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ABSTRACT

CONTINUOUS TIME ARBITRAGE APPROACHED AS A PROBLEM IN
CONSTRAINED HEDGING

By

James Andre Demopolos

I characterize absence of arbitrage with tame portfolios in a model where a finite
vector of stock prices is symbolized by a continuous semi-martingale with respect to the
completed filtration generated by a vector-valued standard Brownian Motion. Levental
and Skorohod (1995) solved this problem using probabilistic methods in the sub-case of
invertible volatility matrix. They constructed an arbitrage trading strategy based upon
domination at the end of the time horizon of the value of one stochastic process by that of
another. This construction through domination suggests a link between the arbitrage
problem and the mathematical theory of financial hedging of contingent claims. This
dissertation does not assume invertible volatility. In the case of singular volatility, one
faces the constraint that the dominating process constructed by Levental and Skorohod
cannot always be effectively converted into a process symbolizing the accumulated
capital gains of a trading strategy. Therefore, to apply the theory of hedging, one must
consider hedging under constraints. This dissertation contains two primary results. First,
I generalize Levental and Skorohod's characterization of arbitrage opportunities in terms
of a domination relationship between stochastic processes. Second, I apply work by
Cvitanic and Karatzas (1993) pertaining to hedging with constrained portfolios to this
generalization to provide a new characterization of absence of arbitrage in the case of

singular volatility. The proofs are probabilistic. Some examples are provided.
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INTRODUCTION

A basic problem in the construction of asset price models in mathematical finance is
the determination of the conditions which are necessary and sufficient for a specified
model to exhibit the absence of arbitrage, i.e., the absence of risk-free profit
opportunities. In this work, a characterization of absence of arbitrage is provided in the
context of a specified model for a finite vector of stock prices. The work has been
motivated by results in Levental and Skorohod (1995) and Cvitanic and Karatzas (1993).
The former paper characterizes absence of arbitrage in a restricted version of the model
considered here. As will be explained in detail in Chapter 1, Levental and Skorohod's
Corollary 3 [page 920] suggests a link between the problem of characterizing absence of
arbitrage and the theory of hedging contingent claims. In the more general setting of this
dissertation, fewer stochastic processes can be taken to meaningfully symbolize
accumulated discounted capital gains than in Levental and Skorohod's work. This
limitation motivates consideration of the problem of hedging under constraints in the
course of attempting to provide a hedging based approach to the arbitrage problem. The
problem of hedging contingent claims with constrained portfolios is precisely the topic of
Cvitanic and Karatzas (1993). The approach of this dissertation is to generalize
Corollary 3 of Levental and Skorohod to provide a characterization of arbitrage
"reminiscent of hedging" in the setting of this work, and then to apply the framework of
Cvitanic and Karatzas to this generalization in order to provide a new characterization of
absence of arbitrage.

The paper is organized in the following way:



In Chapter 1, I specify the model, and motivate the link between the theory of hedging
with constrained portfolios and the arbitrage problem. The dissertation's major results are
stated. Chapter 1 also contains a history of research into the arbitrage problem.

Chapter 2 contains the statement and proof of necessary and sufficient conditions for
the absence of a special kind of arbitrage, namely, immediate arbitrage. Loosely
speaking, in an immediate arbitrage, an investor does not ever let his capital gains
become negative in the process of obtaining almost sure positive capital gains at the end
of the time horizon. Although I did have to make modifications to the argument, the core
of the proof, particularly on the necessity side, appears in Levental and Skorohod (1995)
[Lemma 2, page 914.]

In Chapter 3, I adapt the work of Cvitanic and Karatzas to this arbitrage problem. The
details differ from their work in that in this paper, I need to impose constraints which
depepd upon (t,w), whereas their constraints do not vary with (t,®).

Chapter 4 accomplishes the stated objectives of this work. Theorem 3 is the promised
generalization of Levental and Skorbhod's Corollary 3. Theorem 4 results from
application of the constructions derived from Cvitanic and Karatzas' work in Chapter 3 to
the characterization given in Theorem 3. Theorem 5 extends the conclusions of
Theorem 4 to address the issue of the equivalence of absence of arbitrage and the
existence of an absolutely continuous local martingale measure for the stock price
processes.

Chapter 5 contains examples. As will be explained herein, Examples 1 and 4 show
that the characterization of arbitrage in the setting of this work is meaningfully different

from Levental and Skorohod's (1995) characterization.



Chapter 1

Setting and Main Results

1.1 The Model.

Consider a financial market in which one bond, with price process B, and d > 1 stocks,
with price processes Sy, ..., Sq, are traded in the time interval 0 <t < 1. Unless otherwise
specified, all processes herein will be taken to be defined for 0 <t < 1. Correspondingly,

in definitions of stopping times interpret the infimum of an empty time set as 1. The

source of uncertainty in the market is a d-dimensional standard Brownian Motion
W= (W, W, ..., Wy)" defined on a complete probability space (Q, F, P)l. The term

“adapted” will refer throughout to the filtration {F,: 0 <t < 1}, the P augmentation of the

natural filtration of W, namely
(1.1) Fi=c{W(s): 0ss<tj vU

where U = {A € F: P(A) = 0}. The price processes of the financial instruments evolve

according to the equations

(1.2) | dB(t) = B()r(t)dt,  B(0)=1.

'+ will denote matrix transpose.



(1.3) ds,(n) = Sx:z)[ Yo, (OdW, (1) + b,-(r>dr],

Llsksd

S(0)=s; € (0,0), i=1,...4d.

Here () is an adapted R-valued process symbolizing the instantaneous force of interest,
volatility o(e) is an adapted d x d matrix-valued process not necessarily invertible for any
(t, ®), and drift b(e) is an adapted R%valued process.

In order that (1.2) and (1.3) have well-defined solutions, we require that
1
(1.4) j{]r(z)l +2 B +do fj(z)}dt < 0 as.
0 i ij

A continuous-time trader chooses a portfolio, namely, the amount of money to invest in

each of the d stocks at each time t. Formally define a portfolio by

Definition 1. A portfolio is an adapted R*-valued process n which satisfies the

integrability constraint
(1.5) lJ'{lrx'(s)ﬂ (s)“2 +:bt'(s)a(s)lps < O as.,
0

where I/ il denotes the Euclidean norm in R® and with
la=(1 1, ...1)" € R the process a is defined by
(1.6) at) =b@t) -r@t)1,.

Since (1.4) implies that the paths B(e) satisfy inf{B(t) : 0<t< 1} >0 a.s., constraint (1.5)

implies that the semi-martingale X, in Definition 2 below is a well-defined process.



Definition 2. The process X given by
) X.0= [k Se@EFE) + [Bom ($als)ds
0 0
is the discounted capital gain process associated with the portfolio m.

To motivate Definition 2, begin from the purpose of investing in stocks, namely, the
attempt to obtain capital gains in excess of those available from the less risky bond. In

this light, 7" (Y)o()dW(t) + 7 (©)bt)dt — r(t)n () 14dt =

- n, ) _ 0
= ;[S,(t) ds; (1) 50 dB(t)),

which is verbally,
{instantaneous gains from portfolio investment in m;(t) / Sj(t) stock shares,j =1, ...,d} -
{opportunity cost of foregone instantaneous gains possible from the bond}.

Multiplying by B™'(t) discounts these excess (or deficient) gains from stock investment to
their present value at time 0. Integration across time sums the discounted instantaneous
gains.

Common wisdom is that a reasonable model for the processes S; and B should not

allow for risk-free profits. This is the no arbitrage principle.
Definition 3. An arbitrage is a portfolio n such that the associated discounted
capital gain process X, satisfies
i) There exists a C > 0 such that P{Xx(t) >2-C forall 0 <t<1} = 1.

ii) P{X,(1)20} =1



iy  P{Xi(1)> 0} > 0.

Any portfolio n for which the associated X satisfies i) in Definition 3 is called a tame
portfolio. C-tameness means that i) is satisfied with respect to a particular C. Tameness
1s a restriction that prevents “doubling schemes” and can be interpreted as putting a limit
on borrowing. The mathematics underlying "doubling" in continuous time was set forth
by Dudley (1977), who showed that in our model with d = 1, an arbitrary F, measurable
random variable A (including, in particular, A satisfying A > 0 a.s.) can be represented as

1 1
A= Ig(t)dW(t) for an adapted process g satisfying I gz(t)dt <o0a.s. Inhis
0 0

construction, it is possible that for each C > 0,

t
P{ming,<; [g(s)dW (s) < —C} > 0.
0

The relationship between the absence of a.s. positive capital gains and the requirement of
tameness is treated rigorousily in Dybvig and Huang (1988) [see Theorem 2, page 390.]
The purpose of this dissertation is the study of conditions equivalent to the absence of
arbitrage. To that end, we need define numerous objects. Let A denote Lebesgue
measure on [0, 1]. As Shreve has shown, mless there is a projection-based arbitrage,

then we must have

(1.8) A®P{a(t, ») € Ran[o(t, ®)]} = 1.



[See Karatzas and Shreve (1998), Theorem 1.4.2, page 12.] Condition (1.8) will be

assumed throughout this work?. It holds for each (t,0) that

Ran[o(t.0)] = Ran[o(t,0)o  (t.0)] and that o(t.0) is injective on Ran[c (t,w)]. Therefore,
we may uniquely (up to a A®P null set) and adaptedly define a relative risk process 6
such that 6(t,0) € Ran[c‘(t,m)] for all (t.w) and o(s)0(s) = a(s) AQP a.s’ Using 0,

define a stopping time a:

t+h

(1.9) a = inf{r>0: j1|e(s)||2ds =00 for all he(0, 1—:].}
t

« is a legitimate stopping time because of right-continuity of the Brownian filtration, and

is the key object in a characterization of the absence of a special kind of arbitrage.
Definition 4. An immediate arbitrage is a portfolio & for which there exists a
stopping time 0 <t < [ satisfying P{t < 1} > 0 such that

P{Xz(t) = 0forall t <t and Xy(1) > 0 for all t > t}= 1.

Theorem 1 (Immediate Arbitrage Theorem.) There is no immediate arbitrage if

andonly if P{a = 1} = 1.

The primary contribution of this work pertains to characterization of arbitrage when

immediate arbitrage does not exist. Therefore, as is consistent with Theorem 1, for the

2 See Chapter 2, Proposition 1, for the details of the necessity of (1.8) for the absence of arbitrage.

3 To define 0 such that it is an adapted process, define 6(t) = o;' (t)a(t), 0 <t <1, where o, is an
adapted process such that for each (t,), 6.(t,0) is an invertible dxd matrix and for each x € Ran[o(t,0)],
of‘(t,(n) x € Ran[c’(t,0)] and o(t,0) m"(t,w) x = x. The existence of such an adapted o. is proven in
Lemma 1 of Chapter 2.



remainder of this chapter all results will be given under the assumption that a =1 a.s. In
the absence of immediate arbitrage, the fundamental objects in results about existence of
arbitrage are exponential local martingales. For each adapted R%valued process v
satisfying a* = 1 a.s., where stopping time o" is defined as in (1.9) with process v
substituted for process 6, define for each stopping time 0 < t < 1 another stopping time

£'(z) by

t
(1.10) V() = inf{»o: I{t<s}“v(s)||2ds = oo}.
0

(Adopt the convention of denoting the indicator function of a set by the set itself.) Using
(), define an adapted process Z"(t; o) by

1 * 1! 2 . v
(1-1 l) ZV(T;t) - exp{— 6'.{1: < S}V (S)dW(S) - 56[{‘{ < S}”V(S)" ds . l_f < C (T)

0. if t>¢"(1).

Z¥(uC¥ (1) = liminf, ZV(z;0).

TV ()

We have that lim , Z" (t;t) exists a.s. The limit exists on

V)
{lj{r < s}ilv(s)"zds < 00} c {C(T) =1 }
0

1
because I{‘t < slv'(s)dW (s)is well-defined on this set and the stochastic integral with
0

respect to Brownian Motion has continuous paths. The limit exists and equals 0 a.s. on



{lj{r < s}ﬂv(s)||2ds = OO} 2 {gv(‘f) <1 },

0

because if

t t
WO[ I{‘l‘ < s}ﬂv(s)”zds] = I{‘t < s}v'(s)dW(s),
0 0

then

1
«{WO 1), t< j{r <s < @Yvs) ds}
0

is a standard Brownian Motion in R! [see Karatzas and Shreve (1981), page 174], and so

1
(1.12) lim s, —Wo(t) —t/2= —o0 a.s.on {I{T<S}||V(s)||2ds =oo} .
0

Observe that (1.12) implies that the paths Z"(t; #) are continuous a.s.
The term exponential local martingale is appropriate because if £'(t) =1 a.s., then

that Z*(t; ») is a local martingale follows from that for each t, on {t < £"(1)}
(1.13) Z'(tt) =1 - I{‘L’ <s}Z"(1:;s)v'(s)dW(s).
0

It is also relevant that Z"(t; ) is a nonnegative supermartingale for any v and 1 for which

the process is defined. Observe that for eacht, Z'(t; t) = Z'(t; t AL'(r)) a.s. The

integral representation (1.13) implies that there exist stopping times £ (1) < £"(1),



n > 1, such that lim,T &Y (1) = £¥(1) and Z'(x; « ALY(1)) is a martingale for each n. So

if 0 <'s <t, the Fatou Lemma for conditional expectation implies that a.s.,
(1.14)  E[Z'(x; 9| F5] =E[lim, Z @t ng, @) ] < limg E[Z° (50 nG) (1)), ]

= limy Z(t;5AC0 k) = Z(t;5AC () = Z'(x; 5).

Since Z'(t; «) is a supermartingale, it holds that Z*(t; ) is a martingale if and only if
E(Z'(r: 1)) =1.

Since the process 6 is of centrél importance, simplify notation by denoting for each t
the process Z°(t; ») merely as Z(1; «). Abbreviate Z*(0; +) as Z"(s) for any adapted

process v satisfving o’ = 1 a.s. So Z(s) will denote Z%(0; o).

1.2 The Link Between Arbitrage and Constrained Hedging.

The importance of the processes Z(t; ») in the arbitrage problem has been studied by
many. Levental and Skorohod (1995) proved that in the absence of immediate arbitrage,

under the additional assumption that 5(t,«0) is invertible for all (t,w), that absence of
arbitrage is equivalent to E(Z(r; 1)) = 1 for all constant times 0 <r < 1. Their proof uses

in a substantial way the invertibility of 6. This work extends that of Levental and
Skorohod in that it removes the assumption of invertible volatility, allowing
A®P{o(t,0) is singular} > 0. Of fundamental importance in Levental and Skorohod's

proof that an arbitrage exists if there exists a stopping time t such that E(Z(t; 1)) <1 is

the existence in that case of an exponential local martingale Z°(s) which satisfies

10



P{Z°(1) > Z(t; 1)} = 1. In fact, their Corollary 3 [page 920] states that in the case of

1
invertible o, with the added assumption that ﬂp (t)"2 dt < o0 a.s., that the existence of
0

arbitrage is equivalent to the existence of an adapted R%valued process ¢ satisfying

1
ﬂl@(f )”2 dt <0 a.s. such that

0

(1.15) P{Z°(1)2Z(1)} =1 and P{Z°(1)>2Z(1)} >0.

Equation (1.15) suggests a link between the arbitrage problem and the theory of
hedging. To understand this link, begin with consideration of a "seller's objective in
hedging." [See Karatzas (1996), Section 0.4 for more detail than is given here.] Define a
contingent claim to be a non-negative F;-measurable random variable*. One can view a
contingent claim as a financial obligation at time 1 to which a seller commits himself in

exchange for money at time 0. Let A be a contingent claim. For each x > 0 such that

there exists an adapted R%valued process 7 such that

1 2
(1.16) j{”o‘(z)n(r)“ + n*(:)b(z)j}dz < © as,
0
1 1
(1.17) x + [n"odW(t) + [r"Ob@)dr 2 A as,
0 0

and there exists a constant C > 0 such that we have the tameness constraint

* Typically in work focusing on hedging, additional constraints which imply absence of arbitrage are
assumed to apply with respect to process 6. A requirement related to these additional constraints is then
included in the definition of a contingent claim [see Karatzas (1996), page 10]. Since mention of hedging
is intended to be motivational here, and since I have not assumed absence of arbitrage, I have chosen to
omit these additional details.

11



1 t
(1.18) P<mingg,« J'n‘(s)c(s)dW(s) + In*(s)b(s)ds < -C;=0,
0 0

we have the interpretation that a seller can "hedge" his obligation to pay A at time 1
starting with the purchase price x at time 0.° Examination of (1.13), the integral
representation of process Z°(s), suggests the link between (1.15) and this "seller's
objective in hedging." Consider an "auxiliary market" in which asset price processes are
characterized by the original invertible volatility o, but the drift b is replaced by the zero

vector process. Then define an adapted R%valued process m by

(1) = [0’ (W] (-Z°Oe(1)).

7 satisfies (1.16) for the "auxiliary market," since the paths Z®(s) are continuous and we

1
have J‘"q)(t)”2 dt < o0 a.s. for the process ¢ in (1.15). Because
0

t .
[ (s)o(s)dW (s) =2°()) - 1; 0<t<l,
K |

(1.15) implies that (1.17) holds with x =1 and A = Z(1). (1.18) holds with C = 1.
Loosely speaking, we may conclude that the existence of arbitrage is the same as the
existence of a portfolio which hedges Z(1) starting from initial wealth 1 in an "auxiliary

zero drift market.”

5 The left hand side of (1.17) symbolizes initial wealth plus non-discounted capital gains through time 1.
Since the seller is obligated to pay A at time 1, not at time 0, it would be inappropriate to discount the
capital gains to their present value at time 0 here.

12



The following theorem is a generalization of Levental and Skorohod's Corollary 3. It
gives a similar characterization of the existence of arbitrage in terms of domination at
time 1 without integrability constraints applied to 6 beyond a = 1 a.s. o is not assumed

to be invertible.

Theorem 3. Assume absence of immediate arbitrage. Arbitrage exists if and only if

there exist both an addpted R%-valued process ¢ satisfying
P{a® =1} = ] and \®P{o(t,0) € Ran[c'(tLw)]} = 1

and a stopping time 0 <t < I such that processes Z°(t; ¢) and Z(<; «) are not

indistinguishable and P{Z°(x; 1) > Z(x; 1)} = 1.

Here, the additional condition of primary importance beyond those stated in the
characterization of arbitrage in Levental and Skorohod's Corollary 3 is the range
requirement, ¢(t,w) € Ran[c’(t,0)] A®P a.s. Recall that in the preceding discussion
linking Corollary 3 to the concept of hedging, the portfolio which hedges Z(1) in the
"auxiliary zero drift market" is a linear function of the process ¢ for which
P{Z®(1) 2 Z(1)} = 1. Therefore, this additional range condition suggests that research
into the problem of "hedging with constrained portfolios" may be useful for this text's
arbitrage problem. In their 1993 paper, Cvitanic and Karatzas give a control theoretic
characterization of the minimal initial wealth level required for a seller to hedge a
contingent claim under the constraint that the hedging portfolio must take values for all
(t,») in a fixed convex subset of R%. The range condition in Theorem 3 places a similar

constraint on process @, although the convex set varies with (t,0). In fact, dependence on

13



(t,0) of the set Ran[c"(t,w)] is not an insurmountable obstacle to application of the work
of Cvitanic and Karatzas. This dissertation's primary accomplishment lies in bridging
their results and Levental and Skorohod's approach to the arbitrage problem.

To incorporate Cvitanic and Karatzas' theory of hedging with constrained portfolios
into a solution of the arbitrage problem, we need to introduce various objects. Let D

denote the class of all adapted R%valued processes V() satisfying (1.19), (1.20) and

(1.21):
(1.19) 1®P{V(1,0) € Ker[o(tw)]} = 1.
1
(1.20) P{ [ives)| as <oo} =1
0
(1.21) EZ'(1) = 1.

For each v € D, let P" denote the probability measure on (2, F) with Radon-Nikodym
derivative dP"/dP = Z*(1). Let E* (E*[ ¢ | F,] ) denote expectation (conditional
expectation “given F,” ) with respect to P".

For each stopping time t, define for each t € [0, 1] random variable V(t; t) to be a

version®

(1.22) Vo(t:f) = esssup EV[Z(1;1)|F,]
veD

¢ By “ess sup” it is meant the following: If {X;:ie 1} is a collection of random variable measurable
with respect to a o-field G, where the index set | is of arbitrary cardinality, then there exists an a.s. unique
G measurable extended random variable Y taking values in (-, © ] which satisfies the following two
conditions:
(i) Foreachie I, Y 2 X, as.
(in) If Y’ is a G measurable extended random variable satisfying
(i),thenY'2Y as

Denote Y = ess sup{X;:ie I}.

14



For each t, the adapted process V(t; ) admits a cadlag modification V(t; «), which by
right-continuity is unique up to indistinguishability. Use the abbreviation V() to denote
the process V(0; o). The processes V(t; ¢) and Z(7; ) are the central objects in this work's

characterization of arbitrage:

Theorem 4. Assume absence of immediate arbitrage. Then there is no arbitrage if
and only if processes Z(r; ) and V(r, o) are indistinguishable for all constant times

0<r<l.

Theorem 5 below is an equivalent formulation of Theorem 4. In a sense, Theorem 4 is
a characterization of absence of arbitrage in terms of a stochastic supremum, while
Theorem 5 recasts this result in terms of an attained maximum. Theorem 5 is an
important tool in addressing the problem of equivalence of absence of arbitrage and the
existence of a probability measure Q << P such that the asset prices Si(e),i=1, ..., d are
local martingales with respect to (2, F, {Fi}o<i<1, Q). Worthy of note is that the proof of
Theorem 5 contrasts with approaches in the literature to the problem of existence of an
absolutely continuous local martingale measure in that it does not rely upon functional

analysis.

Theorem 5. Assume absence of immediate arbitrage. There is no arbitrage if and

only if for each constant time 0 < r < I there exists au € D such that E(Z°™"(r; 1)) = 1.

15



In the final chapter, I give examples illustrating the properties of the processes V(t; e)
and their relationship to the processes Z(t; «). Example 1 demonstrates that the
equivalent condition for absence of arbitrage in Theorem 4 is not equivalent to
E(Z(r;1)) = 1 for all constant times r. If there is no immediate arbitrage, then the latter
condition implies absence of arbitrage, but Example 1 serves as a counter-example to the
reverse implication by exhibiting both E(Z(1)) <1 and no arbitrage. Example 2 shows
that we cannot simplify Theorem 4 by reducing the conditions equivalent to absence of
arbitrage to the behavior of the processes V(r; ¢) at time 0: in Example 2, we have
V(0) =1 a.s., but V(s) and Z() are not indistinguishable. Although the processes V(t; o)
have cadlag paths, it is not true in general that they have continuous paths. In Example 3,
P{V(1/2) # lim+;,V(t)} > 0. Example 4 is due to Delbaen and Schachermayer (1998b).
It is similar to Example 1, which I constructed before discovering their paper. In

Example 4, there exists a v € D such that V(s) and E*[Z(1) | F.] are indistinguishable.

1.3 The History of the Arbitrage Problem.

Since the late 1970's researchers have actively investigated the question of which
properties of possible asset price models correspond to the absence of arbitrage
opportunities. Most of the resulting articles have focused in one way or another on the
notion of an equivalent martingale measure, namely, a probability measure Q equivalent
to the measure P such that the discounted asset price processes (denoted S;i(¢)/B(s),
i=1, ..., d in this text's notation) are martingales on the original filtered probability space

with measure Q replacing P. That the existence of such a martingale measure is a

16



sufficient condition for absence of arbitrage in a wide variety of circumstances was
established early in research on this topic. For discrete time asset price models defined
on a finite probability space with finitely many time values, Harrison and Kreps (1979)
showed that the existence of such an equivalent martingale measure is necessary and
sufficient for the absence of arbitrage. An early result for continuous time trading models
appeared in Harrison and Pliska (1981); therein, the authors show that with a discounted
price model that is a cadlag strictly positive semi-martingale, the existence of an
equivalent martingale measure implies absence of arbitrage.

The question of whether absence of arbitrage implies the existence of a martingale
measure is complex, particularly in the case of continuous time process models. Almost
all proofs of the existence of a martingale measure have employed the Hahn-Banach
Theorem or one of its corollaries. In the discrete-time case, Harrison and Kreps (1979),
and similarly, Harrison and Pliska (1981) employed the separating hyper-plane theorem
to generate a linear functional symbolizing a pricing system with which one can construct
an equivalent martingale measure. Both of these papers worked with finite probability
spaces for the discrete-time problem. Taqqu and Willinger (1987) also established the
equivalence of absence of arbitrage and existence of an equivalent martingale measure
for a discrete time, finite probability space framework; their proof differed from
preceding works in that it used a geometric reformulation of the no arbitrage assumption.
Dalang, Morton and Willinger (1990) established the equivalence for discrete time
trading in general (non-finite) probability spaces. The equivalence for general probability

spaces was subsequently proved using-somewhat simpler arguments than those in
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Dalang, et. al. by Kabanov and Kramkov (1994) and Rogers (1995). Note that the
theorems referred to above all pertained to a finite number of trading times.

In discrete-time asset models, the issue for the infinite time horizon case is more
complicated. Back and Pliska (1991) provide an example allowing trading in the infinite
horizon which does not permit arbitrage, but for which there is no equivalent martingale
measure. The notion of "no free lunch," sometimes called "no approximate arbitrage," is
a stronger assertion than no arbitrage and becomes relevant here. There are several
formulations of "free lunch" in the literature. Early definitions of the existence of "free
lunch" require a sequence of random variables, namely, terminal wealth levels for
discounted capital gain processes, to converge topologically to a nonnegative random
variable that is not a.s. 0. The topologies used to define the convergence vary by paper.
[See, for example, Kreps (1981).] Because a sequence of trading strategies which
require a trader to risk increasingly large losses, none of which produce probability one
positive capital gains, seems undesirable as an approximation to arbitrage, tameness
requirements were added to the definition of "free lunch." Schachermayer (1994) defines
the property of "free lunch with bounded risk" as the existence of a sequence of arbitrage
approximants which are each C-tame for a single C > 0. He proves that in the infinite
time horizon discrete trading problem, "no free lunch with bounded risk" (NFLBR) is
equivalent to the existence of an equivalent martingale measure. Furthermore, in the
infinite horizon discrete case, the need to prevent "doubling scheme" based arbitrage
becomes apparent. Harrison and Kreps (1979) provide an example of probability one
positive capital gains where the minimum value of the wealth process across time is not

bounded below a.s.
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In continuous time trading, "doubling" based a.s. positive capital gains are possible in
a model admitting an equivalent martingale measure even with a finite time horizon.
Harrison and Pliska (1981) correct for this phenomenon by requiring tameness. Dybvig
and Huang (1988) provide a rigorous analysis of the impossibility of a.s. positive
discounted capital gains in a market admitting an equivalent martingale measure if one
adds the requirement of portfolio tameness. Regarding the problem of the existence of a
martingale measure, in the context of a continuous bounded semi-martingale model for
the discounted asset prices on time set [0, 1], Delbaen (1992) proved the equivalence of
NFLBR and the existence of an equivalent martingale measure. The results of Fritelli
and Lakner (1995) include that under only the assumption that the discounted asset price
processes are adapted and right continuous, existence of an equivalent martingale
measure is necessary and sufficient for absence of "free lunch with stopping times." In
their work, the stochastic processes are defined on an arbitrary index subset of [0, «0), and
"free lunch with stopping times" is defined as a sequence of arbitrage approximants for

which the portfolios processes lie in the linear span of

{n(t) = g{r <t< B}; <P are stopping times, g € L*(P), g is F;_ measurable}.
Duffie and Huang (1986) and Stricker (1990) study the relationship between "no free
lunch” and the existence of an equivalent martingale measure under the assumption that

the discounted asset price processes are in L?, 1 < p < 0. Duffie and Huang (1986) also

prove some interesting results about the relationship between "no free lunch" and the
relative sizes of filtrations generated by different agents' information. Delbaen and

Schachermayer (1994Db) establish that if the discounted asset price process
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{S(1); 0 <t <o} is a bounded real valued semi-martingale, then there is an equivalent
martingale measure if and only if S satisfies "no free lunch with vanishing risk"
(NFLVR). NFLVR is defined to hold if for any sequence of positive constants &,
satisfying lim, 8, = 0, each sequence of &,-tame portfolios 7, (where portfolios are

defined as predictable processes m for which the stochastic integral

)
{In(t)dS (#); 0<s< OO} is well-defined and converges a.s. to a limit as s— o) must
0

satisfy P-lim, jn,,(t)dS‘(t) = 0. As a corollary, they obtain that if S is a locally bounded
0

semi-martingale, then NFLVR is equivalent to the existence of an equivalent probability
measure under which S is a local martingale. This corollary complements Delbaen and
Schachermayer (1994a) in which examples are provided showing that for unbounded
continuous discounted price processes, NFLBR is not equivalent to the equivalent
martingale measure property.

The proofs of Delbaen and Schachermayer rely heavily upon functional analysis. For
the model in this thesis with invertible volatility, Levental and Skorohod (1995) prove
that an equivalent martingale measure exists if and only if there is "no approximate
arbitrage," a condition which means roughly the same thing as NFLVR. Their proof is
more probabilistic than that of Delbaen and Schachermayer. Levental and Skorohod
(1995) and Delbaen and Schachermayer (1995) both investigate the relationship between
the existence of an absolutely continuous measure Q << P under which the discounted
asset prices are martingales, and absence of arbitrage (as opposed to absence of "free

lunch.") Levental and Skorohod (1995) use the martingale representation theorem to
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show that in their model, assuming absence of immediate arbitrage, no arbitrage is
equivalent to the existence of an absolutely continuous probability measure Q; << P for

each 0 <r < 1 under which (with the expression given for the one-dimensional case)

{S()/B(), r<t< Qe(r), {Fi} r<i<1, Q)

is a local martingale. Delbaen and Schachermayer (1995) show, referring back to the
(1994b) result proven using the Hahn-Banach theorem, that if {S(t); 0 <t <0} isa
locally bounded semi-martingale , then absence of arbitrage implies the existence of an
absolutely continuous probability measure Q << P under which the discounted asset price
process is a local martingale. Delbaen and Schachermayer (1998a) consider the case of
unbounded asset price processes. Assuming that {S(t); 0 <t < o} is a semi-martingale,
they prove that NFLVR is equivalent to the existence of a measure Q equivalent to P
under which the discounted price process is a martingale transform, i.e.,
s
{ Iw(t)dM (t); 0<s< 00} , where M is an R? valued martingale, and ¢ is a predictable
0

M-integrable R.-valued process.
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Chapter 2

Immediate Arbitrage

2.1 Preliminaries.

The following result, due to Shreve, demonstrates why we assume condition (1.8),
A®P{a(t, ®) € Ran[o(t, )]} = 1.

Proposition 1. I[fA®P{a(t, ®) € Ran[c(t, ®)]} < I, then an immediate arbitrage
exists.

Proof. For each (t,0), R® = Ker[c'(,0)] ® Ran[o(t,)], where ® denotes orthogonal
sum. Define an adapted Ré-valued process a; by defining a;(t,) to be the projection of

‘ a(t,w) on Ker[o'(t,0)]. Then define another adapted R%valued process T by

(2.1) n(t) = ——-1—-——2a,(t).
1+, @)

7t is a portfolio. That n meets the integrability constraint in the definition of a portfolio
follows from that for each (t,0)

(2.2) ocn=0eR® and
a'a = [a sothat0<m’a<l.

Now define a stopping time T by

22



(2.3) t=inf{t>0: A({s:a(s)#0} N[t,t+¢g])>0 forall e >0}.

That 71 is a stopping time follows from right-continuity of {F,}. That (1.8) does not hold
implies that P{t < 1} > 0. Furthermore, (2.2) yields that X; satisfies
P{Xz(t)=0forall t<tand X.(t)>0forallt>1}=1.

So m is an immediate arbitrage. W

Let us now attend to some technical details used in the proof of the immediate

arbitrage theorem.

Lemma 1. Let ¢ be an adapted dxd matrix valued process. Then there exists a (non-
unique) adapted process o+ such that for each (1,0), 6+(1,.®) is an invertible dxd matrix
and for each x € Ran[c(t,0)] we have both 6. (,w)x € Ran[c'(t,0)] and
oto)os (Lw)x =x.

Proof. Let k(t,») = dim(Ran[c"(t,0)]) = dim(Ran[o(t,®)]), and let
{e;, f;, gj,;J=1, ..., d}be a set of adapted R%-valued processes such that for each (t,0),
{e1(t,®), ..., &(t,®)}, {fi(t,®), ..., fa_x(t,0)}, and {g(t,®), ..., g4-k(t,®)} are bases for
Ran[c"(t,0)], (Ran[c"(t,w)])", and (Ran[o(t,®)])", respectively. Take o.(t,0) to be the
matrix representation of the full-rank linear map on R° defined by

o+(t,0)ej(t,w) = o(tw)ej(tw), j=1, ..., k(tw),

o+(t,0)fi(t,w) = gi(t,w),j =1, ...,d - k(t,0).

That Ran[o(t,0)] = Ran[o(t,0)c"(t,®)] justifies that 6.(t,») is invertible. The remaining

assertions made about . are evident from its construction. W

23



In this chapter and the next, the Girsanov Theorem will be a useful tool. [See Karatzas

and Shreve (1991), Theorem 3.5.1, page 191.] For each adapted R%valued process v

1
satisfying ﬂlv(f)“z dt <00 as, define another adapted R%valued-process
0

W =(W, . W) by

t
2.4) Wr@) = Wi + Jvis)ds; 1<i<d.
0

If E(Z"(1)) = 1, and probability measure P" is defined by dP"/dP = Z"(1), then

W"is a d-dimensional standard Brownian motion on (Q, F, {F,}, P").
1.2 Proof of the Immediate Arbitrage Theorem.

Theorem 1 (Immediate Arbitrage Theorem.) There is no immediate arbitrage if
andonly if P{a. =1} = 1.

Proof. (Necessity.) Suppose that P(ac < 1) > 0. Start the construction of an
immediate arbitrage by selecting a sequence of constants ry ¥ 0 such that if stopping

times ax, k=0, 1, ..., are defined by ax = (a + r¢) A 1, then

2.5) :Z. {;j{ak<15a,_,}{|p(t)||2/\ﬂdz sl} n {a <1}J < .

Get such constants satisfying (2.5) as follows: Letry=1. After selecting

{ri i =0, ..., k—1} and defining {a, i = 0, ..., k—1} as stipulated above, the divergence
1 , 1
lim,,, I{a +r<t Sak,,}[|p o) /\—:‘di = 00 as.on{a<1}
r
0
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allows choice of 0 <ry < Y% ri_; such that
1

(2.6) P[{ I{a +r, <t <ak_])[|p (,)“2 /\l]dt 51} N {a <1}] s%.
0 7

With the sequences {a} and {rx} define a sequence of stopping times {tx; k > 1} by

2.7 T, = inf{t >0: ]{ak <55°‘k_|)[|p(.$)||2 A l]ds =l}/\ak_,.

n
The Borel-Cantelli Lemma implies that a.s. on {a < 1}, Ty < o) for all k sufficiently

large.

Now fix ¢ € (1, 2) and define two adapted scalar processes

’
(e ¢}

B = Dfop<t<uylk™ and ()= i{ak <ISTUQIO(')||/\’1:I/2)
k=1 k=1

Then it holds a.s. on {a < 1}that

Jpen e Sk
(2.8) 1i¢r:1 0 5 = lim—=—— = lim (2_"_%”(2*)/3 —00.
1 ! n—wo o n—»cw C -
[ [B2(swr 2(s>ds) [ij

Now define an adapted R valued process y by

B’ Wy
, 8 0

0, if 6(@)=0.

0 <y < ll6ll implies that a.s.



(2.10) ﬂp(t)],'zdt < IBZ(t)yz(t)dt < ik'zf < 00,
0 0 k=1

So the stochastic integral in (2.11) and (2.12) below is well defined. If we put
(2.11) Wo( ﬂp (s)||2dsJ = jw *(s)dW (s),
0 0

then W is a standard Brownian Motion in R}, so that
P{t"*Wy(t) > 0asti 0} =1.
Then, observing that y (t) =0 on {t <a} agd that
M{w (s)#0}N(a, . +€])>0foralle>0

holds a.s. on {a < 1}, we can conclude that

l‘f\y "(5)dW (s)

(2.12) lim — =0 as. on fu<l}.

“{pors

Using (2.10) and (2.12) for the inequality, and then (2.8), proves that a.s. on {a < 1}

fo*$)@m(s)+ fy (s (s)ds [Besw(s)s
(2.13)  lim, ° — > lim, —— 5 = .
(beral (oo

Let 1 be the stopping time

‘ . . 1/3
(2.14) 1 = inf{t>a: fo )ams) «+ fo @ (s)ds = ( j]p:(s)uzdsJ }
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Expression (2.13) implies that a.s. on {&¢ <1}, botht> a and if a <t < 1, then

(2.15) J’w‘(s)dW(s) + f\p'(s)e(s)ds > { ﬂh}(s)"zds] > 0.

0
Now observe that for an adapted scalar process g, y = g6, so that for all (t,0),
y (t,w) € Ran[o’(t,w)]. Therefore Lemma 1 implies that there exists an adapted process
(6"« taking values in the invertible dxd matrices such that 6" (s)[(6")+(¢)] "y () = W (o).
Define an adapted vector process o by mo(t) = [(6")+(t)] 'y (t). Then define the
immediate arbitrage m by

n(t) = B(t){t < t}mo(t).

Regarding integrability constraints on a portfolio, the paths B(s) are bounded in t a.s., and

2.16) I(l]B”(t)c‘(t)n(t)llz+|B"(t)1r‘(t)a(t)0dt = ]{lSt}(jh/(t)"z+}.u’(tﬁ(t)|)it

< [B*o+po)mar < i(k‘2‘+k“) as.

Since B~} (o)1 (¢)o(s) = {» < T}y"(s), and X, satisfies the SDE

(2.17) dX«(t) = B (t)o(®)dW(t) + B ()o()B(t)dt, X(0) =0,
it follows from (2.15) that a.s.

(2.18) X:()=0, ift<a and X.(t)>0, ift>a.

So m is an immediate arbitrage with a serving as the stopping time required in the

definition.
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(Sufficiency.) Suppose a =1 a.s. Let n(s) be a portfolio such that there exists a
stopping time 1 for which
P{X (t)=0forall0<t<tand X.(t)>0forallt>t}=1.

Define another stopping time 3 by

B = inf{t>0: ]{t<sﬂp(s)||2ds > 1}.

0

Note that o = 1 a.s. implies that Tt < B a.s. on {1 <1}. We also have Z(t; B) > 0 a.s.

Further observe that the Novikov Condition implies E(Z(t; B)) = 1 [See Karatzas and
Shreve (1991), Corollary 3.5.13, page 199.] Define an adapted vector process 6 by

6 (t)=0(t){t <t<P}.
Then the process z (¢) is Z(t; « A B), so that E( z (1)) =1. Because
P{X.(t) =0 fort <t} = 1 and X, satisfies the SDE (2.17), the Girsanov Theorem implies
that on (Q, F), {F}, P ), the process X (e A B) is a stochastic integral with respect to
Wé, a standard Brownian Motion in R? [see (2.4)]. In particular, X (s A B) is a (Pe‘)

local martingale. Then, since P s equivalent to P, we have

(2.19) P {X(t)=0forall0<t<t and X(t)>Oforallt>t}=1.

Therefore, X (e A B) s a ( P ) supermartingale.’ Then E (X, (B)) < E (X,(r)) =0,s0

that P° (Xx(B) =0) =1 by (2.19). By probability equivalence, P(X(B) = 0) = 1.

' It follows from the Fatou Lemma for conditional expectation that any local martingale which is
bounded below is also a supermartingale.
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Sot<Pas.on{t<1}and P{X.(t)>0forallt>1t}=1imply that P{t=1} =1. Since

7 and T were chosen arbitrarily, no immediate arbitrage exists.
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Chapter 3

A Construction from the Theory of Constrained Hedging

3.1 The Construction and Closely Related Properties.

Throughout Chapters 3 and 4, assume absence of immediate arbitrage, i.e., assume
o =1 a.s. The results in this chapter specialize work of Cvitanic and Karatzas (1992) and
(1993) to the problem of this dissertation. This chapter contains little that Cvitanic and
Karatzas did not prove. The usefulness of Corollary 1 is specific to this arbitrage
problem; so it did not appear in their work. All proofs, barring that of the existence of the
cadlag modification of V in Theorem 2 draw at least their key probabalistic content from
Cvitanic and Karatzas. They give a different proof, which also appears in El Karoui and
Quenez (1995), justifying the existence of the cadlag modification, but to the best of my
knowledge the one giyen here has not appeared elsewhere. Their papers constructed the
V process for the problem of pricing contingent claims in incomplete markets, and did
not recognize its usefuleness for the arbitrage problem. Comparison with their papers
will show that my approach is to view Z(t; 1) as a contingent claim to be hedged in a
market with d risky assets characterized by our original volatility process ¢ and drift

process identically zero.
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The results and proofs of this chapter will use the notation V(e) and Z(e) otherwise
reserved for 1= 0. All of the proofs go through without alteration for V(t;e) given any
stopping time 0 < t < 1. T have chosen the simpler notation since nothing herein depends
upon T.

Recall that we define D to be the class of adapted R%valued processes v for which

(1.19) A®P {Vv(t,0) € Ker[ o(t,0) ]} =1,
1

(1.20) P{ fveas < oo} =1,
0

(1.21) E(Z(1)=1.

For each v € D, E" denotes expectation and conditional expectation with respect to the
probability measure P with Radon-Nikodym derivative dP"/dP = Z*(1).

Let V( be an adapted R'-valued process such that for each 0 <t < 1, V(t) is a version
of ess supvep (E'[Z(1)] Fi]). In working with essential suprema, the following lemma
will be of use.

Lemma 2. For each stopping time 0 < 1 < I, there exists a sequence {v,, n>1} in D

for which we have the a.s. monotone convergence
3.D ess supvep (E'[Z(1)| F.]) = limT, E™[Z(1)| F.].

Proof. If a family of random variables is directed upward, then the essential

supremum of the family is the a.s. increasing limit of a sequence in the family [see
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Neveu (1975), Proposition VI-1-1, page 121.])" So fix 1 and show that
{E'[Z(1) | F.): v € D} is directed upward. Let v; and v; be in D and define

4 = {E"‘ [zo)F] = E“[zoyF ]} e F,.
Then define an adapted process p by

u) = vi[A N {t>1}] + v(O[A N {t>1}].

p € D: p obviously satisfies (1.19) and (1.20). For (1.21), because A € F,,
32  E@z*0) = E(E[z7@E]) + E(«E[z7anE)
Then, for j = 1, 2, using that (1.20) implies P{min o<.<1 Z"(t) > 0} = 1, and optionally

stopping martingale Z",

FT:I _ E[Zvj(l)|Ft:] - vl E[ZVJ(I)IF}] = 1.
Z /(1) Z'/(v)

(3.3) E[va (t;1)

So E(Z*(1)) =P(A) + P(A“) = 1. Since foreachv e D,

(3.4) E'[Z(1) | F]=E[Z(1) Z'(x;1) | Fdl,
A e F, implies

(3.5 E"[Z(1) | F] =AE™(Z(1) | F] +A°E?[Z(1) | Fy]

>E"'[Z(1) | F.] VE[ZQ) | Fi] as.

' A family H of random variables is said to be directed upward if for each h,, h, € H, there exists an
hg € H with h; 2 h| v hz a.s.

32



Theorem 2. (i) For eachv € D, Vy is a (P") supermartingale.
(ii) Vy admits a (P) modification with cadlag paths.

(iii) Denote the cadlag modification, unique up to indistinguishability, guaranteed by

(ii)as V. If V is another process with cadlag paths such that Visa (P") supermartingale
for eachv € D and I}(l) =2Z(1) as., then

P{V) < V@) forall0<t<1} =1.

Proof. The (P") supermartingale property for V, for each v € D will follow

immediately from the following identity, which holds forall 0 <r<s<1.

(3.6) Vo(r) = ess supyep(E'[Vo(s) | Fi]).

In (3.6), "<" stems merely from monotonicity of conditional expectation:

(3.7 Vo(r) = ess supvep E'[Z(1) | F;] = ess supyvep E'[E'[Z(1) | F{] | Fi]
<ess supveD‘E"[Vo(s) | F].

For ">", fix u € D, and prove V(r) > E*[Vo(s) | F;]. We know by Lemma 2 that there

exists a sequence {v,} < D such that Vo(s) = limT, E""[Z(1) | F]. For each n define an

adapted process p, by
Ha(t) = pOf{t < s} + va(){t>s}.

Each p, € D since, with a calculation like (3.3) justifying the third equality in (3.8),
(3.8)  E(Z™(1)=E(E[Z"(]) | FJ]) = E(Z*()E[Z"(s;1) | Fs])) =E(Z(s)) = 1.
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Observe that for each n

(3.9) E™Z() | Fs]=E[Z()Z"(s;1) | Fi] =E[Z()Z™(s;1) | F]=E*(Z(1) | F),

so that Vo(s) = limT, E*"[Z(1) | F]. Then that V(r) > E*[V(s) | F;] follows from

Vo(r) 2 lim sup, E*"[Z(1) | F;] and (3.10): 2

(3.10) E*(Z(1) | F] = E*"[E*" [Z(1)| F{] | F,] = E[E*"[2(1) | F{] Z"(r;s) | F.] and
limT, E[E*'[Z(1) | Fs] Z¥(5;s) | Fo] = E[Vo(s)Z"(5;s) | F] =E"[Vo(s) | Fi] ass.

So (3.6) holds, and V) is a (P") supermartingale for each v € D.
The filtration {F,} is right-continuous and complete. Therefore, to see that V, admits

a modification with cadlag paths, it suffices to prove the equivalent condition that

t = E(Vo(t)) is a right continuous function [See Lipster and Shiryayev (1977),
Theorem 3.1, page 55]. Fixt, and supposet,>t,n=1,2, ..., satisfy t= limd, t,. For
each v in D, it holds for all n that V(t,) > E'[Z(1)| F, ] a.s. Also, for each v e D, since

(1.20) implies that ming<, <;(Z"(1)) > 0 a.s., we have

E[z()Z' ()] .
Z%(+)

311 E'[Z(1)| F.] =

Then the paths E'[Z(1)] F.] are continuous a.s., since E[Z(1)Z"(1)| F.] is a (P) martingale

with respect to the Brownian filtration {F,}. Therefore, for eachv € D,

2 In the second and final equalities in (3.10) we use the following consequence of that for each v € D,
Z' is a (P) martingale. If T < P are stopping times and Y is an Fg-measurable random variable, then for any
v € Dsuch that Y is (P") integrable,

"EY] F.] = E[Y Z'(x;B)| F.).
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lim inf, Vo(t,) 2 E'[Z(1) | F], implying lim inf; Vo(t,) = Vo(t) a.s. Then by the Fatou

Lemma,

(3.12) lim inf,E(Vo(ta)) = E(lim inf,Vo(ta)) = E(Vo(t).

Since Vy is a (P) supermartingale by (i), E(Vo(ta)) < E(Vo(t)) for each n. Therefore
(3.12) implies that limE(Vo(t,)) = E(Vo(t)). So we have the equivalent condition, and
the process denoted by V in (iii) exists.

For (iii), suppose Visan adapted process with (a.s.) cadlag paths such that
V(1) = Z(1) a.s. Suppose that there exists a q € Q = {rational q: 0 < q < 1} such that
P{V(q) <V(q)} > 0. (By right continuity, { V(t) — V(t) >0 for all 0 <t < 1}° equals
| Uqeof V(@) — V(q) < 0} modulo null sets.) Apply Lemma 2 to obtain the monotone
convergence V(q) = lianEV“tZ(l) | Fq). Then, fqr n sufficiently large, we see that \Y%

cannot be a (P*") supermartingale from equivalence of P and P*" and both V(1) = Z(1)

(P) as. and P{ V(q) <E'"[Z(1) | Fg]} >0. W

Corollary 1. P{V(t)< Z(t) forall 0<t<1} = 1.

Proof. The result will follow from (iii) of Theorem 2 once we show that Z(e) is a (P")
supermartingale for each v € D. For each v € D, any adapted process Y() is a (P)

supermartingale if and only if Y(¢)Z"(s) is a (P) supermartingale. If v € D, we have
A®P{6(t,0) € Ran[c’(1,0)], v(tw) € (Ran[c’(to)])*} =1,

so that Z(s)Z"(s) is (P) supermartingale Z°"(-). W
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3.2 An Essential Lemma in the Link to the Arbitrage Problem.

Lemma 3 below will be essential in constructing an arbitrage in the proof of the final
theorem in Chapter 4. In the proof of Lemma 3, it is necessary to use the Doob-Meyer
Decomposition of a cadlag supermartingale. Below is the formulation of the Doob-

Meyer Decomposition Theorem given in Kopp (1984) [Theorem 3.8.10, page 122].

Theorem (Doob-Meyer Decomposition.) Ler X be a right-continuous
supermartingale. Then X has a unique decomposition X = M — A, where M is a local

martingale and A is a predictable increasing process.

The conclusion of Theorem 2 that for each v € D, V is a (P*) supermartingale with
cadlag paths implies that for each v € D we have the unique (P*) Doob-Meyer
Decomposition V=L"- A". (Uniqueness is up to (P") indistinguishability, which is the
same as (P) indistinguishability by equivalence of P and P*.) Each L"is a (P") local
martingale, and each A" is an adapted process with cadlag and non-decreasing paths

satisfying A"(0) = 0.

Lemma 3. Let L denote the (P) local martingale in the (P) Doob-Meyer

decomposition of V. Then L(s) = V(0)Z°(s) for an adapted R°-valued process ¢ satisfying

(3.13) A®P{o(t,0) € Ran[c’ (L]} = 1

Proof. Because L is a nonnegative Brownian local martingale satisfying L(0) = V(0),
L(e) = V(0)Z®(s) for an adapted R%valued o satisfying a® = 1 a.s. There exists such a @

satisfying that if £(L) = inf{t > 0: L(t) = 0}, then for each (t, ®), t > {(L),, implies
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¢(t,0) = 0. [See Lipster and Shiryayev (1977), Lemma 6.2, page 208.] (3.13) will

follow once we prove

(3.14) Foreachve D, A®P{o"(to)v(tw)<0}=1.

To show that (3.14) implies (3.13), suppose that (3.13) does not hold. Then define the
process Ho by putting po(t.0) the projection of @(t,») on Ker[o(t,0)] = (Ran[c'(t,w])l.

Then we have that A®P{p(t,0) # 0} > 0. Let process u be given by

BO= — o), if po®#0;  p()=0if po()=0.
o)

The Novikov Criterion implies that pe D because p is bounded uniformly in (t,0).
(3.14) does not hold for this p, since @ = llpoll.
To prove (3.14), consider that for each v € D, where (P") Brownian Motion W" is as

defined in (2.4), it is possible to write the (P*) Doob-Meyer Decomposition of V as

| S
(3.15) V()= V(©O) + [fY (s)dWY(s) -AY(t), 0<t<l,
0

1
where f* is an adapted R%-valued process such that ﬂ! 1 (t)“2 dt <00 a.s. With respect to
0

(3.15) note that for each v € D, L" is adapted to {F,}, and not necessarily adapted the

P-augmentation of the natural filtration of W". If this latter filtration is denoted

{F’;0<t<1}, thenit is possible that there exists an adapted v such that there exist t

such that F,” are strict subsets of the corresponding F,. Therefore, it is not possible to

directly apply the Martingale Representation Theorem to obtain the stochastic integral
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representation of L"(e) in (3.15). If V(0) = 0, then because V() is a nonnegative (P)
supermartingale, V() is indistinguishable from the zero process, and clearly we may take
f' to be the zero vector process for each v € D. 3 If V(0) > 0, then for each fixed v € D,
to construct the process f" start from that L"(e) is a (P") local martingale is equivalent to
that L"(«)Z"(e) is a (P) local martingale. Then since L"(¢)Z"(e) is a nonnegative process,
there exists an adapted R%valued process g = g satisfying a® = 1 a.s. such that

L¥(+)Z"(s) = V(0)Z%(+). Then the It6 formula gives that

(3.16) dL'(1) = d(w] = YO izsy - YOZO

Z (1) A (z f
_ YO ng(.)ZV(.) n + YOZIO i o 2ol
(z o)) [ ! (o) [ k
V(O)Zg(t)

s { TOAW() +vi()dW(t) —g()v(t)dt +||v|| (Hdt

= LV(t)(v*(t) - g‘(t)XdW(t) +v(t)dt)
So we have equation (3.15) with f(s) = LY(e)[V(e) — g(e)].
Then because dL(t) = -L(t)e(t)dW(t), 0 <t < 1, it follows from uniqueness of the (P)

Doob-Meyer Decomposition and equivalence of the (P") that for each v € D

(3.17) A®P{f'(t,0) = ~L(,0)o(tw)} = 1.

and consequently, up to indistinguishability,

*IfY(t), 0 <t < 1, a process with cadlag and non-negative paths, is an (Q, F, {F,}, P) supermartingale,
and S = inf{t > 0: Y(t) = 0}, then P{Y(t)=0 forall S<t< 1} = 1. [See Elliott (1982), Theorem 4.16,
page 38.]
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t
(3.18) A= A(t) - [L(s)@'(s)v(s)ds; 0<t<l.
0

Equation (3.18) motivates the completion of the argument. Fix v € D. Then define for

each n a process p, € D, with E(Z""(1)) = 1 following from uniform boundedness of p,

in (t,0):

(3.19) w(t)= n R OVO>0[ o ROV

1+|v@)| 1+ |v()|

Then, by (3.18),

1] *=
(3.20) APa()= AQ) - nf (Hv(H) >0 Lo (t)v(t)dt

o 1+v)|
5[ 1+ "V(t)" L(t)e" (t)v(t)dt

We must have A®P{¢"(t,0)v(t,0) <0} = 1 because for ® € {A{t: ¢"(t)v(t) > 0}> 0}the
right-hand side of (3.20) tends to —0 as n — . (Recall that for each (t,®), L(t,0) =0

implies @(t,0) =0 € R®) Such divergence would contradict that for each n the paths

AV"(s) are non-decreasing.
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3.3 Two Useful Characterizations of the Process V(o).

It will be useful that the following result holds when we stop process V. Karatzas and
Shreve (1998) give a different presentation of this proof which is based upon a similar

underlying approach [see Remark 5.6.7, page 215.]

Lemma 4. For each stopping time 0 <t < 1,
(3.21) V() = ess supvepE"[Z(1) [ F.]).

Proof. For each 1, denote the right-hand side of (3.21) by Y(t). First assume that 7 is

a simple stopping time, T = 2 4<n {T = t}tx. Then for each v € D,

n
(3.22) EVzoE] = Tk-= tk}1=.V[Z(1)|1~“tk 1
k=1
(The right-hand side of (3.22) is F.-measurable because {t =t} A € F; for any

A € K, . Equality of integrals on F: sets follows from that {7 = t,} NAe F, for any
A € F.) Evident from (3.22) is that Y(1) < 2 <k<n{T = t} V(t) = V(7).
For the reverse inequality, choose by Lemma 2 sequences {vk,m; m>1} c D
fork =1, ..., n such that for each k, lim,TE"*™[Z(1) | F, ]=V(t) as. Then, in light of
(3.22), it holds a.s. on {t =t} that
Y(t) 2 limyT EY™[Z(1) | F.] = V(2).
Now let 1 be an arbitrary stopping time. Stopping times 1k, k =1, 2, ..., given by

. - . .
T = don {1 <1< , forj=1,..,k
k k k
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satisfy T, > T and limgdt, =7 a.s. The paths E'[Z(1) | F.] are continuous for each v € D

and the paths V(o) are right-continuous, so that for each v € D it holds a.s. that
(3.23) E'[Z(1) | F] = imE"[Z(1) | F;, ] < limcV(n) = V(7).

Therefore, Y(t) < V(1) a.<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>