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ABSTRACT

PSYCHOLOGICAL MEASUREMENT AND STATISTICAL INFERENCE:

IMPLICATIONS OF SCALE MISSPECIFICATION FOR MODERATED MULTIPLE

REGRESSION

By

William Michael Rogers

The purpose of this thesis was to reexamine the critical relationship between

scales of measurement, moderated multiple regression, and theoretical inference. The

first major section critically reviews the modern measurement paradigm in psychology,

and argues that psychologists have placed too much faith in both their measures and their

methodologies. The second section narrows the issue, focusing on how these

uncertainties in measurement scales can affect inferences and tests using moderated

multiple regression methods. It is shown that weaker scales prevent the researcher from

making conclusive statements about presence and strength of moderating effects. A study

is conducted, by which the effects ofmeasurement scale on interpretation of moderated

multiple regression in a variety of situations is clarified. It is shown that the

interpretability of obtained effect sizes for interaction effects is based, in part, on the

precision of both predictor and criterion measures. In addition, the overall predictability

of criterion measures appears to be a factor in the complex relationship between

measurement precision and interaction effects.
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INTRODUCTION

Many theories and procedures in applied psychology predict interactive or

moderating relationships between independent variables in determining their effects on a

dependent variable. Moderating effects are usually defined (e.g. Zedeck, 1971) as

situations in which the bivariate relationship between two variables (X, Y) is influenced

by a third variable (Z). Personnel psychologists typically use the moderator concept in

assessing test bias. Evidence for moderating effects of categorical variables such as

gender or ethnicity is considered differential prediction, and the test is deemed biased

against a subgroup defined by the moderator (Cleary, 1968). Use of moderators is also

prevalent in other applied domains, such as organizational behavior (e.g. Pierce, Gardner,

Dunham, & Cummings, 1993), and training / skill acquisition (e.g. Kanfer & Ackennan,

1989). AS the theoretical models generated to explain or predict human behavior in

organizational settings become more complex, the development of theories Specifying

moderator variables will grow in importance.

The primary purpose of early studies using moderators was not to test theories or

detect test bias, but to assess differential validity across subgroups defined by a third

variable (e.g. Ghiselli, 1956; Saunders, 1956). This usage was predicated on the notion

that moderator variables defined homogenous subgroups, within which criterion-related

validity was generally thought to be more accurately assessed, and, in some cases, of

greater magnitude. As such, this initial use of moderator variables was primarily

atheoretical and focused on validity maximization, rather than on substantive

relationships between grouping variables, predictors, and criteria (Lubinski &

Humphreys, 1990).



As the early use ofmoderator variables was in differential validity assessment, the

primary method of examining moderator effects was based on the comparison of

subgroup correlations. The use of this method was restricted to categorically-defined

subgroups, but this was less severe of a restriction, given the nature ofmost subgrouping

variables (e.g. gender, race). However, it posed problems for the treatment of continuous

moderator variables. Since it is generally not desirable to collapse continuous scores into

categories, the preferred modern method used to assess interactive or moderating

relationships is moderated multiple regression (MMR) (Saunders, 1956; Zedeck, 1971).

This method has been shown to provide more information than subgroup correlational

analysis, in the form of subgroup slopes (Stone-Romero & Anderson, 1994), and can be

applied to situations with either dichotomous or continuous moderator variables.

Using MMR, the test for interactive or moderating effects is a test on the

regression weight of a multiplicative term composed ofboth predictor components.

Expressed in terms of a linear model, this is as follows:

Y=bo+b,X+b,Z+b3XZ+e (1)

where Y is a continuous dependent variable, X is a predictor variable, and Z is a predictor

variable thought to have a moderating effect on the X-Y relationship. A test ofthe

significance of b3, in this case, is a test of the relevant moderating effect. This test is

mathematically equivalent to a hierarchical F-test of the incremental R2 for the above

model over a reduced model without the XZ product term.



Despite the theoretical importance of interactions in applied psychology,

confirming evidence has often been difficult to gather. Cronbach (1987) notes the

difficulties in finding interaction effects to be statistically significant. Zedeck (1971) has

termed moderator effects “as elusive as suppressor variables”. Moderator effects have

also been characterized as more difficult to detect in non-experimental field settings than

in experimental settings (McClelland & Judd, 1993; Morris, Sherman, & Mansfield,

1986). Although the failure to discover significant moderating effects using MMR led

some researchers to advocate alternative methodologies, such methods were eventually

shown to be invalid (c.f. Wise, Peters, & O’Connor, 1984).

In response to these difficulties, many researchers have investigated statistical

artifacts which may contribute to Type H errors using MMR. Type I errors (detecting an

interaction when one is not present in the population) are assumed to be controlled for by

the significance level of either the t-test for the product term in the MMR equation, or the

F-test for incremental R2 after inclusion of the product term. Several factors, such as

small sample size (Alexander & DeShon, 1994), measurement error (Busemeyer & Jones,

1983), small population effect sizes (Stone-Romero & Anderson, 1994), and range

restriction (Aguinas & Stone-Romero, 1997) have all been shown to increase Type II

errors and reduce the power of the MMR method. These factors reduce the probability of

concluding interaction effects are present when they are, in fact, present in the population.

While the above findings are of considerable practical utility, they have perhaps

overshadowed more fimdamental issues related to the erroneous interpretation of

moderated multiple regression analysis. These issues are rooted in the measurement

properties of the variables used by the investigator. These measurement properties, and



the associated scales of measurement, are typically defined based on the prevalent theory

of scale types (Stevens, 1946).

Murcment Theory in Psychology: Campbell’s Problem and Stevens’ Solution

In the majority ofpsychological circles, the name S.S. Stevens is synonymous

with scales of measurement. His nominal, ordinal, interval, and ratio categorizations

(Stevens, 1946) have been almost uniformly accepted in the psychological literature, and

rarely do methodological or statistical textbooks go beyond these concepts when

discussing measurement scales. The unanimity of this acceptance cannot, however, be

explained solely by the utility of Stevens’ model. Rather, Stevens’ impetus for

developing such a measurement taxonomy, and the taxonomy’s subsequent widespread

acceptance, owe themselves, in part, to a reactive stance by early 20th century

psychologists against influential measurement theories, most notably the ideas of

Campbell (1920, 1928).

Campbell, a physicist, attempted to formalize extensive measurement within

physics. Extensive measurement is the numerical representation ofphysically additive

properties of objects. Mathematicians such as Helmholtz (1887) and HOlder (1901) had

developed complex theorems and proofs for such measurement systems, and physical

concepts were readily applied to the theory. Length, mass, and distance are common

examples. Measurement of these properties is based on the empirical concatenation, or

physical addition, of identified subunits (e.g. meters, grams) which correspond to the

object being assessed. Campbell, and others (e.g. Bridgman, 1922), proposed that

extensive measurement is the only basis for measurement, and any scale or measurement



system must, at some level, be based on extensively measured entities. Accordingly,

Campbell called extensive measurementfundamental measurement. The measurement of

empirical properties which could not be extensively measured, but was instead composed

of fundamental measures, was called derived measurement. Concepts such as density and

acceleration are derived measures, as they are determined by simple mathematical

relationships between fundamental measures (e.g. density derived from mass and

volume), or powers thereof (e.g. acceleration derived fiom velocity). Campbell’s theory

essentially classified measurement as fundamental or derived, and any scale or

representation which was neither was voided as measurement.

By constraining measurement to extensive attributes, Campbell’s theory had

thrown down a gauntlet to psychology. The vast majority ofpsychological variables were

not amenable to empirical concatenation operations, and next to none consisted of

additive physical units. This was even true of the psychophysics discipline, which was, in

the early-to-mid 20th century, considered to be the most rigorously quantitative of any

field in psychology. Many psychophysicists at the time (c.g. McGregor, 1935; Johnson,

1936; Smith, 193 8) attempted to integrate psychological measurement within Campbell’s

theory, but to little avail. In 1940, a committee of the British Association for the

Advancement of Science, on which Campbell was an influential member, provided

another damaging blow, formally declaring fundamental measurement in psychology an

impossibility (Ferguson et a1, 1940):

“Why do not psychologists accept the natural and obvious conclusion that

subjective measurements of loudness in numerical terms (like those of length or



weight or brightness) are mutually inconsistent and cannot be the basis of

measurement?”

As Campbell’s theory gained support from the committee’s pronouncement, the

prospects of acceptable measurement in psychology grew dimmer. Given the vital role

ascribed to measurement by the scientific community as a whole, the mood ofmany was

that psychology was on the defensive in a philosophical battle for its existence as a

science.

Stevens, a psychophysicist, was especially influenced by the edict of the British

committee, as his own loudness sensation scale, the some scale (Stevens & Davis, 1938),

was among those that the association chose to examine in detail. Stevens proposed an

alternative to Campbell’s theory by relaxing the requirement of extensively measurable

entities. Stevens suggested that any numerical coding which somehow represents an

empirical reality should be considered measurement, regardless of the presence of

additivity in either the numbers used or the empirical objects in question. Stevens’

complete theory argues that empirical non-additivity does not preclude measurement

itself, but only restricts the ways in which the measurements can be used.

Stevens identified four primary scale types: nominal, ordinal, interval, and ratio.

His nominal scale is the numerical coding of attributes based on equality or inequality.

Thus, using a ‘1’ to represent a male and a ‘2’ to represent a female tells us only that

“males are not equal to females”. Stevens’ ordinal scale uses numbers to denote order

properties of an attribute. A simple example is order of finish in a marathon. 1St place

finishes ahead of 2'“, which finishes ahead of 3rd, and so on. Ordinal scales also contain



equality and inequality information, in the form of “ties” at any given rank. In the

marathon example, if after 1St and 2nd place, three people all crossed the finish line at

exactly the same moment, they could all be given rank “3”, as they finished afier “2”, and

before “4”. Stevens’ interval scale possesses the properties of the aforementioned scales

(i.e. equality and order), and has the additional property of equality of differences. A

classic example of an interval scale is temperature measurement using a thermometer.

The liquid in the thermometer is known to increase in volume linearly with an increase in

temperature. The marked gradations on the outside of the thermometer are set at equal

intervals of the volume within the thermometer. Thus, the change in volume of the liquid

from the 10° mark to the 20° mark is equal to the volume change between the 20° and 30°

marks. Given the linear relationship between volume and external temperature, one can

conclude that the physical temperature differences are also equivalent. Ratio scales

possess the properties of equality, order, and difference, and, in addition, reflect a

physically additive structure by the presence of a true zero point. Ratio scales are used

when the object in question has a meaningful point of absence or non-existence. Mass

and length are common examples.

Each scale type defines a set ofpermissible transformations, under which the

information contained in the scale remains invariant. Nominal scales permit only one-to-

one transformations, where any value in the transformed scale s, has only one

corresponding value in original scale so, and vice versa. Ordinal scales permit monotonic

increasing transformations, as these preserve order from the original scale. Interval scales

permit positive linear, or afline, transformations, of the form: 3, = a -so + b. Ratio scales

permit positive similarity transformations, which preserve the ratio of two scale values, of



the form: 3, = a -so, where a is a positive real number. Non-permissible transformations

of any scale result in loss of information, and the resulting scale can only be treated at the

level of measurement which permits the transformation. For example, a non-linear

monotonic transformation of an interval or ratio scale results in an ordinal scale, and a

linear transformation of a ratio scale results in an interval scale. In the case of linear

transformations and monotonic transformations with functional formulas (e.g. Xn or

log(X)), a non-permissible transformation can be reversed to recover original scale

information. This is not true of all monotonic transformations, however.

The notion ofpermissible statistics was a natural extension to permissible

transformations. Permissible statistics were defined by Stevens to be functions whose

meaning and statistical inference remained invariant across permissible transformations

of a given scale type. Non-parametric statistics, such as frequency-based and rank-order

concordance indices, were the only statistics applicable to nominal and ordinal scales,

respectively. Advanced parametric methods, such as t-tests, F-tests (analysis of variance),

and Pearson correlational indices were restricted to interval and ratio scales.

Accepting Stevens’ theory of scale types, even with the restrictions it placed on

transformations and statistics, would have represented considerable gains in measurement

theory for psychology. Despite these potential gains, however, many psychologists still

saw a problem. Stevens’ theory essentially told them that the variables they study are

indeed measurable, but due to scale properties, only certain statistics are allowable, hence

only certain hypotheses could be tested. Acceptance of this, combined with the lack of

evidence for an interval nature of a majority ofpsychological variables, would amount to

an admission that the large group of meaningful statements limited to interval and ratio



scales could rarely be made in psychology. To psychologists attempting to expand

measurement practice and psychological science to the boundaries ofphysical science,

these restrictions were unacceptable. The nature of psychological data, and the methods

used to analyze them, became the major point of contention.

Psychological Data: Ordinal, Interval, or Unimportant?
 

The earliest attacks on Stevens’ theory were based on the notion of statistical

methods being closed systems. Typified by Burke (1953), Lord (1953), and Anderson

(1961), these criticisms essentially stated that numerical calculations are independent of

measurement scales and empirical phenomena, and thus any calculation can be conducted

on any numbers. After all, states Lord (1953), “the numbers don’t know where they came

from.” Though the logic of this statement is unclear to some], Lord’s conceptual

separation of nmnerical computation and statistical meaning is evident. He uses

examples such as calculating the arithmetic mean ofjersey numbers for freshmen on a

football team. Gaito (1980) supports such reasoning, suggesting that statistical theory

and measurement theory are independent and unrelated considerations. This type of

argument, sardonically termed “computational libertarianism” by Michell (1990), boils

down to both a difference in semantics and a lack of consideration of empirical meaning.

It would have been ridiculous for Stevens to suggest that calculations cannot be done

using scale values. No researchers, at least to date, have been legally or otherwise

restricted from performing mathematical calculations. These calculations should instead

be judged by their eventual meaning or use in hypothesis testing. Unless researchers



following Lord’s logic can propose meaningful hypotheses about the mean ofnominal

scales such as jersey number, the calculation of the mean remains theoretically and

empirically meaningless.

Other researchers have questioned the relationship between statistical

methodology and measurement theory based on statistical assumptions. Gaito (1960)

presents the argument that statistical tests are only mathematically based on distributional

assumptions. According to Gaito, verification of these distributional assumptions, rather

than scale type, validates the use of a particular statistical method. The problem with this

argument is similar to that of the early criticisms of Lord (1953) and Burke (1953), in that

no explicit linkage is made with the meaning ofthe statistical test or hypothesis. A

variety of transformations of a given variable could be conducted in order to produce a

normally distributed result. Gaito is technically correct, as this would indeed validate the

use of statistical methods assuming normality, but the hypotheses tested under the

transformation may become meaningless (e.g. difference in logarithms of attitudes toward

an object), or, at the very least, difficult to interpret. Again, the key is not valid statistical

methodology, but valid empirical inference and theoretical meaning. Stine (1989) sums

up the critical relationship between substantive theory, measurement, and statistical

methodology, and the flaws in arguments such as Gaito’s:

“In short, for the statistician or mathematician, statistical methods are closed

systems. For the scientist, statistical methods are but one component of a larger,

more complex system. The full potential of a statistical technique is realized only

 

lTownsend & Ashby (1984): “Just exactly what this curious statement has to do with statistics or

10



when its proper role as a component of the scientific endeavor is realized. A

failure to recognize this role can lead to scientific decision making on the basis of

nonsense.”

Another set of responses to Stevens’ theory were motivated by the desire to use

parametric methodology with data that were not shown to be interval or ratio scaled.

Recall that the only difference between ordinal and interval data is an equivalent distance

between scale points. This meaningful distance, according to Stevens’ (1946) theory,

permitted the use of advanced parametric statistical methods of testing mean differences.

The difficulties in verifying equal intervals in measurement instruments, combined with

the desire for parametric methodology, led many psychologists to seek proxy indicators

for an interval scale. Perhaps because of its role in many parametric methods, the most

popular proxy indicator of an interval scale has been the normal distribution.

Gaito (1959) reasoned that the normal distribution is evidence for an interval scale

because one can divide a normal distribution into equal units based on the standard

deviation. Achenbach (1978) writes: “In effect, then, the assumption of a normal curve

also implies an assumption about the type of measurement scale employed.” Jensen

(1974) states: “if normality of the population distribution of the trait is correct, we

have a true interval scale of measurement”. In 1980, he writes: “Ipso facto, any test of

intelligence that yields a normal distribution of scores must be an interval scale.”

Despite all claims to the contrary, there is no evidence that normality of

distribution is a valid indicator of an interval scale (Stine, 1989). The argument of Gaito

 

measurement eludes us.”
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(1959) is flawed, in that standard deviations only allow a normal curve to be divided into

equal areas based on probabilities. The empirical distance between points on the scale is

an entirely different consideration. For instance, knowing a data set has a mean of 10,

standard deviation of 1, and is a perfect normal distribution only tells us that the

probability of a data point falling between 8 and 9 is equal to the probability of falling

between 11 and 12. It in no way informs us ofthe empirical equality of these distances.

Thomas (1982) illustrates a situation which further falsifies claims that normal

distributions infer scale ofmeasurement. The study he used as an example, Yuan (1933),

suggested that weight be considered a lognormal variable due to the lack of negative

values. Yuan graphed weight and log weight from a sample of 1000 girls and illustrated

that the log weight conformed to a normal distribution much better than the

untransformed weight. Since weight is a ratio scale (and consequently an interval scale),

a log transform is not permissible. Thus, log weight is not an interval or ratio scale, yet it

displays a normal distribution. Thomas (1982) also proves that, for any ordinal scale

measuring an underlying continuous distribution, a transformation to a normal

distribution existsz. He points out a startling implication of the latter proof: ifwe

incorrectly assume normal distributions are the result ofmeasurements using interval

scales, and know that any ordinal scale can be transformed to normality, we would

erroneously conclude that any ordinal scale can be transformed into an interval scale!

Scholars in measurement theory have suggested there is little evidence to conclude that

performance measures are linearly related to the underlying construct of interest (Krantz

& Tversky, 1971). We are usually only able to Show these measures to be of ordinal

 

2 Proofbased on Roussas (1973), pp. 185-186
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level, and thus only monotonically related to the construct. Despite these findings, most

psychologists still believe that normality of distribution somehow implies an interval

scale.

Even among those accepting the non-interval status of measurement in

psychology, there is continued use of advanced statistical methodology requiring interval

scales. This use is based primarily on simulations demonstrating the robustness of

parametric methods to transformations not permitted of interval scales. In one of the first,

and most often cited, of these studies, Baker, Hardyck, & Petrinovich (1966) calculated t-

tests on interval—level data disturbed by random ordinal transformations, finding that the

sampling distributions of the resulting t statistic were very similar to the sampling

distribution of the statistic with the undisturbed interval data. They therefore concluded

that the t-test is robust to violations of interval assumptions, and it is adequate for use

with ordinal data. Results of a Monte Carlo simulation by Gregoire & Driver (1987)

suggested no clear power advantage of either parametric or non-parametric tests when

testing for two group (t test vs. Mann Whitney U) or multi-group (F test vs. Kruskal

Wallis H) mean differences of Likert scales under various ordinal transformations.

However, reinterpretations of their results have implied a power superiority of parametric

tests (see Rasmussen, 1989). Zumbo & Zimmerman (1993) demonstrated minimal power

differences when t-tests are applied to ranked data, or to ranked scores with added error,

and conclude that it is not necessary to use non-parametric tests on ordinal level data.

The message emerging from these investigations is that it is generally permissible

to use parametric tests with ordinal data, or at the very worst, it is an arbitrary

consideration. This conclusion has been challenged by Stine (1989), who notes that

13



simulations based on random disturbances to interval data, such as that of Baker et al.

(1966) and Zumbo & Zimmerman (1993), may not be valid. According to Stine, these

Monte Carlo methods are valid only if different ordinal scales are randomly selected for

each use of a given statistic, i.e. that diflerent ordinal representations of the data are used

across replications. Stine argues that it is more likely for a single ordinal representation

(or disturbance) to be in effect across many situations. For example, because of

anchoring or other problems, a Likert scale may have “compressed” values near one

endpoint, such that the empirical distance between ratings of ‘6’ and ‘7’ is less than that

between ‘1’ and ‘2’. The behavior of a series of t-tests using this scale may be very

different than a series conducted on a Likert scale which exhibits random “compression”.

Stine concludes that if a permissible transformation exists (i.e. an empirically equivalent

scale) such that the inferences made (or decision error probabilities of such) using the

statistical method in question are altered, then the method is not robust to violations of

interval level assumptions.

By advocating proxy indicators of interval scales, such as normality of

distribution, and using parametric methodologies with ordinal data, psychologists have

perhaps, to use an athletic analogy, both inappropriately lowered the bar and strengthened

the high-jtunper, with respect to measurement and statistical methodology. The next

section will describe how these uncertainties in level of measurement have the potential

for misinterpretations of moderated multiple regression analyses.

14



IntervilSiles. Ratio Scalesoand Moderated Multiple Regression

Although the Monte Carlo studies discussed above have quelled most concerns

about robustness ofparametric methods, Stine’s criticisms notwithstanding, the effects of

measurement level have been further investigated in the context ofmoderated multiple

regression. Since, for reasons discussed earlier, most psychological data is assumed to be

of interval scale, much attention has been given to the effects of linear transformations on

parameter values and interpretation ofMMR. In addition to the standard linear

transformation (3, = a- so + c, where s. is the transformed scale, so is the original scale, a

is a positive real number, and c is any real number), the special case of additive

transformations (s, = so + c, where c is any real number) has been addressed. Additive

transformations of the form s, = So — 3'0 are often used to “center” the data prior to

estimating the regression equation. Such centering simplifies interpretation of simple

slopes and often reduces multicollinearity between the product term and its component

terms (Aiken & West, 1991).

Perhaps the most comprehensive assessment of the effect of additive and linear

transformations on regression equations with product terms is that of Cohen (1978). In

an effort to demonstrate the invariance of results across linear transformations, Cohen

illustrated the effects algebraically. Given arbitrary linear transformations of the

predictors, X’ and Z’, where X’ = aX + c, and Z’ = dZ + f, the simplified MMR equation

in terms of the transformed scales becomes:

(—)(——)t—l(—-——l
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Regarding the new regression coefficients for variables X’, Z’, and X’Z’, several

conclusions are apparent. Coefficients for X’ and Z’ are altered by both additive (c,f) and

multiplicative (a,d) components of the transformation equations. This can easily be seen

in the common situation where one wishes to standardize the predictors prior to analysis

(i.e., a = SDX'l , d = SDZ'l , c = —X , e = —Z ), resulting in standardized regression

coefficients. If there is no interaction present using the original scales (B3 = 0), then

transformations which are solely multiplicative (c = e = 0) will simply change [3. and [32

by a factor of their respective multiplicative constants, a and d. The regression weight for

X’Z’ is shown to be affected by the multiplicative constants a and d, but unaffected by

additive components of the transformations. Thus, the “centering” operation described by

Aiken & West (1991) has no effect on the value of

[33. Cohen (1978) also showed that under a linear transformation, the new regression

weight counteracts the shift in the standard deviation of the product term created by the

transformation. Because of this, significance tests on the transformed regression weight

remain unchanged.

Important as they are, the examination of these effects on regression weights was

not Cohen’s primary focus. Cohen demonstrated that Rzy . x, 2, x2 = RZY . x', z; x'z’, and

that Rzy . x, z = Rzy . x', z', leaving the F-test for incremental R2 also unchanged. Cohen’s

overall conclusion is that, despite the various effects on regression weights, the essential

tests of interactive effects are invariant to linear transformations. According to Cohen,

this demonstration renders concerns such as multicollinearity ofproduct terms and
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components (Althauser, 1971), and correlated random predictors (Sockloff, 1976) of

trivial importance.

There have also been some discussions of ratio level data in MMR analyses. If

one examines Equation 2 above, it can be seen that additive transformations exist (a = d =

1; c = 132/133, f = [31/53) which equate the regression weights on X' and Z' to zero. In this

situation, all predictable variance from the original equation is carried by the X’Z' product

term (Rzy . x, z, xz = Rzy . x’z')- If one were to use the R2 as an index of fit for the model, it

results in an arbitrary decision between a strictly multiplicative model (Y = X’Z') and an

additive-multiplicative model (Y = X + Z + XZ), depending on which interval scales are

used. Schmidt (1973) illustrates this point using Vroom’s (1964) Expectancy-Valence

theory of motivation. Since the additive transformations which create the ambiguity

between the multiplicative and additive-multiplicative models are not permissible of ratio

scales, Schmidt concludes that ratio scales are necessary to make the distinction. Using

ratio level measures of valence and expectancy, for instance, a researcher could only

perform multiplicative transformations, which cannot convert an additive-multiplicative

model to multiplicative, or vice versa.

Arnold & Evans (1979), based primarily on Cohen’s (1978) previously discussed

work, take issue with Schmidt (1973), and suggest that the MMR F-test of incremental R2

is the proper test of a multiplicative model. According to Arnold & Evans, the proportion

of variance “carried” on the product term or its components is not relevant to testing a

multiplicative relationship. In support of their point, Arnold & Evans (1979) present an

example oftwo physicists attempting to verify the ideal gas law, which is given by:

17



V=— (3)

where V=volume, P=pressure, T=temperature, and R=a constant.

It is at this point where Arnold & Evans make an error. Perhaps due to a

misunderstanding ofphysical laws, they claim the primary difference between physical

laws and relationships in psychology is that physical laws must specify units of

measurement (6.g. centimeters, degrees Kelvin, etc.) in order to be valid. The ideal gas

law is only valid, according to Arnold & Evans, if temperature (T) is measured in units

Kelvin. This statement is incorrect, as the measure of temperature only has to be a ratio

scale, like the other scales in the formula. As can be seen in Equation (3), the value of the

constant R can simply be adjusted to reflect a permissible ratio rescaling of T, and the law

will maintain its fit to data and, more importantly, its multiplicative form.

This confirsion between measurement level and measurement unit is compounded

as Arnold & Evans (1979) describe their example. Physicist A uses degrees Kelvin as a

measure of temperature and Physicist B uses degrees Celsius. To test their theories, these

physicists set up a moderated multiple regression equation as follows:

1 1

V=b0+blT+b2F+b3(T-;) (4)

Both physicists are expecting to verify the ideal gas law by finding: 1) a

significant increase in R2 when the (T-l/P) term is added; 2) b0, b1, and b2 all to be zero;

and 3) for b3 to equal the constant R. Arnold & Evans (1979) state: “This rather strong
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prediction is based upon their confidence that their measures of T, and P, and Vare on

ratio scales.” We will soon see that this statement cannot be true.

Both physicists run their analyses and predict 100% ofthe variance after the

product term is added, concluding they have indeed verified a law. Physicist A finds that

the increase in R2 was highly significant, b0 = b] = b; = 0, and b3 = the constant R. Thus,

she concludes the underlying physical law is:

or, the correct law as originally described in Equation 3.

Physicist B, who also finds an identical significant increase in R2, finds his

equation to be somewhat different. As with Physicist A, be and b; are both zero, and b3 =

the constant R. However, b2 is now equal to a new constant K. Physicist B concludes the

correct form of the ideal gas law is:

 

V1.5:
“P P ’

which reduces to:

V_K+RT

_ P ,

Recall that the only difference between Physicists A and B is the scale chosen for

temperature, Kelvin or Celsius. Arnold & Evans use this fact to argue that neither

physicist’s formula for the law is really correct. A simple change in the unit of

measurement has effectively changed a law from a multiplicative form to an additive-
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multiplicative form. This ostensibly supports their argument that laws are not constant

without specification of measurement units.

As noted earlier, the flaw in such an argrment is based on a confusion between

measurement unit and measurement level. Arnold & Evans commit this error when they

allow Physicist B to use a Celsius scale for temperature, and simultaneously assert that

both physicists are confident their scales are of ratio level. Kelvin is a measure of

temperature based on molecular activity, and thus has a true zero point. Celsius is a

measure of temperature constructed by means of a non-permissible additive

transformation to the Kelvin measure (°C=°K - 273°). Thus, the Celsius scale loses the

true zero point (e.g., 40° C is not twice as much warmth or molecular activity as 20° C),

and is merely an interval scale. Physicist A can be confident her formula is the correct

form of the ideal gas law, as permissible transformations of all its ratio measures can only

change the value of the constant R, and will leave the essential multiplicative form of the

law unchanged. However, Physicist B’s additive—multiplicative model can be changed by

permissible linear transformations of the temperature measure.

This discussion reinforces Schmidt’s (1973) earlier arguments. Verification of a

multiplicative theoretical model cannot be accomplished by means ofmoderated multiple

regression when the variables are measured at the interval level. Although Cohen’s

(1978) work showed that the significance test for a product term is invariant to linear

transformation, this test is not equivalent to a test of a purely multiplicative theory. The

test of this interaction term with interval scales does, however, allow one to reject a

purely multiplicative model based on a zero-weighted interaction term. An additive

model (Y = X + Z) cannot be made multiplicative by a linear transformation. If one
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obtains a significant interaction using MMR, a further examination of the variables in

question is required to verify a multiplicative model. Arnold & Evans (1979) make this

point, and this author is in complete agreement. However, a clear concept of the level of

measurement is required, not, as Arnold & Evans suggest, the unit of measurement.

While theory and measurement in applied psychology may never reach the point of

specifying standardized units, the goal of establishing constructs with theoretically

meaningful zero points is more realistic, and the only necessary consideration.

Moderated Multiple RegressionJand Ordinal Scales: Criterion Issues

The use of ordinal scales with moderated multiple regression poses a more severe

set ofproblems. It has been repeatedly noted that permissible monotonic transformations

of dependent variables can completely remove non-crossing interaction effects (Cliff,

1992; Loftus, 1978; Busemeyer & Jones, 1983; Krantz & Tversky, 1971), and can often

attenuate a crossing interaction to the point of potential non-Significance (Busemeyer,

1980). Note that these findings also imply that data suggesting no interaction is present

can be subject to a monotonic transformation which creates a significant interaction term

in an MMR analysis (see Loftus, 1978). An interaction is said to be “non-crossing” when

the rank orderings ofY across X are the same for all Z values, and the rankings ofY

across Z are the same for all X values. Any rank order changes indicate a “crossing”

interaction, as a plot ofY regressed on X (or Z) would cross at the point on Z (or X)

where the order change occurred.

Unfortunately, the effects described above are not easily demonstrated

algebraically, as Cohen (1978) had done with linear transformations. A few popular
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monotonic transformations, such as power (Xn), root (W), and logarithm, have been

discussed (see Bimbaum, 1973; Busemeyer & Jones, 1983), but these only represent a

subset ofmonotonic transformations which have functional forms. Since monotonic

transformations, as a class, cannot be expressed with a functional formula, the examples

here will use small data sets and simple transformations.

First, let us examine a non-crossing interaction. Consider a situation in which we

are determining whether or not slope bias exists for Black and White subgroups when

predicting college achievement, indexed by GPA, from the score on a standardized SAT

test. The dataset for this example, based in part on Figure 7.7 in Gregory (1996), p. 268,

is shown in Table la. It can be seen that GPA maintains the same rank ordering within

Race across levels of SAT score, and within SAT score across levels of Race, verifying a

non-crossing interaction.

If one were to examine these data with moderated multiple regression, the

following additive and additive-multiplicative equations would be generated:

GPAA = (.006 XSAT) + (.85 xRace) - 1.44 (5)

GPAAM = (.002 x SAT) - (.17 xRace) + (.0026 xSATxRace) + .09 (6)

The R2 for Equations (5) and (6) are .960 and .998, respectively. The F-test for

ARZ, as well as the t-test of the regression weight of the (SAT x Race) interaction term,

are both significant at the .001 level. Based on these results, a researcher would conclude

that slope bias exists when using a standardized SAT score to predict college
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achievement. This conclusion would likely result in a more detailed examination of the

test, and perhaps its discontinued use.

Table 1.

Datasets for Slope Bias Example: GPA by Race and SAT Score

 

a. Original Data

grog

M

White 1.1

Black 0.8

b. Transformed Criterion Data

R_ac_e

M

White 1.1

Black 0.4

SAT—$902

.499. 5%). E

2.5 3.25 4.0

1.7 2.2 2.6

SAT Score

all). :09 $2

2.4 2.9 3.3

1.7 2.2 2.6

 

Rather than conclude the problem lies with the predictor in this case, an

examination of the criterion may be in order. There is no reason to believe that GPA is an

interval scale of college achievement. For example, the difference in achievement

between GPA’s of 4.0 and 3.5 may be much greater than between 3.5 and 3.0, due to a

23



particular grading policy which requires students to put forth “extra effort” in order to

attain very high grades. The potential variety of such grading policies casts any

interpretation ofGPA as an interval scale in doubt.

In light of this, consider the dataset presented in Table lb. These GPA values

have an identical rank ordering as the data in Table 1a, and thus represent a permissible

monotonic rescaling of the original GPA variable. Comparing Tables 1a and 1b

illustrates that the rescaling is simply slight, order-preserving changes to four GPA

values. Conducting moderated multiple regression on the rescaled numbers would result

in the following equations:

GPAA = (.0053 x SAT) + (.7 x Race) - 1.18 (7)

GPAAM = (.0053 XSAT) + (.7 xRace) + (.000 xSATxRace) - 1.18 (8)

The R2 for Equations (7) and (8) are obviously the same, .976. The AR2 is zero, so there

is no additional variance accounted for by adding a (Race x SAT) product term. A

researcher using this dataset would conclude that no evidence of slope bias exists for this

standardized test. While there is evidence of an overall mean difference in GPA across

Race, the regression lines for each subgroup are otherwise identical.

The above example illustrates how a non-crossing interaction can be completely

removed by applying a monotonic transformation to the dependent variable. In’the

specific case of assessing slope bias, it is notable that the level ofmeasurement of the

criterion may have serious implications for the future use of the predictor, when the

measurement properties of the predictor are not even assessed. Using two datasets which
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are empirically equivalent non-interval scales of achievement, one can reach two different

conclusions regarding the existence of slope bias. Neither conclusion is, in fact,

necessarily correct or incorrect. Using non-interval scales prevents the researcher from

making any statement about slope bias, as the test for slope bias is not invariant to

transformations permissible of the variables involved.

Now consider an example of a crossing interaction. A researcher is studying the

relationship between social integration behaviors, previous work experience, and the

length of time working for a particular organization. The dependent variable, amount of

social integration behavior, is measured using summated Likert response items, resulting

in a 20-point instrument. The data for this example are shown in Table 2a.

The additive and additive-multiplicative equations for the dataset in Table 2a are

as follows:

SocBehA = (1.1815 x Time) + (.46 x WorkExp) - .095 (9)

SocBehAM = (-.385 x Time) - (5.81 x WorkExp) + (1.045 x Time x WorkExp) + 9.31 (10)

The R2 for equations (9) and (10) are .827 and .987, respectively. The AR2 of .16 is

significant at or=.0001, which the researcher concludes to be evidence of a strong

interaction effect in the determination of social integration behavior. Individuals with no

previous work experience tend to exhibit more social integration behavior than

individuals with previous work experience when first arriving in a new organization.
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Table 2.

Datasets for Social Behavior Example: Social Behaviors by Work Experience and Time

 

3. Original Dataset

Previous Work Experience

No

Yes

b. Transformed Dataset

Previous Woplg Experience

No

Yes

c. Transformed Dataset

Previous Woalg Experience

No

Yes

Time fi'om Employment

 

 

 

 

2 mo 3 mo 4 mo 5 mo 6 mo

5.0 6.0 7.1 9.2 10.0

1.3 4.2 7.5 12.3 14.3

Time from Ermrloyment

2 mo 3 mo 4 mo 5 mo 6 mo

4.4 5.3 6.1 7.9 8.9

2.9 3.7 7.0 9.9 12.1

Time from Employment

2 mo 3 mo 4 mo 5 mo 6 mo

4.7 6.0 7.1 9.7 10.3

3.2 4.4 7.5 10.5 12.2
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However, as time passes, the individuals with previous work experience increase

their social integration behavior more rapidly than those without such experience. The

researcher concludes the initial difference in behaviors is due to the newcomers without

work experience attempting to “fit in”, perhaps using social behaviors to compensate for

lack ofknowledge ofworkplace etiquette. Those with previous experience, and such

knowledge, have no need to compensate, and eventually their previous workplace

experiences allow them involvement in more social integration behaviors.

Suppose, however, that the 20-item scale used by this researcher is a non-interval

level measure of social integration behavior. For example, this could be due to

problematic anchors for Likert-type items or inclusion of items reflecting very different

levels ofbehavior. Problems such as these might create situations where distances

between any two scale points would not be a constant across the entire scale. If the scale

as a whole is considered ordinal, transformations preserving rank order can result in the

data presented in Table 2b. Submitting these data to a moderated multiple regression

analysis results in the following equations.

SocBehA = (.905 x Time) + (.60 x WorkExp) +.49 (1 l)

SocBehAM = (-.07 x Time) - (3.3 x WorkExp) + (.65 x Time x WorkExp) + 6.34 (12)

R2 for equations (11) and (12) are .866 and .976, respectively, resulting in 3 AR2

of .11. This is Significant at the 0t=.01 level. However, this AR2 is smaller than the .16

obtained using the original data. While the interaction is still present, its strength has
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somewhat diminished. Now consider a second transformation to the original data,

presented in Table 2c. The associated regression equations for these data are:

SocBehA = (.975 x Time) + (0 x WorkExp) + 1.71 (13)

SocBehAM = (.285 x Time) - (2.76 x WorkExp) + (.46 x Time x WorkExp) + 5.85 (14)

R2 for equations (13) and (14) are .926 and .978, respectively, with AR2 equal to

.052. This is significant at the or=.05 level. The effect size associated with the interaction

is smaller than that in the previous data set, and a great deal smaller than the original data

set. When treating the scale as ordinal, two researchers using empirically equivalent

scales can thus reach two very different conclusions about the strength of the interaction

effect. As opposed to the non-crossing type of interaction, however, the regression

equation can never be rendered completely additive. It is impossible to do so without

affecting the rank order of the criterion variable. This can easily be understood if one

thinks of the crossing interaction graphically, in terms of intersecting regression lines. An

additive equation is graphically represented by parallel regression lines. Thus, in order to

transform a crossing interaction model to an additive model requires the “uncrossing” of

the lines to make them parallel. Such a manipulation requires that some of the rank

orders near the high or low end of the criterion be inverted. It is nevertheless possible to

reduce the effect size of the interaction by minimizing the scale distance between ranks at

extreme values of the criterion. Graphically, this has the effect of “compressing” the ‘X’

formed by the interaction. This increases the fit of a linear equation through the ‘X’, and

subsequently reduces the amount of variance accounted for by an additional product term.
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While the two examples shown above still result in a significant interaction, more severe

scale transformation would cause the interaction to be statistically non-significant.

However, the regression weight of (and amount ofvariance accounted for by) the product

term can never be reduced to zero.

The above sections have highlighted the problems with interpreting interaction

effects when the criterion cannot claim an interval level ofmeasurement. When the

interaction is of the non-crossing variety, transformations permissible of ordinal scales

can completely remove the effect, essentially converting an additive-multiplicative

equation into an additive equation. When the interaction is crossing, such

transformations cannot completely remove an interaction, but can potentially attenuate

the effect size to the point of statistical non-sigrrificance. Although crossing interactions

can never be completely removed, the reduction to non-significance would result in a

researcher concluding there is no interaction effect, and advocating the default additive

model.

Moderafi Multiple RegressionmOrdinalScales: Predictor Issues

Problems using moderated multiple regression techniques with ordinal level data

are not restricted to the criterion variable. Although the measurement level of a predictor

is obviously only an issue with continuous predictors, as dichotomous moderating

variables are only of nominal level3, monotonic transformations of a predictor can have

effects on interpretation of regression results in these situations (Busemeyer, 1980;

Busemeyer & Jones, 1983). Busemeyer & Jones (1983) examine the specific case

 

3 Ordinal, interval, and ratio properties cannot be assessed with only two scale points.
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involving quadratic transformations of a predictor variable. If there is reason to suspect a

quadratic component in the relationship between a predictor and criterion, Busemeyer &

Jones (1983) suggest the inclusion ofhigher order terms, such as X2, in a hierarchical

regression analysis. As with interactions, tests of these trend components are

interpretable if they are entered into the regression equation afier lower order components

(Cohen & Cohen, 1983; Cohen, 1978). Testing of cubic and higher order terms proceeds

in a Similar manner, with the regression equations becoming exponentially larger as an

increasing number of exponential and product terms are required. Rarely, however, do

psychological theories obligate an assessment of trends beyond the quadratic form

(Cohen, 1983).

The methods outlined by Cohen (1978) allow us to examine nonlinear trend

components and their interactions within the context ofmoderated multiple regression,

but only in the case where the firnctional form of the nonlinear transformation (or

nonlinear relationship) is suspected or known. In a situation where we have no reason to

suspect a predictor is related to a criterion via a logarithmic or polynomial function, yet

also have no reason to believe the predictor is of interval level, inclusion of specific

functions of predictors in a regression equation offers us little more than a “hit and miss”

method of finding a critical functional transformation, if one even exists. This method is

useless when faced with a non-interval predictor with unknown distances between scale

points.

The general case of monotonic predictor transformations can, however, be

examined in a similar fashion as that of criterion transformations, i.e., finding the

transformation ofX which renders X-Y regression lines parallel across levels of Z.
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Determining whether a transformation of X, say X’, exists, such that Y = b0 + bIX’ + b2Z,

is equivalent to determining whether a criterion transformation exists for X' = [Y + b2 (-

Z) - b0] / b1. Since linear transformations are a subset ofmonotonic transformations, we

can dispose with the b0, b1, and b2 terms in the equation, leaving X’ = Y + (-Z). In other

words, ifY is shown to be an additive function ofX and Z, then X is also an additive

function ofY and Z, albeit with an inverted ordering on the Z variable. Any

transformation ofX which achieves X' = Y + (-Z) also achieves Y = X’ + Z.

We can see from the previous data examples that, when Y values are tabled by X

and Z, the transformation of a Y value is an operation on a cell, or set of equally valued

cells, in the table. The transformation is order-preserving as long as the new number is

less than the next highest original number and greater than the next lowest original

number. For instance, in the slope bias example data in Table la and Table lb , four

GPA values were changed, which preserved rank ordering and completely removed the

moderating effect. However, consider what a monotonic change in a predictor represents

in the data tables presented to this point. No longer is one altering a single cell, but

“shifting” an entire column or row. The regression equation at any level ofZ is affected

by a change in an X value, provided a Y value exists at the level ofX and Z. For

example, in Table 1a, changing any SAT value would result in changes to both White and

Black regression lines, and their slopes could never be equated. Thus, it appears that the

monotonic transformation of a predictor cannot remove a moderating effect.

A predictor transformation examined in this manner can, however, attenuate the

interaction effect. Consider the very simple dataset in Table 3. RZA and RZAM for these

data are .9375 and 1.00, respectively, resulting in a AR2 of .0625. After one performs the
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simple monotone predictor transformation (2=2.5) on X, the RZA and RZAM become .894

and .952, respectively. The AR2 in this case is .058, slightly lower than the original value.

If one performs a further transformation (1=1.5) on X, the R2,, and RZAM become .917 and

.978, respectively. The AR2 increases from the last situation to .060. While this dataset

represents a non-crossing interaction, similar effects are likely to be observed with a

crossing interaction. Monotonic transformation of a predictor appears to have the

potential to attenuate an interaction effect but not remove one.

Table 3.

anset for Predictor Rescaling Example: Y by X and Z

 

Z X

.1. Z 3

_l_ 1 2 3

2 2 4 6

 

However, this still is not the entire story. Because the labelings of “predictor” and

“criterion” in these tables have already been shown to be arbitrary if a transformation to

an additive model exists“, X could be considered the criterion, with Y and Z as predictors.

We’ve already shown that Y can be transformed so that Y = b1X + bZZ, which is

equivalent to saying bIX = Y - b2Z. If X is considered the criterion, it looks as if a

 

’Y=le+bZZ+bo€--) b.X=Y-b2Z-bo
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monotonic transformation to “predictor” Y exists in the data from Table la to create this

additive model. This is contrary to what was found when X was considered a predictor.

The reason for this can be seen by examining the same data in Table la, but with SAT

values in the cells at different levels ofGPA and Race. This arrangement of the data can

be found in Table 4.

Table 4.

Dataset in Table lapresentedJLS SAT by Levels of Race and GPA

 

Race GPA

White 200 300 400 500 600

Black 200 300 400 500 600

 

The difference between Table 4 and Table la is clear. Monotonic transformations

ofGPA in Table 4 still involve the Shifting of entire columns, but since only one SAT

value is in each column, we can effectively alter the regression line for one group without

affecting the other. Thus, the regression slopes can be equated by an order-preserving

rescaling of the GPA “predictor”. The cause of this phenomenon is primarily the design

of the dataset. While SAT score is likely a continuous distribution in the larger sample,

the table represents a dataset in which a pair of observations were selected from six levels
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of SAT score, one observation for each Race. As such, the table represents a completely

crossed design of Race x SAT. Monotonic predictor changes in a fully crossed design

will, by definition, alter regression equations across all levels of the other design factor.

The data neither are, nor were designed to be, fully crossed in GPA x SAT, and the empty

“predictor” cells created by this crossing allow a monotonic transformation to have an

effect.

The issue of predictor transformations affecting moderating effects thus reduces to

the question of what situations involve empty cells, rows, or columns in the data matrix.

An obvious situation is one in which X and Z are correlated. IfX and Z are completely

uncorrelated, as in a completely crossed design, no predictor transformation can remove

the interaction, as it necessarily affects all regressions across Z. Conversely, ifX and Z

are perfectly correlated, Z is a linear firnction of X, and the moderated multiple regression

equation reduces to:

Y = b() + bx + b2(kX+m) + b3(X)(kX+m) (15)

Y = (bO + bzm) + [x x (b3m + bzk)] + [x2 x (1.310] (16)

In this case, it can be seen that Y becomes an additive function ofX and X2.

Since the quadratic term itself is a monotonic function of X, a monotonic rescaling ofX

can easily remove any variance accounted for by X2, leaving only a main effect for X.

We have now seen that when predictors X and Z are perfectly orthogonal and

uncorrelated, monotonic transformations cannot remove moderating relationships, but can

attenuate them. In the trivial demonstration of perfect correlation, predictor
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transformations can completely remove nonlinear effects. This suggests predictor

intercorrelation may have an important role in determining the “robustness” of moderated

multiple regression when predictor variables are not of interval level. Dunlap & Kemery

(1988) have noted that increases in intercorrelation between X and Z result in the

increased probability of detecting an interaction effect, and, when X and Z are measured

with error, a higher reliability for the XZ product term. However, the above discussions

suggest that, when predictors are of non-interval level, the increases in detection of

interactions (due to predictor intercorrelation) noted by Dunlap & Kemery (1988) may

paradoxically be accompanied by an increasing lack ofprecision when interpreting them.

The problems associated with a single predictor measured at the ordinal level are

compounded when both X and Z predictors are ordinal scales. Typically, in these cases,

the researcher is not interested in examining differences in regression slopes across a third

variable, but in evaluating a theory which predicts a multiplicative combination of the

two predictors. In addition to considering the issues related to interval and ratio scales

raised by Schmidt (1973), the researcher is advised to be wary of ordinal level data. The

issues raised above now apply to both X and Z variables, and one must consider the

effects ofmonotone transformations ofboth simultaneously.

When faced with two predictors and a criterion of ordinal level, the researcher can

make very few confident statements about the form of the relationships between the

variables. Bimbaum (1973, 1974) notes that, in this situation, the multiplicative equation

Y = a x Xb x Zc can be rendered additive by permissible logarithmic transformations,

log(Y) = log(a) + b log(X) + c log(Z). Thus, when we lose confidence that any of our
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variables are measured at an interval level, we have come full circle to the point ofbeing

unable to distinguish a multiplicative model from an additive model.

Moderated Multiple Ragressimnd Level of Measurement: Summary and Implications

The previous sections have described the behavior of moderated multiple

regression when the predictor and criterion variables are defined by scales at various

levels of measurement. Three types of models emerging from moderated regression were

discussed, the additive model, the additive-multiplicative model, and the multiplicative

model. It was shown that when our predictor and criterion data are ratio scaled, we can

accurately select one of these models as providing the best fit to data. When all variables

are measured at the interval level, we can confidently reject the multiplicative model, but,

if failing to reject it, cannot confirm or reject an additive-multiplicative model. When the

criterion is measured at the ordinal level, we can attenuate or even eliminate interaction

effects, thereby making a choice between additive and additive-multiplicative models

arbitrary, or choosing an additive model in default due to lack of statistical significance

of an additive-multiplicative model. The extent of potential attenuation is primarily a

function of whether the interaction is of the crossing or non-crossing variety. Similar

effects are potentially observed when a predictor is measured at the ordinal level, though

the effects may themselves be moderated by the degree of intercorrelation between the

predictor variables. Further ambiguity between the additive and additive-multiplicative

models can arise when both predictors are measured at the ordinal level. Finally, when

all variables are ordinal, we cannot make a distinction between additive, multiplicative, or

additive-multiplicative models, since transformations exist which can transform any of
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the three models into any other of the three models. The relevance of these problems is

borne out by the earlier discussion of measurement in psychology. As our confidence in

the interval nature ofpsychological measurement decreases, the interpretation of

moderated multiple regression results becomes more difficult.

A lack of scale precision may be an important factor reducing the “power” of

moderated regression tests. While not related to statistical power, per se, the probability

of detecting an interaction effect, when one exists, may be reduced when scales are not of

interval level. Consider a situation where one thousand researchers are testing a

moderating effect. Five hundred use interval scales and five hundred use non-interval

scales. Since all interval scales are related by linear transformation, and we know linear

transformations cannot remove moderating effects, we then know that if one of the five

hundred researchers using interval scales finds a moderating effect, all of the researchers

will find the effects. The situation is bleaker for the researchers using non-interval scales.

These five hundred scales, related only by monotonic transformation (perhaps slight),

wouldn’t necessarily show the same moderator effect size, and some might not even show

the moderating effect at all. Examining the studies using the interval scales, the scientific

field as a whole would likely decide they have found a robust and important moderating

effect. Using the non-interval scales, the field might argue the interaction is difficult to

detect, statistically unreliable, or perhaps not even to exist. These arguments should ring

familiar, as they are those currently made regarding moderator effects in applied

psychology.

 

5 For the sake of argument, this assumes all other research factors are the same.
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Lack of scale precision may also be a factor explaining the common observation

that moderator effects are more often detected in controlled, experimental settings than in

applied field settings (McClelland & Judd, 1993). Several lines of reasoning point to

measurement level playing an important role. First, experimental studies are more likely

to use categorical predictors and test interactions via cell mean comparisons. Such tests

are only affected by the scaling of the dependent measure, as predictors are merely of

nominal level. Applied studies often use continuous scales for both predictor and

criterion variables. In these situations, permissible transformations are given greater

latitude to affect tests of moderation.

Second, the independent variables involved in experimental studies are typically

under sufficient control to allow the complete crossing of factors. Even in cases where

one predictor is polychotomous, this prevents predictor rescalings from removing

interactions, for the reasons discussed earlier. Conversely, applied studies usually sample

both predictor variables, having very little control over their intercorrelation. This

intercorrelation potentially leads to a greater likelihood of predictor rescalings affecting

the test of moderation.

Third, McClelland & Judd (1993) note that experimentalists typically predict

crossing interactions, whereas field researchers usually predict only non-crossing

interactions. We have seen that monotonic rescalings can attenuate a crossing interaction,

but not remove it, and can completely remove a non-crossing interaction. For these

reasons, it is possible that the use of non-interval data in applied field research poses

much more of a threat to empirical meaningfulness of results than using such data in

experimental settings.
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While the above issues relate to the potential effects of scale misspecification on

detection of interaction effects, there are also important implications for interpreting

interactions that are found. Currently, applied psychologists lament that many

interactions that are found account for a very small portion of overall variance. Field

researchers have indeed noted that observed interactions usually account for between 1%

and 3% oftotal variance (Champoux & Peters, 1987). The frustrating search for

moderating effects has also led some authors to go so far as claiming that interactions

accounting for 1% of the variance should be deemed important (Evans, 1985). In light of

the demonstrations earlier in this thesis showing that minor changes to data can create

large changes in moderator effects, it is possible that the meaningful interpretation of

interactions accounting for 1% ofvariance would require measurement precision beyond

the status ofmost psychological scales.

Rationale and Overview for the Study

Thus far, this thesis has demonstrated that using non-interval data with moderated

multiple regression procedures can have a variety ofharmful effects on a researcher’s

ability to interpret results. These harmful effects have important implications for theory

verification in applied psychology, and may especially be relevant to issues distinguishing

experimental and field detection of moderators.

However, two important issues remain. First, under what conditions will these

harmful effects manifest themselves? The simple demonstrations presented earlier in this

thesis are not representative of the wide variety ofmoderator effects found in research

settings. To address this issue, the study presented in this thesis examined interaction
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effects in situations defined by a variety of factors, including the baseline R2 prior to

adding a product term, the AR2 incremental percentage of variance accounted for by the

product term, the intercorrelation ofpredictors, and the measurement properties of all

variables involved in the moderated regression equation. Results obtained from this

study can assist researchers by determining what situations are most susceptible to

interpretation problems when the precision ofmeasurement is uncertain.

A second important issue is reconsidering what exactly constitutes a monotonic

transformation. Some researchers might defend their scales ofmeasurement - which

cannot be proven to be interval level - by suggesting that just because a scale is not

verified to be interval level does not mean we can conclude it is merely a rank ordering of

the attribute. In this sense, scales commonly used in psychology may be thought to lie

somewhere on a continuum between ordinal level and interval level. Advocates of this

position might argue that violent monotonic rescalings, though technically permissible of

purely ordinal data, are not reasonable with most psychological scales. This author would

agree that the majority of psychological scales likely represent more than ordinal

information, and lie somewhere on the continuum between ordinal and interval level, it

may also be true that the “reasonableness” of the transformation may be inversely related

to the strength of the observed moderating effect. Interactions with large effect sizes may

require drastic rescaling to remove or attenuate the interaction to non-significance, but

moderators with small effect sizes may require only slight alterations of the scales used.

Given the earlier discussion on interpreting moderators which account for very

small percentages of variance (Evans, 1985), it is important to clarify this issue. If a

monotonic transformation results in a scale which has measurement properties very

40



similar to the original data, most of the information present in the scale has been

preserved, and an argument suggesting we have somehow destroyed the scale is less

tenable. If such transformations remove or attenuate moderating effects with very small

effect sizes, interpreting such effect sizes is likely a fruitless endeavor when one lacks

very precise interval scales. This study will examine this issue by attempting to place

specific monotonic transformations on the continuum between pure rank-order preserving

transformations and linear transformations permissible of interval scales. This will be

done by calculating the Pearson correlation coefficient between pre-transformation and

post-transformation variables. Since a value of 1.00 denotes a linear transformation, I

argue that very high correlations in the .8-.9 range are “reasonable” and similar to the

original scale. In these cases, the transformation is not drastic, and any changes of

interpretation based on the transformation should be of serious concem.

Answering the two general research questions presented above requires both a

means of determining whether a moderating effect can be removed or attenuated by a

monotonic transformation, and a means of generating a transformation which

accomplishes such a feat. Two approaches have generally been used. The first,

simultaneous conjoint measurement, examines the extent to which conditions are met in

the dataset such that an additive, non-interactive representation is possible. Generation of

such a representation is not required. The second method, Multiple Optimal Regression

by Alternating Least Squares (MORALS) (Young, de Leeuw, & Takane, 1976), is an

iterative algorithm for generating numerical transformations which maximize the R2

between sets of independent and dependent variables. Each of these methods is discussed

in more detail below.
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Simultaneous Conioint Measurement

Recall that one of the criticisms of Stevens’ (1946) measurement paradigm was

the arbitrary nature of scale assignment. Measurement level was not determined by

consistent empirical relationships, but by the judgment of the investigator. The

operations described by Campbell were not possible in psychology, so demonstrating the

ratio or even interval level nature of data within Stevens’ framework was extremely

difficult. As noted earlier, much of the desire to use parametric methods with ordinal

data may have been due to the imposing conditions necessary to verify an interval scale.

Some psychologists, however, chose to develop alternatives to both Stevens’ and

Campbell’s theories, attempting to loosen the restraints imposed by the latter without

accepting the investigator-centered aspects of the former.

This recent avenue was spearheaded by the work of Luce & Tukey (1964). Rather

than relax Campbell’s requirements of empirical additivity, as Stevens did, Luce & Tukey

relaxed only the requirement that the basis of additivity be physical concatenation. Luce

& Tukey demonstrated that empirical addition can be based on non-physical operations

and did not require use of subunits placed side-by-side. In other words, psychologists

could develop what amounted to interval-level scales, in Stevens’ framework, without

formal extensive measurement. Luce & Tukey called this new type of measurement

simultaneous conjoint measurement. As its name suggests, simultaneous conjoint

measurement considers the combined effects of variables, rather than treat them

independently. Simultaneous conjoint measurement can potentially be applied in any

instance where two or more variables are thought to determine an empirical outcome
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variable. Only categorical (nominal) and rank order (ordinal) properties need to be

present in the determining variable set and outcome variable, respectively. If the

relationships among the variables conform to a number of axioms (a series of if-then

rules), necessary and sufficient conditions are met to define interval scales (termed

standard sequences) on the set ofdetermining variables, and subsequently on the

determined variable. Essentially, the theory says that given variables X and Z which

determine Y, if the necessary axioms are met, then monotonic transformations of ordered

variables a, b, and c exist, such that a(X) + b(Z) = c(Y). These scales are defined by

transforming the original component variables, producing an additive representation for

all components. The work of Luce & Tukey (1964) was expanded upon in a three

volume series entitled Foundations ofMeasurement (Krantz, Luce, Suppes, & Tversky,

1971; Suppes, Krantz, Luce, & Tversky, 1989; Luce, Krantz, Suppes, & Tversky, 1990),

in which other types of conjoint measurement other than additive (e. g. polynomial,

difference, geometric) are discussed in detail.

The development of simultaneous conjoint measurement provided exactly what

early 20th century psychologists were looking for in response to Campbell’s theory. If the

axioms were successfirlly applied to psychological measures, it could provide standard

sequences, i.e., interval scales, for psychological variables. The construction of these

scales should also have interested adherents to Stevens’ theory, as it allowed more

advanced statistical techniques to be used, avoiding debates about permissible statistics.

More importantly, the central concept in Campbell’s original theory, additivity, had been

preserved, and shown to be possible with non-physical variables. Thus, one of the

problems motivating the development of Stevens’ theory had, in effect, been solved.
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Despite the dramatic ability of conjoint measurement to potentially produce interval-level

scales and additive relationships, these are not its most important implications. Taken as

a whole, the essence of the theory is that these scale definitions were produced by

examining empirical relationships between one or more variables. Scales were not

constructed or arbitrarily determined in isolation. Measurement, according to conjoint

measurement theory, is the assignment of numbers to empirical components, such that the

relationship between the numerical assignments adequately represents the relationship

between the empirical components. In this fashion, it stands in contrast with Stevens’

theory, which proscribed only permissible transformations for scale types, which

themselves could be selected in isolation by the researcher.

Partly because of the abstract nature of the theory’s presentation, demonstrations

of its utility have been few in number. Early uses of the theory include areas such as

animal behavior (Campbell & Masterson, 1969) and psychophysics (Levelt, Riemersma,

& Bunt, 1971). Recent recognition of the relationship between conjoint measurement and

use of the Rasch model in item response theory (Perline, Wright, & Wainer, 1979) has

generated some linkages between the two areas, specifically in the assessment of

interactions with classical vs. IRT ability estimates (Embretson, 1996).

The axioms of simultaneous conjoint measurement can perhaps be best

understood with an example. Consider a researcher investigating the combined effects of

ability and motivation on performance. In order for the conjoint measurement method to

be applied, it is assumed that the dependent measure (in this case, performance) is of

ordinal level. The determining factors (ability and motivation) are probably assumed
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ordinal by the researcher, but only need to be ofnominal level for conjoint measurement

to be used.

It is helpful to view this situation in terms of a matrix, similar to the data tables

presented earlier in the thesis. Ifwe let a1.. .ak denote different classifications (values) of

Ability, and m1...mIn represent different values of Motivation, then Performance at any

combination ofAbility and Motivation can be denoted by aomo. Thus, performance (P)

when ability (A) is at level i and motivation (M) is at levelj, can be represented by aimj,

which simply means that these levels of the variables combine in some way to result in a

certain level of P. Recall that we only assume ordinal properties on P, with both A and M

treated as nominal variables. This is shown graphically in Table 5.

Table 5.

Performance by Levels ofMotivation and Ability

 

M

LPLH QV—ell L931;

E111}. m1 81 111132 m1 a3

Motivation Lfll mzal mzaz m2a3

LCM 111331 111332 msaa
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Once the data are arranged in this manner, with each cell containing the mean or value of

performance at the appropriate levels, the researcher can begin testing the axioms of

conjoint measurement.

The most important axiom of conjoint measurement is double cancellation.

Essentially, the double cancellation axiom tests whether the order of certain P values

implies the ordering of other P values. The axiom is stated as follows (Krantz, Luce,

Suppes, & Tversky, 1971):

For any three values ofM, mo, mo, mo, and any three values ofA, ad, ao, a;,:

ifmoao 2 mood and moafz moao then moafZ mood.

The double cancellation axiom is essential to determining whether M and A have

an additive relationship with P, as it assumes one exists. To illustrate this, replace each

miaj term above with “m + a”. This is equivalent to stating that any given level of

performance is an additive function of ability and motivation. Note that we do not invoke

any concept ofweights on M and A, as they are still assumed to be of nominal level, and

we make no assumptions regarding their ordering. Replacing gives:

i (mo+ao2mo+a and mo+a 2mo+ao)then(mo+a 2mo+ad)
f f

Summing across the left side and subtracting common terms (denoted by strikeout text):

zf(mo+ao+mo+afl2 (mo+ad+mo+ao)then (mo+af2mo+ad),
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Thus, if there is an additive relationship between A and M in determining P, the

double cancellation axiom will hold true for all values of A, M, and P (i.e. miaj) in the

data set. Typically, the extent to which a data set satisfies the double cancellation axiom

is indicated by the percentage of independent axiom tests which support the double

cancellation axiom (Nickerson & McClelland, 1984). As this number would grow

exponentially with the number of categories ofA and M and number of levels in P, these

tests are usually done using computer algorithms.

A second axiom of conjoint measurement is the solvability axiom:

Given any three of: mo, mo, ad, ao, thefourth must exist such that moao = moao

This means that values for M and A must exist such that all feasible values ofP can be

generated. In terms of the data matrix illustrated above, this simply means that for any

combination of ability and motivation, there must be a level ofperformance, i.e. there are

no structurally empty cells in the data matrix. For this example (and for nearly all

psychological data), this axiom is trivial and usually assumed true. This axiom seems to

suggest that ability and motivational components need to be uncorrelated to use the

conjoint measurement methodology, but this isn’t necessarily the case. A sample

correlation between two predictors tells us nothing about which cells are impossible to

exist, but only which combinations of predictors are more likely to occur.
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There is another axiom of conjoint measurement, the Archimedian axiom.

Although methods have been devised to test it indirectly (Scott, 1964), it is generally

considered technical in nature, and usually not tested in finite data sets (Luce et a1, 1990).

Michell (1990) notes that if both solvability and double cancellation axioms are

established, two additional important properties ofM and A are also verified: order and

independence. Independent ordering implies the following statements:

Given m1, m2. m2 2 m) ifmza 2 m1afor any a in A.

Given a), a2. a2 2a1ifma2 2 malfor any m in M.

Or, Level 2 of motivation (m2) is greater than Level 1 of motivation (m) if, for

any ability level (a), individuals with motivation level 2 have higher performance (mzai)

than individuals with motivation level 1 (ma). This observation is identical to the notion

of equal ordering ofY on X across levels ofZ and Y on Z across levels ofX described in

the previous example data sets.

Since successfirl tests of the aforementioned axioms imply an ordering of P, M,

and A which create an additive equation P = M + A, it is sufficient evidence that

monotonic transformations exist which can eliminate any multiplicative component

present in the original data. The researcher can successfirlly construct scales of

performance, motivation, and ability, and, consistent with their theory, ability and

motivation will have to be compensatory in determining performance, i.e. a given change

in Motivation will result in a specific change in Performance, and be offset by a specific
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change in Ability. All these changes will be constant across all scale points, thus defining

interval scales for all three constructs.

Due to the nature of this study, the aforementioned axioms of simultaneous

conjoint measurement proved untestable in the generated data for several reasons which

will be described in more detail later in the thesis.

The MORALS Algorithm

The goal of the MORALS algorithm is similar to that of conjoint measurement, in

that an additive representation is sought. However, rather than verify conditions which

permit an additive representation, the MORALS algorithm attempts to generate actual

scales conforming to such a representation. The algorithm uses a least squares

convergent procedure, in which least squares estimations of regression weights are

alternatively performed on a matrix of transformation parameters and a matrix of

regression parameters. The least squares estimates for one matrix are used in the next

iteration for the other matrix, until a convergent solution is reached. Further

mathematical details on the procedure can be found in Appendix A. de Leeuw, Young, &

Takane (1976) and Young, de Leeuw, & Takane (1976) contain detailed conceptual and

procedural discussions of the MORALS algorithm.

Having now stated the rationale and reasoning behind the study, a formal research

design using statistical simulation methods Will be described.

49



Research Design

In order to assess the effect of measurement precision on estimation of interaction

effects, the statistical simulation will examine six factors. These factors are: 1)

Incremental R2 of the XZ product term; 2) Baseline R2 of the additive model prior to

adding an XZ term; 3) Intercorrelation between predictors X and Z; 4) Measurement

level of predictors and criterion, 5) quantitative/qualitative nature ofX and Z; 6)

Crossing or non-crossing nature of the interaction. Each is now specified in more detail.

Study Independent Variables

Incremental/Baseline R2_and Predictor Intercorrelation. The first two factors in

the design involve the strength of the interaction effect and the predictability of the

additive model prior to adding an interaction term. The strength of an interaction effect is

often indexed by the AR2 after addition of a product term. This study used incremental R2

values at three levels: .05, .15, and .25. The baseline R2 of the additive model was also

varied with three levels: .2, .4, .6. This resulted in a 3 x 3 crossing of factors, with

maximal and minimal R2 of .85 and .25, respectively, for an interactive model . The

correlation between predictors X and Z in the simulated datasets was varied at three

levels: .1, .3, and .5.

The levels for the preceding three factors were selected to create a wide coverage

ofpotential R2 values (.25 to .85), a range of additive R2 representative of those found in

psychological research, as well as a wide enough spread in intercorrelation levels to

detect small differences across level. Complete orthogonality (rx,Z = 0) was omitted due

to its potential qualitative difference from situations where intercorrelation was non-zero.
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Maasurement Level of Predictors and Criterion. Measurement level for predictors

and criterion was fixed at five possible levels, representing all possible combinations of

ordinal or interval continuous variables, and assuming the criterion is always continuous:

1) Non-Interval Y, Interval X, Interval Z; 2) Non-Interval Y, Non-Interval X, Interval Z;

3) Non-Interval Y, Non-Interval X, Non-Interval Z; 4) Interval Y, Non-Interval X,

Interval Z; and 5) Interval Y, Non-Interval X, Non-Interval Z.

The assignment of this independent variable determines which of the variables are

permitted to undergo monotone transformations. If a variable is Non-Interval, monotone

transformations are permitted. If a variable is Interval, no transformations are permitted.

It is important to note that the level of this independent variable does not change anything

about the variables themselves, but only what transformations are permitted to them. The

numerical values generated in the simulation have no inherent interval or non-interval

status. This is only determined when they are used in the scaling algorithm.

Note that this design factor could not be completely crossed with the qualitative /

quantitative nature of predictor variables, as monotone rescalings of binary X or Z

variables are impossible. Thus, when Z is binary, only levels 1,2, and 4 of this factor are

possible. When both X and Z are binary, only level 1 is possible. This will affect the

“sample” sizes in the cells associated with these combinations.

Quantitative and Qualitative Nature of Van'ables. The type of variables involved

was varied according to the three possible combinations ofpredictor variables:

Continuous X and Continuous Z, Continuous X and Binary Z, and Binary X and Binary

51



Z. Binary variables were defined as a 50% proportion in each qualitative category.

Continuous variables were “true” continuous numerical values with precision of eight

decimals.

Crossings. Non-crossing Interaction. The form of the interactive effects was

manipulated by fixing the crossing point for X-Y regression lines across levels of Z, and

the crossing point for Z-Y regression lines across levels of X. The formulas for these

crossing points are Xc = -bz/b,,Z and Zc = ~bx/bxz, respectively (Aiken & West, 1991).

Values for Xc and Zc were set at —2.00 for non-crossing interactions in the case when both

variables were continuous distributions with variances of 1.0 and means of zero.° In the

case ofbinary variables scored (-1, 1), crossing points for non-crossing interactions were

set at —l.1 for both X and Z. Crossing interactions were set to cross at the mean ofX

(0.0).

Study Dependent Vambles

The dependent measures in the study were selected to assess the effects of optimal

monotonic rescalings of the simulated data. The nature of these transformations depends

primarily on the factors outlined above. Two variables were examined: 1) the effect size

differences between interaction effects assessed in the pre-transformation data and those

assessed using the post-transformation data, after transformation by a MORALS

 

6 Since continuous variables were random standard normal distributions, the determination of a crossing

point outside a variable’s range was probabilistic. For this, and other reasons, non-crossing interactions

were excluded from later analyses.
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algorithm; 2) the Pearson correlation between pre-transformation and post-

transforrnation variables.

The effectiveness in reducing interaction effects in the above conditions will be

indexed by the difference in effect size between the post-transformation interaction effect

and the original effect size in the pre-transformed data (Afz). In both cases, the

appropriate calculation of effect size is:

2 2

r er-r Y.M

f2—
 

2

1"‘ Y.MI

In this formula, 1'2y_M1 refers to the squared multiple correlation of a model

including both additive effects ofX and/or Z, and the product term XZ. rZM is the squared

multiple correlation of a model including only the additive effects ofX and/or Z. As can

be seen, the overall effect size of the interaction depends on both components. As already

described, rZM and 1211/11 will be manipulated as experimental factors in this study. Since

each factor has 3 levels, 9 distinct f2 values will be present in the pre-transforrnation data.

The two values for the post-transformation data, rzM' and rzM'r, were evaluated by

conducting a moderated multiple regression analysis on the data. These values were then

used to calculate the transformed effect size, flz. Since the effect size of the moderation

was expected to be larger in the original data, the index (ftz- f2) was used as a standardized

indicator of attenuation.

The double cancellation axiom of conjoint measurement was to be examined

using a computerized testing procedure. All possible double cancellation tests were to be
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conducted, and the proportion that are true was to be used as an index of additive

representability. However, due to both the lack of predictors with three levels (for

qualitative predictors) and the sampled nature ofpredictors (for quantitative predictors),

the assumptions underlying the double cancellation tests of Simultaneous conjoint

measurement were not met in any ofthe design cells. The lack of testability of these

axioms does not necessarily translate into unimportance. The axioms do hold for additive

relationships between quantitative variables, and thus would be relevant to the

examination of such relationships in psychology. Although formal examination is not

possible in this study, it is probable that the manipulated independent variables would

have effects in situations which did not violate axiomatic assumptions.

Hypotheses

Main Effects ofBJaseline R2. Since 1 - R2 represents error in predicting the

additive model Y = X + Z, it was expected that decreases in this R2 would have effects on

the double cancellation axiom tests of conjoint measurement. Recall that conjoint

measurement assumes all component variables are measured without error. However, as

noted previously, this dependent variable was not assessed. In contrast with the axiom

tests, the MORALS algorithm has been shown by Young, de Leeuw, and Takane (1976)

to perform well, even when error is present. Also, when one examines the f" effect size

equation for moderating effects,

2 2

r rm — r Y.M
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it is apparent that effect size calculations are more sensitive to AR2 (RZYMI - RZYM) as the

R2 ofthe additive model (RZYM) increases, i.e., as the total R2 approaches 1.00. A given

AR2 is a stronger effect at a high baseline R2 as opposed to a low baseline R2. Thus, it is

expected that the MORALS algorithm will be more successful at attenuating interaction

effect sizes observed at low baseline R2, and, that such transformations will be less

severe.

H1: As the R2 ofthe additive model decreases, the proportion oftrue double

cancellation axioms will also decrease.

H2: As the R2 ofthe additive model decreases, the attenuation ofthe moderator

eflect size will increase.

H3: As the R2 ofthe additive model decreases, the transformed data will exhibit

lesser deviationfi'om the original variables, thus higherpre-post transformation

correlation coefficients.

_min Effects of ARZ. AR2 indexes the amount of additional variance predicted by

the XZ product term when it is added to the regression equation. The only main effect

predicted for this factor involves the correlation between pre— and post- transformation

variables. Regardless ofwhether the transformation attenuates or completely removes an

interaction, more severe transformations are expected to be required in order to affect

stronger multiplicative components.
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H4: As A122 increases, the transformed data will exhibit greater deviationfrom

the original variables, thus lowerpre-post transformation correlation coefficients.

Mn Effects of Predictor IntercorrelaLtion. Earlier in the thesis, it was suggested

that the rescaling of predictors may attenuate an interaction effect, depending on the

intercorrelation of the predictors. Recall the earlier discussion of Equations [15] and

[16], where it was shown that perfect (ru=1.0) correlation between predictors X and Z

resulted in a model identical to a quadratic model involving either predictor. In this

situation, monotone transformation can render the model completely additive. It is

predicted that similar effects will occur with intercorrelations less than 1.0. Specifically,

it is predicted that, as the correlation between predictors increases, the MORALS

algorithm will be more effective at attenuating or removing the interaction. In addition, it

is also expected that as predictor intercorrelations increase, the severity of transformation

attenuating an interaction effect will be reduced.

H5: As predictor intercorrelation increases, the attenuation ofthe moderator

effect size will increase.

Ho: As predictor intercorrelation increases, the size ofthe transformation

required to attenuate interaction effects will be smaller, and thus higherpre-post

transformation correlation coeflicients will be observed.

_hfirin Effects of Measurement Level. This factor reflects different levels of

uncertainty about predictor and criterion measures. This uncertainty gives the MORALS
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scaling algorithm more potential for rescaling, and, it is expected, a greater ability to

attenuate or remove moderating effects. It is expected that more variables presumed to be

non-interval (i.e., between ordinal and interval level) will reduce the severity of

transformation (necessary to attenuate the interaction) in any single variable, as the

additive model can be generated by changing more variables. In this sense, the

transformations necessary to attenuate a moderating effect are “spread” across multiple

variables, with each individual variable carrying less of the necessary transformations.

This factor is not relevant to the axiom tests of conjoint measurement, since the tests

assume a criterion measured at the ordinal level and predictors measured at the nominal

level.

H7: As the number ofvariables submitted to monotone transformation increases,

the effect size ofthe interaction will be attenuated to a greater extent.

H3: As the number ofvariables submitted to monotone transformation increases,

the transformed data will exhibit lesser deviationfrom the original variables, thus higher

pre-post transformation correlation coefficients.

Main Effects for Form of Interaction. As discussed and demonstrated in this

thesis, non-crossing interactions can be completely removed by criterion rescalings, and

crossing interactions can often be attenuated. It was also implied that predictor rescalings

can potentially attenuate any form of interaction. Given this, it is expected that the

attenuation of moderator effects will be greater for all non-crossing interactions. For
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crossing interactions, the attenuation can never be a complete removal, so the attenuation

will necessarily be lower.

H9: Non-crossing interactions will exhibit greater attenuation than crossing interactions.

Interaction Effects. In addition to the previously listed main effects, two

interaction effects are expected: Predictor Intercorrelation x Measurement Level, and

Measurement Level x Form of Interaction.

Predictor intercorrelation may have a greater effect when two predictors are

measured at the ordinal level rather than only one, as the potential effects of

intercorrelation on rescalings now applies to rescalings ofboth X and Z.

We also know that any non-crossing interaction can be removed by a criterion

rescaling, so it can be said with certainty that attenuation in ordinal criterion / non-

crossing interaction conditions will necessarily result in complete removal of interaction

effects. However, the same is not true for crossing interactions. These interactions can

be attenuated, but never removed. We have also demonstrated that predictor rescalings

can eliminate an interaction effect, but only in the trivial case ofperfect intercorrelation

between predictors. In the range of intercorrelation used in this study, and present in

most data, this will never happen. Predictor rescalings may, however, attenuate an

interaction effect at many levels of predictor intercorrelation. Thus, it is expected that the

main effect for form of interaction will be stronger for conditions with criterion rescalings

58



than for conditions with predictor rescalings, since criterion rescalings can completely

remove an interaction, but predictor rescalings can only, in most cases, attenuate them.

H10: As predictor intercorrelation increases, the attenuation ofthe moderator

effect size will increase to a greater extent with two predictors submitted to monotone

transformation than with one predictor submitted to monotone transformation.

H11: Diflerences in attenuation ofnon-crossing and crossing interactions will be

greater when the criterion is submitted to monotone transformation than when predictors

are submitted to monotone transformation.
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METHOD

The baseline and incremental R2 values, predictor intercorrelation, and qualitative

/ quantitative nature of variables were all manipulated during dataset generation. The

basic moderated multiple regression equation can be expressed as:

y=b0+blx+bzz+b3xz+bee, (17)

where Y is a continuous variable and X/Z are continuous or binary variables. The boe

term represents error variance uncorrelated with X, Z, or the X2 product term. b.3

controls the total R2 of the model assuming error distribution e has a mean of zero and

variance of one, and is uncorrelated with variables X, Z, or the product term XZ.

The R2 values for an additive model (Rzyoxz) and additive-multiplicative model

(Rzyoxzyz) can be calculated from the complete correlation matrix of {Y, X, Z, XZ} ,

based on the matrix determinant formulations of McNemar (1969):

 

1 rm r)

rM l r,[

R2 -1 r" r” 1 18A — - ( )
l rm

r¥.Z 1  
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2 _ ry.xz rX,.l’Z 2.17

R M _1— (19)

The correlations used in the above calculations are themselves functions of the

variance-covariance matrix of {Y, X, Z, XZ}. Under the assumption of bivariate

normality7 ofX and Z, and given knowledge of E(x), E(z), var(x), var(z), cov(x,z), b1, b2,

b3, and be, the remaining two variances and five covariances are derived as follows:

var(y) = h‘ var(c) + bf var(z) + 211le cov(c, z)

+ b,2[var(z)E(x)2 + var(c)E(z)2 + 2cov(c, z)E(x)E(z) + var(r) var(z) + cov(c, z)2] (20)

+ 2{b,b,(var(c)E(z) + E(x)cov(c, 2)) + b,b,(var(z)1~:(x) + E(z)cov(c, z))] + b,‘

var(xz) = var(z)E(x)2 + var(x)E(z)2 + 2cov(x,z)E(x)E(z)

(21)

+ var(x) var(z) + cov(x, z)2

cov(x, y) = bl var(x) + b, cov(x, z) + b, (E(z) var(x) + cov(x, z)E(x)) (22)

cov(z, y) = b, var(z) + b, cov(x, z) + b, (E(x) var(z) + cov(x, z)E(z)) (23)
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cov(xz, y) = b, [E(z) var(x) + cov(x, z)E(x)] + b, [E(x) var(z) + cov(x, z)E(z)] +

24

b3 [E(x)2 var(z) + 2E(x)E(z) cov(x, z) + E(z)2 var(x) + var(x) var(z) — cov(x, z)2] ( )

cov(x,xz) = var(x)E(z) + cov(x, z)E(x) (25)

cov(z,xz) = var(z)E(x) + cov(x, z)E(z) (26)

Calculation of correlations can proceed from these variances and covariances. These

correlations determine R2,, and RZAM as described above. Substitution of these

correlation formulas into the R2 determinant formulas presented earlier produces large

and unwieldy expressions. In order to facilitate use of these formulas in later analyses

and discussion, they were programmed using a Microsoft Excel spreadsheet. This

spreadsheet was created to generate solutions for b1, b2, b3, and be, given a desired RZA,

RZAM, E(x), E(z), var(x), var(z), and rm. Further constraining the crossing points on X

and Z axes by setting minimums and/or maximums could generate a crossing or non-

crossing interaction. Solving for b1, b2, b3, and be completely specified RZA, RZAM, and

the crossing points on X and Z. R2,, was set to .2, .4, or .6. RzAM was set to RZA plus .05,

.15, or .25. The qualitative vs. quantitative nature of predictors X and Z, and their

intercorrelation, are the remaining factors constrained in data generation, and are now

described in detail. .

 

7 Calculations will also hold, with slight modification of squared covariance terms, when X or Z is a binary

variable coded —l/1 with E(x)=E(z)=0 and var(x)=var(z)=l.
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Structure of Predictor Variables and Error Variafl

The study required the generation ofX and Z variables which had a given

intercorrelation (rm) and a given qualitative or quantitative nature (binary or continuous).

The intercorrelation ofX and Z was set to one of three levels: .1, .3, or .5 . The nature of

variables X and Z was set to one of three combinations: Continuous X — Continuous Z,

Continuous X — Binary Z, or Binary X — Binary Z. An error vector (E) was also

generated to be correlated zero with either predictor vector. The specific procedures for

generating observations in each of the above conditions are detailed below.

In the case of two continuous predictors, three vectors of standard normal deviates

(n=10,000) were generated and submitted to a principal components analysis (SAS

procedure PRINCOMP). The resulting orthogonal components (P1, P2) were used to

construct scores for predictors X and Z using the following equations:

Z=P.

. (27)

X = P,r,., + Pn/l — rx,’

where rm is the desired Pearson correlation between continuous predictors X and Z. This

resulted in an exact rm correlation, and an uncorrelated error vector based on the third

principal component (P3). All variables (X, Z, B) were standardized to means of 0 and

variances of 1. Product term XZ was constructed from the standardized scores. Note that

the intercorrelation between product term XZ and X, Z, or E, is theoretically zero, as X,

Z, and E are constructed to be bivariate normal, and with E(X) and E(Z) set to zero:
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cov(XZ, X) = var(X)E(Z) + cov(X,Z)E(X)

cov(XZ,X) = 0.
(28)

However, since the vectors are only sampled from a bivariate normal distribution, the

assumption will never perfectly hold in the observed vectors. Without the assumption:

cov(XZ, X) = EkAX)2 (AZ)J+ var(X)E(Z) + cov(X, Z)E(X)

cov(XZ, X) = E[(AX)2 (AZ)1

(29)

where AX=X-E(X) and AZ=Z-E(Z). Similar equations hold for cov(XZ,Z) and

cov(XZ,E). Although this issue proves to be somewhat of a limitation to generating

datasets with exact study parameters, the deviations from bivariate normality are likely

slight enough to have little effect on the final outcome of analyses.

In the case of one continuous predictor and one binary predictor, the desired

intercorrelation parameter is a point-biserial correlation between continuous vector X and

binary vector Z. The binary predictor (Z) was constructed to represent a qualitative

binary variable, and not simply a split of an underlying quantitative variable. Each

qualitative category ofZ had equivalent sample sizes. Thus, it was also assumed that X is

normally distributed in each of the qualitative categories. Note that this creates a

bimodality in the total distribution ofX across both categories of Z, the degree ofwhich

is dependent on the magnitude of rm.

Two vectors of standard normal deviates (n=10,000) were generated and

submitted to a principal components analysis (SAS procedure PRINCOMP). Each set of
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resulting orthogonal components (P1, P2) were used as uncorrelated vectors X and E —

one for each Z category. Error vector E was standardized to a mean of zero and variance

of 1 within each Z category, which created an rm of zero. The standardization ofX was

based on the desired intercorrelation between X and Z. Given the equation for the point

biserial correlation,

X — X ,——

rx,z : 2 l p1p2 (30)

which, in the case of p1=p2=.5, and for overall Sx=1 and X = 0 , reduces to

X, = X, = rm. The variances ofX within each category ofZ are determined using the

formula for the variance of a mixture of two distributions (X101), and solving for the

variance of components X1 and X2.

var(Xm)= var(X11p1+Var(X2)P2 +(A71 TX)2P1+(X—2 -)—(—)2p2

pi = p2 = '5;

var(Xm,) =1;

2, = —r,,, (31)

X2 = rx.z

var(X,)=var(X2)=1—rx22

Categories of variable Z were set to —1 and l to force a mean of zero and variance of one.

The X subset in subgroup Z=-1 was standardized to a mean of —r,,,Z and variance of (l-
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rmz). The X subset in subgroup Z=l was standardized to a mean of rx,z and variance of

(no.2).

An XZ product term was calculated based on X and Z. Due to 2’3 binary nature,

there were no bivariate normality issues, as in the previous case with two continuous

predictor variables. All intercorrelations between product term XZ, components X and Z,

and error vector E, are exactly zero.

In the case oftwo binary predictors, an exact phi coefficient was desired.

Marginal proportions for both predictors X and Z were .5, and the following proportions

generate the desired correlation:

p_,‘_1 = “25"” +.25

p1.1 = .25rm +25 (32)

p-.. = -5 - 171,1

1).... = -5 - p...

X and Z values are determined according to each (p*N, where N=10,000). Within each

cell, a normal deviate is generated for the error distribution. It is standardized to a mean

of zero and variance of one within each cell, forcing a zero correlation with X and Z. The

product term XZ was created based on X and Z values. As in the previous case, there are

no bivariate normality issues to consider. All intercorrelations between product term XZ,

predictors X and Z, and error vector E are exactly zero.

As noted earlier, the formulas for the X-axis and Z-axis crossing points are Xc = -

bZ/b3 and 2,, = -b1/b3, respectively (Aiken & West, 1991). Values for Xo and Zc were set

at —2.00 in the case when both variables were continuous distributions with variances of
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1.0 and means of zero. In the case of binary variables scored (-1, 1), crossing points were

set at —l .l. Crossing interactions were set to cross at the mean ofX (0.0). Xc and Zc

were set as constraints in solving for b1, b2, b3, and b3 in the Excel spreadsheet.

Because the Pearson, point biserial, and phi correlations described above are all

product-moment correlations, they can be used in the previous presented formulas to

obtain multiple regression parameters by means of determinant analysis. Using the b1, b2,

b3, and be values obtained from the Excel spreadsheet, criterion scores (Y) were

calculated for the generated X and Z distributions based on Equation [17]. These datasets

were then submitted to the MORALS algorithm for rescaling.

The manipulation ofmeasurement level for predictor and criterion variables was

accomplished in the MORALS algorithm itself. If a variable is ordinal (non-interval) in a

given condition, the MORALS algorithm was allowed to perform monotone

transformations to the variable. The algorithm was only allowed to perform identity

transformations (i.e., no transformation) to interval level variables. In terms of allowable

transformations within the MORALS algorithm, the five possible measurement level

combinations become: 1) Monotone Y; 2) Monotone Y, X; 3) Monotone Y, X, Z; 4)

Monotone X; 5) Monotone X, Z.

Dataset Generation

The above design factors required the generation of 162 data sets - 3 (R2A=.2, .4,

.6) x 3 (AR2=.05, .15, .25) x 3 (rm = .1, .3, .5) x 3 (2 continuous predictors, 2 binary

predictors, 1 of each) x 2 (crossing vs. non-crossing interaction). It was discovered

during data generation that some of the factor combinations in specific design cells were
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mathematically impossible to create. It was impossible to create a non-crossing

interaction between two continuous predictors at additive R2 levels of .2 and .4, and, even

then, datasets could only be generated for an incremental R2 of .05. Similar problems

were found in the case oftwo binary predictors and the case with one of each type, with

slightly more conditions being possible in these situations. The end result is 63 of the

162 cells being impossible, leaving 99 cells for analysis. Within each of these design

cells, up to five levels of the measurement level design factor can be fixed, limited by the

potential qualitative nature of predictors described earlier.

For each of these cells, a single 10,000 observation dataset of variables Y, X, and

Z was generated per the above descriptions. This sample size was chosen due to the

behavior of the MORALS algorithm at smaller sample sizes. Pilot tests conducted by the

author showed that, across several sample sizes of 300, the MORALS algorithm

converged to additive R2 values varying in a roughly .07 range within the same design

cell. When the sample size was increased to 10,000, the fluctuations only had a range of

.01. Larger sample sizes, such as 50,000, resulted in minimal gains of convergence

stability at the expense of exponential increases in processing time, primarily as the

number of non-interval variables increased.
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RESULTS

Hypothesis 1

Hypothesis I predicted that increasing values of additive R2 would result in larger

proportions of true double cancellation axiom tests. This hypothesis could not be

formally tested due to the nature of the generated data and the assumptions of the double

cancellation axiom. Double cancellation tests assume levels of predictors are fixed. This

assumption is violated in design conditions with continuous random predictors. Double

cancellation tests also assume at least three levels of a fixed predictor. The situations

examined in this study only involved fixed predictors with two levels. Thus, all

conditions violated double cancellation assumptions in some manner.

Hypothesis 2

Hypothesis 2 predicted that moderator effect sizes would be attenuated to a greater

degree at lower levels of additive R2. Degree of attenuation is indexed by Afz, the f2

effect size statistic of the post-transformation dataset minus that of the pre-transformation

dataset. Negative values indicate an interaction effect is being attenuated. Mean Afz,

design cell frequencies, and standard deviations for the five measurement level

combinations, collapsed across all levels ofpredictor intercorrelation and types of

predictor, are shown in Table 6.

The pattern of attenuation is opposite that predicted by Hypothesis 2. Across all

combinations ofmonotone transformation of variables, optimal transformations resulted

in greater attentuation at higher levels of additive R2. The greatest mean attenuation (-

.743) occurred when monotone transformations were permitted to predictors X and Z, and
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the additive R2 was 0.6. The lowest mean attenuation (.013, actually a slight

enhancement of interaction effects) occurred when monotone transformations were only

permitted of the criterion Y, at an additive R2 of 0.2.

Hypothesis 3

Hypothesis 3 predicted that the attenuations of interaction effects presented for

Hypothesis 2 would be achieved with less severe monotone transformations at lower

levels of additive R2. Mean correlation coefficients, design cell frequencies, and standard

deviations for the five measurement level combinations, collapsed across all levels of

predictor intercorrelation and types ofpredictor, are shown in Table 7. The obtained

pattern is opposite that predicted by Hypothesis 3. The severity ofmonotone

transformations attenuating interaction effects generally decreased as additive R2

increased. There also appears to be a pattern related to the number of variables for which

monotone transformation was permitted. As the number ofnon-interval variables

increased (from 1 to 3), average severity of individual transformations was greater.

Despite the fact that results for Hypothesis 2 and 3 were opposite that predicted,

the observed patterns are internally consistent, i.e., greater attenuation of interaction

effects was achieved with less severe monotone transformations.
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Hypothesis 4

Hypothesis 4 predicted that in order to attenuate interaction effects, variables

would undergo transformations of greater severity at higher levels of ARZ.

Transformations of greater severity are indicated by lower correlations between pre- and

post-transformed variables. Table 8 Shows mean pre-post transformation correlations

broken down by AR2 and combinations ofmeasurement level.

As can be seen in Table 8, the pattern ofmean correlation across levels of

incremental R2 is different for variables Y, X, and Z, depending on which ofY, X, and Z

are subject to monotone transformations. Predictor X demonstrates generally decreasing

correlations with larger incremental R2 values, regardless ofwhich other variables are

transformed. Criterion Y and predictor Z Show no such consistent pattern.

Although no specific hypotheses were made regarding degree of attenuation at

different levels of incremental R2, the pattern of results are worthy ofpresentation. Mean

Af‘, design cell frequencies, and standard deviations for the five measurement level

combinations, collapsed across all levels of predictor intercorrelation and types of

predictor, are shown in Table 9. It can be seen that overall, larger pre—transformation

interaction effects were attenuated to a greater extent. Further discussion of this finding

will be presented in a later section.

Hypothesis 5

Hypothesis 5 predicted that higher levels of intercorrelation in the pre-

transforrnation predictors would be associated with greater attenuation of interaction

effects. Mean Af", design cell frequencies, and standard deviations for the five
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measurement level combinations at each level of predictor intercorrelation, collapsed

across all levels of RZA, ARZ, and types of predictor, are shown in Table 10. Table 10

illustrates a pattern generally consistent with Hypothesis 5. Across all combinations of

measurement level, higher correlations between predictors X and Z resulted in greater

attenuation of interaction effects. However, the patterns within each category of

measurement level are worthy of further discussion. As they directly relate to Hypothesis

10, these issues will be discussed in more detail later in the thesis.

Hypothesis 6

Hypothesis 6 predicted that the greater attenuations at higher levels of predictor

intercorrelation (presented in Table 10) would be achieved with less severe monotone

transformations. Table 11 shows mean correlations between pre-transformation and post-

transforrnation variables at each level of pre-transformation predictor intercorrelation and

measurement level combinations, collapsed across all levels of R2,, and ARZ.

Overall, there is no clear pattern relating the severity of transformation and

predictor intercorrelation, although the pattern for any given variable appears to depend

on which other variables are also submitted to monotone transformation. For instance,

pre-post correlations for criterion Y decrease with increasing predictor intercorrelation

when it is the only variable submitted to monotone transformation, and when both

predictors X and Z are additionally submitted to monotone transformation. When only

predictor X is also submitted, pre-post correlations for criterion Y increase with predictor

intercorrelation. Predictor X shows a consistent decrease in pre-post correlations as

predictor intercorrelation increases, except in the case where criterion Y is also submitted
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to transformation, where no trend is apparent. Predictor Z shows a generally increasing

pre-post transformation correlation when only predictor X is also transformed, but no

consistent pattern when criterion Y is also transformed.

Hypothesis 7

Hypothesis 7 predicted that the extent of interaction attenuation would vary as a

firnction of the number of variables submitted to monotone transformation. Specifically,

it was predicted that greater degrees of attenuation would occur when more variables

underwent transformation. The average Af” for each category of variable transformation

can be found in Table 6. Two results are apparent from examining these means.

First, there is not a simple relationship between the number of variables

undergoing monotone tranformation and the degree of interaction attenuation. The

average attenuation for a one-variable-transformed situation (monotone Y or monotone

X) is -.1375. The average attenuation for a two-variable-transformed case (monotone

Y,X and monotone X,Z) is -.325 5. The attenuation for the three-variable-transformed

case (only monotone Y,X,Z) is -.307.

Second, it can be seen that the incremental attenuation resulting from monotone

transformation of any single variable depends on which variable is considered.

Specifically, monotone transformations ofpredictors X or Z attenuate interaction effects

more than transformations to criterion Y. Table 12 lists the incremental attenuation

(AAf’Z) for each variable, which is defined as the difference between the Af2 when the

variable wasn’t subject to monotone transformation and the Af“ after it was subject to

such transformation. Table 12 shows that the average incremental attenuation of adding
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predictors X or Z (~. 1 745 and -.155, respectively) was greater than that of adding criterion

Y (+007).

Hypothesis 8

Hypothesis 8 predicted that any given variable would be transformed less

violently when the number of variables being transformed was higher. The relevant mean

pre-post transformation correlations can be found in Table 7. Results suggest a pattern

opposite that predicted. The highest mean correlation occurred when only one variable

was transformed (.971 and .961 for Monotone Y and Monotone X, respectively). The

lowest mean occurred in the case when all three variables underwent monotone

transformation (.666).

Hypothesis 9

Hypothesis 9 predicted that non-crossing interactions would be attenuated to a

greater extent than crossing interactions. This hypothesis, however, cannot be adequately

evaluated, given the mathematical impossibility of several cells in the study design. This

is apparent from examining Table 13, which contains mean attenuation, standard

deviations, and cell frequencies for crossing and non-crossing interactions, collapsed

across all other design factors. It would appear that crossing interactions were generally

subject to greater amounts of attenuation than non-crossing interactions, contradictory to

the prediction of Hypothesis 9, and much of the literature cited earlier in the thesis. There

are several potential explanations for these results, some ofwhich have important
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theoretical implications for the mathematics underlying interaction effects. These issues

will be discussed in greater detail in a later section.

Hypothesis 10

Hypothesis 10 predicted an interaction between predictor intercorrelation and the

number of variables submitted to monotone transformation, in determining the

attenuation of the interaction. Specifically, it was predicted that the difference in

attenuation between using two non-interval predictors (monotone X and Z) and using one

non-interval predictor (monotone X) would increase as the intercorrelation between pre—

transfonnation X and Z increased. Table 10 gives At‘2 for Monotone X and Monotone

X,Z categories at all levels of rm. Subtraction yields AAfZ values of -.360, -.212, and -

.109, for rm of . l , .3, and .5 , respectively. The pattern is opposite that predicted by

Hypothesis 10.

Hypothesis 11

Hypothesis 11 predicted an interaction between the non-crossing / crossing

nature of an interaction and the measurement status of predictor and criterion variables in

determining the degree of attenuated effect. It was predicted that differences in

attenuation between non-crossing and crossing interactions would be greater when the

criterion is subject to monotone transformation than when a predictor is subject to

monotone transformation. The relevant summary information for this hypothesis is found

in Table 13, in the columns for Monotone Y and Monotone X. Subtraction yields a AAf2

of -.257 for Monotone Y, and a AAf2 for -.156 for Monotone X. Although this pattern is
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consistent with Hypothesis 11, it should not necessarily be considered empirical support

for the hypothesis, given the previously mentioned problems generating certain cells for

non-crossing interactions.
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DISCUSSION

The general goal of the study was to examine the relationships between the

attenuation of interaction effects, the severity of monotonic transformations required by

such attenuations, and a variety of factors commonly associated with moderated multiple

regression analysis. Discussion of these relationships will be organized in two sections.

The first section summarizes the results of each design factor, and offers potential

explanation of observed results. The second section provides a general discussion on the

impact of these results for the future study of interaction effects in psychology.

Effects ofBaseline R2

Effects were predicted for the baseline additive R2 in determining both the extent

of, and severity of transformations required by, attenuation of interaction effects. The

obtained results were opposite that predicted. Interaction effects were attenuated to a

greater extent at higher levels of additive R2, and with less severe transformation. The

reason for this inverted pattern of results is unclear, but may be related to the amount of

error variance present in the criterion (Y). At higher levels of additive R2, the ordering on

Y is constrained to a greater degree by predictors X and Z than by random error. In a

situation where additive R2 is very low, most of the predicted variance is carried by the

XZ product term. Since the ordering on Y is minimally constrained by the ordering ofX

and Z (separate from their product term), transformations to X or Z will minimally

increase the additive R2. Thus, interactions in situations where additive R2 is low (.2) are

more difficult to attenuate (mean Afi=—.074) than those at high (.6) additive R2 (mean
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Af2=—.487). The facility 'with which interactions were removed or attenuated in the simple

examples presented earlier in this document is easily understood when one recalls that the

examples all had total R2 values in the high .90’S.

In the process of optimizing total R2, the MORALS algorithm was, in part,

optimizing the fit to error variance in Y. By definition, the minimum pre-post

transformation correlation will be obtained when a variable is monotonically transformed

to maximize its Pearson correlation with uncorrelated random error. At lower levels of

additive R2, the overall pre-post transformation was thereby suppressed. Consider the

differences between an additive R2 of .2 and .6. The average pre-post transformation

correlation at R2A=.2 is .691, compared to the .814 at R2A=.6. Comparing these values for

individual columns in Table 7 indicates the largest difference occurred when Y, X, and Z

were all subject to monotonic transformation (Y: .573 -—> .895, X: .531 —) .849, Z: .410

—> .651). Supporting this reasoning is the fact that the highest average pre-post

transformation correlation across all levels of additive R2 (.971) was obtained when only

Y was subject to monotonic transformation.

Effects of Incremental R2

It was predicted that the attenuation of interaction effects would require more

severe transformation of variables at higher levels of incremental R2. This prediction

received general support in the case ofpredictor X, which displayed the predicted pattern

of decreasing pre-post transformation correlations as incremental R2 increased, regardless

ofwhich other variables were permitted monotone transformation. This can be seen by

examining the pre—post transformation correlations for predictor X (rm) in Table 8. The
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correlations for predictor Z (rm) displayed no consistent ordinal relationship with

incremental R2, with an order inversion when Z was transformed along with X and Y

(.509 —> .561 -—) .540, as AR2 goes from .05 to .15). Transformations to criterion Y were

generally consistent with the predicted ordering, except in the case when all three

variables were permitted monotone transformation (Monotone Y,X,Z), which it displayed

an order inversion (.811 —-> .715 —> .734, as AR2 goes from .05 to .15). These results

suggest a more complex relationship between the severity of transformation required to

attenuate an interaction, and the number of variables undergoing such transformation.

The exact nature of this relationship can likely be understood via a careful examination of

the underlying mathematics, which is beyond the scope of the current study. It is also

possible that the differing behavior ofpredictor Z may be due to its being a qualitative

binary variable in 2/3 of the design cells, whereas predictor X was a quantitative

continuous variable in 2/3 of the cells.

Although no effects were predicted relating the degree of attenuation and original

interaction effects size, it was discovered that greater attenuation occurred with larger

effect sizes. Table 9 shows an average M“ of -.035 at AR2 of .05, and an average Af2 of -

.534 at AR2 of .25. On one hand, this finding may be tautological, i.e., interactions with

small effect sizes cannot be attenuated to a large extent. This result may also have a

similar explanation as did the effects ofbaseline R2. Across all levels ofbaseline R2,

larger values of incremental R2 implies a larger total R2, which implies less error variance

in Y. If error variance in Y were a factor working against the attenuation of interaction

effects, one would see greater attenuation at higher levels of both baseline R2 and

incremental R2, which is consistent with study results.
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Effects of Predictor Intercorrelation

The study predicted effects for predictor intercorrelation in determining both the

extent of, and severity of transformations required by, attenuation of interaction effects.

Results shown in Table 10 generally supported the prediction that greater attenuation of

interaction effects would occur at higher levels of intercorrelation. The only exception to

this pattern occurred when only criterion Y was subject to monotone transformation, in

which case increases in predictor intercorrelation slightly decreased attenuation of the

interaction (—.085 —) -.077 -—> -.063, as rx,1 goes from .1 to .5). Given that the predicted

pattern occurred in other conditions in which Y was transformed (Monotone Y,X,Z and

Monotone Y,X), it is possible that the effects of predictor transformation in these

conditions compensated for the slight opposite effect of criterion transformation.

The explanation of these results is straightforward, and consistent with the

theoretical reasoning presented earlier in the thesis. As rm increases, the product term

XZ behaves more like a quadratic function of either predictor. As discussed earlier, in the

extreme case of perfect redundancy (rx,z = 1.0), the moderated regression formula reduces

to a quadratic function of X, and any interaction between X and Z is completely removed

by monotone transformation.

The pattern ofpre-post transformation correlations presented in Table 11 is not

entirely consistent with the patterns of attenuation in Table 10. In a few cases, increasing

mean attenuation in Table 10 occurs with decreasing average pre-post correlation in

Table 11. For example, the Monotone Y,X,Z case shows increases in attenuation as rx,Z

increases (-.213 —) -.286 —> -.421), yet both the Y and X pre-post correlation decreases
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(.788 —) .702 and .782 —> .622). The same pattern occurs, though less dramatically, in

the Monotone X case, where mean attenuation increases (-.053 —) -.210 —> -.337) as

mean pre-post correlation decreases (.992 —) .929). As noted earlier, the pattern for any

given variable depends on which other variables also underwent monotone

transformation. There are no theoretical reasons for expecting this pattern, and its cause

remains uncertain.

Effecg. ofMemment Properties of Va_ri_a_b_le_s

It was predicted that the extent of interaction attenuation would be higher when a

greater number of variables underwent monotonic transformation. This generally proved

to be true, as shown in Table 6, except for the case ofmonotonic transformations to

predictors X and Z, which served to attenuate interaction effects (mean Af"=—.427) to a

greater degree than monotonic transformations to Y, X, and Z (mean Af2=-.307). The

reasons for this inversion are not clear, but it may be related to the interaction-enhancing

effects ofmonotonic transformations to criterion Y. Table 12 illustrates that across all

situations, the addition ofmonotonic transformation to Y had minimal effect on

interaction attenuation, and, in fact, slightly enhanced the effects (+.007). The addition of

transformation to predictors X and Z had similar, and much greater, effects on attenuation

(-.175 and -.155, respectively). These large differences in average attenuation between

predictors and criteria may be due to the fact that all interactions evaluated in the study

were crossing interactions. As noted in earlier discussions, crossing interactions cannot

be removed by monotonic transformation to the criterion, but can be attenuated by such

transformation of predictors.
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Crossings. Non-Crossing Interactions

As noted earlier, the incompatibility of the selected study parameters and

generation ofnon-crossing interactions precluded an adequate examination of this issue.

However, the difficulty in generating non-crossing interactions at particular levels of

baseline R2 and incremental R2 is itself an important issue. It has been lamented that the

non-crossing interactions involving continuous variables typically predicted in field

settings have been notoriously difficult to find (McClelland & Judd, 1993). The difficulty

in finding these interactions may be due to their mathematical impossibility. In

attempting to generate these interactions for this study, it was found that non-crossing

interactions were more feasible (i.e., crossing points farther away from variable means)

when the additive R2 was high and the incremental R2 was low. It was also possible to

generate greater numbers of non-crossing interactions for binary-continuous and binary-

binary predictor pairings than for continuous-continuous predictor pairings. This

suggests that even if non-crossing interactions exist for the empirical constructs under

study, it may not even be mathematically possible to discover them until a reduction of

error variance in predicting the criterion can be established. It also suggests that the

effect size of an interaction and statistical evidence of it may be related in a complex

manner with the qualitative vs. quantitative nature of the predictors.

Deggn Interacfition Effects

The results from Table 10 cited earlier suggested that the difference in attenuation

between using two non-interval predictors and using one non-interval predictor decreases
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as the intercorrelation between pre-transformation X and Z increases. This result may

have a simple explanation analogous to the effect of adding predictors in regression

equations. Given a constant rm, adding Z to a Y-X regression model will result in larger

increases in R2 when rx,z is lower. As rx,Z increases, X and Z have more common

variance, and the addition of one to the other results in less unique variance predicting Y.

The attenuation of interaction effects via monotonic transformation may work in a similar

manner. IfX and Z are highly correlated, monotone transformation ofZ will add less

incremental attenuation over the transformation ofX alone. Just as X and Z share

predictability ofY via their correlation in the regression situation, they may share the

potential for attenuation in the transformation situation.

The interaction effects for non-crossing and crossing interactions will not be

discussed, as the generated data did not support an adequate means of comparison.

Measurement, Interaction Effects, and Psychology

This study examined the effects ofmeasurement imprecision on the interpretation

of statistical results in one particular methodology - moderated multiple regression. The

Simple examples presented earlier in the document suggested dire consequences of

measurement imprecision on the interpretation of interaction effects in MMR. Interaction

effects were severely attenuated and completely removed based on innocuous changes to

the predictor and criterion variables. Although the results of the actual study suggest that

these effects aren’t nearly as clear-cut when realistic data are considered at realistic levels

of predictability (R2), there are real and dramatic effects ofmeasurement imprecision.
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Consider the effect ofmonotone transformation to predictor X, observed in Table

6. Average reductions in interaction effect size of .104, .153, and .344, were obtained

with average pre-post transformation correlations of .942, .965, and .977. This, to me,

remains a striking finding. The correlations between the original data and the

transformed data (representing a lack ofmeasurement precision) are higher than those

seen in virtually any reliability situation, and are representative of very slight changes in

the original scales. Two researchers studying the same interaction could obtain extremely

high correlations between their separate predictor measures of the same construct, and yet

arrive at very different estimates of interaction effect size. Extend this situation to several

researchers studying the same interaction, and you arrive at the situation commonly

lamented in psychology - that interaction effects are difficult to detect and unreliable.

The nature of this difficulty may be rooted in the measurement precision of predictors,

and to a lesser extent, criterion variables.

Even considering the findings, several factors may have contributed to an

underestimation of attenuation effect in this study. First, the continuous variables used in

this study were assumed to be quantitative variables with infinite resolution, i.e., any

difference represented an actual empirical difference. Thus, the number of realizable

states was extremely large.8 In real psychological data, this is rarely the case. Typically,

what psychologists consider “continuous” variables are Likert scale items or composites

of such items. Rarely do such single scales exceed 7 realizable states, and the composites

almost never attain over 100 states. The implications of this difference for interpreting

 

8 This fact would have made the axiom tests of conjoint measurement (if they were not excluded on

theoretical grounds) an extremely computer-intensive process, as 100,000,000 (for n=10,000) paired

comparisons would be needed for each cell.
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the results of this study are unclear, and firture research needs to examine this issue. It

would seem, at first blush, that even if the deleterious effects of transformation on

interaction effects can be shown to be less severe with Likert-type items, the question of

empirical representability can still be raised. That is to ask, does the limited number of

realizable states in a Likert scale adequately represent realizable states in the attribute

under study? The question can perhaps best be answered by further progress in both

measurement theory and substantive psychological theory on qualitative vs. quantitative

judgment.

Second, the primary set of study results were the result of analyzing only crossing

interactions. It is known on theoretical grounds that these interactions are less susceptible

to attenuation than non-crossing interactions, so overall effects of transformation across

all design cells may be underestimates. Further study ofthe issue at levels of study

parameters where non-crossing and crossing interactions can be examined in a fully-

crossed design will shed light on this aspect of the problem.

Third, the MORALS algorithm used in this study only optimizes additive fit to

data, and does not minimize severity of transformation to do so. Thus, many ofthe pre-

post transformation correlations presented in this study may not be maximum, and may

over-estimate the severity of transformation necessary to attenuate an interaction. There

is no immediate solution to this problem, as such additional optimization criteria would

somehow have to be integrated into the MORALS algorithm.9

Despite the dramatic findings described above, several of the results were in direct

opposition to proposed hypotheses. As discussed earlier, much of this may involve the

 

9 Based on discussion with the developer of the MORALS implementation in the SAS package, this

93



unclear role of error variance. In general, the message emerging from this study may be

that the less we know about our criterion (in terms of overall R2), the more we are able to

interpret observed interaction effects (due to our decreased ability to attenuate them via

transformation). To this author, this seems an odd conclusion, despite its consistency

with study findings. It would seem that the advocates of Stevens’ theory, who would

make interval assumptions of their measurement systems, and interpret interaction effects

without scaling concerns, and those in Michell’s “purist” camp, who might claim additive

models more parsimonious, and perform rescalings rather than interpret multiplicative

effects, in the end are fighting against the same enemy - error variance.

For the purposes of this study, error variance in Y was simply uncorrelated

variance added after the effects of X, Z, and X2 were calculated. In real situations, this

error variance may be due to simple unpredictability of Y, unreliability in Y, or even

unreliability in predictors X or Z. The effects ofpredictor unreliability on detecting

interaction effects are well known (Dunlap & Kemery, 1988), but the role of

measurement error in the context ofmeasurement theory are only beginning to be

examined (Fahnagne 1979).

The role of error variance in Y also implies a larger paradox. As theoretical

models in psychology become more complex, and better at predicting human behavior,

the confidence we place in the interactive effects present in such models decreases, as

monotonic transformation is more able to attenuate interactions at higher R2 levels. The

ultimate solution lies in the simultaneous development ofboth psychological theory and

 

additional optimization criterion is currently irrrpossible to implement.
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psychological measurement, so that advances in understanding the relationships between

psychological phenomena are accompanied by the requisite advances in measuring them.

Practical Implications of the Study

Although the discussions above highlight the potential complex nature of several

obtained results, an overall examination of the effects of each study design can provide

cautions for everyday psychological research. Table 14 lists the overall extent of

attenuation of crossing interaction effects at all levels of study design factors. As can be

gleaned from the table, the greatest problem estimating interaction effects would occur in

a situation with high additive R2, a large observed interaction effect, high predictor

intercorrelation, and two continuous non-interval predictors. Conversely, the least

problem occurs at low levels of additive R2, a small observed interaction effect, low

predictor intercorrelation”, a non-interval criterion‘ ‘, and two binary predictors.

This pattern of results points to a clear role of measurement imprecision in

explaining the difference in detecting interactions in experimental settings and field

settings. The optimal situation of orthogonal qualitative predictors virtually defines the

experimental design, where stimulus control allows the random assignment of

observations to factors in crossed designs to force orthogonality. The measurement status

of experimental stimuli are not at issue, as they are, by definition, controlled stimuli. In

the case of a binary predictor, the experimenter is simply controlling a single qualitative

difference.

 

1° Although orthogonal predictors weren’t included in the study, we can presume it to be the optimal

situation

” Optimal within the context ofsome measurement imprecision. Ideally, all variables would be interval.
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Table 14. Mean Af2 Values for Study Design Factors

 

DESIGN FACTOR MEAN Af"

Additive R2

.2 -.074

.4 -.179

.6 -.487

Incrememl R2

.05 -.035

.15 -.l71

25 -.534

X-Z Intercorrelation

.l -.l92

. -.245

.5 -.303

Measurement Stags of Vagrbles

Non-Interval Y -.075

Non-Interval Y,X -.224

Non-Interval Y,X,Z -.307

Non-Interval X -.200

Non-Interval X,Z -.427

Qualitative/Quantitative Nature of Variables

Continuous X and Z -.221

Continuous X, Binary Z -.189

Binary X, Binary Z -.l33
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In contrast, a field study does not have the luxury of experimental control, and

therefore, in most cases, cannot force orthogonality ofpredictors or control the levels of

predictors. These are typically observed values which naturally occur in the field setting.

While the experimentalists need only fear the effects of non-interval measurement in their

dependent measures, the field researchers must also concern themselves with scaling

issues in random, continuous predictors.

This thesis has also examined the issue of measurement imprecision by assessing

reductions in interaction effect size. An alternative approach would have been to

examine changes in decisions made on statistical grounds. That is, the impact of i

 measurement precision would not be problematic if only effect sizes were reduced, but if :

these reductions in effect size also resulted in statistical non-significance of the

interaction effect. Although effect size is theoretically independent of any given

statistical test, the decisions resulting from inferential methods are based on finite, often

small, samples. This consideration invariably raises the issue of statistical power.

Several factors related to statistical power and moderated multiple regression were

discussed earlier in the thesis, but kept distinct from the focus on measurement properties

of data. Extending the argument that statistical decisions be the criterion against which

measurement imprecision is judged would suggest that the measurement properties of an

instrument become more important as sample sizes increase, thereby making any given

change in R2 more statistically Significant. This logic is problematic, as the measurement

properties are inherent in the instrument, and the identical instrument is used whether a

sample size is large or small. Whether a given change in R2 is statistically significant or

not can be solely a function of sample size and unimportant in evaluating the precision of
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the measurement instrument involved. The magnitude of the change in effect size is the

only relevant consideration. Regardless of its effect on statistical decision-making,

measurement imprecision may still have effects on the underlying moderator effect size.

Although this study has examined how measurement imprecision may cause

researchers to interpret non-existent interaction effects, it is important to note that the

converse is also true, i.e., measurement imprecision may also contribute to problems in

not finding interaction effects which are empirically present. An effect size observed

when using non—interval scales may actually be an underestimate of the actual effect size,

and in situations where this underestimate is great enough to result in statistical non-

significance of a moderator effect, the researcher has missed a potentially important

scientific finding. In this thesis, the choice was made to focus on the reduction of

observed moderating effects, based on the scientific principle ofparsimony. Typically,

when an additive and additive-multiplicative model have equal statistical viability,

scientists choose the simpler, additive model. The focus on removal or attenuation of

interaction effects was also designed to critically address the interpretation of interactions

with extremely small effect sizes. The difficulties associated with finding interaction

effects in applied psychology may contribute to their rarity, but in no way increase the

scientific value of the interactions we do find. Rather, both the observation and non-

observation of moderator effects should be evaluated from a measurement framework.

Once we establish a certain level ofprecision in our measurement, we may better

understand which of our observed interaction effects are “real”. If weak measurement is

also contributing to applied psychologists not finding significant moderator effects, then

increasing the quality and precision of measurement can only improve the situation.
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APPENDIX A: MORALS Algorithm

The MORALS algorithm maximizes the canonical correlation coefficient between

two sets of variables, X and Y, by transforming the variables according to specified

constraints. The Specification of the model follows below. More detail can be found in

Young, de Leeuw, & Takane (1976).

1. Let X be a matrix of k observations of n variables.

Let Y be a matrix ofk observations ofm variables.

2. Each xi and yj assumed to be measured at a specified measurement level (nominal,

ordinal, interval, ratio).

3. Two parameter vectors, a and B are defined to have n and m elements,

respectively.

4. Two matrices, X* and Y*, are defined to have the same dimensions as X and Y.

5. The columns of the X* and Y* matrices, xi* and yj*, have two properties. 1)

They are defined at the interval level ofmeasurement. 2) They are related to the

corresponding columns in X and Y, X. and yj, by transformations permissible of the

specific variable. So:

Xi* = 31 (Xi)

it" = 31 (y,-)

6. 3i and Sj above represent measurement transformations of observed variables X

and Y.
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The goal of the algorithm is to find transformations 3. and 31- and regression

weights or and B, so the canonical correlation between X* and Y* is maximized. This is

equivalent to minimizing the sum of squared differences between composite variables a

and b, defined as:

a = X*or

b = Y*B

subject to minimization criteria: A2 = (a - b)’ (a - b)

7. The minimization is constrained by allowable forms of the 3 functions. These

depend on the level ofmeasurement of the variable in question and the processes by

which the distributions are generated. The constraints on 3 fall into three types: order (3

°), linear (3'), and polynomial (3"):

3°: (xai < xb.) -> (Xai* S xbi*)

3]: Xai* = 50 + 5lxai
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