

Thess

3 IHIIHHIUllIIHIIHHIHNIHIUIIIWH‘Ill‘ i

1999 3 1293 01812 5447

This is to certify that the

dissertation entitled

AUTOMATING COMPONENT-BASED SOFIWARE DEVELOPMENT

presented by

Ycnghao Chen
has been accepted towards fulfillment
of the requirements for

Doctoral degree in Computer Science
& Engineering

“ﬁ’,ﬁ/ X/(é/oé/z

Major professor

Date X/Z 7//[7[7

MSU is an Affirmative Action/Equal Opportunity Institution 0-12T"

LIBRARY

Michigan State

University

PLACE IN RETURN BOX to remove this checkout from your record.
TO AVOID FINES return on or before date due.
MAY BE RECALLED with earlier due date if requested.

DATE DUE

DATE DUE

DATE DUE

188 c/CIRC/DaeDue.pbs-p.14

AUTOMATING COMPONENT-BASED SOFTWARE DEVELOPMENT
By

Yonghao Chen

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DoCTOR OF PHILOSOPHY

Department of Computer Science

August 27, 1999

ABSTRACT
AUTOMATING COMPONENT-BASED SOFTWARE DEVELOPMENT
By

Yonghao Chen

The ever-increasing demand for quality software has been driving the search for methods
to develop higher quality software using lower costs within a shorter time frame. Through
the use of existing software components to construct new systems, software reuse is broadly
regarded as such a promising approach. However, software reuse in general has not yet ful-
filled its promise to significantly improve software development productivity and software
quality. In this research, we propose an approach to software reuse. Our approach is based
on the premise that effective reuse can be achieved only when reuse issues are considered
throughout the software development life cycle and are addressed on the basis of a formal
foundation. The overall objective of this research is to develop an architecture-based com-
ponent reuse framework. This framework addresses software reuse issues in an integrated
fashion and is intended to be amenable to automation in such tasks as component evalua-
tion, adaptation, and integration. We also describe the implementation and application of

a prototyping system of the proposed reuse framework.

© Copyright August 27, 1999 by Yonghao Chen

All Rights Reserved

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Betty H.C. Cheng, whose support and advice is one
of the main reasons that I have finally reached the end of this long process. I also wish
to thank Dr. Anthony S. Wojcik, Dr. Jacob Plotkin and Dr. Kurt Stirewalt for their
constructive suggestions and commitment for being on my committee.

I am thankful to all the members of the Software Engineering Research Group at MSU,
past or present, for their help and encouragement. I also owe thanks to all the great people
at MSU who keep things running smoothly.

I extend my heartfelt thanks to Yunyun, for all her company, love, support, understand-
ing and tremendous sacrifice she has made in the past five years.

Finally, I would like to thank my grandma, my parents and my sister for their endless

love and unconditional support.

TABLE OF CONTENTS

LIST OF FIGURES
LIST OF TABLES

1 Introduction

1.1 Problem Description and Motivation
1.2 Proposed Approach
1.3 Organization of Dissertation

2 Background
2.1 Formal Methods e
2.2 Software Architectures

3 Related Work

3.1 Formal Methods Applied to Software Reuse
3.2 Component-oriented programming
3.3 Architecture-based Development,
3.4 Object-Oriented Framework,

4 A Framework for Component Reuse

4.1 Component-based Software Engineering
4.2 Architecture-based Component Assembly
4.3 Issues Addressed In This Research

5 Component Interconnect Model

5.1 Architectural Model
5.2 Integrating Behavioral Specifications oL,
53 TheLanguage. e

6 A Semantic Foundation for Specification Matching

6.1 Introduction. e
6.2 Formalizing and Reasoning About Reusability
6.3 Relational Semantics o
6.4 Proving Reuse-Ensuring Matches
6.5 Lattice Properties of Reuse-Ensuring Matches
6.6 Discussion e
6.7 Notes e
6.8 Conclusion e

vii

ix

AN -

[*]

vl

7 Interface Generality Relation 82
7.1 Generality Relation of Function Specifications 84
7.2 Generality Relation of Data Specifications 85
7.3 Generality Relation of Interfaces 86
7.4 Determining Reusability 00, 90
8 An Architecture-based Reuse and Integration Environment 94
8.1 ABRIE: An Introduction, 95
8.2 Design Objectives e 96
8.3 ABRIE Architectural Design 96
8.4 Application: Architecture Design oL oL, 106
8.5 Application: Component Selection and Matching 109
8.6 Application: System Packaging L. 114
8.7 Lessons Learned 117
9 Case Study 120
9.1 ENFORMS Project e 120
9.2 FocusoftheCaseStudy 125
9.3 Local Control Broker 126
9.4 Component-Based Development of Local Control Brokers 132
9.5 Summary e 144
10 Conclusions and Future Investigations 146
10.1 Summary of Contributions 147
10.2 Impact of Research and Future Investigations 150
BIBLIOGRAPHY 154
APPENDICES 162
A BNF Syntax of ABRIE V 2.0 ADL 162
B Input File for Generating ABRIE V 2.0 ADL Lexical Analyzer 164
C Input File for Generating ABRIE V 2.0 ADL Parser 169
D Architectural Knowledge Description File 180

E LSL traits for the LCB specifications of ENFORMS 183

LisT OF FIGURES

2.1 LSL specification for a phone book 0L
2.2 LCL specification for inserting an entry to a phone book

4.1 CBSD process high level view
4.2 Domain engineering process o it o e e
4.3 Application engineering process e
4.4 Architecture serves as a framework into which components are assembled

5.1 Architectural elements L
5.2 Specification of functionsqrt L Lo
5.3 Specificationof stack
5.4 Specification of dataAccess interface,
5.5 Specification of component wordcounter,
5.6 Definitions for common port types
5.7 Interface specification of component wordcounter with typing information . . .
5.8 Definitions for common connector types

6.1 Reuse-ensuring matches and their relations

7.1 Dependence DAG of dataAccess interface
7.2 Component M interface specification
7.3 Component M, interface specification

8.1 Layered architecture of ABRIE
8.2 System level object model of ABRIE
8.3 Object model of ABRIE foundation elements
8.4 Object model of resources
8.5 Sample ABRIE scripting environment API command

8.6 ABRIE architecturedesign
8.7 Textual representation of architecture pwc
8.8 Architectureof pwr. L.
8.9 Component selection

8.10 Component matching L o oL
8.11 Proof Obligations
8.12 A Snapshot of LP in resolving proof obligations
8.13 Implementation Status L Lo
8.14 Matching file
8.15 Wrapper for adapting List to implement CharStack
8.16 Unix shell script for implementing pwec

9.1 A high-level view of ENFORMS architecture.

vii

122

9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12
9.13
9.14
9.15

Object models of the archive 123
Analytic model of Multimedia Archive 124
Specification of SILCB component 128
Specification of DI LCB component 130
Specification of SII LCB component 131
Specification of DII LCB component 133
Reuse-oriented decomposition oo oo 134
Dependence DAG of SILCBand DILCB 136
Decomposition of DILCB 136
Compositional specificationof DILCB 137
Compositional specification of SIILCB 139
Proof obligations for matching activate ports of SILCB and SITLCB 140
Refined compositional specification of SIILCB 141

Compositional specification of DITLCB 143

6.1

Various specification matches

ListT oF TABLES

Chapter 1

Introduction

With the rapidly expanding role of software in our society, the demand for quality software
has been significantly increasing. This demand drives the continuing search for methods
to develop higher quality software using lower costs within a shorter time frame. Formal
methods [1, 2, 3, 4, 5], automatic programming [6, 7, 8], and object-oriented development [9,
10] are, among others, approaches that have improved software development productivity
and software quality over the years. However, as successfully argued by Brooks in his famous
1986 paper [11], there is no “silver bullet”. Software development is still a laborious and
error-prone process, as manifested by the seemingly endless reports of huge economic or
even life losses caused by software or software development errors [12, 13, 14, 15].

One radical solution to the essential difficulties of software development is to minimize
the amount of development performed. Software reuse is one technique that supports this
approach. Currently, customers have a large number of software packages in the market
from which to choose for achieving various purposes ranging from complicated database
management to simple communication utilities. The “buy rather than build” philosophy

has resulted in the vast use of software due to the low cost and quickness to deployment.

Software reuse is not restricted only to the final executable products. When the concept of
reuse is applied to software development, we have another kind of software reuse: the use of
existing software components to construct new systems. In a broad sense, any artifact gen-
erated during software development may be reused, including requirements specifications,

design, implementation, and test plans [16, 17, 18].

1.1 Problem Description and Motivation

Achieving reuse in software development has been a much sought after goal ever since
Mcllroy first proposed it in 1968 [19]. From a high-level view, software reuse involves two
types of activities: component acquisition and component use. Component acquisition
addresses the creation of new components, representing and classifying them, organizing
them into a library, and retrieving them from the library. Component use involves the
logical composition of components to satisfying a requirement, and the physical integration
of those components.

Although there exists a great deal of successful reuse experience, such as those widely
used subroutine libraries [20, 21, 22, 23, 24], software reuse, in general, has not yet fulfilled
its promise to significantly improve software development productivity and software qual-
ity [25]. In the following subsections, we analyze the reasons from several aspects of reuse,
including component evaluation, composition and integration, and technical integration.

We also discuss potential solutions to these problems.

1.1.1 Component Evaluation

A key step in reuse is to locate the most appropriate components that satisfy a given

query requirement. The criteria necessary for a component to satisfy a query requirement

is usually implicit and not precisely captured. For example, a simple, but widely used,
criterion is name (keyword) matching. However, keywords cannot convey significantly useful
information, unless they are widely accepted terminology, such as mathematical functions,
for example, sin, cos, etc.. A more informative criterion may be based on signatures (syntax
and type information). Although signatures encapsulate type information, they still fail to
capture the behavior of a component precisely. Natural language descriptions may document
semantic information of components. However, the inherent ambiguity of natural languages
(together with possible inconsistencies in the documentation) may make it difficult to locate
the “right” component.

Recent work in formal methods has produced rich formalisms for use in software devel-
opment [5]. For example, the Larch family of specification languages [26] has been used to
specify programs written in C, C++, Modula-3, Smalltalk, Ada, and CLU. Applying formal
methods to reuse may not only precisely capture the semantic obligations for an existing
component to satisfy a given requirement, but also facilitate a (semi-)automated approach
to determine reusability.

A key issue in specification based software reuse is to define a specification matching
criterion by which the reusability of an existing component for fulfilling a query specifica-
tion can be determined. While a number of formal specification based criteria have been
proposed [27, 28, 29, 30], and their usefulness have individually been argued in one way or
another, there does not exist a general approach to reason about the connections between
a matching criterion and its usefulness for determining reusability. Due to the lack of such
a general approach, some problems regarding specification matching cannot be solved in
an efficient way. For example, given a specification match that happens to be suitable for

determining reuse, it is still an open question as to whether there exist better specification

match. Intuitively, one specification match is better than another if it can identify reusable
components for a given query that the other match fails to identify. Another problem with
current specification-based evaluation methods is that they are only applicable to functions

or modules, rather than architectural components, which we will discuss in next subsection.

1.1.2 Composition and Integration

One major obstacle to effective reuse is due to the semantic gap between a query requirement
and available components. Even for a requirement of moderate complexity, it is seldom the
case that an existing component can exactly implement it. Instead, an appropriate com-
position of a set of components is usually needed to satisfy the requirement. Conventional
software development does not consider component-oriented composition design and speci-
fication as a design issue. As a result, reuse is delegated to the implementation stage when
the major design decisions have been made and the opportunities of reuse have been con-
siderably constrained. This late consideration for reuse in software development also causes
difficulties for component integration. In the cases of subroutine libraries, components are
packaged as procedures and can be invoked through the ubiquitously supported integration
mechanism procedure call. However, it is typical that an existing component may have
assumed other integration mechanisms than procedure call, such as data flow, or implicit
invocation. In these cases, the integration of those functionally composable components
presents a serious obstacle to reuse [31]. To make it worse is the fact that these integration
assumptions are usually not well documented.

Recent advances in software architecture design and specification provide a means to
incorporate component-oriented composition into software development. Following the con-

ventional approach to requirements analysis and high-level design, software architecture

design generally handles the allocation of system functions to computational components
and identifies the inter-relationships among components [32]. Software architectures can be
considered to be logical compositions of components, and may serve as a framework into
which existing components can be evaluated and integrated [33].

Architecture-based component reuse increases the granularity of artifacts for reuse. Con-
trary to subroutines, those coarse-grained artifacts, also called architectural components,
are usually packaged in a variety of ways, such as a filter in pipe-line systems, a man-
ager in object systems, or as a process in communication systems. For the effective use of
these architectural components, we need to consider both their functionalities and pack-
aging properties [34]. Unfortunately, conventional specification techniques focus only on
functional aspects. On the other hand, current architectural description languages are gen-
erally too high-level and weak in functional specification, since their emphasis is on the

specification of architectural properties.

1.1.3 Integration of Reuse Techniques

The lack of a seamless integration of component acquisition and component use techniques
imposes significant barriers to achieving effective reuse, particularly with respect to com-
ponent integration. Component integration typically involves conflict identification, com-
ponent adaptation, and implementation of connections between components. Usually an
existing component does not exactly match a given query specification. Component adap-
tation is required in this case to resolve the conflicts (or mismatches) between an existing
component and a requirement. For instance, a typical mismatch is that the order of argu-
ments to an existing procedure may be different from that of a query specification, even

though the procedure can satisfy the query functionally. In ad hoc approaches to reuse,

component integration is usually considered a separate process from component specifi-
cation and retrieval tasks. This separation of tasks may make component integration a
time-consuming and error-prone process. First, conflicts are not easy to identify at time
of integration, since they are usually hidden in the implementation. Second, component
adaptation may be quite difficult, particularly for conflicts that are introduced at the de-
sign level, such as those regarding packaging properties [31]. Third, connections between
software components are usually treated implicitly, rather than encapsulated and described
as explicit entities. This approach increases the complexity of a connection implementation,

since the implementation is distributed throughout the implementation of components.

1.2 Proposed Approach

This research proposes an integrated approach to software reuse. Our approach is based
on the belief that effective reuse can be achieved only when reuse issues are considered
throughout the software development life cycle and are addressed on the basis of a formal

foundation.

Thesis Statement: The overall objective of the proposed research is to develop an
architecture-based component reuse framework. This framework will address software reuse
issues in an integrated fashion, and is amenable to automation for such tasks as component

evaluation, adaptation, and integration.

1.3 Organization of Dissertation

The remainder of this manuscript is organized as follows. In Chapter 2, we overview back-

ground material regarding formal methods and software architectures. We examine related

work in Chapter 3. A framework for component reuse is presented in Chapter 4. This
framework serves as a technical roadmap to the proposed research. Chapter 5 describes a
component interconnect model. Methods for component and composition specifications are
introduced in this chapter. In Chapter 6, we present a semantic foundation to specifica-
tion matching. Based on this semantic foundation, a framework is developed to evaluate
the usefulness of various specification matches with respect to determining reusability. In
Chapter 7, we extend specification matching to the evaluation of architectural components.
Component interface generality relation is introduced as a means to evaluate the reusabil-
ity of architectural components. Our empirical investigations are described in Chapter 8
and 9. Chapter 8 describes a prototype framework, ABRIE, that we developed to validate
our research. A case study that illustrates how our approach and ABRIE can be applied
to the development of an actual system is described in Chapter 9. Finally, in Chapter 10,
we give a summary of this work, including its impact, as well as suggest potential future

investigations.

Chapter 2

Background

In this chapter, we introduce relevant background material regarding formal methods, soft-

ware architectures, and software composition.

2.1 Formal Methods

Formal methods used in software development are rigorous techniques for specifying, devel-
oping, and verifying computer software [1, 5]. A formal method consists of a well-defined
specification language with a set of well-defined inference rules that can be used to reason
about a specification. A benefit of formal methods is that their notations are well-defined
and thus, are amenable to automated processing. A number of formal methods have been
developed, for example, Z [3], VDM [2], Larch [26], and Lotos [35].

In this research, we will use Larch to specify the functional aspects of software com-
ponents and reason about their reusability. We choose Larch as the target specification
language for several reasons. Larch has a simple syntax and provides support for commonly
used programming languages, including C, C++, Smalltalk, Modula-3, and ML [26]. Sec-

ond, Larch has support for libraries of specifications, thus promoting the reuse of specifica-

tions. Finally, there is good tool support for developing and analyzing Larch specifications,
including a graphically-based browser and editor [36], syntax checker [26], and theorem

prover [37].

2.1.1 Larch

Larch specifications consist of two tiers: one tier specifies domain theories, and the other tier
specifies module interfaces in terms of the problem domain. A domain theory is an algebraic
model of a problem domain. It defines a set of abstract types (sorts) and operations over
those sorts. The Larch Shared Language (LSL) is used to specify a domain theory termed

a trait. An LSL specification for a phone book is shown in Figure 2.1.

PhoneBook: trait
includes Integer, String(Char, Name)

introduces
new: — B
add: B, Name, Int — B
find: B, Name — Int
—— € __: Name, B — bool
asserts

B generated by new, add
V b: B, 8, t : Name, n: Int
“(s € new);
s € add(b, t, n) ==
s =tV sEDb;
find(add(b, s, n), t) ==
if s = t then n else find(b, t);

Figure 2.1: LSL specification for a phone book

The specification starts with the inclusion of other traits, Integer and String. The

Integer trait defines the theory of integer, including constants 0, 1, and operator +, and

10

so on. The String defines the string theory. The parameters appearing in String mean
that Name is the defined sort, the string of characters. The Integer and String traits
are specified in the LSL handbook [26], which is a collection (library) of many useful LSL
specifications. It is also possible to develop handbooks for specific domains and applications
such as networking and graphical user interfaces. The introduces clause declares a set of
operators, each with its own signature. The body of a trait contains, following the keyword
asserts, equations between terms containing operators and variables. The theory of a trait
is the set of all logical consequences of its assertions. The generated by clause asserts that
each value of the sort B is generated by applying new and add a finite number of times.

In Larch, an interface specification defines an interface between program components.
Interface specifications are written in Larch Interface Languages (LILs), which are pro-
gramming language dependent. For instance, LCL [26] is designed to specify C programs,
whereas LM3 [26] is a Larch interface language for Modula-3. The components specified
by these LILs are usually programming units, such as procedures, classes, and packages.

Figure 2.2 shows a LCL specification for inserting an entry into a phone book.

uses PhoneBook(phonebook for B, int for Int)

void insert(phonebook b, Name s, int n)
requires “(s € b");
modifies b;
ensures 8 € b’ A find(b’, s8) = n A
V t: Name (if t € b~
then t € b’ A find(b~, t) = find(b’, t));

Figure 2.2: LCL specification for inserting an entry to a phone book

11

The uses clause integrates the domain theory specifications and the interface specifica-
tions. Interface specifications are written using sorts and values defined in LSL traits. As
shown in Figure 2.2, a function is formally specified by giving its precondition and post-
condition. A precondition (specified in the requires clause) specifies when the function is
applicable, whereas a postcondition (specified in the ensures clause) states what should
be established by the execution of the function. In addition, the modifies clause specifies
what data will be modified by the function. In Figure 2.2, b~ and b’ represent the values

of phone book b before and after the execution of function insert, respectively.

2.2 Software Architectures

Software architectures define the overall structures of software systems. With the increase
in the size and complexities of software systems, software architecture design and specifica-
tion emerges as a critical aspect in successful software engineering activities. Contrary to
traditional techniques that focus on the design of algorithms and data structures, software
architecture design is concerned with issues such as “gross organization and global con-
trol structure; protocols for communication, synchronization, and data access; assignment
of functionality to design elements; physical distribution; composition of design elements;
scaling and performance; and selection among design alternatives” [38].

Disciplined uses of software architectures have a profound impact on the development,
evolution and maintenance of software systems [39]. As a design dimension, software archi-
tectures provide a high-level design space in which various alternatives for system organi-
zation can be explored and analyzed, thus leading to a rational way to system architecting.
As a design notation, software architectures may serve as guidance to further development,

including refinement, reuse, and implementation. As design abstractions that bridge the

12

gap between requirements specifications and detailed implementations, architectures pro-
vide traceability for software development, which is crucial in the understanding, evolution
and maintenance of software systems.

Albeit its importance, software architectures had not been explicitly and systematically
used in practice until recently. Traditionally software architectures are described informally
as box-and-arrow diagrams [9, 10, 40]. This informality severely restricts the effective use of
software architectures. In recent years, a great deal of research efforts have led to the devel-
opment of formal foundations for software architectures, including architecture modeling,
architectural styles, architecture description languages, architectural analysis techniques,

and so forth [32, 38, 41, 42, 43, 44, 45, 46, 47, 48, 49].

2.2.1 Architecture Model

Although there does not exist a universally accepted definition for software architecture
yet, a widely used model for software architecture is to view an architecture as a config-
uration of two kinds of distinct, identifiable architectural elements: components and con-
nectors [38, 50]. Components are the locus of computation and state, whereas connectors
encapsulate the interaction protocols among components. Several widely used interaction
protocols are procedure call, data sharing, remote procedure call, data flow, and pipeline.
Components are composed through the mediation of connectors. Both components and
connectors can be refined as a composition of lower level elements. This composition it-
self is an architecture. Thus hierarchical architectures are supported. A component may be
implemented directly by a program unit supported in a programming language. Typical pro-
gram units include Ada packages, C++ classes and objects, procedures, data structures, and

so on. An interaction protocol may also be directly supported by programming languages,

13
operating systems, or middleware. For example, most high-level programming languages
support procedure call and data sharing. Unix operating system supports pipeline [51]. Sev-

eral middleware packages are commercially available to support remote procedure call [52).

2.2.2 Architectural Style

In practice, many systems have exhibited common architectural characteristics. Architec-
tural styles are introduced to capture these commonalities. An architectural style provides
a specialized vocabulary of components, connectors and constraints regarding compositions
for a family of systems [38, 41]. For example, a Unix shell pipe-and-filter architecture may
only have filters as components and pipes as connectors, and a linear composition topol-
ogy [51]. Several frequently used architectural styles have been identified and codified, in-
cluding pipes and filters, data abstraction and object-oriented organization, event-based sys-
tems, layered systems, repositories, table driven interpreters, and main program/subroutine
organizations [38]. By codifying recurring patterns of software organization, architectural

styles promote the reuse of architectural designs [53].

2.2.3 Architecture Description Languages

An architecture description language (ADL) is a set of formal notations for representing
and analyzing architectural designs. An ADL usually provides a conceptual framework and
a concrete syntax for characterizing software architectures [54]. A number of ADLs have
been developed with different areas of emphasis in mind: Wright focuses on formalizing
connectors [42, 43], SADL for architecture refinement [55, 56], Rapide for architecture sim-
ulation and analysis [46], Darwin for specifying the configuration of distributed systems

and dynamic architectures [47], UniCon for capturing design abstractions (idioms) used in

14
practice by software designers [50], Aesop for the rapid construction of style-oriented ar-
chitecture design environments [57, 58], and ACME for providing a common interchange

format for architectural design tools [54].

Chapter 3

Related Work

Related work can be broadly divided into two categories: formal methods applied to software
reuse, and component-based software development. The latter can further be partitioned
into three subcategories: component-oriented programming, architecture-based develop-
ment, and object-oriented framework. We overview various projects of each category or

subcategory in the following discussion.

3.1 Formal Methods Applied to Software Reuse

In an attempt to automate software reuse, several projects have investigated the use of

formal methods to specify, classify, and retrieve software components.

3.1.1 Jeng and Cheng

Adopting order-sorted predicate logic (OSPL) as a reasoning basis for their axiomatic spec-
ifications (i.e., pre/post conditions) of software components, Jeng and Cheng [27, 28] de-
veloped an automated approach to the classification and organization of reusable software

components. At the center of their approach is the classification scheme and algorithms for

15

16

automatically constructing a hierarchy of software components that provide a means for
representing, storing, browsing, and retrieving reusable components. The hierarchical rela-
tionships of the reuse system are based on a generality relationship and similarities between
software components. The similarities are calculated with respect to a partition of operators
into equivalence classes. In order to combine these two concepts into one framework, the
component library is structured as a two-tiered hierarchy in two stages. The resulting li-
brary structure comprises lower-level and higher-level hierarchies. The lower-level hierarchy
is first created by a OSPL subsumption test algorithm that determines whether one compo-
nent is more general than another. Based on the generality relationship, the most general
components are placed at the top of the hierarchy and the more specific or restrictive com-
ponents at the bottom. Given the lower-level hierarchy, the higher-level hierarchy is then
generated by a hierarchical clustering algorithm that groups the most similar components
together. The end result is a connected hierarchy of software components organized from
the most general to the most specific.

Given the two-tiered hierarchy of reusable software components, the search and retrieval
process proceeds from the higher-level hierarchy to the lower-level one, that is, from a
coarse-grained search to a fine-grained one for reusable candidates. At the higher-level
hierarchy, a query is mapped to some index that indicates the starting nodes within the
hierarchy at which the searching algorithm is to begin. After performing the coarse-grained
search, the search space may be greatly reduced. The remaining portion of the higher-level
hierarchy and the corresponding lower-level is searched using formal reasoning techniques,
thus providing an exact determination method. Three kinds of existing specifications may
be returned as the results of the logical reasoning based retrieval process: an exact match

to the current specification, a more general one, or a more specific one.

17

A prototype browser that provides a graphical framework for their approach has been
developed in the Prolog language. This browser enables the creation of a graphical repre-
sentation for a component hierarchy from a set of specifications, and provides a user friendly
way to traverse the hierarchy as well as retrieve candidate components.

Jeng and Cheng also investigated component adaptation. Two types of adaptation are
proposed in their work. One is for those components that are semantically more general
than the query specification [59]. The other is for those components that are syntactically
analogous to the query specification [60, 61]. Both types of adaptation modify the reusable
component at the specification level first instead of at the code level. For the adaptation of
more general components, the difference between the existing specification and the query
specification is determined by logical reasoning, similar to that used for constructing the
two-tiered hierarchy. For the adaptation of analogous components, a recursive matching
process is used to establish analogical matches between the existing specification and the
query specification. An analogical match is a group of associated pairs between symbols in
two logical terms that belong to the existing and query specifications, respectively. Once
the changes to the existing specification needed to make it satisfy the query specification
have been determined, the information needed to modify the existing specification is used

in a formal process for modifying the existing component to fit the query specification.

3.1.2 Mili, Mili and Mittermeir

Mili, Mili, and Mittermeir [29] discussed the design and implementation of a software library,
based on a representation of software components by means of formal specifications. Their
formal specification is a pair, (S, R), where S is the space of the specification, represented by

variable declarations; R is a relation defined over S. The relation of a specification contains

18

all the input/output pairs that the specifier considers correct. Therefore, their specification
is also called relational specification. They defined a refinement ordering between relations
over the same space, and then extended the refinement ordering to specifications. Like
Jeng and Cheng’s generality relation [27], their refinement ordering is intended to capture
the behavioral requirements of reusability. Given that the refinement ordering is a partial
ordering relation, they proceeded to prove that the refinement ordering has lattice proper-
ties. Such a lattice structure is used as a basis for ordering software components in their
software library, and this ordering, in turn, is used to guide the retrieval of components in
the library.

They discussed two types of retrieval operations: ezact retrieval and approzimate re-
trieval. The former is used to find components that are correct with respect to the query
specification, whereas the latter seeks to find components that can be modified to satisfy the
query specification with minimal effort. Given a query specification, a component is con-
sidered an exact match to the specification if and only if the specification of the component
is a refinement of the query specification. Given the refinement-based lattice organization
of software components in their software library, the search process starts with matching
the query specification against the maximal nodes of the lattice, and continues to the de-
scendents of those nodes that are found to be refined by the query specification. Given
that only relevant components in the library are inspected, the performance of component
retrieval is improved.

With respect to approximate retrieval, they consider a component to be an optimal ap-
prozimate match if and only if it maximizes the functional information that it has in common
with the query specification. Based on the formal specification, a predicate is defined to

determine if a component maximizes the meet with the query specification. Through the

19

use of the lattice operator meet, this criterion is made computable, and implemented in

their library system.

3.1.3 Zaremiski and Wing

Zaremski and Wing [62] proposed signature matching as a mechanism for retrieving soft-
ware components from a software library. Given the signature information of software
components, they define signature matching as the process of determining when a library
component “matches” a query. They considered both functions and modules, and thus
have two kinds of matching: function matching and module matching. The signature of a
function is given by its type. For a module, its signature is a multiset of user-defined types
and a multiset of function signatures.

In order to discuss various function matching criteria in a unified framework, they defined

a generic form of function match as follows:

M(tla tq) = Tl(tl)RTq(tq)

where t; is the type of a function from a component library, ¢, is the type of a query, T;
and T are transformations (e.g. reordering) and R is some relationship between types (e.g.
equality).

By varying T}, R, and Ty, they defined various signature matches. When T; is a sequence
of variable renaming, T; is the identity function, and R is the type equality (=) relation,
the match M is called an ezact match, that is, two function types match exactly, if they
are equal modulo variable renaming. Relaxed matches are obtained by defining R to be
a partial order on types. Partial ordering is defined based on the “generality”of the types

using variable substitution. A type t is more general than another type ¢’ if ¢’ is the result of

20
a (possibly empty) sequence of variable substitutions applied to . They defined two relaxed
matches: generalized match and specialized match. A library function matches a query using
generalized match if the type of the library function is more general than the query’s type.
Conversely, the query can be said to match the library function using generalized match.
When T; or T is varied, another type of match, transformation matches, are obtained. They
defined two transformation matches using uncurry and reorder transformations, respectively.
They also discussed composite matches obtained by composing the aforementioned matches.

Module matches are defined based on function matches. One new dimension to module
matching is to establish a mapping between functions of two modules under consideration.
They also discussed both eract and relazed module matches, as well as composition of
module matches.

Later they extended their approach to consider behavioral specifications of compo-
nents [30]. They summarized several types of specification matches to capture different
behavioral relations between components. They used the Larch specification language for
the context of their discussion. Similar to their approach to signature matching, they defined
a generic framework to discuss various specification matching criteria. They also discussed

the relationships between these matching criteria, and established a lattice of them.

3.1.4 Fischer, Kievernagel and Snelting

Fischer, Kievernagel, and Snelting [63] presented a hybrid approach to component retrieval
that filtered a library space in three steps: First, signature matching is used to reduce the
search space; then model checking techniques are employed to further narrow the search
space; finally theorem proving techniques are used to find the semantically “right” compo-

nents.

21

3.1.5 Discussion

Components considered in the above approaches are generally fine-grained, such as functions
or procedures. Modules that correspond to those found in modern programming languages
are also considered by Jeng and Cheng, and Zaremski and Wing. These modules are
typically a collection of individual functions, rather than architectural components that we
address in this research.

A key issue in specification based software reuse is to define a specification matching
criterion by which the reusability of an existing component for fulfilling a query specification
can be determined. While a number of formal specification based criteria have been pro-
posed in those aforementioned projects, and their usefulness have individually been argued
in one way or another, there does not exist a general approach to reason about the connec-
tions between a matching criterion and its usefulness for determining reusability. Due to
the lack of such a general approach, some problems regarding specification matching cannot
be solved in an efficient way. For example, given a specification match that happens to be
suitable for determining reuse, it is still an open question as to whether there exist better
specification match. Intuitively, one specification match is better than another if it can
identify reusable components for a given query that the other match fails to identify. One
of the contributions of this research is to develop a general framework to evaluate various
specification matches, and thus enable us to identify the “best” matches with respect to

determining reusability.

22

3.2 Component-oriented programming

Software development productivity heavily relies on programming languages. From machine
code, assembly languages, to early high-level languages, to the 1970s’ structured languages,
and to recent object-oriented languages, with the advent of each generation of programming
languages, the granularity of entities embodied in a programming language is increased. The
mechanisms of interaction between these entities are becoming richer and more complicated,
thus yielding improved productivity and quality. Developing software by wiring components,
rather than programming statements, has long been a goal. From early programming-in-
the-large, to recent megaprogramming, while under different names, the goal is the same:

programming with components.

3.2.1 MIL

The adoption of hierarchical decomposition and modularization in software development in
the 1970s resulted in the need to integrate independently developed subsystems or modules
into a complete system. DeRemer and Kron [64] were among the first to realize that as-
sembling a system from modules was essentially a different task from programming. They
proposed a module interconnection language (MIL) [64, 65] as a tool for module assembly,
the so-called programming-in-the-large. An MIL provides a set of formal grammar con-
structs to specify modules of a system and how they fit together to implement the system’s
functionalities. Early MILs use names as the sole representation of a service (or resource in
the context of MILs). The binding between provided and required services are simply based
on name matching. Recent MILs have been enhanced to include some semantic information
in the module interface specification. For example, LILEANNA, a MIL designed specifically

for Ada, provides a means to specify module semantics in terms of predicate calculus [66].

23

3.2.2 Megaprogramming

Megaprogramming [67] is a technology for programming with large modules termed mega-
modules that interlink the functionality of services provided by large organizations. Wieder-
hold, Wegner and Ceri [68] proposed a megaprogramming language that provides the glue
for joining together computations spanning several megamodules. More specifically, the
language permits invoking megamodules, supplying to them and extracting from them data
and parameters, controlling their execution, transferring and transducing data between
megamodules, and achieving asynchrony and parallelism of computations. The key feature
of the proposed language is to replace the conventional CALL statement that exerts control
and provides communication between software components with three distinct statements:
SUPPLY, INVOKE, and EXTRACT. SUPPLY provides global arguments from a megaprogram to
the megamodule. INVOKE causes the megamodule to process these arguments and prepare
results. EXTRACT allows the megaprogramming to extract results from the megamodule.
Composition and interaction of megamodules are realized through these three statements
together with other control structures. Megaprograms written using the megaprogramming

language can be compiled and optimized to reduce the execution cost.

3.2.3 Discussion

As a natural evolution of regular programming methods, component-oriented program-
ming aims to develop software by manipulating coarse-grained components instead of state-
ments or functions. Both the above two approaches have developed mechanisms to de-
scribe and manipulate coarse-grained components. However, as with regular programming,
component-oriented programming is mainly an implementation method. It does not ad-

dress architectural design that maps requirements to architectures. On the contrary, in

24

this research, we consider component assembly as one part of component-based software

development, and address relevant issues in the context of an integrated framework.

3.3 Architecture-based Development

Several projects have explored the roles of software architectures in component-based soft-

ware development.

3.3.1 Andersen Consulting’s CBSE project

Researchers of the Component-Based Software Engineering (CBSE) project [69, 70, 71, 72]
at Andersen Consulting’s Center for Strategic Technology Research (CSTaR) are develop-
ing techniques for component integration. The core of their approach is their Architectural
Specification Language (ASL). Focusing on formally capturing architectural concerns of
systems, ASL comprises three sublanguages: Interface Specification Language (ISL), Glue
Specification Language (GSL), and Configuration Specification Language (CSL). ISL is an
extension to the CORBA ! interface definition language (IDL) [73]. In ISL, an interface of
a component describes the operations it supports, services it requires, and other external
characteristics. In addition to supporting the CORBA IDL, ISL has a richer set of semantic
constructs that support descriptions of pre/post conditions of operations, and invariants
and protocols of interfaces. GSL specifies interconnections between components. An in-
terconnection binds a component that requires a particular service to another component
that provides the service. Interconnections are specified via instances of interfaces, bindings

that establish direct references between required and provided services, and connectors that

1CORBA stands for Common Object Request Broker Architecture, which is a distributed component
architecture developed by Object Management Group.

25

serve as adaptors or mediate complex patterns of interactions between components. ASL
separates component interfaces from their implementations. CSL is used to attach imple-
mentations to components and describe platform-specific attributes of the implementations.

In order to support architecture design, a graphical environment has been developed.
This design environment supports visual presentation and construction of architecture spec-
ifications and component interface specifications. In addition, a library management system
based on the faceted classification scheme [74] has been associated with the design environ-
ment to assist in the storage and retrieval of reusable assets: component specifications,
their implementations, architecture specifications, etc. In order to verify design decisions
specified in ASL, two types of analysis are supported: interconnection verification and
configuration analysis. The objective of interconnection verification is to ensure the com-
patibility between components involved in the connection. Both syntactic and semantic
checking are conducted based on the specifications of services. System configuration prop-
erties, such as distribution and performance, are analyzed using domain knowledge and
general design principles and constraints to ensure that configuration decisions be correct.
Finally, the design environment supports system packaging, the derivation of procedures

from ASL specifications for generating an executable system.

3.3.2 Dellarocas

Dellarocas [75, 76] proposed a coordination theory-based approach to component integra-
tion. Similar to the recognition of connectors as “first-class” elements in software archi-
tectures [32], the key perspective in Dellarocas’s approach is to treat interdependencies
between software components as a distinct design problem, orthogonal to that of represent-

ing and implementing the core functional pieces of an application. Based on this perspective,

26

a taxonomy of software interconnection problems and solutions was developed to catalog
common software interconnection dependencies and sets of alternative coordination proto-
cols to manage them. The taxonomy uses multi-dimensional design spaces to classify both
dependencies and coordination protocols. It starts by identifying a small number of generic
dependencies. For each generic dependency, it defines a number of design dimensions that
can be used to further specialize the relationship. These dimensions form a design space
that contains different specializations of a given dependency. Each point in the design space
defines a different specialized dependency type. For each dependency, a few generic coordi-
nation protocols for managing the dependency are identified. It also defines a design space
that contains several related specialized versions of these coordination protocols.

Three most generic dependency families in the taxonomy are: flow dependencies, sharing
dependencies, and timing dependencies. Flow dependencies represent relationships between
producers and consumers of resources. Sharing dependencies capture relationships among
consumers who use the same resource or producers who produce the same resource. Timing
dependencies describe constraints on the relative flow of control among a set of activities.
Mutual exclusion is an example of timing dependencies. For each family of dependencies,
a generic model has been created for classifying dependencies in the family. A framework
for designing coordination protocols for these dependencies has also been established. For
example, the flow dependencies comprise three subdependencies: usability, accessibility and
prerequisite. Design dimensions for usability include: Who is responsible for ensuring us-
ability? When are reusability requirements fixed? For each design dimension, a set of design

alternatives have been identified.

27
The taxonomy provides a handbook for designing interconnection protocols for managing
dependencies between software components. A prototype system has been developed to

support the use of the taxonomy in integrating software components.

3.3.3 Regis and Darwin

Regis [77] is a constructive environment for developing distributed programs. It embod-
ies a constructive approach to the development of programs based on separating program
structure from communication and computation. Regis emphasizes the construction of
programs from multiple parallel computational components that cooperate to achieve the
overall goal. It supports component composition through the architectural description lan-
guage, Darwin. As a declarative binding language, Darwin is used to define hierarchical
compositions of interconnected components. Component implementation and distribution
are dealt with orthogonally to system structuring.

As a configuration language, Darwin allows programs to be constructed from hierar-
chically structured configuration descriptions of the set of component instances and their
interconnections. In Darwin, components interact with other components through providing
or requiring services. The Darwin component interface specifies the set of services required
and provided by a component together with the types of these services. As a declarative
language, composite components are defined by declaring both the instances of other com-
ponents they contain and the bindings between these components. A binding associates
a service required by one component with the service provided by another. The Darwin
compiler checks that bindings are only made between required and provided services that
are compatible. Darwin also supports dynamic configuration. That is, the structure of a

system can change as execution proceeds.

28

3.3.4 Discussion

As a design dimension, software architectures provide a high-level design space in which
various alternatives for system organization can be explored and analyzed. As a design
notation, software architectures may serve as guidance to further development. The three
approaches described in this section display various uses of software architectures in ad-
dressing issues involving component-based software development. The CBSE project uses
software architectures as its component composition language. Dellarocas explores the de-
sign space in component integration at architectural level. Darwin is a domain specific ar-
chitectural language for developing distributed component-based applications. While both
Dellarocas and Darwin address only certain aspects of component-based software develop-
ment, namely integration and domain-specification, respectively, the Andersen Consulting’s
CBSE project has explored a variety of issues regarding the use of software architectures
in implementing component-based software development. However, due to the fact that its
ASL is tightly coupled with the CORBA platform, the design space of component com-
positions is limited. For example, while ISL extends the CORBA IDL to describe both
the services provided and required by a component, the gluing (connection) mechanism is
limited to the “definition/use” binding of services. Although it uses semantic information
as an auxiliary in checking the validity of a connection, the CBSE project does not base its
component evaluation on formal methods, nor does it investigate semantic foundations to

component evaluation, as we do in this project.

29

3.4 Object-Oriented Framework

An object-oriented framework is a reusable design of all or part of a system that is repre-
sented by a set of abstract classes and the way their instances interact [78]. A framework
provides a reusable context for components and can be customized for specific applications.
Since object-oriented frameworks can be regarded as a specific type of software architecture,
this category of work is a specialized case of architecture-based development that is based

on object-oriented methodology.

3.4.1 Schappert, Sommerlad and Pree

Schappert, Sommerlad and Pree [79] described an industrial research project that attempts
to provide automated support for software development based on object-oriented frame-
works and prefabricated components. Software development consists of two complementary
activities: the construction of frameworks and new components for functionality that are
not currently available, and the composition and configuration of existing components.

As with recent work on software architectures that emphasize the interrelationships
between software components, they studied component cooperation by using explicit struc-
tural information as a basis for their automation approach. They use relations to describe
software component interrelationships. Three levels of representation for relations and com-
ponents are distinguished: visual, which provides graphical manipulation and adequate pre-
sentation; structural, which contains information as a foundation for automation; and code,
which is for (re)use of existing components.

Structural relations are used to extract mechanisms whose implementation is usually
distributed in multiple software components. By describing the mechanism explicitly the

functionality is isolated and can be reused in different contexts. In the meantime, the

30

structural relations encapsulating these mechanisms can also be reused in different contexts.
A structural relation has three aspects: it declares the interface to be filled by the attending
components; it describes in an abstract way the interrelationship, such as an inter-class
call-graph; It provides a parameterized implementation of the mechanism to be realized by
it, thus facilitates code generation. A structural relation can be a composition of other
structural relations and components.

In order to facilitate the use of frameworks, they proposed an active guidance to the
developer by an active cookbook presenting recipes that contain information and invoke
tools to perform a development task. Frameworks are extended to include recipes for

improving their (re)usability.

3.4.2 Discussion

Object-oriented framework promotes component-based software development by encapsu-
lating interaction mechanisms among components and providing contexts for components to
plug-in and function. Unlike other approaches to component-based software development,
object-oriented framework is tightly coupled with object-oriented methodology. Compo-
nents in this context are classes or objects; interaction mechanisms are those specific to
object-oriented methods, such as aggregation, inheritance, method invocation, and so forth.
In spite of these differences, object-oriented framework shares the common set of issues in-
volving component-based software development: composition design, component evaluation,
and integration, as exhibited by the project we described in this section. Therefore, the
development of generic approaches to addressing these issues should be useful in the context

of object-oriented framework.

Chapter 4

A Framework for Component

Reuse

In this chapter, we describe a software reuse framework that emphasizes the assembly
of components as a paradigm to software development [33]. Reuse issues, in particular
those concerning component composition and integration, are addressed in an integrated
fashion in the framework. This framework also provides a context for the remainder of this

dissertation, and serves as a roadmap to our research.

4.1 Component-based Software Engineering

As a development paradigm, component-based software engineering is different from con-
ventional ones in that it partitions software development into two distinctive engineering
activities: one is component engineering, and the other is application engineering. Figure 4.1

shows the high-level view of component-based software engineering.

31

32

Component Application
Engineering Engineering

Component Application
Repository Systems

Figure 4.1: CBSD process high level view

Component engineering deals with the specification, development and brokerage of
reusable components. Components can be extracted and/or reengineered from existing
systems [80, 81, 82]. A more systematic and efficient approach is design for reuse. Do-
main engineering (83, 84, 85, 86] is an example of a design-for-reuse process that produces
domain-specific reusable artifacts, including domain requirement models (specifications),
architectures, and implementations. Figure 4.2 shows the activities of domain engineering

and their results. As shown in Figure 4.2, domain engineering is the application of a typical

.] o Domain
—> -

Domain Models Domain Architectures Domain Components

Figure 4.2: Domain engineering process

software process [40, 87] to a specific domain, instead of a particular application.

33

Application engineering focuses on the assembly of components to construct problem-

oriented solutions. Figure 4.3 depicts the high-level view of application engineering. As

Domain-specific — - { Requirement Analysis Requirement spec.

Knowledge

e 3
Generic Architecture Architecture Design ———= Architecture spec.
Knowledge

L y /
e =
Component repository ——— Component Assembly | ——— Application systems

Figure 4.3: Application engineering process

with the waterfall model [40], the first step in constructing a software system is collecting
and analyzing requirements. Domain specific knowledge such as domain models generated
during domain analysis is reused to produce application-specific models and specifications.
Architecture design groups functionality into component, and identifies the inter-relations
between components. The domain specific architectures may serve as reference architectures
for generating the application-specific architectures that embed the application-specific re-
quirements. The generic software architecture knowledge, such as architectural styles, their
constraints and performance properties, provide a foundation to architecture design. Given
the architecture specifications as a framework, the next step in application development is

to assemble components.

34

4.2 Architecture-based Component Assembly

An architecture is a collection of components, connectors, and a configuration of how the
components should be integrated via connectors [88]. Figure 4.4 depicts the architecture-
based assembly process of software components. In Figure 4.4, the polygons labeled by I;
represent interfaces of components. The cubes represent existing components. The black
bars labeled by C; indicate connectors. The dashed arrows represent an implementation
relationship between an existing component and an interface.

Given an architecture specification, the assembly process consists of two steps. First, the
existing components are retrieved, evaluated, and matched to the interfaces in the architec-
ture specification.! Then an integration process is invoked to integrate these components,
generating code as necessary for adapting components and/or implementing connections.?

With respect to component reuse, this architecture-based component assembly approach
has a number of potential benefits: First, component and composition (i.e., architecture)
specification can be planned in a unified framework that may facilitate the consideration
of design information (such as architectural properties) in component retrieval and eval-
uation. Second, the component evaluation process may identify the conflicts between a
requirement and an existing component, thus facilitating the automation of component
adaptation. Third, as a mediator of interactions between components, the connectors pro-
vide a place for recording and resolving conflict assumptions between component interfaces.

Furthermore, connectors prevent the changes made to a component from implicitly prop-

agating across the entire system. Fourth, not only can components be reused, connectors

'If there are interfaces to which no existing component is matched, then we can construct them from
scratch without affecting the other parts of the system.

?In reality, a component may simultaneously fulfill multiple interfaces. For convenience of description, in
this manuscript we assume that each interface has a component that implements the interface, as shown in
Figure 4.4.

35

Architecture specifies components
and their inter-relations for target system

Library of existing components

Ix
C3
Component Evaluation
N
Legend
Cl
1a Existing component
A A with interface la -
L Interfuce
] C2
Ci
smmm Connector Ix
Points to the interface S
- -> that a component can C3 \\
implement] =
P nt N p
el .
= C‘ompcin!c:l Alis M
implement [
A p
J Integration

Figure 4.4: Architecture serves as a framework into which components are assembled

36
that encapsulate recurring interaction styles can also be reused, and their implementation
can be automatically generated. Fifth, as illustrated in Figure 4.4, the adaptation of an
existing component (M) may be localized by requiring the adapted component (M with its
wrapper) conform to the requirement I,. This localization prevents the adaptation of M
from impacting the connectors, since the connectors can only “see” the interface I,. Finally,
a significant benefit comes from the maintenance and evolution of assembled systems, since
software architectures, when considered as design specifications, provide a cléar description

of these systems and support design maintenance [89)].

4.3 Issues Addressed In This Research

In this research, we develop techniques to solve the following crucial difficulties in the

implementation of the aforementioned component reuse framework.

e A specification framework that integrates facilities for describing both structural and
functional aspects of a target system.
Component-based engineering emphasizes the composition of components, that is,
the structural properties of a system in terms of its constituent components. On
the other hand, in order to enable the effective retrieval and evaluation of existing
components for reuse, a certain degree of precision in specifying requirements and/or
component functionalities is required. In this research, we develop a flexible framework
that integrates software architecture description techniques with traditional formal

specification languages.

e Component evaluation methods.

In order to automate the evaluation process of software components, methods based

37
on formal description techniques need be developed. The essence of an evaluation
method is to capture the concept of reusability while keeping low the computational
cost. Depending upon the degree of reusabillity captured, the computational cost
varies. While the easiest way is based on keyword matching, specification matching
based approach captures reusability in a far more precise way. Given the availability
of automated proof techniques (and tools) for resolving proof obligations, component
evaluation based on specification matching is also a feasible approach. In this research,
we first lay a theoretical foundation on the connection between specification matching
and reusability. Then we develop a specification matching based approach to evaluate
software components. One significant result of our approach is applicability to coarse-

grained, architectural components.

Chapter 5

Component Interconnect Model

By specifying how a system is composed of a collection of components, software architec-
tures provide the link from requirements to implementation and play a critical role in the
development and evolution of software systems. Unfortunately, conventional architectural
description techniques are generally too high-level and thus cannot provide sufficient in-
formation to evaluate and select appropriate components. In this chapter, we describe a
framework that integrates mechanisms for describing both structural and functional aspects

of a target system.

5.1 Architectural Model

Our specification framework is based on the architecture model described in Section 2.2.
That is, an architecture is a configuration of two kinds of distinct, identifiable elements:
components and connectors (38, 50]. Components are the locus of computation and state,
whereas connectors encapsulate the interaction protocols among components. Components
interact with each other through exchanging resources according to protocols defined by

connectors. A resource may be a computation (function), an abstract data type, a data

38

39

item, an event, or a bundle of the above resources. The behaviors that a component may
exhibit in constructing a system are modeled by ports. A port is an interaction point through
which a component can provide resources to or require resources from its environment. In
order to use the same component specification language to cover the range of abstractions for
entities that may be considered as components, we use a broader definition for components
than what may typically be used. Examples of components include subroutines, classes, a
library of subroutines or classes, and any constituent part of an application. A component
interacts with its environment only through its ports. The set of all ports that a component
has constitute the essential part of the component’s interface. The interface of a component
may also contain global properties regarding the behavior of the component. The interface
of a component provides a vehicle at an abstract level for communicating the capabilities
of a component and the way the component delivers its capabilities among component
specifiers, implementers, and users. It should be noted that the interface in this context
differs from the conventional definitions like those used in the CORBA IDL (73] in several
ways. First, it states not only the capabilities (resources) that a component can provide,
but also assumptions (resources) that a component requires. Second, it specifies the ways
a component may communicate with its environment and deliver its capability.

While a component embodies computation and/or data, a connector encapsulates in-
teraction protocols that govern the participants of those protocols. In the same way as a
component is modeled as a collection of ports, a connector is modeled as a set of place-
holders each of which is for a participant of the protocols encapsulated by the connector.
These placeholders, also called roles, are the only points through which a connector relates
to its environment. The collection of roles that a connector has, together with optional

global properties regarding the behavior of the connector, constitute the interface of the

40

connector. Similar to a component interface, the interface of a connector serves as a vehicle
at an abstract level for communicating the capabilities of the connector among connector
specifiers, implementors, and users.

A system is composed by configuring, i.e., plugging-in the ports of components to the
roles of connectors. The intuitive implication of “plugging-in” a port to a role is that the
component will participate in the protocol as the role through the port. Figure 5.1 depicts

the elements and their relationships in the architectural model.

System
Component Component v
' Connector !
' ' 1
b A
] S B)
Port Roles Port

Figure 5.1: Architectural elements

5.2 Integrating Behavioral Specifications

In order for software architectures to be useful, architectural elements need to be specified in
great detail. A flexible approach to specifying architectural elements is to identify properties
that characterize an architectural element. Each type of architectural element has a set of

properties whose values together define an instance of this element.

41

5.2.1 Component

As discussed above, the interface of a component is characterized by a collection of ports
and global constraints. While ports are the interaction points that a component has with its
environment, global constraints of a component specify the relations among ports. One im-
portant type of constraint for the purpose of reuse is the dependencies of a port upon others.
Intuitively, a port providing resources may assume the availability of certain resources that
are either provided or required by other ports. The dependencies between ports capture
this intuition and provide a finer-grained description of the relations between capabilities
and assumptions of a component. Another type of constraint involves the overall behavior
of the component, such as the transformation of data that flows through different ports.
We illustrate the specification of constraints in detail later in this Chapter.

In addition to an interface, a component may have an implementation. The implementa-
tion of a component should conform to its interface in that the implementation implements
the capabilities and delivers them in the way specified in the interface. A formal definition
of conformance is given in Chapter 7. A component without an implementation is known
as an abstract component or simply an interface. Each eristing component must have an
implementation. The implementation of a component may be in a variety of forms: exe-
cutable, source code/file, object code, object library, OS built-in facilities, other existing
components, or as a composite component implemented as another architecture. The spec-
ification of component implementation is characterized by a set of implementation-related
properties that specify implementation method, language, location, platform, architectural

mapping, and so forth.

42

5.2.2 Port

A port defines a behavior that a component may exhibit in constructing a system. Therefore
a port is the main place where we integrate behavioral specifications. (Another place to inte-
grate behavioral specification is the constraints’ specification of a component as mentioned

previously.) A port is characterized by three properties:

® Resource: the resource that is exchanged through the port. It may be a computation,
an abstract data type (ADT), a data item, a data stream, an event, or a bundle

of the above resources.

o Direction: the direction that a resource can flow through the port. A resource can

flow in (IN) or flow out (OUT) or both (I10).

e Connectivity: the number of connections in which the port may simultaneously partic-
ipate. It is specified by keywords: single representing only one connection is allowed;
multiple meaning multiple connections are permitted; or a number N for the specific

number of possible connections.

The resource that flows through a port is the major property that characterizes the

port. In the following we discuss the specifications of various types of resources.

Resources

The basic form of computation is a function, which is provided as a basic construct by
all modern programming languages. Syntactically, a function has a name and a signature
specifying the types of parameters and return value, if any. The behavior of a function, that

is, what a function can accomplish, can be specified using formal logic. In this research,

43
we use a Larch-styled method to specify the functional aspects of software components.

Figure 5.2 shows the behavioral specification for computing the square root of an integer.

FUNC sqrt(int n) return int {
uses Integer(int for Int);
modifies result;
requires n > O;
ensures result’ X result’ < n A
n < (result’+1) x (result’+1);

Figure 5.2: Specification of function sqrt

In Figure 5.2, result represents the return value of the function. As in the Larch
interface language for C, LCL [26], a variable superscripted with = and ’ refers to the
values of the variable before and after the execution of a function. A variable without any
decorations also refers to its value before the execution of a function. In order to facilitate
reasoning about behavioral specifications, theories about typed variables and constants
appearing in a specification is needed. The uses clause serves this purpose by including
relevant LSL traits.

A data item has a name and belongs to a type. A type can be modeled as an algebra by
the Larch shared language [26]. For an abstract data type (ADT), we specify its behaviors
by a set of function specifications that each specify an externally observable behavior of an
object of the type. Figure 5.3 shows the specification for a generic stack. When specifying
an ADT, we use self to represent the object of the ADT [90].

A data stream is a sequence of data items of the same type. A data flow is specified by

giving the type of its elements. For example, a character stream is specified as the following:

44

ADT stac

uses

FUNC

FUNC

FUNC

FUNC

FUNC

FUNC

k<T> {
Integer(int for Int),
Stack(T for E, stack for C);

stack() return void {
modifies self;
ensures self’ = empty;

push(T x) return void {
modifies self;
ensures self’ = push(x, self~);

pop() return void {

requires ~“isEmpty(self”);
modifies self;

ensures self’ = pop(self”);

top() return T {
requires ~“isEmpty(self);

ensures result’ = top(self);

isEmpty() return Bool {
ensures result’ = isEmpty(self);

size() return int {
ensures result’ = size(self);

Figure 5.3: Specification of stack

45

STREAM acstream : char;

An event is represented by a name. An event occurs if and only if certain conditions are

met. A predicate can be used to specify the conditions. For example,
EVENT minute_tick {PRED: second_tick = 60; }

specifies an event minute_tick that will happen when the count of second ticks is 60.
A collection of resources can be bundled together as a whole to be provided or required

by a port. Such a bundling is specified as below:
RBUNDLE name { {ResSpec}* }

where RBUNDLE indicates that the specified resource is a bundle of resources, and

ResSpec}* represents multiple resources specifications.
p p p

5.2.3 Examples

Our first example considers the specification of the middle layer component in a three-

layered system.

Example 1 Consider a simple data access system. The system has three components that
are organized into layers, where a given layer uses services provided by the layer below it.
At the top is the user interface that accepts user data access requests, and handles them by
calling data access functions provided in the middle layer. The middle layer component, in
turn, uses an abstract data type (ADT) object defined in the bottom layer of the system.
Figure 5.4 describes the interface of the middle layer component, where functions read and
write are provided for the use of the top layer component through two ports with the same
name, respectively. (It is not mandatory that the resource of a port takes the same name

as the port. However, for simplicity, we use this convention.) The data object z of type

B

46

dtModel is imported through port = from the bottom layer component. In order for the
component dataAccess to provide the services read and write, data object T is required,

thus both ports read and write depend on port z.

Our next example specifies a filter component that counts the number of words.

Example 2 Figure 5.5 depicts the specification of component wordcounter. Figure 5.5
illustrates the specification of overall behavior of a component through constraints. Several
primitive functions are used in the behavior specification. Function len is defined over a
stream that returns the length of a stream. Given a stream s, s[i] returns the (i + 1)-th
element of s. As shown in Figure 5.5, the behavioral constraints state that the number of
words input through port ipw is equal to the first and only element that is output through
port oc. This ezample also illustrates the specification of implementation. As shown in

Figure 5.5, component wordcounter is implemented by the Uniz command wc.

5.2.4 Typing Architectural Elements

As shown in previous examples, architectural elements exhibit commonalities. Types are
introduced to capture those commonalities. Figure 5.6 shows the definitions of several
typical port types. Each port type specifies three common properties shared by all ports
of this type: resource type, resource flow direction, and connectivity. The type of a port
encapsulates the behavior pattern that a component can exhibit through the port. For
example, a component may define and export a procedure to its environment through a
ProcDef port, whereas an InStream port in a filter means that the filter will obtain a stream
of data from the port. By associating a type with a port, we can simplify the specification

of a port by omitting those properties already implied in the type.

47

COMP dataAccess {
uses Table(dtModel for Tab, int for Ind, int for Val);
PORT x {
DIRECTION : IN;
CONNECTIVITY : SINGLE;
DATA x : dtModel WITH BEHAVIOR {
FUNC exists(int recNo) return bool {
ensures result = recNo € x; }
FUNC insert(int recNo, int val) return void {
requires ~(recNo € x7);
modifies x;
ensures recNo € x’ A lookup(x’, recNo) = val; }
FUNC query(int recNo) return int {
requires recNo € x;
ensures result = lookup(x, recNo); }
FUNC update(int recNo, int newVal) return void {
requires recNo € x~;
modifies x;
ensures lookup(x’, recNo) = newVal; } }

}

PORT read {
DIRECTION : OUT;
CONNECTIVITY : MULTIPLE;
FUNC read(int recNo, int recVal) return bool ({
modifies recVal;
ensures result = recNo € x A
(if result then recVal’ = lookup(x, recNo)); }

}

PORT write {
DIRECTION : OUT;
CONNECTIVITY : MULTIPLE;
FUNC vrite(int recNo, int recVal) return void {
modifies x;
ensures recNo € x’ A recVal = lookup(x’, recNo); }

}

CONSTR { DEPENDENCE { {read, write} : x } }

Figure 5.4: Specification of dataAccess interface

48

COMP wordcounter {
PORT ipw {
DIRECTION : IN;
CONNECTIVITY : SINGLE;
STREAM ipw : word;
}
PORT oc {
DIRECTION : OUT;
CONNECTIVITY : SINGLE;
STREAM oc : int;
}
CONSTR {
BEHAVIORCSTR { PRED: len(ipw) = oc[0] A len(oc) = 1; }
}
IMPLEMENTATION {
method : executable;
platform : Unix;
name : ‘‘wc’’;
location : ¢¢.’?;

Figure 5.5: Specification of component wordcounter

Similarly, there are recurring patterns exhibited in the way that components deliver their
functionalities. We use component types [50] as an abstraction to capture these recurring
patterns. Specifically, component types are intended to capture the architectural properties.
Each component type supports a specific set of port types. For example, the type filter
specifies that a component can only have ports of type InStream and OutStream, and
thus must be used in a pipe-and-filter system [32]; whereas a Module may have ports that
provide or require computation, data, or abstract data types, and thus can be used in main

program/subroutine system.

49

defporttype ProcDef {
restype : FUNC;
direction : OUT;
connectivity : MULTIPLE
}
defporttype Proclnvoc {
restype : FUNC;
direction : IN;
connectivity : SINGLE
}
defporttype DataDef {
restype : DATA;
direction : OUT;
connectivity : MULTIPLE
}
defporttype DataUse {
restype : DATA;
direction : IN;
connectivity : SINGLE
}
defporttype ADTDef {
restype : ADT;
direction : OUT;
connectivity : MULTIPLE
}
defporttype ADTUse {
restype : ADT;
direction : IN;
connectivity : SINGLE
}
defporttype EventAnnounce {
restype : EVENT;
direction : OUT;
connectivity : MULTIPLE
}
defporttype EventListen {
restype : EVENT;
direction : IN;
connectivity : SINGLE
}
defporttype InStream {
restype : STREAM;
direction : IN;
connectivity : SINGLE
}
defporttype OutStream {
restype : STREAM;
direction : OUT;
connectivcity : SINGLE

Figure 5.6: Definitions for common port types

50

Figure 5.7 depicts the interface specification of component wordcounter with typing

information.

COMP wordcounter : Filter {
PORT ipw : InStream{
STREAM ipw : word;
}
PORT oc : OutStream({
STREAM oc : int;
}
CONSTR {
BEHAVIORCSTR {PRED: len(ipw) = oc[0] A len(oc) = 1; }

}

Figure 5.7: Interface specification of component wordcounter with typing information

5.2.5 Connector

The roles of a connector together with global properties regarding the behavior of the
connector constitute the interface of the connector to its environment. Global properties
are usually rules and constraints, that is, protocols, governing the interactions between
the roles of a component. For example, a procedure call as a connector has two roles:
procedure definer (callee) and procedure user (caller). The typical protocol of a procedure
call as implemented by most programming languages requires that the callee and the caller
have the same (resource) name and use synchronous communication. More complicated
protocols, such as remote procedure call (RPC), pipeline and implicit invocation, can be
encapsulated in a connector. A connector can be specified by its roles and the protocols

governing the roles. Similar to components, connectors can be specified and analyzed based

51
on formal theory and notations. We previously have used the process specification language
LOTOS to precisely capture and analyze connector properties [34]. Some architectural
description languages, such as Wright [42, 43], focus on formalizing connectors. However,
in this research, since the use and reuse of components are our central issues, the formal
aspects of connectors are beyond our scope.

Like component types, connector types are introduced to capture recurring component
interaction styles. A connector type embodies the essential properties of the roles and
protocols of a connector of this type. One important property of a role is the constraints
imposed on the port that may be plugged-in the role. We define the domain of a role to
be the set of port types whose instances can be plugged into the role. Figure 5.8 shows the
definition of several typical connectors. As shown in Figure 5.8, the definition of a connector

specifies the names of roles and their domain as well as constraints applied to the roles.

5.3 The Language

Based on the above framework that integrates architectural and functional specifications,
we have developed an architectural description language. The examples previously shown in
this chapter are written in this language and exhibit certain aspects of the ADL. A concise

yet complete BNF description of the syntax of this ADL is given in Appendix A.

52

defconntye CallProc {
Roles { Definer : {ProcDef};
Caller : {Proclnvoc}
}
Constraints {
Definer << Caller
#Definer is more specific than caller

}

defconntype AccessData {
Roles { Definer : {DataDef};
User : {DataUse}
}
Constraints {
Definer << User
#Definer is more specific than caller

}

defconntype UseADT {
Roles { Definer : {ADTDef};
User : {ADTUse}
}
Constraints {
Definer << User
#$Definer is more specific than caller

}

defconntype Pipe {
Roles { Source : {InStream};
Sink : {OutStream}
}
}

defconntype EventProc {
Roles { Announcer : {EventAnnounce};
Listener : {EventListen}

}

Figure 5.8: Definitions for common connector types

Chapter 6

A Semantic Foundation for

Specification Matching

Evaluating the reusability of a library component for satisfying a query is a central task for
software reuse. A formal methods-based approach has the advantage of being precise and
amenable to automation. Previous work [28, 30, 91] has proposed specification matching
as a means to component retrieval and evaluation. These approaches have some difficul-
ties: First, the connection between a specification match and its suitability for determining
reusability is based on intuition, rather than a formally defined foundation; Second, they
only consider functional aspects of components. In this chapter, we establish a seman-
tic foundation for specification matching for reuse. In Chapter 7, we extend specification

matching to architectural components [92].

53

54

6.1 Introduction

Determining the behavioral relationship between software components is a central task
for many software engineering activities, such as reuse, maintenance, and object-oriented
subtyping. With the ever increasing adoption of formal methods, specification match-
ing [93, 27, 28, 30] has been proposed as a means to evaluate component relations at an
abstract level. Specification matching identifies behavioral relationships between software
components by checking the logical relations between specifications. Among the possible
behavioral relations, one of particular interest is behavioral refinement, that is, one compo-
nent provides all the behavior that another component does. In software reuse, this means
that one existing component can be (re)used where a new component is needed. In soft-
ware maintenance, it means that one component can be substituted for another one without
changing the behavior of the whole system. In object-oriented subtyping, the refinement
relationship between methods of two classes is an essential requirement for one class to be
a behavioral subtype of another [94]. In this chapter, in order to focus our discussion, we
study behavioral refinement in the context of software reuse. We have concentrated on the
software reuse application since it is not only the focus of this research, bgt also has been the
focus of most of the specification matching work [93, 27, 28, 30, 59, 91, 95, 29, 33]. In soft-
ware reuse, a key issue is to determine if an existing component is reusable for implementing
a given query specification.

A number of specification matching criteria have been proposed to capture the notion
of behavioral refinement, or reusability in the context of software reuse. One widely used
formal specification method is based on Hoare’s axiomatic approach [96]. An axiomatic
specification of a component (procedure) C' is a 2-tuple of predicates, (Cpre, Cpost), Where

Cpre specifies the precondition, and Cp,s: specifies the postcondition of the procedure. In

55
the following discussion, consistent with terms of software reuse,) represents a query spec-
ification, (Qpre; @post), and A is a library component specification, (Apre, Apost). Zaremski
and Wing [30] defined ezact pre/post match, Mezoct—pre/post : (Qpre > Apre) A(Apost AQpost)s
and plug-in match, Mpiug—in : (Qpre = Apre) A (Apost = Qpost). Penix and Alexander [91],
and Schumann and Fischer [95] use a more relazed plug-in match in their component re-
trieval work, Mreiazed—plug—in : (Qpre = Apre) A (Qpre A Apost = Qpost). By defining
the characteristic predicate of a component (or specification) as Ayre = Apost, Jeng and
Cheng [93, 27, 28, 59], Zaremski and Wing [30] discussed ezact and generalized predicate
matches, Mezact—pred : (Apre = Apost) € (Qpre = Qpost) and Myen_prea : (Apre — Apost) =
(Qpre = Qpost)- Zaremski and Wing [30] also suggest an alternative definition of charac-
teristic predicate, Apre A Apost, and therefore obtain a different form of predicate matches.
In defining behavioral subtyping, America [97] and Liskov and Wing [98] use plug-in match
as their method rule that governs the behavioral relationships between methods of two
classes (or objects). Dhara and Leavens [99] later refine their method rule as guarded gen-
eralized predicate match, Myyorded—gen—pred : (Qpre = Apre) A ((Apre = Apost) = (Qpre =
Qpost))- Table 6.1 lists some of those specification matches defined in the recent litera-

ture [28, 30, 91, 95, 97, 98, 99).

Behavioral refinement has been an important concept in formal programming method-
ology [100, 101, 102, 103], particularly in refinement calculus [104, 105, 106, 107]. In re-
finement calculus, programming is a step-by-step development of specifications into (ex-
ecutable) code through the application of refinement laws. A refinement law defines a
correctness-preserving refinement relationship between two programs. (In refinement cal-

culus, the term “program” is used polymorphically to represent (abstract) specifications,

56

[Match | Definition
A’[eract—prg[post (Qpre © Agre) A (Apost « onst)
Mplug—in (Qpre — Apre) A (Apoat — onat)
Alplug-in—poat (<4post — onst)
A’Iweak—poat Apre — (Apoat — oncl)
A[rela:ted-—pluL—in (Qpre — Apre) A ((Qpre A Apost) — Qpaat)
A'Ie:act—pred (Apre — Apoa!.) A (Qpre — onat)
A’[gen—pr'ed (-4pre — Apoat) — (Qprc — onst)
Aferact—pred—2 (Apre A Apast) © (Qprc A onsl)
Mgen—pred—2 (Apre A Aposl) - (Qpre A onat)
"‘[guarded—gen—pred (Qpre — Apre) A ((Apre — Apost) — (Qpre — onst))

Table 6.1: Various specification matches

(executable) codes, and intermediate forms between the two.) Although most of refinement
laws involve the refinement of a specification to a code segment, several refinement laws
only involve specifications, such as the weaken precondition and strength postcondition laws,
which together are actually the plug-in match shown in Table 6.1.

The usefulness of a specification match M for determining reuse lies in the following

assumption:!

Given a query specification Q and a library component A, if M(A,Q) holds,

then A can be reused for implementing Q.

The validity of the above assumption depends on how the logical relationships between A
and @, captured by the match M, are related to the reusability of A for Q. Although
the usefulness of those specification matches depicted in Table 6.1 have individually been
argued in one way or another, there does not exist a general approach to reason about the

connections between a specification match and its usefulness for determining reusability.

!This assessment and this chapter focuses on the correctness of a reusable candidate for a given query
specification. It does not address numerous issues related to component adaptation.

57

Due to the lack of such a general approach, some problems regarding specification match-
ing cannot be solved in an efficient way. For example, given a specification match that
happens to be suitable for determining reuse, it is still an open question as to whether
there exist better specification matches. Intuitively, one specification match is better than
another if it can identify reusable components for a given query that the other match fails to
identify. For example, is there a specification match better than the relazed plug-in match?
Or can we further refine the specification match used by Dhara and Leavens [99] in defining
object-oriented behavioral subtyping? Another drawback to the lack of a general approach
for reasoning about specification matching is that different people may have different per-
spectives and thus define different matches for capturing certain aspects of reusability, as
exhibited in the large variety of proposed specification matches. In this paper, we establish a
semantic foundation for reasoning about the connections between a specification match and
its usefulness for determining reusability, and provide a framework to evaluate various spec-
ification matches. We also study the set of all specification matches suitable for determining
reuse, and prove the existence of the best ones among those specification matches.

In order to rigorously reason about the usefulness of a specification match, we need a
formal definition of reusability. The essential requirement of such a definition is correctness:
in order for a component to be reusable with respect to a specification, it must “correctly”
implement the specification. In this chapter, we only consider components (programs) that
terminate, thus by correctness we mean total correctness.

The remainder of this chapter is organized as follows. Section 6.2 gives a definition for
reusability in terms of the correctness formula of Hoare logic [96, 108]. Based on this defi-
nition, a special type of specification matching, reuse-ensuring match, is defined. A reuse-

ensuring match will guarantee the reusability of a component for correctly implementing a

58
query specification. Section 6.3 gives an overview of relational semantics that will be used
as the basis for reasoning about specifications. Then in Section 6.4 we discuss how to prove
a specification match is reuse-ensuring. Our proof technique is based on the relational inter-
pretation of programs and specifications [96, 108, 109]. This interpretation model addresses
universal quantification, thus simplifying the form of the matches at the specification level.
In Section 6.5, we discuss the lattice properties of reuse-ensuring matches. We prove that
the set of all equivalence classes of reuse-ensuring matches together with the logic impli-
cation (=) operator constitute a complete lattice. Moreover, we give the lattice’s greatest
and least element, which are also the most general and most specific equivalence classes
of reuse-ensuring matches, respectively. In Section 6.6, we examine some frequently used
concepts in the context of relational interpretations of programs and specification. We show
why the usual definition of characteristic predicate of a component or specification is flawed,
and an alternate definition is given. We also illustrate the essential limitations of signature
matching, and show how they can be overcome using specification matching. Finally, we

give relevant background notes in Section 6.7 and conclude this chapter in Section 6.8.

6.2 Formalizing and Reasoning About Reusability

In this section, we formalize reusability in terms of program correctness with respect to spec-
ifications. We then discuss in general term how specification matching is related to reuse.
We define reuse-ensuring matches to capture the notion of using specification matching to

determine reusability.

59

6.2.1 Program Specification and Correctness

The most important property of a program is its functionality, that is, what the program can
accomplish. Therefore, a correct functional specification is crucial for the effective (re)use of
a program. Many formal specification languages have been proposed [1], such as VDM |[2],
Z [3], and the Larch family [26]. In this chapter, we do not want to be constrained by
the syntactical details of specific specification languages. Instead, we use a general form of
specifications that is based on Hoare’s axiomatic approach [96]. An aziomatic specification
of a program is given by a pair of first order assertions about the values of the relevant
variables before and after the execution of the program: the precondition specifies the
initial values, and the postcondition specifies the final values and/or their relations with the
initial values. In order to differentiate the values of a variable before and after the execution
of a program, we use the primed form of a variable to denote the final value of the variable,
whereas the non-primed form of a variable denotes its initial value.? The precondition of a
specification thus is a boolean function of non-primed variables, and the postcondition is a

boolean function of primed and/or non-primed variables.
Example 3 The specification for computing the quotient and remainder of integer division

looks like the following, where z, y, q, and r are all integers.

precond: z>20Ay>0
postcond: ¢ xXy+r' =zAr'>0Ay>71

It should be noted that in our specification, we assume that by default, the value of

each variable may change unless it is explicitly stated that the final value of a variable is

2The notion of primed variable for representing final value is borrowed from the Larch interface specifi-
cation language for C [26].

60
the same as its initial value. Therefore, we do not have to introduce a frame (or modifies
clause in Larch) in a specification to list the variables whose values may change.

In order to facilitate our discussion in the rest of this chapter, we introduce the following

notations.
Vv the set of variables that a program operates on.
\'% the set of primed forms of variables in V, i.e., V' = {v/ | v € V}.

PreAssert the set of first order assertions over V.
PostAssert the set of first order assertions over V.U V',

Spec the set of specifications. Spec = PreAssert x Post Assert.

A specification is usually written as a 2-tuple (p,q), where p € PreAssert and
q € PostAssert are the precondition and postcondition, respectively. In this chapter,
a specification S by default refers to (Spre, Spost)-

The correctness of a program with respect to implementing a specification is captured
by a boolean expression, the correctness formula (CF) [96, 108, 103]. We use CF to denote

the set of correctness formulas.
CF = PreAssert x P x PostAssert

where P is the set of programs.
Given a program A and a specification (p,q), the correctness formula, written as

{p}A{q}, is informally interpreted as follows:

{p}A{q} = truth of program A begun with p satisfied will terminate with q

satisfied.

It should be noted that this definition captures the total correctness of a program: as long
as A starts with p satisfied, (1) A is guaranteed to terminate; and (2) g is satisfied when A

terminates.

61

6.2.2 Reusability

The reusability of a component (program) for a query specification depends on whether the
component satisfies the query specification. The correctness formula provides a semantic

measure for “satisfaction”.

Definition 1 (Reusability) Given a query specification Q: (Qpre, Qpost), 6 component A

is reusable for implementing Q, if {Qpre} A{Qpost} holds.

Definition 1 emphasizes the semantic correctness of a reusable component implementing
a query specification. According to Definition 1, a reusable component is guaranteed to
correctly implement the target specification. Although it is possible to apply program cor-
rectness proof techniques [108] to check the validity of a correctness formula, this usually
requires a great deal of knowledge about the program itself, such as its internal structures
and implementation details. Unfortunately, this type of knowledge is seldom available. Fur-
thermore, program correctness proof techniques are typically too computationally expensive
to be practical for general use.

In this chapter, we assume that components intended for reuse are delivered with specifi-
cations that the components satisfy [82]. (In related investigations, we have applied reverse
engineering techniques to obtain predicate-based specifications from existing code [82].) We
use (Apre, Apost) to denote the specification of component A, that is, { Apre } A{ Apost}. In the
rest of this paper, depending on the context, a component A refers to either its specification
(Apre, Apost) or the component itself. Specification matching is a method for evaluating and
finding reusable components for a query specification by matching component specifications
to the query specification. Formally, a specification match is a boolean function defined as

below.

62

M: Spec x Spec — {T, F}

Given a match M and two specifications S; and Ss, if M(S;,S2) = T, then we say S
matches S, according to M. Obviously, checking the validity of a match when applied to

two specifications is a much easier task than directly proving the correctness of a program.

6.2.3 Reuse-Ensuring Match

For a specification match to be useful, it should guarantee the correctness of a component
for fulfilling the given query specification. Therefore, we are only interested in those speci-
fication matches that when a component matches a query specification, we can be assured
that the component is reusable for implementing the query specification. We call these

matches reuse-ensuring.

Definition 2 (Reuse-ensuring Match) A specification match M is reuse-ensuring, that

1s, it can ensure that a component A satisfies a query specification Q, if and only if for any

A and Q, M(A,Q) A {Apre} A{Apost} = {Qpre} A{Qpost }-

Once a specification match is proven to be reuse-ensuring, we can use it to evaluate and
select components reusable for a query specification by simply checking its validity when
applied to candidate components and the query specification.

As an axiomatic proof system for program correctness, Hoare logic [96, 108] has a set
of axiom schemata and inference rules, most of which refer to specific program constructs
(statements). However, there is one rule, consequence rule, that does not involve the specific

constructs of a program, as shown below.

p—op {p'}C{d},d > ¢q
{p}C{q}

63

The consequence rule states that if the execution of a program C under precondition p’
ensures the truth of assertion ¢’, then the execution of C under any precondition that
logically implies p’ also ensures the truth of any assertion logically implied by ¢'. We can
apply the consequence rule to prove that certain matches are reuse-ensuring. For example,
consider the plug-in match, M(A4,Q) = (Qpre = Apre) N (Apost = Qpost). Apply the
consequence rule with Qpre for p, Apre for p', Apost for ¢', Qpost for ¢, and A for C, we have
{Qpre} A{Qpost}. Due to the soundness of Hoare logic, we have M (A, Q)A{Apre} A{Apost} =
{Qpre}A{Qpost}. Therefore, the plug-in match is reuse-ensuring.

Unfortunately, Hoare logic is not generally applicable to prove reuse-ensuring matches
without involving the internal structures of a component. Thus we turn to the underly-
ing semantics of program specifications and correctness in search of a basis for reasoning
about specification matches. One frequently used approach to expressing semantics is based
on Dijkstra’s weakest precondition functions, wp and wip [100]. Given a command c, its
semantics is defined by wp.c.p, the weakest precondition for command c to terminate and
establish postcondition p, and by wip.c.p, the weakest precondition for command c to estab-
lish p if ¢ terminates. Since wp and wlp act as predicate transformers, this kind of seman-
tics is also called predicate-transformation semantics. Hesselink [110] explored the use of
predicate-transformation semantics as a foundation for a formal programming methodology.
Although it is possible to use predicate-transformation semantics as a foundation to rea-
son about specification matching, the inclusion of programming language constructs makes
it unnecessarily complicated for the purposes of reasoning about specification matching.
Therefore in the following discussion, we use a more intuitive method of semantics formal-
ization, called relational semantics, as our basis for reasoning about specification matching.

Relational semantics has also been used to interpret Hoare logic [108, 109].

64

6.3 Relational Semantics

An execution step of a program can be considered as a transformation from one state to
another. The effects of a program execution can be described by the sequence of states.
A terminated execution has a finite sequence of states. In general, the observation of the
intermediate states in the execution sequence is unnecessary. The semantics of a program
can be directly defined as a relation between the initial and final states of terminated
executions. In this section, we first give a brief overview of relation calculus [111]. Then the
relational interpretations of programs and specifications are described. Relevant theorems

that will facilitate reasoning about specification matches are also discussed.

6.3.1 Relation Calculus

Definition 3 (Relation) Given a set X, the Cartesian product X x X 1is the set of all
pairs (z,z'), where z,2’' € X. A (binary) relation over X is any subset of X x X. The

Cartesian product X x X itself is a special relation, the universal relation.

In addition to the common set operations: subset (C or C), intersection (N), union (U)

and so forth, we define the following operations that are specific to relations.

Definition 4 (Domain of a relation) Given a relation R, R C X x X, the domain of

R, denoted as Dom.R, is the set of first elements of all pairs in R, that is,

Dom.R={z|r€ X A3z'(z' € X A (z,2') € R)}

Definition 5 (Domain restriction) Given a relation RC X x X, and a set Y C X, the

domain restricted relation of R by Y, denoted by YR, is the set of pairs in R whose first

65

element is in 'Y, that is,

YR = {(z,2') |z € Y A (z,2') € R}

Theorem 1 (Properties of domain restriction) Given a set X, let Rj,R; C X x X,
and X,,Xo C X, it is not difficult to show the following properties regarding domain re-
striction.

1. Monotonicity of relations. If R; is a subset of Ra, then X||R, is also a subset
of X11Ry. That is, Ry C R, = X,|R; C X1]|R2

2. Monotonicity of sets. If X, is a subset of X5, then X ||R; is also a subset of
X21R;. That is, X; C X2 = X||R; C X2]R;

3. Idempotent. Domain restricting an already domain restricted relation by the same

set has no effect. That is, X](X,]1R)) = X |R,

6.3.2 Interpretation of Programs and Specifications

The effects of a program execution are recorded in variables operated on by the program.
An axiomatic specification is given by stating the initial and final values of these variables,
that is, their values in the initial and final states. In general, each variable v belongs to
a type T, that defines a set of objects (data). For the set of variables V that a program
operates on, we denote the set of (data) objects that all variables in V can range over as

D, that is, D = {J,cy To-

Definition 6 (State) A state (or valuation) s is a function with the set V of variables

as the domain and the set D of (data) objects as the range, such that Vv € V,s(v) € T,,

66

where s(v) is called the value of variable v in state s. The set of all the possible states of a

program constitute the state space of the program, denoted as S.

The relational semantics of programs and specifications are given in terms of the follow-

ing definitions.

Definition 7 (Interpretation of programs) The relational semantics or interpretation
of a program P, denoted as Ip, is a binary relation over the state space S such that (s,s’) €
Ip, if and only if there exists an ezecution of program P that starts in initial state s and

terminates in final state s'.

Example 4 The relational semantics of a simple program “z:=38" (where assuming z is
declared as an Int) is I;.—3 = {(s,5') | sE SAS' € SAS'(z) =3}, where S={s|s: V >

Int}, V = {z}.

Definition 8 (Interpretation of preconditions) A precondition p € PreAssert is in-
terpreted as a subset of state space S. S, = {s | s € SAp[Vv € V,v « s(v)]}, where
p[Vv € V,v « s(v)] is the predicate obtained by substituting all occurrences of every vari-

able v € V in p with s(v).

Definition 9 (Interpretation of postconditions) The interpretation of a postcondition
q € PostAssert is a relation over state space S. Ry = {(s,s') | s € SAs' € SAg[Vv €
V,Vv' € V',v « 5(v),v' + s'(v)]}, where g[Vv € V,Vo' € V' v s(v),v’ « §'(v)] is the
predicate obtained by substituting all occurrences of every variable v € V in q with s(v) and

all occurrences of every variable v' € V' in q with s'(v).

Example 5 The boolean constant T (true) is interpreted as either S or SxS, depending on

whether it is a precondition or postcondition, respectively. The interpretation of F (false)

67
is ¢ (empty set). The assertion p: = > 0, if used as a precondition, is interpreted as a set
of states, S, = {s | s € SAs(z) > 0}. The assertionq: 2' x2' <zA(Z'+1)x(Z+1) >z
is interpreted as a relation over S, Ry = {(s,s') | s € SAs' € SA(2) x §'(z) < s(z) A

(s'(z) +1) x (s'(2) + 1) > s(z)}.

Based on the interpretations of assertions given before, we include the following theorem

regarding assertions.

Theorem 2 (Properties of assertions) For two assertions, p; and py. If both p; and

p2 are in PreAssert, then py = p2 & S, C Sp,. Or if both p, and p, are in PostAssert,

then py = po & Ry, C R,,.

Definition 10 (Interpretation of correctness formulas) In terms of relational se-
mantics, a correctness formula has the following interpretation: I[{p}A{q}] = S, C

Dom.I4 A Sp]IA CR,.

Definition 10 captures the notion of total correctness as described in Section 2.1. The first
conjunct states that given p satisfied, A will terminate. The second conjunct ensures that
q will be satisfied when A terminates.

An axiomatic specification consists of an assertion of PreAssert as the precondition
and an assertion of Post Assert as the postcondition. However, not any pair of assertions
from PreAssert x PostAssert can form an implementable specification. For example,
specification (T, F') cannot be implemented by any program, since there is not a final state

(terminating state) that satisfies F.

Definition 11 (Implementable specification) Given a state assertion p and a relation

assertion q, the 2-tuple (p,q) is an implementable specification if and only if S, C Dom.R,.

68
As an example, consider specification (T,z > 2z’ x 2’ Az < (2’ + 1) x (2/ +1)). This is not
an implementable specification, since there does not exist a program that, given any input
(for instance, z = —2), will establish the truthof z > 2/ x 2/ Az < (2’ +1) x (2’ +1). In

the rest of this chapter, we assume all referenced specifications to be implementable.

Theorem 3 Given two implementable specifications, (p,q) and (w,u). If pAq = wAu,
then p = w.

Proof. Suppose p Aq = w A u is true. Since both p A ¢ and w A u can be considered
assertions in PostAssert, according to Theorem 2, we have R,nq C Ryay, which implies
Dom.Rypng € Dom.Rypy. Since S, C Dom.R, (by Definition 11), we have Dom.Ryng = Sp.
Similarly, we have Dom.Ry,r, = Sy. Therefore, we have S, C S,,, which, according to

Theorem 2, means p - w. O

From Theorem 3, we can immediately derive the following corollary.

Corollary 1 Given two implementable specifications, (p,q) and (w,u). IfpAq & wAu,

then p & w.

Definition 12 (Interpretation of specifications) The interpretation of an imple-
mentable specification (p,q) is the result of domain restricting Ry by Sp, that is, R, gy =

Sp] Ry

Theorem 4 Given an implementable specification (p,q), Rip gy = Rpnaq-
Proof.

1. For any (s,s') € R(p q), it follows that s € Sp and (s,s’) € R, q) (by Definition 12),
2. which means both p[Vv € V,v « s(v)] and ¢q[Vv € V,Vv' € V' v « s(v),v’ « s'(v)] hold.

3. Since p is a precondition, it does not contain primed variables (i.e., variables in V'), therefore p[Vv € V,v «

s(v)] = plVv € V, V¥’ € V' v « s(v),v' « s'(v)].

69

4. It immediately follows that (p A q)[Vv € V,Vv' € V', v « s(v),v’ « s'(v)] holds, which means (s,s’) € Rpnq.
5. On the other hand, for any (s,s’) € Rpaq, (P A q)[Vv € V,Vv' € V' v « 3(v),v' « s'(v)] is true.

6. Since (p A q)[Vv € V,VV' € V' v « 5(v),v « ¢'(v)] = p[Vv € V,VV' € V' v « s(v),v « s'(v)] Ag[Vv €
V,Vv' € V', v « s(v),v « s'(v)] = p[Vv € V,v « 5(v)] Ag[Vv € V,VV' € V', v « s(v),v' « s'(v)], we have

s € SpA(s,s') € Rg.

7. It follows that (s,s') € Sp]Ry, that is, (s,s") € R(, - O

6.4 Proving Reuse-Ensuring Matches

Relational semantics provides a basis for reasoning about specification matches. In this
section, we show how we can prove a specification match is reuse-ensuring based on relational
semantics. In order to show that a match M is reuse-ensuring, we need to prove that for
any specification @ and component A, as long as A matches @ according to M, then A will

correctly implement Q, that is, M (A, Q) A {Apre} A{Apost} = {Qpre} A{Qpost}-

Example 6 As a first ezample, we show Mezact—pred—2 : (Apre A Apost) <> (Qpre A Qpost) 18
reuse-ensuring.

Proof. Suppose (Apre A Apost) <> (Qpre A Qpost) hold. According to Corollary 1, Ayre ¢
Qpre holds, which implies (1): Sa,,. = Sq,,.- In the meantime, according to Theorems 2
and 4, we immediately have (2): Sg,,.1RQ,0.c = Sa,,.|RA,,, from our assumption. Since
{Apre}A{Apost}, we have (3): Sa,,, € Dom.Ig A Sa,, 11a C Ra,,, From the second
conjunct of (3), we have Sa,,. 174 C S4,,.|1RA4,,., (according to Theorem 1). Together with
(1) and (2), we have (4): Sg,,.11a € Sq,,.|RQ,0..- Also following the first conjunct of (3)

and (1) is (5): Sg,,. € Dom.I4. From (4) and (5) immediately follows {Qpre} A{Qpost}. O

Example 7 Our second ezample shows that M;elazed—plug—in : (Qpre = Apre) N (Qpre A

Apost = Qpost) s reuse-ensuring.

70
Proof. Suppose (Qpre = Apre) A(Qpre AApost = Qpost) hold. From the first conjunct comes
(1): Sq,.. € Sa,,. (Theorem 2), which immediately leads to (2): Sgq,,.17a C Sa,,.l1a
(Theorem 1). Since {Apre}A{Apost}, we have (3): Sa,,, € Dom.Ig A Sa,,. 114 C Ra,,,,-
From the first conjunct of (3) and (1) immediately follows (4): Sg,,, € Dom.I4. On
the other hand, from the second conjunct of (3) and (2), we have Sg,,. 114 C Ra,,,,, Which
implies Sq,,. 174 C Sq,,.1RA,,,. (Theorem 1). From the second conjunct of our assumption,
Qpre N Apost = Qpost, we have Sq, 1R4,,,, € Qpost (Theorem 4 and Theorem 2). Therefore,

we have (5): Sqg,..174 C Rq,,,, Combining (4) and (5) follows {Qpre} A{Qpost}- O

As illustrated in the above examples, proving a match is reuse-ensuring directly based
on relational semantics may be a cumbersome task. The following theorem may greatly

simplify the task.

Theorem 5 Let M' be a reuse-ensuring match. A match M is reuse-ensuring if for any
Aand Q, M(4,Q) = M'(A,Q).
Proof. The truth of the above claim immediately follows the definition of reuse-ensuring

match and the transitivity of logical implication (=). O

As long as a reuse-ensuring match is known, Theorem 5 simplifies the proof of reuse-
ensuring matches by relying on the logical relations between specification matches, rather
than involving the semantics-based interpretations of programs and specifications. However,
it should be noted that the fact a match does not logically imply a given reuse-ensuring
match does not necessarily mean that the match is not reuse-ensuring, unless the given

reuse-ensuring match is the most general. We further discuss this issue in the next section.

71
Example 8 Consider match M,zact—pre/post : (Qpre € Apre) A (Apost ¢ Qpost)- It is easy
to show that Meract—pre/post implies Me;ract—pred—2 : (Apre A Apost) « (Qprc A onst): which

is reuse-ensuring as shown in Ezample 6. Thus Mezaci—pre/post 1S TEUSE-€nsuring.

Example 9 Consider match Mpyjug—in : (Qpre = Apre) A (Apost = Qpost)- It can be shown
that Mpjug_in does not imply Mezact—pred—2 : (Apre A Apost) <> (Qpre A Qpost). However, this
does not exclude Myyg_in from being reuse-ensuring. In fact, My g_in is Teuse-ensuring,
since it implies reuse-ensuring match M;eiazed—plug—in : (Qpre = Apre) A (Qpre A Apost —

Qpost) (see Example 7).

Example 10 Finally, we show that Mgyarded—gen—pred iS5 Teuse-ensuring by proving
Mguarded—gen—pred = Mrelared—plug—in- In fact, Mguarded—gen—pred and Mrela.z‘ed—plug—in are
logically equivalent.

Proof. For the sake of readability, we assume the normal precedence of logical connectives,

i.e.,, 7, A, V, and — in the order of decreasing precedence.

Mguarded—gen—pred(Aa Q) = (Qpre — Apre) A ((Apre — Apost) — (Qpre — onst))
g (_‘Qpre \ Apre) A (ﬂ(_‘Apre \ Apost) \ (_‘Qpre \ onst))

A ("Qpre \% Apre) A ((Apre A —‘Apost) \4 _‘Qpre \ onsl)

~ (_‘Qpre \ Apre) A (Apre A _‘Apost) \% _‘Qpre \Y% (ﬁQpre \Y% Apre) A onst

& Apre AN Apost V 2 Qpre V Apre A Qpost

& Apre A (—Apost V Qpost) V ~Qpre

& Qpre = (Apre A (Apost = Qpost))

< (Qpre = Apre) A (Qpre = (Apost = Qpost))
< (Qpre = Apre) N (Qpre N Apost = Qpost)

= Mrela:ced—pluy—iﬂ(A’ Q)

72

Therefore, Mguarded—gen—pred And Mrela:ted—plug—in- O

Figure 6.1 shows the reuse-ensuring matches discussed in this section and their relations.

In Figure 6.1, an arrow represents a logical implication between two matches.

exact pre/post
(Qpre <-> Apre) N\ (Apost <-> Qpost)

T

plug-in exact-pred-2
(Qpre -> Apre) N\ (Apost -> Qpost) (Apre A Apost) <-> (Qpre A Qpost)

\/

relaxed-plug-in
(Qpre -> Apre) A ((Qpre A Apost) -> Qpost)

|

guarded-gen-pred
(Qpre ->Apre) N ((Apre -> Apost) -> (Qpre->Qpost))

Figure 6.1: Reuse-ensuring matches and their relations

6.5 Lattice Properties of Reuse-Ensuring Matches

The set of all reuse-ensuring matches are partitioned into equivalence classes by the logical
equivalence operator (<). Let REM be the set of all equivalence classes of reuse-ensuring
matches. We introduce the following operations regarding equivalence class. Let c and m be
an equivalence class and a reuse-ensuring match, respectively, then ¢™ denotes an arbitrary
element of ¢, and m® denotes the equivalence class to which m belongs. Obviously, we have
(c™€ = c. Furthermore, we extend the logical implication operator (=) to equivalence

classes of reuse-ensuring matches. For two given equivalence classes, c¢;,c2 € REM, we

73
define ¢; = ¢ as ¢” = ¢J'. It is easy to show that logical implication (=) over REM
is reflezive (V¢ € REM,c = c¢), antisymmetric (Vc1,c2 € REM, (c1 = ¢2) A (cp = ¢1) =
(c1 = ¢2)), and transitive (Vcy,c,c3 € REM,(c; = ¢2) A (c2 = ¢3) = (c1 = ¢3)), thus
(REM,=) is a partially ordered set (POSET). Further, we show that (REM,=) is a
complete lattice [112]. This means that among all the equivalence classes of reuse-ensuring
matches, there are two special ones: the most general and the most specific. The former is
the greatest element of REM, and the latter is the least element of REM. Specification
matches in the most general equivalence class are accordingly called most general reuse-
ensuring matches. Therefore, in order to prove if a match is reuse-ensuring, we only need

to check if it implies a most general reuse-ensuring match.

Lemma 1 REM is a finite set.

Proof. Each match can be regarded as a logical function of four parameters: Qpre, Qpost,
Apre, and Apost, each of which is a predicate with value either true or false. Thus, the
number of all possible input combinations to a match (logical function) is 2* = 16. Given
an input, a match can be evaluated to be either true or false, thus the maximum number
of matches that are not logically equivalent is 2'®. (Among those matches, only a portion

are reuse-ensuring.) Therefore, REM is a finite set. O

Theorem 8 (REM,=>) is a complete lattice.

Proof. For any subset ¥ of REM, we show that the equivalence classes that the conjunction
and disjunction of representatives from each member of ¥ belongs to are the greatest lower
bound (glb) and least upper bound (lub) of ¥, respectively. It should be noted that since

REM is finite, and so is ¥, the above conjunction and disjunction are well-defined.

74
1. lub¥ = (Vweq, 1¥™)¢: the equivalence class that the disjunction of representatives

from each member of ¥ belongs to is the least upper bound (lub) of .

We claim that (V4 ¥™)¢ € REM is true. This is because V¢ € VU,
Y™ (A,Q) = {Qpre}A{Qpost}, thus Vwe\ll P™(A,Q) = {Qpre}A{Qpost}, that
is, Vyey %™ is reuse-ensuring. Since Vo € ¥, o™ = V ¢ ¢™, that is,
(™) =@ = (Vyey ¥, therefore (V,,cy ¥™)¢ is an upper bound of ¥. Next
we show that (\/,,cy ™) implies any upper bound of ¥. Let be an arbitrary
upper bound of ¥. For Vi) € ¥, we have ¢ = ¢, and thus Vwew Pp™ = oM,

which means (V ¢y ¥™)¢ = (¢™)° = ¢. Thus (V ¢y ¥™)° is the lub of V.

2. glb¥ = (Ayey ¥™): the equivalence class that the conjunction of representatives

from each member of ¥ belongs to is the greatest lower bound (glb) of ¥.

Obviously, A,cy ¥™ is a reuse-ensuring match, that is, (Aycqy ¥™)° € REM .
Since Vo € ¥, Aycy 9™ = ™, that is, (Aycy ¥™) = (¢™)¢ = ¢, therefore
(Ayew ¥™)° is a lower bound of ¥. Next we prove that (A, cy ¥™)¢ is implied
by any lower bound of ¥. Let ¢ be an arbitrary lower bound of ¥. For V¢ € ¥,
we have = 1, and thus ™ = Ay %™, which means (¢™)¢ = (A ey ¥™)°

Thus (Aycy ¥™)° is the glb of ¥.

Combining the above arguments, we have proved that (REM, =) is a complete

lattice. O

From the proof of Theorem 6, it immediately follows that (V,,cpgp ¥™)¢ is the least
upper bound (lub) of REM, or the greatest element of REM. In terms of determining reuse,
(Vyeream ¥™)° is also called the most general equivalence class of reuse-ensuring matches,

and Vcppp %™ is a most general reuse-ensuring match. Theoretically, for any given

75

specification match, we can prove or refute whether it is reuse-ensuring or not by checking
if the given specification match implies a most general reuse-ensuring match. However, it
is difficult to use Vwe rem ¥ for this purpose. In the following discussion, we show that

the relazed plug-in match is also a most general reuse-ensuring match. 3

Theorem 7 (Most general reuse-ensuring match) M, ozed—plug—in(4, Q) =
(Qpre = Apre) A (Qpre A Apost = Qpost) is @ most general reuse-ensuring match.
Proof. @ We show that M€ is the least upper bound (lub) of REM. In

relazed—plug—in
Example 7, we have shown that M,ciqzed—piug—in IS reuse-ensuring, thus,
ME € REM. We now show that M€ is an upper bound of REM.

relazed—plug—in relaxed—plug—in

1. For any c € REM, we have c™(A, Q) A {Apre}A{Apost} = {Qpre}A{Qpost}. That is, (1): ¢c™(4,Q)AS4,,, C
Dom.Is A Sa,. 11a C Ra,,,, = Sq,.. C Dom.Jo A Sq,.. 114 C Rq,,,, (by Definition 10). Notice that
in (1), component A is an arbitrary implementation satisfying specification (Apre, Apost). For discussion

purposes, we instantiate A to be Dom.I4 = Sa,,, and I4 = Ra,,,,,
2. (1) is simplified as (2): ¢™(A4,Q) = SqQ,,. € Sapre N SQpre |IRA ot € RQpoye-
3. According to Theorem 2, we have (3): Sq,,. C Sa,,. ¢ Qpre = Apre.

4. According to Definition 11, Theorems 4 and 2, we have (4): sopra]RApoct C Ronu < Qpre AApost = Qpost.

5. Combining (2), (3), and (4), we have ¢c™(A,Q) = (Qpre — Apre) A (Qpre A Apost = Qpost). That is,

cm(A, Q) = Mrelaz:d—plug—in(A,Q)) which means C(A9 Q) = Alfelazed—plug—in(A’ Q)

Therefore, M€ is an upper bound of REM. Since M¢ € REM, M€

relarzed-plug—in relazed—plug—in relazed—plug—in

is the least upper bound (lub) of REM. Thus M;ciazed—plug—in iS @ Most general reuse-ensuring match. O

Theorem 7 answers our questions presented in Section 6.1. That is, there does not exist
a better specification match than the relazed plug-in match in determining reuse, nor can we
refine the guarded generalized predicate match used in defining object-oriented behavioral
subtyping (where in Example 10, we showed that M,ciozed—piug—in aNd Mguarded—gen—pred

are logically equivalent).

31t should be noted that all the most general reuse-ensuring matches are logically equivalent, thus there
is only one equivalence class of them in REM.

76

6.6 Discussion

The relational interpretation of programs and specification helps to clarify some important
concepts, such as implementable specifications as discussed in Section 6.3.2. In this section,
we examine some other concepts in the context of relational semantics. The relational
interpretation provides another perspective to understand the rationale underlying these

concepts and their limitations.

6.6.1 Characteristic Predicate

When discussing software components, it would be ideal to have a single predicate to exactly
characterize the observable behavior of a component. Such a predicate is called character-
istic predicate of a component [28, 30]. Unfortunately, the axiomatic specification of a
software component A is not a predicate, instead a pair of predicates, (Apre, Apost). Both
Jeng and Cheng [28] and Zaremski and Wing [30] have defined the characteristic predicate
of a component A as an implication between its precondition and postcondition. That is,
Apred = Apre — Apost, Where Ay, 4 represents the characteristic predicate of A. This defi-
nition captures the general intuition underlying an axiomatic specification. That is, if Apre
holds, then Ap,; will be satisfied after the execution of the component (the termination of
the component is assumed). However, the truth of A, .q will also be established whenever
Apre does not hold.

In terms of a relational interpretation, Apeq, which is in Post Assert, defines a binary
relation over S, Ra,.., = Ra,.o4p00 = B-pevares: = B-aprevAprendpon = B-tpe U
RapcAAgost = S-Ape X SUR(4,. A,,,.)- As shown in the last formula, in addition to the

binary relation defined by specification (Apre, Apost), the characteristic predicate Apreq of

component A also includes all the tuples (s,s’) where s,s' € S and Ap, is satisfied in

7

state s. This unwanted inclusion may cause the characteristic predicate of a component to
fail in uniquely characterizing the behavior of the component. For example, consider two
specifications, A : (z > 0,T) and B : (z <0,T). It is not difficult to show that the binary
relations defined by the characteristic predicates of A and B are the same, both are the
universal relation, S x S. However, these obviously are two different specifications.

In order to resolve this problem, we can define the characteristic predicate to be the log-
ical and of the precondition and postcondition of a component, that is, Aprea = Apre A Apost-
Since, in terms of the relational interpretation, Ra,,. A0, = B(A,re,Ap0,) (Theorem 4), this

definition precisely characterizes the behavior of a component.

6.6.2 Signature Matching

In general, signature matching is used as a preprocessor to specification matching [95,
113]). However, signature matching sometimes may preclude certain potentially reusable
components. For example, consider a real number function rmaz that returns the greater
value of its two arguments. According to the often-used argument contra- and result co-
variance rule [98, 114], this function cannot be used for integer numbers. This is obviously
too restrictive.!

In fact, the restrictions imposed by the argument contra- and result co- variance rule
are similar to those of the plug-in match in specification matching. Both plug-in match
and argument contra- and result co- variance rule consider the domain and the range of a
computation (function) separately. However, as illustrated in the relational interpretations

of programs and specifications, the essence of a computation (function) is the mapping

“Due to constraints imposed by machine representations of numbers, there does not always exist a subtype
relationship between real numbers (floating-point numbers) and integers. For the illustrative purposes of
this paper, we consider only mathematical numbers where any integer is a real number.

78

from its domain to its range. That is, given an element of the domain as input, what will
be produced as the result of the function’s execution? Without considering the mapping
of a computation (function), a match criterion cannot capture the reusability relation in
a precise (neither too restrictive nor too loose) way. Since the mapping of a function is
captured in the function’s specification, specification matching criterion can be designed to
take into consideration the mapping information, as in the case of relared plug-in match.
However, since the signature of a function does not contain the mapping information of
the function, the restrictions imposed by the argument contra- and result co- variance rule
cannot be resolved by solely relying on signatures.

Since signatures can be considered as a special kind of specification that only contains
typing information, we can overcome the restrictions imposed by signature matching by
extending specification matching to consider typing information. Consider the following
specifications for rmaz and imaz, where typing information is embedded in the specifica-

tions.

rmax(x, y): z

precond: z€real Ny € real A z € Teal

postcond: z€real N\y€realNz€real N (2 =zV2Z =y)ANZ >zAN >y
imax(i, j): k

precond: t€intAj€intAk €int

postcond: i€intAjeintAkentA(K =iVK =j)AK >iNkK >

In order to match the two specifications, we first establish the following mappings be-

tween the variables of the two functions based on their signature structure (i.e., input,

output, and parameter order).

TOlLyerj,zek

79
Based on the above variable mappings, we can revise one of the specifications so that
it is consistent with the other in terms of variable naming. The following is the revised

specification of imaz.

imax(x, y): z
precond: zeintAyeint Az €int
postcond: zE€ntAy€EmmtAzetA(Z =zVv2Z =y)A(Z >2zN2 >y

Now we apply the plug-in match to determine the reusability of rmaz for implementing
tmaz. Since £ € real ANy € real Az € real - x € int Ay € int A z € int does not hold, the
postcondition of rmaz will not imply that of imaz. Therefore, the plug-in match fails to
establish the reusability of rmaz for imaz. Given our previous analysis, this does not sur-
prise us. Now we proceed to apply the most general reuse-ensuring match, M;cjazed—piug—in-

It is not difficult to show that
(tmazpre = TMAZpre) A (1MATpre A TIAT post —F TMATpost)

holds. That is, 7maz can be reused for implementing imaz.
In summary, we showed how specification matching can be used to overcome the essential

restrictions of signature matching.

6.7 Notes

As mentioned previously, many projects have explored the use of specification matching to
determine software reuse and object-oriented subtyping [93, 27, 28, 30, 59, 91, 95, 97, 98, 99].
A number of matching criteria have been proposed to capture the reusability of a component
for implementing a query specification. This chapter describes a semantic foundation, based
on relational semantics, for reasoning about specification matches and reusability, thereby

providing a framework to evaluate various specification matches.

80

Mili, et al [29] propose a refinement-based approach to component retrieval. They use
relational specifications to represent components. A relational specification directly specifies
the input/output relations of a component (function). Then they define refinement relation
between two relational specifications as their basis for component storing and retrieval.
Despite being expressed in different terms, their refinement relation has the same objective
as those of various specification matches that we discussed in this paper, that is, to capture
the notion of reusability through comparing two specifications. In essence, their refinement
relation is equivalent to relaxed plug-in match. Like other specification matching work,
they address the connection between their refinement relation and reusability in a rather
intuitive way. Although we used relational interpretation as the basis for reasoning about
specification matches, the relation in our work is defined over the program state space,
rather than the pairs of input/output values. Moreover, the objective of our work is to find
a sound foundation and framework to evaluate specification matching for reuse, rather than
define yet another matching criteria. This distinguishes this current work from Mili, et al’s
work and others’.

Relational semantics of programs was first introduced by Hoare and Lauer [109] and later
was used to define semantics of Hoare logic [108]. Our discussion of specification match and
their semantic interpretation falls in the framework of Hoare logic, but we made some
changes in our approach. First, we are not involved in the specific constructs of a program,
instead, we are only concerned with the overall behavior. Therefore we did not discuss the
interpretation of formulas in Hoare logic regarding specific program constructs. Second,
and more importantly, the postcondition in Hoare logic is the function of only the final
values of variables. This often makes specifications cumbersome since auxiliary variables

have to be introduced. We adopt the approach that most current specification languages

81
take, that is, we allow both initial and final values of variables to appear in a postcondition.
Thus the interpretation of our postcondition is a binary relation over the state space, rather
than a subset of the state space, as in the case of Hoare logic. Finally, in Hoare logic, the
correctness formula is intended to capture the notion of partial correctness, rather than
total correctness as we did in this paper. Therefore, the interpretation of the correctness
formula in Hoare logic does not contain the conjunct S, C Dom.I4 of Definition 10 that

ensures the termination of program execution.

6.8 Conclusion

In this chapter, a semantic foundation is established to reason about the connections be-
tween a specification match and its usefulness for determining reusability. Based on this
semantic foundation, we proved that the set of all equivalence classes of reuse-ensuring
matches together with the logical implication (=) operator constitute a complete lattice,
and showed that the relazed plug-in match is a most general (or a best) reuse-ensuring
match. We also discussed and clarified some concepts in the context of the proposed se-
mantic foundation. The work described in this chapter provides a formal foundation for
applying specification matching-based methods to component evaluation, and simplifies the

development of the best component evaluation method [33].

Chapter 7

Interface GGenerality Relation

In Chapter 6, we established a semantic foundation to reason about the usefulness of a
specification match in determining reusability. However, these specification matches are
only applicable to determining fine-grained components, i.e., functions. In this chapter,
we extend the notion of specification matching to coarse-grained architectural components.
We define an interface generality relation to capture the reusability of an architectural
component for satisfying an interface, therefore enabling the evaluation of these coarse-
grained, architectural components.

A component interacts with its environment by exchanging (i.e. requiring or providing)
resources through its ports. The set of all ports that a component has together with
constraints that specify the global properties regarding the behavior of the component
constitute the interface of the component. The resources that a component provides (i.e.,
the direction specifier in a port specification is QUT) are called the capabilities of the
component, whereas the resources that a component requires (i.e., the direction specifier in

a port specification is IN) are called the assumptions of the component. An implementation

82

83

of a component should conform to its interface. We define conformance of a component to

its interface as follows.!

Definition 13 (Conformance of components to interfaces) A component M con-
forms to an interface I (denoted as M |= 1) iff (1) M implements all of the capabilities of
I, and (2) in order to implement the capabilities of I, M must use and only use all of the
assumptions stated in I. M 1is called a conforming component of I, and I is a conformed

interface of M.

The above conformance definition captures the notion that a conformed interface of a
component should completely describe the possible interactions (both providing resources
and requiring resources) that the component may have with its environment. At first, it may
seem that condition (2) is too strong, however it does ensure that a component interacts
with its environment exactly in the same way as it is specified in its conformed interface.

An alternative to condition (2) is:

(2') In order to implement the capabilities of I, M may only use assumptions

stated in I.

Condition (2’) is more flexible, but may cause the change of a system architecture. We
discuss this issue further in later sections.

The conformance definition makes it possible to systematically check the reusability of
a component solely based on its conformed interface. It should be noted that an existing
component may conform to multiple interfaces, each of which describes a collection of
possible behaviors (providing resources and/or requiring resources) that the component

may exhibit in constructing a system.

'In this context, component refers to the implementation of the component.

84
In this chapter, we present an interface generality relation that provides a way to de-
termine the conformance of a component to a given interface. The novelty of our approach
is its consideration of the dependences among ports that enable us to capture the seman-
tic relations between coarse-grained, architectural components. In order to facilitate our
discussion, we focus on components that exchange resources of type computation (FUNC),
data (DATA) and abstract data type (ADT), since these are the most commonly exchanged

resources. However, our method should be applicable to other types of resources.

7.1 Generality Relation of Function Specifications

In this section and following sections, based on the result of Chapter 6 we establish gen-
erality relations between resources. We first define the generality relation of two function

specifications.

Definition 14 (Generality relation of function specifications) Given two function specifi-

cations, g and h, g is more general than h, denoted as h <y g, if the following rules hold:
e Signature matching

— Arguments rule. g and h have the same number of arguments. Let the list of
argument types of g be (Tgl, Tg2, .+, Tg'), and that of h be (T,}, T,f, ..., T7), then
there erists a permutation of the list (T,}, T,?, ..., T}), denoted as (T,}', T,f', e,

T,:"), such that for alli,1 <i<n, T,’: is the same as Tgi.

— Result rule. Either both g and h have a result or neither has one. If there is a

result, then h’s result type is the same as g’s result type.

85
e Specification rule 2
Let pre(f) and post(f) be the precondition and postcondition of function specification

f, respectively.

— Precondition rule. pre(g) — pre(h), the precondition of g implies the precondi-

tion of h.

— Postcondition rule. post(h) Apre(g) — post(g), the conjunct of h’s postcondition

and g’s precondition implies the postcondition of g.

The signature matching process requires that the two functions’ range types match and
their domain types match after permutation. While there are some essential limitations with
signature matching as discussed in Section 6.6.2 of Chapter 6, we use signature matching as a
preprocessor to facilitate specification matching. In certain cases where signature matching
is too restrictive, we may consider the remedy proposed in Section 6.6.2 of Chapter 6. The
specification rule requires that the most general reuse-ensuring match, relared-plug-in match
(see Theorem 7), holds when applied to the two functions.

Intuitively, the generality relation between function specifications captures the following
implementation property: let H be a function implementing function specification h, then
H also implements the function specification g that is more general than h. In other words,

whenever a function implementing g is needed, the function H implementing h can be used.

7.2 Generality Relation of Data Specifications

The generality relation of data items or abstract data types (ADTs) is determined based

on their behavioral specifications.

2 Parameter renaming has been conducted based on signature matching so that the specifications of func-
tions g and h are consistent.

86

Definition 15 (Generality relation of data specifications) Given two data specifications d;
and dy, let SPEC; be the set of function specifications of d;’s behavioral specification (where
1 is 1 or 2), dy is more general than d;, denoted as di =<4 da, if there ezists a map m from
SPEC; to SPEC,, such that for any function (method) specification m € SPECj,, there
exists a function specification n(m) in SPEC), and m is more general than w(m), i.e.,

m(m) <y m.3

The above definition captures the behavioral property that a data specification should
provide all the behavior provided by a more general data specification. In terms of im-
plementation, the generality relation between data specifications implies that a data object

that implements a data specification also implements any more general data specifications.

7.3 Generality Relation of Interfaces

An interface specifies a set of provided resources (capabilities) and a set of required resources
(assumptions) that are needed for providing all of the capabilities. The assumptions for a
specific capability are specified in the constraints of the interface. An assumption for a
specific capability is either an assumption of the interface or another capability of the inter-
face. The relations among the resources (both provided and required) of an interface can
be depicted using a directed acyclic graph (DAG), called a dependence DAG. For instance,
Figure 7.1 is the dependence DAG of the interface dataAccess depicted in Figure 5.4.

In Figure 7.1, there are three nodes, each of which corresponds to a port (or more pre-
cisely, the resource that the port provides or requires). The dashed circle (node) represents

an assumption (a required resource), whereas the solid circle (node) represents a capabil-

3 There should be an abstraction function that maps the value space (described in terms of the Larch Shared
Language) of dy to that of d2. We omit it here for simplicity. For details please see [97, 98].

87

(=9 &

Figure 7.1: Dependence DAG of dataAccess interface

_‘
ity (a provided resource). The directed edge (u,v) means that u depends on v (v is an

assumption needed for providing u).

Definition 16 (Dependence DAG of interfaces) Given an interface I, the dependence DAG
of I, denoted as Gy = (V, E), is derived from the interface specification for I. Specifically,
each resource of I defined both in terms of the capabilities and the assumptions corresponds
to a node in V (we name the node using its resource name). If a resource u depends on

—-)
another resource v, then directed edge (u,v) € E.

In the following discussion, C; and Aj represent the set of capabilities and the set of

assumptions specified in interface I, respectively.

Definition 17 (Assumptions specific to a single capability) In an interface I, let A denote

the set of assumptions upon which a capability ¢ depends, then

¢ ={t|te€ Ar and t is reachable from c in Gr}.

where G| is the dependence DAG of interface I. A node u is reachable from a node v in a

directed acyclic graph (DAG), if there ezists a directed path from v to u.

Fore

Def

ad

il

De

88

For example, in the dataAccess interface, A7¢% = {z} and A¥"i* = {z}.

Definition 18 (Assumptions specific to a set of capabilities) For a set of capabilities, K,

of interface I, let AKX be the set of assumptions upon which capabilities of K depend, then
I

Af = 45
cEK

According to the above definition, it is true that A?’ C Aj for any interface I. However,
a correctly specified interface should not have the case where A,C’ C Ay, because this would

mean that stronger assumptions than needed have been imposed over the interface.

Definition 19 (Interface generality relation) Given two interfaces I and I, I, is more
general than I, i.e., I} X I, if there erists a map m¢ : Cr, = Cy,, such that the following

rules hold:

e Capabilities rule.
For all s3, s3 € Cp,, there exists a sy, s; € Cy,, such that s; = mc(s2), and s; and s,
are both data specifications or function specifications, and s, is more general than s,

that is,

— 81 =4 S2, if s1 and s9 are both data specifications
— 81 Xy S2, if 51 and sz are both function specifications
e Assumptions rule.
. <(C <(C
There ezxists an onto map m, : A’;l(1) Ar,, such that, for all sy, s1 € AZ('2), let

s9 = ma(s1), s1 and s2 are both data specifications or function specifications, and s,

is more general than s, that is,

— 89 =4 S1, if 81 and sy are both data specifications

89

— 82 =Xy s1, if 51 and sz are both function specifications

The capabilities rule states that a more specific interface I, should provide a corre-
sponding capability for each capability specified in a more general interface I, and the
corresponding capability in I; should be more specific than that in I;. The assumptions
rule states that every assumption required by the more specific interface I} needed to pro-
vide the specified capabilities should have a corresponding assumption in I that is more
specific. Moreover, the corresponding relation between the assumptions should be onto.

We claim that the interface generality relation defined in Definition 19 has the following

property:

Property 1 Given two interfaces I} and I, if I) < I, i.e., Iy is more general than I,

then any component M conforming to I, also conforms to I,.

We justify this claim below. This justification consists of two parts, each of which justifies
one of the two conditions required by the conformance relation between components and

interfaces (see Definition 13).

1. M implements all of the capabilities of I.
Let ¢ be an arbitrary capability of I5. Since I} <X I, the definition of the interface
generality relation states that there must be a capability ¢, specified in I;, such that
c; = mc(cz), where mc is the map described in Definition 19. Since M = I, M
provides the implementation of c;, denoted as IM P,,. On the other hand, according
to the capabilities rule, c; must be more general than c¢;. Based on the generality
relation definitions for data and function specifications, it is not difficult to show that

IMP,, also implements c;.

90
2. In order to implement the capabilities of I, M must use and only use the assumptions
stated in I>.
Clearly, each capability ¢, of I can be implemented by the same implementation
IMP,, for c; of I, where ¢; = mc(cz2). To implement all of the capabilities of I, M
will use and only use all of the assumptions in A’K(CQ). According to the assumptions

12)

. . me(C,
rule, for each assumption a; in A 1: , there is a corresponding assumption as in

A, that is more specific than a;. Therefore, a; can be used to fulfill a; when M is
. _ <(C

used to implement the capabilities of I5. Note that the map 7, from AZ(12) to Ay,

is onto, that is, every assumption in Ay, will be used to fulfill some assumption in

ne(Cr,)
A

As shown above, the requirement that map m, in Definition 19 be “onto” ensures that
Condition (2) in the conformance definition (Definition 13) is satisfied. If we use Condition
(2’) instead of Condition (2) in defining conformance (see the discussion following Defini-

tion 13), then we do not need the restriction that the map m, be “onto” in Definition 19.

7.4 Determining Reusability

The interface generality relation provides a basis for determining the reusability and substi-
tutability of components. For example, in software maintenance, we may often encounter
the question: can a given software component be replaced by another (perhaps a new ver-
sion, or a faster one, etc.) without affecting the observable behavior of the entire system?
The interface generality relation provides a rigorous way to answer this type of question.
Based on the generality relation, we can define the reusability of an existing component
for fulfilling a given requirement, either for the construction of new systems or in the

maintenance of existing systems.

91
Definition 20 (Reusability) Given a requirement, represented as an abstract component

(interface) I, an existing component M (with conformed interface I,,,) is reusable for ful-

filling I of I, < I.

According to Property 1, if I, < I, where M |= I,,,, then M = I, that is, M conforms to
I. Therefore, we can use M to implement I. More specifically, we can map every capability
cin I to m¢(c) of I, and every assumption a in A’Ir:l(c’) to ma(a) of I.

There usually exist naming conflicts between I, and I, that is, the pairs of resources
that have been mapped by the user have different names. In this case, code necessary for
resolving the naming conflicts may be automatically generated.

Next, we illustrate the interface generality relation with examples. In these examples, we
consider the selection of existing components for implementing the dataAccess component

specified in Figure 5.4. For convenience, we denote the interface of dataAccess as Isccess-

Example 11 The first ezisting component being considered has the same assumptions as
specified in I ccess, but provides more capabilities than that specified in the abstract com-

ponent. Figure 7.2 depicts the interface of this component, My, (the interfaces denoted as

n).

The omission of the specifications means that they are the same as those specified in
dataAccess. However, component M; has an additional capability for counting the total
number of all entries in table z.

According to the interface generality relation definition, it is easy to see that I} <X Igccess-
Therefore, we can integrate component M; for dataAccess. This type of integration is
consistent with our intuition. That is, we can use the read and write capabilities of M, to

fulfill the I,...ss specification, and simply ignore the total capability provided by M;.

92

COMP M, {

uses Table(dtModel for Tab, int for Ind, int for Val);
PORT x : DataUse {
DATA x : dtModel WITH BEHAVIOR {

}
}
PORT read : ProcDef {
FUNC read(int recNo, int recVal) return bool {

}
}
PORT write : ProcDef {
FUNC write(int recNo, int recVal) return void {

}
}
PORT total : ProcDef {

FUNC total() return int {
ensures result = size(x);
}
}

CONSTR { DEPENDENCE { {read, write, total} : x } }

Figure 7.2: Component M; interface specification

Example 12 Nezt consider another ezxisting component, M,, that does not require any

service from its environment. The interface of this component (denoted by I,) is specified

in Figure 7.8.

M, has the same capabilities as specified in I.css. However, M, does not require its

environment to provide data . That is, My implements the data item internally.

93

COMP M, {
uses Table(dtModel for Tab, int for Ind, int for Val);
PORT read : ProcDef {
FUNC read(int recNo, int recVal) return bool ({

}
}
PORT write : ProcDef {
FUNC write(int recNo, int recVal) return void {

}

Figure 7.3: Component M interface specification

According to the interface generality relation definition, Is < I,ccess does not hold, since

C
(lacce!-') to Alacces-"

A’,r:(c""““) is empty, there does not exist an onto map m, from A’,r:
Therefore, we cannot integrate M, for dataAccess.

Suppose we do not require that the map =, in Definition 19 be onto (accordingly, Con-
dition (2’), instead of Condition (2), is used in the conformance definition (Definition 13)),
then in this case, we have I, < I,.cess, and thus allowing M> to be integrated for data Access.

But since M; does not require any data from other components, M, will interact with its

environment in a different way than what is expected.

Chapter 8

An Architecture-based Reuse and

Integration Environment

In this chapter, we describe the design and application of ABRIE, an architecture-based
software engineering environment. ABRIE has been developed as a prototype system to
validate our theoretical results, as well as serve as a testbed for our case study. This
chapter consists of two parts. In the first part, we describe the rationale underlying the
design of ABRIE. Our description focuses on the architectural principles of the ABRIE
design, and analyzes how they influence the reusability, evolvability and maintainability of
ABRIE. In particular, we show how the principled use of software architectural knowledge
has facilitated the evolution of ABRIE throughout this project. In the second part, starting
with Section 8.4, we describe the use of ABRIE in facilitating component-based software
development. Through examples, we illustrate the working process of ABRIE and show
how ABRIE supports the architecture-based component assembly framework proposed in

this research.

94

¥

95

8.1 ABRIE: An Introduction

ABRIE (Architecture-Based Reuse and Integration Environment) is an experimental plat-
form designed to explore the use of software architectures as a framework for assembling
software components [33]. Given that ABRIE is a prototyping system for this research, the
main design objective is to provide an integrated environment to address various component
reuse and integration issues: component composition specification, component management
and reusability analysis. However, ABRIE has broader applicability than component reuse
and integration due to its layered architecture. As we will discuss in later sections, the
object-oriented models of architectural elements that constitute the bottom layer of ABRIE
provide a reusable toolset for creating software architecture related tools.

In terms of serving as a validating system for this research, three characteristics are
particularly emphasized in the ABRIE design: visualization, multilevel abstractions, and
automation. In addition to the textual form, visual representation and manipulation of com-
ponents, connections and compositions (architectures) are supported. ABRIE uses three
levels of abstraction in determining the reusability of existing components: (component)
types, signatures, and formal specifications. Automation is one main potential benefit of
architecture-based reuse. In ABRIE, the component integration process is fully automated.
I£l the reusability analysis of components, automated support is provided through the in-
tegration of third-party automated reasoning tools. ABRIE consists of three functional
components: architecture design, component management, and system packaging. All of

them are integrated and provided through a user-friendly graphical interface.

96

8.2 Design Objectives

In addition to the functionalities mentioned in the previous section, that is, supporting user-
friendly visual architectural manipulation, reusability evaluation and integration, there are
several important non-functional requirements that have critically influenced the design
of ABRIE. The first one is evolvability. As a research prototype, ABRIE has to be suf-
ficiently flexible to accommodate changes and new features proposed throughout the re-
search process. Another requirement is reusability. Reusability is important because one
goal in designing ABRIE is to provide a set of components that can be rapidly assembled to
implement various prototyping systems for specific purposes regarding architecture-based
component reuse. Finally, ABRIE should be open for the integration of third-party tools.
Since the component interconnect model (see Chapter 5) integrates third-party specifica-
tion methods, such as Larch specifications, ABRIE’s design should be made open for the
integration of tools for syntax checking and the analysis of those specifications.

In order to accommodate these properties, they must be explicitly designed into the
system. One set of design issues that may significantly determine non-functional properties
like evolvability and reusability involve the overall organization of a system, that is, the

architectural design of the system.

8.3 ABRIE Architectural Design

Architecturally, ABRIE is a layered system. Figure 8.1 shows the layers of the system. As
depicted in Figure 8.1, ABRIE has three layers, each of which uses the services provided
by its immediate lower layer and provides services to its immediate upper layer. Specif-

ically, the bottom layer is the foundation models for the ABRIE environment, which are

97

ABRIE ABRIE

Application 1 Application n

Tcl/Tk Based
ABRIE Scripting Environment

ABRIE Foundation Models

Figure 8.1: Layered architecture of ABRIE

object-oriented models of architectural elements that define the abstractions of resources,
ports, components, connectors, constraints, configurations, and so on. The second layer is
a Tcl/Tk based ABRIE scripting environment. Tcl (shorthand for Tool Command Lan-
guage) (115, 116, 117] is an open source scripting language and environment. Tk (shorthand
for Tool Kit) [118, 116, 117] is an extension to Tcl that supports rapid graphical user inter-
face (GUI) development by providing a collection of graphical widgets. Tcl/Tk is extensible
in that domain-specific commands can be easily integrated into its programming environ-
ment. Tcl/Tk can also be embedded into applications due to its simplicity. Tcl/Tk is often
used as an integration platform to integrate disparate software technologies, including GUlISs,
middleware, existing software components, and Internet and networking protocols. In the
design and implementation of ABRIE, we extend the standard Tcl/Tk scripting environ-
ment (interpreter) by integrating commands that manipulate architectural elements. In the
extended Tcl/Tk environment, the implementation of those ABRIE-related commands are
directly based on the object-oriented models provided in the bottom layer. As shown in Fig-

ure 8.1, upon the second layer, applications for specific purposes can be developed through

98

Tcl/Tk scripting (programming). In this research, we developed a reuse and integration
application that provides graphically user-friendly manipulation of component composition,
evaluation, and integration.

Several design decisions underline our objectives regarding evolvability and reusabil-
ity. The main motivating factor for choosing a layered architecture is the principle that a
component at a particular layer only uses services provided by those at the same or imme-
diately adjacent lower layer.Therefore, each layer is insulated from changes made in distant
layers. ! This organizational principle promotes information hiding between layers and in-
creases evolvability. In the design of the ABRIE Foundation Models, we intentionally
leave out any bias towards a specific use of this layer. The result is a design that is generic
and thus reusable for a variety of applications involving architecture manipulation. A sim-
ilar philosophy has been applied to the design of the second layer, the ABRIE Scripting
Environment.

We chose Tcl/Tk as the platform for scripting applications based on the following rea-
sons: First, serving as a glue language, Tcl/Tk has a simple yet powerful syntax, as well
as a small and extensible kernel implementation. In addition, the Tk part largely simplifies
the development of graphical user interfaces. Adding to the advantages is the platform
independent scripting environment of Tcl/Tk that makes the applications scripted using
Tcl/Tk operate on different platforms. Scripting also allows the rapid development of an

application.

!Generally speaking, there are two kinds of layered architectures: open and closed. In an open architec-
ture, a component at a particular layer can use services provided by those components at any lower layer.
Whereas in a closed architecture, a component can only use services provided by those components at the
same or immediately adjacent lower layer. In this chapter, when we discuss layered architectures we mean
closed ones.

99

8.3.1 Object-Oriented Modeling of ABRIE

In order to better understand the requirements of ABRIE and manage the complexity
encountered in the design, implementation, and maintenance of ABRIE, we have applied
object-oriented techniques throughout the development of ABRIE. In particular, we use
the Object Modeling Techniques (OMT) [9] to model various aspects of ABRIE. OMT is
one of several widely used object-oriented modeling techniques [9, 10, 119]. It consists of
three complementary models. The object model describes what a system is by modeling the
static, structural data aspects of the system. It captures the objects of the system and the
relationships between the objects. The dynamic model depicts when system activities occur,
that is, the temporal and behavioral aspects of the system. Finally, the functional model
describes the services provided by the system by giving the transformation of the data
within the system. Respectively, entity-relationship diagrams, state transition diagrams,
and data flow diagrams are used to represent the object, dynamic, and functional models.

Figure 8.2 depicts the system level object model of ABRIE using OMT notations. In
Figure 8.2, rectangular boxes represent classes. The line connecting these two classes asserts
the existence of a relationship; the diamond denotes the aggregation relationship, where the
class touching the diamond is the aggregate. The filled circle at the opposite end of the
line denotes “many”, where many means zero or more; the absence of a filled circle at the
endpoint of a line indicates “one”.

As shown in Figure 8.2, we refine the layered architecture depicted in Figure 8.1 by iden-
tifying objects (classes) and their relations. An ABRIE application may have zero or more
GUIs, and both the application itself and its GUIs are scripted (programmed) using the
Tcl/Tk based ABRIE scripting environment. The Tcl/Tk based ABRIE scripting environ-

ment is an ABRIE-specific extension to Tcl/Tk. That is, in addition to the original Tcl/Tk

100

Application GUl
Programmed
j Programmed
Tcl/Tk Based ABRIE
.éxecutes ‘
Command Scripting Environmen*

TcV/Tk Built-in Composition/Arch. Library Manag. Third-party
Command Command Command Tool command
4
Based on lM anages
‘A_‘BRIE Founda- _4&“” Component Legend
tion Models c Aggregate
Uses 0—0 Aggregate of zero or more
—4 1-to-many relation
Architectural @— Many-to-1 relation
Knowledge —— 1-1 relation

Figure 8.2: System level object model of ABRIE

commands, ABRIE-specific commands are integrated into the Tcl/Tk runtime interpreting
system and therefore can be invoked by applications. These ABRIE-specific commands
constitute the ABRIE Application Programming Interface (API). Several types of ABRIE-
specific commands are depicted in Figure 8.2. The composition (architecture) commands
are responsible for manipulating components, connections and compositions. These com-
mands are the main part of the ABRIE API. The library management commands manage
reusable components, including classification, retrieval, and evaluation of these components.
Finally, third-party tool commands can also be integrated in the ABRIE API. These com-

mands provide a vehicle to use third-party tools, such as the Larch Prover [37] that assists

101

the evaluation of component reusability. As shown in Figure 8.2, ABRIE API is based on
ABRIE foundation models. We will discuss these models in detail in the next subsection.

One issue regarding the design of a software architecture environment is relevant to the
immaturity of the software architecture discipline itself. For example, while it is increasingly
evident that distinguishing styles among architectures is very important, there is no set of
consensus criteria to perform the distinction, and discovering and documenting architectural
styles are still active areas of research. Therefore, ABRIE needs to be able to accommodate
new development and findings in software architectures. As shown in Figure 8.2, a class
that embodies the generic architectural knowledge is introduced. This knowledge, described
in a meta-language, is loaded into the system whenever the system is started and is used by
the ABRIE foundation models. Since it is straightforward to edit the knowledge description
file, ABRIE can easily embody new advances made in software architectures. This approach

also makes it feasible to customize the ABRIE environment for supporting specific styles.

8.3.2 ABRIE Foundation Models

It is straightforward to model architectural elements using object-oriented classes. Fig-
ure 8.3 depicts the object models of the ABRIE foundation elements using the OMT no-
tation. Figure 8.3 uses a feature of OMT notation that has not been explained before. In
OMT, rectangular boxes, representing classes, can be partitioned into three layers: the top
layer provides the name of the class, the middle layer lists attributes of the class, and the
bottom layer enumerates operations associated with the class.

As shown in Figure 8.3, architectures are modeled using the ArchCls class that is an

aggregate of classes CompCls and ConnCls. CompCls models components and is an

102

ArchCls
name : String;
style: String;

CompCls 2 E ConnCls
name: String ‘c ConfigCls ‘e | name: String
type: String type: String
PortCls ResCls RoleCls
name: String name: String
type: String <> type: String

Figure 8.3: Object model of ABRIE foundation elements

aggregate of ports modeled by class PortCls. Similarly, ConnCls models connections and
is an aggregate of class RoleCls that models roles.

The introduction of class ConfigCls merits further discussion. Unlike other architec-
tural elements, configuration is a relation between components and connections, rather than
an entity. Thus a natural and intuitive approach to describing configurations seems to be
to annotate components and connectors with configuration information. Unfortunately,
such an approach has the configuration information distributed among the components and
connectors, which makes the design difficult to understand. Consequently, it is hard to
maintain and evolve such a design. For example, consider the addition or deletion of a
configuration: this type of change will involve operations for both the component and con-
nection concerned; and the configuration information in both entities has to be updated and

kept consistent. Introducing a class ConfigCls to encapsulate and localize all the config-

103
uration information in an architecture largely simplifies the management of configurations,
and facilitates the evolution.

A port is the point through which a component exchanges resources with its environ-
ment. Therefore, each PortCls object has a resource modeled by class ResCls. There are
several kinds of resources, such as computation (function), data, abstract data type (ADT),
or event. Figure 8.4 depicts the object models of these resources and their relationships

using OMT notations.

ResCls

name: String

(abstract) getTextForm():String

PAaN
FuncCls
params: List<char *> RBundleCls
requires: String reslist: List<ResCls *>
ensures: String
AdtCls DataCls StreamCls EventCls
behaviors: List<FuncCls *> type: String type: String condition: String

Figure 8.4: Object model of resources

The ResCls class demonstrates another type of relation between classes used by the
OMT notation. Namely, the inherits or “isa” relation, indicated by a triangle. The class
touching the triangle is the superclass, whereas the class at the other end of an inheritance
relation is the subclass. As shown in Figure 8.4, there are six kinds of resources modeled:

function or computation modeled by class FuncCls, abstract data type (ADT) modeled

104
by AdtCls, data item modeled by DataCls, data stream modeled by StreamCils, event
modeled by EventCls, and a bundle of resources modeled by RBundleCls. Class ResCls
is the superclass of all these resource modeling classes and captures the commonalities of

these classes. Behaviors and attributes of class ResCls are inherited by all its subclasses.

8.3.3 ABRIE Scripting Environment

ABRIE Scripting Environment is an extension to the Tcl/Tk interpreter [116]. As
mentioned earlier, such an environment provides a powerful yet flexible way to developing
specific applications. The extended commands constitute the application programming
interface (API) of ABRIE. The API enables the creation and manipulation of architectural
elements, the management of reusable component libraries, as well as the integration of
third-party tools. As with the design of the ABRIE Foundation Models, the API
of the scripting environment is designed without any bias towards specific applications.
Nonetheless, commands customized for particular applications can be easily added to the
scripting environment given the extensibility of Tcl/Tk.

The ABRIE API provides commands to manipulate the following entities: architecture
(composition), component, connector, role, port, library, and the ABRIE meta-system.
General operations include creating, inquiring, modifying, and the input/output of an entity.
Figure 8.5 shows the command cfgArch that manipulates architectures. In Figure 8.5, a
semicolon (;) denotes a comment. The identifier prefixed with a dash (-) is a switch or a
subcommand. Parameters in a pair of square brackets ([]) are optional. As an example,

the command

cfgArch -addComp container ADT

105

cfgArch ;manipulating (current) architecture
-name [archname] ;return or set the name
-type [typename] ;return or set the type
-addComp compname comptype ;add a component
-addConn connname conntype ;add a connector
-compList ;return the list of components
-connlList ;return the list of connectors
-delComp compname ;delete a component
-delConn connname ;delete a connector
-save filename ;save the architecture
-load filename ;load the architecture

Figure 8.5: Sample ABRIE scripting environment API command

will add the component container of type ADT to the current architecture. When an archi-
tecture is created (using crtArch command) or loaded (using cfgArch -load command)
from a file, it becomes the current architecture of the ABRIE scripting environment until
another architecture is created or loaded. All architecture-related operations are, by default,

oriented towards the current architecture.

8.3.4 Discussion

As mentioned earlier, evolvability is one of the main design objectives. We specifically chose
a layered organization to enable the accommodation of new demands. As we expected,
throughout the research process, many changes have been needed and new requirements
have been proposed. One major change is the development of the component interconnect
model and language (see Chapter 5). The original ABRIE system was based on a relatively
simple ADL. In that ADL, there was no concept of resources. The types of port supported

were limited to a small set. The whole framework of the ADL had not been well-founded yet.

106
After the development of the new ADL, we began to evolve ABRIE to accommodate the new
ADL. Since only the bottom layer, the ABRIE Foundation Layer, involves the modeling
of architectural elements, the changes were limited to that layer. By preserving the old API
in the ABRIE scripting environment while adding new commands, “legacy” applications

are ensured to run correctly, as in the case of our reuse and integration application.

8.4 Application: Architecture Design

In this section and the following sections, we describe the application of ABRIE to support
the architecture-based component assembly framework proposed in this research. The main
working area of ABRIE is a canvas that provides a graphical representation and manipu-
lation of architectural elements. Figure 8.6 shows a pipeline architecture for an example
system, palindrome_word_counter (pwc) that counts the number of palindrome words in a
file, where boxes represent components and bars represent connectors.

Component pwr is a filter for recognizing palindrome words, and filter wordcounter
counts the words recognized by pwr. These two filters are connected by a pipe connector
wf2. In ABRIE, components and connectors are associated with actions for viewing, editing,
and configuring them. These actions can be activated through a menu displayed while
clicking on a component or a connector. Figure 8.6 shows the “connector property” window
for connector wf2 and the “component property” window for component pwr. Component
and connector properties can be edited through these windows.

Architectures can also be edited using text editors. ABRIE will generate the graphical
representation automatically. Figure 8.7 shows the textual representation of architecture

pwec.

107

Figure 8.6: ABRIE architecture design

108

=] Architecture Textual Viewer = @@]
A

palindrome word counter : System {
VISABI.E InWord. ic, vordcounter. oc;

typedaf word char[32];
%}

COMP InWord : Filter {
PORT ic : InStream {
STREAM ic : char;

)

PORT ow : OutStream {
STREAM ow : word;

1

IMPLEMENTATION {
method : source;
location : '/hun/l:o-ponmcs/rndvnrd/'-
name : "readword.c"
language : C;
¥

}
COMP pwr : Filter {
PORT iw : InStream {
STREAM iw : word;

)

PORT opv : OutStream (
STREAM opw : word;

}

IMPLEMENTATION {
method : composite;
Location : "*;
name : "pwr";

}

}
COMP wordcounter : Filter {
PORT ipw : InStream {
ipw : word;

PORT oc : OutStream {
STREAM oc : int;

}

CONSTR {
BEHAVIORCSTR {

PRED: Lni(xpv) = oc[0] /\ LEN(oc) =1
}

)

IMPLEMENTATION {
method : executable;
location : **;
platform : Unix;
name : “wc -w";

}

3

_Dismiss |

Figure 8.7: Textual representation of architecture pwc

109
The correctness of the connection configuration of an architecture can be analyzed by
ABRIE. Specifically, ABRIE checks if each role of a connector is correctly configured, that
is, if the ports configured to a connector satisfy the constraints of the connector. In addition,
ABRIE ensures that each component consists of only the ports that the component type

supports, and each connector only has the roles that the connector type supports.

8.5 Application: Component Selection and Matching

An abstract component may be implemented in a variety of ways: executable, source
code/document, object code, object library, OS built-in facilities, reusing existing com-
ponent, or as a composite component implemented by another architecture. An imple-
mentation specification of a component specifies the implementation method and related
directives for locating and/or integrating the implementation, and can be edited directly
through the “component property” window shown in Figure 8.6..

As shown in Figure 8.7, component wc is implemented using the Unix filter we. pwr is
a composite component implemented by architecture pwr, depicted in Figure 8.8.

Unlike pwe, pwr is a main program/subroutine style architecture, whose components are
connected through an UseADT connector. In pwr, mc is the main control component that
implements the palindrome recognition functionality. As shown in the Component Property
window of Figure 8.8, mc has three ports: iw, an InStream port through which words are
read; opw, an OutStream port through which recognized palindrome words are output;
and an ADTUse port stack through which a stack is imported from component CharStack.
Component CharStack defines and exports an ADT cstack. The implementation of each
component in pwr may take various forms as discussed before. Next we describe how ABRIE

supports the reuse of existing components.

110

Figure 8.8: Architecture of pwr

ABRIE incorporates a library for izing and i isting compo-

nents. Components are classified and retrieved based on their interfaces (i.e., types and

ports). When impl ing an abstract p t in an archi a single click on

the reuse button in the “component property” window (see Figure 8.6) triggers ABRIE to
search for the current library (which is loaded through the library manager) and a compo-
nent selection window is displayed as shown in Figure 8.9.

In the “comp lection” window, all candid p that may match the ab-

stract component are retrieved and presented to the user. For example, in Figure 8.9, three

111

@ Component Selection]Q@ﬁ‘_!—]
Target Component: CharStack Type: Generic

Current Selection: |List Matching Status: Match]
C w
A

COMP List : Generic {
StackAsList PORT list : ADTDef (
List ADT hst('r) {
uses Deque(T for E, list for C);
FUNC list() {

ensures 1sEmpty(self’);

}
FUNC addAtHead (T x) return void {
modifies self;

ensures self’ = x \precat self”;
v |)
[P for
i iy |
Figure 8.9: Component selection
[BI Component Matching —EX
set | unset | unsetl | Proof Obiigation | Larch Prover |
Target Component: CharStack Type: Generic Ubrary Component: List Type: Generic
PortNane Type Matching Status PortNane Type Ay
1. estack ADTDef '1 List ADTDef
list c
cotack © st } addAtfead B
pushe B adantHead sdemd 3
pope B detachAtiead d.mumad B
B
tope B head 544
dsEmpty B BEmpty ity
£
s]
ot] ooy |

Figure 8.10: Component matching

112

components are listed as candidates for implementing CharStack of pwr. Users can browse
the specification of these candidates and select an appropriate one for further matching.
The “component matching” window show in Figure 8.10 shows the process of matching
component List to CharStack. The matching process will establish a port mapping relation
between the two components that will validate the reusability of the existing component for
implementing the abstract component. Both List and CharStack have only one port of type
ADTDef that defines and exports an ADT. An ADT has a set of methods that are either
constructors (denoted by “C” in Figure 8.10) or behaviors (denoted by “B”). In order to
reuse List for implementing CharStack, the port list of List should be matched with port
cstack of CharStack. This requires the ADT defined by port cstack to be more general than
that defined by port list of List. In the following discussion, we refer to the two ADTs
as cstack and list, respectively. The generality relation between ADTs requires that for
each method of cstack, there is a more specific method in list. We proceed by assigning a
mapping between the methods of the two ADTs. As shown in Figure 8.10, we assume that
the constructor cstack is more general than constructor list, pushc than addAtHead, popc
than detachAtHead, and so on. Given the mapping, ABRIE will automatically generate
the proof obligations for justifying the mapping. Figure 8.11 depicts the proof obligations
generated for the mapping shown in Figure 8.10. The proof obligations are generated based
on the Larch specifications of the two components. The proof obligations are represented
in terms of LSL specifications to facilitate the application of the Larch Prover (LP) for
analyzing them. After preprocessing the obligations, we can invoke the Larch Prover (LP)
from the “Component Matching” window to assist in proving these obligations. Figure 8.12

shows a snapshot of LP while it is discharging the proof obligations for our example.

113

=] Proof Obligation Preprocessing _ ' [=l/3ix]
Fle LSLChecker Mometemplicstack_list.Isl
%% Proof obligation generated by ABRIE for matching list to cstack j

cstack_list: trait
incIudes Deque
inplies
\forall x, result0l: E, self, self pre, self post: C, result02: Bool
%% constructor
isEmpty(self_post) => self post = empty;
%% addAtHead : pushc
self post = x \precat self pre =>
x = head(self post) /\ self pre = tail(self post);
%% detachAtHead : popc
(~(self_pre = empty) => ~isEmpty(self pre)) /\
(self_post = tail(self pre) => self post = tail(self pre));
T%(he;f : topc 16
~(self = empty) => ~isEmpty(self)) /\
(result0l = head(self) => result0l = head(self)); —
X% i ty : isEmpty
result02 = isEmpty(self) => result02 = (self = empty)

Figure 8.11: Proof Obligations

LP [26, 37] is an interactive theorem proving system for multi-sorted first-order logic.
Typically user interaction may be required in proving/disproving a conjecture. However, for
our example, all the obligations are automatically resolved, and the user-assigned mapping
is justified, thereby establishing the matching between component List and CharStack.

Once the matching process is successfully completed, meaning that the existing com-
ponent can be reused, a matching file will be generated for recording all the matching
information. As shown in Figure 8.13, after the selection and matching process is finished,
the implementation specification for CharStack specifies that it be implemented by using
library component List. Figure 8.14 shows the corresponding matching file.

The file records the mapping between ports and methods of ports. For a parameterized

port, the matching process also determines the appropriate instantiation of the parameters

114

LP1.15: prove
(isEmpty(self_post) => self_post = empty)

Attempting to prove conjecture cstack_listTheorem.1:
isEmpty(self_post) => self_post = empty

Conjecture cstack_listTheorem.1

[] Proved by normalization.

Deleted formula cstack_listTheorem.1, which reduced

to ‘true’.

LP1.16: prove
(self_post = (x:E \precat self_pre) =>
(x:E = head(self_post) A self_pre = tail(self_post)))

Attempting to prove conjecture cstack_listTheorem.2:
self_post = x \precat self_pre =>
x = head(self_post) A self_pre = tail(self_post)
Conjecture cstack_listTheorem.2
[] Proved by normalization.
Deleted formula cstack_listTheorem.2, which reduced
to ‘true’.

Figure 8.12: A Snapshot of LP in resolving proof obligations

based on the port mapping. For example, the list port is mapped to the cstack port with

its parameter T instantiated to char.

8.6 Application: System Packaging

Software architectures specify the solution to an application as a logical composition of
(abstract) components, and serve as the “blueprint” to component assembly. As depicted
in Figure 4.4, the first step of the assembly process is to find a conforming implementation

for each of those interfaces (abstract components) specified in the architecture. The inter-

115

=[Component Property [I[B]x]
Name: CharStack Type: Generic
Ports: Add | Remove Port Property
cstack A Type: ADTDef

_l Configured to:

rndt.Defher [;
/ /

N

[P |~

implementation: Edit | Reuse | View |

reuse("/home/temp®,"CharStack.match")

_ o |

Figure 8.13: Implementation Status

Implementation Viewer

/home/temp/CharStack.match

Target component: [CharStack : Generic]
Library component: [List : Generic]

Port Matchings:

[cstack -> list<char>] {
[pushc -> addAtHead]
[popc -> detachAtHead]
[topc -> head]
[isEmpty -> isEmpty]

Q
o
%]

|~

Dismiss I

~A

Figure 8.14: Matching file

116
face generality relation developed in Chapter 7 provides a semantic foundation to locate
the appropriate (existing) components for reuse. Once all the interfaces have each been
matched with an implementation, a packaging process is needed to physically integrate
those conforming components together to form the target system.
In order for a target system to conform to its architecture, the packaging process observes

the following rules:

e Each (component) interface in the architecture should physically have a conforming

implementation.

e The implementation of each connector in the architecture should be explicit and pack-

aged individually.

According to the first rule, for a reused component, we should adapt the component
itself to conform to the interface to which it is matched, rather than modifying those com-
ponents interacting with it. As shown in Figure 4.4, a wrapper for a reused component
should be generated for accomplishing this adaptation. The second rule requires the con-
nector implementation to be localized. These rules facilitate the automation of component
adaptation and connector implementation, and most importantly ensure that the generated
system has a physical structure that is well-defined (abstracted) by the architecture. The
latter, in turn, yields many benefits of a component-based system such as maintenance and
evolution, by providing traceability between design and implementation.

System packaging mainly handles two tasks: component adaptation and connector im-
plementation. The packaging process checks the implementation of each component, ensur-
ing that it conforms to the abstract component (interface). In the case that mismatches

exist, software wrappers need to be generated for adapting the reused components to con-

117
form to the abstract components (interfaces). For the simple mismatches such as naming
conflicts, adaptation can be implemented based on the port mappings generated by the
component evaluation process.

The implementation of a connector depends upon its types and role configurations. The
implementation for those primitive connectors is typically supported by programming lan-
guages or operating systems facilities, such as a procedure call or pipe. In this case, the
implementation of a connector is either implicit or directly uses corresponding facilities.
The implementation of some connectors may involve third party software, such as RPC
packages and object brokers. In this case, program templates for specific connectors may
be established and reused for the automatic generation of a connector implementation. In
the case that a connector encapsulates protocols that are customized for a specific appli-
cation, the implementation needs to be implemented manually. In addition to establishing
connections, the implementation of a connector may need to resolve mismatches between
the ports that are configured to the connector. A typical mismatch is a naming conflict
that can be resolved by automatically generating code for mapping conflicting names.

The final system is described in a construction file (such as makefiles or a script file)
that describes the construction process for the executables of the target system. Figure 8.15
shows the wrapper for adapting component List for implementing CharStack. The wrapper
is generated based on the port mappings recorded in the matching file. Figure 8.16 shows

the Unix shell script generated by ABRIE to implement architecture pwc.

8.7 Lessons Learned

Owur experience with the ABRIE prototype work helps to validate our approach to com-

ponent reuse. Component acquisition and use are seamlessly integrated in our framework.

118

// CharStack.h
// Generated by ABRIE for adapting List to implement CharStack

#define addAtHead pushc
#define detachAtHead popc
#define head topc

#include "/home/components/list/list.h"
#define cstack list<char>

Figure 8.15: Wrapper for adapting List to implement CharStack

#!/usr/bin/sh
pvc
Generated by ABRIE for implementing architecture pwc

Create named pipe for connection wf2
mkfifo wf2_pipe

Create named pipe for connection wfl
makefifo wfl_pipe

Start up filter wordcounter

we -w <vf2_pipe &

Start filter pwr

pvr >wf2_pipe <wfl_pipe &

Start filter InWord

readvord >wfl_pipe &

Figure 8.16: Unix shell script for implementing pwc

Because (syntactic) mismatches are identified and recorded during the component evalua-
tion process, adaptation can be automatically conducted based on mismatch information.
Formal methods applied to software development might not be scalable in general, but
our hybrid approach to integrating formal and informal methods provides the flexibility.
Whenever necessary, formal reasoning automated by a theorem prover can be employed to

improve the rigorousness and confidence of reusability. Although we have only implemented

119

primitive interaction abstractions, we have gained insights as to the principles needed to

implement more complicated ones.

Chapter 9

Case Study

In order to gain empirical insights regarding the feasibility of our research, we conducted a
case study that applied our approach to an industrial project, the Environmental Informa-
tion System (ENFORMS) [120, 121]. ENFORMS is an object-oriented distributed mul-
timedia information system developed by the Software Engineer Research Group (SERG)
at Michigan State University over a three year period (1993-1995) involving 15 software
developers. In this chapter, we describe the background, the scope, the process, and the

results of this case study.

9.1 ENFORMS Project

During this decade, NASA will launch many new platforms into earth orbit, including the
satellites that will make up the Earth Observing System (EOS). The remotely sensed data
obtained from EOS can be used to promote global and national security, extend interna-
tional cooperation, and improve our ability to understand and manage global environmental,
economic, and social problems. In the past, NASA and other agencies have focused on the

acquisition of data rather than the integration or the dissemination of data. Many organiza-

120

121

tions addressing grand challenge problems, such as those defined by earth sciences, require
the integration of both physical and human resource databases in an interactive manner.
Such a capability allows reasonably informed policy analysts and related staff to query an
“Environmental Science Workstation” so as to better understand how human uses impact
our natural resource base.

The ENvironment inFORMation Systems (ENFORMS) has been designed to provide
access to data and data integration utilities for the purposes of facilitating decision making
processes relevant to environmental policies. The user constraints included a user-friendly
system, usable by non-computer scientists, focused search capabilities, and transparency of
the distributed and heterogeneous nature of the data and analysis utilities. ENFORMS
contains a wide variety of items, such as image files, research papers, executable environ-
mental models, and research data sets. Using the graphical user interface, the user is able
to examine these items interactively through the archiving software and display images and
execute environmental models. Figure 9.1 shows a high-level view of ENFORMS archi-
tecture, where the rectangles represent potential participating sites, and the filled circles
represent users.

ENFORMS has been developed using object-oriented technology in order to facilitate
its extensibility, flexibility, and maintainability. Specifically, the Object Modeling Technique
(OMT) [9] has been employed to conduct object-oriented analysis and design. Figure 9.2
shows the object models of an archive represented using OMT notations.

An archive is composed of a number of items, each of which has a set of operations
associated with it that can be performed on it. This structure is captured in Figure 9.2
(a), which shows the basic model of an archive. Figure 9.2 (b) depicts the high level object

model of ENFORMS, which extends the basic object model of an archive by describing

122

Site 3

Site 1

Archive

Site 6 Site S
-

Site 4 o User processes
l:' Server processes
— Connection

Figure 9.1: A high-level view of ENFORMS architecture.

entities that provide access to the archive. Atop the Multimedia Archive is the Search
Model that provides a browsing paradigm for the archive. A search model determines
how a collection of items (either atomic or aggregate) are classified so that a system can
be browsed and items can be retrieved using a specific search engine. The search model
also determines how new items are added to an archive. Examples of search models are
hierarchical, temporal, and spatial. The many-to-one relation Abstracts between the Search
Model and the Multimedia Archive means that “many different Search Models can
provide abstractions of a single Multimedia Archive”.

As shown in Figure 9.2 (b), ENFORMS has three interface entities: a Browsing GUI,

a Manipulating GUI, and a System GUI A given Search Model can have many

123

System GUI

[Browsing GUI | Manipulation GUI|

Based On

Multimedia Search Model

Archive Abstracts

Multimedia
Archive

Item

Manipulation ;

] 1 Legend
Mampédatton 2 Item Aggregatc
= Manipulation , o_. Aggregav.e of Zero or More
Manipulation , | Controlled By ———— 1-1Relation
[J
: @—— Many-to-1 Relation

(a) Basic object model (b) Object model with access mechanisms

Figure 9.2: Objeét models of the archive

Browsing GUIs based upon it. Items are Controlled by multiple Manipulation GUIs.
The interface of the entire system, the System GUI, is modeled as an aggregation of a
single Browsing GUI and zero or more Manipulation GUIs.

In general, a multimedia archive manages access to items. This relationship is captured
by modeling the Multimedia Archive class as a collection of Items, each of which has its
own set of associated access methods (as shown in Figure 9.2(a)). However, archive items
are actually objects that exist external to the archive software, that is, in the domain of
the operating system. Given this constraint, it is intuitive to model items abstractly using
indirection. Figure 9.3 shows an object model for Multimedia Archive, where the Items
are indirectly managed by (Registered By) Item Descriptors.

For each Item in the Multimedia Archive, there exists an Item Descriptor that

contains all relevant information for the Item, which may only be examined by allowable

124

Local Control Broker

activate (itemkey,handle)
retrieve (itemkey-set) : ItemDescriptor-set

7

Item Descriptor

; Description
Item Registered By Manipulations

Item Key
manip(handle):ManipulatorDescriptor

handle
Manipulator Descriptor

Description [) ‘

Parameters Parameterizes]
Handle b Manipulator
Manipulator Name

parmval (parmname) : String

Figure 9.3: Analytic model of Multimedia Archive

manipulators. Manipulations for an aerial photograph item, for example, might be to
describe the photograph and to display the photo, while those of a bibliography might be
search by keyword, sort by author, and so on. In order to perform such manipulations, the
appropriate software tools, or Manipulators, must be available for use.

The Local Control Broker realizes the conceptual aggregation of a Multimedia
Archive and its collection of items by managing Items and Manipulators. Access is
supported in two ways: through the retrieval of Item Descrfptors and the activation of
Manipulators. Some of the types of manipulators supported include: a GIS analysis tool,

a text file display tool, an image viewing utility, an audio player, an MPEG animation

125

player, and a generic application launching tool for applications that have their own GUI

(e.g., data analysis models, pre-defined animations, etc).

9.2 Focus of the Case Study

ENFORMS has been instantiated for use in four different projects, each involves a specific
set of data and manipulating tools. While all the instantiations share the same general
architecture described in Figure 9.2, there are some requirements and features that are
specific for an instantiation. For example, while most instantiations must deal with the
distributed nature of multiple archives across a network, certain instantiation only has a
single site of data storage and operations that lends it to be a standalone rather than a
client-server architecture. Due to the differences in the nature of data, the search models
used for classifying and retrieving the data, as well as the operation semantics applied to
the data, may differ radically from one instantiation to another. These differences across
various instantiations present challenges in reusing the design and implementation of the
shared features. In the original implementation of ENFORMS, reuse is implemented at the
code level where chunk of code is copied from earlier instantiation to form the new one, and
new features are added directly at the code level. As a result, not only is the effectiveness of
reuse limited, there also lacks a macro and structural view of the relations between different
instantiations. This in turn makes it difficult to maintain and evolve various instantiations
of ENFORMS. In this case study, we apply the methods developed in this research to
the ENFORMS design and implementation. We describe how our methods can lead to a
reuse-oriented design, and demonstrate the positive impact brought about by our methods

on implementing reuse, and on the maintenance and evolution of produced systems.

126
In this case study, we focus on one of the key components of ENFORMS, the Local
Control Broker (LCB). Specifically, we study issues involving the reuse of the Local Control
Broker throughout the design and development of four ENFORMS instantiations. The

case study demonstrates:

e How reuse can be effectively integrated into software development based on the

component-based software development (CBSD) framework developed in this research.
e The use of our compositional specification techniques in achieving CBSD.

e The use of our evaluation techniques in determining reusability as well as providing

heuristics for composition design and component adaptation.

e The roles and features that a software engineering tool should have in supporting

CBSD through the use of ABRIE in this case study.

The four instantiations studied are: standalone ENFORMS I (code named as SI), dis-
tributed ENFORMS I (code named as DI), standalone ENFORMS II (code named as SII),
and distributed ENFORMS II (code named as DII). As far as the LCB component is con-
cerned, the difference between a standalone and a distributed version is the support for
distribution functionality, whereas the difference between an ENFORMS I and an EN-
FORMS II instantiation is that ENFORMS II supports richer data sets and more complex

data manipulations, such as a Geographical Information System (GIS) utility.

9.3 Local Control Broker

In this section, we describe the four versions of the Local Control Broker (LCB). We specify
them using our component specification language (see Chapter 5) that enables the formal

analysis of these components.

127

As mentioned earlier, a LCB realizes the conceptual aggregation of a multimedia archive
and its collection of items by managing items and manipulators. It provides search models
with an interface to access archives. The major functionalities of a LCB include: interfacing
with the item registry database to read and write all of the item descriptors; retrieving item
descriptors from the item registry database; activating the manipulators applied to an item.
The specifics of a LCB may vary from one instantiation to another. Figure 9.4 depicts the
LCB component of standalone ENFORMS 1.

In Figure 9.4, we specify both behavioral and structural properties of the SI LCB com-
ponent. The uses section introduces traits that define basic sorts and operators used by the
component specification. These traits are defined using the Larch Shared Language (LSL)
and can be found in Appendix E. The specification described in Figure 9.4 is based on the
object model of archives given in Figure 9.3. As we discussed in Chapters 4 and 5, our
component interconnect model is designed to bridge the gap between high-level design and
implementation, and intended to serve as a framework for integrating components. It is
usually derived from the results of front-end system analysis and design methods, such as
structural analysis and design techniques [122, 123] or object-oriented methods [9, 10]. As
shown in Figure 9.4, the LCB component provides its environment three access functions,
tnitialize, retrieve and activate, to the archives that are managed through an ItemRegistry
database. In order to correctly function, the LCB component requires a file that contains
item descriptors. Upon initialization, the LCB will upload all of these item descriptors into
the ItemRegistry database. The LCB also requires a collection of manipulators. The SI
version include manipulators for handling images, videos, audio, text, geographical infor-

mation, as well as applications. As shown in Figure 9.4, these capabilities and requirements

128

si.lcb.tex
ABRIE specification for the local control broker component of
8 ENFORMS I standalone version

COMP s8i_lcb : Module {

uses itemreg(ItemRegistry for IR),
lac(List for ilList, List for sList),
String(String for C),
system,imview,app,grass,textdisp;

PORT initialize : ProcDef {
FUNC initialize(Stringk serverName) return int {

requires ~isEmpty(servName);

modifies database, result;

ensures (if access(fullname(Registry_Filename)) /\

validRegistry(open(fullname(Registry_Filename)))
then database’ = set_registry(database™, getItemDescriptor(
open(fullname(Registry_Filename)), servName)) /\ result’ =1

else result’ = 0);

}
}
PORT retrieve : ProcDef {
FUNC retrieve(Listk itemList) return Listk { ... }
}

PORT activate : ProcDef {
FUNC activate(Stringk manipHandle, Stringk itemKey,
Stringd target_IP_Address) return int {
requires itemkey \in database.registry /\ (manipHandle = ‘‘imagview’’
\/ manipHandle = ‘‘textdisplay’’ \/ manipHandle = ‘‘grass’’
\/ manipHandle = ‘‘audio’’ \/ manipHandle = ‘‘video’’
\/ manipHandle = ‘‘app’’) /\ validIP(target_IP_Address);
modifies result;
ensures
}
}
PORT Registry_Filename : DataUse {
DATA Registry Filename : String;
}
PORT database : DataDef {
DATA database : ItemRegistry;
}
PORT manipulators : RBundleUse {
RBUNDLE manipulators {
RBUNDLE imageview {
FUNC init() {...};
FUNC activate(...) {...};
}
RBUNDLE textdisply {...}
RBUNDLE grass {...}
RBUNDLE audio {...}
RBUNDLE video {...}
RBUNDLE app (...}
}
}
CONSTR {
DEPENDENCE {initialize : {database, Registry FileName}}
DEPENDENCE {retrieve : database}
DEPENDENCE {activate : {database, manipulators}}
}

Figure 9.4: Specification of SI LCB component

129
of the LCB component are encapsulated by different types of ports. Dependence relations
between them are captured in the CONSTR section.

A distributed instantiation of the ENFORMS system has to handle network communica-
tions between archive servers and clients. Item descriptors retrieved from the archive server
have to be packed as strings for transportation. On the other hand, once a transportation
is completed, strings must be converted to its original form, a list of item descriptors. The
LCB component of a distributed ENFORMS instantiation provides two functions to handle
these tasks. Figure 9.5 gives the specification of a DI LCB component. The specification of
a DI LCB is the same as that of a SI LCB except that the DI LCB has two ports, retrie-
veAsString and convertString, that provide the capability to deal with the communication
requirements described previously. For the sake of brevity, from now on we omit behavioral
specifications where they are not essential for the current discussion.

ENFORMS II evolved from ENFORMS I to meet new requirements. One of the main
new requirements is to process more versatile data sets, which means that new kinds of

manipulations are needed. Among the new types of data added to ENFORMS II are HTML
documents and spatial data sets. Consequently, the LCB of ENFORMS II has to provide
support for the activation of relevant manipulators. For HTML documents, the manipulator
is HTML viewers, such as a web browser; for spatia.l data sets, it is boundary (arc) and point
tools, such as the Arc/Info GIS system. Figure 9.6 describes the LCB component of a
standalone ENFORMS II instantiation.

As shown in Figure 9.6, in addition to supporting more manipulations, the SII LCB
component also provides additional ways to access the database. Ports retrieveOne and

retrieveAll provide the capability for retrieving one specific item descriptor and retrieving

all item descriptors, respectively.

130

di.lcb.tex
ABRIE specification for the local control broker component of
ENFORMS I distributed version

COMP di_lcb : Module {

PORT initialize : ProcDef {
FUNC initialize(Stringk serverName) return int;
}
PORT retrieve : ProcDef {
FUNC retrieve(Listk itemlist) return Listk;
}
PORT activate : ProcDef {
FUNC activate(Stringk manipHandle, Stringk itemKey,
Stringk target_IP_Address) return int;

PORT Registry_Filename : DataUse {
DATA Registry_Filename : String;

PORT database : DataDef {
DATA database : ItemRegistry;

PORT manipulators : RBundleUse { ... }

PORT retrieveAsString : ProcDef {
FUNC retrieveAsString(Listk itemlist) return Stringk;

PORT convertString : ProcDef {
FUNC convertStringToIDList(Stringk s) return Listk;

}

CONSTR {
DEPENDENCE {initialize : {database, Registry_FileName}}
DEPENDENCE {retrieve : database}
DEPENDENCE {retrieveAsString : database}
DEPENDENCE {activate : {database, manipulators}}

Figure 9.5: Specification of DI LCB component

131

sii.lcb.tex
ABRIE specification for the local control broker component of
ENFORMS II standalone version

COMP sii_lcb : Module {

PORT initialize : ProcDef {
FUNC initialize(Stringk serverName) return int;
}
PORT retrieve : ProcDef {
FUNC retrieve(Listk itemlist) return Listk;

PORT activate : ProcDef {
FUNC activate(Stringk manipHandle, Stringk itemKey,
Stringk target_IP_Address) return int;

PORT Registry_Filename : DataUse {
DATA Registry_Filename : String;

PORT database : DataDef {
DATA database : ItemRegistry;

PORT retrieveOne : ProcDef {
FUNC retrieveOne(Stringk s) return ItemDescriptork;

PORT retrieveAll : ProcDef {
FUNC retrieveAll() return Listk;

PORT manipulators : RBundleUse {
RBUNDLE manipulators {
RBUNDLE imageview {
FUNC init();
FUNC activate(...);
}
RBUNDLE textdisply {...}
RBUNDLE grass {...}
RBUNDLE audio {...}
RBUNDLE video {...}
RBUNDLE app {...}
RBUNDLE html {...}
RBUMDLE arc {...}
RBUNDLE pointtool {...}

}

CONSTR {
DEPENDENCE {initialize : {database, Registry_FileName}}
DEPENDENCE {retrieve : database}
DEPENDENCE {retrieveOne : database}
DEPENDENCE {retrieveAll : database}
DEPENDENCE {activate : {database, manipulators}}

Figure 9.6: Specification of SII LCB component

132
Finally, the distributed instantiation of ENFORMS II contains the additional features
of both DI and SII instantiations. Figure 9.7 depicts the LCB component of a distributed

ENFORMS II instantiation.

9.4 Component-Based Development of Local Control Bro-

kers

Geiven a target specification, the objective of reuse-oriented development is to develop an
implementation that reuses existing components. Thus the main task is to develop a compo-
sitional specification equivalent to the target specification that enables the reuse of existing
components. In this section, we first describe an iterative process for developing such a
compositional specification. We then show how this process leads to a component-based

development of the LCBs.

9.4.1 Reuse Oriented Decomposition

‘T he key to developng a reuse-enabling composition for a target specification is to decompose
the target specification into sub-specifications that are implementable by existing compo-
nents. Figure 9.8 depicts an iterative process for reuse-oriented decomposition using Data
Flow Diagram (DFD) like notations, where the circles represent activities, the parallel lines
represent data stores, and the arrows represent flow of data.

As shown in Figure 9.8, a target specification is first evaluated to determine if it can
be satisfied using existing components. Component evaluation techniques developed in
Chapters 6 and 7 are used. When the result of this evaluation is negative, the target
specification is decomposed into sub-specifications that are again evaluated. This iteration

continues until either an existing implementation is found for a sub-specification or the

133

dii.lcb.tex
ABRIE specification for the local control broker component of
ENFORMS II distributed version

COMP dii_lcb : Module {

PORT initialize : ProcDef {
FUNC initialize(Stringk serverName) return int;
}
PORT retrieve : ProcDef {
FUNC retrieve(Listk itemlist) return Listk;

PORT activate : ProcDef {
FUNC activate(Stringk manipHandle, Stringk itemKey,
Stringk target_IP_Address) return int;

PORT Registry_Filename : DataUse {
DATA Registry_Filename : String;

PORT database : DataUse {
DATA database : ItemRegistry;

PORT retrieveOne : ProcDef {
FUNC retrieveOne(Stringk s) return ItemDescriptork;

PORT retrieveAll : ProcDef {
FUNC retrieveAll() return Listk;

PORT retrieveAsString : ProcDef {
FUNC retrieveAsString(Listk itemlist) return Stringk;

PORT convertString : ProcDef {
FUNC convertStringToIDList(Stringk s) return Listk;

PORT manipulators : RBundleUse {

RBUNDLE manipulators {

RBUNDLE imageview {

FUNC init();
FUNC activate(...);
}

RBUNDLE textdisply {...}

RBUNDLE grass {...}

RBUNDLE audio {...}

RBUNDLE video {...}

RBUNDLE app {...}

RBUNDLE html {...}

RBUMDLE arc {...}

RBUNDLE pointtool {...}
}

}
CONSTR {

DEPENDENCE {initialize : {database, Registry_FileName}}
DEPENDENCE {retrieve : database}
DEPENDENCE {retrieveOne : database}
DEPENDENCE {retrieveAll : database}
DEPENDENCE {retrieveAsString : database}
DEPENDENCE {activate : {database, manipulators}}

Figure 9.7: Specification of DII LCB component

134

Target Spec
Sub-Specs
spec
d ed
Spec ecomposed specs
Existing Comp . N
Specification spec Reusable?No! Decomposition
fccdba;\\ / eedback
Reusable? Yes! Feedback Info composition
ExlsungComp
Implementauon \
imp
Integration composition Composition Spec
lmpl
Target Impl

Figure 9.8: Reuse-oriented decomposition

sub-specification can not (or does not need to) be further decomposed. In the former case,
an instance of reuse is achieved; in the latter case, implementation has to be developed
from scratch. In general, a given specification can be decomposed in a variety of ways, few
of them are suitable for achieving the reuse of existing components. This is the driving
reason that feedback information derived from the evaluation process should be used to
guide the decomposition. Example feedback information includes mismatches between a
target (sub-)specification and an existing component specification, dependences between
features in a specification, and so forth. The use of feedback information helps to identify
features that will be bundled in a sub-specification that can be satisfied using a single

existing component. Once sub-specifications are identified, a composition of them that is

135

equivalent to the original target specification can be created based on the relations between
these sub-specifications. Such a composition is used in guiding the assembly of existing

components to generate an implementation for the target specification.

9.4.2 Compositional Design of LCBs

In order to develop compositional specification for a LCB, we apply the decomposition
process described in the previous subsection to LCB specifications.

DI LCB

We first consider the implementation of DI LCB assuming that the implementation of SI
LCB is available for reuse. In order to evaluate the reusability of SI LCB for implementing DI
LCB, we start with the dependence Directed Acyclic Graphs (DAGs) of the two component
interfaces (see Chapter 7). Figure 9.9 (a) and (b) show the dependence DAG of SI LCB and
DI LCB, respectively. In Figure 9.9, each node represents a port, the dashed circle (node)
denotes a resource to be required, whereas the solid circle (node) means a resource to be
provided. The directed edge <‘l:’:)) means that u depends on v (v is required for providing
u).

Since there are capabilities that are provided by DI LCB but not by SI LCB, according
to the interface generality relation definition (see Definition 19, Chapter 7), it is obvious
that SI LCB can not be directly used for implementing DI LCB. However, observing that in
Figure 9.9, (a) is a subgraph of (b), we can decompose DI LCB based on this information
so that one sub-component of DI LCB can be implemented by SI LCB. Figure 9.10 depicts
this decomposition using the dependence DAGs of the two sub-components.

As shown in Figure 9.10, we partition DI LCB into two components: basic and distri.

The basic component encapsulates the basic features of a LCB that is also shared by SI

136

fegislry_“‘, " mani- B :f'egistry_\\ "mani- i convert
filename / ', pulator dilename | String
retrieve
AsString
(a) SILCB (b) DI LCB
Figure 9.9: Dependence DAG of SI LCB and DI LCB
’z'] ‘\‘ ,', ‘\\ ‘/' N ert
; registry_, { mani- | 1 database ! cgny
§ ﬁlenamel, database \ pulator |‘\ ’,' tring
initiali ivat retrieveAs
initialize activate String
(a) basic (b) distri

Figure 9.10: Decomposition of DI LCB

LCB. The distri component captures the features specific for a distributed ENFORMS
instantiation. It should be noted that the database node in the distri component is dashed,
meaning that this resource is required from the other component. Figure 9.11 gives the

compositional specification of DI LCB.

137

di.composite.tex
ABRIE compositional specification for the local control broker
8 component of ENFORMS I distributed version

SYSTEM di_lcb : Module {

COMP basic : Module {
PORT initialize : ProcDef {
FUNC initialize(Stringk serverName) return int;
}
PORT retrieve : ProcDef {
FUNC retrieve(Listk itemlist) return Listk;
}
PORT activate : ProcDef {
FUNC activate(Stringk manipHandle, Stringk itemKey,
Stringk target_IP_Address) return int;
}
PORT Registry_Filename : DataUse {
DATA Registry_Filename : String;
}
PORT database : DataDef {
DATA database : ItemRegistry;
}
PORT manipulators : RBundleUse { ... }
CONSTR {
DEPENDENCE {initialize : {database, Registry_FileName}}
DEPENDENCE {retrieve : database}
DEPENDENCE {activate : {database, manipulators}}
}
}

COMP distri : Module {
PORT retrieveAsString : ProcDef {
FUNC retrieveAsString(Listk itemlist) return Stringk;
}
PORT convertString : ProcDef {
FUNC convertStringToIDList(Stringk s) return Listk;
}
PORT database : DataUse {
DATA database : ItemRegistry;

}
CONSTR {
DEPENDENCE {retrieveAsString : database}
}

}
CONN ud : AccessData
CONFIGURE {

basic.database TO ud.Definer;
distri.database TO ud.User;

Figure 9.11: Compositional specification of DI LCB

138

Given such a decomposition, it is not difficult to show that the basic component is
implemented by the SI LCB implementation. The distri component can be constructed
from scratch. The complete implementation of the DI LCB thus can be generated based on
the compositional specification.

SII LCB

We next consider the design and implementation of SII LCB. Similar to the design of DI
LCB, we consider the reuse of SI LCB in implementing SII LCB. As with DI LCB, we
first analyze the specifications of the two components, and conclude that SI LCB cannot be
used to fully fulfill SII LCB. However, we find that part of SII LCB may be implemented
by SI LCB. Based on this feedback information, we thus decompose SII LCB into two
components in a similar fashion to that used to decompose DI LCB. Figure 9.12 depicts
this decomposition.

We then proceed to verify our assumption that the basic component can be implemented
by SI LCB. Based on the the definition of the interface generality relation (Definition 19),
we then match the ports of SI LCB to those of SII LCB and proof obligations can be
generated for each match. Figure 9.13 shows the proof obligation for matching the activate
port of SI LCB to the activate port of SII LCB using the relazed-plug-in match.

As previously pointed out in Chapters 7 and 8, the reusability of a component is es-
tablished only if all the relevant proof obligations are resolved. The Larch Prover (LP) is
integrated into ABRIE and can be conveniently invoked for assisting the proving process.
Unfortunately, this specific proof obligatidn cannot be resolved, which indicates that the
activate port of SI LCB may not be used to fulfill the activate port of SII LCB. Further
analysis reveals that the activate port of SII LCB must provide capabilities for handling

additional manipulations other than that handled by the activate port of SI LCB. This

139

sii.composite.tex
ABRIE compositional specification for the local control broker component of
ENFORMS II standalone version

SYSTEM sii_lcb : Module {

COMP basic : Module {
PORT initialize : ProcDef {
FUNC initialize(Stringk serverName) return int;
}
PORT retrieve : ProcDef {
FUNC retrieve(Listk itemlist) return Listk;
}
PORT activate : ProcDef {
FUNC activate(Stringk manipHandle, Stringk itemKey,
Stringk target_IP_Address) return int;
}
PORT Registry_Filename : DataUse {
DATA Registry_Filename : String;
}
PORT database : DataDef {
DATA database : ItemRegistry;

}
PORT manipulators : RBundleUse {
RBUNDLE manipulators { ... }
}
CONSTR {
DEPENDENCE {initialize : {database, Registry_FileName}}
DEPENDENCE {retrieve : database}
DEPENDENCE {activate : {database, manipulators}}
}

}

COMP verii : Module {
PORT retrieveOne : ProcDef {
FUNC retrieveOne(Stringk s) return ItemDescriptork;
}
PORT retrieveAll : ProcDef {
FUNC retrieveAll() return Listk;
}
PORT database : DataUse {
DATA database : ItemRegistry;
}
CONSTR {
DEPENDENCE {retrieve(ne : database}
DEPENDENCE {retrieveAll : database}
}
}
CONN ud : AccessData

CONFIGURE {
basic.database TO ud.Definer;
verii.database TO ud.User;

}

Figure 9.12: Compositional specification of SII LCB

140

%% Proof obligation for matching the activate port of si_lcb to
%% the activate port of sii_lcb
si_lcb_sii_lcb: trait
includes itemreg(ItemRegistry for IR),
lac(List for iList, List for sList),
String(String for C)
implies
\forall manipHandle, itemKey, target_IP_Address: String,
result_post : int, database : ItemRegistry
((itemkey \in database.registry /\ (manipHandle = ‘‘imagview’’
\/ manipHandle = ‘‘textdisplay’’ \/ manipHandle = ‘‘grass’’
\/ manipHandle = ‘‘audio’’ \/ manipHandle = ‘‘video’’
\/ manipHandle = ‘‘app’’ \/ manipHandle = ‘‘html’’
\/ manipHandle = ‘‘arc’’ \/ manipHandle = ‘‘pointtool’’)
/\ validIP(target_IP_Address))
=>
(itemkey \in database.registry /\ (manipHandle = ‘‘imagview’’
\/ manipHandle = ‘‘textdisplay’’ \/ manipHandle = ‘‘grass’’
\/ manipHandle = ‘‘audio’’ \/ manipHandle = ‘‘video’’
\/ manipHandle = ‘‘app’’)
/\ validIP(target_IP_Address)))
/\ ((itemkey \in database.registry /\ (manipHandle = ‘‘imagview’’
\/ manipHandle = ‘‘textdisplay’’ \/ manipHandle = ‘‘grass’’
\/ manipHandle = ‘‘audio’’ \/ manipHandle = ‘‘video’’
\/ manipHandle = ‘‘app’’ \/ manipHandle = ‘‘html’’
\/ manipHandle = ‘‘arc’’ \/ manipHandle = ‘‘pointtool’’)
/\ validIP(target_IP_Address))
/\ (it activated(value(lookup(manipHandle,value(lookup(
itemKey, database.registry)).theManipulators)),target_IP_Address)
then result_post = 1 else result_post = 0)
=> (if activated(value(lookup(manipHandle,value(lookup(
itemKey, database.registry)).theManipulators)),target_IP_Address)
then result_post = 1 else result_post = 0))

Figure 9.13: Proof obligations for matching activate ports of SI LCB and SII LCB

feedback information leads us to refine the original decomposition of SII LCB. The idea is
to split the activate port into two ports: one for manipulation capabilities shared by both
ENFORMS I and ENFORMS II instantiations, the other encapsulates capabilities specific
to ENFORMS II. Figure 9.14 depicts the refined decomposition.

It has been established previously that the implementation of SI LCB also implements
the basic component. As with DI LCB, we can implement the version II specific features
encapsulated by component verii from scratch, and then based on the compositional speci-

fication, generate the complete implementation of SII LCB.

141

sii.composite.2.tex

ABRIE compositional specification for the local control broker component of
ENFORMS II standalone version

SYSTEM sii_lcb : Module {

COMP basic : Module {

PORT initialize : ProcDef { ... }

PORT retrieve : ProcDef { ... }

PORT activate : ProcDef { ... }

PORT Registry_Filename : DataUse { ... }
PORT database : DataDef { ... }

PORT manipulators : RBundleUse {
RBUNDLE manipulators {
RBUNDLE imageview {
FUNC init();
FUNC activate(...);
}
RBUNDLE textdisply {...}
RBUNDLE grass {...}
RBUNDLE audio {...}
RBUNDLE video {...}
RBUNDLE app {...}

}
}
CONSTR {
DEPENDENCE {initialize : {database, Registry_FileName}}
DEPENDENCE {retrieve : database}
DEPENDENCE {activate : {database, manipulators}}
}
}
COMP verii : Module {
PORT retrieveOne : ProcDef { ... }
PORT retrieveAll : ProcDef { ... }
PORT database : DataUse { ... }

PORT activate : ProcDef { ... }
PORT manipulators : RBundleUse {
RBUNDLE manipulators {

RBUNDLE html {...}
RBUMDLE arc {...}
RBUNDLE pointtool {...}

}
}
CONSTR {
DEPENDENCE {retrieve0One : database}
DEPENDENCE {retrieveAll : database}
DEPENDENCE {activate : {database, manipulators}}
}

}
CONN ud : AccessData

CONFIGURE {

basic.database TO ud.Definer;
verii.database TO ud.User;

Figure 9.14: Refined compositional specification of SII LCB

142

DII LCB
Finally, we consider the design and implementation of DII LCB. A similar process can be
applied to the reuse analysis and decomposition of DII LCB. However, this time we have
three components that are available for reuse: SI LCB, distri, and versii. When we search
for the implementation of DII LCB with reuse as a main goal, we can obtain a decomposition
shown in Figure 9.15.

Obviously, the implementation of the aforementioned three existing components can be
reused to implement the three sub-components in the compositional specification of DII

LCB, respectively.

9.4.3 Discussion

We showed how reuse can be effectively integrated into software design and implementation.
As we have discussed and stated in Chapter 1, an important position of this research is that,
efficient reuse can not be achieved unless it is integrated into the early phases of the software
development lifecycle. The later reuse is considered, the more design decisions have been
made, and the more constraints exist for restricting the reusability of a component. In this
case study, we integrate reuse analysis into the design phase of the LCBs, and thus discover
(or in a sense, create) some opportunities for reusing existing components that otherwise
would be ignored in an ad hoc, code scavenging approach. While the reuse-oriented design
analysis approach has evident improvement in implementing reuse, the process described
in Figure 9.8 is inadequate in terms of implementing reuse. The main problem is that
reuse is constrained by the availability of appropriate components and hinges upon the
somewhat accidental matching between available components and the target requirements.

In other words, reuse is not systematically planned. In Chapter 4, we proposed a domain

143

dii.composite.tex

8 ABRIE compositional specification for the local control broker component of
ENFORMS II distributed version

SYSTEM dii_lcb : Module {

COMP basic : Module {

PORT initialize : ProcDef { ... }
PORT retrieve : ProcDef { ... }
PORT activate : ProcDef { ... }

PORT Registry Filename : DataUse { ... }
PORT database : DataDet { ... }
PORT manipulators : RBundleUse { ... }

CONSTR {
DEPENDENCE {initialize : {database, Registry_FileName}}
DEPENDENCE {retrieve : database}
DEPENDENCE {activate : {database, manipulators}}

}
}
COMP distri : Module {
PORT retrieveAsString : ProcDef { ... }
PORT convertString : ProcDef { ... }
PORT database Datalse { ... }
CONSTR {
DEPENDENCE {retrieveAsString : database}
}
}
COMP verii : Module {
PORT retrieveOne : ProcDef { ... }
PORT retrieveAll : ProcDef { ... }
PORT database : DataUse { ... }
PORT activate : ProcDef { ... }

PORT manipulators : RBundleUse {
RBUNDLE manipulators {
RBUNDLE html {...}
RBUMDLE arc {...}
RBUNDLE pointtool {...}
}
}
CONSTR {
DEPENDENCE {retrieveOne : database}
DEPENDENCE {retrieveAll : database}
DEPENDENCE {activate : {database, manipulators}}
}
}
CONN udl, ud2 : AccessData

CONFIGURE {
basic.database TO udi.Definer;
verii.database TO udl.User;
basic.database TO ud2.Definer;
distri.database TO ud2.User;

Figure 9.15: Compositional specification of DII LCB

144
specific approach to solve this problem. That is, as early as the system analysis phase,
domain analysis is conducted to identify the commonalities across various products within
one domain, as well as the variants among these products. Domain engineering is followed
to develop domain-specific architectures that are reusable for systems within the domain.
Domain-specific architectures also provide guidelines or frameworks that facilitate or enable
the reuse of domain implementations. In such an approach, effective reuse is achieved by
careful planning. In the case of the LCB component, instead of following an iterative process
to come up with a decomposition for a specific instantiation, we can first conduct the analysis
of the LCB domain: identify various potential instantiations of ENFORMS, their common
requirements, and their differences. For example, we may identify that the requirements of
SI LCB are shared by a number of instantiations. We can also identify features shared by all
distributed instantiations, as well as plan the evolution of ENFORMS to embody more types
of data and manipulations. Such an analysis will lead us to a generic architecture design
for the LCB component that can be customized for specific instantiations. Components
encapsulating specific features can also be in better shape for reuse, since by design they

are part of the generic architecture, and are ready for integration into the architecture.

9.5 Summary

One tangible result of the decomposition process as described in Section 9.4.3 is the com-
positional specification of a LCB. In addition to identify the constituent components, this
specification specifies how these (sub-) components are composed to satisfy the original
specification. This compositional specification bridges the gap between high-level design
and implementation, and provides design to implementation traceability necessary for ef-

ficient system maintenance and evolution. Another merit with our approach lies in the

145

fact that specific features are identified and encapsulated in reusable components. The
implementations for various instantiations of LCB are composed from these components.
Therefore, each instantiation of the LCB component is no longer a monolithic, closed pro-
gram, instead they share common primitive components. Since the implementation of a
LCB is composed from components, the composition design as a design dimension provides
extra flexibility and alternatives in developing a solution. It also enables design maintenance
and facilitates evolution. Maintenance and evolution can be conducted at the composition
level. For example, we can change the way that components are composed to accommodate
new demands. On the other hand, given a compositional design, when a specific component
is modified or replaced, it is not difficult to derive its effects on the overall system.
Throughout this case study, we have shown how reuse can be effectively integrated into
software development. However, we should emphasize the importance of the techniques
developed in this research in facilitating the integration. As we have seen throughout
this case study, the compositional specification technique plays a central role in achieving
component-based design. The evaluation technique that integrates both formal (semantic-
based) and semi-formal (keyword- and signature-based) methods not only facilitates the
determination of reusability, but also provides feedback to component adaptation as well as

composition design.

Chapter 10

Conclusions and Future

Investigations

Achieving reuse in software development has been a much sought after goal. Software
reuse involves the creation, classification, retrieval, composition and integration of software
components. While there exists a great deal of successful reuse experience, software reuse,
in general, has not yet fulfilled its promise to significantly improve software development
productivity and software quality [25]. After an extensive literature review and case analysis,
we identified several major obstacles to effective reuse. A key step in reuse is to locate the
most appropriate components that satisfy a given query requirement. Unfortunately, the
criteria necessary for a component to satisfy a query requirement is usually implicit and
not precisely captured as in the case of keyword or signature based retrieval algorithms.
Specification matching has been proposed as one type of evaluation criteria for reuse. While
formal methods have the advantage of being precise and amenable to automation, there
does not exist a general approach to reason about the usefulness of a specification match

for determining reusability. Another problem with current specification-based evaluation

146

e 4

147
methods is that they are only applicable to functions or modules, rather than architectural
components.

Another obstacle to effective reuse is due to the semantic gap between a query require-
ment and available components. Even for a requirement of moderate complexity, it is seldom
the case that an existing component can exactly implement it. Instead, an appropriate com-
position of a set of components is usually needed to satisfy the requirement. This raises the
need for a specification language to represent composition. Ideally,‘a composition specified
in this language may serve as a framework into which existing components can be evaluated
and integrated. This means that the specification language should specify both structural
and functional aspects of a target system.

Lastly, but not the least important, the lack of a seamless integration of reuse techniques

imposes significant barriers to achieving effective reuse.

10.1 Summary of Contributions

Based on the premise that effective reuse can be achieved only when reuse issues are con-
sidered throughout the software development life cycle and are addressed on the basis of a
formal foundation, the overall objective of this research is to develop an architecture-based
component reuse framework. This framework should address software reuse issues in an
integrated fashion, and be amenable to automation for such tasks as component evaluation,
adaptation, and integration. Towards this end, the research described in this dissertation

has made the following contributions.

e Proposed an integrated framework for component reuse
A software architecture-based component reuse framework is proposed. This frame-

work defines a process to component-based software engineering. In particular, we em-

148

phasize the role of software architectures as compositions of components that enables
component assembly. This framework provides an integrated approach to address is-
sues involving component composition, evaluation, and integration, while serving as

a technical map for the reminder of this research.

Developed a component interconnect model and specification language

Component-based engineering emphasizes the composition of components, that is,
the structural properties of a system in terms of its constituent components. On the
other hand, in order to enable the effective retrieval and evaluation of existing com-
ponents for reuse, a certain degree of preciseness in specifying requirements and/or
component functionalities is required. In this research, we developed a flexible spec-
ification framework that integrates software architecture description techniques with

traditional formal specification languages.

Established a semantic foundation for specification matching

While considering formal methods-based specification matching as an evaluation
method for reuse has merits of being precise and amenable to automation, it suf-
fers from the lack of a general approach to reason about the usefulness of a specifi-
cation match for determining reusability. In this research, a semantic foundation is
established to reason about the connections between a specification match and its use-
fulness for determining reusability. Based on this semantic foundation, we proved the
existence of the best reuse-ensuring matches, and showed exactly what they are. As
a result, we provided a formal foundation for applying specification matching-based
methods to component evaluation, and simplified the development of the best com-

ponent evaluation method. The influence of this result is not limited to component

149
reuse. It also applies to any area that involves specification matching. For example,
in defining object-oriented subtyping [97, 98, 99], this result pl.'ovides a basis for se-
lecting specification matching criterion to determine behavioral relationships between

methods of two classes.

Extended specification-based evaluation methods to architectural compo-
nents

Specification matching has been applied to evaluate fine-grained components, i.e.,
functions or modules. In order to scale up reuse, architectural components need to
be considered. In this research, a formal specification-based method has been devel-
oped to evaluate the reusability of architectural components. Specifically, a generality
relation between component interfaces is developed to capture the reusability of an
architectural component for satisfying a query interface. The uniqueness in the defini-
tion is its consideration of the dependencies among features of a component. Because
these dependencies are architectural features, rather than functionalities, this inter-
face generality relation embodies not only functional requirements, but also structural

requirements, for evaluating the reusability of a component.

Developed a reusable toolkit for facilitating the development of applica-
tions involving software architectures and component reuse

As one means for validating and facilitating this research, we developed an
architecture-based component reuse and integration environment (ABRIE). Through
its graphical environment, ABRIE supports composition manipulation, reusability
analysis and component integration. However, ABRIE has broader applicability due

to its layered architecture design. The object-oriented models of architectural el-

150

ements that constitute the bottom layer of ABRIE provide a reusable toolset for

creating software architecture and component reuse related tools.

10.2 Impact of Research and Future Investigations

Component-based software engineering is an emerging area of active research and practice.
It promises to radically reduce the time and cost of software development through system-
atic reuse. However, in order to enable component-based software engineering, the engi-
neering process needs to be changed from conventional product-oriented, waterfall model to
a domain-oriented, architecture based, component assembly model. The integrated frame-
work for component reuse proposed in this research provides a roadmap for implementing
component-based software engineering. Techniques developed in this research enable the
implementation of this component-based software engineering paradigm. In particular,
by integrating formal methods into this paradigm, we explore and demonstrate the feasi-
bility of automating component-based software development. The impact of some of the
results obtained in this research may go beyond the domain of software reuse or component-
based software engineering. For example, the semantic foundation for specification match-
ing developed in this research provides a generic framework to reason about specification
matches, which, in addition to determining reuse, have been used in many other software
engineering activities, such as maintenance, reengineering [82], and object-oriented subtyp-
ing (97, 98, 99].

Several areas of research appear promising for future investigations. Each is briefly

described.

151

10.2.1 Domain specific support

As pointed out in Chapter 4, domain engineering [83, 84, 85, 86] is a design-for-reuse pro-
cess that produces domain-specific reusable artifacts, including domain requirement mod-
els (specifications), architectures, and implementations. In application engineering, these
domain-specific assets are reused to construct specific applications within the domain. In
this research, we leave the possibility open to support domain-specific development. Specifi-
cally, in the design of the component interconnect model and the prototype system, ABRIE,
we provide meta-mechanisms for specifying architectural knowledge such as styles that may
be domain specific. Therefore, by customizing the specification language and the ABRIE
environment using domain specific architectural knowledge and assets, we should be able
to obtain domain-specific design environments. It would be interesting to apply the results
of this research to a particular domain, and explore how domain orientation can facilitate

the evaluation, composition, and integration of software components.

10.2.2 Composition design

One important aspect of our component-based software development paradigm is composi-
tion (or architecture) design. One intention of introducing composition (or architecture) de-
sign is to bridge the gap between detailed implementation and analysis models or high-level
designs that are generally developed using specific “front-end” analysis or design method-
ology, such as object-oriented methods [9, 10, 119] or structured techniques [122, 123].
Although we have presented a scheme for specifying composition, it is not clear how a
reuse-enabling component composition can be derived from relevant analysis models or

high-level designs. In the case study described in Chapter 9, we used an intuitive, iterative

152
decomposition process to derive a composition design. Obviously, a more formal process is
needed.

Another promising line of work in supporting composition-based design is to enrich the
set of design abstractions. For example, it would be ideal to support style-specific archi-
tecture design by providing a set of common abstractions specific to this style. Another
approach is to have domain-specific abstractions for the design of applications within a do-
main, as we discussed earlier. In fact, those style-specific or domain-specific abstractions of
design elements have been accruing in recent years [124, 125, 126] . Enabling the integration
and use of those abstractions into our framework will facilitate composition design through

the potential reuse of those design abstractions.

10.2.3 Packaging adaptation

The evaluation method described in Chapter 7 is sufficient for finding the conforming com-
ponents to a given interface. However, it is typical that available components may not
exactly conform to an interface. Instead, certain mismatches may exist. There are gener-
ally three kinds of mismatches. The simplest one is syntactical mismatch, such as different
orderings of parameters to functions, and naming conflicts. Another kind of mismatch is
due to the semantic difference, that is, a component may simply deliver a different behavior
than that specified by the interface. The third kind of mismatch is due to the packaging
difference, that is, a component delivers the same capability as those specified by the inter-
face, but in a different way. For example, a sorting component packaged as a filter cannot
be used as a procedure.

In the component evaluation method proposed in Chapter 7, we emphasize the use

of semantics, thus allowing syntactic mismatches to be accommodated. In fact, they are

153

identified and recorded in the component evaluation process and used later in the packaging
process to generate wrappers for adaptation purposes. The evaluation method will discard
those components that semantically do not match with the requirement. Although it is
possible to adapt those components, we believe that the computational cost for doing so is
prohibitively high due to the nature of the problem [127, 128]. On the other hand, many
existing components, particularly those coarse-grained architectural components, cannot be
reused solely due to the constraints imposed by their packaging style [31]. An interesting
avenue of further research would be to develop methods to resolving packaging mismatches.
The objective of packaging adaptation is to convert one packaging style to another while
keeping the capabilities of a component unchanged. For example, most existing libraries
use basic packaging styles such as procedure and class, but when applied to an architectural
context, they need to be packaged in an appropriate form consistent with the architecture.
It would also be interesting to establish a classification of various packaging styles and
develop templates for converting among these styles. These templates may provide a basis

for automating packaging adaptation.

BIBLIOGRAPHY

Bibliography

(1] J. M. Wing, “A specifier’s introduction to formal methods,” IEEE Computer, vol. 23,
September 1990.

(2] C. B. Jones, Systematic Software Development using VDM. Prentice Hall Interna-
tional, 1990.

(3] J. B. Wordsworth, Software Development with Z. Addison-Wesley Longman Ltd.,
1992.

[4] B. H. C. Cheng, “Applying formal methods in automated software development,”
Journal of Computer and Software Engineering, vol. 2, no. 2, 1994.

[5] E. M. Clarke and J. M. Wing, “Formal methods: State of the art and future direc-
tions,” ACM Computing Surveys, vol. 28, December 1996.

(6] D. R. Smith, “Kids: A semiautomatic program development system,” IEEE Trans-
action on Software Engineering, vol. 16, September 1990.

[7) H. A. Partsch, Specification and Transformation of Programs. Springer-Verlag, 1990.

(8] M. R. Lowry and R. D. McCartney, Automating Software Design. AAAI Press/MIT
Press, 1991.

[9] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen, Objected-
Oriented Modeling and Design. Prentice Hall, 1991.

[10] G. Booch, Object-Oriented Analysis and Design. Addison-Wesley, 2 ed., 1994.

[11] F. P. Brooks, “No silver bullet - essence and accidents of software engineering,” IEEE
Computer, vol. 20, April 1987.

[12] N. G. Leveson and C. S. Turner, “An investigation of the therac-25 accidents,” IEEE
Computer, vol. 26, July 1993.

[13] W. W. Gibbs, “Software’s chronic crisis,” Scientific American, September 1994.

(14] S. Flowers, Software Failure: Management Failure: Amazing Stories and Cautionary
Tales. Wiley, 1996.

(15] P. G. Neumann, “The risk digest forum.” WWW site, http://catless.ncl.ac.uk/Risks/.
[16] T. J. Biggerstaff and A. J. Perlis, Software Reusability, vol. 1,2. ACM Press, 1989.
(17) C. W. Krueger, “Software reuse,” ACM Computing Surveys, vol. 24, June 1992.

154

155

(18] H. Mili, F. Mili, and A. Mili, “Reusing software: Issues and research directions,”
IEEE Transactions on Software Engineering, vol. 21, pp. 528-561, June 1995.

[19] M. D. Mcllroy, “Mass produced software components,” in Software Engineering: Re-
port on a conference by the NATO Science Committee (P. Naur and B. Randell, eds.),
pp. 138-150, October 1968.

[20] G. Booch, Software Components with Ada. Benjamin/Cummings, 1987.

[21] A. Stepanov and M. Lee, “The standard template library.” ANSI/ISO document,
October 1995.

(22] D. B. Musser, A. Saini, and A. Stepanov, STL Tutorial and Reference Guide: C++
Programming with the Standard Template Library. Addison-Wesley, 1996.

(23] Web site, http://www.asset.com. A large collection of software libraries are available
for download.

[24] G. Shepherd and S. Wingo, MFC Internals. Addison-Wesley, 1996.
(25] R. Prieto-Diaz, “Status report: Software reusability,” IEEE Software, May 1993.

[26] J. V. Guttag and J. Horning, Larch: Languages and Tools for Formal Specification.
Springer-Verlag, 1993.

[27] J.-J. Jeng and B. H.C.Cheng, “Using formal methods to construct a software compo-
nent library,” in Lecture Notes in Computer Science, vol. 717, pp. 397417, September
1993.

(28] J.-J. Jeng and B. H. C. Cheng, “Specification matching for software reuse: A foun-
dation,” in SSR’95, ACM SIGSOFT, ACM Press, April 1995.

[29] R. Mili, A. Mili, and R. T. Mittermeir, “Storing and retrieving software components:
A refinement based system,” IEEE Transactions on Software Engineering, vol. 23,
July 1997.

[30] A. M. Zaremski and J. M. Wing, “Specification matching of software components,”
in Third ACM SIGSOFT Symposium on the Foundations of Software Engineering,
October 1995.

[31] D. Garlan, R. Allen, and J. Ockerbloom, “Architectural mismatch: Why reuse is so
hard,” IEEE Software, vol. 12, November 1995.

[32] M. Shaw and D. Garlan, Software Architectures: Perspectives on an Emerging Disci-
pline. Prentice Hall, 1996.

(33] Y. Chen and B. Cheng, “Facilitating an automated approach to architecture-based
software reuse,” in Proceedings of the 12th IEEE International Conference on Auto-
mated Software Engineering, November 1997.

[34] Y. Chen and B. H. C. Cheng, “Formally specifying and analyzing architectural and
functional properties of components for reuse,” in WISRS, 1997.

156

[35] P. H. J. van Eijk, C. A. Vissers, and M. D. (editors), The Formal Description Tech-
nique LOTOS. Elsevier Science Publishers B.V., 1989.

[36] M. R. Laux, R. H. Bourdeau, and B. H. C. Cheng, “An integrated development envi-
ronment for formal specifications,” in Proc. of the IEEE 5th Intl. Conf. on Software
Engineering and Knowledge Engineering, June 1993.

[37] S. J. Garland and J. V. Guttag, LP, the Larch Prover: User and Reference Manual.
MIT, December 1994.

[38] D. Garlan and M. Shaw, “An introduction to software architecture,” in Advances in
Software Engineering and Knowledge Engineering (V. Ambriola and G. Tortora, eds.),
vol. I, World Scientific Publishing Company, 1993.

[39] D. Garlan and D. Perry, “Introduction to the special issue on software architecture,”
IEEEFE Transaction on Software Engineering, vol. 21, April 1995.

[40] R. S. Pressman, Software Engineering. McGraw-Hill, Inc., 3 ed., 1992.

[41] D. E. Perry and A. L. Wolf, “Foundations for the study of software architecture,”
ACM SIGSOFT Software Engineering Notes, vol. 17, October 1992.

[42] R. Allen and D. Garlan, “Formalizing architectural connection,” in Proc. 16th Inter-
national Conference on Software Engineering, (Sorrento, Italy), May 1994.

[43] R. Allen and D. Garlan, “A formal basis for architectural connection,” ACM Trans-
actions on Software Engineering and Methodology, July 1997.

[44] M. Moriconi and X. Qian, “Correctness and composition of software architectures,”
in Proc. ACM SIGSOFT’94, December 1994.

[45] D. Garlan and D. E. Perry, eds., Special Issue on Software Architecture, IEEE Trans-
action on Software Engineering, vol. 21, IEEE Computer Society, April 1995.

[46] D. C. Luckham and et al., “Specification and analysis of system architecture using
rapide,” IEEE Transactions on Software Engineering, vol. 11, April 1995.

[47] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer, “Specifying distributed software
architectures,” in Proceedings of the Fifth European Software Engineering Conference
(ESEC’95), (Barcelona), September 1995.

(48] D. Garlan, “What is style,” in Proceedings of Dagshtul Workshop on Software Archi-
tecture, February 1995.

[49] M. Shaw, R. DeLine, and G. Zelenik, “Abstractions and implementations for archi-
tectural connections,” in Proc. 3rd Intl. Conf. on Configurable Distributed Systems,
1996.

[50] M. Shaw, R. DeLine, D. Klein, T. Ross, D. Young, and G. Zelesnik, “Abstractions
for software architecture and tools to support them,” IEEE Transactions on Software
Engineering, vol. 21, April 1995.

[561] G. Glass, Uniz for Programmers and Users: A Complete Guide. Prentice Hall, 1993.

157

[52] J. Bloomer, Power Programming with RPC. O’Reilly & Associates, Inc., 1991.

(53] R. T. Monroe and D. Garlan, “Style-based reuse for software architectures,” in Pro-
ceedings of 4th International Conference on Software Reuse, April 1996.

[54] D. Garlan, R. T. Monroe, and D. Wile, “Acme: An architecture description inter-
change language,” in Proceedings of CASCON’97, November 1997.

[55] M. Moriconi, X. Qian, and R. A. Riemenschneider, “Correct architecture refinement,”
IEEFE Transactions on Software Engineering, vol. 21, pp. 356-372, April 1995.

[56] M. Moriconi and R. A. Riemenschneider, “Introduction to sadl 1.0: A language for
specifying software architecture hierarchies,” Tech. Rep. SRI-CSL-97-01, Computer
Science Laboratory, SRI International, March 1997.

[57] D. Garlan, R. Allen, and J. Ockerbloom, “Exploiting style in architectural design
environments,” in Proceedings of SIGSOFT ’94 Symposium on the Foundations of
Software Engineering, December 1994.

(58] R. T. Monroe, “Capturing design expertise in customized software architecture de-
sign environments,” in Proceedings of the Second International Software Architecture
Workshop, October 1996.

[59] J.-J. Jeng and B. H.C.Cheng, “A formal approach to reusing more general com-
ponents,” in The Proceedings of IEEE 9th Knowledge-Based Software Engineering
Conference, September 1994.

(60] J.-J. Jeng and B. H.C.Cheng, “Using analogy and formal methods for software reuse,”
in The Proceedings of IEEE 5th International Conference on Tools with Al pp. 113-
116, November 1993.

[61] B. H. C. Cheng and J.-J. Jeng, “Reusing analogous components,” IEEE Transaction
on Knowledge and Data Engineering, vol. 9, pp. 341-349, March/April 1997.

[62] A.M. Zaramski and J. M. Wing, “Signature matching: A key to reuse,” in Proceedings
of the ACM SIGSOFT’93 Symposium on the Foundations of Software Engineering,
December 1993.

[63] B. Fischer, M. Kievernagel, and G. Snelting, “Deduction based software component
retrieval,” in Proceedings of IJCAI Workshop on Reuse of Proofs, Plans and Programs,
(Montreal, Quebec, Canada), June 1995.

[64] F. DeRemer and H. Kron, “Programming-in-the-large versus programming-in-the-
small,” IEEE Transactions on Software Engineering, June 1976.

[65] R. Prieto-Diaz and J. M. Neighbors, “Module interconnection languages,” J. Systems
and Software, vol. 6, Nov 1986.

[66] W. Tracz, “Lileanna: A parameterized programming language,” in Proc. of Second
International Workshop on Software Reuse, 3 1993.

(67) B. Boehm and B. Scherlis, “Megaprogramming,” in Proceedings of the DARPA Soft-
ware Technology Conference, (Arlington, VA), 1992.

|

158

[68] G. Wiederhold, P. Wegner, and S. Ceri, “Towards megaprogramming: A paradigm
for component-based programming,” Communications of the ACM, June 1992.

[69] W. Kozaczynski, E. S. Liongosari, J. Q. Ning, and A. Olafsson, “Architecture speci-
fication support for component integration,” in Proc. of 7th International Workshop
on CASE, July 1995.

[70] J. Q. Ning, “Component-based software engineering (panel): Cbse enabling tech-
nologies (position statement),” in Fourth Intl. Conference on Software Reuse, IEEE
Computer Society Press, April 1996.

[71] J. Q. Ning, “A component-based software development model,” in The Proc. of
COMPSAC’96, 1996.

(72] F. Bronsard, D. Bryan, W. Kozaczynski, E. Liongosari, J. Q. Ning, A. Olafsson,
and J. Wetterstrand, “Toward software plug-and-play,” in Proceedings of the 1997
Symposium on Software Reusability (SSR’97), May 1997.

(73] O. M. Group, “Corba 2.0 specification,” 1996.

(74] R. Prieto-Diaz, “Implementing faceted classification for software reuse,” Communi-
cation of ACM, vol. 34, May 1991.

[75] C. Dellarocas, “Toward a design handbook for integrating software components,” in
Proceedings of the 5th International Symposium on Assessment of Software Tools and
Technologies (SAST’97), June 1997.

[76] C. Dellarocas, “A coordination perspective on software system design,” in Proceed-
ings of the 9th Intl. Conference on Software Engineering and Knowledge Engineering
(SEKE’97), June 1997.

(77] J. Magee, N. Dulay, and J. Kramer, “Regis: A constructive development environment
for distributed programs,” Distributed Systems Engineering Journal, vol. 1, no. 5,
pp. 304-312, 1994.

”

(78] R. E. Johnson, “Frameworks=(components + patterns),” Communications of the

ACM, vol. 40, October 1997.

[79] A. Schappert, P. Sommerlad, and W. Pree, “Automated support for software devel-
opment with frameworks,” in Proc. of the ACM SIGSOFT Symposium on Software
Reusability, ACM Press, April 1995.

(80] T.J. Biggerstaff, “Design recovery for maintenance and reuse,” IEEE Computer, July
1989.

[81] E. J. Chikofsky and J. H. Cross, “Reverse engineering and design recovery: A taxon-
omy,” IEEE Software, vol. 7, January 1990.

[82] G. C. Gannod, Y. Chen, and B. Cheng, “An automated approach for supporting
software reuse via reverse engineering,” in Proceedings of 13th IEEE International
Conference on Automated Software Engineering (ASE’98), (Honolulu, Hawaii, USA),
October 1998.

159

[83] R. Prieto-Diaz, “Domain analysis for reusability,” in Proceedings of 1987 IEEE Com-
puter Software and Applications Conference (COMPSAC’87), (Tokyo, Japan), Octo-
ber 1987.

(84] G. Arango, Domain Engineering for Software Reuse. PhD thesis, University of Cali-
fornia at Irvine, 1988.

[85] R. Prieto-Diaz and G. Arango, eds., Domain Analysis and Software Systems Modeling.
IEEE Computer Society Press, 1991.

[86] J. Meekel, T. B. Horton, R. B. France, C. Mellone, and S. Dalvi, “From domain mod-
els to architecture frameworks,” in Proceedings of the 1997 Symposium on Software
Reusability (SSR’97 (M. Harandi, ed.), May 1997.

(87] W. Humphrey, Managing Software Process. Reading, MA: Addison-Weslry, 1989.

[88] N. Medvidovic and R. N. Taylor, “A framework for classifying and comparing archi-
tecture description languages,” in Proceedings of ESEC/FSE97, September 1997.

[89] I. Baxter, “Design maintenance systems,” Communications of the ACM, April 1992.

[90] G. T. Leavens, “An overview of Larch/C++: Behavioral specifications for C++ mod-
ules,” Tech. Rep. TR96-01a, Dept. of Computer Science, Iowa State University, March
1996.

[91] J. Penix and P. Alexander, “Toward automated component adaptation,” in Proceed-
ings of the 9th International Conference on Software Engineering and Knowledge
Engineering, June 1997.

[92] Y. Chen and B. H. C. Cheng, “Formalizing and automating component reuse.” Pro-
ceedings of the 9th IEEE International Conference on Tools with Artifical Intelligence,
November 1997.

(93] J.-J. Jeng and B. H. C. Cheng, “Using automated reasoning techniques to deter-
mine software reuse,” International Journal of Software Engineering and Knowledge
Engineering, vol. 2, December 1992.

[94] G. T. Leavens and W. E. Weihl, “Reasoning about object-oriented programs that use
subtypes (extended abstract),” in OOPSLA ECOOP ’90 Proceedings (N. Meyrowitz,
ed.), vol. 25(10), pp. 212-223, Oct. 1990.

(95] J. Schumann and B. Fischer, “Nora/hammr: Making deduction-based software com-
ponent retrieval practical,” in Proceedings of the 12th IEEE International Automated
Software Engineering Conference (ASE97), (Incline Village, Nevada), November 1997.

[96] C. A. R. Hoare, “An axiomatic basis for computer programming,” Communications
of the ACM, vol. 12, October 1969.

[97) P. America, “Designing an object-oriented programming language with behavioral
subtyping,” in LNCS (J. W. de Bakker, W. P. de Roever, and G. Rozenberg, eds.),
vol. 489, pp. 60-90, Springer-Verlag, 1991.

[98] B. H. Liskov and J. M. Wing, “A behavioral notion of subtyping,” ACM Transactions
on Programming Languages, vol. 16, November 1994.

160

[99] K. K. Dhara and G. T. Leavens, “Forcing behavioral subtyping through specifica-
tion inheritance,” in Proceedings of the 18th International Conference on Software
Engineering (ICSE’18), (Berlin, Germany), March 1996.

[100] E. Dijkstra, A Discipline of Programming. Prentice-Hall, 1976.

(101] C. Jones, Software Development: A Rigorous Approach. Prentice-Hall International,
1980.

[102] D. Gries, The Science of Programming. Springer-Verlag, 1981.
(103] E. Cohen, Programming in the 1990s. Springer-Verlag, 1990.

[104] R. Back, “A calculus of refinements for program derivations,” Acta Information,
vol. 25, pp. 593-624, 1988.

[105] J. Morris, “A theoretical basis for stepwise refinement and the programming calculus,”
Science of Computer Programming, vol. 9, no. 3, pp. 287-306, 1987.

[106] C. Morgan, Programming from Specifications. Prentice Hall, 1990.

[107] R. Back and J. von Wright, Refinement Calculus: A Systematic Introduction. Springer
Verlag, 1998.

[108] P. Cousot, “Methods and logics for proving programs,” in Handbook of Theoretical
Computer Science (J. van Leeuwen, ed.), vol. B: Formal Models and Semantics, ch. 15,
pp. 841-993, The MIT Press / Elsevier, 1990.

[109] C. A. R. Hoare and P. Lauer, “Consistent and complementary formal theories of the
semantics of programming languages,” Acta Information, vol. 3, pp. 135-155, 1974.

(110) W. H. Hesselink, Programs, Recursion and Unbounded Choice. Cambridge University
Press, 1992.

(111] P. A. Fejer and D. A. Simovici, Mathematical Foundations of Computer Science, vol. I:
Sets, Relations and Induction. New York: Springer-Verlag, 1990.

(112] G. Gratzer, General Lattice Theory. Basel: Birkhauser, 1978.

[113] A. M. Zaremski and J. M. Wing, “Signature matching: A key to reuse,” in Proceedings
of the ACM SIGSOFT’93 Symposium on the Foundations of Software Engineering,
December 1993.

[114] L. Cardelli, “A semantics of multiple inheritance,” Information and Computation,
vol. 76, pp. 138-164, February/March 1988.

(115] J. Ousterhout, “Tcl: An embeddable command language,” in Proceedings of the 1990
Winter USENIX Conference, 1990.

(116] J. Ousterhout, Tcl and the Tk Toolkit. Addison-Wesley, 1994.
(117) B. Welch, Practical Programming in Tcl and Tk. Prentice Hall, 1997.

[118] J. Ousterhout, “An x11 toolkit based on the tcl language,” in Proceedings of the 1991
Winter USENIX Conference, 1991.

161

[119] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling Language User Guide.
Addison-Wesley, 1999.

(120] G. C. Gannod and B. H. C. Cheng, “The object-oriented development of multimedia
information systems,” in Multimedia Information Storage and Management (S. M.
Chung, ed.), Kluwer Academic Publishers, 1996.

[121] B. Cheng, Y. Chen, P. Fraley, G. Gannod, D. Judd, J. Kusler, H. Rither, S. Schafer,
J. Sharnowski, S. Wagner, and E. Wang, “Design document for enforms ii: Decision
support system for great lakes regional environmental information system,” Tech.
Rep. MSU-CPS-95-24, Michigan State University, 1995.

[122] T. DeMarco, Structured Analysis and System Specification. Prentice-Hall, 1979.
[123] E. Yourdon, Modern Structured Analysis. Englewood Cliffs, NJ: Yourdon Press, 1989.

(124] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Pattern. Addison Wesley,
1994.

[125] M. Shaw, “Making choices: A comparison of styles for software architecture,” IEEE
Software, vol. 12, no. 6, pp. 27-41, 1995.

[126] M. Shaw, “Some patterns for software architecture,” in Proc. of Second Annual Con-
ference on Pattern Language of Programming, September 1995.

(127] C. H. Smith, A Recursive Introduction to The Theory of Computation. Springer-
Verlag, 1994.

(128] C. H. Papadimitriou, Computational Complezity. Addison-Wesley Publishing Co.,
1994.

[129] M. J. Morin, “Final report for enforms: Lac layer specification,” 1993. MSU CPS814
term project report.

APPENDICES

Appendix A

BNF Syntax of ABRIE V 2.0 ADL

We use an extended BNF grammar to define the syntax of the architectural description
language (ADL) described in Chapter 5 and implemented in Chapter 8. The meanings of
the notations are explained below.

ii= meaning ‘‘is defined as’’

| meaning ‘‘or’’

< angle brackets used to surround non-terminal names
8] items enclosed in [and] can appear O or 1 times
0+ items enclosed in [and] can appear 1 or more times
[items enclosed in [and] can appear O or more times

‘¢ quotes (‘‘) and (’’) are used to surround terminals in order to
distinguish these terminals from BNF meta-symbols
vildcards for anything before am ‘‘ending symbol’’

#system architecture

<system> ::= SYSTEM <idn> [‘‘:’’ <idn>] ‘‘{’’ <system_body> ‘‘}’’

<system_body> ::= [<visables>] [<auxiliarydef>] ([<comp>]+ [<conn>]+ <config>

<visables> ::= VISABLE <v_elem> [‘‘,’’ <v_elem>]s ‘¢;’’

<v_elem> ::= <idn> ‘‘.’’ <idn>

<auxiliarydef> ::= ‘‘Y{’* ... %}’

<idn> ::= <alpha> [<alphanum>]=

<alpha> ::= alblcldlelfiglhliljlkiliminlolplqlrisitiulvivixlylzl|
AIBICIDIEIFIGIHITI|IJIKILIMINIOIPIQIRISITIVIVIWIXIYIZI_

<numeric> ::= 0(1121314|616171819

<alphanum> ::= <aplha> | <numeric>

#component

<comp> ::= COMP <idn> [‘‘:’’ <idn>] <comp_rest>

<comp_rest> ::= ‘‘;’’ | ‘‘{’’ [<uses>] [<port>]+ ([<constr>] [<impl>] ‘‘}’’
#connector

<conn> ::= CONN <idn> [‘‘:’’ <idn>] <conn_rest>

<conn_rest> ::= ‘‘;’’ | ‘‘{’’ <properties> ‘‘}'’

#configuration

<config> ::= CONFIGURE *‘‘{’’ <cfgs> ‘‘}"’
<ctfgs> ::= [<cfg>] | <cfg> ‘‘;’’ <cfgs>

<cfg> ::m <idn> “‘.’? <idn> TO <idn> ‘‘.’’ <idn>

#port

<port> ::= PORT <idn> [‘‘:’’ <idn>] <port_rest>

<port_rest> ::= ‘‘;’’ | ‘‘{’? <resource> <properties> ‘‘}’’
<properties> ::= [<property>] | <property> ‘‘;’’ <properties>
<property> ::= <idn> ‘‘:’’ <property_value>

<property_value> ::= <idn> | <string> | <restype>

162

163

component constraints

<constr> ::= CONSTR ‘‘{’’ [<cstr>]s ‘‘}?’

<cstr> ::= <dependence> | <behaviorcstr>

<dependence> ::= DEPENDENCE ‘‘{’’ <idn> : <dpn> ‘‘}’’
<dpn> ::= <idn> | “‘{’’ <idn> [‘‘,’’ <idmd]s ‘‘}’
<behaviorcstr> ::= BEHAVIORCSTR ‘‘{’’ (<predicate>] ‘‘}’’
<predicate> ::= PRED: ... ‘‘;?’’

#implementation
<impl> ::= IMPLEMENTATION ‘‘{’’ properties ‘‘}’’

Sresources
<resource> ::= <func> | <data> | <adt> | <stream> | <event> | <rbundle>
<restype> ::= FUNC | DATA | ADT | STREAM | EVENT | RBUNDLE

#function

<func> ::= FUNC <idn> <func_rest>

<func_rest> ::= ‘‘;’’ | ‘‘{’’ [<params>] ‘‘}’’ [RETURN <type>] <func_rest2>
<params> ::= <param> | <param> ‘‘,’’ <params>

<param> ::= <type> | <type> <idn>

<type> ::= <idn> | <idn> ‘‘»??

<func_rest2> ::= ‘;?? | ‘‘{‘‘ [<uses>] [<requires>] [<modifies>] [<ensures>]
<uses> ::= USES ... *¢;??

<requires> ::= REQUIRES ... ‘*;”?’

<modifies> ::= MODIFIES ... ‘*‘;”’

<ensures> ::= ENSURES ... ‘¢;"’

sdata
<data> ::= DATA <idn> “‘:’? <idn> <data_rest>
<data_rest> ::= ‘‘;’’ | WITHBEHAVIOR <behaviorspec>

#adt

<adt> ::= ADT <idn> <ptheader> <adt_rest>
<adt_rest> ::= ‘‘;’’ | <behaviorspec>
<behaviorspec> ::= ‘‘{’’ [<uses>] [<func>]s ‘‘}’’
<ptheader> ::= ‘‘<’’ <idn> [‘‘,’’ <idnd]s ‘>

Sevent
<event> ::= EVENT <idn> ‘‘;’’ | EVENT <idn> ‘‘{’’ <predicate> ‘‘}’’

$stream
<STREAM> ::= STREAM <idn> ‘‘:’’ <idn> ‘‘;?’

#resource boundle
<rbundle> ::= RBUNDLE <idn> ‘‘{’’ [<resource>}s ‘‘}’’

l‘}l)

Appendix B

Input File for Generating ABRIE
V 2.0 ADL Lexical Analyzer

This appendix contains the input file to a lexical analyzer generator (Lex or Flex) for
generating ABRIE V 2.0 ADL lexical analyzer. The generated lexical analyzer is called
by the ABRIE ADL parser that itself is generated by a parser generator (Yacc or Bison).
The parser generator also generates the C/C++ header file, y.tab.h, that defines the token
constants returned by the lexical analyzer to represent various lexical tokens.

/*
adl.l
for ABRIE V 2.0 ADL

*/

%

#include <stdio.h>

#include <string.h>
#include "y.tab.h"

%}

identifier [_a-zA-Z] [_a-zA-Z0-9]*
vhite [\t\n]
%Xoption noyywrap

33
\"[""]s {
char s([1024];
yyinput(); /* read the ending mark #*/
strcpy(s, yytext);
strcat(s, "\"");
printf("\n%s", s);
yylval.sval = strdup(s);
return tkSTRING;
}
LIBRARYILIB {
printf("\n¥%s", yytext);
return tkLIB;
}
SYSTEM|SYS {
printf("\nXs", yytext);
return tkSYS;
}
VISABLE {
printf("\n¥%s", yytext);
return tkVISABLE;

164

}
COMPONENT|COMP {
printf("\n%s", yytext);
return tkCOMP;
}
CONNECTOR|CONN {
printf(“\n%s", yytext);
return tkCONN;
}
CONFIGURE {
printf("\n%s", yytext);
return tkCONFIGURE;

}
PORT {
printf("\n%s", yytext);
return tkPORT;
}
ROLE {
printf("\n%s", yytext);
return tkROLE;
}
CONSTR {

printf("\n%s", yytext);
return tkCONSTR;
}
DEPENDENCE {
printf(“"\n%s", yytext);
return tkDEPENDENCE;
}
BEHAVIORCSTR {
print2("\n¥%s", yytext);
return tkBEHAVIORCSTR;
}
TO {
printf("\n%s", yytext);
return tkTO;
}
IMPLEMENTATION {
printf("\n%s", yytext);
return tkIMPLEMENTATION;
}
FUNC {
printf(“\n%s", yytext);
yylval.sval = strdup(yytext);
return tkFUNC;
}

STREAM {
printf("\n%s", yytext);
yylval.sval = strdup(yytext);
return tkSTREAM;
}
EVENT {
printf(“\n%s", yytext);
yylval.sval = strdup(yytext);
return tkEVENT;
}
DATA {
printf("\n¥%s", yytext);
yylval.sval = strdup(yytext);
return tkDATA;
}
ADT {
printf(“\nXs", yytext);
yylval.sval = strdup(yytext);
return tkADT;
}
RBUNDLE {

165

166

printf("\n¥%s", yytext);
yylval.sval = strdup(yytext);
return tkRBUNDLE;

}

WITHBEHAVIOR {
printf("\n%s", yytext);
return tXWITHBEHAVIOR;

}

RETURN| [Rr]eturn {
printf("\n%s", yytext);
return tkRETURN;

}

[uU)ses|USES { char s[1024]; int i=0;
printf("\n¥%s", yytext);
vhile ((s(i++]=yyinput()) !'= ’;’);
s(i-1] = ’\0’;
yylval.sval = strdup(s);
return tkUSES;

}
TRAITS {
printf(“\n¥%s", yytext);
return tkTRAITS;
}

(FtlorIFOR {
printf("\n%s", yytext);
return tkFOR;
}

[rR]equires |REQUIRES {
printf("\n%s", yytext);
char s(1024];
int i=0;
vhile ((s[i++)=yyinput()) !'= ’;’);
s[i-1] = ’\0’;
yylval.sval = strdup(s);
return tkREQUIRES;
}
[mM]odifies|MODIFIES {
printf("\n%s", yytext);
char s[1024];
int i=0;
vhile ((s[i++]=yyinput()) != ’;’);
s[i-1] = *\0’;
yylval.sval = strdup(s);
return tkMODIFIES;
}
[eElnsures |ENSURES {
printf("\n¥%s", yytext);
char s[1024]);
int i=0;
vhile ((s[i++]=yyinput()) != ’;’);
s[i-1]) = ’\0’;
yylval.sval = strdup(s);
return tkENSURES;

npm . " {
printf("\n¥%s", yytext);
char s(1024];
int i=0;
vhile ((s[i++)=yyinput()) != ’}’);
s[i-1] = *\o’;
yylval.sval = strdup(s);
return tkPRED;
}
defporttype {
printf(“\n%s", yytext);
return tkDEFPORTTYPE;

167

}
defcomptype {
printf("\n%s", yytext);
return tkDEFCOMPTYPE;
}
ports {
printf("\n¥%s", yytext);
return tkPORTS;
}
defconntype {
printf("\n%s", yytext);
return tkDEFCONNTYPE;

}
roles {
printf("\n¥%s", yytext);
return tkROLES;
}
" . " {
printf("\n¥s", yytext);
return tkDOT;
}
L] , " {
printf("\n%s", yytext);
return tkCOMMA;
}
L : " {
printf("\n%s", yytext);
return tkCOLON;
}
" : " {
printf("\n¥%s", yytext);
return tkSEMICOLON;
}
wyn {
printf("\n¥%s", yytext);
return tkASTERISK;
}
'I(ll {
printf("\n¥%s", yytext);
return tkLP;
}
u) " {
printf("\n%s", yytext);
return tkRP;
}
ll<ll {
printf("\n%s", yytext);
return tkLAP;
}
uyn {
printf("\n¥%s", yytext);
return tkRAP;
}
Il{ll {
printf("\n¥s", yytext);
return tkLBP;
}
"}II {
printf("\n¥%s", yytext);
return tkRBP;
}
nx{u {

printf("\n¥%s", yytext);
char s[1024];

int i=0;
s(il=yyinput();

i++;

168

vhile (!(((s[i]l=yyinput()) == ’}’) k& (s[i-1] == ’%’)))
i+s;

s[i-1] = *\0’;
yylval.sval = strdup(s);
return tkAUXIDEF;

}

{identifier} {

printf("\n¥%s", yytext);
yylval.sval = strdup(yytext);
return tkIDENTIFIER;

}

#["\n]*\n /* eat up one line comment beginning with # +/
{vhite}+ /s eat up white space */

{
}

printf("\nUnrecognized character: %s\n", yytext);
%

/* Following is testing code */
/*
YYSTYPE yylval;

int main(int argc, char *argv([])
{
printf("This is the begining\n");
it (arge > 1)
yyin = fopen(argv[1], "r");
else
return 1;
vhile (yylex());
fclose(yyin);
printf("This is the end \n");

Appendix C

Input File for Generating ABRIE
V 2.0 ADL Parser

This appendix contains the input file to a parser generator (Yacc or Bison) for generating

ABRIE

V 2.0 ADL parser. The parser calls the function yylex(), the ADL lexical analyzer

generated by Lex or Flex, and is integrated with other components of the ABRIE system.
The embedded C++ code in this file describes the semantics of the ADL.

/*
adl.y

for ABRIE V 2.0 ADL

./

24

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

<stdio.h>

<string.h>
<assert.h>
*../model/rescls.h"
", ./model/libcls.h"
"../model/archcls.h"
"../model/compcls.h"
*../model/portcls.h"
"../model/conncls.h"
"../model/sysbase.h"
*../model/trait.h"

extern FILE *yyin;

extern int yylex(void);
extern int yyerror(char *);

// 1111 ¢

or lib, 2222 for arch, 3333 for component

int _ParsedType = 0;

LibClass

ArchClass
CompClass
ConnClass
PortClass
ResCls »_
FuncCls

StreamCls
EventCls
AdtCls =*=_
DataCls *

*_currlib;
*_currArch;
*_currComp;
*»_currConn;
*_currPort, *_thePort;
currRes;
s_currFunc;
*_currStreanm;
*_currEvent;
currAdt;
_currData;

RBundleCls *_currRBundle;
traitsClass »_currTraits;
trait *_currTr;

169

int
int
int
int

// for predefs sys info base

_inIMPL = 0;
-inRBundle = 0;
.inBehaviorBody = 0;
_inPORT =0;

ptTypeSt *pt;
cpTypeSt cp;
cnTypeSt *cn;
rlTypeSt srl;

SysBase *_currSysBase;

%}
%union {

char *sval;

struct namepair *pval;
}

%token tkLIB
%token tkSYS

%token

%token <sval> tkSTRING
%token tkRETURN

%token tkVISABLE
%token tkCOMP
%token tkCONN
%token tkCONFIGURE
%token tkPORT
%token tkROLE

%token tkCONSTR

%token tkDEPENDENCE
Atoken tkBEHAVIORCSTR
%Atoken tkIMPLEMENTATION

%token tkWITHBEHAVIOR

%token tkDEFPORTTYPE
%token tkDEFCOMPTYPE
%token tkPORTS
%token tkDEFCONNTYPE
%token tkROLES

%token tkTRAITS
%token tkFOR

%token <sval> tkSTREAM
%token <sval> tkEVENT
%token <sval> tkRBUNDLE
%token <sval> tkDATA
%token <sval> tkADT
%token <sval> tkFUNC

%token <sval> tkUSES
%token <sval> tkREQUIRES
%token <sval> tkMODIFIES
%token <sval> tkENSURES
%token <sval> tkPRED
%token <sval> tkAUXIDEF

<sval> tkIDENTIFIER

170

171

%token tkCOMMA
%token tkCOLON
%token tkSEMICOLON
%token tkASTERISK
%token tkDOT
%token tkTO
%token tkLP
%token tkRP
%token tkLAP
%token tkRAP
%token tkLBP
%token tkRBP

Atype <sval> type

Atype <sval> uses

Atype <sval> requires
Atype <sval> modifies
%Atype <sval> ensures

Atype <sval> predicate
%type <sval> auxilarydef
Atype <sval> propertyvalue

%type <sval> ppvalue
Atype <sval> restype

%type <pval> iddotpair

%

start : sysarch { YYACCEPT; }
| library { YYACCEPT; }
| predefs { YYACCEPT; }
| comp { YYACCEPT; }
| traits {YYACCEPT;}

library : tkLIB {
_ParsedType = 1111;
_currLib = nev LibClass();
} comps
| tkLIB tkIDENTIFIER {
_ParsedType = 1111;
_currLib = new LibClass($2);
} comps

sysarch : tkSYS tkIDENTIFIER {
_ParsedType = 2222;
_currArch = nev ArchClass($2);
}
archtype archbody

archtype :
| tkCOLON tkIDENTIFIER {_currArch->setType($2);}

archbody : tkLBP visables auxilarydef {
-currArch->insertAuxilaryDefs($3);
} comps conns config tkRBP

visables :
| tkVISABLE v_iddotpair restofiddotpairs tkSEMICOLON

restofiddotpairs :
| tkCOMMA v_iddotpair restofiddotpairs

172

v_iddotpair : tkIDENTIFIER tkDOT tkIDENTIFIER {
_currArch->insertVisable($1, $3);
}

/* Components */
comps : comp
| comp comps

comp : tkCOMP tkIDENTIFIER {
it (_ParsedType != 1111 &k _ParsedType !'= 2222)
_ParsedType = 3333;
_currComp = new CompClass($2);
}
comptype comprest {
if (_ParsedType == 2222)
_currArch->addComp(_currComp) ;
else if (_ParsedType == 1111)
_currLib->insert(_currComp);

comptype :
| tkCOLON tkIDENTIFIER { _currComp->setType($2);}

comprest : tkSEMICOLON
| tkLBP uses {
-currComp->setUses($2);
/* (_currComp->traits).parse($2); */
} ports constr impl tkRBP

ports : port
| port ports

constr :
| tkCONSTR tkLBP constraints tkRBP { _currComp->setCstrd();}
impl :
| tkIMPLEMENTATION {
_inIMPL =1;
}
tkLBP propertyspecs tkRBP {
-inIMPL =0;
}
constraints :
| constraint constraints
H
constraint : dependence

| behaviorconstr

dependence : tkDEPENDENCE tkLBP tkIDENTIFIER {
_thePort = _currComp->findPort($3);
assert(_thePort != NULL);
} tkCOLON pnlist tkRBP

.
’

pnlist : tkIDENTIFIER {
_thePort->addDependence($1) ;

173

}
| tkLBP tkIDENTIFIER {
.thePort->addDependence($2);
} restofids tkRBP

restofids :
| tkCOMMA tkIDENTIFIER {
_thePort->addDependence($2) ;
} restofids

behaviorconstr : tkBEHAVIORCSTR tkLBP predicate tkRBP {
_currComp->setBehaviorCstr($3);

}

port : tkPORT tkIDENTIFIER {
_currPort = nev PortClass($2);

} porttype portrest {
-currComp->addPort(_currPort);

}

porttype :
| tkCOLON tkIDENTIFIER {
_currPort->setType($2);
}

portrest : tkSEMICOLON
| txLBP {
-inPORT = 1;
} resspec propertyspecs tkRBP {
-inPORT = 0;
}

propertyspecs :
| propertyspec
| propertyspec tkSEMICOLON propertyspecs

propertyspec : tkIDENTIFIER tkCOLON propertyvalue {
it (_inIMPL)
_currComp->addImplProperty($1, $3);
else if (_inPORT)
_currPort->addProperty($1, $3);

propertyvalue : tkIDENTIFIER {$$ = $1;}
| tkSTRING {8 = $1;}
| restype {$$ = $1;}

’

resspecs : resspec
| resspec resspecs

resspec : funcspec
dataspec
adtspec
streamspec
eventspec
rbundlespec

174

restype : tkSTREAM {$$ = $1;}
| tkEVENT {$$ = $1;}
| tkDATA {$$ = $1;}
| tkADT {$$ = $1;}
| tkFUNC {88 = $1;}
| tkRBUNDLE {$$ = $1;)}

streamspec : tkSTREAM tkIDENTIFIER tkCOLON tkIDENTIFIER tkSEMICOLON {
_currStream = new StreamCls($2, $4);
if (_inRBundle)
_currRBundle->insertRes(_currStream);
else
_currPort->setResource(_currStream) ;

eventspec : tkEVENT tkIDENTIFIER {
_currEvent = new EventCls($2);
if (_inRBundle)
_currRBundle->insertRes (_currEvent);
else
_currPort->setResource(_currEvent);
} eventrest

eventrest : tkSEMICOLON
| tkLBP predicate tkRBP {
_currEvent->setCondition($2);

}

rbundlespec : tkRBUNDLE tkIDENTIFIER {
_currRBundle = new RBundleCls($2);
_inRBundle = 1;
} tkLBP resspecs tkRBP {
_currPort->setResource(_currRBundle);
_inRBundle = O;

dataspec : tkDATA tkIDENTIFIER tkCOLON tkIDENTIFIER {
_currData = nev DataCls($2, $4);
if (_inRBundle)
_currRBundle->insertRes (_currData);
else
_currPort->setResource(_currData);
} datarest

datarest : tkSEMICOLON
| tkWITHBEHAVIOR behaviorspec

adtspec : tkADT tkIDENTIFIER {
_currAdt = new AdtCls($2);
if (_inRBundle)
_currRBundle->insertRes(_currAdt);
else
_currPort->setResource(_currAdt);
} ptheader adtrest

adtrest : tkSEMICOLON
| behaviorspec

’

behaviorspec : tkLBP behaviorbody tkRBP

175

behaviorbody :
|uses {
_currAdt->setComUses($1);
/* (_currAdt->traits).parse($1);+/
-inBehaviorBody=1;
} funcspecs { _inBehaviorBody = 0; }

funcspecs : funcspec
| funcspec funcspecs

funcspec : tkFUNC tkIDENTIFIER {
_currFunc = newv FuncCls($2);
}
funcrest {
if (_inBehaviorBody)
it (strcmp($2, _currAdt->getName())==0)
_currAdt->addAConstructor(_currFunc);
else
_currAdt->addABehavior(_currFunc);
else if (_inRBundle)
_currRBundle->insertRes(_currFunc);
else
_currPort->setResource(_currFunc);

/* procedure =/
funcrest : tkSEMICOLON
| tkLP params tkRP retspec funcrest2

/+ retspec */
retspec :
| tkRETURN type {
_currFunc->setRetType($2);
}

/* procedure LARCH specification */
funcrest2 : tkSEMICOLON
| tkLBP uses requires modifies ensures tkRBP {

_currFunc->setUses($2);
/* (_currFunc->traits).parse($2); */
_currFunc->setRequires($3);
_currFunc->setModifies($4);
_currFunc->setEnsures($5) ;

uses : { $$ = strdup(""); }
| tkUSES { 88 = 81;)}

requi;es : { $8 = strdup(""); }

| tkREQUIRES { $$ = $1; }
modifies : { $8 = strdup(""); }

| tkMODIFIES { $$ = 81; }
ensures : { 88 = strdup(""); }

| tkENSURES { $$ = $1; }

predicate : { $$ = strdup("");}
| tkPRED { 88 = $1;}

176

auxilarydef : { $$ = strdup("");}
| tkAUXIDEF { $$ = $1;}

/+ paramters */
params :
| paramlist

paramlist : param
| param tkCOMMA paramlist

param : type {
_currFunc->appendParamType($1);
currFunc->appendParam("");
}
| type tkIDENTIFIER {
_currFunc->appendParamType($1);
_currFunc->appendParam($2) ;

}

type : tkIDENTIFIER { $$ = $1;)}
| tkIDENTIFIER tkASTERISK {
char #s=strdup($1);
safeStrcat(s, "s=");
$$ =3;
}

/* paramaterized types of an ADT resource =*/
ptheader :
| tkLAP ptlist tkRAP

ptlist : tkIDENTIFIER {
_currAdt->addParamType($1) ;
}
| tkIDENTIFIER {
_currAdt->addParamType($1);
}
tkCOMMA ptlist

conns : conn
| conn conns

conn : tkCONN tkIDENTIFIER {
_currConn = nev ConnClass($2);
} conntype connrest {
_currArch -> addConn(_currConn);

}

conntype :
| tkCOLON tkIDENTIFIER {
_currConn->setType($2);
}

connrest : tkSEMICOLON
| tkLBP propertyspecs tkRBP

’

config : tkCONFIGURE tkLBP cfglist tkRBP

177

cfglist :

| ctg
| ctg tkSEMICOLON cfglist

cfg : iddotpair tkTO iddotpair {

PortClass »*p = _currArch->findPort($1->majorname,

$1->minorname);

assert(p!=NULL);
p->addCFG(new PortCFG($3->majorname, $3->minorname));

RoleStruct *r = _currArch->findRole($3->majorname,
$3->minorname);

assert(r!=NULL);

strcpy(r->CFG_compName, $1->majorname);

strcpy(r->CFG_portName, $1->minorname);

iddotpair : tkIDENTIFIER tkDOT tkIDENTIFIER {

$$ = nev namepair($1, $3);
}

/* Syntax for predefined system information */

predefs

defelem :

: defelem
| defelem predefs

defporttp
defcomptp
defconntp

defporttp : tkDEFPORTTYPE tkIDENTIFIER {

Pt = new ptTypeSt($2);
}
tkLBP porttpspec tkRBP {
—currSysBase->insertPortType(pt);

porttpspec : pproperty

| pproperty tkSEMICOLON porttpspec

pproperty : tkIDENTIFIER tkCOLON ppvalue {

ppvalue

(pt->properties) .addPair(nev pair($1, $3));
}

: tkIDENTIFIER {$$ = $1;}
| restype {$$ = $1;}

’

defcomptp : tkDEFCOMPTYPE tkIDENTIFIER {

cp = new cpTypeSt($2);
}
tkLBP comptpspec tkRBP {
-currSysBase->insertCompType(cp);

comptpspec : tkPORTS tkCOLON tkLBP cportlist tkRBP

cportlist : tkIDENTIFIER {

178

(cp->supportPortList).insertAtEnd(strdup($1));

| tkIDENTIFIER {
(cp->supportPortList).insertAtEnd(strdup($1));

tkCOMMA cportlist

defconntp : tkDEFCONNTYPE tkIDENTIFIER {
cn = nev cnTypeSt($2);
}
tkLBP conntpspec tkRBP {
_currSysBase->insertConnType(cn);

conntpspec : tkROLES tkCOLON tkLBP rlist tkRBP

rlist : rspec
| rspec tkSEMICOLON rlist

rspec : tkIDENTIFIER {
rl = new rlTypeSt($1);
}
tkCOLON tkLBP rdomlist tkRBP {
(cn->rList).insertAtEnd(rl);

rdomlist : tkIDENTIFIER {
(rl->configurablePortList).insertAtEnd($1);
}
| tkIDENTIFIER {
(rl->configurablePortList) .insertAtEnd($1);

}
tkCOMMA rdomlist

/* Handle Larch Shared Language traits introduced by uses */
traits : tkTRAITS trlist

trlist :
| trlistl tkSEMICOLON

trlistl : trait
| trait tkCOMMA trlisti

trait : tkIDENTIFIER {
_currTr = nev trait;
strcpy(_currTr->name, $1);
}
| tkIDENTIFIER {
_currTr = nev trait;
strcpy(_currTr->name, $1);
} tkLP forpairs tkRP {
_currTraits->addTrait(_currTr);

}

forpairs :
| forpairsi

forpairsl : forpair

179

| forpair tkCOMMA forpairsi

forpair : tkIDENTIFIER tkFOR tkIDENTIFIER {
(_currTr->forPairs) .addPair(nev pair($3, $1));

}

wh

/% Folloving is test code */
/*
int yyparse();
int main(int argc, char sargv(])
{
it (arge > 1) {
yyin = fopen(argv[1], "r");
yyparse();
fclose(yyin);
}
return 0;
}
*/
int yyerror(char =s)

printf("%s", s);
return 0;

}

Appendix D

Architectural Knowledge
Description File

This appendix contains a file that is loaded when ABRIE is executed, and it provides
information about types of architectural elements supported by the current runtime system.
By modifying this file, users can customize ABRIE environment for specific purposes.

 J

adl.predefs

s

Predefined types: meta-knowledge about software architectures.
]

Port Types
defporttype ProcDef {
restype : FUNC;
direction : 0UT;
connectivity : MULTIPLE
}
defporttype ProcInvoc {
restype : FUNC;
direction : IN;
connectivity : SINGLE
}
defporttype DataDef {
restype : DATA;
direction : OUT;
connectivity : MULTIPLE
}
defporttype DataUse {
restype : DATA;
direction : IN;
connectivity : SINGLE

}
defporttype ADTDef {
restype : ADT;
direction : OUT;
connectivity : MULTIPLE
}
defporttype ADTUse {
restype : ADT;
direction : IN;
connectivity : SINGLE
}

defporttype EventAnnounce {
restype : EVENT;

180

181

direction : OUT;
connectivity : MULTIPLE
}
defporttype EventListen {
restype : EVENT;
direction : IN;
connectivity : SINGLE
}
defporttype InStream {
restype : STREAM;
direction : IN;
connectivity : SINGLE
}
defporttype OutStream {
restype : STREAM;
direction : OUT;
connectivity : SINGLE
}
defporttype RBundleDef {
restype : RBUNDLE;
direction : OUT;
connectivity : MULTIPLE
}
defporttype RBundleUse {
restype : RBUNDLE;
direction : IN;
connectivity : SINGLE
}

#component types
defcomptype Module {
ports : {ProcDef, Proclnvoc, DataDef, DatalUse, ADTDef, ADTUse,
RBundleDef, RBundleUse, EventAnnounce, EventListen}
}
defcomptype Filter {
ports : {InStream, OutStream}
}
defcomptype Process {
ports : {InStream, OutStream, EventAnnounce, EventListen}
}
defcomptype Generic {
ports : {ProcDef, Proclnvoc, DataDef, DataUse, ADTDef,
ADTUse,InStream, OutStream, RBundleDef, RBundleUse,
EventAnnounce, EventListen}

}

#Connector types
defconntype CallProc {
roles : { Definer : {ProcDef};
Caller : {Proclnvoc}
}
}
defconntype AccessData {
roles : { Definer : {DataDef};
User : {DataUse}
}
}
defconntype UseADT {
roles : { Definer : {ADTDef};
User : {ADTUse}
}
}
defconntype UseRBundle {
roles : { Definer : {RBundleUse};
User : {RBundleDef}
}
}
defconntype Pipe {

182

roles : { Source : {InStream};
Sink : {OutStream}
}
}
defconntype EventProc {
roles : { Announcer : {EventAnnounce};
Listener : {EventListen}

}

Appendix E

LSL traits for the LCB
specifications of ENFORMS

The formal specifications and analysis of the Local Control Brokers (LCB) are based on
a number of Larch Shared Language (LSL) traits that provide primitive sorts and opera-
tors necessary for specifying and reasoning about the LCB components. These traits were
originally developed by Michele J. Morin [129] and are used in our case study. We include
several important LSL traits in this appendix for references. As a historic note, the term
“Local Control Broker” was not used at the beginning of the ENFORMS project. Instead,
“Local Access Control” was the term originally used. As a result, instead of having lcb.lsl,
we have lac.lsl in this appendix.

RRARRARAAANAAARRRAR AR AR AAAAAAARRAARARARAARRRARAANARARIRRRA R AR A ARRAALL
% itemreg.lsl
RRARRRRRAARARRANRREAARRRAR AR KRR RARRRRL AR AARLRRARAARAAARARARAR R AR AR A AARL
itemreg (IR) : trait

% This trait describes the item registry file.

% It is expected to have a series of correct

% item descriptors, othervise it is considered

% in error.

assumes plib,
dictionary(dictionary for D, string for K, ID for V),
file(string for C, FILE for F)

includes itemdesc

% In the implementation, ItemRegistry inherits from the Dictionary
% class. However, in this specification, dictionary vas specified
% as a simple trait, not a full class in it’s own right.

% Therefore, instead of inheriting from Dictionary, IR will

% have a dictionary as part of it’s sort definitionm.

IR tuple of registry : dictionary,
changebit : int,
defaultSaveName : string

introduces

% The following are the operations on the entire set of
% Item Descriptors.

validRegistry : FILE -> Bool

getltemDescriptors : FILE, string -> dictionary
getID : FILE -> ID

vriteltemDescriptors : FILE, dictionary -> FILE

183

184

asserts
\forall f: FILE, s: string, d: dictionary

% validRegistry returns true if all the item descriptors in the item
% registry file are valid descriptors.
validRegistry(f) == if \not (eof(f))
then atBegItem(f) \and validID(skipBegItem(f))
\and validRegistry(skipEndItem(skipBegItem(£)))
else true;

% getID gets the values of an item descriptor from the item registry file
% and stores them in the internal representation of the item descriptor.
getID(f) == [getKey(skipBegItem(f)),

getextType(skipBegItem(f)),

getidescript(skipBegltem(f)),

8,

countManipulators(skipBegltem(f)),

getManipulators(skipBegItem(f)) J;

% getItemDescriptors adds all item descriptors (in their internal representation)

% to the registry dictionary.

getItemDescriptors(f, s) ==

if \not(eof(?f))

then add(assoc(getKey(skipBegltem(f)), getID(f)),
getItemDescriptors(skipEndItem(skipBegItem(f)),s))

else nev;

% vriteItemDescriptors writes all item descriptors stored in the registry
% dictionary to the item registry file.
vriteItemDescriptors(f, d) == if isEmpty(d)

then f

else writeItemDescriptors(
vriteID(vriteBegltem(f),
value(head(d))),

- tail(d)) ;

PYAS AN NS INAINNSINAINNIINAIINSINNSINANNNIIANI AR NANINIINIIININNNNIANA]
% app.lsl
PAYIANNSINYNSINA SN AR NI ARINAINNNA N NS NNSNAIARIANNAINAIAIIANNIINAIIINAY)
app : trait
% This trait abstract the app manipulation of a database item.
includes character,

String(string for C, char for E)

assumes system
includes dictionary(dictionary for D, string for K, string for V)

% This dictionary is the Parameter dictionary of the
% Manipulator Descriptor.

introduces

initialized : -> Bool

validAppParams : dictionary -> Bool
getPath : dictionary -> string

getName : dictionary -> string

getPresets : dictionary -> string
getParms : dictionary -> string

fullname : string, string -> string
appActivated : dictionary, string -> Bool

asserts
\forall p : dictionary, s : string

% For app, initialized is always true. It is only used for comsistency

185

%X among all manipulators.
initialized == true;

% validAppParams returns true if the Keys in the parameter dictionary
% p are the expected strings for app.
validAppParams(p) == (capP-|(capR-|(cap0-|(capG
-1 (capR-| (capA-| (capM-| (space
-1 (capP-|(capA-| (capT-| (capH
<1 {32)N \in p
\and \not isEmpty(getPath(p))

\and (capP-|(capR-|(cap0-|(capG
-1 (capR-| (capA-| (capM-| (space
-1 (capF-| (capI-|(capL-|(capE
=143))))))))))) \in p
\and \not isEmpty(getName(p))

\and (capP-|(capR-|(capE-|(capE

-1 (capX-|(capE-|(capC-| (capU

-1 (capT-|(capI-|(cap0-|(capN

-| (space-| (capC-| (cap0-1|(capM

-1 (capM-| (capA-| (capN-| (capD

=1(capsS=1 {}))))))3))3))))))))))) \in p
\and \not isEmpty(getPresets(p))

\and (capE-| (capX-|(capE-|(capC
-{(capU-| (capT-| (capI-| (cap0
-1 (capN-| (space-|(capP-|(capA
-1 (capR-| (capA-| (capM-| (capE
-1 (capT-| (capE-| (capR-| (capS-|{}
DN \in p

\and \not isEmpty(getParms(p)) ;

% getPath gives the value associated with the key "PROGRAM PATH".
getPath(p) == value(lookup(capP-|(capR-|(cap0-1|(capG
-1 (capR-| (capA-| (capM-| (space
-1 (capP-| (capA-| (capT-| (capH
LGOI, P)

% getName gives the value associated with the key "PROGRAM NAME".
getName(p) == value(lookup(capP-|(capR-|(cap0-|(capG
-1 (capR-| (capA-| (capM-| (space
-1 (capF-| (capI-|(capL-|(capE
=EGODOONMNN,. p))

% getPresets gives the value associated with the key
% “PREEXECUTION COMMANDS".
getPresets(p) == value(lookup(capP-|(capR-|(capE-|(capE
-1 (capX-| (capE-| (capC-| (capU
-1 (capT-| (capI-|(cap0-|(capN
- | (space-| (capC-| (cap0-| (capM
-1 (capM-| (capA-| (capN-| (capD
=1(capS=1 {3}))3)NNNNNN, p));

% getParms gives the value associated with the key

% "EXECUTION PARAMETERS".

getParms(p) == value(lookup(capE-|(capX-|(capE-|(capC
-1 (capU-| (capT-| (capI-|(cap0
-|(capN-| (space-| (capP-| (capA
-| (capR-| (capA-| (capM-| (capE
-1 (capT-| (capE-| (capR-| (capS-|{}
INDNDINININN, P)

% fullname: The activation of an application is system dependent, and
% therefore is an implementation issue. So fullname will take the name
% and the path amd return the full path of the application to be rum.
% This is all the information that can be given for the specification

186

% of fullname, without going into implementation detail.

% It is assumed that if the fullname, given the application name and
% path, exists then the application is run on the given display, s.
% Anything more is an implementation issue.

%4 getPresets should also be used to execute any necessary commands

% before exectuting the application.

appActivated(p,s)== access(fullname(getName(p), getPath(p)));

RARRAARRARAAR AR A AR ANRRA KRR A RARARRRAARAALA AU A AAA AR AR AL AR AL AL A AR AR ALK,
% lac.lsl

RRAAARR AL UARAARAR AL AR AR R AR RLA AR A AR ANALRRAAAR A AR R RAA KRR AR AR LA AR KK
lac : trait

% Describes the operations performed by the LAC layer interface.

assumes plib, system

includes List(sList for C, string for E),
List(iList for C, ID for E),
itemreg, imview, app, grass, textdisp

introduces

ListToString : sList, IR -> string
StringToList : string -> ilList
itemDescrString : string, IR -> string
activated : MD, string -> Bool

% For specifications only. The implementation requires the full path along with the
% file name of the database. fullname will use an implementation specific environment
% variable, along vith the database file name and return the full pathname.

fullname : string -> string

asserts
\forall sl : slList, s : string, i : IR, m : MD

% ListToString takes a List of Item Descriptor keys and creates a string
% containing all the Item Descriptors for these keys as strings.
ListToString(sl, i) == if isEmpty(sl)

then {}

else itemDescrString(head(sl), i) ||
ListToString(tail(sl), i);

% itemDescrString takes a key s and vrites the Item Descriptor corresponding

% to the key to a string.

itemDescrString(s, i) == fileString(writeID(writeBegItem(([{},{}]),
value(lookup(s, i.registry))));

% StringToList converts a string of Item Descriptors in string format to
% a List of Item Descriptors in their internal representation.
StringToList(s) == if “isEmpty(s) /\ validID(skipBegItem([{},s]))

then getID([{}, s])
-| StringToList(fileToEnd(

skipEndItem(skipBegItem([{},s]))))

else {};

% activated returns true if the given manipulator is activated correctly.
activated(m, s) == if m.manipulator = (smI-|(smM-|(smV-|(smI-|(smE
=1 (smW-1{}))))))
then imviewActivated(m.theParameters, s)
else (if m.manipulator = (smT-|(smE-|(smX-|(smT
- | (smD-| (smI-| (smS-| (smP
=1 (smL-| (smA-1| (smY-1{})))))))))))
then textdispActivated(m.theParameters, s)
else (if m.manipulator = (smG-|(smR-|(smA
-1 (smS-| (smS-1{})))))

187

then grassActivated(m.theParameters, s)
else (if m.manipulator =
(smA-| (smP-| (smP-1{})))
then appActivated(m.theParameters, s)
else false)));

