different parameters (different problem size or

different number of processors). We had moderate success using one application to predict

120

another application’s performance. A key factor appears to be the choice of the application

used to calibrate the model.

6.2 Future Directions

Although most of the imperfectly nested loops that appear in scientific codes have been

addressed, there are still some important loop nests, such as the Cholesky decomposition

routine that are imperfect and not easily handled by any compiler transformation. Other

than a few special cases, though, most of the problems associated with imperfect loop nests

have been resolved.

NoWs have been discussed and used for over five years, but much remains unknown

about these platforms — especially their general suitability as HPCs. For example, all

of our experiments were conducted on platforms that allowed users to log in while our

applications ran. Our approach was to monitor the systems closely and keep a log of

pertinent aspects of the machine state. If a user disrupted one of our experiments by using

one of the machines, an e-mail message informed us to remove that specific record from

the samples. One case “slipped in” to the records. The user logged into one workstation

and was idle as defined by the usual system measures (the Unix load command showed that

the load was less than 0.02 every time it was measured). This occurrence affected several

executions of all three applications. Despite appearing to do no CPU-intensive activity,

the user affected every application that was executed while the user was logged into the

system. The executions showed up as extreme outliers in the residuals — sometimes 2—8

times larger in magnitude than the next biggest residual. This is anecdotal evidence that

121

NoW systems are extremely sensitive to sharing the CPU or memory on a workstation with

another user.

We also found, by accident, that NoWs are susceptible to network contention. For

the Ethernet network of SPARC 105 platform, we had access to 15 workstations. The

network had an additional machine that was used to capture frames of video from a security

camera and transmit them to a server. This output was every 6 seconds. When we ran our

experiments originally we did not take note of the camera and its presence on the network.

What resulted was some distributions that were bimodal — distinctly not normal. The

graph presented Figure 6.1 is a striking example of the effects of the security camera. The

first graph shows when the camera was operating and the second when it was not. The

first is clearly not normally distributed. This is more anecdotal evidence and suggests that

NoWs are especially susceptible to network interference.

A third area that has not received any attention, despite its large potential, is the exe-

cutiOn of more than one process per a workstation. The Unix load,sampled several times

during the execution of one our test applications indicated that the processor was way ahead

of the network. Instead of being close to 1.0 (always computing), the average load was

approximately 0.6. As microprocessors continue to improve performance faster than net-

works and workstations are configured with multiple processors, the microprocessor will

spend even more of its time idle. One solution (which as just begun to be explored) is to

put more than one process on a workstation [64]. This uses time-sharing on each node to

use the hardware more effectively and presents a very new modeling problem.

Thus subtle interactions that may occur because NoWs are rooted in general-purpose,

individual machines, do have an obvious impact on performance. In light of these last

122

0.045 -

0.04

0.035

0.03

0.025

0.02

0.015

0.01

0.005

0.018

0.016 -

0.014 -

0.012

0.01

0.008

0.006

0.004

0.002

COMMUNICATION (nproc=12 Ethernet/SPARC1 Os)

5 . v r

normal(x)

“comm.dat"
I

 1

I

 A -

187 205 223 241 259 277 295 313’ 331

execution time (seconds)

COMMUNICATION (nproc=12 Ethernet/SPARC10s)

normal(x) —

 4L

/\ "comm.dat" — 1

.1

 A

141 162 183 204 225

execution fime (seconds)

Figure 6.1: with and without the camera operating

123

three examples, we believe there is a great deal more to be discovered about Networks of

Workstations. By improving the state of High Performance Computing, we hope to add to

the number of tools available to engineers and scientists for performing computations.

124

APPENDICES

Appendix A

Restructuring Compilers

In this appendix, we give a brief summary of our experiences compiling FORTRAN pro-

grams and using a number of compiler toolkits. We anticipate that this information will

prove helpful to other researchers pursuing common interests. In the first section, we dis-

cuss three problems we had to overcome using FORTRAN as a source language. In the

second section we discuss specific toolkits.

A.1 Fortran

In the course of carrying out this research, we discovered three practical problems while at-

tempting to parse FORTRAN programs. Because FORTRAN was originally designed without

the idea of tokens and whitespace delimiters, the language is difficult to parse with modern

compiler tools. FORTRAN has changed substantially over the years and some very archaic

constructs are still used occasionally. Thus, compilers have to handle each construct as

125

a special case. Also, because the GOTO statement is a prominent feature in FORTRAN,

programs are frequently unstructured.

Because FORTRAN does not always consider whitespace significant, parsing FORTRAN

is more difficult than other common languages. Since our research concentrates on prob-

lems in a later stage of the compiling process, we searched for tools to handle this step for

us. At the time, the only toolkit publicly available was Sage. Since then, other toolkits

have emerged (see the next section). Although Sage was relatively new and untested, we

considered Sage a better choice than developing our own. This choice caused trouble ini-

tally because Sage was an attempt to merge two independent projects that had a common

ancestor (SIGMACS). The documentation was weak and simply wrong in places (i.e., we

frequently used the source code to find the true specification for procedure calls in their

library.) One of the two independent projects was the Sigma Toolkit, version 0.2beta. The

version number suggests that the authors did not have a lot of confidence in the toolkit.

Nevertheless, we found the Sigma Toolkit the most stable portion of the Sage toolkit. In

the final process, we eliminated all references to the Sage toolkit except for the Sigma

toolkit portion.

Although we found that the parser always parsed FORTRAN correctly, there were a

number of problems in the toolkit’s transformation library. Because the the documentation

listed subroutines to do Scalar Forward Substitution and Loop Distribution, we thought we

would be able to use their routines and complete our project quickly. Unfortunately, after

we started collecting and analyzing data, we discovered that the toolkit’s definitions for

these transformations were significantly more conservative than expected. For example,

Loop Distribution did not work (correctly) for imperfect nests — exactly our intended

126

use! To complete our project we had to substitute our own routines for both of these

transformations.

Even with this additional work, it was less effort utilizing the toolkit than writing our

own FORTRAN parser and transformation library.

A second difficulty we had to overcome with FORTRAN was the large variety of state-

ments. Because of its long history, FORTRAN has a number of different ways to accomplish

the same task. A DO loop may use a line number, line number with a CONTINUE state-

ment, or a DO/ENDDO pair to indicate what code is to be repeated. IF statements have

various forms. There are computed GOTOs and other rare statements that still occur in

some programs. We dealt with this variety of formats by running some conversion steps

first. Thus, all DO loops were converted to have an ENDDO form. Most IF statements that

had a simple IF/ENDIF structure but were written with a GOTO were converted to have an

ENDIF. Thus, the input to our analysis procedures was fairly uniform. There were specific

instances (such as computed GOTOs) where we had to simply ignore the loop nest and not

perform any transformations.

Finally, in most modern languages, GOTO statements are either non-existent or their use

is discouraged. For a long time, the GOTO statement in FORTRAN was not only encouraged

but required to make other structures such as WHILE loops. The result is that the occurrence

of unstructured code is much more common in FORTRAN than in other languages. This is

similar to the previous problem in that unstructured code prevents our transformations.

127

A.2 Toolkits

In this section we discuss some of the compiler toolkits and libraries that are available

presently.

The Parafrase II source-to-source compiler is available commercially. Unfortunately,

we received C source code that was difficult to work with and virtually impossible to revise.

(All of the comments were removed and the macros expanded.) Although it is clear that

the design of Parafrase 11 makes it easy to incorporate new transformations, it is also clear

the intent is not for purchasers to add new transformations. As a restructuring compiler, the

product performed as advertised but we could not use it as a toolkit for compiler research

because the source code could not be revised easily.

TINY is another program that was considered. It is a simple program with its own

source language. It was intended to be a learning tool for for students. As such, it is

worthwhile. We recommend it as starting point but agree with its creator, M. J. Wolfe, that

it is not a substitute for a full dependence analyzer and compiler front-end [71].

Nevertheless, the researchers at the University of Maryland did use TINY as the starting

point for a research project. They incorporated their Omegadependence test, added features

to the interface, and a generate-and-test search for transformations. It still uses TINY’s

original source language as opposed to FORTRAN so we find that, at best, it can only

be used for small test programs. We believe that the simplicity of TINY was a strength.

Omega’s value is that it demonstrates the Omega test.

Sage-H- has sprouted from the origins of the SIGMACS, Sigma Toolkit, and Sage

projects. Whereas the Sage library used a Lisp-like list form for passing arguments, Sage++

128

offers an object-oriented interface. It is released but is still relatively new. A number of

bugs pertaining to Sage++ have been reported. For example, with Sage, one can write a

program that processes multiple source (FORTRAN) files. Soon after it was released Gan-

non, the principle investigator of the Sage++ Project, recommended that only a single file

be parsed by Sage-H- until it becomes more stable.

A number of papers from Stanford have referred to their SUIF compiler. Although the

papers are dated back to 1992, the compiler was released to the public after the work in

Chapter 3 was completed in 1994. Although we have not used it, we suspect — based on

how long it has been used internally and the reputation of the source — that it is a solid

compiler. In addition, its stated purpose is to be a compiler testbed for new research on

transformations. It is likely that our future work will use this compiler.

129

Appendix B

Data-Parallel System and Applications

In this appendix, we give a complete description of our data-parallel system and the test ap-

plications. The primary differences between the presentation here and the concise version

in the main text are the details for coding the specific serial-to-data-parallel transforma-

tions.

B.1 Data-Parallel System

To implement the applications (described next) on a NoW, we developed a simple C++

data-parallel library. The library has classes to handle distributed arrays, spawning and

managing of SPMD processes, group/neighbor communications, and timing information.

Our system uses static scheduling. The parallelism is determined by the physical location

of data; namely, it uses the owner-computes rule.

We use PVM 3.3.11 as a basis for the library. PVM is called directly for messages,

thus there is no overhead, but we use our library (spmd . left () and spmd . right () ,

130

for example) to get neighbor task IDs in a linear topology, which PVM does not support.l

While all of our experiments are based on PVM, our system is not tightly bound to PVM;

other message-passing systems could easily be substituted. Also, tasks are created such

that there is always one process per workstation in the NoW.

The distributed arrays are built with a plane class that allows general memory layouts

for 2D arrays, including distribution of an array across workstations. The class has built-in

support for “overlap” regions which are used by data-parallel compiler transformations that

combine several messages and transfer them together. For example, a whole column may be

moved from one process to the overlap region of another process prior to executing a loop

nest. This is called message coalescing and is an important transformation for efficiency

[34]. There is no longer a need for communication within the loop nest because the remote

references are now available in the overlap region.

Our library facilitates the instrumentation and calibration of the programs with a timing

class. Details were given in 5.2.

All of the applications were compiled “by hand” because, in order to make the nec-

essary changes automatic, we would require access to the data parallel compiler source,

which we did not have. Our guiding principle in the translation of the application to a

data-parallel SPMD program was to emulate the behavior of current compilers. We applied

optimizations that have been well-documented and shown to be feasible, such as coalescing

of messages, but we resisted changes that humans recognize but compilers would not.

IPVM does support group operations but it does so by creating an extra task. This extra task led to

efficiency problems for us, so we abandoned it.

131

Four major structures were converted in the serial to data-parallel process. We describe

each conversion below. In all the examples, the method get (i , j) accesses one element

in a distributed array where the location of the ith elements are controlled by the distribu-

tion object do. (In our library, do is declared with the size of the dimension and a type of

distribution, BLOCK, for example.)

e Message-Passing for Remote References

For any loop nest that references distributed memory, we considered two ways of

converting the loop. If the data dependences are uniform, the loop limits can be

restricted to just the iterations owned by the process. Otherwise, the loop cycles

through all of the iterations and the loop body is guarded by a conditional that is true

when the process “owns” that iteration. Figure B] (a) is a serial loop nest and (b)

and (c) show the two parallel solutions we use.

e Input/Output

For scatter operations (where data are input on one workstation and then distributed

to their owners), we replace the actual I/O statement with the lines of pseudocode

shown in Figure B.2. Gather operations (data are transmitted from the owners to the

I/O workstation and then outputted) are handled in a similar fashion.

0 Global Reduction

We implement a reduction in the most straight-forward way. The master does 11 — 1

receives and performs all of the operations. Then, the master distributes the result in

n — 1 sends to each workstation. The workstations, other than the master, do a send

followed by a receive.

132

551%!

for(i=0 ; i<(n-m) ; i++)

- = xmat.get(i,j)

(a)

Parallel 1

for(i=d0.maplb(0) ; i<d0.mapub(n—m) ; i++)

- = xmat.get(i,j)

(b)

Parallel 2

for(i=0 ; i<(n-m) ; i++)

if(d0.iown(i))

-- = xmat.get(i,j)

(c)

Figure B. l: changing serial loops to data-parallel loops

o Barrier Synchronization

We implement a barrier synchronization as a global reduction with no operation.

That is, the master does n — 1 receives followed by n — 1 sends.

All of the techniques that were performed “by hand” can be implemented in a compiler.

Based on the results presented later, it is profitable to add these translations to a compiler.

But, prior to our results, the considerable effort of making a compiler would have been

risky.

133

It I am the I/O node

Do the I/O statement

It I own the data

copy into place

Ill.

calculate destination

send

lndit

81.. m,

It I own the data

receive

lndit

lndi!

Figure B.2: pseudocode for scatter/gather operations

 (
I
.
.
.

It was our intention to make the library unobtrusive. As mentioned, our library adds

no overhead to the sending of messages because the PVM calls are directly inserted. The

library adds one collective communication and it appears at the end. It is not a significant

factor in the overall execution time.

B.2 Heat Transfer Application

The first application calculates a sequence of images that indicate the transient heat transfer

through materials with different thermal coefficients. We assume a closed system, so it is

unnecessary to model the heat capacities of the materials. In our simulated environment, we

use a copper disk, surrounded by air with a circular heat source underneath as an input. The

copper and heat source are shown in Figure B.3(a). Figure B.3 (b) and (c) are two frames

from a typical sequence. Each pixel in the two output frames represents the temperature

134

Figure B.3: simulated environment (leftmost frame) and two video frames (middle and

rightmost frames)

at that point by its intensity. Thus, an engineer can observe the heat transfer through the

design. Intermediate frames are written to disk. Unlike many video applications, this ap—

plication does not have frame-level parallelism because frame (2' — 1) is needed to calculate

the ith frame. So, instead of calculating the frames in parallel, we distribute the columns of

the array representing the image (and other associated arrays) across the processors. Since

these slices are not independent, a data-parallel compiler, such as FORTRAN D or HPF, will

generate the necessary communication, which we manually insert. A higher level compiler

with automatic data decomposition would likely produce similar communication patterns.

This application includes a number of different loop nests involving multiple distributed ar—

rays, I/O procedures that gather individual frames to be written to disk, messages to move

columns of data between neighbors, and global reductions.

135

B.3 Fingerprint Matching Application

The second application is the last stage in automatic fingerprint identification. In previous

stages of the identification process, fingerprint features are extracted from digitized images

and stored in a database. The features of an unidentified fingerprint are used to search the

database for a match. Since two digitized images of the same fingerprint are unlikely to

have precisely the same features, a “scoring” function determines how closely the features

match. We presume that a typical system would test several unidentified fingerprints and

would take advantage of the aggregate memory of a NoW to distribute the database. Thus, a

single fingerprint is processed in our application by sending the features to each workstation

where the search is done in parallel. After all of the local scores have been calculated, a

parallel sort involving all of the processors sorts the scores so that the top ten scores (most

likely matches) are on the I/O node where they are output for final verification (selection

of the best match by a human).

This application has two main phases, each with different communication patterns and

loop bodies. The bulk of the 1/0 is at the beginning when the application is loading the

database and then occasional 1/0 as a new unidentified fingerprint is distributed.

B.4 Texture Segmentation Application

At another stage in the automatic fingerprint identification process, features are extracted

from a digitized image. One technique uses a bank of Gabor filters to extract the features.

In the spatial domain, this involves a series of convolutions with fairly large convolution

masks (we use 32 x 32). Each mask is generated from a complex sinusoid and is effectively

136

a band-pass filter. For our tests, we used a grayscale “rainbow” image of various sizes and

varied the filter orientation. We used three orientations, although larger banks of filters are

frequently used. Our application reads in the original image and distributes the columns

to the workstations. Every workstation calculates the current mask in parallel and the

algorithm proceeds with the convolution over the image. Each filter produces a separate

image so the original is not destroyed. The final step is to transmit the resulting images

back to the I/O for output.

Besides feature extraction, Gabor filters are also used in other applications such as

texture segmentation.

B.5 Spatial Decomposition Technique (SDT)

Analysis of electrically large objects, such as antenna of various geometries, is a computa-

tionally difficult problem. A straight-forward formulation of the problem leads to densely-

filled, numerically-intensive, complex-valued matrices. So it is not surprising that many

techniques have been developed over the years to address this problem in formulations that

are less computationally expensive. One of them is the SDT.

The SDT allows the total operation count to be reduced by introducing subobjects which

are simpler to compute. We chose this approach because it is easily written in a data-parallel

style and the parallel version requires both intensive computation and communication.

137

pp...

BIBLIOGRAPHY

Bibliography

[1] W. Abu-Sufah. Improving the Performance ofVirtual Memory Computers. PhD thesis,

University of Illinois at Urbana-Champaign, November 1978.

[2] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques,

and Tools. Addison-Wesley Publishing Company, Reading, Massachusetts, 1986.

[3] Randy Allen and Ken Kennedy. Automatic translation of FORTRAN programs to

vector form. ACM Transactions on Programming Languages and Systems, 9(4), Oc-

tober 1987.

[4] Saman P. Amarasinghe and Monica S. Lam. Communication optimization and code

generation for distributed memory machines. In Conference on Programming Lan-

guage Design and Implementation, pages 126—138, 1993.

[5] Corinne Ancourt and Francois Irigoin. Scanning polyhedra with DO loops. In Third

ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,

pages 39-50, April 1991.

[6] Jennifer M. Anderson and Monica S. Lam. Global optimizations for parallelism and

locality on scalable parallel machines. In Conference on Programming Language

Design and Implementation, pages 112—125, 1993.

[7] Eduard Ayguadé and Jordi Torres. Partitioning the statement per iteration space using

non-singular matrices. In ACM International Conference on Supercomputing, pages

407-415, 1993.

[8] Utpal Banerjee. Dependence Analysis for Supercomputing. Kluwer Academic,

Boston, 1988.

[9] Utpal Banerjee. Unimodular transformations of double loops. In Alexandru Nicolau,

David Gelemter, Thomas Gross, and David Padua, editors, Advances in Languages

and Compilersfor Parallel Processing, pages 192-219. Pitman Publishing, 1991.

[10] Utpal Banerjee, July 1992. Personal communication to R. Sass during a short course

on Restructuring Compilers in Trento, Italy.

[1 1] Utpal Banerjee. Loop Transformations for Restructuring Compilers: The Founda-

tions. Kluwer Academic Publishers, Norwell, Massachusetts, 1993.

138

[12] Utpal Banerjee. Loop Parallelization. Kluwer Academic Publishers, Boston, 1994.

[13] Vasanth Blalsundraram, Geoffrey Fox, Ken Kennedy, and Ulrich Kremer. A static

performance estimator to guide data parallel partitioning decisions. In Third ACM

SIGPLAN Symposium on Principles and Practices of Parallel Programming, pages

21—24, 1991.

[14] F. Bodin, S. Lelait, and D. Windheiser. Sigma toolbox. Technical Report Sigma

Toolbox Manual, version 0.2alpha, Irisa and Indiana University, July 1993.

[15] Francois Bodin, Daniel Windheiser. William Jalby, Daya Atapattu, Mannho Lee, and

Dennis Gannon. Performance evaluation and prediction for parallel algorithms on the

BBN GP1000. In Proceedings of1990 International Conference on Supercomputing,

1990.

[16] Mark Brehob, Travis Doom, Richard Enbody, William H. Moore, Sherry Q. Moore,

Ron Sass, and Charles Severance. Beyond RISC - the Post-RISC architecture. Techni-

cal Report MSU-CPS-96-l 1, Department of Computer Science, Michigan State Uni-

versity, East Lansing, Michigan, 48824, 1996.

[17] Edmund Burke. Reflections on the Revolution in France. Oxford University Press,

1790.

[18] Soumen Chakrabarti, Manish Gupta, and Jong-Deok Choi. Global communication

analysis and optimization. In Conference on Programming Language Design and

Implementation, pages 68—78, 1996.

[19] David Chesney. Matrix-Based Representations ofLoop Transformations. PhD thesis,

Michigan State University, December 1995.

[20] Michal Ciemiak and Wei Li. Unifying data and control transformations. In Confer-

ence on Programming Language Design and Implementation, 1995.

[21] Erik H. D’Holander. Partitioning and labeling of loops by unimodular transforma-

tions. IEEE Transactions on Parallel and Distributed Systems, 3(4), July 1992.

[22] Anne Dierstein, Roman Hayer, and Thomas Rauber. The ADDAP system on the

iPSC/860: Automatic data distribution and parallelization. Journal of Parallel and

Distributed Computing, 32(1): 1-10, 1996.

[23] JJ. Dongarra and E. Grosse. Distribution of mathematical software via electronic

mail. Communications ofthe ACM, 30, 1987.

[24] R. Eigenmann, J. Hoeflinger, G. Jaxon, and D. Padua. Cedar fortran and its restruc-

turing compiler. In Alexandru Nicolau, David Gelemter, Thomas Gross, and David

Padua, editors, Advances in Languages and Compilersfor Parallel Processing, pages

1-23. Pitman Publishing, 1991.

139

(
T
3
7
9
!

.'
_

[25] Thomas Fahringer. Using the P3T to guide parallelization and optimization effort

under the Vienna Fortran Compilation System. In IEEE Procedings of the Scalable

High Performance Computing Conference, 1994.

[26] Thomas Fahringer and Hans P. Zima. A static parameter based peforrnance prediction

tool for parallel programs. In Proceedings ofInternational Conference on Supercom-

puting 1993, pages 207—219, 1993.

[27] Richard Feynman. Surely You ’re Joking, Mr: Feynman! W. W. Norton & Company,

1986.

[28] K. Gallivan, D. Gannon, W. Jalby, A. Malony, and H. Wijshoff. Behavioral charac-

terization of multiprocessor memory subsystems: A case study. In ACM Sigmetrics

Performance Evaluation Review, volume 17, pages 79—88, 1989.

[29] Dennis Gannon, Jenq Kuen Lee, Bruce Shei, Sekhar Sarukaiand Srivinas Narayana,

Neelakantan Sundaresan, Daya Atapattu, and Francois Bodin. Sigma II: A toolkit for

building parallelizing compilers and performance analysis systems. In Proceedings of

the Programming Environmentsfor Parallel Computing, Edinburgh, Scotland, April

1992.

[30] David A. Garza-Salazar and Wim Bohm. Reducing communication by honoring mul-

tiple alignments. In International Conference on Supercomputing, pages 87—96, July

1995.

[31] Gina Goff, Ken Kennedy, and Chau-Wen Tseng. Practical dependence testing. In

Conference on Programming Language Design and Implementation, pages 15-29,

1991. .

[32] Manish Gupta and Edith Schonberg. Static analysis to reduce synchronization costs

in data-parallel programs. In Principles ofProgramming Languages, pages 322-332,

January 1996.

[33] David Alejandro Padua Haiek. Multiprocessors: Discussion ofSome Theoretical and

Practical Problems. PhD thesis, University of Illinois at Urbana-Charnpaign, October

1979.

[34] Seema Hiranandani, Ken Kennedy, , and Chan-Wen Tseng. Evaluation of compiler

optimizations for Fortran D on MIMD distributed-memory machines. In International

Conference on Supercomputing, July 1992.

[35] C.-H. Huang and P. Sadayappan. Communication-free hyperplane partitioning of

nested loops. Journal ofParallel and Distributed Computing, 19(1):90-102, 1993.

[36] Francois Irigoin and R. Triolet. Supemode partitioning. In Fifteenth Annual ACM

SIGACIiSIGPLAN Symposium ofProgramming Languages, pages 319—329, January

1988.

140

[37] Wayne Kelly and William Pugh. A framework for unifying reordering transforma-

tions. Technical Report CS-TR-2995.l, University of Maryland, College Park, April

1993.

[38] K. Kennedy, K. S. McKinley, and C. Tseng. Analysis and transformation in the ParaS-

cope Editor. In International Conference on Supercomputing, June 1991.

[39] K. Kennedy, K. S. McKinley, and C. Tseng. Interactive parallel programming using

the ParaScope Editor. IEEE Transactions on Parallel and Distributed Systems, 2:329-

341, July 1991.

[40] Ken Kennedy and Ulrich Kremer. Automatic data layout for distributed-memory

machines. Transactions on Programming Languages and Systems, 20(4), July 1998.

[41] David J. Kuck. The Structure of Computers and Computations. \Vrley, New York,

1978.

[42] David J. Kuck. High Performance Computing: Challengesfor Future Systems. Ox-

ford University Press, New York, 1996.

[43] Leslie Lamport. The parallel execution of do loops. Communications of the ACM,

17(2), February 1974.

[44] Wei Li and Keshav Pingali. Access normalization: Loop restructuring for numa com-

pilers. In Proceedings of Fifth International Conference on Architectural Support

for Programming Languages and Operating Systems, pages 285-295, Boston, Mas-

sachusetts, October 1992. Also appeared in SIGPLAN Notices 27(9).

[45] Wei Li and Keshav Pingali. A singular loop transformation framework based on non-

singular matrices. Technical Report TR 92-1294, Department of Computer Science,

Cornell University, Ithaca, New York 14853, June 1992.

[46] Amy Lim and Monica S. Lam. Communication-free parallelization via affine trans-

formations. In Proceedings of the 7th Workshop on Languages and Compilers for

Parallel Computing, August 1994.

[47] Lee-Chung Lu. A unified framework for systematic loop transformations. In Proceed-

ings of the Third ACM SIGPLAN Symposium on Principles and Practices ofParallel

Programming, pages 28-38, April 1991.

[48] Richard P. Martin, Amin M. Vahdat, David E. Culler, and Thomas E. Anderson. Ef-

fects of communication latency, overhead, and bandwidth in a cluster architecture.

In Proceedings of International Conference on Supercomputing, pages 85—97, June

1997.

[49] Dror E. Maydan, John L. Hennessy, and Monica S. Lam. Practical dependence testing.

In Conference on Programming Language Design and Implementation, pages 1-14,

1991.

141

[50] Pankaj Mehra, Catherine H. Schulbach, and Jerry C. Yan. Comparison of two model-

based performance-prediction techniques for message-passing parallel programs. In

ACM SIGMETRICS Performance Evaluation Review, pages 181—190, May 1994.

[51] U. Meier and R. Eigenmann. Parallelization and performance of conjugate gradient

algorithm on the cedar hierarchical-memory multiprocessor. Technical Report 1035,

University of Illinois at Urbana-Champaign, Center for Supercomputing R&D, 1990.

[52] David Padua, David Kuck, and Duncan Lawrie. High-speed multiprocessors and

compilation techniques. IEEE Transactions on Computers, C-29(9), September 1980.

[53] David A. Patterson and John L. Hennessy. Computer Architecture: A Quantitative

Approach. Morgan Kaufman Publishers, San Mateo, California, 1990.

[54] J.-K. Peir and Ron Cytron. Minimum distance: A method for partitioning recurrences

for multiprocessors. In Proceedings ofthe I987 International Conference on Parallel

Processing, pages 217-225, 1987.

[55] C. Polychronopoulos, M. Girkar, M. Haghighat, C. Lee, B. Leung, and D. Schouten.

The structure of Parafrase-2: An advanced parallelizing compiler for C and Fortran.

In D. Gelemter, A. Nicolau, and D. Padua, editors, Fourth Workshop on Languages

and Compilersfor Parallel Computing. MIT Press, 1990.

[56] William Pugh. A practical algorithm for exact array dependence analysis. Communi-

cations ofthe ACM, 35(8), August 1992.

[57] V. Sarkar. Automatic partitioning of a program dependence graph into parallel tasks.

IBM Journal ofResearch and Development, 35(5/6), September 1991.

[58] Ron Sass and Matt Mutka. Enabling unimodular transformations. In Proceedings of

Supercomputing ’94, pages 753-762, November 1994.

[59] Ron Sass and Matt Mutka. Transformations on doubly nested loops. In Proceedings of

the International Conference on Parallel Architectures and Compilation Techniques,

pages 343-346, August 1994.

[60] Ron Sass and Matt Mutka. Statistical behavior of cluster computing applications. In

Conference on Cluster Computing '97, March 1997.

[61] Alexander Schrij ver. Theory ofLinear and Integer Programming. John Wiley & Sons,

1986.

[62] Weijia Shang and Jose A. B. Fortes. Independent partitioning of algorithms with uni-

form dependencies. In Proceedings ofthe 1988 International Conference on Parallel

Processing, pages 26—33, 1988.

[63] Bruce Shei and Dennis Gannon. Sigmacs: a programmable programming environ-

ment. In Alexandru Nicolau, David Gelemter, Thomas Gross, and David Padua, ed-

itors, Advances in Languages and Compilersfor Parallel Processing, pages 88-108.

Pitman Publishing, 1991.

142

[64] Betty H.C. Cheng Stephen W. Turner, Lionel M. Ni. Time and/or space sharing in a

workstation cluster environment. In Proceedings ofSupercomputing '94, pages 630—

639, November 1994.

[65] H. G. Wells. The Shape of Things to Come. The McMillan Company, New York,

1933. The title of a book by H. G. Wells.

[66] Debbie Whitfield and Mary Lou Soffa. An apprbach to ordering optimizing transfor-

mations. In Proceedings of the SecondACM SIGPLAN Symposium on Principles and

Practices ofParallel Programming, pages 137-146, March 1990.

[67] Michael E. Wolf. Improving Locality and Parallelism in Nested Loops. PhD thesis,

Stanford University, August 1992.

[68] Michael E. Wolf and Monica S. Lam. A loop transformation theory and an algorithm

to maximize parallelism. IEEE Transactions on Parallel and Distributed Systems,

2(4), October 1991.

[69] Michael E. Wolf and Monica S. Lam. Maximizing parallelism via loop transforma-

tions. In Alexandru Nicolau, David Gelemter, Thomas Gross, and David Padua, edi-

tors, Advances in Languages and Compilersfor Parallel Processing, pages 243-259.

Pitman Publishing, 1991.

[70] Michael Wolfe. Scalar vs. parallel optimizations. Technical Report CS/E 90—010,

Oregon Graduate Institute of Science and Technology, 19600 NW von Neumann

Drive, Beaverton, OR 97006, 1990.

[71] Michael Wolfe. The tiny restructuring research tool. In Proceedings of1991 Intema-

tional Conference on Parallel Processing, St. Charles, Illinois, 1991.

[72] Michael J. Wolfe. Optimizing Supercompilersfor Supercomputers. Pitman Publish-

ing, 128 Long Acre, London WC2E 9AN, 1989.

[73] M.J. Wolfe. Techniques for improving the inherent parallelism in programs. Technical

Report 78-929, Department of Computer Science, University of Illinois at Urbana-

Charnpaign, July 1990.

[74] Hans Zima and Barbara Chapman. Supercompilersfor Parallel and Vector Comput-

ers. ACM Press, New York, New York, 1991.

143

"lllllllllllllllllllll

