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ABSTRACT

Implementation and Calibration of a k; Jet Finding Algorithm For Use in

pp Collisions at /s = 1.8 TeV

By

Katherine Chiyoko Frame

Jets are widely used as probes of the fundamental parton collisions in Quantum
Chromodynamics. Jets, which are believed to represent the energies and directions
of the emerging partons, are viewed by the experimenter as collimated distributions
of hadrons. The momenta and angles of these hadrons must be combined to form
the parent jet. Because of measurement resolutions and the unavoidable presence of
backgrounds, a jet is thus dependent on the precise nature of the combination algo-
rithm. This thesis studies a new type of jet algorithm and, in particular, investigates

its dependence on the energy and pseudorapidity scales of the D@ detector.
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“When the objects of an inquiry, in any department, have principles, conditions,
or elements, it is through acquaintance with these that knowledge, that is to say
scientific knowledge, is attained. For we do not think that we know a thing until we
are acquainted with its primary conditions or first principles, and have carried our
analysis as far as its simplest elements. Plainly therefore in the science of Nature, as
in other branches of study, our first task will be to try to determine what relates to its

principles.”

Aristotle’s Physics
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Chapter 1

Introduction

Throughout our history and in our individual lives, humans have endeavored to attain
some understanding of the human condition. Academic institutions are divided into
disciplines which focus on various aspects of this. Since we inhabit a physical universe
and are physical beings ourselves, it follows that we have the various branches of
physical science. In particular, Elementary Particle Physics is the study of the

fundamental building blocks of matter and the forces which govern their behavior.

At present, four forces are believed to dictate all physical interactions: gravity,
electromagnetism, the weak force and the strong force. The current Standard Model

theory encompasses all but gravity.

1.1 Fundamental Constituents of Matter

In Aristotle’s day, all matter was believed to be made up of four elements: earth,

wind, fire and water. In Medieval times, a few of the Chemical elements were recog-

1
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nized. By the 19th century, about 30 chemical elements were identified and it was
discovered that the combinations of these elements could account for the profuse
number of chemical compounds found in nature. In the early 1800’s, John Dalton
proposed that the chemical elements are composed of units (atoms) of matter which

could be characterized by their weight.

Throughout most of the 1800’s, the atom was considered to be the fundamental
unit of matter. By the turn of the century, the electron had been discovered and
believed to be an essential part of atomic structure, but classical theories proved
inadequate to describe this structure. In 1900, Max Planck introduced the idea of

quantized radiation and quantum theory was born [1, 2].

The years that followed saw huge advances in both theoretical and experimental
physics. In 1905, Albert Einstein put forth his theory of special relativity and pro-
posed a quantum of light behaving like a particle [4] (later to be named photon). This
was received with much skepticism, but in 1916, Millikan published his results on
the photoelectric effect confirming Einstein’s photon theory [5]. Doubt still lingered,
but in 1923, Compton observed shifts in wavelengths in light scattering experiments
which could only be explained using a photon theory of light. In the same spirit,
de Broglie considered the possibility that if something previously thought to have
only wave attributes could also behave as a particle, than perhaps particles could
behave like waves. Shortly after Compton’s experiments, de Broglie proposed the
wave property of matter and a couple of years later Schroedinger developed wave

mechanics for describing quantum systems for bosons.

Meanwhile, physicists were also making progress in their understanding of atomic
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structure. Hans Geiger and Ernest Marsden (under the supervision of Ernest Ruther-
ford), performed experiments in 1909 scattering alpha particles off a gold foil. The
large scattering angles they observed suggested a small, dense, positively charged
nucleus in atoms. It wasn’t until a decade later that Rutherford was able to find
the first evidence of the existence of the proton. In 1913, Niels Bohr constructed
a quantum theory of atomic structure, and then, several years later, in 1925, Pauli

formulated the exclusion principle for electrons in atoms.

In 1930, there were believed to be three elementary particles: photons, electrons
and protons. However, theoretical and experimental developments implied otherwise,
and the next few decades proved to be one of the most exciting periods in particle
physics history. A plethora of new particles were predicted and/or experimentally
observed and some of the most fundamental building blocks of the current Standard
Model theory were established, namely, the Dirac equation and the theories of weak

and strong interactions.

In 1928, Dirac was able to describe electrons combining quantum mechanics
and special relativity. After a few years, he realized that his equation implied the
existence of a new particle that is identical to the electron except that it is positively
charged. He called it a positron. No one had ever conceived of an antiparticle
before and this turned out to be an important discovery. The positron was later

experimentally observed in cosmic ray experiments in 1932.

The continuous energy spectrum seen in beta decay experiments in the late 1920’s
led Pauli to suggest that an additional particle, a neutrino, carried away the missing

energy. Following that, Fermi introduced the weak interaction to describe beta decay
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using Pauli’s neutrinos. This was another notable moment in our history because
this was the first theory to imply particle flavor changes (e.g. neutron changing to a

proton plus electron plus neutrino).

The road to our current understanding of strong interactions was not so smooth.
In 1931, Chadwick discovered the neutron, but as more was learned about nuclear
structure, the mechanisms of nuclear binding became more obscure. Around 1934,
Yukawa put forth a theory combining relativity and quantum theory to describe the
strong interactions in the nucleus. He introduced a mediator particle called the pion
and estimated its mass to be about 200 times that of the electron. In 1937, a particle
with approximately this mass was discovered in cosmic ray experiments. Of course,
it was thought to be the pion, but it was much later (1946) that it was actually
discovered to be a muon. The muon was quite unexpected as it is the first time
a second generation of matter was observed, and the famous phrase was uttered,
“Who ordered that?” (by I. I. Rabi). Soon after the muon was revealed, however,

the pion was also observed in cosmic rays.

In the following decade, a proliferation of particles was observed, and in electron-
nuclei scattering experiments in the mid 1950’s, a charge density distribution was
seen in protons and neutrons suggesting an internal structure to nucleons. In 1964,
Gell-Mann and Zweig theorized the existence of three elementary particles called
quarks [6, 7). The up, down and strange quarks are fermions with charges of +§,
-3 and -} respectively. Many new particles could be described as combinations of
these quarks. For example, the proton is composed of two up quarks and one down

quark and the neutron is composed of two down quarks and one up quark. The third
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quark, strange, was used to build some of the more exotic particles.

In experiments at the Stanford Linear Accelerator Center (SLAC) in the late
1960’s, electrons scattered off protons appeared to be bouncing off of hard cores
inside protons. Bjorken and Feynman used a constituent particle model to interpret
the data [3]. Although they did not refer to the constituent particles as quarks (but
as partons), this provided supporting evidence that the proton is a composite particle

and supported the quark theory.

Meanwhile, Schwinger, Bludman and Glashow independently came up with the
idea that the weak interactions are mediated by charged heavy particles (later named
the W+ and W~), and in 1967, Weinberg and Salam (again independently) developed
a theory that unified the electromagnetic and weak interactions. They suggested the
existence of a neutrally charged vector boson, Z° which (in addition to the W+,
W) acts as a mediator of weak interactions. In an effort to explain the masses of
the vector bosons, they also introduced a massive scalar boson called the Higgs, H.
The W+, W—, and Z° bosons were all observed in 1983, but the Higgs has yet to be

observed and remains a major missing piece of the current theory.

At this point, the current electroweak theory was pretty well developed, but the
theory describing strong interactions needed some modification. Because the leptons
appeared in pairs, e and v, and p and v, it was theorized that the quarks would
behave in a similar manner and the charm quark (+2 charge) was introduced to
be paired with the strange (the other pair being the up and down). Fritzsch and
Gell-Mann put forth the theory of quantum chromodynamics (QCD). This theory

is similar to electroweak theory. Where electroweak has the photon, W* and Z°
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as its mediators, QCD has the gluons. Evidence for gluons was first experimentally

observed in 1979 in electron positron collisions.

In 1974, the J/¥ was discovered at Brookhaven/SLAC by Ting/Richter (8, 9].
The J/¥ is composed of a charm and an anti-charm. The addition of the charm
quark implied the existence of a group of new particles which were subsequently

observed. The charm quark, itself, was observed in 1976.

With the success of the 2 generation theory, the possibilities of there existing
a third generation of quarks and leptons was theorized, and, sure enough, the Tau
lepton was discovered in 1976 at SLAC and the bottom and top quarks were observed

at Fermilab in 1977 and in 1995 respectively [10].

Today, the tau neutrino, v,, and the Higgs boson, H, are the only particles of the
Standard Model theory that have not been experimentally observed. Strong evidence
for the existence of the Tau neutrino exists while the Higgs remains somewhat more

elusive.

For the past 20 years the Standard Model theory has proven itself to be remark-
ably stable. No experimental measurement to date contradicts it. However, the
theory is not complete for it cannot account for the masses of the fermions and it
does not accommodate gravity. It is defined by 18 parameters making it somewhat
unwieldy, and only the electromagnetic and weak interactions are unified. Several
theoretical models are being developed with a view toward completeness and unifi-

cation of the 4 forces, electromagnetic, weak, strong and gravitational.

As mentioned above, the parameters of the Standard Model theory are not com-
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pletely nailed down. Perhaps, as our measurements become more precise and we are
able explore regions of phase space previously unavailable, we will see phenomena

inconsistent with the current theory and this will guide us in a new direction.

1.2 The Thesis

Most of today’s particle physics experiments are similar in principle to Rutherford’s
experiment scattering alpha particles off of a gold foil. Particles are collided at high
energies (either using two colliding beams or a beam focused on a fixed target) and

the interactions are studied by examining the outcome.

This thesis involves data from an experiment in which protons and antiprotons are
collided at extremely high energies. The high energy is needed in order to study the
constituent quarks and gluons that make up the proton and antiproton. When the
pair collide, typically, 2 or 3 jets of particles emerge and are detected. Whether there
are 2 or 3 jets detected is closely related to the strength of the strong interaction.
The original intent of this thesis was to perform a measurement of the ratio of events
with 3 jets to 2 jets, R3;. This would give us a better understanding of the nature
of the strong force. We are able to look at interactions with center of mass energies

much higher than what has previously been looked at.

To make an experimental measurement of R3y, a tool had to be developed and
calibrated. This task, while meritorious in itself, has diverted much effort away from
the intended measurement and, therefore, that analysis is left outstanding. What

is presented here is the work done developing and calibrating the &, jet algorithm

7
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along with some very preliminary results for our measurement of R3;.

The thesis is organized in the following way. In the following chapter, we give a
brief overview of the Standard Model theory. Following that, we describe jet pro-
duction in pp , physics and motivate the measurement of R3;. Chapter 4 contains
a description of the experimental apparatus, and in Chapter 5, we will discuss jet
finding algorithms. The momentum calibration of jets in the detector is a consid-
erable task requiring much attention, and, therefore, five Chapters are devoted to
its derivation, testing, and summary. Finally, we will present a very preliminary

measurement of Rj3,.
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Chapter 2

The Standard Model

The particles of the Standard Model theory can be categorized into 4 groups: quarks
(Table 2.1), leptons (Table 2.2), vector bosons (Table 2.3) and the Higgs scalar boson
(Table 2.4). Quarks and leptons are fermions (spin 1/2 particles) and, within these
groups, there are 3 generations. The three generations are identical except for their
masses. Most matter is comprised of the first (lightest) generations (up and down

quarks and electrons).

As stated previously, all matter interacts via four forces (gravity, electromag-

Table 2.1: The Standard Model Quarks.

Il | Charge | Mass (MeV/c%)
up £ 15-5
down —g 3-9
charm 2 1,100-1,400
strange — % 60-170
top 2 | 174,300 £ 5,100
bottom —;ii 4,100-4,400




Tabl(




Table 2.2: The Standard Model Leptons.

[ Charge | Mass (MeV/c?) |
e” -1 0.511
Ve 0 <5.1x1078
u -1 106
v, 0 <027
T -1 1,777
v, 0 < 31

Table 2.3: The Standard Model Vector Bosons and their respective forces.

Force | Charge | Mass (MeV/c?) ||
v | Electromagnetic 0 0
gluon Strong 0 0
w=* Weak +1 80000
Z° Weak 0 91000

Table 2.4: The Scalar Higgs Boson.

Charge | Mass (MeV/c?)
H| 0 > 58400 [15]

10
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netism, the weak force and the strong force). The current Standard Model theory
encompasses all but gravity. In the Standard Model theory, interactions are described
in the framework of the U(1)xSU(2),xSU(3) gauge group. The electromagnetic and
weak forces are unified in the electroweak gauge, U(1)xSU(2), and the strong force
is described under SU(3). The forces are mediated by the exchange of the vector
bosons corresponding td the symmetries of the group as shown in Table 2.3. One
scalar Higgs boson, H, is predicted (shown in Table 2.4). Its existence is not yet
confirmed, but it is necessary to account for the masses of the W* and Z° vector

bosons in the present theory.

What is presented here is a very minimal view of the Standard Model theory.
For a more rigorous description the reader is directed to the references, [16, 17, 18,

19, 20, 21].

2.1 Electroweak Interactions

The electromagnetic and weak interactions are unified in the Standard Model under
the gauge group, U(1)xSU(2),. U(1) symmetry implies conservation of hypercharge,
Y, and under SU(2),, isospin, T, is conserved. Electric charge, Q, is related to these
by @ = T3 + % where Tj is the third component of isospin. Therefore, Q is also
conserved in the electroweak gauge. The subscript, L, denotes that the SU(2) group
acts only upon the left handed component of the field. No right handed neutrinos

have been observed. The group acts on left handed doublets and right handed

11
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singlets. The lepton doublets and singlets are written as

Ve vy Vr
) ) » ERy HR; TR -

(S T
L # L L

The quark doublets and singlets are

U c t
) ) y UR, CR, tRa dR') SR, bR .
d s v
L L L

The bottom components of the quark doublets are different from the mass eigenstates
in Table 2.1. They can be written as linear combinations of the mass eigenstates

using the CKM matrix (named after Cabibbo, Kobayashi, and Maskawa):

d VudVeaVid d
g 1= VasVesVis s
v VarVer Vi b

This gives us some mixing between the different quark generations (e.g. the up
quark can couple to the strange and bottom quarks as well as the down quark). The
couplings between the different quark generations are rare and, therefore, the off

diagonal CKM matrix elements are << 1.

In the vacuum (ground state), the U(1)xSU(2), Lagrangian requires the four
gauge bosons to be massless. The symmetry of the ground state must be sponta-
neously broken to account for the masses of the W+, W~ and Z° bosons. This is
done through the Higgs mechanism. The result is the scalar Higgs boson and in

addition to mass, the W and Z bosons gain a longitudinal polarization component.

12
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The masses of the mediators and the strength of the interactions are determined
by 3 fundamental parameters: the weak isospin coupling, g, hypercharge coupling,
¢’, and the vacuum expectation value for spontaneous symmetry breaking, v. They

are given by the following relations:

w . ) 2.1
g sin Ow (2.1)
, e
= 2.2
and
y=Mw (2.3)
9w

where e is the magnitude of the charge of the electron, My is the mass of the W#
and Oy is the weak mixing angle. It is often convenient to express these in terms
of 3 other variables: the fine structure constant, a.,,, the Fermi constant, G, and

sin2 0w . a.m and G are related to g, ¢', and v by

e? 1 1
aem = 4—7; = E (T) y (2-4)
2 T4
and
1 2
Gp = =—Jw (2.5)

sinfy =1 - —% . (2.6)

13
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Current experimentally measured values for aen, Gr, My and Mz are

1
em e) = — , 2.
Gem(Me) = 1370350895 (2.7)

Gr =1.16639 x 107°GeV 2, (2.8)

My = 80.410 + 0.044 GeV/c* and Mz = 91.187 £ 0.007 GeV/c* . (2.9)

An example of a weak interaction is illustrated using a Feynman diagram in
Figure 2.1a in which an electron and an up quark exchange a W boson resulting in
an electron neutrino and a down quark. In Feynman diagrams, time runs horizontally
with some space coordinate on the vertical axis. By convention, fermions are depicted
by a solid line with an arrow pointing in the forward direction of time. An arrow
pointing in the reverse direction indicates an antiparticle. A dashed line is drawn
for W (and Z) bosons. In succeeding diagrams, photons are represented by a wavy

line and gluons by a helix as shown in 2.1(b).

€ —» | > Ve
(a) YW
u—» l > d
(b) —_—, VWV ————— oo

fermion photon W,Z gluon

Figure 2.1: (a) Feynman diagram for e"u — v.d by W exchange. Time flows from
left to right. (b) Fermions are depicted by a solid line with an arrow pointing in the
forward direction of time (an arrow in the reverse direction denotes an antiparticle).
Photons are represented by a wavy line, W and Z bosons by a dashed line, and
gluons by a helix.

14
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The Z° and W are self coupling, and in addition, there are mixed couplings
between the photon, W* and Z°. The Higgs couples only to the W* and Z° and

the fermions.

2.2 Quantum Chromodynamics

Quantum chromodynamics in the Standard Model is based on the SU(3) gauge group.
Under SU(3) symmetry, color charge is conserved. Each quark carries one of three
color indices, r, g, b = red, green, blue), and an octet of gluons carry color anti-color
charge. The group acts on color triplets for each of the six quarks. The gluon octet

can be expressed in the following color states:

)= (rb+br)/vV2  |5) = —i(rg+ g7)/V2
2) = —i(rb+bF)/V2  |6) = (bg + gb)/V2
3)=(r7F+bb)/V2  |T)=—i(bg+ gb)/V2

4= (rg+g7)/vV2  [8) = (r7 +bb+29g)/V6 (2.10)

where r=red, b=blue, and g=green. The quark triplets are

Uy Cr t, d, L b,
Up ) Cp ’ tb ’ db ’ Sp ’ bb
Ug Cq ty dy Sq by

In nature, only color singlet (i.e. colorless) quark combinations exist. Mesons are

made of quark anti-quark pairs with color anti-color respectively, ¢,q%, and baryons

15
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consist of 3 quarks with 3 different colors, €2*q,q,q. where €% is the antisymmetric

tensor.

Leptons (and their respective neutrinos) do not carry color and, therefore, they
do not participate in strong interactions. Only quarks and gluons interact via the
strong force. The gluons are massless and one parameter, the strong coupling, g;,
describes the interactions. In a similar manner to the weak couplings of the W and

Z° bosons, the gluons are self coupling.

2.3 The Running of the Couplings

The strengths of electromagnetic, weak and strong interactions are quantified by
their respective coupling constants. The strength of the electromagnetic force is
defined by the Fine Structure Constant, a., (Equation 2.4), and the weak and

strong coupling constants, a,, and a,, are given by

2 2
oy = %‘# and o, = ngr- . (2.11)

The strengths of the forces depend on the distance between the interacting par-
ticles and, therefore, these so called constants vary. For the electromagnetic force,
this can be understood if we imagine that the vacuum acts like a dielectric medium.
As the separation between two charged fermions increases, fermion antifermion pairs
(e.g. e*e™) begin to pop up in the vacuum. These pairs screen the bare charges
and give an effective charge that is somewhat reduced. This is referred to as vacuum

polarization. In Figure 2.2(a), this is depicted in a Feynman diagram. The fermion

16
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antifermion pairs are represented by a fermion loop (or bubble) in the photon prop-

agator.

w el
_ 77N

w -

© >-r€:}n@w~<

Figure 2.2: Feynman loop diagrams. (a) Fermion loops in the photon propagator.
(b) W and Z loops in the Z propagator. (c) gluon loops in the gluon propagator.

At distances greater than 2.43 x 107'%m (the Compton wavelength of the elec-

1

37 If we increase our

tron), the electronic charge is fully shielded and ae, =~
energy (decrease deBroglie wavelength) to 80 GeV (Myc?), the coupling increases

1
to Qe = 129°

In the cases of the weak and strong forces, matters are complicated by the self
coupling of the force mediators. In addition to fermion loops, we have W*, Z°, and
gluon loops (see Figure 2.2(b) and 2.2(c). These compete with the fermion loops so

that the forces actually decrease as energy increases (wavelength decreases).

This was a very important discovery in QCD physics because the quarks, while
inseparable at low energy (known as confinement), behave as free particles at very
high energies. This is referred to as asymptotic freedom.

17
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2.4 Cross Sections

In classical physics, the cross section for a given interaction is defined as the area
over which the desired interaction can take place. For example, the cross section
for an arrow hitting a target is the area of the target. ‘The interactions we are
interested in, however, are not simply “hit or miss” interactions. Particles do not
have to “touch” to interact. In these interactions, it may be more useful to imagine
the particles as fields (electroweak and/or strong fields) rather than hard point like
objects. Since the forces span to infinity, the absolute cross sections for electroweak
and strong interactions are infinite. To make some quantitative sense out of this, we

study differential cross sections, do, for various kinematical cuts. This is defined as
2
do = TlMI x (phase space) , (2.12)

where £ is the reduced Planck’s constant, h/271 = 6.5822 x 10~22MeV sec, divided
by 2w, M is the amplitude (or matrix element). The phase space term contains
all the kinematic constraints (e.g. masses, energies and momenta of the incoming
and outgoing particles). This is handled by integrating over the 4 momenta of the
outgoing particles (in the kinematic region of interest) with a delta function included
to ensure conservation of 4 momentum. The matrix element contains the meat of the
calculation. This contains all the dynamical information about the interactions (e.g.
coupling strengths, vacuum polarization, 4 momenta of the internal propagators,

etc.).

In the case of pp collisions, the matrix element is complicated by the fact that

18
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protons and antiprotons are composite particles made of partons (a generic term
for quarks and gluons). We are interested in pp collisions in which an interaction
between one parton in the proton and one parton in the antiproton interact resulting
in 2 or more hard (i.e. energgtic) partons emerging at large angles with respect to the
collision axis. The remnant partons which did not take place in the hard interaction
continue along the collision axis. An example of this is illustrated in Figure 2.3
where partons 7 and j (in the proton and antiproton respectively) interact producing
partons j and k (plus the proton and antiproton remnants). The matrix element
for this interaction can be factorized into two parts: the scattering amplitude which
defines the hard process, 6(i,j — k,!), and the probability that we find partons
i and j in the proton and antiproton respectively, f; (f;). With this, the matrix

element can be expressed as
Mi,j—bk,l = fi(ziy Q2$ /‘F)fj(xj, Q21 #F)é(i,J — ka l) ) (213)

where Q2 is the momentum transfer in the hard process, and ur is the factorization
scale which defines the separation between interactions calculated as part of the hard
process and what gets absorbed into f; and f;. f; (f;) are called parton distribution
functions (PDFs) which tell us the probability that parton i (j) carrying proton

(antiproton) momentum fraction, z; (z;), will participate in the interaction.

Richard Feynman developed a method to calculate the scattering matrix ele-
ments, §. Using his diagrams, he devised a set of rules with which to calculate the
hard scattering amplitude, 5. A full explanation of the Feynman calculus is beyond

the scope of this thesis. So we will point out just a few notable features and direct
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Figure 2.3: Factorization of the pp matrix element.

the reader to any one of the references, 18, 16, 17, 19, 20], for further enlightenment.

e At each vertex, 4 momentum must be conserved. In Figure 2.4a,

pi=p3+¢" and p;=pf—-q". (2.14)

e At each vertex, a term proportional to g is included (g, o e, for all vertices in

Figure 2.4).

e For each internal line, a term proportional to 1/(¢? — m?) is included, where q
is the 4 momentum of the propagator and m is its mass. The internal particles
are virtual particles and, therefore, g> # m2. Since the gluon is massless, the

propagator in Figure 2.4a is just 1/¢%.

e An integration over all undetermined internal momenta is performed (the

fermion loop momenta in Figure 2.4b).

20
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Qg Qs

a4l > > b3 p1 > 3 > p3
N
@ lq ® a2 q
sS4
p2 2 P2 P4
Qs Qs

Figure 2.4: Feynman diagrams for qg—qg via gluon exchange. (a) Lowest order
(O(a?)) diagram. (b) 1 Loop (O(a?)) diagram

2.5 Renormalization and the Strong Coupling, o,

In calculating the contributions from internal loops in Feynman diagrams, integrals
over loop momenta lead to divergences at very small momenta. To eliminate these,
additional parameters are introduced through a regularization procedure. This al-
lows us to write the divergent terms in some well-defined way (they still diverge in
some limit of the regularization parameters). The divergences are then removed by
absorbing them into the definitions of the physical quantites. Thereby, the theory is
renormalized. This has the side effect of introducing a new parameter, pg, with units
of energy. The exact renormalization procedure is arbitrary, but all must lead to the
same observables. Therefore, the renormalization scale, ugr, plays an important role
in comparisons between theory and experiment. In this thesis, we will confine the

discussion to predictions using the modified minimum subtraction scheme [22], MS.

The running of the strong coupling constant, a,, is determined by the renormal-

ization group equation,
Oay,

2
Q an

= B(as) - (2.15)

where Q is the energy scale of the hard interaction. The 3 function expansion in
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powers of o, is given by [20],
Bla,) = —ba? (1 +ba, + 0(03)) , (2.16)

where b and b’ are defined as

_ 33—-271;
b = 1om ,and
, _ 153—19n;
b= 2m(33 — 2ny) (2.17)

n; is equal to the number of quark flavors available at a given Q2.

Using only the leading order term in Equation 2.17, the dependence of the strong
coupling constant, a,, on the renormalization scale, 4 = pug, at a given Q2 can be

written as

o () t=In Q—: . (2.18)

(@) = 1+ o, (p?)bt ’ 7

Including the next-to-leading order term, it is written as an implicit function,

1 1 / as(Qz) ’ a,(pz) _
(@) () +0lng + V0, (Q?) -0 1“1+u—a,(p2) =bt. (2.19)

Equations 2.18 and 2.19 tell us how a, varies with up for a given Q2, but they
don’t tell us the absolute value. This must be measured by experiment. Once o, has
been measured at one value of Q?, it is determined for all Q2 values. Experimentally,
a, has been measured for Q2 values ranging from 1.5 GeV to 130 GeV. These different

values are compared by scaling each value to the mass of the Z°. The current world
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Process | Q (GeV) a,(Q%)

T Decay 1.777 0.35+0.03
PP S | Mw | 0.12340.025
Quarkonium Decay 9.45 0.163 £ 0.014
e*te~— Hadrons 35 0.146 + 0.03
e*e”Event Shapes 58 0.125 + 0.009

34 0.14 + 0.02
29 0.160 + 0.012
130 0.114 £+ 0.008
ete” Fragmentation 91.2 0.125 + 0.009
e p— e +lets 91.2 0.118 £ 0.008
Lattice QCD 91.2 0.117 £ 0.003

Table 2.5: Summary of a, measurements [15].

average is [15]

ay(Mz) = 0.119 + 0.002 . (2.20)
A summary of these measurements is shown in Table 2.5 and Figure 2.5. Our
measurement (if completed) would span values of Q@ from 100 to 900 GeV.

Another way of looking at this is to introduce a parameter, A, which represents
the energy scale at which the coupling diverges. This defines the boundary of the

perturbative domain and is defined by

F__ [ &

Expressed in terms of A, the leading order and next-to-leading order o, are

10 @) = 57
NLO ay(Q?) = %(1—%%) (2.22)
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0.351- Region accessible

i using jet rates
at DO

0.3

0.2

0 L Lol " Ll

1 10 10

2 TS
Q’ (Gev)

Figure 2.5: Graphical representation of the data from Table 2.5. The curve corre-
sponds to the next-to-leading order running of a,(Q?) setting a,(Mz) = 0.119. The
region accessible using jet rates at D@ is also shown.

where L = In(Q?/A?). The value for a,(Mz) quoted above gives a value of [15]

A® =237 8 MeV (2.23)

calculated at next-to-leading order ((5) denotes a theoretical calculation including 5

flavors of quarks).
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Chapter 3

Jet Production in pp Collisions

At the Fermilab Tevatron, protons collide with antiprotons at a center-of-mass en-
ergy, v/s = 1.8 TeV. Most often, these collisions result in sprays of highly energetic
particles (called jets). In this chapter, we will discuss the physics specific to jet

production in pp collisions.

We begin with a quick view of a typical event in pp collisions which produces jets.
Next, we define the variables used to define the kinematics of such events. Then,
we give a brief description of the Monte Carlo event generators we use to test our
methods and compare our results to theoretical predictions. Finally, we will discuss
the motivation behind the measurement of the ratio of events with 3 or more jets to

events with 2 or more jets, R3,.

25



one
par
ant
pai
int

par

ant
919[

and

il b

.
bl



3.1 pp Collisions

So far, we have considered only simple 2 — 2 particle reactions. What we actually
observe in proton antiproton collisions is much more complex. When a proton and
an antiproton collide at very high energies, their composite particles behave almost
independently of one another such that only two partons (one from the proton and
one from the antiproton) will most likely take part in the interaction. Two or more
partons emerge from the interaction along with the remnants of the proton and
antiproton. Immediately, these outgoing partons radiate gluons and/or produce
pairs of quarks and antiquarks in a shower of partons. Then, the partons recombine
into colorless composite particles (hadrons). The results of the collision are jets of

particles.

Let us consider an interaction where a quark from a proton interacts with a gluon
from an antiproton. The Feynman diagram for the interaction is shown in Figure 3.1.
Figures 3.2 and 3.3 depict the interaction at 3 different levels before and after the
collision respectively. Before the collision, we have a proton and antiproton at the
hadronic level (Figure 3.2a). If we look a little closer, we see that the proton and
antiproton are made up of a sea of quarks and gluons (Figure 3.2b). At the most
elemental level, two partons, a quark and a gluon, take part in the hard interaction

and the others do not participate (Figure 3.2c).

After the collision, two partons emerge from the hard process (Figure 3.3a). Im-
mediately, the quark and gluon begin to radiate gluons and quark-antiquark pairs

producing a shower of partons (Figure 3.3b). These partons fragment further, re-

26



Figure 3.1: Feynman diagram for gg — gg by gluon exchange.

O
i
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u u
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u i SE2222288R22222222nY

Figure 3.2: A quark from a proton interacts with a gluon from an antiproton (before).
(a) At the hadron level, a proton collides with an antiproton. (b) At the parton
shower level, a sea of quarks and gluons interact. (c) At the 2 — 2 parton level, a
quark interacts with a gluon.
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combine and form jets of colorless hadrons (Figure 3.3c).

a). b). %

c).

//

A

Figure 3.3: A quark from a proton interacts with a gluon from an antiproton (after).
(a) At the 2 — 2 parton level, a quark and a gluon emerge. (b) At the parton
shower level, jets of quarks and gluons emerge. (c) At the hadron level, jets of
hadrons emerge.

Finally, these jets of hadrons deposit their energy in the detector. Shown in
Figure 3.4 is an event as seen by the DO detector. This is a side view of the detector
(the z axis is the horizontal axis) where the transverse components (perpendicular

to the z axis) are projected onto the vertical axis. The shaded regions depict energy
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deposition in the detector and we see two large clusters of energy emerging from an

interaction vertex. The D@ detector will be described in the following chapter.

DO Side View 11-JAN-1993 10:15 [Run 57023 Event 2519[ 5-DEC-1992 03:16

Max ET = 137.2
B 1< 2
x x 02<< 3
Bkt =
< Ba<E<cs x
x x - B 5<
x
hA

Figure 3.4: An event as seen by the D@ detector. The z axis defines left to right;
the information has been averaged in ¢.

3.2 pp Event Variables

The partons participating in the hard interaction do not have a fixed energy. Their
energy is some fraction of the proton or antiproton energy. This allows us to study
interactions which take place over a wide range of center of mass energies, /3. One
drawback to this is that the center-of-mass (c.m.) frame is likely to be Lorentz

boosted with respect to the lab frame. We desire, therefore, to define the kinematics
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in terms that are invariant under longitudinal Lorentz boosts.

We define the z-axis to lie along the proton-antiproton beams (the axis of the
Lorentz boost). Under these conditions, for a given momentum vector, the azimuthal
angle, ¢, and the component of momentum in the x-y plane, Pr = \/Pz"’TPy?, are
both boost invariant. In addition, we define a rapidity, y, which is also boost invariant

(except for an additive factor):

y= %ln (E-Pz) , (3.1)

where F is the energy and P, is the longitudinal component of the vector momentum.
For massless 4 vectors, this reduces to the so called pseudorapidity, n, which is related
to polar angle, 6, by

n=-In (tan g) . (3.2)

In pp collisions, the jets of particles are produced at high energies (P >> M) and,
therefore, the pseudorapidity is approximately equal to real rapidity, n = y. Because
7 is defined by the polar angle, 6, it is much more easily measured than the real
rapidity, y. Hence, the kinematic variables used are transverse momentum, Pr, the
azimuthal angle, ¢, and pseudorapidity, 7. For historical reasons, we often refer to

the transverse momentum, Pr as “Ep ”.

3.3 Monte Carlo Event Generators

We will describe two types of Monte Carlo event generators. The Jetrad [23] and

Herwig [24, 25] event generators provide good examples of both types and are the
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most frequently used in jet physics at DQ.

As the parton shower develops, the available energy gets dispersed among the
partons. This causes the strong coupling to strengthen (a, increases) and the radia-
tion becomes soft and/or collinear. Perturbation theory requires the coupling to be
small and, therefore, at a certain point, the shower development cannot be calculated

analytically.

At present, the matrix element for pp collisions can be calculated exactly to
O(a?). The Jetrad [23] Monte Carlo is one such event generator. It includes tree level
Feynman diagrams with 2 and 3 final state partons (no loops) and the interference
terms between the 2 parton final state diagrams with and without an internal loop.
An example of contributing Feynman diagrams is shown in Figure 3.5. The Jetrad
event generator includes at most 3 final state partons (evolution to hadrons is not

modeled).

It is also possible to rearrange the terms in the calculation so that soft/collinear
radiation terms are resummed and included in the matrix element. This calculation,
however, breaks down when the radiation is hard and produced at large angles.
Thus, it is not possible to combine the two techniques into one calculation that
would cover the full range of hard and soft parton splitting. The Herwig Monte
Carlo event generator uses a resummation calculation evolved from a 2 — 2 matrix

element to predict the parton shower.

In addition to this, the process where partons recombine to form colorless hadrons
(called hadronization) is not well understood. It is approximated using a fragmen-

tation function which gives the probability of finding a given hadron with some
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Figure 3.5: An example of O(a3) Feynman diagram contributions in the Jetrad
Monte Carlo event generator. Tree level Feynman diagrams with 2 and 3 final
state partons are included. The interference term between the 2 parton final state

diagrams with and without an internal loop is included too. The last term (O(a?))
is neglected.
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fraction of the overall momentum. Various models are used which are tuned using
experimental data and then, incorporated into Monte Carlo event generators. For

the details regarding the Herwig event generator, the reader is directed to [24, 25].

3.4 Jets

Given that energy and momentum must be conserved, we can infer the kinematics
of the partonic interaction by measuring jet properties. Defining jets, however, is
less than straightforward. At the simple 2 — 2 parton level, there are two energetic
partons well separated in ¢, and there is little ambiguity even as the jet evolves
through parton showering and hadronization. At O(a?), there can be 3 final state
partons. Recall that the calculation breaks down for soft and/or collinear radiation.
Therefore, jets must be defined in such a way so that they will be insensitive to these
splittings. Quantities which are insensitive to soft/collinear radiation are often re-
ferred to as infrared safe quantities. An ideal jet algorithm recombines soft/collinear
splittings. The specific jet definition determines which splittings are recombined,
and, therefore, the theoretical calculation for a given cross section depends on the
choice of jet definition. In Chapter 5, we will discuss two jet algorithms employed at

D@: the fixed cone and k,; algorithms.
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3.5 R32

At lowest order, the hard scattering cross section for events with 3 final state partons

(jets), o3, is proportional to a2,

010(Q% 1, J) = a3(Q*, w)C5(Q%, J) (3.3)

where o, is given by Equation 2.18 and Cj is constant for a given momentum ex-
change, Q?, and jet definition, J. Likewise, the lowest order 2 jet cross section is

proportional to o2,

U%O(in H, J) = af(Q2$ “)B2(Q21 J) . (34)

At lowest order, therefore, the ratio of cross sections for 3 and 2 jet events, Rs; is

proportional to o,
RLO — io — Cs(Q% J)
? T olo  Ba(Q%J)

s (Q% 1) (3.5)

This makes it possible to extract a value of a, from an experimental measurement
of R3; given the constant terms, C3 and B,. At this time, the theoretical calculation
for R3; is not available at anything other than leading order. It is only a matter
of time before theorists will be able to calculate next-to-leading order 3 jet cross
section, and we can begin to speculate as to the method of extraction based on what

is available for the next-to-leading order 2 jet cross section calculation.

At next to lowest order, we can define an inclusive cross section for 2 jets (events
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where there are 2 or more final state partons). The matrix element is given by

0710(Q%, 1) = o2 (Q, 1) B2(Q%, J) + o(Q”, 1) B5(Q, 1, J) (3.6)

where the coefficient for the a3 term, Bj, has a dependency on p given by

2

By(@% 1) = By(@, J)In (7) +BYQA ). (3.7)

In the next to lowest order case, a; is given by Equation 2.19. The 3 jet inclusive
cross section calculation is not available at this time to next to lowest order. However,

we expect it to take a similar form,

ox30(@% 1) = a3(Q% p)C3(Q%, J) + o (Q?, 1) Ce(@%, 1, J) (3.8)

where Cj is given by

2

Ci(@Q%, 1) = C5(Q% J) In (7) +C{(@% ) . (3.9)
Here, the ratio of 3 to 2 jet events will be given by

RNLO _ C3(Q2,J) + as(Q?, 1)Ca(Q%, 1, J)
27 By(Q2,J) + 04(Q2, 1) B3(Q2, 1, J)

0, (Q% 1) - (3.10)

When the next-to-leading order calculation becomes available for 3 final state par-
tons (i.e. C, is calculated), we will be able to extract a, from the experimental

measurement of R3; using the above equation.

The extraction of a, is extremely sensitive to the choice of renormalization scale,

35



HR-
tivit:

preg.

order

and 1

HR. a

domi;

So th.
The «
Space
Stand,

the 1};.




pr. As the calculations become available to higher and higher orders, the sensi-
tivity to the renormalization scale lessens and it is possible to get a more accurate

prediction.

The measurements of a, shown in Table 2.5 are extracted using varieties of leading
order (LO), next-to-leading order (NLO), next-to-next-to-leading order (NNLO),
and resummation calculations. Almost all of the errors quoted there are totally
dominated by theoretical uncertainties due to the choice of renormalization scale,
ir, and we expect the same will be true for a measurement using jet rates at DQ.
So the necessity and/or usefulness of such a measurement may come into question.
The extraction of a, from a measurement of R3; at D@ probes regions of phase
space previously unavailable. And because a, is a fundamental parameter of the
Standard Model theory, such a measurement will become useful in the future when

the theoretical uncertainties are better understood.

36



Chapter 4

The Tevatron and The DO

Detector

The D@ collider experiment is located at the Fermi National Accelerator Laboratory.
Protons and antiprotons collide at a center of mass energy of 1.8 TeV. At this time,
the Fermilab Tevatron produces the highest energy particles in the world (excluding
cosmic rays). We present here a description of the Fermilab Tevatron Collider and

the various components of the D@ detector.

4.1 The Fermilab Tevatron Collider

Protons are accelerated to 900 GeV in 5 stages:

1. Hydrogen (H™) ions are created with 750 KeV.
2. The H~ ions are accelerated to 400 MeV and the electrons are stripped off.

3. The protons are accelerated in the Booster ring to 8 GeV.

37




The !

In
K\ (
a0 el

e
Wade

) thy



4. The protons are accelerated in the Main ring to 150 GeV.

5. Finally, the protons accelerate in the Tevatron to 900 GeV.

The components involved in these 5 stages are shown in Figure 4.1

PBar Linac

Tevatron Extraction
for Fixed Target Experiments

CDF

DO detector

Figure 4.1: Overview of the Fermilab Tevatron.

In the first stage, electrons are added to hydrogen atoms with an energy of 750
KeV (30 times the energy of electrons in a television picture tube). This is done in

an electrostatic generator called a Cockcroft- Walton.

Next, these negatively charged ions are introduced into a linear accelerator (LINAC)
made up of drift tubes with an oscillating electric field. The oscillations are timed

so that the ions are accelerated in bunches by a positive potential. The negative po-
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tential occurs after the ions are free of the cavity. As the ions traverse the LINAC,
the tubes become progressively longer to accommodate the increase in the speed of
the ions. As they exit the LINAC, the ions pass through a carbon foil which strips

off their electrons resulting in a beam of protons.

The protons enter an accelerator ring called the Booster. The Booster is a 500
foot diameter synchrotron which consists of resonant frequency (RF) cavities and
magnets which bend the path of the bunches of protons into a circle. As the protons
are accelerated, the electromagnetic field increases to match the speed of the bunches.
The protons cycle around the Booster roughly 20,000 times before they leave with

an energy of 8 GeV.

Next, they enter what is known as the Main ring. The Main ring is buried 20
feet below ground surface in a 10 foot wide tunnel. It is 2 km in diameter and
consists of 1000 quadropole and dipole copper coiled magnets which focus and bend
the protons in the main ring. Here, the protons are accelerated up to an energy of

150 GeV before they are dropped down into the Tevatron for the final stage.

During the Main ring stage, some of the protons are syphoned off and focused onto
a target (typically nickel). Antiprotons (among many other particles) are produced
in these collisions. The antiprotons are selected and directed to a Debuncher ring.
The Debuncher ring is positioned in a separate tunnel and is shaped in a triangular
ring of 500 feet per side. In the Debuncher ring, bunches of antiprotons are collected
and “cooled” to within a small range of momenta and then they are stored in the
accumulator ring directly below the Debuncher ring in the same tunnel. Once a

reasonable store has been accumulated, the antiprotons are released into the Main
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ring where they will be accelerated in opposite direction to the protons. Finally,

they too are diverted down to the Tevatron for the final stage of acceleration.

The Tevatron synchrotron is positioned in the same tunnel as the Main ring. It
is in this stage that the protons and antiprotons reach their maximum energy of 900
GeV. In order to produce a magnetic field large enough to bend the beams into a
circular path at this energy, superconducting magnets are used. The superconducting
magnets are kept cooled to a temperature of -450 degrees Fahrenheit by liquid helium.
During the data taking run (1b) on which this thesis is based, the collider was
operated with 6 bunches of protons and antiprotons (each) in the Tevatron. At two
interaction points, B® and D@, the proton and antiproton beams collide. At either

interaction point, the time between bunch crossings was 3.5usec.

4.2 The DO Detector

The D@ experiment is so named because the detector is positioned around the D@
interaction point in the Tevatron ring. The D@ detector is a multipurpose collider
detector. It is a multifaceted piece of apparatus designed to measure a wide variety
of observables. A cut away view of the D@ detector is shown in Figure 4.2. The

detector is made up of 4 subsystems:

e the Level Zero detector,

o the Tracking system,

e the Calorimeter, and
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e the Muon detector.

The Level Zero detector determines whether or not an inelastic collision took place
when the proton and antiproton beams cross. A particle produced in a collision will
first pass through the Tracking system. If it is charged, its path will be detected.
Next, it will encounter the Calorimeter where it will most likely deposit its energy.
If it is a muon, however, it is unlikely to interact with the material in the calorimeter
and it will pass through the calorimeter and its path can be traced in the Muon
detector. A magnet bends the path of the muon, and from the curvature of its path,

the muon’s momentum can be inferred.

This thesis is mainly concerned with jets of hadrons which deposit their energy
in the calorimeter. Therefore, we will give only a brief description of the tracking
and muon systems and concentrate our discussion on the calorimeter. We will also

briefly discuss triggering and data taking.

4.2.1 The Level Zero Detector

The Level Zero Detector is used to determine if an inelastic collision took place during
a bunch crossing. It also provides a rough estimate of the position of the interaction
vertex. Ideally, the vertex would always occur at the center of the detector (z = 0.0).
In reality, however, the vertex position is described by a gaussian with a width of

about 25 cm and an offset of 8 cm from the center.

The Level Zero detector consists of two scintillator based hodoscopes surrounding

the beampipe on either side of the interaction region. The hodoscopes detect charged
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Figure 4.2: Cutaway view of the DO detector.
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particles. When a collision takes place, the remnants of the proton and antiproton
shower close to the beamline. By taking the difference in the times that the two

hodoscopes detect particles, the interaction point can be inferred.

4.2.2 The Tracking System

The tracking system consists of 3 separate detectors:

e a vertex detector (VTX),
e a transition radiation detector (TRD), and

o central and forward (in pseudorapidity) drift chambers (CDC and FDC).

A side view of these detectors is shown in Figure 4.3.

%j,: =:

Central Drift  Vertex Drift ’Iﬂ‘raﬂsit.ion Forward Drift
Chamb Chamb piat

|

Detector
Figure 4.3: The four detectors which comprise the tracking system.
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Innermost is the vertex detector (VTX) which gives a much more precise mea-
surement of the interaction point than is determined by the Level Zero detector. The
VTX has an inner radius of 3.7 cm and an outer radius of 16.2 cm. It contains 3 lay-
ers of wire chambers filled with CO,(95%)-ethane(5%). As a charged particle passes
through the chamber, it ionizes the gas and a potential difference in the chamber
cause the electrons to collect on the wire and a signal is read out at both ends. The
position of the wires provide a measure of the r — ¢ coordinate and the timing of the

readout gives the position along the beamline (z) using charge division.

In the transition radiation detector (TRD), charged particles radiate photons
when passing between regions of different dielectric constants and these photons are
measured in X-ray detectors. The energy of the photons is inversely proportional
to the mass of the particle. This allows us to differentiate between electrons and
hadrons. The TRD consists of 3 layers of 393 polypropylene radiator foils and a

layer of X-ray detectors.

Just inside the Calorimeter, lie the central and forward drift chambers (CDC and

FDC). These operate on the same principle as the VTX.

4.2.3 The Calorimeter

The D@ calorimeter (Figure 4.4) is a uranium liquid argon sampling calorimeter. It
provides exemplary coverage around the interaction region with fine segmentation.

It was designed for ease of calibration with linear, compensating response to energy.
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Df LIQUID ARGON CALORIMETER

END CALORIMETER
Outer Hadronic
(Coarse)

Middle Hadronic
(Fine & Coarse)

P

CENTRAL
CALORIMETER
Electromagnetic
Inner Hadronic Fine Hadronic
(Fine & Coarse) Coarse Hadronic

Electromagnetic

Figure 4.4: Cutaway view of the DO calorimeter detector.

Particles entering the calorimeter interact with depleted uranium producing a
shower of particles. These secondary particles ionize the liquid argon and a signal
is produced on a copper readout pad. A schematic diagram of a unit cell is shown
in Figure 4.5. The absorber plates are kept at ground and a readout board with a
resistive surface is kept at 2000 V. The electron drift time across the liquid argon
gap is 450 nsec. The signal is measured by a preamplifier and is then sent to a base
line subtractor (BLS) for analog shaping. At this point, the signal is split. One is
sent to the trigger framework and the other is sent to analog-to-digital converters
(ADCs) where it is translated into energy. If the energy in the cell is within 20 of
the pedestal value, it is not read out. This zero suppression significantly reduces the
number of cells read out. Otherwise, the pedestal value is subtracted and the energy
read out. The pedestal value is the average background energy measured during a
calibration run and o is the width of the distribution.
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Figure 4.5: Schematic view of a liquid argon readout cell.

The D@ calorimeter is separated into 3 cryostats containing 3 separate calorime-
ters. One covers the central pseudorapidity region (CC), |n%!| < 1.2, and the other
two cover the forward rapidity regions in the north and south respectively (EC),
1.5 < |n%!| < 4.5. The calorimeter is also segmented longitudinally into 3 sections
in order of increasing distance from the interaction region: electromagnetic (EM),

fine hadronic (FH) and coarse hadronic (CH).

The EM section is comprised of 4 layers of cells with 3 mm thick uranium plates in
the CC and 4 mm plates in the EC. The thickness of the layers increases going away
from the interaction with 2, 2, 7 and 10 radiation lengths (Xo). The 1st, 2nd and
4th layers are segmented in 7 x ¢ by 0.1 x 0.1. The 3rd layer is where the maximum
shower deposition occurs for an electromagnetic object (i.e. electron or photon) and
has a finer segmentation of 0.05 x 0.05. A quadrant of the D@ calorimeter is shown
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in Figure 4.6.

o

wNNoma s N O

Iignre 4.6: One quadrant of the D¢ calorimeter.

The FII uses 6 mm uranium-niobium(2%) plates and is comprised of 3 cell layers
in the CC and 4 layers in the EC. Its total depth is about 5 interaction lengths. All

layers are segmented in 0.1 x 0.1 in 1 x ¢.

The CII uses 46.5 mm copper plates in the CC and stainless steel plates in the
EC. This amounts to 4 interaction lengths and only the most energetic particles

make it through the outer wall of the cryostats.

The calorimeter modules were calibrated during test. beam runs where sections of
the calorimeter were exposed Lo particles with known energy. The response to energy
was seen to be linear to within 0.5% for electrons above 10 GeV and for pions above
20 GeV. The ratio of these, ¢/, is remarkably close to unity (less than 1.05). The
energy resolution was found to be 15%/VE and 50%/VE for clectrons and pions
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respectively.

The Inter Cryostat Region

Particles entering the area between the CC and EC cryostats may encounter very
little of the calorimetry. Two systems are placed in this region to mend this situation:

the massless gap and the inner cryostat (ICD) detectors.

The massless gap detectors are made up of signal boards placed on the steel
endplates of the calorimeters inside the cryostats. Alternating boards are set at
ground and high voltage. They detect showering in the liquid argon between the

steel endplates and the cryostat walls.

The ICD detector is positioned on the outside of the end cryostats. They are
comprised of scintillating tiles (0.1 x 0.1 in 7 X ¢) and signals are read out through

bundles of wave shifting fiber.

4.2.4 'The Muon Spectrometer

The Muon detector is divided into two subsystems with a total of 5 toroidal magnets.
The wide angle muon system (WAMUS) covers the central rapidity region and the
small angle muon system (SAMUS) covers the forward region. Both systems consist
of 3 layers of proportional drift tubes (PDTs). The first layer lies inside the toroids
and together with the tracking detectors, the incident path of a muon can be mea-
sured. After the muon’s path is bent by the toroid, the deflection can be measured

in the 2nd and 3rd layer PDTs and the momentum of the muon inferred.
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The muon system is also used as a loose veto when a cosmic ray muon enters the

detector during data taking.

4.2.5 The DO Trigger System

As stated in Section 4.1, pp bunch crossings occur every 3.5usec. Most interactions
are of little interest because they generally produce low transverse momentum ob-
jects. The DO trigger system filters the events by making quick decisions about
whether or not a given event is of interest. There are four levels of decision making:
level 0, 1, 1.5, and 2. Each subsequent level is more discriminating yet more time
consuming. The first three level decisions are hardware triggers and the fourth, level

2, is a software trigger. A block diagram of these four levels is shown in Figure 4.7.

Processing Time  132ns 900 ns 10-20 ps 100 - 200 ms
From the Level Level 200 Hz Level T
Detector > 0 —— 1 ] —»-| 12pe
Level
Rate 300 kHz 50 kHz 10 kHz 15 100 Hz 1-2Hz

Figure 4.7: Block diagram of the DO trigger system.

Level @

The level O trigger is the least discriminating. It simply looks for the break up of
the proton and antiproton in the Level Zero detector. It's efficiency is >98%. It
also provides information regarding multiple interactions occurring in a single bunch

crossing and it measures the instantaneous luminosity.
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Level 1 and Level 1.5

The level 1 trigger is divided into two components: muon and calorimeter. The
muon trigger simply triggers on the number of muon tracks. If an event passes the
level 1 muon trigger, a level 1.5 decision is made based on the transverse momentum

of the muon. This creates a detector deadtime of one bunch crossing.

The calorimeter level 1 trigger makes fast sums of energy in towers in the calorime-
ter of 0.2 x 0.2 in 7 X ¢. Several different reference sets are used to define energy cuts
on the trigger towers in various sections of the calorimeter. There are also reference
sets for energy summed in large groups of trigger towers. These are called large tiles

and cover regions of 0.8 x 1.6 in 1 X ¢.

After an event passes levels 1 and/or 1.5, it is passed to the level 2 system.

Level 2

The level 2 system is a farm of 50 VAXstation 4000/60 processors running identical
executables which attempt to reconstruct each event. If the event is deemed worthy
by the level 2 software, the detector information and run conditions are written to a

disk buffer and eventually transferred to tape.

4.2.6 Offline Reconstruction

The raw data on tape is taken to another facility at Fermilab for processing. A
large software package has been developed which reconstructs the data (RECO).

The RECO software uses calibration information obtained from test beam data and
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various algorithms to piece together physical objects such as photons, electrons, jets,
muons, etc, from the raw detector data. Jets are reconstructed using the fixed cone
jet finding algorithm. &, jets must be reconstructed in a separate package after the
data has been processed through RECO. The &, and fixed cone jet finding algorithms
are described in Chapter 5. All of the data used in this thesis used data reconstructed

with version 12 of the reconstruction software (RECO v12).

51




tmy




Chapter 5

The k| and Cone Jet Algorithms

In Chapter 3, we discussed jet production in pp collisions. We showed an event
display in which two jets of hadrons deposited their energy in the D@ detector
(Figure 3.4). Shown in Figure 5.1 is the same event displayed in a 3 dimensional lego
plot. The z and y axes represent 7 and ¢ coordinates shown in units of calorimeter
towers, IETA and IPHI (a calorimeter tower equals 0.1 x 0.1 in 7 x ¢). The vertical
axis shows the amount of energy deposited in the towers and we see two large clusters

of energy in the central part of the region along with some smaller clusters at large

absolute values of IETA.

In order to relate these clusters of energy to a simple partonic interaction, we
employ jet algorithms to reconstruct the parton momenta from the energy deposited
in the calorimeter. We present here two jet finding algorithms used to analyze
D@ data: the fixed cone and the k; jet algorithms. Compared to the fixed cone
algorithm, the k; algorithm is more amenable to jet counting, and, therefore, we

use k; jets to measure Rj;. The fixed cone algorithm was established prior to the
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LEGO CAL CAEP  11-JAN-1993 10:23 [Run 57023 Event  2519] 5-DEC-1992 03:16

Max ET = 137.2 GeV

HEME
QHADE

Min E = 1. GeV

ENERGY CAEP ETA-PHI

Figure 5.1: Lego plot of a 2 jet event as seen by the D@ detector. The z and y axes
represent 7 and ¢ coordinates shown in units of calorimeter towers, IETA and IPHI
(a calorimeter tower equals 0.1 x 0.1 in 7 X @). The vertical axis shows the amount
of energy deposited in the towers.
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k, algorithm, however, and much of our work calibrating the k; jet algorithm is
based on results obtained previously for cone jets. So we will begin our discussion
with a brief description of the cone jet finding algorithm. The focus of this thesis is
the implementation and calibration of the k; jet algorithm. So we will give a more

detailed account of the k; jet algorithm.

5.1 The Fixed Cone Jet Algorithm

The fixed cone algorithm defines a jet by the sum of the 4-momenta contained in a
fixed cone of radius, R, in n— ¢ space (see Figure 5.2). In other words, the 4-momenta

of all particles with AR < R are included,

AR; = \/(TIJ -m)?+ (s - )’ <R, (5.1)

where 7; and ¢, is define the center of the jet cone and 7; and ¢; give the position of
a 4-vector inside the cone. Cone jets are found using an iterative procedure at D@

in the following way [36].

Figure 5.2: Fixed cone jet.
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1. One starts with a list of 4-momenta describing partons, hadrons, or energy

deposited in a detector.
2. A reasonably high Pr particle is chosen as a beginning (called a seed).
3. A cone of radius R in n — ¢ is drawn around the seed axis.

4. A new jet axis is found defined by the Pr weighted n and ¢ of the particles in
the cone,

= iPi ol ,‘P,‘
n:Z,_ln T and ¢221_1¢ T '

o o (5.2)

where Er is defined as the scalar sum of the Pr of the particles inside the cone,

ET = iPTi . (53)

i=1

5. Steps 3 and 4 are repeated (substituting the new jet axis for the seed axis)

until a stable jet axis is found.

6. The 7, and ¢ of the jet are redefined by

n=—In (tan (g)) and ¢ = tan™! (i—’y‘) , (54)

where

6 = sin™! (—%—T) , Px=Y P,y and Py =) P,;. (5.5)
i=1 =1

Infrequently, two jets may be found with cones that overlap. In such cases, a
split/merge criterion must be applied to decide if the jets should be merged into one

jet or divided into two jets. At DO the jets are merged if the shared energy is less
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than 50% of the ET of the lower E7 jet. Otherwise, the shared energy is divided

between the two jets and their E7 17, and ¢ are recalculated as in step 6.

It was mentioned in Chapter 3 that at present, the matrix element is calculated
to O(ad) only. In such calculations (e.g. Jetrad Monte Carlo events), there can be
at most 2 partons produced, and at most, 2 partons can be included in a jet. In
such cases, it is possible that the two partons are separated by some distance, r, in
7 — ¢ space such that R < r < 2R. Using the iterative method described above,
the two partons will not be combined into a single jet. After parton showering and
hadronization, however, it is possible that they will be merged into a single jet. We
introduce an additional parameter, R,.,. Then, we combine the two partons if they
are within R,., x R of one another (typically R,e, ~ 1.2 —1.3). The R,,, parameter

is tuned to match what is seen experimentally in the splitting and merging of jets.

The prescription where the jet axis is defined by the Pr weighted center and
the jet Er is defined by scalar summed Pr (step 4) is known as the Snowmass
recombination scheme. It was agreed upon as the standard recombination scheme
for fixed cone jets during the Summer Study on High Energy Physics in Snowmass,
Colorado, in 1990. The final jet 7 and ¢ definitions (step 6) were found to give
better agreement between Herwig Monte Carlo jets at the parton shower, hadron,
and detector levels and are therefore used in the D@ implementation of the fixed

cone algorithm.
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Figure 5.3: k) jet clustering.
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5.2 Clustering Algorithms for ete~Collisions

Unlike the cone jet finding algorithm described above, clustering algorithms begin by
considering individual pairs of particles. We start with a list of 4-vectors describing
partons, hadrons or detector information. The pairs of particles are evaluated based
on some closeness criterion in phase space and the closest pair is merged into a
single 4-vector. The merged particle is compared to all the other particles and the
process is repeated until some stopping criteria has been satisfied. This is illustrated

in Figure 5.3 and the basic steps in e*e~clustering algorithms are as follows.

1. For each pair of particles, 7 and j, we calculate some closeness function, y;;.
2. The minimum Y, of all y;; is found.
3. Ymin is compared to some parameter, Yeu;-

4. If Ymin < Yeur particles i and j are removed from the list of 4-vectors and
merged into a new pseudo particle, k. yj; is calculated for all other particles

and we return to step 2.

5. If Ymin > Yeut, then clustering stops and we are left with a list of jets.
The first of such algorithms was introduced by the JADE collaboration [37, 38].
In this algorithm, the closeness function is the scaled invariant mass,

2
M;;

2
Evis

Yeut > Yij =

o8



where E,;, is the visible energy of the event. The pair mass is calculated for massless

particles as

Mij2 = 2E,'Ej (1 — COSs 9,']‘) (57)

where ©;; is the angular separation. This can result in “fake” jets when many soft
particles belonging to unrelated parton showers are combined. This is illustrated in
Figure 5.4a where clustering begins by combining 4-vectors, 1 and 2, resulting in
4-vector, a. Since the algorithm is sensitive to soft radiation, it is not infrared safe

(as was discussed in Chapter 3).

o
>

(a) ———>a (b)

!
|
/
l
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I
I

I

I
/
4
b

Figure 5.4: Jet Clustering in ete~Collisions. (a) The JADE algorithm. (b) The k;
(or Durham) algorithm.
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Later, the k£, (or Durham) algorithm was proposed with the argument that it has
more of a tendency to be infrared and collinear safe and is less subject to hadroniza-
tion corrections[39]. It was noticed that by simply replacing E;E; in the invariant
mass equation (5.7) by min(E?, E?), the problem would be solved. Soft particles
would be merged with their nearest energetic neighbor instead of with other soft
particles. This is illustrated in Figure 5.4b where 4-vectors, 3 and 5, are combined
into 4-vector, b. For small angular separation, it can be shown that the new function

approximates the minimum relative transverse momentum,

ky it = min (E2, E;*)sin 20

~ 2min (E,'z, Ejz) (1 — COS e,‘j) , fO’I‘ e,'j — 0. (58)

Thus, it was dubbed the k, algorithm with k; as the new closeness parameter.

5.3 Adaptation of the k£, Algorithm for pp Collisions

The event structure in pp collisions differs from e*e~ collisions and this results in
some modification of the k; jet definition. The variables used to assign particles
(final state partons, hadrons or calorimeter cells) to jets in ete~ physics are the
energies, E, and the polar and azimuthal angles, # and ¢. In pp collisions, the c.m.
frame of the hard process is often moving with respect to the lab frame. Thus, the

variables used must be boost invariant along the beam axis, Er = Pr, n and ¢.

k) can be expressed in terms of boost invariant quantities in the following way
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for pairs of massless particles:

kl',‘jz = 2 min (ET,iz, ET,]'2) [COSh (T], - 77]) — COS ((b, — ¢J)] . (59)
As An,A¢ — 0, it can be expressed as

k_L,,'jz = min (ET,,?, ET,jz) R2 (510)

1) )

where R}, = A + A¢?.

In ete™ collisions, essentially all of the hadrons in the final state are thought to
be associated with final state partons in the hard scattering process. In collisions
producing high E7r jets, all particles should be assigned to a jet. The final state
hadrons in pp collisions, on the other hand, are associated not only with the final
state partons in the hard scattering process, but with radiation from partons in the
incident pp pair as well as the remnants of the pp . Therefore, not all the particles
should be assigned to the high Fr jets, but many may be associated with the beam

jets (pp remnants).

In addition to this, the c.m. energy of the hard process (defined as v/3) is variable
and unknown. In the Durham algorithm described above, the closeness function is
scaled by visible energy in the event,

_ ki
Vi = Euis ’

(5.11)

and the stopping parameter, Y, is dimensionless. Since E,;, (V/3) is not known in

pp collisions, we must provide an alternative prescription for stopping the clustering.
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A few different modifications have been suggested to adapt the Durham algorithm
for use in pp collisions [41, 40]. The k, algorithm we have implemented at DO is
based on the algorithm suggested by Ellis and Soper in [41]. Below we describe the

k, algorithm we have implemented at DQ.

5.4 k; Jets at DO

Before jets are reconstructed, a preclustering of calorimeter cells is performed [42].
The k; algorithm is an O(n3) algorithm (i.e. for n particles, ~ n? calculations must
be performed) and it is desirable to reduce the ~6000 calorimeter cells in an average
event without severely affecting the physics results. In preclustering, calorimeter cells
are first added into towers in the calorimeter. Towers with Er <0.2 GeV have their
E7 redistributed in neighboring towers. The amount of £+ added to neighboring
tower Er is weighted by the neighboring tower Er . Then, all towers within 0.2 of
each other in 7 — ¢ space are combined. The Er redistribution and tower merging is
done using scalar Er addition (subtraction in the case of negative Er ). In order to
have a consistent comparison to jets at the parton and hadron level, we also perform
the preclustering prior to jet reconstruction of partons and hadrons. There, parton

and hadron 4 vector information takes the place of the calorimeter towers.

After the preclustering is performed, we apply a jet reconstruction algorithm.
The jet algorithm we employ does not use a cutoff parameter, y.,,. Instead, particles

are combined until all objects are separated 1 — ¢ space by some value

R;* > D?, (5.12)
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where i and j are jets constructed by successively combining particles. The k; jet

recombination procedure is as follows.

1. For each pair of particles (preclusters), i and j, we calculate the function

R,

dij = minimum (ET’,‘2, ET,jz) D? (513)
where D = 1. Then we define for each particle, 1,
di = ET‘iz. (514)

2. The minimum d,,;, of all the d; and d;; is found.

3. If dmin is a d;j, particles < and j are merged into a new, pseudo-particle k with

Ery = Pr; = \/Pf,k + P2, ,

1P
% = —In (tan Q,f), and ¢ = tan~! J—p:f,

with four vector P* = P# + P#, and 6 = cos™! %fl' (5.15)

4. If dpin is a d; (i.e. Rijz > D? for all j ), then the particle is deemed not
"mergeable” and it is removed from the list of particles and placed in the list

of jets.

5. Return to step 1. Repeat steps 1-5 until all particles have been merged into

jets (i.e. R;;2 > D? for all ij ). The result is a list of jets.

It is possible to employ alternate recombination schemes in step 3. We have derived

an energy scale only for the 4-vector recombination scheme described here.
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The 4-vector recombination scheme, P* = P;*+ P;*, is the natural choice because
it is consistent with 4-momentum conservation. As a jet evolves from a simple
partonic interaction in the hard process to a shower of particles in the detector, its
4-momentum must be conserved. It is, therefore, most appropriate to reconstruct a
jet’s momentum and energy by summing the 4-momenta of the constituents of the jet.
Defining Er = Pr (versus E'sin@ or the scalar sum of Er of the constituents) was
decided upon because the definition of transverse energy is somewhat ambiguous for

jets with mass while transverse momentum, Pr, is well defined and Lorentz invariant.

The Snowmass recombination scheme merges particles ¢ and j into pseudo-particle

k with

Erini + ETin;i
Er;

_ Eri¢i+ Er,¢;
B Er; .

Ery=Eri+Er;, m= , and ¢ (5.16)

It was suggested as an approximation to 4-vector recombination because it expe-
dites theoretical calculations using the cone jet algorithm. For theoretical k; jet

calculations there is no such advantage.

We define D=1.0 partly because this roughly corresponds to R=0.7 in the cone
jet algorithm. D=1.0 was also seen to give fairly stable results in jet rate studies
on Herwig Monte Carlo data comparing jets reconstructed from the parton shower,

final state hadrons, and calorimeter cells.

Ellis and Soper examined the inclusive jet cross section for 100 GeV jet Er and
In] < 0.7 using both the k; and cone jet algorithms [41]. At O(a3), they found

similar results for k; jets and cone jets setting D = 1.35 x R. In addition, D=1.0
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and R=0.7 reduce the renomalization/factorization scale dependence, u, for the k;

and cone jet cross sections respectively.

A Side Note on k£, and Cone Jet Sizes

It is difficult to compare the size of a k; jet to that of a fixed cone jet. Imagine a
parton shower of 3 massless partons, all 3 at equal 7, equal momenta and separated
by 0.7 ¢. They will all be included in a R=0.7 cone jet, but the D=1.0 k, jet will
only cluster two together. From this one may conclude a R=0.7 cone jet is bigger
than a D=1.0 k, jet. Now, imagine a similar shower except this time the particle
in the center is 4 times as energetic as the other two and now they are separated by
0.8 ¢. In this case, at most 2 will be included in a R=0.7 cone jet, but all three will

be included in a D=1.0 k, jet. In this case, the k; jet appears to be bigger.

It is difficult to extract any meaningful information from comparing k, jets to
cone jets. What is more important is that we are able to compare our experimental
results to theoretical predictions using the same jet algorithm. This is simply because
a jet is defined by the algorithm employed. The k; jet algorithm can be applied at
any level (partons, hadrons, calorimeter data) in exactly the same manner. Recall
that cone jets needed an additional parameter, R,,, in order to compare to O(a?)
calculations. k; jets also have the feature that each 4-vector must be assigned to
one and only one jet in the clustering procedure. This avoids adding additional

split/merge criteria and makes the k; jet algorithm more suitable for jet counting.
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5.4.1 Monte Carlo Event Jet Rates

When the k; jet finding procedure described above is concluded, we have a list of
jets which are well separated in 7 — ¢ space. Many of these jets may be associated
with the soft interactions between the remnants of the proton antiproton pair. They
may also come from soft radiation from the partons involved in the hard interaction.
The leading-order or next-to-leading order theory cannot accommodate this soft
radiation, and if we include all the jets, we will not be able to extract a; as we
described previously. Therefore, it is necessary to make a cut to remove low Pr jets

not associated with the hard process.

The probability for a parton to radiate a gluon (or split into a quark antiquark
pair) is governed by a,. This splitting is a function of the fraction of the original
parton’s momentum given to the radiated gluon (or quark antiquark pair). Therefore,
we only count jets in an event if their Pr is greater than some fraction of the hard
scale. To define the hard scale, we sum the Pr of the 3 highest Pr jets in each event,

HT31

3
Hr3 =) Pr;i. (5.17)
i=1

Then, all jets with Pr below some fraction times the hard scale (Pr < feue X Hrs)

are dropped [44],

To choose a reasonable fraction cut, we study Herwig (version 5.8) Monte Carlo
data. The Monte Carlo data is generated with 2 — 2 parton Er thresholds of 30,
60, 120, and 240 GeV. It is processed through the SHOWERLIB [48] D@ detector

simulation.
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Figure 5.5 shows fractional jet rates in Herwig Monte Carlo events as a function of
the fraction cut, f.,;. We compare these rates for jets found after parton showering,
hadronization, and detector simulation. If we set f.,; too high (fea: > 0.3), there
are events where only one jet passes our cut. These are events where the leading
jet carries about half the available event Er (P} =~ Hr3/2) and the remaining half
is divided roughly equally between the second and third jets (P2 ~ Hyps/4). On
the other hand, if we choose f.,; to be small, we begin to include many jets and the
agreement between the three levels begins to break down. So a reasonable choice for
feut seems to be in the range 0.15 < fo; < 0.2. We use f.,; = 0.15 because it gives

us the largest signal for Rj3, in this range.

67




HERW G V5.8 GENERATED AT 30 GEV E. FERWG V5 8 CENERATED AT 60 GEV E.

- 20
|

— caomweiek — comveir

avon aaaron

or-
o o Bt T
touh feut
HERWIG V5.8 GENERATED AT 120 GEV €. MERWIG V5.8 GENERATED AT 240 GEV E.
3 &
z z

Figure 5.5: k, Jet Rates as a function of f., in Herwig v5.8 Monte Carlo Data.

68



Chapter 6

Introduction to k; Jet Momentum

Calibration

An accurate calibration of £, jet momentum is not only necessary for a measurement
of R3y, but it is necessary for almost all analyses involving k; jets. Because a
variety of studies will depend on this work, it is important that the correction we
derive be widely applicable. It will also be useful to have an understanding of the
individual uncertainties and correlations associated with the various aspects of the

k, jet momentum calibration.

Deriving a momentum correction for k; jets was an unexpectedly difficult as-
signment and as a result, we were unable to complete our analysis of R3;. In many
ways, the calibration of the k; jet algorithm represents a much larger contribution
to the field than the measurement of Rj; (had we completed it). Many subsequent

measurements will rely on the work decribed in the following chapters.

We will give a general overview of the jet momentum scale for k; jets. In the
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following two chapters, we will give a full description of the offset and jet response
corrections. Following that, we will show the results of the Monte Carlo closure test
that was performed to test the method, and, finally, we will present the final k, jet

momentum scale correction with errors.

6.1 General Overview of k;, Jet Momentum Cali-

bration

Almost all analyses involving the physics of jets attempt to relate the observed
jets to a simple parton interaction. Precise calibration of measured jet momentum,
therefore, is a priority. This is not a straightforward task as the evolution from
partons to jets of hadrons to clusters of energy in the calorimeter is very complex

and riddled with theoretical unknowns and detector effects.

The jet momentum scale correction is an attempt to remove effects of the detector
as well as the physics underlying event (momentum due to soft interactions between
the remnant partons of the proton and antiproton). The goal is to approximate the
sum of all the final state particle momenta incorporated into a jet resulting from
the hard parton interaction. Hadronization effects are not corrected for here. The
analysis described in the following chapters is an attempt only to correct jets to the

particle (final state hadrons) level.

The method for correcting k; jet momentum is done in two steps. First an offset

is subtracted and then a response scaling factor is applied. This can be expressed
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by the following relation

Pptcl _ I)j’gte“ - EO(na E, PT)

Jet Rjet(nv P) ’

(6.1)

where Pf:f‘ represents the “true” momentum of a jet found from final state particles
using the k, algorithm, Ey denotes an offset correction and Rj; is a correction for

the calorimeter jet response.

Because the definition of a jet is given by the algorithm employed, the calibra-
tion will depend on the choice of jet algorithm. To a certain extent, however, the
corrections can be derived generally. Previously, the jet energy scale correction was
derived for jets defined by the fixed cone jet algorithm [45, 47, 46] and we are able to
use the results of that study for detector effects that are independent of the choice
of jet algorithm. We also use results of this study to test our method for measuring
the offset and for extrapolation into regions of phase space where we lack data for

k_L jets.

The cone jet energy scale is described in great detail in [45, 46]. Since much of
the correction for k; jet momentum is based on that study, we will include it in our
discussion emphasizing the material that is relevant to the k; jet momentum scale.
From here on, we will refer to the established cone jet energy scale correction as

CAFIX5.1 (Calorimeter Fix Package, version 5.1).
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Chapter 7

k| Jet Offset Correction

The purpose of the offset correction is to subtract from the reconstructed jet the
transverse momentum which is not associated with the hard interaction itself. We
divide this into two parts: the offset due to the physics underlying event, O,., and
the offset due to the experimental environment, O,;, such as noise, residual pile-up

from previous pp crossings and multiple pp interactions.

The underlying event contribution comes from soft interactions between the rem-

nant partons of the pp pair which did not take part in the hard interaction.

The noise contribution arises because the average energy of the individual cells
is not zero (even in the absence of beam) due to uranium decay and electronic noise.
Although this is corrected on average by pedestal subtraction, there remains an
effect due to zero suppression of cells at readout combined with a non symmetric

noise distribution (for further details see [46, 51]).

Pile-up is the residual contribution from previous pp crossings. It results from

the long shaping time associated with the preamplification stage. The base line
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subtractor (BLS) samples the signal before the event and subtracts this amount. The
signal from previous crossings continues to decay after this sampling, and, therefore,
a residual correction is needed for a more accurate removal of the pile-up effects. The
Luminosity has some effect on the amount of signal produced by previous pp crossings

and therefore, residual pile-up will depend on luminosity.

The multiple interaction contribution is due to soft interactions between other
pp pairs that do not contribute to the hard collision. This also depends on luminosity.
While pile-up and multiple interactions contributions to the offset are luminosity

dependent, the noise and underlying event are not.

In this Chapter, we present the offset correction to be applied to jets reconstructed
with the k, algorithm. First, we will discuss the method, which is based on MC jets
with D@ data overlayed. To test the method, we performed some studies using the
0.7 cone jet algorithm. We compare the results obtained using our method to the
previously obtained results from D@ data [45, 46, 51]. This is shown in Appendix B.

Finally, we present the results obtained for k, jet offsets, O,, and O,..

To simulate the offset contribution to jets, we overlay D@ data on Monte Carlo
data that has been processed through a D@ detector simulation. The Monte Carlo
data do not include the physics underlying event and the detector simulation does not
include the effects of noise. Neither are the effects of pile-up nor multiple interaction
simulated in the Monte Carlo data. The overlayed D@ data contain these effects,
and the offsets are measured by comparing jets in the sample with no overlay to jets

with the overlay.
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7.1 Monte Carlo Data With Overlay

We use Herwig (version 5.9) Monte Carlo data generated with no underlying event.
Monte Carlo data (no underlying event) is generated with 2 — 2 parton Er thresh-

olds of 30, 50, 75, 100 and 150 GeV. It is processed through the SHOWERLIB [48]

detector simulation.

Three different types of D@ data are overlayed on Monte Carlo Data. They are:

ZB zero bias data.
ZBnoL® zero bias data not passing the Level @ trigger.

MB minimum bias data.

The zero bias data, ZB, have the least restrictive trigger requirements. The trigger
requires only that a bunch crossing take place and the data are taken at random
over a range of instantaneous luminosities, £. The ZBnoL{ data are a subset of the

ZB data with the requirement that the event did not pass the level @ trigger.

ZB data are taken for a range of instantaneous luminosities (€ = 0.1, 3, 5, 10
and 14 x10%cm~2sec™!). The ZB data include the effects of noise, pile-up and
multiple interactions. ZBnoL® and MB data are used only at low luminosity only
(0.1 x10%cm~2sec™!). ZBnoL® data includes the effects of noise and pile-up, and
MB data, in addition to noise and pile-up, include the physics underlying event. At
low luminosity, very few events pass the Level @ trigger, and, therefore, ZB and

ZBnoL@ are almost identical.

The D@ data (ZB, ZBnoL@, or MB) is added to the detector information in the
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Monte Carlo SHOWERLIB data. As mentioned earlier (4.2.3), in data taking, cells
with energy less than 20 of the pedestal value are zero suppressed (not read out).
Therefore, the overlayed data are also zero suppressed (using 0.0 as the pedestal
value). We also use the Monte Carlo sample with no overlay. In this case, the

calorimeter cells are not zero suppressed prior to reconstruction.

The overlayed and non-overlayed data are reconstructed using version 12 of the
reconstruction package (RECO v12). Finally, we reconstruct k, jets from calorimeter

cell information as described in section 5.4.

At this time we do not have data covering all luminosities, all jet Er and all jet

7. Shown in Table 7.1 is a summary of the data used in this thesis.

Type of || Herwig Threshold Luminosity Jet n

Overlay Er (GeV) (x10%%cm~2sec™!) Range
none 30, 50, 75, 100, 150 N/A 0.0< |n| <3.0
ZB 30 5 0.0< |n| <3.0
ZB 30, 50, 75, 100, 150 | 0.1, 3, 5,10, 14 | 0.0< |n| <1.0

ZBnoLQ | 30, 50, 75, 100, 150 0.1 0.0< |n| <1.0
MB 30, 50, 75, 100, 150 0.1 0.0< |n] <1.0

Table 7.1: Availability of Er , luminosity and 7 for overlayed Monte Carlo data.

7.2 The Method

Let us define the following notation for jets reconstructed from the various data to

be used.

zz k; jet Er in Monte Carlo with no overlay.

m0 k. jet Er in Monte Carlo with MB overlay.
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zn k) jet Er in Monte Carlo with ZBnoL{ overlay.

zL k, jet Er in Monte Carlo with ZB overlay at luminosity £ = L x103cm™2sec™!

(e.g. 25 for £ =5 x10%°cm~2sec™?).

As mentioned above, the ZB data include the effects of noise, pile-up and multiple

interactions. This contribution to a jet at a given luminosity, OL is given by

OL = zL — zz. (7.1)

The MB data include the effects in ZBnoL® plus underlying event. Thus, the offset

due to underlying event can be measured by

Oye = m0 — zn. (7.2)

These subtractions are performed on a jet by jet basis, for the two leading jets. We
ensure the same jet is selected in both samples by requesting them to be within
a distance of 0.5 in 7 — ¢ space. Figure 7.1 shows the distribution of distances,
Roin = [(¢25 — 022)% + (5 — M2z)]/?, from the leading zz jet to the closest jet in

the 25 sample.

Figure 7.2 shows a typical distribution of the energy difference between corre-
sponding jets in the noise overlayed (z5 in this case) and no noise sample, zz. From

the mean and RMS of this distribution we extract the offset and its statistical error.
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Figure 7.1: Distance in 77 — ¢ space from the leading zz k, jet to the closest 25 k;
jet.
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Figure 7.2: Distribution of Er differences between corresponding k; jets in the 25
and zz samples
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Note that leading jets in one sample do not always correspond to leading jets in
the other. Figure 7.3 plots the Er ranking number of the z5 jet associated to the
two leading zz jets (jets are numbered in decreasing order according to their Er ).
Besides the expected swapping between the leading two jets due to fluctuations in the
overlayed noise, we sometimes find one of the leading zx jets to be associated with a

lower energy z5 jet. To reduce the effects of E7 smearing, the events are weighted

Figure 7.3: Ranking of overlayed k, jets compared to non-overlayed jets. Corre-
sponding 25 k; jet matched to the leading (left) and second leading (right) zz k,
jet. Jets are numbered in decreasing order according to their Er .

so that we have a flat jet Er distribution. The k; jet Er distributions without
weighting are shown in Figure 7.4. By using a flat distribution, we eliminate uneven
contributions in a given jet Er bin due to the steeply falling and rising distributions
shown in Figure 7.4. This is discussed in more detail with respect to the 0.7 cone

jet algorithm in Appendix B.
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Figure 7.4: Distribution of reconstructed Er for k; jets without noise overlay. The
different line types correspond to samples generated with parton Er thresholds of
30, 50, 75, 100 and 150 GeV.

7.3 Verification of the Overlay Method

To ascertain whether the overlay method models the contributions to the offset
correctly, we compare the occupancies in 0.7 cone jets from our Monte Carlo with MB
overlay sample to the occupancies measured in jets in a pure MB sample. Figure 7.5
shows the occupancies measured in 0.7 cone jets taken from pure MB data, and
Figure 7.6 shows the occupancies in Monte Carlo with MB overlay data. We are
only able to compare for || <1.0, and the y-axis scales are dramatically different.
However, under close examination, one can see that the occupancies for a given jet

Er are in good agreement with the exception for jet Er <40 GeV.

In an attempt to further our understanding and confidence in the overlay method,
we measured the offsets, O,, and O,., for cone jets (R = 0.7) and compared our

measurement to the previous correction derived for 0.7 cone jets in the CAFIX5.1
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Figure 7.5: 0.7 cone jet occupancy vs. jet 1 for jets found in minimum bias data.

80




0.7 Cone Jets (minimum bias data)

°
(9]

® JetFs40
B e

N

*

e
-t

(]
]

Occupancy

\ 805Jet E,S100
e 100<Jet £,£200

Y75 AN SN S S — — — S A —

o.“ dodd i Ll 4l i Aodod ol i 11 1 | i 11 1 1 i 1.1 1 1 i 31 1 1 i 1 1 1 i L1 1 1 i -
© o1 02 03 04 05 06 07 08 09 1
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correction package [51, 45, 46]. In that study, the densities were measured in ZB,
ZBnoL®, and MB events. The offsets were derived by multiplying densities by the

area of a fixed cone jet, 7 x (0.7)2 ~ 1.5.

In order to compare to the CAFIX5.1 offsets, we measure the offset densities, D,
and D,;, by dividing the offsets, O, and O, by the area of a 0.7 cone jet. This

study is described in detail in Appendix B. For the offset due to noise, pile-up and

2 1

multiple interactions, we compared for only one luminosity, £ = 5x10%cm~2sec™!.

Our results for the offset due to underlying event, D,., are consistent with
CAFIX5.1 (see Figure B.4). For D,;, on the other hand, we see a dependence on
0.7 cone jet Er which was not prescribed in the CAFIX5.1 correction (see Fig-
ure B.2. We believe the E dependence that we see is due to zero suppression
effects that were not accounted for in the CAFIX5.1 correction. The zero suppression
correction used in CAFIX5.1 (Equation B.1) depends on the occupancy factor, F,
in jets. The occupancy for jets was seen to have little dependence on jet Er and,
therefore, a constant occupancy was assumed. If instead we use the small variation
in occupancy shown in Figure B.5 in the CAFIX5.1 zero suppression correction, we
can explain only 30% of the 0.7 cone jet E;+ dependence that we measure with the

overlay method.

Because our occupancies for given jet E7 agree with pure MB data, we believe the
overlay correctly models the effects of underlying event, noise, pile-up and multiple
interactions. It is possible that the zero suppression correction used in CAFIX5.1
is inexact. Because the effects of zero suppression were not well understood when

CAFIX5.1 was derived, a large error was assigned. This error accommodates the
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discrepancy between our measurement and the CAFIX5.1 value. Because the Er
dependence for 0.7 cone jets cannot be confirmed with pure D@ data, we assign
an error to O,, for k; jets. As stated above, 30% of the effect is consistent with
CAFIX5.1. The other 70% will be assigned as a systematic error to our measurement

for the offset, O,,, for k, jets.

7.4 Offsets for the k£, Algorithm

At this time we do not have data covering all luminosities, all jet E7 and all jet 7.
Shown in Table 7.1 are the data available at this time. In the regions where we do
not have data, we will either extrapolate using the data that we have or use offset

corrections from CAFIX5.1.

7.4.1 Offset Due to Noise, Pile-Up and Multiple Interactions

As stated above, we measure the offset due to noise, pile-up and multiple interactions
using the relation,

OL =2L-zz. (7.3)

Figs. 7.7 and 7.8 present the results for O, as a function of Er at £ = 0.1
x10%cm~2sec™! and £ = 5 x10%cm~2sec™!, respectively. As opposed to the cone
case (see Appendix B), very little Er dependence is observed for the k; algorithm
and this dependence becomes weaker as the luminosity increases. Exponential fits

were done for luminosities lower than £=5x10%cm2sec™!.
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The study of  and luminosity dependence for the central region is summarized
in Figure 7.9. The general trend is that k; offsets are 50-75% larger than for cone.
Because the k, algorithm clusters everything into jets, we would expect it to “pull”
in more noise and underlying event than a fixed cone algorithm (which excludes

energy outside the cone radius).
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Figure 7.9: O, offset vs n for k; jets with 30<Er <50 GeV. The result for cones
(open circles) is shown for comparison.

To study the full rapidity range, we use a high statistics sample generated with

86




Herwig v5.9 with the underlying event included. This sample was only gener-
ated in the low energy range, Er >30 GeV, and overlayed with ZB data with
L£=5%10%cm™2sec™!. The Underlying event essentially cancels when taking the
difference 25-zz. Results are shown in Figure 7.10, for non overlayed jets with

30<ETr <50 GeV.

0,(GeV)

1 L 1 1 l 1 1 I 1 l 1 ) 1 1 1 1 1 1

1
0 0.5 1 1.5 2 25 3
n
Figure 7.10: Measured O, vs. 7 for k; jets at £=5 and 30<Er <50 GeV (solid
symbols). The result for cones is shown for comparison (open symbols).
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Figure 7.11: Parametrization of O, vs. k; jet 1 for jets with 30<Er <50 GeV, for
various luminosities.

Since there is no MC available to get the offsets beyond the central region for
luminosities other than £=5, we estimate their values by extrapolating the measured
central values (Figure 7.9) with a functional form as suggested by the fit shown in

Figure 7.10.

In order to let all the points participate in the fit, the samples were divided in
two groups according to their luminosity (lower and greater than £=5). Two new
distributions are obtained by making an average of the points after normalizing to

the £=5 distribution. The fits to these distributions were scaled with luminosity,
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and the results are shown in Figure 7.11. Linear interpolation is used for luminosities

between the values shown in Figure 7.11.

To get the final O,;, these values must also be given an Fr dependence at low
luminosity. This dependence is interpolated using a third degree polynomial between
L£=0.1 and £=5 so that at £=0.1, the dependence is as shown in Figure 7.7 and flat

above L£=5.

Figure 7.12 shows the final O,, vs. Er for 3 luminosities x 3 7 values (with
errors). Figure 7.13 shows the 7 dependence of O,, for 2 values of k; jet Er and 2

luminosities.

The error arising from the disagreement in the Er dependence between our
results of O,, for cone jets and those shown in [45] is one of the major sources
of uncertainty especially at high energies and low luminosities (around 15%). The
functional form of O, contributes an error of 0.2 GeV (calculated as the average of
the largest difference between the points and the fits for each curve in Figure 7.11).
To accommodate the uncertainty for energies greater than 200 GeV, we introduce
an additional uncertainty that rises smoothly from 0.0 to .2 GeV between 120 GeV

and 270 GeV and remains flat above 270 GeV.

7.4.2 Offset Due to Physics Underlying Event

We measure the offset due to underlying event using the relation,

Oye = m0 — 2n. (7.4)
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Figure 7.14 shows the physics underlying event offset, O,., compared to the
previous result for cone. As shown in B, there is no evidence of an E7 dependence
for 0.7 cone jets, and we do not see an E;r dependence for k; jets. Therefore we

will apply a correction only as a function of 7.

Physics Underlying Event, O,
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Figure 7.14: Measured O,, vs Er for k; jets. The result for cones is shown for
comparison.

Figure 7.15 summarizes the results in O,, for k; and for cone jets as a function
of jet 7 compared to the offset given by CAFIx5.1. Unfortunately, there is no MC

available to get the offsets beyond the central region. Therefore we must use the

92




CAFIX5.1 result to determine the n dependence. Figure 7.15 shows O, for k;, jets
for |n| <1.0 compared to O, given by CAFIX5.1 and the measured 0.7 cone O,
(from Monte Carlo data with overlay). The good agreement in the central region
between our results for cone jets and those from CAFIX5.1 reinforces our confidence
in the overlay method. O, is consistently larger for k, jets than it is for cone jets.
We normalize the CAFIX5.1 offset to our measurement for the 0.7 cone jets. Then,
we calculate the average difference between our measurements for the k£, and cone
jet offsets. We add this difference to the normalized CAFIX5.1 points to get the offset
due to underlying event for k, jets. The final underlying event offset, O, with errors

is shown in Figure 7.16.

We apply a 0.1 GeV statistical error that comes from the normalization process
described above. There is a systematic error of 0.1 GeV to accommodate possible
Er dependence (from Figure 7.14). Added in quadrature, this gives us about a 10%
error in the region |n| <1.0. We will inflate this to 15% above |n| >1.0 where we
have not measured O,, for k, jets. The O, correction for k, jets (with errors) is

shown in Figure 7.16.
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Chapter 8

k, Jet Response Correction

The calorimeter is calibrated from Test Beam data based on charge deposition in the
liquid argon for known incident particle energies. In theory, the true jet momentum
and energy would simply be the vector sum of the energy deposited in the calorimeter.
In reality, however, the measured jet energies are reduced due to energy losses in
uninstrumented regions of the detector, variations in cryostat response to single
particles (e.g. non-linear response for low energy particles), and variations in the

e/ response ratio [46].

The calorimeter response to jet momentum was measured for fixed cone jets [45,
46)]. There, the jet response is used to correct the scalar summed cone jet energy, E.
We correct vector summed k&, jet momentum, Pk, j;- The method relies on trans-
verse momentum (Pr) balance. It is, therefore, applicable to jet momentum. One
would expect the jet response to be identical for momentum and energy. However,
calorimeter showering effects widen jets, causing the vector summed momentum and

scalar summed energy to require different corrections. This is discussed in more
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detail in Appendix C.
The jet response correction is described in 7 sections:
1. The Missing Er Projection Fraction (MPF) Method.
2. Cryostat Factor Correction.
3. E' - P, Mapping.
4. Jet Response vs. Py,.
5. Low Py, Jet Response.
6. ICR Correction.

7. Jet Response Errors.

8.1 The Missing Er Projection Fraction Method

Rje: is measured using v-jet momentum balance in the transverse plane. To do
this, we use the missing transverse energy projection fraction (MPF) method. The
missing transverse energy, ﬁ,, is the vector momentum necessary to balance the

entire event in the transverse plane. Its z and y components are given by

$I‘x=-EPzi and E]"yz_zpyi, (81)
i=1 i=1

where P;; and P, are the r and y components of 4-momenta assigned to each

calorimeter cell (assumed massless).
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In an ideal detector, there would be no energy losses and, therefore, £,=0.0,

E’I‘ = - (ﬁ]&, + ﬁT had) =0, (8.2)

where ﬁT had 1S the vector sum of the hadronic recoil in the transverse plane. In
reality, the electromagnetic and hadronic responses are not unity and are measured

as

— —

meas > meas D
Tn = RemPry and P30 = RuaaPr had - (8.3)
ﬁ, is not zero and is now given by

ET = - (RemET7 + RhadE"?‘ad) #0.0. (84)

The electromagnetic scale, R.,,, is determined very accurately. Therefore, after the

photons are calibrated, ﬁ, is given by

Er = —Er, — R (8.5)
From Equation 8.2, ﬁT hed = —P'T7, and we can write
Br=Er, (Rhaa — 1). (8.6)

Hence, the hadronic response can be measured using

Rhaa=1+MPF =1+ M, (8.7)
Er,

where 77, is the unit vector for the transverse component of the photon’s momentum.
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Given that the event is balanced in transverse momentum, this gives the momentum

fraction the jet measurement has lost due to imperfections in the calorimeter.

8.1.1 The Energy Estimator, F’

Ultimately, we would like to know the response as a function of jet momentum.
However, resolution effects and reconstruction biases make the uncorrected jet mo-
mentum a poorly measured quantity. In order to avoid problems that may arise
from this, we look at the response as a function of a well measured quantity that is

strongly correlated with the true momentum of the jet of particles, PJ”:{” .

At leading order a y—jet event should be balanced in Pr. Using this and the

relation, sinf = 1/coshn, the ideal energy of the jet, E’, is given by
E' = ET5" cosh(njet) . (8.8)

The response can then be converted to a function of k; jet momentum by mapping

E' to k, jet P.

The response was derived as a function of cone jet energy in CAFIX 5.1. Only
the position of the jet is used to define the response as a function of E’. We use k;

jet momentum, Py,, because the mpf method is based on momentum balance.
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8.2 ~-Jet Data

The jet response was measured previously as a function of E’ using fixed cone jets
(R =0.7) [45, 46]. To obtain a correction for k; jet momentum, we must provide a
mapping of E’ to Py,. To do this, we use a subset of the data used to derive Rj.;
versus E’. Below we describe the criteria applied to the v-jet data for measuring
the jet response using cone jets. Some additional considerations were necessary for

deriving the jet response correction for k; jets, and we discuss these issues below.

8.2.1 Photon Event Requirements

In order to measure the jet response, we require a jet to be balanced by a well
calibrated object. In Section 4.2.3, we noted that the electromagnetic calorimeter is
very well calibrated for electrons and pions above a certain threshold. Therefore, we
do not actually require a pure photon sample, but we need an energetic, isolated,
electromagnetic cluster. So, although we use events passing triggers designed to
accept direct photons, we use different offline criteria to select events. Since the
majority of these electromagnetic clusters are indeed photons, throughout this thesis,

we will refer to them as photons.
Photon triggering is described in Appendix A.

Here is a list of the general offline criteria for the events used in our photon data.

e We select events with low instantaneous luminosity, £ < 5x10*cm~2sec™!.

e A multiple interaction tool, MITOOL, uses information from the level @, track-
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ing, and calorimeter detectors to distinguish between events where one or more
interactions took place. We select events flagged by the MITOOL as having only

one interaction.

Er., must be greater than the trigger threshold plus one og,. , where og;, is

the photon energy resolution.

Where multiple photon triggers are running at once, a high Er threshold cut
prevents a photon event from passing a lower threshold trigger and fail a higher
threshold trigger. This removes photons which fluctuated to a very high energy

in the calorimeter.

Longitudinal and transverse isolation cuts demand that the EM cluster not be

contaminated by hadronic activity.

Events with photons within 0.01 radians of a ¢ crack in the calorimeter are

rejected.

Photons in the inter cryostat region (ICR) are avoided by demanding that

|ny| < 1.0 or 1.6 < |n,| < 2.5.

Events are discarded if there is main ring activity at the time of the event. A
portion of the main ring accelerator goes through the calorimeter. When the

main ring is active, radiation leaks into the detector.

One and only one vertex must be found, and the z-vertex of the event must be

within 70 cm of the center.
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e Events where a noisy cell was removed are discarded. During reconstruction,
cells with a disproportionate amount of energy compared to their neighbors

are removed by the AIDA (Anomalous Isolated Deposit Algorithm) software.

e For Er, < 30 GeV, we demand that no muon be detected. Otherwise, we
demand that any muons detected have Pr, < 100 GeV. This is to avoid

bremsstrahlung radiated photons from cosmic ray muons.

8.2.2 Cone Jet Requirements

Here is a list of the general offline criteria for 0.7 cone jets in our v-jet data used to

derive the CAFIX5.1 jet response.

e We remove jets whose axes are within 0.25 (in 7 — ¢ space) of the photon.
e There must be at least one remaining jet in the event.

e We avoid the ICR by demanding that the leading jet 1 be contained in the
central cryostat, CC, or one of the end cryostats, EC (|n;e| < 0.7 for CC and

1.8 < |njet] < 2.5 for EC).
o If the leading jet lies in the EC, we exclude the events where Er, < 25.0 GeV.

e We avoid fake jets by demanding that the fractions of jet Pr in the coarse
hadronic (CHF) and electromagnetic (EMF) sections of the calorimeter be

within reasonable limits:

0.05 < EMF < 0.95

CHF < 0.5.
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e The Er ratio between the highest and the second highest E7 cells in a jet

(HCF) are required to be less than 10, HCF<10.

e We require the leading jet and <y to be back to back in ¢ (2.8 < A¢ < 7).

8.2.3 Additional considerations for &k, Jets

k) jets were reconstructed for a subset of the y-jet data described above in order to
perform the E’ to P, mapping. We use the same cuts on k, jets that were used for
0.7 cone jets in CAFIX5.1 (above) with the exceptions that we use k; jets in place
of cone jets, we require E7., > 20 GeV (vs. 25 GeV) for EC jets, and we do not cut

on HCF (this information is not available for k, jets).

When the k; jets were reconstructed for this analysis, additional corrections were
applied to the cell energies in the calorimeter cryostats and inter cryostat region
(ICR) [52]. These corrections were not included when cone jets were reconstructed
and the CAFIX5.1 jet response was measured. The purpose of these corrections was
to scale raw EM objects. These corrections were introduced for a special reconstruc-
tion environment called DJFIX [53]. We will refer to these corrections as DOFIX

corrections from here on.

The DAFIX cryostat corrections are simple multiplicative factors which are ap-
plied at the calorimeter cell level. The DOFIX cryostat factors for the north (ECN),
central (CC), and south (ECS) cryostats are shown in Table 8.1. A k, jet in a given
cryostat will have a jet response that is higher (by the appropriate factor) than the

CAFIX5.1 jet response. To correct k; jets, therefore, we multiply the CAFIX5.1 jet
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response by 1.0496 (the CC DQFIX factor) and adjust jet correction in the north

and south cryostats, Fcﬁ'y and ng, to accommodate the DAFIX factors.

DOFIX Cryostat Factors
ECN CC ECS
1.0609 | 1.0496 | 1.0478

Table 8.1: Cryostat corrections applied to the energy in the calorimeter cryostats
introduced for the DOFIX environment.
The DOFIX corrections to the inter cryostat region (ICR) are not so straightfor-

ward. So we use jet Pr balance in two jet events to determine an ICR correction.

8.3 Cryostat Factor Correction

The jet response varies in the different 7 regions of the calorimeter. To eliminate
these variations, we correct the k,jet momentum, Py, so that uniform (in 7) jet
response correction may be applied. The CAF1X5.1 jet response we will use has been
corrected for the 1 dependent factors (cryostat and ICR) using 0.7 cone jets. The n
dependent corrections were applied to 0.7 cone jets and the event F, was corrected
for the change in 0.7 cone jet momentum, and the jet response, R;.: = 1+ M PF, was
measured. Once this is done, R;.: can be described by a single curve as a function

of E'.

The jet response is measured for jets found in the central calorimeter cryostat,
CC (|n| <0.7), and the end cryostat, EC (1.8< || <2.5). The cryostat factor, Fe,,
(not to be confused with the D@FIX factors) is defined as the ratio Ri /R%C. It

jet

should not depend on the jet algorithm except where the jet pseudorapidity is needed
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to determine the jet’s position in the CC or EC. The value of F,, using 0.7 cone

jets was found to be

Fey = 0.977 £ 0.005 (stat) for RECO V12.

To verify that no complications arise from using a subset of the data or using
k, jets to determine pseudorapidity and to correct event Er., we remove the DOFIX
cryostat corrections from k, jets, correct the EC jets with F,,,=0.977. We correct the
event % for the change in k; jet momentum. The resulting jet response is consistent
with the CAFIX5.1 jet response with good agreement in the overlap region between

central and forward jets (Figure 8.1).

Because the DOFIX correction factors are different in the north and south cryostats,
we will have different jet response cryostat factors. The ratio of north to south
cryostat factors without the DOFIX corrections was measured to be FY /F3, =
0.997 + 0.003 [45]. We assume that the value F,,,=0.977 is the average of F, and
ng. When we incorporate the DAFIX cryostat factors, we get north and south

cryostat factors of F¥ =0.986 and F5 =0.977.
cry cry

8.4 FE' — P, Mapping

Before mapping E’ to P, we subtract the offset from the jets. Then, we correct
for the cryostat factors, F,y,=0.986 and F; =0.977. We map jets in the CC and
EC separately and because jets in these two regions may fall partially into the ICR,

we also include the 7 dependent ICR correction. We will discuss in detail how we
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Figure 8.1: Response versus E’. Open symbols are from the full 4-jet data sample
and solid symbols are from the smaller sample reconstructed with k;, jets. The
additional DOFIX cryostat corrections were removed from k; jets.
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derived this correction for k; jets in section 8.6. The jet response has been corrected
for the ICR using 0.7 cone jets. So this correction is only necessary for the mapping

of E’' to Py,.

Once the jets have been corrected for the offset and the eta dependent jet re-
sponse corrections, the average Py, is binned in E’ and plotted as a function of E’
(Figure 8.2). We fit a straight line (ax + b) to the CC and EC jets separately. The
fit parameters for the CC and EC are shown in Table 8.2. The results of the fits are

shown in Figure 8.2 with x2/d.o.f. = 2.29 in the CC and x?/d.o.f. = 1.11 in the EC.

E' — P, Mapping Parameters
CC EC
0.835 + 0.009 | 0.838 + 0.014
2.465 £+ 0.392 | 4.522 + 2.008

o ®

Table 8.2: Fit parameters for E’ to P, mapping.

8.5 Response vs. P,

To accommodate the DOFIX corrections to the cryostats, the CAFIX5.1 jet response
is scaled by the DOFIX CC factor. Using this and the mapping parameters above,
we translate the Rj.; versus E' data to Ry, versus Py,. We fit Rj,; versus Pyusing

the same functional form that was used in CAFIX5.1,

Rje;(Pit) = a+b-In(Py) + ¢ - In (Pyy)? (8.9)
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We use a Monte Carlo point to constrain the fit at high momenta. We use the

same Monte Carlo point that was used in CAFIX5.1 except we multiply both the jet

momentum and the jet response by the DOFIX CC cryostat factor. The result of

the fit is shown in Figure 8.3.

o
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PK! jet (GeV)

Figure8.3: Rjet versus Py,. The outer band shows limits on the measured jet response
for high momentum jets based on the region in parameter space defined by the
X2 = x2. + 3.5 surface. This region corresponds to the 68% confidence region of
Parameter fluctuations from the nominal values.

The data were fit for Py, > 30 GeV. The fit parameters are shown in Table 8.3.

For comparison, the fit is shown in Figure 8.4. We also show the k, Rje: fit divided

109



Jet Response Parameters
Rjet(Pit) = a+b-1n(Py) + ¢ - In(Py)”
a b c
0.7174 £ 0.0518 | 0.0399 + 0.0233 | -.0007 + 0.0026

Table 8.3: Fit parameters for k; jet hadronic response correction.

by the DOFIX CC factor (with Py, also divided by the DOFIX CC factor) for shape
comparison with the fits for the cone algorithm. The single parameter errors show
one standard deviation uncertainties as calculated from the x? = x2,;, + 1 surface in

the parameter space. x2/d.o.f. = 0.650 for the fit.

8.6 ICR Correction

"The cryostat factor, F,,,, is intended to put the end calorimeter cryostats on the
same footing as the central cryostat. We wish to do the same in the ICR. To do this
‘we use transverse momentum balance in di-jet events. The method is similar to that

used to measure the hadronic response, but here, the central jet plays the role of the

Photon.

8.7 Jet-Jet Data

The jet-jet data used to determine the 7 dependent correction in the ICR to the jet
Tesponse is taken from events passing the inclusive jet triggers (triggers requiring

One or more jets in an event). These triggers are described in Appendix A.

Here is a list of the criteria for k, jets in our jet data.
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Data Sample | Pr; cut (GeV)
JET_MIN 30.0
JET_30 55.0
JET_50 90.0
JET_85 120.0
JET_MAX 175.0

Table 8.4: Second highest jet Pr requirements for triggers.

e We select events with low instantaneous luminosity, £ < 5x103°cm~2sec™!.

We select events flagged by the MITOOL as having only one interaction.

Events passing a given jet trigger must be fully efficient for the second highest
Pr jet [49]. This removes resolution biases in the forward region. A list of jet

triggers and the Pr cuts are shown in Table 8.4.

There can be one and only one vertex found, with |z| < 50 cm.

We demand two and only two reconstructed jets (no third jet with Pr > 15

GeV.

e We demand at least one jet with |n;¢| < 0.5.

e The missing transverse energy in the event, £, must be less than 70% of

the leading jet Pr, < 0.7. Er is the magnitude of the vector momentum

Em

necessary to balance the entire event in the transverse plane. It is defined by

B=|(5r) + (BR) 610

112



8.7.1 Measurement of F,

We correct the k; jets for the cryostat factor and correct the event E; using the
change in k; jet momentum. The relative jet response of the forward jet with respect
to the central jet, RT¢ | is measured as in photon events substituting the central jet
for the photon:

Rrel

meas

(E 77 =1+ ET ncentral Jet‘ (811)

P central jet

In a uniform detector and at leading order, the momentum of the forward jet would
be given by P" = PECcoshn. The ideal relative jet response, RI¢l, for the two jets
could be calculated using the jet response as a function of Py, by

Rjet(PEC€coshn)

Rrel (P ) = Rjet(PCC)

(8.12)

"Thus, the n dependent ICR correction, f,, is simply the factor needed to correct

Rmeaa to Rcalc-

Using the fit to Rje;(Px:), we compare Rpmeqs t0 Reqrc in Figures 8.5 and 8.6.

To parameterize the correction factor, f,, we look at n bins vof 0.1 in the regions
-2.0< 5 <-0.5 and 0.5< 1 <2.0. For each bin, we plot the correction factor as a
function of the average Pr of the forward jet in a given bin for a given trigger. We
fit these witha straight line and these fits are used to determine f, as a function of
Jet Py for each 7 (see Figures 8.7 and 8.8). After the correction is applied, Ryeas

agrees well with R, (see Figure 8.9).

As previously mentioned, the CAF1X5.1 jet response has been corrected for the n
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Figure 8.5: Response versus 7 >0.0 for jet-jet data.
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Figure 8.7: Correction factor F;, as a function of central jet Pr for positive 7. The
Solid straight line is a fit to the data. The dotted line is the CAFIX5.1 correction for
0.7 cone jets.
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Figure 8.8: Correction factor F;, as a function of central jet Pr for negative 7. The
Solid straight line is a fit to the data. The dotted line is the CAFIX5.1 correction for
O.7 cone jets.

117



R et

Riet

Rjol

1.1

| P;>40 GeV -
1.05 +.L + }% + }
1 ﬂ
0‘95
0‘9 1 1 1 1 l 1 1 1 1 l 1 1 1 1 l
1 2 3
n
1.1
| Pr,>95 GeV J:T
1.05}
+¢i_i-$— JrJrJr
1 -.M*
0.95-
O.g _1 1 1 1 l 1 1 1 1 l 1 1 1 1 I
1 2 3
Y
T Pa>175 Gev
1.05}- .
}#{wﬂ#
1 i + + -?- -
0.95} ;
0.9-1 1 1 1 1 1 1 1 ; I 1 1 1 1 l
1 2 3
n

1.1

Rjel

1.05+

0.95

0.9

1.1

R jet

1.05+

0.95

0.9

| P,>60 GeV H:_q
- + ¢-+‘
gt Jf F
i 1 1 1 1l I 1 1 1 1 l 1 1 1 1 I
1 2 3
n
[ Pn>130 GeV
$opdtd- -
SR FrvuA o
L —_
1 1 1 1 l I 1 1 1 L 1 1 1 1 I
1 2 3
n

Figure 8.9: Response versus 7 after 7 dependent corrections.
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dependent factors (cryostat and ICR) using 0.7 cone jets. Therefore, the corrections
derived here will have no bearing on R, versus E'. They can, in principle, effect the
Rje: versus Py, fit via their effect on the mapping of E’ to Py (k. jets are corrected
for the offset, cryostat factor, and ICR dependencies prior to mapping). This effect

on the fit is negligible as seen in Figure 8.10
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Figure 8.10: Response fit versus jet F with and without the ICR correction.
Rjet(E)=a+b-In(E)+c-In (E)®. The two curves are virtually identical.
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8.8 The Low Er Bias

The minimum E7 reconstruction threshold for 0.7 cone jets is 8 GeV. The jet
reconstruction efficiency for this threshold does not reach 100% until 20 GeV. This,
combined with a steeply falling jet E distribution, leads to biases in the jet response

measured using the MPF method.

To remove this bias, the jet response was measured as a function of Er, (instead

of E') with no jet requirements. The bias is estimated using

Ry, = Rjet(> 1 jet) (8.13)

- )
R.let(no jet required)

where the numerator is measured as described in Section 8.1 with the jet required to
be in the CC. Since the denominator has no jet requirement, the hadronic recoil is
unrestricted and may lie in the EC or ICR making the numerator and denominator
inconsistent. To reconcile this, Ry, is normalized to unity for Er, > 20 GeV(where

the reconstruction efficiency for jets is 100%).

The jet response, R;,,, is corrected in the following way. First, the 0.7 cone jets
(in the CC) are corrected by the inverse of Ry,,. Then, the event missing Er is
corrected for the change in the 0.7 cone jet momentum, and Rj.; is measured with

the corrected Fy.

The three lowest points in Figure 8.3 have been corrected for this bias. The large
error bars reflect the uncertainty determined from a Monte Carlo simulation where

the resolutions, efficiency and reconstruction parameters were varied.

120



8.9 Low P Jet Response

In this study, we included k; jets with Prj.; > 2 GeV. We hoped to avoid the Low
Er bias described above because this threshold is considerably lower than the 8 GeV
threshold used for finding cone jets. Unfortunately, it is difficult to extract a hard
2-to-2 process involving a photon and a jet at low momentum. When the jet response
is low, a jet’s position resolution is also poor. A jet and a photon resulting from a
2-t0-2 process will less likely be found back to back if the jet response is low than
if it is high. This is the case for low energy events as demonstrated in Figure 8.11

where A¢, jer (Ady jet = |d4| — |@jee]) is shown for low and high momentum k, jets.

In addition to this, we see that for E1, < 20 GeV, the 1st, 2nd and 3rd jets
appear to have similar Pr distributions making it difficult to differentiate between
jets coming from the hard process and spurious jets reconstructed from underlying
event and noise. Figure 8.12 shows the Pr distributions of k, jets (excluding k, jets

reconstructed from the photon) for a range of Er,.

Some attempt was made to pronounce the structure of these events. We tried
loosening the back-to-back cut and allowing (in addition to the leading jet) the
2nd or 3rd jet to balance the photon. While this was effective in unbiasing the
jet response, it wasn’t very useful in achieving the ultimate goal of jet momentum
calibration because it also allows events where more than one object balances the
photon. In addition, questions are raised as to how to treat jets in such events where

it is difficult to discern between a hard interaction and underlying event and noise.
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So, although we do not have a bias due to the reconstruction threshold, it appears
that we do introduce a topology bias at low energy by requiring the leading jet and
photon to be back to back. This causes us to reject events where the jet’s position
and/or momentum is mismeasured due to low jet response and we bias ourselves

toward higher jet response.

We do not apply a correction to the low Pr k, jets as is done for cone jets. Unlike
the low Er bias for cone jets, the topology bias is apparent only when we try to
measure the response using the MPF method. Because the CAFIX5.1 jet response
at low energy was derived using data with no jet requirement (Equation 8.13), it is
considered to be free of this topology bias. We use the unbiased jet response derived
for CAFIX5.1 and assign an additional error due to the effect of unbiasing. The error

bars on the three lowest energy points in Figures 8.3 and 8.13 reflect this error.

The jet response is fit for Py, above 30.0 GeV and, therefore, the low momenta
data do not affect the result of the fit. The low momenta data diverge from the
extrapolated fit (see Figure 8.13a). To correct for this, we fit the function, f(z) =
1+ a(z — 35)2, to the ratio of the extrapolated fit to the low energy data, R._;/Riow-
Dividing the extrapolated fit by this function, R._;/f(z) provides a jet response
curve for the low energy data which matches both slope and function at 35 GeV
with R._; (see Figure 8.13b). We match the fits at 35 GeV instead of 30 in order to

get a smooth match.
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Figure 8.13: Low momentum jet response vs. Pi. (a) The solid line is the extrapo-
lated fit. Dotted lines depict errors on the fit. (b) The solid line is the jet response
used to correct jets. The dashed lines show the errors (as a function of Pr).
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8.10 The Jet Response Errors

8.10.1 Errors and Correlations of the R;. Fit

To determine an error for the response function, a surface defined by x? = x2,.. +3.5
is mapped out in parameter space. For three parameters, this contains a region
with a 68% probability for parameter fluctuations [54]. The points lying on this
surface are then mapped back onto the jet response versus momentum plane. At a
given momentum, the error is determined by the parameter set giving the greatest
deviation from nominal jet response. The high and low errors are calculated for
11 points, (10, 20, 35, 50, 75, 100, 150, 200, 300, 400, and 500 GeV). The error is
interpolated for energies between these 11 points. The result for the k, jet algorithm
is shown in Figure 8.3. The outer band represents the error on the fit to the jet

response.

The fit error described above gives the maximum deviation at each P, value
for all the fit parameters within the 68% confidence level. The parameter set that
gives this deviation at one value of P,; does not necessarily induce the same effect at
another value and it is highly unlikely that one set of parameters will produce either
of the error curves shown in Figure 8.3. We do expect, however, that the errors for

two points close in P will be largely correlated.

To quantify the correlations between different values of Py,, we generate a corre-

lation matrix in the following way.

e We map out a grid in parameter space defining the x? < x2,, + 3.5 volume.
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Each parameter set in this volume defines a response function contained within

the bands shown in Figures 8.3.

e The correlations are calculated for an 11 x 11 matrix. We loop through all
the parameter sets in the volume and calculate response at eleven values of Py,
(corrected for offset and 7 dependence) between 10 and 500 GeV. The matrix
elements are the standard correlation coefficients, (3, j), between the responses

measured at each energy value. 7(z, ) is defined as:

274 (Ra(i) = R(D)(Ra(j) — R())

ST (Ra(i) - RO S04 (Rali) - RG))E

r(i, 7) (8.14)

where Ng,i4 is the number of parameter sets in mapped out in the x? < x2,;, + 3.5
volume and R, (i) is the response for the i*® energy bin calculated with the n*?

parameter set.

The correlation matrix for the jet response fit to k; jets is shown in Table 8.5.
Correlations are illustrated graphically in Figure 8.14 where four rows of the matrix
are plotted showing the error correlations relative to the errors at 35, 50, 100, and

500 GeV respectively.

8.10.2 Low Momentum Errors

For the error due to the unbiasing of the jet response (the error bars), g,, we used
the function, f(z) = a(z — 35)%, where a is defined such that the error decreases
from 3% to 0 from 15 GeV to 35 GeV. This comfortably accomodates the error bars.

This is added in quadrature with the errors on the extrapolated fit, o._s for the low
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Figure 8.14: Error correlations for k, jet response fit. Error correlations are shown in
four slices from the full correlation matrix. The four curves show the point-to-point
correlation of fit errors relative to momentum values of 35, 50, 100, and 500 GeV
respectively.
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Correlations for Fit Error, k; Jets, Reco 12
P(GeV) || 10 | 20 | 35 | 50 | 75 | 100 | 150 | 200 | 300 | 400 | 500
10 1.00 | 0.97 | 0.62 | -0.32 | -0.63 | -0.56 | -0.29 | -0.06 | 0.23 | 0.37 | 0.45
20 097 | 1.00 | 0.77 | -0.15 { -0.57 | -0.56 | -0.36 | -0.16 | 0.10 | 0.23 | 0.31
35 0.62 | 0.77 | 1.00 | 0.49 | -0.04 | -0.17 | -0.20 | -0.15 | -0.06 | 0.00 | 0.03
50 -0.32|-0.15| 049 | 1.00 | 0.82 | 0.67 | 0.42 | 0.24 | 0.04 | -0.06 | -0.12
75 -063 | -0.57 | -0.04 | 0.82 | 1.00 { 0.96 | 0.78 | 0.59 | 0.33 | 0.19 | 0.10
100 -0.56 | -0.56 | -0.17 [ 0.67 | 0.96 | 1.00 | 0.92 | 0.78 | 0.56 | 0.42 | 0.33
150 -0.29 | -0.36 | -0.20 | 0.42 | 0.78 | 0.92 | 1.00 | 0.96 | 0.84 | 0.74 | 0.67
200 -0.06 | -0.16 | -0.15 | 0.24 | 0.59 | 0.78 | 0.96 | 1.00 | 0.95 | 0.89 | 0.84
300 0.23 | 0.10 | -0.06 | 0.04 | 0.33 | 0.56 | 0.84 | 0.95 | 1.00 | 0.99 | 0.97
400 0.37 | 0.23 | 0.00 | -0.06 | 0.19 | 0.42 | 0.74 | 0.89 | 0.99 | 1.00 | 1.00
500 045 | 0.31 | 0.03 | -0.12 | 0.10 | 0.33 | 0.67 | 0.84 | 0.97 | 1.00 | 1.00

Table 8.5: Correlation matrix for error band in hadronic jet response correction for
k, jets.

error (high in jet P). The high error (high jet P) is the low error added in quadrature

with the difference between the extrapolated fit and the actual fit.

Olow = y[O}+02;

and Opigh = \/a,';’+af_,+a§,-” (8.15)

The correction to the extrapolated fit is applied as a function of momentum.
However, the uncertainty is applied as a function of Pr rather than P to account for
forward jets whose momentum may be above 35 GeV but whose Pr may be below

35 GeV.

8.10.3 7 Dependent Correction Errors

We apply a 0.6% error on FJ, and F; . This is due to the 0.5% error on F,,, added
in quadrature to the 0.3% error on Fcﬁ’y / FCS,y. No additional error need be considered

given that the DOFIX cryostat factors are known and definite.
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n Region Mean | RMS | N | RMS/VN

|n] <0.5 0.0028 | 0.0113 | 25 0.0023
0.5< |n| <1.0 | 0.0061 | 0.0101 | 25 | 0.0020
1.0< |p| <1.5 | 0.0083 | 0.0213 | 25 0.0043
1.5< |p| <2.0 | -.0005 | 0.0186 | 24 0.0038
2.0< |n| <2.5 | -.0146 | 0.0320 [ 18 | 0.0076
2.5< |n] <3.0 | -.0107 | 0.0500 | 11 0.0151

Table 8.6: Residuals from Figures 8.15 nd 8.16.

To measure the accuracy of the ICR correction, we apply the cryostat corrections
and the ICR correction and compare R,;cqs t0 Reqre. Figure 8.15 shows the fractional
difference. The distribution of these fractional differences is plotted in the 6 7 regions
shown in Figure 8.16. The mean, rms, number of entries, N, and rms/ VN are shown
in Table 8.6. The correction is applied in the region for 0.5< |n| <2.0. We assign
a 1% error to the correction based on these values and introduce an additional 7

dependent error that turns on at |n| =2.5 and increases linearly up to 3% at |n| =3.
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Figure 8.15: The fractional difference between R,,.., and R4 for partially corrected
jets. AR = (Rmeas — Rcalc) / R aic.
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Chapter 9

K, Jet MPF Closure

The missing transverse energy projection fraction (MPF) method is tested using
the Monte Carlo 7-jet events which are processed through a simulation of the DO
detector. k, jets are reconstructed from parton shower, hadrons, and calorimeter
information. The photon energy, E, found at the calorimeter level is corrected to

E,, prior to detector simulation, and the event E, is adjusted.

A k jet momentum correction is derived by applying the MPF method to the
Monte Carlo calorimeter information. The jet correction is applied to calorimeter
level k;jet momentum, P[;***, and the corrected momentum is compared to the

ptcl

nearest k; jet found at the particlelevel, P{,“. Closure is obtained when the corrected

calorimeter jet momentum agrees with the hadronic jet momentum,

X1, (9.1)
The closure test was performed using cone jets and closure was attained within
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errors [45, 46]. As a reference we include comparisons to 0.7 cone jets in our analysis.
We attain closure in the central region for k, jets, but we see a small excess in the
forward region. We attribute this excess to misclustering of energy in calorimeter
jets. We are unable to measure this effect in D@ data, but we can estimate the

uncertainty.

9.1 The Data

We use Herwig (version 5.7) Monte Carlo y-jet data generated with underlying event.
Monte Carlo data is generated with v-jet ET thresholds of 7, 15, 30, 75, 150,
300, 500 and 700 GeV. It is processed through the SHOWERLIB [48] DO detector
simulation and reconstructed using version 12 of the reconstruction package (RECO
v12). Then, we reconstruct k; jets as described in Chapter 5 with the requirement
that the transverse momentum, Pr, must be above 4 GeV for samples generated

with Ep threshold at 7 GeV and above 8 GeV for the rest of the sample.

9.2 Monte Carlo Jet Corrections

9.2.1 Monte Carlo Underlying Event Offset

The Monte Carlo data does not include the effects of noise, pile-up or multiple
interactions, but it does include a Monte Carlo physics underlying event. Therefore,

we must subtract an offset only for the Monte Carlo underlying event.

The offset due to physics underlying event for k;, jets was seen to be approximately
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Underlying Event Densities

CC EC

Calorimeter | 0.57 | 0.57
Hadron 0.53 | 0.50

Table 9.1: Herwig v5.9 underlying event energy density.

30% larger than it was for cone jets. We estimate the offset for k; jets in Monte
Carlo data by multiplying a density by the 0.7 cone area and then scaling up by 30%.
The measured energy density due to underlying event was measured in HERWIG
v5.9 data generated with and without the underlying event present. These densities
were derived by measuring the average difference of energy in ¢ rings in the detector
(divided by the area in 1 — ¢) with and without the presence of underlying event.
The physics underlying event in HERWIG versions 5.7 and 5.9 are the same. The

underlying event energy densities are shown in Table 9.1.

9.3 Monte Carlo Jet Response

The jet response is measured as described in the previous chapter except we do not
apply the ICR correction, F;, and we only focus on the central (|| < 0.7) and

forward (1.8 < |n| < 2.5) regions.

9.3.1 Monte Carlo Cryostat Factor

First, we determine the cryostat factor, Fir, = RE¢/RS,C, for the Monte Carlo data.

Figure 9.1 shows the cryostat factors derived using k; and 0.7 cone jets to define E’.

Fy =1.039 +0.004 and F, kL = 1.033 & 0.004 agree within statistical errors.

cryo
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Figure 9.1: Monte Carlo Cryostat Factor. Circles are for k, jets and squares are for
cone jets. Solid line is a fit to constant for the k, jet points; dashed line is a fit to
constant for the cone jet points. Errors are statistical only.
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Algorithm a b c x%/dof
K, 0.794 + 0.013 | 0.0244 + 0.0044 | -0.0014 + 0.0004 | 18.8/16

Table 9.2: Fit parameters for Rje vs. Pk, in Monte Carlo data.

9.3.2 Jet Response vs. k; Jet Momentum

The jet response, Rje, is obtained by correcting the EC jets by F.y,, adjusting the
event Frby the change in jet momentum and applying the MPF method described
in the previous chapter. The average R, is measured in bins of E' ranging from 10
to 450 GeV for central jets and 100 to 600 GeV for forward jets. The average k, jet
momentum (corrected for the offset and cryostat factor) is also measured in these
E' bins. Then, the average R,.: values are plotted versus the average Py, values and

the functional form,

R;(E)=a+b-In(E) +c-In*(E), (9.2)

is fit to this data (Figure 9.2. The results of the fit are shown in Table 9.2.

9.4 Monte Carlo Closure

We apply the corrections described above to k; jets reconstructed from the Monte
Carlo calorimeter information. First we subtract the offset from P, then we divide
by the Monte Carlo cryostat factor and Rj.;. We match the calorimeter (meas) and
particle (ptcl) jets to within a distance of 1.0 in 7 — ¢ space. Figure 9.3 shows

the ratio of the corrected calorimeter jet momentum, P[}¢%*, to the corresponding
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Figure 9.2: Rj.; vs. Pyin Monte Carlo data. Circles represent CC jets and squares
represent EC jets.
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particle jet momentum, P,ffd, for calorimeter jets in the CC, |fness| < 0.7. The

average closure is determined by a constant fit and found to be 1.002 £+ 0.001
Figure 9.4 shows the ratio of the corrected calorimeter jet momentum, P,

to the corresponding particle jet momentum, P,f:d, for calorimeter jets in the EC,

1.8 < |Mmeas| < 2.5. The average closure is found to be 1.015+0.003. No out of cone

showering correction, R...., was applied to cone jets and this can easily explain the

deficiency in Figure 9.4.

It is arguable whether the deviation from unity of the closure ratios (0.2% in the
CC and 1.5% in the EC) is significant, and there is no evidence of further excess

going farther forward as is shown in Figure 9.5.

The most plausible explanation we have for the small excess in the forward region
is that it is due to misclustering, energy incorrectly transferred from one jet to
another due to calorimeter showering. We have no direct way of determining this
effect from data. It is reasonable to expect, however, that misclustering should be a
second order effect compared with the out-of-cone showering losses observed in the
case of cone jets. This is because misclustering would only occur when two or more
jets are close to each other and by using vector summed momentum instead of scalar
summed energy, the jet Pr contribution from the fraction of the shower at the edge

of a jet is greatly reduced.

As a result of this study, we assign an error of 1% in the CC, || <1.0, increasing
linearly to 1.5% at |n| >2.0, and then to 5% at n=3.0. Above this the error remains

flat at 5% (see Figure 9.6).
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Figure 9.3: Monte Carlo Closure in CC. The ratio of the corrected calorimeter jet
momentum to the corresponding particle jet momentum in the central region. Circles
are for k, jets and squares are for cone jets. Energy is compared for cone jets. The
dashed line is a constant fit to the k; jet closure.
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Figure 9.4: Monte Carlo Closure in EC. The ratio of the corrected calorimeter jet
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141



ptel
t/P jet

21.075

meaos

F)

T T T 1 ] T 1 7T T

I

1.05

1.025

RNELAN B S (N N B
+

0.975

0.95

0.925
e VEC K; Jet

T T 1 1 I T 1 1 71 l' T 1 1T 1 l T 1 1 71

Og IJ_Lllllllllllllllllllllllllllllllllllllllllllllll

0 50 100 150 200 250 300 350 400 450 500
P

jet

Figure 9.5: Monte Carlo Closure in EC. The ratio of the corrected calorimeter jet
energy to the corresponding particle jet energy in the far forward region, VEC,
defined by 2.5 < |7neas| < 3.5.

142



1.1

o ___ Nominal
1.0 weemeeree e High/LOW ..............
0 s
0.95}—wereoe ST e
0.9 l 1 1 1 1 I A 1 1 1 l 1 L 1 1 1 L 1 1 1 l 1 1 1 1 l 1 1 1 1 l
-3 -2 -1 0 1 2 3
n

Figure 9.6: k, algorithm dependent correction, Ry;. Errors are shown as dotted
lines.

143



Chapter 10

k, Momentum Calibration

Summary

To recapitulate, the method for correcting k;, jet momentum uses the following re-

lation
Pptcl _ P;:faa - EO("I, L:, PT)

e - ) 10.1
get Rjet(na P) ( )

The calibration is an average correction, integrated over all jet quantities except
energy and pseudorapidity. Jets pointing to ¢ cracks, or with average characteristics

different from those in the ~-jet sample, may need a different correction.

The correction is accurate for k; jets with Pr >15 GeV and || <3. The poor
knowledge of the calibration in the range Pr <15 GeV is taken into account with a

rapidly increasing error below this threshold.

The calibration is based on Run Ib data taken in pp collisions at /s = 1.8 TeV.

e Offset: the total offset, Eo(n, £) has contributions from physics underlying
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event, O,. and an offset due to uranium noise and pile-up, O,;. O, and O,;
were derived from a sample of Monte Carlo events with D@ data events over-
layed. O, is parameterized as a function of 7. Above |p| >1.0, we apply a
correction based on the 7 dependence of the CAFIX5.1 correction but normal-
ized in the central region to our result. O,, is parameterized as a function of
n, £, and Pr. For |n| >1.0, we apply a correction based on the n dependence
of the sample generated at 30< Pr <50 GeVat £ = 5 x 10¥pb~'sec™! but

normalized in the central region as a function of £ and Pr.

Response (7 dependence): the cryostat factor is adjusted for the DOFIX
corrections, FY,=0.986+0.006 and F;,=0.977+0.006. The ICR 7 dependent
correction was derived using jet-jet data. It is applied to 7 bins in units of 0.1
and parametrized as a function of Pr in each bin. We assign a 1% error to
the correction based on these values and introduce an additional 7 dependent

error that turns on at || =2.5 and increases linearly up to a 3% at |n| =3.

Response (energy dependence): the CAFIX5.1 jet response as a function
of E' was taken and multiplied by the DOFIX CC factor of 1.0496 to accom-
modate this correction in the k; jet data. E’ was mapped to k;, jet P and the
jet response is fit as a function of k;, jet P above 30 GeV. Below 35 GeV jet
momentum, there is an additional correction to accommodate the deviation
from the extrapolated fit. Below 35 GeV jet Pr, there is an additional error to

account for the uncertainty in the jet response (see Figure 8.13b).

Misclustering: No correction is applied, but an error is assigned to accom-

modate misclustering of energy.
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e Monte Carlo: The correction is derived from a HERWIG sample processed
through SHOWERLIB and reconstructed with RECO V12. At present, there is

no correction for variations in the ICR region.

10.1 Summary Plots of Corrections and Errors

In this section we provide some summary plots to illustrate the size of the jet correc-
tions and errors as a function of jet Pr and pseudorapidity. For the following plots,

luminosity was set to 5 x 103° cm~!sec™!

. Figures 10.1 - 10.3 show the correction
and errors as a function of k, jet Pr for 3 different 7 regions. In the n=1.2 plots,
Figure 10.2, the EM, CH, FH, and ICR fractions were taken as averages of values
found in DO jet data. The fluctuations at large energies are due to low statistics
in narrow Pr bins. Figures 10.4 and 10.5 show the full correction and errors as a

function of 1. Here also, the EM, CH, FH, and ICR fractions are taken as averages

of values found in data.
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Jet Corrections and Errors (Jet n = 0.0)
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Figure 10.1: Corrections and Errors for nx¢jee =0.0. Top: Nominal, high, and low
correction factors. Bottom: high and low fractional errors.
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Jet Corrections and Errors (Jetn = 1.2)
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Figure 10.2: Corrections and Errors for ngjee =1.2. Top: Nominal, high, and low
correction factors. Bottom: high and low fractional errors.
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Jet Corrections and Errors (Jet = 2.0)
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Figure 10.3: Corrections and Errors for nkjes =2.0. Top: Nominal, high, and low
correction factors. Bottom: high and low fractional errors.
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Jet Correction and Errors v.

n — (20 GeV Uncorrected P; Jets)
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Figure 10.4: Corrections and Errors versus nxije:, ki Jet Pr = 20 GeV. The to-
tal correction and error are both shown as well as the eta dependence of several
individual components of the jet scale error.
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Jet Correction and Errors v. n — (100 GeV Uncorrected P; Jets)
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Figure 10.5: Corrections and Errors versus ngijet, ki Jet Pr = 100 GeV. The to-
tal correction and error are both shown as well as the eta dependence of several
individual components of the jet scale error.

151



Chapter 11

R39 Preliminary Results

Now that we have calibrated the k; jet momentum, it is possible to make a very
preliminary experimental measurement of R3; using the k; jet algorithm. Shown in
Figure 11.1 is a measurement of R3; as a function of Hr; using D@ data. Jets are
corrected for the momentum scale, and the errors reflect statistical uncertainty only.

Hrj is defined as the sum of the Pr of the 3 highest Pr k, jets in an event,
3
Hr3 =) Pr;. (11.1)
1=1

The number of jets in a given event is equal to the number of k, jets with Pr; >
feut X Hrs. Rsp is measured as the ratio of events with 3 or more jets to events with

2 or more jets,
0.23 jets
o2 jets ’

R32 = (11.2)

Because we choose f.,; to avoid cases where only one jet passes the cut, virtually all

events have at least 2 jets. So R3; can also be thought of as the fraction of events
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with 3 or more jets.
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Figure 11.1: Rj3y, vs. Hrs. Errors are statistical only. Errors in Monte Carlo Data
are the weighted statistical errors.

At this time, we have not made a comparison to an Oa? calculation. For com-
parison, the Rj3; is measured using Herwig Monte Carlo data (version 5.8) at the
hadron level. This is the same sample of events used to determine f., = 0.15 in
Chapter 5. The Herwig data are consistently higher than the D@ data. However,
no systematic studies (other than the momentum calibration) have been performed

on the D@ data. So at this point, it is extremely difficult to draw any conclusions.
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Appendix A

Photon and Jet Triggers

A.1 Photon Triggers

The photon triggers we use were designed for direct photon measurements and span
the Er range from 6 GeV through 60 GeV. At Level 1 (the hardware trigger), all
photon triggers require at least one calorimeter trigger tower (0.2 x 0.2 in 77 X ¢) to
have Er above some threshold. The thresholds used for various triggers are shown
in Table A.1. When an event passes a level 1 trigger, a list of towers satisfying the

level 1 criteria is sent to the Level 2 framework for further analysis.

The Level 2 software triggers have different requirements, but they all share
the same algorithm to identify photon candidates [56]. The algorithm begins by
identifying the most energetic cell in the 3rd layer of the EM calorimeter in a tower
that passed the level 1 threshold. The Er in the cells within An x A¢ = 0.3 x 0.3
is summed in the EM and FH1 (1st layer of the fine hadronic calorimeter). To

determine whether or not this is a desirable photon candidate, the following criteria
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Trigger Level 1 Level 2

Name Threshold | Threshold

(GeV) (GeV)

GAM_6ISO_.GAM 2.5 6.0
GAM_141SO_.GAM 7.0 14.0
GAM_201SO_.GAM 7.0 20.0
EM1_GIS 14.0 25.0
EM1_GIS_HIGH 14.0 40.0
EM1_ESC 14.0 60.0

Table A.1: Triggers used in the photon event selection. Additional Er cuts are
applied offline.

are imposed on this cluster:

e The Er of the candidate cluster must be above the thresholds shown in Ta-

ble A.1.

e The hadronic energy of the cluster (contained in FH1) must be less than 10%

of the total energy.

e The energy deposited in the EM3 layer must be between 10 and 90 percent of

the total.

e The shower shape of the cluster in the EM3 layer is required to be consistent
with electron shower shapes in test beam data. This is measured by taking
the difference between the radial moments in 0.5 x 0.5 and 0.3 x 0.3 windows
around the axis of the cluster. The difference is required to be below some

value which varies as a function of 7.
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e A cut, fis, is made to ensure that the photon is isolated from other activity,

Er=.4 _ Eduster
Ecluster < fi” ’ (Al)

where E7= denotes the energy contained in a cone of radius .4 (7 — ¢ space).
fiso = 15% for all level 2 filters except GAM_6_ISO_GAM where it is set to

30%

A.2 Jet Triggers

The inclusive jet triggers were designed to accept events with 1 or more jets with
jet Er above some threshold. At Level 1 (the hardware trigger), there are two types
of jet triggers. One type requires a trigger tower (0.2 x 0.2 in 7 x ¢) to have Er

above some threshold. The other type requires a large tile (0.8 x 1.6 in n x ¢ or
4 x 8 in trigger towers) to be above some Er threshold. All of the triggers used
in this thesis required the second type (large tiles) except for the JET_MIN trigger
which requires a trigger tower. The thresholds used for various triggers are shown
in Table A.2. When an event passes a level 1 trigger, a hot tower list is sent to the
Level 2 framework for further analysis. For JET_MIN, the hot towers are simply all
the trigger towers with E1 > 3 GeV. For the large tile type triggers, the hot towers

are the ET weighted centers of the large tiles with Er > 6 GeV.
Below is a brief overview of the workings of the level 2 jet finder software package,

L2JETS, which identifies jet candidates.

1. L2JETS receives a hot tower list from the Level 1. The hot tower list is a list
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Trigger Level 1 Level 2
Name Threshold | Threshold
(GeV) (GeV)
JET _MIN 3.0 20.0
JET_30 15.0 30.0
JET_50 25.0 50.0
JET_85 35.0 85.0
JET_MAX 35.0 115.0

Table A.2: Triggers used in jet event selection. JET_MIN required a trigger tower
(versus a large tile) at level 1. Additional E7 cuts are applied offline.

of 'candidate’ trigger towers. In run 1b, there were two types of candidates:
those from trigger tower (0.27 x 0.2¢) type triggers and those from large tile
(0.8 x 1.6¢ or 4 x 8 trigger towers) type triggers. The trigger tower candidates
are simply trigger towers whose total (EM + Hadronic) Er is greater than
some set of ’seed’ thresholds The position of a large tile candidate is the trigger
tower(0.27x0.2¢) corresponding to the ET weighted center of a large tile(0.87x
1.6¢) whose total Er is greater than the seed threshold. These ’seed’ thresholds
are not to be confused with the thresholds necessary to pass the level 1 trigger
(i.e. JET.30 requires 1 large tile with Er > 15 GeV and the level 2 seed

requirement is large tile Er > 6 GeV). The hot tower list is ordered in E7.

2. The filters are considered in the order in which they appear in the trigger list.
For a given level 2 filter, the seed candidates in the hot tower list are considered
for this particular filter. A 1.47 x 1.4¢ box is drawn around the seed tower and

the Er weighted center of this box will become the level 2 jet center.

3. All calorimeter towers (.17 x .1¢) within .7 of the L2 jet center that are not

flagged as used in a previous jet are summed in Er, EM Er and the n — ¢
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RMS size is found.

. If the Er of the calorimeter tower sum is above the level 2 threshold (see
Table A.2), the event passes and all trigger towers and calorimeter towers

within .7 of the L2 jet center are flagged as used.

. Return to step 2. At any point, if the trigger tower considered has been flagged
as used, the L2 jet it is associated with is considered. If this L2 jet Fr is above

threshold, the event passes.
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Appendix B

Cone Jet Offset Comparison

The offsets for the cone algorithm implemented in CAFIX5.1 were derived using
density contributions multiplied by the area (in 7 — ¢ space) of the cone jets. The
densities were measured using the same data samples we overlayed on the Monte
Carlo data. We study the offset in cone jets, with the aim of understanding our
method, and to cross-check the results against the offset densities of CAFIX5.1. We
calculate the densities D,, and D,;, as D = O/1.5, where 1.5 is the jet area inn — ¢
space for an R = 0.7 cone and O is the offset (O,. or O,;) as measured using the

method described in Chapter 7.

Here we will use the same notation as is used for k, jets in Chapter 7, but we

will be referring to cone jets reconstructed with R =0.7 instead of k, jets.

zz 0.7 cone jet Er in Monte Carlo with no overlay.
m0 0.7 cone jet Er in Monte Carlo with MB overlay.

zn 0.7 cone jet Er in Monte Carlo with ZBnoL@ overlay.
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2L 0.7 cone jet Er in Monte Carlo with ZB overlay at luminosity £ = L x10¥cm™2sec™!

(e.g. z5 for £L =5 x10*cm~2sec™?!).

B.1 Smeared Versus Unsmeared Quantities
Figure B.1 shows the result for O,, obtained by two different methods:

1. for the two leading jets in sample z5 with 30 GeV<Er <50 GeV, we find the

corresponding jet in zz and take the Er difference.

2. same as above but starting with the two leading jets in zz, and then finding

the corresponding ones in 25.

Although we would like to select our jets by placing cuts on the sample with overlayed
noise, z5, method (1) is wrong because it artificially selects upwards fluctuations in
the offset, which smear jets from the E;; < 30 into the E,5 > 30 region, while
rejecting the corresponding downwards fluctuations, from E,; > 30 into F,s < 30.
Method (2) does not suffer from this bias because we cut on zz jets, which are not

subject to fluctuations in overlayed noise.

It is not however clear that Method (2) is the one we want. By selecting zz jets
with 30 GeV<Er <50 GeV, we are calculating the average additional energy added
to a jet generated in this range. We will call it the “unsmeared” offset. On the other
hand, by selecting 25 jets with 30 GeV<Er <50 GeV, we obtain the average offset
for the jets actually found in this energy range. When we take into account the Er

dependence of the spectrum, we realize that this “smeared” offset will be much larger
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Figure B.1: The 0.7 cone jet offset density, D,;, as obtained by selecting the leading
jets either in the 25 (full boxes) or in the zz sample (full circles). The open circles
are from CAFIX 5.1.
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because many more jets are fluctuations with a positive offset from below 30 GeV,
than fluctuations with a negative offset from above 50 GeV. A proper representation

of the physical Fr spectrum is thus essential.

If we want to calculate offsets by placing cuts on the noise overlayed z5 jets, we
need to weigh the generated jets to suit our physical needs. Figure 7.4 shows the
E7 distribution of the reconstructed k; jets without noise. In order to calculate the
“unsmeared” offset, weights have to be chosen so that the distribution of generated
jets without noise is flat. The resulting offsets are shown in Figure B.2 together
with those calculated using the unbiased Method (2) above, with cuts on the zz jets
(and no event weighing). The results are very similar indicating that we understand
the effect of weighting, and that a flat distribution of generated jets does yield the
unsmeared offsets. This is an important cross-check of the method, before we weigh

jets to the physical Er dependence for the smeared case.

Figure B.3 gives the results for the smeared offset. The procedure is identical
to the unsmeared case in Figure B.2, but now we weigh the events to get an Er ~°
dependence instead of a flat one. The steeply falling Er ~° dependence results in
the offsets being much higher. For a given smeared, z5, jet Er there is more
contribution from low Er unsmeared, xx, jets than from high E7 unsmeared jets.
Thus, the offset, O3, = z5 — zz, (and density) will tend to be larger than in the case

of a flat Er distribution.

There remains to be discussed whether smeared or unsmeared offsets should be
used as the correction. Note that the approach followed in CAFI1X5.1 corresponds to

unsmeared offsets, as they are obtained by subtracting energy densities in towers,
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without reference to jets. To the extent that the resolution correction is performed at
a later stage in physical analyses, we will focus on this note on the unsmeared offset.
This method provides an interesting alternative to studying the effect of smearing,

and the possibility remains open for further studies with the smeared offset.

For the case of the underlying event, obtained as O, = m0 — z2n, we select the
two leading jets in zz, find the associated jets in m0 and zn, and perform the Er
subtraction, which again corresponds to the unsmeared offset. Then the offset, O,

is divided by the cone jet area, 1.5, to obtain the density, D,,.

B.2 Dependence of the Offset on Er

We have studied the E+ dependence of D, and D, for the unsmeared case, as it

allows comparison with the CAFIX5.1 results.

Figure B.4 shows our results for D, as a function of 0.7 cone jet Er for several
jet 1 bins in the central region. There appears to be no Er dependence and the

values are consistent with those shown in [45].

Figure B.2 shows our results for D,, (£ = 5 x10¥cm~2sec™!) as a function
of 0.7 cone jet Er for several jet n bins in the central region. It is somewhat
surprising to see a large drop with Er for D,,, while not for the underlying event,
D,.. This can be explained if the occupancy (the fraction of readout cells in a jet)
increases with energy. In this case, the noise contribution goes down because the
relative importance of zero suppression diminishes. Fig B.5 shows the occupancy as

a function of eta for various Er bins. This is consistent with occupancies measured
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in MB data jets (Figure 7.5) and Monte Carlo with MB overlay (Figure 7.6).
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Figure B.5: Jet energy dependence of occupancy for zero bias luminosity 5 and
R = 0.7 cone jets.

In CAFIX5.1, the Er density contribution of the zero suppression cut within a

jet, 0 ¢, was related to the density contribution in ZB data, dzp, by

Fzp
Ojet = 0zB P’ (B.1)

where Fzp and Fj,, are the corresponding occupancy factors for ZB data and jets
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respectively. In CAFIX5.1, the occupancies were assumed to be constant as a function
of jet Er . Figure B.5 shows the occupancy in the central region on a much smaller
scale than is shown in [45] and one can see some dependence on Er . This Er

dependence can only account for 30% of the drop in Figure B.2. The relation in
Equation B.1 is empirical and it was checked only for low Er jets. Although
we believe our measurement to be more accurate than the empirical formula, the

remaining 70% will be taken as a systematic error to account for the discrepancy.

In CAFIX5.1, the offset is extracted from zbias events and corrected for the occu-
pancy in a jet environment assuming no change in the average energy of an occupied
cell. This assumption is probably correct between a zbias event and a low energy

jet, but only approximate as the energy of the jet increases.

If there were no zero suppression, one would certainly expect no E7 dependence
in the offset for 0.7 cone jets. Because the area in 7 — ¢ space is fixed for cone jets,
the contribution should be the same regardless of jet E7 . Because zero suppression
truncates both positive and negative energies and the noise is not gaussian, it is

difficult to assess its effects.

This is not the case for D,,., because the underlying event energy addition is
always positive. Figures B.6 and B.7 show the energy densities for m0-zz and 2n-
zz. Both have noise contribution and do show a drop with Er . The underlying
event contribution, D,, (shown in Figure B.4), is the difference of these two, m0-
zn, and, therefore, the noise contribution (including zero suppression effects) cancel.

Therefore, it is reasonable that D,. is Er independent.
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B.3 Dependence of the Offset on Luminosity

We have studied the luminosity dependence of the unsmeared offset for 0.7 cone jets
due to noise, pile-up and mulitiple interactions. Figure B.8 shows D,, as a function
of jet 7 for several luminosities. We use low Er jets for this study (30<Er <50)
to compare with CAFIX5.1. The agreement between our values and CAFIX5.1 is

excellent in this Er range.
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Gev jets (our result depends on jet energy). Full circles are from CAFix5.1, for
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Appendix C

Showering Effects on the Jet

Response

The MPF method uses balance of transverse momentum, Pr, (not energy) to measure
the jet response of the detector. Therefore, the correction should be applied to
momentum. If there were no showering effects in the calorimeter, the correction for
energy and momentum would be identical. However, we can think of at least two
mechanisms that make this not so. In either case, the MPF method should give us

the correct momentum jet response.

First, a jet of particles (not massless) showers in the calorimeter. The particles
in the center of the shower (1 in Figure C.1a) tend to have more energy than the
particles around the perimeter of the shower (2 and 3). Particles with higher energy
have a better response, and, therefore the particle response is higher in the center
than at the edges (R; > R,, R3). Because the response is not uniform over the entire

shower and because mpf uses Pr balance (not Er ), we will tend to under correct
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(@) (b)

Figure C.1: Showering effects in the MPF method. (a) A photon is balanced by
three particles, 1, 2, and 3, in the transverse plane. E; > E,, F3 and R; > R, R;.
(b) The 2nd and 3rd particles are deflected away from the jet axis in the calorimeter.
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Energy using the MPF method. If the response were uniform over the shower, the
energy and momentum correction would be identical. This leads to undercorrection

when correcting energy using MPF. But the momentum is correctly corrected.

To illustrate this, Figure C.1a depicts a simple event where a photon is balanced
by a jet of 3 particles in the transverse plane. Particle 1 lies along the jet axis which
is back to back with the photon. Let us assume the 3 particles are massless (i.e.
E = P) and the event takes place in the transverse plane (i.e. Er = FE). Then, the

particle jet’s energy can be written as

Eptcl =FE, +FE,+ E;, (Cl)

and the momentum is given by

Pptd = an = El + E2C03012 + E3605913 . (C2)

Given particle responses of R, > R,, R3, the measured jet quantities are given by

Emcas = RlEl + R2E2 + R3E3 (C3)

and

Ppicas = R E\ + RyE5c0s6,2 + R3E3c0s0,3 . (C4)

The ratio of measured to particle jet quantities is the true energy/momentum re-
sponse for the jet. If the particle response is uniform over the jet, R = R, = R, = Rj,

the energy and momentum jet response would be identical, R.
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The MPF jet response is given by

Rmps =1+ MPF where MPF =

Br,

Substituting for the event ET,

yields

ET=—(31131+R2P;+R313:1+E) ;

R1 E1 + R2E2008012 + R3E3603013
Rmpr =

ﬁT‘ﬁw_

E‘Y
P, meas

Rypy = Rp= .
pf P Pptcl

(C.5)

(C.6)

(C.7)

The jet response derived using the MPF method is identical to the true momentum

jet response.

For the energy jet response, let us assume particles 2 and 3 have equal response,

R; = R3 = R and R; = R+ €. Then the energy and momentum jet response will be

CEI
Rg = +R
E Egd
€,
and Rp = —+R
P Pptcl

(C.8)

Since Eper > Ppea, the energy jet response will be less than the momentum jet

response (Rg < Rp = Rpmps). Thus, jets will be undercorrected in energy using

Rmpf .

The second mechanism which would make the energy jet response unequal to the
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momentum jet response occurs when particles get deflected in the detector and the
detector absorbs the recoil such that the recoil is not measured in the calorimeter.
The net result is a wider jet at the calorimeter level than at the particle level.
This is essentially the mechanism described in [55]. This means that the measured
Erneas — Preas is greater than the true E,.q — Ppy. Therefore, the energy of the
jet needs less correction than the momentum. Since the MPF method measures the
momentum jet response, the energy will be over corrected using MPF method. But

again, the momentum is correctly corrected.

Figure C.1b shows an example of this where a photon is balanced by 3 show-
ered particles in the transverse plane. The true F and P are the same as above
(Equations C.1 and C.2. The measured E is also the same (Equation C.3). In this
scenario, the angles between 1 and 2, and 1 and 3, 6,3, are larger than in the previous
example (073¢** > 6'7“¢ and 0732 > 6'7*¢). Therefore, the measured P will be less

than it was in the previous example.

A similar exercise will also show that R,y = Rp and that Rg > Rp. In this
case, jets will be overcorrected in energy using R,,,s. And again, R, gives us the

correct jet momentum response.

Both these showering effects come into play with cone jets because they use scalar
sum Et. Because we use vector sum momentum for kt jets, we should not be affected
by these biases. We do use Snowmass recombination in the preclustering, however,

so there may be a small effect. This is discussed in section 9.4.
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