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ABSTRACT

FINDING ALL ISOLATED ROOTS OF POLYNOMIAL
SYSTEMS IN C* VIA STABLE MIXED VOLUME

By

Tangan Gao

To find all the isolated zeroes of a polynomial system P(x) in C* (as opposed
to in (C*)™) via the polyhedral homotopy method of Huber and Sturmfels (7], one
first finds all stable mized cells in a stable mized subdivision and establishes a fine
mized subdivision for each stable mixed cell. One then solves a collection of polyno-
mial subsystems corresponding to the stable mixed cells, and uses their solutions as
starting points for the homotopy paths of a set of nonlinear homotopies which lead
to all the isolated zeros of P(x) in C*. This method offers a dramatic computational
improvement over earlier homotopy algorithms at the cost of many costly recursive
liftings at the preprocessing step of finding the stable mixed cells and their fine mixed
subdivisions.

The main goal of this dissertation is to present a new strategy which can quickly
(and simultaneously) find the stable mixed subdivision, the fine mixed subdivisions

of the stable mixed cells, and the necessary subsystems by means of a single lifting.
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Introduction

Polynomial systems arose quite commonly in many fields of science and engineer-
ing, such as formula construction, geometric intersection, inverse kinematics, power
flow with PQ-specified bases, computation of equilibrium states, etc.. Elimination
theory-based methods, most notably the Buchberger algorithm [2] for constructing
Grobner bases, are the classical approach to solving multivariate polynomial systems,
but their reliance on symbolic manipulation makes those methods somewhat unsuit-
able for all but small problems.

In 1977, Garcia and Zangwill [5] and Drexler [3] independently presented theorems
suggesting that homotopy continuation could be used to find the full set of isolated
zeros of a polynomial system numerically. During the last two decades this method
has been developed into a reliable and efficient numerical algorithm for approximating
all isolated zeros of polynomial systems. See [10] for a survey.

For a system of polynomials P(x) = (p1(x),...,pa(X)) with x = (z,,...,z,),
write

pi(x) = Z Ciax®, i=1,...,n,
acA;

where a = (a1,...,a,) € N*, ¢;a € C* = C\{0} and x* = z7'---z2". Here A;, a
finite subset of N*, is called the support of p;(x), and the convex hull of 4;, denoted
by Q;, is called the Newton polytope of p;(x). We call A = (A,,...,A,) the support
of P(x).



The Minkowski sum of polytopes Q;,..., Q, is defined by
O+ +Qu={ar+---+a. a1 € Q,...,a, € Qu}.

It can be shown that the n-dimensional Euclidean volume of the polytope \;@; +
-++ + A, @Qn with nonnegative variables A;,..., )\, is a homogeneous polynomial in
A1,--.,An of degree n. The coefficient of A\; X Ay X .-+ X A, in this polynomial is
defined to be the mized volume of A = (A,,...,A,), denoted by M(A,,...,A,) or

M(A) when no ambiguity exists.

Theorem 1 The number of isolated zeros in (C*)*, counting multiplicities, of a
polynomial system P(x) = (p1(x),...,Pn(X)) is bounded above by the mized volume
M(A). For generically chosen coefficients, the system P(x) = 0 has ezactly M(A)

zeros in (C*)™.

The root count in the above theorem was discovered by Bernshtein [1], Khovanskii
(8] and Kushnirenko [9] and is sometimes referred to as the BKK bound. While this
bound is, in general, significantly sharper than the classical Bézout number and its
variants, a limitation is that it only counts zeros of P(x) in the algebraic torus (C*)".
Root count in C* via mixed volume was first attempted in [14] where an upper bound
was derived by introducing the notion of a shadowed set. Later, a significantly much

tighter bound was given by the following theorem (and was generalized soon after in

[16]).

Theorem 2 (12| The number of isolated zeros in C*, counting multiplicities, of a
polynomial system P(x) = (p1(x),...,pn(X)) with supports A,,..., A, is bounded
above by the mized volume M(A, J{0},..., A, J{0}).

We shall call the set (A; J{0},...,An J{O}), denoted by A|J{0}, the eztended

support of P(x). In [7], an even tighter bound was obtained: the number of isolated

2



zeros of a polynomial system P(x) = (p;(x),...,pn(x)) in C* is bounded above by
its stable mized volume. This number is always smaller than the mixed volume of the
extended support of P(x). This bound has since been generalized to the root count
of polynomial systems over any algebraically closed fields, and various criteria have
been established for the equality in this bound [15].

Based on Theorem 1, a polyhedral homotopy was proposed in [6] to approximate
all the isolated zeros of a polynomial system P(x) = (pi(x),...,pn(x)) in (C*)*
by homotopy continuation methods. A random lifting w is applied to the support
A = (Ay,...,A,) of P(x) to obtain a fine mized subdivision S, of A as well as
the supporting systems induced by the mized cells of type (1,...,1) in S,. These
supporting systems are the start systems for a finite set of nonlinear homotopies
induced by w.

To find all the isolated zeros of P(x) in C*, rather than in (C*)", a modified
algorithm, based on Theorem 2, was formulated in [10, 12]. By the revised algorithm,
one can locate all the isolated zeros of P(x) in C* numerically, at the expense of
following extraneous homotopy curves frequently. This wasteful computation may be
eliminated by following the procedures suggested in [7]: First, identify the stable mized
cells of the extended support AU {0} of P(x) by applying an initial simple lifting on
AU{0}. Followed by applying secondary recursive liftings to the stable mixed cells one
obtains fine mixed subdivisions on these cells. Then standard polyhedral homotopies
are applied to solve the polynomial subsystems corresponding to the resulting stable
mixed cells. Finally, one may trace homotopy paths originated from these solutions
of the subsystems to the zeros of P(x) in C".

When polyhedral homotopy algorithms are used to find all the isolated zeros of
polynomial systems, the most intensive computation rests upon the preprocessing step

of identifying of proper mixed cells induced by the liftings. Therefore, the algorithm



proposed in [7] may require a heavy preprocessing effort for its demand of recursive
liftings. In order to produce a more efficient algorithm, we wish to avoid this scheme
of recursive liftings.

The purpose of this dissertation is to present the strategy of a single lifting which
can accomplish the goals of the multiple liftings of the above procedures simultane-
ously, so the preprocessing cost of applying polyhedral homotopy algorithms can be
reduced considerably. As a by-product, in addition to solving all isolated zeros of
P(x) in C*, the stable mized volume of A can easily be assembled without recursive
liftings. Our single lifting, along with its theoretical justifications, will be given in
Chapters 3 and 4 after the necessary terminology is introduced in Chapters 1 and
2. In accordance with our lifting, a new algorithm to find all the isolated zeros of
P(x) in C™ has been successfully implemented, and numerical results on a substantial

variety of examples are presented in Chapter 5.



CHAPTER 1

Polyhedral Homotopy Method

Let A = (A,,...,.A,) where for each i = 1,...,n, A, is a nonempty finite subset
of N*. By a cell of A we mean a tuple C = (C},...,C,) of subsets C; C A;, for

it = 1,...,n. Define the short hand notations:
type(C) := (dim(conv(C})),. . ., dim(conv(Cy))),
which is called the type of the cell C,
conv(C) := conv(C}) + -+ - + conv(C,,),
the Minkowski sum of the convex hulls of Cy,...,C,, and
Vol,,(C) := Vol,(conv(C)),

the n-dimensional Euclidean volume of conv(C). A face of C is a subcell F =
(F1,...,F,) of C where F; C C; and some linear functional a € (R")V attains its
minimum over C; at F; for each ¢ = 1,...,n. We call such an a an inner normal
of F. If F is a face of C then conv(F;) is a face of the polytope conv(C;) for each

i1=1,...,n.

Definition 1 [6] A subdivision of A is a collection {CV,...,C™} of cells of A

such that



(a) For all j =1,...,m, dim(conv(C¥)) = n,

(b) conv(C¥) N conv(C™¥) is a proper common face of conv(C)) and conv(C™*))

when it is nonempty for j # k,
(c) U7, conv(CY)) = conv(A).

Furthermore, we call the collection a fine mixed subdivision of A if it also satisfies

the following condition:

(d) For j = 1,...,m, write CY) = (Cij),...,C,(,j)). Then, each conv(ij)) is a

simplez of dimension #ij )_1 and for each j,

dim(conv(CP)) + -+ 4+ dim(conv(CY)) = n.

A fine mixed subdivision of A = (A,,...,A,) can be found by the following
standard process [6, 10]: Choose a real-valued function w; : A; — R for each ¢ =
1,...,n. We call the n-tuple w = (w1, ...,wy,) a lifting function on A, and w lifts A;
to its graph A;(w) = {(q,wi(q)) : q € A;} C R**!. This notation is extended in the
obvious way: @(w) = (q,wi(q)), Aw) = (Ai(w),- .., An(w)), Qi(w) =conv(Ai(w)),
Qw) = Qi(w) + -+ + Qu(w), etc.

A lower face of a polytope in R**! is a face having an inner normal with positive

(n+1)-th coordinate and a lower facet is an n-dimensional lower face. The collection

conv(C(w)) is a lower facet of
So=¢C=(Cy,...,Cp)cellsof A | R
Qi(w) + -+ + Qn(w)
is the subdivision of A = (A,,...,A,) induced by the lifting function w [6]. When
w = (w,...,wy) is chosen generically, S, gives a fine mixed subdivision of A [6].
To find all isolated zeros of P(x) = (pi(x),...,pn(x)) (with support A =
(Ai1,...,Ap)) in (C*)*, we will use two homotopies. The first homotopy, called the

polyhedral homotopy, is used to solve for all the isolated zeros in (C*)™ of a new generic
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system G with the same support as P. The second homotopy, a more standard linear
homotopy, uses these zeros of G to find all the isolated zeros of P in (C*)".
To form the new generic polynomial system mentioned above, we assign generic

coefficients to all the monomials in P(x). Denote the new system by G(x) =

(91(x),...,gn(x)) where

gi(x) = Y Eax*, i=1,...,n,
acA;

and €;,’s are randomly chosen complex numbers. We wish to find all the isolated
zeros of this system in (C*)” in the first place. Then, by following all the homotopy

paths of the homotopy
H(x,t) = (1-t)G(x)+tP(x) =0

emanating from those zeros of G(x), one can obtain all the isolated zeros of P(x) in
(C*)" [6, 11].

To solve G(x) = (g1(x),--.,9n(x)) = 0, we lift its support A = (A;,...,A,) by a
generically chosén real lifting function w = (wy,...,w,) and consider the polynomial
system é(x, t) = (g1(x,1),...,Gn(x,t)) in the n + 1 variables z,,...,z,,t, where

Gi(x,t) = ) Gax™®, i=1,...,n. (1.1)

acA;

G(x, t) provides a homotopy with ¢ as the parameter and when t = 1, G(x, 1) = G(x).
It can be shown that for each ¢ € (0, 1], the isolated zeros of G (x,t) are all nonsingular,
and by Theorem 1, the total number of these zeros is equal to the mixed volume
M(A,,...,A,). We write these zeros as x!(t),...,x*(t) where k = M(A,,...,A,),
so G(xi(t),t) = 0 for each t € (0,1] and j = 1,...,k. Let x(t) represent any one of
x(t),...,x*(t), and write x(t) = (z1(t),...,za(t)).

The lifting function w = (w,,...,w,) induces a fine mixed subdivision S, of A =

(Ai,...,A,) and the mixed volume M(A,,..., A,) equals the sum of the volumes of
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cells of type (1,...,1) in S, [6]. Let C = ({aip,a11},---,{an0,an1}) be a cell of type
(1,...,1)in S, and v; = a;; —a;p, 1 = 1,...,n. Since S, is a fine mixed subdivision,

{vi1,...,Vyn} is linearly independent, and a simple calculation shows that

Vi
Vol,(C) = |det | : . (1.2)
Vn
Let & = (a,1) = (a1, ..., 0n,1) be the inner normal of

conv(C(w)) = conv({o(w), an (W)}, -, {&no(w), dar(w)})-

Substituting x = yt*, or z; = y,t*,..., T, = y,t*", into (1.1) yields,

gi(yat) = Z&,,y‘t("’“)*‘"-‘(‘)
acA;

= ) Gy t®N =1, n, (1.3)
acA;

where (-,-) stands for the usual inner product in R™. Since & is the inner normal of

conv(C(w)), by factoring out the lowest power in ¢, §;(y,t) becomes
Ti(y,t) := CiapY™® + Cia,y™' + higher order termsint, i=1,...,n. (1.4)

Write R(y,t) = (r1(y,t),...,ma(y,t)). Apparently,

a1

T,'(y,O) = E,',.'.oy““ + E,-,a“y ’ 1= 1, (B (15)

-

and R(y,1) = G(x,1) = G(x). The system R(y,0) = 0 in (1.5) is a binomial system
with generic coefficients. This type of system can easily be solved [10] and it can be
shown that the total number of its zeros equals Vol,,(C) in (1.2). So, by following the
solution curves of R(y,t) = 0 starting from the solutions of R(y,0) = 0 in (1.5) we

find Vol,,(C) isolated zeros of G(x) in (C*)". Repeating the same procedure for each



cell of type (1,...,1) in S,, all M(A,,...,A,) isolated zeros of G(x) in (C*)" can
be found.

To find all the isolated zeros of P(x) = (p1(x),...,pn(x)) in C*, rather than in
(C*)™, we may modify the above procedure as follows: According to Theorem 2, when
(Au{0},...,AU{0}) = (A;,...,An), i.e., all p;’s have nonzero constant terms, then
the mixed volume M(A,,...,.A,) also serves as a bound for the number of isolated
zeros of P(x) in C*, and the algorithm we described above finds all isolated zeros
of P(x) in C* indeed. When (A4, U {0},...,A4, U {0}) # (Ai,...,A,), we augment
the monomial x%(= 1) to those p;’s which do not have constant terms and randomly
choose the coefficients of all monomials in P(x) as well as augmented monomials x°,
obtaining the system G(x) = (g;(x), ..., (%)) where

gi(x) = Z GiaX®, 1=1,...,n.
acA,U{0}
By Lemma 2.1 in [12], all isolated zeros of G(x) are in (C*)" and, by Theorem 1,
the total number of its isolated zeros is equal to M(A; U {0},..., A, U {0}). It was
shown in [11] that by following exactly the same procedure as we described above
with G(x) replaced by G(x), all the isolated zeros of P(x) in C* can be found.

In summary, to find all the isolated zeros of a given polynomial system P(x) =
(p1(x), . ..,pn(x)) with support A = (A,,...,A,) in C* by the above method, which
we will refer to as the Li-Wang algorithm in the remainder of this dissertation, one

may proceed with the following steps:

o Lift the extended support A U {0} by a randomly chosen real lifting function

w=(w1,...,wn).

e Find all the cells of type (1,...,1) in the induced fine mixed subdivision S, for

the extended support A U {0}.



e For a polynomial system G(x) with support AU {0} and randomly chosen com-
plex coefficients, trace the homotopy curves of R(x,t) = 0 in (1.4) determined

by the cells of type (1,...,1) in S, to find all isolated zeros of G(x) in (C*)".

e Use the linear homotopy
H(x,t) = (1 -t)G(x) +tP(x) =0 (1.6)

to find all the isolated zeros of P(x) in C". Isolated zeros of H(x,0) = G(x) in

C™ are available after the last step.

As we can see, the main computation of this method is on
(a) Finding the cells of type (1,...,1) in S, for the extended support .AU {0},
(b) Tracing 2M(A U {0}) homotopy curves.

The computation in (a) is quite time consuming. In general, cells of type (1,...,1)
in a subdivision induced by a lifting function w are determined by an exhausting
search among all the possible Minkowski sums of edges from A;(w), ..., An(w) by
linear programming techniques [18] which requires an intensive computational effort.
In (b), some of the homotopy curves in (1.6) may be extraneous. For instance, .

consider the bivariate system [7],
pi(z,y) = ay + by* + czy’,

po(z,y) =dz + ex? + f:csy. (1.7)

For generic coefficients {a,b,c,d, e, f}, this system has six isolated zeros in C? and

three isolated zeros in (C*)2. However, its augmented system
gi1(z,y) = €1+ ay + by’ + czy’,
G2(z,y) = €3 + dz + ex® + fzy

10



has eight isolated zeros in C2. So, one needs to follow eight homotopy paths of the
homotopy H(x,t) = 0 in (1.6) to find all six isolated zeros of system (1.7) in C?, and
two of them are obviously extraneous.

By using the algorithm suggested by Huber and Sturmfels in [7] which we will
describe in the next chapter, one can skip following those extraneous paths. Fur-
thermore, by their method, isolated zeros of P(x) in C*\(C*)" can be determined
without following any paths in many situations or by following homotopy paths of
much smaller systems. However, the trade-off is the requirement of the recursive

liftings of the method, which drastically increases the computation effort in (a).
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CHAPTER 2

Stable Mixed Volumes

For a generic polynomial system G(x) = (¢;(x), . .., gn(x)) with support 4 = (A,,...,
A,), where

gi(x) = Z GiaX® 1=1,...,n,
acA;

define the homotopy G(x,t) = (§1(x,t),...,dn(x,t)) : C* x C = C" by
Gi(x,t) = gi(x) + the;, i=1,...,n, (2.1)

where k is a positive integer and ¢; = 0 if g;(x) has a nonzero constant term, otherwise
€; is a randomly chosen complex number. This homotopy induces a lifting function
w% = (W, ..., w%) on the extended support AU {0} = (A4; U {0},...,4,U{0})

given by

wk(@) =0 if ae A,
SHO) =k i 0¢ A,

i=1,...,n (2.2)

Let A) = A4, U{0}fori=1,...,nand A% = (A),..., A%). Recall that for any cell
C = (Cy,...,C,) of A%, C(w') = (C1(w®),...,Cn(w®)) is a cell of A°(w), where

Ciw) = {(a,w™(a)):a€ C}, i=1,...,n;

12



and

conv(C(w®)) is a lower facet of

S,ox =4 C =(Cy,...,C,) cells of A° X
conv(A°(w))
gives the stable mized subdivision of A = (A,,...,A) [7].
The coefficients of G(x) are assumed to be sufficiently generic in the sense of
Theorem 1 so that system (2.1) has M(.A?) isolated zeros in (C*)™ for all but finitely
many t and has no zeros in C*\(C*)" for t # 0. The zeros of (2.1) as algebraic

functions x(t) can be written by the Puiseux series expansion near ¢t = 0 as

x(t) = et* + higher order terms in ¢, (2.3)
where a = (ai,...,a,) € Q" and (a,1) is the unique inner normal of conv(C(w))
whose last coordinate is equal to one for some cell C = (Cy,...,C,) of S, o« and

e=(e],...,e,) € (C*)" is a root of the system

gia(x) = Z éi.nx. = Oa 1= 11 ceey Ty
acC;

which is determined by the cell C. A branch x(t) converges to a solution of G(x) = 0
in C* as t — 0 precisely when the exponents a = (ay,...,a,) are nonnegative, while
the i-th coordinate of such a solution can vanish only when a; > 0. This observation
leads to the following definitions [7]:

Let C = (C,,...,C,) be acell of S,ox and (a,1) = (af,...,af,1) be the unique
inner normal of conv(C(w®)) in conv(A%(w)) whose last coordinate is equal to 1.
In general, when C is a cell of S, induced by a lifting w, we shall call such a€ the
inner normal of the cell C with respect to w. A cell C of S_ox is said to be stable if

C is nonnegative. A cell C of S o« is called a stable mized cell of A if it is stable

a
and has nonzero mixed volume. For support A = (A;,...,A,), we define its stable
mized volume, denoted by SM(A,,...,A,), to be the sum of the mixed volumes

M(Cy,...,C,) over all stable mixed cells C = (Cy,...,C,) of Ain S ox.

13



Since the points of A; remain unlifted under w%;, the cell (Ay,...,.A,) appears as
a cell of the subdivision S_ox. It is, in fact, the unique cell C in S ox with a€ = 0.
This stable mixed cell contributes M(.A;,...,.A,) branches in (2.3) which converge to
points in (C*)" when ¢t — 0. Each other stable mixed cell C of A in S, o« contributes,
by Theorem 1, M(C) branches converging to points in C*\(C*)" as ¢t — 0. By (2.1),
those points constitute the full set of isolated zeros of G(x) in C".

We summarize the above discussion in the following theorem.

Theorem 3 (7] Counting multiplicities, the number of isolated zeros of P(x) =
(P1(x), --.,pn(x)) in C* with support A = (A,,...,A,) is bounded above by the
stable mized volume SM(A,,...,A,). This bound is ezact for P(x) with generic

coefficients, provided that P(x) has only finitely many isolated zeros in C*.

Remark 1 The stable mixed volume was originally defined in [7] with k = 1. It is
easy to see that if C is a cell of S o with inner normal a€ with respect to w®, then
C is also a cell of S o« with inner normal ka€ with respect to w° for any real k > 0.
Consequently, the set of stable mixed cells remains invariant as k varies since ka is

c

nonnegative as long as a“ is nonnegative. This variation plays an important role in

our construction in the next chapter.

Based on the derivation of Theorem 3, an algorithm for finding all isolated zeros of
a polynomial system P(x) = (p1(x),...,Pn(x)) in C* with support A = (A;,...,A,)
where

pi(x) = Z ci,axaa 1= 17‘ - n,
acA;
which we will refer to as the Huber-Sturmfels algorithm, was suggested in (7] as

follows: First of all, if all p;’s have nonzero constant terms, then, as indicated before,
the standard polyhedral homotopy described in the beginning of Chapter 1 can find
all the isolated zeros of P(x) in C*. When some of the p;’s have no constant terms,

namely, (A; U{0},..., 4, U{0}) # (A1,..., 4,), then

14



o Let
pi(x) = Z CiaX®+6€, i=1,...,n,
acA;
where ¢; is randomly chosen and is set to be zero if p;(x) already has a nonzero

constant term.

e Use lifting function w® on the extended support AU{0} = (A, U{0},..., A, U
{0}) and identify all the stable mixed cells of A in the induced subdivision S .

Let S be the set of those cells.

e For each cell C = (C),...,C,) € S, let a° = (af,...,af) be its inner nor-
mal with respect to w% with nonnegative components, and find the zeros of

Poc(x) = (Prac(x), - - - , Brac (X)) where

Pac(X) = Y ciaX*+BiE, i=1,...,n, (2.4)
acC;NA;

3 1 if0¢& A but0e(,
0 otherwise
in (C*)" by the standard polyhedral homotopy described in Chapter 1. For each

zero e = (eg,...,e,) of (2.4), let & = (é,,...,€&,) where

e; if af =0,

0 if af >0.
Then € is a zero of P(x).
If a stable mixed cell C = (Cy,...,C,) in S is of type (1,...,1), then system (2.4)
becomes a binomial system which can be solved easily by conventional techniques.

For a stable mixed cell of type different from (1,...,1) whose inner normal has some

Zero components, such as the cell A = (A,,...,A,), further lifting is required to find

15



a fine mixed subdivision of this cell before the polyhedral homotopy method described
in Chapter 1 can be used to obtain all isolated zeros of the system (2.4) in (C*)".
As we mentioned before, multiple liftings and the identification of cells of type
(1,...,1) in their induced subdivisions require an intensive computation effort and
occupy a great majority of the computation of this algorithm. Therefore, compared to
the Li-Wang algorithm in Chapter 1, this algorithm may cost more in many situations

despite it follows no extraneous homotopy paths.

Remark 2 Isolated zeros e = (ey,...,e,) of system (2.4) in (C*)™ involve parameter
€ = (€1,--.,€n). However, from the proof of Theorem 3 in [7], it can be easily shown
that the transition from e to € in the last step of the algorithm makes the e-dependent
components of e = (ey,...,e,) zero, and the zero & of P(x) we obtain eventually is
independent of ¢.
In (7], it was suggested to solve
Y cax*=0, i=1,...,n (2.5)
acCinA;

without ¢ instead of finding zeros of (2.4). In that case, one must find all isolated

solutions of (2.5) in C" rather than in (C*)".
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CHAPTER 3

A Single Lifting

In this chapter, we shall present the strategy of a single lifting on the extended support
A = (A,...,A°%) = (4, U{0},..., A, U{0}) of P(x) when A° # A. This lifting
can identify all the stable mixed cells of .A and, in the mean time, provide a fine
mixed subdivision for each stable mixed cell. Consequently, the stable mixed volume
of the support A = (A,,...,A,) can be calculated by those fine mixed subdivisions
induced by this lifting. Most importantly, recursive liftings are no longer needed as
opposed to the Huber-Sturmfels algorithm described in Chapter 2.

Let B; be a nonempty finite subset of N® fori = 1,...,n, and B = (B,,...,B,).
Let S, be the fine mixed subdivision of B induced by a lifting function w =
(w1, ...,wy,) applied to B. For a cell D = (Dy,...,D,) of S, write

Diz{aio,-")aiki}) i=1,...,n,

where k; > 0 and k; + -+ - + ko = n. Let V(D(w)) be the n x (n + 1) matrix whose
rows consist of &;;(w) — &o(w) fori =1,...,n,j=1,...,k with k; > 1, and V(D)
be the corresponding n x n matrix by deleting the last column of V(D(w)). It is easy
to see that

Vol,,(conv(D)) = | det(V(D))|

which is nonzero since dim(conv(D)) = n.
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Consider the linear function
Iy ... Tt
fD(w)(x,t) =T+ 0+ QpTp + apit i= det i
V(D(w))
We may assume that a,,, the cofactor of ¢, is positive, namely (—1)" det(V (D)) > 0,

otherwise, we exchange two rows of V(D(w)). Let ay(w) = ajo(w) +- - -+ ano(w). The

following lemma is the main tool in our analysis.
Lemma 1 The hyperplane L : fp,\(X,t) = fp(,)(80(w)) is the supporting hyperplane

of conv(B(w)) which contains the lower facet conv(D(w)) and (ay, ..., 0n, Qny1) is an

inner normal of conv(D(w)).

PROOF: To prove the hyperplane L contains conv(D(w)), it suffices to show that

the points of the form
aj,(w)+---+a,,(w) where0<j<k,i=1,...,n
all belong to L. Since

I = fb(w)(éljl (W) + - + &nju (W) — ff)(w)(é()(w))
= o)1 (W) + -+ + 8nj, () = f)(Br0(w) + -+ + @no(w))
= [p)(81j,(w) = d10(w)) + -+ + fp(u)(Bnjn (W) — Bno(w))

and fori =1,...,n, &;,(w) —a;(w) is either 0 or a row of V(D(w)), so, Fb(w)(@iji(w) —
a;0(w)) = 0 for all i, and therefore ! = 0. Hence, conv(D(w)) C L.
Since conv(f)(w)) is a lower facet of conv(B(w)) and an4; > 0, (a3,...,0041), the

normal of L, is an inner normal of conv(D(w)). O

We now define our single lifting w = (w,...,w,) on A% = (A9, ..., A?) as follows:
Fori=1,...,n,
wi(0) =k if0¢ A;, here k> 0 is randomly chosen,

(3.1)
wi(a) = a randomly chosen number in (0,1) if a € A,.

18



Since the values of w are generically chosen, the induced subdivision

~

conv(D(w)) is a lower facet of

S,={D=(Dy,...,D,) cells of A° )
conv(A%(w))
is a fine mixed subdivision of A° [6].
Recall that the stable mixed volume of A = (A, ..., .A,) is derived from the lifting

wo = (Wi, ... ,w%) on A% as defined in (2.2), along with its induced subdivision

conv(C(w®)) is a lower facet of

Sox = C=(Cy...,Cp) cells of A° (A
conv(A%(w))
For a cell C = (Cy,...,C,) of S o, let w€ = (wF,...,wC) be the restriction of the

function w = (wy,...,w,) on C. Its induced subdivision

S.e=4D=(D.....D.) cells of C conv(D(w)) is a lower facet of
conv(C(w))
gives a fine mixed subdivision of C since wC is generic on C. Our main claim is that
when the value of k in the lifting w is sufficiently large, then S,c C S,. That is, the
subdivision S, induced by the lifting w on .A° does not alter the original configuration
of the subdivision S o« induced b'y the lifting w% on .A°. More precisely, S, is finer
than S os in the sense that any cell D = (Dy,...,D,) of S, is a subcell of a cell C
of S_ox. Consequently, subcollections of cells of S, provide fine mixed subdivisions of

cells of S ox.

In the remainder of this dissertation, we let d = max;<i<, deg p;i(x).

Proposition 1 When k > n(n + 1)d", then for cells C = (Cy,...,C,) of S o, we

have S,c C S,,.

To prove Proposition 1, we first present the preliminaries. Let D = (D,,...,D,)
be a cell of S,c and
Di={a‘i01“'1a‘ik5}) i=1,...,n,
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where k; > 0 and k; + --- + k, = n. Then

( ap —ajp \
aix, —ay
V(D) =
a,1 —ano
\ Qnk, — Ano /

Note that if k; = 0, then D; does not contribute any row to the n x n matrix V(D).

Let a; € A? and E be a matrix obtained by replacing one row of V(D) by a; — aj.

Lemma 2 |det(E)| < d".

PROOF: We assume the rows of the matrix E are linearly independent, otherwise,

det(E) = 0. For notational simplicity, we rewrite the rows of E as,

bll - blO

b1 — bro
Since {bio,bu} € A} for i = 1,...,n and 1 < j < n, CF =
({b10,b11},- -, {bno,bn1}) is a cell of the support (A?l, ... ,.A?") of the new poly-
nomial system PE(x) = (p;,(x) +€j,, ..., p;j.(X) +€j.). Here, ji,...,j, may not be

all different. A positive random lifting on (.A?

2-++1A}) can always be arranged for

which the cell CE remains unlifted, that is, the points in C¥ receive the lifting value 0

and lifting values for points not in C¥ are all positive. For such a lifting, CZ becomes

a type (1,...,1) cell of the resulting induced fine mixed subdivision of (A9,,...,A9)).

Consequently,

|det(E)| = Vol,(conv(C¥)) < M(A?

j10 e

A
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< TP ,degpj(x) (the total degree of P¥(x))

< dn o

Remark 3 The most important case is when the cell D = (Dy,...,D,) is of type
(1,...,1). Let d; = degp;(x) for ¢ = 1,...,n. Without loss of generality, we assume

d, <d; <---<d,. Then a similar argument shows

|det(E)] < M(A]

710"

L AY)

< dyx---xd, xd,.

For sparse polynomial systems arose in applications, both M(.A?l, e "A?..) and d; X

--+» X d, X d, are usually much smaller than d".
Lemma 3 For any a;,b; € A?, let
Bi = [wi(a:) — wi(by)] — [w*(a;) — wi*(by)], i=1,...,n.

Then —1 < 3; <1 and B; is independent of k for alli =1,...,n.
ProOF: For fixed i, if 0 € A;, or 0 € A; but none of a;, b; equals 0, then w*(a;) =
wP(b;) = 0 and both w;(a;) and w;(b;) are between 0 and 1. So, §; € (-1,1). If

one of a;,b; is 0 ¢ A;, say a;, then w;(a;) = w*(a;) = k and wP*(b;) = 0, and so,
Bi = —wi(b;) € (-1,1). O

Proof of Proposition 1: Since D is a cell of C which by itself is a cell of the

subdivision S_ o« of A%, so, by Lemma 1 the supporting hyperplane which contains
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conv(D(w®)) is fpquom(X,1) = Fi(on)(Bo(w)) where

( (x,2) \

ﬁu(WOk) _ ém(ka)

g, (W) — &10(w)
Fowom(x,t) =det [

é-nl(ka) - énO(WOk)

\ A, (W) — A,0(w) }
and ag(w’) = a,0(w)+- - - +4a,0(w). Again, only those D;’s with k; > 1 contribute
to the rows of the above matrix. Assume the normal of this supporting hyperplane
is an inner normal of conv(D(w)), i.e., the coefficient of ¢ in F(uory (X, t) is positive.

On the other hand, since D is a cell of S c, the supporting hyperplane of C’(w)

containing conv(D(w)) is Fowy(X:t) = fp(.,(80(w)) where

[ xt )

ﬁu (w) - ém((ﬂ)

i, (W) — aro(w)
Fo(wy(x,t) = det _ ,

a1 (w) — ano(w)

\ dnk, (W) = &no(w) )

and 8y(w) = ayo(w) + - -+ + apo(w).

To prove D is a cell of S,,, we need to show that conv(D(w)) is a lower facet of

conv(A%w)). That is, for any a = a; + - -- + a, € conv(.A%)\conv(D) where a; € .A?
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for i = 1,...,n, we want to prove f5,(a(w)) > fp,,(a0(w)), or,

F 50y (8(w) — B0(w)) > 0. (3.2)

If a € conv(C), then the inequality in (3.2) is true since D is a cell of S_c and w® = w
on C. If a ¢ conv(C), we actually have

fb(wo")(é(w()k)) > fﬁ(wo")(éO(ka))‘

Namely,
[ a(w®) - ao(w®) )

511(w0k) - élo(w‘)k)

Ak, (W) — a30(w)
> 0.

£ buony (B(w) — dg(w™)) = det

an; (WOk) — éno(WOk)

\ Ak, (0%) — ding ()

The entries of the last column of the matrix above consist of either 0 or +k except

the first entry which equals +m;k for certain integer 0 < m; < n. So, expending the

determinant by its last column gives

fﬁ(WOk)(é(WOk) - éo(ka)) = mk,
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where m is a positive integer. Now,

( a—ap Z[w. -—w.mo)]\

a;; —ay w1(an) —w (aIO)
A det ajx, —axo wl(alkl) - wl(alo)

1 — 8y Wn(an1) — wn(@no)

\ ank, —8no  Wn(@nk,) — Wa(ano) }

( a—ag Z[ka w¥ &o]+ﬂo\

Ok(au) w¥*(ai) + Bu
= det| a1k —3A10 w?k(alkl) - W?k(alo) + Bk,

a,1 — ano w?;k(aﬂl) - w,‘l"(ano) + Bn1

\ ank, — ano W (ank,) — w¥(ano) + Lak., )

where fori =1,...,nand 1 < j < k;,

n

Bo = D _lwi(a) - wilmo)] = 3 _fuwf* (i) - w*(a0)]

and

Bi; = [wilayj) — wilaw)] — [w*(ay;) — w*(aw)].
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It follows that

fow)(@(w) —ag(w)) = det

= fppeon(a(w') — ag(w)) + det

= mk+ Y. det

( a—ap Bo \

+ det

a3 —ap O

aw, —aw O

8,1 — 350 O

\ @nk, — @no Dnk. }

a—ag Bo \

a;; —ap Pu

ay, —ap Ok

( a;, —ayp Bio \

a—ayp Fu

ai, —ap B

an1 — ano ,Bnl

\ @nkn — @no Bnkn /
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where, by Lemma 3, forall1 <i<nand 1< j <k,
By€(-1,1) and fio = [wi(as) — wilao)] — [¥¥(a:) — o (a)] € (~1,1).
Expanding the determinants above according to their last columns whose elements
all have absolute values less than one, we have, by Lemma 2,
( a; — 4 Bio \
a;; —ap Pn

ay, —ap S
det P ' <(n+1)d*, i

1,...,n.

an — a0 Om

\ Qnk, — ano /Bnk,, }

Thus, fp,,(a(w) — &o(w)) > mk — n(n + 1)d" > 0 since k > n(n + 1)d" and m is a

positive integer, and thus (3.2) is proved. O

We are now in a position to identify the stable mixed cells of .A° and their fine

mixed subdivisions induced by the lifting w. Let
SWA = {D= (Dl"-'aDn) € Su I Di Q.A,,z-—- 1,...,n}.

Apparently, S, 4 gives a fine mixed subdivision of the stable mixed cell 4 =

(Ai,...,A,). For D = (Dy,...,D,) € S,\S,4, where D; = {ay,...,a;,} for
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i=1,...,n, the n X (n + 1) matrix

( én(wo")—ﬁlo(wm‘) \

i, () — Ao (w*)

V(D(w™)) =
an; (W) — éno(WOk)
| i (%%) — B0l

is of rank n. Therefore, one can find a vector &° = (aP,1) = (a?,...,aP,1) such
that

V(D(w))aP = 0. (3.3)
Clearly, a® = (aP,...,aP) is the inner normal of D with respect to the lifting w°*.
For the collection of cells {D®Y),...,D®} C S,\S,4 with the same inner normal
a = (a,...,a,) with respect to w%, let

C; = UD(J) i=1,...,n

and C = (Cy,...,C,). It is clear that conv(C(w)) is a lower facet of conv(A%(w))
with inner normal (a,1). So, C becomes a cell of S o« with inner normal a =

(ai,...,a,) with respect to w% and has a fine mixed subdivision
S,c:={DW, ..., D@},

When a is nonnegative, C is a stable mixed cell of A in S o« and the mixed volume
of C, M(C), is equal to the sum of the volumes of cells of type (1,...,1) in S,c.

In this way, we have discovered all the stable mixed cells of A with their fine
mixed subdivisions. And, the stable mixed volume, defined to be the sum of the
mixed volumes of all those stable mixed cells, can easily be calculated by adding all

the volumes of cells of type (1,...,1) in those subdivisions.
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CHAPTER 4

The Main Algorithm

From what we have derived in Chapter 3, we now propose a new algorithm for finding
all isolated zeros of the polynomial system P(x) = (pi(x),...,pn(x)) in C*. As
indicated in Chapter 2, the Huber-Sturmfels algorithm requires recursive liftings,
which is computationally costly. Our algorithm, a refinement of the Huber-Sturmfels
algorithm, employs only one lifting in the whole course.

The main algorithm consists of three major parts: First of all, by assigning lifting
w = (wy,...,wy,) defined in (3.1) on the extended support A° = (A?,...,A?) # A,
we find all stable mixed cells C of A with M(C) > 0 along with all cells of type
(1,...,1) in their fine mixed subdivisions induced by w®, the restriction of w on C.
Secondly, we choose a generic polynomial system G(x) = (g1(x), ..., gn(x)) with the

support A°, where

I
DI
»

»
P
!
=
3

9i(x)

And for a given stable mixed cell C = (Cy,...,C,) with M(C) > 0 and inner

k (o)

normal af = (a,...,a,) with respect to w% (a€ can be found simply by solving

the linear system in (3.3) with a cell of S,c as D), we solve all isolated zeros of

Gac(x) = (g1a¢(X), - . -, nac(x)) where

giac (X) = Z GiaX®, 1=1,...,n.
a€eC;
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in (C*)™. Third, we find all isolated zeros of P(x) in C* by linear homotopies between

G,c(x) and P,c(z) = (p1ac(X),- - ., Prac (X)) where

Diac (X) = Z Ci.ax. + ,Biéi,Oa 1= 1) SERRR(T
acCiNA;

5 1 if0¢&A4 but0eC,,

0 otherwise.

Algorithm :

0. Let d = max;<i<, deg p;(x). Choose a real number k > n(n + 1)d" at random.

1. Lift the extended support A° = (A?,...,A%) by a random lifting w =

(w1,...,wy,) as defined in (3.1), that is, for: = 1,...,n,
w(0) =k if0¢ A,
w;(a) = a randomly chosen number in (0,1) if a € A,.

Find the cells of type (1,...,1) in the induced fine mixed subdivision S,, of .A°.

2. Choose a generic polynomial system G(x) = (g1(x),. .., gn(x)) where

gi(x) = Y Gax®, i=1,...,n.
acA?

The collection of cells
Sga ={(D1,...,D,) €S, | D; C A forall1 <i<n}

gives a fine mixed subdivision of A = (A;,...,A4,). Let S(0) be the set of cells
of type (1,...,1) in S, 4 found at step 1. Use these cells in S(0) to find all
the isolated zeros of P(x) in (C*)® by the polyhedral homotopy described in

Chapter 1 with lifting w#, the restriction of w on A.
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3. For acell D= (D,,...,D,) of type (1,...,1) in S,\S, 4, write

D,‘ = {8.,‘0,8.,‘1}, 1= 1, NN (R (41)
Ok

Fori=1,...,n and j = 0,1, let &4;;(w%) = (a;,w’(a;;)) as before, where w

is defined in (2.2), and form the n x (n + 1) matrix

app (wo%) — a59(w)

an (ka) _ éﬂo(WOk)
Find the unique vector (a?,1) = (aP,...,aP,1) in the kernel of V. Apparently,
aP is the inner normal of D with respect to w%. Let S(a) be the collection of

all cells of type (1,...,1) in S,\S,4 with the same nonnegative inner normal

a = (ay,...,a,) with respect to wO.

4. (a) Choose a cell D from S(«a), using the same notations as in (4.1), let
C;={ac A | (a(w),a) = (ap(w™),a)}, i=1,...,n
Then C = (Cy,...,C,) is a stable mixed cell of A in S o« with mixed volume
M(C) > 0. Let
S,c ={(Dy,...,D,) €S, | D; CC;foralll1 <i<n}.
Then S, c is a fine mixed subdivision of C and S(a) consists of all the cells of
type (1,...,1) of C in S,c.

We now solve the system
Goc (X) = (glac (x)’ -+ +19naC (X)) (42)

in (C*)", where

giac (X) = Z Giax®, 1=1,...,n.
acC;
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When system (4.2) is not a binomial system, then the polyhedral homotopy
method described in Chapter 1 can be applied to find all its isolated zeros in
(C*)™ with the cells of type (1,...,1) in S(a) grouped at step 3, and lifting w©,

the restriction of the lifting w on C.

(b) Let
Pac (x) = (plac(x), «++yPna (x)), (4.3)
where
Diac (X) = Z ci,ax. + :Biéi,O) 1= 11 ooy n,
acC;NA;
with

1 if0¢g.A but0eC;,
0 otherwise.
All the isolated zeros of P,c(x) in (C*)" can be found by following the homotopy

curves of the linear homotopy
H(x,t) = (1 —t)Gac(x) + tP,c(x)

starting from the zeros of G, c(x) at t = 0.

(c) For zeros e = (ey,...,e,) of system (4.3), let & = (éy,...,€,), where

€; if Q; = 0,

€ =

0 if o; #0.

Then & is a zero of P(x) in C*\(C*)".

Remark 4 We can see that in our algorithm, only cells of type (1,...,1) in S, are

used. Therefore, as suggested in Remark 3, choosing £ > n(n + 1)d; x ---d, x d,

is sufficient for our need, where d;’s are defined in Remark 3. Currently, we are not

aware of better lower bounds for £ which are also easy to obtain computationally.
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Remark 5 It is commonly known that when the polyhedral homotopy method is
used to solve polynomial systems, large differences between powers of ¢ in the poly-
hedral homotopies may cause computational instability when homotopy curves are
followed. In our algorithm, the point 0 often receives very large lifting value k, com-
pared to the rest of the lifting values in (0,1). We will show in the following that the
stability of our algorithm is independent of the large lifting value k.

Let D = ({a11,a10},---,{8n1,8n0}) be a cell of type (1,...,1) € S,\S,4 and a
subcell of a stable mixed cell C = (Cy,...,C,) of A. Using the notations introduced
in the previous chapters, the inner normal of D, denoted by a”, with respect to the

lifting w satisfies

a;; —ap wi(an) —wi(ap) aP
= 0,

a1 — 8n0 Wn(an1) — Wn(ano) 1

or,
V(D)a® + u(w) =0, (4.4)

where

a; —ap wl(an) - wl(alo)

V(D) = : and u(w) =
an; — 8ng Wn(8n1) — wn(ano)

Let the inner normal of stable mixed cell C with respect to the lifting w® be o,

then
a; —ap w?k(au) - w?k(alo) a®
=0,
an1 — a5 w(a,) — w2 (an) 1
or,
V(D)a® + u(w’) =0, (4.5)
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where

w?"(au) - w?k(alo)

Ok) —

u(w

wot(an1) — wp*(ano)
Let 8= (61,...,08:)T = u(w) — u(w). Then

Bi = [wian) — wi(ai)] — w*(an) — w¥(an)], i=1,...,n.

By Lemma 3, 3; € (—1,1) for i = 1,...,n, and they are independent of the value k.

Subtracting (4.5) from (4.4) yields
V(D)(a®? —af)+ 8 =0.

It follows that ||a® — a|| is independent of k.
When the polyhedral homotopy
Gi(y,t) =) Gay @@ i=1,..n (4.6)
acC;
as in (1.3), is used to solve the system
giac (X) = Z Gax", it=1,...,n
acC;

in (C*)", large differences between exponents of ¢ will result in large exponents of ¢
for certain terms in the final polyhedral homotopy in (1.4) when we factor out the
lowest power of t. Large exponents of ¢ in the resulting homotopies sometimes cause
numerical instability of the curve-tracing of the homotopy paths.

Now, for a, b € C;, since
<(aC, 1), (a’ w?k(a» = ((aC’ 1)’ (b,w?k(b)),

we have

(a®,a — b) = w¥*(b) — w*(a).

1
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Thus,

[(a®,a) + wi(a)] — [(a®,b) + wi(b)]|
= |(a”,a—b) + [wi(a) — wi(b)]|
= |[(a”? —af a—Db) + G

< la® =o€l [la=b| + 4,

where §; = [w;(a) — wi(b)] — [w*(a) — w*(b)] € (—1,1) and is independent of k by
Lemma 3. The right hand side of the above inequality is also independent of k since
laP — a€|| is independent of k, and therefore, the difference between the exponents

of t in (4.6) is independent of k.
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CHAPTER 5

Numerical Implementation

Our algorithm has been successfully implemented. In this chapter, we will present the
numerical results of applying our algorithm to several well-known polynomial systems.
The stable mixed cells other than A = (A,,...,.A,) are the ones which contribute
zeros of polynomial systems in C*\(C*)". We will call them nontrivial stable mixed
cells. In the tables below, only nontrivial stable mixed cells are addressed and M(A),
SM(A) and M(A°) denote the mixed volume of A, stable mixed volume of .A and
mixed volume of the extended support A° = (A4; U {0},..., A, U {0}) respectively.
The root counts in the examples are obtained from the numerical results of our
algorithm. It is well-known that homotopy curves may converge to solutions in an
algebraic variety with nonzero dimension, i.e., they may lead to non-isolated zeros
of the target polynomial systems. In our root count, we exclude those numerical
solutions at which the Jacobian matrices of the corresponding polynomial systems

are almost singular but no other numerical solutions are close to them.

EXAMPLE 1 For the bivariate system (7]

pi(z,y) = ay + by® + czy’,
po(z,y) = dz + ex® + fzdy
with generic coefficients {a, b, c,d, e, f}, we have
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Chosen k | M(A) | SM(A) | M(A%) # of Isolated # of Isolated
Zeros in (C*)? Zeros in C?\(C*)?
96 3 6 8 3 3
and
Nontrivial Stable Cell | Inner Normal | Mixed Volume
c (k, k) 1
c® (k,0) 1
c® (0, k) 1

The supporting polynomial systems corresponding to these stable mixed cells are:

(p;ac(l) (iL', y)vpzac(l) (IL', y)) = (ay + é1,0) dr + 62.0)7

(Py o (2,9), Py o (2, 9)) = (ay + by?,dz + &30),
and

(P1ac® (2, ), Pape (2, ) = (ay + C10,dz + ez?).
Each of these three supporting polynomial systems determines an isolated zero of the

original system (p1(z,y), pa(=,y)) in C*\(C*)*.

EXAMPLE 2 For the system of E. R. Speer [18]:

p1(x) = 48(n + 2a, — 8z;)(az — a3) — 22374 + T2 + 4,
p2(x) = 48(n + 2a; — 8z;)(az — a3) — 12324 + z1 + 3,
p3(x) = 48(n + 2a; — 8z3)(az — a3) — T17224 + T2 + T4,
pa(x) = 408(n + 2a; — 8z4)(az — a3) — z1Z223 + 71 + 3,

where (3,n are random parameters, a; = z; + T + T3 + T4, @3 = Z1T2Z3T4, and

a3 = T1T2 + ToT3 + T3T4 + T4, We have

# of Isolated # of Isolated
Chosen k | M(A) | SM(A) | M(A?)
Zeros in (C*)* Zeros in C*\(C*)*
12500 96 97 97 43 0
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and

Nontrivial Stable Cell

Inner Normal

Mixed Volume

C

(kyk,k, k)

1

The supporting polynomial system P,c(x) of P(x) = (p1(x), p2(x), p3(x), pa(x)) cor-

responding to the stable mixed cell C is

This system has no isolated zeros in (C*)*.
two 1-dimensional zero sets {(0,a,0,—a) | a € C} and {(a,0,—a,0) | a € C} which
contain (0,0,0,0). It was reported in [18] that the system has 50 isolated zeros.

Actually, seven of them are not isolated, they belong to the two 1-dimensional zero

sets listed above.

(

\

T2 + T4 + C1)0,
z, + z3 + C2,0,
Ty + T4 + C30,

Ty + T3 + C40-

In fact, the original system P(x) has

EXAMPLE 3 For the planar four-bar mechanism system [13]:

— 2,2 2 2 2.2 2
n(x) = anzizi + anciziry + aprizs + auiz; + aisriz,

2 2 2
+a;6T] + Q17Z1T2T3 + Q1gT1T2T3T4 + Q19T1T2T3 + A110T1Z2T5

2 2
+a111Z1T2T4 + Q112T1Z3 + A13T1Z3T4 + Q114T1T3 + Q115T1T;

2,.2 2 2 2,.2
+0a116T1ZT4 + A117T3T3 + A118TLT3T4 + Q119T3T3 + Q120T3TY

2 2 2
+a12125%4 + Q1225 + Q123T2T3 + Q124T2T3T4 + A125T2T3

2 2 2 —
+Q126T2T3 + Q127T2T4 + Q128T3 + Q29T l=1,...,4

with generic choice of the parameters of the system, we have

Chosen k | M(A) | SM(A) | M(A°)

# of Isolated # of Isolated
Zeros in (C*)* Zeros in C*\(C*)*

5120 80 96 96
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and

Nontrivial Stable Cell Inner Normal Mixed Volume

o (k/2,k/2,k/2,k/2) 16

The supporting polynomial system P,c(x) corresponding to the nontrivial stable
mixed cell C is
Dlac(X) = @623 + anaZ1Z3 + aneT1Z4 + Q122T3 + A5 T2T3
+ap7T2T4 + a,28x§ + 0,1291!2 + E,"o, l= 1,... ,4.
This system has no isolated zeros in (C*)%, and the original system P(x) has a 2-

dimensional zero set which contains (0,0,0,0). Our root count agrees with the result

in [13].

ExAMPLE 4 For the Caprasse system from PoSSo test suite [17]:

p(x) = y’z+2zyt -2z — 2,

p2(x) = —232+ dzy’z + 4x’yt + 293t + 42 — 10y? + 4zz — 10yt + 2,
p3(x) = 2yzt+zt? —z — 2z,

pa(x) = —z23 +dy2?t + 4z2t? + 2yt® + 4zz + 427 — 10yt — 10t% + 2

with variables x = (z, y, 2,t), we have

# of Isolated # of Isolated
Chosen k | M(A) | SM(A) | M(A°)
Zeros in (C*)* Zeros in C*\(C*)*

3840 48 56 56 48 8

and

Nontrivial Stable Cell | Inner Normal | Mixed Volume

o (k,0, k,0) 8
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The supporting polynomial system corresponding to the nontrivial stable mixed cell

Cis
)
¥’z + 2zyt — 2z — z + ¢ 0,

2y%t — 10y? — 10yt + 2,

2yzt + zt? — x — 2z + G0,

| 2yt® — 10yt — 10¢% + 2.
This system has eight isolated zeros in (C*)* which determine the following eight

isolated zeros of the original system P(x) = (p;(x), p2(x), p3(x), p4(x)) in C*\(C*)*:

(0, -0.318, 0, -0.318), (o, -i, o, 1),
(o, 0.318, 0, 0.318), (o, i, o0, -i),
(o, -3.146, 0, -3.146), (o, 1, 0 -1),
(0, 3.146, 0, 3.146), (0, -1, 0 1),

where each component of the isolated zeros is rounded to three decimal places.

EXAMPLE 5 For the Cohn-2 system from PoSSo test suite [17]:

pi(x) = z%y? + 42?y’z — 22yz? + 2882%y% + 207x%yz + 1152zy%2
+156zy2? 4+ z23 — 3456z%y + 20736zy? + 19008zyz + 82944y
+432z2% — 497664zy + 622082z + 2985984z,

p2a(x) = 3% + 43t — y22t? + 4y*t® — 48y%2 — Syzt?
+108y2t + 2%t + 1442t — 1728z,

p3(x) = —z22%t + 4z2%t% + 2% + 232 + 156222t + 207z2% + 1152z2t?
+28822t2 + 43222z + 19008z 2t — 34562%t + 82944xt>
+207362t% + 62208zz — 4976642t + 29859842,

pa(x) = 33t — zy?t? + 432 + 4y?td — Szy’t — 48y*t?
+z2y + 108zyt + 144zy — 1728z

with variables x = (z,y, z,t), we have
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# of Isolated # of Isolated

Chosen k | M(A) | SM(A) | M(A°)
Zeros in (C*)* Zeros in C*\(C*)*

21600 124 150 150 18 0
and
Nontrivial Stable Cell | Inner Normal | Mixed Volume
cM (0,0,k,k/2) 4
c® (k,k/2,0,0) 4
c® (k,0,k,k/2) 8
cw (k,0,k,0) 2
c® (k,k/2,k,0) 8

The supporting polynomial systems corresponding to these nontrivial stable mixed

cells are

z3y? + 288z%y? — 34561y + 20736zy? — 497664zy + 2985984z,

4y3t2 - 48y2t2 — 1728z + €30,
Pac(l) (x) =
z32 + 432222 + 82944zxt? + 62208zz + 29859842 + C3,0,

z?y + 144ry — 1728z,

zz3 + 82944y%z + 43222 + 62208z 2 + 2985984z + 1,0,

2%t + 1442t — 1728z,
Pac(’) (x) = {

23t? + 2882%t% — 34562%t + 207362t2 — 4976642t + 29859842,

4yt3 — 48y*t? — 1728z + ¢4 0,

20736zy? + 82944y*z — 497664zy + 2985984z + ¢, 0,

4y%t? — 48y*t? — 1728z + &30,
Pac(’) (x) = 4
29859842 + 3.9,

4y’t? — 48y*t? + 144y — 1728z + &40,
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20736zy? + 82944y%z — 497664zy + 2985984z + ¢, o,

Y383 + 4312 + 4y°%t3 — 48y°t2,

P_ci (x) = 4
82044zt? + 207362t2 — 4976642t + 2985984z + &30,
| %% + 493 + 4°t% — 48y%t?,
and
[ 2985984z + &, 0,

4y2t3 — 48y2t? + 1442t — 1728z + ¢, 9,
P oo (x) = <

a

82944zxt? + 207362t — 497664zt + 29859842 + C3 9,

. 4y2t3 - 48:!/2t2 — 1728z + 6470.
These five supporting polynomial systems have no isolated zeros in (C*)*. From our
numerical experiment, P(x) = (pi(x),p2(x),p3(x),ps(x)) has no isolated zeros in

CH\(C")4.

EXAMPLE 6 For the Katsura4 system from PoSSo test suite [17]:

X

n(x) = 22 +2y% + 222+ 22 + u? — v,
p2(x) = zy+ 2yz+ 2zt + 2tu — t,
p3(x) = 2zz+2yt+1t*+2zu -z,
pa(x) = 2zt + 2zt + 2yu — y,

(x)

Ds = 2x+2y+2z+2t+u—-1

with variables x = (z,y, z,t,u), we have

# of Isolated # of Isolated
Chosen k | M(A) | SM(A) | M(A?)
Zeros in (C*)® Zeros in C°\(C*)®

960 12 16 16 12 4

and

Nontrivial Stable Cell | Inner Normal | Mixed Volume

c (0,k,0,k,0) 2

c® (0,k, k,k,0) 2
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The supporting polynomial systems of P(x) are

and

a

a

(
222 + 222 + u? — u,

Ty + 2yz + 2zt + 2tu — t + 2,0,

P oo(x) =19 2zz+2zu—z,

2zt + 2zt + 2yu -y+ 54'0,

2r +2z2+u -1,

222 + u? — u,

Ty + 2tu — t + 52,0,

P co(x) =4 2z242zu— 2z + G0,

2zt + 2yu — y + C4.0,

\ 2z +u—1.

Each of these two supporting polynomial systems has two isolated zeros in (C*)°

which determine two isolated zeros of P(x) in C°. The four isolated zeros of P(x) in

C\(C*)® are

(0.273, 0, 0.113, 0, 0.227), (-0.131, 0, 0.315, 0, 0.631),

(o, o, 0, 0, 1), (0.333, 0, 0, 0, 0.333),

where each component of the isolated zeros is rounded to three decimal places.

EXAMPLE 7 For the Moeller4 system from PoSSo test suite [17]:

=rz—-y—z—t—u-—v,

= —1569/31250y2* + z’tu,

with variables x = (z,y, z,¢,u,v), we have
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# of Isolated # of Isolated
Chosen k | M(A) | SM(A) | M(A°)

Zeros in (C*)8 Zeros in C8\(C*)®
1344 7 8 8 7 1

and

Nontrivial Stable Cell | Inner Normal | Mixed Volume

o (0,0, k, k,0,0) 1

The supporting polynomial system of P(x) corresponding to C is

(
y+u+v-—1,

2u — 3,
y+2v-—1,
T—y—u-—uv,

.’L'2t‘u + 55,0,

—587/15625yt + zv + &g 0.

P,c(x) has an isolated zero in (C*)® which determines the isolated zero (1, —2,0,0, 1.5,

1.5) of P(x) in C®\(C*)S.

43



BIBLIOGRAPHY

44



BIBLIOGRAPHY

(1] D. N. Bernshtein (1975), “The number of roots of a system of equations”, Func-
tional Analysis and Appl., 9(3), 183-185. Translated from Funktsional. Anal. i
Prilozhen., 9(3), 1-4.

(2] B. Buchberger (1985), “Grobner basis: An algorithmic method in polynomial
ideal theory”, In Multidimensional System Theory (N.K. Bose, ed.), D. Reidel
Publishing Company (Dordrecht Boston Lancaster), 184-232.

(3] F. J. Drexler (1977), “Eine Methode zur Berechnung simtlicher Lsungen von
Polynomgleichungssystemen”, Numer. Math. 29, 45-58.

[4] 1.Z. Emiris and J. Verschelde (1997), “How to count efficiently all affine roots of
a polynomial system”, Technical Report, INRIA, Sophia-Antipolis.

[5] C. B. Garcia and W. 1. Zangwill (1979), “Finding all solutions to polynomial
systems and other systems of equations”, Math. Programming, 16, 159-176.

[6] B. Huber and B. Sturmfels (1995), “A polyhedral method for solving sparse
polynomial systems”, Math. Comp., 64, 1541-1555.

(7] B. Huber and B. Sturmfels (1997), “Bernshtein’s theorem in affine space”, Dis-
crete Comput. Geom., 17(2), 137-141.

(8] A. G. Khovanskii (1978), “Newton polyhedra and the genus of complete intersec-
tions”, Functional Anal. Appl., 12(1), 38-46. Translated from Funktsional. Anal.
i Prilozhen., 12(1), 51-61.

9] A. G. Kushnirenko (1976), “Newton Polytopes and the Bézout Theorem”,
Functional Anal. Appl., 10(3), 233-235. Translated from Funktsional. Anal. i
Prilozhen., 10(3), 82-83.

(10] T.Y. Li (1997), “Numerical solution of multivariate polynomial systems by ho-
motopy continuation methods”, ACTA Numerica, 6, 399-436.

45



(11] T. Y. Li, T. Sauer and J. A. Yorke (1989), “The cheater’s homotopy: an efficient
procedure for solving systems of polynomial equations”, STAM J. Numer. Anal.,
26(5), 1241-1251.

[12] T. Y. Li and X. Wang (1997), “The BKK root count in C*”, Math. Comp,
65(216), 1477-1484.

[13] A.P. Morgan and C.W. Wampler (1990), “Solving a planar four-bar design prob-
lem using continuation”, ASME J. of Mechanical Design, 112, 544-550.

[14] J. M. Rojas (1994), “A convex geometric approach to counting the roots of a
polynomial system”, Theoret. Comput. Sci., 133, 105-140.

[15] J. M. Rojas (1998), “Toric intersection theory for affine root counting”, Journal
of Pure and Applied Algebra, 136, no. 1, 67-100.

(16] J. M. Rojas and X. Wang (1996), “Counting affine roots via pointed Newton
polytopes”, J. of Complexzity, 12, 116-133.

[17] C. Traverso (1997), “The PoSSo test suite examples”, [Online] Available at
http://www.inria.fr/safir/POL/index.html.

(18] J. Verschelde (1996), Homotopy continuation methods for solving polynomial sys-
tems, Ph.D. thesis, Department of Computer Science, Katholieke Universiteit
Leuven (Leuven, Belgium).

[19] J. Verschelde, K. Gatermann, and R. Cools (1996), “Mixed-volume computation
by dynamic lifting applied to polynomial system solving”, Discrete Comput.
Geom., 16, 69-112.

46




