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ABSTRACT

ON CERTAIN PUSHING-UP PROBLEMS RELATED TO
VERTEX TRANSITIVE GRAPHS

By

Matthias Rassy

Let M be a maximal subgroup of a finite group G such that no nontrivial characteristic
subgroup of M is normal in G. We will consider the problem of determining the
structure of G, in particular its action on the largest normal subgroup R of G that
is contained in M. This is related to a problem about graphs with vertex transitive
automorphism groups that has been considered by V.I. Trovimov and R.M. Weiss.

The problem under consideration is similar to the ‘classical’ pushing-up problem,
where the assumption that M is maximal in G is replaced by the assumption that
M is a p-subgroup for some prime p. Using the amalgam method, which has also
been used to solve classical pushing-up problems, we will solve this problem under
some additional assumptions, mainly that the components of G/R are perfect but

not isomorphic to PSL,(¢) (n € IN, ¢ a power of a prime).
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Introduction

By a pushing-up problem we mean the following: Given a finite group G and a
subgroup M of G such that no nontrivial characteristic subgroup of M is normal in
G, determine the action of G on R := N,¢c MY, the largest normal subgroup of G
that is contained in M. Let us explain why this is called a ‘pushing-up’ problem.
The classical pushing-up situation is as follows. Given a p-local subgroup G of a
finite group X and a p-subgroup M of G with O,(G) < M where p is a prime,
does Nx(M) € G imply that G is not a maximal p-local subgroup of X? (Le.
can G be ‘pushed up’ to a larger p-local subgroup?) Note that if C is a nontrivial
characteristic subgroup of M that is normal in G, then G is properly contained in
the p-local subgroup Nx(C) of X. The usual way to treat this pushing-up problem is
by determining as much of the structure of the counterexamples (i.e. G is a maximal
p-local, but Nx(M) € G) as possible, in particular the action of G on O,(G), by

using the property that
(¥*) no nontrivial characteristic subgroup of M is normal in G.

Note that (*) depends only on G and M, but not on X. Also, () still makes sense
if M is not necessarily a p-subgroup of G.

Here we will consider pushing-up problems in which M is a maximal subgroup of G,
but not necessarily a p-group. This is then related to the following graph-theoretic
problem, treated by V.I. Trofimov and R.M. Weiss (cf. [17]): Assume that H is a

group of automorphisms of a connected graph I' with the following properties:

1. H acts transitively on the vertices of I.
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2. The vertex-stabilizers H, in H are finite and act primitively on the set of neigh-

bors of the vertex 7.

Then determine the structure of the vertex-stabilizers. Under these assumptions, if
(7,90) is an edge of I, then H, N Hy is a maximal subgroup of H,. Moreover, there
exists an element h in the edge-stabilizer Hy, 5y that switches v and 4. Since H acts
faithfully on T, it follows that no nontrivial subgroup of H,N Hj is normal in both H,
and H{,s . In particular, no nontrivial characteristic subgroup of H, N H; is normal

in H,. In group-theoretic terms this is equivalent to the following.
(A) G (corresponding to H,) is a finite group,
(B) M (corresponding to H., N Hjs) is a maximal subgroup of G, and

(C) there exists an outer automorphism ¢ of M such that ¢ € Inn(M) and no

nontrivial subgroup of M is invariant under both t and G.

Again consider the situation of the first paragraph with M a maximal of G. Let L
be a normal subgroup of G that is minimal subject to LR/R = Soc(G/R) where
Soc(G/R) is the socle of G/R) (i.e. the product of all minimal normal subgroups of
G/R). Then G = ML. Notice that if A is any finite group, then G! A and M A
satisfy the same assumptions as G and M, respectively. In particular, there is no hope
to get the action of M on R under control. Hence we will consider the problem of
determining the action of L on R. In the following, assume that [R, L] # 1. Note that
in contrast to the classical pushing-up problem, there is a priory no prime p involved
in our pushing-up situation. But using [R, L] # 1 it can be shown that F*(G), the
generalized Fitting subgroup of G, is a p-group for some prime p. We will call p the
characteristic of the pushing-up problem (G, M).

By the O’Nan-Scott-Theorem (cf. [12], e.g.) we have some information about G/R.

Indeed we will show that under our assumptions not all of the cases listed in this



theorem can occur. In particular, Soc(G/R) is a minimal normal subgroup of G/R.
If Soc(G/R) is solvable, then Soc(G/R) is an elementary abelian g-group and {p,q} =
{2,3}. We will restrict to the more interesting case that Soc(G/R) is perfect.

To treat the pushing-up problem under consideration, we will use the following strat-

egy, which has been successfully applied to classical pushing-up problems (cf. [14],

e.g.):
(1) Reduction to the case that Soc(G/R) is simple.

(2) Solve the problem under the assumption that Soc(G/R) is simple, using the so

called amalgam method.

Note that step (1) is a partial converse of the extension of G to Gt A. In a pushing-up
problem with M € Syl,(G) step (1) is staightforward. In the graph-theoretic problem
described above this step seems to be much harder. Our situation (M maximal in G,
satisfying (*)) is somewhere in between. We will reduce this problem to a pushing
up problem in which Soc(G/R) is simple and M is ‘almost’ maximal in G, which
then can be treated by the amalgam method. (Indeed, almost always M will still be
maximal in G.)

In the amalgam method (as introduced in (7]) there is a distinguished prime involved,
which will be the characteristic p of the pushing-up problem in our case. Moreover,

one needs some information about
e the structure of G/R, and
e FF-modules in characteristic p for G/R.

The O’Nan-Scott-Theorem gives the necessary information about G/R. Some infor-
mation about FF-modules in characteristic p for the minimal normal subgroups of
Soc(G/R) is already needed for step (1). In order to be able to make use of the clas-

sifications of FF-modules in the literature (cf. [14](1.2), [6], and [16]) we shall restrict
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to the case that the minimal normal subgroups of Soc(G/R) belong to the class £,
defined as follows: £, consists of all finite simple groups of Lie type in characteristic
2, and of all finite alternating groups of degree at least 5. If p is odd, then £, consists
of all finite simple groups of Lie type in characteristic p.

In step (2) we will embed G and the semidirect product MAut(M) into the free
amalgamated product G (M Aut(M)) (therefore the name amalgam method). Then
we will often meet the following situation: X is a normal p-subgroup of G and h €
G *pm (MAut(M)) such that X and X" act on each other. To draw conclusions from
situations like this, eventually leading to a description of the action of L on R, a close
relation between the commutator [X, X*] and the centralizer Cx(X") is very useful.
Therefore, we shall further restrict to the case that the minimal normal subgroups of
G/R belong to the class Zp consisting of all members of £ that are not isomorphic
to PSL,(q) (n € N, g a power of a prime).

Before we can state the result to be proven, let us explain some terminology. By a
p-component of a finite group X we mean a perfect subnormal subgroup Y of X such
that YO,(X)/O,(X) is a component of X/O,(X). The numbering of the nodes in a

Dynkin diagram is always chosen as in [9]. We will prove the following result:

Theorem 1 Let G be a finite group, M a mazimal subgroup of G, R the largest
normal subgroup of G that is contained in G, and L a normal subgroup of G that
is minimal subject to LR/R = Soc(G/R). Assume that no nontrivial characteris-
tic subgroup of M is normal in G, [R,L] # 1, and each minimal normal subgroup
of Soc(G/R) belongs to Z‘,,, where p is the characteristic of the pushing-up problem
(G,M). Then L is the central product of the p-components Ly, ..., L, of G that are
not contained in R, and M permutes these p-components transitively. Moreover, if

i € {1,...,m} then one of the following holds:

1. L,R/R = PSp,,(q) (q € {2,4}), (MNL;)R/R is a parabolic subgroup of cotype
1in L;R/R, and (R, L;)/Cir,1,)(L:) is a natural Sp,,(q)-module for L;.
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2. L,R/R = PSp,,(q) (q € {2,4}), (MNL;)R/R is a parabolic subgroup of cotype
21in L;R/R, and [R, L;] is a natural Sp,,(q)-module for L,.

3. L,R/R = PSp,,(2), (MNL;)R/R is a parabolic subgroup of cotype 3 in L;R/R,

and [R, L;] is a natural Sp,,(q)-module for L;.

4. LiR/R = Sps(q) (q = 2¥), (M N L,)R/R is a parabolic subgroup of cotype 1
in L;R/R, Z([R, L;]) is a natural O;(q)-module for L;, and [R, L;]/Z(|R, L;]) is

an O;(q)-spin module for L;.

5. LiR/R = Qf(2), (MNL;)R/R is a parabolic subgroup of cotype {3,4} in L;R/R,
and [R, L;] is a natural Of (2)-module for L;.

6. L,R/R=Q}.(2) (n>5), (MNL;)R/R is a parabolic subgroup of cotype 3 in
L;R/R, and [R, L;] is a natural OF,(2)-module for L;.

7. LLR/R = Q5,(2) (n>3), (M NL)R/R is a parabolic subgroup of cotype 3 in
L;R/R, and [R, L;] is a natural Oy,(2)-module for L;.

8. L,R/IR=Q}.(2) (n>4), (MNL;)R/R is the centralizer in L;R/R of a graph
automorphism that switches the nodes n — 1 and n of the Dynkin diagram, and

[R, L;] is a natural O3, (2)-module for L;.

9. LiR/R=Q}(q) (q=p*), (MNL;)R/R is a parabolic subgroup of cotype 1 in
L;R/R, and (R, L;] is an Of,(q)-half spin module for L;.

10. LiR/R = G3(2)" and (R, L;]/Cir,,)(L:) is an irreducible F F-module for L; with
I[R, Li]| = 25.

Note that (D.2.3) and (D.2.4) show that in the cases 4 and 9 of Theorem 1 no further

restrictions on the field of definition of L;R/R are possible.



In chapters 1 and 2 we derive some basic results that are needed to get the amalgam
mathod started. In particular, chapter 1 contains the proof that there exists a prime
p such that F*(G) = O,(G), and the reduction to the case that Soc(G/R) is simple
is done in chapter 2. One of the fundamental observations in the amalgam method
is that Z := (2,(Z(0,(M)))€) is an FF-module for G. Still in chapter 2 we show
that under the assumption that Soc(G/R) belongs to £, Z contains exactly one
noncentral L-chief factor.

In chapters 3-5 we then determine the action of L on R, distinguishing cases by the
isomorphism types of LR/R, of (M N L)R/R, and of the noncentral L-chief factor
in Z. Chapter 3 handles the majority of the cases where LR/R is an orthogonal,
symplectic, or unitary group, (M N L)R/R is a parabolic subgroup of LR/R, and Z
contains a natural module, except the case that LR/R is symplectic and (M NL)R/R
is of cotype 1, which is done in chapter 4. Chapter 5 treats the remaining cases, i.e.
‘exceptional’ FF-modules and the case that (M N L)R/R is not a parabolic subgroup
of LR/R.

In chapter 6 we summarize the results from chapters 1-5 to prove Theorem 1.
Appendix A contains some general lemmas. In Appendix B we make some concrete
calculations in FF-modules for groups of Lie type, needed in chapters 3-5. Appendix
C lists some properties of FF-modules for alternating groups. Finally, Appendix D

contains some examples for the pushing-up problem under consideration.



Chapter 1

Basic observations, Part 1

Let G be a finite group, M a subgroup of G, R the largest normal subgroup of G
which is contained in M, and L a normal subgroup of G which is minimal with respect

to LR/R = Soc(G/R). Let H be a subgroup of Aut(G), and consider G and H to be

embedded in the semidirect product of G and H. Assume that the following hold:
(I) M and every minimal normal subgroup of G/R are H-invariant.
(II) MH is a maximal subgroup of GH.

(ITI) No nontrivial characteristic subgroup of M is normal in G.

(IV) [R,L] #1.

Note that R is H-invariant, since both G and M are H-invariant.

1.1

(1.1.1) One of the following holds:

(a) i. LR/R is an elementary abelian ¢g-group for some prime q.
ii. M/R acts faithfully and irreducibly on LR/R.
iii. Oq(G) = O,(M) = 1.

(b) i. L is perfect.
ii. L=N{N|N<G, NR/R = Soc(G/R)}.
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Proof. If X is any M H-invariant subgroup of LR, then by (II) either XM = G or
X < M. In particular, L'M = G or L' < M, since L'R is M H-invariant by (I).
First assume that L'M = G. This implies that Soc(G/R) is perfect, and then by
minimality of L also L is perfect.

Let N be a normal subgroup of G with NR/R = Soc(G/R). Then [L,N]R/R =
Soc(G/R) and [L,N] < LN N. By minimality of L, we get L = [L, N] and, hence,
L<N.

Now assume that L' < M. Then L' < R. Let ¢ be a prime that divides |Soc(G/R)|.
Let X be the subgroup of LR such that R < X and X/R = O,(LR/R). Note that
X ¢ M, since X <G and X/R # 1. Since X is M H-invariant, it follows that
XM =G, i.e., X = LR. Hence Soc(G/R) is an abelian g-group. A similar argument
(with X/R = ®(LR/R) instead of O,(LR/R)) shows that Soc(G/R) is elementary
abelian.

The irreducible M-submodules of LR/R are precisely the minimal normal subgroups
of G/R, and by (I) these are also H-invariant. Hence again the same argument as
above shows that M acts irreducibly on LR/R. By definition of R, M/R acts also
faithfully on LR/R.

Since CLr/r(O4(M/R)) is M H-invariant, we get similarly to the above Oj(M/R) =1
and thus O,(M) = O,(R). But then (III) implies

If Oy(G) # 1, then L = O,(G) and [L, R] < O4(R) = 1, a contradiction to (IV).

(1.1.2) (a) If N is a normal subgroup of G with NN M ¢ R, then L < N.
(b) LR/R is the unique minimal normal subgroup of G/R.
(c) F*(G) = F*(R) = O0,(G) and O,(M) Z R for some prime p.

(d) [R, L] < Oy(G).



(e) O,(M)N RL = 0,(M) N O0,(G)L.

Proof. (a) This can be proven as Lemma 1.2 in [15]. For the convenience of the
reader we repeat the argument here. Pick a subgroup T of G containing R such that
T/R is a minimal normal subgroup of G/R. Then T'= (TNL)R, since R<T < LR.
fT<MH,thenT < MHNG = M, contrary to T <G and T Z R. Hence, by (II),
(TNL)YMH = (TNL)RMH =TMH = GH. Therefore,

(x) G=GHNG=(TNLMHNG = (TNL)MHNG) = (TNL)M.

If  TNL,NnNM] < R, then () implies that (N N M)R < G, a contradiction to
NNMZ R. Thus

(xx) [TNL,NNM]ZR.

Since [T'N L, N N M] is contained in T and normalized by TN L and M, it follows

from (%) and (*x*) that
T=[TNL,NnM|R.

Since T/R is an arbitrary minimal normal subgroup or G/R, we get
Soc(G/R) = [L, N]R/R.

By minimality of L, this implies L = [L, N] < N.
(b),(c) If M has a component K which is not contained in R, then (K¢) < Cg(R)
and, by (a), L < (K©€), a contradiction to (IV). Hence E(M) = E(R). Now (III)

implies

F(M) # F(R).



Suppose G/R has more than one minimal normal subgroup. Then, by (A.1.2)(b,c),
also GH/R has more than one minimal normal subgroup, where R := Ngegu(MH)S.
Then it follows from [12] that GH/R has exactly two minimal normal subgroups X/ R

and Y/R, so in particular
Soc(GH/R) = LR/R.

Moreover, again by [12], MH/RN LR/R is a diagonal between X/R and Y/R, and
MH/RNLR/R (= X/R) is perfect. Hence F(MH)R/R centralizes MH/RNLR/R.
But then F(MH)R/R centralizes LR/R and, hence, is normal in GH/R. Since the
only minimal normal subgroups of GH/R are perfect, it follows that F(MH) < R

and therefore
F(M)< F(MH)NG < RNG =R,

a contradiction to F (M) # F(R). Hence (b) holds.

Suppose G has a component K which is not contained in R. Then, by (b),
(*) L <{(K°R<CgR)R.

If L is perfect, then (1.1.1)(b)(ii) and (%) imply L < Cg(R), a contradiction to (IV).
If L is not perfect, then (1.1.1)(a)(i) and (%) imply that LR N Cg(R) is a nilpotent
normal subgroup of G. Since ¢ (as in (1.1.1)(a)) divides the order of LRNCg(R), we

get a contradiction to (1.1.1)(a)(iii). Hence

Choose a prime p such that O,(R) # 1. Then O,(M) # Opy(R) by (III). Hence, by
(a), L < (0,(M)C) < Cs(Oy(R)). Suppose O,(R) # 1 for some prime 7 # p. Then
L < Cs(0y(R)O,(R)) = Co(F*(R)) and thus

(x+) [R,L,L] < [RNL,L] <[Cr(F"(R),L] < [F*(R),L] = 1.
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If L is perfect, the Three-Subgroup Lemma and (%) imply [R, L] = 1, a contradiction
to (IV). If L is not perfect, then (1.1.1)(a) and (*x) imply (L,L,L,L] =1, i.e., L is
nilpotent. Since q (as in (1.1.1)(a)) divides the order of L, we get a contradiction to
(1.1.1)(a)(iii).

Hence F*(R) = O,(R) and F*(G) = F(G). Suppose F(G) € R. Then (1.1.1)
implies that L is not perfect and F(G)R/R is a g-group (¢ as in (1.1.1)(a)). But then
0,(G) # 1, a contradiction to (1.1.1)(a)(iii).

(d) Since Oy(G) is not a characteristic subgroup of M there exists ¢t € Aut(M)
such that O,(G)! € R. Then [R,0,(G)!] < RN Oy(M) = O,(R) = O,(G) and

L < ((05(G))°).
() Put X := RNO,(M)L. Let S € Syl,(X). Note that X/(RN O,(G)L) is a

p-group, since
X/(RNO,(G)L) = X/(XNO,(G)L) = XO,(G)L/O,(G)L <
O,(M)L/O,(G)L.
Together with RN O,(G)L = O,(G)(RN L) this implies
X =S(RNO,G)L) = SO,(G)(RNL)=S(RNL).
From (d) and (c) it follows that
[(X,RNL)<[R,RNLIN[O,(M)L,RN L] < 0,(G) N[0y(M), R] < Oy(G).
Therefore S < X, whence S < R. Thus S = O,(G) by (c), and therefore
X =SRNL)=0,(G)(RNL).

Let z € Rand y € L with zy € Op(M). Then z € RNO,(M)L = O,(G)(RNL) and
hence zy € O,(G)(RN L)y < O,(G)L.

In the following, p denotes the prime defined in (1.1.2)(c).

11



1.2

Let G *p (MAut(M)) be the free amalgamated product of G and the semidirect
product MAut(M) over M. Let ' be the coset graph of G xp (MAut(M)) with
respect to G and MAut(M), where we identify G and M Aut(M) with their images
in G *p (MAut(M)). For vertices v, A € T let d(y,A) be the distance between 7
and X in I', and write v ~ X if v and A are in the same orbit under the action of

G *p (MAut(M)) on I' by right multiplication. Put

AP (y):={XeT|d(y,\) =k} forallyeTl and k € NU {0}, and
A(y) :== AW(y) forall y € T.

If v ~ MAut(M), i.e., vy = MAut(M)z for some z € G *pr (M Aut(M)), put

M, = M*,

Zy =N (Z(Q,))

If y~G,ie., v= Gz for some z € G *p (MAut(M)), put

G, =G~
R, = F°,
L, = L7,
Qy = 0,(G,),

12



T,:=Cz/(L,) and
Cy = Cq,(2,/T,).
For each v € I" put
Vy=(Zx| A€ {y}UAP(y)), and
Wy :=(Zx | A € {7} U AB(7) UAW (7).

Let (a,c’) be a critical pair (i.e., @ and o' are two vertices of ' whose distance b is
minimal with respect to Z, € Q). For each i € {0,...,b}, we denote the element

of A (a) N A=) (o/) by a + i and the element of A®(a’) N A®-9)(a) by o/ — .

(1.2.1) (a) Qa < Ca < Ra.
(b) a and o are cosets of G.
(¢) [ZayZy) # 1. In particular, (o', ) is a critical pair.
(d) ZoaZav2 dGay2 and UgZoyz AGasa-

(e) Assume that for each critical pair (u, ') there exists a critical pair (v, V')
with v € A@(u) and v' € AC-D ()N AP (i'). Then Z,Z,12 4G4 and
ZaUa+2 ﬁGa-

Proof. (b) If a is not a coset of G, then Z, < Z,;; < Qu, a contradiction. If
o' is not a coset of G, then Z, < Qo _; < Qu, again a contradiction. (a) Since
(1.1.2)(c) implies Q4 < @, for each A € A(a), we get Qo < Cqo. If Co € R,, then
Go = CaMy4, and hence Z, .1 < G,, contrary to (III).

(c) Note that (1.1.2)(c) implies that R, N Q) = Q,, for all v ~ a and A € A(y).
Hence the statements Z,  Q, and [Z,, Zy] are equivalent.

(d) Suppose that Z,Z,,3 < Goy2. In particular, b > 2. Pick g € Ga42 such that

(a+1)9 =a+3. Then Z,Z,42 = 282042 < Qu, since d(a?,a') < b, a contradiction.

13



Note that U, € Qu, since Z, = UyZyyy and Z,,) < Q. Hence similarly to the
above we get Uy Zo42 AGayo.

(e) By the assumption, we can extend the path (o,a+1,...,a’) to a path (a — b+
2,a-b+2,...,a-1,a,...,a') such that (@ — 2i,a’' — 27) is a critical pair, for each
i € {0,..., 52}, Then (e) follows from (d), applied to the critical pair (a+2, a—b+2)
in place of (a,a'). o
By (1.2.1)(c) we can fix notation such that

|Za/Za N Ry | < | Zot [ Za N Ral.

(1.2.2) Let V be a G,-submodule of Z, with [Z,, La] € V. Then Z,/V is an FF-module

for G, and Z, acts as an offending subgroup on Z,/V.

Proof. From (1.1.2)(c) and (1.2.1)(a) it follows that Z, N Ry = Z, N Q. Since
(Za N QQI)V/V < CZO/V(ZQ’)) we get

(x) (Za/V)[Czupv(Za)l € 1Za/(Za NQa)V| S |Za/Za NQu| =
|Zo/Zo N Ra|.

Note that (1.1.2)(b) implies
(#+)  Cg,(Za/V) < Ra.

Now the claim follows from (*), (+*), and the choice of a and o'.

(1.2.3) Let A € A(a). Let X be an elementary abelian normal p-subgroup of M,. Then

the following are equivalent:

(a) [X,L,)=1.

(b) Each M)-submodule of X is G,-invariant.

14



Proof. Clearly (a) implies (b). Assume that (b) holds. In particular, X is a G,-
module. Let A/B be any G,-composition factor of X. Since C4,5(Q») is nontriv-
ial and M)-invariant, (b) and the irreducibility of A/B as G,-module imply that
[4, Q)] < B. Since L, < (Q}°), we get [A, L,] < B. Since L, = OP(L,), it follows

that [X, Lo] = 1.

For all u ~ a put
Eu:={y €T | (u,p) is critical},
Eupi={ €z, du,v)+dv,p) =05} forallverl, and

A= () [24,,2y] forallvel withZ,, #0.

;4'63,,,.,
(1.2.4) Let (p, ') be a critical pair, A € A(u) and v € A®2 () N AP (4'). Assume

that the following hold:
(i) b> 2.
(i) G, = (Zu, My).
Then [Ngepm, Z4, L) = 1.

Proof. Put D := (\yep, Z4. Since b > 2 and D < Z,, we get [D, Z,s] = 1. Hence the
claim follows from D d M), (ii) and (1.2.3). g

(1.2.5) Assume that the following hold:
(i) b> 4.
(i) For any critical pair (u, ') there exists A € A(p) with G, = (Z,, M,).
(iii) If (u, ') is any critical pair and A € A(u) with G, = (Z,, M), then
2, NAW) = {v € AN | Z,2, 4G},
where v/ € AP () N A@ ().
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Then [Nyenm,,, Z3, La] = 1, for some v € Z, 042. In particular, Aga+2 < To.

Proof. Note that {v € A()\) | Z,Z, 4G} # 0 for all 4 ~ a and A € A(p), since V),

is a nontrivial characteristic subgroup of My. Hence (iii) and (1.2.1)(e) imply that
(*) Z,Z, 4G, forall p~ a and v € AP (u) with Z,,, # 0.

Pick z € L, such that G, = (Zy, M(a+1)-) and put a—2 := (a+2)*. By () and (iii),
(a — 2,0’ —2) is a critical pair. Pick y € L,_2 such that Go—2 = (Zor—2, M(a41)es)
and put @ — 4 := a¥ and v := (o’ —4)¥ "', Again by (%) and (iii), (o — 4,0 — 4) is
a critical pair. Therefore,

1,.-1

-y T Iy

V& Za_ga-2 = Zaa+2:
Define
D= ( Z.
9E€EMa 41

Since D* < Z2V = Z, _4, (i) implies that
(r#) (D™, Za] = 1.

From (1.2.4) (with a — 2, & — 2, and (a + 1)® in place of p, u', and A, respectively)

it follows that L,_, centralizes D*¥. Hence
(* * *) DIy = l):z S M(a+1)z.
Now (xx), (* * x) and (1.2.3) imply that L, centralizes D*. In particular, D = D*

and hence [D, Lo = 1.

(1.2.6) Let (u, u') be a critical pair, A € A(u), v € A(X) and v € A2 (u) N AD ().
Assume that the following hold:
(i) Gu = (Zy, M)).
(ii) Z,Z, 4G,
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(lll) [Z;n Zu’] = [CQ'y(ZIl)v Z#']'
Then (v,7) is a critical pair.

Proof. Suppose that (v,+) is not a critical pair. Then Z, < Q, < G,. If b > 2, then
Z, € Cq,(Z,), since d(v,p) =2 < b. If b = 2, then v = p and again Z, € Q, =
Cq,(Z,), since Q, = Q,. Now (iii) implies

[ZV’Z#'] < [CQ.,(Z;,), Zu'] = [ZwZ/z’] < Z#-

Hence Z,; normalizes Z,Z,, contrary to (i) and (ii). g
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Chapter 2

Basic observations, Part 2

In addition to (I)-(IV), we assume

(V) The minimal normal subgroups of Soc(G/R) belong to the class £,, as defined

in the introduction. In particular, L is perfect.

2.1

For v ~ a define
U, :=[Z,,L),

where L},..., LT are the p-components of G, which are not contained in R,. If V is
a finite-dimensional GF(p)-module for a finite group X, let P*(X,V) be defined as
in A.2.

(2.1.1) (a) f N4 G, and Qo < N < R,, then LLN/N,...,L*N/N are the compo-
nents of G,/N which are not contained in R,/N. Moreover, L: N/N #
LIN/N when i # j.

(c) Mgy acts transitively on {L},...,L7}.

(d) [Li,A] < L foralli€ {1,...,m} and A € P*(Ga, Za/Ta)-
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(e) Let V be a G,-submodule of Z, with [Z,,L,] € V. Then for each
i € {1,...,m} there exists A € P*(Gq, Zs/V) such that A < Q.4+, and
(L%, A] € Ra.

() Cz.(LayTa) = Ta

(8) [Za/Tas La] = @2, UsTo /T

(h) LaNQa = (LLOQ) .. (LT N Qu).

(i) LaNRy=(LLNRy)-...- (LPNR,).

Proof. (a) Clearly LN/N,...,L™N/N are components of G,/N, since Q, < N.
Let K be a subgroup of G, containing N such that K/N is a component of G,/N
which is not contained in R,/N. Then KR,/R, is a component of G,/R,, i.e., a
minimal normal subgroup of L,R,/R,. Choose a subnormal subgroup X of L, which
is minimal with respect to XR,/R, = KRy/R,. Then (1.1.2)(d) implies that X is
a p-component of G,. In particular, XN/N is a component of G,/N. If XN # K
then [X, K] < N, a contradiction to XR,/Rs = KRy/Ra.

Ifi,j € {1,...,m} and i # j, then [L}, L?] < Q, and, hence, [L{ N/N, L’ N/N] = 1,
which implies L) N/N # LI N/N.

(b) Letie {1,...,m}. Asabove, (1.1.2)(d) implies that L, contains a p-component
X such that XR,/R, = L;Ra /Rq4. Since distinct p-components centralize each other
modulo Q,, we get X = L!. Hence L} -....- L™ < L,. Now the claim follows from
the minimality of L,.

(c) Let {L%,...,L*} be an orbit of May; on {L!,...,L™}. Then, by (a), (I), and
(II), N := L% -...- L* R, is a normal subgroup of G, with R, < N < L,R, and, if
{Ly,...,L*} # {L},...,L™}, then N # L,R,. Hence (c) follows from (1.1.2)(b).
(d) This follows from (a) and (A.2.1)(d).

(e) By (1.2.2), there exists A € P*(Gq, Zo/V) with A < Z,.
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Suppose that [L!, A] < R, for each i € {1,...,m}. Then (b) implies that AR,/R, €
Cé./Ra(LaRa/Ry). Together with LoRo /Ry = F*(Go/R,) it follows that AR, /R, <
Z(LaRa/Ry) = 1. Then, since A < Zy < Qaq1, We get A < Ry N Qos1 = Qo by
(1.1.2)(c). But then [Z,/V, A] =1, a contradiction to A € P*(G4, Z,/V). Hence

[Li,A] € R, for someic€ {1,...,m}.

Now (e) follows from (c).
(f) This follows from [L4, Ls] = La, the definition of T,, and the Three-Subgroup

Lemma.
(g) From (a) it follows that L1C,/C,,...,L"C,/C4s are components of G,/Cl,.

Note that (e) implies that
L:Co/Cys < (P*(Ga/Cq, Za/T,)), foreachic€ {1,...,m}.

Now (g) follows from (A.3.3) (with (Ga/Ca, Za/Ta, LiCo/Ca, - .., LTC4a/C,) in place
of (G,V,L,,...,L,)), (b), and (f).
(h) Put

_L: = La/((LZ': ﬁQoz) R (L:xn mQo:))'
From (b) and [L},L2] < Qu N L N L7, for all i,j € {1,...,m} with i # j, it follows
that L, is the central product of L_}l, ..., L™. Hence O,,(l_a) is the central product of
O,(LY),-.., O,(L™). For each i € {1,...,m}, let A; be the subgroup of L, such that
(LENQa) ... (L™ NQa) < A; and 4; = O,(L%). Since

(LLNQa) . (LN Q) < A < (IXNQa) ... (LT N Qu)LL,
for each 7 € {1,...,m}, and

LaNQu=A,-... A,
we get

Ai=(LaNQq) - (LT NQa)(LENA) = (LiNQa) - ... - (LT N Qa),
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foreach i € {1,...,m}, and thus L, N Qs = (LLNQa) ... - (LT N Q,).

(i) similar to (h). .

(2.1.2) Let ¢ € {1,...,m}. Then there exists A < Ng_, (L) such that [L}, A] Z R,
and A € P*(Ga,Z,/T,). For any such A and for any irreducible GF(p)(AL.)-
submodule V of U:T, /T, the following hold:

(a) ACa1 (V)/Car, (V) € P*(ALL,V).

(b) fo CAL:,(V)/CAL:, (V) = F‘(A L:x/CAL:, (V))
Proof. Choose A as in (2.1.1)(e) (with T, in place of V). Then 4 < Ng,_,,(L%) by
(2.1.1)(d). From (2.1.1)(a) it follows that L /L N C, is quasisimple and Z(L}/L} N
Co) = Li N R, /Li, N Cy. Since L, NC, < Cp; (V) and, by (2.1.1)(f)(g), [V, L] # 1,
we get

(*) CrLi(V) < Ra

and L /Cp: (V) is quasisimple. Hence L} Cyp.(V)/Capri(V) is a component of
ALL/Cari (V). Assuming that L}, Capi (V)/Capi (V) # F*(ALL/Cari (V)), we get
Op(ALL/Car: (V) # 1, since AL, /LY, is a p-group. But O,(AL,/Cari(V)) =1,
since V is irreducible. Thus (b) holds.

From (x) and [L}, A] € R, it follows that [V,[L}, A]] # 1. But then [V, A] # 1, since
L;, normalizes C4; (V). Now (a) follows from (A.2.1)(b).

2.2

In addition to (I)-(V), we assume
(VI) M is a maximal subgroup of G.
(2.2.1) There exists a subgroup E of Aut(L!R,/R,) and a monomorphism

¢: Go/Ry > ENE,,
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such that the following hold:

(a) Inn(L:R,/R,) < E.

(b) The following diagram commutes:

L\R,/R, — E

!

Go/Ra - E1T,
(c) (Go/R,)? acts transitively on {E* |z € E1L,,}.
(d) (Mas1 NLLR,)/Rs)? = XN (L R,/R,)? for some maximal subgroup X
of E.

Proof. Using the notation of [12], G4/ R, viewed as a permutation group on the right
cosets of M4,/ R, is either of type II or of type III(a—c). If G,/R, is of type II, i.e.,
m = 1, then the monomorphism ¢ : G/R, — Aut(L,R./R,) given by the action of
Go/Rs on LoRy/R, and E := (G,/R,)? satisfy (a)-(d). Hence we may assume that
Ga/ R, is of type III.

From Zy < Qqa41, (1.2.2), and (2.1.1)(a,d) it follows that M,,,/R, contains a non-
trivial normal p-subgroup Y/R, which normalizes all components of G,/R,. In par-
ticular, M,4,/R, does not act faithfully on the set of components of G,/R,, whence
Ga/ R4 is not of type III(c).

Suppose Go/R, is of type IlI(a). Then (Myi1/Ra) N (LaRa/Ra) is a diagonal
in the direct product LoRa/Rs = (LLRa/Rs) X ... X (L™Ry/R,). In particular,
(Mat1/Ra) N (LoRo/R,) is a nonabelian simple normal subgroup of M,;/R,. But

then

[(Ma-H/Ra) N (LaRa/Ra)a Y/Ra] S

[(Ma+1/Ra) n (LaRa/Ra)a Qa+lRa/Ra] =1L
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Now Y/R, centralizes a diagonal and normalizes each factor of the direct product
LoRo/Ra = L R,/Ry X ... x L"R,/R,. Therefore,

[LaRa/Ra,Y/R,] = 1.
Thus Y/R, <4 G,/ Ra, a contradiction to (1.1.2)(b).
Hence G,/ R, is of type III(b). Thus G, /R, is obtained from a primitive permutation
group of type II or III(a) by the construction described in [12]. If G,/ R, is obtained
from a group of type (II), then (a)-(d) are satisfied. Otherwise Ma41/Ra N LaRa/Ra

is a direct product of nonabelian simple groups, and we get a similar contradiction

as above. .

(2.2.2) Letie {1,...,m}.
(a) (May1 N L R,)/Rs is maximal (with respect to inclusion) amongst the
proper Ny, ,, (L% )-invariant subgroups of L%, Ro/Ra.
(b) (Ma41 N L R,)/R, is not a p-group.
(c) Qas1 normalizes L.

(d) Op((Ma+l N LLRQ)/R(,) = (Qa+l N fo)Ra/Ra-

Proof. Put X := M,y N L. R,.
(a) Let Y be a proper subgroup of L! R, containing X properly. For each j €

{1,...,m}, put
Y, :={Y*|z€ My, Y*<LiR,}.
Then
Ga/Ra = ((V1)/Ra x ... X (Ym)/Ra) (Mat1/Ra).

Since by (1.1.2)(b) LoaR./R4 is the only minimal normal subgroup of Go/R,, it

follows that

LaRo/Ra = (V1)/Ra % ... X (Vm)/Ra.
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Hence |Y;| > 1 for all j € {1,...,m}. In particular, Y # Y* < L.R,, for some
T € Myy1. Since LY R,/Ra N L2 R,/Ry = 1if i # j € {1,...,m}, it follows that
normalizes L}. Hence Y is not Ny, (L} )-invariant.

(b) Suppose that X/R, is a p-group. Then, by (a),
X/Rq € Syl,(L, Ra/Ro).
By (V) one of the following holds:
(i) LLRy/Ra = A,, n>T7andp=2.

(i) L Ra/R, is a group of Lie type in characteristic p (including As (= PSLy(4))
and Ag (= Sp,(2)')).

In case (i) we get a contradiction from (a) and (A.1.4)(b). Hence (ii) holds. By (a),
the Cartan subgroup of L}, R,/R, is trivial and Ny, (L) acts transitively on the
nodes of the Dynkin diagram of L} R,/R,. Therefore,

L Ry/R, 2 PSL3(2) or L!R,/R, = Sp,(2),

and Np,,,(L.) contains an element g which does not normalize the two minimal
parabolic subgroups of L} R,/R, containing the Sylow 2-subgroup X/R,.

Put Y := L! Np,, (L!). Let V be an irreducible Y-submodule of U!T,/T,. Then
L, € Cy(V) by (2.1.1)(f)(g). From (2.1.1)(a) it follows that L C,/C, is a compo-
nent of YC,/C,. Choose A as in (2.1.2). Then [A,L] € Cy(V). Depending on
whether L! Ro/Ra = Sp,(2)' or L. R,/ Ry = PSL3(2), either (A.2.7) or (A.2.8) (with
Y/Cy(V), RaCy(V)/Cy(V), L: Cy(V)/Cy(V), and ACy(V)/Cy(V),V) in place of
G, R, L, A, and V, respectively) shows that g normalizes the two minimal parabolic
subgroups of L} R,/R, containing X/R,, a contradiction.

(c) follows from (b).

(d) Since R, < M4, the claim is equivalent to
Op((Ma+1 N Ly)/(Ra N LY)) = (Qas1 N L) (Ra N LY)/(Ra N LY).
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Clearly
(Qa+1 N Ly)(Ra N Ly)/(Ra N Ly) < Op((Mas1 N L)/ (Ra N Ly).

Let X and Y be the subgroups of L satisfying @, N L, < X, R,NL, <Y,
Op((Mas1 N LY)/(Qa N LY)) = X/(QaN L,) and
Op(Mass O L) /(Ra N IL)) = Y/(Ra N L)

Note that any two distinct conjugates of X under M, centralize each other modulo
Q.. Hence X < Q,41, and it suffices to show that Y = X (R, N L:). Since L: is a

p-component of G, which is not contained in Ry,
(Ra N LY)/(Qa N LY) < Z(Lh/(Qa N LY)).

Since Op(L:,Qa/Qa) < 0,(Ga/Qa) = 1, it follows that (Rq N LL)/(Qe N LY) is a
p'-group. Hence Y/(Q, N L!) is the product of (Ry N L%)/(Q, N Li) and a normal

Sylow p-subgroup, which must be X/(Q, N L). -

(2.2.3) (a) (Mas1 N LoRa)/Ra = (Masr N LLR2)/Ra X ... % (Mayy N L™Ry)/Ra.
(b) Op((MasiNLaRa)/Ra) = (Qas1NLa)Ra/Ra = (Qas1 NL ) Ra/Rax ... %

(Qa+l N LZI)RQ/RO'

Proof. (a) For each i € {1,...,m}, let m; be the projection from L,R,/R, onto
L R,/R,. Then

((Ma31 N LoRa)/Ra)™ = (May1 N L Ry)/Rs, foreachie {1,...,m},

by (2.2.2)(a).

(b) follows from (a) and (2.2.2)(d). g

(2.2.4) Let i € {1,...,m}. Assume that L} R,/R, is a group of Lie type. Then one of

the following holds:
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(@) Qas1 N L, € R,, and (Mayy N LLR,)/R, is a parabolic subgroup of
L R,/R,. Moreover, the following hold:
(al) Na,,,(L%) is transitive on the set of parabolic subgroups of L, Ry/Ra
which contain (M4, N LE R,)/R, as a maximal subgroup.
(a2) If L} R,/R, is of type A, and (M, ;1 NL: R,) /R, is of type A, _,, then
n =3 and UT,/T, is the exterior square of a natural SL,(q)-module
for L.
(a3) If L Ra/R, is a rank 2 group, then (My4y N L R,)/R, is a maximal
subgroup of L R,/R,.
(ad) If LL Ry/R, is of type 2A,, then (May, N L R,)/Rqs is not of type
A,
(b) Qus1 NL: < Ra. In this case, LiRa/Ra = 95.(2) (¢ € {+,~}), and
U;T?/Ta is a natural Q5,(2)-module for L.

Proof. Assume that Q.41 N L}, € R,. Then, by (2.2.2)(d),

X = 0,((Mas1 N L. Ra)/Ra)

is nontrivial, whence Ny g, /g, (X) is a proper Ny, ,,(L%)-invariant subgroup of

L R,/R,. Hence, by (2.2.2)(a),

(Mas1 N LyR,)/Ra = Ny royra (X).

In particular,

X = Op(Ni; pasra (X))

Now [1](47.8) shows that (May) N L Ry)/R4 is a parabolic subgroup of L Ry/R,.

(al) follows from (2.2.2)(a). (a2) follows from (A.2.8). (a3) follows from (al), (a2)

and (A.2.7). Note that in SU,(p*) the largest normal p-subgroup of the stabilizer
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of a 1-dimensional isotropic subspace of the natural module does not contain any
offending subgroups for the natural module. This implies (a4).

Now assume that Qu4; N L., < R,. Choose A4 as in (2.1.2), and let V be an irre-
ducible AL,-submodule of U.T,/T,. Then AL, /C a1 (V) is one of the groups listed
in (A.2.2), and the intersection of the offending subgroup AC,.: (V)/Capsi (V) with

F*(AL,/Cp; (V) is trivial. This implies (b). g

(2.2.5) Let i € {1,...,m}. Assume that L\ R,/R, = A, for some n € N withn =7

or n > 8. Then one of the following holds:

(a) ULT,/T, is a natural ¥,- or A,-module and one of the following holds:
(al) (Mos1 N Lg)Ra/Ra = Epa,
(a2) nis even and (M,41 N LL) R,/ R, is isomorphic to the stabilizer in A,
of a partition of {1,...,n} into 2-sets.

(b) n =17, Ul is the module listed in (A.2.2)(m), and (Mqa41 N LY )Ra/Ra is

isomorphic to the stabilizer of {1,2,3,4} in A;.

Proof. From (A.2.2) it follows that U:T,/T, is an irreducible L}-module. More
precisely, it is either a natural £,- or A,-module or the module listed in (A.2.2)(m).
Note that ¥,, does not act on the latter.

Assume that not all of the automorphisms of L} R,/R, induced by Ny, (L},) are

inner, i.e.,
NM"“(LZ)L;/CN"’a+1(L§.)LL (U;TO/TO) = z:n~

Then U.T,/T, is a natural module by the preceding paragraph. Moreover, by
(2.2.2)(a) N, (L::)(MGHOLL)CNM()H(L{,)L:’, (U;Ta/Ta)/CNMa“(L;)Lg (UsTa/To) is a

maximal subgroup of Ny, ,,(L,)L4/Ch,,_ (1i)1i (UsTa/Ts). Hence (a) follows from
(C.1.2).
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Now assume that all of the automorphisms of L, R,/R, induced by Ny, (L}) are
inner. Then (2.2.2)(a) implies that (My11 N LL)Cpi (UiTo/Ta)/CLi (UiTo/T,) is a
maximal subgroup of L., /Cy; (UiT./T,) = A,. Hence, if U,T, /T, is a natural mod-
ule, then (a) follows from (C.1.2). If UiT,/T, is the module listed in (A.2.2)(m),
then (b) follows from (C.2.1) and [14](1.5). g

For A ~ a + 1 define
M,\ = ﬂ ﬂ NM,\(LL)
pEA(N) i=1

(2.2.6) (a) Every p-component of M, is contained in R, or L,.

(b) Assume that M, has p-components. Then My N Ly < MQH.

Proof. (a) Let K be a p-component of My, with K Z L,. Then [K, Mai1 N L, <
Qo+1- Hence by (2.2.3) and (2.2.2)(b) K normalizes L for each i € {1,...,m}.
Since K is perfect, it follows that K induces inner automorphisms on L, Rs/R,, i.e.,

K < L,R,. Therefore
K = [K) K] S [Ka (Ma+l n Lo)Ra] S Qa-}-l[K; Ra]-

Since K € Qqa+1, we get [K, Ry] € Qo+1 and hence K < R,.

(b) Let u € A(a+1)and j € {1,...,m}. Since the p-components of M, generate a
characteristic subgroup of M, 1, there exists a p-component K of My, with K € R,,.
Then K < L, by (a). Moreover, by (2.1.1)(c), (2.2.3) and (1.1.2)(d) we can choose
K such that K < L7.

Suppose that M1 N L, does not normalize LJ,. Then (2.2.3)(a) implies that
[Mo+1 N Las K] Z Qa+1K-

Hence K is a non-normal p-component of M4 N L,. But by (2.2.3)(a), (2.2.4) and

(2.2.5) My41 N L, normalizes all of its p-components. -
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(2.2.7) Assume that p = 3 and there exist integers ky, ko, k3, k4 such that the following
hold:

(i) (May1NLL)RaQat1/RaQay1) is a central product of k; copies of GLy(3),

k, copies of £, and k3 copies of SLy(3).
(ii) 1Z((Mas1 0 LY)RaQas1/RaQas1))] = 2%
Then Mayy N Lo < M.
Proof. Let p € A(a +1). Put
Moi1:= Moy /RuQax1.

Then R, N L, is an abelian normal subgroup of M,.;. Therefore

(*) RaNLoNMoiNL, < Z(MapiNL,).

Assume that k; > 0 or k; > 0. Let X be a normal subgroup of (M43 N L)) (RaQax+1)
containing R,Qa,+1 such that X/R,Q,41 is one of the factors listed in (i). Suppose
that X has an orbit of size s > 1 on {L}‘, cee, LZ‘} Without loss we may assume that

{L,,..., L3} is such an orbit. Then by (A.1.1)(a)

1\/10+1 N L‘l‘, X... X A[a+1 N LZI < [A’Ia+1 N L#’X] and

(%) Map1 NLL" X ... x Moy N Ly" < My N Ly, X, X].
Now (*) and (xx) imply that

20k+2k)s | (Mo N Ly, X, X)RaRuQat1/ RaRyQaxi-
On the other hand, by (2.2.3)(a),

[Mas1 N Ly, X, X] < [Ma41 N Lo, X] € X'RaQasr-
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Since k; > 0 or k; > 0, it follows that the order of the Sylow 2-subgroups of
X'RyQoy1/RaQay1 is at least 22° a contradiction to s > 1 and the choice of X.

Hence

X< ﬂ NA’10+1(L:L)'

=1
Since this holds for any such X and any p € A(a + 1), we get My NLL < M\QH.
Assume now that k; = k, = 0. Note that this implies that LLR,/R, = PSp,(3) and

(May1 N LLYR, /R, is a parabolic subgroup of cotype 1. Then
Ma+1 n Lcl] S QO+1(R0 N La)03(CMa+lnL}, (Ua N Za+1))'

Pick i € {1,...,m}. By (2.2.2)(c) Qa1 normalizes L} . Since R, N L, is an abelian

normal subgroup of M1, also Ry N L, normalizes Lj‘. From
[Za+1, O} (Chryynrs (Ua N Zay1))] =
[Za+1, 0> (Cry 0Lt (Ua N Zas1)), O*(Catinzy, (Ua N Zasy))] <
[Ua N Zas1, 0} (Crtg iz, (Ua N Zai1))] = 1

and (2.1.1)(g) it follows that also O%(Cy,,,nLy (Ua N Za+1)) normalizes L. Hence

Mo NLY < Mgy -

(2.2.8) Assume that p = 2 and (Ma41 N La)RaQat1/RaQaxs1 is a direct product of
¥3’s. Then My, N L, < ﬁa+1.

Proof. Let k € N such that (May1 N L))RaQas1/RaQas is a direct product of k

copies of £3. Let p € A(a + 1) and put

My = Ma+1/RuQa+l-

Let D € Syly(Ma41NLy). Let A be a 2-subgroup of My, NL} that is modulo RaQq41

contained in an ¥3. Suppose that A has an orbit of size s > 1 on {LL,...,LZ‘ .
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Without loss we may assume that {L.,...,L3} is such an orbit. Since D is the
only Sylow 3-subgroup of M, N L,, A normalizes D. From (A.1.1) it follows that

|[D, A]| > 3¢~V¥_ Moreover, A acts on [D, A] by inversion. Hence
D, A, 4]| > 3¢k,

Together with
[Ra N Lg, A] < [Ra, La] < Qa

we get that [D, A, A]RaQa+1/RaQa+1 contains a factor group that is a direct product

of at least (s — 1)k copies of A3 and inverted by A. Now
[D, A, A] < [Mag1, May1 N Lo, Moy NLLY) < Mayy N L,
implies that s = 2 and
[D, A, A]RaQa+1/RaQat1 € Syl3((Mas1 N Lg) RaQa+t1/RaQa+1)-

Hence A inverts the entire Sylow 3-subgroup of (Ma41NLL)RaQas1/RaQa+1- There-

fore
k=1,
and then by (2.2.4) and (2.2.5) one of the following holds:
(1) LyRa/Ra = PSL3(2),
(2) LyRa/Ra = Spy(2)',
(3) LaRa/Ra = G2(2)

(4) LLRs/Ra = PSL4(2), (Masy N LL)Rs/R, is a rank 1 parabolic subgroup
of L} R,/R, corresponding to the middle node of the Dynkin diagram, and

UlT,/T, is the exterior square of a natural SL,(2)-module.
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Let X € Syl;([D, A, A)]). From [Z,41, X, X] = [Za+1, X]| and X < L, it follows that
[Za+l7X] = [ZO-H N UCnX] and
(Za+1, X]NT, = 1.

Since X is a diagonal between the Sylow 3-subgroups of M,y N L. and Moy N L2
and XRoQos1/RaQay1 is a Sylow 3-subgroup of (Myy1 N L) RaQas1/RaQas1, We

get

[Za+1, X1| 2 |[Zas1 N U, XITu/ Tyl = |[Zass N U, X|Ta/Tal* = |[Zas, X]I*.
Consequently,

(*) [Za+1, X] =1

In particular, L} R,/R, is not isomorphic to G,(2)' or PSL4(2).

Suppose that LL R,/ R, =2 Sp,(2)’. By (¥), (Ma4y1NLL)Ra/ R, is the centralizer of a 1-
dimensional subspace in the natural Sp,(2)-module. By looking at the 5-dimensional
indecomposable Sp,(2)-module W with a 1-dimensional trivial submodule and a nat-
ural module as factor module, we get that this centralizer even centralizes the cen-

tralizer of its largest normal 2-subgroup in W. Hence
[Za+l N Uaa Ma+l N L};,] =L

Note that if W* is the 5-dimensional indecomposable Sp,(2)-module with a natural
module N as submodule and a trivial module as factor module, then the centralizer
in W* of the largest normal 2-subgroup of the centralizer in Sp,(2)’ of a 1-dimensional

subspace in N is contained in N. Therefore
Zoy =U,T,.
But then

[Zas1s Mas1 NLY) = [(Zas1 NUa)Tay My N LY = 1.
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On the other hand, M4, N L}, switches Zo4y N U, and Z,11 N U2, a contradiction.
Hence Ll R,/R, = PSL3(2). Then UlT,/T, is a natural SL3(2)-module, and by (*)
Mgy N LY centralizes a 1-dimensional subspace in this module. Similarly to the

above, we get
Zo = UaT,.

Then the case U, N T, = 1 leads to a similar contradiction as above. Hence U, is a
4-dimensional indecomposable module for L}, with a 1-dimensional trivial submodule

and a natural PSL3(2)-module as factor module. Now
(#%)  [Zar1, Mo NLY) =U,NT,.

In particular,
[Zas1, Mag1 N Lg)| = 2.

But also
(xx %) |[Zas1 NUL, Moy N LT, /T, = 2.

It follows that Moy, N L}, centralizes U} N T,. If Mqyq N L] normalizes LY, for some
j € {1,...,m}, then My, N L also normalizes U] and thus centralizes U] N T,,.

Hence

Ty < Czops(Mas1 NLY) =To(Zas1 NUZ) - ...+ (Zar1 NUT).
Since T, < M, 4., this implies T), < T,, i.e.,

T, = Ta,

contrary to (xx) and ( x *). _

(2.2.9) Assume that L) R,/R, = A; and U} is the module listed in (A.2.2)(m). Then
Ma+1 N L:-. < Ma-{-b
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Proof. Let p € A(a+ 1). Suppose that My, N L)L has an orbit of size s > 1 on
{L,,...,L}}. Without loss we may assume that {L},,..., L3} is such an orbit. Then
Mgy N L, also permutes Uy N Zayy, ..., U N Zay, transitively. Then (A.1.1)(b) and

[Za+1, May1 N L) <UL N Z4y imply that s = 2 and
(*) [((j,_l; N Za-H)([jﬁ N Zo+l)a AIC!+1 N LL] = Uli N Zo+l-

Pick £ € Mayy N L, with (L,)* = L2. Note that s = 2 and (A.1.1)(c) imply that
[(Uin Z,,Jrl)(U;“2 N Za41), May1 N LY is a diagonal between UL N Za4y and U2 N Zg 4.

Together with (L}‘)“52 =L, (LZ)’”2 = L2, and (#) it follows that
[(Us N Zar)(UZ N Zayr), 2% = 1.
Hence z acts on (U} N Za41)(UZ N Z,41) as an involution. Now () implies that
UlN Zah,2] =1,
a contradiction to (C.2.1).
(2.2.10) Moy NLL < M,y
Proof. This follows from (2.2.4), (2.2.5), (2.2.6), (2.2.7), (2.2.8), and (2.2.9). 4

(2.2.11) Put
G := M, L}, and

R:= n Hgﬂ

¢eG

Then the following hold:

(a) No nontrivial characteristic subgroup of MQH is normal in G.
(b) RNLL =R, NL..
(c) [LL R #1.
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(d) L} is the unique minimal member of {N <G | NR/R = Soc(G/R)}. In

particular, Soc(G/R) is a perfect simple group.

Proof. (a) Let C be a characteristic subgroup of My, that is normal in G. Since

Maﬂ is a characteristic subgroup of M., so is C. From
Ga = (Ma+l7L(l]> = (Ala+lvé>

it follows that C is normal in G,. Hence C = 1.

(b) By (2.2.10), ReNL: < My,  NLL < M,,,. Since Ry N L. <G, we get
RoNL.<RNL:.

Suppose that R, N L, # RN L.. Then L} < R, since L./R, N L}, is simple. But

then G, = (Ma41, L)) = My41, a contradiction.

(c) Note that (2.2.2)(c) implies Z, < R. Hence [L.,R] > [L}, Z,] = UL # 1.

(d) Let L be a normal subgroup of G that is minimal subject to LR/R = Soc(G/R).
Then

[L},L)R/R = LLR/R.

In particular, [L},L] Z O,,(G). Since L! is a p-component of G, this implies
L <L

Hence, by (c),
(R, L] #1.

Let H be he group of automorphisms of G that are induced by Ny, 1 (Ld)- Note that
(b) and (A.1.2)(b)(d) imply that each minimal normal subgroup of G/R is isomorphic

to L' Ra/ R, and normalized by H. Now from (2.1.1)(a-c) applied to (G, M., R, L)
instead of (G4, Ma41, Ra, Lo) it follows that

o L is the product of the p-components of G that are not contained in R,
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° JVIOH permutes these p-components transitively.
Since L! is a p-component of G with R 2 L! 9 G, we get L = LL. .

From (2.2.2)(a) and (2.2.11) it follows that (I)-(V) are satisfied for Ha+1LL, Mgy,
L!, and the group of automorphisms of M, L. that are induced by Ny, (L)) in

place of G, M, L, and H, respectively.

2.3

In this section we assume (I)-(V) and
(VI) m =1,
(VII) LoRa/R, is not isomorphic to PSLy,(q).

(2.3.1) Assume that U, NT, # 1. Then p = 2 and one of the following holds:

(a)(al) LoRa/Ra = PSp,, (2*)' for some n, k € N with n > 2,
(a2) (Mas1N Ly)Ra/R, is a parabolic subgroup of type C,,_; of LoR,/Rq,
(a3) U,Ta/T, is a natural Sp,, (2¥)-module for L,
(ad) [Ua NTo| < 2.
(b)(bl) LoRa/Rs = Gy(2F)', for some k € N,
(b2) (Ma+1NLy)R,/R, is a rank 1 parabolic subgroup of Lo R,/ R, corre-
sponding to the node of the long simple root in the Dynkin diagram,

(b3) U,T,/T, is the irreducible Gy(2¥)-module described in (A.2.2)(i) for
La,

(b4) Uy NT,| < 2%

(¢)(cl) LoRa/R4 = Ay, for some n € N with n > 2,

(c2) UaTo/T, is a natural A,,-module over GF(2) for L,,
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(c3) [UaNTy| =2.

Proof. First assume that L,R,/R, is an alternating group. Then p = 2 by (VII). By
(A.2.6) UpTy /T, is irreducible, and from [14](1.5) it follows that (c) holds.

Now assume that L,R./R, is not an alternating group. Let s is the number of
nontrivial composition factors of U,, regarded as a module for L,. By [10], [14](1.5),

and (A.2.6) one of the following holds:
(i) LoRs/Ra = PSp,, (2%) and |U, NT,| < 2¥s, for some n, k € N with n > 2.
(ii) LoRa/Ra = G2(2F) and |U, N T,| < 2%, for some k € IN.
(ili) LoRa/Ra = Uy(2) and [Uy, NT,| < 4.
(iv) LaRs/Rq = U,(3), for some n € N with n > 4.
(v) LoRa/Ra = Q53,(3), for some n € N with n > 3.

Put k := 1if (iv) or (v) holds, and k := 2 if (iii) holds. By (2.2.4) (Ma+1NLs)Ra/Ra
is a maximal parabolic subgroup of LoR./R,. Let ¢ € {1,...,n} be such that the
type of this parabolic subgroup is obtained by omitting the i-th node from the Dynkin
diagram. Note that in the cases (i), (iii), (iv), and (v) Qa+1 contains an offending
subgroup for at least ¢ natural modules only if (i) holds and i = 1. Moreover, even
in this case Q. contains no offending subgroup for more than one natural module.
(This can be seen by considering matrices, obtained e.g. from the description of the
natural modules given in Appendix B.) In particular, if ¢ = 1 then s = 1 and (i) or

(ii) holds, and therefore (a) or (b) holds. Hence suppose that
1> 1.

Since (U, NT, | p € A(a + 1)) is a nontrivial characteristic subgroup of M1, there

exists u € A(a + 1) such that
UaNTy € T,,.
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Put
Y = UaNT,)T,/T,.

Suppose that ¢ = 2 and k = 1. By the remark above, s = 1. Hence U,T, /T, contains
a unique irreducible (M,4+,NL,)-submodule, and that one is a natural SL,(p)-module.
Suppose that Y does not contain this module. Then Y is an (M1 N L,)-complement
to U,T,/T, in the L,-submodule (U,T,/T,)Y of Z,/T,. Since M,41 N L, con-
tains a Sylow p-subgroup of L,, it follows that U,T,/T, has an L,-complement in
(UT,/T,)Y, contrary to Cz, /1, (L,) = 1.

Hence Y contains a natural SLy(p)-submodule for M,4; N L,. Hence (i) and (ii) are

impossible and p = 3. By the action of SLy(3) on its natural module it follows that
(*) [UaNTa,(Mas1 NL,)" # 1.

On the other hand, (My4+1 N L,)" < Ry by the structure of G,/ R, and
(Mas1 N L,)" < Cr, (U, Ta),

by (1.1.2)(d). But
Cr,(Ua, Ta) = Cr,(Ua),

again by (1.1.2)(d) and the Three-Subgroup Lemma, a contradiction to (x).

Hence ¢ > 2 or kK > 1. Let K be the p-component of M,,; N L, that corresponds to
the nodes 1,...,7 — 1 of the Dynkin diagram of L,R,/R,. Then K < L, or K < R,
by (2.2.6)(a). In the latter case it follows from K = K’ and arguments similar to the

above that K centralizes U,. Hence in any case
(xx)  [Ua N T, K] =1

If s =1, then it follows as above that Y contains a nontrivial K-submodule, contrary

to (). Hence s > 1. In particular, (ii) does not hold. Pick an L,-submodule X of

E = ((UaNTy)")T,/T,
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which is maximal subject to
XNnY =1

Let X, denote the L,-submodule of E with X < X, and X,/X = Cg/x(L,). Then
X has an (M,4, N L,)-complement in the L,-module X(Y N X;), namely Y N X;.
Since Mga41 N L, contains a Sylow p-subgroup of L, it follows that X has an L,-
complement in X (Y N X;). Now (2.1.1)(f) and the choice of X imply that X, = X,

ie.,
CE/X(L,,) = 1.

Pick an L,-submodule X, of E such that X < X, and X,/X is irreducible. Then
X,/X is a natural module for L,. Moreover, YX/X N X,;/X is a nontrivial K-

submodule of X,/X, contrary to (x*). o
(2.3.2) U,aTo/T, is irreducible as L,-module.

Proof. Suppose that U,T, /T, is not irreducible as L,-module. Then by (2.3.1)
UsNT, =1.

Let X be an irreducible L,-submodule of U, and Y an irreducible L,/-submodule of

Uy. From [X, L) # 1 and L, < (Uke) it follows that X Z Q.. Hence
(*) Lo < (X).

Note that [Y, Ly] # 1 implies that Cx(Y) < Ry, i.e.,
(#¥) Cx(Y) = X N Qu = Cx (Un).

By (A.2.5) X is Uy-invariant. From (VII) and (A.2.6) it follows that there exists a
nondegenerate G F(p)-bilinear form on X that is invariant under U,. Now (A.1.5)(a)

and (*x) imply that
(x*xx) [X,Y]=[X,Uy]
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Again by (A.2.5) Y is X-invariant. But then by (*) and (* * )
[Ua’a La’] < [Ua” (XL°1>] < Y’

i.e., Uy =Y. Hence U, is irreducible. But then also U, is irreducible, a contradiction.
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Chapter 3

Determining the action of L on R,
Part 1

In this chapter we assume (I)-(IV) and
(V) L, is perfect.
(VI) One of the following holds:
(1) LoRo/Ra = Q4 (q) (g = p*) for some n,k € N with n > 3, and U,T, /T,
is a natural OF, (¢)-module for G,.
(2) LoRa/Ra = 95,(¢q) (g = p*) for some n,k € N with n > 3, and U, T, /T,
is a natural O3, (g)-module for G,.
(3) LoRo/Ra = Qunii(q) (g = p* odd) for some n,k € N, and U,T, /T, is a
natural O,,,(g)-module for G,.
(4) LoRo/Ra = U,(q) (q = p*) for some n,k € N with n > 4, and U,T,/T,
is a natural SU,,(¢)-module for L,.

(5) LaRa/Ra = PSp,,(q) (¢ = p*) for some n,k € N withn > 2, and U,T, /T,

is a natural Sp,,,(¢)-module for L,.

(VIT) (Za+1NUa)T, /T, is a singular subspace of UyT, /T, with |(Zat1 NUa)Tw/Ta| >

q.
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Let r be the GF(g)-dimension of the singular subspace (Z44+1NUa)To/Ty of UyTy/Te.
Since M,41 N L, is the stabilizer in L, of this singular subspace, either (Mgy4; N
Lo)Ro/R, is a maximal parabolic subgroup of L,R,/R, or case (1) in (VI) holds
and (M,+1 N Ly)R,/R, is a parabolic subgroup of cotype {n — 1,n}. When (M, N
L,)Ra/R, is a maximal parabolic subgroup of L,R,/R,, let t be its cotype. Note
that (VII) implies r > 1 and hence t # 1.

Let s be the number of connected components of the Dynkin diagram of (M, N
L,)R,./R,. Define 7,...,7,, corresponding to these connected components, as fol-
lows: If (Ma41 N La)Ra/ R, is a maximal parabolic subgroup of L,Ra/R,, put

({1,...,t-1} ifl<t<n-1

{1,...,n -2} ift=n-1and LoR./R, is not of type D,,
{1,...,n=2,n} ift=n-1and LoR,/R, is of type D,

L {1,...,n—1} ift=n

1 1= 4

({t+1,...,n} ift<n-2

{n-1,n} ift =n -2 and LyRy/R, is not of type D,
2= {n-1} ift=n—2and LoR,/R, is of type D,

| {n} ift=n—-1and LyRs/R, is not of type D,

73:={n} ift=n—2and LyR,/R, is of type D,,.
If (Ma+1 N La)Ra/Ra is not a maximal parabolic subgroup of Lo R,/R., put
n:={1,...,n—2}.

For each u ~ aand A € A(u) let L, »1,..., L, s be subgroups of M,N L, containing
L, N R, such that, for each i € {1,...,s}, L,.R,/R, is a Levi complement of a
parabolic subgroup of type 7; in L,R,/R,,.

For each v ~ a define
A() = {n € AP () | U, Z, 4G,},
Xox i =([Us,Qx] | L€ AN)NA(7))Z, for each X € A(y),

Xy =Xy [ A€ A()),
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Yor=(U,|peAN)NA(y))Z, foreach A € A(y) and
Y, :=(Usln€A(V))Zy = (Yon | A€ A(9)).
3.1

(3.1.1) (a) UsNT, =1.

(b) [Ua,Uy] is an isotropic subspace of U,.
@@ if LaR,/R, = Q. (¢)and T =n
2 : ~ +
¢ if LaRy/Ra = Q3,(q) and Uy < LoR,
(C) [Uaa Ua’] N Za+l Z q2 if LaRa/Ra o Q;n(q) and Ua' S LaRa .
qg else

(d) Let X be a subspace of U, with X N [Uy, Qa+1] = 1. If z € X, then

{g € QQ.H I T € Xg} = CQO_H(.’E).

Moreover, if z # 1 then

n=r=1if (1) holds in (VI)
2n-r-1 i (2) holds in (VI)
|Qa+1 N La : CQ0+IQLO (.”E)| = n-r if (3) holds in (VI)
2n=r=1 " if (4) holds in (VI)
2= if (5) holds in (VI)

(e) If A is a normal p-subgroup of M, , then one of the following holds:

QS QR R

(e1) [Ua, Qa+1] = [Ua, 4],
(€2) [Ua, 4] is an isotropic subspace of Ul,.
(f) Cgaii([Ua Qas1]) = Cauyy (Ua, Ua N Zas1).-
(8) UaNQa| = |Ux N Qal-
(h) If X is a proper M,,,-submodule of U,, then U,NZ,41 < X < [Uq, Qat1]-
In particular,
(h1) If o € Afa + 1), then Uy NT, = 1 or Ua N Zayy < T.

(h2) If LoRa/Ra = Q4,(q) and r = n, then U, N Z,41 is the unique proper
M, -submodule of U,.
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(i) Assume that X is a proper M, -submodule of U, with U,NZ,; # X #
[Ua, Qa+1)- Then

(i1) LoRo/Ra = %, (q) (€ {+,—-}) and r=n -1,

(i2) X is a maximal isotropic subspace of U,.

Proof. (a) This follows from (VI) and (2.3.1).

(b) This follows from (A.1.5)(a).

(c) Suppose that [Us, Uy | N Zyy1 = 1. Since (U, Qat1, Qat1] < Zay1, it follows
that Uy centralizes [U,, Qa+1]. Now (a) and (A.1.5)(a) imply that

[UmUa’] < CUa(Q0+l) < Zas
contrary to [U,, Uy # 1. Hence
[[Ua, Ux] N Zay1] 2 g

The rest of (c) follows from (B.5.1.6)(a)(c) and (B.5.2.5)(a).
(d) Ifz,ye X, g€ Qo1 and z = y9, then [y,g9] € X N [Uys, Qas1] = 1 and hence

[z,9] =1.

Since M, acts transitively on {zCy, (Qa+1 N La) | T € Uy \ [Ua, Qa+1 N Lal}, it suf-
fices to check the rest of (d) for only one element z € U, \ [Ua, Qa+1 N Lo). This can
be done by a simple matrix calculation.

(g) From (A.1.5)(a) it follows that
|Ua N Q| = |Cu, (Ua)| = |Ua : [Ua, Un]| =
Uas : [Ua, Un]| = ICU,,/(Ua)l = |Ux N Qal-

(e), (f), (h), and (i) follow by matrix calculations, using e.g. the description of the

natural modules given in Appendix B. -

(31.2) If p € A(a+1) and j € {1,...,s}, then OP(L,a11;) < RyRa(Mat1 N Ly).
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Proof. First assume that L, .. ;R,/R, is perfect. Then L,s41; < R,K for some

p-component K of M,,,. Hence (2.2.6)(a) implies that
Lu,a+l,j S RuRaLa N ]wa+l = RuRa(La N Ma+1)'

Now assume that L, 41 ;R,/R, is not perfect, and suppose that OP(L, 441,;) €
R,R,L,. Then one of the following holds:

(1) ¢g=2and L, a41,;R./R, = L3,

(2) ¢g=3and L,q41,;R./R, = SLy(3),

(3) g=3and L,q41;R./R, = PSLy(3),

(4) g=2and L, o41,;R,./R, = Us(2) or SU3(2).

Suppose that (1) holds. Then L,q44;,; induces a L3 of graph automorphisms on
LoR,/R,. This is only possible if LoR,/Rq is of type Dy, (Mg41 N Lo)Ra/ Ry is of
type Ay X A; x Ay, and L, 41,; permutes these three A,’s transitively. On the other
hand, the centralizer of Uy N Z,41 in Myyq N L, is (modulo R,) of type A; x A;, and
L, o+1,; normalizes it. This contradiction shows that (1) does not hold.

If (2) or (3) holds, then L, 441 induces at least an A4 of graph automorphisms on
L,R,/R,, a contradiction similar to the above.

If (4) holds, then L, 4+1,; induces at least U3(2) or SU;(g) of outer automorphisms

on LyR,/R,. But Out(L,R,/R,) is isomorphic to £3 or C,, a contradiction. .

(3.1.3) Let A € A(a). Assume that Uy R, N LoRy = R, and Uy € M,. Then the

following hold:

(a) Ga = (M), Uy).

(b) Assume that b > 2 and p € A(A)NA(a). Then (u,a’ —2) is a critical pair.
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Proof. (a) Note that (Myy) N Ly)Ra/Rs is a maximal subgroup of L,R,/R,,
unless LoRo/Re = Qf,(q) and 7 = n — 1. If LoR,/Rs = QF,(¢) and r = n — 1,
then Uy € L, R, implies that U, switches the two maximal subgroups of L,R,/R,
containing (Ma41 N L,)Ra/Rs. Hence in any case M,y is a maximal subgroup of
G.. Then also M), is maximal in G,, and (a) follows from Uy € M,.

(b) Suppose that (i, a' — 2) is not a critical pair.

Assume that [U,,Uy] € [Uy,Ux N Qo). Then [Uy,Uy] N [Uy, Uxy N Qq) = 1, since
|[Uas Uw]| = 2. Now (A.1.5)(b) implies that Uy normalizes U,U,, a contradiction to

(a). Hence
[Uay Ua’] S [U;u Ua' N Qa]-

In particular, [U,,Uy] < Uy N U, whence U, N U, is normalized by U,. But then

(a) implies that U, = U, a contradiction to p € A(a). g

(3.1.4) Let A € A(a). Assume that Uy Ry N Lo Ry # R, and

if LoRy/Ra =2 Q%,(q) and r =n
else '

(*) ”Ua»QoH—l] N ZAI S { ‘1]
Then the following hold:

(a) Go = (M), Uw).

(b) Assume that b > 2 and |[Us, Qa+1]N Zy| = 1. If p € A(A) N A(a) and
Uy, Qo] = [Uy, Qy], then (u, o' — 2) is a critical pair.

(c) Assume that b > 2. If u € A(A) N A(a) and [Uy, Qo) N [Us, Uw] = 1, then
(1, a' — 2) is a critical pair.

(d) Assume that the following hold:
(i) b> 2.
(i) If (7,7") is any critical pair, then U,U, 2 4G, and Uy42 N Zy4q < T,

where v +1 € A(Y) NACV(y) and v + 2 € AP (y) N AC-D (5",
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Then b = 4.
(e) Assume that the following hold:
(i) b=4.
(ii) There exists p € A(A) such that (u, o’ — 2) is a critical pair.

Then U, N Z) < T,.
Proof. (a) Suppose that
E = (M\,Uy) # G,.

First assume that |[Us, Qa+1] N Zx] # 1. Then LoRo/Rs = 93.(q) and 7 = n. By
(3.1.1)(h), this implies that

[Uon Qa+l] = Ua N Za+l

Since M), is a maximal subgroup of G,, it follows that U, is contained in M, and

hence normalizes Z,. Thus
[(Ua N Za+l)(Ua N Z,\), Ua’] = [Ua N Z/\, Ua’] < [Uaa Ua’] N ZA < Ua N Za+1 N Zj.

This means that Uy R,/ R, is contained in the largest normal p-subgroup of Ny (U,N
Za+1 N Zy)Ra/ Ry, which is a parabolic subgroup of cotype 1 of L,R,/R,. But in
04,.(g) no offending subgroup for the natural module is contained in the largest normal
p-subgroup of a parabolic subgroup of cotype 1, by (B.5.1.4). This contradiction shows

that
(*,) Ua = [Ua’ QcH—l] X (Ua N ZA)

Assume that Uy is contained in M, and hence normalizes Z,. Since Uy < Qqaq41, it

follows from (') that

(%*) [Ua’Ua’] = [Uana-H»Ua’]-
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Note that [Us, Qa+1,Qat+1 N LaRs] < Zgy1. Then (+x) and (3.1.1)(f) imply that
[Ua, Uy N LaR,) = 1, a contradiction to Uy Rq N Lo Ra # Re.

Now assume that U, is not contained in M,. Then M, is not a maximal subgroup
of G,. It follows that L,R,/R, = QF,(q), r = n—1, and E is the stabilizer in G of
a maximal singular subspace X of U, with U, N Z, < X. Moreover, as in the proof
of (3.1.3) it follows that Uy < L,R,, since M, is not a maximal subgroup of G,.

Note that (B.5.1.5) implies that
UO’RO/RQ N Z(Qa+1Ra/Ra) # 1,

since Uy acts as an offending subgroup on U,. Pick u € Uy \ R, such that [u, Qay1] <
R,. Then [U,, u] is a subspace of UyNZy41 with |[Uy, u]| > ¢2. Since [Uy, Qat1,u] =1,

it follows from (') that [U,,u] < X. But then
(Ua N Zay1) N (Ua N Zy) # 1,

since |X : U, N Z,| = q. Now (') implies that
Ua N Zas1 € [Uas Qat1l,

a contradiction.
(b),(c) Suppose this is false. First assume that [U,, Qa] = [Uy, Q4] and [Uy, Qa+1] N
Zy =1. Then (A.1.5)(a) implies that Cy,(Qa) = U, N Z). Hence

U,NUy =U,NU, N Zy.
Together with [Uy, Qat+1] N Z) = 1 we get
() [CUQ'(Ua)a U#] N [Ua’v Ua] < [Qm Uu] n [Ua’v Ua] <U,N [Um Qa+1] =L

Since (u, 0’ — 2) is not a critical pair, U, < Qu -2 < Go. Then it follows from ()
and (A.1.5)(b) that

Usr, U U] < ULU,.
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Now u € A(a) implies that L, € (M,,Uy), contrary to (a).

Now assume that [U,, Qo] N [Ua, U] = 1. It follows that
[CUQ/(UQ), Uy] N [Ua’y Ua] = [Ua' N Qa, Up] N [Ua’» Ua] = 1)

and we get the same contradiction as above.

(d) Suppose that b > 4. Pick h, € L, such that A = (a + 1)". Put @ — 1:= X and
a—2:=(a+2)he. IfUspaNU, # 1, then Uyya N Zoyy < Uy by (3.1.1)(h), contrary
to (ii) and (3.1.1)(a). Thus

Ua+2 n Ua = 1

Note that (*) is satisfied for A9 in place of A for each ¢ € M,,;. Together with
Us2 NUq = (Uay2 NUy)" =1 and (c) it follows that ((a — 2)9,a’ — 2) is a critical
pair for each g € M,4;.

Since (a — 2, — 1) is conjugate to (@, a + 1), there exists a —3 € A(a —2) such that

if LaRy/Rs = QF.(q) and r =n
else '

() Wt @l Zocsl < { §
Pick hq_g € Lq_3 such that a —3 = (a—1)"-2, Put o —4 := af=-2. As above we get
Ua—4NU,s-2 = 1. Note that (') is satisfied for ((a—3)9, (e —2)9, («—1)9) in place of
(¢ =3,a—2,a—1). Hence, if g € M4, then (c) implies that ((a — 4)%, 0’ —4) is a
critical pair, provided Uy _oR? _,NLY _,R?_, # R?_,. Note that a—4 € A(a—2), since
a € Ala+2) and (a — 4,a — 2) = (ahehe-2 (a + 2)hehe-2). Hence, if g € My, then
(3.1.3) implies that ((a—4)9, a’—4) is a critical pair, provided Uy _oRS_,NLS_,R%_, =
RS _,. For each g € M, define

v [ U i U2y, Unr—i] < Z8s
# =\ U8 Qums) I (U g Uwed] € 255

Let A be a set of representatives for the cosets of Qo N L, in Qo431 N Ly. Let E be a

complement to U, N Zo41 N Z,_; in U, N Z,_,. Hence, by (%),

[UaNZy-1: E| <q and
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E=U,NZ,_; unless LyR,/Rs = QJ,(q) and r = n.

Choose e € N such that
¢° = min {|[Y,, Ux-4| N E?| | a € A}.
Define

X :={(z,a) |1 #z € [Y,,Up_s)NE®} foreach a € A and

X = |J[Ya, Uw—a] N E*\ {1}.

a€A

Then

| U Xal = 2. [Xal 2 |Al(¢° - 1)

a€A a€A

Note that, by (3.1.1)(h), [Ua, Qa+1] = Ua N Zas1, if [Uay Qa+1] N Za-1 # 1. Hence
E®N[Uy, Qa+1] =1 for each a € A.

Therefore by (3.1.1)(d) each z € X is contained in at most ¢=2"*"*!| 4| of the sub-
groups [Y,, Uy _4] N E® with a € A, if (1), (2) or (4) holds in (VI), and in at most
q~2"*7| A| of these subgroups, if (3) or (5) holds in (VI). Hence

U Xal =3 {a€ Al (z,0) € Xao}| <

acA zeX

g~ 1Al |X]| |, in the cases (1),(2) and (4)
g Al X| , in the cases (3) and (5) '

Therefore,

(¢ —1)¢g®™~""! | in the cases (1),(2) and (4)
(o) 1X] 2 { (¢* — 1)¢*™" | in the cases (3) and (5)

Suppose that b > 6. Then

W :=(Y,|a€ A
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acts quadratically or trivially on Uy _,4, even if b = 8. By (A.1.5)(a), it follows that

[W, Uy _4] is an isotropic subspace of U, _4. Hence
(k% %) |X|<|[W,Up-4]| -1<q" - 1.

From (xx) and (* x %) it follows that r = n, e = 1 and in (VI) neither (3) nor (5)
holds. Since r = n is impossible in case (2), either (1) or (4) holds. Also r = n implies

that
[US_4,Up—4) < Z%_5, foreach a € A.

In particular, Y, = U%_, for each a € A. From (ii) we get
UscaNZo 3= (UsNZy_)to 2 =U, N Z,_,

and hence
[Yo,Up-4) U, NZ%_| for each a € A.

Therefore (3.1.1)(c) gives a contradiction to e = 1 in case (1), even if E # U, N Z,_;1.
Hence (4) holds and

|Ua’—4/Ua'—4 N Q0—4| S q < q2 = I[Ua—“h Ua’——4” = an—4/CUa_4(Ua'—-4)|a

a contradiction.

Hence b = 6. In particular, Y7 = Y,g, for all a,g € M,4,. Thus
Y = ([Yh, Uss2] | h € Mayr)

is an M, -submodule of U,4,. On the other hand, since U,_4 N Z4_3 = (Us N
Zo_1)h-2 < T,_, and a is conjugate to a — 4 under L,_5, Y is an My, -submodule
of U,. Moreover, () implies that this submodule is not contained in [Uy, Qqa+1], since

Ua N Za—l = Ua—4 n Za_3 and

3 : ~ O+
¢ if LaRo/Ro = Q3,(q) and r =n
I[}/l7 Uﬂ+2] n Z0—3| Z { q else .
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But [Ua, Qa+1] is the unique maximal M, ;-submodule of U, by (3.1.1)(h). Hence
Ua =Y < Ua+2a

a contradiction.

(e) Suppose that U,NZy € T,. Then
(+x) U,NT,=1

by (3.1.1)(h). Put
E := (([Us, Uas2] 0 Z3)"e*+) T,

Note that E < Z,,2 and so U, € E. Hence (3.1.1)(h) implies that
E < [Ua, Qa+1]Ta.

Together with (x) it follows that

I([Um Ua+2] N ZA)Ta/Tal S

q if LaRa/Ra = Q3,(q) and r = n
Ve Qa+1]Ta/Ta N Z5/Ta| £ { 1 else '

Therefore,

] ~ O+ _
(k% %) |[Uu,Ugy2) N 25| < { ‘{ ;flSI;aRa/Ra >0 (g)andr=n

by (x#). Since (3.1.1)(g) implies that (o, @') is an arbitrary critical pair, we can apply

(3.1.1)(c) to (u, @ +2) in place of (@, ) and get a contradiction to (+ * *).

(3.1.5) Let A € A(a) and p € A(A) such that U, N Z, < T,.

(a) OP(Lyx1) < RaR,.

(b) U, < OP(Ra).
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Proof. Put A := OP(L,,1)R,R,. Then (3.1.2) implies that
A=R,R,(ANL,).

Note that B := L, 1Q» is a normal subgroup of M, with Cg(U, N Z,) = Q».
Therefore, by U, N Z) < T,

A=[A, Ly )RiRa = [AN La, Lyx1]RuRa < C5(U, N Zy)RuRa = QAR Ra.

Since A/R,R, has no nontrivial p-factor group, we get A = R,R,. Hence (a) holds.
Note that 7 > 1 implies that [U,, OP(L,x1] € [Us, @»). Therefore, by (3.1.1)(h),

Uy = (U, (OP(Lyaa)"™)]-

Hence (b) follows from (a).

3.2

In addition to (I)-(VII) we now assume
(VIII) If LoRy/Ra = Q5,(q) (¢ € {+,-}), thenT <n -1

In particular, M, is a maximal subgroup of G,.

(32.1) (a) Qasr < Qala.

(b) If LoRa/Ra = Q5. (q) (¢ € {+,-}), then n > 4.

Proof. (a) Suppose that Qu41 € QaLa. Then Qo1 € RaLqa by (1.1.2)(e). Pick a €
Qa+1 \ RaLs. Then a induces an outer automorphism on L, R,/R, witch centralizes
the parabolic subgroup (My41 N Ly)Rs/ R, modulo its largest normal p-subgroup.
Hence (A.4.1) applies. Since a is a p-element, case (a) of (A.4.1) does not hold. Thus
a induces a graph automorphism that fixes each node in the Dynkin diagram that
belongs to (Ma4+1NLa)Rs/Ra. But then (VIII) implies that this graph automorphism
fixes each node in the Dynkin diagram and hence is trivial, a contradiction.

(b) Since r > 1, this follows from (VIII). J
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(3.2.2) Let (v,y+1,...,7+ b) be a path such that (v, + b) is a critical pair. Then

there exists g € L, such that the following hold:

(a) The intersection of the parabolic subgroups (M,+1NL,)R,/R, and (M, ;N
L,)R,/R, of L,R,/R, is the product of a Cartan subgroup and a Levi

complement in both of them.

(b) If b > 2, then (v,y + b — 2) is a critical pair, for all z € Q,4; and v €
A((y + 1)) N A(7).

Proof. Note that (3.1.1)(g) implies that (a, @') is an arbitrary critical pair. Hence it
suffices to prove this for (v,%') = (¢, o).

Since (M,4+1 N L,)R,/R, is a parabolic subgroup of L,R,/R,, there exists a root
system ® for L,R,/R, such that

(My410 Ly) R, /Ry = QLH,

where @ is the product of the root subgroups corresponding to the positive roots
which are not contained in the root system ¥ spanned by the simple roots that
belong to the nodes 1,...,t —1,¢t + 1,...,n of the Dynkin diagram, L is generated
by the root subgroups corresponding to the roots in ¥, and H is a Cartan subgroup
in the normalizer of the product of the root subgroups corresponding to the positive

roots.
Let @~ be the product of the root subgroups corresponding to the negative roots
which are not contained in ¥. Then Q™ LH is a parabolic subgroup of L,R,/R, that
has the same type as QLH by (VIII). Hence there exists g € L, such that

(Mys1 N Ly) Ry /R, = Q7 LH.
Then (a) holds.
Assume that b > 2. Pick z € Q1. Note that by (a)

() [Uy, @ya] N Z3 =1L
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Let v € A((y+1)9) NA(7). From (3.1.4)(b) and (*) it follows that (v,y+b—2)isa

critical pair, provided [U,, @%%,] = [U,,Q,]. Assume that

[Us, @351] # (U, Q4]
Then (VIII) and (3.1.1)(i) imply that
U0 Qi) = U, 0 22,1,

Together with (x) it follows that

(U0, Q4] N Uy, Uys] < (U, Q4] N [Uy, Qy] £ 2341 N [Uy, Qya] = 1.
Now (3.1.4)(c) implies that (v, + b — 2) is a critical pair.

Choose g, € L, such that (a) and (b) of (3.2.2) are satisfied for («, @, go) in place of

(7,7, g)- Define
a—1:=(a+1) and
a—2:=(a+2)%.

(3.2.3) b < 4.

Proof. Suppose that b > 4. Note that (3.2.2) and (1.2.1)(e) imply that if (v,7') is
any critical pair and p € A®(y) N A-2 ('), then U,U, €G,. Hence it follows from
b > 4 and (3.1.4)(d) that there exists a critical pair (v,4') such that U, N Z, € T,,
where A € A(y) N ACD(y) and p € A®(y) N A®-2(4'). Since (3.1.1)(g) implies
that (a,a’) is an arbitrary critical pair, we may assume that this is the case for

(a,a') = (7,%'). Then, by (3.1.1)(h),
() UyaNTy=1.

Let A be a set of representatives for the cosets of Q, in Q441. Choose e € N such

that
¢° = min {|[Us_5, Ux—2] N Z5_,| | a € A}.
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Define
Xo:={(z,a) |1 #z € [Us_,,Uy_o]NZ%_,}, foreacha€ A, and

X = UWUs_2 Ux2lnZ5_; \ {1}.

ac€A

Then

| U Xal = 2 1Xa] > |4l(¢° - 1).

a€A acA

On the other hand, (3.2.1)(a), (3.1.1)(d), and (*) imply that each z € X is contained
in at most ¢g=2"*"*!| 4] of the subgroups [U2_,, Uy _o] with a € A, if (1), (2) or (4)
holds in (VI), and in at most g~2"*"| A| of these subgroups, if (3) or (5) holds in (VI).

Hence

U Xal =

acA

—2n+r+1 :
q |A||X]| ,in the cases (1),(2) and (4)
2 HaeAl(za)e X} < { ¢ "*7|A||X| ,in the cases (3) and (5)

zeX

Therefore,

(¢* — 1)¢*>» "' | in the cases (1),(2) and (4)
(k) [X] 2 { (¢° —1)¢>"~" , in the cases (3) and (5) '

Since b > 4, V,, acts quadratically on Uy _,. By (A.1.5)(a), it follows that [V4, Uy 5]

is an isotropic subspace of U, _,. Hence
(xx %) | X]| <|[VayUar—2]| =1 < ¢" = 1.

From (*x) and (x * %) it follows that r = n, e = 1 and in (VI) neither (3) nor (5)

holds. By (VIII) and r = n we get that (4) holds. Then e = 1 implies that
|Ua'—2/Ua'—2 N Qa—Zl S g < q2
= I[Ua—% Ua’—’l” = IUa—‘Z/CUO_g(Ua’—?)' = IUa—2/Ua—2 N Qa’—?'a

a contradiction.
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Choose g,_2 € L,_o such that (a) and (b) of (3.2.2) are satisfied for (a—2,a’'—2, go—2)

in place of (v,7’, g). Define

a—3:=(a-1)%-? and
a—4:=a%2
(3.2.4) Assume that b=4. Leti € {1,2},j€{1,...,s} and p€ A(a —2i +1).

(a) OP(Lya-2i+14) < RuQa-2i+1(Ma—2i41 N My_2i13). Hence all p’-elements of
some Levi complement of (Ma_2:41NL,)R,/R, in L,R,/R, are contained

in (Ma—2i41 N Mo_2i43)R,/R,.

(b) Op(La—2i+4,a—2i+3.j) < Ro-2i+4Qa-2i+3(Ma—2i41 N Ma_2i43). Hence all p'-
elements of some Levi complement of (Mg_2;+3N La—2i+4)Ra—2i+4/Ra-2i+4
in Lo_2i+4Ra2i+4/Ra—2i44 are contained in (Mq_2i41 N Ma_2i13)Ra2it4/

Ra—2i+4-

Proof. Since the choice of g,_9;1o implies that M, 911 N La_2i42 < (Ma_2i11 N

M, _2:13)Qa—2i+1, it follows from (3.1.2) that
OP(Lya-2i+1,5) < RuQa-2it1(Ma—2i41 N Mo_2i13).
Hence (a) holds. The proof of (b) is similar.
(3.2.5) Assume that b=4. Leti € {1,2} and p € A(a—2i+ 1) NA(a — 2i +2).

(a) UIJ N Za-2i+l = [Up., UO—-2i+4]-
(b) UuN Za—zig1 < Toosisa.
(¢) OP(Lya-2i+1,1) < R,Ro_2it2.

(d) Qa—2i+l = QuQa—2i+2-
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Proof. (a) By (3.2.2), (u,a — 2i + 4) is a critical pair. Hence Uy_si+4R,/R, is a
nontrivial elementary abelian p-subgroup of (Ma-2:41 N L,)R,/R,. Moreover, (3.2.4)
implies that U,_2;+4 R,/ R, is normalized by all p'-elements of some Levi complement
of (Ma—2i41 N L,)R,/R,. Since r > 1, it follows that (a) holds.

(b) Note that we can apply (3.1.4) with (g, —2i+ 1,a —2i + 2,0’ — 2i + 2) in
place of (4, a,c’). Hence (b) follows from (3.1.4)(e).

(c) This follows from (b) and (3.1.5).

(d) Note that r > 1 implies that
Qa-2i+1R, = [Qa-2i+1, OP(Lya—2i+1,1)| Ry

Also, by (c),
[Qa-2i+1,OP(Lya-2i411)] < [Qa-2i41, Ra-2i+2Ry) < [Qa-2i+1, Ra-2i42) Ry <
Qa-2i+2Ry.

Therefore,

Qa—2i+l = Qa-2i+2(R;4 N Qa—2i+l = Qa—-2i+2Qu'

(3.2.6) Assume that b = 4. Then [X,, Q.] < T,.

Proof. From (3.2.5)(b) we get [Xaa-1,Q@a) < To. Now the claim follows from the

definition of X,. .

(3.2.7) Assume that b = 4. Let u and v be vertices with u ~ a ~ v and d(u,v) = 2.
Then X, < Q, or X, < Q,.

Proof. Suppose that X, Z Q, and X, € Q,. Let A be the common neighbor of u

and v. Without loss we may assume that
X, NQu < 1XuN Q.|
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Note that (3.2.6) implies that X,/Z, is a module for G,/Q,.
Suppose that [X,,L,] < Z,. Then X, = X,x. Now b > 2 implies X, < Q,, a

contradiction. Hence
(Xus Lu] € 2.

From this we get that Cg, (X,, Z,) < R, and so
Cx, (X Zy) = X, N Q.

By (3.2.6),
XuNQy < Cx, (X, Z,).

Hence X,/Z, is an FF-module for G,/Q,, and X, acts as an offending subgroup on
X,./Z,.

Let E be a subgroup of [X,, L,]Z, containing Z, such that E/Z, is a maximal L, R,,-
submodule of [X,,L,]Z,/Z,. Then [X,,L,)Z,/E is an irreducible FF-module for
L,R,, and X, acts as an offending subgroup on [X,,L,])Z,/E.

Suppose that v ¢ A(u). Then (v, p) is not a critical pair, for any p € A® (), whence
V. £ Q.. In particular, X, < @Q,, a contradiction. Hence v € A(z). Now (3.2.5)(d)

implies that
OP(L,x1) < RUR,.

Suppose that [[X,, L,],0?(L,1)] € ER,. Then it follows from O?(L, 1) < R R,.,
(1.1.2)(d), and (A.3.1) that [X,, L,)Z,/FE, regarded as L,-module, is the direct sum of
at least r irreducible submodules. But then @), being the largest normal p-subgroup
of the stabilizer of an r-dimensional singular subspace of the natural module, contains
no offending subgroup for (X, L,]Z,/E, a contradiction.

Hence OP(L, ) centralizes (X, L,]Z,/E modulo R,. Note that

Xp < CQA (Q/\a Qu)a
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since X, J M, and, by (3.2.6), X, < Q,. Now the structure of Cg, (Qx,Q.)/Q. as
OP(L, ,1)-module implies that EQ, /Q, is a hyperplane in [X,, L,]Q./Q.. Therefore
(EQ, N [X,, L,)Z,)/E is a hyperplane in [X,,L,]Z,/E, and X, centralizes it by
(3.2.6). But this is a contradiction to X, I M, and (VII).

(3.2.8) Assume that b = 4.

(a) X, < Q, for each 1 € A®(q). In particular, X, is elementary abelian.

(b) [Ya,Qa) < X

Proof. (a) Suppose that X, € Q,, for some u € A®(a). Then (1.1.2)(a) implies

that

From (3.2.7) and (3.2.6) we get [X,,, Xo] < [Qa, Xa] < Ty < Z,,, and therefore
(X L] < [Xs (X)) € 2,

Since p is conjugate to a, this implies
[Xa, La) < Z,.

Hence, if A is the common neighbor of a and g, then X, = X, », a contradiction to
Xoa € Qu

(b) Since Qo < @y, for each A € A(a), (b) follows from the definition of Y, and
X

Qa-* [
(3.2.9) Assume that b = 4.
(a) Y, <T,.

(b) (Ya N Qa—2)Ro—4/Ra—4 S Z(Qa—3R0—4/Ra—4)-
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Proof. (a) From (3.2.8)(b) it follows that
Y, < X,.

a

Pick p € A(a —1)NA(a). Then Y, < X, and (3.2.8)(a) imply that Y,R,/R, is an

elementary abelian normal p-subgroup of M,_,/R,. Hence by r > 1
YoR,/R, < Z(Qa-1Ry/R,).

Now it follows from (3.2.5) that
(U, Yol U NZoy £ T,

Since L, acts transitively on A(a) and normalizes Y,, (a) follows.

(b) Note that by (a) (Yo N Qu—2)Ra—4/Ra-4 is an elementary abelian subgroup
of Qa-3Ra-4/Ra-4, and (3.2.4) implies that (Yo N Qq—2)Ra-4/Ra-4 is normalized by
each p’-element of some Levi complement of (M,_3NLa_4)Ra—4/Ra—4. Now the claim

follows from r > 1. .
(3.2.10) b= 2.

Proof. Suppose that b > 2. From (3.2.9)(b) and (3.2.5)(b) it follows that
[Ya N Qa—2, Ua—4] 5 Ta—2 S Xa-

Note that (3.2.9)(a) implies that YoR,_2/R,—2 is an elementary abelian normal p-

subgroup of M,_1/R,—2. By r > 1, we get that
Yo : Yo N Qarz| = [YaRa—2/Ra-a| < q3"C*D,

Therefore,
(#) |Ya:Cy,(Ua—g, Xa)| < g2740,

If [Ya, La) < X,, then Uy_g < Y, = Yaar1 < Qay2, a contradiction. Hence
[Ya, Lo] € Xa-
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Let W be a GF(p)LqaRa-composition factor of Y, /X, that is not centralized by L,.
Let D be an irreducible GF(p)R,-submodule of W. From r > 1 and (3.2.5)(c) it
follows that Y, /X, is the direct sum of 7-dimensional absolutely irreducible GF(q)R,-

modules, each of which is irreducible as GF(p) R,-module. Hence |D| = ¢" and
Endgrpr. (D) = GF(q).

From (A.3.1) (with RyLo/Qsy Ra/Qay, LaQa/Qa, GF(p), GF(gq), W and D in
place of G, A, B, F, K,V and X, respectively) we get that

W =DQcgrq E

for some irreducible GF(q) L,-module E. Thus, regarded as GF(p) Lo-module, W is

the direct sum of r copies of E. Together with (*) this implies that
(#) |E: Cp(Ua-s)| < g27*0.

On the other hand,
[Ua-4: Cuo_o(E)| = [Usa—sRa/Ra| 2 ¢',

since (3.2.4) implies that U,_4R,/ R, is normalized by each p'-element of some Levi
complement of M,_;/R,. In particular, F is an FF-module and U,_4 acts as an
offending subgroup. Note that the ‘exceptional’ irreducible FF-modules for the or-
thogonal groups ( cases (g) and (n) in (A.2.2) ) have no quadratically acting of-
fender in common with the natural module. Moreover, if F is as in (A.2.2)(d) then
|E : CE(Ug—y)| =¢*and r < 3 = 7, contrary to (). Hence E is a natural module.

But then
(* * *) ]E : CE(U0_4)| = q’,

again since (3.2.4) implies that U,_4 R,/ R, is normalized by each p’-element of some
Levi complement of M,_,/R,. From (%) and (x * *) it follows that r = 1, a contra-

diction. .
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3.3

In addition to (I)-(VII) we now assume
(VII) LoRo/Ro =%, (¢) (€ {+,-})and r=n—1.
(3.3.1) Assume that Uy R, N LoRy = R,.
(a) |[Ua, Un]l = 2.
(b) b> 2.

(C) UO! = (Ua N Qa’)[Uav Qa+1]-

Proof. Note that Uy R, N LoR, = R, and Uy < Qqo4+1 imply that Uy induces
outer automorphisms on L,R,/R, that centralize the parabolic subgroup (Mga4+1 N

L,)R,/R, modulo its largest normal p-subgroup. Hence, by (A.4.1),
|Ua Ro/Ra| = 2.
Therefore
(*) |Ua, Ux]l = |Ua : Cu,,(Ua)| = |Us : Ux N Qa| = [Us : Uw N Rq| = 2.

Thus (a) holds.

Let P, and P, be the two maximal subgroups of L,R, that contain M4 N Lo R,.
Since U, induces on L,R,/R, a graph automorphism that switches P;/R, and
P,/ Ry, it follows that Uy switches O,(Py/R,) and Op(P,/R,), and hence acts non-
trivially on Qu4+1Ro/Rs Thus Uy R,/R, is not normalized by M,.,/R,, whence
b > 2. Also the two maximal isotropic subspaces Uy, Op(P1)] and [U,, Op(P,)] of U,
are switched by Uy, whence [U,, Qa+1] € Qo- Since (*) and (3.1.1)(g) implies that

IUa : Ua nQa'l =2,
it follows that (c) holds.
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(3.3.2) Let (v,7') be a critical pair, A € A(y) NA®-D(y), u € A®(y)NAC-2(4') and

§ € A@(y)Nn Al-2(5). Then there exists g € L, such that the following hold:

(a) The intersection of the parabolic subgroups (M, N L,)R,/R, and (M, N
L,)R,/R, of L,R,/R, is the product of a Cartan subgroup and a Levi

complement in both of them.

(b) Assume that Uy R, N L,R, # R,. Then one of the following holds:

(b1) (u%*,4) is a critical pair for each z € M,.

(b2) [U,,Q,] is a maximal isotropic subspace of U,,, and (u9%, ) is a critical

pair for each z € Cyy, ([U,, Q,)).

Proof. Note that (3.1.1)(g) implies that (a, ') is an arbitrary critical pair. Hence
it suffices to prove this for (7y,v') = (@, '). Since (Ma4+1 N La)Ra/ R is a parabolic

subgroup of L,R,/R,, there exists a root system ® for L,R,/R, such that
(May1 N Ly)Ry/Rs = QLH,

where @ is the product of the root subgroups corresponding to the positive roots which
are not contained in the root system ¥ spanned by the simple roots that belong to
the nodes 1,...,n — 2 of the Dynkin diagram, L is generated by the root subgroups
corresponding to the roots in ¥, and H is a Cartan subgroup in the normalizer of the
product of the root subgroups corresponding to the positive roots.

Let @~ be the product of the root subgroups corresponding to the negative roots
which are not contained in ¥. Then Q~LH is a parabolic subgroup of L,R,/R, that

has the same type as QLH. Hence there exists h € L, such that
(Ma+1 N La)hRa/Ra = Q_LH

Then (a) is satisfied for each g € h(My11 N Ly).
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Assume that UyR, N L,R, # R,. Clearly (bl) holds if b = 2. Hence assume that

b > 2. Note that
(*) [Ua»Qat1]NZ2,, =1, and
(*') [Ua,Qa41] N Zay1 =1, for each g € hMyq,.

From (3.1.4)(b) and () it follows that (b1) holds, provided [Ua+2, Qa+1] = [Ua+2, Qal-

Assume that

(**) [Ua+27 Qa+l] # [Uo+2aQa]-

Then (3.1.1)(e) implies that [U,, Qa+2] is an isotropic subspace of U,. Note that
[Utz,,Qq) N Uy is a proper M2% -submodule of U, for each z € G,. Hence, if
[Ua, Uy] < Zy41, then by (3.1.1)(h) and (x')

[US:-Z: Qa] m [Ua, Ua’] S [U(';iz, Qa] n Ua m Za+l S [Ua, (';:11] n ZCH—l = 1)

for each z € M,,4,. Therefore, (bl) follows from (3.1.4)(c) in this case. Hence we

may assume that

[Um Ua’] Z Za+l-

In particular, [Uy, Qa+2] # UaNZa+1. Then [U,, Qa+2] is a maximal isotropic subspace
by (3.1.1)(h)(i).
If [US,5,Qa) N [Ua,Uy] =1 for some g € h(My41 N L,), then also

[Ugi-?a Qa] N [Uaa Ua’] =1 foreachze€ CMQ+1([U0’ Qa+2])1

since [Uy, Uy < [Uay Qa+2)- Therefore, (b2) follows from (3.1.4)(c) in this case.

Assume that
(k% %) [US,2,Qa] N [Ua,Ux] #1 for each g € h(Mgyy N Ly).
Note that |[Uat2, Qa)| < ¢" by () and (3.1.1)(e). In particular,

[Ua+2, Qa] N Ua 76 [Uay Qa+l]-
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Note that [Ust2, Qa]NUs € Zay1 by () and (+%xx). Then by (3.1.1)(h)(i) [Ua+2, Qa]N
U, is a maximal isotropic subspace of U, that contains U, N Z,4;. Together with (x)

we get
U3+2, Qa) N [Uas Qa+1]l < g, for each g € h(Mqy1 N La),
and hence, by (x * %),
(% * % %) ([U(',‘H, Qo] N [Uay Qa+1])* < [Ua,Uw], for each £ € Myyy N L.
Note that
Ua N Zas1 < {([Uay2, Qal N [Ua, Qasa])Mort7E).
Since [Ua, Un'] € Za41, it follows from (* * * %) that
|[Ua, Us]l = ¢".
Hence [U,, Uy'| = [Ua, Qa+2)- In particular, Uy N Qa| = ¢" by (3.1.1)(g). Therefore,
(x*x*x%xx) Uy NQqy = [Ua, Un]
Since (U, | v € A(a — 1)) is a nontrivial characteristic subgroup of M,_;,
U, Uy, 4G,, for some v € A(a + 1).

Suppose that (v"*,o/ — 2) is not a critical pair for some z € My,,. Then U’ <

Qo—2 < Gy . Together with (x x x x ) we get
[Uz’/n’Ua’] < Qa NUy < Uy,

contrary to (), (3.1.4)(a) and the choice of v. Hence (1%, o’ — 2) is a critical pair
for each z € M,,,. Now (1.2.1)(e) implies that U,,,U, 4G,. Hence we can choose

v=a+ 2. Then (bl) holds.

(3.3.3) Assume that in (3.3.2) (b2) is satisfied. Then |Q : Co(z)] = ¢"~! for each
x € U, N Z3, where Q := Co,nr, ([Uy, Qu))-
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Proof. Similarly to (3.1.1)(d), this follows by a simple matrix calculation.

(3.3.4) Let (7,v') be a critical pair, A € A(y)NACD(y), u € AP (y)NAG-2) ('), and
6 € A (y') N A®-2(y). Choose g € L, as in (3.3.2), if UyR, N L R, # R,.
Choose g € L, with U, € M7, ifU,R,NL,R, = R,.

(8) Gy = (MY, Uy).
(b) Assume that b > 2, U, NU, < Z,, and Q) # Q,Q,. Then Us < L RS,

(c) Assume that b > 2 and U, NU, < Zx. U;R, N LY RS # R,

Proof. (a) This follows from (3.1.4)(a), (3.1.3)(a), and the choice of g.
(b) Suppose that Us L% Rf. In particular, p = 2.
Suppose that U, N Zy € U,. Since U, N Z, is irreducible as M,-module, it follows

that U, N Z, is isomorphic to an M)-submodule of Z,/U,. Hence L, , centralizes

U, N Z,. But then O?(L, »,) < R R, contrary to Q,Q, # Q. Hence

(*) U,NZy=U,NZ=U,NU,.
Since [Ug, Q3, Q3] = (UIN Z3)[UZ, Us), it follows from () and b > 2 that U, normal-
izes the Mj-module

Y= (U3, Q% QU

Hence Y is G,-invariant by (a). Note that @), centralizes Y, since Q,Q, # @x. Hence

Y is a module for L,Q,/Q,. Now
[Y, U’Y'] = [[UI" Q,\, Q,\]U,.,, U,yl] = [U’Y’ U‘y’]

and |[U,,Uy]| = U,Q,/Q, imply that the dual of Y is an FF-module for L.,
and U, acts as an offending subgroup. Thus [14](1.5) shows that Y = U,. Since
[Uu, @x, Q2] € Z», this is a contradiction to ().

(c) Suppose that UsR N LY RS = RY. Then Q,Q, = Q» by (3.3.1)(b) and (b). If
UyR,NL,R, # R,, then [U,,Q,] N Z{ = 1 by the choice of g. If UyR, N LR, =
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, then [U,,U.,/] is not singular, but U, N Z{ is a singular subspace of U,,, whence
v v Y A v

[U,,Uy]N Z§ = 1. Therefore, in any case U, N U, < Z, implies that
U, Uy]NUS = 1.

From (A.1.5)(b) (with U,, (U N Qs)U,, and Uy in place of A, B, and V) it follows

that
() [(U2NQs)Uy, Uyl < UZU,.

Put
Y = (US) U,

From Q) = Q,Q,, (*), (a), and (3.3.1)(c) we get
Y =[Y,Q,]U,U}.

But then Y/(U,Ug) = [Y/(U,U}), Q,] and hence
UUl =Y 42G,,

a contradiction. .

(3.3.5) Assume that if (y,y+1,...,v + b) is any path such that (v, + b) is a critical

pair, then U, NUy42 =1o0r UyNUyy2 € Z,41. Then b < 4.

Proof. Suppose that b > 4. Note that (3.3.2) and (3.1.3) imply that if (y,7’) is any
critical pair and p € A®(y) N Al-2(y'), then U,U, AG,. Hence it follows from
b > 4 and (3.1.4)(d) that there exists a path (y,y+1,...,v + b) such that (y,y +b)

is a critical pair and
UyNU,42 # 1.
Hence U, NU,42 € Z,41. Note that this means that

U’7 N U’7+2 = [U'ya Q7+1a Q'y-H] = [U7+2, Q'y+la Q7+1]-
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Now extend (v, ...,7+b) to a path (y—b—2,y—b+1,...,vy+b) such that (y—2i, y+b—
21) is a critical pair, for each i € {0, ..., "’“T“}, as follows. Assume that (y—2i,...,vy+b)
has already been defined, for some i € {0,...,2}. If Uypo-2iRy—2i N Ly—2iRy—2i #
R, _5;, then choose g,_2; € L,_; such that (3.3.2) is satisfied for (y—2i,y+b—2i) and
g--2i in place of (v,7') and g. If Uyyp—2iRy—2i N Ly_9i Ry_2; = R,4p_2i, then choose
Gy—-2i € Ly_g; such that Uy_o; = (Uy—2i NUy—2i12) X (Uy—2i NU,—2i42)97-%). (A simple

calculation shows that this is possible.) Then put
y—2i—-1:=(y—-2i+1)»* and
y—=2i—2:=(y—2i+2)9%.

Suppose that (y — 2i — 2,7 + b — 2 — 2) is not a critical pair. Then (3.3.2) and
(3.1.3) imply that Uy4p—2i Ry—2iNLy_2i Ry_2i = Ry4p—2i and Uyqp_2i < M, _9;_;1. Since

Uy—2i N Z,_5i_ is the unique proper M,_,;_;-submodule of U,_3; NU,_s;_3, it follows

that
[Uy=2i, Uysp—2i) = [(Uy=2i NUy—2i42) (Uy—2i NUy—2i-2), Uysp—2i] <
Uy-2iNZy_9i1.

Since U,_2iN Z,_2i1 is a singular subspace of U,_z;, but Uyp-2iRy_2i N Ly_2i Ry _o; =
R, b—2; implies that [U,—_o;, Uy1p—2i] is not singular, this is impossible. Hence (y —
21 — 2,7+ b — 2i — 2) is a critical pair.

Define

Vi=(U,|peA®(y-b+2), (v,u) is a critical pair).

By a counting argument as in the proof of (3.1.4)(d) (and again shown in detail in

the proof of (3.3.7)) we get
() VU3l 2 ¢
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Note that U,_o N U, € Z,,, implies that [U,, Qy—2] < U,—2 and hence
[V, Uv] < [Q7—2’U‘v] <U,N U‘r—2-

Together with (x) it follows that [V, U, ] = U, NU,_,. Since [V, Qy-p+2] < Uy_p42 and

b > 4, we get
U‘y N U’7—2 S U’y—b+2 < Q'y—b—Z-

Since (y — b — 2,y — 2) is a critical pair, it now follows the construction of the path

(y—=b—2,...,7+0b) that

Uyso—2R -2 N LyypoRy1p2 # Ryqpa.

Hence, if (u — 2, —1,4,...,p + b) is any path such that (u, u + b) is a critical pair
with U,NU,42 # 1 and (p—2,p—1,..., u+b) is constructed from (u, ..., +b) by

the method above, then

(¥x) Upyp—2Ru2N Ly 2Ryure 2 # Ruto .

Note that in the construction of (y —b—2,...,7v + b), we can replace g,y by g,-s7,

for each z € Cq__,,,nL,_, ([Uy—b, @y—b+2]). Define
Y :=(UZ, 5 ]z€Cq_pini,_,([Uy—b Qy-b+2]))-

Then again a counting argument as in the proof of (3.1.4)(d) shows that
Y, 03]l > (¢° - 1)g" 7,

using (*x) and (3.1.1)(c). But since Y acts quadratically on U, and hence [Y,U,] is

an isotropic subspace of U,, this is impossible. Hence b < 4. o

(3.3.6) There exists a path (y — 4,7 —3,...,7 + b) with the following properties:
(@) v —2 = (y+2)9 for some g, € L,.
(b) v — 4 =92 for some g, € L,_,.
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(¢) (7,7 +10) is a critical pair and U,4sR, N LR, # R,.
(d) If Qy4+1 = Q,Q++2, then for each x € M, the following hold:
(d1) ((y —2)%,v+b—2) is a critical pair.

(d2) If Uy MUyt < Zyyy, then Uypp_oRE_, N LE_,RE_, # RE_,.

(e) If Qy41 # @4Q++2, then for each x € C,,, ([Uy, Qy+1, @1+1]) the following
hold:

(el) ((v = 2)*,v+ b—2) is a critical pair.
(02) If U'y ﬂ Ua,+2 S Z—7+1, then U7+b_2 S L:_2R:_2.

(f) If there exists a critical pair (p, ') such that 1 # U, NU, < Z, where v €
AP ()NAC-D(4) and A € A(p)NAG-V (1), then 1 # U,NU, 12 < Zy11.

Proof. This follows from (3.3.2), (3.1.3), and (3.3.4).

Assume that the critical pair (@, ') is chosen such that the path (a,...,a’) can be
extended to a path (o — 4,...,a') as in (3.3.6). Choose g, € L, and go—2 € La-2

such that
a—2=(a+2) and
a—4=a%2
(3.3.7) b< 4.

Proof. Suppose that b > 4. Then it follows from (3.3.5), (3.3.6)(f), and the choice of

the path (o —4,...,a’) that
1#Ugt2NUs £ Zoy1-

In particular, by (3.1.1)(a)(h)
Ug42NTy = 1.
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Put

Q= { Qa+1 N Lo if Qat1 = QaQa+2
. CQa+1ﬂLa ([Um Qa+2]) if Qa+l # QaQa+2-

Let A be a set of representatives for the cosets of Q N Q, in Q. Define

Xo:={(z,a) |1 #z€[Us_,,Uy_n)NZ%_}, foreacha€ A, and

X = U8y Uval N 22\ {1},

a€A

Then by (3.1.1)(c) and Uay2o N Uy < Zai1

— IA‘(q - 1) if Qa+1 = QaQa+2
|aL€44 Xal B anA I‘YGI = { IAl(q2 - 1) if Qa+l 36 QaQa+2-

Note that U, N T, = 1 implics that
Us_oNTa =1 foreachae A

Therefore by (3.1.1)(d) and (3.3.3), each z € X is contained in at most ¢~"|A| of the
subgroups [U2_,, Uy _o] with a € A, if Qar1 = QaQa+2, and in at most ¢! "|A| of

these subgroups, if Qo417 # QuQas2.- Hence

|UXG|=Z|{‘1€A|($,0)€XG}|S

a€A TeX

q_n|A| I‘YI lf Qa+l = QaQa+2
' MAIX]  if Qat1 # QaQase-

Therefore,

* (q - l)qn if Qas1 = QoQa+2
( ) IXl = { ((12 - 1)(1"—1 if Qa+1 7£ QOQ0+2'

Since b > 4, V, acts quadratically on Uy _,. By (A.1.5)(a), it follows that [V,, Uy _2]

is an isotropic subspace of Uy _,. Hence
(o) [ X| < |[Va,Uara]| =1 < " — 1.

From (%) and (#x) it follows that ¢"*! — ¢" < ¢" — 1, a contradiction.

(3'3‘8) Assume that b = 4.
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(a) If i € {1,2}, then Uy—2i N Za—2it1 < To2is2-

(b) If 7 € {1,2}, then (U;‘f;f‘”) S Nucry_pye La_ 2iRE o

(c) If i € {1,2} and £ € Ly_9i42 with UZ_,; € Qqa—2i, then

Z(Qa-2i+1Ra—2i/Ra—2) S Ug_9;Ra—2i/Ra2i-

(d) n < 4.
Proof. (a) By the choice of the path (a —4,...,a') we can apply (3.1.4)(e) with
(a — 21, — 21 + 2,0’ — 21 + 2) in place of (i, a, ).
(b)  Suppose this is false. Then U,_oi € L%_,,R:_, for some z € Ly _212. In
particular,

p=2.

Suppose that My_9;41 N Lo_2 has a p-component K. Then U,_,; < K and, by (a)
and (3.1.5)(a), K < Rq-2:+2. Since (1.1.2)(d) implies that L,_2;;2 normalizes each

p-component of R,_2;42, it follows that
Ua—2i < K* < L ;5

a contradiction.
Hence n = 3 and ¢ = 2. Then O*(GZ%_,,) < LZ_,,RZ_,,. But (a) and (3.1.5)(b) imply

that U,_y < O*(Ra-2i+2)- Since Ra_2i42 < G&_y,, we get
Ua—2i S Lg z_z.'»

a—21

a contradiction.

(c),(d) Note that (B.5.1.5) implies that

U:—ziRa—m’/Ra—Qi N Z(Qa-2i+1Ra-2i/Ra-2:) # 1,
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since UZ_,; acts as an offending subgroup on U,_»; and is contained in L,_g; Rq—2;

by (b). Since Z(Qa-2i+1Ra-2i/Ra-2:) is an irreducible OP(L4_2; o—2i+1.1)-module and

T

IZ_ o is Rq_2i4o-invariant, (a) and (3.1.5)(a) imply that
Z(Qa-2i+1Ra-2i/Ra—2:) S US_y;Ra 2/ Ra-2:-
Hence (c) holds. Moreover,
(x) UG 2 1 Ug_i N Q-] = UGy Ra-2i/Ra-2il 2
| Z(Qa-2i41Ra-2i/ Ra-2)| = gi(n-Hn=2),
Since [UZ_,;, Uy—2:] is an isotropic subspace of UZ_,;, we also have
(#%) |Uz_2i 1 Ug_2i N Qa-2il = |[U3_2i, Ua-2i]l < g™
From (x) and (**) it follows that n < 4. _

Define
Y= < a+2)
(3.3.9) Assume that b =4 and n = 4.

(a) YRa—Q/Ra—2 = Ua+2Ra—2/Ra—2 = Z(Qa—lRa—2/Ra—2)-

(b) Y' = [Us2,Ua-2] < Tp.

Proof. Pick z € L, with UZ,, € Qqa-2. Suppose that |[UZ, 5, Us—2]| = ¢*. Then, since
OP(La-2,a-1,1) normalizes UZ_,R,_2/R,-2 by (3.3.8)(a) and (3.1.5)(a), it follows from
(3.3.8)(c) that |UZ, ,Ra-2/Ra—2| = ¢°. But then

q -l[Ua+27 a— 2” |Us at2 ¢ Cl” (Ua—2)|=

|U:+2 +2nQa 2| —I +2Ra 2/Ra 2| —q ,
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a contradiction. Hence, by (3.3.8)(c)
Ugi2BRa—2/Ra—2 = Z(Qa-1Ra—2/Ra—2)-

Since this holds for each z € L, with UZ,, Z Q,-2, (a) follows. Moreover,
[Ua—2,Y] = [Us-2,Uas2] < T

by (3.1.4)(e). Hence (b) holds.

Define
X = C.(Qa: Ta)-

(3.3.10) Assume that b =4 and n = 3. Let i € {1,2}.

(a) [Ua—2iy Ua—2i+4) is @ maximal isotropic subspace of Uy—2;.
(b) Ua—2it4Ra-2i/Ra—2: S OP(OP ((Ma-2i+1 N La—2:) Ra—2i/ Ra2:))-

(¢) X Ra—2/Ra-2 = [Uat2, Qa|Ra—2/Ra-2 = Z(Qa-1Ra-2/Ra-2).

Proof. (a) By (A.1.5)(a) [Ua—2i, Ua—2i+2] is an isotropic subspace of U,—o;. If it is not
maximal, then (3.3.8)(c) implies that U, _2;44Ra—2i/Ra-2i = Z(Qa-2i+1Ra-2i/Ra-2i)

and hence
|Ua—2i+4Ra—2i/Ra—2i| =q< (12 = |[Ua—2i, Ua—2i+4]|,

contrary to
I[Ua—2i+4, Ua—?i“ = IUa-2i+4 : CU°_2i+4(Ua—2i)| = an—2i+4 : Ug—2i44 D Qa—2i| =
|Ua—2i+4Ra—2i/Ra—2i|-

Hence (a) holds.
(b) follows from (3.3.8)(a) and (3.1.5)(a).
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(c) Note that [Uy—2, X] < Ty < Z,,, since b > 2. Therefore,

XRo—2/Ra—2 < Cq, ,(Ua—2,Us—2NZy_1)Ro—2/Ra-2 = Z(Qa-1Ra-2/Ra-2).
Moreover, by (a) and (b),

[Ua+2, QalRa-2/Ra-2 = Z(Qa-1Ra-2/Ra-2)-
Since (3.1.4)(e) implies that [Uy42, Qa) < X, (c) holds. .
(3.3.11) b= 2.

Proof. Suppose that b > 2 and n = 4. From (3.3.9)(a) it follows that
(*) 1Y :YNQal=¢"

Let A be the subgroup of M,_3 with Ry_4 < A and A/Ry—4 = Z(Qa-3Ra-4/Ra-1)-

By (3.3.9)(b), Y N Q.2 acts quadratically on U,_4, whence
(xx) [YNQaz2:Y NQa2NA|l< .

Note that, by (3.3.8)(a) and the definition of A,
Ua-4,Y NQa—2NA] < T,_,.

Thus (%) and (**) imply that
(# %) |V : Cy(Ua-s, Za[Y, Qa))| < ¢°.

Suppose that [Y, L,] < Z,[Y,Qa).- Then Y < [Y,QalZaUqs+2. Since [Y,Q.) < Z(Y)
by (3.3.9)(a), it follows that Y is abelian, contrary to (3.3.9)(b). Hence

[Y’ LO] z ZQ[Y, Qa]-
Let W be a GF(p)LqRa-composition factor of Y Z,/[Y, Qa]Za that is not central-

ized by L,. Let D be an irreducible GF(p)R,-submodule of W. From (3.3.8)(a)
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and (3.1.5)(a) it follows that Y Z,/[Y, Qa]Z, is the direct sum of 3-dimensional abso-
lutely irreducible GF'(¢q) R,-modules, each of which is irreducible as G F (p) R,-module.
Hence |D| = ¢* and

Enderp)r. (D) = GF(q).

From (A.3.1) (with RaLa/Qa, Ra/Qas LaQa/Qay GF(p), GF(g), W and D in
place of G, A, B, F, K,V and X, respectively) we get that

W=D @grg E

for some irreducible GF(q) Lo-module E. Thus, regarded as GF(p)L,-module, W is

the direct sum of three copies of E. Together with (* x ) this implies that
(#xx%) |E:Cg(Ua-d)l < ¢*.

On the other hand, it follows from (3.3.8)(c) that
|Ug—4Ra/Ra| = |Us-a : Us—a N Qq| = |[Ua-1,Us]| =
Ua : Us N Qa-s| = |UsRa-4/Ra-4| > ¢

Since §25(¢) has no nontrivial irreducible module over GF(q) in which the index of
the centralizer of a subgroup of order ¢ is at most ¢2, this contradicts (* * * *).
Suppose that b > 2 and n = 3. If [X, L,] < Z,, then [Usy2, Qa] < [Ua-2,QalZa <
Rq_2, contrary to (3.3.10)(c). Hence

(X, La] € Z,.
From (3.3.10)(a),(b) it follows that

UsRa-4/Ra-s = Cg,_3Ra_s/Ra—s(UaRa—4/Ra—41).
Therefore,

[Ua-—«taX N Qa—-2] = [Ua—-41 Ua] S Ua-
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Together with (3.3.10)(c) we get
|X : Cx(Ua-4, Za)| S |X : X NQo—2| < g

From |Uy_4Ra/Ra| = |UaRa—4/Ra_4 and (3.3.10)(a),(b) it follows that
[Ua-4Ra/Ral = ¢".

Hence X/Z, contains exactly one non-central L,-chief factor E, and F is a natural
SL4(g)-module for L,.

Let a be an automorphism of G, which normalizes M,_,. Then X, Z, and L, are a-
invariant. Hence also E is a-invariant. Thus a normalizes the two maximal parabolic
subgroups of L,R,/R, that contain (Ma_; N Ly)Rs/R4. Since this holds for each
a € Aut(G,) with M3_, = M,_,, we get a contradiction to (II).

Now the claim follows from (3.3.8)(c). 4

3.4
In addition to (I)-(VII) we now assume

(VIII) LoR./R, = QF,(q) and r = n.

(3.4.1) Let (7,7') be a critical pair, A € A(7)NAC-D(y), p € AP (y)NACL-2(4') and
6 € AP (y)N A2 (y). Then there exists g € L., such that the following hold:
(a) [U,NZyxNZj| <gq.
(b) (u9%,4) is a critical pair for each z € Q).
Proof. If n is even, then the proof for this is similar to the proof of (3.3.2). Hence

assume that n is odd. Let P be a subgroup of M) containing R, such that P/R, is
a parabolic subgroup of L,R,/R, of type {1,...,n — 2}. As in the proof of (3.3.2)
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we can pick g € L, such that the intersection of the parabolic subgroups P/R, and

P9/R, is a Levi complement in both of them. Then
(x) |U,NZyNZ{|=gq, forcachz e M,.

Suppose that G, # (M{*,U.,) for some z € M,. Since Mj* is a maximal subgroup

of G,, it follows that U, is contained in MJ* and hence normalizes Z3". Thus
(U N Z20) (U, N Z57), Uy] = [Uy N 255, Uy ] < [Uy, Uy N 237 < U, N 20N 257

This means that Uy R, /R, is contained in the largest normal p-subgroup of N,_(U,N
Z\NZ{*)R,/R,, which is a parabolic subgroup of cotype 1 of L, R,/R,. But in OF,(q)
no offending subgroup for the natural module is contained in the largest normal p-
subgroup of a parabolic subgroup of cotype 1, by (B.5.1.4). This contradiction shows

that
(xx) G, = (MJ*,U,), foreach z € M,.

Since (U, | v € A())) is a nontrivial characteristic subgroup of M), we can choose

v € A(]A) such that
UU, 4G,.

Assume that |[U,,Uy]| = ¢". Then
[Us, Uy] = [Qs, Uy].

Hence, if (v9%,6) is not a critical pair for some z € @), then
(U2, Uy] < (@5, Uy] < Uy,

contrary to (**) and the choice of v. Now (1.2.1)(e) implies that we can choose v = p.
Now assume that |[U,,Uy,]| # ¢*. Then [U,,U,] is a proper GF(q)-subspace of
U,NZ,. Since M,N L, acts transitively on the set of 1-dimensional GF (q)-subspaces
of U, N Z,, () implies that there exists y € My N L, such that

U,,UylNZyNZy¥ = 1.
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Since [U,,U,| < Z, and [Z),@,] = 1, it follows that
U,,Uy,]NZ¢¥* =1, for each 1 € Q,.

Therefore,
() (U Uyl N (U292, Uy 1Q4) < [Us, Uy] 1 [U2, Q4] <
U,,U,]NZ¢¥" =1, foreach z € Q,.

From (xx), (* * ), (A.1.5)(b), and the choice of v it follows that (v9¥%,4) is a critical
pair for each z € Q. As above, (1.2.1)(e) implies that we can choose v = p. Now

the claim holds with gy in place of g. .

Choose g, € L, such that (a) and (b) of (3.4.1) are satisfied for (o, o/, g,) in place of

(7,7, g)- Define
a—1:=(a+1)% and
a—2:=(a+2)%.

(3.4.2) b< 4.

Proof. Suppose that b > 4. Note that (3.4.1) implies that if (y,+’) is any critical pair
and u € A®(y) N AC=D(y'), then U,U, 4G,. As in the proof of (3.2.2) it follows

that we may assume that
Ua+2 N Ta =1.

Let A be a set of representatives for the cosets of Q, in Qq41. Let E be a complement

to Ua N ZQ.H N Za—l in Ua N Za—l- Define
Xo:={(z,a) |1 £z €[Us_,,Uy—2]NTHE}, foreacha€ A, and

X = U2y, Uw_o) NTLE*\ {1}.
acA
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Then by (3.1.1)(c)

| U Xal = 2 1Xal 2 14](¢° - 1).

a€A a€A

Note that U,,2 N T, = 1 implies that
Us_o,NT,=1, foreachace A

Therefore by (3.1.1)(d) each £ € X is contained in at most ¢'~"|A| of the subgroups
[Us_,, Uy o] NTLE® with a € A. Hence

| U Xal = 3 {a€A|(z,0) € X} < ¢'"A]|X].

a€cA T€X

Therefore,
(*) I1X|>(¢*=1)g""

Since b > 4, V,, acts quadratically on Uy _o. By (A.1.5)(a), it follows that [V, Uy o)
is an isotropic subspace of U, _,. Hence

(%) |X] < |[Va, Uw 2] -1 < ¢" - 1.

From () and (x*) it follows that ¢"*' — ¢"~! < ¢" — 1, a contradiction. g

(3.4.3) Assume that b > 2.
(2) Uz N Zaor < Ta.
(b) La-2,a-11 < Ra—2Ra.
(¢) Uat2Ra-2/Ra-2 = Qa-1Ra-2/Ra-2.

(d) n=3.

Proof. (a) and (b) follow from (3.4.2) and (3.1.4)(e). Since Qq-1Ra—2/Rqe-2 is an
irreducible L,_5 4-1,1-module, (c) follows from (b) and (3.4.2). Note that (c) implies
that

Lo(n-
IUO_? : U0—2 N Qa+2| = q" and |Ua+2 . Ua+2 N Qa—-2| = q2"(" 1).
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Hence (d) follows from (3.1.1)(g). 4

Choose g,_2 € Lo_9 such that (a) and (b) of (3.4.1) are satisfied for (a—2,a' -2, go—2)

in place of (7,7, ¢g). Define
a—3:=(a—-1)"? and
a—4:=a%2

(3.4.4) b=2.

Proof. Suppose that b > 2. Define
Y := (Ul ,)U,.

Then, by (3.4.3)(c)(d)
Y : Y NQa2l =¢°.

Since a — 4, ..., a satisfy the same assumptions as @ —2,...,a+2, (3.4.3)(c) implies

that
[Ua-4,Y NQa—2] < [Ua-4,Qa-3] = [Ua—s,Us] < U,

Therefore,
(*) Y : Cy(Ua-a,[Y,QalUa)| < ¢°.

If [Y,L,] < [Y, Qa)Ua, then Usyz < [V, Qa)]UaUa—2 < Qqa-2, a contradiction. Hence
Y :=Y/Cy(La, [Y,Qa)Ua) # 1.

Let W be a subgroup of Y containing Cy (L, [Y, Qa)Us,) such that

W := W/Cy(La, Y, Qa)Ua)
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is an irreducible L, R,-submodule of Y. Note that (3.4.3)(b) implies that Y, regarded
as R,-module, is a direct sum of natural SL3(g)-modules. As in the proof of (3.3.11),

it follows from (A.3.1) that
W=FE ®GF(q) D,

where E is an irreducible L,-submodule of W and D is a natural SL3(g)-module for

R,. Now (x) implies that

and F is a natural SL4(g)-module for L, with

ICe(Qa-1)| = |CE(Ua-s)| = ¢’

In particular, Cy7(Qaq-1) is the unique irreducible M,_; N L,-submodule of W and
has order ¢°. Since U,_; := Us_2Cy(La, [V, QalUa)/Cy (La, [Y, QalUa) is an My_;-

submodule of Y with |U,_| = ¢3, it follows that
(x*x%) WNUsp=1.

From (xx) we get that W U,_; is an L,-submodule of Y. Then (x * *) implies that,
regarded as L,-module, W has a complement in W U,_,, since M,_; N L, contains a
Sylow p-subgroup of L,. By (**), this complement is a trivial L,-module of order ¢°.

But the definition of Y implies that Y has no trivial L,-submodule, a contradiction.

3.5

In this section we assume that (I)-(VII) hold. Note that by the results of the previous

sections we have b = 2.

(351) [Ua'a Qa+1, La] = UL.
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Proof. Suppose that [Uy, Qa+1,La] # Us. In particular, we are not in the situation
of section (3.4). Then by (3.2.2), (3.3.2), and (3.3.4) we can choose g € L, such that

Go=(M3,,,Uy) and
Zg+1 N Za+1 N Ua =1.

Note that with respect to the nondegenerate L.-invariant bilinear form on U, we

have
[Ua, Qasr]t = Us N Zgi1 = Uy, Ual,
by (A.1.5)(a). Again by (A.1.5)(a) and
(U2, Q2+1), [Uar, Qasi]] < (U2, Qi1 Qal N [Uars Qatr, Qa] <
Z2 N Za1NU, =1
it follows that
[V, [Ug:, Qani]] < [Uar, Ual.

Now the choice of g implies that [U,Q%,,]Ua and hence also [Uy, Qa+1)Ua is nor-
malized by G,. But then [[Uy,Qa+1]Ua,Us| < U, and L, < (Ucf,") imply that

[Us, Qas1, La) < U,, a contradiction. .

(3.5.2) Assume that LoR./R, % ¢ (q). Then one of the following holds:
(a) Case (1),(2), or (5) holds in (VI), r =3, ¢ = 2, and [Qq, La] = Ua.

(b) Case (5) holds in (VI), r = 2, ¢ € {2,4}, and [Q4, La) = Us.

Proof. Since b = 2, it follows as in [14](4.1) that case (4) in (VI) is impossible.
From (3.5.1) and L., = L, < (UZL") it follows that

[QaaLa] = [Qaa Lon La] < ([Qaa Ua”La]La> = Ua-
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If Qusr = QuQu then [Qasr,Us) = [QurUa) < Qu. If Qoys # QaQur, then
[Qa+1, Qa) € Qu, since QaQq < M,,;. Hence in any case Uy Ry/R, is an M,y -
submodule of Z(Qqa+1Ra/Ra)-

Note that Uy R,/ R,, regarded as GF(p)(Mga41 N Lo )-module, is isomorphic to the
dual of Uy N Z44. By (B.3.1.5), (B.4.1.5), (B.5.1.7), and (B.5.2.6) we get the follow-

ing:

r<3 and
r =3, unless case (5) holds in (IV) and p = 2.

Suppose that neither (a) nor (b) holds. In particular, (r,q) # (2,2). Let K be the
p-component of M,,; N L, that acts nontrivially on U, N Z,;1. Then K < L,
for otherwise K < R, and hence U, < [U,, K] < Ry, a contradiction. Since
LoRy/Ra % Q¢ (q), each automorphism of K/O,(K) is induced by some element of
L,. Together with (A.4.2) this implies that M,,, induces an inner automorphism on

L,R./R,. Hence

Since Mg+, induces GL3(¢) on Uy /[Uw, Qa+1), it follows from (x) and Uy N R, =
[Us'y Qa+1] that My NL, induces GL3(q) on Uy Ra/Ra. By the structure of (My4 1N
L,)R,/R, this implies that

p=2

Suppose that UanZa+l 76 [UmQa+l]- Let g € A= CM.,HOLO;([Ua’aQa+1]a Ua’mZa+l)'
If [Ua'aQa+l] = [U01Q0+1]a then [U03Q0+13 g] S Ua N Za+l by the ChOice Of g If

[Ua”Qa-H] # [U01Q0+1]a then [Ua’Qa+l] N Ua' S Za+17 and since [Ua’Qo+1] S Qa'y
we get [Ua, Qa—f—l,g] S [Um Qa+l] N [Qa’a La’] S Ua N Za+l- Hence in any case

(**) [Uaa Qo+lag] S UanZa+l-
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From (x) it follows that there exist g, € Moy N Ly and g, € R, such that g = g, 9gs.
By (1.1.2)(d), g, induces an GF(p)L,-endomorphism on U,. Together with p = 2
and (xx) it follows that (U, Qa+1,91] < Ua N Zay1. Now it follows from (%) that g,
centralizes Uy, Qa+1]/(Ua N Zas1). Since Uy N Zgi1 # [Uay Qa+1], g2 centralizes also

U,. Therefore,
A< (My1 N Ly)Cq, (Uy).

In particular, U, /[Uqa, Qa+1] is dual to UyNZ,4; as a module for A. But now (B.4.1.5),
(B.5.1.7), and (B.5.2.6) imply that (a) or (b) holds, a contradiction.

Hence U, N Za41 = [Ua, Qas1]- This implies that » = 3 and (5) holds in (IV) Note
that R, centralizes Uy /[Uar, Qa+1), since Uy, Ra] < Uy N Ry = Uy N Qq. Then
in G /Ry we see that this implies that R, does not centralize Qq41/QaQo unless

Ry < Qo41Ra. Since [Qat1, Ra] < Qa, we get
R, < Qat1Ro.

In particular, R, centralizes U, Ry /Ror, i.€.,
[Uay Ra) SUs N Ry =Ua N Qo

Since U, is an irreducible L,-module, it follows that [U,, Rs] = 1. Together with (x)
this implies that U, N Z,4; is dual to Uy /[Ua, Qa+1), regarded as a module for M.

Now (B.4.1.5) implics that (a) holds, a contradiction.

Note that (D.2.2) shows that the assumption LoRs/Rq % Q¢ (q) in (3.5.2) is neces-

sary.
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Chapter 4

Determining the action of L on R,
Part 2

In this chapter we assume (I)-(IV) and
(V) LoRo/Rs = PSp,, (q)' (g = p*) for some n,k € N with n > 2.
(VI) U,T,/T, is a natural Sp,, (q)-module for L,.
(VII) (Mqy1 N La)Rs/R, is a parabolic subgroup of cotype 1 in L,R,/R,.

For each p ~ o and A € A(u), let L, » be a subgroup of M, N L, containing L, N R,
such that L, »R,/R, is a Levi complement of the parabolic subgroup (M NL,)R,/R,
in L,R,/R,.

For each v ~ a define
A(v) = {n € AP (y) | U, Z, 2G,},
Xon 1= (U @l | 1 € AQ) N A(M)Z,, for each A € A(4),
Xy = (Xsa A€ A7),
Yor:=(U| ne AAN)NA(v))Z,, foreach A € A(y), and

Yy := (U, | neAn))Z,.
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4.1

(4.1.1) (a) [U.NTal € {1,q).

(b) If A is an offending subgroup for U, with A < Q,41, then

CQn+l (A[0+11 Qa) S AQQ

Moreover, Uy N T, € [Ua, 4] if and only if ¢ = 2, U, N T, # 1, and
CQ0+1(M0+17 Qa) = AQa-

(C) IUG : UO N QO’I = |Ua' . Ua’ mQaI-

Proof. (a) Assume that U, NT, # 1. Then (U,NT, | p € A(a + 1)) is a nontrivial
characteristic subgroup of M,,;. Hence there exists u € A(a+1) such that U,NT,
Tn. Then (U, NT,)T,/T, is an M, -submodule of Z,/T,.

Suppose that (U, NT,) NUT, < T, i.e,
(x) Ua(UuNT)To/Ty = (UaTo/Ts) x (U, NT,)To/T,.

Note that U, (U, N T,)T,/T, is an L,-submodule of Z,/T,. By (*), UyTa/Ty has
an (Ma41 N Ly)-complement in this module. Since M,,; N L, contains a Sylow 2-
subgroup of L,, it follows that U,T, /T, has also an L,-complement in this module.
Now [Zg, Lo) = U, and Cz, (L, To) = T, imply that U, N T, < T,, contrary to the
choice of .

Hence (U, NT,) NU,T, € T,. Since (Uy N Za41)Ta/Ty is the only minimal Mgy, -

submodule of U,T, /T, and has order g, it follows that
|U# n Tul 2 |[((UuNT,) NUaTo)To/Tal = q.

By [10] we also have U, NT,| < q. Hence Uy NT,| = U, NT,| =q.
(b) This follows from (B.3.1.4)(b) and (B.4.1.3)(b).

(c) The proof for this is tha same as the proof for (3.1.1)(g). .
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(4.1.2) If p € A(a + 1), then OP(L041) < RyRo(May1 N Ly).
Proof. This follows as in the proof of (3.1.2).

(4.1.3) Assume that b > 2. Let (v,v') be a critical pair and y+ i =+ —b+1i €

AD () N A®=(y') for each i € {1,...,b}. Then there exists g € L, such that

(a) The intersection of the parabolic subgroups (M,4+,NL,)R,/R, and (M3,;N
L\)R,/R, of L,R,/R, is the product of a Levi complement and a Cartan

subgroup in both of them.
Moreover, for any such g € L, the following hold:

(b) G, = (]w-gH’ Uy).

(c) Assume that (u,y + b — 2) is not a critical pair for some p € A((y +
1)9) NA(y). Then U,NT, #1,¢=2,1# U, Uy NQ,] <T,, and
Uy @)U, 9 G

(d) (u,7v +b—2) is a critical pair for some p € A((y + 1)9).

Proof. By (4.1.1)(c) it suffices to prove this for (7,v') = (a,a’). As in the proof of

(3.2.2) it follows that we can choose g € L, such that (a) holds. Then
(*) UaTa/Ta = [Ucn Qo+1]Ta/Ta x (Ua N Zg+l)Ta/Ta'

Since [Ua, Un] € T, it follows from () that Uy does not normalize Z3_, and hence
Uy € MS,,. Thus (b) holds.
From (4.1.1)(c) it follows that we can apply (4.1.1)(b) with (¢/, @) in place of (e, c')

and get
Co,,(My_1,Qu) < UaQu,
Therefore,
(#%) U NQa = Cuy,, (UaQu) < Cu,,(Cq,,_,(Mar-1, Qu)) = [Uar, Qv 1]-
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Assume that U, < Qu_2 for some p € A((a +1)9) N A(e). From U, < Qu -2 and

(**) we get
|[Ua’ N QO’U'IJ” < l[Ua’v Qa’—laQa'—l]] =q.

From this it follows that (Uy N Q4)Q,/Q, is a subgroup of order at most 2 in
CQZ+1(O”'(Aﬁ+,),Qu)/Q“, centralizing [U,, Q% ,,]. Therefore (A.1.5)(b) (applied to
Uy, Q%1 )Uq, Uy, Q2,1], and Uy Ty /T, in place of A, B, and V, respectively) shows

that Uy normalizes [Uy, Q% ,,]U,. Then (b) implies that
[U;.n Qi+l]Ua S] Ga-

If Uy, Uy N Qa) =1, then again (A.1.5)(b) (with U,U,, Uy, and Uy Ty /T, in place
of A, B, and V, respectively) shows that U, normalizes U,U,, contrary to (b) and

the choice of p. Hence
(U Uw N Qo) # 1.

Together with |(Uy N Q4)Q./Q,] < 2 it follows that
[Up NQa : Uy NQaNQ,| =2.

Note that Ta’ < QanQua (Ua’ nQa)/(Ua' rjTa’) = CUQI/(UG;OTOI)(UQ), and (Ua’ ﬂQan
Q“)/(Ua/ ﬂTa/) = CUOI/(L,alnTOI)(UQUﬂ)‘ Since Endcp(g)ca,(Ua:/(Ua' ﬂTa:)) = GF((]),

it follows that both |Uy N Q4| and |Uy N Qs N Q] are powers of g. Hence
q=2.

Now (Uy NQa)Qu = CQgH(MaH, Qu) IMZ,,, and hence [U,, Uy NQ,4] is a subgroup
of Z3,, that is normalized by (M3, ,,Uy) = G4. Thus [U,, Uy N Q4] < T,.
Suppose that U,NT, = 1. Then [U,, Ux| = [Uy, Ux NQa), and once again (A.1.5)(b)

shows that U, normalizes U,U,,, contrary to (b) and the choice of u. Hence (c) holds.
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Suppose that (d) is false. Then (c) implies that (U, Q%,,]Ua 9 G,, for each p €

A((a+1)9) N A(a). Hence, by conjugation we get for each v ~ a that
(x*x) [Up, @)U, <G,, forall A€ A(v) and n € A(X) NA(v).

Pick u € A((a+1)9) N A(a). Choose £ € L, _o such that o' — 3 = (o' — 1)*. Since
[Ua’a Qa’—l]Ua’—2 ﬂ Ga’—2 by (* * *)$ we get

Vo Qor—1) < [Us, Qar-3]Uar -2
Now (c) shows that U, does not centralize [UZ, Qq 3. But (**x) (with o' —4, o/ -3,

and (a') in place of v, A, and 7, respectively) implies that [UZ,Qu—3] < Uy _4Us,

a’

for some § € A®(a’ — 4) N A®=?)(;1), a contradiction.

(4.1.4) Assume that b > 2. There exists a path (y—4,vy=3,...,v+b) with the following
properties:
(@) (v,y+0b),(y—2,y+b—-2)and (y — 4,7+ b — 4) are critical pairs.
(b) v — 4 =~ for some g € L,_.

(c) For each i € {0, ..., %}, the intersection of the parabolic subgroups

(M,12i-1 NV Lyyoi2)Ryt2i—2/Ry42i-2  and
(My42i—3 N Lyyoi—2)Rytoi—2/ Ry y2i—2

of Lyi2i—2Ry42i—2/Ry42i—2 is the product of a Levi complement and a Car-

tan subgroup in both of them.

Proof. By (4.1.3), we can inductively choose g,_2; € Lo_2; and a — 2i — 2 € A(a —
2i + 1)%-=_for each i € {0,...,b}, such that (o — 2i — 2,a + b — 2t — 2) is a critical
pair, and (a)-(c) of (4.1.3) are satisfied for g,_;,a — 2i,...,a — 2¢ + b in place of
9,7,.--,7 + b, and then put

=2 —1:=(a—2i+1)%>.
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If there exists i € {2,...,b—1} such that ((a —2i+2)%-2 a+b—2i—2) is a critical
pair, then a — 2i — 2 can be chosen as (a — 2t + 2)% -2 and then (o — 2t - 2,a —2i —
1,...a+b—2i+2) is a path with the desired properties.

Suppose that ((a — 23 + 2)%-2% a + b — 2 — 2) is not a critical pair for any i €
{2,...,b—1}. In particular, by (4.1.3)(c),

(*)  [Ua-b+2, Qa-b+1)Ua-b S Go-p and
(#%) (Ut Qa-2+1)Ua-20+2 = [Ua—26+4> Qa-26+3]Ua-20+2 I Ga—2b+2-

Put p := (a — 2b + 4)%-»+2 and v := (a — b+ 2)%-¢. Since U, does not centralize
[Ua—b+2, Qa-b+1) by (4.1.3)(c), it follows from (*) that (u,v) is a critical pair with
U, : U, N Qu > q. But (*x) implies that |U, : U, N Q,| = ¢, a contradiction to

(4.1.1)(c). 4

In the following, assume that b > 2 and (a, @') is chosen such that the path (q,..., )
between a and o can be extented to a path (a — 4,0 - 3,0 - 2,0 - 1,a,...,a') as

in (4.1.4). Then
a—4=qa%?
for some go_2 € Lo_s.

(4.1.5) b < 4.

Proof. Suppose that b > 4. Then the same argument as in the proof of (1.2.5) shows

that
Aa,a+2 S Ta'
On the other hand, (4.1.1)(b) implies that

[Uaa CQa+l (Ma+l, Qa)] < Aa,a+2,

a contradiction.
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4.2
(4.2.1) Assume that b = 4.
(a) [Xa,Qa] < To.
(b) [Xa, La) = Us.

Proof. (a) Suppose that [X,, Q] € T,. Pick p € A(a + 1) N A(e) such that

[Uw Qa+1a Qa] g Ta-
If [Uy,Us—2) = U, N Zyy1, then (1.2.3) implies that U, N Z,41 < T, contrary to the

choice of yu. Hence
[U;n Ua—?] :/é Uu N Za+1-

i.e., either (o — 2, i) is not a critical pair, or ¢ = 2, Uy N Ty # 1, and U, and U,—,

act as transvections on each other. In any case we have

(*) [U;u Qa+l] S Qn——2-

From [U,,Us-4,Uqs-4] = 1, (4.1.4)(c) and the choice of the path (a —4,...,a) it

follows that
[Ua—-4v Qa—B] S Qa-
Suppose that ([Uy, Qa+1), [Ua—4, Qa-3]] # 1. Then

[[Upa Qa+1], [Ua-—lh Qa—3”Ta/To = [Uua Qa-{-l» Qa]Ta/Ta = C(Q0+l)'

Since Cy, 1, /1, (Qa+1) is not contained in [Uy, Qu-1]Ta/Ta, which is the unique max-

imal M,_,-submodule of U,T,/T,, it follows that
UaTa S <[[UmQa+1]a [Ua—4aQa-3”Ma_l>Ta S [XaaXa—2]Ta S Xa—Z-
Since Q,_2 acts quadratically on X,_,, but not on U,, this is impossible. Hence

[[U;n Qa+1]’ [Ua—4, Qa_g]] =1.
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Together with (%) we get

[Ua-4, Uy, Qa+1]] € [Ua-1,Us] < V.
Since G, = (My41,Uas_4), it follows that

[Us, Qa+1]Ua < G
But then

[Us Qa+1, Qa] = [[Uy, Qa+1]Ua; Qo] 4 Ga.

Since [Uy, Qa+1, Qa+1] < Za41, it follows that [Uy, Qa+1, Qa) < Ta, contrary to the
choice of u.
(b) Pick go_4 € La_4 such that (a)-(c) of (4.1.3) are satisfied for g4, —4,...,

in place of g,7,...,v'. Put
a—5:=(a—3)% "

Suppose that [U,, Qa-5]Ua—4 EG4-4 for some p € A(a—5)NA(a—4). Then (p,a—2)

is a critical pair by (4.1.3)(c). Note that (4.1.3)(a) implies that
My-s < My 3Qa-s.

Together with U,_2 IM,_3 and [U,, Us—2, Us—2] = 1 it follows that U,—» is contained

in CQO_S(O”'(M(,_s), Q,) and hence

[Uana—S] S Qa—2~

Note that
Us N Qa-4 < [Ua, Qa-1] £ Xa-a
Now (a) and a — 4 = a%-? imply that
(*) [[Us Qa-s],Ua N Qa-4] < [Qa-2, Xa-2] N [Xa-4,Qa-1] < Ta-2NTa-g < T
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From () and (A.1.5)(b) (with [U,, Qa-5]Ua-4, Ua—4, and U, /(Us NT,) in place of A,

B, and V, respectively) it follows that
[[Uw Qa—S]Ua-‘la Ua] S [[Uya QO—5]UO—4$ Ua N Qa—4][Ua—4a Ua](Ua N Ta)'

Since [Ull’ Qa_5]U0_4 ﬁGa_‘; = <Ma_5, Ua>, this implies that UaﬂTa Q [UI“ Qa—S]Ua-—4-
Together with (4.1.1)(b) we get [U,, Qa-5,Us) < [Us-4,Us]. Thus U, normalizes

[Uss Qa+5)Ua—4, a contradiction. Hence

[U;n Qa—S]Ua—4 ﬂ Ga-4a

for each p € A(a — 5) N A(a — 4). Since L,—_4 is transitive on A(a — 4), we get

Xa__4 = Xa—4,a—3 and hence

[Xa—4, Ua] = [Xa—4,a—33 Ua] < [Za-4[va-—3a Qa—S]a Ua] <

[Za-4,Ua][Va-3, Qa-3, Qa-3] < Zo-4.
Now the claim follows from a —4 ~ a and L), 4 = La_s < (Uz="%). 4

(4.2.2) Assume that b = 4. Let (v,y+1,7+2,7+3,7+4) be a path such that (y,v+4)
is a critical pair.
(2) Uysa@y = CQ*,-H(OP’(AJ’T'*'I)’ @-)-
(b) [U‘raUvH] < Z'7+1-

(c) Assume that g € L, satisfies (4.1.3)(a). Then (p, 7 + 2) is a critical pair,
for each p € A((y +1)9) NA(y)

Proof. (a) follows from (4.1.1)(b) and (4.2.1)(b). (b) follows from (a).
(c) Suppose that (u,7 + 2) is not a critical pair. Then U, does not centralize
[Uy44, Q+3] by (4.1.3)(c). Pick z € L., such that (y+ 3)* = v+ 1. Since (b) ( with
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v+ 2 in place of a ) implies that (U4, Qy+3]Uy+2 I G 42, it follows that U, does not

centralize [UZ,,, Q,41]. Since (b) and b > 2 imply that
Xy = U7X3.7+1 < Vi S Qs
we get [UT, 4, Qy+1] € X,, a contradiction.
(4.2.3) Assume that b = 4.
(a) Y2 < T
(b) Yo < Cq,_, (07 (Ma-1), Qa-2)-
(¢) YaN Qa2 < Co, (07 (Ma_3),Qa-4).

Proof. (a) Pick A € A(a), p € A(N), and v € A(a — 1) N A(a). By the choice of the

path (o —4,...,a), it follows from (4.2.2)(c) that (v, a + 2) is a critical pair. Hence

Uy, U] < (U, Caui (0% (Mat), @)l = () [Uy, Ul < T,

9EMa
by (4.2.2)(a)(b) and (1.2.4). Therefore, [Yya-1,Ys] < T,. Since L, is transitive on

A(a), (a) holds.
(b) From (a) we get [Ua—2, Ya, Ya] < [Ya, Ya, Ys] = 1. Since Y, 9 M,_,y, it follows
that (b) holds.
(c) Since a —4 € A(a —2), (4.2.1)(a) implies that
[Ua=4,Ya N Qa-2,Ya N Qa2] < [Ya2, Qa-2, Qa-2] < [Xa—2, Qa—2] < Ta-2-
From (a) we get
[Ua—47 Ya n Qa—2v Ya N Qa—2] S Y,; S Ta
and therefore

[Ua——4) Ya N Qa—?y Ya N Qa-—?] S Ta N Ta—2 = (Ta—4 N Ta—2)go_2 = Ta-—4 n Ta—2~

Hence Y,NQ,-2 acts quadratically or trivially on Uy_4T4—4/Ta-4. Since YoN Qa2 <

M,-1, (c) now follows from (4.1.2), (4.1.4)(c) and the choice of (@ —4,...,/). 4
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(4.2.4) Assume that b = 4.

(a) Y,/Xa is an FF-module for LoQa/Qa, and [Y,, Lo]Xa/Cly, La)Xe (Las Xa)

is a natural Sp,, (¢)-module for L,.

(b) If p € A(a — 1) N A(a), then [U,, Qa, Lo] = 1.

Proof. (a) Note that Y, /X, is a module for L,Qa/®4. From (4.1.1)b) and (4.2.3)(c)
it follows that [Ua—4,Ys N Qa-2] < [Ua-4,Ua) < Us. Thus U,—_4 centralizes (Y, N
Qa-2)Xa/ X Hence

|Ya . C'Ya (Ua—4, Xa)l S q,

by (4.2.3)(b), and then (4.1.1)(b) implies that Y, /X, is an FF-module for L,Q, and
U,—4 acts as an offending subgroup. Moreover, (4.2.2)(a) implies that if U,_4 acts as
an offending subgroup on an FF-module W for L,Q./Q., then W contains exactly
one nontrivial L,-composition factor and that one is a natural Sp,,(q)-module for
L.

(b) Pick p € A(a — 1) N A(e). By the choice of the path (a —4,...,a'), it follows
from (4.2.3)(c) that (u, o + 2) is a critical pair. Hence

(*) [UwCQa-x(OPI(Ma—I)a Qu)] < Ta»

by (4.2.2)(a) and (4.2.3)(a). If QuQ, # Qa-1, then () implies that [U,, Qa, Ls] = 1.

Hence we may assume that
(¥%)  QaQu = Qa-1.

By (4.2.1)(a),
A= X /Ty

is a module for G,/Q,. From (4.2.1)(b) and [10] it follows that
(¢ xx) |A:Ca(La)[A4,Las]| <gq.
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Note that, if U, NT, =1 or ¢ # 2, then (*) implies that [Uy, Qa-1]Ta/Ts is an irre-
ducible M,_;-module of order ¢>*~2. If U,NT, # 1 and ¢ = 2, then [Uy, Qa-1]Ta/Ts
is an indecomposable M,_;-module of order 2**~!, (U, N Z,_,)Ta/T, is the unique

proper M, _;-submodule and has order 2. Hence in any case (x % *) implies that
[Uss Qa-11Ta/Ta < Ca(La)[A, La-

Suppose that [U,, Qa-1]Ta/Ta € Ca(Ls). Since
Czai(LayTo) < T,

the stucture of [Uy, Qa-1]Ts/Ts as M,—1-module implies that
[Usy Qa-1]Ta/Te N Ca(Las) = 1.

Hence [U,, Qa-1]Ta/Ta is isomorphic to an M,_;-submodule of [A, L,]/Ca,1.)(La)
Note that (4.2.1)(b) implies that

(A, Ly) = UaTo/To = Us/(Ua N Ty).
In particular, ¢ = 2 and
(k% x%) |[Uy Qa-1]Ta/Tal = ",

since U, /(U, N T,) contains no irreducible M,_;-submodule of order ¢>"~2. Further-
more, the M,_,-composition factor of order ¢**~2 in [U,, Qa-1]Ts/Ta also appears in
U,, whence M,_; N L, acts nontrivially on this composition factor. Now (4.2.1)(b)

implies that this composition factor does not appear in A/[A, L,]. Hence
[Uhs Qa-1]Ta/Ta <[4, La)-

Since Q, centralizes [A, L,], this is a contradiction to (%) and (* * * *). Thus
Uy Qa-1]Ta/Ta < Ca(La),

ie, [Uu, Qa-1,La] < To. Now the claim follows from L, = L} and the Three-

Subgroup Lemma. .
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(4.2.5) Assume that b = 4. Then [Usy2, Ug—4,Us—4] = 1.

Proof. Suppose that [Uai2, Ua—s, Ua—4] # 1. Define
Y = (Ugs).

Qa

Since [Y,U,_4] < Y42, (4.2.3)(b) applied to (a—2, @ —4) in place of (o, a —2) implies

that
(*) [Y,Us-4,Us-4] < Tos.

Suppose that [Y,U,_4, Ua—4] < T,. Then () implies that
[Y,Us-4,Uad) S T2 = Toos.

But then [Y,U,_4] < Qqa_4, contrary to [Y,Us—4, Ua—4] # 1. Hence
(xx) [Y,Us-4,Uqa-4] € T,.

Since () implies that
[Y, Ua-t, Ua-a] S U323" = U,

it follows from (xx*) that
Ua < [Y, L.

Put

A= [Y, La]/C[y’La](La) and
B = UQC[Y,LO,](La)/C[Y,La](La)-

Suppose that A = B. Pick g € L, such that (a+1)9 = a—1. ThenY = U] ,[Y, L,] =
U3 ,2UaCly,La)(Ls). Since d(a — 4, (o + 2)9) < 4 and Us—4 < LaQa, it follows that

[Y7 Ua—4» Ua—4] S [[Ug+2) Ua—4][Uaa Ua—4]C[Y,La](L0)1 Ua—4] = 1)
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a contradiction. Therefore
A # B.

Now (4.2.4)(a) and (4.2.1)(b) imply that A/Ca(Lq, B) is a natural Sp,, (¢)-module
for L,Qu/Qq- Put

C:= CA(Ua—4)'

Note that C is an M,_,-submodule of A by (4.2.2)(a). From (4.2.3)(b)(c) it follows

that |Y, : Yo N Qa-2 N Qu—s| < g% and hence
(xx%) |4:C| < ¢

Suppose that L,R,/R, = Sp,(2)’. Pick z,y € L, such that KR,/R, is a Levi
complement of Q,_1Ra/Rs in (Ma_y N Ly)Ry/Ry. where K := (UZ_,,UY_,). Note
that A, regarded as a module for K/C4(K) (& %£3), consists of two natural Xs-
modules and trivial modules. Hence (x * *) and the projectivity of the natural ¥;-
module imply that A is completely reducible as K-module. But then U}_, and hence
also U,_4 acts quadratically on A. Since T,_, < Z,, this is a contradiction to (x)

and (**). Hence

(x**) LoRo/Ra % Spy(2)'.

Since U,-4 does not centralize the natural Sp,,(¢q)-modules B and A/Ca(La, B),
(* * ) implies that A/C picks up the two M,_,-composition factors on top of B and
A/C4(Ls, B). Hence

(4,07 (M,_,), 0% (M,-1)] < C.
Since (* * *) implies that U,_4 < Qa-, < Q0" (M,_,)', it follows that U,_4 central-

izes A/C, a contradiction to (x) and (xx). .

(4.2.6) b=2.
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Proof. Suppose that b > 2. Then b = 4 by (4.1.5). By (4.2.3)(c) there exist a — 5 €
A(a—4) and a — 6 € A(a —5) such that (o —6,a — 2) is a critical pair. Note that it
follows from (4.1.1)(b) and the choice of the path (a —4,...,a’) that we can choose
z € U,42 such that (4.1.3)(a) is satisfied for (o — 2, @ — 6) in place of (vy,v') and some

9 € zR,_2N L, 5. Then (4.2.3)(c) implies that (o — 4, (a — 4)*) is a critical pair, i.e.,
Us-4 € Qa-s.

But from (4.2.5) we get
(Ua23?) = Ua-4lUa-1, Uas2] < Qa-s,

a contradiction. .

(d) G4 = LoR,.
(e) [Qa L] =1.
(f) [‘YCNQO] S Ta~

(8) [QasLa] < Xa.
Proof. (a),(b) Note that
(*) [Z2,,07 (M) < Qo forall A € A(a) and pu € A(N),

since Z, I My and [U,, Z,,Z,] = 1. In particular, (a) holds. If Z, # U,Ta, then
Uy < [Zor, O (M))], contrary to (x) and Uy € Qa.
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(c) Note that each eigenvalue of an element of M, 1ML, on Cq,,, (0P (Mat1), Qa)/Qa
is a square in GF(q), but each element of GF(q) is an eigenvalue of some element of
Mas1 0 Lar o Uw /Uty Qacsi]

Suppose that p is odd. Then there exists A € GF(q) such that A is not a square in
GF(q). Pick g € My, N Ly such that g acts on Uy /[Uy, Qa+1] by multiplication by
A

Suppose that g induces an outer automorphism on L,R,/R,. Put
A= O ((Ma41 N Ly)Ro/Ry).

Assume that n > 2 or ¢ > 3, and hence A = KR,/R, for some p-component K of
My;1. Then K < Ry or K < Ly by (2.2.6)(a). In both cases there exists h € L,
that induces tha same automorphism on A/O,(A) as g. But then gh~! induces an
outer automorphism on L,R,/R, that centralizes A/O,(A), contrary to (A.4.2).
Assume now that n = 2 and ¢ = 3. In this case A = —1 and we may choose g
such that g € Ry N Ly. If g induces an outer automorphism on A/O,(A), then
A=A, g]Oy(A) < (RyRs/Rs) Op(A) and hence

A= [Aa g]Op(A) S ([Ra’a La’]Ra/Ro) OP(A) S Qa’Ra/Raa

a contradiction. Hence g induces an inner automorphism on A/O,(A), contrary to
(A.4.2).
Thus g induces an inner automorphism on LoR,/R,. Since LoRy/Ro = F*(Ga/Ra),

it follows that
g =919, forsome g; € (May1 N L,) and g3 € R,.

Since Uy /[Ua, Qa1] is dual to U,NUy as (Ma41NLy)-module, there exists A € GF(q)
such that g; acts on U, /[Ua, Qa+1] by multiplication by A;* and on U, N Uy by mul-

tiplication by A;. Note that this implies that g; acts on Cq, ., (0P (Myst1), Qa)/Qa by
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multiplication by A2. Since [Qa+1, Ra] < Qa, also g acts on Co, (0P (May1), Qo) /Qa

by multiplication by M2. Since (a) implies that
UwQa = CQa1y (07 (Mas1), Qa),

it follows that ) is a square in GF(g), a contradiction.

(d) By (c), @, < Qo and hence [Q,,Uy] = 1. Now (d) follows from L, < (UL).
(e) Note that [X,x, Qa] < Z) for each A € A(a). Hence (e) follows from (d).

(f) From the definition of X, and Y, it follows that [Y,, Q) < X,. Since (4.2.6)
implies that L, < Yq, (f) holds.

(4.3.2) Assume that [Qa, Ls] # U,.

(a) Qa—H = XaQa’ = Xa’Qa-
(b) UaNTa # 1.
(c) n=3.

(d) [Qa; La]/Ciqa,La](LasUa) is an O7(g)-spin-module for L,.

Proof. (a) Suppose that Qa1 # XoQo- Then X, < UyQo, since Xo I Mgy
Hence [Xq, Uy] < U,. Since L, < (Uke), we get

[Xa’ La] S Ua»

contrary to (4.3.1)(f) and [Qa, La] # Ua- The proof of Qu41 = XorQq is similar.
(b) Suppose that U, N T, = 1. Then

Ua' n Za+1 = [Ua’a Ua] < Ua-
But also, by (a),
Ua’ N Za+1 = [Ua’7Qa+1a Xa] < X:;

Now (4.3.1)(e) implies that Uy N Z4,; < U, N T,, a contradiction.
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(c),(d) By (4.3.1)(e),
A = [‘Ya, LO]/C[/\'O,LG}(LQ, Ua)

is a module for G,/Q,. Since « is conjugate to o', (4.3.1)(f) implies that [ Xy, Qo] <

T, and hence

|41 Ca(Xa)l < |[Xa La] ¢ [Xa, La] N Qo] £ [Xa : Xa N Qul.
Note that

| Xa: Xa N Qul =¢*""" = |Xor : Xor N Qal-

Hence A is an FF-module for L, on which X, acts as an offending subgroup. More-

over, by (4.3.1)(a)(e),
A, Xo, Xo] =1

Since (a) implies that X, does not act quadratically on the natural Sp,,(g)-module,

it follows that n = 3 and A is an O7(q)-spin-module for L.
(4.3.3) Assume that [Q,, L] = U,. Then ¢ € {2,4}.

PTOOf. Let g€ A= CMC,HOLQ;([Ua”Qa+l]7Ua’ N Za+l)~ If [Ua',Q0+1] = [Ua’Qa+l]a
then [Uaa Qa+l7g] S Ua N Za+1 by the choice of g- If [UaH Qa+l] 76 [UaaQa+1], then
[Uas Qas1) N Un < Zay1, and since [Uy, Qaz1] < Qo by (4.3.1)(a), we get

[Ua, Qa+1ag] S [Uon Qa-H] N [Qa’a La’] S Ua N Za+1-

Hence in any case

(*) [Ua, Qa+1’g] S Ua N Za+l-

In particular, g centralizes O7 (May1 N Lg)Qas1 /Qa+1 and hence induces an inner
automorphism on L, R,/ R,, by (A.4.2). Thus there exist g € My41NL, and g» € R,
such that g = g,9,. By (1.1.2)(d), g, induces GF(p) L,-endomorphisms on U,/(U, N
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T.,). Together with () it follows that g, centralizes O” (My41 N Lo)Qa+1/Qas1- Then
[Ua, Qa+1,91) < Ua N Zyy1 by (4.3.1)(c). Now it follows from (*) that g, centralizes
[Ua, Qa+1]/(Ua N Z441) and hence also U, /(Uy N Ty). Therefore,

(xx) A < (Mai1 N Ly)Co, (Un, Uy NTy).

In particular, Uy /[Ua, Qa+1] is dual to (Uy N Za41)/(Ua N Ty) as a module for A.
Assume that U,NZ,4, < T,T,. Then A centralizes (UyNZs+1)/(UaNT,) and hence
also Uy /[Ua,y Qa+1]- Since Cq, ., (OP (Mat1, Qo) is isomorphic to Uy /[Uy, Qa+1] as A-
module, it follows that ¢ = 2.

Assume that U,N Zoy1 € ToTs. Then (Uya N Zoy1)/(UaNTy) is isomorphic to (Uy N
Zoy1)](UaNT,) as A-module. Hence U, /[Us, Qa+1] is dual to (Uy NZg41)/(Uxw NT,)
and isomorphic to Uy /[Uy, Qa+1) as A-module. Now (B.4.1.4)(b) implies that g €

{2,4}. ,
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Chapter 5

Determining the action of L on R,
Part 3

5.1

In this section we assume (I)-(IV) and
(V) LoRo/Rs = Gy(q)' (g = 2F for some k € IN), and p = 2.

Note that (2.3.2) implies that U,T, /T, is the Gy(g)-module listed in (A.2.2)(i).

(5.1.1) Let (v,7') be a critical pair.
() Uy, Uy) = Uy N @y = Uy NQy.
(b) Uy : Uy N Q| = |Uy : Uy N Qs = g*
(c) UyRy/Ry = Cg,/r,(Uy R,/ Ry).
Proof. [14)(1.2).
(5.1.2) b < 4.

Proof. Suppose that b > 4. By (5.1.1)(c) and (1.2.6) assumption (iii) of (1.2.5) is
satisfied. Since M, is a maximal subgroup of G,, also assumption (ii) of (1.2.5) is

satisfied. Hence (1.2.5) implies that there exists v € =, 442 such that

[ N 2 L] =1

9EMq )
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Define

D:= [\ (U U]

QEM0+1
Then D < T,. But either U,R,/Rq is normalized by My.1/Ra or |U,Ra/Ra N

Z(Ma41/Ra)| = ¢, and therefore in any case D € T,, a contradiction. .

Choose g, € L, such that Uy & M3%,, i.e.,
Ga = (Mgil,Ua')-
Define
a—1:=(a+1) and
a—2:=(a+2)%.
(5.1.3) Assume that b = 4.
(a) (@ — 2,0+ 2) is a critical pair.
(b) Qa-1 = Qa-2Qa-

Proof. (a) follows from (1.2.6), (1.2.1)(e) and (5.1.2).

(b) Assume first that Uyi9Re—2 dMa—1. Then Z(My—1/Ra-2) < Uat2Ra—2/Ra-2.
Since Qa-1Ra-2/Cq,_,Rr._,(Ma—1, Ra—2) consists of two irreducible M,_;-modules of
order ¢?, it follows that Q,—, < (Uﬁ"{’)Ra_g. Now QqRqo-2 I M,_, implies that
Qo-1 £ QaRa-2 and hence Qa—1 = Qo(Qo-1 N Ra—2) = QuQa-2-

Hence we may assume that

(*) Ua+2Ra—2 S_] Ma—l-

Let K be a Sylow 3-subgroup of M,_; N L, or the 2-component of M,_; N L,,
depending on whether ¢ = 2 or ¢ > 2. From G, = (M,_1,Uy), b = 4, and () it

follows that
[Ua—2> Ua+2] S Ta-
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Hence K centralizes [Uy—2, Ua+2], which implies that
K< R,_,.

Since the two M,_,/R,-chief factors of order ¢? in Q-1 Ro/Ra = [Qa-1, Ma—1]Ra/Ra
are contained in [Q,—1, K]Ry/Ra, we get Qa1 < [Qa-1, Ra—2]Ra < Qo-2R, and
hence Qa—l = Qa—2(Qa—l N Ra) = Qa—2Qa- n

(5.1.4) b=2.

Proof. Suppose that b > 2. Define
Y i= [(Usts): QalUa:

Note that [Y, Q] < Ra—2 by (5.1.1)(b). Hence
(*) [Y:YNQaa| <¢

by (5.1.3)(b). Pick ga_2 € La_3 such that Uyyo € M227* and put
a—4:=o%2

As in (5.1.3)(a) it follows that (o — 4,«) is a critical pair. Since Y centralizes U,,

(5.1.1)(c) implies that

(**) Yn Qa—? S CY(U0—4» [Y, Qa]Ua)-

Since Gy(g) does not have an FF-module in which the index of the centralizer of an

offending subgroup is smaller than ¢3, it follows from (), (**), and (5.1.1)(b) that
[Y; Lo] < [Y, Qa)Us-
But then

[Uu+2, Qa] S [Ua—2’ Qa][Ya Qa]Ua S Qa-2,

contrary to (5.1.1)(b) and (5.1.3)(b).
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(515) (a) [Ua, :x+l] =U,N Qa’ =U,NUy =Ux N Qa = [UO" :x+l]‘

(b) [Qaa La] = Ua.

Proof. (a) This follows from (5.1.1)(a)(b) and (5.1.4).
(b) From (a) and L, = (UL®) we get

[QmLa] < ([QmUa']Lo) = ((Ua n Ua')La) = U,.

Hence (b) holds.

(5.1.6) Assume that g # 2. Let K be the 2-component of My,; N L.
(a) K < Laf.
(b) Ry = Qa'(Ra' N Ra)-
(¢) [Uw, Ra] = 1.
Proof. (a) Note that (5.1.5)(a) implies that [U,, K] € Uy N Qu. Hence K € Ry
Now the claim follows from (2.2.6)(a).
(b) Suppose that Ry € Qu (Rar NRy). Since Ry Ro/Ra <A Myy1/Ra, it follows that

Qa+1 < RaRy. Hence (K, Ry] € Qu, contrary to (a) and (1.1.2)(d).
(¢) From (b) and (5.1.4) it follows that [Uy, Ra] # Uy, i.e.,

[Ua’a Ra’] < Ta"
Now the claim follows from (1.1.2)(d) and the Three-Subgroup Lemma. _

(5.1.7) g =2.

Proof. Suppose that ¢ > 2. Let S be a Sylow 2-subgroup of M,,,. Let H be a sub-
group of M, N L, such that HR,/R, is the intersection of Cg, /g, (Z(SRa/R.)) and
a Cartan subgroup in Ny, ,/r,(SRa/Ra). Then g > 2 implies that [U,, Q1170 /Ta

contains no trivial H-composition factor.
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Suppose that H € L, R, . Define
Mot1 := Mas1/Qat-

Let K be the 2-component of M,,, N L,. Then
K = SLy(q) and HK = GLy(q).

Pick h € H and k € K such that h ¢ Ly Ry and hk € Z(HK). From (5.1.6)(a)
it follows that hk ¢ L, R, i.c., hk induces an outer automorphism on Ly Ry /Ry
But also by (5.1.6)(a), K is the 2-component of My, N Ly and hence [K, hk] < Qqa+1
implies that hk induces an inner automorphism on Ly Ry /R4 . This contradiction

shows that
(*) H S (A’fa+l N La')RQI.

Since, regarded as (M,41 N Ly )-module, [Uy, Q%1 11Za+1/Za+1 is dual to the central-
izer of Qa1 in Uy /[Uar, @4 4,], it follows from (x), (5.1.6)(c)(a), and the first para-

graph that the centralizer of Q41 in Uy /[Uw, Q'] contains no trivial H-composition

factor. But
Z(SRa/Ra) S CUO,(Q0+1» [Ua’a Q:H.l])Ra/Ray

and H centralizes Z(SR./R,), a contradiction. .

9.2
In this section we assume (I)-(IV) and
(V) LaRa/Rs = Qfy(q) (g = p*) for some k € IN.
(VI) U, is a half-spin module for L,.
(5.2.1) Let (7,7") be a critical pair.

(@) Uy, Uyl =UyNQ,=U,NQy.
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(b) Uy : UsNQy| = Uy : Uy NQy[ = q®.
(c) UyQ, = Qx where A € A(y) N AG-D(5").

(d) (MyxNL,)R,/R, is a parabolic subgroup of cotype 1 in L,R,/R, where
A€ A(y) NALD(Y).

Proof. [14](1.2) and [16].
(5.2.2) b< 4.

Proof. Suppose that b > 4. By (5.2.1)(c) and (1.2.6) assumption (iii) of (1.2.5) is
satisfied. Since M,y is a maximal subgroup of G,, also assumption (ii) of (1.2.5) is

satisfied. Hence (1.2.5) and (5.2.1)(c) imply that
[Va, Ua'] < T,

contrary to Lo < (UL*). .

Choose g, € L, such that Uy € M2, ie.,
Ga = (Mf5,Ua).

Define
a—1:=(a+1) and
a—2:=(a+2)%.

(5.2.3) Assume that b > 2.

(a) (@ —2,a+2) is a critical pair.
(b) [Ua—2) Ua+2] S Ta-

(¢) O” (Ma_1) < Ra_sRa.
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Proof. (a) follows from (1.2.6), (1.2.1)(e) and (5.2.2).
(b) From (1.2.4) and (5.2.1)(c) it follows that L, centralizes [Us_2,Ua42). Also
(5.2.1)(c) implies that Q,—; centralizes [Uy—2, Us+2].
(c) Let K be the (by (5.2.1)(d) unique) p-component of M,_; N L,_2. Then
[U —21Ua+2aK] # L.
Thus (b) implies that K Z L,. Hence K < R, by (2.2.6)(a). 4
(5.2.4) b= 2.
Proof. Suppose that b > 2. Define
Y i= (Ul,) Za.
From (5.2.1)(c) we get
(*) |Y:YNQqa2l ¢
Pick go—2 € Lo_o such that Uy, o € M7 and put

a—4:=a%?2

As in (5.2.3)(a) it follows that (a — 4, «) is a critical pair. From (5.2.1)(c) it follows

that
(**) Yn Qa—2 S C}"(Ua—4> Ua)-

Note that Y/Z, is a module for G4/Qqa by (5.2.3)(b). If [Y, La] < Z,, then Uyyp <

Ua—2Z4 < Qq-2, contrary to (5.2.3)(a). Hence
Y, La) € Z,.

Let W be a GF(p)(LoR,)-composition factor of Y/Z, that is not centralized by L.
By the same argument as in the proof of (3.2.10) it follows that, regarded as GF(p)L,-
module, W is the direct sum of 8 copies of some irreducible GF(p)L,-submodule E
of W. Then (*) and (xx) imply that

(xx%) |E:Cg(Uasd)| <gq.
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In particular, E is an FF-module for L,U,_4 and U,_4 acts as an offending subgroup.
By (5.2.1)(c), U,—4 does not act as an offending subgroup on the natural module.

Hence (A.2.2) implies that E is a half-spin module. But then (x * x) contradicts

(5.2.1)(b).

(5.2.5) [Qa, La] = V.

Proof. From (5.2.1)(c) (with (o, a) in place of (v,7'), (5.2.4), and L, < (ULe) it
follows that

[Qas La) < ([Qa, Ux]™) < ([Qas1, Uw]™) = ([UaQu', Uw]**) < U.

5.3

In this section we assume (I)-(IV) and

(V) Qa+1 N La S Ra-

(5.3.1) (a) One of the following holds:

(al) Go/Ra = 05,(2) and U, is a natural Q5,(2)-module for L, for some

e € {+,—} and n € N with n > 4.

(a2) Go/Rs = %, and U,T,/T, is a natural A,-module for L, (n € N
with n > 5).

(b) Qa+l = QaUa’-
(c) Qa41 acts as a transvection on U,. In particular, |Uy, : Ug N Zay1| = 2.
(d) Ma+l = CGQ([UCUQC&+I]T0/T0)'

(e) Mgy, is a maximal subgroup of G,.
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Proof. This follows from (2.2.4) and (2.3.1).

In chapter 1 the critical pair (o, ') was chosen such that Z, acts as an offending

subgroup on Z,. By (5.3.1)(c) we now have symmetry in a and o'

(5.3.2) Let (7,7") be a critical pair and y+i =v' = b+i € AW () N AC-)(v") for each
i€ {l,...,b}. Let A € A(%)

(a) G‘y = (AIA,Q7+1> if and Only if [QM Q'H—l] Z Q'y-
(b) Assume that G, = (M), Q,+1). Then (u,7 — 2) is a critical pair for each
€ A(X) with Z,Z, 4G,,.

Proof. Since (5.3.1)(c) implies that («, ') is an arbitrary critical pair, it suffices to
prove this for (v,7') = (a, ).

(a) Note that [Qx, Qa+1] < Q. is equivalent to Qu+1 < Ng, (Q.), since Q, has index
2 in @) and is normalized by Q.+;. Hence (a) follows from (5.3.1)(e).

(b) Since Z,Z, is normalized by M), (5.3.1)(b) implies

(24, Uat] € Zy 2.
Again by (5.3.1)(b) and the remark following (5.3.1),
[Qu-1,Us] = [UaQu, Uw] = [Ua, U] < Za.
Hence Z, € Q4 1. In particular, Z, € Qqr—2. .
(5.3.3) Assume that b > 2.
(a) b=4.
(b) [Uas Qa+1] < Tasa-

Proof. Note that (5.3.1)(a) implies Ay a12 = [Uay Qa+1] € Ta- Moreover, by (5.3.2)
assumptions (ii) and (iii) of (1.2.5) are satisfied. Hence the claim follows from from

(1.2.4) and (1.2.5).
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For v ~ a define
X, :=2Z,(Us | d(v,90) = 2).
(5.3.4) Assume that b = 4.
) [Xa, Qa] < T

(b) Q.. is elementary abelian.

Proof. (a) follows from (5.3.3)(b).
(b) From b =4 and (5.3.1)(b) it follows that

Qa+1 = QaXa+2
and, hence,
Qoir = QuX0i2[Qas Xat2] = QL[Qat1, Xata]-
Note that
[Qa+1, Xat2] = [XaQar2, Xat2] < [Xa Xa +2]Tar2 < Xo.

Hence

[Qa+l, Xa+2aQ,a] S [)(aa Qa] S Ta and
(*) [Qa+l;Xa+2]I S X; S Tm
by (a). Clearly

A= [Qa-H, Xa+2a Q;][Qo—%—l’ Xa+2],

is a normal subgroup of M,;;. Since [A, Ly] < [Ty, La) = 1, we get A I G,. Now

at+1 = Q7 A implies that

"
a+l = =1
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In particular,

(*x) q)(Q;H) = 0(Q,)2([Qa+1, Xa+2])-

Since X, is generated by involutions, (x) implies

®([Qa+1, Xat2]) < To.

As above we get that ®([Qa+1, Xa+2]) I Go, and then (b) follows from (xx).
(5.3.5) There exists A € A(a) such that (Qa41,Qx)Ra/Ra = L.

Proof. 1t suffices to show that Q441 Ra/R, is contained in a subgroup of G,/R, that
is isomorphic to X3. This is evident if (a2) holds in (5.3.1)(a).

Assume first that G,/ R, is isomorphic to O3, (2) for some n > 4. Then Q,+; induces
a nontrivial graph automorphism on a Levi complement X of a parabolic subgroup
of type {n — 2,n — 1,n} of LoRya/R,. Since X = PSL4(2) = As, it follows that
(Qas+1Ra/Ra)X = Zg and then the claim is obvious.

Assume now that G,/R, is isomorphic to O,,(2) for some n > 4. Then Qu+1 in-
duces a nontrivial graph automorphism on a Levi complement X of a parabolic sub-
group of type {n — 1,n} of LoRs/Ra. Since X = PSL,y(4) = As, it follows that

(Qat+1Ra/Ra)X = s and again the claim is obvious. .
Choose g € L, such that (Qu+1, Q%) Ra/Ra = ¥3 and put
a—1:=(a+1) and
a—2:=(a+2)%.
(5.3.6) b=2.

Proof. Suppose b # 2. Then b = 4 by (5.3.3)(a). Pick u € Uy \ Qo. Note that the

choice of g, implies that

[Qa—la g—l] Z Qa-
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Therefore

Go = (U, MY_)

Qa

by (5.3.2)(a). From (5.3.2) and (1.2.1)(e) it follows that Us4+2U, 9G,, and hence
Ua-2)+Uqs 4Ga.

Now from (5.3.2) (with (o, (¢/)%, (a — 1)¥, (a — 2)*) in place of (7,7, A, 1)) we get
that (o — 2, (a — 2)*) is a critical pair.
Pick v € Uy—2 \ Q4_,. Then v* ¢ Qa-2, ie., [v,v"] # 1. But then [v,u] is not an

involution. Since v,u € Qq+1, this is a contradiction to (5.3.4)(b). 4

(5.3.7) (Qa» La] = Us.

Proof. This follows from (5.3.1)(b) and (5.3.6) the same way (5.2.5) follows from
(5.2.1)(c) and (5.2.4).

5.4

In this section we assume (I)-(IV) and
(V) LaRo/Rs = Q(q) (g = p*) for some k € N.
(VI) U, is a spin module for L,.
(5.4.1) Let (v,7') be a critical pair.
(a) (U, Uy] = Uy, Qa] = Uy N Qy = Uy N Qy where A € A7) 1 AG-D(y)
(b) 1Uy : Uy N @yl = Uy : Uy N Qy| = g.

(c) (MxNL,)R,/R, is a parabolic subgroup of type B, in L,R,/R, where
A€ A(y)NALD(y)

Proof. [14](1.2), [16], and (B.3.2.1). -
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(5.4.2) Uy Roa/Ra 4 Myt1/Ro. In particular, b # 2.

Proof. By (5.4.1)(c) Qqa+1Ra/Ra contains no My, -submodule of order ¢*. Hence the

claim follows from (5.4.1)(b). 4

(5.4.3) A contradiction.

Proof. Using (5.4.1) in place of (5.2.1), it follows as in the proof of (5.2.2) that b < 4.
Hence, by (5.4.2),

b=4.

Pick g € L, such that Uy € MJ_,. Then (5.4.1) and (1.2.6) imply that ((a+2)¢, a+2)
is a critical pair.

Suppose that [UJ,,,Us2] < U,. Then (5.4.1)(a) and [Us42,Ux) = 1 imply that
[Ua, @5 41] = [Uas Qa+2)- Since Ni_ ([Ua, Qatr1]) = May1 N Lg, this is a contradiction

to the choice of g. Hence
[Ug-f-?a Ua+2] S Ta-

But this implies that the p-component of MJ,, N LY, is contained in R, and hence

normalizes Uy, contrary to (5.4.2) (applied to ((a + 2)9, a + 2) in place of (a, )).
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Chapter 6
Proof of Theorem 1

Let G, M, R, L, L,,...,L,,, and p satisfy the assumptions of Theorem 1. By
(2.2.1)(b)(¢) L is the product of L,...,L,,, and M permutes Ly, ..., L,, transitively.

Put

M = ﬂ n NM(L,')¢,
scAut(ar) =1

G' = MLl,
R:= (i,
9€G

By (2.2.2)(a)(c) and (2.2.11) assumptions (I)-(IV) of chapter 1 are satisfied for G,
M , R, L, and the group of automorphisms of G that are induced by Num(L,) in
place of G,M,R,L, and H. Moreover, 2, U, and T play the role of Z,, U,, and
T,, respectively. Note that O,(M) = O,,(M) by (2.2.2)(c), and hence O,(G) <
RﬂOp(]W) = 0,(G). Now L, = L and (1.1.2)(d) imply that

(*) [R,Li] = [R, L1, L] £ [04(G), L] < [04(G), Lu].
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Assume Llﬁ/ﬁ is not an orthogonal, symplectic, or unitary group. Then (A.2.2)
implies that Llﬁ/f% = G,(2*)’ for some k € N, since U, is an FF-module for L, and
we assume that Ly R/R is a group of Lie type. Now (5.1.5), (5.1.7), and (x) show
that case 10 of Theorem 1 holds for z = 1.

Assume Llﬁf/ Risan orthogonal, symplectic, or unitary group. If onT # 1, then by
(2.2.11)(d) and the assumption that L; R/R belongs to ZI,, we can apply (2.3.1), and
thus (4.3.2), (4.3.3), and (*) show that one of the cases 1 or 4 of Theorem 1 holds for
1=1.

Assume now that UNT = 1. If (M N L,)R/R is not a parabolic subgroup of L,R/R,
then (2.2.4), (5.3.6), (5.3.7), and (x) imply that case 8 of Theorem 1 holds for ¢ = 1.
Hence assume that (M N L;)R/R is a parabolic subgroup of LyR/R. If U, is not a
natural module for L,, then (A.2.2), (5.2.5), (5.4.3), and (*) show that one of the
case 9 of Theorem 1 holds for ¢ = 1.

Hence assume that U, is a natural module for L,. Suppose that M is not the sta-
bilizer of a singular subspace of U,. Then by (2.2.4) LyR/R is of type Dy, and the
parabolic subgroup ([’v.f NL,)R/R belongs to the interior node of the Dynkin diagram.
Moreover, Ny(L;) permutes the maximal parabolic subgroups of Llﬁ/ R containing
(M N L)R/R transitively. But this is a contradiction to (A.2.9). Hence M is the
stabilizer of a singular subspace of U;. Now (3.5.2), (4.3.2), (4.3.3), and (*) show that
one of the cases 1,2,3,5,6, or 7 of Theorem 1 holds for : = 1.

Since M permutes Ly,..., L,, transitively, all of this holds for any i € {1,...,m} in
place of 1.

Suppose that [L;, L;] # 1, for some ¢,j € {1,...,m} with ¢ # j. Since L, and L; are

p-components,

[Li,L;, L;] = [Lj, L;, L;) = [L;, Lj] < Op(G) < R.
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Note that in the cases 1-3 and 5-10 of Theorem 1 we have [[R, L] N [R,L;],L] =1
by (2.1.1)(g), and hence

(Lo, Ly L = ([Liy Ly, L) 0 [Ly, Lo L, L) < [[R L] VR, L, L = 1,

contrary to 1 # [L;,L;] = [L;, Lj, L;]. Hence we are in case 4 of Theorem 1. Pick
a subgroup X of [L;, L;] such that [L;,L;]/X is an irreducible L;L;-module. Then
(A.3.1) implies that [L;,L;]/X contains 8 nontrivial L;-composition factors. But
O,(G) contains only 2 nontrivial L;-chief factors. This contradiction shows that L is

the central product of Ly,..., L.
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Appendix A

General Lemmas

A.1 Various Results

(A.1.1) Let X and Y be finite groups such that Y acts on X. Assume that X is the

direct product
X=X, x...xX,,

of at least two subgroups Xj, ..., X,,, that are transitively permuted by Y.

(a) X' <[X,Y)

(b) [X,Y]/X' contains a subgroup that is isomorphic to a direct product of

m — 1 copies of X;/X].

(c) X =[X,Y]X;, foreach i € {1,...,m}.

Proof. (a) Letie€ {1,...,m}. Pick y € Y such that X} # X;. Since [X;, X]] =1,

we get
la, y][b, y)[ab, y] ! = a"'a¥b'b¥((ab)¥) " 'ab = a b abaVb¥ (a¥b¥) ! = [a, b],

for all a,b € X;.
(b) Foreachie€ {1,...,m— 1}, pick y; € Y with X¥ = X,,. Then

A= [X:‘, yi]X,
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is a subgroup of [X,Y] with A;/X' = X,/X] and
ANA - A A A SANX L X X X X <X
for each ¢ € {1,...,m — 1}. Hence A; -...- A1/ X' has the desired properties.

() Ifd,j € {1,...,m}, then there exists y € Y such that X! = X; and hence
4¥]‘ g [;Yj,y])\’,' g [;Y, Y]‘Yi. -

(A.1.2) Let G be a finite group, M a subgroup of G, and H a subgroup of Aut(G).
Assume that the following hold:
(i) M is H-invariant.
(i) MH is a maximal subgroup of GH.

Put R := N4e MY and R := Ngegu(MH)9. Let N be the set of all minimal

normal subgroups of G/R. Put

No:={No e N| Nn(NJ'y =1 for each N € N'\ N{'}.
For each N € N define

6(N) == (X")R/R,

where R< X <G and X/R=N.

(a) If N € NV is perfect, then N € N,.

(b) Let N € Ny. Then ¢(N) is a minimal normal subgroup of GH/R. More-
over, if the H-orbit of N in AN has size k, then ¢(N) is isomorphic to a
direct product of at least min{2, k} and at most k copies of N. In partic-
ular, ¢(N) is perfect if and only if N is perfect.

(c) If Ny € Ny and N, € N, then ¢(N,) = ¢(N,) if and only if N; and N, are

conjugate under H.
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(d) The elements of N are pairwise isomorphic.

(e) If GH/R has a nonabelian simple normal subgroup A, then each elements

of A is isomorphic to A and normalized by H.

Proof. (a) This is clear, since the set of components of a direct product is the union
of the sets of components of the direct factors.

(b) Let X < G such that R < X and X/R= N. Let Y < (X¥)R such that R< Y
and Y/R is a minimal normal subgroup of GH/R. Then

Y=(YnN(X*)R and Y ZR.

Hence Y N (XH#) ¢ R. Choose X, <Y N(XH) such that R < X, and X,/R € N.
Then N and X,/R are in the same H-orbit of N/, since N € Ny. Hence ¢(N) =
#(X1/R) = Y/R is a minimal normal subgroup of GH/R. The second assertion

follows from
d(N) = (XMYR/R= (X" /(X"YNn R = (X")/R.

(c) Clearly ¢(N,) = ¢(N,) if N; and N, are conjugate under H. Now assume that
¢(N1) = ¢(N2) Let XI,XQ S G such that R S Xl,XQ, Xl/R = N1 and Xz/R = N2.
Then (X¥) < (X})R. Since RN G = R, we get

(X{") < (XHR=(X]),
and likewise (X'} < (X}). Hence
(M) = (N;").

Since N; € Ny, it follows that N, is conjugate to N, under H.

(d) Note that if N € N is abelian, then ¢(N) is an abelian normal subgroup of
GH/R and hence GH/R has an abelian minimal normal subgroup. Since, by [12],
the minimal normal subgroups of GH/R (at most two) are pairwise isomorphic, (d)

now follows from (a) and (b).
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(A.1.3) Let G be a symmetric group of degree 2* for some k € N \ {0}. Put
Xoo={{r|2(-1)<r<25}1<;j <27
for each 7 € {0,...,k}. Then

(a) Na(Uko Xi) € Syl,(G).

(b) Z(Na(UiZo X)) =((1 2) (3 4)...(2F -1 2F))
Proof. This is obvious when k = 1, so assume that £ > 1. Put
A:=Co({2F ' +1,...,2F)),
B:=Cg({1,...,2F"'}) and
r:=(12F"41) (2 251 42) ... (2F! 2F),

By induction on k we may assume that

Na(U &) € Syly(4),
Np(|J X:) € Syly(B),
Z(N,,(CJX,)): (12 (34)...(2x'=12") and
Z(NB(O X)) = (21 +1 2614 2) (25143 261 4g). . (2F -1 2F).
1=0
Now
k k k k
Ne(UJ &i) = (Na(lJ &1) x Np(J X)) (z) = Na(lJ X:) 1 Ca
1=0 1=0 1=0 1=0

is a Sylow 2-subgroup, since it has the appropriate order. Moreover,

k
Z(NG(QOX")) = CZ(NAtuf;O X,))xZ(Ng( f;OX.»("‘) -

(1 2) (34)...(25=1 2F).
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(A.1.4) Let G be a finite symmetric group of degree n > 7. Then for each S € Syl,(G)

the following hold:
(a) Z(SNG') < Z(S).
(b) Ca(Z(SNG")) #SNG'.

Proof. (a) Assume that n = 2* for some k € N. Put
H:=Cq({1,...,2¥"'}) and
r:=(12141) (2 251 4+2) ... (2F! n).

Let T be a Sylow 2-subgroup of H. Then
S:=(T,z) =(T* x T)(x)

is a Sylow 2-subgroup of G, and
(x)  Z(S) = Czireyxz(my ().

If Z(SNG') € T* x T then TNG' 4 S, a contradiction to T*NT =1 and [TNG'| >
28-2> 2, Hence Z(SNG') <T*xT. Leta: T*xT - T%and B: T* x T — T be
defined by

y=1vy%? foreachyeT* xT.

Then (T x T) NG’ centralizes y* and y? for each y € Z(SNG’). Since Z(SNG')NT
is centralized by ((T* x T) N G')? =T, we get

Z(SNG')YNT < Z(T)
and likewise

Z(SNG)NT® < Z(T*).
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Hence
Z(SNG)Y=Z(SNG)N(T*xT) <
(Z(SNG)N(T*xT))*x (Z(SNG')N(T* x T))? <
(Z(SNG)YNT*) x (Z(SNG'YNT) < Z(T*) x Z(T).

Since 21 is even, SN G’ contains . Now (a) follows from (x).
Assume that n = Y, 2% for some integers ky,...,k, withm > 1and 1 < k; <
... < ky,. For each i € {1,...,m} let T; be a Sylow 2-subgroup of
Hi:=Co({r | Ti12b <r < Ti_ 28)).
Then

S = (Tl,...,Tm>=T1X...XTm

is a Sylow 2-subgroup of G. Define a; : S > T; (z € {1,...,m}) by

al, 02

y=yMy*-...-y* foreachy € S.

Note that m > 1 implies (SN G')* = T; for each i € {1,...,m}, whence
Z(SNGY<Z(SNG)™" x...x Z(SNG")* <
Cr,(SNG")*") x ... x Cp, ((SNG")*) = Z(T1) x ... x Z(Ty,) = Z(S).

(b) If n=7and S € Syl,(G) then Z(SNG') has 3 fixed points on {1,...,7}, so
Cs (S N G') contains an element of order 3 permuting the fixed points of Z(SNG').
Now assume n > 8. Let ki,...,kn,T1,...,Tn and S be defined as in the proof of
(a) (except that now possibly m = 1). From (A.1.3) and n > 8 it follows that Z(T},)
has order 2 and at least 4 orbits of size 2 on {1,...,n}. Hence Cg/(Z(S)) contains
a subgroup isomorphic to A4 permuting the Z(7,,)-orbits of size 2. Now the claim

follows from (a). g

The following lemma from [14] will be particularly useful.
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(A.1.5) Let G be a group, p a prime, and V a faithful GF(p)G-module. Assume that

there exists a non-degenerate G-invariant symmetric G F(p)-bilinear form on V.

(a) [V, A]* = Cy(A), for each A < G.

(b) Assume that B< A <G, [V,B,A] =1, and [Cv(B), A]N[V,B] = 1. Then

Proof. If p = 2, then this is [14](1.7). The proof for an arbitrary prime is the same.

A.2 FF-Modules

Let p be prime and G a finite group. Define
E,(G) := {A < G| A is a nontrivial elementary abelian p-group}.

If V is a faithful finite-dimensional GF (p)G-module, put
P(G,V):={A€&(G) | B< A = |A||Cv(4)| 2 |B||Cv(B)|} and
P*(G,V):={A€P(G,V)|A>BeP(G,V) = A= B}

If V is any finite-dimensional G F(p)G-module, put
P(G,V):={A< G| ACs(V)/Cs(V) € P(G/Cs(V),V)} and
P(G,V):={A< G| AC:(V)/Cs(V) € P*(G/Cs(V),V)}.

(A.2.1) Let G be a finite group, p a prime, V a faithful GF(p)G-module, and A €
P*(G,V).
a) [V,A Al =0.
(b) IfV > W > [W, A] # 0, then ACq(W)/Cg(W) € P*(Ng(W)/Ce(W),W).

(c) If W is an A-invariant subspace of V' such that C4(V/W) = 1, then
V/W is an FF-module for Ng(W)/Cngw)(V/W) and A Cngw)(V/W)/

Cngw)(V/W) is an offending subgroup acting quadratically on V/W.
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(d) A normalizes each component of G.

Proof. (a) This follows from [5](4.2).
(b) If B < A, then

|IBCAa(W)||Cv(BCaA(W))| < |AlICv(A)],
since A € P(G,V'), and therefore

|BCa(W)/Ce(W)||Cw(B)| = |BCa(W)Co(W)/Ca(W)||Cw (B Ca(W))| =

BCAW) . o 1BCAW)] _
Cocamn] ' E =g g (OB D
|BCa(W)| , . |BCa(W)| |Cy(BCa(W))||W]
Caom)) [V BCAW) W = S T 1L (B CAW)) + W] =

|BCAW)| [Cv(BCAW) W] Al ICv(AIIW] _
ICaW)I ICv(A)+ W] 7 [Ca(W)| |Cv(A) + W|

|ACe(W)/Ca(W)[Cw(A)].

(c) This is obvious.

(d) [4]

(A.2.2) Let G be a finite group, p a prime, and V a faithful and irreducible FF-module
for GF(p)G. Assume that the following hold:

(i) F*(G) is quasisimple, and F*(G)/Z(F*(G)) belongs to the class £,, as

defined in the introduction.

(iil) G = AF*(G) for some A € P*(G,V).
Then one of the following holds:

(a) G~ SL,(q) (¢=0p"), and V is a natural SL,(q)-module.

(b) G = SL,(q) (¢ = p*, n > 4), and V is the second exterior power of a
natural SL,(¢)-module.
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(¢) G = Sp,,(q) (g =p*),and V is a natural Sp,,(g)-module.

(d) G = Sps(g) (p=2,¢=2, |V|=¢, |Cv(A)] =|[V,4]| = ¢* and
[V, A] = [V, Ce([V; A])].

(e) G=Q:(q) (¢ =p* €€ {0,+,—}), and V is a natural Q¢ (g)-module.

(f) G = 05,(q) (p=2,qg=2%¢€ {+,-}), and V is a natural Of,(q)-

module.
(g) G=0(q) (g =pr), and V is a half-spin module.
(h) G = SU,(q) (¢ =p* n>4),and V is a natural SU,(¢q)-module.

(i) G=Gag) (p=2,9=2F), [V]|=¢5 |Cv(A)] =|[V,A]l = |A| =¢° and
Co(A) = A.

() G=ZX,, p=2, and V is a natural £,-module.
(k) G = Ay,, p=2,and V is a natural Ay,-module.

(1) G = A, p=2 |V|]=2 |[V/Cy(A)| = |A|l = 4, |[V,A]l = 16, and
Ce(A) = Z(G)A.

(m) G A7, p=2,and |V| =24, |V/Cy(A)| = |A| = |[V, 4] = 4.

(n) G=0%4q) (p#2, g=p*), and V is a spin module.
Proof. This follows from [14](1.2), [6], and [16].

(A.2.3) Let G be a finite group and V a faithful FF-module for GF(p)G. Let L be a
component of G. Assume that [A,L] € Z(L) for some A € P*(G,V). Then
for each GF(p)(AL)-composition factor W of V with [W, L] # 0 the following
hold:

(a) ACAL(VV)/CAL(H/) € ’P‘(AL,VV),

(b) LCaAL(W)/Car(W) = F*(AL/Csr(W)),
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(c) [L,Car(W)] < Z(L).

Proof. From [W,L] # 0 it follows that LCar(W)/CaL(W) is a component of
AL/Car(W). If LCs(W)/Car(W) # F*(AL/C4r(W)), then O,(AL/CaL(W))
# 1, since AL/L is a p-group. But O,(AL/C4L(W)) = 1, since W is irreducible.
Thus (b) holds.

(c) follows from [L, Car(W)] < CL(W) and [W, L] # 0.

(a) follows from (c), [L, A] € Z(L) and (A.2.1)(b).

(A.2.4) Let G be a finite group, F' a finite field of characteristic p, and V an irreducible
FG-module. Assume that there exist subgroups A and L of G such that G =

AL, [V,A,A] =0 and L <G. Then one of the following holds:
(a) V is irreducible as F'L-module.
(b) [4/Ca(V)| =G : Cc(V)L| =2 and
V=W ®rcewvr) FG
for some irreducible F'L-submodule W of V. In particular, |[A/Ca(V)| <

[V/Cv(A)].

Proof. Without loss we may assume that G acts faithfully on V. Let W be an
irreducible F L-submodule of V' and assume that W # V. Then N4(W) is a proper
subgroup of A.

Choose a € A\ Ny(W). Then W + W* is the direct sum of W and W*. Since
A, acting faithfully and quadratically on V, is abelian, N4(W) normalizes W®.
Now [W,a,Na(W)] < [V, A, 4] = 0 implies Ngy(W) = Ca(W). Since Cg(V) =
1, Na(W)<Aand (W4) =V, we get

(x) No(W)=1.
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In particular,
ANL=1.

As F L-module,
V=W&...oW,,

where W, ..., W, are irreducible FL-submodules conjugate to W. Without loss,

W; = W precisely when 1 < i <m. Put X :=W, +... + W,,. Since

HOH]FL(VV, X) = @HOHIFL(W, W,) = @EndpL(W)

i=1 i=1

is an m-dimensional vector space over Endgr (W), the number of irreducible FL-
submodules of X is 75! |EndrL(W)[*, which is congruent 1 modulo p. Consequently,
the p-group N4(X) fixes some irreducible F'L-submodule of X. But then, since W is

an arbitrary irreducible F L-submodule of V, () implies
Na(X) =1.
From this it follows that

V= @ W as FL-module.
a€A

Hence dimV = |[A|dim W = |G : L|dim W = dim(W ®FL F'G). Since V is generated
as FG-module by the F'L-submodule W, we get

VEWer FG.

From AN L =1 it follows that V is a free FA-module. Since [V, A, A] = 0, this
implies |A| = 2.

Suppose |A| > |V/Cy(A)|. Since V is free as F A-module and |A| = 2, we get |F| =2
and dimV = 2. Then W is a trivial FL-module and [V, L] = 0, whence L = 1 and

G = A. But this is a contradiction to the irreducibility of V' as FG-module.

132



(A.2.5) Let G be a finite group, K a finite field of characteristic p, and V a faithful

KG-module. Assume that there exist subgroups A and L of G such that
(i) LLG and G = AL,
(ii) V is completely reducible as K L-module,
(i) [V, L] =V,
(iv) [V, A, A] =0,
(v) [V/Cv(A)| < |A/Ca(V)],
(vi) L is quasisimple,
(vii) Op(G) = 1.
Then V is completely reducible as KG-module. Moreover, each irreducible

K G-submodule of V' is also irreducible as K L-module.

Proof. Suppose this is false. Let (G, V') be a counterexample with |G|+ |V| minimal.
Then

Ce(V) = 1.

Suppose that there exists an irreducible KG-submodule X of V which is also irre-

ducible as K L-module. Let Y be any K L-submodule of V' with X # Y. Then
V=XoY

and Y is not A-invariant, for otherwise there would be a counterexample for the same
group G and a KG-module W strictly smaller than V. Pick a € A such that Y # Y.
Then Y* is a diagonal between X and Y. Hence there exist bijective K-linear maps

a:Y = Xand 8: Y > Y such that

y*=ya+yl foreachyeY
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and 8~ 'a is a K L-isomorphism from Y onto X. Then
Cv(a) C{r+y|z€e X, y=—[z,a)a”'} and
Via] = {([z,a] +ya) + (4B -y) |z € X, ye Y},
Since a is bijective, we get
Cv(@)] < IX| = Y] < |[V;all.
Now [V,a] < C\(A) < Cy(a) implics
[V,a] = Cy(a) = Cv(A).
Then
[Y, Na(Y)] < Cy(A) = Cy(a) = 0.

Since A is abelian, Ns(Y) = N4(Y?). Hence we also have [Y*, N4(Y)] = 0. Now
V =Y +Y? implies

Na(Y) < Cg(V) =1

Thus A acts fixed point freely on the set Y of irreducible K L-submodules of V' other

than X. Put E := Endg(X). Then Y = |E| and therefore
|A| < [E].

On the other hand,

14 \4 dimg X
Al > |V/Cv(A)| = = -— = |X|=|E|9"E~,

Hence X is a 1-dimensional EL-module, contrary to (iii).
Thus no irreducible KG-submodule of V is irreducible as K L-module. Let X be any
irreducible KG-submodule of V. Then X is like V in (A.2.4)(b). In particular,

|A: Ca(X)| = 2.
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Put H := C4(X)L. Then X is not irreducible as K H-module. Hence H is a
proper subgroup of G. Note that the assumptions of the lemma are satisfied for
H,CA(X),L,V in place of G, A, L,V, respectively. Therefore the minimality of

|G| + |V'| implies that
V=Wee..oW,

for some irreducible K H-submodules W, ..., W,, which are also irreducible as K L-
modules. Note that V is indecomposable as KG-module by the minimality of |G|+|V|.

Since H has index 2 in G, it follows that m = 2, i.e.,
V=X,

a contradiction to (A.2.4)(b) and (v). g

(A.2.6) Let G be a finite group, L := F*(G), p a prime, and V' a faithful FF-module
for GF(p)G. Assume that the following hold:
(i) L is quasisimple,
(ii) G = AL for some A € P*(G,V),
(ili) Z(G) = Z(L),
(iv) O0,(G) =1,

(v) V contains more than one nontrivial G-composition factor.

Then one of the following holds:

(a) G =SLa(q) (¢=7p").
(b) G = Sp,,(q) (n >3, ¢ =p*), and each nontrivial G-composition factor of

V is a natural Sp,, (q)-module.
(c) G = Q(q) (¢ =p* € €{0,+,—}), and each nontrivial G-composition
factor of V' is a natural ¢ (g)-module.
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(d) G = 05(g) (=2 g =2%c¢e € {+-}), and each nontrivial G-
composition factor of V' is a natural O3,(q)-module.
(e) G = SU,(q) (g =p*, n>4), and each nontrivial G-composition factor of

V is a natural SU,,(¢)-module.

Proof. Let W be a a nontrivial G-composition factor of V. By (A.2.3) and (iii),
[L,Cc(W)] < Z(G). Hence C4(W)Z(G) < G, and then (iv) implies that

(x) Ce(W) < Z(L).
Note that (G/Cg(W), W) appears in (A.2.2). Since (*) implies that A acts faithfully

on each nontrivial G-composition factor, (v) excludes the cases (d), (g) and (i)-(n) in

(A.2.2). Thus one of the following holds:
(1) G/Ce(W) = SLy(q) (g= 1),
(2) G/Ce(W) = Sp,,(q) (¢ =p*), and W is a natural Sp,,(q)-module,
(3) G/Ca(W) = Q:(q) (¢g=p* €€ {0,+,-}), and W is a natural ¢ (g)-module,

(4) G/Ce(W) = 05,.(q) (p=2,q=2F ¢€{+,-}), and W is a natural Oj,(q)-

module,
(5) G/Ce(W) = SU,(q) (¢ =p*, n>4),and W is a natural SU,(¢g)-module.

Note that the isomorphism type of L/CL(W) does not depend on the choice of W.
Since Z(L) is cyclic, it follows that Co(W) (= CL(W)) does not depend on the
choice of W. Hence Cq(W) = Cg(V) =1, since Z(L) is a p’-group. The restriction
n > 3 in (b) follows from (B.4.1.6). o

(A.2.7) Let G be a finite group, R a normal subgroup of G, L a component of G, and

V a faithful irreducible FF-module for GF(2)G. Let S be a subgroup of LR
containing R such that S/R is a Sylow 2-subgroup of LR/R. Assume that the

following hold:
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(i) LR/R = F*(G/R) = Sp,(2*)’ for some k € IN.
(i) There exists A € P*(Ng(S),V) such that [A,L] € Z(L).
(iii) 02(G) = 1.
Let Py, P, be subgroups of LR containing R such that P,/R and P,/R are the

minimal parabolic subgroups of LR/R containing S/R. Then Ng(S) < Ng(F;)
for each ¢ € {1,2}.

Proof. If K is any component of G with K ¢ R then, by (i), KR/R = LR/R and,
hence, [K,L] # 1. It follows that L is the unique component of G which is not

contained in R. In particular,
L<G.

Put H := AL. Let W be an irreducible H-submodule of V. Note that

(*) n C(;(W)g = 1,

9€G

since Cg(V) =1 and V = (W% < Cv(NgegCa(W)?). In particular, [W,L] # 0
and, hence, C,(W) < Z(L). Since G acts faithfully and irreducibly on V, O,(L) <
02(G) = 1. Then by tables 6.1.2 and 6.1.3 in [8], Z(L) is a cyclic group of order 1 or
3. Thus CL(W), being a characteristic subgroup of Z(L), is normal in G. Now (x)
implies

(xx) CL(W)=1.
But then [Ce(W), L] < C (W) = 1. Since (i) implies C¢(L)R/R < Cg/r(LR/R) =
1, we get

(xxx) Ce(W)<Cg(L)< R

Since [W, L] # 0, (A.2.3) implies that (H/Cy (W), W) appears in (A.2.2). Note that
the natural £g-module is isomorphic to a natural Sp,(2)-module. Hence we are left

with the following cases:
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(1) H/Cyx(W) = Sp,(2%), and W is a natural Sp,(2%)-module.
(2) H/Cx(W) = Sp,(2)’, and W is a natural Sp,(2)-module.
(3) H/Cy(W) = Ag, |W|=2%and |[W/Cw(A)| = |4| = 4.

Together with (x * %) it follows that H N R/Cy (W) is a 2'-group. Since W is an
arbitrary irreducible H-submodule of V' and (A.2.5) implies that V is the direct sum
of its irreducible H-submodules, it follows that HN R is a 2'-group. Hence HNR < L

and therefore by (*x)
Cy(W)=1.

Note that by (A.2.6) none of Sp,(2%), Sps(2)’ or Ag has an FF-module with more
than one nontrivial composition factor. Thus in each of the cases (1)-(3) Cx(W) =1

implies that
V=W

But if g € Ng(S) \ Ng(P,), then W9 is not isomorphic to W as L-module. Hence
NG(S) = NG(PI) (]

(A.2.8) Let G be a finite group, R a normal subgroup of G, L a component of G, and

p a prime such that

(i) LR/R = F*(G/R) = PSL,(p*), for some n,k € N with n > 3,

(if) O,(G) = 1.
Let M,Q, P, and P, be subgroups of LR containing R such that

(iii) M/R is a parabolic subgroup of LR/R corresponding to the n — 2 interior

nodes of the Dynkin diagram,

(iv) Q/R = Oy(M/R),
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(v) P,/R and P,/R are the maximal parabolic subgroups of LR/R containing
M/R.

Let V' be a faithful irreducible FF-module for GF(p)G. Assume that there
exists A € P*(Ng(M), V) such that

(vi) [A,L] € Z(L) and

(vii) [4, M] < QA.
Then one of the following holds:

(a) N¢(M) < Ng(P) for each 1 € {1,2}.

(b) L = SL4(p*), and V is the exterior square of a natural module for L.

Proof. Put H := AL. Let W be an irreducible H-submodule of V. The same

argument as in the proof of (A.2.7) shows that
(x) CL(W)=1 and

(xx) Cg(W) <R.

Since [W, L] # 0, (A.2.3) implies that (H/Cy (W), W) appears in (A.2.2). Hence one
of the following holds:

(1) H/Cy(W) = SL,(p*), and W is a natural SL,(p*)-module,

(2) H/Cu(W) =

module,

SL,(p*), and W is the exterior square of a natural SL,(p*)-

(3) p* =2, n=4, H/Cy(W) = X4, and W is a natural Xg-module.

Together with (*x) it follows that H N R/Cy(W) is a p'-group. Since W is an

arbitrary irreducible H-submodule of V' and (A.2.5) implies that V is the direct sum
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of its irreducible H-submodules, it follows that HN R is a p’-group. Hence HNR < L

and therefore by (x)
Cy(W)=1.

Assume that (3) holds. Since V is the direct sum of L-submodules conjugate to W
and also the direct sum of irreducible H-submodules, we get that V is a direct sum
of natural ¥g-modules for H. Note that no subgroup of £g acts as an offender on a
direct sum of two natural modules. Hence V = W and (b) holds.

Assume that (1) or (2) holds. Similarly to the above we get that as H-module V is
a direct sum of irreducible H-submodules that are isomorphic to W and irreducible
H-submodules that are dual to W. If no irreducible H-submodule of V is dual to W,
then (a) holds. Hence assume that both types occur. Note that A < CL(MNL,QnL)
implies that A does not act as an offender on a direct sum of a natural module and

its dual. Thus W is isomorphic to its dual and V = W. Hence (b) holds.

(A.2.9) Let G be a finite group, R a normal subgroup of G, L a component of G, and
p a prime such that
(i) LR/R = F*(G/R) = Qf (p*), for some k € N,

(i) O0,(G) =1.
Let M,Q, P,, P,, and P; be subgroups of LR containing R such that

(iii) M/R is arank 1 parabolic subgroup of LR/ R corresponding to the interior
node of the Dynkin diagram,

(iv) Q/R = 0O,(M/R),

(v) Pi/R, P,/R and P;/R are the maximal parabolic subgroups of LR/R

containing M/R.

Let V be a faithful irreducible FF-module for GF(p)G. Assume that there
exists A € P*(Ng(M), V) such that
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(vi) [A,L] € Z(L) and

(vil) [4, M] < QA.
Then N¢(M) < N¢(P) for some ¢ € {1,2,3}.

Proof. Put H := AL. Let W be an irreducible H-submodule of V. As in the proof
of (A.2.7) we get

C.(W)=1 and
Ce(W) < R.

Since [W,L] # 0, (A.2.3) implies that (H/Cyx(W),W) appears in (A.2.2). Hence
H/Cw(H) is isomorphic to Qf (q) or Of (¢), and W is a natural QF (¢)-module. As

in the proof of (A.2.8) it follows that
Cy(W)=1.

Suppose that Ng(M) does not normalize any one of P, P,, or P;. Then V contains
at least three pairwise non-isomorphic natural € (¢)-modules for H. Without loss,
we may assume that W is chosen such that |W : Cw(A)| is minimal. Note that

|A: ANL| <p. Then

|ANL| > p~'|A] 2 p~!|V/Cyv(A)| 2 p~'IW/Cw (A),
and hence

ANL| > [W/Cw(A) = W, A%

contrary to (B.5.1.8). _
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A.3 Modules for central products
Let p be a prime.

(A.3.1) Let G be a finite group which is the central product of two subgroups A and
B. Let K be a field, F a subfield of K, X an irreducible K A-module, and V

an irreducible FG-module. Assume that the following hold:

(i) There exists an FA-monomorphism ¢ : X — V.
(ii) X is irreducible as F A-module.

(lll) Endp,g()() ~ K.
Then there exists a K B-module Y such that the following hold:

(a) X ®k Y is a KG-module, where G acts on X ®g Y as follows:

(r ®k y)ab = (ra) ®k (yb), forallz e X, yeY, a€ A, and b€ B.
(b) X ®k Y and V are isomorphic as F'G-modules.
(c) Y is irreducible as F B-module.

Proof. Let H be the direct product of A and B. Clearly X ® ¢ KB is a K H-module,

where the action of H is given by
(z ®k y)ab = (za) @k (yb), forallz € X,ye KB, a€ A, and b€ B.

Note that 2 ®x b — £ ®k4 b (z € X, b € B) defines a K H-isomorphism a from
X ®x KB onto X ®x4 KH.

Since X ® k4 K H is generated as F H-module by the FFA-submodule X ®x 4 1, there
exists an F'H-epimorphism (3 from X ® 4 FH onto X ® x4 KH which maps z @4 1

tox ®kal for each r € X. As
dimp(X ®ra FH) = |B|dimp X = |B|dimp K dimg X =
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dimp K dimg (X @4 KH) = dimp(X Qx4 KH),

B3 is an F'H-isomorphism.
Hence a37! is an F H-isomorphism from X ® x KB to X ®r4 FH. Note that there
is an epimorphism v from H onto G. Regarding V via v as an F'H-module, it follows

that the map
N: XQ@x KBV, 2@k b (z4)b (zx € X,be B)
is an F H-epimorphism. Let U be the kernel of n. Then
W:={be KB| X ®xb< U}

is a KB-module. As FA-module, X ® KB is the direct sum of the submodules
X ®k b with b € B. Now it follows from (ii) and (iii) that any irreducible FA-
submodule S of X ® KB is of the form

S=X®K Zkbb
beB

for some k, € K. Since U is the sum of its irreducible F'A-submodules, we get
U=XQ®xW.

Put Y := KB/W. Then
V=(XQ®xk KB)/(X®xk W)= X®k (KB/W)=X®kY (as FH-modules).

By definition of the action of H on X ® x KB, (a) and (b) are satisfied with H instead
of G. But since H acts on V via 7, it follows that (a) and (b) hold.

The irreducibility of V' implies (c). g

(A.3.2) Let G be a finite group which is the central product of two subgroups A and B.
Let F be a field, V an irreducible FG-module, and K := Endrg(V). Let X be
a K A-submodule and Y a K B-submodule of V.
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(a) X ®x Y is a KG-module, where G acts on X ®g Y as follows:
(z @k y)ab = (za) ® (yb), forallz € X, y€Y,a€ A, and b€ B.
(b) If X and Y are irreducible, then V' is isomorphic to X @k Y as KG-module.

Proof. (a) It suffices to show that (z¢) ®x y = = ®k (yc), forallz € X, y € Y, and
c € AN B. Since AN B < Z(G), for each ¢ € AN B the map

o.: VoV, v e

is an FG-endomorphism. Hence

(zc) @k y = (z¢c) ®k ¥y = T Ok (ydc) = T Ok (yc),

forallze X,yeY,andce ANB.

(b) Let X, be an irreducible F A-submodule of X. From (A.3.1) (with G, A, B,
Endg4 Xy, F, X, in place of G, A, B, K, F, X, respectively) it follows that V has the
structure of an EndrsXo-module. Hence E := Ng(X,) is a subfield of K with
E = EndraX,. Since Xj is absolutely irreducible as EA-module, X (2 K ®f X)) is
absolutely irreducible as K A-module. From (A.3.1) (with G, A, B, K, K, X in place
of G,A,B, K, F, X, respectively) it follows that V = X ® x W for some irreducible
K B-module W, and G acts on X ® W as described in (A.3.1)(a). Hence, by (a),
V is isomorphic to X ®g U for any K B-submodule U of V with U = W. But any
irreducible K B-submodule of X ® x W is isomorphic to W. In particular, Y = W
and (b) holds.

(A.3.3) Let G be a finite group, F a finite field of characteristic p, and V' an FF-module

for FG. Let {L,,...,L,} be a G-invariant set of components of G satisfying
L < (P*(G,V/Cv(L)))

where L := (Ly,...,L,). Then
n

=1
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Proof. Let (G,V,L,,...,L,) be a counterexample with |G| + |V| minimal. Then
Cv(L) =0, Cg(V)=1,and G = (P*(G,V)). If i # j implies [V, L;, L;] = 0, for all
,j € {1,...,n}, then (VL] N ¥, 4[V,L;] < Cy(L) =0, for all i € {1,...,n}, and

G, L, Ll, ey Ln is not a counterexample. Hence, Wlthout lOSS we may assuime that
p
[‘/a le L'Z] 7 0.

From G = (P*(G, V")) and (A.2.1)(d) it follows that Ly < G for each k € {1,...,n}.
Suppose that V is not irreducible. Let W # 0 be a proper submodule of V. Choose
i,j € {1,...,n} such that ¢« # j. If Ly < (P*(G,W)) for each k € {i,j}, then
(W, L;, L;] = 0 by the minimality of |G|+|V|. If Ly € (P*(G,W)) for some k € {i,j},
then, by (A.2.1)(b), [W, A] = 0, for each A € P*(G,V) with [Ly, A] € Z(Lx), and

therefore [W, Ly] = 0. Hence in any case we get
[W, L,‘, LJ] = O

A similar argument (with V/W instead of W, using (A.2.1)(c) instead of (A.2.1)(b))

shows that
(V,Li,,L;)] < W.
Note that
[V, Ly, Ly, Ly) = [V, Ly, Ly] = [V, Ly, Ly] = [V, Lo, Ly, L]
by the Three-Subgroup Lemma. Hence
(V,Ly,La, L) = [V, Ly, Lo, Ly] + [V, Ly, Ly, Ly) + [V, Ly, Ly, Ly - ... - L,] =
(V,Ly,La, Ly, Ly] + [V, Ly, Ly, Ly, Ly) + [V, Ly, Ly, Ly, L3 - ... - L] <
(W, Ly, L)) + W, Ly, L) + (W, Ly, Ly - ... - L] =0,
contrary to [V, L, Ly] # 0 = Cy(L). Hence V is irreducible.
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For the rest of the proof let

{i.5} ={1,2}.

Put

~

L,‘ = L]'Lg e Ln,
and choose A; € P*(G, V) such that
(Li, A;) € Z(L)).

Let W be an irreducible F'(A;L)-submodule of V. Put K := Endp(4,1)W, and let X
be an irreducible K(A;L;)-submodule of W. Note that (A.2.1)(b) and (A.2.4) imply
that W is irreducible as F'L-module and X is irreducible as K L;-module. Thus, by
(A.3.2),

W= X®gY, forsome irreducible K I:i-submodule Y of W.

Since LG and V is an irreducible FG-module, we get that, regarded as F'L-module,

V is a direct sum of conjugates of W. In particular, X is not a trivial F'L;-module,

since [V, L;] # 0. Let
0=Wy<W, <..<W,=W

be a K(A;L;)-composition series of W.

We assert that Cy, (Wi /Wi_1) < Cy4 (W) for each k € {1,...,m}. As KL;-modules
both Wy/W,_, and W are direct sums of submodules isomorphic to X, whence
CL;(Wx/Wi_1) centralizes W. Then Cp,(Wyx/Wi_1) centralizes V, since as FL-
module V is a direct sum of conjugates of W. Since G acts faithfully on V, we
get Cr,(Wx/Wi_,) = 1. In particular, L; centralizes C4,(Wy/Wj_,). Since A;, acting
faithfully and quadratically on V, is elementary abelian, we get Ca,(Wi/Wi_;) <
Z(AiL;). Hence Cw(Ca,(Wi/Wi_1)) is a K(A;L;)-submodule of W. From the

quadratic action of A; on W it follows that A; centralizes the K(A;L;)-module
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W/Cw(Ca,(Wx/Wi_1)). But L{AX) contains L;, since [A;, L;] € Z(L;). There-
fore, W/Cw(Ca,(Wix/Wi_1)) is centralized by L;. Since all K L;-composition fac-
tors of W are isomorphic to X, which is a nontrivial KL;-module, this implies
W = Cw(Ca, (Wi/Wi-1)).

Now it follows from (A.2.1)(c) and (A.2.4) that Wy /W)_; = X as K L,;-modules for

each k € {1,...,m}. In particular,
z:=dimg X = dimg Wy /W;_,, foreach k € {1,...,m}.

Since, for each k € {1,...,m}, A;/C4 (W) acts faithfully and quadratically on

Wi /Wi_1, we get

(*) |Ai/Ca,(W)] < KR,
where

cx = dimg Cw, w,_,(A;), foreach k€ {1,...,m}.
From (A.2.1)(b) it follows that

Ai/Ca, (W) = AiCa,L,(W)/Ca,,(W) € P*(A;L;/Cp,,(W),W).
Since

O] < T IGuw e (4] = KT,
this implies

(#x) |Ai/Ca,(W)| 2 [W/Cw (A))| 2 |K ™1 me2mmm > K™,
where

¢ :=max{cy,...,Cm}.

Thus m < ¢ by (x) and (*x). Since Wy/Wy_; = X for each k € {1,...,m} and
W=X®Q®gY, we get

dimg Y < dimg X.
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Since V, regarded as K L-module, is a direct sum of conjugates of W, this implies that
the dimension of any K I:i-composition factor of V is smaller than the dimension of any
K Li-composition factor of V. In particular, the dimension of any K L;-composition
factor of V' is smaller than the dimension of any K L;-composition factor of V. Since

all assumptions are symmetric in L; and L,, this is a contradiction. .

A.4 Automorphisms of finite simple groups of Lie
Type

In this section we adopt the notation of chapter 2 in [8]. In particular, let 7 be a
prime and K a finite simple group of Lie type in characteristic . Let g be the power
of r such that GF(q) is the field of definition for K. Let a be an automorphism of
K. As in Theorem 2.5.1 of [8], write a = idfg where 7 is an inner automorphism, d is
a diagonal automorphism, f is a field automorphism and g is a graph automorphism.

Moreover, if K is a twisted group then g is the identity.

(A.4.1) Let P be a parabolic subgroup of K containing the Borel subgroup B. Assume
that [P, a] < O,(P). Then one of the following holds:

(a) a = 1d,

(b) ¢ =2, a = ig, and g fixes each node of the Dynkin diagram that belongs
to P.

Proof. Note that d, f and g all normalize B. Since [B,a] < [P,a]| < O,(P) < B, it

follows that also ¢ normalizes B. Hence i is induced by an element of B. In particular,
(x) [ha(t),i] < U, forallae £ and 0+#te GF(q).
Note that we also have

(*%) [ha(t),d]=1, forall@ae £ and0#te GF(q), and
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f € Nk((h2(t) |0 £t € GF(q))), forallae £,
Since

[(ha(t) | t € GF(q))U,a] < [P,a) < O,(P) < U forallace £,
it follows that

(x+%) [(ha(t) |t € GF(q))U,g] < U, foralla € £.

Assume that g is not the identity. Then (* * *) implies that ¢ = 2. Hence both d and
f are the identity. If o € ¥ is a fundamental root corresponding to a node in the

Dynkin diagram of P, then

[za(t),i] < [U,B] =[U,U] and

[za(t),a] < O,(P), foreachte GF(q).
Hence

[za(t), 9] < O,(P)[U,U], foreachte GF(q).

This implies that g fixes the node corresponding to a in the Dynkin diagram. Hence
(b) holds.

Now assume that g is the identity. As in Theorem 2.5.1 of 8], let ¢ be the automor-
phism of GF(q) that induces f on K. Then

[ha(t), f] = ha(t)"‘hs(t®) € H, foralla e £ and 0 # ¢t € GF(q).
On the other hand, by (x) and (*x),
[hg(t), fl < U, forallae £ and t € GF(q).

Since U N H = 1, it follows that ¢ is the identity. Hence (a) holds.
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(A.4.2) Assume that K is of type C, with n > 2. Let P be the parabolic subgroup of
cotvpe 1 in K containing the Borel subgroup B. Assume that [P,a] < P. Then

a ¢ Inn(K) if and only if a induces an outer automorphism on O™ (P)/O,(P).

Proof. Let A be the normalizer of P in Aut(K). Let A, be the intersection of
A and Inn(K). Let A; be the subgroup of A that induces inner automorphisms on
O™ (P)/O,(P). Since P = Ny (P), each element of A, induces an inner automorphism
on P/O,(P). Together with

P/O,(P) = O™ (P)/O;(P)Cpo.()(O" (P)/O:(P))

we get that
(x) A2 < AL

If ¢ € Aut(GF(q)), then the field automorphism of K defined by
To(t) > z,(t%) for each a € ¥ and t € GF(q)

induces on O™ (P)/O,(P) a ficld automorphism of the same type. If ¢ is odd, then
it follows from section 7.1 in [3] that K has an outer diagonal automorphism which
acts as follows:

2o (t) To(t) if the long simple root is not involved in «
° Zqo(—t) if the long simple root is involved in

foreach o € L and t € GF(q). Note that this automorphism induces on O™ (P)/O,(P),
which is of type C,_;, a diagonal automorphism of the same type. Thus

. 2|Aut(GF(q))| if qisodd
() Az 4] 2 { |Aut(GF(q))| if ¢ is even

Since A fixes P, no element of A involves a graph automorphism of K. Hence by
Table 2.1.C in [11],

4: 4, = | AAuGF(@)] ifgisodd
T |Aut(GF ()| ifgiseven

Together with () and (*x) it follows that A, = A,. .
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Appendix B

FF-modules for groups of Lie type

Let £ be a complex simple Lie algebra of type T, where T is one of A,, B,,C, or
D,.. Let n : £ — U be the embedding of £ in its universal enveloping algabra U.
Let H be a Cartan subalgebra. Let & = ®(T) be the corresponding root system
and IT = (a;)1<i<n @ system of fundamental roots, where a; corresponds to the node
¢ in the Dynkin diagram, and the numbering of the nodes is as in [9]. Also, the
fundamental weights are labeled as in Table 1 of [9]. We denote the height of a root
B by ht(3). Let < be the total ordering on the euclidean space spanned by & defined
by

Za,—a,- < Zb,-a,- =4
i=1 i=1
there exists j € {1,...,n} witha; =b; forallt € {1,...,5 — 1} and a; < b;.

Let hy (o € 1), eg (B € @) be a Chevalley basis of L. Since we will write modules
as right modules, we choose this Chevalley basis such that, for each a € II, we have
ha = [€—a,€a) rather than h, = [e4,€_,] as in [9]. (Pick a Chevalley basis as in [9]
and replace h, by —h,).

Let Uz be the Z-form of U corresponding to this Chevalley basis, i.e., Uz is the
Z-subalgebra of U generated by the elements ;(e.n)* (k€ N, a € ®).

Let K be a finite field of characteristic p. Put ¢ := |K]|.
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B.1 Construction of the groups and modules

Let A be a dominant integral weight, W = W () the irreducible £-module of highest
weight A, and A the set of weights of W with respect to . Let ¢ be the representation
of U on W such that v(ang) = va, for allv € W and a € L.

W has a C-basis B which is also a Z-basis for a Uz-submodule Wz of W.

Put V:=V(T,K,)\):= K ®z Wz. Forallt € K and a € ® put

[o <]

rolt) = rol6 T K ) = 3 (tkldK 2z ( ,: (ean)k)qb) (€ GL(V)).

Define
Xo = Xo(T,K,\) :=(z,(t) | t € K), foreach a€ ®, and
G:=G(T,K, )\ :=(X,|a€d).

Let ®* = ®(T)™* be the set of positive roots. For each J C {1,...,n}, let &; = &,(T)

be the root system spanned by {e; | j € J}, and put
Qs :=Qu(T) = (Xa|a e @\ D),
L;y:=L,(T):=(X,|a€®,;) and
Py := Py(T) := Ng(Qu).
B.2 A,
Assume that £ is of type A,. Then ®* = {8;; | ¢, € {1,...,n}, ¢ < j}, where
Bij = Zj:ak, foralli,j € {1,...,n} with ¢ < j.

Note that with respect to < the pairs (o, 8i11,;) are extraspecial in the sense of [3]

for all 4,5 € {1,...,n} with ¢ < j. Hence without loss we may assume that
es; = —[€ar€p,,,,), forallije{1,...,n} withi<j.
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B.2.1

In the construction of section B.1, let

1

/\=/\1(A")=n+1

Ej:(n —i+ 1)

1

Then A = {411, .., ttns1}, where

i—1 n
i = 1 (—Zkak+2(n—k+l)ak), foralli e {1,...,n+1}.
k=1 k=1

n+1

Let v,, be a nonzero weight vector of weight p;. Then the basis B can be chosen as

follows: Put
Vppy = Uy, €_q,, foreachie{l,...,n}.

Then {v,,,...,v,,} is a basis with the desired properties. We obtain a group G with

generators z4(t) (8 € @, t € K) acting on a module V.
(B.2.1.1) Let i,j € {1,...,n} with i < j.
(a) Bij = mi — pjs1-

(b) Let p € A. Then

—_ vl‘l if u = l‘l’]'f'l
Vulbiy = { 0 else.

and

— 1 Vuin if p=p
Uu€-p.; = { 0 else. :

Proof. (a) This is clear.
(b) From (a) it follows that

vuep,; =0 unless p = pjyy, and

vue_p,; =0 unless p = p;.
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First assume that i = j. Then 8;; = a;, and from the definition of v, we get
Up,€-8;; = Uppy and
Vyis1€3,, = Up,€-a,€a, = Uy ha; + V€060, = (i, ai)vy, +0 =1,

Hence (b) holds in this case.

If i < j, then by induction on ht(g; ;) we get

Viy41€805 = Vi [€air €8i41,] = Vi1 €0,€8001, F Vi1 €6, ai = Vpiyr€a; = Up,
and
U“le_gl.] = vll.[e—ﬂ.v e_[’|+],]] = v#-e-ane—ﬁnH_J - vu-e—5-+1.,e—0- = U#:+1e-3-‘+1,j =
U#J+1'
]
Put

v; :=1®zv,, foreachie{l,...,n+1}.

(B.2.1.2) Let t € K, 7,5 € {1,...,n} withi < j,and k € {1,...,n+ 1}. Then

v +ty; ifk=35+1
Uk else.

Uk, , (t) = {
and

Vg + tv; if k=1
UkI—li-.J(t) = { Uk o else.

Proof. This follows from (B.2.1.1).
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B.3 B,

Assume that L is of type B,,. Then
Ot = {8, li,5€{1,...,n}, i <jyu{B}; 4,5 €{l,...,n—1}, i < j} where

J
Bij=3 ax, foralli,je{l,...,n} withi<j, and
k=1

J n
Bi, =Y o+2 Y o, foralli,je{l,...,n—1} withi<j.
k=i k=j+1
Note that with respect to < the following pairs are extraspecial in the sense of [3]:
((21',,5,'_‘,1‘]'), for all l,] € {1,...,71} with 7 <j,
(04, By ), foralld,je{l,...,n—1} with i < j,

(it1,B,41), forallie{1,...,n—2}, and

(an, Bu-1,n)-
Hence without loss we may assume that
(i) es, = —lea, €p,,,): forall i, j € {1,...,n} with i < j,
(i) eg = —[eal,eg:ﬂ‘)], forall 4,5 € {1,...,n — 1} with i < j,
(iii) eg, = —[ea,. ep ], forallie {1,...,n -2},

(IV) 26»’3:,—“.—1 = —[eﬂn‘eﬁn—l-"]'
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B.3.1

This subsection is about the natural Oy, 41(g)-module. In the construction of section

B.1, let
A=M(Ba) =Y .
k=1
Then A = {uo, 1, -+ Hny — 1, - - - —fin }, Where

o =0, and

Wi o= ZQk, for alli € {1,...,n}.
k=1

Let v,, be a nonzero weight vector of weight ;. Then the basis B can be chosen as

follows: Put

Vpiyy ‘= Up,€_q,, foreachie {1,...,n—1},
Ve 1= Vpp €
Vo = Vppn€—ans
1
Vpin °= = 5 Vko€ans and
Vepp_y = —Vpp_,41€-an_» foreachie {1,...,n—1}

Then {vug, Vpyy - -y Vup» Uopys - - - U—p, } IS @ basis with the desired properties.

(B.3.1.1) (a) Bij = pi — pj41, for all 4,5 € {1,...,n— 1} with i < j.
(b) Bin = i — po, for alli € {1,...,n}.
(C) z(,j = Wi + Kjt1, foralli,j € {1, L= l} with ¢ < j.

(d) Let pe A,e € {1,-1},and 7,5 € {1,...,n— 1} with ¢ < j. Then

EVey, if p=cepjp
Uplef,, = § —EV-ep,,, fp=—€u,
0 else.
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(e) Let p€ A, e € {1,-1},and ¢ € {1,...,n}. Then

2ev.,, fp=cpg
Vules, . = § —EVyuo if p= —ep,
0 else.

(f) Let pe A, e € {1,-1} and i,j € {1,...,n — 1} with ¢ < j. Then

EVey, if B = —EHjt+1
Up€es =\ ~EVeu, s if u=—ep;
0 else.

Proof. (a),(b),(c) This is clear.

(d) From (a) it follows that
vueep,, =0 unless p € {—epi,epjp1}-

First assume that ¢ = j. Then §3;; = ;. From the definition of v, ,, and v_,, we get
Vo, = Uy
Vepys1 €0y = “Vpys

Vpp1€a, = Up,€-a,€a; = Uy ha, + Uy €0,6-0, = (4, a,')vm +0=1v,, and

Ve, €a; = 7V-pi41€-0,60; = —v—l‘i+lhaa “V-pit1€ai€-a; =
-<_ﬂi+l’ ai)”—#wl -0= TV ppigr
Hence (d) holds if i = j. .

Now assume that ¢ < j. Then by (i) and induction on ht(g; ;) we get
V_p€8,; = —V_p€q€p,,, .+ U_py€5., € = V_y €5, +0= “U—pjp1s
Vs 11€8,; = ~Vp;1€0,€8,415 T Upyi1€8i41;€00 = 0+ Uy €0 = Uy,
U €—8; = Uni€-0,€-Bit1; — Upi€-Bi41,;€-ai = Vpip1€-Big1,; — 0= Upjtrr
and

Voppjr1€-8i; = Vp;1€-ai€-Big1; = V-pj11€-Bi41,,€-0i = 0+ v_py1€-a; = —Vp-
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(e) From (b) it follows that
vsees,, =0 unless p € {—eui, po}-

First assume that i = n. Then 3, = a,. From the definition of v,, and v_,, we get
Vun€-an = Upos

Vpolan = —2V_p,,

Vo€an = Vpn€—an€an = VpnPan + Vpn€an€-an = (Mn, Qn)Vy, +0 =2v,,, and

1 1

Voppn€a, = ~5Vuo€-an€an = ~5Vuolan = 5VuoCan€-an =
2 2 2
1
—E(uo,ai)v_#o — Upn€oq, =0 — Uy = —y,.

Hence (e) holds if i = n.

Now assume that ¢ < n. Then by (i), (d), and induction on ht(g3;,) we get
Vopi€8 0 = ~Vp,€0,€8i 10 T Vo €61 0 €a; = Ve 1 €610 T 0= —Vyg,
ViolBin = ~Vpo€a,B8i11m T VpoCBhip1n€a; = 0+ 204, €a, = 20y,

Upui€-Bin = V,€-a,€-Bit1n — Vui€-Bit1n€-ai = Upin1€-Biz1n — 0= Uuo»
and
Vuo€-Bin = Vno€-0i€-Biy1n ~ Vpuo€-Bis1,n€-ai = 0+ 2”—#-‘+1e-0i = —21}—#-"

(f) From (c) it follows that

Up€es, =0 unless p € {—epi, —€pj+1}-

From (iv), (d), and (e) it follows that

v‘l‘neﬂﬁ,_l,n_) = —§v"#n60neﬁn—l,n + év—#neﬁn-l,nean = Evﬂoeﬂn—l,n + O = vﬂ-n—l’
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1

v_l‘n—leﬁ:,_l_"_l = _§v"‘lln—leaneﬁn—l.n + iv“#n—-leﬁn—l,nean = 0 - '2'U#oean =
—v“n’
1 1 1
Ul-‘ne—ﬂ;,_lv,,_l - iv#ne-ane'ﬂn—l.n - §v#ne—ﬂn—l,ne—an - Evﬂoe—ﬂn—l,n - 0 -
_v_l-ln-l?
and
1 1

v”"'le_ﬂ:s-l,n—l = 5”#"—16_0"6_[371—1," - ivﬂn—le—ﬂn-l.ne—an = 0 - Ev#oe—an =

V-

Hence (f) holdsifi=j=n—1.
If i < j, then by (ii), (d), and induction on ht(g] ;) we get

Vopeg = —U_palp FU_p€g €a Uy +0=-vy,,
Vopy 1 €8, = ~V-pp;1€ai8,,, T V-pjpi€8,,, €ai = 0+ vy €0 = Uy,
Vpi€-g,, = Vn€-ai-p,,  — Vn€-g,, €-ai = Uy, €5 . — 0=v_p»
and
Vpj1€-8,; = Uuy41€-0i€-p | -~ Uy €6, €-ai = 0+ vy €0, = —Voy;
If i <n -1, then by (iii), (d), and induction on ht(g; ;) we get
Vep, €8, = ~V-p,€a;, 8, + Vop, €8, €aiy1 = 0- Vpiv2€aizs = “VUpygas
Vit €8; = “V—piy1€0i1 €8, + Vi1 €8] ;1 Caivt = V—piy2€8, +0 =,
v#:e—ﬂﬁ" = v#-‘e—ai“e-ﬂf',ﬂ - v#:e—ﬁ:_i+le—0i+l =0- Vepiy2€—aiy1 = U—pigro
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and

Upis1€8), = Unip1€-ain1 €8, ) 7 U1 €-8],, €—aiv1 = Vpiy2€-5; | — 0=—v_y,.

Put
v; :==1Q®z v, and
vo; = 1®zv_,,

for each i € {0,...,n}.

(B.3.1.2) (a) Let k € {-n,...,n}, e € {1,-1}, 4,5 € {1,...,n— 1} with ¢ < j, and

t € K. Then
Uk + €LV ifk=e(j+1)
UkZep,, (t) = { vk — etv_pipn) if k= —ei
Uk else.

(b) Let k € {-n,...,n},e € {1,-1}, i€ {1,...,n},and t € K. Then

Uk + 2tE Ve if k=0
VkTep, , (t) = vk — tevg — tPv,; if k= —ei

Uk else.

(c) Let k € {-n,...,n}, e € {1,-1}, 4,5 € {1,...,n— 1} with i < 7, and

t € K. Then
Uk + tevg ifk=—-e(j+1)
wZeg; (1) = { vk — teven) if k= —et
Uk else.

Proof. This follows from (B.3.1.1).

(B.3.1.3) (a) Letr € {1,...,n} and put J := {1,...,n}\ {r}.
(al) [V,Qu] = @i Kvi ® @1, ,, Kv_y,
(a2) [V,Qs,Qu] =Cv(Qy) = B, Ku;.
(23) |[V,a] N Cy(Q,)| # 1, for each a € Q, \ {1}.
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(b) If q is odd, then the map
E: VXV oK, (Y av, Y bu)— > aib_i+aib
it=—n i=—n 1=0

is a nondegenarete G-invariant symmetric bilinear form.
Proof. This follows from (B.3.1.2).

(B.3.1.4) Let J := {2,...,n}. Assume that A is a subgroup of Q; with 1 # |A| > |V :
Cv(4)].

(a) q is even.

(b) Kvy Z [V, A] if and only if g =2 and A = X, ..

Proof. Note that (B.3.1.3) implies that

(x) [v_1,ab] = [v_y,a][voy,b] for all a,b € Q; where
V:=V/Kuv,.
From (B.3.1.2) we get that
tvg — vy = [v_1, 25, (=1)] € [v-1, QU]
tv_i = [v_1, 75, (—t)] € [v-1,Q)], and
tv; = [v-,,z:g;.l_l(—t)] € [v_1,Qy] forallte Kandi€ {2,...,n}.

Then (*) implies that the map

k: Qs —[V,Qy], ar [v_y,d]

1s surjective. Since |Q;] = |[V, Q]| by (B.3.1.3)(al), it follows that « is bijective. In

particular,

V. All 2 |6(A)] = | Al
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Assume that |[V, A]| < |A|. Then |[V, A]| = |x(A)| and hence [V, A] N Kv; = 0. Now
(B.3.1.2) implies that ¢ is even, A < Xj ,,, and |A| = 2. Since |V : Cy(A)| is a power
of g, it follows that g = 2.

Assume that |[V, A]| > |A|. Then (B.3.1.3)(b) and the assumption |V : Cy(A)| < |4|
imply that ¢ is even. Since |[V/Kwvo, A]| = [(V/Kw) : Cyv kv (A)] < |A] < |[V, 4]), it
follows that Kvy < [V, A].

From (B.3.1.2) it follows that X, , is a subgroup of Q; with | Xg, .| > |V : Cy(Xp, )|
and Kvo € [V, X, ], provided ¢ = 2.

(B.3.1.5) Assume that ¢ is odd. Let r € {2,...,n}. Put J:={1...,n}\ {r}.

(a) Z(Qy) is a vector space over K with basis {IL‘g:J(l) [1<i<j<r-1}

where
tzﬁ(.,(l) = Iﬁ:d(t), forallte Kand1<i<j<r-1

(b) Z(Q,) and C\(Qy) A Cv(Q) are isomorphic as K P;-modules.

(c) V/[V,Q,] and Z(Q,) are not isomorphic as GF(p) P,-modules.
Proof. (a) follows from (B.3.1.2). Again by (B.3.1.2), the K-linear map which sends
.’L‘g:](l) to v; Avj;, forall 1 < i < j < r,is a KPj-isomorphism from Z(Q,) to
Cv(QJ) ACy(Q,). Hence (b) holds.
Suppose that Z(Q,) and V/[V, Q] are isomorphic as GF (p) P;-modules. Then r = 3,
since dimg Z(Q,) = ’—(rz;ll and dimg V/[V,Q,] = r. For each t € K \ {0}, put

h(t) =24, ()7 g, (=t )z, , ()25, (V)2 _g, , (= 1)z, ,(1).

Then h(t) has on Z(Q,) the eigenvalues t~! and ¢t~2, and on V/[V, Q,] the eigenvalues

1 and ¢, for each t € K \ {0}, contrary to the assumption that ¢ is odd.
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B.3.2

This subsection is about the spin module for O;(g). Assume that n = 3. In the

construction of section B.1, let

1
A= /\J(Bg) = —2—(01 + 202 + 3(!3).
Then A = {u1, ..., pyy —p1, ..., —p4}, where

H1 = /\y

1
o 1= 5(01 + 209 + i3),

1
H3 = ‘2—((11 + (}’3), and

1
Ha 1= 5(01 - a3).

Let v,, be a nonzero weight vector of weight ;. Then the basis B can be chosen as

follows: Put
Vyy 1= Uy €y,
Upy 1= Vp, €y,
Upg 1= Vpy_ay,
V—pq *= Vp3€-any
Ve = V—py€-qy;
V_py '= VU_p€_q,, and
Uopy = Vepyy€ay-

Then {v,,,..., 04, Vpys--.,V_p,} is @ basis with the desired properties. We obtain

a group G with generators z5(t) (8 € ®, t € K) acting on a module V.
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Using (i)-(iv) and the definition of v, ,..., V4, Vp,, ..., vy, We get
Vops€a; = Vp3€-a,€a; = v#ahm = </"3’al)v#3 = Vs,
V-ps€ar = V-pi€-a3€ar = V-ps€a1€-a3 = Up3€-as = Upy)
Vpus€-a; = Upz€-03€-a; = Up3€-a,€-a3 = V-py€-a3 = V—py,
Uus€az = Upy€—03€a; = vuzhaz = (/‘27a2>v#2 = Uy,
V-py€a; = V—p3€-a3€a; = U—#ahﬂz = ('—/‘3’02)1)—#3 = Uy,
Vur€az = Up €-q3€a; = vmhﬂs = (ﬂlsa3>v#1 = Uyy»
U—p1€az = U—py€-a3€a3 = v-#zhm = <—/‘2aa3)v—#2 = U—pps
Upus€az = Up3€-a3€a3 = Uuahas = </13,03>Uu3 = Vys,

V_p3€as = Vopy€oa3z€ay = V—pghag = (—nq, a’3>v—#4 = Vg

Vops€812 = U—py [602’ em] = V-ps€ar€a; = V-ps€a €a; = 0- Uusz€az = —Vug;
Vepy€812 = U—py [602’ eal] = V—py€a3€a; = V—p3€a; = Vpy,
Ups€hzs = Vpsl€ags €ay] = —Ups€ar€ay = —Vpy€ag = Uy,

Vop1 €825 = Uyt [€az) €as] = V=piy as€ar = Vopy€ay = Vopy,

Uus€p8y3 = Up, [€ass €ar] = VUus€asz€ay = Uuz€az = Vpy,

V—p2€8y3 = V—py [easveaz] = TU-py€a2€a3 = ~V-p3€az = ~V—py,
Vepg€813 = VUpy [652.37601] = TU-ps€a €823 = ~Up3€B8y3 = Uy
Ve €813 = v—m[eﬂzm eal] = V-1€8y3€a; = V—p3€a; = Upy,
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Vop3€By3 = VU—py [eﬂz,sveal] = TU-p3€a1€8;3 = T Uus€8y3 = “Upyp,

Vepip€8) 3 = Vi [eﬁz.svem] = Vopy€8y3€a) = ~VU—py€a; = —Ups,

1 1 1 1 1

Unue€p, , 2“#4 [6152.37 eaa] = 5”#4632.3603 - _2'1)#46036,32,3 = 5”#2603 - Evﬂseﬁz.s =
Uuys
Vo €5y, = 5”-#1[652.37803] = iv—meﬁz.seos - —2-1]_“1603602.3 =

1 1
iv—#seﬂs - 5?)_“2632_3 = Vopy

Vo €3, = ~Vop [601 ) 6;9'2'2] = Vopy €8y ,€ar = V—py€a; = Vps,

Vopa€8] , = ~VU—ps [eal’eﬁ;'z] = TUop3€ai €8, = TVu€s, , = “Uup,
Ve €8y, = ~Vp [cuw eﬁ','z] = Vo €8] ,€a; = Vpuz€ay = Vpy, and
Uop2€8) | = “ VUi [602’63{_2] = TU-p2€a2€8] , T TV-p3€s) , = Upy-

Put
v; :==1Q®zv, and
vo; = 1®z vy,

for each ¢ € {1,...,4}.

(B.3.2.1) Let J := {2,3}. Assume that A is a subgroup of Q; with |V : Cy(A)| < |A4] # 1.
Then [V, A] = [V, Q,].
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Proof. From the calculations above it follows that with respect to the basis vy, ..., vy,
U_g,...,v-) of V the action of the generators zq,(t), 25,,(t), Z5,5(t), 2, (t), and

zy ,(t) (t € K) of @y is given by the following matrices:

1 1 '
(v \ (o \
1 1
La, (t) : t ! 1 Iﬂx.z(t) : —t ! 1
t 1 1
1 t 1
\ 1) \ 1)
(1 \ (1 \
1 1
1 1
xﬂl.S(t) : t ! 1 :Eﬂ’l.l(t) : : 1
—t 1 1
—t 1 t 1
t 1) \ ¢ 1)
and
1
(1 \
1
24, (8) : b
—t 1
1
\ t 1)

Suppose that [V, A] # [V, Q,]). Since L, induces Sp,(g) on [V, Q] and therefore acts
tranisively on the 3-dimensional subspaces of [V, @], we may assume that [V, A] <

Kv, + Kvy + Kv;. By the matrices above it follows that
A< {:l?gll_l(s) Iﬁlm(t) I s,t € K}
In particular, |A] < |K|? and hence

() Cv(4) # [V, Qul.
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Pick a € A\ {1}. Then a =z (s) s ,(t), for some s,t € K. By the matrices above

we get
(**) Cv(a) = [V, QJ] + K'U..4 + K(tv_2 - SU_3).

If A< {zg (su)zg ,(tu) | u € K}, then |A] < |K| and, by (xx), [V : Cv(4)| = |K|?,
a contradiction. If A  {z4  (su)zg ,(tu) |u € K}, then [4] < |K|? and, by (x*),

[V : Cv(A)| = |K [, again a contradiction.
B4 C,

Assume that L is of type C,, and
n-—1 1
A= Z o + —an.
i=1 2
Then
o = {8 li,5€{l,....,n=1},i<j}U{B;|i5€{l,...,n},i<j} and
A={p,. o\ tiny—=p1,. oy —pin},

where

J
Bij = Zak, for all ¢,5 € {1,...,n — 1} with ¢ < j,
k=i
j—1 n—1
ﬂf‘j = Zak +2Zak+aﬂ, for all 4,5 € {1,...,n} with ¢ < j, and
k=1 k=j

n-1 1
Wi = Zak+§an, foralli € {1,...,n}.
k=1

Let v,, be a nonzero weight vector of weight p;. Then the basis B can be chosen as

follows: Put
Vyiy, = Up€-q,, foreachie{l,...,n—1},

V_y, = Uy, €_q,, and

167



V_p = —VU_p, .,1€-a._,, foreachie {1,...,n—1}.

Then {vu,, .., VpnsV_pyy---,V_p, } is a basis with the desired properties. Note that

with respect to < the following pairs are extraspecial in the sense of [3]:
(ai, Biy1), foralli,je{l,...,n—1} withi < j,
(a4, B4, ,), foralli,je{1,...,n} with i< j, and
(04,8 41), forallie{l,...,n—-1}.
Hence without loss we may assume that
(i) es,; = —lea;s€p,,,,), foralli,j € {1,...,n — 1} with ¢ < j,
(i) eg = —[60',€g:+]d], forall 4,5 € {1,...,n} with i < j,
(ili) 2eg, = —[eq, €4 ,,], forallie {1,...,n - 1}.
B4.1

This subsection is about the natural Sp,, (¢)-module.

(B.4.1.1) (a) Bi; = pi — pj41, forall,5 € {1,...,n— 1} with ¢ < 5.
(b) Bi; = i+ py, forall i,5 € {1,...,n} with i < j.

(c) Let pe A, e € {1,-1},and ¢,j € {1,...,n — 1} with i < j. Then

EVey, if u=epjs
Vplep,; = § —EV—epu,,, I p=—€p;
0 else.

(d) Let pe A,e € {1,-1} and 7,5 € {1,...,n} with ¢ < j. Then
Ve, if p=—ep;

Upes | =\ Ve, if p=—cep;
0 else.
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Proof. (a),(b) This is clear.

(c) From (a) it follows that
Vueep,; =0 unless p € {—ep, €541}
First assume that i = j. Then 3;; = a;. From the definition of v,, , and v_,, we get
’U#‘C_a, = Vpigas
Veppyp1€—a; = —V—pys
Vuiy1€ai = Vpi€-0,€a;, = U ha, + Uy, €a,6-0, = <ll’i$ai>v#i +0 =y, and
Vopi€a; = 7V-py1€-0a,€a; = —U—I‘:+lh0i “V—pi1€a;€-0a; =

—<_Hi+lv al)“—#.ﬂ -0= Vet

Hence (c) holds if ¢ = j.

Now assume that ¢ < j. Then by (i) and induction on ht(3; ;) we get
Vopi€B,; = ~U—p,€0a, 8,4y ; T V-p€8,,, ;€a; = V—pyy 1 €51 +0= “VU—pjtrs
Vp;01€80, = ~Vp;11€0,€8i41 ;5 T Vi1 €Bigr ;€0 = 0+ Upiy €0 = U,
Uui€—8i; = Un€-0,€-Bip1; — Uni€—PBis1,;€-ai = Vpip1€-Biy1; — 0= Vpjprs
and
Vs 1€-B1y; = Vopy11€-ai€-Biy1; = Vopj11€-6i41 ;€-ai = 0+ Veppiy1€-ai = V-
(d) From (b) it follows that
vuees, =0 unless p € {—ep;, —ep;}.
First assume that i = j = n. Then f;; = ay, and from the definition of v_,, we get

Upn€-p, , = V-p, and
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Vopn 8, . = Vpp€ a,€ap = Uy, Pa, + Uy €a,€ 0, = (ln, Qn)Vu, — 0 =1,,.
Hence (d) holds in this case.
Now assume that i < j. Then by (ii), (c), and induction on ht(8; ;) we get

v“l‘leﬂ:._’ = _v—ﬂleal + U_I‘lpﬂ

23! (4
+1,; @

€351, 0 = Vo8, +0= Vs>

Uop, €8, = —Vop,€ai€p | + VUop,€p;,, €ai = 0+ vy, €, = Uy,
U”‘e_ﬁ:d = vl‘xe_ale—ﬂ:+l_1 -

U“le‘ﬂ:+llje_ai = Ul-‘l+le_ﬁ:+llj - 0 = U_I‘j’
and
U, €-p; = Unj€-a,€-p5, , — Uy, €_p  €-a; = 0-— Vepip1€—a; = V—p,-
Now assume that ¢ = j < n. Then by (iii), (c) and induction on ht(3; ;) we get
1
V-m€p; ; = _2-(_1]—”‘6“'6/3:,.“ + v"“teﬂ:,xﬂea‘) - §(v_“i+1eﬂ£.i+l + Uﬂi+1ea.‘) =
1
E(v#i + vl‘l) - U“’I
and

1

v“le—ﬂ:'}’ = E(U}A.e—ale—ﬂ:‘”_l - U#-e—ﬂ:_wle—ﬂ.‘) = —2_(v#i+le_ﬁ£_,'+l - v_l‘i+le_ai) =

E(U_I‘i + vl‘l) = +U_I‘|'

Put
v;:=1®zv, and
v_; = 1@z v_y,

for each i € {1,...,n}.
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(B4.1.2) Let k€ {1,...,n}u{-1,...,—-n}, 43,5 €{1,...,n—1} withi < j, e € {1, -1},
and t € K. Then

U + €LV, ifk=ec(G+1)
UkZeB; (t) = Vg — Etv_g(j+1) if k = —¢i
Uk else.

and

Vg + Etvei if k= _Ej
wep (t) = vetetvy if k= —ei
Uk else.

Proof. This follows from (B.4.1.1).
(B.4.1.3) Let J:={2,...,n}.

(a) Cv(QJ) < [V,a], for each a € Q, \ {1}.

(b) Assume that 1 # A < @, and |A| > |[V, A]|. Then Cq,([V,QJ]) < A.
Proof. Note that (B.4.1.2) this implies that
V,QJ] = EnB Kv, ® Gn) Kv_;, and
i=1 i=2
[V,Qs, Q4] = Cv(Qs) = Ku1.

In particular,

(*) [v-1,ab] = [v_1,a][v_y,b] for all a,b € Q; where
V:=V/Kuv,.

(a) Pick a € Q,\ {1}. Then there exists t,...,t,-1,t},...,t, € K such that
a=xp,(tr) .. Tp 0y (tar) - Tp (B) -z (2).

If t; # 0 for some ¢ € {1,...,n — 1}, then

tv; = [t7'tviy),a] € [V,a] foreacht € K.
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If t! # 0 for some i € {2,...,n}, then
tv, = [(t.) 'tv_;,a] € [V,a] for eachte€ K.
Ift,=t,, =0foreach i€ {1,...,n— 1}, then t; # 0 and
tv, = [(t)) 'tv_1,a] € [V,a] foreachte K.
(b) From (B.4.1.2) we get that
tv_; = [v_y, 23, ,(—t)] € [v_1,Qy] and
tv, = [U—lyia’“(—t)] € [v-1,Qy] forallte K andie€ {2,...,n}.

Then (x) implies that the map

K QJ — [‘/'1 QJ]a arr [U—ha]

is a surjective homomorphism. Note that Cq,([V,Q,]) is the kernel of x and has

order g. Together with (a) and |[V, A]| < |A| we get
|A] = |4 N Ker(x)| |£(4)] < g|r(4)] < [[V, A]| < |A].
Hence |[A N Ker(x)| = g, i.e., Cq,([V,Qu]) £ 4.
(B.4.14) Put J :={2...,n}.

(a) Co,([V,Q,)) is a 1-dimensional vector space over K spanned by :r,g;‘l(l)

where
trg (1) = Iﬁ:](t), forallt € K.

(b) Let A :=Cp,([V,Q4],Cv(Q.)). If Cq,([V,Q,]) and V/[V,Q,] are isomor-
phic as GF(p) A-modules, then ¢ € {2,4}.
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Proof. (a) This follows from (B.4.1.2).
(b) Assume that Co,([V,Q]) and V/[V, Q] are isomorphic as GF (p)P;-modules.
For each t € K \ {0}, put

h(t) =25, (Dz_g, (=t zg (2, (-1)T_g1, (D257, (=1):

Then h(t) € A hason Cq,([V, Q,]) the eigenvalue t =2, and on V/[V, Q] the eigenvalue
t, for each t € K\ {0}. Put H := (h(t) |t € K). Then K Qgr(p) (V/[V,QJ)) is the
direct sum of 1-dimensional K H-modules Wy, ..., Wy_, where h(t) has on W; the
eigenvalue t*', for all t € K and i € {0, ...,k — 1}. Since Co,([V,Q,]) and V/[V, Q)]
are isomorphic as GF(p)H-modules, it follows that there exists m € {0,...,k — 1}

such that

m

tP" =t72, foreachte K.

Hence p* — 1 divides p™ + 2. Since m < k, this implies p = 2 and k < 2. .

(B.4.1.5) Let r € {2,...,n}. Put J:={1...,n}\ {r}.
(a) Z(Qy) is a vector space over K with basis {Iﬂ:j(l) |1 <i<j<r} where
tl‘ﬂ:‘j(l) =g (t), forallte Kand1<i<j<r.

(b) Assume that ¢ is odd. Then Z(Q,) and the symmetric square of Cy(Q,)
are isomorphic as K P;-modules.

(c) Assume that ¢ is even. Put W := (Xﬂ:'j |1<i<j<r).
(cl) W is a KPj-submodule of Z(Q,) that is isomorphic to the exterior

square of Cy(Q,).
(c2) If Z(Q,)/W and V/[V,Q,] are isomorphic as K Pj-modules, then ¢ €
{2,4}.

Proof. (a) This follows from (B.4.1.2).
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(b) Let v be the natural homomorphism from Cy (Q;)®xCv(Q,) onto the symmetric
square of Cy(Q;). Then (B.4.1.2) implies that the K-linear map defined by

¥(vi ® v;) ifl<i<j<r
xﬁ"(l)H{ Ywi®v) ifl1<i=j<r

is a K P;-isomorphism.
(c) By (B.4.1.2) the K-linear map that sends :cﬂ:J(l) tov;Avj, foralll <i<j<r,
is a K Pj-isomorphism from W to Cy-(Q,) A Cv(Q,). Hence (cl) holds. The proof of

(c2) is similar to the proof of (B.4.1.4)(b).

(B.4.1.6) Assume that A is a nontrivial subgroup of G with |A| > |[V, A]|? and [V, 4, 4] =
0. Then n > 3.

Proof. Note that (A.1.5)(a) implies that [V, A] is an isotropic subspace of V. Let r

be the K-dimension of [V, A]. Then r < n, since [V, A] is isotropic. Moreover, [V, 4]

. . r(r+1) .
is conjugate to the span of vy, ..., v,, and hence |A| < ¢~z . Thus 1(’2—“2 > 2r, i.e.,

7"23..

B.5 D,

Assume that n > 3, £ is of type D,,, and
n-2 1
A= Z o; + 5(01,1_1 + a,,).
i=1

Then &+ = {8;;[i,5€{l,....,n—1}, i<y U{8;]ij€{l,...,n—1},i<j}

and A = {u1, ..., tny —H1,---, —Hn}, where

J
Bij = Zak, foralli,5 € {1,...,n—1} with < 3,
k=i

7 n-2
Bi, = ox+2 ) ax+ani1+a, forallije{l,...,n—2}withi<j,
k=i k=j+1

n-2
Biny = Zak +a,, forallie{1,...,n—-1},
k=1
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n-2
1
pi= ) ax+ E(an_l +ay,), forallie{1,...,n—1}, and
k=i

Hn =

N =

(an - an—l)-

Let v,, be a nonzero weight vector of weight ;. Then the basis B can be chosen as

follows: Put

Vpyy = Up,€-q,, foreachie {l,...,n—1},

Vop, "= Up,_,€_qa,, and

v“l‘n—i =

Then {v,,

P

s Upny Uy e

—Uyr_1+1€-an_,, foreachie {l,...,n—1}

,U—u, } is a basis with the desired properties. Note that

with respect to < the following pairs are extraspecial in the sense of [3]:

(a4, Biyry), foralli,je{l,...,n—1} withi<j,

/

(@i, B4, ), foralli,je{l,...,n—2} withi<j, and

(ﬂ,",'+1,,13:+1‘i+1), for all i € {1,...,7’1—2}.

Hence without loss we may assume that

(i) es,,
(ii) g,

(lll) eg:J

—[ea,r€p,4,,), forall 4,5 € {1,...,n — 1} with i < j,
—[ea‘.,eﬂzﬁd], forall 7,5 € {1,...,n— 2} with i < j,

—lesem,, ) forallie {1,...,n -2}
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B.5.1

This subsection is about the natural O3, (g)-module. The information given in the

lemmas below will also help to construct the natural O;, (¢q)-module later.

(B.5.1.1) (a) Bij = i — pj+1, forall 4,5 € {1,...,n— 1} with s < 5.
(b) Bi; = pi + iy, foralli,je {1,...,n -1} with 7 < j.

(c) Let p € Aand g € ®. Then

Vs 3 if 24 + [ is a sum of pos. roots and p+ 3 € A
vues =4 —Uuyg if 2+ B is a sum of neg. roots and u + 3 € A
0 else.

Proof. (a),(b) This is clear.

(c) If 3= —q; forsomei € {1,...,n—1}, then (c) holds by definition of v,,,...,v,,
and v_,, _,,...,V_,,. Note that 2p1,_; — a, = an_; is a sum of positive roots and
2un — ap = —ay— is a sum of negative roots. Hence the definition of v_,, and
vllne_an = vl‘n—le_an-le_an = vl»‘n—l [e_an-—l7e_an] + vl-‘n—le_ane_an—l =

0+v_p.€any = —VUepp_y,

imply that (c) holds if 8 = —a,.

Now assume that 3 = o, for some i € {1,...,n — 1}. Then
Vpi 1 €8 = Vp,€—a,€a, = Uy Na, + Uy €a,6—a, = (fi, ai)vu, +0 = vy,

and
Vepi€p = —Vepyy1€-0,€0; = _v—u-‘+1ha.‘ — Vpit1€0i€-0; = _(_ui+1’ai>vl‘i+l -0=
“Vpygy -

Hence (c) also holds in this case.

Let 4,5 € {1,...,n — 1} with ¢ < j. Then, by (i) and induction on ht, ;

Vuj1€8:5 = _U#MI[ea:’ eﬁn+l.J] = Uy 41€8i41,;€0i = Upiy1€ai = Uy,
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and

v_l‘leﬁ!,] = —v"l-ll [eal7 63|+1,)] = _v—l‘iea;eﬁx-{-l.J = v_#t+leﬂt+l.j = —v“ﬂj+l’

Vep;1€-8;, = U-#J+1[e~0ne—ﬁ-+1.j] = "V 1€-Bi1,;€-ai T Vi1 €0y = —Vypy,

Up, €8, ; = Uy, [e—a.ve—ﬂ.H.J] = Vp€-ai€-Bit1; = Vnit1€-Biv1; = Vujpa-

Hence (c) also holds if 3 = 3, j or 8 = -8, ;.

Let 4,5 € {1,...,n — 1} with i < j. By (ii), (iii), induction on htg;] ;, and the parts

of (c

and

) proven so far, if ¢ < j then

V€5, = —v—uﬁx[eaneﬁ(“,] = V168, ,€ai = Unig1€ai = Uuys
v—#.eﬂ(.J = Uy, [ea.v 63(“_J] = TVp€aiC, T Vepin €8, T TV
vu;+16—ﬂ:‘j = v#)+1[e—an e—-B:HJ] = _v#,+1e—ﬁﬁ+we—0- = Vpig1€-a; = ~ Uy,

U“'e_ﬁ:h’ = UI": [6_0|7e_ﬁ:+1'j] = v#te_aie—ﬁ:.’_l’j = vl‘l+le_,@£+1d = v—l"]-#'l;

and if i = j < n —1 then

and

v_l-‘lea:'j = —v‘ﬂ\ [eﬂl,l‘+l7eﬂ:+l‘i+l] = _v_l‘xeﬂi.i+leﬁ:+1',‘+| = U_ﬂi+2eﬂ:+l'i+l = vﬂ'i+l’
v—#.+1eﬂ:'] = —-v—#wl[eﬂi.e+1’eﬁf+1"+l] S Vpin1€8 1 8Bt T TUnig2€B8iir1 = T Unis
v“'le_ﬁ:‘} = UI-‘: [e_gl.l+l’e—ﬁ:+l'.+l] = U#le_ﬁi.i+16_ﬂ:+l'i+l = vl‘l+2€_ﬂ:+l_,‘+l = -'U_'I‘l-#-l’
v“l+le_ﬂ:d = vl-‘|+l[e"ﬁx,t+l’e“ﬂ:+l',+1] = —vl‘l+le_ﬂ:+|_i+le_ﬂi,i+l = _v_l-lt+2e_ﬂ|.l+l =
'U_u‘.

Hence (c) also holds if 3 = 43 ; or 8 = -4/ ;. -
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Put
v; :=1Q®zv,, and
vo; = 1Q®z v,

for each i € {1,...,n}.

(B.5.1.2) Let k € {1,...,n}uU{-1,...,-n},3,5 € {1,...,n—1} withi < j, e € {1,-1},
and t € K. Then

U + €tug ifk=e(+1)
UkTep,, (1) = vk — €tv_gipn) if k= —ei
Uk else.
and
Vg + €lvg ifk=—e(j+1)
Ukme[l:vj (t) = Vg — €t’l)€(j+1) ifk=—¢1
Uk else.

Proof. This follows from (B.5.1.1)(c). o

(B.5.1.3) (a) Let 7€ {1,...,n— 2} and put J := {1,...,n} \ {r}. Then
(a1) [V, Q] = &y Kvi © BiLryy Kooy,
(a2) [V,Qs, Q] = Cv(Q)) = &}, Ku;.
(b) IfJ = {1,...,n — 2}, then
(b1) [V.Q) = @y Ku ® Kv_y,
(b2) [V,Q,Qu] = Cv(Q)) = @) Ku;.

(c) If J={1,...,n— 1}, then

V,Q)] = Cv(Q)) = émi.
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(d) The map

E:VxV K,

n n

(z aQ;v; +a_;v_,, Z b;v; + b_,"U_,') — Z a;b_; + a_;b;

=1 i=1 i=1

is a nondegenarete G-invariant symmetric bilinear form.
Proof. This follows from (B.5.1.2)
(B.5.1.4) Let J:={2,...,n}. If 1 # A < Qy, then |A] < |[V, A]|.

Proof. Note that (B.5.1.3) implies that

(x) [v-1,ab] = [v_y,a][v_y,b] for all a,b € Q; where
V:=V/Ku,.
From (B.5.1.2) we get that
tv_; = [v_y, 25, ,(-t)] € [v-1,Q,] and
tvi = [v-1, 25, (—t)] € [v1,Qy] forallt€ K andie€{2,...,n}.
Then (*) implies that the map
£: Qs [V,Qu ar[vryd

is surjective. Since |Q,| = |[V, Q]| by (B.5.1.3)(al), it follows that k is bijective. In

particular,
|V, A]l > |x(A4)] = |A].

Suppose that |[V, A]| < |A|. Then |[V, A]| = |k(A)| and hence [V, A]N Kv; = 0. Now

(B.5.1.2) implies that 4 = 1, a contradiction. J
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(B.5.1.5) Let J := {1,...,n — 2}. Assume that A is a nontrivial subgroup of Q; with
[V, A, A] = 0 and |4] > |[V, A]|. Then AN Co,([V,Q,]) # 1.

Proof. Put Z := Cq,([V,Q,]). Suppose that AN Z = 1. Note that, by (B.5.1.2),
[Kv, + Kv_y,,L;] = 0.

Suppose that there exists a € A such that [Kv, + Kv_,,a] is 2-dimensional. Since
L, is 2-transitive on Cy(Q,) \ {0}, we may assume that [v,,a] = v; and [v_,, a] = v,

ie.,

ae .'I:ﬁl‘"_](l).rﬁf (1)Z.

But then, by (B.5.1.2),
[~v-1,a,0] = [v_p,a] = vy,

contrary to [V, A, A] = 0.
Now let a be any nontrivial element of A. From ANZ = 1 and the previous paragraph
it follows that [Kv,+ Kv_p, a] is 1-dimensional. Since L, is transitive on Cy(Q,)\{0},

we may assume that [Kv, + Kv_,,a] = Kuvy, i.e.,

a€zxp . (s)rg (t)Z, forsome s,t€ K withs#OQort#0.

1,n-1
Then, by (B.5.1.2),

[v_1,a] € —sv_p — tu, + Cv(Qy)-

In particular, [V, A] € Cy(Q,). Together with |[V, A]] < |A| it follows that the

following homomorphisms are not injective:

kn: A= Cy(Qy), 9 [vn,g] and

Ken: A= Cy(Qy), g [v-n, g]-
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Pick b € Ker(x,) \ {1}. Then

b e Iﬂll.n—l (tl)xﬁ/&n—l (tQ) T :L"le—l.n—l (tn'_l)Z’

for some ty,...,t,-1 € K. Since AN Z =1, there exists j € {1,...,n — 1} such that
t; # 0. Then

[v_j, b,a] = [—tjvn,a] = —tjsvy.

Since [V, A, A] = 0, this implies that s = 0. A similar argument, using Ker(x_,,) # 1,

shows that t = 0. But then a € Z, a contradiction. .

(B.5.1.6) Let J :={1...,n}\ {r}, for some r € {2,...,n — 2} U {n}. Assume that A is
a nontrivial subgroup of @, with [V, A, A] = 0 and |A| > |[V, A]|.

(a) [V, AINnCv(QJ)] > ¢*.
(b) I[V, 4] > ¢*

(c) If r = n, then |[V,A]NCv(QJ)| > ¢°.

Proof. (a) Suppose that |[V,A] N Cy(Qs)| < gq. Since L; acts transitively on

Cv (@) \ {0}, we may assume that
(*) [V, AlnCv(Q,) < K.

Since [V, Q,, A] < Cv(Qy) by (B.5.1.3)(a)(c), we get
[V,Qs, A] < Kv,.

Note that (B.5.1.3)(d) implies that there exists a G-isomorphism p from [V, Q,] to
Homg (V/Cv(Q,), K) defined by

(v+Cv(Qy))(wp) :=&(v,w) ,forallveV and we [V,Q,]

Together with [V, Q,, A] < Kv, it follows that A centralizes v_q + Cyv(Qy),...,v-n+
Cv(Qy) in V/Cy(Q,). Now (*) implies that

[@KU,‘ & K’U_,',A] < Kvl.
i=2
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(b)  Suppose that |[V,A]] < ¢ Then [V, A] < Cy(Q,) by (a). Since L, acts
2-transitively on Cy(Qy) \ {0}, we may assume that
[‘/’, A] S I\”Ul + Kvg.

Now that (B.5.1.3)(d) implies that

[@ K’U,' &) K'U_,’, A] =0.
1=3

Together with [V, A] < Kv; + Kv, and (B.5.1.2) it follows that A < Xﬁ;_l and hence
IV, A]l < Al £ [Xg | =4,

contrary to (a).

(c) follows from (b) and (B.5.1.3)(c).

(B.5.1.7) Letr € {2,...,n}. Put J:={1...,n}\{r},ifr #n-1,and J :={1,...,n—2},
ifr=n-1.
(a) Z(Qy) is a vector space over K with basis {Sl,'g:j(l) [1<i<j<r-1}
where
t.’I?g:.)(l) = Iﬂ:‘)(t), forallte Kand1<i<j<r-1.
(b) Z(Q,) and the exterior square of Cy(Q,) are isomorphic as K P;-modules.
(c) ¥ V/[V,Q,] and Z(Q,) are isomorphic as GF(p)P,-modules, then r = 3

and ¢ = 2.

Proof. (a) follows from (B.5.1.2). Again by (B.5.1.2), the K-linear map which sends
Ilfg:d(l) to v; Avjyp, forall1 < ¢ < j <r-—1,isa KPj-isomorphism from Z(Q;) to
Cv(QJ) ANCy(Q,). Hence (b) holds.

Assume that Z(Q,) and V/[V, Q,] are isomorphic as GF (p) Py-modules. Then r = 3,
since dimg Z(Q,) = ﬂrz—“ll and dimg V/[V,Q,] = r. For each t € K \ {0}, put

h(t) := g, ()2_p; ,(—t ™)z, ()2 , (1) gy, (1) 75 , (= 1)
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Then h(t) has on Z(Q,) the eigenvalues t~! and t~2, and on V/[V, Q,] the eigenvalues
1 and ¢, for each t € K \ {0}. Hence g =2.

(B.5.1.8) Assume that A is a nontrivial subgroup of G with 4| > |[V, A]|* and [V, A, A] =
0. Then n > 5.

Proof. Note that (A.1.5)(a) implies that [V, A4] is an isotropic subspace of V. Let r
be the K-dimension of [V, A]. Then r < n, since [V, A] is isotropic.

Assume first that [V, A] is singular. Then [V, 4] is conjugate to the span of vy, ..., v,
and hence |A| < qwz_—lz. Thus 3%_12 >2r,ie,r>5.

Assume now that [V, A] is not singular. Then [V, A] is conjugate to the span of
Vly«.+,Ur_1,Un + U_p, and hence |A| < qy—_l‘)'ziﬂ“. Thus Q‘—lé('—_zl +r > 2r. It

follows that r(r —2) > (r = 1)(r = 2) > 2r,ie,r > 4.
B.5.2

This subsection is about the natural O, (g)-module. Assume that K = GF(g?) for

some prime power q. Let 7: V — V be the K-linear map defined by

v, ifie{l,...,n=-1}u{-1,...,-n}
uT =% v_n, ifi=n .
Un ifi=-n

Put K := {te K|t=1t}. Let 0: V = V be the K-linear map defined by
tvio = t%y;, forallie {1,...,n}u{-1,...,—n}and t € K.

Put V := Cy(o7). Choose an element s in K \ K. For each i € {1,...,n} U

{-1,...,—n} define
;i ifie{l,...,n—-1}U{-1,...,-n}
Ui =K vy, +v_, ifi=n
SUp + stv_, ifi=-n

For all 4,5 € {1,...,n — 1} with ¢ < j define

B—_— ,8,',]' lf]STL—2
YT 3B + Biany) ifj=n—1
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and

"o 5:1 ifj<n-2
B %(ﬂi,n—l + :Bz’,n—l) lf] =n-1

=)

Put
&= {3,811, €{1,...,n -1}, i < j},
& = {3, B, 14,5 €{1,...,n—1}, i < j},

~

$:=dTuUd, and
M:= {/31.1, .- ~aBn—1,n—l}-

Note that ® is a root system of type B,_; and Hisa system of fundamental roots
in such a way that B,'i corresponds to the node 7 in the Dynkin diagram. For all

i€{l,...,n—1} and t € K define
75, () =z, () zg _ (t°) and
E-E.,n_l (t) = x_ﬂl.n—l (t) I—ﬂ:_"_l (tq)

For all 3 € & let X 3 be the subgroup of G consisting of all zﬁ(t) where ¢ ranges over
K or K, depending on whether B e {{A}i,n_l, —B,-I,,_l} for some ¢ € {1,...,n—1} or
not. Define

~

G:=(X;|B¢€d).

For each J C {1,...,n—1}, let ®; be the root system spanned by {BM | j € J}, and

put

(B.5.2.1) (a) @y,...,5n,0-1,...,0-n is a K-basis of V.
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(b) V is a KG-module.

() Let k € {1,...,n}U{-1,...,—n}, 5,7 € {1,...,n—2} withi < j, e €
{1,-1}, and t € K. Then

'ljk+5tﬁ€i 1fk=g(]+1)
iz, (1) = § T —etiegey ik =—ci
Uk else.
and
Uk + €0, ifk=—e(j+1)
Ekxf»"?()(t) =9 Uk —€tlegey ik =—e
Uk else.

(d) Let k € {1,...,n}u{-1,...,-n}, 1 € {1,...,n =1}, € € {1,-1}, and

te K. Writet =t; + tys with ¢;,t, € K. Then

,Dkl‘fal.n—l(t) =

[ Op +€(t + t9)0,, ifk=n
V_pn + (st + (st)9)7; ifk=-nande=1

: Vop + (s9t + st")ov_; ifk=-nande=-1
17_1 - tqtﬁ,‘ - (tl + tQ(Sq + S))ﬁn + tgﬁ_n ifk=—-iande=1
U; — tt0_; — 810, — toU_,, ifk=t1and e = -1

L Uk else.

Proof. This follows from the definitions and (B.5.1.2). -

(B.5.2.2) (a) Letr € {l,...,n—1} and put J :={1,...,n — 1} \ {r}. Then
(3.1) [?aQJ] = :1:1 Rﬁi®®?=r+l k\ﬁ_,‘,
(32) [‘7) QJvQJ] = CO(QJ) = @;-:1 R\’l’},

(b) The map

-~ —

£ VxV oK,
n n n

(Z a,-ﬁ,- + a_,<17_,~, Z b,‘ﬁ,‘ + b_,‘ﬁ_,') — z a,*b_,‘ + a_,‘b,'
=1 i=1 i=1

is a nondegenarete G-invariant symmetric bilinear form.

Proof. This follows from (B.5.2.1) .
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(B.5.2.3) Let J:={2,...,n—1}. If 1 # A < Qy, then |A]| < |[V, 4]|.

Proof. This follows from (B.5.2.1) and (B.5.1.2) the same way as (B.5.1.4) follows
from (B.5.1.2) and (B.5.1.3).

(B.5.2.4) Let J := {1,...,n — 2}. Assume that A is a nontrivial subgroup of Q; with
[V,A,A] =0 and |4] > |[V,A]|. Then ANC5, ([V,Q)]) # L.

Proof. Put Z := C@J([V,Q_]]). Suppose that AN Z = 1. Note that, by (B.5.2.1),
(Kt + Ko_p, L] =0,

Suppose that there exists a € A such that [f(\ 5, + K U_n, a] is 2-dimensional over K.
Since L; is 2-transitive on C{‘/(QJ) \ {0}, we may assume that [v,,a] = (s+s%)?; and

[0_n,a] = (s + s9)0y, i.e.,
a€ a:[;l'n_l(s)xgam_l(l)Z.
But then, by (B.5.2.1),
[0-1,a,a] = [0, — (s + 8%)0p + V_p,a] = — (s + §7) 0,

contrary to [V, A, A] = 0.
Now let a be any nontrivial element of A. From ANZ = 1 and the previous paragraph
it follows that [K9,+K7_y, a] is 1-dimensional. Since L is transitive on CV(QJ)\{O},

we may assume that [Rﬁn + f(\ﬁ_n,a] = Ko, i.e.,
a€xg, ,(t)Z, forsomete K witht#D0.
Write ¢ = ¢, + tos for some t,,t, € K. Then, by (B.5.2.1),
[0-1,a] = —t9t0) — (t1 + ta(s7 + 8))Tn + taB_n ¢ Cp(Qy).
Together with |[V, A]| < |A]| it follows that the following homomorphisms are not
injective:
kn: A= Cp(Qy), g+ [0n,g] and
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Ken: A— CQ(QJ), g [U_n, g
Pick b € Ker(k,) \ {1}. Then
be T3 (UI)CITE}_"_I(‘Uz) Tt Ian—l,n—l (u""l)Z’
for some uy,...,u,_y € K with

u!+u; =0, foreachie{l,...,n—1}

Since ANZ = 1, there exists j € {1,...,n—1} such that u; # 0. Write u; = u;,; +u,2s

with uj,u 2 € K. Then
[0_;,b,a] = [~ufu;¥; — (u;1 + uj2(s? + 5))0, + Uj20-n,a] =
(—(ujn + uj2(s? +8))(t +t7) +ujo(st + (st)?))v =
—(uj 1 (t +t7) 4+ ujo(st + t7s))v, =
= (ult + t%u;)vy = u,(t — t9)v,.

Since [V, A, A] = 0 and u; # 0, this implies that ¢ = t7. A similar argument, using

Ker(k_,) # 1, shows that st = (st)9. But then
s=(st)it™ =597 = st = 9,

a contradiction. -

(B.5.2.5) Let J :={1...,n— 1} \ {r}, for some r € {2,...,n — 1}. Assume that Aisa
nontrivial subgroup of Q; with [V, 4, A] = 0 and |A| > |[V, 4]|.

(a) IV, 1N Cp(Qu)l 2 ¢*.

(b) [V, 4] > ¢*
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Proof. (a) Suppose that |[V,A] N C;.(C:) J)| < q. Since L; acts transitively on

Ci}(@j) \ {0}, we may assume that
(x) [V, AInCp(Q)) < K.

Since [V, Qy, A] < Cp(Qy) by (B.5.2.2)(a), we get
(V,Q,,A] < K.

Note that (B.5.2.2)(b) implies that there is a G-isomorphism p from [V,QJ] to
Hom(V/C3(Q,), K) defined by

(v+ C;,(QJ))(wp) = E(v,w) ,forallve Vand we [V,QJ]

Together with [‘7, Qy, Al < K7, it follows that A centralizes 7_, +C;,(QJ), oy Op+

C"}(QJ) in ‘7/CQ(QJ) Now () implies that

n
(DKo © Ko_;, A] < Kd,.

1=2

(b)  Suppose that |[V/,A]| < ¢®. Then [V, 4] < CQ(QJ) by (a). Since L, acts

2-transitively on C;,(Q 7) \ {0}, we may assume that
[V,A] < Ko, + Ko,
Now that (B.5.2.2)(b) implies that
n — —_—
(D Kv: @ Kv_;, A] = 0.
1=3
Together with [V, A] < Ko, + Ko, and (B.5.2.1) it follows that A < X\A,“ and hence

V. All< A1 <1X5 1=4,

contrary to (a). g

(B.5.2.6) Let J := {1...,n=1}\{r}, for some r € {2,...,n — 1}.
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(a) Z(Qy) is a vector space over K with basis {z ([1<i<j<r-1}
L)

where
txaﬁ,,(l) = xﬁj_,(t) forallte Kand1<:<j<r-1.
(b) Z(Q,) and the exterior square of C;,(Q ) are isomorphic as K P;-modules.

(c) If V/[V,Q,] and C;,(QJ) are isomorphic as Pj-modules, then r = 3 and
|K| = 2.

Proof. This follows from (B.5.2.1) the same way (B.5.1.7) follows from (B.5.1.2).
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Appendix C

FF-modules for alternating groups

C.1

Let G := £, for some n € IN with n > 5 and n # 8. Let V be the permutation
module for GF(2)G constructed from the natural action of G on {1,...,n}. Put

W := [V, G]Cy(G)/C\(G). Define

’2—' if n is even
m .= n—1 . .
if n is odd.

(C.1.1) Let A € P*(G,W). Then there exist pairwise commuting transpositions ¢y,.. .,

tm in G such that one of the following holds:

(a) A= (t1,...,t), for some k € {1,...,m}.

(b) n is even, and A is a subgroup of index 2 in (t,...,t,).
Proof. [14](1.2)

(C.1.2) Let H € {G,G'}. Let M be a maximal subgroup of H such that A < O,(M)
for some A € P*(H,W). Then one of the following holds:

(a) H =G and M = Cg(t), for some transposition t € G.
(b) n is even, and M is the stabilizer in H of a partition of {1,...,n} into
2-sets.
Proof. From [13] and O,(M) # 1 it follows that one of the following holds:
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(1) M is conjugate to the stabilizer of {1,2} in H,

(2) M is conjugate to the stabilizer of {1,2,3,4} in H,

(3) n is even and M is conjugate to the stabilizer of {{2: — 1,2:} | i € {1,...,m}}
in H,

(4) n is divisible by 4, and M is conjugate to the stabilizer in H of the partition

{{4i —3,4i —2,4i — 1,4} | i€ {1,...,2}}

of {1,...,n},

(5) n is a power of 2, and M is the normalizer in H of an elementary abelian

2-subgroup of G acting regularly on {1,...,n}.

If Aisasin (C.1.1)(a), then H = G and (1) or (3) holds, since these are the only
cases in which O,(M) contains transpositions. Now assume that A is as in (C.1.1)(b).
Note that A has m orbits of size 2 on {1,...,n}. In case (2), O;(M) does not have
a subgroup with this property unless n = 8, and then such a subgroup has order 4.
In case (4), the only subgroups of O,(M) with this property have oder 2%. In case
(5), the only subgroups of O,(M) acting quadratically on W are of order 2. Since

|A] = 2™~ this excludes cases (2), (4) and (5).
.

Let (, ) be the bilinear form on V which has vy, ..., v, as an orthogonal basis, where

v; denotes the vector of V' that corresponds to the element ¢ in {1,...,n}.
(C.1.3) (, ) is a non-degenerate symmetric G-invariant bilinear form.

Proof. This is obvious. .
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C.2

Let G := A;. Since A; < Ag = SL,4(2), the natural SL,(2)-module V is also a
G-module.

(C.2.1) Let M be a maximal subgroup of G. Assume that |A| < |V/Cy(A)|, for some

nontrivial elementary abelian subgroup A of O,(M).

(a) M is conjugate to the stabilizer of {1,2,3,4} in G.

(b) If z € M \ O*(M), then z does not centralize [V, A].

Proof. (a) Since O,(M) # 1, this follows from [13].

(b) By (A.2.2)(m) [V, A] is a 2-dimensional subspace of V. Hence the centralizer of
[V, A] in SL4(2) has order 2°-3. Since (a) implies that |M| = 23 32, it follows that M
does not centralize [V, A]. If z € M \ O%(M), then also by (a) M = (z™) and hence

z does not centralize [V, 4]. |
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Appendix D

Examples

D.1

Let n € N with n > 3. For each j € {0,...,n — 1} let U; be a 2-dimensional vector

space over GF(3) with basis NN

5 »u; and define z;,y; € GL(U;) whose action on U;

is given by the following matrices with respect to the basis u§0) ugl):

(23 ()
Put
V=U®...0U,-, and
H := GL(V).
For each j € {0,...,n—1} let ¢; be the homomorphism from GL(U;) to H satisfying
(@ ®...®an-1)(¢;(7) =(a0® .. ®a;-1 ® ;TR a;1+1 ®...Q ap_1)
forall ag € Uy...,a,_,1 € U,_; and put
e; = ¢;(y;z;) and f; = ¢;(y;).
Then
Q:=(ejfilie{0,...,n-1})

is extraspecial of type 21+?",

193



For each m = 725 m;27 with mo,...,my_; € {0,1} put

Um = CSD u;nﬁ).
0

Then wvy,...,vsn_; is a basis of V. For all r € {0,...,n} and k € {0,...,2" — 1}

define
Wik i=(vm | 277k <m < 2" 77 (k + 1)).

(D.1.1) (a) If j € {0,...,n — 1}, then f; centralizes @~ ~'W,_,2 and inverts

2n—j—1

-1
k=0 Wa_jok+1-

(b) If r € {0,...,n}, then

r

2
Cu((filn-r<j<n-1)< ()
k=0

1
Ny (Wik).

Proof. (a) is an immediate consequence of the definitions. (b) follows from (a).

Let ¢ be the homomorphism from g to H defined as follows. If 7 € ¥3 and m =
»=o m;27 with mg, ..., mn_y € {0,1}, then

U (7) := v,y  where

n—4
m = Z m;2 + 2" 3((my_3 + 2my_g + dmp,_y + )7 — 1).
Jj=0
Define
G := Ny (Q),

F = (fa_3, fa=2, fa-1) Z(H),

M .= 1\&;(}7),

0
Y = (((24)(6 8)), (3 7)(4 8)), ¥((3 4)(7 8)), ¥((5 7)(6 8)))-
Let z be the involution in Z(Ng(Ws0) NNi_, Cu(Wsy)). Let ¢ be the involution in

Z(H) (= 2(Q))-
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(D.1.2) (a) Ny(F) < XYQ.
(b) [z, XYQ] < M.
(c) 2 ¢G.

Proof. (a) From (D.1.1)(b) it follows that Cy(F) < X. Since |Cy(F,Z(H)) :
Cu(F)| <8 =1Q: Co(F)|, we get

Regarding F/Z(H) as a vector space over GF(2) with basis f,_3Z(H), fn-2Z(H),
fa-1Z(H), the action of ¥((24)(6 8)), ¥((3 7)(4 8)), ¥((3 4)(7 8)), and ¥((5 7)(6 8))

is described by the following matrices:

1 00 100 110 100

1 10|, 010], 0101, 011].

0 01 011 001 0 01
Hence Y/Cy(F, Z(H)) = PSL3(2) = Aut(F/Z(H)) and therefore

Ny(F) < Cu(F,Z(H))Y < XQY.

(b),(c) Note that z is centralized by X, Y, fo,..., fa-1, and ey, ..., e,_4. Moreover,

[€n-3, 2], [én-2, 2], and [e,_1, 2] act on V as follows:

] v ifm< on-2
vm[en—B’ Z] - Um lf m > 2n—2 )

v ifm<2® 3 or2m2<m <23 4 2n2
Umlen-2, 2] = Uy 2" 3<m<2"20orm>2"3 42720

—vm fm<2"30r 2"l < m<2n3 4201
Umlen-1, 2] = vy if2"3<m<2lorm> 2034 2n1 0

for each m € {0,...,2" — 1}. Therefore,

1 ifj<n-3
[e,,_3, z,ej] = en_gf,._lc lf] =n-—2 ’
en—lfn—-2c lf] =n-—1

195



en-3faic ifj=n-3 )

1 ifj<n—-4orj=n-2
[611—272,6_1] =
en—-lfn—Bc lf] =n-1

1 ifj<n—-4orj=n-1
[en—laza e]] = en—3fn—20 if] =n-3 )

en—2fn-3c ifj=n-2
for each j € {0,...,n — 1}. In particular, [Q,2,Q] € Z(Q) and hence z ¢ G. Since

fos ..., fa1 are centralized by [en—3, 2], [en—2, 2], and [e,_1, 2], we also get [@, 2] < M.

Put
G :=G/Z(H).
(D.1.3) (a) F*(G/Q) = Q3,(2).

(b) M is a maximal subgroup of G.

(c) No nontrivial characteristic subgroup of M is normal in G.

Proof. (a) From (D.1.1)(b) (with 7 = n) it follows that Cy(Q) normalizes (v,,) for

each m € {0,...,2" — 1}. Since (eo,...,e,_;) acts transitively on (vy),..., (van_1),
we get
Cu(Q) = Z(H).

Hence G/Q is isomorphic to a subgroup of Out(Q), which is isomorphic to OF,(2) by
[11], Table 4.6.A. Moreover, G induces at least 27, (2) on Q by Proposition 4.6.8(II)
of [11].

(b) With respect to the non-degenerate G-invariant quadratic form x on @ defined
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for each a € Q, F is a singular subspace. Since the stabilizer of any singular subspace
of Q in G is maximal in G, (b) holds.

(c) By (a), Q is the only nontrivial normal subgroup of G that is contained in M.
From (D.1.2)(a)(b) it follows that z induces an automorphism on M, and (D.1.2)(c)

implies that @ is not invariant under this automorphism. -

D.2

(D.2.1) Let X be a finite simple group, G a subgroup of H, M a proper subgroup of G,
and a € Aut(H). Assume that X = (G* G) and M® = M. Then no nontrivial

characteristic subgroup of M is normal in G.

Proof. Let C be a characteristic subgroup of M that is normal in G. Then C =
C® 4(G,G?) = X. Since H is simple and C < M # H, it follows that C = 1. _

(D.2.2) Let X := Qg (p*), for some k € IN and some prime p. Let B be a Borel subgroup
of X, G the parabolic subgroup of type {1,2,3} and M the parabolic subgroup
of type {1,2} of X containing B.

(a) No nontrivial characteristic subgroup of M is normal in G.

(b) 0,(G) is a natural Qf (g)-module for O7' (G).

Proof. (a) This follows from (D.2.1), since X has a graph automorphism that
normalizes B and acts on the Dynkin diagram by switching the nodes 3 and 4.

(b) This follows from [2]. |

(D.2.3) Let X be a simple group of type Eg(p*), for some k € N and some prime p.
Let B be a Borel subgroup of X, G the parabolic subgroup of type {1,2, 3,4, 5}

and M the parabolic subgroup of type {2,3,4,5} of X containing B.
(a) No nontrivial characteristic subgroup of M is normal in G.
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(b) O,(G) is an Q;(q)-half spin module for O7' (G).
p

Proof. (a) This follows from (D.2.1), since X has a graph automorphism that
normalizes B and induces on the Dynkin diagram the permutation (1 6)(3 5).

(b) This follows from [2].

(D.2.4) Let X be a simple group of type F4(2*), for some kK € IN. Let B be a Borel
subgroup of X, G the parabolic subgroup of type {1,2,3} and M the parabolic
subgroup of type {2,3} of X containing B.

(a) No nontrivial characteristic subgroup of M is normal in G.

(b) O,(G) contains exactly two noncentral O (G)-chief factors, one natural

Spe(2%)-module and one O7(2*)-spin module.

Proof. (a) This follows from (D.2.1), since X has a graph automorphism that
normalizes B and induces on the Dynkin diagram the permutation (1 4)(2 3).

(b) If k > 2, then this follows from (a) and Theorem 1. From the way F4(2) and
F4(4) are embedded in F4(8), this implies that (b) also holds if k € {1,2}.
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