
\lW
llW

lHi
HII

IIH
IHH

IHN
UIW

WWI
NI[

IIH
UHI

   



'V P-\ \

IHrblb IIIIIIIIIIIIIIIIIII

.eiie lllllllllllllllllllllllllllllllllllllllllllllllllllllll
31293 01810 3899

This is to certify that the

dissertation entitled

Faulty All BOIM'ul R0923 of Polynom’w

51.91%!) In C" Via. shale. Mixed Volume.

presented by

Toma an 61"M

has been accepted towards fulfillment

of the requirements for

Ma - D degree inWmwere»:

éf/e/fi

 



 

LIBRARY

Michigan State

University
   

PLACE IN RETURN BOX to remove this checkout from your record.

To AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

 

DATE DUE DATE DUE DATE DUE

 

MAR 26 :4 7

  

 

 
 

 

  

 

 
 

 

       
1/98 animal-$651114



FINDING ALL ISOLATED ROOTS OF POLYNOMIAL

SYSTEMS IN C" VIA STABLE MIXED VOLUME

By

Tangan Gao

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Mathematics

1999



ABSTRACT

FINDING ALL ISOLATED ROOTS OF POLYNOMIAL

SYSTEMS IN C" VIA STABLE MIXED VOLUME

By

Tangan Gao

To find all the isolated zeroes of a polynomial system P(x) in C" (as opposed

to in (C‘ )“) via the polyhedral homotopy method of Huber and Sturmfels [7], one

first finds all stable mixed cells in a stable mixed subdivision and establishes a fine

mixed subdivision for each stable mixed cell. One then solves a collection of polyno-

mial subsystems corresponding to the stable mixed cells, and uses their solutions as

starting points for the homotopy paths of a set of nonlinear homotopies which lead

to all the isolated zeros of P(x) in C“. This method offers a dramatic computational

improvement over earlier homotopy algorithms at the cost of many costly recursive

liftings at the preprocessing step of finding the stable mixed cells and their fine mixed

subdivisions.

The main goal of this dissertation is to present a new strategy which can quickly

(and simultaneously) find the stable mixed subdivision, the fine mixed subdivisions

of the stable mixed cells, and the necessary subsystems by means of a single lifting.
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Introduction

Polynomial systems arose quite commonly in many fields of science and engineer-

ing, such as formula construction, geometric intersection, inverse kinematics, power

flow with PQ-specified bases, computation of equilibrium states, etc.. Elimination

theory-based methods, most notably the Buchberger algorithm [2] for constructing

Grbbner bases, are the classical approach to solving multivariate polynomial systems,

but their reliance on symbolic manipulation makes those methods somewhat unsuit-

able for all but small problems.

In 1977, Garcia and Zangwill [5] and Drexler [3] independently presented theorems

suggesting that homotopy continuation could be used to find the full set of isolated

zeros of a polynomial system numerically. During the last two decades this method

has been developed into a reliable and eficient numerical algorithm for approximating

all isolated zeros of polynomial systems. See [10] for a survey.

For a system of polynomials P(x) = (p1(x),...,p,,(x)) with x = (x1,...,x,,),

write

pi(x) = Z Ctaxaa 2:1,. ' ' In)

36.4;

where a = (a1,...,a,,) E N", Cg. E C‘ = C\{0} and x“ = x‘l’l ---a:g~. Here .A,-, a

finite subset of N", is called the support of p,(x), and the convex hull of A,-, denoted

by Q,, is called the Newton polytope of p,(x). We call A = (A1, . . . ,An) the support

of P(x).



The Minkowski sum of polytopes 91,. . . , Qn is defined by

Ql+"'+Qn:{al+"'+an l a1 E Qlwuaane 9n}-

It can be shown that the n-dimensional Euclidean volume of the polytope A191 +

-- - + An Q, with nonnegative variables A1, . . . , /\,, is a homogeneous polynomial in

A1,. . . ,An of degree n. The coeficient of Al x A2 x - - - x An in this polynomial is

defined to be the mixed volume of A = (A1, . . . ,Afi), denoted by M(A1, . . . ,A“) or

M(A) when no ambiguity exists.

Theorem 1 The number of isolated zeros in (C‘)", counting multiplicities, of a

polynomial system P(x) = (p1(x), . . . ,pn(x)) is bounded above by the mixed volume

M(A). For generically chosen coefi‘icients, the system P(x) = 0 has exactly M(.A)

zeros in (0‘)".

The root count in the above theorem was discovered by Bernshtein [1], Khovanskii

[8] and Kushnirenko [9] and is sometimes referred to as the BKK bound. While this

bound is, in general, significantly sharper than the classical Bézout number and its

variants, a limitation is that it only counts zeros of P(x) in the algebraic torus (0)".

Root count in C" via mixed volume was first attempted in [14] where an upper bound

was derived by introducing the notion of a shadowed set. Later, a significantly much

tighter bound was given by the following theorem (and was generalized soon after in

[16])-

Theorem 2 [12] The number of isolated zeros in C”, counting multiplicities, of a

polynomial system P(x) = (p1(x),...,p,,(x)) with supports A1,...,A,, is bounded

above by the mixed volume M(A1 U{0}, . . . ,An U{0}).

We shall call the set (A1 U{0}, . . . ,A,, U{0}), denoted by AU{0}, the extended

support of P(x). In [7], an even tighter bound was obtained: the number of isolated
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zeros of a polynomial system P(x) = (p1(x), . . . ,pn(x)) in C" is bounded above by

its stable mixed volume. This number is always smaller than the mixed volume of the

extended support of P(x). This bound has since been generalized to the root count

of polynomial systems over any algebraically closed fields, and various criteria have

been established for the equality in this bound [15].

Based on Theorem 1, a polyhedral homotopy was proposed in [6] to approximate

all the isolated zeros of a polynomial system P(x) = (p1(x),... ,pn(x)) in (C‘)“

by homotopy continuation methods. A random lifting w is applied to the support

A = (A1,” . ,Afl) of P(x) to obtain a fine mixed subdivision .52,J of A as well as

the supporting systems induced by the mixed cells of type (1, . . . , 1) in S“. These

supporting systems are the start systems for a finite set of nonlinear homotopies

induced by to.

To find all the isolated zeros of P(x) in C", rather than in (C‘ )”, a modified

algorithm, based on Theorem 2, was formulated in [10, 12]. By the revised algorithm,

one can locate all the isolated zeros of P(x) in C" numerically, at the expense of

following extraneous homotopy curves frequently. This wasteful computation may be

eliminated by following the procedures suggested in [7]: First, identify the stable mixed

cells of the extended support A U {0} of P(x) by applying an initial simple lifting on

AU{0}. Followed by applying secondary recursive liftings to the stable mixed cells one

obtains fine mixed subdivisions on these cells. Then standard polyhedral homotopies

are applied to solve the polynomial subsystems corresponding to the resulting stable

mixed cells. Finally, one may trace homotopy paths originated from these solutions

of the subsystems to the zeros of P(x) in C".

When polyhedral homotopy algorithms are used to find all the isolated zeros of

polynomial systems, the most intensive computation rests upon the preprocessing step

of identifying of proper mixed cells induced by the liftings. Therefore, the algorithm



proposed in [7] may require a heavy preprocessing effort for its demand of recursive

liftings. In order to produce a more efficient algorithm, we wish to avoid this scheme

of recursive liftings.

The purpose of this dissertation is to present the strategy of a single lifting which

can accomplish the goals of the multiple liftings of the above procedures simultane-

ously, so the preprocessing cost of applying polyhedral homotopy algorithms can be

reduced considerably. As a by-product, in addition to solving all isolated zeros of

P(x) in C", the stable mixed volume of A can easily be assembled without recursive

liftings. Our single lifting, along with its theoretical justifications, will be given in

Chapters 3 and 4 after the necessary terminology is introduced in Chapters 1 and

2. In accordance with our lifting, a new algorithm to find all the isolated zeros of

P(x) in C" has been successfully implemented, and numerical results on a substantial

variety of examples are presented in Chapter 5.



CHAPTER 1

Polyhedral Homotopy Method

Let A = (A1, . . . ,A") where for each i = 1,... ,n, A,- is a nonempty finite subset

of N". By a cell of A we mean a tuple C = (C1, . . .,C,,) of subsets C,- C A, for

i = 1,. . . ,n. Define the short hand notations:

type(C) := (dim(conv(C1)), . . . ,dim(conv(C,,))),

which is called the type of the cell C,

conv(C) :2 conv(C1) + - - - + conv(C,,),

the Minkowski sum of the convex hulls of C1, . . . ,Cn, and

Voln(C) :2 Vol,,(conv(C)),

the n-dimensional Euclidean volume of conv(C). A face of C is a subcell F =

(F1,...,F,,) of C where F,- C C,- and some linear functional or E UR")V attains its

minimum over C,- at F,- for each i = 1,... ,n. We call such an a an inner normal

of F. If F is a face of C then conv(F,-) is a face of the polytope conv(C,-) for each

i=1,...,n.

Definition 1 [6] A subdivision of A is a collection {C(I),...,C(m)} of cells of A

such that



(a) For allj = 1, . . . ,m, dim(conv(C(j))) = n,

(b) conv(CUl) fl conv(C(’°)) is a proper common face of conv(Cm) and conv(Cm)

when it is nonempty for j # k,

(c) U212, conv(CUl) = conv(A).

Furthermore, we call the collection a fine mixed subdivision of A if it also satisfies

the following condition:

(d) Forj = 1,...,m, write C(j) = (C[j),...,C,(.j)). Then, each conv(Cffl) is a

simplex of dimension #ij) — 1 and for each j,

dim(conv(C[j))) + - - - + dim(conv(C,(,j))) = n.

A fine mixed subdivision of A = (A1, . . . ,A) can be found by the following

standard process [6, 10]: Choose a real-valued function w,- : A,- ——> IR for each i =

1, . . . ,n. We call the n-tuple w = (wl, . . . ,wn) a lifting function on A, and w lifts A,-

to its graph A,(w) = {(q,w,-(q)) : q 6 A} C Rn“. This notation is extended in the

obvious way: 51(0)) = (mat-((1)), 4(a)) = (d1(w),---,«Aee(w))e Q,(w) =CODV(/ie(w)),

C(w) = Q1(w) + - - . + Qua), etc.

A lower face of a polytope in Rn“ is a face having an inner normal with positive

(n + 1)-th coordinate and a lower facet is an n-dimensional lower face. The collection

conv(C(w)) is a lower facet of

5“,: C=(Cl,...,C,,)cellsof A . .

Ql(w) + - - ° + Qn(w)

is the subdivision of A = (A1, . . . ,An) induced by the lifting function w [6]. When

to = (w1,. . . ,wn) is chosen generically, 5,, gives a fine mixed subdivision of A [6].

To find all isolated zeros of P(x) = (p1(x),...,p,,(x)) (with support A =

(A1, . . . ,An)) in (0)", we will use two homotopies. The first homotopy, called the

polyhedral homotopy, is used to solve for all the isolated zeros in (C‘ )" of a new generic

6



system C with the same support as P. The second homotopy, a more standard linear

homotopy, uses these zeros of G to find all the isolated zeros of P in (0)".

To form the new generic polynomial system mentioned above, we assign generic

coefficients to all the monomials in P(x). Denote the new system by C(x) =

(.9100, . . . ,gn(x)) where

g,(x) = 2: 6.3.3:“, i = 1,...,n,

36-44

and é,,.’s are randomly chosen complex numbers. We wish to find all the isolated

zeros of this system in (0)" in the first place. Then, by following all the homotopy

paths of the homotopy

H(x, t) = (1 — t)C(x) + tP(x) = 0

emanating from those zeros of C(x), one can obtain all the isolated zeros of P(x) in

(0)“ [6, 11].

To solve G(x)=(g1(x),...,g,,(x))= 0, we lift its support A = (A1, . . . ,An) by a

generically chosen real lifting function to = (wl, . . . ,wn) and consider the polynomial

system C(x, t) = (g1(x, t), . . . ,g,(x, t)) in the n + 1 variables x1, . . . , xmt, where

g.(x, t) = Z axed”, 2': 1,...,n. (1.1)

aeAt

C(x, t) provides a homotopy with t as the parameter and when t = 1, C(x, 1) = C(x).

It can be shown that for each t E (0, 1], the isolated zeros of C(x, t) are all nonsingular,

and by Theorem 1, the total number of these zeros is equal to the mixed volume

M(A1, . . . ,A). We write these zeros as x1(t), . . . ,x"(t) where k = M(A1, . . . ,Afl),

so C(xj(t),t) = 0 for each t 6 (0,1] and j = 1, . . . , k. Let x(t) represent any one of

x1(t), . . . ,x"(t), and write x(t) = (x1(t), . . . ,xn(t)).

The lifting function w 2 (col, . . . ,wn) induces a fine mixed subdivision S“, of A =

(A1, . . . ,An) and the mixed volume M(A1, . . . ,An) equals the sum of the volumes of

7



cells of type (1, . . . , 1) in Sw [6]. Let C = ({a10,a11}, . . . , {ano,a,,1}) be a cell of type

(1, .. . ,1) in S“, and v,- 2 an - aw, i = 1,. . . ,n. Since 5,, is a fine mixed subdivision,

{v1,. . . , Va} is linearly independent, and a simple calculation shows that

  

V1

Voln(C) = det E . (1.2)

Vn

Let 6: = ((1,1) = (01,. . . ,an, 1) be the inner normal of

conv(C(w)) = conv({am(w), a11(w)}, . . . , {ano(w), an1(w)}).

Substituting x = yt", or x1 = ylt“1,. . . ,xn = ynta", into (1.1) yields,

My”
= Easyat

hmwda)

86A..-

= Z 5i,ayat(é(w).d), I :: 1,. . . , n, (1.3)

aE-Ai

where (-, ) stands for the usual inner product in IR". Since 0‘: is the inner normal of

conv(C(w)), by factoring out the lowest power in t, g,(y, t) becomes

r,-(y,t) :2 5,,a,oy“'° + Qany‘“ + higher order terms in t, i = 1,... ,n. (1.4)

Write R(y, t) = (r1(y,t), . . . ,rn(y,t)). Apparently,

r,-(y,0) = E,-,.,,oy“"0 + 5,,a,,y"‘, i = 1, . . . ,n, (1.5)

and R(y, 1) = C(x, l) = C(x). The system R(y, 0) = 0 in (1.5) is a binomial system

with generic coefficients. This type of system can easily be solved [10] and it can be

shown that the total number of its zeros equals Vol,.(C) in (1.2). So, by following the

solution curves of R(y, t) = 0 starting from the solutions of R(y, 0) = 0 in (1.5) we

find Vol,,(C) isolated zeros of G(x) in (0)". Repeating the same procedure for each



cell of type (1, . . . , 1) in Sw, all M(A1, . . . ,An) isolated zeros of C(x) in (C‘)" can

be found.

To find all the isolated zeros of P(x) = (p1(x), . . . ,pn(x)) in C", rather than in

(C‘ )”, we may modify the above procedure as follows: According to Theorem 2, when

(A1U{0}, . . . ,A,.U{0}) = (A1, . . . ,An), i.e., all p,’s have nonzero constant terms, then

the mixed volume M(A1, . . . ,An) also serves as a bound for the number of isolated

zeros of P(x) in C", and the algorithm we described above finds all isolated zeros

of P(x) in C" indeed. When (A1 U {0}, . . . ,A,. U {0}) # (A1, . . . ,A), we augment

the monomial x°(= 1) to those p,’s which do not have constant terms and randomly

choose the coefficients of all monomials in P(x) as well as augmented monomials x0,

obtaining the system C(x) = (§1(x), . . . , §n(x)) where

§,(x) = Z 5,,ax’, i = 1,. .. ,n.

aEAgU{O}

By Lemma 2.1 in [12], all isolated zeros of C(x) are in (0)" and, by Theorem 1,

the total number of its isolated zeros is equal to M(A1 U {0}, . . . , Afl U {0}). It was

shown in [11] that by following exactly the same procedure as we described above

with C(x) replaced by C(x), all the isolated zeros of P(x) in C" can be found.

In summary, to find all the isolated zeros of a given polynomial system P(x) =

(p1 (x), . . . , pn(x)) with support A = (A1, . . . ,A,,) in C“ by the above method, which

we will refer to as the Li-Wang algorithm in the remainder of this dissertation, one

may proceed with the following steps:

0 Lift the extended support A U {0} by a randomly chosen real lifting function

U) = (w1,...,w,,).

c Find all the cells of type (1, . . . , 1) in the induced fine mixed subdivision 3,, for

the extended support A U {0}.



o For a polynomial system C(x) with support AU {0} and randomly chosen com-

plex coeficients, trace the homotopy curves of R(x, t) = 0 in (1.4) determined

by the cells of type (1, . . . , 1) in S“, to find all isolated zeros of C(x) in (0’)".

0 Use the linear homotopy

H(x, t) = (1 — t)C(x) + tP(x) = 0 (1.6)

to find all the isolated zeros of P(x) in C". Isolated zeros of H(x, O) = C(x) in

C” are available after the last step.

As we can see, the main computation of this method is on

(a) Finding the cells of type (1, . . . , 1) in S“, for the extended support A U {0},

(b) Tracing 2M(A U {0}) homotopy curves.

The computation in (a) is quite time consuming. In general, cells of type (1, ‘. . . , 1)

in a subdivision induced by a lifting function on are determined by an exhausting

search among all the possible Minkowski sums of edges from A1(w), . . . ,An(w) by

linear programming techniques [18] which requires an intensive computational effort.

In (b), some of the homotopy curves in (1.6) may be extraneous. For instance, .

consider the bivariate system [7],

131(3)?!) = 02/ + by" + cxy3,

p2(x,y) = dx + ex2 + fx3y. (1.7)

For generic coefficients (a, b, c, d, e, f}, this system has six isolated zeros in (C2 and

three isolated zeros in ((9)2. However, its augmented system

many) = 81+ ay + by2 + 0961/3,

g2(x, y) = 52 + dx + ex2 + fx3y

10



has eight isolated zeros in C2. So, one needs to follow eight homotopy paths of the

homotopy H(x, t) = 0 in (1.6) to find all six isolated zeros of system (1.7) in C2, and

two of them are obviously extraneous.

By using the algorithm suggested by Huber and Sturmfels in [7] which we will

describe in the next chapter, one can skip following those extraneous paths. Fur-

thermore, by their method, isolated zeros of P(x) in C"\(C‘)" can be determined

without following any paths in many situations or by following homotopy paths of

much smaller systems. However, the trade-off is the requirement of the recursive

liftings of the method, which drastically increases the computation effort in (a).

11



CHAPTER 2

Stable Mixed Volumes

For a generic polynomial system C(x) = (gl(x), . . . , gn(x)) with support A = (A1, . . .,

A"), where

gi(x) = Z Emu)“, Z: 11' ° ° an,

36-44

define the homotopy C(x, t) = (g1(x, t), . . . ,g,(x, t)) : C" x (C —> C" by

g,(x, t) = g,(x) + t"e,-, i = 1,. . . ,n, (2.1)

where k is a positive integer and e,- = 0 if g,(x) has a nonzero constant term, otherwise

5,- is a randomly chosen complex number. This homotopy induces a lifting function

too" = (w?", . . . ,wg") on the extended support A U {0} = (A1 U {0}, . . . ,A" U {0})

given by

w?’°(a) = 0 if a 6 A4,

w?"(0) = k if 0 ¢ A,

i=1,...,n. (2.2)

Let A? = A,- U {0} for i = 1,...,n and A0 =(A‘1),...,A2). Recall that for any cell

C = (C1, . . . ,Cn) of A0, C(wo") = (C1(w°'°), . . . ,Cn(w°’°)) is a cell of A°(w°"), where

Ci(w0k) : {(avw0k(a)) I a 6 Ci}: 2: 1a ' ' '1”;

12



and

conv(C(w°")) is a lower facet of

Swot = C = (C1,...,C,,) cells of A0 .

conv(A°(w°"))

gives the stable mixed subdivision of A = (A1, . . . , A”) [7].

The coefficients of C(x) are assumed to be sufficiently generic in the sense of

Theorem 1 so that system (2.1) has M(A°) isolated zeros in (C‘)" for all but finitely

many t and has no zeros in C"\(C‘)" for t ¢ 0. The zeros of (2.1) as algebraic

functions x(t) can be written by the Puiseux series expansion near t = O as

x(t) 2 et“ + higher order terms in t, (2.3)

where a = ((11,. .. ,an) E Q" and ((1,1) is the unique inner normal of conv(C(w°'°))

whose last coordinate is equal to one for some cell C = (C1, . . . ,Cn) of Swat: and

e = (e1, . . . ,e,,) E (0)" is a root of the system

g,a(x) := Z Egax" = O, i = 1,...,n,

86C;

which is determined by the cell C. A branch x(t) converges to a solution of C(x) = 0

in C" as t —> O precisely when the exponents a = (0:1, . . . ,n,.) are nonnegative, while

the i-th coordinate of such a solution can vanish only when a,- > O. This observation

leads to the following definitions [7]:

Let C = (01,. . . ,C,,) be a cell of SwOIe and (ac, 1) = (of, . . . ,af, 1) be the unique

inner normal of conv(C(w°“)) in conv(A°(w°’°)) whose last coordinate is equal to 1.

In general, when C is a cell of 3,, induced by a lifting w, we shall call such ac the

inner normal of the cell C with respect to w. A cell C of Swot. is said to be stable if

ac is nonnegative. A cell C of Swot is called a stable mixed cell of A if it is stable

and has nonzero mixed volume. For support A = (A1, . . . ,A,,), we define its stable

mixed volume, denoted by SM(A1, . . . ,A), to be the sum of the mixed volumes

M(C1, . . . , C") over all stable mixed cells C = (C1, . . . ,Cn) of A in Sth.

13



Since the points of A,- remain unlifted under co”, the cell (A1, . . . ,A") appears as

a cell of the subdivision Swot. It is, in fact, the unique cell C in Swot. with ac = 0.

This stable mixed cell contributes M(A1, . . . ,A") branches in (2.3) which converge to

points in (C‘ )" when t —> 0. Each other stable mixed cell C of A in Sth contributes,

by Theorem 1, M(C) branches converging to points in C"\((C")" as t —-+ 0. By (2.1),

those points constitute the full set of isolated zeros of C(x) in C".

We summarize the above discussion in the following theorem.

Theorem 3 [7] Counting multiplicities, the number of isolated zeros of P(x) =

(p1(x), ...,p,,(x)) in C“ with support A = (A1,...,A,,) is bounded above by the

stable mixed volume SM(A1, . . . ,Afl). This bound is exact for P(x) with generic

coefficients, provided that P(x) has only finitely many isolated zeros in C“.

Remark 1 The stable mixed volume was originally defined in [7] with k = 1. It is

easy to see that if C is a cell of Swot with inner normal ac with respect to w“, then

C is also a cell of Ska with inner normal kaC with respect to wo" for any real It > 0.

Consequently, the set of stable mixed cells remains invariant as It varies since kaC is

C
nonnegative as long as a is nonnegative. This variation plays an important role in

our construction in the next chapter.

Based on the derivation of Theorem 3, an algorithm for finding all isolated zeros of

a polynomial system P(x) = (p1(x), . . . , pn(x)) in C" with support A = (A1, . . . ,An)

where

pi(x) = Z ci,axa1 i: 13° ° ' an:

aE-Ai

which we will refer to as the Huber-Sturmfels algorithm, was suggested in [7] as

follows: First of all, if all p,’s have nonzero constant terms, then, as indicated before,

the standard polyhedral homotopy described in the beginning of Chapter 1 can find

all the isolated zeros of P(x) in C”. When some of the p,’s have no constant terms,

namely, (A1 U {0}, . . . ,A,, U {0}) 515 (A1, . . .,A,,), then

14



0 Let

fii(x) = Z CiAXn + 5i, 2: 11' ° ° in,

:64.-

where e, is randomly chosen and is set to be zero if p,(x) already has a nonzero

constant term.

0 Use lifting function ka on the extended support AU {0} = (A1 U {0}, . . . ,A,, U

{0}) and identify all the stable mixed cells of A in the induced subdivision :3ka.

Let S be the set of those cells.

0 For each cell C = (01,...,C,,) E 3, let ac = (a?,...,af) be its inner nor-

mal with respect to a)“ with nonnegative components, and find the zeros of

13,0 (x) = (pluck), . . . , pmc(x)) where

agape): Z agrees-5,, i=1,...,n, (2.4)

8605M

,3 1 if0¢A,but0€C,,

0 otherwise

in (C‘ )" by the standard polyhedral homotopy described in Chapter 1. For each

zero e = (e1, . . . ,e,,) of (2.4), let ('3 = (61, . . . ,én) where

e,- if 01,0: 0,

m
0
. ll

0 if a? > 0.

Then é is a zero of P(x).

If a stable mixed cell C = (C1, . . . ,C,,) in Sis of type (1, . . . , 1), then system (2.4)

becomes a binomial system which can be solved easily by conventional techniques.

For a stable mixed cell of type different from (1, . . . , 1) whose inner normal has some

Zero components, such as the cell A = (A1, . . . ,Afl), further lifting is required to find

15



a fine mixed subdivision of this cell before the polyhedral homotopy method described

in Chapter 1 can be used to obtain all isolated zeros of the system (2.4) in (C')“.

As we mentioned before, multiple liftings and the identification of cells of type

(1, . . . , 1) in their induced subdivisions require an intensive computation effort and

occupy a great majority of the computation of this algorithm. Therefore, compared to

the Li-Wang algorithm in Chapter 1, this algorithm may cost more in many situations

despite it follows no extraneous homotopy paths.

Remark 2 Isolated zeros e = (e1, . . . ,e,,) of system (2.4) in ((C‘ )" involve parameter

6 = (51, . . . ,5"). However, from the proof of Theorem 3 in [7], it can be easily shown

that the transition from e to e in the last step of the algorithm makes the e-dependent

components of e 2 (e1, . . . ,en) zero, and the zero e of P(x) we obtain eventually is

independent of e.

In [7], it was suggested to solve

Z c,,.x‘=0, i=1,...,n (2.5)

sea-n.4,-

without 6 instead of finding zeros of (2.4). In that case, one must find all isolated

solutions of (2.5) in (3" rather than in (0‘)".
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CHAPTER 3

A Single Lifting

In this chapter, we shall present the strategy of a single liftng on the extended support

A0 = (A9, . . . ,A2) = (A1 U {0}, . . . ,A,, U {0}) of P(x) when A0 # A. This lifting

can identify all the stable mixed cells of A and, in the mean time, provide a fine

mixed subdivision for each stable mixed cell. Consequently, the stable mixed volume

of the support A = (A1, . . . ,A,,) can be calculated by those fine mixed subdivisions

induced by this lifting. Most importantly, recursive liftings are no longer needed as

opposed to the Huber-Sturmfels algorithm described in Chapter 2.

Let B,- be a nonempty finite subset of N” for i = 1,... ,n, and B = ([31,. .. ,3“).

Let S“, be the fine mixed subdivision of 8 induced by a lifting function w =

(w1,...,w,,) applied to B. For a cell D = (D1, . . . ,Dn) of 5“,, write

Di:{ai0i'°'vaikg}i i=13"',n)

where k,- 2 O and k1 + - -- + kn = ii. Let V(D(w)) be the n x (n + 1) matrix whose

rows consist of ting-(cu) — 640(w) for i = 1,...,n, j = 1, . . .,k,- with k,- 2 1, and V(D)

be the corresponding n x n matrix by deleting the last column of V(D(w)). It is easy

to see that

Vol,,(conv(D)) = |det(V(D))|

which is nonzero since dim(conv(D)) = n.

17



Consider the linear function

x1 . . . :137, t

fD(w)(x,t) 2: 01x1 + - . ° + anxn + an+1t :2 det .

V(D(W))

We may assume that amt 1, the cofactor of t, is positive, namely (—1)“ det(V(D)) > 0,

otherwise, we exchange two rows of V(D(w)). Let éo(w) = a10(w) +. - ~ + ano(w). The

following lemma is the main tool in our analysis.

Lemma 1 The hyperplane L : f[3,“)(x, t) = f,-,(,,,(ao(w)) is the suppbrting hyperplane

of conv(8(w)) which contains the lower facet conv(D(w)) and (al, . . . ,an,a,,+1) is an

inner normal of conv(D(w)).

PROOF: To prove the hyperplane L contains conv(D(w)), it suffices to show that

the points of the form

51,,(w) +---+é.,,,-,,(w) where O S j,- S k,, i = 1,...,n

all belong to L. Since

l 1: fD(w)(éljl(w) + ' ' ' + fine-402)) — fb(w)(é‘0(w))

= fD(w)(élj1(w) + ' ' ' + é‘fljn(w)) _ fb(w)(510(w) + ' '° + 5no(w))

= fb(w)(élj1(wl _ é10(0)» + ' " + fb(w)(é‘njn(w) — 5110049))

and for i = 1,... , n, 51,-], (w)-a,-o(w) is either 0 or a row of V(D(w)), so, f,-,(w,(a,-,-,(w) —

a,g(w)) = 0 for all i, and therefore I = 0. Hence, conv(D(w)) C L.

Since conv(D(w)) is a lower facet of conv(B(w)) and an“ > 0, (al, . . . ,Otn+1), the

normal of L, is an inner normal of conv(D(w)). D

We now define our single lifting w = (wl, . . . ,wn) on A0 = (A3), . . . ,Ag) as follows:

Fori= 1,...,n,

w,(0) = k if 0 ¢ A,, here It > 0 is randomly chosen,

(3.1)

w,(a) = a randomly chosen number in (0,1) if a E A,»

18



Since the values of w are generically chosen, the induced subdivision

conv(D(w)) is a lower facet of

5...: D=(Dl,...,D,,)cellsofA° .

conv(A°(w))

is a fine mixed subdivision of A0 [6].

Recall that the stable mixed volume ofA = (A1, . . . ,A") is derived from the lifting

wo" = (w?", . . . ,wfl") on A”, as defined in (2.2), along with its induced subdivision

conv(C(w°")) is a lower facet of

5'th = C: (01,...,Cn) C8118 Of A0 ..

conv(A0 (wm‘ ))

For a cell C = (C1, . . . ,Cn) of Sth, let we = (of, . . . ,wf) be the restriction of the

function w = (021,. . . ,wn) on C. Its induced subdivision

ch = D = (D1, . . . ,Dn) cells of C conv(D(w)) is a lower facet of

conv(C(w))

gives a fine mixed subdivision of C since 010 is generic on C. Our main claim is that

when the value of k in the lifting w is sufficiently large, then ch C S”. That is, the

subdivision 5",, induced by the lifting w on A0 does not alter the original configuration

of the subdivision 15'th induced by the lifting w” on A0. More precisely, 5,, is finer

than Swab in the sense that any cell D = (D1, . . . , D") of 3,, is a subcell of a cell C

of 5'th. Consequently, subcollections of cells of 5,, provide fine mixed subdivisions of

cells of SwOIz.

In the remainder of this dissertation, we let d = Illa-X199; deg p,-(x).

Proposition 1 When It > n(n + 1)d", then for cells C = (C1,...,C,,) of Ska, we

have ch Q S“.

To prove Proposition 1, we first present the preliminaries. Let D = (DI, . . . ,D,,)

be a cell of ch and

D.={a.o,....a.,..}. i=1....,n,
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where k,20and k1+~--+k,,=n. Then

  

{ an —310 \

81kl - 310

V(D) =

an] — anO

K 3111:" — anO }

Note that if k,- = 0, then D,- does not contribute any row to the n x n matrix V(D).

Let a,- E A? and E be a matrix obtained by replacing one row of V(D) by a,- —— aw.

Lemma 2 |det(E)| _<_ d".

PROOF: We assume the rows of the matrix E are linearly independent, otherwise,

det(E) = 0. For notational simplicity, we rewrite the rows of E as,

b11 — b10

bnl—bnO

Since b,0,b,-1 g A9, fori = 1,...,n and 1 S j, S n, CE =
J:

({b10,b11}, . . . , {bno,b,,1}) is a cell of the support (AQ ”Ag-L) of the new poly-
11’“

nomial system PE(x) = (pj1 (x) + Ej1,..., pjn(x) + 5,"). Here, j1,.. . ,jn may not be

all different. A positive random lifting on (A9
o

,1, - . - a Ajn) can always be arranged for

which the cell CE remains unlifted, that is, the points in CE receive the lifting value 0

and lifting values for points not in CE are all positive. For such a lifting, CE becomes

a type (1, . . . , 1) cell of the resulting induced fine mixed subdivision of (A9 . ,AQ ).
Jl’” Jn

Consequently,

[det(E)] = Voln(conv(CE)) S./\/l(AQ
.71"

..,.43n)
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< II};1 deg pj,(x) (the total degree of PE(x))

3d". :1

Remark 3 The most important case is when the cell D = (D1, . . . , D“) is of type

(1, . . . ,1). Let (1, = deg p,(x) for i = 1,. . . ,n. Without loss of generality, we assume

d1 3 d2 3 S d,,. Then a similar argument shows

ldet(E)| S MMQ
Ji"

--w43..)

< d2X---xd,,xd,,.

For sparse polynomial systems arose in applications, both M(A§e’1, . . . ,Ag) and d2 x

- - - x d,, x d,, are usually much smaller than at”.

Lemma 3 For any ahb, 6 A9, let

6.- = lwdae') " w,(b,-)] — lw?k(3e') " w?’°(b,-)], i: 1, - - - ,n.

Then —1 S 5,51 and fl,- is independent ofk for alli = 1, . . . ,n.

PROOF: For fixed i, if 0 E A,, or 0 g A,- but none of a,,b,- equals 0, then w?’°(a,-) =

w?’°(b,-) = O and both w,(a,~) and w,(b,-) are between 0 and 1. So, fl,- 6 (—1,1). If

one of m,b,- is 0 52 A,-, say a,, then w,(a,) = w?"(a,~) = k and w?"(b,~) = 0, and so,

lat = —wi(bi) 5 (—1,1). D

Proof of Proposition 1: Since D is a cell of C which by itself is a cell of the

subdivision 5'ka of A0, so, by Lemma 1 the supporting hyperplane which contains
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conv(D(w°")) is fb(wo,.)(x, t) = fb(wo,,)(ao(w°")) where

i (let) )

9110.00") __ 510(0)“)

£111: (0)“) — é100110")

ff)(w°k)(x: t) = det 1

51:1 (600k) — éno(w°")

  (MM) — and“) j

and éo(w°") = 510000") +- . -+a,,o(w°’°). Again, only those D,’s with k,- 2 I contribute

to the rows of the above matrix. Assume the normal of this supporting hyperplane

is an inner normal of conv(D(w°")), i.e., the coefficient of t in fb(wo..)(x, t) is positive.

On the other hand, since D is a cell of ch, the supporting hyperplane of C(w)

containing conv(D(w)) is fb(w)(x, t) = fb(w)(ao(w)) where

f (x, t) \

A

a11(w) -" 510(0))

511:; (w) — é11000)

fD(w)(xi t) = det . i

A

én1(w) - 511.0(0))

  (and) — 5.0M )

and éo((.U) = é10(LU) + ' ' ‘ 'l‘ 5,100.0).

To prove D is a cell of S”, we need to show that conv(D(w)) is a lower facet of

conv(A°(w)). That is, for any a = a1 + - - - + an E conv(A°)\conv(D) where a,- E A?
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for i = 1, . . . ,n, we want to prove fD(w)(a(w)) > f,-,(,,,(ao(w)), or,

fb(w)(é(w) " é()(Wll > 0- (3-2)

If a E conv(C), then the inequality in (3.2) is true since D is a cell of ch and (.00 E w

on C. If a Q conv(C), we actually have

fD(w0,,)(é(w0k)) > ff)(w0h)(é0(w0k))'

Namely,

( awn—sow“) )

511 (010k) - é10W“)

. . fine. (w°") — éio(w°")

fb(uo~)(a(w0k) — 30(w0k)) = det > O.

501(w0k) _ 51,0(w0k)

  (agar) — anew“) )

The entries of the last column of the matrix above consist of either 0 or iii except

the first entry which equals imlk for certain integer 0 g m1 3 n. So, expending the

determinant by its last column gives

fD(w0k)(é(w0k) " 50(w0k)) = mk,
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where m is a positive integer. Now,

n

f a — ao Elna-(ale) - we(a.-o)l \

i=1

a11 — a10 011(311) — w1(a10)

. det 31k; - a10 w1(31k1) — w1(alo)
fb(..,)(é(w) - ao(w)) =

anl — anO wn(an1) — wn(ano)

  ( an)... — ano wn(ankn) - wn(a..o) )

{ a—ao le?k(ae)—w?k(aeo)l+fio\

811 — a10 w?"(an) — wImam) + ,611

__ det alkl — alO w?k(alk1) — w?k(310) + ,Blkl

an] — anO w9.*(an1) — w2"(ano) + 57:1

  ( an]... — anO w9.’°(ame,.) — w2*(ae.o) + flea... }

wherefori=1,...,nandlgjgk,,

[30 = lee(ae) — we(ae-o)l - le?"(ae) — w?"(ae-o)l

i=1

and

fies = lwdav) — we(a.-o)] - [w?k(a,-j) — w?"(a,~o)].
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It follows that

1ka) __ 50(w0k) \

N

9
3

511 (010k) — 5110(w0")

é1k: (ka) - é10(W0k)

(w) — 50(0)» detm
)

éfl1(w0k) — éno(w0k)

  \ angle“) — snow“) )

‘ l

= fb(w0k)(5(w0k) — é0(u1m°)) -i- det

+ det

( a—ao 50\

all — a10 511

811:1 — a10 filkl

anl — anO 57:1

 
\ ankn - anO .Bnlcn }

a—ao flol

a11 ‘ a10 311

811:1 “ a10 511:1

as: - ano ,Bnl

  
{ 81—310

a11 — a10

31k — a10

= mk + 22;, det 1

ani—ano

 
\ankn — ano

25

\ fink” — anO ,Bnkfl f

a0 )

a.

fine,

,Bnl

 
rank" )

 



where, by Lemma 3, for all 1 S i S n and 1 g j S k,,

5:5 E (—1, 1) and flea = [we(ae-) - w.(a.-o)] - IW?k(ae-) — w?'°(aeo)l 6 (—1,1)-

Expanding the determinants above according to their last columns whose elements

all have absolute values less than one, we have, by Lemma 2,

( ai-aiO fii0\

a11 — a10 511

all: —310 51k

det l 1 <(n+1)d", i=1,...,n.

31:1 — anO finl

    K fink“ - 3110 finkn f

Thus, f,-,,,,,(s(w) - ao(w)) > mk — n(n + 1)d" > 0 since It > n(n +1)d" and m is a

positive integer, and thus (3.2) is proved. C]

We are now in a position to identify the stable mixed cells of A0 and their fine

mixed subdivisions induced by the lifting 0.). Let

SW = {D= (D1,...,D,,) E 5,, | D,- §A,-,i = 1,...,n}.

Apparently, SW4 gives a fine mixed subdivision of the stable mixed cell A =

(A1,...,A,,). For D = (D1,...,D,,) E Sw\S,,,.4, where D, = {mo,...,a,k,} for

26



i=1,...,n, thenx (n+1) matrix

( 611(w0k)—élo(w0k) \

511:1(w0k) — 310(w0k)

  

V(DWOkll —

finl(w0k) _ én0(w0k)

( are“) — anew) )

is of rank n. Therefore, one can find a vector 610 = (exp, 1) = (a?,...,a2,1) such

that

V(D(w°"))&D = o. (3.3)

Clearly, aD = (a9, . . . , af) is the inner normal of D with respect to the lifting wo".

For the collection of cells {D(1), . . .,D(‘l} g Sw\S,,,.4 with the same inner normal

or = (a1, . . . ,0") with respect to cum“, let

Q=Uwfit=rmm

i=1

and C = (Cl, . . . , Cn). It is clear that conv(C(w°")) is a lower facet of conv(A°(w°’°))

with inner normal (0,1). So, C becomes a cell of Swat with inner normal 0: =

(011, . . . ,m,) with respect to too" and has a fine mixed subdivision

ch := {D(1), . . . , Dm}.

When a is nonnegative, C is a stable mixed cell of A in :5th and the mixed volume

of C, M(C), is equal to the sum of the volumes of cells of type (1, . . . , 1) in ch.

In this way, we have discovered all the stable mixed cells of A with their fine

mixed subdivisions. And, the stable mixed volume, defined to be the sum of the

mixed volumes of all those stable mixed cells, can easily be calculated by adding all

the volumes of cells of type (1, . . . , 1) in those subdivisions.
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CHAPTER 4

The Main Algorithm

From what we have derived in Chapter 3, we now propose a new algorithm for finding

all isolated zeros of the polynomial system P(x) = (p1(x), . . . ,pn(x)) in C". As

indicated in Chapter 2, the Huber-Sturmfels algorithm requires recursive liftings,

which is computationally costly. Our algorithm, a refinement of the Huber-Sturmfels

algorithm, employs only one lifting in the whole course.

The main algorithm consists of three major parts: First of all, by assigning lifting

w = (w1,...,w,,) defined in (3.1) on the extended support A0 = (All), . . . ,Ag) 75 A,

we find all stable mixed cells C of A with M(C) > 0 along with all cells of type

(1, . . . , 1) in their fine mixed subdivisions induced by wC, the restriction of w on C.

Secondly, we choose a generic polynomial system C(x) = (91 (x), . . . ,g,,(x)) with the

support A0, where

g,-(x) = Z 5,,.x‘, i = 1,...,n.

86A?

And for a given stable mixed cell C = (C1,...,C,,) with M(C) > 0 and inner

k C
normal ac = ((11,. . . ,m,) with respect to (do (a can be found simply by solving

the linear system in (3.3) with a cell of ch as D), we solve all isolated zeros of

Gac(x) = (glac(x), . . . , gnac(x)) where

g,ac(x) = Z aux", i = 1,... ,n.

860.-
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in (0)". Third, we find all isolated zeros of P(x) in C" by linear homotopies between

Gac(x) and Pac(x) = (plac(x), . . . ,pmc(x)) where

piac (X) = Z Cifixa + mam, i = 11' ' ° an)

aECJM“

'6 1 if0¢A,-but0€C,-,

0 otherwise.

Algorithm :

0. Let d = mans-5,, deg p,(x). Choose a real number k > n(n + l)d” at random.

1. Lift the extended support A0 = (A?,...,A9,) by a random lifting w =

(w1,.. .,w,,) as defined in (3.1), that is, for i = 1, . . . ,n,

w,(a) = a randomly chosen number in (0,1) if a E A,.

Find the cells of type (1, . . . , 1) in the induced fine mixed subdivision 5,, of A0.

2. Choose a generic polynomial system C(x) = (gl(x), . . . ,g,,(x)) where

g,(x) = Z me“, i: 1,...,n.

aEA?

The collection of cells

Swat 2 {(D1,...,Dn) ES“, I Di QA for all 1 Sign}

gives a fine mixed subdivision of A = (A1, . . . ,Afl). Let 5(0) be the set of cells

of type (1,. . . ,1) in 5,” found at step 1. Use these cells in 5(0) to find all

the isolated zeros of P(x) in (0’)“ by the polyhedral homotopy described in

Chapter 1 with lifting a)", the restriction of w on A.
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3. For a cell D = (D1, . . . ,D,,) of type (1, . . . , 1) in 5w\5,,,4, write

D, = {810,841}, 2: 1, . . . ,n. (4.1)

I:
For i = 1, . . . ,n andj = 0,1, let é,,(w°’°) = (a,,-,w°"(a,-j)) as before, where w”

is defined in (2.2), and form the n x (n + 1) matrix

511(w0k) _ 910(w0k)

V :

Find the unique vector (0:0 , 1) = (ofJ , . . . ,af , l) in the kernel of V. Apparently,

010 is the inner normal of D with respect to too". Let 5(a) be the collection of

all cells of type (1,... ,1) in 5,,\5,,,.4 with the same nonnegative inner normal

(1 = ((11,... ,m,) with respect to too".

4. (a) Choose a cell D from 5(0), using the same notations as in (4.1), let

0.- = {a e .42 I <é(w°"),d> = (ao(w°’°),a>}. 2': 1, . . . ,n.

Then C = (C1, . . . , Cu) is a stable mixed cell of A in Swab with mixed volume

M(C) >0. Let

5,,c={(D1,...,D,,)65,,, | D,§C,fora111§ign}.

Then ch is a fine mixed subdivision of C and 5(0) consists of all the cells of

type (1,...,1) ofC in ch.

We now solve the system

Gac(X) = (91ac(X)ee ~ . ,gnac(X)) (4.2)

in (C‘)", where

giac (X) = Z mea, 2: 1, . . . ,n.

HEC.’
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When system (4.2) is not a binomial system, then the polyhedral homotopy

method described in Chapter 1 can be applied to find all its isolated zeros in

(C‘ )" with the cells of type (1, . . . , 1) in 5(a) grouped at step 3, and lifting Inc,

the restriction of the lifting w on C.

(b) Let

Pac(x) = (plac(x), . . . ,pnac(x)), (4.3)

where

piac (X) = Z Ci,ax. + [Biéifih i = 1) ' ° ' an)

aECiO-Ai

with

fi 1 if0¢A,-but0€C,-,

0 otherwise.

All the isolated zeros of Poo (x) in (C‘ )" can be found by following the homotopy

curves of the linear homotopy

H(x, t) = (I — t)Gac (X) + tPaC (x)

starting from the zeros of Cac(x) at t = 0.

(c) For zeros e 2 (e1, . . . ,en) of system (4.3), let é = (61,. . . ,én), where

e,- if a,- = 0,

6i:

0 ifa,7é0.

Then e is a zero of P(x) in C“\(C')".

Remark 4 We can see that in our algorithm, only cells of type (1, . . . , 1) in 5,, are

used. Therefore, as suggested in Remark 3, choosing k > n(n + 1)d2 x ---d,, x d,,

is sufficient for our need, where d,’s are defined in Remark 3. Currently, we are not

aware of better lower bounds for k which are also easy to obtain computationally.
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Remark 5 It is commonly known that when the polyhedral homotopy method is

used to solve polynomial systems, large differences between powers of t in the poly-

hedral homotopies may cause computational instability when homotopy curves are

followed. In our algorithm, the point 0 often receives very large lifting value 1:, com-

pared to the rest of the lifting values in (0, 1). We will show in the following that the

stability of our algorithm is independent of the large lifting value 1:.

Let D = ({a11,a10},...,{a,,1,a,,0}) be a cell of type (1,...,1) E 5w\5,,4 and a

subcell of a stable mixed cell C = (C1, . . . , C") of A. Using the notations introduced

in the previous chapters, the inner normal of D, denoted by a”, with respect to the

lifting w satisfies

a11 — 310 w1(a11) — w1(alo) 01D

= 0,

am — anO wn(an1) - wn(an0) 1

or,

V(D)aD + u(w) = 0, (4.4)

where

an — 310 w1(a11) - w1(aio)

V(D) = 5 and u(w) =

am — anO wn(a..1) — wn(an0)

Let the inner normal of stable mixed cell C with respect to the lifting too" be ac,

then

811 — a10 w?k(311) — w?k(310) 010

= 0,

an] — anO w2’°(am) — w9.*(ano) 1

or,

V(D)aC + n(wo") = 0, (4.5)
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where

w?k(311) - w?k(310)

0k) :

u(a)

w2k(an1) — w2k(ae.o)

Let )6 = (51,. . . ,fln)T = u(w) — u(w°"). Then

5:“ = [wi(a~i1)"‘ wi(ai0)] - [winks-1) — w?k(a,-o)], i = 1,... ,n.

By Lemma 3, ,8,- E (—1, 1) for i = 1,... ,n, and they are independent of the value k.

Subtracting (4.5) from (4.4) yields

V(D)(aD — a0) + c = 0.

It follows that “(JD — 00]] is independent of It.

When the polyhedral homotopy

g,(y,t) = Z 5,,.y‘t<°’°>+“"(°), i = 1,... ,n (4.6)

.606

as in (1.3), is used to solve the system

g,ac(x) = Z 5,,ax‘, i = 1,...,n

ang

in (C‘ )", large differences between exponents of t will result in large exponents of t

for certain terms in the final polyhedral homotopy in (1.4) when we factor out the

lowest power of t. Large exponents of t in the resulting homotopies sometimes cause

numerical instability of the curve-tracing of the homotopy paths.

Now, for a, b E C,, since

(lace 1), (aew?k(a)> = ((aC,1), (bew?"(b)>,

we have

<a0. a -- b) = w?*(b) — «2%).1
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Thus,

[[(aD,a) + wi(a)l — [(aD,b) + wi(b)ll

= [(aD,a—b) + lwda) —w,~(b)]|

= |(aD—ac,a—b)+fi,~l

S HOD—OCH Ila-bIIHfie-le

where B,- = [w,-(a) — w,(b)] -— [w?k(a) — w?’°(b)] E (—1, 1) and is independent of k by

Lemma 3. The right hand side of the above inequality is also independent of 1: since

”an — call is independent of k, and therefore, the difference between the exponents

of t in (4.6) is independent of k.
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CHAPTER 5

Numerical Implementation

Our algorithm has been successfully implemented. In this chapter, we will present the

numerical results of applying our algorithm to several well-known polynomial systems.

The stable mixed cells other than A = (A1, . . . ,A,,) are the ones which contribute

zeros of polynomial systems in C"\(C‘)“. We will call them nontrivial stable mixed

cells. In the tables below, only nontrivial stable mixed cells are addressed and M(A),

5M(A) and M(Ao) denote the mixed volume of A, stable mixed volume of A and

mixed volume of the extended support A0 = (A1 U {0}, . . . ,A,, U {0}) respectively.

The root counts in the examples are obtained from the numerical results of our

algorithm. It is well-known that homotopy curves may converge to solutions in an

algebraic variety with nonzero dimension, i.e., they may lead to non-isolated zeros

of the target polynomial systems. In our root count, we exclude those numerical

solutions at which the Jacobian matrices of the corresponding polynomial systems

are almost singular but no other numerical solutions are close to them.

EXAMPLE 1 For the bivariate system [7]

191(2):?!) = (13] + by2 + 6233/3,

p2(x,y) = dx + ex2 + fx3y

with generic coefficients {a, b, c, d, e, f}, we have
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# of Isolated # of Isolated

Zeros in ((C‘)2 Zeros in (:2\(<C"')2

Chosenk M(A) SM(A) M(AO)

 

       
 

 

 

 

 

96 3 6 8 3 3

and

Nontrivial Stable Cell Inner Normal Mixed Volume

C“) (k, k) 1

0(2) (k, 0) 1

0(3) (0, k) 1     
The supporting polynomial systems corresponding to these stable mixed cells are:

(1710,00) (3, y)IpzaC(1) (33, 31)) : (ay + 61,0) dCL' + 52,0),

(p1a0‘2’($’y)’p2ao(’)(3,9)) = (ay + by”, dx + 62.0),

and

(Place) (oz/Lawn) (1.31)) = (O?! + 51,11,613 + 62:2)-

Each of these three supporting polynomial systems determines an isolated zero of the

original system (1910:, y),p2(a=.y)) in C2\(C‘)2e

EXAMPLE 2 For the system of E. R. Speer [18]:

p1(x)= 45(n + 2a1 - 8x1)(a2 — a3) — x2x3x4 + x2 + x4,

p2(x)= 4fi(n + 2a1 — 8x2)(a2 — a3) — x1x3x4 + x1 + x3,

193(3‘): 4M" + 2(11" 8173)(02 — 03) — 331332334 + $2 + $4,

p4(x)= 46(n + 2a1— 8x4)(a2 — a3) —- xlxgxg + x1 + x3,

where fi,n are random parameters, a1 = x1 + x2 + x3 + 234, a2 = x1x2x3x4, and

a3 = $11132 + x2x3 + x3x4 + x1x4, we have

 

# of Isolated # of Isolated

Zeros in ((C'”)4 Zeros in (C4\((C‘)4

Chosenlc M(A) SM(A) M(Ao)

 

12500 96 97 97 43 0         
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and

The supporting polynomial system Pac(x) of P(x) = (p1(x), p2(x), p3(x), p4(x)) cor-

 

Nontrivial Stable Cell Inner Normal Mixed Volume

 

C

  
(k, k, k, k)

 
1

  

responding to the stable mixed cell C is

This system has no isolated zeros in (0)4.

two l-dimensional zero sets {(0, a, O, —a) | a E C} and {(a,0, —a,0) I a E C} which

contain (0,0,0,0). It was reported in [18] that the system has 50 isolated zeros.

Actually, seven of them are not isolated, they belong to the two 1-dimensional zero

sets listed above.

232 + $4 + 51,0,

231 + $3 + 52,0,

$2 + 234 + 53,0,

231 + $3 + 54.0.

In fact, the original system P(x) has

EXAMPLE 3 For the planar four-bar mechanism system [13]:

_ 2 2 2 2 2 2 2
p¢(x) — auxlx3 + a12x1x3x4 + a13x1x3 + az4x1x4 + a15x1x4

2 2 2
+a16xl + az7x1x2x3 + a13x1x2x3x4 + a19x1x2x3 + 0110131232234

2 2
+0411$1$2$4 + 011231933 + 0113931133334 + 0114931173 + 0115131334

2 2 2 2 2 2
+a115x1x4 + amx2x3 + a118x2x3x4 + 0119122233 + amxzx4

2 2 2
+az2i$2$4 + 012232 + (1123332333 + 012432333334 + 012517233

2 2 2 _
+0126$2$4 + 0127232234 + 0.123133 + (1129274, I — 1, . . . ,4

with generic choice of the parameters of the system, we have

 

 

     

# of Isolated # of Isolated

Chosen k M(A) SM(A) M(Ao)

Zeros in (0)4 Zeros in <C"\(<C‘)'4

5120 80 96 96 36 0  
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and

 

Nontrivial Stable Cell Inner Normal Mixed Volume

 

    
c (re/2, k/2, k/2, k/2) 16
 

The supporting polynomial system Pac (2:) corresponding to the nontrivial stable

mixed cell C is

_ 2 2

Pzao(x) — 016501 + 0114131933 + 0116501134 + 0122132 + 0125582133

2 2 — _
+0127$2$4 + 0.123233 + 0.129134 + C”), l — 1, . . . ,4.

This system has no isolated zeros in (C‘ )4, and the original system P(x) has a 2-

dimensional zero set which contains (0,0,0, 0). Our root count agrees with the result

in [13].

EXAMPLE 4 For the Caprasse system from PoSSo test suite [17]:

p1(x) = yzz + 2xyt —— 2x -- 2,

P200 = -—x3z + 4xy2z + 4x2yt + 2y3t + 4x2 — 10y2 + 4x2 — 10yt + 2,

123(X) = 2yzt + sat2 — x — 2z,

p4(x) = —x23 + 4yz2t + 4xzt2 + 2yt3 + 4xz + 42/2 — 10yt — 10t2 + 2

with variables x = (x, y, z, t), we have

 

# of Isolated # of Isolated

Chosen k M(A) SM(A) M(Ao)

Zeros in (C’ )4 Zeros in (C4\((C")4

 

3840 48 56 56 48 8       
 

and

 

Nontrivial Stable Cell Inner Normal Mixed Volume

 

   
C (k, 0, k, 0) 8
  

38



The supporting polynomial system corresponding to the nontrivial stable mixed cell

C is

y2z + 2xyt -— 2x — z + 51,0,

2y3t— 10 2— 10 t+2,

Pac(x) = y y

2yzt + $t2 - (B — 22 '1' 53,0,

2yt3 — 10yt — 101:2 + 2.

This system has eight isolated zeros in ((C‘)4 which determine the following eight

isolated zeros of the original system P(x) = (p1(x), p2(x), p3(x), p4(x)) in C4\(<C*)4:

(0, -0.318, 0, -O.318), (O, -i, 0, i).

(0, 0.318, O, 0.318). (0, i, 0, -i).

(0, -3.146, 0, -3.146), (0, 1, O -1),

(0, 3.146, 0, 3.146), (0, -1, 0 1),

where each component of the isolated zeros is rounded to three decimal places.

EXAMPLE 5 For the Cohn—2 system from PoSSo test suite [17]:

p1(x) = x3y2 + 4x2y22 — xt‘lyz2 + 288x2y2 + 207x2yz + 1152xy2z

+156xy22 + 32:3 — 3456x231 + 207362312 + 19008xyz + 82944y22

+432xz2 — 497664xy + 62208xz + 2985984x,

p2 (x) = y3t3 + 4y3t2 — yzzt2 + 4y2t3 — 48y2t2 — 5yzt2

+108yzt + zzt + 144zt — 17282,

p3(x) = -—x222t + 4xz2t2 + 23t2 + x3z + 156x22t + 207xz2t + 1152xzt2

+288Z2t2 + 4322222 + 19008xzt - 3456z2t + 82944:”2

+207362t2 + 62208xz - 497664zt + 29859842,

p4 (x) = y3t3 — xyzt2 + 4y3t2 + 4y2t3 — 5xy2t — 48y2t2

+223; + 108xyt + 144xy -— 17282:

with variables x = (x, y, z, t), we have
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Chosenk M(A) SM(A) M(AO)

# of Isolated

Zeros in (C‘ )4

# of Isolated

Zeros in <C“\(<C“)4

 

  21600   124 150 150  18  0

 

and

 

 

 

 

 

 

 

Nontrivial Stable Cell Inner Normal Mixed Volume

cm (0,0, k, k/2) 4

0(2) (1:, k/2, 0,0) 4

0(3) (k, 0, k, k/2) 8

0(4) (1:, o, k, 0) 2

0(5) (k, k/2, k, 0) 8   
 

The supporting polynomial systems corresponding to these nontrivial stable mixed

cells are

Poo“) (X) =

Pad?) (3‘) =

P 0(3) (X) =
a

x3y2 + 288x2y2 - 3456x2y + 207369;),2 — 497664xy + 2985984x,

4y3t2 — 48y2t2 — 17282 + 52,0,

x32 + 432x22 + 82944xt2 + 62208xz + 2985984z + 63,0,

xzy + 144xy — 1728x,

xz3 + 82944y2z + 432xz2 + 62208xz + 2985984x + 51,0,

zzt + 144zt — 17282,

zat2 + 288z2t2 — 3456z2t + 20736zt2 — 497664zt + 2985984z,

4y2t3 - 48y2t2 — 172833 + 54,0,

20736xy2 + 82944y2z — 497664xy + 2985984x + 51,0,

431%2 — 48y2t2 — 17282 + 52,0,

2985984z + 53,0,

4y3t2 — 483/2t2 + 144xy — 17282: + 54,0,
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20736xy2 + 829443122 — 497664xy + 2985984x + 51,0,

y3t3 + 4y3t2 + 4y2t3 — 48y2t2,

Paci‘) (x) =

82944th + 207362t2 — 497664zt + 2985984z + 53,0,

y3t3 + 4y3t2 + 4y2t3 — 48y2t2,

and

2985984x + 61,0,

4y2t3 — 48y2t2 + 144zt — 17282 -i- 52,0,

Pac“) (x) =

82944xt2 + 20736zt2 — 497664zt + 2985984z + 53,0,

4y2t3 — 48y2t2 — 1728x + 54,0.

These five supporting polynomial systems have no isolated zeros in (0)4. From our

numerical experiment, P(x) = (p1(x),p2(x),p3(x),p4(x)) has no isolated zeros in

C4\(C‘)4.

EXAMPLE 6 For the Katsura4 system from PoSSo test suite [17]:

p1(x) = 2x2 + 2y2 + 222 + 2t2 + u2 — u,

p2(x) = xy + 2yz + Zzt + 2tu — t,

p3(x) 2 2x2 + 2yt + t2 + Zzu — z,

p4(x) = 2xt + 2zt + 2yu — y,

p5(x) = 2x+2y+2z+2t+u—1

with variables x = (x, y, z, t, u), we have

 

# of Isolated # of Isolated

Chosen k M(A) SM(A) M(AO)

Zeros in (0)5 Zeros in (C5\((C")5

 

960 12 16 16 12 4         
and

 

Nontrivial Stable Cell Inner Normal Mixed Volume

 

0(1) (0, k, 0, k, 0) 2

 

0(2) (0, k, k, k, 0) 2     
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The supporting polynomial systems of P(x) are

r

2x2 + 222 + v.2 — u,

233] + 23,125 + 2Zt + 2tu — t + 52,0,

POC(1)(x) = i 2xz + 2zu - z,

23L + 22L + 2yu — y 'l' 54,0,

 2x+2z+u—1,

and

2:1:2 + v.2 — u,

my + 2tu — t + 52,0,

P Cm (x) = i 2xz + 22v — z + 53,0,0:

2xt + 2yu — y + 54,0,

 [ 2x+u—1.
Each of these two supporting polynomial systems has two isolated zeros in ((3‘)5

which determine two isolated zeros of P(x) in C5. The four isolated zeros of P(x) in

C5\(Ct)5 a1.

(0.273, 0, 0.113, 0, 0.227) , (”0.131, 0, 0.315, 0, 0.631) ,

(O, O, O, O, 1), (0.333, O, O, O, 0.333),

where each component of the isolated zeros is rounded to three decimal places.

EXAMPLE 7 For the Moeller4 system from PoSSo test suite [17]:

p1(x)=y+u+v-l,

p2(x)=z+t+2u—3,

p3(x)=y+t+2v—l,

194(x)=x—y —z—t—u—w

p5x() = —1569/31250yz3 + xztu,

)=p6(x —587/15625yt + zv

with variables x = (x, y, z, t,u,v), we have
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# of Isolated # of Isolated

Chosen k M(A) SM(A) M(AO)

Zeros in (C‘)6 Zeros in USMC“)6

1344 7 8 8 7 I

 

       
 

and

 

Nontrivial Stable Cell Inner Normal Mixed Volume

 

C (0,0, k, k, 0,0) 1
    
 

The supporting polynomial system of P(x) corresponding to C is

f

y+u+v—L

2u—3,

y+2v—1,

x—y—u—w

$2“! ‘1' 55,0,

 —587/15625yt + 21) + 56,0-

\

Pac (x) has an isolated zero in (C‘ )6 which determines the isolated zero (1, —2, 0, 0, 1.5,

1.5) of P(x) in C6\(C‘)6.
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