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ABSTRACT

SCORING PERFORMANCE ASSESSMENTS BASED ON JUDGEMENTS:

UTILIZING META-ANALYSIS TO ESTIMATE VARIANCE COMPONENTS IN

GENERALIZABILITY THEORY FOR UNBALANCED SITUATIONS

By

Christopher Wing-Tat Chiu

In generalizability analyses, unstable and potentially invalid variance component

estimates may result from using only a limited portion of available data. However, missing

observations are common in operational performance assessment settings (e.g., Brennan, 1992

and I997; Cronbach, Gleser, Nanda, & Rajaratnam, l972; Shavelson & Webb, l99l) because of

the nature of the assessment design. In this dissertation, I describe a procedure to analyze data

with missing observations by extracting data from a sparsely-filled data matrix into analyzable

smaller subsets of data. This subdividing method, drawing on the conceptual framework in meta-

analysis (e.g., Hedges & Olkin, I985), is accomplished by creating data sets that exhibit

structural designs (i.e., crossed, nested, and modified balanced incomplete block designs) then

pooling variance components obtained from these designs. This method is always more

computationally effective than any other methods that require sparsely collected scores to be

analyzed all at once. A Monte Carlo simulation is used to examine the statistical properties of the

variance-component estimates and some commonly used composite indices, namely the

generalizability coefficient (for norm-referenced decisions), the dependability coefficient (for

criterion-referenced decisions), and the misclassification rates. The smallest unbalanced data set

used to evaluate the subdividing method is composed of 750 examinees, four raters, and two

tasks while the largest unbalanced data subset is composed of 6000 examinees, 28 raters, and two

tasks. Graphic displays are used to evaluate the accuracy, stability, and consistency of the

variance component estimates and the composite indices. Experimental conditions, modeling



operational performance assessments, are manipulated to examine how well the subdividing

method would perform in practice. These conditions included: (1) volume of examinees, (2) size

of rater pool, (3) variation in item difficulty, (4) levels of rater inconsistency, (5) rules used to

decide how to group raters and assign tasks to raters, and (6) the minimum number of examinees

scored by a group of raters.

Results indicate that the subdividing method produce outcomes having properties

(unbaisedness and consistency) that are similar to those of complete data methods. Evidence was

provided to support that the pattern of missing data was frequently, in large-scale performance

assessments, determined by the rules used to assign examinees and tasks to raters during scoring

sessions. A collection of these rules, defined as a rating plan, was examined. Specifically, this

dissertation compared two prevalent rating plans (i.e., the disconnected crossed and connected

mixture plans). It was found that increasing the number of raters to score examinees boosts the

precision in estimating rater-related measurement errors, namely rater- and rater-by-item errors,

for the disconnected crossed rating plan but lowers the precision for the connected mixture rating

plan.

The subdividing method recovers variance component estimates with high accuracy and

precision in a variety of conditions (i.e., low and high variations in item difficulty and rater

inconsistency). Increasing the number of examinees scored by the same group of raters from 12

to 24 has virtually no effect on the accuracy and precision of the variance component estimates.

This dissertation also illustrates that: (l) the amounts and patterns of missing data influences the

standard error to a larger degree than they influence the accuracy of the variance component

estimates, assuming unobserved scores are missing completely at random, and (2) the use of only

a few tasks varying much in difficulty is a major source of variation, lowering the dependability

of measurement procedures and thus leading to unreliable criterion-reference decisions.
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CHAPTER 1: INTRODUCTION

The importance of Generalizability theory (G theory) lies in its applications to

educational measurement. Two of its major functions are: 1) to evaluate the quality of

measurement procedures; and 2) to make projections about how one can improve the quality of

measurement procedures. Regardless of its wide applications (Brennan, 1997, 1998; Lane,

Ankenmann, & Stone, 1996; and Linn, Burton, DeStefano, & Hanson, 1996), G theory, a

framework relying on the estimation of variance components, has a major limitation in its

incapability of handling missing data —— a common problem in large-scale assessments. Test

developers often cannot use ordinary algorithms for estimating variance components in G theory

because the computational requirements are excessive.

The current dissertation developed and scrutinized a method called the subdividing

method (defined in Chapter 3), which allows investigators to use more of the data, with lower

computational power needs than conventional methods. It also examines the subdividing method

as a way to obtain G theory estimates for large-scale assessments by exploring the robustness of

this method across a variety of experimental conditions reflecting realistic operational processes

adopted by performance assessment centers. Specifically, the current study examines the

accuracy and precision (defined in the chapter 3 entitled "Methodology") of the estimators

recovered by the subdividing method. "Literature Review" in chapter 2 summarizes and critiques

conventional methods used for analyzing missing data with a focus on those applied to G theory.

Chapter 2 also summarizes the background of the research questions, which are stated in detail in

chapter 3. Along with the research questions, chapter 3 describes the three major steps to

implement the subdividing method, namely "Subdividing", "Estimating", and "Synthesizing". In

addition, that chapter also reveals the experimental conditions manipulated to evaluate the

subdividing method. Chapter 3 also discusses technical issues in applying the subdividing

method and practical issues in planning scoring sessions for open-ended questions.



Questions regarding the planning of scoring procedures include: In what way should test

developers set up a scoring procedure? How does the use of different set-ups influence the

quality of quantifying measurement errors? How many examinees and tasks should a common

group of raters score in order to obtain a reliable scoring procedure? Technical questions

regarding the subdividing method include: What are the situations in which one can ignore

weighting schemes when synthesizing data subsets? What are the consequences of not using

weights? When does one need to use weights? To what extent can the subdividing method

produce accurate and precise G theory estimates for large volumes of examinees and raters? How

sensitive is the subdividing method in estimating reliability when measurement errors are small

and when they are large? Chapter 4 reports the results, which are all in the context of data

missing completely at random (MCAR, Little & Rubin, 1987). Chapter 5 summarizes the results,

which are interpreted in the light of providing suggestions to test developers.

Significance of the Current Study

Currently, researchers are frequently forced to discard data when some data are missing,

leading to unstable variance components and reliability coefficient estimates used to evaluate

measurement procedures in large-scale assessments. Interpreting those unstable estimates can

lead to inconsistent decisions (Burdick 1992, pp.16-18). For example, if our goal is to develop a

performance assessment procedure with a generalizability coefficient of 0.90, we may reach

different conclusions using the following three confidence intervals [0.85, 0.89], [0.44, 0.89],

and [0.44, 0.50]. In the first case, we may conclude that for practical purposes, the

generalizability coefficient is close enough to 0.90 that it may not be efficient to increase the

reliability. In the second case, we may decide that the confidence interval is too wide to make

conclusive decisions about the reliability of the assessment procedure. In the final scenario, the

evidence suggests that the assessment procedure is not well developed. In the context of scoring

performance tasks in which observations andjudgements are involved, the final scenario



indicates that raters differ greatly in severity and need further training. The current dissertation

evaluates the subdividing method in terms of point estimates, standard errors, and confidence

intervals of the variance components and composite indices.

The amount of missing data and the mechanism causing data to be missing are nontrivial

factors, because they affect standard errors of the estimates (Little & Rubin, 1987). When

generalizability coefficients have sizable sampling errors, scores are also unreliable and decision

makers may assign a higher rank to one examinee than to other examinees on one occasion but

not on other occasions. Like generalizability-coefficient estimates, variance-component estimates

are not as precise when observed data are discarded in dealing with incomplete data. By reducing

the amount of data to be discarded, the proposed subdividing method produces more stable

decision study results (Cronbach et al., 1972).

Another limitation ofG theory is that it demands intensive computational resources to

model unbalanced data (Babb, 1986; Bell, 1985; Brennan, 1992; Brennan, 1997; Searle, I992;

Shavelson, 1981). Estimation methods for G theory often require extensive computational

resources. Methods like Restricted Maximum Likelihood require large amounts of computational

resources to analyze data matrices that can be too large to invert. The subdividing method

reduces the intensive computational demands by partitioning a large unbalanced data set into

smaller data subsets.

Data collection procedures determine the pattern of missing data (Engelhard, 1997) and

thus influence the precision of parameter estimates (Little & Rubin, 1987). In multiple facet

generalizability studies employed for large-scale assessments, the ways to assign tasks to raters

and the mechanisms to distribute examinees' work to raters constitute the data collection

procedures, also defined as "rating plans" throughout the current dissertation. Although data

collection procedures are critical, rarely did research set out to investigate how these procedures

influence the statistical properties of G theory estimates (Personal communication from Gordon,

1998; Vickers, 1998; & Welch, I996). The current dissertation summarizes two data collection



procedures frequently appeared in the literature for scoring open-ended questions based on

human judgements. It then deduces principles underlying these procedures. The robustness and

performance of the proposed subdividing method is evaluated, utilizing a Monte Carlo

simulation, in operational settings parallel to the two data collection procedures.

Existing research relevant to G theory for unbalanced data has tended to focus on the

estimation of variance components outside of the measurement framework. In particular, much

research (e.g., Babb, I986; Burdick, 1992; Henderson, 1953; Malley, 1986; Marcoulides, 1988;

Rao, 1997; Satterthwaite, 1946; Searle, I992; Seeger, 1970; Townsend, 1968) has focused on the

statistical properties of variance components. No research has examined the statistical properties

for composite indices commonly used in G theory, particularly in unbalanced situations. The

current dissertation compensates for this demerit. Knowing the statistical properties for variance

components alone does not necessarily help us to interpret composite indices. Nor does it help us

to make decisions regarding the reliability of a measurement procedure. (For the applications of

the composite indices, see the subsequent section entitled Indices Commonly Used in Criterion-

Referenced and Norm-Referenced Tests.) For instance, knowing the confidence intervals for the

variance components, per se, does not allow inferences to the confidence intervals for the

standard errors of measurement and for the dependability coefficient. This is because the

variance components do not have a linear relationship with all the composite indices (e.g., the

absolute standard error of measurement is the square root of the sum of all the error variance

components). The unbalanced data sets caused by missing observations make it difficult to

construct confidence intervals analytically.



CHAPTER 2: LITERATURE REVIEW AND PROBLEM FORMULATION

Despite the efforts made in measurement research to deal with the limitations

encountered when analyzing unbalanced data via G theory, the research in this area suffers from

major restrictions. In this chapter, I introduce the applications ofG theory in norm-referenced

and criterion-referenced testing. Next, I review the advantages and disadvantages of a variety of

methods for handling large and unbalanced data sets. Last, I summarize studies that provide a

foundation for the proposed subdividing method.

2.1) Indices commonly used in criterion-referenced and norm-referenced tests

None of the research conducted for missing data in G theory has investigated the

behavior of composite indices that are used for rank ordering examinees and compared the

performance of examinees to a criterion. Brennan (1992) and Satterthwaite (I941 & 1946) have

provided computational formulas for confidence intervals and standard errors for the various

composite indices. Unfortunately, those formulas were derived for balanced data. Given the

importance of the composite indices, additional research is needed to examine the confidence

intervals and standard error of measurement for those indices. The applications and importance

of those composite indices are discussed in the following sections. Appendix A shows the

equations for the composite indices (reproduced from Gao, 1992).

Reliability coefficients — The generalizability coefficient (denoted Epz) and the

dependability coefficient (denoted 4)) are important in many aspects. Much like the classical test

reliability coefficient, the generalizability coefficient has various advantageous for making

educational decisions. The coefficient Ep2 can be defined as the square correlation of test scores

between two randomly parallel test forms (Crocker & Algina, 1986, p. 124) assembled in the

same universe of generalization (Brennan, 1992, p.3; Cronbach et al., 1972, pp. 18-23; Shavelson



& Webb, 1991, pp. 12-13). Put differently, the generalizability coefficient shows how well one

can rank order students in the same manner using two test forms (or two similar measurement

procedures from the same universe of generalization), which were assembled in accordance with

the conditions to which one would want to infer. Understanding how well randomly parallel

forms rank order test scores is useful in both classroom assessments and large-scale assessments.

Frequently, testing agencies or classroom teachers need to prepare several tests containing

different samples of questions drawn from the same domain of knowledge. In order to compare

students or to evaluate instructions based on test scores obtained from the two randomly parallel

forms, one has to estimate the generalizability coefficient. A high generalizability coefficient

warrants the comparisons of student learning and teaching practice, because we know that a large

portion of the test score variation is due to the variation in students' ability rather than the

discrepancies in difficulty of two forms.

Another advantage of the generalizability coefficient is that its transformation ( J?) can

be used to indicate the degree to which observed scores correlate with universe scores. The

higher lpz , the more confident one can be when using students' test scores to infer to how much

they would know if the students were tested on a broader scope (e.g., test students on all the

items in the item bank). Another reason that reliability coefficients are important is that they can

be used for criterion-referenced decisions. The dependability coefficient is an index monitoring

the degree to which a test can be used to make absolute decisions (e.g., Can an examinee master

half of the test items in the domain? How reliably could a measurement procedure determine that

a random examinee passes a criterion?) Also, the dependability coefficient can be used to

approximate other indices. One such index is the criterion-referenced reliability coefficient

denoted (MA) (Brennan & Kane, 1977). This index is derived to summarize the relationship

between cut-scores and the consistency of a measurement procedure. Patterson



(1985, p.35) demonstrated that the (I) is a lower limit of (MA). Like the generalizability coefficient,

the higher the dependability coefficient, the more reliably one can make an absolute decision.

The dependability coefficient has become more useful as state departments and schools

emphasize standards. For instance, Tucker (1998) advocates that education agencies become

active in setting and evaluating standards. Dependability coefficients are well suited for this

purpose because one can use dependability coefficients to forecast the consistency of a

measurement procedure in relation to where one sets the standard.

Regardless of the wide range of possible applications of reliability coefficients, one

cannot take full advantage of those coefficients unless they are estimated accurately. Reliability

coefficients, like many other statistics, are subject to sampling errors. Two statistical properties

are important for the interpretation of estimates of reliability coefficients in G theory (Personal

communication from Gordon, 1998; Vickers, 1998; & Welch, I996): unbiasedness and

efficiency. (See Aczel, 1996; and Hays & Winkler,l970). The current dissertation summarizes

two data-collection procedures frequently appearing in the literature, and examines these

properties of the variance components estimated by the subdividing method.

Standard error Of measurement (SEM) — The SEMS based on relative and absolute

decisions are effective for evaluating the improvement of measurement procedures (Brennan,

Gao, and Colton, 1995). As pointed out by many researchers, measurement procedures can be

made more reliable in three ways. Kane (1982) provided a succinct account, noting that one

could improve the quality of a measurement procedure by taking any or all of the following three

actions: 1) restricting the universe of generalization; 2) increasing the measurement conditions in

a measurement procedure such as using more items and more raters; and 3) standardizing

measurement procedures. Brennan, Gao and Colton (1995) advocated the use of SEMs, in place

of the generalizability coefficient, to monitor the improvement of measurement procedures



because SEMs are more sensitive to change in error variances than is the generalizability

coefficient. This occurs because the universe score variance is larger than error variances and so

reduction in error variances is not well reflected in the generalizability coefficient. To use the

SEM as an index of quality improvement, one would compare the ratio (the SEM divided by the

total variation) obtained before and after the improvement of a measurement procedure.

Besides the monitoring feature just mentioned, Brennan, Gao, and Colton (1995)

demonstrated a wide variety of applications based on the SEMs. First, one can use the SEMs to

construct confidence intervals for students’ universe scores (true scores based on repeated

testing). For instance, with the use of the absolute SEM, Brennan, Gao, and Colton (1995)

showed that a 95% confidence interval for the mean on a writing test based on a O to 5 scale

would cover a range of 1.5 points. The writing test had six prompts and each prompt was judged

by two raters.

Another application that Brennan, Gao, and Colton (1995) described was to use the SEM

to examine the probability that an examinee’s true score is within a certain range of his or her

observed score. One can ask "What is the probability that a student's true score lies between 3

and 5 given that he or she scored a 4 on the test?" Despite the ease of interpretation of this index,

Cronbach, Linn, Brennan, & Haertel (1997) suggested researchers examine the distributional

properties of this index before applying it to high stakes decisions. However, examining the SEM

in unbalanced situations is not a trivial issue. In my dissertation. I examine the properties of this

index for unbalanced designs.

Misclassification rate for conjunctive decision rules — The generalizability

coefficient is particularly important for criterion-referenced examinations such as certification

exams (Mehrens, 1987), because it is used to investigate how many additional tasks or raters are

needed to reduce the misclassification rate in a D-study. One can ask, "How many added raters or

tasks are needed to reduce a misclassification rate to, for example, 0.01 , in a writing test?"



Cronbach et al. (1997) further elaborated this application to include misclassification rates when

using compound decision rules (conjunctive rules). For instance, on a writing test with two

writing prompts, one can use the SEM to find out the probability of misclassification of a random

student who has received two scores of 2.5 (observed scores) on the two prompts, given that the

student deserves two scores of 3.5 (has universe scores of 3.5). In Cronbach et al.'s (1997)

example, they showed that one could obtain a probability of incorrectly classifying an examinee

in a 6-task assessment. Assuming the hypothetical examinee had universe scores 2.5, 2.5, 2.5,

3.5, 3.5, 3.5, Cronbach et al. (1997) demonstrated that with an absolute SEM of 0.7, the

examinee had roughly a 25% chance of having one or more true scores less than 1.5. See

Appendix C for the details of the computation of this classification rate.

2.2) Analyzing missing data in G theory

Researchers such as Brennan (1992) have classified unbalanced situations in G theory

into two categories, namely unbalanced in terms of nesting and unbalanced in terms of missing

data. Methods such as multivariate G theory (Brennan, 1992; Cronbach et al., 1972) have been

used to handle unbalancing in terms of nesting, in which the numbers of test questions vary

across batteries of a test. Multivariate G theory, however, does not account for missing data.

Other methods for handling missing data have limitations that make them inappropriate for large-

scale assessments.

The Henderson Methods I and I I (Analysis of Variance (ANOVA)-like methods,

Henderson, 1953) are incompatible with the conceptual framework in G theory and are

computationally extensive (Brennan, Jarjoura, and Deaton, 1980, pp. 37-38). These methods use

quadratic forms analogous to the sums of squares of balanced data. The expected values of the

quadric forms are then functionally expressed in terms of the variance components. The set of

equations characterizing this functional relationship is solved for the variance components. The



demerit of these methods is that the quadratic forms are computationally extensive for large

amounts of data given that only one unit is observed per cell in the G theory framework (e.g.,

Brennan, Jarjoura, and Deaton, 1980, p. 37).

Generalizability analyses frequently involve both fixed effects and random effects

(Brennan, 1992, pp.76-77). For instance, in performance assessment, one may wish to examine

the reliability of using the same raters over time, but using different sets of essay questions in

each administration. In this case, the rater facet is fixed whereas the essay facet is considered

random. Henderson's Method 1, however, is incapable of estimating variance components for

such a mixed model (Searle, Casella, and McCulloch, p.189) because it does not restrict the sum

of the deviations (from the mean) for the fixed effects to be zero. Without this restriction, the

property of unbiased variance component estimates is of questionable value (Brennan, Jarjoura,

and Deaton, 1980, p.37). Although Henderson' Method II can handle mixed-effect models, it has

limitations, as it cannot be used when there are interactions between fixed and random effects

(Searle, Casella, and McCulloch, 1992). In addition, these ANOVA-like methods produced

biased estimates in unbalanced situations (Marcoulides, I988; Olsen, Seely, & Birkes, 1976;

Searle, 1971).

Even though Henderson's Method 111 overcomes the shortcomings of Methods I and II, it

produces different estimates for variance components depending upon the order in which the

variance components are estimated (Babb, 1986; Brennan, Jarjoura, and Dealton, 1980; and

Searle, Casella, and McCulloch, 1992). The choice can be critical since there is usually little

justification about which variance components should be estimated first. Without a unique set of

estimates for variance components, Henderson's Method III makes the interpretation of

generalizability analyses inconclusive. This disadvantage is magnified in computing composite

indices (e.g., SEM and reliability coefficients) in generalizability analysis because this method

can yield many different composite indices for the same set of data.



Using a two-faceted crossed model, Marcoulides (1988, 1990) randomly deleted

observations to compare two estimation methods, ANOVA and Restricted Maximum Likelihood

(REML) for data sets with small sample sizes (25 persons, 2 occasions, and 4 raters). He

concluded that the REML method was more stable in estimating variance components than the

ANOVA method. However, he did not examine the performance of the REML method for large-

scale data sets such as those that are common in large-scale performance assessments (e.g., essay

writing). As was noted by Babb (1986, p.3), Bell (1985), Rao (1997), and Searle, Casella, and

McCulloch (1992), the REML method requires extensive calculations that are infeasible for large

data sets. Even for ANOVA methods, the model matrix was frequently very large and thus was

too large to invert (Brennan, 1992, p.107; Matherson, 1998).

Cornfield and Tukey (1956), Kirk (1982), Millman (1967), and Searle, Casella, and

McCulloch (1992) discuss concise algorithms to determine the coefficients used in the Expected

Mean Square (EMS) equations for the estimation of variance components. Those algorithms are

so simple that they can be implemented by hand calculations. One needs to know only the

numbers of levels in each factor of the ANOVA design. However, one cannot apply the

algorithms to unbalanced designs because the numbers of levels in unbalanced designs vary

depending upon how many data points exist in each factor. In order to determine the EMS

equation, extremely large design matrices had to be created for each factor, including the

interaction factors. This is problematic especially for G theory analysis because the object of

measurement (Cronbach et al., 1972), say examinees, always has a large number of levels (each

person is considered as a level). For a data set of 6000 examinees, to model the object of

measurement, or the examinee factor, requires a square matrix of 36,000,000 cells.

Babb (1986) pointed out that in the Maximum Likelihood (ML) and REML methods, one

has to calculate the inverse of the variance-covariance matrix associated with the observations at

each round of iteration. In addition to the extensive resources required for the ML and REML

methods, these inversions of large matrices may not always converge. According to Searle et al.
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(1992), nonconvergerence in REML indicates that the ANOVA model does not fit the data. Just

knowing that the ANOVA model does not fit the data gives very little useful information for data

analysis because it is not a surprise that the ANOVA model would not fit a large, sparsely filled

data matrix. More information is needed. The subdividing method proposed here overcomes this

deficit of the REML by analyzing smaller subsets of data which allows one to examine

measurement errors in depth. In case model misfit occurs, one may further examine individual

data sets that might have contributed to the misfit.

Other estimation methods such as the Minimum Norm Quadratic Unbiased Estimation

(MINQUE ) also have problems. In order to assume non-negative estimates for variance

components, constraints must be imposed on the parameter space associated with the variance

components. Those constraints can cause the quadratic unbiased estimation methods (e.g.,

MINQUE) to be biased (e.g., Babb, 1986). In a relatively recent publication, Longford (1995)

derived two ANOVA models to estimate variance components for essay rating. His models were

designed to estimate variance components different than those typically used in the G theory

framework. Specifically, the models did not estimate interaction effects. For instance, the

person-by-rater interaction and rater-by-item interaction variance components common in a two-

faceted generalizability analysis were not estimated in Longford's model (p. 79 - 82). In addition,

the universe-score variance component (variation among examinees, also denoted 62p) was not

estimated. With Longford's models, one could not compute the generalizability coefficient for

making norm-referenced decisions, which is based on the variance components of interaction

effects.

2.3) Historical approaches to analyzing missing data

Little and Rubin (1987) reviewed historical approaches for handling missing data and

proposed various likelihood-based approaches to the analysis of missing data. In their summary

(see pp. 40-47 of their book), Little and Rubin ( 1987) pointed out that these methods did not



necessarily produce accurate results and the accuracy depended upon the assumptions to be made

about the missing values and the nature (i.e., categorical vs. continuous) of the observed data.

"Complete-case analysis" (Little & Rubin, 1987) is frequently referred to as "listwise deletion"

by some researchers and commercial statistical packages. In this method, one analyzes only

complete cases, where all variables of interest are present. A critical concern with this method is

whether the selection of complete cases leads to biases in sample estimates. This method yields

seriously biased results if the complete cases were not a random subsample of the original cases

(1987, p.40). Complete-case analysis requires discarding data in a G theory framework to obtain

a balanced design. Chiu and Wolfe (1997, p.6) pointed out that this method is likely to ignore

scores given by large portions of raters and thus, the chosen pair(s) of raters (those with complete

data) may not be representative of the universe of raters.

The "available-case methods" (Little & Rubin, 1987, pp.4l-43) are another quick but

unsatisfactory alternative for handling multiple outcomes with missing values. One such method,

also known as pairwise deletion by some data analysts, estimates covariation for two variables

based on cases for which responses to both variables are present. A criticism of this method is

that it can yield correlation estimates that lie outside the range (-1,1), unlike the possible range of

a population correlation. This can happen if the sample covariance and the sample variances are

based on different cases. (See Appendix D for an example.) Little and Rubin (1987, p.43) also

pointed out that available-case methods can lead to paradoxical conclusions when missing values

are systematic, rather than randomly distributed. In their example, one could find that two

variables, say A and B, were each perfectly correlated with a third variable, say C (i.e., rAc = ch

= 1), yet these two variables showed absolutely no correlation with one another in the samples of

observed values (rAB =0). See Appendix E for a hypothetical example of this situation. One other

disadvantage of the available-case methods is that they may produce covariance matrices that are

not positive definite, a property required by many analyses based on the covariance matrix,



including multiple regression. Kim and Curry (1977) and Little and Rubin (1987, p.43)

concluded that if the data were Missing Completely at Random (MCAR) and correlations were

modest, the available-case methods were more desirable than the complete-case analysis, because

they did not waste as many data points as the complete-case analysis did.

2.4) Imputation as a method to handle missing data

In addition to the aforementioned historical approaches, Little and Rubin

(1987 pp.39-71) summarized major imputation methods (methods to fill in sparsely filled data)

that are commonly used in sample surveys. These methods, however, were not always applicable

to analyses of assessments, tests, or examinations usually designed to measure fewer constructs

(which are manifested as groups of test items) than sample surveys are designed to measure.

Imputation methods often replace missing values by other observed values in the same survey.

Assessments, particularly performance based assessments, do not always have as many items as

in sample surveys or in national tests. Performance-based tasks such as writing prompts are

frequently scored as separate items. Because of cost and time constraints, very few items are

typically administered in performance assessments. In fact, in all the examples of large-scale

examinations that follow, very few items were administered. Frequently, large-scale tests

administer only two items (The Collegiate Assessment of Academic Proficiency, Authors, 1998)

1998). Some tests administer even just one item (The 1998 NAEP Writing Assessment, US.

Department of Education, 1998; The TOEFL Test of Written English test, Authors, 1998b).

Putting aside other controversial reservations against imputation, having too few items makes

imputation impractical for performance assessments.

2.5) Potential solutions in handling missing data in G theory

Smith (1978) examined the variability (stability) of the variance components for a two-



facet crossed model. This model is a major model used in performance assessment (e.g., the

person-by-tasks-by-rater design). With a focus on the variance component of the person effect,

Smith (1978) found that the stability of variance component estimates varied. Variability

depended on several factors, including the number of levels in the facets and the complexity of

the expected mean square equations used for estimation. Smith found that operational data sets

always were very large, and frequently, large data sets contain unbalanced designs, which can

cause unstable variance component estimates. He also found that changing the configuration

(e.g., from a crossed model to a nested model) affected the stability of variance components like

that for the person effect. Therefore, Smith (1981) suggested the use of multiple generalizability

analyses {e.g., P:(lezF) and I:(FxP:S) }}' in place of a large and complex model (e.g, P:SxI:F)

because the expected mean square equations are less complicated and so one would obtain more

stable variance component estimates. Smith (1978; 1981) called for further examinations of the

use of multiple generalizability analyses in the context of unbalanced situations. Unfortunately,

according to the Social Science Citation Index (1978 - present), no follow-up research has been

conducted to examine the generalization of the Smith method.

Unsatisfied with the limitations of the MIVQUE, MINQUE, ML, and REML methods,

Babb (1986) developed a model and notation for pooling estimates of variance components

obtained from subsets of unbalanced data. According to Babb (1986), one can partition data into

subsets, each small enough to allow ML and REML estimation to be computationally feasible.

Then, one can pool variance component estimates obtained from subsets of unbalanced data.

Though the Babb models and notations were invented for unbalanced designs, one can adopt his

approach to handle balanced data because balanced data can be construed as a special case of

unbalanced data (Searle, Casella, & McCulloch, 1992). However, due to insufficient time,

 

P:(le):F rs the shorthand notation for a three faceted desrgn In WthI‘l drflcrent test forms (1') contain drflerent sets 01

items (I). The testing agent administered any one of the forms to every school (S). Students (P) in a school respond to

only a portion ofthe items administered to the school.
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computation resources, and financial support, Babb (1986) did not demonstrate the extent to

which the pooled method worked for unbalanced data. Babb (1986) and Searle, Casella, and

McCulloch (1992) called for further research. In particular, they suggested one use Monte Carlo

simulation to validate the pooled method (e.g., Babb, 1986, p.26). Regardless of the potential

usefulness of Babb's approach, no other studies have followed up with that research. (No

research has referenced Babb in the Social Science Citation Index from 1981 to present).

Independent of Babb (1986) and Smith (1978, 1981), Chiu and Wolfe (1997) applied a

subdividing method to analyze unbalanced performance assessment data and concluded that the

subdividing method was practical and provided stable results in estimating variance components.

Chiu and Wolfe's (1997) subdividing method differed from those of Babb (1986) and Smith

(1978, 1981) in the following ways. Smith (1981) advocated using multiple generalizability

analyses to reduce complexities in design configurations (e.g., use the P:(lezF) and I:(FxP:S)

designs to estimate variance components in the P:SxI:F design). Chiu and Wolfe (1997) proposed

to divide a large data set into many smaller data sets with similar configuration (i.e., divide a

large two-facet data set into multiple smaller two-facet data sets). Despite the distinctions, both

Chiu and Wolfe (1997) and Smith (1981) had the same purpose, which was to obtain more stable

estimates for the variance components. Babb (1986) developed notation and models to combine

variance components from balanced and unbalanced data subsets. For balanced data, Babb (1986,

p.22) showed that one pooled estimator of a variance component was the simple arithmetic

average of the estimators obtained for each individual data subset. For unbalanced data, he used

an approximation to estimate the covariances of variance components. Those covariances were

then used in estimating the pooled variance components. Babb (1986), however, did not examine

how to combine variance components for the modified balanced incomplete block design

frequently used in essay reading. (In this design, examinees respond to two essays and each essay

is graded by two raters, one rater grades both essays and is paired with a different rater on each



essay). Although Chiu and Wolfe (1997) combined variance components for crossed, nested, and

MBIB designs, they applied their method to only a single data set. They did not examine the

performance of that method in other data sets.

Three other studies also employed methods similar to the proposed subdividing method.

Lane, Liu, Ankenmann, and Stone (1996) examined the generalizability and validity of a

mathematics performance assessment using a two facet design, the person x rater x task design

(denoted p x r x t). Due to large and unbalanced data, they divided their data sets into 17 smaller

subsets of crossed design (p.81). Brennan, Gao, and Colton (1995) employed three completely

crossed designs to examine the generalizability of a listening and a writing test. They then

suggested that one might consider pooling the results from the three crossed data subsets to judge

the reliability of those two measurement procedures. Linn, Burton, DeStefano, and Hanson

(1996) conducted a pilot study to examine the generalizability of a mathematics test and used six

two-faceted crossed designs (p x r x t). Unlike the Chiu and Wolfe (1997) study, in which they

developed and examined the subdividing method, all three aforementioned studies focused on the

interpretations of the results based on the unverified subdividing method. None of the four

studies investigated the performance and generalization of the subdividing method.

2.6) Summary of literature review

This chapter reviewed the advantages and disadvantages of a number of methods (i.e.,

imputation, Iistwise and pairwise deletions, ANOVA methods, MINQUE, ML, and REML) and

concluded that all of these methods were disadvantageous in analyzing large amounts of

unbalanced data. They were either unable to produce unbiased variance component estimates or

required excessive computational power for obtaining G theory estimates. In addition, none of

these methods investigated the relationship between the accuracy and precision of the estimates

and the pattern and amounts of missing data in the context of performance assessments.

Engelhard (1997) surveyed various ways of constructing rater and task banks and showed how



missing data were manifested in these rater and task banks. However, Engelhard (1997) focused

on exemplifying different rater and task banks rather than investigating how rater and task banks

influenced the estimation of measurement errors in the G theory framework. Searle (1987)

suggested one use "subset analysis" to analyze unbalanced data using ANOVA models. This

method, however, was not examined in the context ofG theory. In addition, Searle (1987) did not

relate the accuracy and precision of variance component estimates to the pattern and amounts of

unbalanced data. Babb (1985) was the closest study to the current dissertation as Babb described

how to modify the General Linear Model to analyze subsets of data. Nonetheless, he did not

verify his method because of the lack of computational resources to conduct a simulation study.

The current dissertation investigates a subdividing method, which allows investigators to

utilize unbalanced data to estimate variance components while requiring low computational

power. The current study also sets out to examine the extent to which the decision rules used to

set up a scoring procedure influence the accuracy and precision ofG theory estimates. The

decision rules used to set up a scoring procedure are coined "rating plans" and they are studied

with other factors to determine in what circumstances the subdividing method can perform

optimally. Specifically, the current study examines these factors: ratingplans, variations in item

difliculty and in rater inconsistency, number ofexaminees, number ofraters, and number oftasks

scored by a common group ofraters. Chapter 3 reveals the rationales for choosing these factors.



CHAPTER 3: METHODOLOGY

This chapter first summarizes the procedures of the subdividing method, then lists

research questions tailored to the rating of student work in performance assessments. Next, it

describes the conditions to vary, the data generation procedures, and then the outcomes used to

evaluate the subdividing method. The design of a Monte Carlo simulation study (Mooney, 1997;

Rubinstein, 1981) is discussed in detail in the context of "rating plans", which are sets of rules

used to assign examinees and tasks to raters during scoring sessions.

Monte Carlo studies (Cronbach et al., 1972; Mooney, 1997) are especially suitable for

the current study because one can evaluate the practicality and statistical properties (e.g., bias

and efficiency) of an estimation method by comparing the estimated parameters to the known

population parameters. In the measurement context, it is infeasible to conduct many reliability

experiments in which actual raters and examinees are crossed. Also, it is difficult to imagine how

one could control precisely raters' severity / leniency and inconsistency for such experiments. In

addition, the real problem is that one cannot evaluate estimation methods based on data for which

one does not know the population parameters. These restrictions make Monte Carlo studies

especially appropriate for examining this subdividing method. Furthermore, as has been pointed

out by many researchers (e.g., Harwell, Stone, Hsu, & Kirisci, 1996; Longford, 1995;

Psychometrika Editorial Board, 1979), analytical methods (e.g., deriving expected mean squares

equations) can be inadequate for the examination of statistical properties in generalizability

analysis (especially for composite indices). Unlike analytical methods, simulation studies can be

used even if probabilities of selection (determined by the amount of missing data), sample sizes,

and the magnitude of variance components are treated as independent variables. Also, Monte

Carlo methods are especially suitable when it is difficult to satisfy asymptotic assumptions

because only a small number of levels are sampled in each factors (e.g., only two levels in the

item facets, n, = 2).



3.1) Procedures of the subdividing method

The subdividing method has three stages. They are the 1) Modeling, 2) Estimating, and

3) Synthesizing stages. The sections that follow illustrate each of these stages in detail.

Modeling Stage —— In the first step, the sparsely filled data set is divided into smaller

subsets of balanced data that exhibit structural designs common in Analysis of Variance, namely

the crossed design, the nested design, and the modified balanced incomplete block design

(MBIB). The sparsely-filled data set is divided into S, data subsets, with t = l, 2, or 3, and with

S, indicating the number of subsets in each of the crossed ( S I ), nested ( S 2 ), and MBIB ( S3)

designs, respectively. Note that the crossed and nested designs are structural designs that are

common in generalizability analysis. A MBIB design is formed every time one rater scores both

items and is paired with a different second rater on each item. See Appendix F for the structure of

the MBIB design. Chiu and Wolfe (1997) provide a detailed description of the algorithm used to

divide an unbalanced data into subsets of data. In the paragraph that follows, I summarize the

notation that can be used to implement the algorithm.

Throughout this dissertation, I use n!” to represent the numbers of levels in thef'h

factor, tth design, and sth data subset, wheref= {p, i, r, pi, pr, ir, pir} = {1,2,3,4,5,6,7}, t =

{crossed, nested, and MBIB} = {1,2,3}, and s = {subseth subset], subsets, } = {1,2, 5, }. The

unbalanced data set has a sample size of np... The number of raters involved to score examinees

in the unbalanced data set was denoted n,” and the number of items administered was denoted

n,. .. The two periods in the subscript indicate that the sample size was added across different

types of design and different data subsets in each design.

With the notation developed above, one can use the General Linear Model (GLM) to

structure the data in each subset and then estimate the variance components from those subsets

(stage 2), followed by pooling the estimates to obtain an overall estimate for the variance

components. The GLM, described in many places, such as Searle et al. (1992), is summarized
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below. The pooling method is summarized in the subsequent section entitled "Synthesizing

Stage". The general linear model is:

_. 7

yAZXsflsl-Eng-flf‘s'

(I)

The )7 in the above equation represents a vector of scores in the sth data subset for each design
5

type. The scores are expressed as a sum of the overall mean and the effects of the seven factors.

The grand mean is represented in [3 , a vector of ones. The vector u comprises the means of a
3

single level of each of the seven factors and the design matrices Z contained only zeros and ones

to indicate the level to which a score belonged. Utilizing this GLM model, one can disentangle

the variations of test scores into multiple facets of variations (Brennan, 1992). The second

"Estimating Stage" described on page 23 serves this purpose. The following paragraphs illustrate

what constitute data subsets and how to determine the number of data subsets can be extracted

from a sparsely-filled data set.

Data subsets. In unbalanced situations, rather than having all raters score all the

examinees, sets of raters may score groups of examinees. Sets of raters can be either mutually

exclusive or inclusive and this is determined by the rules governing the scoring procedures,

termed the "rating plan" in this dissertation (this is discussed in detail in subsequent sections).

The scores that a collection of raters assigns to a group of students form the basis for conducting

a generalizability analysis and so, a collection of raters with a group of students can be construed

as a subset of data. Inclusive rater groups share raters and for this reason the number of rater

groups always exceeds the number of raters. In a hypothetical scenario with four raters, one

could form six rater groups of two raters. Using the letters A, B, C, and D to represent the four

hypothetical raters, one could form up to six collections. These six collections are denoted by six
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pairs of letters as: {A8, AC, AD, BC, BD, CD}. Since, for example, raterA sat on three rater

groups (i.e., {AB, AC, AD} ), these groups were inclusive or connected by rater A.

In another scenario assuming no connections, the same four raters would form only two

collections of raters, which could be set up in one of the following three ways: {AB, CD}, {AC,

BD}, or {A0, BC}. The number of rater groups expands as the number of raters (denoted size of

rater pool hereafter) increases. If a rater pool was composed of 28 raters, as many as 378

inclusive (connected) rater groups could serve to score examinees. Alternatively, these 28 raters

would form 14 exclusive (disconnected) rater groups. The general equations for determining the

number of connected and disconnected rater groups given that each examinee is responding to

 

one item are:

n,“

number of connected rater groups or connected data subsets = [2 j; and (2)

. . n

number of disconnected rater groups or disconnected data subsets = :2" . (3)

Assuming that the rater groups score the same number of examinees, then the two types

of rater groups would score n,,.,/ [m] and np../ 12: examinees, respectively. In other words,

2

[up] subsets of data each include n,,../ ("r”) examinees for a rating plan utilizing connected

2 2

groups, and " - subsets contain n,,../ "r" examinees for a rating plan utilizing disconnected rater  

groups. The scores that these groups assign to examinees exhibit a crossed structural design

when examinees respond to two items and both raters in the same group score both items. The

aforementioned GLM model estimates the measurement errors (i.e., variance components)

associated with the collections of raters.

The subsequent section entitled "Decision rule for weighting" on page 27 shows a set of

general equations, Equations (9), (10), and (l 1), to predict number of rater groups (data subsets)
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given the size of rater pool and the connected rating plan. That set of general equations was

developed for a more flexible connected rating plan in which each set of raters was not required

to score all items responded to by the examinees.

Estimating Stage —- In this stage, variance components are estimated for each subset of

data. The ANOVA method (e.g., Brennan, 1992, Searle et al., 1992, p. 173) can be used to

estimate variance components for the crossed and nested designs. For the MBIB design, the

Minimum Norm Quadratic Unbiased Estimate (MINQUE) method can be used to obtain the

variance component estimators (Bell, 1985; Giesbrecht, 1983; Goodnight, 1978; Rao, 1997).

For the ANOVA method, variance components are estimated by solving sets of Expected

Mean Squares (EMS) equations (Brennan, 1992, p.130) relating the variance components and

sums of squares. The EMS of each subset of data is expressed in the following matrix formula,

7{2 . . . .

where 0'. IS a vector of estimated variance components. The estimates are

& =CI'Z1} (4)

where C: is anfxfupper-triangular matrix of coefficients of the variance components

estimated based on the GLM model (Equation (1 )),f= 1,2, ..., 7 represent the effects in the sth

data subset, and a: is a vector of sums of squares for the effects observed in the data. The

following is a representation of Equation (4) expressed in data matrices:
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The C: matrix shows the numbers of levels for each factor. The computational formula for C: ,

derived by Searle et al. (1992, p. 173, Equation 18), is described in Equation (5).

-1 I

C. ={ ”117004sz As,j Zs,j) },_., (5)

where m = mg refers to the 1‘“ row and1"“ column in Cj' . The Z matrices are the design matrices

for each of the effects in the GLM model shown in Equation (1). The A matrices are symmetric

matrices obtained in the quadratic forms when computing the sums of squares for each factor.

The sizes of the Z matrices depend on the numbers of levels in the factors (also termed as

facets in G theory). In the context ofG theory, the person facet always has a large number of

levels and so the Z matrices can be too large to process, for example when there are 6000

examinees (yielding a square matrix with 36,000,000 entries). The subdividing method

overcomes this restriction by dividing the large data set into smaller subsets so that the A

matrices for the subsets are small enough to be processed. For instance, a subset of 100

examinees exhibiting a crossed structure has a square matrix A,” of dimension 100 x 100, with

10,000 entries, which is considerably smaller than the 36,000,000 described above when n =

6000.
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Assuming a multivariate normal distribution for the score effects, the variance-

covariance matrix associated with the estimated variance components in 8: is (Brennan, 1992, p.

133):

V = CLZD,..(CI,'.)' (6)

where t = {crossed or nested} and D” is anfxfdiagonal matrix containing the diagonal

elements 2(MS])2/(dfj +2). Note that the indexj = 1, 2, fdesignates the score effects in a design

including both main effects and interaction effects.

Synthesizing Stage —— Meta-analysis (Hedges and Olkin, 1995), a quantitative method

to summarize research results, is especially suitable for the subdividing method because it is

capable of estimating an overall outcome based on many outcomes obtained from individual

empirical studies, or, here, data subsets. Thus, meta-analytic methods were used to aggregate

variance components from each subset of data. In the Synthesis Stage, data subsets were

weighted by subset sample size and then variance components were pooled. Composite indices

were computed on the basis of those pooled variance component estimates.

Weighted estimates of the variance components can be obtained by weighting the data

subsets by their sample sizes across all subsets from both the disconnected crossed and

connected mixture rating plans. For factorfwe obtain

 

0'1” = 0'; = I] .~ .~ (7)



{ p, i, r , pi , pr , ir , and pir for a crossed or MBIB design

wheref =

p, i , rzi, pi, and part for a nested design

3 = the s "' data subset

t = the t”' structural design , and

n = number of examinees in the s "' data subset of the t”I structural design.
p1,)

When the data subsets were equal in sample size (i.e., had the same number of

examinees), the weighted average variance component became:

6’}=5/=_S (8)

where S. is the number of data subsets across all the structual designs.

The critical questions about weighting are: (a) What are the consequences if weighting is

not used when it is needed? and (b) Under which rating plans can weighting be ignored? The

simulation study reported below in the Results section addresses question (a). Equation (8)

indicates one answer to question (b), which is that weighting is not needed when sample sizes are

equal in the data subsets. This occurs when raters evenly share the workload. The answer to

question (b) becomes elusive when there is no plan to ensure that raters evenly share the

workload. In that case, one has to decide whether or not data subsets are equal in size. The

following section provides a decision rule and its validity was tested in the simulation study

reported in the Results section.
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Figure 1: Decision rule for weighting

Decision Rule for Weighting

If a sparsely filled data set is divided into many subsets containing different numbers of

examinees (i.e., sample size), these subsets will have to be weighted in order to provide precise

variance component estimates. Data subsets differ in sample as a result of the random process

used to assign a large volume of examinees and tasks to a relatively small number of raters.

When batches of the work submitted by examinees outnumber the rater groups, some rater

groups will have to score more batches than the other groups and thus weighting is needed to

account for such a difference. The following are the steps to determine whether or not the

number of batches exceeds the number of rater groups.
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(I)

(1')

Compute the total number of possible data subsets, which is the count of all possible data

subsets in the structural designs available in the rating plan. For instance, the connected

mixture rating plan has data sets from three structural designs, where counts are shown

here.

The number of crossed data subsets, Smw = (:2), (9)

The number of MBIB data subsets, SW,” = [ ::.J n,.( n, — nr.), (10)

The number of nested data subsets, SW.1 = [:1 n;;2], and (l 1)

Total number of possible data subsets, S. = SU,,,,.,.,, + Sm”, + S,,,.,,,.,,, (12)

where n,. is the number of raters to be subsampled from a pool of n, raters. It is

equivalent to the number of ratings on an item for a given examinee.

. n ..

Detennrne whether or not the number of batches (#) exceeds the number of rater

m at

groups or potential data subsets (S.). If so, then weighting is needed. Alternatively, this

decision rule can be expressed in terms of any other forms including the volume of

examinees (n,,.. ), number of rater groups (S.), and minimum batch size (MinBat). For

example, these three terms can be expressed as follows (if the the following inequality is

true for any given sparsely-filled data set, then weighting is needed).

n,,,, > s, * MinBat (13)
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For example, given a pool of four raters to score 1500 examinees using a minimum batch size of

12, should one weight the data subsets by sample size? The computations and decision for steps I

and II are shown here.

4

(I) Number of crossed data subsets, Smw= [ J: 6

4

Number ofMBIB data subsets, SW”, = [212(4 — 2) = 24

4 4 — 2

Number of nested data subsets, SW“, = [2X 2 J: 6

Total number of possible data subsets, S. = 6 + 24 + 6 = 36

(11) Since there were more batches (i.e., 1500/ 12 = 125) than possilbe rater

groups (i.e., total number of possible data subsets = rater groups = 36),

weighting is needed.

In succeeding sections, 1 state research questions and describe how to manipulate

independent variables to address those questions. A review of literature guided the choices of the

population values manipulated in the independent variables.

3.2) Research questions

What is the performance of the subdividing method? The answers to research questions

one through four in Table l are addressed in the light of the accuracy and precision of variance

components. The amount of missing data is manifested by the size of a rater pool and the volume

of performance-based tasks to be scored. Themofmissing data is manifested by the rating

plan used to score the examinees. The certaing of a decision can be evaluated by examining the

accuracy and stability of the estimated variance components and composite indices. The

reliability and the dflendability of a scoring procedure are represented by the p2 and (I)

coefficients, respectively. To what extent do the amounts and patterns of unbalanced data
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influence the certainty ofj udging the measurement errors, reliability, and dependability of a

scoring procedure? Research questions four through eight in Table 1 address these questions.

Table 1 : Research Questions

 

Research Questions Rationales and Significance

 

How does the use of weighting schemes to combine the variance

components influence the accuracy and stability of the estimates of the

1) How did weighting influence the G variance-component and the composite indices? When do data subsets

theory estimates? need to be weighted? What are the situations in which weighting can be

ignored? What are the consequences of not using weights when they

should be used?

 

A batch contains a number of examinees whose performances are scored

by a common group of raters. How well can the subdividing method

2) What was the effect of doubling recover the population value of the variance components and

the batch size? generalizability coefficients when the "batch size" changes? Will

doubling the batch size (i.e., from 12 to 24) increase the accuracy and

precision of the variance components estimates?

 

3) How accurately did the Both the variance components and composite indices are critical in

subdividing method recover determining the quality of measurement procedures. How accurate can

variance components and the subdividing method recover the parameter values of variance

composite indices? components and composite indices?

 

Increasing the sample size of one facet has an effect on just that facet

itself when one uses ordinary algorithms such as ANOVA, MINQUE,

ML, and REML methods. To what degree does the subdividing method

have the properties that ordinary algorithms have? Specifically, when

one increases the number of raters used and examinees tested, it should

have little to do with the item effect. Does this property hold for the

subdividing method?

4) How well did the subdividing

method estimate the item effect?

 

Increasing the rater pool size, on the one hand, gives more information

about the degree to which raters score examinees differently. It, on the

other hand, causes more unobserved data because no matter how large

the rater pool size, only a random pair of rater is chosen to score an

5) What was the effect of expanding examinee. To what degree does the expansion of the rater pool increase

the size of the rater pool? the precision of the estimation of rater-related measurement errors, in

unbalanced situations? How do the two factors (rater pool size and

amounts of missing data) influence the person-by-rater effect? Will the

increase in the rater pool size compensate for the increase in the amount

of missing data?

 

Frequently. large-scale testing programs score a tremendous volume of

examinees and it is infeasible to have all raters score all examinees.

Given the large amounts of data and the sparse nature of the data

structure in these testing programs. can the subdividing method handle

the data? If so, how well does it perform?

6) Can the subdividing method

handle a large volume of

examinees? How well did it

perform?    
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Research Questions Rationales and Significance

 

7) What were the advantages and

disadvantages ofthe two rating

plans?

To what extent does the disconnected crossed rating plan provide better

estimates than the connected mixture rating plan? In the connected

mixture rating plan, only a portion of the data is allocated to estimate the

rater related effects such as the person-by-rater effect; how precisely are

these effects estimated? How do these estimates compare to those in the

disconnected crossed rating plan?

 

8) How did the amounts and

pattern of missing data

influence the norrn- and

criterion- referenced indices?

  

In addition to variance components, generalizability coefficients

and misclassification rates are used for making decisions

regarding the overall quality of a measurement procedure. How

do the amounts and patterns of missing data influence these

composite indices, namely the generalizability coefficient,

dependability coefficient. and the misclassification rate?

 

3.3) Conditions to vary

Summary of All Conditions — Table 2 shows the conditions used to evaluate

performance of the subdividing method. The simulation study entailed the following factors,

resulting in 176 conditions.

' Rating plans (2 levels)

' Number of examinees (4 levels)

' Number of raters (3 levels for the 750-, 1500-, and 3000- examinee

conditions and 2 levels for the 6000 examinee condition)

' Variation in item difficulty (2 levels)

' Rater inconsistency (2 levels)

' Number of essays in a batch (2 levels)
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Table 2: Experimental conditions to evaluate the subdividing method
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 Rater Severity and Inconsistencies Rater severity and rater inconsistencies are

reflected in the variance components (02,, 02W, 02". and Oz"). Longford (1995, pages 21-2) defined

02, as the rater severity and 02p, as the rater inconsistency in a one facet person-by-rater model. I

have adopted his definition for 02, and elaborated his definition of rater inconsistency to

distinguish the two types of rater consistency in a two facet model. Specifically, I define 62p, as

the effect for person-by-rater inconsistency, 02., as item-by-rater inconsistency, and 02p" as

idiosyncratic inconsistency. Rater severity (02r = E(y, - ,u )2 ) refers to the expected variation

in a random rater's mean score ,u, (over the population of examinees and items) about the mean

score of all raters ,u (mean over the populations of examinees, items, and raters). So, a large

rater severity effect indicates that the mean scores were different between raters and thus some

raters were more lenient or harsh than the others. Research has repeatedly found that rater

severity is almost negligible across many different types of assessments (e.g., Brennan, 1995, a
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writing test; Shavelson, 1993, a science test), given that sufficient training and monitoring is

provided to raters (Cronbach et al., 1994; Koretz et al., 1994; Patz, 1996; Wainer, 1993).

I varied the magnitude of the person-by-rater inconsistency effect in the simulation

because it has important implications to fair assessment in scoring (Do the raters score

examinees differently averaged across items?) Since rater severity has been shown to be

universally so small that it can be neglected, it was practical to hold it constant and manipulate

person-by-rater inconsistency in the simulations.

Table 3 on page 33 shows a summary of the variance components reported in four

published studies involving human judgements. The third column indicates the scoring scale

employed in the studies. As the studies employed a different scoring scale (a 6-point scale on the

first two studies and 5-point scale on the last two), it was necessary to use a common metric

(relative percent of variation based on the total variation) to compare the variance components.

The mean percent of total variation for person-by-rater inconsistency (mean 02p, = 3%) was both

Iar er and more variable than that for rater severi (mean 02, < l%).g

Table 3: Summary of variance component magnitudes in the literature

 

 

 

 

Scoring Total Person Item Rater

Authors Year Subjects Scale Variation P l R Pl PR IR PIR, E

Brennan et al. 1995 Writing 0 to 5 1.15967 59% 2% 1% 14% 4% 1% 19%

Chiu et al. 1997 Writing 1 to 6 0.47281 41% 5% 0% 25% 4% 1% 23%

Lane ct al. 1996 Math 0 to 4 1.84215 25% 1 1% 0% 53% 0% 0% 10%

Linn et al. 1996 Math 0 to 4 1.01500 20% 22% 0% 33% 1% 2% 21%

Average 0.96331 35% l 1% 0% 31% 3% 1% 20%  
 

Examinecs — Large-scale assessments can have numbers of examinees ranging from a

few hundred to several thousand, or even tens of thousands for state and national tests. Longford

(1995) reported that 3,756 examinees responded to the Studio Art Portfolio Assessment and

Myford, Marr, and Linacre(1995) reported 5,400 examinees took the Test of Written English

(TWE) in one administration. Chiu and Wolfe (1997) stated that 5,905 examinees participated in

an administration of the Collegiate Assessment of Academic Proficiency (CAAP). Lane, Liu,
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Ankenmann, and Stone (1996) conducted generalizability analyses on 2,514 examinees who had

responded to all the tasks in the QUASAR Cognitive Assessment Instrument (QCAI).

Item Sampling — Data were simulated to model a case with two items and two ratings

per item. This choice reflects the common practice in examinations where essay writing was

involved (e.g., Collegiate Assessment of Academic Proficiency or CAAP, Graduate Management

Admission Test or GMAT, and Medical College Admission Test or MCAT). Each item was

scored two times (occasions) by completely different raters.

Size of Rater Pool —— The size of the rater pool was varied to reflect practical situations.

In the study by Lane, Liu, Ankenmann, and Stone (1996), 34 raters were hired to score the QCAI

examinations of 2,5 I 4 examinees. In another study by Chiu and Wolfe (1997), nine raters were

used to score 5,905 examinees. The two examples (Lane et al., 1996 and Chiu & Wolfe, 1997)

show that the number of examinees and the size of the pool of raters need not be in direct

proportion. Many other intervening operational factors influence this functional relationship.

Such factors include the number oftasks answered by an examinee, number ofratings on each

task, total number ofdays availablefor scoring, time (in minutes) it takes to score a task, and

average work hours per rater per day. Appendix G shows an equation to determine the number

of raters needed to complete the scoring of an examination for varying sample sizes, while

holding constant the other operational factors.

Amounts and Patterns of Missing Data — To test the robustness of the subdividing

method, I modeled a practical situation in which the pattern of missing data was contingent on

the measurement procedure. Changing the size of a hypothetical rater pool while holding

constant the number of times a task was rated changed the amount of missing data. If five

examinees were crossed with four raters, the number of possible ratings per item is 20 (5
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examinees x 4 raters). However, if one randomly chooses only a pair of raters out of the pool of

four raters, the number of possible ratings reduces to 10 (5 x 2), which is 50% of the total

available ratings if all four raters were used (20). The other half of the ratings would be missing

because they were unobserved by design. The percent of unobserved data increases further as the

rater pool size expands to six raters. Here using a pair of raters resulted in 66.6% of all possible

data being unobserved (10 ratings of 30 possible are observed). The proportion of missing data

increases as the size of the rater pool increases, holding constant the number of ratings each

examinee received. The current study manipulated the rater pool size to investigate the effects of

amounts and patterns of missing data on the accuracy and precision of the subdividing method.

Rating Plans — Frequently, raters work in groups during scoring sessions (Clauser,

Clyman, and Swanson, 1999). The decision to group raters determines the nature of the

unbalanced data patterns in generalizability analyses and these decisions are referred to as "rating

plans" throughout the current dissertation. How many rater groups can a rater sit in? Are the

raters required to score all tasks or just one task submitted by an examinee? How many times is

an examinee scored for each task submitted? How flexible are the rules used to assign examinees

and tasks to raters? Despite the fact that these decisions are indispensable in setting up scoring

procedures in operational settings, they are seldom written or published.

Using the rating plans employed by Brennan, Gao, and Colton (1995), Chiu and Wolfe

(1997), Lane et al. (1996), Linn et al. (1996), Gordon, (1998), Vickers (1998), and Welch (1996),

four principles that characterize rating plans, listed in Table 4 (p. 39), were deduced. With these

principles, two basic rating plans were examined in the current dissertation, namely the

disconnected crossed rating plan and the connected mixture rating plan.

Disconnected crossed ratingplan. The disconnected crossed rating plan has often been

used for research purposes, and entails rigorous rules for setting up scoring procedures (e.g.,

Brennan, Gao, Colton, 1995). An example of the disconnected crossed rating plan follows. Prior
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to staring to the scoring, raters were grouped and each group would be expected to score the

same number of examinees. In this arrangement, raters work within rather than across groups —

all members in the same group score all the items / tasks submitted by all examinees assigned to

the group. This scenario was referred to as "disconnected", as there were no common raters

sitting in two groups (Engelhard, 1996 and Searle, I987). The merit of this setup is the capability

of accumulating a large amount of data for each group for subsequent generalizability analysis.

The disconnected crossed rating plan is frequently adapted when the volume of examinees is

manageable to manipulate the ways of assigning examinees and tasks to raters, assuming the

assignment is implemented manually rather than electronically (storing the tasks on digital

formats and use computers to assign the task to raters).

Regarding this disconnected crossed rating plan, researchers have studied whether raters

were aware of their membership in a group and whether raters were allowed to discuss the

scoring process (e.g., C lauser, Swanson, & Clyman, 1996). For this dissertation, no assumption

was made concerning rater discussions. As much as raters might be aware of their membership in

the disconnected crossed rating plan, they are not necessarily aware of the group they belong to

because the group membership may be decided as a post hoc or a random process. For instance,

portfolios may be grouped in advance and one rater assigned to score those portfolios once.

Another rater may be chosen at random, without noticing or knowing of the first rater, to assign a

second rating to the same set of portfolios. Although the two raters did not know with whom they

worked, they are considered to belong to the same group as they scored the same set of portfolios

from the same examinees. This is a "crossed" rating plan as raters in a group are instructed to

score all the tasks submitted by examinees assigned to the group. Figure 2 depicts a sample

disconnected crossed rating plan using a hypothetical data set with a pool of four raters scoring

two items for and 50 examinees. Each "X" represents a test score assigned by a rater to an

examinee on an item. Cells without an "X" indicate missing or unobserved data.
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Figure 2: A hypothetical data set illustrating the

disconnected crossed rating plan

Connected mixture rating plan. The connected mixture rating plan is frequently used

when the volume of examinees is large and it is more cost-effective and convenient to use a

random process than to impose rigorous rules guiding the rater-task-examinee assignments. For

instance, an examinee's tasks might be organized in a portfolio (containing tasks submitted by the

same examinee), which would then be mixed with other examinees' portfolios for raters to select

at random. Once a rater had selected a portfolio, s/he scored one or more tasks in that portfolio.

Whether or not the rater scored all the tasks in a portfolio (denoted as a crossed structural design)

may depend on convenience, guidelines suggested by scoring centers, the nature of the

examination, and expertise of the rater. Although tasks are more likely to be scored according to

raters' expertise in a highly specialized examination than in, for instance, a language arts writing

exam, variations exist regarding the number and nature of tasks in a portfolio scored by a rater.

Raters may be instructed to score an essay in a portfolio and then return it so that another rater
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can be randomly selected for scoring the other essay in the same portfolio (denoted as a nested

structural design). If one rater works with one other rater on a first essay and then works with

another rater on a second essay, this leads to the MBIB structural design mentioned in the

Modeling Stage on page 20.

Unlike the disconnected crossed rating plan in which raters were usually grouped prior

to the starting of scoring, the idea of forming groups in this rating plan is less conspicuous —

raters do not usually know who they will work with. Due to the random process used for the

rater-task-examinee assignment, with this plan raters have the opportunity to work with more

raters than they could in the disconnected crossed rating plan. Raters are "connected" in this

rating plan because their ratings are compared directly or indirectly through other raters. Figure 3

on page 39 shows a hypothetical data set illustrating the connected mixture rating plan with two

essays, four raters, and 50 examinees. By examining which raters were chosen to score an

examinee, one can observe that the hypothetical data set contains three structural designs, namely

the crossed, MBIB, and nested designs (these designs are separated by two horizontal lines in the

figure).
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Figure 3: A hypothetical data set illustrating the connected

mixture rating plan

In practice, different versions of the two rating plans introduced in the above section

were adopted in various scoring centers (Gordon, 1998; Vickers. 1998) and the principles shown

in Table 4 capture the essentials.

Table 4: Principles of rating plans

 

 

   

Principles Disconnected Connected

crossed plan mixture plan

I. Number of ratings on each task 2 2

for a given examinee

2. Linking between groups raters belong to only one no restriction

group

3. Guiding structural designs limited to only the no limitation; structural design could be crossed,

within a given group crossed design nested, and other designs

4. Number of examinees scored by planned; unplanned:

groups of raters. every group of raters groups may or may not score the same number of

scores the same number examinees depending on the size of rater pool and

of examinees. sample size.
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Batch Size — The procedure used to assign tasks to raters was called task assignment. In

addition to randomly assigning essays to raters, scoring centers (e.g., Georgia State Department

of Education and ACT, Inc.) often impose rules for the scoring procedures to accommodate

operational needs. An important dimension of setting up a rating plan is to arrange essays so that

they can be efficiently graded. For example, rather than randomly assigning every essay to each

rater, scoring centers often organize essays in batches (Gordon, 1998; Schafer, I998; Vickers,

I998; Welch, 1996; Wolfe, 1998). Those batches can be randomly assigned to groups of raters.

Packing essays in batches saves operational time because it takes more time for raters to

exchange single essays than a batch of essays. Packing essays in bundles also controls the

number of essays to be scored by a common group of raters. Bundling also structures ratings for

reliability analysis -- without the bundling of essays, the data set may be too sparsely-filled to

conduct an analysis.

3.4) Data generation

Linear model — A total of 17,600 balanced data sets were generated, 100 sets for each

the 176 conditions under the specification of a two-faceted balanced design (Schroeder, 1982,

p.36), namely the person x item x rater design specified in Appendix A. The score Xp" of any

given observation in this model was expressed as a sum of seven components,

Xpir = xp + x. + xr + xp, + xpr + x,, + xpm, (14)

Each of the seven components were generated under a normal distribution Xa ~(0. of, ),

where o-f,={ 0': =0.3; 0,2 = 0.02 (low), 0.11 (high); of =0.01; 03/3,, = 0.30; 0;, = 0.01 (low), 0.1

(high); 0,2, = 0.01; and of,” =0.20). For example, the score for person p, responding to item i,

judged by rater r, was the sum of seven random numbers each generated independently from the

above seven normal distributions. Table 5 on page 41 shows the population values of the

variance components and the values of the corresponding composite population indices.
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Table 5: Population parameters for the variance components and composites

 

 

HI?!) 5:" Enrol Lav. ism Elk—c!

Crosses a-id MBIB Deserts Hgn Ram

, ”or

F

I

l'

Variance Components pl 0 30 0 30 0.30 o 30

p. o 10 0 01 o 10 o 01

II 0.01 0 01 0.01 o 01

plr 0 20 O 20 0 20 0.20

W5"“M‘M‘ 0.50000 0 45277 0.50000 0 45277

ww“"‘""'"" 0.55902 0.51720 0 51720 0 47170

Compost-e WW 0 58333 0.63063 0 58333 0 63063

WWII 0.52830 0 56680 0 56680 0 61135

WError 0 03682 0.02659 0 02659 0.01700

 

Observed Score Scale — The observed scores Xplr were the sums of the scores of the

seven effects in (14). The sums would have a mean of 0 and standard deviation of approximately

one indicating that roughly 99.9% of the scores should be between -3 and 3. If 3 were added to

all scores, the total scores would approximate scores on a seven-point scale ranging from 0 to 6

with a mean 3 and standard deviation of 1.

Score Scale Truncation -— In practice, test scores for performance assessment are often

assigned as integer scores (e.g., I, 2, ..., 6) with an underlying discrete distribution. Much

research, however. has employed the normal distribution or other continuous distributions for

research purposes (e.g., Brennan, Harris, and Hanson, 1987; Bost, 1995; and Smith, 1992).

Longford (1995) examined the effect of using normal scores as opposed to integer scores when

using simulations to examine the accuracy and precision of estimated variance components.

Using a one-faceted model (person-by-rater), Longford simulated 200 trials with test scores

generated from a normal distribution. He then compared the estimated variance components

obtained from the normal distribution with those obtained by truncating the fractional scores to

integers. Longford concluded that the bias due to the truncated scores is somewhat greater than
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that for the estimator for the 'normal' scores, but the difference in bias was unimportant. The

following reported the results found in Longford's comparison (Longford, 1995, pp. 43 - 45).

Table 6: Comparsion between normal and rounded scores

 

  

11031131 Scores Rounded Scores

02p 03, 02p“ 02,, 02: Ozprc

True value 0730 0.062 0.370 0.730 0.062 0.371

Mean 0.749 0.077 0.350 0.722 0.074 0.421

Std. (0067) (0.038) (0.040) (0.065) (0.038) (0.041)

deviation
 

Missing Data Generation — Following the generation of the balanced data sets,

sparsely filled data sets were created. This was accomplished by randomly deleting scores from

the balanced data sets. The sparse patterns were modeled to reflect the unbalanced patterns

appearing in the two rating plans (see Appendix I for programming code).

Disconnected crossed rating plan. The following three rules were employed to generate 

data for the disconnected crossed rating plan.

I = crossed (15)

rater,“- ¢ rater',,,,..~ (l6)

rater” ¢ raterm- (17)

The rule listed in Equation (16) ensured that no single rater score an examinee on the same

item (i) twice in a given data subset (s) of the crossed design. The last rule, in Equation ( I 7),

required that every rater participate in the scoring of only one data subset. In Equation (15), only

the crossed design appears implying that the raters who scored one item for an examinee also

scored the other item and that the same raters scored all the examinees in a data subset (s).

Connected mixture rating plan. Regarding this rating plan, only the second rule (16)

applied to the data generation procedure. The third rule was not imposed on this rating plan so



that raters could participate in scoring more than just one data subset. Whether or not they

participated in more than one data subset was a random process. When raters participated in

more than one data subset, they provided a link between the subsets they scored and for this

reason, the current rating plan was referred to as "connected". The first rule was amended so that

t = crossed, MBIB, nested. (l 8)

Because raters scored eitherjust one item or both items for a given examinee in a data

subset, this arrangement allowed a data subset to exhibit either a crossed, MBIB, and nested

structure and so this rating plan was referred to as a mixture of structural designs.

Negative Variance Components — Variance component estimates can be negative

because of many reasons discussed in Brennan (1992), Cronbach, Gleser, Nanda, Rajaratnam

(I972), Marcoulides (1987), and Searle, Casella, and McCulloch (1992). Some reasons are: (a)

The population values are indeed zero or close to zero; (b) Insufficient data are used to estimate

the variance components; (c) The model is misspecified; and (d) The estimation procedure is

incorrect. Brennan (I992, p.48) suggested one examine possible reasons contributing to the

occurrence of negative variance components and asserted that setting negative estimates to zero

resulted in biased estimates. Because unbiased estimates were desirable, negative variance

components were set to zero for reporting, but their negative values were used in all

computational procedures for composite indices.

3.5) Outcomes and data analysis

Outcomes — Two performance measures of the estimators produced by the subdividing

method were examined. Accuracy indicated the degree to which the average of an estimator

departs from its population value. Precision indicated the variability of an estimator. Both

criteria were important for the estimates of the variance-components and the composite indices

because how well the estimators perform on these criteria affects high-stakes decisions made
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based on G theory. The estimates and the true parameter values for variance components, the

generalizability coefficient, dependability coefficient, and misclassification rates were examined

using the Accuracy and Precision measures, which were summarized as follows.

Accuracy, Bias, and Precision — The Mean Square Error (MSE) indicates the squared

loss, or the averaged square difference between an estimator and its known population value.

Harwell et al. ( 1996) and Othman (I995) used this index to evaluate the quality of an estimator.

This index comprised two components, namely the squared bias and the variance (see the

following relations).

 

 

MSE: F‘

e

L' A T 2

= (9 -6 ) +

= Squared Bias + Variance (l9)

The 63} in (19) represents the G theory estimate from thef“ trial; 0 is the known

population parameter, representing true values for the variance components and composites; e is

the number of trials of each simulation (i.e., l00); and 9 is the mean of 9'} over the e trials.

Ideally, a zero MSE would indicate that the subdividing method provided an estimate identical to

its population value. A low MSE is desirable because it indicates very little bias and variability

of an estimate. A large MSE is less desirable and can be contributed to by either or both a large

variance and a large bias. To disentangle these two sources of errors in estimation, researchers

(e.g., Marcoulides, I988; Othman, 1995) have reported variance and bias as two separate indices,

and it is a common practice to modify these two indices so that they become more meaningful

and easy to interpret.
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mm Errors (inverse ofprecision). The square root of the variance in (19) equaled

the empirical standard error used to examine the variability of the estimators produced by the

subdividing method. The standard error was computed by obtaining the standard deviation of an

estimator in a simulation. The inverse of the square root of variance was referred to as

"precision", which was used interchangeably with standard error to describe the variability of the

G theory estimates in the current study. A precise estimate has low variance (or standard error)

and an imprecise estimate has high variance.

Accuracy (measure of bias). Accuracy of a simulation can be measured in many ways 

and one lucid way was to express accuracy as a percentage. Technically, it was measured as the

average ratio between an estimate and the parameter value of that estimate across all replications.

Computationally, accuracy is defined as:

Accuracy = 12—6—1 . (20)

e F. 0

The above index treated all discrepancies between the estimators to their population values

equally serious. An accuracy equals one indicates that the estimates were recovered perfectly;

whereas an accuracy higher than one indicates overestimation and yet an accuracy lower than

one indicates underestimation.

Empirical versus theoretical standard errors (SEs) — Standard errors based on

asymptotic assumptions (Brennan, I992, pp. 133-135; Burdick & Graybill, I992) can be

inaccurate because the degree to which the SE reflects the sampling distribution of a variance

component depends upon factors like sample size, normality, and the amounts and patterns of

missing data involved. In addition to relying on assumptions that were difficult to satisfy in the

current data, Brennan (I992) and Burdick and Graybill (I992) did not discuss how to estimate or

compute a SE when multiple samples were available. According to Brennan ( 1992), the

theoretical SEs for the variance components are functions of the mean squares of the facets and
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their degrees of freedom. The matrix notation for the theoretical standard error was summarized

in Equation (6) and the formulae are given in terms of variance components and sample sizes in

Appendix B. The theoretical standard errors reported in the Results section were based on the

formula in Appendix B, computed using two raters. the value two was chosen because a random

pair of raters was selected to score each examinee, even though more than two raters were

available in the pool. These standard errors were compared to the empirical standard errors to

investigate how precisely variance components were recovered over the 100 replications.

Empirical versus theoretical confidence intervals (Cl) — The skewed distribution

(due to low dfin a 12 distribution) of the variance components can cause their CI to be

asymmetrical; that is, the two sides of the CI have unequal lengths (e.g., a hypothetical 95% CI

for a variance-component estimate of 0.45 could be [0.40, 060]). Brennan (1992) and Burdick

and Graybill (I992) developed methods to construct Cls for variance components under balanced

designs but not for unbalanced designs. Nor did they develop methods to construct CIs for

composite indices.

To construct an empirical 95% CI for a variance component, I used the observed

variance components at the 2.5th and 97.5th percentiles of each of the seven simulated

distributions. The theoretical 95% CI was computed by multiplying the standard error by a

correction factor reported in Brennan ( 1992, Table D.l). The 95% empirical CI for the

composites was computed by first obtaining the composites based on the synthesized variance

components followed by reporting the composites at the 2.5th and the 97.5th percentiles of the

composites.

Gao (1992) suggested that one use the upper and lower limits of the absolute standard

error of measurement and those of the universe score variance to compute the theoretical CI for

the composites. The upper limit of the CI for composites was computed by dividing the upper

bound of the universe score variance by the sum of itself and lower bound of the absolute
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standard error of measurement. For instance, the upper limit of the generalizability coefficient is

defined as

 

 

Ep . = A 2 ”fl: 2 ’ (2 l )

“"’" 0' + 0'
Pm... (5 ...,

A 2 6'2 6-2

3 0- . .

where 6. = p1,”, + pr + pzr.e,_fl. (22)

1, arr! n: n: ”in:

Likewise, the lower limit of a 95% theoretical CI for the composites was obtained by

dividing the lower bound of the universe score variance by the sum of this variance and the upper

bound of the absolute standard error of measurement

 Ep : fl, Irnn'r 7 . (23)

low" A - A ..

O-plmur + 0-6'W'
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CHAPTER 4: RESULTS

As described in the previous chapter, the volume of examinees, number of raters, and

examinee- and task- to-rater assignment determined the amounts and patterns of missing data and

thus influence the estimation of measurement errors. How does each of these factors impact the

precision of individual variance components (measurement errors for scoring performance-based

assessments)? How can one use the subdividing method to alleviate the potential inaccuracy and

imprecision caused by unbalanced data? Which variance components are influenced by the

increase in sample size, and which variance components are influenced by the expansion of rater

pool size? These questions are central to this chapter.

Section 4.1 examines the effect of using weights when synthesizing variance

components. Section 4.2 compares the measurement errors estimated from data generated by

different missing data mechanisms, namely using a small batch size (12 examinees) versus a

large batch size (24 examinees). Section 4.3 summarizes data on accuracy of the subdividing

method and sections 4.4 through 4.6 summarize data on the precision of the subdividing method.

Section 4.7 compares and contrasts the two rating plans (disconnected crossed and connected

mixture) in the light of the precision of variance components and section 4.8 covers the

performance of the subdividing on the generalizability coefficient, dependability coefficient, and

misclassification errors. The composite indices are discussed in the context of the disconnected

crossed rating plan as it utilized a larger amount of data than did the connected mixture rating

plan, for the analysis of a completely crossed person-by-rater-by-item design. Table 7 on page 49

provides an overview of the results reported in the subsequent sections, obtained from the

simulation with 100 replications.
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Table 7 : Table of major findings

 

Research Questions Results

 

l) Ilow did weighting influence the G theory

estimates?

Weighting had no effect on the variance components

estimated in the disconnected crossed rating plan. It

increased the precision of variance component estimates in

the connected mixture rating plan when the data subsets

differed in size.

 

2) What was the effect of doubling the batch size?

Using a batch size of 24 did not have any noticeable effects

on the accuracy and precision of the variance components

and composite indices in both rating plans.

 

3) How accurately did the subdividing method recover

variance components and composite indices?

The variance components and composites were recovered

with accuracy close to 100% in both rating plans.

 

4) How well did the subdividing method estimate the

item effect?

The subdividing method estimated item effects in the way

they should be estimated using ordinary algorithms in

balanced designs. Increasing the size of rater pool or the

sample size did not change the accuracy and precision ofthe

item effect.

 

5) What was the effect of expanding the size ofthe

rater pool?

Increasing the rater pool reduced the standard error of the

rater and item-by-rater effects in the disconnected crossed

rating plan and the rater-nested-in-item effect in the

connected mixture rating plan.

 

6) Can the subdividing method handle a large volume

of examinees? How well did it perform?

(a) The subdividing method can always handle more

examinees than any other methods that analyze the entire

data set all at once. As long as one can partition a sparsely

data set into subsets with manageable sizes, there is no

restriction on the size of the sparsely filled data set. (b) The

larger the volume of the examinees. the more precisely the

following effects were estimated: person, person-by-item,

person-by-rater, and person-by-item-by-rater effects.

 

7) What were the advantages and disadvantages ofthe

two rating plans?

The disconnected crossed rating plan requires more effort to

route the tasks to the raters but it provided more precise

estimates for the rater-related effects than did the connected

mixture rating plan.

 

 8) How did the amounts and pattern of missing data

influence the norm- and criterion- referenced

indices?  All composite indices were estimated as accurately and

precisely as they should be estimated in balanced situations

in both rating plans. Subsampling different pairs of raters to

score different groups of examinees provided confidence

intervals parallel to using the same pair of raters to score all

examinees.
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4.1) Comparison of pooled results with weights and without weights

Precision (Inverse of Standard Errors) — Weighting data subsets by sample size

recovered very closely the theoretical standard error when the data subsets differed in sample

size. Data subsets differed by sample size occurred in only two conditions (first condition:

n,,..=750 and nr..=4; second condition: n,,..=1500 and n,..=4) where the rater pool size had four

raters in the connected mixture rating plan. Figure 4 through Figure 9 on pages 52 to 54 show the

precision of the three variance components interacting with the object of measurement (person),

A2

namely 5-: , 0'" , and (3,, Weighting increased the precision of the variance components

obtained in the 750-examinees-by-4-raters and 1500-examinees-by-4-rater conditions. In contrast

to the weighted components, unweighted variance components manifested standard errors that

were larger and more different from the theoretical standard errors, which are shown as

horizontal lines in Figure 5, Figure 7, and Figure 9. The improvements in precision due to

weighting, averaged across the eight conditions (2 batch sizes x 2 levels of the item eflect x 2

levels of the person-by-rater effect), were 0.015 (4.3% of the population value), 0.010 (3.3%),

and 0.003 (1%) for 6—:, (if, , and (33,”. respectively. Weighting increased the precision of

composite indices 13,02 and (MK) with an average 0.019 (2.1% of the population values) and

0.013 (1.3%), respectively.

When the data subsets were very similar in size (i.e., those with expected subset size equal

the minimum batch size) the differences in precision between the weighted and unweighted

components were negligible. All increments in precision were less than 0.0035. These conditions

included 750-examinees-by-2-raters, 750 x 8, 1500 x 8, 1500 x 14, and all other conditions with

3000 or more examinees. This finding applied to the person (Figure 4 and Figure 5), person-by-

item (Figure 6 and Figure 7), and person-by-rater-nested-within-item (Figure 8 and Figure 9)
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effects. The difference in precision was too low to influence any high—stake decisions based on

the composite indices.

When there was no subsampling of raters (i.e., 750-examinees-by-Z-raters), weighting did

not influence the precision at all (no increment in precision was present with rounding error at 7

decimal places). The data series labeled 750-examinee-by-2—rater in Figure 4, Figure 6 and

Figure 8 were identical to those in their corresponding figures showing the unweighted results.

Weighting by subset size did not increase the precision in conditions where the target facets

were unrelated to the object of measurement (increased precision only by 0.5% and 2.5% of the

population values of a"? and &3,, respectively.

As hypothesized, weighting had no effect on the disconnected crossed rating plan. Figures

10, 12, 14, and 16 show the weighted variance components for the disconnected crossed rating

plan. The unweighted variance components (Figures 1 1, 13, 15, and 17) were recovered as

precisely as the weighted estimates (i.e., the standard errors were identical between the weighted

and the unweighted estimates of the seven variance components for all conditions). In addition,

the empirical standard errors for both estimators matched the theoretical standard errors depicted

as horizontal lines in the figures.
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Accuracy —— No matter whether or not variance component estimates were weighted by

sample size, they were recovered with high accuracy for both the disconnected crossed and

connected mixture rating plans in all 88 experimental conditions, which were composed by

crossing the high and low magnitudes of 0,2 and 02,; large and small minimum batch size; high,

medium, and low rater pool sizes; and the small, medium, large, very large sample sizes. The

weighted variance component estimates differed only minimally from the unweighted estimates,

in accuracy. For the connected mixture rating plan, the differences between the weighted and

unweighted estimates of the five variance components were 0.08%, 0.34%, 0.25%, 0.10%, and

0.04%, respectively. For the disconnected crossed rating plan, the accuracy of the variance

component estimates were close to identical; excluding the item-by-rater effect which had a

mean difference in accuracy 0.01%, the other six variance components were identical between

the weighted and unweighted conditions. Since weighting reduced the standard errors (reported

in the previous section "precision") and did not lower the accuracy (reported in the current

section) of variance component estimates, only the weighted estimates were examined and

reported in the results that follow.

4.2) The effect of packing essays into batches of 12 versus batches of 24

Packing essays into batches of 24 as opposed to 12 did not systematically raise nor lower

the accuracy and precision of variance components and composite indices in both rating plans.

Table 8 on page 59 shows the range, mean, and standard deviation of the ratio between the

standard errors of the variance components when using two levels of batch size (i.e..

SE(&'3,)/ SE(&;°;) ), where 0",? and a“: represent the variance components or composites

obtained by using a minimum batch size of 24 and 12 respectively.
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Table 8: The ratio of standard errors of indices obtained

using a batch size of 24 to those obtained using a batch size of

12 for the disconnected crossed rating plan

 

Std n conditions

person 0.790 0.996 1 .185 0.085 44

item 0558 1 .036 1 .639 0.272 44

SE rater 0.748 1.030 1 .660 0.176 44

Ratios

for person-by-item 0.824 1 .007 1 .1 87 0.086 44

Variance

Components person-by-rater 0.806 1.018 1.281 0.095 44

item-by-rater 0.724 1.016 1.430 0.156 44

person-by-item-rater, error 0.836 1.037 1 .1 73 0.086 44

SE Generalizability Coefficient 0.831 1.003 1.240 0.096 44

Ratios

for De d b'l' C If ' t 0764 1020 1442 O 146 44Composite pen a uty oe loien . . . .

Indices

Misclassiflcation Error 0.631 1.043 1.603 0.247 44    
Table 8 shows that the mean ratios of the standard errors across the 44 conditions for

each of the variance components were very close to one (i 0.05). This result indicated that the

average estimates obtained by packing essays into batches of 24 were as precise as those

obtained by packing essays into batches of 12. The range of ratios was from 0.56 to 1.66. Table 9

on page 61 shows the descriptive information for the ratio of the accuracy between the two levels

of batch size.
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Table 9: The ratio of accuracy of indices obtained using a

batch size of 24 to those obtained using a batch size of 12 for

the disconnected crossed rating plan

 

Max Std 0 conditions

person 0.981 0.998 1 .032 0.009 44

item 0.693 1 .053 1 .569 0.224 44

Accuracy rater 0.692 1.021 1 .432 0.171 44

Ratios

for person-by-item 0.985 1.001 1 .024 0.007 44

Variance

Components person-by-rater 0.866 1.006 1.168 0.055 44

item-by-rater 0.849 1 .007 1 .219 0.091 44

person-by-item-rater. error 0.988 0.999 1 .010 0.005 44

Generalizability Coefficient 0.990 0.999 1.016 0.005 44

Accuracy

Ratios

for ' Dependability Coefficient 0.978 0.998 1.023 0.010 44

Compos1te

Indices

Misclassification Error 0.886 1.007 1.119 0.053 44  
 

The results for accuracy were similar to those for precision for all the variance

component estimates and the corresponding composite indices, providing no evidence that

ACCURACY(6'3) > ACCURACY(63,) for the disconnected crossed rating plan. Batch size also

did not make a difference for the connected mixture rating plan. Table 10 and Table 1 1 on page

62 give the ratios of the standard error and accuracy for this rating plan.
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Table 10: The ratio of standard errors of indices

obtained using a batch size of 24 to those obtained

using a batch size of 12 for the connected mixture

rating plan

Mm Mean Max Sid

person 0.733 0.997 1.157 0.090

SE item 0.570 1.009 1.767 0.293

Ratios

for rater 0.757 1.019 1.358 0.122

Variance

Componems person—by-item 0.763 0.995 1.281 0.124

person-by-rater-nested- 0.638 0.947 1 .299 0.138

in-item. error

Generalizability Coefficient 0.727 1.012 1.244 0.111

SF.

Ratios

for Dependability Coefficient 0.727 1.012 1.244 0.111

Composite

Indices

Misclassification Error 0.575 1.017 1.727 0.272  
 

Table 11: The ratio of accuracy of indices obtained using

a batch size of 24 to those obtained using a batch size of

12 for the connected mixture rating plan

 

person 0 968 1.002 1 024 0010

Accuracy Item 0 608 1.045 1 793 0.285

Ratio

for rater-nested-ln-ltem 0 863 1.018 1 230 0 082

Variance

4. person-by-ltem 0 989 1.001 1.027 0 007

Components

person-byqtem-by-rater, error 0 992 1.000 1.015 0.005

Accuracy

- Generalizability Coefficient 0 982 1.000 1 011 0 005

Ratio

for

- De ndab'lt Coeff cent 0 971 1.000 1,039 0 014

Composne pe "" '

Indices

Misclassmcatlon Error 0 781 1.008 1 266 0 090  
 

4.3) Accuracy of the variance components for two rating plans

The mean accuracy of the variance component estimates in the two rating plans was

high. For the disconnected crossed rating plan, the mean accuracy across the 88 conditions was

100% i 0.8%. The mean accuracy for reliably scoring a measurement procedure to make nonn-
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referenced decisions (using the generalizability coefficient) was 99.8% and the mean accuracy

for making criterion-referenced decisions (using the dependability coefficient) was 100.5% (see

Table 12). For the connected mixture rating plan, the mean accuracy of recovering the five

variance component estimates, shown in Table 13, was 100% i 0.5%. In addition, the mean

accuracy of the generalizability and dependability coefficients were 99.9% and 100.6%,

respectively.

Table 12: Accuracy of the disconnected crossed rating

plan

Mr: Mean ivlav Ste: :1 conditions

person 0.982 0.999 1.026 0 008 88

rtem 0 685 0 992 1 251 0 142 88

rater 0682 0993 1291 0128 88

ACCUYBCV 01 person—by-Item 0 988 1 002 1 013 0.005 88

the \v'anance

Components

person-by-rater 0 874 1 002 1.119 0.040 88

ltemby4ater 0 811 1008 1431 0 079 88

person—by-ttem4ater. error 0 991 1 001 1 011 0 004 88

88

Generallzabllrty Cecilio-ant 0 989 0 998 1 005 0 003 88

Accuracv of

(‘omposrle

Indices Dependab-lrty Coeiilolenl 0 957 I 005 1 049 0 011 88

Mlsdassrficabon Error 0 901 1 005 1 110 0 037 88   
 

Table 13: Accuracy of the connected mixture rating

plan

Min Mean Max Std n conditlons

person 0984 1.001 1,017 0006 88

item 0 679 1 005 1 374 0 169 88

Accuracy of

Variance rater item 0 825 O 995 1 098 0 053 88

Components

person-byc‘ltem 0 987 1 001 1 014 0 005 88

person-by-rater-nested-

wltnln-ltem, error 0 993 1 001 1 009 0 003 88

Generallzabllrty Coelthlent O 989 O 999 1 008 O 003 8

Accuracy of

(‘omposnc Dependabllity Coalfielent 0 986 1 006 1 031 0 011

Indices

Misclassmcatlon Error 0 869 1 010 1 204 0 055   
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For the accuracy of variance components reported in Table 12 and Table 13, the

accuracy of the person and person-by-item effects were very similar between the two rating

plans, in terms of minimum, mean, maximum, and standard deviations. Although the accuracy of

the item effects in both rating plans had the largest standard deviations among all other effects,

the means of these two accuracy indices tended to converge to one (i.e., 100% accuracy). Such

convergence suggested that 100 replications was insufficient to assess the accuracy (or

unbiasedness) of the item effect. Collapsing across the 88 conditions, however, increased the

number of replications to 88,000 and thus provided ample replications to evaluate the highly

variable item effect, which appeared to be accurately estimated by the subdividing method. Table

12 and Table 13 show that the mean accuracy for item effects were, respectively, 99.2% and

100.5% for the disconnected crossed and connected mixture rating plans.

4.4) Precision of the subdividing method and the effects of expanding rater pool sizes

In this section, I investigated the degree to which the expansion of rater pool sizes

influenced the precision of the facets that are related to the rater effects, namely the rater, item-

by-rater, and person-by-rater effect. The rater main effect is examined first, followed by the

item-by-rater interaction effect. The person-by-rater interaction effect, which was hypothesized

to be influenced the least by the rater pool size, is discussed last.

Figure 18 on page 65 summarizes the values of SE(63) , corresponding to the

disconnected crossed rating plan for all the levels of sample size, rater pool, minimum batch size,

item eflect, and person-by-rater eflect. The precision of the rater effect varied only minimally

among the different levels of item effect, person-by-rater effect, and batch size. The major

variation due to the size of rater pool; the SE(c3-f) decreased considerably as the rater pool

expanded, holding the sample size constant. The percent decrease in standard error was lower

than one half of the percent increase in the rater pool size. The two horizontal lines, for high and
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low person-by-rater effect conditions (03,, = 0.1 and 0.01), representing the theoretical standard

errors for 03 coincide at 0.0131. Even though the theoretical and empirical standard errors were

supposed to be the same or at least very close in the conditions where there was no missing data

(i.e., 2-rater-750-examinee conditions), the empirical standard errors appeared to be larger than

the theoretical standard errors. This finding was not surprising. Rather, it reflected the inaccuracy

of the theoretical standard errors based on a small number of levels in a facet. Chapter 5 on page

90 provides a thorough discussion.
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Figure 18: The reduction of standard error for the rater effect as a function of the size of

rater pool and sample size

Table 14 on page 66 displays the average SEs and average reductions of standard error in

percentage terms. As the rater pool size increased from 2 to 4 (a 100% increase), the standard

error declined from 0.0224 to 0.0163 with a 27% reduction, averaged across item eflect, person-

by-rater eflect, and minimum batch size. While holding the rater pool size constant at any value,
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increases in sample size did not lead to sizeable decreases in standard error. For instance, given a

pool of eight raters, the range of 5&0?) was 0.0] 15 i 0.0005, despite sample size increases

from 750, to 1500, and to 3000.

Given that the standard error of the rater effect was 0.0060 when one assigned random

pairs of raters from a pool of 28 to score 6,000 examinees, how large should the rater pool be if

one wanted to maintain the standard error by assigning ALL raters to score the examinees?

Approximately a pool of 13 raters is needed. The parenthesized numbers in Table 14 show this

projection and projections for a variety of rater pool sizes for 750, 1500, 3000, and 6000

examinees.

Table 14: Average SEs and average reduction in empirical standard

error for the rater effect

 

 

 

 

 

  

 

A2 Size ofiiaterPool I

“(0 r) w 2 f4, _ 28

S 27% 27% I14

:1 750 0.0224(2) 00163 (2)i001:119 (2)

p 255/0 25%

'

e 1500 0.0157 (2) 0.0117 (2; 0.0% (5)

18% 31%

s 513’ 5T1?
1 3000 0.0110(3) 0.0090(5) 0.0062 (12)

Z 270/0

9

6000 0.0083 (6)I 0.00630 (13)  
 

The numbers in parentheses refer to the number of raters needed to maintain an equivalent

level of standard error when all raters in the rater pool score a task. The standard errors

reported are averaged across batch size. item effect. and person-by-rater effect. Equation

(36) in Appendix B was used to obtain the projections shown in parentheses. The standard

error to the lefi of the parenthesized numbers were substituted into the left hand size of

Equation (36). The Generalized Reduced Gradient (GRGZ) nonlinear optimization method

(developed by Leon Lasdon, University of Texas at Austin, and Allan Waren. Cleveland

State University) in the Microsoft Excel Solver l995 was used to solve the equation for the

size of rater pool (n_r).
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Figure 19 shows standard errors of the item-by-rater effect. The trends in the SEs

resemble those for the rater effect, indicating that expanding the size of a rater pool reduced the

standard error of the item-by-rater effect.
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Figure 19: The reduction trends of the standard error of the rater-by-item effect

Table 15 on page 68 shows that the percent reduction in standard error was less than

one half of the percent increase in the size of rater pool for the item-by-rater effect. The standard

error obtained by subsampling from 28 raters can be obtained by employing five raters without

sampling. This projection was also reported for sampling from 14, 8, 4, and 2 raters, respectively.
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Table 15: Relationship between size of rater pool and reduction in standard

error of the item-by-rater effect as a function of sample size

Size of Rater Pool

 

 

 

 

 

 
 

  

 

   
   

1‘2

“(0 1r) 2 4 8 14 28

32% 25%

S 6:11

a 750 0.0145 (2) 0.0099 (2) I 0.0074 (2)

m 24% 25%

p Fin

('5 1500 0.0100(2) 0.0076(2) I 000537 (3)

20% 24%

3 5% é?

1 3000 0.0072 (2) 0.0058 (3) 0.0044 (5)

z 29%

e

6000 0.0055(3) I 0.0039 (5)

Note: The numbers in parathenses refer to the number of raters needed to maintain

an equivalent level of standard error when all raters in the rater pool score a task.
 

Figure 20 on page 69 shows values of the standard error of the person-by-rater effect.

The standard error decreased as the sample size increased, holding constant the size of the rater

pool. Expanding the rater pool did not increase precision for the person-by-rater effect. The two

series of trends clustered around the two reference lines for the two levels of theoretical standard

errors, indicating that the 5516?”) obtained by subsampling was comparable to that obtained by

employing two raters regardless of the size of the rater pool.

Table 16 on page 69 shows the percent reduction in the SEs as a function of the sample

size given a small person-by-rater effect ( 0%» =0.01). The percentages of standard error

reduction for all the conditions were less than the percent of increase in sample size and all

increments to sample size reduce the standard errors. This observation also applied for a large

person-by-rater effect ( 0' 2r =0.10).
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Figure 20: The standard error of the person-by-rater effect as a function of sample size

Table 16: SE and changes in standard error of the person-by-rater effect as sample size

 

 

 

  

increases

82 Size of Rater Pool

9( pr) 2 4 8 14 28

:1 s 750 0.0075 27% @00074 30% @00079

011 1 1500 0.0053 0.0055 25., 0.0055

9 z 32% g 11$

1 e 3000 0.0037 0.0041 0.00391

0 3mg 3mg

6000 00027 0.0027
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4.5) Precision of the subdividing method and the effects of increasing volume of examinees

Figure 21 and Figure 22 (p. 70) show the standard error of the object of measurement

2

(if, and the person-by-item-by-rater (plus systematic and non-systematic errors) effect a,” as a

function of sample size, rater pool size, and three other simulation parameters. For 6?, , the two

horizontal reference lines represent the theoretical standard errors, given two raters. The top and

bottom reference lines reflect standard errors for a large and a small person-by-rater effect. The

empirical standard errors clustered closely around the two theoretical referenced lines and the

standard errors exhibited a pattern similar to that was found for the person-by-rater effect. The

values of SE (6:) reduced by less than 50% as the sample size doubled. Expanding the size of

rater pool had inconsistent, thus ignorable effects on SE (6: ). The standard errors of

63m. resembled those of of, -- increase in the rater pool size had a marginal effect on the

reduction of standard error whereas increase in sample size had a significant effect.
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Figure 21: The standard error of the person effect as a function of sample

size and rater pool size
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Figure 22: The standard error of the person-by-item-by-rater effect as a

function of sample size and rater pool size
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Figure 23: The standard error of the person-by-item effect as a function of

sample size
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Figure 23 on page 71 depicted the standard errors of the person-by-item effect and it

shows results coherent with those for the previous three variance components 6:}, , 63,, , and

[fiw . Specifically, the statistical property of consistency (the larger the sample size the smaller

the variability) holds true for the subdividing method for the disconnected crossed rating plan.

4.6) Findings on the disconnected crossed and the connected mixture rating plans

The complexity of the connected mixture rating plan causes scores to be allocated

unevenly to the three structural designs (crossed, MBIB, and nested). As predicted by the

decision rules discussed on page 28, the percentage of crossed and MBIB data subsets (e.g.,

percentage of the crossed data subsets = Equation (9) / Equation (12) *100%) diminished as the

size of rater pool expanded. Because fewer data points were allocated for these two structural

designs, the person-by—rater effect was less precise for a larger rater pool than it was given a

smaller pool of raters. Table 17 summarizes that the expansion of the rater pool decreased the

certainty of the person-by-rater effect.

Table 17: Increases in uncertainty of the person-by—rater effect in

the connected mixture rating plan

 

 

 

 
 

 

 
 

"2 100% I 75% 100%

6(0 pr)

4 8 14 28

49%

s

a 750 0.0226 I 0.0338

'2 54% 21%

L 1500 0.0162 0.0249 0.0 02

31% 47%

5 ®

1 3000 0.0168 0.0219 0.0323

2 44%

e

6000 0.0160 0.0230    
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It can be observed that all the increase in imprecision (or increase in SE3) in Table 17

(indicated by arrows) were less than approximately five percent in addition to half of the

percentage increase in the rater pool size. Expanding the rater pool size from four to eight raters

yielded a 100% increase in rater pool size and the increases in uncertainty for the person-by-

rater effect were 49% and 54%, respectively, for sample sizes 750 and 1500. The corresponding

increases in uncertainty became lower (21% and 31% for sample sizes 1,500 and 3,000) as the

rater pool expanded by a lower percentage, 75% as opposed to 100% (from eight to 14 raters).

The increases in uncertainty returned to the mid- and high- forty percent (47% and 44%) when

the rater pool expanded by 100%, for sample sizes 3,000 and 6,000. All of the above reductions

were less than 55% (0.5 * 100% + 5%).

Figure 24 depicts the phenomenon reported in Table 17 (p. 72) accompanied by the

theoretical standard errors. These theoretical standard errors predicted the person-by-rater effect

based on the same two raters scoring all the examinees on all items (i.e., completely balanced

situations with a crossed structural design).
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Figure 24: The relationship between the improvement of the

person-by-rater effect and the expansion of rater pool size

using the connected mixture rating plan.
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As observed in the above figure, the larger the rater pool, the farther was the empirical

standard error from the theoretical standard error. This indicates that one would become less

confident of the person-by-rater effect as more raters were employed, holding the number of

examinees constant.

The increase in sample size had an opposite effect than that of expanding the size of rater

pool — holding the size of rater pool constant, the larger the sample size, the higher the precision

(and the smaller the SEs). Such observations applied to all four levels of sample size. The trend

shows the increase in precision as the sample size increased from 750, 1500, to 3000, holding

constant the size of rater pool (the three boxes in Figure 24 on page 73 highlight the 8-rater pool

examples; the larger the sample size, the smaller the SEs). The means ofSE(&3,,) were 0.0315,

0.0249, and 0.0144 for the three levels of sample sizes (750, 1500, and 3000). The minimum

reduction in SE(&3,,) , from one level of sample size to another, was over 25%.

Figure 25 on page 75 compares the degree of uncertainty of the person-by-rater effect in

the connected mixture rating plan to that in the disconnected crossed rating plan

A Z A 2 A 2 A 2

(SE(O'p,)-SE(O'P,.)), where 0'” and 0'”. represented the person-by-rater effects in the disconnected

crossed and connected mixture rating plans, respectively. The 0‘3 was estimated with a higher
pr

degree of precision in the disconnected crossed rating plan. On average across all the conditions

for the 750-examinee conditions, 0"2 was estimated with a precision 0.0127 higher than it was
I),

estimated in the connected crossed rating plan. For the 1500-, 3000-, and 6000- examinee

conditions, 6-2 was estimated with even higher precision: mean differences were 0.0170,
pr

0.0189, and 0.0161 , respectively.
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Figure 25: The effect of employing two different rating plans on the precision of the

person-by-item effect

As was true for 6;, , five other variance components (all except the item effect)

manifested increasing imprecision as the size of rater pool expanded in the connected mixture

rating plan. This is likely due to the reduction of data (discussed in the Methodology section)

falling into the crossed and MBIB designs. Figure 26 on page 76 displays this effect for

SE(0‘-2
pine '
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Figure 26: The relationship between the improvement of the person-by-item-by-rater effect

and the expansion of the rater pool size using the connected mixture rating plan

In order to utilize all the available data in the connected mixture rating plan, four of the

seven variance components obtained in the previous section were summed to parallel the five

variance components in the nested design, namely 5-3, = 5-f+6-,2, and (3‘3”), = 6%,, -I- 01%,”.

Figure 27 on page 77 presents the precision of d-f, obtained by the reconfiguration. The

‘)

a"; became more stable as the rater pool expanded indicating that recruiting more raters while

using only a random pair to score an examinee can add to precision in estimating either one or

both of the following two measurement errors — (1) variability due to rater scoring examinees

differently, averaged across items, namely 01? ; and (2) variability due to rater scoring items

difi'erentially different averaged across examinees, namely (3,2, .
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Figure 27 : The decrease in standard error as a function of rater pool size after utilizing all

the available data

The average standard error for the 750-examinees conditions (averaged across the item

effect, person-by-item effect, and batch size) decreased from 0.0205 to 0.0141, and went further

down to 0.0103 yielding a reduction trend of 3 1% and 27%. The average standard error for the

1500-examinee conditions showed a similar reduction rate with a 30% (0.0135 to 0.0093) decline

from sampling 2 of 4 raters to sampling 2 of 8 raters and with a 20% reduction from the 8-rater

conditions to the 14-rater conditions. For the 3000-examinee conditions, the decreases were 26%

(0.0086 to 0.0068) and 25% (0.0068 to 0.0051), respectively, for the 8-tol4-rater expansion and

the 14-to—28-rater expansion. Increasing from a pool of 14 raters to 28 raters reduced the average

standard error by 23% (0.0065 to 0.005) for a sample of 6000 examinees.
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4.7) Precision of the subdividing method for item effects

Disconnected crossed rating plan — Figure 28 shows that there is no relationship

between the sample size, rater pool size and the standard error for the item effect, as

hypothesized in research question 4 (p. 30). This finding was expected because adding more

raters or increasing the volume of examinees should have very little influence in determining the

certainty of the variations in item difficulty. The standard errors fluctuated slightly above the

reference lines (for the two item-effect parameter values), indicating that the simulated variance

components were more variable than were suggested by theory for two raters (Again note that the

theoretical values do not account for sampling from a rater pool).
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Figure 28: The randomness of the standard errors for the item effect

(disconnected crossed rating plan)
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42

Connected mixture rating plan — Figure 29 depicts the precision of a. which was

.,

not influenced by the size of rater pool and sample size. The series of 6,“ which were generated

with a population value 0.02 were recovered with a smaller degree of variation than those

generated with a population value 0.1 1. As expected, the two series were separated distinctly in

Figure 29 with the larger-variability series associated with larger and a more conservative

standard error than suggested by theory. The average empirical standard error was 0.159

comparing to the theoretical standard error 0.098 based on two raters. This difference was

expected (Brennan, 1992) because the theoretical standard error relied on asymptotic assumptions,

which were not viable when the number of levels in the item facet was small (i.e., 2).
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Figure 29: The randomness of the standard errors for the item effect

(connected mixture rating plan)
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4.8) Accuracy and precision in making norm- and criterion- referenced decisions

Generalizability coefficient — Both the generalizability and dependability

coefficients were estimated with high accuracy (ACCURACY( Ep2) and ACCURACY(¢(71))

equaled 100% i 1%) averaged across the 88 conditions. Figure 30 on page 81 shows the mean

generalizability coefficients as a function of size of rater pool and sample size for low item and

person-by-rater effects. The results resembled closely those for the high item and person-by-

rater effects and thus only the low item effects were reported. The estimated generalizability

coefficients were accurately estimated (population value = 0.631 I) with sample sizes as small as

750 and they also retained properties as if they were estimated with complete data (i.e., the 95%

confidence intervals became shorter as the sample size increased). Compared to the known

values of the generalizability coefficients and their approximated theoretical confidence

intervals, the empirical coefficients and confidence intervals were recovered within 0.003 of the

theoretical predictions. See Figure 31 on page 81 for the theoretical confidence intervals, which

were obtained by the following steps: (1) compute the standard errors for each variance

component (see Appendix B); (2) apply a multiplying factor (Brennan, 1992) to those variance

components to find the upper and lower bound for each variance component; and (3) uses

Equations (21) and (22) to compute the confidence intervals for the coefficients.
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Figure 30: Empirical confidence intervals for generalizability coefficients
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Figure 31: Theoretical generalizability coefficients

Dependability coefficient — The subdividing method was able to detect item

variability for both high and low effects. The empirical dependability coefficients were close to

the known parameter values and the corresponding confidence intervals were all recovered

closely to the theoretical confidence intervals given low item effects (the average difference

between the empirical and theoretical values was less than 0.0035). On average across the 88
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conditions, the ACCURACY index of the dependability coefficients was 1.0 suggesting that the

subdividing method provided unbiased estimates for the dependability coefficients (for any given

one of the 88 conditions, the ACCURACY was 1.00 i 0.03). For the high item effect, the lower

bounds (2.5‘h percentile) of the confidence intervals deviated farther from the mean than did the

upper bounds (97.5th percentile) indicating that one should be more confident in the upper

bounds than the lower bounds of the dependability coefficients. Figure 33 on page 83 depicts this

observation. Further investigations, discussed in the next paragraph, determined that the

negatively skewed distribution of the empirical dependability coefficients reflected the unstable

nature of the item effects due to large differences in item difficulties.

The theoretical lower bound of the dependability coefficient can be obtained by

replacing the relative standard error of measurement with the absolute standard error of

measurement in Equation (23). Holding sample size and the size of rater pool constant, the lower

bound of the dependability coefficient became lower given any one or both of the following: (1)

the lower limit of the effects for item, rater, person-by-item, person-by—rater, item-by-rater, or

person-by-item-rater, error increases; and (2) the lower limit of the object ofmeasurement

decreases. An ad hoc study concluded that the skewed 2.5‘h percentile of the dependability

coefficients were caused by the highly variable item effect (at the high level =0.] l), which had a

maximum variance component of 1.57 and standard deviation 0.16 even though the mean of the

high item effects was 0.1 l. The 2.5th percentile of the dependability coefficients was raised by an

average 14% when offsetting the estimated item effect variances in the high item effect

conditions to the maximum of the estimated variances in the low item effect conditions (0.35).

Notice that 0.35, which was at the 93th percentile on the high item and person-by-rater effect

condition, was chosen to examine to what extent the lower bound of the dependability coefficient

would rise when the extreme item effects were restricted to a lower value. Figure 32 (p. 83)

shows the skewed distribution of the item effect.
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Figure 32: Distribution of the item variance components for

the disconnected crossed rating plan (averaged across batch

size, sample size, and rater pool size)

The boost of the 2.5th percentile of the dependability coefficients was depicted in Figure

33. This finding that the dependability coefficients became less skewed as the item effect became

small substantiated that the subdividing method was capable of detecting various degrees of

variability in generalizability studies.
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Figure 33: Dependability coefficients estimated in the

disconnected crossed rating plan (high item effects)
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Figure 34 shows that the confidence intervals of the dependability coefficients exhibited

a narrowing trend as sample size increase for the low item effect conditions. The mean estimates

of the dependability coefficients appeared to be rather stable and close to the known value

(0.61 135). Comparing those high item effect confidence intervals and estimates to low-item-

effect conditions (see Figure 34), the 2.5‘h percentile of the dependability coefficients no longer

appears to be so skewed when item-effect variation is low.
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Figure 34: Dependability coefficients estimated in the

disconnected crossed rating plan (low item effects)

Misclassification Error — Shown in Figure 35 were the estimates ofthe

misclassification rates, with reference to the parameter values for the 88 conditions. They were

computed based on the absolute standard error of measurement. Accuracy across all conditions

was 100% i l 1% indicating that one would have made as few misclassification errors in

unbalanced situations as one would in balanced situations. For instance, the error rate of

misclassifying a random examinee with a true score 3.4 by one or more step was 1.70% given

low item (0.02) and person-by-rater (0.] 1) effects in balanced situations (Table 5 on page 41)

whereas this error rate was 1.72% estimated by using the subdividing method for unbalanced

situations. Given high item and person-by-rater effects, there was a 3.68% average
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misclassification rate in both balanced (Table 5 on page 4|) and unbalanced situations. Figure 36

(p. 86) shows the standard errors of the misclassification rates and it indicates that none of the

standard errors of the 88 conditions exceeded 2.4%.
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Figure 35: Misclassifiction error obtained for the

disconnected crossed rating plan
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Figure 36: Standard errors of the misclassification rates for

the disconnected crossed rating plan
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CHAPTER 5: CONCLUSIONS, DISCUSSIONS, AND FUTURE DIRECTIONS

5.1) Subdividing method and unbalanced situations in performance assessment

Scoring constructed response items is more time consuming and complex than scoring

multiple-choice items. Many educational and non-educational institutions adapt open-ended

questions in examinations for admission, certification, graduation, accountability, and licensing

purposes. These examinations often are administered on a large-scale basis. Large volumes of

examinees are tested and yet only a short time (usually a few weeks) is available for scoring.

Many raters are recruited to score the examinations and it is infeasible to assign all the raters to

score every one of the examinees. Thus each examinee will be scored by a selection of raters,

leading to sparsely-filled data sets and also unbalanced designs, and also causing potentially

biased and imprecise estimators. The current dissertation developed and validated a method,

called the subdividing method, to resolve this problem. The subdividing method, drawing on the

concept that one could obtain more stable estimators by synthesizing multiple data sources than

using just one source, is set out to improve the accuracy and precision of estimates quantifying

measurement errors in the framework ofG theory. The implementation of this method was

discussed in sections 3.1.

The estimates produced by the subdividing method were scrutinized in determining how

well the method worked in realistic scenarios (described in section 3.2 to 3.5) and these scenarios

included differences in: (1) volume of examinees, (2) size of rater pool, (3) variation of item

difficulty, (4) levels of rater inconsistency, (5) rules used to decide how to group raters and

assign tasks to raters, and (6) the minimum number of examinees scored by a group of raters.

Results in chapter 4 indicated that the subdividing method produced outcomes having properties

(unbaisedness and consistency) that are similar to those of complete data methods. Different

rules used for forming groups of raters changed the structural design of scores and thus

influenced the precision of measurement error estimation. Unlike precision, the accuracy of

87



estimating measurement errors was not as sensitive to the rules used for forming groups of raters.

Accuracy of the outcomes was very high (close to perfect). These finding substantiated that the

subdividing method produced unbiased outcomes with data missing completely at random. The

section that follows summarizes major findings regarding the precision of estimators.

Suggestions are provided for the set-up of scoring procedures.

5.2) Major findings and implications

Weighting improved the precision of variances involving the person effect when data

subsets varied in size. The standard errors of the weighted outcomes were closer to the

theoretical standard errors when weights were applied (see section 4.1). As was discussed in

section 3.1, data subsets varied in size in the connected mixture rating plan where there were

more batches than possible groups of raters. Weighting, however, had no effect on the precision

under the disconnected crossed rating plan, in which each group was composed of the same

number of raters and each group scored the same number of examinees.

In large-scale performance assessments, examinees' work was packed in batches for

scoring. Section 4.2 provided evidence that a minimum of 12 tasks scored by the same group of

raters was sufficient to ensure precise estimates for the measurement errors, and increasing the

minimum to 24 tasks did not tend to increase or lower the precision and the accuracy of

measurements.

Results in section 4.3 suggested that the variance components, generalizability

coefficient, dependability coefficient, and misclassification error were recovered by the

subdividing method with high accuracy (100% i 1%) in all experimental conditions examined

for the two rating plans. Unlike the precision (inverse of standard errors) of variance components

and composites, accuracy is not influenced by the patterns and amounts of missing data. This

finding was consistent with the notion that when data are missing completely at random, one can
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still obtain an unbiased expected value but the standard error will be larger than that for a data

set with no missing data (Little and Rubin, 1987).

In addition to the descriptive results reported in section 4.3, a multivariate regression

(Rencher, 1995) was used to provide an omnibus test for the accuracy of the variance

components. The results shown in Appendix H indicated that none of the predictors significantly

deviated from zero (the five Wilks' As = 1.0 i 0.00] and the corresponding p-values > 0.530),

assuming normality. Table l8 (Appendix A) reports the value of the five individual Wilks' As.

The regression coefficients and the coefficients of determination (r-squares) shown in Table 19

indicate that the subdividing method has estimated all the variance components with high

accuracy (without biased) in all the experimental conditions. The intercepts were close to one,

suggesting that the mean accuracy was close to 100%; the coefficients of the predictors were

close to zero, showing that in no conditions did the accuracy of the subdividing method differ

significantly. Even though the multivariate regression shed light on the accuracy of the

subdividing method, this analysis provides only supplementary information to those analyses

reported in section 4.3. One should interpret the results of the regression analysis with caution

because the multivariate normality assumptions were not completely met by all the variance

components (e.g., the item component had a positively skewed distribution).

Frequently, the number of raters recruited to score examinees has an inverse relationship

to the time available for completing the scoring, holding the volume of examinees constant. The

section entitled Amounts and Patterns of Missing Data (p. 34) indicated that expanding the rater

pool required more raters to provide more stable estimates for the rater-related effects, but the

expansion of the rater pool induced more unobserved data. To what degree can the gain in

precision by using more raters compensate for the decrease in precision due to the increasing

amounts of unobserved data? Section 4.4 reported that doubling the rater pool increased the

precision of estimating the rater effect and the item-by-rater effect by at most 32%. This finding
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was consistent with the expectation that more raters leads to higher precision of estimating the

rater effect, provided that the raters came from the same population. Similarly, the same

conclusions applied to the item-by-rater effect. Thus even though it is infeasible to have raters

completely crossed with examinees, it is still desirable to use more raters rather than fewer raters,

because this will result in characterizing the rater effects with higher confidence.

Results in 4.4 revealed that the theoretical SE(013) was lower than the empirical

SE(CS-3) given a small rater pool (i.e., the two-rater condition). With the following rationales,

one can see that the theoretical method underestimated the precision of the rater and item-by-

rater facets for extremely small sample sizes, while the empirical method provided estimates

with the right degree of precision. First, one can rule out the argument that the empirical standard

errors were incorrectly estimated because the empirical standard errors resembled closely the

theoretical standard errors for the other effects, namely SE((5%), SE(cs-i”), SE(6%,), and

SE(CS-3"“) . Second, theoretical standard errors for statistics require asymptotic assumptions that

may be inaccurate (Smith, 1982). In the present case, we used two and four levels, respectively,

for the rater- and item-by-rater effects. For this reason, it is likely that the theoretical standard

errors were too small.

Given a desirable level of precision obtained by sampling from a pool of raters, how

many raters are needed to obtain the same level of precision for (33 without sampling? Table 14

in section 4.4 shows the answers to this question. Whether or not the theoretical SE was

underestimated for small numbers of raters, the numbers of raters needed to match the precision

obtained in the sampling situation would be fewer than predicted in Table 14 for the rater effect.

For instance, one may need to use all 13 raters at the most to score examinees in order to match

the level of precision of the rater effect yielded by sampling two raters from a pool of 28.

The size of rater pool had little influence on the precision of the person-by-rater effect (Figure
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20, section 4.4) for the disconnected crossed rating plan. No matter how large the rater

pool, SE(6%”) tended to stay at the level equivalent to that obtained by using two raters. The

empirical standard errors clustered around the theoretical values of SE(5%,) and the fluctuation

was rather subtle. One explanation was that as the rater pool size expanded the percentage of

unobserved data also increased. On the one hand, expanding rater size pool gave more

information about the degree to which raters scored examinees differently. On the other hand,

expanding the rater pool size while keeping the same number of ratings for each task caused less

observed data to be allocated for estimating the person-by-rater effect. The tension between

these two factors (increasing rater pool size and increasing amounts of unobserved data) tended

to compensate for one another. This finding suggested that employing more raters did not tend to

lower or boost the precision of characterizing the person-by-rater effect, holding sample size

constant and assuming raters came from the same population.

The finding that SE(01%,) was inversely related to the volume of examinees suggested

that the subdividing method led to consistent estimators (section 4.5). Practically, this is a

desirable property to have for large-scale testing because it enables one to apply the G theory

framework to partition measurement errors with high confidence as more examinees are

assessed. With 6000 examinees, SE(01%,) was in the range 0.002 to 0.005. With 750 examinees,

SEQ-2,) was in the neighborhood of 0.0] and 0.013.

Typically, scoring centers do not have much control over the volume of examinees —

less control than on the number of raters to be employed. A feasible way to improve the precision

of 0"?” is to employ rating plans that ensure plenty of data to be used for the estimation of

SE(6%,) . Although the disconnected crossed rating plan (section 4.6) examined in the current

dissertation allowed one to utilize all the data to estimate SE(01%,) , this rating plan was designed
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to estimate the person-by—rater effect using non-overlapping groups of raters (i.e., groups of

raters were disconnected). With another rating plan that allocates data to examine both the

overlapping and non-overlapping rater groups, one would expect to improve SE(Ci-1;”) . Such a

rating plan could guarantee all the data subsets to exhibit the crossed design while allowing

raters to be on more than one scoring committee. This rating plan is constituted of three rules

listed as follows.

rater”... i rater'us (24)

ratert,s : ratertfifl (25)

rater'... i rater'rm (26)

The first rule, Equation (24), ensures that no rater scores an examinee on the same item (i) twice

in a given data subset (s) of the crossed design. The second rule (25) indicates that all raters

participated in exactly two scoring groups, namely the sth and 3+ lth groups. The third rule (26)

specifies that all raters worked with a different rater in the two groups they sit in. This rating plan

can be called the connected crossed rating plan. The shaded areas in the following figure show

the observed data and it can be seen that every group of raters has a common linking rater with

one other group. Future research is needed to compare this connected crossed rating plan with

those two examined in the current dissertation.

Level 1: Items; Level 2: Raters
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Figure 37: A hypothetical connected crossed rating plan
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Unlike the results found for the disconnected crossed rating plan, the precision of the

person-by-rater effect decreased as the rater pool size expanded in the connected mixture rating

plan (section 4.6). The loss of precision was due to fewer data points being allocated to the

crossed and the MBIB structural designs. This results suggested a general principle for designing

rating plans — rating plans with loose structure and fewer guiding rules (e.g., the connected

mixture rating plan was less structured than the disconnected crossed rating plan) tend to form

data subsets with nested rather than crossed structural designs. For this reason, very few data sets

were available to estimate the rater effect separately from the item effects. The larger the rater

pool and the less structured the rating plan, the less precisely one can estimate the rater-related

effects. A recommendation based on this finding suggests that one should impose structural

designs at the data subset level and the structural designs chosen should be geared toward to the

effects of interest.

The results in section 4.8 showing that the dependability coefficient had an asymmetric

95% confidence interval with an extended tail towards the low end has implications for

developing and scoring performance based assessments. First, even though the item effect

accounted for only approximately 1 1% (0.2 = 0.1 l) of the total score variation, its variance

component had a wide confidence interval because only two items were used to estimate its large

population value. Empirically, the overall 95% Cl was between 0 and 0.627 with a mean standard

error 0.157, which was larger than the population value. Since the item effect component was

used in the denominator of the dependability coefficient, it then dragged down the lower bound

of the dependability coefficient. The upper bound of the dependability coefficient was not

affected because the item facet has a positive skewed distribution implying that the lower bound

of the item facet was not as influential as the upper bound. For this reason, the wide confidence

interval of the dependability coefficient was contributed to largely by the item effect. The

subdividing method provides a means to characterize this skewed-dependability phenomenon in
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unbalanced situations. Such a wide confidence interval is expected in balanced situations as this

can be demonstrated by comparing the dependability coefficients obtained by a large and a

small 0i in Equation (32) (p. 102). As was illustrated in section 4.8, reducing either SE(0,2) or

of itself could provide a more dependable measurement procedure for making criterion-

referenced decisions. In fact, many researchers (e.g., Bejar, 1993) have developed methods to

control for item variation and to increase the generalizability of tasks (e.g., Kane, Crooks, and

Cohen, 1999).

5.3) New applications of the subdividing method and future directions

(1) The current dissertation examined the statistical properties of recovered variance

components under a two faceted design, namely the person x item x rater design. The rater facet

was sampled, but the facet to be sampled could be the item or any one facet in a two faceted

design. The subdividing method can be used to examine the generalizability for a measurement

procedure where examinees respond to a complete set of questions (as opposed to a subsample

from that complete set of questions). Such a comparison can be accomplished by finding out the

precision of generalizability in unbalanced situations (e.g., via resampling or bootstrapping

methods) and then using that level of precision as a target for predicting how many raters and /or

items are needed to maintain the target level of precision in a balanced situation. Such

applications can be useful to reduce testing time while being able to evaluate the quality of the

testing procedures. To determine the potential results for this application where examinees

responded to only a selected set of items and were scored by all raters, one can simply swap the

subscripts between the item and rater effects in the results section of the current dissertation.

Having examinees to respond to only a set of items from a pool of items can reduce testing time.

Having all raters to score examinees can become feasible in the future as testing companies such

as the Educational Testing Service (ETS) are developing computer technology to use computer
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programs (called electronic raters) to score with or to replace human raters (Personal

communication from Bejar, 1999 and Hombo, 1999).

Another application of the subdividing method is to evaluate any systematic

measurement procedures involving observations and ratings where data are unbalanced, such as

alternate assessments that might be used for special education students in place of traditional

assessments (Ysseldyke & Olsen, 1999). In addition, the subdividing method can be applied to

any large-scale assessments such as state assessments and the National Assessment of

Educational Progress (NAEP).

(11) The subdividing method developed in the current dissertation was examined using

two common rating plans. In operation, scoring sessions may not document explicitly the rating

plans used. In that case, it is researchers' hope rather than expectation to have the data collected

in the same way as data would be collected by the rating plans. An index ofsparseness indicating

the pattern and the extent to which scores were unobserved (e.g., as compared to those in the

specified plans) may be useful. Such an index requires future development. Graphical displays

and research on matrix analysis (Alan & Liu, 1981) can give insight to this line of development.

(111) A follow-up study investigating the specific principles (p. 39) used in different

rating plans will be invaluable. The current dissertation examined the disconnected crossed and

connected mixture rating plans. These two plans differed in several ways (see Table 4 for

comparisons) and future studies should be conducted to isolate each of the underlying principles

distinguishing these and other rating plans. One such principle, namely the guiding structural

designs within a given group (the third principle in Table 4) can provide practical insight for test

developers. How does having the same set of raters score all the tasks from an examinee (crossed

design) as opposed to having different sets of raters to score different tasks (mixture designs or

nested designs) influence the quality of the scoring procedures? Patz (1999) spoke in favor of

using stratified designs when applying ltem Response Theory (lRT) models to analyze
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performance-based data. He stated that stratified designs allow different sets of raters to score the

different tasks submitted by an examinee and thus the chance for an examinee to receive scores

from solely a set of extreme raters (either too lenient or harsh) will be lower than using a crossed

design. Kane, Crooks, and Cohen (1999, p.14) also suggested that "having each task evaluated by

a different set of scorers" can increase the number of raters evaluating each student and thus

helps to control any lack of consistency among raters. Although stratified or non—crossed

structures, like that suggested by Kane, Crooks, and Cohen (1999) and Patz (1999), have the

advantage to ensure that each student's task is scored by a larger number of raters than in a

crossed structure, they do not necessarily allow one to disentangle rater—related interaction

effects. So, one may not be able to evaluate as precisely the rater-related interactions (e.g., the

rater x item effect) as one can in a crossed structure. Since a line of research studying rating

plans and the statistical properties of reliability and dependability coefficients is emerging, more

research should be conducted (Glick and Picou, 1999; Patz, 1999; and Wilson, 1999). Comparing

the connected mixture rating plan studied in the current dissertation and the connected crossed

rating plan proposed on page 92 can shed light on methods to scoring performance-based

questions with high generalizability and dependability. One can find more examples of different

rating plans in other areas of the measurement literature such as test equating (Kolen & Brennan,

1995).

(IV) Future research may examine factors in addition to those investigated in the current

study such as the degree to which data are not missing completely at random. In practice, some

raters (e.g. more experienced) may score more responses than the others. In this scenario, data

may not be missing completely at random because some raters have more unobserved data while

others have less. Put differently, missing data were related to the experience of the raters. Little

and Rubin (1987) called this data Missing At Random (MAR). In applying the subdividing

method to the MAR scenario, one can weight the data subset by the experience of the raters
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(which can be operationalized as the number of responses scored) in the Synthesizing stage.

Future studies are needed in evaluating the subdividing method in such scenario.

(V) The current dissertation applied a multivariate regression to predict the accuracy of

the variance components using the experimental factors controlled in the simulation as

predictors. The inferential results should be treated as tentative, as the skewed distributions of

the variance components did not satisfy completely the multivariate normal assumptions. The

low parameter values used for the item and rater effects caused these variance components to

have a distribution with negative values, which prevented one from using logarithmic

transformations to normalize the variance components (e.g., transformation suggested by Kalaian

& Becker, 1996 and Raudenbush, 1988). Exploring transformations with known statistical

properties for negative variance components deserves much attention; this line of research will

be invaluable for the measurement community because it can provide correct inferential

conclusions about measurement procedures.

(V1) Though G theory is popular for disentangling multiple sources of variation in

scores, it does so via the expected variation for each facet. It does not, however, identify

individual elements contributing to the variations (e.g., G theory does not indicate which

individual rater is particularly more lenient or severe as compared to the other raters). A

thorough diagnosis utilizing methods such as cluster analysis and meta-analysis goodness of fit

tests can examine individual elements more closely and diagnose problems in the measurement

procedures more carefully.

5.4) Suggestions to test developers and educational values

Suggestions to test developers. The results of the current dissertation inform discussions

of scoring procedures for performance assessment. ls there a particular scoring arrangement that

can yield more accurate and stable estimates for measurement errors than other arrangements?

The current dissertation showed that the disconnected crossed produced more precise estimates
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for the person-by—rater effect than the connected mixture rating plan. Also, given the same sized

rater pool, how many examinees must be scored by the same group of raters in order to provide

precise evaluations of measurement error? A minimum of 12 examinees scored by the same

group of raters was sufficient to ensure precise estimates for the measurement errors. Increasing

that minimum to 24 examinees did not tend to increase or lower the precision of measurement

errors. This finding suggests to test developers that bundling tasks is not a real concern as far as

measurement errors go. Given the resources and time, test developers should, instead, consider

seriously what rating plan to use in order to reduce measurement errors and to obtain an accurate

and precise portrait of those errors. Rating plans should be chosen prior to starting a scoring

session to structure and randomize the data collection procedures (scoring procedures).

When conducting generalizability analyses, test developers should apply weights for

combining the measurement errors estimated from each data subset. At the best, weighting will

increase the precision of characterizing the quality of a measurement procedure and in no

situation will it lower the precision. However, one does not necessarily need to apply weights in

using the subdividing method for generalizability analyses provided that the data subset sizes are

equal. Data subsets have equal sample sizes when one employs the disconnected crossed rating

plan. Section 3.1 of the current dissertation provides decision rules and formulae to determine the

need for weighting with the connected mixture rating plan. By and large, it is more likely that one

needs to apply weights when a small pool of raters (e.g, four raters) scores a large volume of

examinees (e.g., 1500) than when a larger pool of raters (e.g., eight raters) scores the same

volume of examinees.

The results of the current dissertation suggested that the use of only a few items varying

much in mean difficulty was a major source of variance, lowering the dependability of a

measurement procedure and thus leading to unreliable criterion-referenced decisions. A well

thought-out rating plan can help one confidently determine more rater-related measurement
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errors but it does not help more confidently determine the difference in mean item difficulty (i.e.,

item effect). Increasing the rater pool or sample size did not affect the estimation of the item

effect in unbalanced situations when the subdividing method was employed. Although

administering more items to examinees can reduce the item effect and increase its associated

confidence interval, this may not be a feasible resolution because adding more performance-

based items to a test will increase testing time and costs to the education system and it will also

burden the students. Increasing the homogeneity of test items is an alternative to improve the

dependability of a measurement procedure. This can be achieved by writing items similar in

difficulty. A second alternative is to shorten the length of performance-based tasks so that more

tasks could be administered in a limited testing time. A third alternative is to "increase the

correlation among task scores by avoiding tasks that require esoteric information or that involve

some unique format" (Kane, Crooks, and Cohen, 1999, p. 14).

Test developers frequently have to report scores in a short time. For instance, the

Mathematics and Sciences tests of the 1996 National Assessment of Educational Progress

(NAEP) employed 675 raters to score 8,985,583 constructed responses in 12 1/2 weeks (Authors,

1996). The sooner the test developers need to complete scoring an examination, the more raters

they need to recruit. It was shown that the subdividing method can detect the rater and item-by-

rater effects more precisely as the size of rater pool increases, holding everything else constant.

If test developers recruit more raters and obtained a considerably larger rater effect than they

obtained before increasing the rater pool, they can be certain that the mean scores assigned by the

additional raters are more variable than those assigned by the original pool of raters (i.e., the new

raters may be more lenient or harsh than the original raters). Likewise, any large increase in the

item-by—rater effect due to expanding the rater pool size indicates that the additional raters

exhibited a higher degree of inconsistency in scoring items differentially than did the original

group of raters.
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Testing agencies should be mindful of choosing a rating plan at the same time they

consider increasing the size of a rater pool. The chosen rating plan influences the precision of

quantifying measurement errors and thus the generalizability and the dependability of a

measurement procedure. lf test developers use the connected mixture rating plan and decide to

recruit more raters to score the same number of examinees, test developers ought to anticipate

that they will obtain less stable estimates for the rater, item-by-rater, person-by—rater, and

person-by—item-by—rater effects than they would with fewer raters. The reduction of precision

occurs because, as the rater pool size expands, fewer data are allocated to the crossed and MBIB

designs for estimating those effects separately from one another. The data are instead allocated to

the nested design, which does not estimate the all the effects in the crossed and MBIB designs.

Alternatively, if test developers need to use the connected mixture rating plan for logistic

reasons, they may consider converting estimates from the crossed and MBIB designs to match the

estimates from the nested design in order to utilize all the data for obtaining precise estimates.

The rater-nested-in-item effect, in the nested design, becomes an upper bound for either the rater

or the item-by-rater effects in the crossed and MBIB designs. By the same token, the person-by-

rater-nested—in-item effect becomes the upper bound for the person-by-rater or the person-by-

item-by-rater effects in the crossed and MBIB designs. If test developers provide extensive

training and monitoring to the raters with anticipation that both the rater-nested—in-item and

person-by-rater-nested—in-item effects will be low in magnitude, the connected mixture rating

plan can be used. This is because the expansion in rater pool will increase the precision of the

measurement error estimates, as the connected mixture rating plan allocates all data to estimate

the effects in a nested design.

With computer technology, the implementation of different rating plans becomes easier.

Examinees' constructed responses (e.g., essays) can be scanned into digital format and raters can

score these responses on-line so that they can focus on scoring rather than paper routing.
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Computer technology enables test developers to have full control to structure scoring sessions

and this enables them to implement a desirable rating plan prior to using the subdividing method

to analyze unbalanced data. The subdividing method always requires less computational power

than other methods that analyze the entire sparsely-filled data set. For example, instead of

analyzing a data set of 6000 examinees and 28 raters all at once, one can parse this unbalanced

data into subsets, analyze each subset, and then synthesize the results from the subsets. The

subdividing method enhances the scoring procedures for rating constructed-response items and it

serves as a means to prepare performance assessments to be reliably used in large-scale settings.

Educational values. Given the proliferation of performance assessments, many states and
 

school districts have already implemented this type of assessment on a regular basis. Well-

developed scoring rubrics can be useful, provided that raters implement them consistently and

accurately. Large-scale performance-based assessments can be used for accountability purposes

only if methods are developed to evaluate the quality of the scoring procedures (Mehrens,1992).

Training raters to consistently apply the scoring criteria described in the rubrics designed for

large-scale performance assessments, has many instructional benefits. When raters (mostly

school teachers) return to their classrooms, they will be accustomed to using those criteria.

Improving the quality of performance assessment so that it can be used for high-stakes

decisions also can help align assessments with curriculum and instruction (Pearson, 1998). Many

researchers such as Bracey (1989) reported that schools and teachers were less likely to include

materials in their classrooms if the materials would not be tested in high-stakes examinations.

Developing methods to monitor and improve the quality of performance assessment could reduce

the tensions in using this state-of-the-art assessment for classroom instruction and for high-stakes

decisions. Students will be the beneficiaries of this development, which was examined in the

current dissertation.
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Appendix A:

Equations for scores and coefficients in generalizability theory

(Adapted from Brennan, 1992)

Xp" = r1 (grand mean)

+ (11p - 11) (person effect)

+ (u, - p) (item effect)

+ (it. - t1) (rater effect)

+ (Pp- ‘ 11p ' 141+ 11) (person-by-item interaction)

+ (up, - up - p, + u) (person-by-rater interaction)

+ (p.r - u,- p,+ u) (rater x item interaction)

+ (xp..- “pi' repr- re" + new “1+ 111' it) (residual)
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Generalizability Coefficient = p2 = 20', 2

Op + 66

. . . __ _ o;
Dependability Coefficrent - (D — 2 2

Op + GA

Standard Error of Measurement = SEM ZtiO’:
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Appendix B:

Standard error for variance components in a two facet crossed design2
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(O’pfl‘e‘tnp‘onr) +2 (Uplr¢) 2

.,

((n,—I)‘<n,.—I)+2)*n,2"n,,2 (hip—Irrnpnum—IH2)‘n,“n,.-

1

0(62 ): (Uprrlc'i'firUp1)2 (O'prrfit)2 2 (37)

pl

((np-l)"(n,-l)+2)"n,2 ((np—l)’(nr—l)(nr‘l)+2)nr2

'_

0(63"): 2(gl’lffitnléfl’f £13101); 2 (38)

((np-anr—”+21%,2 ((np-l)(h,—I)(n,—I)+2)mz

l

.2 .2 2 .2 2 i

(“62): __ (.‘Lmreeii'wigrfl _ -_ __i9P'resL____ (39)
If

((np—l)‘(n,—I)+2)‘n,,2 ((np—l)"'(n,-l)(nr-llt'ZVnP2

1
2 7

(OI/Hr;U) ___ h (40).2

0(0 Irv): W

” ‘ ("p—I)(n,—I)(n,—I)+2

 

2 , . . . . . .

Equations for the standard errors were derived by substituting variance components. sample srzes. and mean squares

into the general formula reported in Brennen (1992. p. 101. 6.2.1).
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Appendix C:

Computation of misclassification rate for conjunctive decision rules

Misclassification Rate (Probability of Downward Misclassifications as a Function ofthe SEM):

= l - Correct Classification Rate

= l - {P(passing item 1 | SEM)XP(passing item 2 | SEM)X XP(passing item # i | SEM)}

= l - {[l - P(failing item 1 [SEM)] X[l - P(failing item 2 | SEM)] X... X[l - P(failing item i |

SEM)]

Example (Cronbach et al., 1997, p. 381):

Question: Assuming a hypothetical examinee had universe scores of (2.5, 2.5, 2.5), (3.5, 3.5,

3.5) and the absolute standard error of measurement (SEM) of a measurement procedure is 0.7,

what is the chance that the examinee had one or more scores less than 1.5?

Answer:

= |-[ {1-P(z < -(2.5-I .5)/.7)}3 x {I-P(Z < -(3.5-|.5)/-7)}3l

= .24

~ 25%
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Appendix D:

Illustration of an out-of-range sample correlation based on different data sets for sample

covariance and variances

 

 

 

 
 

 

 
 

  
 

 

Case Variable A Variable B i

1 { I I '

2 ' " 2 __, 2

"‘3 __ V5 _ _ ‘ if

#3:— i — 5 ‘* _ _; J;
S p . 5

6 10 10

Note: Ga and ob are based on 5 and 4 data points,

respectively. cab is based on only 3 cases that are italicized.

The correlation rab {cab/(ogob): 1.14.  
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Appendix E:

Correlations based on missing data

 

Y1 12341234----

Y2 1234---- 1234

Y3 ---- 12344321

 

Note: r12=1, rl3=1, r23=-l. Source:

Little & Rubin (1987, p.43).
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Appendix F:

The structure of a modified balanced incomplete block design

The M, a variation of the balanced incomplete block design (BIB) (e.g.,

Montgomery, 1997, p.208; Searle et al., 1992, p5), is a balanced design because every examinee

receives two ratings on both essays. The incompleteness comes into play due to the fact that one

reader grades the essay twice and yet the two other different raters grade the essay only once.

TheMdesign is specially designed for situations differing from the BIB design that the

Mfllj design has an additional factor to the BIB design. As can be seen in Figure 38 there are

two levels in the item factors (items 1 and 2). As can be observed in Figure 38 a data subset with

the M_BI§ design using raters A, B, and C, with A being the rater assign scores to both items, can

have nM. examinees. The first subscript 9 indicates that the sample size 3 refers to the number

of examinees. The second subscript 3 indicates that the data set exhibits a MBIB design and the

third subscript 1 indicates that the data set is the first set in the MBIB design. The total number of

cases that can be analyzed by the MBIB model is nM = Em“. The entire sparsely filled data

3:1

1

has a total number of cases of N = X f:

—l[:i}

"In/.5 '

l
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Figure 38: Hypothetical data subsets for the modified balanced incomplete block

 

(MBIB) design

Item 1 Item 2

Rater Rater Rater Rater Rater Rater

A B C A B C

Examinee l XMLLA XMJJB X3,1,1,2,A x3.l.l.2.c

Examinee 2 X3,3,1,._A x3,2,l,l.C X33123 X3,2.I,2.C

Examinee 3 X3,3.1,1,B X3.3,1.1,c X3.3,r.2,A X3.3.l.2.B

Examinee 4 X3_4,1,|,A X3.4.1.1.B X3,4,r,2,3 X3,4|,2,c

Examinee 5 X3.5,|‘|'A X3,5,1,1,c X3,5,1,2,A X3,5.l,2.B

Examinee 6 X3‘6,1_1,B X3,o,l,l,c X3,6,l,2,A x3.6.l.2.C

Examinee m X3.S..np‘2.,,1,A X3‘5an~2..,|‘3 X3.s:,np,2,.,2.a X3,si.np,2,..2,c    
Note: The Xs indicate scores assigned to an essay. The subscripts indicate the location of

the score, where location is defined as the structural design (first subscript), data subset

(second subscript), examinee (third subscript), item (fourth subscript), and rater (fifth

subscript) for the corresponding score.
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Appendix G:

A mathematical model to determine the size of a rater pool

To figure the number of raters needed for the entire scoring procedure, we first develop a

simple mathematical model. Equation (41) gives a generic model where the number of raters

needed is determined by two quantities, namely the total number of ratings in an administration

of a test (denoted Total workload in minutes) and the total amount of time, in minutes, that an

average rater can put in during the entire scoring procedure (denoted Total work time per rater).

Number_of_raters_needea’ = Totalgworkload_in_minutes / Total_work_timejerfater (41)

As can be observed, more raters are needed as the total workload increases while holding the

total work time per rater constant. By the same token, fewer raters are needed as the total

workload decreases.

We now define more specifically Total workload in minutes and Total work time per

rater in terms of other practical constraints such as the available time for generating and

reporting the scores. By defining those two quantities as a function of other practical constraints,

we will be able to decide how many raters are needed given the available resources (e.g., how

much time do we have until the scores must be analyzed and reported?) The definitions of those

two quantities can be modified to accommodate constraints of individual scoring centers. In

addition, the values of those two quantities can vary from one administration to the others within

an individual scoring center, depending upon policy, needs, and available resources. In the

examples that follow, we define the total workload and total work time in terms of constraints

common to essay scoring, according to anecdotal reports. Thus,

Tota1_workload_in_minutes = n_examinees X n_essays_answered_by_an_examinee X

n_ratings_per_essay X reading_time_per_essay_in_minutes. and (42)
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Total_w0rk_time_per_rater = n_t0tal_sc0ring_days X n_w0rk_hours_per_rater_per_day X

60_minutes. (43)

By substituting values into Equations (42) and (43) into (41), we reach the following

symbolic equation.

 

"p . n: 0 ”We . te

Number of raters needed = , (44)

n.1 . nh . 60

where n], = number of examinees,

n, = number of items (essays) responded to by an examinee,

nm, 2 number of ratings on each essay,

I, = average time needed to score an essay by a rater (in minute),

n.1 = number of days available to complete scoring, and

nh = average work hours per day by a rater.

For instance, let us assume 6,000 examinees took a test and each examinee responded to

two SOO-word writing prompts. Two different raters score each writing prompt. We further

assume that it takes an average of 10 minutes for a reading of an essay. Substituting this

information into Equation (44), we need 14 raters to complete the scoring in 40 workdays of 7.5

hours ((6000*2*2*10)/(40*7.5*60) = 13.3).
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Appendix H:

A multivariate regression model predicting the accuracy of variance components

Table l8:Wilks' Lamda for predicting accuracy of variance components

Multivariate Tests (Wilks' Lamda)

 

lEffect Value Hypothesis df Error df p-values

Intercept 0.006 204499.176 7 8788 0.000

N_P 1.000 0.440 7 8788 0.877

N_R 1.000 0.543 7 8788 0.802

VAR_I 0.999 0.869 7 8788 0.530 ‘

VAR_PR 1.000 0.439 7 8788 0.878

MIN_BAT 1 .000 0.602 7 8788 0.755
  

Note: N_P refers to the sample size of examinees (levels sampled 750, 1500, 3000. and 6000)

N_R refers to the size of rater pools (level tested sampled 2. 4, 8, 14, and 28)

VAR_I refers to the magnitude of the item effect (levels sampled included 0.02 and 0.11)

VAR_R refers to the magnitude of the person by rater effect (levels sampled included 0.01 and 0.1)

MIN_BAT refers to the minimum batch size imposed to data subsets (levels sampled included 12 and 24)

 W
I
T
:
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Table 19: Regression models for the accuracy of the variance components in the

disconnected crossed rating plan

 

 

 

 

 

 

 

 

 

Dependent Variable (Accuracy) Predictors Coefficients Std, Error

Person ' Intercept 1 .00 0.003 364.652 0.000

N_P 0.00 0.000 0.953 0.341

N_R 0.00 0.000 -0.291 0.771

VAR_I -0.01 0.015 -0.747 0.455

VAR_PR 0.01 0.015 0.616 0.538

MIN_BAT 0.00 0.000 -1.591 0.112

Item " Intercept 1 .00 0.064 15.739 0.000

N_P 0.00 0.000 -1.100 0.271

N_R 0.00 0.003 -0.977 0.329

VAR_I 0.09 0.356 0.264 0.792

VAR_PR -0.08 0.356 -0.214 0.831

MIN_BAT 0.00 0.003 1.027 0.305

Rater” Intercept 0.96 0.053 17.921 0.000

N_P 0.00 0.000 0.633 0.527

N_R 0.00 0.002 0.002 0.999

VAR_I 0.24 0.298 0.791 0.429

VAR_PR -0.10 0.298 -0.319 0.750

MIN_BAT 0.00 0.002 0.221 0.825

Person by Item‘ Intercept 1.00 0.002 472.431 0.000

N_P 0.00 0.000 -0.306 0.760

N_R 0.00 0.000 -1.134 0.257

VAR_I -0.01 0.012 -1.023 0.306

VAR_PR -0.02 0.012 -1.273 0.203

MIN_BAT 0.00 0.000 0.990 0.322

Person by Rater“ Intercept 1.00 0.016 61.034 0.000

N_P 0.00 0.000 -0.845 0.398

N_R 0.00 0.001 0.322 0.748

VAR_I 0.00 0.092 -0.030 0.976

VAR_PR -0.07 0.092 -0.718 0.473

MIN_BAT 0.00 0.001 0.563 0.573

Item by Rater” Intercept 0.99 0.034 28.937 0.000

N_P 0.00 0.000 -0.106 0.916

N_R 0.00 0.001 -0.033 0.973

VAR_I 0.20 0.192 1.027 0.304

VAR_PR -0.04 0.192 —0.201 0.840

MIN_BAT 0.00 0.001 0.227 0.820

Person by Item by Rater“ Intercept 1.00 0.002 656.061 0.000

N_P 0.00 0.000 0.555 0.579

N_R 0.00 0.000 0.860 0.390

VAR_I -0.01 0.009 -0.589 0.556

VAR_PR 0.00 0.009 -0.222 0.824

MINrBAT 0.00 0.000 -0.715 0.475

Note: N_P refers to the sample size of examinees (levels sampled 750. 1500, 3000, and 6000)

N_R refers to the size of rater pools (level tested sampled 2. 4, 8, 14, and 28)

VAR_I refers to the magnitude of the item effect (levels sampled included 0.02 and 0.11)

VAR_R refers to the magnitude of the person by rater effect (levels sampled included 0.01 and 0.1)

MIN_BAT refers to the minimum batch size imposed to data subsets (levels sampled included 12 and 24)

‘: R Squared = .001 (Adjusted R Squared = .000)

”2 R Squared = .000 (Adjusted R Squared = .000)   
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Computer program: Codes for data simulation analysis in SPSS

Appendix I:

*Yiiiiiiiiiiifitii’fiiitiifiif*fi‘kfi‘kffifi*iiiitiiiiiii‘kitffii‘ki’fi*fi**f*fi**t****

* Section A: Generate Full Data Sets with No Missing Data

*ttiiiiiiitiiiii‘k‘ki‘ki‘kfi*‘kiifi‘kflitiitiii'iiffiitfiftii’i9*iti'iiii'ti****************

define LOlFDMOl ( n_p !charend('l')

/n_i !charend('l')

/n_r !charend('|')

/n_pi !charend('l')

/n_pr !charend('l')

/n_ir !charend('l')

/n_ib !charend('|')

/trial !charend('|')

/var_p !charend('|')

/var_i !charend('l')

/var_r !charend('|')

/Var_pi !charend('l')

/var_pr !charend('l')

/var_ir !charend('l')

/var_pir !charend('l')

/ratepan !charend('l')

/dir — !charend('l')

/FN = !charend('|')).

set mxmemory = 124000 workspace = 512.

show workspace mxmemory.

set format=f8.2.

input program.

loop p_id=l to !n_p.

loop i_id=l to !n_i.

loop r_id=l to !n_r.

compute ID=$CASENUM

leave p_id.

leave i_id.

leave r_id.

end case.

end loop.

end loop.

end loop.

end file.

end input program.

execute.

**** Compute Ids.

save outfile = !quote(!concat(

!dir,!fn,'_',!ratepan,'_i',!var_i,' pr',!var pr,‘ ib',

trial,'.sav')) _ _ —

/keep id p_id i_id r_id

/compressed.

**** p (Person facet).

input program.

loop p_id = l to !n_p. /* !n p.

compute p_score=rv.normal(0,sqrt(!var p)). /* !var p.

end case. _ —

end loop.

end file.

end input program.

save outfile = 'C:\temp\junk p.5av'.

execute. —
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**** i (Item facet).

input program.

loop i_id = l to !n_i.

compute i_score=rv.normal(O,sgrt(!var_il).

end case.

end loop.

end file.

end input program.

save outfile = ’c:\temp\junk_i.sav'.

execute.

**** r (Rater facet).

input program.

loop r_id = l to !n_r.

compute r_score=rv.normal(0,5grt(!var_r)).

end case.

end loop.

end file.

end input program.

save outfile = 'c:\temp\junk_r.sav'.

execute.

**** pi (Person by Rater facet).

input program.

loop p_id = l to !n_p.

leave p_id.

loop i_id = 1 to !n_i.

compute pi_score=rv.normal(O,sgrt(!var_pi)).

end case.

end loop.

end loop.

end file.

end input program.

save outfile = 'c:\temp\junk_pi.sav'.

execute.

**** pr (Person by Rater facet).

input program.

loop p_id = l to !n_p.

leave p_id.

loop r_id = l to !n_r.

compute pr_score=rv.normal(0,5qrt(!var_pr)).

end case.

end loop.

end loop.

end file.

end input program.

save outfile = 'c:\temp\junk_pr.sav'.

execute.

**** ir (Item by Rater facet).

input program.

loop i_id = 1 to !n_i.

leave i_id.

loop r_id = l to !n_r.

compute ir_score=rv.normal(O,sqrt(!var_ir)).

end case.

end loop.

end loop.

end file.

end input program.

save outfile = 'c:\temp\junk ir.sav'.

execute. _

/* !n_i.

/* !var_i.

/* !n_r.

/* !var_r.

/* !n_i.

/* !var_pi.

/* !n_p.

/* !n_r.

/* !var_pr.

/* !n_i.

/* !n_r.

/* !var_ir.

**** pir (Person by Item by Rater Plus Residuals facet).
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input program.

loop p_id = l to !n_p. /* !n_p.

leave p_id.

loop i_id = l to !n‘i. /* !n_i.

leave i_id.

loop r_id = 1 to !n_r. /* !n_r.

compute id = Scasenum.

compute pir_scor=rv.normal(0,sgrt(!var_pir)). /* !var_pir.

end case.

end loop.

end loop.

end loop.

end file.

end input program.

save outfile = 'c:\temp\junk_pir.sav'.

execute.

!enddefine.

ii*******t******+*itiii'i'tit*fittftiiii'fi'tfi'it‘kti*iiffit‘kiiiirfiii*‘kfiiiir'k'tiitiiff‘ki'k‘ki

it

* Section 8: Create Missing Data on the Full Data Sets

tittiiiitiiii‘kiifiititit*iiiiiiiitiffitii‘kiiiii‘kiiii*i'iii‘hiiii'kiiiifi‘k‘kfiiiiii'iiiiii‘k

** Section 81: Create missing data for the 'Disconnected Crossed Design', also

named Rating Plan #1.

define LOlMDROl (n_p = !charend('l')

/n_r = !charend('l')

/n_pi = !charend('l’)

/n_px2 = !charend(‘l’)

/n_ib = !charend('l')

/n_bszx4 = !charend('l')

/var_i = !charend('l')

/var_pr = !charend('l')

/ratepan = !charend('l')).

* Create missing data pattern exhibiting a Disconnected Crossed Rating Plan.

* create a file to randomly assign raters to batches without replacement. Call this

file 'Filel'.

* need to change the following as a stand-alone macro.

* Rater file.

input program.

loop rater_id = l to !nfir.

compute ranordOl = rv.uniform(0,l).

end case.

end loop.

end file.

end input program.

sort case by ranordOl.

if (Scasenum =1) reading=l.

if (Scasenum =2) reading=2.

if (missing (reading)) reading = laglreading,2).

vector read (2).

compute read(reading) = rater_id.

if ($casenum=1 or $casenum=2) subsetid=1.

if (missing(subsetid)) subsetid=lag(subsetid,2)+1.

AGGREGATE

/OUTFILE= 'c:\temp\junk_r_m.sav'

/presorted

/BREAK=subsetid

/read1 'who read this batch?’ = MEAN(readl) /read2 'who read this batch?‘ =

MEAN(read2).

execute.

* person file.

input program.

loop p_i_id = l to !n_pi.
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compute rand_ord = rv.uniform(0,l).

end case.

end loop.

end file.

end input program.

do if (Scasenum = 2).

recode rand_ord (else = sysmis).

end if.

do if ($casenum > 2 and modl$casenum,2) = O).

compute rand_ord = lag(rand_ord,2).

end if.

execute.

if (missing(rand_ord)) rand_ord = lag(rand_ord).

execute.

if (Scasenum = l or Scasenum = 2) p_id = l. /* p_id = person id.

if (missing(p_id)) p_id = lag(p_id,2) + 1.

sort case by rand_ord.

if (Scasenum <=!n_bszx4) subsetid = 1.

if (missing(subsetid)) subsetid = lag(subsetid,!n_bszx4) +1.

execute.

Save outfile ='c:\temp\junk_p_m.sav'.

* match person and rater files.

match files file='c:\temp\junk_p_m.sav'

/file = 'c:\temp\junk_r_m.sav’

/by subsetid.

if (missing(read1)) readl = lag(read1).

if (missing(read2)) read2 = lag(read2).

execute.

* convert 'readl' and read2' into casel and case2.

compute casel = (p_i_id —1)* !n_r + readl.

compute case2 = (p_i_id —1)* !n_r + read2.

compute select = l.

execute.

vector x=casel to case2.

loop j=l to 2.

compute id = x(j).

xsave outfile = 'c:\temp\junk.sav'

/keep id select subsetid readl read2.

end loop.

execute.

get file='c:\temp\junk.sav'.

sort case by id.

save outfile='c:\temp\junk.sav'.

execute.

MEANS

TABLES=read1 read2 BY subsetid

/CELLS MEAN COUNT STDDEV.

!enddefine.

* Section 82: Create missing data for the 'Connected Crossed Design' or the

'Mixture Design'.

define LOlMDMOl (n_hf_rt = !charend(‘l')

/n_ib = !charend('l’)

/n_p = !charend('l')

/n_r = !charend('l')

/ratepan = !charend('l')

/var_i = !charend('l')

/var_pr = !charend('l')).

input program.

loop 1: 1 to !n_hf_rt.
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end case.

end loop.

end file.

end input program.

* Control the batch size.

loop j = l to !n_hf_rt by !n_ib.

* where !n_ib = !n_i * batch_size = e.g., 24 = 2*12.

do if $casenum = j.

compute casel = trunc(rv.uniform(Scasenum*!n_r—(!n_r—1),$casenum*!n_r+l)).

loop.

compute case2 = trunc(rv.uniform($casenum*!n_r—(!n_r-1),Scasenum*!n_r+1)).

end loop if (casel <> case2).

compute select=1.

end if.

do if $casenum = j+1.

do if (!ratepan = 2). /* Rating Plan #2: Connected Crossed

Design.

if missing(casel) casel = lag(case1)+!n_r.

if missing(case2) case2 = lag(case2)+!n_r.

end if.

do if (!ratepan = 3). /* Rating Plan #3: Mixture Design.

compute casel = trunc(rv.uniform($casenum*!n_r-(!n_r-l),$casenum*!n_r+1)).

loop.

compute case2 = trunc(rv.uniform(Scasenum*!n_r—(!n_r—1),$casenum*!n_r+1)).

end loop if (casel <> case2).

compute select=l.

end if.

end if.

end loop.

if (missing(case1)) casel = lag(casel,2) + 2 * !n_r.

if (missing(case2)) case2 = lag(case2,2) + 2 * !n_r.

if (missing(select)) select = lag(select).

execute.

vector x=case1 to case2.

loop j=l to 2.

compute id = x(j).

xsave outfile = 'c:\temp\junk.sav'

/keep id select.

end loop.

execute.

get file='c:\temp\junk.sav'.

sort case by id.

save outfile='c:\temp\junk.sav'.

execute.

!enddefine.

* Section 83: Match the rater selection file with the full data matrix (with only

Ids) generated in section 01.

(define LOlMDJOl (n_p = !charend('l')

/n_r = !charend('l')

/n_ib = !charend('l')

/var_i = !charend('l')

/var_pr = !charend('l')

/ratepan = !charend('l')

/trial = !charend('l')

/dir = !charend('l')

/fnf = !charend('l')

/fnm = !charend('l‘)).
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it

get

file=!QUOTE(!CONCAT(!dir,!fnf,'_',!ratepan,'_i',!var_i,'_pr',!var_pr,'_ib',!n_ib,'_

',!n_p,'_',!n_r,'_',!trial,'.SAV') ).

* a 11/9/98: Need to separate the above section (Section BB) with the following

section

* as two independent macros.

* Merge the full data set with the file containing the ID variable indicating which

case to select.

* 83a) Merge the full data matrix IDs with the file containing selected rater Ids.

match files file=!QUOTE(!CONCAT(

!dir,!fnf,'_',!ratepan,‘_i',!var_i,'_pr',!var_pr,‘_ib‘,!n_ib,'_',!n_p,'_',!n_r,'_',

!trial,'.SAV') )

/file='c:\temp\junk.sav'

/by id.

execute.

save

outfile=lQUOTE<!CONCAT(!dir,!fnm,'_',!ratepan,'_i',lvar_i,'_pr',!var_pr,'_ib',!n_ib

,'_',!n_p,'~',!n_r,'_',!trial,'.SAV') ).

execute.

select if (~missing(select)).

save outfile = 'c:\temp\junk_id.sav'.

exe.

* 83b) Merge the selected IDs with the sample data from each facet.

get file = 'c:\temp\junk_id.sav'.

sort case by p_id.

match files file = *

/file = 'c:\temp\junk_p.sav'

/by p_id.

if missing(p_score) p_score =lag(p_score).

sort case by i_id.

match files file = *

/file = 'c:\temp\junk_i.sav'

/by i_id.

if missing(i_score) i_score =lag(i_score).

sort case by r_id.

match files file = *

/file = 'c:\temp\junk_r.sav'

/by r_id.

select if (~missing(p_id) and ~missing(i_id)).

if missing(r_score) r_score =lag(r_score).

sort case by p_id i_id.

match files file 2 *

/file = 'c:\temp\junk_pi.sav'

/by p_id i_id.

if missing(pi_score) pi_score =lag(pi_score).

sort case by p_id r_id.

match files file = *

/file = 'c:\temp\junk_pr.sav'

/by p_id r_id.

if missing(pr_score) pr_score =lag(pr_score).

select if (~missing(i_id)).

sort case by 1 id r id.

match files file = 7

/file = 'c:\temp\junk_ir.sav'

/by i_id r_id.

if missing(ir_score) ir_score =lag(ir_score).

select if (~missing(p_id)).

sort case by p_id i_id r_id.
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match files file = *

/file = 'c:\temp\junk_pir.sav'

/by p_id i_id r_id.

if missing(pir_scor) pir_scor =lag(pir_scor).

select if (~missing(p_score1).

compute ttlscore = 3.5 + p_score + i_score + r_score + pi_score + pr_score +

ir_score + pir_scor.

save outfile = 'c:\temp\junk_mer.sav'.

exe.

* 5) Expand the missing data set so that it would have an ID for both missing and

nonmissing data.

match files file =
!QUOTE(gcoNCAT(!dir,!fnfr'_'r!ratepanr'_i'l!var—i"-pr"!var—pr"_ib"!n—ib"_"!n—

Pr' ',!n r,‘ ',!trial,'-SAV') I

/file = 'c:\temp\junk_mer.sav'

/by id.

exe.

save

outfile=lQUOTE(!CONCAT(!dir,!fnm,'_',!ratepan,'_i',!var_i,'_pr',!var_pr,'_ib‘,!n_ib

,'_',!n_p,'_',!n_r,'_',!trial,'.SAV') ).

execute.

!enddefine.

*****************‘§*****************************************************************

*

* Section C: Applying the Parsing Method

***f***********ii'k‘ki'fir*i‘fi‘ki***********i***‘i’i’i‘*i'i’*‘k'k‘k*****************************‘k'i'

*

it _____________________________________________________________________

* Section C

* Stage 1: Modeling = Parsing

* _____________________________________________________________________

* C1: Subsetting data into small subsets.

define LOISDMOI (n_p = !charend('l’)

/n~r = !charend('l')

/n_ib = !charend('l')

/ratepan = !charend('l‘)

/var_i = !charend('l')

/var_pr = !charend('l')

/trial = !charend('l')

/itm_ind = !charend('l')

/r_lbl = !charend('l')

/dir = !charend('l')

/fnm = !charend('l')

/fns = !charend('l‘)).

*get

file=!QUOTE(!CONCAT(!dir,!fnm,'_',!ratepan,'_i',!var_i,'_pr‘,!var_pr,'_ib',!n_ib,'_

',!n_p,'_',!n_r,'w',!trial,'.SAV') ).

*execute.

vector r (!n_r).

compute r(r_id)=ttlscore.

recode r1 to !concat("r",!n_r) (sysmis:O) (else=1).

*missing values r1 to r4 (0).

!do !r=l !to !n_r.

do if (i_id=2 and !concat("r",!r)=1).

recode !concat("r",!r) (1:2) (else=copy).

end if.

!doend.

execute.

AGGREGATE

/OUTFILB='C:\Temp\junk.sav'

/BREAK=p_id
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/rl to !concat(”r",!n_r) = MEAN(r1 to !concat("r",!n_r)).

get file='C:\Temp\junk.sav'.

sort case by r1 to !concat("r",!n_r) (d).

*lconcat("r",!n_r).

compute samefi1e=O.

do repeat rater=rl to !concat("r",!n_r).

if (lag(rater)=rater) samefi1e=samefile+l.

leave samefile.

end repeat.

do if ($casenum=l).

compute file_id=1.

end if.

execute.

do if ($casenum>l and samefile=!n_r).

compute file_id=lag(file_id).

else if ($casenum>l and samefile<!n_r).

compute file_id=lag(file_id)+l.

end if.

execute.

******* Create a second file identification variable 'file_id2'

data subset belonging to the same type *******

recode rl to !concat(‘r',!n_r) (O = 0) (else = 1) into r_l to !concat('r_',!n_r).

)sort case by r_l to !concat('r_',!n_r

compute samefilZ = 0.

do repeat rater = r_l to !concat('r_',!n_r).

if (lag(rater)=rater) samefil2 = samefil2 + 1.

leave samefil2.

end repeat.

do if ($casenum=1).

compute file_id2=1.

end if.

execute.

do if ($casenum>1 and samefil2=!n_r).

compute file_id2=lag(file_id2).

else if ($casenum>1 and samef112<!n_r).

compute file_id2 = lag(file_id2)+1.

end if.

execute.

*‘k‘k‘ki‘k'k

*rename

missing

compute

variable labels design

end block ****

\* just added 12/14/98.variables (file_id2 = subsetid).

values r1 to !concat("r",!n_r) (0).

design=nvalid<r1 to !concat("r",!n_r)).

value labels design 2 ’Crossed' 3 'Mixed'

sort case by p_id.

missing values r1 to !concat("r",!n_r) ().

'types of design in which the case will be analyzed'.

4 'Nested'.

save outfile='C:\Temp\junk1.sav'.

execute.

* Take out the '*' in the next line if not running production mode.

* frequencies variables = design.

match files file=lQUOTE(!CONCAT(

!dir,!fnm,' ',!ratepan,'_i',!var_i,'_pr',!var_pr,'_ib',!n_ib,'_',!n_p,‘

!trial,'.SA§'))

/file='C:\Temp\junkl.sav‘

/by p_id.
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do repeat var=rl to design.

if missing(var) var=lag(var).

end repeat.

execute.

sort case by file_id design (d).

split file by file_id design.

* Take out the '*' in the following line if not running production mode.

* descriptive variables=file_id file_id2.

split file off.

execute.

string r_a_1 to !concat("r_a_",!n_r) (a4).

execute.

!let !RAT_IND=!n_r.

!DO !VAR_ITM= l !to !ITM_IND.

!Do !VAR_RAT = l !to !RAT_IND.

compute #i = !VAR_ITM/!RAT_IND/2.

if ((!concat('r',!VAR_RAT) = #i) and !VAR_ITM= 1) !concat('r_a_',!VAR_RAT) =

!Quote(!concat('S',!VAR_RAT,'a')).

if ((!concat('r',!VAR_RAT) = #i) and !VAR_ITM= 2) !concat('r_a_',!VAR_RAT) =

!Quote(!concat('S',!VAR_RAT,'b')).

if ((!concat('r',!VAR_RAT) = #i) and !VAR_ITM= 3) !concat('r_a_',!VAR_RAT) =

!Quote(!concat('D’,!VAR_RAT)).

!DoEnd.

!DoEnd.

string Com_r_lb !concat('(a',!r_lbl,')').

Variable labels Com_r_lb ’Rater Identification'.

vector aa = r_a_1 to !concat('r_a_',!n_r).

loop #i=l to !n_r.

compute Com_r_lb = concat(rtrim(ltrim(Com_r_lb)),rtrim(ltrim(aa(#i)))).

end loop.

execute.

AUTORECODE

VARIABLES: Com_r_lb /INTO Com_r

/PRINT.

FILTER OFF.

USE ALL.

SELECT IF (select=l).

save

outfile=lQUOTE(!CONCAT(!dir,!fns,'_',!ratepan,'_i',!var_i,'_pr',!var_pr,‘ ib',!n ib

,'_',!n_p,'_',!n_r,'_',!trial,'.SAV')) _ —

/drop = r1 to !concat("r",!n_r) r_l to !concat("r_",!n_r) r_a l to

!concat("r_a_",!n_r). _

execute.

do if $casenum > 1.

select if (file_id2 <> lag(file_id2)).

end if.

Sort case by file_id2.

save outfile = 'c:\temp\junk_raterid_c&m.sav'

/keep file_id2 Com_r_lb com_r.

execute.

get file =

!QUOTE(!CONCAT(!dir,!fns,'_',!ratepan,'_i',!var_i,'_pr',!var_pr,'_ib',!n_ib,'_',!n_

p,'_',!n_r,'_',!trial,'.SAV')).

do if $casenum > 1.

select if ((file_id <> lag(file_id)) and design = 4).

end if.

Sort case by file_id.

save outfile = 'c:\temp\junk_raterid_n.sav'

/keep file_id Com_r_lb com_r.

execute.

!enddefine.
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‘k _____________________________________________________________________

* Section C

* Stage 2: Estimating (Variance components for subsets of data)

* _____________________________________________________________________

define LOIVCOI (n_p = !charend('l')

/n_r = !charend('l')

/n_ib = !charend('l')

/var_i = !charend('l')

/var_pr = !charend('l')

/ratepan = !charend('l')

/trial = !charend(’l')

/dir = !charend('l')

/fns = !charend('l')

/fnv = !charend('l‘)

/fnd = !charend('l')).

*get file.

get file =

!QUOTE(!CONCAT(!dir,!fns,'_',!ratepan,'

p,'_',!n_r,'_',!trial,'.SAV')).

Execute.

AGGREGATE

/OUTFILE='C:\Temp\junk_f_l.sav'

/BREAK=file_id2

/design = MAX(design)

/N_perset=N.

AGGREGATE

/OUTFILE='C:\Temp\junk_f_2.sav'

/BREAK=file_id

/design = MAX(design)

/N_perset=N.

USE ALL.

COMPUTE filter_$=(design = 2 or design =3).

VARIABLE LABEL filter_$ 'design = 2 or 3 (FILTER)'.

VALUE LABELS filter_$ 0 'Not Selected' 1 'Selected'.

FORMAT filter_$ (fl.O).

FILTER BY filter_$.

EXECUTE

Sort case by file_id2.

Split file by file_id2.

VARCOMP

ttlscore BY p_id i_id r_id

/RANDOM = p_id i_id r_id

/OUTFILE = VAREST ('c:\temp\junkl.sav')

/METHOD = MINQUE (0)

/DESIGN = p_id i_id r_id p_id*i_id p_id*r_id

/INTERCEPT = INCLUDE

*VARCOMP

ttlscore BY p_id i_id r_id

/RANDOM = p_id i_id r_id

/OUTFILE = VAREST ('C:\temp\junkl.sav')

/METHOD = REML

/CRITERIA = ITERATE(50)

/CRITERIA = CONVERGE(1.0E-8)

/DESIGN = p_id i_id r_id p_id*i_id p_id*r_id

/INTERCEPT = INCLUDE

Split file off.

USE ALL.

COMPUTE filter_$=(design = 4).

VARIABLE LABEL filter_$ 'design = 4 (FILTER)'.
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VALUE LABELS filter‘S 0 'Not Selected' 1 ’Selected'.

FORMAT filter_$ (£1.01.

FILTER BY filter_$.

EXECUTE

Sort case by file_id.

Split file by file_id.

VARCOMP

ttlscore BY p_id i_id r_id

/RANDOM = p_id i_id r_id

/OUTFILE = VAREST ('c:\temp\junk2.sav')

/METHOD = MINQUE (0)

/DESIGN = p id i_id r_id(i_id) p_id*i_id

/INTERCEPT = INCLUDE

*VARCOMP

ttlscore BY p_id i_id r_id

/RANDOM = p_id i_id r_id

/OUTFILE = VAREST ('c:\temp\junk2.sav')

/METHOD = REML

/CRITERIA = ITERATE(50)

/CRITERIA = CONVERGE(1.0E-8)

/DESIGN = p_id i_id r_id(i_id) p_id*i_id

/INTERCEPT = INCLUDE

Split file off.

filter off.

get file ='C:\Temp\junk_f_1.sav'.

sort case by file_id2.

select if (design = 2 or design =3).

save outfile =‘C:\Temp\junk_f_l.sav'.

get file ='C:\Temp\junk_f_2.sav'.

sort case by file_id.

select if (design = 4).

save outfile ='C:\Temp\junk_f_2.sav'.

get file ='C:\Temp\junkl.sav'.

sort case by file_id2.

save outfile ='C:\Temp\junkl.sav'.

get file ='C:\Temp\junk2.sav'.

sort case by file_id.

save outfile ='C:\Temp\junk2.sav'.

match files file ='C:\Temp\junk1.sav'

/file = 'C:\Temp\junk_f_l.sav'

/file = 'C:\temp\junk_raterid_c&m.sav'

/by file_id2.

select if (nvalid(vcl,vc2,vc3,vc4,vc5,vc6,vc7)=7).

save outfile =

!QUOTE(!CONCAT(!dir,!fnv,'_',!ratepan,‘_i',!var_i,'_pr',!var_pr,'_ib',!n_ib,'_',!n_

p,’_',!n_r,'_',!tria1,'_','c&m.sav'))

*sort case by design.

*split file by design.

*descriptive variables = vcl vc2 vc3 vc4 vc5 vc6 vc7.

*Frequencies variables com_r.11

match files file ='C:\Temp\junk2.sav'

/file = 'C:\Temp\junk_f_2.sav'

/file = 'c:\temp\junk_raterid_n.sav'

/by file_id.

select if (nvalid(vcl,vc2,vc3,vc4,vc5)=5).

save outfile =

!QUOTE(!CONCAT(!dir,!fnv,'_',!ratepan,'_i',!var_i,'_pr',!var_pr,'_ib',!n_ib,'_',!n_

p,'_',!n_r,'_',!trial,'_','n.SAV')).

*sort case by design.
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*split file by design.

*descriptive variables

*Frequencies variables

*execute.

vcl vc2 vc3 vc4 vc5.

com_r.

Add Files File =

!QUOTE(!CONCAT(!dir,!fnd,'_',!ratepan,'_i',!var_i,'_pr',!var_pr,'_ib',!n_ib,'_',!n

p,'_',!n_r,'c&m.SAV'))

/Fi1e =

!QUOTE(!CONCAT(!dir,!fnv,'_',!ratepan,'_i',!var_i,'_pr',!var_pr,'_ib',!n_ib,'_’,!n_

p,'_',!n_r,'_',!trial,'_','c&m.sav'))

/In = !concat(‘from',!trial).

if (!concat(‘from',!tria1)=l) trial=ltrial.

save outfile =

!QUOTE(!CONCAT(!dir,!fnd,'_',!ratepan,‘_i',!var_i,'_pr',!var_pr,'_ib’,!n_ib,'_',!n

p,'_',!n_r,'c&m.SAV'))

/drop = !concat(‘from',!trial).

erase file =

!QUOTE(!CONCAT(!dir,!fnv,'_',!ratepan,'_i',!var_i,'_pr',!var_pr,’ ib',!n_ib,'_',!n

p,'_',!n_r,'_',!trial,'_','c&m.sav')).

Add Files File =

!QUOTE(!CONCAT(!dir,!fnd,'_',!ratepan,'_i',!var_i,'_pr',!var_pr,'_ib',!n_ib,'_',!n

p,‘ ',!n_r,'n.SAV'))

/File =

!QUOTE(!CONCAT(!dir,!fnv,'_',lratepan,'_i',!var_i,'_pr',!var_pr,'_ib',!n_ib,'_',!n_

p,'_',!n_r,'_',!trial,'_','n.sav'))

/In = !concat(‘from',!trial).

if (!concat(‘from',!trial)=l) trial=ltrial.

save outfile =

!QUOTE(!CONCAT(!dir,!fnd,'_',!ratepan,‘_i',!var_i,'_pr',!var_pr,'_ib',!n_ib,'_',!n

p,'_',!n_r,'n.SAV'))

/drop = !concat(‘from',!trial).

erase file =

!QUOTE(!CONCAT(!dir,!fnv,'_',!ratepan,'_i',!var_i,'_pr',!var_pr,' ib',!n_ib,'_',!n

p,'_',!n_r,'_',!trial,'_','n.sav')).

!enddefine.

tifiii*ffifitiiiiifitftttitffittifftfififiiiit++t§+tiitflfiitttffiitffiifiitittfitttitttt

i

* .

Mega Macro Execution

fitiiitifitititifiitifititififitiittiiittifiiiffftfitiiftttft’tititetfitfiffittffitfiiit

i

preserve.

set errors = off.

set messages = off.

set printback = off.

set mxloops = 10000.

data list / FILE_ID2 1-5 rowtype_ 6—13 (A) varname_ 14-21 (A) vcl 22-26 vc2 27-31

vc3 32-36 vc4 37—41 vc5 42-46 vc6 47-51 vc7 52-56.

begin data

-999 EST . -999 -999 -999 —999 —999 -999 -999

end data.

Save outfile = 'c:\temp\junk_vcdump.sav'.

* definitions for macro arguments:

* n_bszx4 = n_p / n_r ’ 4 - ( mod (n_p / n_r ' 4, 4,;

define LOZmegOl (macrofis = !charend('l')

/seed no = !charend('l')

/sect01 = !charend(‘l')

/save01 = !charend('l')

/sect02 = !charend('l'l

/save02 = !charend('l')

/sect03 = !charend('l')

/save03 = !charend"l')
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/sect04 = !charend ('l')

/saveO4 = !charend('l')

/n p = !charend('l')

/n—i = !charend('l')

/n_r = !charend('l')

/n—pi = !charend('l')

/n_pr = !charend('l')

/n_ir = !charend('l')

/n_px2 = !charend('l')

/n:ib = !charend('l')

/n_bszx4 = !charend('l')

/var_p = !charend('l')

/var i = !charend('l')

/var:r = !charend('l')

/var_pi = !charend('l')

/var_pr = !charend('l')

/var_ir = !charend('l')

/var_pir = !charend('l')

/b_trial = !charend('l')

/e_trial = !charend('l')

/ratepan = !charend('l')

/itm_ind = !charend('l')

/r_lbl = !charend('l')

/dir = !charend('l')

/fnf = !charend('l')

/fnm = !charend('l')

/fns = !charend('l')

/fnv = !charend('l')

/fnd = !charend('l')).

Get file = 'c:\temp\junk_vcdump.sav'.

save outfile

=!QUOTE(!CONCAT(!dir,!fnd,'_',!ratepan,'_i',!var_i,'_pr',!var_pr,'_ib',!n_ib,'_',!n

p,' ',!n_r,'c&m.SAV')).

save outfile

=!QUOTE(!CONCAT(!dir,!fnd,'_’,!ratepan,'_i',!var_i,'_pr',!var_pr,'_ib',!n_ib,'_',!n

_p,'“',!n_r,'n.SAV')).

Set mprint=lmacro_s.

Set seed = !seed_no.

!do !trial=!b_trial !to !e_trial.

***** Exe Section 1.

!If (!sectOl=l) !then.

LOIFDMOI n_p = !n_p l

n_i = !n_I 1

n_r = !n_r |

n_pi = !n_pi 1

_pr = !n_pr |

n_ir = !n_ir l

n_ib = !n_ib |

ratepan = !ratepan I

trial = !trial I

var_p = !var_p I

var_i = !var_I l

var_r = !var_r I

var_pi = !var_pi l

var_pr = !var_pr I

var_ir = !var_ir |

var_pir = !var_pir l

dir = !dir I

EN = !FNF l.

!ifend.

***** Exe Section 2.

!If (!sect02=l) !Then.

!If (!ratepan=l) !Then.
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LOIMDROI

!ifend.

!If (!ratepan=2

LOlMDMOl

!Ifend.

ratEpan

nflP

n_hf_rt

n_ib

n_r

var_i

var_pr

ratepan

!or !ratepan=3)

ll

!n_p

!n_r

!n px2

!n_pi

!n_ib

!n_bszx4

!var_pr

!var_i

!ratepan

!Then.

!n_p

!n_px2

!n_ib

!n_r

!var_i

!var_pr

!ratepan

* create a macro call to execute the section

* file with the score file.

LOIMDJOI

!Ifend.

n_P

n_r

n_ib

var_i

var_pr

ratepan

trial

dir

fnf

fnm

***** Exe Section 3.

!If (!sect03=l)

LOlSDMOl

!Ifend.

n_P

nwr

n_ib

var_i

var_pr

ratepan

trial

itm_ind

r_lbl

dir

fnm

fns

***** Exe Section 4.

!If (!sect04=l) !Then.

LOlVCOl

!Ifend.

n_P

n_r

n_ib

var_i

var_pr

ratepan

trial

dir

fns

fnv

fnd

!if (!save01=0) !then.

!Then.

!n_p

!n_r

!n_ib

!var_i

!var_pr

!ratepan

!trial

!dir

!fnf

!fnm

!n_p

!n_r

!n_ib

!var_i

!var_pr

!ratepan

!trial

litm_ind

ir_lbl

!dir

!fnm

!fns

!n_p

!n_r

!n_ib

!var_i

!var_pr

!ratepan

!trial

!dir

!fns

!fnv

!fnd
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erase file =

!quote(!concat(!dir,!fnf,'_',!ratepan,'_i',!var_i,'_pr',!var_pr,'_ib',!n_ib,'_',!n_

pr '_'r !n_rr '_', Strial,'.saV')).

!ifend.

!if (!save02=0) !then.

erase file

=!QUOTE(!CONCAT(!dir,!fnm,’_',!ratepan,'_i',!var_i,'_pr',!var_pr,'_ib',!n_ib,'_',!n

_p,'_’,!n_r,'_',!tria1,'.SAV')).

!ifend.

!if (!saveO3=O) !then.

erase file =

!QUOTE(!CONCAT(!dir,!fns,'_',!ratepan,‘_i',!var_i,'_pr',!var_pr,'_ib',!n_ib,'_',!n_

p,' ',!n_r,'_',!trial,'.SAV')).

!ifend.

script "c:\cc21\Delete Navigator Items (All).SBS".

!doend.

restore.

exe.

!enddefine.

l \ledn'vekhris‘dazBig DS'tc2l\now‘wCZlgPCl‘xcellgPCOLC SPS
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