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ABSTRACT

PSYCHOLOGICAL MEASUREMENT AND STATISTICAL INFERENCE:
IMPLICATIONS OF SCALE MISSPECIFICATION FOR MODERATED MULTIPLE
REGRESSION
By

William Michael Rogers

The purpose of this thesis was to reexamine the critical relationship between
scales of measurement, moderated multiple regression, and theoretical inference. The
first major section critically reviews the modern measurement paradigm in psychology,
and argues that psychologists have placed too much faith in both their measures and their
methodologies. The second section narrows the issue, focusing on how these
uncertainties in measurement scales can affect inferences and tests using moderated
multiple regression methods. It is shown that weaker scales prevent the researcher from
making conclusive statements about presence and strength of moderating effects. A study
is conducted, by which the effects of measurement scale on interpretation of moderated
multiple regression in a variety of situations is clarified. It is shown that the
interpretability of obtained effect sizes for interaction effects is based, in part, on the
precision of both predictor and criterion measures. In addition, the overall predictability
of criterion measures appears to be a factor in the complex relationship between

measurement precision and interaction effects.
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INTRODUCTION

Many theories and procedures in applied psychology predict interactive or
moderating relationships between independent variables in determining their effects on a
dependent variable. Moderating effects are usually defined (e.g. Zedeck, 1971) as
situations in which the bivariate relationship between two variables (X, Y) is influenced
by a third variable (Z). Personnel psychologists typically use the moderator concept in
assessing test bias. Evidence for moderating effects of categorical variables such as
gender or ethnicity is considered differential prediction, and the test is deemed biased
against a subgroup defined by the moderator (Cleary, 1968). Use of moderators is also
prevalent in other applied domains, such as organizational behavior (e.g. Pierce, Gardner,
Dunham, & Cummings, 1993), and training / skill acquisition (e.g. Kanfer & Ackerman,
1989). As the theoretical models generated to explain or predict human behavior in
organizational settings become more complex, the development of theories specifying
moderator variables will grow in importance.

The primary purpose of early studies using moderators was not to test theories or
detect test bias, but to assess differential validity across subgroups defined by a third
variable (e.g. Ghiselli, 1956; Saunders, 1956). This usage was predicated on the notion
that moderator variables defined homogenous subgroups, within which criterion-related
validity was generally thought to be more accurately assessed, and, in some cases, of
greater magnitude. As such, this initial use of moderator variables was primarily
atheoretical and focused on validity maximization, rather than on substantive
relationships between grouping variables, predictors, and criteria (Lubinski &

Humphreys, 1990).



As the early use of moderator variables was in differential validity assessment, the
primary method of examining moderator effects was based on the comparison of
subgroup correlations. The use of this method was restricted to categorically-defined
subgroups, but this was less severe of a restriction, given the nature of most subgrouping
variables (e.g. gender, race). However, it posed problems for the treatment of continuous
moderator variables. Since it is generally not desirable to collapse continuous scores into
categories, the preferred modern method used to assess interactive or moderating
relationships is moderated multiple regression (MMR) (Saunders, 1956; Zedeck, 1971).
This method has been shown to provide more information than subgroup correlational
analysis, in the form of subgroup slopes (Stone-Romero & Anderson, 1994), and can be
applied to situations with either dichotomous or continuous moderator variables.

Using MMR, the test for interactive or moderating effects is a test on the
regression weight of a multiplicative term composed of both predictor components.

Expressed in terms of a linear model, this is as follows:

Y=b,+bX+b,Z+b,XZ +e (1)

where Y is a continuous dependent variable, X is a predictor variable, and Z is a predictor
variable thought to have a moderating effect on the X-Y relationship. A test of the
significance of b, in this case, is a test of the relevant moderating effect. This test is
mathematically equivalent to a hierarchical F-test of the incremental R? for the above

model over a reduced model without the XZ product term.



Despite the theoretical importance of interactions in applied psychology,
confirming evidence has often been difficult to gather. Cronbach (1987) notes the
difficulties in finding interaction effects to be statistically significant. Zedeck (1971) has
termed moderator effects ““as elusive as suppressor variables”. Moderator effects have
also been characterized as more difficult to detect in non-experimental field settings than
in experimental settings (McClelland & Judd, 1993; Morris, Sherman, & Mansfield,
1986). Although the failure to discover significant moderating effects using MMR led
some researchers to advocate alternative methodologies, such methods were eventually
shown to be invalid (c.f. Wise, Peters, & O’Connor, 1984).

In response to these difficulties, many researchers have investigated statistical
artifacts which may contribute to Type II errors using MMR. Type I errors (detecting an
interaction when one is not present in the population) are assumed to be controlled for by
the significance level of either the t-test for the product term in the MMR equation, or the
F-test for incremental R? after inclusion of the product term. Several factors, such as
small sample size (Alexander & DeShon, 1994), measurement error (Busemeyer & Jones,
1983), small population effect sizes (Stone-Romero & Anderson, 1994), and range
restriction (Aguinas & Stone-Romero, 1997) have all been shown to increase Type 1I
errors and reduce the power of the MMR method. These factors reduce the probability of
concluding interaction effects are present when they are, in fact, present in the population.

While the above findings are of considerable practical utility, they have perhaps
overshadowed more fundamental issues related to the erroneous interpretation of
moderated multiple regression analysis. These issues are rooted in the measurement

properties of the variables used by the investigator. These measurement properties, and



the associated scales of measurement, are typically defined based on the prevalent theory

of scale types (Stevens, 1946).

Measurement Theory in Psychology: Campbell’s Problem and Stevens’ Solution

In the majority of psychological circles, the name S.S. Stevens is synonymous
with scales of measurement. His nominal, ordinal, interval, and ratio categorizations
(Stevens, 1946) have been almost uniformly accepted in the psychological literature, and
rarely do methodological or statistical textbooks go beyond these concepts when
discussing measurement scales. The unanimity of this acceptance cannot, however, be
explained solely by the utility of Stevens’ model. Rather, Stevens’ impetus for
developing such a measurement taxonomy, and the taxonomy’s subsequent widespread
acceptance, owe themselves, in part, to a reactive stance by early 20" century
psychologists against influential measurement theories, most notably the ideas of
Campbell (1920, 1928).

Campbell, a physicist, attempted to formalize extensive measurement within
physics. Extensive measurement is the numerical representation of physically additive
properties of objects. Mathematicians such as Helmholtz (1887) and Hélder (1901) had
developed complex theorems and proofs for such measurement systems, and physical
concepts were readily applied to the theory. Length, mass, and distance are common
examples. Measurement of these properties is based on the empirical concatenation, or
physical addition, of identified subunits (e.g. meters, grams) which correspond to the
object being assessed. Campbell, and others (e.g. Bridgman, 1922), proposed that

extensive measurement is the only basis for measurement, and any scale or measurement



system must, at some level, be based on extensively measured entities. Accordingly,
Campbell called extensive measurement fundamental measurement. The measurement of
empirical properties which could not be extensively measured, but was instead composed
of fundamental measures, was called derived measurement. Concepts such as density and
acceleration are derived measures, as they are determined by simple mathematical
relationships between fundamental measures (e.g. density derived from mass and
volume), or powers thereof (e.g. acceleration derived from velocity). Campbell’s theory
essentially classified measurement as fundamental or derived, and any scale or
representation which was neither was voided as measurement.

By constraining measurement to extensive attributes, Campbell’s theory had
thrown down a gauntlet to psychology. The vast majority of psychological variables were
not amenable to empirical concatenation operations, and next to none consisted of
additive physical units. This was even true of the psychophysics discipline, which was, in
the early-to-mid 20™ century, considered to be the most rigorously quantitative of any
field in psychology. Many psychophysicists at the time (e.g. McGregor, 1935; Johnson,
1936; Smith, 1938) attempted to integrate psychological measurement within Campbell’s
theory, but to little avail. In 1940, a committee of the British Association for the
Advancement of Science, on which Campbell was an influential member, provided
another damaging blow, formally declaring fundamental measurement in psychology an

impossibility (Ferguson et al, 1940):

“Why do not psychologists accept the natural and obvious conclusion that

subjective measurements of loudness in numerical terms (like those of length or



weight or brightness) ... are mutually inconsistent and cannot be the basis of

measurement?”’

As Campbell’s theory gained support from the committee’s pronouncement, the
prospects of acceptable measurement in psychology grew dimmer. Given the vital role
ascribed to measurement by the scientific community as a whole, the mood of many was
that psychology was on the defensive in a philosophical battle for its existence as a
science.

Stevens, a psychophysicist, was especially influenced by the edict of the British
committee, as his own loudness sensation scale, the sone scale (Stevens & Davis, 1938),
was among those that the association chose to examine in detail. Stevens proposed an
alternative to Campbell’s theory by relaxing the requirement of extensively measurable
entities. Stevens suggested that any numerical coding which somehow represents an
empirical reality should be considered measurement, regardless of the presence of
additivity in either the numbers used or the empirical objects in question. Stevens’
complete theory argues that empirical non-additivity does not preclude measurement
itself, but only restricts the ways in which the measurements can be used.

Stevens identified four primary scale types: nominal, ordinal, interval, and ratio.
His nominal scale is the numerical coding of attributes based on equality or inequality.
Thus, using a ‘1’ to represent a male and a ‘2’ to represent a female tells us only that
“males are not equal to females”. Stevens’ ordinal scale uses numbers to denote order
properties of an attribute. A simple example is order of finish in a marathon. 1% place

finishes ahead of 2™, which finishes ahead of 3"’, and so on. Ordinal scales also contain



equality and inequality information, in the form of “ties” at any given rank. In the
marathon example, if after 1* and 2" place, three people all crossed the finish line at
exactly the same moment, they could all be given rank “3”, as they finished after “2”, and
before “4”. Stevens’ interval scale possesses the properties of the aforementioned scales
(i.e. equality and order), and has the additional property of equality of differences. A
classic example of an interval scale is temperature measurement using a thermometer.
The liquid in the thermometer is known to increase in volume linearly with an increase in
temperature. The marked gradations on the outside of the thermometer are set at equal
intervals of the volume within the thermometer. Thus, the change in volume of the liquid
from the 10° mark to the 20° mark is equal to the volume change between the 20° and 30°
marks. Given the linear relationship between volume and external temperature, one can
conclude that the physical temperature differences are also equivalent. Ratio scales
possess the properties of equality, order, and difference, and, in addition, reflect a
physically additive structure by the presence of a true zero point. Ratio scales are used
when the object in question has a meaningful point of absence or non-existence. Mass
and length are common examples.

Each scale type defines a set of permissible transformations, under which the
information contained in the scale remains invariant. Nominal scales permit only one-to-
one transformations, where any value in the transformed scale s, has only one
corresponding value in original scale s,, and vice versa. Ordinal scales permit monotonic
increasing transformations, as these preserve order from the original scale. Interval scales
permit positive linear, or affine, transformations, of the form: s, = a - s, + b. Ratio scales

permit positive similarity transformations, which preserve the ratio of two scale values, of



the form: s, = a - s,, where a is a positive real number. Non-permissible transformations
of any scale result in loss of information, and the resulting scale can only be treated at the
level of measurement which permits the transformation. For example, a non-linear
monotonic transformation of an interval or ratio scale results in an ordinal scale, and a
linear transformation of a ratio scale results in an interval scale. In the case of linear
transformations and monotonic transformations with functional formulas (e.g. X" or
log(X)), a non-permissible transformation can be reversed to recover original scale
information. This is not true of all monotonic transformations, however.

The notion of permissible statistics was a natural extension to permissible
transformations. Permissible statistics were defined by Stevens to be functions whose
meaning and statistical inference remained invariant across permissible transformations
of a given scale type. Non-parametric statistics, such as frequency-based and rank-order
concordance indices, were the only statistics applicable to nominal and ordinal scales,
respectively. Advanced parametric methods, such as t-tests, F-tests (analysis of variance),
and Pearson correlational indices were restricted to interval and ratio scales.

Accepting Stevens’ theory of scale types, even with the restrictions it placed on
transformations and statistics, would have represented considerable gains in measurement
theory for psychology. Despite these potential gains, however, many psychologists still
saw a problem. Stevens’ theory essentially told them that the variables they study are
indeed measurable, but due to scale properties, only certain statistics are allowable, hence
only certain hypotheses could be tested. Acceptance of this, combined with the lack of
evidence for an interval nature of a majority of psychological variables, would amount to

an admission that the large group of meaningful statements limited to interval and ratio



scales could rarely be made in psychology. To psychologists attempting to expand
measurement practice and psychological science to the boundaries of physical science,
these restrictions were unacceptable. The nature of psychological data, and the methods

used to analyze them, became the major point of contention.

Psychological Data: Ordinal, Interval, or Unimportant?

The earliest attacks on Stevens’ theory were based on the notion of statistical
methods being closed systems. Typified by Burke (1953), Lord (1953), and Anderson
(1961), these criticisms essentially stated that numerical calculations are independent of
measurement scales and empirical phenomena, and thus any calculation can be conducted
on any numbers. After all, states Lord (1953), “the numbers don’t know where they came
from.” Though the logic of this statement is unclear to some', Lord’s conceptual
separation of numerical computation and statistical meaning is evident. He uses
examples such as calculating the arithmetic mean of jersey numbers for freshmen on a
football team. Gaito (1980) supports such reasoning, suggesting that statistical theory
and measurement theory are independent and unrelated considerations. This type of
argument, sardonically termed “computational libertarianism” by Michell (1990), boils
down to both a difference in semantics and a lack of consideration of empirical meaning.
It would have been ridiculous for Stevens to suggest that calculations cannot be done
using scale values. No researchers, at least to date, have been legally or otherwise
restricted from performing mathematical calculations. These calculations should instead

be judged by their eventual meaning or use in hypothesis testing. Unless researchers



following Lord’s logic can propose meaningful hypotheses about the mean of nominal
scales such as jersey number, the calculation of the mean remains theoretically and
empirically meaningless.

Other researchers have questioned the relationship between statistical
methodology and measurement theory based on statistical assumptions. Gaito (1960)
presents the argument that statistical tests are only mathematically based on distributional
assumptions. According to Gaito, verification of these distributional assumptions, rather
than scale type, validates the use of a particular statistical method. The problem with this
argument is similar to that of the early criticisms of Lord (1953) and Burke (1953), in that
no explicit linkage is made with the meaning of the statistical test or hypothesis. A
variety of transformations of a given variable could be conducted in order to produce a
normally distributed result. Gaito is technically correct, as this would indeed validate the
use of statistical methods assuming normality, but the hypotheses tested under the
transformation may become meaningless (e.g. difference in logarithms of attitudes toward
an object), or, at the very least, difficult to interpret. Again, the key is not valid statistical
methodology, but valid empirical inference and theoretical meaning. Stine (1989) sums
up the critical relationship between substantive theory, measurement, and statistical

methodology, and the flaws in arguments such as Gaito’s:

“In short, for the statistician or mathematician, statistical methods are closed
systems. For the scientist, statistical methods are but one component of a larger,

more complex system. The full potential of a statistical technique is realized only

'Townsend & Ashby (1984): “Just exactly what this curious statement has to do with statistics or
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when its proper role as a component of the scientific endeavor is realized. A
failure to recognize this role can lead to scientific decision making on the basis of

nonsense.”

Another set of responses to Stevens’ theory were motivated by the desire to use
parametric methodology with data that were not shown to be interval or ratio scaled.
Recall that the only difference between ordinal and interval data is an equivalent distance
between scale points. This meaningful distance, according to Stevens’ (1946) theory,
permitted the use of advanced parametric statistical methods of testing mean differences.
The difficulties in verifying equal intervals in measurement instruments, combined with
the desire for parametric methodology, led many psychologists to seek proxy indicators
for an interval scale. Perhaps because of its role in many parametric methods, the most
popular proxy indicator of an interval scale has been the normal distribution.

Gaito (1959) reasoned that the normal distribution is evidence for an interval scale
because one can divide a normal distribution into equal units based on the standard
deviation. Achenbach (1978) writes: “In effect, then, the assumption of a normal curve
also implies an assumption about the type of measurement scale employed.” Jensen
(1974) states: “if ... normality of the population distribution of the trait is correct, we
have ... a true interval scale of measurement”. In 1980, he writes: “Ipso facto, any test of
intelligence that yields a normal distribution of scores must be an interval scale.”

Despite all claims to the contrary, there is no evidence that normality of

distribution is a valid indicator of an interval scale (Stine, 1989). The argument of Gaito

measurement eludes us.”
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(1959) is flawed, in that standard deviations only allow a normal curve to be divided into
equal areas based on probabilities. The empirical distance between points on the scale is
an entirely different consideration. For instance, knowing a data set has a mean of 10,
standard deviation of 1, and is a perfect normal distribution only tells us that the
probability of a data point falling between 8 and 9 is equal to the probability of falling
between 11 and 12. It in no way informs us of the empirical equality of these distances.
Thomas (1982) illustrates a situation which further falsifies claims that normal
distributions infer scale of measurement. The study he used as an example, Yuan (1933),
suggested that weight be considered a lognormal variable due to the lack of negative
values. Yuan graphed weight and log weight from a sample of 1000 girls and illustrated
that the log weight conformed to a normal distribution much better than the
untransformed weight. Since weight is a ratio scale (and consequently an interval scale),
a log transform is not permissible. Thus, log weight is not an interval or ratio scale, yet it
displays a normal distribution. Thomas (1982) also proves that, for any ordinal scale
measuring an underlying continuous distribution, a transformation to a normal
distribution exists’. He points out a startling implication of the latter proof: if we
incorrectly assume normal distributions are the result of measurements using interval
scales, and know that any ordinal scale can be transformed to normality, we would
erroneously conclude that any ordinal scale can be transformed into an interval scale!
Scholars in measurement theory have suggested there is little evidence to conclude that
performance measures are linearly related to the underlying construct of interest (Krantz

& Tversky, 1971). We are usually only able to show these measures to be of ordinal

? Proof based on Roussas (1973), pp. 185-186
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level, and thus only monotonically related to the construct. Despite these findings, most
psychologists still believe that normality of distribution somehow implies an interval
scale.

Even among those accepting the non-interval status of measurement in
psychology, there is continued use of advanced statistical methodology requiring interval
scales. This use is based primarily on simulations demonstrating the robustness of
parametric methods to transformations not permitted of interval scales. In one of the first,
and most often cited, of these studies, Baker, Hardyck, & Petrinovich (1966) calculated ¢-
tests on interval-level data disturbed by random ordinal transformations, finding that the
sampling distributions of the resulting ¢ statistic were very similar to the sampling
distribution of the statistic with the undisturbed interval data. They therefore concluded
that the t-test is robust to violations of interval assumptions, and it is adequate for use
with ordinal data. Results of a Monte Carlo simulation by Gregoire & Driver (1987)
suggested no clear power advantage of either parametric or non-parametric tests when
testing for two group (¢ test vs. Mann Whitney U) or multi-group (F test vs. Kruskal
Wallis H) mean differences of Likert scales under various ordinal transformations.
However, reinterpretations of their results have implied a power superiority of parametric
tests (see Rasmussen, 1989). Zumbo & Zimmerman (1993) demonstrated minimal power
differences when r-tests are applied to ranked data, or to ranked scores with added error,
and conclude that it is not necessary to use non-parametric tests on ordinal level data.

The message emerging from these investigations is that it is generally permissible
to use parametric tests with ordinal data, or at the very worst, it is an arbitrary

consideration. This conclusion has been challenged by Stine (1989), who notes that
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simulations based on random disturbances to interval data, such as that of Baker et al.
(1966) and Zumbo & Zimmerman (1993), may not be valid. According to Stine, these
Monte Carlo methods are valid only if different ordinal scales are randomly selected for
each use of a given statistic, i.e. that different ordinal representations of the data are used
across replications. Stine argues that it is more likely for a single ordinal representation
(or disturbance) to be in effect across many situations. For example, because of
anchoring or other problems, a Likert scale may have “compressed” values near one
endpoint, such that the empirical distance between ratings of ‘6’ and ‘7’ is less than that
between ‘1’ and ‘2°. The behavior of a series of ¢-tests using this scale may be very
different than a series conducted on a Likert scale which exhibits random “compression”.
Stine concludes that if a permissible transformation exists (i.e. an empirically equivalent
scale) such that the inferences made (or decision error probabilities of such) using the
statistical method in question are altered, then the method is not robust to violations of
interval level assumptions.

By advocating proxy indicators of interval scales, such as normality of
distribution, and using parametric methodologies with ordinal data, psychologists have
perhaps, to use an athletic analogy, both inappropriately lowered the bar and strengthened
the high-jumper, with respect to measurement and statistical methodology. The next

section will describe how these uncertainties in level of measurement have the potential

for misinterpretations of moderated multiple regression analyses.
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Interval Scales, Ratio Scales, and Moderated Multiple Regression

Although the Monte Carlo studies discussed above have quelled most concerns
about robustness of parametric methods, Stine’s criticisms notwithstanding, the effects of
measurement level have been further investigated in the context of moderated multiple
regression. Since, for reasons discussed earlier, most psychological data is assumed to be
of interval scale, much attention has been given to the effects of linear transformations on
parameter values and interpretation of MMR. In addition to the standard linear
transformation (s; = a- s, + ¢, where s; is the transformed scale, s, is the original scale, a
is a positive real number, and ¢ is any real number), the special case of additive
transformations (s, = s, + ¢, where c is any real number) has been addressed. Additive

transformations of the form s, = s, —5, are often used to “center” the data prior to

estimating the regression equation. Such centering simplifies interpretation of simple
slopes and often reduces multicollinearity between the product term and its component
terms (Aiken & West, 1991).

Perhaps the most comprehensive assessment of the effect of additive and linear
transformations on regression equations with product terms is that of Cohen (1978). In
an effort to demonstrate the invariance of results across linear transformations, Cohen
illustrated the effects algebraically. Given arbitrary linear transformations of the
predictors, X’ and Z’, where X’ = aX + ¢, and Z’ = dZ + f, the simplified MMR equation

in terms of the transformed scales becomes:

(BB (B (B BB
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Regarding the new regression coefficients for variables X”, Z’, and X'Z’, several
conclusions are apparent. Coefficients for X’ and Z’ are altered by both additive (c,f) and
multiplicative (a,d) components of the transformation equations. This can easily be seen
in the common situation where one wishes to standardize the predictors prior to analysis
(ie,a=8D,",d=8D,", c=-X, e=-Z), resulting in standardized regression
coefficients. If there is no interaction present using the original scales (B3 = 0), then
transformations which are solely multiplicative (c = e = 0) will simply change B, and B,
by a factor of their respective multiplicative constants, a and d. The regression weight for
X'Z' is shown to be affected by the multiplicative constants a and d, but unaffected by
additive components of the transformations. Thus, the “centering” operation described by
Aiken & West (1991) has no effect on the value of

B3. Cohen (1978) also showed that under a linear transformation, the new regression
weight counteracts the shift in the standard deviation of the product term created by the
transformation. Because of this, significance tests on the transformed regression weight
remain unchanged.

Important as they are, the examination of these effects on regression weights was
not Cohen’s primary focus. Cohen demonstrated that R%y«x z xz = R%y«x' . xz, and
that R%y« x, z = R%y « x', 7, leaving the F-test for incremental R? also unchanged. Cohen’s
overall conclusion is that, despite the various effects on regression weights, the essential
tests of interactive effects are invariant to linear transformations. According to Cohen,

this demonstration renders concerns such as multicollinearity of product terms and
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components (Althauser, 1971), and correlated random predictors (Sockloff, 1976) of
trivial importance.

There have also been some discussions of ratio level data in MMR analyses. If
one examines Equation 2 above, it can be seen that additive transformations exist (a =d =
1; ¢ = B2/Bs, f = B1/B3) which equate the regression weights on X' and Z' to zero. In this
situation, all predictable variance from the original equation is carried by the X'Z’ product
term (R%y+ x, z, xz = R%y » x'z). If one were to use the R? as an index of fit for the model, it
results in an arbitrary decision between a strictly multiplicative model (Y = X'Z") and an
additive-multiplicative model (Y = X + Z + XZ), depending on which interval scales are
used. Schmidt (1973) illustrates this point using Vroom’s (1964) Expectancy-Valence
theory of motivation. Since the additive transformations which create the ambiguity
between the multiplicative and additive-multiplicative models are not permissible of ratio
scales, Schmidt concludes that ratio scales are necessary to make the distinction. Using
ratio level measures of valence and expectancy, for instance, a researcher could only
perform multiplicative transformations, which cannot convert an additive-multiplicative
model to multiplicative, or vice versa.

Amold & Evans (1979), based primarily on Cohen’s (1978) previously discussed
work, take issue with Schmidt (1973), and suggest that the MMR F-test of incremental R?
is the proper test of a multiplicative model. According to Arnold & Evans, the proportion
of variance “carried” on the product term or its components is not relevant to testing a
multiplicative relationship. In support of their point, Amold & Evans (1979) present an

example of two physicists attempting to verify the ideal gas law, which is given by:
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V=—r A3)

where V=volume, P=pressure, T=temperature, and R=a constant.
It is at this point where Amnold & Evans make an error. Perhaps due to a
misunderstanding of physical laws, they claim the primary difference between physical
laws and relationships in psychology is that physical laws must specify units of
measurement (e.g. centimeters, degrees Kelvin, etc.) in order to be valid. The ideal gas
law is only valid, according to Amold & Evans, if temperature (T) is measured in units
Kelvin. This statement is incorrect, as the measure of temperature only has to be a ratio
scale, like the other scales in the formula. As can be seen in Equation (3), the value of the
constant R can simply be adjusted to reflect a permissible ratio rescaling of T, and the law
will maintain its fit to data and, more importantly, its multiplicative form.

This confusion between measurement level and measurement unit is compounded
as Amold & Evans (1979) describe their example. Physicist A uses degrees Kelvin as a
measure of temperature and Physicist B uses degrees Celsius. To test their theories, these

physicists set up a moderated multiple regression equation as follows:

1 1
V=b0+b,T+b2;+b3(T-F) 4)

Both physicists are expecting to verify the ideal gas law by finding: 1) a
significant increase in R? when the (T-1/P) term is added; 2) by, b;, and b, all to be zero;

and 3) for bs to equal the constant R. Amold & Evans (1979) state: “This rather strong
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prediction is based upon their confidence that their measures of T, and P, and V are on
ratio scales.” We will soon see that this statement cannot be true.

Both physicists run their analyses and predict 100% of the variance after the
product term is added, concluding they have indeed verified a law. Physicist A finds that
the increase in R? was highly significant, by = b; = b, = 0, and b; = the constant R. Thus,

she concludes the underlying physical law is:

V="",
P

or, the correct law as originally described in Equation 3.

Physicist B, who also finds an identical significant increase in R, finds his
equation to be somewhat different. As with Physicist A, by and b, are both zero, and b; =
the constant R. However, b, is now equal to a new constant K. Physicist B concludes the

correct form of the ideal gas law is:

,_K_RT
P P’
which reduces to:
V_K+RT
=—5

Recall that the only difference between Physicists A and B is the scale chosen for
temperature, Kelvin or Celsius. Amold & Evans use this fact to argue that neither
physicist’s formula for the law is really correct. A simple change in the unit of

measurement has effectively changed a law from a multiplicative form to an additive-
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multiplicative form. This ostensibly supports their argument that laws are not constant
without specification of measurement units.

As noted earlier, the flaw in such an argument is based on a confusion between
measurement unit and measurement /evel. Arnold & Evans commit this error when they
allow Physicist B to use a Celsius scale for temperature, and simultaneously assert that
both physicists are confident their scales are of ratio level. Kelvin is a measure of
temperature based on molecular activity, and thus has a true zero point. Celsius is a
measure of temperature constructed by means of a non-permissible additive
transformation to the Kelvin measure (°C=°K - 273°). Thus, the Celsius scale loses the
true zero point (e.g., 40° C is not twice as much warmth or molecular activity as 20° C),
and is merely an interval scale. Physicist A can be confident her formula is the correct
form of the ideal gas law, as permissible transformations of all its ratio measures can only
change the value of the constant R, and will leave the essential multiplicative form of the
law unchanged. However, Physicist B’s additive-multiplicative model can be changed by
permissible linear transformations of the temperature measure.

This discussion reinforces Schmidt’s (1973) earlier arguments. Verification of a
multiplicative theoretical model cannot be accomplished by means of moderated multiple
regression when the variables are measured at the interval level. Although Cohen’s
(1978) work showed that the significance test for a product term is invariant to linear
transformation, this test is not equivalent to a test of a purely multiplicative theory. The
test of this interaction term with interval scales does, however, allow one to reject a
purely multiplicative model based on a zero-weighted interaction term. An additive

model (Y = X + Z) cannot be made multiplicative by a linear transformation. If one
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obtains a significant interaction using MMR, a further examination of the variables in
question is required to verify a multiplicative model. Amold & Evans (1979) make this
point, and this author is in complete agreement. However, a clear concept of the level of
measurement is required, not, as Amold & Evans suggest, the unit of measurement.
While theory and measurement in applied psychology may never reach the point of
specifying standardized units, the goal of establishing constructs with theoretically

meaningful zero points is more realistic, and the only necessary consideration.

Moderated Multiple Regression and Ordinal Scales: Criterion Issues

The use of ordinal scales with moderated multiple regression poses a more severe
set of problems. It has been repeatedly noted that permissible monotonic transformations
of dependent variables can completely remove non-crossing interaction effects (Cliff,
1992; Loftus, 1978; Busemeyer & Jones, 1983; Krantz & Tversky, 1971), and can often
attenuate a crossing interaction to the point of potential non-significance (Busemeyer,
1980). Note that these findings also imply that data suggesting no interaction is present
can be subject to a monotonic transformation which creates a significant interaction term
in an MMR analysis (see Loftus, 1978). An interaction is said to be “non-crossing” when
the rank orderings of Y across X are the same for all Z values, and the rankings of Y
across Z are the same for all X values. Any rank order changes indicate a “crossing”
interaction, as a plot of Y regressed on X (or Z) would cross at the point on Z (or X)
where the order change occurred.

Unfortunately, the effects described above are not easily demonstrated

algebraically, as Cohen (1978) had done with linear transformations. A few popular

21



monotonic transformations, such as power (X"), root (W), and logarithm, have been
discussed (see Birnbaum, 1973; Busemeyer & Jones, 1983), but these only represent a
subset of monotonic transformations which have functional forms. Since monotonic
transformations, as a class, cannot be expressed with a functional formula, the examples
here will use small data sets and simple transformations.

First, let us examine a non-crossing interaction. Consider a situation in which we
are determining whether or not slope bias exists for Black and White subgroups when
predicting college achievement, indexed by GPA, from the score on a standardized SAT
test. The dataset for this example, based in part on Figure 7.7 in Gregory (1996), p. 268,
is shown in Table 1a. It can be seen that GPA maintains the same rank ordering within
Race across levels of SAT score, and within SAT score across levels of Race, verifying a
non-crossing interaction.

If one were to examine these data with moderated multiple regression, the

following additive and additive-multiplicative equations would be generated:

GPA4 = (.006 x SAT) + (.85 x Race) - 1.44 (5)

GPApm = (1002 x SAT) - (.17 x Race) + (.0026 x SAT x Race) + .09 (6)

The R for Equations (5) and (6) are .960 and .998, respectively. The F-test for
AR?, as well as the t-test of the regression weight of the (SAT x Race) interaction term,
are both significant at the .001 level. Based on these results, a researcher would conclude

that slope bias exists when using a standardized SAT score to predict college
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achievement. This conclusion would likely result in a more detailed examination of the

test, and perhaps its discontinued use.

Table 1.

Datasets for Slope Bias Example: GPA by Race and SAT Score

a. Original Data
Race SAT Score

200 300 400 500 600

White 1.1 20 25 325 40

Black 08 13 1.7 22 26

b. Transformed Criterion Data
Race SAT Score

200 300 400 500 600

White 1.1 20 24 29 33

Black 04 13 1.7 22 26

Rather than conclude the problem lies with the predictor in this case, an
examination of the criterion may be in order. There is no reason to believe that GPA is an
interval scale of college achievement. For example, the difference in achievement

between GPA’s of 4.0 and 3.5 may be much greater than between 3.5 and 3.0, due to a
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particular grading policy which requires students to put forth “extra effort” in order to
attain very high grades. The potential variety of such grading policies casts any
interpretation of GPA as an interval scale in doubt.

In light of this, consider the dataset presented in Table 1b. These GPA values
have an identical rank ordering as the data in Table 1a, and thus represent a permissible
monotonic rescaling of the original GPA variable. Comparing Tables 1a and 1b
illustrates that the rescaling is simply slight, order-preserving changes to four GPA
values. Conducting moderated multiple regression on the rescaled numbers would result

in the following equations:

GPA4 = (.0053 x SAT) + (.7 x Race) - 1.18 @)

GPAuu = (0053 x SAT) + (.7 x Race) + (.000 x SAT x Race) - 1.18 (8)

The R? for Equations (7) and (8) are obviously the same, .976. The AR? is zero, so there
is no additional variance accounted for by adding a (Race x SAT) product term. A
researcher using this dataset would conclude that no evidence of slope bias exists for this
standardized test. While there is evidence of an overall mean difference in GPA across
Race, the regression lines for each subgroup are otherwise identical.

The above example illustrates how a non-crossing interaction can be completely
removed by applying a monotonic transformation to the dependent variable. In the
specific case of assessing slope bias, it is notable that the level of measurement of the
criterion may have serious implications for the future use of the predictor, when the

measurement properties of the predictor are not even assessed. Using two datasets which
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are empirically equivalent non-interval scales of achievement, one can reach two different
conclusions regarding the existence of slope bias. Neither conclusion is, in fact,
necessarily correct or incorrect. Using non-interval scales prevents the researcher from
making any statement about slope bias, as the test for slope bias is not invariant to
transformations permissible of the variables involved.

Now consider an example of a crossing interaction. A researcher is studying the
relationship between social integration behaviors, previous work experience, and the
length of time working for a particular organization. The dependent variable, amount of
social integration behavior, is measured using summated Likert response items, resulting
in a 20-point instrument. The data for this example are shown in Table 2a.

The additive and additive-multiplicative equations for the dataset in Table 2a are

as follows:

SocBehy = (1.1815 x Time) + (.46 x WorkExp) - .095 9)

SocBeh 4y = (-.385 x Time) - (5.81 x WorkExp) + (1.045 x Time x WorkExp) + 9.31 (10)

The R? for equations (9) and (10) are .827 and .987, respectively. The AR? of .16 is
significant at a=.0001, which the researcher concludes to be evidence of a strong
interaction effect in the determination of social integration behavior. Individuals with no
previous work experience tend to exhibit more social integration behavior than

individuals with previous work experience when first arriving in a new organization.
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Table 2.

Datasets for Social Behavior Example: Social Behaviors by Work Experience and Time

a. Original Dataset

Previous Work Experience

No

Yes

b. Transformed Dataset

Previous Work Experience

No

Yes

c. Transformed Dataset

Previous Work Experience

No

Yes

Time from Employment

2mo 3mo 4mo Smo 6mo
5.0 6.0 7.1 9.2 10.0
1.3 4.2 7.5 12.3 143

Time from Employment

2mo 3mo 4mo 5Smo 6mo
4.4 53 6.1 7.9 8.9
2.9 3.7 7.0 9.9 12.1

2 mo

Time from Employment

3mo 4mo Smo 6mo

4.7

32

60 7.1 9.7 10.3

44 75 10.5 122
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However, as time passes, the individuals with previous work experience increase
their social integration behavior more rapidly than those without such experience. The
researcher concludes the initial difference in behaviors is due to the newcomers without
work experience attempting to “fit in”, perhaps using social behaviors to compensate for
lack of knowledge of workplace etiquette. Those with previous experience, and such
knowledge, have no need to compensate, and eventually their previous workplace
experiences allow them involvement in more social integration behaviors.

Suppose, however, that the 20-item scale used by this researcher is a non-interval
level measure of social integration behavior. For example, this could be due to
problematic anchors for Likert-type items or inclusion of items reflecting very different
levels of behavior. Problems such as these might create situations where distances
between any two scale points would not be a constant across the entire scale. If the scale
as a whole is considered ordinal, transformations preserving rank order can result in the
data presented in Table 2b. Submitting these data to a moderated multiple regression

analysis results in the following equations.

SocBeh, = (.905 x Time) + (.60 x WorkExp) +.49 (11)

SocBehypy = (-.07 x Time) - (3.3 x WorkExp) + (.65 x Time x WorkExp) + 6.34  (12)

R? for equations (11) and (12) are .866 and .976, respectively, resulting in a AR?

of .11. This is significant at the a=.01 level. However, this AR? is smaller than the .16

obtained using the original data. While the interaction is still present, its strength has
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somewhat diminished. Now consider a second transformation to the original data,

presented in Table 2c. The associated regression equations for these data are:

SocBeh, = (.975 x Time) + (0 x WorkExp) + 1.71 (13)

SocBeh gy = (285 x Time) - (2.76 x WorkExp) + (.46 x Time x WorkExp) + 5.85  (14)

R? for equations (13) and (14) are .926 and .978, respectively, with AR? equal to
.052. This is significant at the a=.05 level. The effect size associated with the interaction
is smaller than that in the previous data set, and a great deal smaller than the original data
set. When treating the scale as ordinal, two researchers using empirically equivalent
scales can thus reach two very different conclusions about the strength of the interaction
effect. As opposed to the non-crossing type of interaction, however, the regression
equation can never be rendered completely additive. It is impossible to do so without
affecting the rank order of the criterion variable. This can easily be understood if one
thinks of the crossing interaction graphically, in terms of intersecting regression lines. An
additive equation is graphically represented by parallel regression lines. Thus, in order to
transform a crossing interaction model to an additive model requires the “uncrossing” of
the lines to make them parallel. Such a manipulation requires that some of the rank
orders near the high or low end of the criterion be inverted. It is nevertheless possible to
reduce the effect size of the interaction by minimizing the scale distance between ranks at
extreme values of the criterion. Graphically, this has the effect of “compressing” the ‘X’
formed by the interaction. This increases the fit of a linear equation through the ‘X’, and

subsequently reduces the amount of variance accounted for by an additional product term.

28



While the two examples shown above still result in a significant interaction, more severe
scale transformation would cause the interaction to be statistically non-significant.
However, the regression weight of (and amount of variance accounted for by) the product
term can never be reduced to zero.

The above sections have highli ghted the problems with interpreting interaction
effects when the criterion cannot claim an interval level of measurement. When the
interaction is of the non-crossing variety, transformations permissible of ordinal scales
can completely remove the effect, essentially converting an additive-multiplicative
equation into an additive equation. When the interaction is crossing, such
transformations cannot completely remove an interaction, but can potentially attenuate
the effect size to the point of statistical non-significance. Although crossing interactions
can never be completely removed, the reduction to non-significance would result in a
researcher concluding there is no interaction effect, and advocating the default additive

model.

Moderated Multiple Regression and Ordinal Scales: Predictor Issues

Problems using moderated multiple regression techniques with ordinal level data
are not restricted to the criterion variable. Although the measurement level of a predictor
is obviously only an issue with continuous predictors, as dichotomous moderating
variables are only of nominal level’, monotonic transformations of a predictor can have
effects on interpretation of regression results in these situations (Busemeyer, 1980;

Busemeyer & Jones, 1983). Busemeyer & Jones (1983) examine the specific case

} Ordinal, interval, and ratio properties cannot be assessed with only two scale points.

29



involving quadratic transformations of a predictor variable. If there is reason to suspect a
quadratic component in the relationship between a predictor and criterion, Busemeyer &
Jones (1983) suggest the inclusion of higher order terms, such as X2, in a hierarchical
regression analysis. As with interactions, tests of these trend components are
interpretable if they are entered into the .regression equation after lower order components
(Cohen & Cohen, 1983; Cohen, 1978). Testing of cubic and higher order terms proceeds
in a similar manner, with the regression equations becoming exponentially larger as an
increasing number of exponential and product terms are required. Rarely, however, do
psychological theories obligate an assessment of trends beyond the quadratic form
(Cohen, 1983).

The methods outlined by Cohen (1978) allow us to examine nonlinear trend
components and their interactions within the context of moderated multiple regression,
but only in the case where the functional form of the nonlinear transformation (or
nonlinear relationship) is suspected or known. In a situation where we have no reason to
suspect a predictor is related to a criterion via a logarithmic or polynomial function, yet
also have no reason to believe the predictor is of interval level, inclusion of specific
functions of predictors in a regression equation offers us little more than a “hit and miss”
method of finding a critical functional transformation, if one even exists. This method is
useless when faced with a non-interval predictor with unknown distances between scale
points.

The general case of monotonic predictor transformations can, however, be
examined in a similar fashion as that of criterion transformations, i.ec., finding the

transformation of X which renders X-Y regression lines parallel across levels of Z.
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Determining whether a transformation of X, say X', exists, such that Y = by + b; X' + b,Z,
is equivalent to determining whether a criterion transformation exists for X' =[Y + b, (-
Z) - by] / by. Since linear transformations are a subset of monotonic transformations, we
can dispose with the by, b;, and b, terms in the equation, leaving X' =Y + (-Z). In other
words, if Y is shown to be an additive function of X and Z, then X is also an additive
function of Y and Z, albeit with an inverted ordering on the Z variable. Any
transformation of X which achieves X' =Y + (-Z) also achieves Y = X' + Z.

We can see from the previous data examples that, when Y values are tabled by X
and Z, the transformation of a Y value is an operation on a cell, or set of equally valued
cells, in the table. The transformation is order-preserving as long as the new number is
less than the next highest original number and greater than the next lowest original
number. For instance, in the slope bias example data in Table 1a and Table 1b, four
GPA values were changed, which preserved rank ordering and completely removed the
moderating effect. However, consider what a monotonic change in a predictor represents
in the data tables presented to this point. No longer is one altering a single cell, but
“shifting” an entire column or row. The regression equation at any level of Z is affected
by a change in an X value, provided a Y value exists at the level of X and Z. For
example, in Table 1a, changing any SAT value would result in changes to both White and
Black regression lines, and their slopes could never be equated. Thus, it appears that the
monotonic transformation of a predictor cannot remove a moderating effect.

A predictor transformation examined in this manner can, however, attenuate the
interaction effect. Consider the very simple dataset in Table 3. R?, and R%sy for these

data are .9375 and 1.00, respectively, resulting in a AR? of .0625. After one performs the
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simple monotone predictor transformation (2=2.5) on X, the R’ and R?sy become .894
and .952, respectively. The AR? in this case is .058, slightly lower than the original value.
If one performs a further transformation (1=1.5) on X, the R2, and R%,y become .917 and
.978, respectively. The AR? increases from the last situation to .060. While this dataset
represents a non-crossing interaction, similar effects are likely to be observed with a
crossing interaction. Monotonic transformation of a predictor appears to have the

potential to attenuate an interaction effect but not remove one.

Table 3.

Dataset for Predictor Rescaling Example: Y by X and Z

Z X

1 2 3
1 1 2 3
2 2 4 6

However, this still is not the entire story. Because the labelings of “predictor” and
“criterion” in these tables have already been shown to be arbitrary if a transformation to
an additive model exists*, X could be considered the criterion, with Y and Z as predictors.
We’ve already shown that Y can be transformed so that Y = b; X + b,Z, which is

equivalent to saying bjX =Y - b,Z. If X is considered the criterion, it looks as if a

YY =b,X+b,Z+by € bX=Y-bZ-b,
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monotonic transformation to “predictor” Y exists in the data from Table 1a to create this
additive model. This is contrary to what was found when X was considered a predictor.
The reason for this can be seen by examining the same data in Table 1a, but with SAT
values in the cells at different levels of GPA and Race. This arrangement of the data can

be found in Table 4.

Table 4.

Dataset in Table 1a presented as SAT by Levels of Race and GPA

Race GPA

White 200 300 400 500 600

Black 200 300 400 500 600

The difference between Table 4 and Table 1a is clear. Monotonic transformations
of GPA in Table 4 still involve the shifting of entire columns, but since only one SAT
value is in each column, we can effectively alter the regression line for one group without
affecting the other. Thus, the regression slopes can be equated by an order-preserving
rescaling of the GPA “predictor”. The cause of this phenomenon is primarily the design
of the dataset. While SAT score is likely a continuous distribution in the larger sample,

the table represents a dataset in which a pair of observations were selected from six levels
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of SAT score, one observation for each Race. As such, the table represents a completely
crossed design of Race x SAT. Monotonic predictor changes in a fully crossed design
will, by definition, alter regression equations across all levels of the other design factor.
The data neither are, nor were designed to be, fully crossed in GPA x SAT, and the empty
“predictor” cells created by this crossing allow a monotonic transformation to have an
effect.

The issue of predictor transformations affecting moderating effects thus reduces to
the question of what situations involve empty cells, rows, or columns in the data matrix.
An obvious situation is one in which X and Z are correlated. If X and Z are completely
uncorrelated, as in a completely crossed design, no predictor transformation can remove
the interaction, as it necessarily affects all regressions across Z. Conversely, if X and Z
are perfectly correlated, Z is a linear function of X, and the moderated multiple regression

equation reduces to:

Y =bo + b1 X + by(kX+m) + by(X)(kX+m) (15)

Y = (by + bym) + [X x (bsm + bak)] + [X? x (bsk)] (16)

In this case, it can be seen that Y becomes an additive function of X and X°.
Since the quadratic term itself is a monotonic function of X, a monotonic rescaling of X
can easily remove any variance accounted for by X?, leaving only a main effect for X.

We have now seen that when predictors X and Z are perfectly orthogonal and
uncorrelated, monotonic transformations cannot remove moderating relationships, but can

attenuate them. In the trivial demonstration of perfect correlation, predictor

34



transformations can completely remove nonlinear effects. This suggests predictor
intercorrelation may have an important role in determining the “robustness” of moderated
multiple regression when predictor variables are not of interval level. Dunlap & Kemery
(1988) have noted that increases in intercorrelation between X and Z result in the
increased probability of detecting an interaction effect, and, when X and Z are measured
with error, a higher reliability for the XZ product term. However, the above discussions
suggest that, when predictors are of non-interval level, the increases in detection of
interactions (due to predictor intercorrelation) noted by Dunlap & Kemery (1988) may
paradoxically be accompanied by an increasing lack of precision when interpreting them.

The problems associated with a single predictor measured at the ordinal level are
compounded when both X and Z predictors are ordinal scales. Typically, in these cases,
the researcher is not interested in examining differences in regression slopes across a third
variable, but in evaluating a theory which predicts a multiplicative combination of the
two predictors. In addition to considering the issues related to interval and ratio scales
raised by Schmidt (1973), the researcher is advised to be wary of ordinal level data. The
issues raised above now apply to both X and Z variables, and one must consider the
effects of monotone transformations of both simultaneously.

When faced with two predictors and a criterion of ordinal level, the researcher can
make very few confident statements about the form of the relationships between the
variables. Bimbaum (1973, 1974) notes that, in this situation, the multiplicative equation
Y =a x X x Z° can be rendered additive by permissible logarithmic transformations,

log(Y) = log(a) + b log(X) + c log(Z). Thus, when we lose confidence that any of our
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variables are measured at an interval level, we have come full circle to the point of being

unable to distinguish a multiplicative model from an additive model.

Moderated Multiple Regression and Level of Measurement: Summary and Implications

The previous sections have described the behavior of moderated multiple
regression when the predictor and criterion variables are defined by scales at various
levels of measurement. Three types of models emerging from moderated regression were
discussed, the additive model, the additive-multiplicative model, and the multiplicative
model. It was shown that when our predictor and criterion data are ratio scaled, we can
accurately select one of these models as providing the best fit to data. When all variables
are measured at the interval level, we can confidently reject the multiplicative model, but,
if failing to reject it, cannot confirm or reject an additive-multiplicative model. When the
criterion is measured at the ordinal level, we can attenuate or even eliminate interaction
effects, thereby making a choice between additive and additive-multiplicative models
arbitrary, or choosing an additive model in default due to lack of statistical significance
of an additive-multiplicative model. The extent of potential attenuation is primarily a
function of whether the interaction is of the crossing or non-crossing variety. Similar
effects are potentially observed when a predictor is measured at the ordinal level, though
the effects may themselves be moderated by the degree of intercorrelation between the
predictor variables. Further ambiguity between the additive and additive-multiplicative
models can arise when both predictors are measured at the ordinal level. Finally, when
all variables are ordinal, we cannot make a distinction between additive, multiplicative, or

additive-multiplicative models, since transformations exist which can transform any of
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the three models into any other of the three models. The relevance of these problems is
borne out by the earlier discussion of measurement in psychology. As our confidence in
the interval nature of psychological measurement decreases, the interpretation of
moderated multiple regression results becomes more difficult.

A lack of scale precision may be an important factor reducing the “power” of
moderated regression tests. While not related to statistical power, per se, the probability
of detecting an interaction effect, when one exists, may be reduced when scales are not of
interval level. Consider a situation where one thousand researchers are testing a
moderating effect. Five hundred use interval scales and five hundred use non-interval
scales. Since all interval scales are related by linear transformation, and we know linear
transformations cannot remove moderating effects, we then know that if one of the five
hundred researchers using interval scales finds a moderating effect, all of the researchers
will find the effect’. The situation is bleaker for the researchers using non-interval scales.
These five hundred scales, related only by monotonic transformation (perhaps slight),
wouldn’t necessarily show the same moderator effect size, and some might not even show
the moderating effect at all. Examining the studies using the interval scales, the scientific
field as a whole would likely decide they have found a robust and important moderating
effect. Using the non-interval scales, the field might argue the interaction is difficult to
detect, statistically unreliable, or perhaps not even to exist. These arguments should ring
familiar, as they are those currently made regarding moderator effects in applied

psychology.

* For the sake of argument, this assumes all other research factors are the same.
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Lack of scale precision may also be a factor explaining the common observation
that moderator effects are more often detected in controlled, experimental settings than in
applied field settings (McClelland & Judd, 1993). Several lines of reasoning point to
measurement level playing an important role. First, experimental studies are more likely
to use categorical predictors and test interactions via cell mean comparisons. Such tests
are only affected by the scaling of the dependent measure, as predictors are merely of
nominal level. Applied studies often use continuous scales for both predictor and
criterion variables. In these situations, permissible transformations are given greater
latitude to affect tests of moderation.

Second, the independent variables involved in experimental studies are typically
under sufficient control to allow the complete crossing of factors. Even in cases where
one predictor is polychotomous, this prevents predictor rescalings from removing
interactions, for the reasons discussed earlier. Conversely, applied studies usually sample
both predictor variables, having very little control over their intercorrelation. This
intercorrelation potentially leads to a greater likelihood of predictor rescalings affecting
the test of moderation.

Third, McClelland & Judd (1993) note that experimentalists typically predict
crossing interactions, whereas field researchers usually predict only non-crossing
interactions. We have seen that monotonic rescalings can attenuate a crossing interaction,
but not remove it, and can completely remove a non-crossing interaction. For these
reasons, it is possible that the use of non-interval data in applied field research poses
much more of a threat to empirical meaningfulness of results than using such data in

experimental settings.

38



While the above issues relate to the potential effects of scale misspecification on
detection of interaction effects, there are also important implications for interpreting
interactions that are found. Currently, applied psychologists lament that many
interactions that are found account for a very small portion of overall variance. Field
researchers have indeed noted that observed interactions usually account for between 1%
and 3% of total variance (Champoux & Peters, 1987). The frustrating search for
moderating effects has also led some authors to go so far as claiming that interactions
accounting for 1% of the variance should be deemed important (Evans, 1985). In light of
the demonstrations earlier in this thesis showing that minor changes to data can create
large changes in moderator effects, it is possible that the meaningful interpretation of
interactions accounting for 1% of variance would require measurement precision beyond

the status of most psychological scales.

Rationale and Overview for the Study

Thus far, this thesis has demonstrated that using non-interval data with moderated
multiple regression procedures can have a variety of harmful effects on a researcher’s
ability to interpret results. These harmful effects have important implications for theory
verification in applied psychology, and may especially be relevant to issues distinguishing
experimental and field detection of moderators.

However, two important issues remain. First, under what conditions will these
harmful effects manifest themselves? The simple demonstrations presented earlier in this
thesis are not representative of the wide variety of moderator effects found in research

settings. To address this issue, the study presented in this thesis examined interaction
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effects in situations defined by a variety of factors, including the baseline R? prior to
adding a product term, the AR? incremental percentage of variance accounted for by the
product term, the intercorrelation of predictors, and the measurement properties of all
variables involved in the moderated regression equation. Results obtained from this
study can assist researchers by determining what situations are most susceptible to
interpretation problems when the precision of measurement is uncertain.

A second important issue is reconsidering what exactly constitutes a monotonic
transformation. Some researchers might defend their scales of measurement - which
cannot be proven to be interval level - by suggesting that just because a scale is not
verified to be interval level does not mean we can conclude it is merely a rank ordering of
the attribute. In this sense, scales commonly used in psychology may be thought to lie
somewhere on a continuum between ordinal level and interval level. Advocates of this
position might argue that violent monotonic rescalings, though technically permissible of
purely ordinal data, are not reasonable with most psychological scales. This author would
agree that the majority of psychological scales likely represent more than ordinal
information, and lie somewhere on the continuum between ordinal and interval level, it
may also be true that the “reasonableness” of the transformation may be inversely related
to the strength of the observed moderating effect. Interactions with large effect sizes may
require drastic rescaling to remove or attenuate the interaction to non-significance, but
moderators with small effect sizes may require only slight alterations of the scales used.

Given the earlier discussion on interpreting moderators which account for very
small percentages of variance (Evans, 1985), it is important to clarify this issue. Ifa

monotonic transformation results in a scale which has measurement properties very
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similar to the original data, most of the information present in the scale has been
preserved, and an argument suggesting we have somehow destroyed the scale is less
tenable. If such transformations remove or attenuate moderating effects with very small
effect sizes, interpreting such effect sizes is likely a fruitless endeavor when one lacks
very precise interval scales. This study will examine this issue by attempting to place
specific monotonic transformations on the continuum between pure rank-order preserving
transformations and linear transformations permissible of interval scales. This will be
done by calculating the Pearson correlation coefficient between pre-transformation and
post-transformation variables. Since a value of 1.00 denotes a linear transformation, I
argue that very high correlations in the .8-.9 range are “reasonable” and similar to the
original scale. In these cases, the transformation is not drastic, and any changes of
interpretation based on the transformation should be of serious concern.

Answering the two general research questions presented above requires both a
means of determining whether a moderating effect can be removed or attenuated by a
monotonic transformation, and a means of generating a transformation which
accomplishes such a feat. Two approaches have generally been used. The first,
simultaneous conjoint measurement, examines the extent to which conditions are met in
the dataset such that an additive, non-interactive representation is possible. Generation of
such a representation is not required. The second method, Multiple Optimal Regression
by Alternating Least Squares (MORALS) (Young, de Leeuw, & Takane, 1976), is an
iterative algorithm for generating numerical transformations which maximize the R?
between sets of independent and dependent variables. Each of these methods is discussed

in more detail below.
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Simultaneous Conjoint Measurement

Recall that one of the criticisms of Stevens’ (1946) measurement paradigm was
the arbitrary nature of scale assignment. Measurement level was not determined by
consistent empirical relationships, but by the judgment of the investigator. The
operations described by Campbell were not possible in psychology, so demonstrating the
ratio or even interval level nature of data within Stevens’ framework was extremely
difficult. As noted earlier, much of the desire to use parametric methods with ordinal
data may have been due to the imposing conditions necessary to verify an interval scale.
Some psychologists, however, chose to develop alternatives to both Stevens’ and
Campbell’s theories, attempting to loosen the restraints imposed by the latter without
accepting the investigator-centered aspects of the former.

This recent avenue was spearheaded by the work of Luce & Tukey (1964). Rather
than relax Campbell’s requirements of empirical additivity, as Stevens did, Luce & Tukey
relaxed only the requirement that the basis of additivity be physical concatenation. Luce
& Tukey demonstrated that empirical addition can be based on non-physical operations
and did not require use of subunits placed side-by-side. In other words, psychologists
could develop what amounted to interval-level scales, in Stevens’ framework, without
formal extensive measurement. Luce & Tukey called this new type of measurement
simultaneous conjoint measurement. As its name suggests, simultaneous conjoint
measurement considers the combined effects of variables, rather than treat them
independently. Simultaneous conjoint measurement can potentially be applied in any

instance where two or more variables are thought to determine an empirical outcome
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variable. Only categorical (nominal) and rank order (ordinal) properties need to be
present in the determining variable set and outcome variable, respectively. If the
relationships among the variables conform to a number of axioms (a series of if-then
rules), necessary and sufficient conditions are met to define interval scales (termed
standard sequences) on the set of determining variables, and subsequently on the
determined variable. Essentially, the theory says that given variables X and Z which
determine Y, if the necessary axioms are met, then monotonic transformations of ordered
variables a, b, and c exist, such that a(X) + b(Z) = ¢(Y). These scales are defined by
transforming the original component variables, producing an additive representation for
all components. The work of Luce & Tukey (1964) was expanded upon in a three
volume series entitled Foundations of Measurement (Krantz, Luce, Suppes, & Tversky,
1971; Suppes, Krantz, Luce, & Tversky, 1989; Luce, Krantz, Suppes, & Tversky, 1990),
in which other types of conjoint measurement other than additive (e.g. polynomial,
difference, geometric) are discussed in detail.

The development of simultaneous conjoint measurement provided exactly what
early 20" century psychologists were looking for in response to Campbell’s theory. If the
axioms were successfully applied to psychological measures, it could provide standard
sequences, i.€., interval scales, for psychological variables. The construction of these
scales should also have interested adherents to Stevens’ theory, as it allowed more
advanced statistical techniques to be used, avoiding debates about permissible statistics.
More importantly, the central concept in Campbell’s original theory, additivity, had been
preserved, and shown to be possible with non-physical variables. Thus, one of the

problems motivating the development of Stevens’ theory had, in effect, been solved.
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Despite the dramatic ability of conjoint measurement to potentially produce interval-level
scales and additive relationships, these are not its most important implications. Taken as
a whole, the essence of the theory is that these scale definitions were produced by
examining empirical relationships between one or more variables. Scales were not
constructed or arbitrarily determined in isolation. Measurement, according to conjoint
measurement theory, is the assignment of numbers to empirical components, such that the
relationship between the numerical assignments adequately represents the relationship
between the empirical components. In this fashion, it stands in contrast with Stevens’
theory, which proscribed only permissible transformations for scale types, which
themselves could be selected in isolation by the researcher.

Partly because of the abstract nature of the theory’s presentation, demonstrations
of its utility have been few in number. Early uses of the theory include areas such as
animal behavior (Campbell & Masterson, 1969) and psychophysics (Levelt, Riemersma,
& Bunt, 1971). Recent recognition of the relationship between conjoint measurement and
use of the Rasch model in item response theory (Perline, Wright, & Wainer, 1979) has
generated some linkages between the two areas, specifically in the assessment of
interactions with classical vs. IRT ability estimates (Embretson, 1996).

The axioms of simultaneous conjoint measurement can perhaps be best
understood with an example. Consider a researcher investigating the combined effects of
ability and motivation on performance. In order for the conjoint measurement method to
be applied, it is assumed that the dependent measure (in this case, performance) is of

ordinal level. The determining factors (ability and motivation) are probably assumed
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ordinal by the researcher, but only need to be of nominal level for conjoint measurement
to be used.

It is helpful to view this situation in terms of a matrix, similar to the data tables
presented earlier in the thesis. If we let a,...ax denote different classifications (values) of
Ability, and m,...m, represent different values of Motivation, then Performance at any
combination of Ability and Motivation can be denoted by a,m,. Thus, performance (P)
when ability (A) is at level i and motivation (M) is at level j, can be represented by ajm;,
which simply means that these levels of the variables combine in some way to result in a
certain level of P. Recall that we only assume ordinal properties on P, with both A and M

treated as nominal variables. This is shown graphically in Table 5.

Table 5.

Performance by Levels of Motivation and Ability

Ability
Level 1 Level 2 Level 3
Level 1 m;a, m;a; m;az
Motivation Level 2 m,a, msa, m»a;
Level 3 m;a; msa, m;a;
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Once the data are arranged in this manner, with each cell containing the mean or value of
performance at the appropriate levels, the researcher can begin testing the axioms of
conjoint measurement.

The most important axiom of conjoint measurement is double cancellation.
Essentially, the double cancellation axiom tests whether the order of certain P values
implies the ordering of other P values. The axiom is stated as follows (Krantz, Luce,

Suppes, & Tversky, 1971):

For any three values of M, m,, mp, m., and any three values of A, a4, a, aj:

if mga. 2 mpag and mpas > mea. then mqas > meag.

The double cancellation axiom is essential to determining whether M and A have
an additive relationship with P, as it assumes one exists. To illustrate this, replace each
m;a; term above with “m; + a;”. This is equivalent to stating that any given level of
performance is an additive function of ability and motivation. Note that we do not invoke
any concept of weights on M and A, as they are still assumed to be of nominal level, and

we make no assumptions regarding their ordering. Replacing gives:

if (mg +a.2mp +ay) and (my + ag>mc + a,) then (mg + ar2>m + ag)

Summing across the left side and subtracting common terms (denoted by strikeout text):

if(mg+ @, +mpt+a)> (my+ag+ m.+ as) then (mg+ ar>m. + ay),
/4
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Thus, if there is an additive relationship between A and M in determining P, the
double cancellation axiom will hold true for all values of A, M, and P (i.e. m;a;) in the
data set. Typically, the extent to which a data set satisfies the double cancellation axiom
is indicated by the percentage of independent axiom tests which support the double
cancellation axiom (Nickerson & McClelland, 1984). As this number would grow
exponentially with the number of categories of A and M and number of levels in P, these
tests are usually done using computer algorithms.

A second axiom of conjoint measurement is the solvability axiom:

Given any three of: m,, my, a4, a., the fourth must exist such that m,a; = mpa.

This means that values for M and A must exist such that all feasible values of P can be
generated. In terms of the data matrix illustrated above, this simply means that for any
combination of ability and motivation, there must be a level of performance, i.e. there are
no structurally empty cells in the data matrix. For this example (and for nearly all
psychological data), this axiom is trivial and usually assumed true. This axiom seems to
suggest that ability and motivational components need to be uncorrelated to use the
conjoint measurement methodology, but this isn’t necessarily the case. A sample
correlation between two predictors tells us nothing about which cells are impossible to

exist, but only which combinations of predictors are more likely to occur.
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There is another axiom of conjoint measurement, the Archimedian axiom.
Although methods have been devised to test it indirectly (Scott, 1964), it is generally
considered technical in nature, and usually not tested in finite data sets (Luce et al, 1990).

Michell (1990) notes that if both solvability and double cancellation axioms are
established, two additional important properties of M and A are also verified: order and

independence. Independent ordering implies the following statements:

Given m;, my. my; 2 m; if mya 2 ma for any a in A.

Given a,, a,. a; 2 a; if ma, 2 ma; for any m in M.

Or, Level 2 of motivation (m;) is greater than Level 1 of motivation (m,) if, for
any ability level (a;), individuals with motivation level 2 have higher performance (mza;)
than individuals with motivation level 1 (m;a;). This observation is identical to the notion
of equal ordering of Y on X across levels of Z and Y on Z across levels of X described in
the previous example data sets.

Since successful tests of the aforementioned axioms imply an ordering of P, M,
and A which create an additive equation P =M + A, it is sufficient evidence that
monotonic transformations exist which can eliminate any multiplicative component
present in the original data. The researcher can successfully construct scales of
performance, motivation, and ability, and, consistent with their theory, ability and
motivation will have to be compensatory in determining performance, i.e. a given change

in Motivation will result in a specific change in Performance, and be offset by a specific
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change in Ability. All these changes will be constant across all scale points, thus defining
interval scales for all three constructs.

Due to the nature of this study, the aforementioned axioms of simultaneous
conjoint measurement proved untestable in the generated data for several reasons which

will be described in more detail later in the thesis.

The MORALS Algorithm

The goal of the MORALS algorithm is similar to that of conjoint measurement, in
that an additive representation is sought. However, rather than verify conditions which
permit an additive representation, the MORALS algorithm attempts to generate actual
scales conforming to such a representation. The algorithm uses a least squares
convergent procedure, in which least squares estimations of regression weights are
alternatively performed on a matrix of transformation parameters and a matrix of
regression parameters. The least squares estimates for one matrix are used in the next
iteration for the other matrix, until a convergent solution is reached. Further
mathematical details on the procedure can be found in Appendix A. de Leeuw, Young, &
Takane (1976) and Young, de Leeuw, & Takane (1976) contain detailed conceptual and
procedural discussions of the MORALS algorithm.

Having now stated the rationale and reasoning behind the study, a formal research

design using statistical simulation methods will be described.
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Research Design

In order to assess the effect of measurement precision on estimation of interaction
effects, the statistical simulation will examine six factors. These factors are: 1)
Incremental R? of the XZ product term; 2) Baseline R” of the additive model prior to
adding an XZ term; 3) Intercorrelation between predictors X and Z; 4) Measurement
level of predictors and criterion, 5) quantitative/qualitative nature of X and Z; 6)

Crossing or non-crossing nature of the interaction. Each is now specified in more detail.

Study Independent Variables

Incremental/Baseline R and Predictor Intercorrelation. The first two factors in
the design involve the strength of the interaction effect and the predictability of the
additive model prior to adding an interaction term. The strength of an interaction effect is
often indexed by the AR? after addition of a product term. This study used incremental R?
values at three levels: .05, .15, and .25. The baseline R? of the additive model was also
varied with three levels: .2, .4, .6. This resulted in a 3 x 3 crossing of factors, with
maximal and minimal R? of .85 and .25, respectively, for an interactive model . The
correlation between predictors X and Z in the simulated datasets was varied at three
levels: .1, .3, and .5.

The levels for the preceding three factors were selected to create a wide coverage
of potential R? values (.25 to .85), a range of additive R? representative of those found in
psychological research, as well as a wide enough spread in intercorrelation levels to
detect small differences across level. Complete orthogonality (rx, = 0) was omitted due

to its potential qualitative difference from situations where intercorrelation was non-zero.
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Measurement Level of Predictors and Criterion. Measurement level for predictors
and criterion was fixed at five possible levels, representing all possible combinations of
ordinal or interval continuous variables, and assuming the criterion is always cqntinuous:
1) Non-Interval Y, Interval X, Interval Z; 2) Non-Interval Y, Non-Interval X, Interval Z;
3) Non-Interval Y, Non-Interval X, Non-Interval Z; 4) Interval Y, Non-Interval X,
Interval Z; and 5) Interval Y, Non-Interval X, Non-Interval Z.

The assignment of this independent variable determines which of the variables are
permitted to undergo monotone transformations. If a variable is Non-Interval, monotone
transformations are permitted. If a variable is Interval, no transformations are permitted.
It is important to note that the level of this independent variable does not change anything
about the variables themselves, but only what transformations are permitted to them. The
numerical values generated in the simulation have no inherent interval or non-interval
status. This is only determined when they are used in the scaling algorithm.

Note that this design factor could not be completely crossed with the qualitative /
quantitative nature of predictor variables, as monotone rescalings of binary X or Z
variables are impossible. Thus, when Z is binary, only levels 1,2, and 4 of this factor are
possible. When both X and Z are binary, only level 1 is possible. This will affect the

“sample” sizes in the cells associated with these combinations.

Quantitative and Qualitative Nature of Variables. The type of variables involved

was varied according to the three possible combinations of predictor variables:

Continuous X and Continuous Z, Continuous X and Binary Z, and Binary X and Binary
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Z. Binary variables were defined as a 50% proportion in each qualitative category.
Continuous variables were “true” continuous numerical values with precision of eight

decimals.

Crossing vs. Non-crossing Interaction. The form of the interactive effects was

manipulated by fixing the crossing point for X-Y regression lines across levels of Z, and
the crossing point for Z-Y regression lines across levels of X. The formulas for these
crossing points are X = -b,/by, and Z, = -b,/by,, respectively (Aiken & West, 1991).
Values for X, and Z. were set at —2.00 for non-crossing interactions in the case when both
variables were continuous distributions with variances of 1.0 and means of zero.® In the
case of binary variables scored (-1, 1), crossing points for non-crossing interactions were
set at —1.1 for both X and Z. Crossing interactions were set to cross at the mean of X

(0.0).

Study Dependent Variables

The dependent measures in the study were selected to assess the effects of optimal
monotonic rescalings of the simulated data. The nature of these transformations depends
primarily on the factors outlined above. Two variables were examined: 1) the effect size
differences between interaction effects assessed in the pre-transformation data and those

assessed using the post-transformation data, after transformation by a MORALS

¢ Since continuous variables were random standard normal distributions, the determination of a crossing
point outside a variable’s range was probabilistic. For this, and other reasons, non-crossing interactions
were excluded from later analyses.
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algorithm; 2) the Pearson correlation between pre-transformation and post-
transformation variables.

The effectiveness in reducing interaction effects in the above conditions will be
indexed by the difference in effect size between the post-transformation interaction effect
and the original effect size in the pre-transformed data (Af%). In both cases, the

appropriate calculation of effect size is:

2 2
fz _rymi—rvym

2
1=r'ym

In this formula, g v.mi refers to the squared multiple correlation of a model
including both additive effects of X and/or Z, and the product term XZ. r’y is the squared
multiple correlation of a model including only the additive effects of X and/or Z. As can
be seen, the overall effect size of the interaction depends on both components. As already
described, rZM and Py will be manipulated as experimental factors in this study. Since
each factor has 3 levels, 9 distinct f* values will be present in the pre-transformation data.
The two values for the post-transformation data, ry and Py, were evaluated by
conducting a moderated multiple regression analysis on the data. These values were then
used to calculate the transformed effect size, £2. Since the effect size of the moderation
was expected to be larger in the original data, the index (f;’- f*) was used as a standardized
indicator of attenuation.

The double cancellation axiom of conjoint measurement was to be examined

using a computerized testing procedure. All possible double cancellation tests were to be
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conducted, and the proportion that are true was to be used as an index of additive
representability. However, due to both the lack of predictors with three levels (for
qualitative predictors) and the sampled nature of predictors (for quantitative predictors),
the assumptions underlying the double cancellation tests of simultaneous conjoint
measurement were not met in any of the design cells. The lack of testability of these
axioms does not necessarily translate into unimportance. The axioms do hoid for additive
relationships between quantitative variables, and thus would be relevant to the
examination of such relationships in psychology. Although formal examination is not
possible in this study, it is probable that the manipulated independent variables would

have effects in situations which did not violate axiomatic assumptions.

Hypotheses

Main Effects of Baseline R Since 1 - R? represents error in predicting the
additive model Y = X + Z, it was expected that decreases in this R? would have effects on
the double cancellation axiom tests of conjoint measurement. Recall that conjoint
measurement assumes all component variables are measured without error. However, as
noted previously, this dependent variable was not assessed. In contrast with the axiom
tests, the MORALS algorithm has been shown by Young, de Leeuw, and Takane (1976)
to perform well, even when error is present. Also, when one examines the £ effect size

equation for moderating effects,

2 2
fz rym —ryrwm

2
1-rym
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it is apparent that effect size calculations are more sensitive to AR? (R%y.mi - R%y.m) as the
R? of the additive model (Rzy_M) increases, i.e., as the total R? approaches 1.00. A given
AR? is a stronger effect at a high baseline R? as opposed to a low baseline R%. Thus, it is
expected that the MORALS algorithm will be more successful at attenuating interaction
effect sizes observed at low baseline R?, and, that such transformations will be less

severe.

H;: As the R® of the additive model decreases, the proportion of true double
cancellation axioms will also decrease.

H,: As the R’ of the additive model decreases, the attenuation of the moderator
effect size will increase.

H;: As the R’ of the additive model decreases, the transformed data will exhibit
lesser deviation from the original variables, thus higher pre-post transformation

correlation coefficients.

Main Effects of AR?.. AR indexes the amount of additional variance predicted by

the XZ product term when it is added to the regression equation. The only main effect
predicted for this factor involves the correlation between pre- and post- transformation
variables. Regardless of whether the transformation attenuates or completely removes an
interaction, more severe transformations are expected to be required in order to affect

stronger multiplicative components.
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H,: As AR’ increases, the transformed data will exhibit greater deviation from

the original variables, thus lower pre-post transformation correlation coefficients.

Main Effects of Predictor Intercorrelation. Earlier in the thesis, it was suggested

that the rescaling of predictors may attenuate an interaction effect, depending on the
intercorrelation of the predictors. Recall the earlier discussion of Equations [15] and
[16], where it was shown that perfect (rx,=1.0) correlation between predictors X and Z
resulted in a model identical to a quadratic model involving either predictor. In this
situation, monotone transformation can render the model completely additive. It is
predicted that similar effects will occur with intercorrelations less than 1.0. Specifically,
it is predicted that, as the correlation between predictors increases, the MORALS
algorithm will be more effective at attenuating or removing the interaction. In addition, it
is also expected that as predictor intercorrelations increase, the severity of transformation

attenuating an interaction effect will be reduced.

H;: As predictor intercorrelation increases, the attenuation of the moderator
effect size will increase.

Hg: As predictor intercorrelation increases, the size of the transformation
required to attenuate interaction effects will be smaller, and thus higher pre-post

transformation correlation coefficients will be observed.

Main Effects of Measurement Level. This factor reflects different levels of

uncertainty about predictor and criterion measures. This uncertainty gives the MORALS
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scaling algorithm more potential for rescaling, and, it is expected, a greater ability to
attenuate or remove moderating effects. It is expected that more variables presumed to be
non-interval (i.e., between ordinal and interval level) will reduce the severity of
transformation (necessary to attenuate the interaction) in any single variable, as the
additive model can be generated by changing more variables. In this sense, the
transformations necessary to attenuate a moderating effect are “spread” across multiple
variables, with each individual variable carrying less of the necessary transformations.
This factor is not relevant to the axiom tests of conjoint measurement, since the tests
assume a criterion measured at the ordinal level and predictors measured at the nominal

level.

Hj: As the number of variables submitted to monotone transformation increases,
the effect size of the interaction will be attenuated to a greater extent.

Hg: As the number of variables submitted to monotone transformation increases,
the transformed data will exhibit lesser deviation from the original variables, thus higher

pre-post transformation correlation coefficients.

Main Effects for Form of Interaction. As discussed and demonstrated in this
thesis, non-crossing interactions can be completely removed by criterion rescalings, and
crossing interactions can often be attenuated. It was also implied that predictor rescalings
can potentially attenuate any form of interaction. Given this, it is expected that the

attenuation of moderator effects will be greater for all non-crossing interactions. For
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crossing interactions, the attenuation can never be a complete removal, so the attenuation

will necessarily be lower.

Hy: Non-crossing interactions will exhibit greater attenuation than crossing interactions.

Interaction Effects. In addition to the previously listed main effects, two
interaction effects are expected: Predictor Intercorrelation x Measurement Level, and
Measurement Level x Form of Interaction.

Predictor intercorrelation may have a greater effect when two predictors are
measured at the ordinal level rather than only one, as the potential effects of
intercorrelation on rescalings now applies to rescalings of both X and Z.

We also know that any non-crossing interaction can be removed by a criterion
rescaling, so it can be said with certainty that attenuation in ordinal criterion / non-
crossing interaction conditions will necessarily result in complete removal of interaction
effects. However, the same is not true for crossing interactions. These interactions can
be attenuated, but never removed. We have also demonstrated that predictor rescalings
can eliminate an interaction effect, but only in the trivial case of perfect intercorrelation
between predictors. In the range of intercorrelation used in this study, and present in
most data, this will never happen. Predictor rescalings may, however, attenuate an
interaction effect at many levels of predictor intercorrelation. Thus, it is expected that the

main effect for form of interaction will be stronger for conditions with criterion rescalings
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than for conditions with predictor rescalings, since criterion rescalings can completely

remove an interaction, but predictor rescalings can only, in most cases, attenuate them.

H,o: As predictor intercorrelation increases, the attenuation of the moderator
effect size will increase to a greater extent with two predictors submitted to monotone

transformation than with one predictor submitted to monotone transformation.

H,;: Differences in attenuation of non-crossing and crossing interactions will be

greater when the criterion is submitted to monotone transformation than when predictors

are submitted to monotone transformation.
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METHOD

The baseline and incremental R? values, predictor intercorrelation, and qualitative
/ quantitative nature of variables were all manipulated during dataset generation. The

basic moderated multiple regression equation can be expressed as:

y=b,+bx+b,z+b,xz+b,e, (17)

where Y is a continuous variable and X/Z are continuous or binary variables. The b.e
term represents error variance uncorrelated with X, Z, or the XZ product term. b,
controls the total R? of the model assuming error distribution e has a mean of zero and
variance of one, and is uncorrelated with variables X, Z, or the product term XZ.

The R? values for an additive model (Rzy-x,z) and additive-multiplicative model
(Rzyox’z’xz) can be calculated from the complete correlation matrix of {Y, X, Z, XZ},

based on the matrix determinant formulations of McNemar (1969):

1 ry.x ry.z
Ty 1 r.,
Rz _ 1 ry‘z rX‘Z 1 18
L =1- (18)
1 r,
rK.Z 1
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(19)

The correlations used in the above calculations are themselves functions of the

variance-covariance matrix of {Y, X, Z, XZ}. Under the assumption of bivariate

normality’ of X and Z, and given knowledge of E(x), E(z), var(x), var(z), cov(x,z), b, by,

b3, and b, the remaining two variances and five covariances are derived as follows:

var(y) =& varf) + b varg) + 2hb, covg, z)
+B{varg)E(x)’ +var@)E(z)? +2covt, 2)E()E(Z) + varts) varg) + cové, 2)’]
+ 2B, (var)E(z) + E(x)cov, 2)) + b, (var€)E(x) + E(z)cove, 2))] + b

var(xz) = var(z) E(x)* + var(x)E(z)* + 2cov(x,z)E(x)E(z)

+ var(x) var(z) + cov(x, z)°

cov(x,y) = b, var(x) + b, cov(x,z) + b, (E (z) var(x) + cov(x,z)E (x))

cov(z,y) = b, var(z) + b, cov(x,z) + b, (E (x) var(z) + cov(x,z)E (z))
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cov(xz, y) = b, [E(z) var(x) + cov(x, ) E(x)] + b,[E(x) var(z) + cov(x, ) E(z)] +

24
b, [E (x)? var(z) + 2E(x)E(z) cov(x, z) + E(z)? var(x) + var(x) var(z) — cov(x, z)* ] 24)
cov(x,xz) = var(x)E(z) + cov(x,z)E(x) (25)
cov(z,xz) = var(z) E(x) + cov(x,z)E(z) (26)

Calculation of correlations can proceed from these variances and covariances. These
correlations determine R*; and R?ay as described above. Substitution of these
correlation formulas into the R? determinant formulas presented earlier produces large
and unwieldy expressions. In order to facilitate use of these formulas in later analyses
and discussion, they were programmed using a Microsoft Excel spreadsheet. This
spreadsheet was created to generate solutions for b;, b, b;, and b, given a desired RA
R’sm, E(x), E(2), var(x), var(z), and r,,. Further constraining the crossing points on X
and Z axes by setting minimums and/or maximums could generate a crossing or non-
crossing interaction. Solving for b;, by, b3, and b, completely specified RZ,, R%\u, and
the crossing points on X and Z. R2, was set to .2, .4, or .6. R%sm was set to R%s plus .05,
.15, or .25. The qualitative vs. quantitative nature of predictors X and Z, and their
intercorrelation, are the remaining factors constrained in data generation, and are now

described in detail. .

7 Calculations will also hold, with slight modification of squared covariance terms, when X or Z is a binary
variable coded —1/1 with E(x)=E(z)=0 and var(x)=var(z)=1.
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Structure of Predictor Variables and Error Variance

The study required the generation of X and Z variables which had a given
intercorrelation (ry ;) and a given qualitative or quantitative nature (binary or continuous).
The intercorrelation of X and Z was set to one of three levels: .1, .3, or .5. The nature of
variables X and Z was set to one of three combinations: Continuous X — Continuous Z,
Continuous X — Binary Z, or Binary X — Binary Z. An error vector (E) was also
generated to be correlated zero with either predictor vector. The specific procedures for
generating observations in each of the above conditions are detailed below.

In the case of two continuous predictors, three vectors of standard normal deviates
(n=10,000) were generated and submitted to a principal components analysis (SAS
procedure PRINCOMP). The resulting orthogonal components (P, P;) were used to

construct scores for predictors X and Z using the following equations:

Z=P

, 27
X=Pr, + P,,/l -r.,’

where ry ; is the desired Pearson correlation between continuous predictors X and Z. This
resulted in an exact r, , correlation, and an uncorrelated error vector based on the third
principal component (P3). All variables (X, Z, E) were standardized to means of 0 and
variances of 1. Product term XZ was constructed from the standardized scores. Note that
the intercorrelation between product term XZ and X, Z, or E, is theoretically zero, as X,

Z, and E are constructed to be bivariate normal, and with E(X) and E(Z) set to zero:
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cov(XZ,X) = var(X)E(Z) + cov(X,Z)E(X)
cov(XZ,X)=0.

(28)
However, since the vectors are only sampled from a bivariate normal distribution, the

assumption will never perfectly hold in the observed vectors. Without the assumption:

coV(XZ, X) = E|(aX ) (AZ)|+ var(X)E(Z) + cov(X, Z)E(X)
cov(XZ, X) = E[(AX)2 (Az)]

(29)
where AX=X-E(X) and AZ=Z-E(Z). Similar equations hold for cov(XZ,Z) and
cov(XZ,E). Although this issue proves to be somewhat of a limitation to generating
datasets with exact study parameters, the deviations from bivariate normality are likely
slight enough to have little effect on the final outcome of analyses.

In the case of one continuous predictor and one binary predictor, the desired
intercorrelation parameter is a point-biserial correlation between continuous vector X and
binary vector Z. The binary predictor (Z) was constructed to represent a qualitative
binary variable, and not simply a split of an underlying quantitative variable. Each
qualitative category of Z had equivalent sample sizes. Thus, it was also assumed that X is
normally distributed in each of the qualitative categories. Note that this creates a
bimodality in the total distribution of X across both categories of Z, the degree of which
is dependent on the magnitude of ry ,.

Two vectors of standard normal deviates (n=10,000) were generated and

submitted to a principal components analysis (SAS procedure PRINCOMP). Each set of
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resulting orthogonal components (P, P,) were used as uncorrelated vectors X and E —
one for each Z category. Error vector E was standardized to a mean of zero and variance
of 1 within each Z category, which created an r, of zero. The standardization of X was

based on the desired intercorrelation between X and Z. Given the equation for the point

biserial correlation,

X,-X, —
rJr,zz__z—l plp2 (30)

which, in the case of p,=p,=.5, and for overall Sx=1 and X =0, reduces to

X, =X, =r,,. The variances of X within each category of Z are determined using the

formula for the variance of a mixture of two distributions (Xi), and solving for the

variance of components X; and X,.

var(X,,) = var(X,) p, + var(X,)p, +(/?| ’/?)Zpl +(/\_,2 _/?)zpz

P, =P, =.5

var(X,, ) =1;

X, =-r, 31)
/‘72 =1

var(X,) = var(X,)=1-r_’

Categories of variable Z were set to —1 and 1 to force a mean of zero and variance of one.

The X subset in subgroup Z=-1 was standardized to a mean of —r, , and variance of (1-
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Ix.2). The X subset in subgroup Z=1 was standardized to a mean of r, and variance of
(1-1e).

An XZ product term was calculated based on X and Z. Due to Z’s binary nature,
there were no bivariate normality issues, as in the previous case with two continuous
predictor variables. All intercorrelations between product term XZ, components X and Z,
and error vector E, are exactly zero.

In the case of two binary predictors, an exact phi coefficient was desired.
Marginal proportions for both predictors X and Z were .5, and the following proportions

generate the desired correlation:

Doy =.25r,, +.25

=.25r. _+.25
Py 1.z (32)
Py =35-py,
P =3Py,

X and Z values are determined according to each (p*N, where N=10,000). Within each
cell, a normal deviate is generated for the error distribution. It is standardized to a mean
of zero and variance of one within each cell, forcing a zero correlation with X and Z. The
product term XZ was created based on X and Z values. As in the previous case, there are
no bivariate normality issues to consider. All intercorrelations between product term XZ,
predictors X and Z, and error vector E are exactly zero.
As noted earlier, the formulas for the X-axis and Z-axis crossing points are X. = -

ba/bs and Z = -b,/bs, respectively (Aiken & West, 1991). Values for X and Z. were set

at —2.00 in the case when both variables were continuous distributions with variances of
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1.0 and means of zero. In the case of binary variables scored (-1, 1), crossing points were
set at —1.1. Crossing interactions were set to cross at the mean of X (0.0). X; and Z,
were set as constraints in solving for by, by, b3, and b; in the Excel spreadsheet.

Because the Pearson, point biserial, and phi correlations described above are all
product-moment correlations, they can be used in the previous presented formulas to
obtain multiple regression parameters by means of determinant analysis. Using the by, by,
b, and b, values obtained from the Excel spreadsheet, criterion scores (Y) were
calculated for the generated X and Z distributions based on Equation [17]. These datasets
were then submitted to the MORALS algorithm for rescaling.

The manipulation of measurement level for predictor and criterion variables was
accomplished in the MORALS algorithm itself. If a variable is ordinal (non-interval) in a
given condition, the MORALS algorithm was allowed to perform monotone
transformations to the variable. The algorithm was only allowed to perform identity
transformations (i.e., no transformation) to interval level variables. In terms of allowable
transformations within the MORALS algorithm, the five possible measurement level
combinations become: 1) Monotone Y; 2) Monotone Y, X; 3) Monotone Y, X, Z; 4)

Monotone X; 5) Monotone X, Z.

Dataset Generation

The above design factors required the generation of 162 data sets - 3 (R*x=.2, .4,
6) x 3 (AR?=.05, .15, .25) x 3 (1. = .1, .3, .5) x 3 (2 continuous predictors, 2 binary
predictors, 1 of each) x 2 (crossing vs. non-crossing interaction). It was discovered

during data generation that some of the factor combinations in specific design cells were
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mathematically impossible to create. It was impossible to create a non-crossing
interaction between two continuous predictors at additive R? levels of .2 and .4, and, even
then, datasets could only be generated for an incremental R? of .05. Similar problems
were found in the case of two binary predictors and the case with one of each type, with
slightly more conditions being possible in these situations. The end result is 63 of the
162 cells being impossible, leaving 99 cells for analysis. Within each of these design
cells, up to five levels of the measurement level design factor can be fixed, limited by the
potential qualitative nature of predictors described earlier.

For each of these cells, a single 10,000 observation dataset of variables Y, X, and
Z was generated per the above descriptions. This sample size was chosen due to the
behavior of the MORALS algorithm at smaller sample sizes. Pilot tests conducted by the
author showed that, across several sample sizes of 300, the MORALS algorithm
converged to additive R? values varying in a roughly .07 range within the same design
cell. When the sample size was increased to 10,000, the fluctuations only had a range of
.01. Larger sample sizes, such as 50,000, resulted in minimal gains of convergence
stability at the expense of exponential increases in processing time, primarily as the

number of non-interval variables increased.
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RESULTS

Hypothesis 1

Hypothesis 1 predicted that increasing values of additive R would result in larger
proportions of true double cancellation axiom tests. This hypothesis could not be
formally tested due to the nature of the generated data and the assumptions of the double
cancellation axiom. Double cancellation tests assume levels of predictors are fixed. This
assumption is violated in design conditions with continuous random predictors. Double
cancellation tests also assume at least three levels of a fixed predictor. The situations
examined in this study only involved fixed predictors with two levels. Thus, all

conditions violated double cancellation assumptions in some manner.

Hypothesis 2

Hypothesis 2 predicted that moderator effect sizes would be attenuated to a greater
degree at lower levels of additive R*>. Degree of attenuation is indexed by Af*, the £
effect size statistic of the post-transformation dataset minus that of the pre-transformation
dataset. Negative values indicate an interaction effect is being attenuated. Mean Af’,
design cell frequencies, and standard deviations for the five measurement level
combinations, collapsed across all levels of predictor intercorrelation and types of
predictor, are shown in Table 6.

The pattern of attenuation is opposite that predicted by Hypothesis 2. Across all
combinations of monotone transformation of variables, optimal transformations resulted
in greater attentuation at higher levels of additive R>. The greatest mean attenuation (-

.743) occurred when monotone transformations were permitted to predictors X and Z, and
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the additive R? was 0.6. The lowest mean attenuation (-013, actually a slight
enhancement of interaction effects) occurred when monotone transformations were only

permitted of the criterion Y, at an additive R? of 0.2.

Hypothesis 3

Hypothesis 3 predicted that the attenuations of interaction effects presented for
Hypothesis 2 would be achieved with less severe monotone transformations at lower
levels of additive R®. Mean correlation coefficients, design cell frequencies, and standard
deviations for the five measurement level combinations, collapsed across all levels of
predictor intercorrelation and types of predictor, are shown in Table 7. The obtained
pattern is opposite that predicted by Hypothesis 3. The severity of monotone
transformations attenuating interaction effects generally decreased as additive R?
increased. There also appears to be a pattern related to the number of variables for which
monotone transformation was permitted. As the number of non-interval variables
increased (from 1 to 3), average severity of individual transformations was greater.

Despite the fact that results for Hypothesis 2 and 3 were opposite that predicted,
the observed patterns are internally consistent, i.e., greater attenuation of interaction

effects was achieved with less severe monotone transformations.
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Hypothesis 4

Hypothesis 4 predicted that in order to attenuate interaction effects, variables
would undergo transformations of greater severity at higher levels of AR
Transformations of greater severity are indicated by lower correlations between pre- and
post-transformed variables. Table 8 shows mean pre-post transformation correlations
broken down by AR? and combinations of measurement level.

As can be seen in Table 8, the pattern of mean correlation across levels of
incremental R? is different for variables Y, X, and Z, depending on which of Y, X, and Z
are subject to monotone transformations. Predictor X demonstrates generally decreasing
correlations with larger incremental R? values, regardless of which other variables are
transformed. Criterion Y and predictor Z show no such consistent pattern.

Although no specific hypotheses were made regarding degree of attenuation at
different levels of incremental R, the pattern of results are worthy of presentation. Mean
AP, design cell frequencies, and standard deviations for the five measurement level
combinations, collapsed across all levels of predictor intercorrelation and types of
predictor, are shown in Table 9. It can be seen that overall, larger pre-transformation
interaction effects were attenuated to a greater extent. Further discussion of this finding

will be presented in a later section.

Hypothesis 5

Hypothesis 5 predicted that higher levels of intercorrelation in the pre-
transformation predictors would be associated with greater attenuation of interaction

effects. Mean Af°, design cell frequencies, and standard deviations for the five
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measurement level combinations at each level of predictor intercorrelation, collapsed
across all levels of R%s, AR?, and types of predictor, are shown in Table 10. Table 10
illustrates a pattern generally consistent with Hypothesis 5. Across all combinations of
measurement level, higher correlations between predictors X and Z resulted in greater
attenuation of interaction effects. However, the patterns within each category of
méasurement level are worthy of further discussion. As they directly relate to Hypothesis

10, these issues will be discussed in more detail later in the thesis.

Hypothesis 6

Hypothesis 6 predicted that the greater attenuations at higher levels of predictor
intercorrelation (presented in Table 10) would be achieved with less severe monotone
transformations. Table 11 shows mean correlations between pre-transformation and post-
transformation variables at each level of pre-transformation predictor intercorrelation and
measurement level combinations, collapsed across all levels of RZA and AR?.

Overall, there is no clear pattern relating the severity of transformation and
predictor intercorrelation, although the pattern for any given variable appears to depend
on which other variables are also submitted to monotone transformation. For instance,
pre-post correlations for criterion Y decrease with increasing predictor intercorrelation
when it is the only variable submitted to monotone transformation, and when both
predictors X and Z are additionally submitted to monotone transformation. When only
predictor X is also submitted, pre-post correlations for criterion Y increase with predictor
intercorrelation. Predictor X shows a consistent decrease in pre-post correlations as

predictor intercorrelation increases, except in the case where criterion Y is also submitted
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to transformation, where no trend is apparent. Predictor Z shows a generally increasing
pre-post transformation correlation when only predictor X is also transformed, but no

consistent pattern when criterion Y is also transformed.

Hypothesis 7

Hypothesis 7 predicted that the extent of interaction attenuation would vary as a
function of the number of variables submitted to monotone transformation. Specifically,
it was predicted that greater degrees of attenuation would occur when more variables
underwent transformation. The average Af® for each category of variable transformation
can be found in Table 6. Two results are apparent from examining these means.

First, there is not a simple relationship between the number of variables
undergoing monotone tranformation and the degree of interaction attenuation. The
average attenuation for a one-variable-transformed situation (monotone Y or monotone
X) is -.1375. The average attenuation for a two-variable-transformed case (monotone
Y,X and monotone X,Z) is -.3255. The attenuation for the three-variable-transformed
case (only monotone Y,X,Z) is -.307.

Second, it can be seen that the incremental attenuation resulting from monotone
transformation of any single variable depends on which variable is considered.
Specifically, monotone transformations of predictors X or Z attenuate interaction effects
more than transformations to criterion Y. Table 12 lists the incremental attenuation
(AAf) for each variable, which is defined as the difference between the Af® when the
variable wasn’t subject to monotone transformation and the Af® after it was subject to

such transformation. Table 12 shows that the average incremental attenuation of adding
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predictors X or Z (-.1745 and -.155, respectively) was greater than that of adding criterion

Y (+.007).

Hypothesis 8

Hypothesis 8 predicted that any given variable would be transformed less
violently when the number of variables being transformed was higher. The relevant mean
pre-post transformation correlations can be found in Table 7. Results suggest a pattern
opposite that predicted. The highest mean correlation occurred when only one variable
was transformed (.971 and .961 for Monotone Y and Monotone X, respectively). The
lowest mean occurred in the case when all three variables underwent monotone

transformation (.666).

Hypothesis 9

Hypothesis 9 predicted that non-crossing interactions would be attenuated to a
greater extent than crossing interactions. This hypothesis, however, cannot be adequately
evaluated, given the mathematical impossibility of several cells in the study design. This
1s apparent from examining Table 13, which contains mean attenuation, standard
deviations, and cell frequencies for crossing and non-crossing interactions, collapsed
across all other design factors. It would appear that crossing interactions were generally
subject to greater amounts of attenuation than non-crossing interactions, contradictory to
the prediction of Hypothesis 9, and much of the literature cited earlier in the thesis. There

are several potential explanations for these results, some of which have important
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theoretical implications for the mathematics underlying interaction effects. These issues

will be discussed in greater detail in a later section.

Hypothesis 10

Hypothesis 10 predicted an interaction between predictor intercorrelation and the
number of variables submitted to monotone transformation, in determining the
attenuation of the interaction. Specifically, it was predicted that the difference in
attenuation between using two non-interval predictors (monotone X and Z) and using one
non-interval predictor (monotone X) would increase as the intercorrelation between pre-
transformation X and Z increased. Table 10 gives Af* for Monotone X and Monotone
X,Z categories at all levels of r,,. Subtraction yields AAf* values of -.360, -.212, and -
109, forr,, of .1, .3, and .5, respectively. The pattern is opposite that predicted by

Hypothesis 10.

Hypothesis 11

Hypothesis 11 predicted an interaction between the non-crossing / crossing
nature of an interaction and the measurement status of predictor and criterion variables in
determining the degree of attenuated effect. It was predicted that differences in
attenuation between non-crossing and crossing interactions would be greater when the
criterion is subject to monotone transformation than when a predictor is subject to
monotone transformation. The relevant summary information for this hypothesis is found
in Table 13, in the columns for Monotone Y and Monotone X. Subtraction yields a AAF

of -.257 for Monotone Y, and a AAf” for -.156 for Monotone X. Although this pattern is
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consistent with Hypothesis 11, it should not necessarily be considered empirical support
for the hypothesis, given the previously mentioned problems generating certain cells for

non-crossing interactions.
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DISCUSSION

The general goal of the study was to examine the relationships between the
attenuation of interaction effects, the severity of monotonic transformations required by
such attenuations, and a variety of factors commonly associated with moderated multiple
regression analysis. Discussion of these relationships will be organized in two sections.
The first section summarizes the results of each design factor, and offers potential
explanation of observed results. The second section provides a general discussion on the

impact of these results for the future study of interaction effects in psychology.

Effects of Baseline R’

Effects were predicted for the baseline additive R? in determining both the extent
of, and severity of transformations required by, attenuation of interaction effects. The
obtained results were opposite that predicted. Interaction effects were attenuated to a
greater extent at higher levels of additive R%, and with less severe transformation. The
reason for this inverted pattern of results is unclear, but may be related to the amount of
error variance present in the criterion (Y). At higher levels of additive R?, the ordering on
Y is constrained to a greater degree by predictors X and Z than by random error. In a
situation where additive R? is very low, most of the predicted variance is carried by the
XZ product term. Since the ordering on Y is minimally constrained by the ordering of X
and Z (separate from their product term), transformations to X or Z will minimally
increase the additive R?. Thus, interactions in situations where additive R? is low (.2) are

more difficult to attenuate (mean Af’=-.074) than those at high (.6) additive R? (mean
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Af’=-.487). The facility with which interactions were removed or attenuated in the simple
examples presented earlier in this document is easily understood when one recalls that the
examples all had total R? values in the high .90’s.

In the process of optimizing total R2, the MORALS algorithm was, in part,
optimizing the fit to error variance in Y. By definition, the minimum pre-post
transformation correlation will be obtained when a variable is monotonically transformed
to maximize its Pearson correlation with uncorrelated random error. At lower levels of
additive R?, the overall pre-post transformation was thereby suppressed. Consider the
differences between an additive R of .2 and .6. The average pre-post transformation
correlation at R%4=.2 is .691, compared to the .814 at R?,=.6. Comparing these values for
individual columns in Table 7 indicates the largest difference occurred when Y, X, and Z
were all subject to monotonic transformation (Y: .573 — .895, X: .531 — .849, Z: 410
— .651). Supporting this reasoning is the fact that the highest average pre-post
transformation correlation across all levels of additive R? (.971) was obtained when only

Y was subject to monotonic transformation.

Effects of Incremental R

It was predicted that the attenuation of interaction effects would require more
severe transformation of variables at higher levels of incremental R?. This prediction
received general support in the case of predictor X, which displayed the predicted pattern
of decreasing pre-post transformation correlations as incremental R? increased, regardless
of which other variables were permitted monotone transformation. This can be seen by

examining the pre-post transformation correlations for predictor X (rx ) in Table 8. The
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correlations for predictor Z (r,,) displayed no consistent ordinal relationship with
incremental R?, with an order inversion when Z was transformed along with X and Y
(.509 — .561 —» .540, as AR? goes from .05 to .15). Transformations to criterion Y were
generally consistent with the predicted ordering, except in the case when all three
variables were permitted monotone transformation (Monotone Y,X,Z), which it displayed
an order inversion (.811 - .715 - .734, as AR? goes from .05 to .15). These results
suggest a more complex relationship between the severity of transformation required to
attenuate an interaction, and the number of variables undergoing such transformation.
The exact nature of this relationship can likely be understood via a careful examination of
the underlying mathematics, which is beyond the scope of the current study. It is also
possible that the differing behavior of predictor Z may be due to its being a qualitative
binary variable in 2/3 of the design cells, whereas predictor X was a quantitative
continuous variable in 2/3 of the cells.

Although no effects were predicted relating the degree of attenuation and original
interaction effects size, it was discovered that greater attenuation occurred with larger
effect sizes. Table 9 shows an average Af* of -.035 at AR? of .05, and an average Af® of -
.534 at AR? of .25. On one hand, this finding may be tautological, i.e., interactions with
small effect sizes cannot be attenuated to a large extent. This result may also have a
similar explanation as did the effects of baseline R%. Across all levels of baseline R?,
larger values of incremental R? implies a larger total R%, which implies less error variance
inY. If error variance in Y were a factor working against the attenuation of interaction
effects, one would see greater attenuation at higher levels of both baseline R%and

incremental Rz, which is consistent with study results.
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Effects of Predictor Intercorrelation

The study predicted effects for predictor intercorrelation in determining both the
extent of, and severity of transformations required by, attenuation of interaction effects.
Results shown in Table 10 generally supported the prediction that greater attenuation of
interaction effects would occur at higher levels of intercorrelation. The only exception to
this pattern occurred when only criterion Y was subject to monotone transformation, in
which case increases in predictor intercorrelation slightly decreased attenuation of the
interaction (-.085 — -.077 — -.063, as 1, goes from .1 to .5). Given that the predicted
pattern occurred in other conditions in which Y was transformed (Monotone Y,X,Z and
Monotone Y,X), it is possible that the effects of predictor transformation in these
conditions compensated for the slight opposite effect of criterion transformation.

The explanation of these results is straightforward, and consistent with the
theoretical reasoning presented earlier in the thesis. As 1y increases, the product term
XZ behaves more like a quadratic function of either predictor. As discussed earlier, in the
extreme case of perfect redundancy (ry, = 1.0), the moderated regression formula reduces
to a quadratic function of X, and any interaction between X and Z is completely removed
by monotone transformation.

The pattern of pre-post transformation correlations presented in Table 11 is not
entirely consistent with the patterns of attenuation in Table 10. In a few cases, increasing
mean attenuation in Table 10 occurs with decreasing average pre-post correlation in
Table 11. For example, the Monotone Y,X,Z case shows increases in attenuation as ry ,

increases (-.213 — -.286 — -.421), yet both the Y and X pre-post correlation decreases
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(.788 — .702 and .782 — .622). The same pattern occurs, though less dramatically, in
the Monotone X case, where mean attenuation increases (-.053 — -.210 — -.337) as
mean pre-post correlation decreases (.992 — .929). As noted earlier, the pattern for any
given variable depends on which other variables also underwent monotone
transformation. There are no theoretical reasons for expecting this pattern, and its cause

remains uncertain.

Effects of Measurement Properties of Variables

It was predicted that the extent of interaction attenuation would be higher when a
greater number of variables underwent monotonic transformation. This generally proved
to be true, as shown in Table 6, except for the case of monotonic transformations to
predictors X and Z, which served to attenuate interaction effects (mean Afz=-.427) toa
greater degree than monotonic transformations to Y, X, and Z (mean Af’=-.307). The
reasons for this inversion are not clear, but it may be related to the interaction-enhancing
effects of monotonic transformations to criterion Y. Table 12 illustrates that across all
situations, the addition of monotonic transformation to Y had minimal effect on
interaction attenuation, and, in fact, slightly enhanced the effects (+.007). The addition of
transformation to predictors X and Z had similar, and much greater, effects on attenuation
(-.175 and -.155, respectively). These large differences in average attenuation between
predictors and criteria may be due to the fact that all interactions evaluated in the study
were crossing interactions. As noted in earlier discussions, crossing interactions cannot
be removed by monotonic transformation to the criterion, but can be attenuated by such

transformation of predictors.
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Crossing vs. Non-Crossing Interactions

As noted earlier, the incompatibility of the selected study parameters and
generation of non-crossing interactions precluded an adequate examination of this issue.
However, the difficulty in generating non-crossing interactions at particular levels of
baseline R? and incremental R? is itself an important issue. It has been lamented that the
non-crossing interactions involving continuous variables typically predicted in field
settings have been notoriously difficult to find (McClelland & Judd, 1993). The difficulty
in finding these interactions may be due to their mathematical impossibility. In
attempting to generate these interactions for this study, it was found that non-crossing
interactions were more feasible (i.e., crossing points farther away from variable means)
when the additive R? was high and the incremental R? was low. It was also possible to
generate greater numbers of non-crossing interactions for binary-continuous and binary-
binary predictor pairings than for continuous-continuous predictor pairings. This
suggests that even if non-crossing interactions exist for the empirical constructs under
study, it may not even be mathematically possible to discover them until a reduction of
error variance in predicting the criterion can be established. It also suggests that the
effect size of an interaction and statistical evidence of it may be related in a complex

manner with the qualitative vs. quantitative nature of the predictors.

Design Interaction Effects

The results from Table 10 cited earlier suggested that the difference in attenuation

between using two non-interval predictors and using one non-interval predictor decreases
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as the intercorrelation between pre-transformation X and Z increases. This result may
have a simple explanation analogous to the effect of adding predictors in regression
equations. Given a constant ry,, adding Z to a Y-X regression model will result in larger
increases in R? when r, z1s lower. As ry, increases, X and Z have more common
variance, and the addition of one to the other results in less unique variance predicting Y.
The attenuation of interaction effects via monotonic transformation may work in a similar
manner. If X and Z are highly correlated, monotone transformation of Z will add less
incremental attenuation over the transformation of X alone. Just as X and Z share
predictability of Y via their correlation in the regression situation, they may share the
potential for attenuation in the transformation situation.

The interaction effects for non-crossing and crossing interactions will not be

discussed, as the generated data did not support an adequate means of comparison.

Measurement, Interaction Effects, and Psychology

This study examined the effects of measurement imprecision on the interpretation
of statistical results in one particular methodology - moderated multiple regression. The
simple examples presented earlier in the document suggested dire consequences of
measurement imprecision on the interpretation of interaction effects in MMR. Interaction
effects were severely attenuated and completely removed based on innocuous changes to
the predictor and criterion variables. Although the results of the actual study suggest that
these effects aren’t nearly as clear-cut when realistic data are considered at realistic levels

of predictability (R?), there are real and dramatic effects of measurement imprecision.
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Consider the effect of monotone transformation to predictor X, observed in Table
6. Average reductions in interaction effect size of .104, .153, and .344, were obtained
with average pre-post transformation correlations of .942, .965, and .977. This, to me,
remains a striking finding. The correlations between the original data and the
transformed data (representing a lack of measurement precision) are higher than those
seen in virtually any reliability situation, and are representative of very slight changes in
the original scales. Two researchers studying the same interaction could obtain extremely
high correlations between their separate predictor measures of the same construct, and yet
arrive at very different estimates of interaction effect size. Extend this situation to several
researchers studying the same interaction, and you arrive at the situation commonly
lamented in psychology - that interaction effects are difficult to detect and unreliable.

The nature of this difficulty may be rooted in the measurement precision of predictors,
and to a lesser extent, criterion variables.

Even considering the findings, several factors may have contributed to an
underestimation of attenuation effect in this study. First, the continuous variables used in
this study were assumed to be quantitative variables with infinite resolution, i.e., any
difference represented an actual empirical difference. Thus, the number of realizable
states was extremely large.® In real psychological data, this is rarely the case. Typically,
what psychologists consider “continuous” variables are Likert scale items or composites
of such items. Rarely do such single scales exceed 7 realizable states, and the composites

almost never attain over 100 states. The implications of this difference for interpreting

® This fact would have made the axiom tests of conjoint measurement (if they were not excluded on
theoretical grounds) an extremely computer-intensive process, as 100,000,000 (for n=10,000) paired
comparisons would be needed for each cell.
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the results of this study are unclear, and future research needs to examine this issue. It
would seem, at first blush, that even if the deleterious effects of transformation on
interaction effects can be shown to be less severe with Likert-type items, the question of
empirical representability can still be raised. That is to ask, does the limited number of
realizable states in a Likert scale adequately represent realizable states in the attribute
under study? The question can perhaps best be answered by further progress in both
measurement theory and substantive psychological theory on qualitative vs. quantitative
judgment.

Second, the primary set of study results were the result of analyzing only crossing
interactions. It is known on theoretical grounds that these interactions are less susceptible
to attenuation than non-crossing interactions, so overall effects of transformation across
all design cells may be underestimates. Further study of the issue at levels of study
parameters where non-crossing and crossing interactions can be examined in a fully-
crossed design will shed light on this aspect of the problem.

Third, the MORALS algorithm used in this study only optimizes additive fit to
data, and does not minimize severity of transformation to do so. Thus, many of the pre-
post transformation correlations presented in this study may not be maximum, and may
over-estimate the severity of transformation necessary to attenuate an interaction. There
is no immediate solution to this problem, as such additional optimization criteria would
somehow have to be integrated into the MORALS algorithm.’

Despite the dramatic findings described above, several of the results were in direct

opposition to proposed hypotheses. As discussed earlier, much of this may involve the

® Based on discussion with the developer of the MORALS implementation in the SAS package, this
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unclear role of error variance. In general, the message emerging from this study may be
that the less we know about our criterion (in terms of overall R?), the more we are able to
interpret observed interaction effects (due to our decreased ability to attenuate them via
transformation). To this author, this seems an odd conclusion, despite its consistency
with study findings. It would seem that the advocates of Stevens’ theory, who would
make interval assumptions of their measurement systems, and interpret interaction effects
without scaling concems, and those in Michell’s “purist” camp, who might claim additive
models more parsimonious, and perform rescalings rather than interpret multiplicative
effects, in the end are fighting against the same enemy - error variance.

For the purposes of this study, error variance in Y was simply uncorrelated
variance added after the effects of X, Z, and XZ were calculated. In real situations, this
error variance may be due to simple unpredictability of Y, unreliability in Y, or even
unreliability in predictors X or Z. The effects of predictor unreliability on detecting
interaction effects are well known (Dunlap & Kemery, 1988), but the role of
measurement error in the context of measurement theory are only beginning to be
examined (Falmagne 1979).

The role of error variance in Y also implies a larger paradox. As theoretical
models in psychology become more complex, and better at predicting human behavior,
the confidence we place in the interactive effects present in such models decreases, as
monotonic transformation is more able to attenuate interactions at higher R? levels. The

ultimate solution lies in the simultaneous development of both psychological theory and

additional optimization criterion is currently impossible to implement.
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psychological measurement, so that advances in understanding the relationships between

psychological phenomena are accompanied by the requisite advances in measuring them.

Practical Implications of the Study

Although the discussions above highlight the potential complex nature of several
obtained results, an overall examination of the effects of each study design can provide
cautions for everyday psychological research. Table 14 lists the overall extent of
attenuation of crossing interaction effects at all levels of study design factors. As can be
gleaned from the table, the greatest problem estimating interaction effects would occur in
a situation with high additive R a large observed interaction effect, high predictor
intercorrelation, and two continuous non-interval predictors. Conversely, the least
problem occurs at low levels of additive R?, a small observed interaction effect, low
predictor intercorrelation', a non-interval criterion'!, and two binary predictors.

This pattern of results points to a clear role of measurement imprecision in
explaining the difference in detecting interactions in experimental settings and field
settings. The optimal situation of orthogonal qualitative predictors virtually defines the
experimental design, where stimulus control allows the random assignment of
observations to factors in crossed designs to force orthogonality. The measurement status
of experimental stimuli are not at issue, as they are, by definition, controlled stimuli. In
the case of a binary predictor, the experimenter is simply controlling a single qualitative

difference.

19 Although orthogonal predictors weren’t included in the study, we can presume it to be the optimal
situation
"' Optimal within the context of some measurement imprecision. Ideally, all variables would be interval.
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Table 14. Mean Af* Values for Study Design Factors

DESIGN FACTOR MEAN Af
Additive R?

2 -.074

4 -.179

6 -.487

Incremental R?

.05 -.035
.15 -171
25 -.534

X-Z Intercorrelation

1 -.192
. -.245
) -.303

Measurement Status of Variables

Non-Interval Y -.075
Non-Interval Y,X -224
Non-Interval Y, X,Z -.307
Non-Interval X -.200
Non-Interval X,Z -427

Qualitative/Quantitative Nature of Variables

Continuous X and Z -221
Continuous X, Binary Z -.189
Binary X, Binary Z -.133
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In contrast, a field study does not have the luxury of experimental control, and
therefore, in most cases, cannot force orthogonality of predictors or control the levels of
predictors. These are typically observed values which naturally occur in the field setting.
While the experimentalists need only fear the effects of non-interval measurement in their
dependent measures, the field researchers must also concern themselves with scaling
issues in random, continuous predictors.

This thesis has also examined the issue of measurement imprecision by assessing
reductions in interaction effect size. An alternative approach would have been to

examine changes in decisions made on statistical grounds. That is, the impact of

measurement precision would not be problematic if only effect sizes were reduced, but if !
these reductions in effect size also resulted in statistical non-significance of the
interaction effect. Although effect size is theoretically independent of any given
statistical test, the decisions resulting from inferential methods are based on finite, often
small, samples. This consideration invariably raises the issue of statistical power.
Several factors related to statistical power and moderated multiple regression were
discussed earlier in the thesis, but kept distinct from the focus on measurement properties
of data. Extending the argument that statistical decisions be the criterion against which
measurement imprecision is judged would suggest that the measurement properties of an
instrument become more important as sample sizes increase, thereby making any given
change in R? more statistically significant. This logic is problematic, as the measurement
properties are inherent in the instrument, and the identical instrument is used whether a
sample size is large or small. Whether a given change in R? is statistically significant or

not can be solely a function of sample size and unimportant in evaluating the precision of
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the measurement instrument involved. The magnitude of the change in effect size is the
only relevant consideration. Regardless of its effect on statistical decision-making,
measurement imprecision may still have effects on the underlying moderator effect size.
Although this study has examined how measurement imprecision may cause
researchers to interpret non-existent interaction effects, it is important to note that the
converse is also true, i.e., measurement imprecision may also contribute to problems in
not finding interaction effects which are empirically present. An effect size observed
when using non-interval scales may actually be an underestimate of the actual effect size,
and in situations where this underestimate is great enough to result in statistical non-
significance of a moderator effect, the researcher has missed a potentially important
scientific finding. In this thesis, the choice was made to focus on the reduction of
observed moderating effects, based on the scientific principle of parsimony. Typically,
when an additive and additive-multiplicative model have equal statistical viability,
scientists choose the simpler, additive model. The focus on removal or attenuation of
interaction effects was also designed to critically address the interpretation of interactions
with extremely small effect sizes. The difficulties associated with finding interaction
effects in applied psychology may contribute to their rarity, but in no way increase the
scientific value of the interactions we do find. Rather, both the observation and non-
observation of moderator effects should be evaluated from a measurement framework.
Once we establish a certain level of precision in our measurement, we may better
understand which of our observed interaction effects are “real”. If weak measurement is
also contributing to applied psychologists not finding significant moderator effects, then

increasing the quality and precision of measurement can only improve the situation.
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APPENDIX A: MORALS Algorithm
The MORALS algorithm maximizes the canonical correlation coefficient between
two sets of variables, X and Y, by transforming the variables according to specified
constraints. The specification of the model follows below. More detail can be found in

Young, de Leeuw, & Takane (1976).

1. Let X be a matrix of k observations of n variables.
Let Y be a matrix of k£ observations of m variables.
2. Each x; and y; assumed to be measured at a specified measurement level (nominal,

ordinal, interval, ratio).

3. Two parameter vectors, a and B are defined to have n and m elements,
respectively.

4. Two matrices, X* and Y*, are defined to have the same dimensions as X and Y.
5. The columns of the X* and Y* matrices, x;* and y;*, have two properties. 1)

They are defined at the interval level of measurement. 2) They are related to the
corresponding columns in X and Y, x; and y;, by transformations permissible of the

specific variable. So:

xi* = 3i (xi)
yi* =3 (vp)
6. 3i and J; above represent measurement transformations of observed variables X

and Y.
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The goal of the algorithm is to find transformations 3; and 3; and regression
weights a and B, so the canonical correlation between X* and Y* is maximized. This is
equivalent to minimizing the sum of squared differences between composite variables a

and b, defined as:

a=X*a
b=Y*p
subject to minimization criteria: A’=(a-b) (a-b)
7. The minimization is constrained by allowable forms of the 3 functions. These

depend on the level of measurement of the variable in question and the processes by
which the distributions are generated. The constraints on J fall into three types: order (3

°), linear (3'), and polynomial (3°):

3% (Xai < Xbi) = (Xai* < Xpi*)

T Xai* = 80 + 81X

P
p. * q9
Jix,*= E 8,x,
q=0
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