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ABSTRACT

BIFURCATION DYNAMICS AS A CAUSE OF THE RECENT VOLTAGE

COLLAPSE PROBLEMS ON THE WSCC SYSTEM

By

Shuzhen Liu

The voltage collapse problem is considered as the principal threat to power system

stability, security and reliability in many utilities around the world. Recently, three severe

blackouts occurred on the WSCC power system, which have caused loss of power for

millions of customers. Although reasonably accurate models of that complex system

have been assembled and can reasonably accurately capture the sequence of events that

occurred, there is no clear diagnostic theoretical explanation of what occurred and why.

This dissertation is the first attempt to understand the dynamics through sensitivity

analysis.

This work consists of three parts of theoretical explanations of the cause of the recent

blackouts on the WSCC system.

First, a theoretical analysis and simulation study of the excitation control system,

especially the maximum excitation limiter, is presented. This part explains why

maximum excitation limiters fail to reduce field current limit violations when large inter-

area oscillations are present, and why this can lead to switching from an AC regulator to

a DC regulator excitation control, and finally to tripping of the generator off the system.

Secondly, voltage PV controllability, load PV controllability, voltage PQ

controllability and load PQ controllability are defined. The conditions on sensitivity

matrices SQGE’ SQGQL , SQL y and 5,4; that indicate when each type of controllability is



retained and when it is lost, are derived. Furthermore, it is proven and confirmed through

simulation that the occurrence of loss of different controllabilities has certain patterns and

that loss of controllability is affected by the load characteristics.

Finally, a theoretical justification and simulation study for the dynamic response to

bifurcation sequences associated with voltage collapse are presented. This part

establishes that a saddle node bifurcation followed by an inevitable singularity induced

bifurcation produces the characteristic negative voltage spike observed on the WSCC

system blackouts.

In summary, the purpose of the sensitivity analysis is to identify the subsystem

which initially experiences instability, to identify why this instability occurs and how this

instability could cascade to other subsystems, and to identify what can be done to cure the

instability problems and when and where the cure should be applied. This dissertation

provides both diagnostic theoretical justifications and comprehensive simulation results

on the dynamic phenomena similar to those observed during the recent WSCC system

blackouts.



To my mother, father and daughter

iv



ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisor, Professor Robert A.

Schlueter, for his valuable academic guidance, continuous spiritual encouragement and

financial support throughout the time taken to complete this work. Without his great help,

I would not have reached this point today.

Special thanks also go to Professor Hassan Khalil, Professor Steven Shaw and

Professor Chichia Chiu for their intellectual contributions to this dissertation.

I am indebted to my husband Zhibo for his continuous assistance.

I also wish to thank Dr. Khadija Ben Kilani for her helping hand and friendship.



TABLE OF CONTENTS

 

 

DEDICATION ............................................................................................................... iv

ACKNOWLEDGMENTS ............................................................................................... v

LIST OF TABLES ......................................................................................................... ix

LIST OF FIGURES......................................................................................................... x

CHAPTER 1 INTRODUCTION - - -- - - -1

1.1 Voltage Stability ............................................................................. l

1.2 WSCC System Blackouts ................................................................ 2

1.3 Excitation Control System ............................................................... 7

1.4 Bifurcations in Power System ........................................................ 11

1.5 Hypotheses .................................................................................... 18

1.6 Relevant Literatures ...................................................................... 22

CHAPTER 2 POWER SYSTEM MODELING - .............. 23

2.1 A General Power System Model .................................................... 23

2.2 Excitation Control System Model .................................................. 25

2.3 Maximum Excitation Limiter Model ............................................. 26

2.4 Power System Load Model ............................................................ 27

CHAPTER 3 PROBLEM ANALYSIS ........................................................................ 31

3.1 Disablement of Current MXL due to Oscillation ............................ 32

3.1.1 Theoretical Analysis .......................................................... 32

3.1.2 Analysis ofBoundary A’ Where MXL Operates

Correctly and Malfunctions ................................................ 36

3.1.3 Simulation Results ............................................................. 39

vi



CHAPTER 4

CHAPTER 5

3.2 Excitation Control System Tripping and Unit Tripping .................. 45

 

3.3 Uncontrollable Spreading Voltage Collapse................................... 46

VOLTAGE AND LOAD CONTROLLABILITY. ..... - - -- 47

4. 1 Introduction ................................................................................... 47

4.2 Sensitivity Matrices ....................................................................... 48

4.3 Voltage and Load PV Controllability ............................................. 52

4.3.1 Voltage PV Controllability................................................. 52

4.3.2 Load PV Controllability ..................................................... 53

4.4 Voltage and Load PQ Controllability ............................................. 53

4.4.1 Voltage PQ Controllability................................................. 53

4.4.2 Load PQ Controllability ..................................................... 54

4.5 Effects of Loss of Load PQ Controllability .................................... 55

4.6 Effects of Load Characteristics ...................................................... 60

4.7 Validation ofTheory ..................................................................... 63

THEORETICAL AND SIMULATION JUSTIFICATION FOR THE

DYNAMIC RESPONSE TO BIFURCATION SEQUENCE

ASSOCIATED WITH VOLTAGE COLLAPSE .................................... 76

5. 1 Introduction ................................................................................... 77

5.2 Test Matrices for Static Bifurcation in Flux Decay Dynamics ........ 79

5.3 Effects of Loss of Voltage PQ Controllability on Stability

of Generators with Exciters ........................................................... 82

5.4 Effects of Loss ofVoltage PV Controllability and Disablement

of the Excitation Control System on Stability of Generator

Dynamics ...................................................................................... 83

5.5 Justification of the Bifurcation Sequence that Occurs due to Loss

of Voltage PV Controllability and Disablement of the Excitation

Control System on a Specific Generator ........................................ 84

5.6 Justification of the Large Negative Voltage Spike that Develops

due to Loss of Voltage PQ Controllability on Generator Response

vii



with or without Excitation Control ................................................. 86

 

5.7 Simulation Study ........................................................................... 89

CHAPTER 6 CONCLUSIONS AND FUTURE WORK.............................................. 95

APPENDIX AzTHEOREM PROOFS......................................................................... 99

APPENDIX BzPUBLICATIONS ........ - . ............. . - . 107

REFERENCES . -- ...... ................... 108 

viii



Table 4.1

Table 4.2

Table 4.3

Table 4.4

LIST OF TABLES

Bus data ....................................................................................... 66

Line data ....................................................................................... 66

Generator data ....................................................................................... 67

Exciter data ....................................................................................... 67

ix



Figure 1.1

Figure 1.2

Figure 1.3

Figure. 1 .4

Figure 1.5

Figure 2.1

Figure 2.2

Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Figure 3.5

Figure 3.6

Figure 3.7

LIST OF FIGURES

July 2, 1996 WSCC system blackout recordings: (a) Voltage recording (b)

Power recording ....................................................................................... 5

August 10, 1996 WSCC system blackout recordings (a) Voltage recording

(b) Power recording................................................................................. 6

December 14, 1994 WSCC blackout voltage recording ............................ 6

Block diagram of excitation control system .............................................. 8

A typical bifurcation sequence (a): P-V Curve; (b): Critical modes

movement ....................................................................................... 14

Excitation control systemmodel......... 25

Model ofmaximum excitation limiter .................................................... 26

Ifl, with oscillation component ............................................................... 33

Plot for determining A' ......................................................................... 37

Relationship between 10 and Il .............................................................. 38

The MXL action when I0 < R ................................................................ 40

The MXL action when I0 = R ................................................................ 41

The MXL action when I0 > R but Al < A2 ............................................. 42

The MXL action when 10 > R but Al > A2 (The effect of

increasing I0 for certain Il ) .................................................................. 43



Figure 3.8

Figure 4.1

Figure 4.2

Figure 4.2

Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7

Figure 4.8

Figure 5.1

Figure 5.2

Figure 5.3

The effect of increasing 11 for certain I0 ................................................ 44

A three-machine 9-bus test system ......................................................... 68

I _

Eq, SQLV I, SQGEaSVE and SQGQL for case 1 ..................................... 69

I —1

Eq, SQLV , SQGEaSVE and SQGQL for case 2 ..................................... 70

Say—1 for case 1 .................................................................................. 71

SQL fl for case 2 .................................................................................. 72

SQLf‘ , SQGEaSVE and SQGQL for case 1 .............................................. 73

SQLy—l , SQGE,SV£ and SQGQL for case 2 .............................................. 74

Effects of load characteristics ................................................................. 75

Simulation result for theorems 5.1 and 5.8 .............................................. 92

Simulation result for theorems 5.2 and 5.3 .............................................. 93

Simulation result for theorems 5.4, 5.5, 5.6, 5.7 and 5.9 ......................... 94

xi



CHAPTER 1

INTRODUCTION

1 . 1 Voltage Stability

Voltage stability problem is a subset of overall power system stability problem.

Voltage instability results in progressive voltage increase or decrease that can spread

uncontrollably throughout a power system. A power system at a given operating state and

subject to a given disturbance undergoes voltage collapse if post-disturbance equilibrium

point is unstable or does not exist. Voltage collapse may be total (blackout) or partial [2].

Voltage collapse problems are considered the principal threat to power system stability,

security and reliability in many utilities around the world.

The classic voltage collapse problem in a load flow model is always considered a

reactive supply demand problem. Two types of voltage collapse problems have been

identified to exist on a load flow model: loss of control voltage collapse and clogging

voltage collapse. A loss of control voltage collapse is caused by exhaustion of reactive

reserve with resultant loss ofvoltage control on a particular set of generators, synchronous

condensers, or SVC’s. The loss of control voltage collapse not only cuts off the reactive

supply to a subregion requiring reactive power, but also increases reactive network losses

that prevent sufficient reactive supply fiom reaching that region. A clogging voltage

collapse occurs due to 12X series reactive losses, tap changers reaching tap limits,

switchable shunt capacitors reaching susceptance limits, and shunt capacitive reactive



supply withdrawal due to decreasing voltage. These network reactive losses can completely

choke offthe reactive flow to a subregion needing reactive supply without any exhaustion

ofreactive reserves and loss of voltage control on generators, synchronous condensers or

SVC’s [11].

The loss of control voltage collapse should have occurred in the algebraic model of a

differential algebraic power system model since the load flow model is a bifurcation

subsystem model if excitation systems are sufficiently high gain, the maximum excitation

limiters act correctly, and the excitation control systems are not disabled [32]. Although

there is yet much to discover how the loss of control voltage stability problem in a load

flow model is evidenced in a differential algebraic power system model, this thesis is on a

totally different voltage stability problem. This voltage stability problem was observed in

the Western System Coordination Council (WSCC) system on December 14, 1994 [20],

July 2, 1996 [18] and August 10, 1996 [21] and was neither a clogging nor a loss of

control voltage instability problem because it was initiated in the differential submodel

rather than in the algebraic submodel ofthe differential algebraic power system model.

1.2 WSCC System Blackouts

WSCC system is the entire power system network west of Denver including Canada.

In each ofthe December 14, 1994, July 2, 1996 and August 10, 1996 blackouts [18, 20,

21], there were large interarea oscillations observed before the blackouts, and the blackouts

occurred after some fault or contingency. Based on the existing operating and design

criteria, the contingency should not have resulted in blackouts and certainly not have

produced such severe blackouts that each caused loss of power for millions of customers.

Although reasonably accurate models ofthat complex system have been assembled and can

reasonably accurately capture the sequence of events that occurred, there is no clear



diagnostic theoretical explanation of what occurred and why. On the August 10, 1996

blackout, it was clear that the excitation control system failed on the McNary station

generators that led to the tripping of generators at that station [21]. Since (1) these

blackouts have led to significant reduction in power transfer limits in the WSCC system,

(2) there were significant deregulated power flows from one subregion to another on

August 10, 1996 that raise the possibility that this type of problem could affect other

regions of the US and other countries experiencing deregulation of their utilities, and (3)

the causes and cures for these stability problems are so poorly understood, this particular

voltage stability problem was singled out for study in this thesis. Moreover, the study will

be the first attempt to understand the dynamics after each bifurcation in the sequence of

bifurcations that possibly produced these blackouts.

From the records of the July 2, 1996 [18] and August 10, 1996 [21] power blackouts

in the Western United States, it is observed that although the cascading tripping of units

and lines has been described as voltage collapse, neither blackout was due to the classical

or any known kind ofvoltage instability problem.

These three loss of voltage stability incidents couldn’t be loss of control voltage

instability because the time fiarne was too short for tap changers and capacitors to act that

are associated with the recovery of voltage and load in the distribution system [11, 33].

Recovery ofvoltage and load causes the generators to exhaust reactive reserves and causes

the Maximum Excitation Limiter (MXL) control to act that allows generator excitation

system voltage setpoints to decline as reactive load or reactive network losses increase.

This decline ofgenerator exciter setpoints due to increased network reactive load and losses

begets more reactive load and losses and more voltage decline that causes the cascading

voltage collapse associated with loss of control voltage instability. The recent two blackouts

couldn’t be clogging voltage instability because the system was not heavily loaded when

the outages occurred [1 l].



Furthermore, the stability controls were effective and responded correctly to the early

contingencies. The response of these stabilizing controls should have ensured stability and

prevented further outages if these stability problems were loss of control or clogging

voltage stability problems. In each of the July 2, 1996 and August 10, 1996 blackouts,

sharp spike reductions in both voltage and power were observed as shown in Figure 1.1

and Figure 1.2. A sharp spike reduction in voltage was also observed in December 14,

1994 blackout as shown in Figure 1.3.
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Since malfunction of the excitation control system is hypothesized to be at the center of

these blackouts, the description on how it has been modified and improved over time to

handle voltage instability problems is discussed in the next section.

1.3 Excitation Control System

The functional block diagram of a synchronous generator excitation control system [1]

is shown in Fig.1.4.

Voltage stability is affected greatly by the excitation control system. The basic function

ofan excitation control system is to provide direct current to the synchronous machine field

winding and thus to control the internal induced voltage of the generator. In addition, the

excitation control system performs corrective and protective functions essential to the

satisfactory performance of the power system by controlling the field winding voltage and

thereby the field current.

The corrective functions include:

(a) Prevention of transient instability for faults, line outage, or generator outage

contingencies using a high ceiling voltage, short rise time exciter, and sufficient damping to

prevent multiple swing instability;

(b) Effective control of generator or network voltage through use of a line drop

compensator. Effective voltage control requires selecting a control bus or point in the

network where voltage is to be controlled and using a high gain exciter to maintain control

bus voltage at the desired setpoint; [1, 3]

(c) Effective coordination of generator exciter setpoints to assure effective primary

control ofvoltage at every network bus within limits of 0.95 5 IV] S 1.05 pu [33]. This
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function is supplemented by under load tap changers and switchable shunt capacitors

especially at subtransmission and distribution system buses that are electrically distant from

generators. This coordination of generator exciter setpoints is also required to prevent a

generator fi'om exceeding its field current limit and thus from exceeding generator reactive

capability in the process ofholding control bus voltage to setpoint values.

The protective functions [1, 2] associated with an excitation control system are:

(a) A dc regulator is a backup system for the ac regulator in case that the field current is

not reduced below the continuous rating limit after a suitable duration. This dc regulator

was first installed in the mid 70's as a means of preventing the kind of voltage instability

that caused the blackout on the Electricite de France in 1978. It replaces a manual system

which requires the operator to adjust field voltage and current on this backup manual

controller in response to stress on the system that reduces generator internal voltage via

armature reaction. The dc regulator provides a backup control that automatically adjusts

field current and voltage to continuously track the changes produced by the ac regulator

without exceeding field current limitation. If the ac regulator is disabled by an

overexcitation limiter relay, the dc regulator ensures that reactive supply and generator

voltage are maintained at what the ac regulator would require. In manual control, operators

might not continually adjust field voltage to values being produced by the ac regulator due

to inattention or other pressing matters. Reduction of reactive supply due to ineffectiveness

ofmanual control when the ac regulator is tripped by a field current limiter relay, can cause

a cascading trip of excitation control systems and reduction of voltage setpoints and thus

reactive outputs on other nearby generators that produce voltage collapse. Thus, the dc

regulator is a significant advance by preventing the reduction of generator reactive supply

on one or more generators when the excitation control systems are tripped by overexcitation

limiter relays.



(b) A Maximum Excitation Limiter (MXL) reduces field current on a generator below

continuous rating limits by (i) overriding but not disabling the ac regulator (ii) effectively

reducing the exciter's voltage setpoint through the summer as is shown in the excitation

control system block diagram (Figure 1.4). This MXL action prevents disabling the

stabilization ofan excitation control system. The MXL allows the excitation control system

to retain the stabilizing effects of the power system stabilizer on oscillations and the effects

of the excitation control system on steady state stability. Without MXL, which was first

introduced more recently than the dc regulator, the ac regulator was disabled by a field

current overexcitation limiter relay whenever continuous field current limit violations

occurred for a sufficiently long duration or whenever the ac regulator was not acting

properly. Loss of the excitation systems' stabilization control could trigger voltage

instability. The MXL accomplishes reduction of field cmrent without losing the

stabilization effects of the excitation system or by providing the stabilizing signals if the

excitation control is overridden.

There are two relay based protective functions ofthe excitation control system [1, 2]:

(l) The field current limiter relay that disables the ac regulator with or without MXL

when the field current remains above continuous limit or when the excitation system/MXL

controller is faulty. The field current limiter relay should operate infrequently when a MXL

is present compared to when a MXL is not present. The field current limiter can be a two

step device that reduces field current to continuous rating in 10 seconds if field current

exceeds 208% ofrating or in 30 seconds if field current exceeds 145% rating. An inverse

time overcurrent relay can also be used that keeps the field current below the specified level

[1].

A second inverse time field current relay can trip the generator if the dc [regulator does

not maintain field current below the actual field current limit curve that would produce

10



equipment damage if exceeded. This curve allows larger field current or duration than the

inverse time curve that trips the ac regulator with or without MXL [1].

(2) An armature current limiter relay that acts on armature currents in a similar manner

to field current relay. Both relays act to prevent overheating and equipment damage on the

generator. The armature current capability ofthe machine [1] is shown below:

Time(seconds) 10 3O 60 120

Armature current (percent) 226 154 130 l 16

1.4 Bifurcations in Power System

The bifurcation phenomena in the nonlinear power system refers to characterizing the

qualitative change in the response of the system for a smooth continuous change in

parameter 11 over a specified range. For the following model:

i = f(x.9.V..u)

O = GP(x’9’ Vmu)

O = GQ(x,6, V,,u)

where x is the generator dynamic state variables, 6 and V, are the angle and voltage at

generator terminal, high side transformer and load buses, u is the parameter of interest.

The fimction f represents the generator and excitation control systems on all generators in

the system, GP is the active power balance equation that describes the network power

distribution from generators to loads. GQ is the reactive power balance equation that

describes how reactive power is supplied and how voltage is controlled in the network.

The full Jacobian matrix ofthe above model is:

11



A1 Bl C1

J([1) = A2 32 C2

A3 33 C3

32 C2
It has been proven [32] that if matrix Jc(,u)=|:

B3 C3

] is nonsingular, then an

equivalent differential equation model at = f(x, 0(x(11)), V,(x(/.t))) can be uniquely obtained

with equivalent differential Jacobian matrix

B, C, “ A,

W... a], c111]

Similarly, ifmatrix A101) is nonsingular, then an equivalent algebraic equation model

0 = g(x(0(p), V,(}1)),6(}1), V,(,u)) can be uniquely obtained with equivalent algebraic

Jacobian matrix

32 C2 A2 -1

Jy(#)=[B C]-|:A:|[A1][Bl C1]

Saddle node bifurcation occurs at 11 = 11' when (i) Jem‘) is nonsingular, (ii) Jx(,u')

has one real eigenvalue that crosses the imaginary axis of the complex plane, and (iii)

certain transversality conditions hold.

Hopf bifurcation occurs at p = 11" when (i) Jc(,u') is nonsingular, (ii) .403) has

one pair of imaginary eigenvalues with zero real parts, and (iii) certain transverselity

conditions hold. There are two different Hopf bifurcations: (a) supercritical Hopf

bifurcation which occurs when a stable limit cycle exists around an unstable equilibrium

point and the stable limit cycle grows as 11 moves away from ,u‘; (b) subcritical Hopf

bifurcation occurs when an unstable limit cycle exists around a stable equilibrium point and

the orbit size shrinks to zero as ,u approaches 11'.

12



Singularity induced bifurcation occurs when the equivalent differential Jacobian matrix

Jx(,u) is nonsingular with eigenvalues crossing from the right half plane to the left half

plane or vice versa by going through infinity, rather than across the imaginary axis. At this

point, one real eigenvalue ofthe system is at infinity and the rest of them are bounded [45,

4].

A sequence of bifurcations generally causes voltage collapse. A commonly observed

sequence ofbifurcations [35] is shown in Figure 1.5.
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Hopfbifurcation is followed by node focus bifurcation, singularity induced bifurcation

and saddle node bifurcation. Such a bifurcation sequence has been observed in several

example systems [9, 35]. The exact point where blackout is inevitable has not been

established and may be at the point of node focus bifirrcation, and may be at the point of

singularity induced bifurcation. The point of singularity induced bifurcation is certain to

result in a blackout. Since [6] has shown that

(l) the algebraic model can be broken into coherent bus groups called voltage control

areas where each has a unique voltage collapse problem.

(2) There is a unique eigenvalue 1,, of the Jacobian J associated with each coherent

bus group.

(3) The voltage collapse for any coherent bus group occurs where certain subsets of

the generator excitation controller are overridden by maximum excitation limiters, and thus

14



lose control of voltage, and unable to provide additional reactive supply. The subset of

generators associated with the voltage collapse in a voltage control area is called the

associated reactive reserve basin.

(4). The reactive reserve basins are nested subsets of generators. It has been proven

[l 1] that exhaustion of reactive reserve via MXL action on each of the generators in the

reactive reserve basin causes the eigenvalue associated with the voltage control area to

approach zero.

(5). It has been shown via simulation [1 1] that exhaustion of some small reactive

reserve basin in a nested set causes a cascading exhaustion of reserve and MXL action that

loses voltage control on all of the generators in larger and larger reactive reserve basins.

This causes several eigenvalues of voltage control areas associated with larger and larger

reactive reserve basins to approach zero. This implies a sequence of singularity induced

bifurcation can occur.

The classical voltage instability problem, that caused first known voltage collapse in

Electricite de France in 1978, occurred long before the development of MXL and DC

regulators. This classical voltage instability problem occurred when overexcitation relays

disabled that excitation control system because there was no MXL to override the excitation

control system without disabling its stabilizing effects that include (i) damping oscillations

(ii) overcoming armature reaction effects and (iii) manual control effects that can reduce that

reactive power output of the generator after overexcitation limiter relay disable the excitation

control system. The bifurcation subsystem in a generator without an excitation control

system is for the saddle node bifurcation that produces instability has been shown to be the

flux decay state M3 in [32]. The instability in AE; is assumed to describe the voltage

collapse produced in Electricite de France. It will be shown that instability in AE; describes

a voltage instability that in itself is not voltage collapse but inevitably produces the

singularity induced bifurcation that does produce voltage collapse. The response ofthe AE;

15



state as this voltage collapse occurs due to the bifurcation sequence of saddle node

bifurcation followed by singularity induced bifurcation will be described in this thesis. The

analysis of how the algebraic equations can experience voltage instability is needed in

Chapter 4 before the resultant dynamic response can be described in Chapter 5.

The development of the dc regulator and the maximum excitation limiter was felt to

eliminate the possibility that this classical voltage instability could occur. The analysis and

simulation results in Chapter 3 shows that sufficiently large interarea oscillation produced

by Hopf bifurcation will disable the MXL and cause the excitation control system to be

disabled. The classical voltage collapse produced by saddle node bifurcation inevitably

followed by singularity induced bifurcation thus not only describe the Electricite de France

voltage collapse but also the three voltage collapse problems on the WSCC system where

large interarea oscillations existed before the equipment outage that produced the three

cascading voltage collapse problems on this system.

The results in [5] suggest that the loss of control and clogging voltage instability have

a counterpart in the differential or differential algebraic model. Clogging voltage instability

or algebraic bifurcation which occurs in the distribution system and remote to the location

of any generator has little or no impact on generator reactive generation as would

singularity induced bifurcation. Clogging voltage instability or algebraic bifurcation is

understood solely from load flow based results in [5] and is not studied in this thesis.

Singularity induced and saddle node bifurcation are two distinctly different differential

algebraic model manifestation of loss of control voltage instability in a load flow model.

Singularity induced and saddle node bifurcation have very different dynamic behavior

when they can occur [45]. The differences in dynamic behaviors of saddle node bifurcation

and how saddle node bifurcation may inevitably cause singularity induced bifurcation are

investigated in this thesis. This sequence of bifurcation may provide a recognizable

signature, a negative spike in bus voltage and real power transfer, that has been observed
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on the WSCC system for each of the three major blackouts on December 14, 1994, July 2 ,

1996 and August 10, 1996.

A recent paper [11] established that the saddle node bifirrcation which occurs in the

flux decay dynamics is the description ofthe classic voltage collapse problem. It concluded

that: when the excitation control system is completely disabled via an field current limiter

relay without loss of PO or PV controllability, a reduction in generator internal voltage is

proven to occur due to increase ofreactive load where an increase in internal voltage would

occur if the excitation control system (ac regulator) were present. If loss of PV

controllability occurs when the field current limiter relay disables the ac regulator, the

internal voltage Ext) dynamics are proven to be unstable. A slow decline in E;(t) is

evident in a simulation [1 1]. This voltage decline may be due to saddle node bifurcation.

Conditions for loss of PV controllability are not well understood and will be investigated

further in this thesis. Conditions for the excitation control system to be disabled by an

exciter limiter relay is also not well understood and will be investigated in this thesis.

The loss ofPV controllability may cause the slow decline in E;(t) dynamics; undoing

the effects of the dc regulator to maintain voltage and reactive output. Although results in

[8] suggest such behavior, there are no theory or simulation results to confirm such

behavior. This thesis will attempt to prove that E;(t) is reduced if PV controllability is lost

and the ac regulator is disabled by the field current limiter relay.

It has not been proven that voltage collapse will necessarily occur when a single

generator exciter is disabled by field current limiter relay and a loss of PV controllability

occurs. The instability in E;(t) reduces voltage dynamically and may reduce Qg(t) out of

the generator that can ultimately cause loss ofPO confiollability. Loss of PO controllability

is proven to cause instability in generator flux decay dynamics and cause a dynamic

increase in E50) [11]. A simulation result in [8], however, appears to suggest a very rapid

drop in E;(t) before PQ controllability is lost followed by a rapid rise in both after PQ
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controllability is lost. This behavior and the reason for it will be investigated theoretically

and experimentally. This rapid change in voltage appears as a spike and could trigger

armature current limiter relays or undervoltage relays that trip generators off line.

1.5 Hypotheses

According to the literature study concerning the WSCC system blackouts above, we

have the following hypotheses:

(1) There may exist a new kind of voltage collapse problem which is totally different

fiom the voltage stability problems which are currently understood and for which the dc

regulator and Maximmn Excitation Limiter have been designed to overcome;

(2) The current MXL is unable to limit the field current level due to the existence of

interarea oscillations, as will be proven theoretically and confirmed through simulation in

Chapter 3;

(3) The overexcitation protection relays trip offthe MXL and ac regulator to use. the dc

regulator or manual control due to the malfunction ofMXL in reducing field current. These

relays prevent the generators from damage due to rotor overheating;

(4) When the excitation control system is disabled without loss of PQ controllability or

PV controllability, a reduction in voltage in the transmission network can be initiated due to

increase in reactive load. Since the dynamics are stable, the dc regulator can increase VF,

Ifd and Q6 ifneeded;

(5) If a slow loss of PV controllability [15] occurs when the excitation control system

is disabled, it will cause immediate saddle node bifurcation in flux decay dynamics and thus

loss of stability. The instability drives the internal voltage E;(t) toward zero. It is
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anticipated that generator armature current relays may but not necessarily trip the unit off

line. It is believed that the generator armature current relays may be one explanation on

what tripped the McNary station generators off the system in the August 10, 1996 blackout;

(6) If PQ controllability [15] is slowly lost as E;(t) decline, E; (t) will decline more

rapidly as loss ofPO controllability approaches;

(7) If a loss of PO controllability occurs, singularity induced bifurcation can occur.

The internal voltage response E;(t) becomes stable and rapidly increasing for generators

with active excitation control systems as well as for those generators where excitation

control systems are disabled. The negative side of the voltage spike in voltage E;(t) thus

occurs as loss of PQ controllability approaches and finally occurs, the positive side of the

spike occurs after loss of PQ controllability occurs. This spike is very likely the spike

observed on the WSCC system during the July 2, 1996 and August 10, 1996 blackouts;

(8) Afier the unstable generators are tripped off line, additional generators will try to

pick up the reactive power from the unstable generators as well as the decreased shunt

capacitive supply and increased network losses, the field current of these generators will

reach their limits and these additional generators will experience the same sequence of

bifurcations on those generators that initially get tripped. As a result, a spreading

uncontrollable voltage collapse will occur.

These hypotheses are developed based on (a) observations ofthe time responses of the

three recent blackouts on the WSCC system, (b) partially on the theory developed in [11]

that describes (1) what causes instability in the generator flux decay dynamic when

excitation control systems are disabled and the effects on AE;(t), (ii) what causes

instability in generator flux decay dynamics when the excitation control systems are active,

and (0) partially on the extensions of that theory given in this thesis that more clearly
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describes what appears to have caused these three blackouts. The extensions fall into three

separate contributions.

(A) Theoretical analysis and simulation results, that show the maximum excitation

limiters are disabled by sufficiently large oscillations, are given in Chapter 3 of this

proposal. The theory establishes why and when (the size of the oscillation compared to the

size of the violation of the continuous rating field current limit) the disablement occurs.

Large interarea oscillations existed on the WSCC system before the December 1994, July

1996 and August 1996 blackouts as shown in subsection 1.4 suggests that the maximum

excitation limiters may have been disabled and the overexcitation limiter relays may have

acted to disable certain excitation control systems and ultimately caused the tripping of

generators. The tripping of the McNary station generator unit prior to the voltage spike are

very likely to have occurred due to the phenomenon discussed in chapter 3.

(B) Extension of results in [15] that separate PV controllability of AQG into voltage

PV controllability and load PV controllability based on control of AQG using AE; and AQL

respectively. Similarly, PQ controllability of load bus voltages AV is broken into voltage

PQ controllability and load PQ controllability based on control of AV using AE; and AQL

respectively. It is proven that if load PQ controllability is lost and other conditions are

satisfied, then voltage PQ controllability, voltage PV controllability and load PV

controllability are lost. It is also proven that loss of load PQ controllability can occur if

shunt capacitive susceptance is added to every bus in a voltage control area, and that the

margin to the point of loss of load PQ controllability increases for the addition of shunt

inductive susceptance. It is shown that loss of voltage PV controllability can occur before

loss of load PQ controllability occurs. Finally, the test matrix elements for SQL 12.1 , Sn;

and SQGQL associated with a voltage control area, that slowly progresses toward loss of

load PQ controllability, can approach infinity, discontinuously change to negative infinity,

and then increase toward zero. These properties of the algebraic submodel are all needed to

20



prove the reasons why stability is lost and why a sharp narrow spike in voltage occurs that

was observed in the recorded and simulated responses of the WSCC system for the three

recent blackouts. These results are given in Chapter 4 of this thesis.

(C) Prove where and why stability in M5 dynamics is lost when the MXL is disabled

by oscillations and the overexcitation limiter relay disables the excitation control system.

Loss of voltage PV controllability in a voltage control area, that can happen long before

loss of load PQ controllability occurs in that voltage control area, causes instability in AB;

dynamics The system is shown to be stable ifvoltage PV controllability holds in the voltage

control area of the generator internal bus where the excitation control system is disabled.

. I

The unstable response rs proven to cause voltage AEq on the generator to approach zero.

(D) Prove that this instability in E;(t) is like computing a Q-V curve at the generator

M

internal bus if {SQGEh < 0 and 2", [S965 ], < 0 and load PV controllability still holds.
,.

This dynamically administered Q-V eln've stress test is proven to lead inevitably to (i) loss

of load PQ controllability and bifirrcation of the algebraic submodel, and (ii) singularity

induced bifurcation ofthe differential algebraic model.

(B) Prove that loss of load and voltage PQ controllability in a voltage control area

causes instability in generators with active excitation control systems in that voltage control

area and a rising voltage AE; .

(F) Prove that slow continuous loss ofload PQ controllability in a voltage control area

causes a sharp negative spike in M3 on a generator with its excitation control system

disabled. The slow development of the loss of load PQ controllability causes voltage M;

to drop sharply, and a sharp rise in AE; occurs after load PQ controllability is lost.
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(G) Show that a saddle node bifurcation followed inevitably by a singularity induced

bifurcation occurs when the excitation control system is disabled and a loss of voltage PV

controllability occurs.

The results in (C-G) are contained in Chapter 5 of this thesis and are proven

theoretically and confirmed via simulation results.

1.6 Relevant Literatures

Sensitivity analysis has been used to assess proximity to bifurcation at an equilibrium

point. Sensitivity becomes large at the point of bifurcation [56, 57]. Trajectory sensitivity

has been used to assess proximity to the boundary ofregion of attraction [56, 57 ].

Costi [15] used specific sensitivity matrices to assess proximity to bifurcation in the

algebraic model of a power system.

Hu [8] related the network sensitivity matrices to assessing stability of the trajectory on

a linearized transient stability model. The network sensitivity matrices were related to

controllability of the voltage at load buses and the generation at generator buses. The

criteria for controllabilities were based on experience ofthe requirements for stable

behavior in the network.

The sensitivity matrices for controllability are further investigated in chapter 4 of this

thesis in order to describe their behavior which affects the stability of the linearized

transient stability model. The effects of the behavior of the controllability matrices are

investigated in chapter 5.
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CHAPTER 2

POWER SYSTEM MODELING

2.1 A General Power System Model

A general power system model, which includes mechanical dynamics, flux decay

dynamics, excitation control system dynamics, and real and reactive power balance

equations, can be used to test for power system voltage instability. This general power

system model consists of two different kinds of nonlinear equations: one is a set of

nonlinear differential equations which represents the dynamics ofthe generator, the other is

a set ofnonlinear algebraic equations which represents the real and reactive power balance

equations for each bus in the network. This model has the following form:

M05+D08+FG(6,6,E;,VL,y,)—PG =0 (2.1)

F,(5,6,E;, VL,y2) — P, = 0 (2.2)

E; + 60(6,9,E;,V,,y,) = 0 (2.3a)

01(5. 9. 15;. Vuyz) - Q. = 0 (2.31:)

y, + H(6, 0,E;, V,,y,) = 0 (2.4)

An output equation indicates the reactive generation at the generator internal buses

satisfies:

09(6, 9,15; V,,y,) — Q, = 0 (2.3c)
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where 6 is the generator angle referenced to a synchronous rotating reference flame and

E5 is a voltage proportional to generator flux linkage; 6 and VL are the angle and voltage

at generator terminal, generator transformer high side, and load buses; y2 is the state of the

excitation control system and power system stabilizer dynamics. Equation (2.1) represents

generator internal dynamics, equation (2.2) represents real power balance at all other buses

in the system, equation (2.3a) is the flux decay differential equations, equation (2.3b) is

reactive power balance at all other buses in the system, and equation (2.4) is the generator

excitation control system and power system stabilizer dynamics.

The real and reactive power balance equation (2.2) and (2.3b) are:

P, = V1.20... V, cos 9,, + 3me sin 9:...)

m=l

Q, = V,2(G,U"Vm sin 9,,"I —B,m Vm c059,“)

m=l

At any parameter pattern and level 11 = [1,, the solution (Xe) is a solution to:

    

F(Xe9ue) = 0

where:

_ 5 _ "PG-

0 P:

X: E; and F(5. 9.19;, Vuyz) = Go (2.5)

V1. Gr

-yz . _ H _

The Jacobian of (2.5) is:
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3F ,

J = 5(69 GaEqs VLayz)

fA, B1 C1 D1 E1

A2 32 C2 D2 E2 (2.6)

= A3 33 C3 D3 E3

A4 B4 C4 D4 E4

_A5 35 C5 D5 E5 _  

2.2 Excitation Control System Model

The block diagram of a excitation control system model is shown in Figure 2.1.

Ger (5) is represents the transfer function of the AVR (Automatic Voltage Regulator) and

is the
  any type of exciter, K3 is the transfer function of the field circuit,

1 + 5T3 1+ STR

transfer function of the voltage transducer, and GP” (5) is the transfer function of the power

system stabilizer.

 

 

  

 
 

 

 

 

  

  
  

Figure 2.1 Excitation control system model
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It is similar to Figure 1.1 except that the dc regulator and the overexcitation limiter,

underexcitation limiter, and volt/hertz relays are omitted. The model ofthe generator inertial

dynamics (2.1), flux decay dynamics (2.3a) and generator excitation control system, power

system stabilizer and voltage sensor dynamics (2.4) are shown in Figure 2.1.

The maximum excitation limiter is now described that works through the summer of

the excitation control system as shown in Figure 2.2. The role of the maximum excitation

limiter is described in section 2.4.

2.3 Maximum Excitation Limiter Model

A typical maximum excitation limiter model is shown below

 

Generator

 

Voltage .

egulator

 

 
  

 

 
 

 
 

 

 

   
Overexcitation limiter  
 

Figure 2.2 Model ofmaximum excitation limiter
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During normal conditions with field current less than the setpoint (typically 105% of

rated field cmrent), path 1 and 2 both force the integrator to its lower limit(-M). The input

to the voltage regulator summing junction (X5) is zero. If field current is above the

setpoint, path 2 drives the integrator towards a positive value. Once the integrator output

becomes positive, the voltage regulator will start to reduce field current. For a step increase

in field current above the setpoint, the time to the start of current limiting will be:

M

K2 ' K3 ' (Ifd " l’OSIfdrated)

 

The parameters can be adjusted so that this time approximates the desired time to

obtain field current limiting. Once field current is reduced to the setpoint, path 1 rapidly

resets the integrator output X4 to —M.

2.4 Power System Load Model

Load dynamic response is an important mechanism of power system voltage stability,

load modeling is a difficult problem because power system loads are aggregates of many

different devices such as fluorescent and incandescent lamps, refrigerators, heaters,

compressors, motors, furnaces, and so on. The exact composition of load is not only

difficult to estimate, but also changes depending on many factors including time, weather

conditions and state of the economy.

The load models are traditionally classified into two broad categories: static load

models and dynamic load models.
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The static characteristics of load are usually classified into three categories: constant

power, constant current and constant impedance load. A widely used load characteristic is

the well-known exponential load, which has the general form:

P 2 211(1)"

V0

B

V

“Eli/z]

where z is a dimensionless demand variable, V0 is the reference voltage, and the

exponents a and fl depend on the type of load(motor, heating, lighting, etc.). Note that

2P0 and zQ0 are the active and reactive powers consumed under a voltage V equal to the

reference V0 and relate to the amount of connected equipment. These have been called

nominal load powers, in contrast to the consumed powers P and Q.

2

P = zP0 {-5—}

0

When a=fi=2,

it is called constant impedance load.

When a=B=l,

it is called constant current load.

Whena=13=0,
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P=zP0

Q=ZQ0

it is called constant power load.

An alternative load representation is based on summing up load components which

have the same exponents. A special case is made up of three components: constant

impedance, constant current and constant power, it is given by the following quadratic

P = zP0[:aP(—I:] + bp[£] + CF]

V0 V0

Q = 2Q0[0Q(-:;—) + [94%] + cg]

where aP+bP+cP=aQ+bQ+cQ=L while zP0 and on are the load real and reactive

expressions:

powers consumed at the reference voltage V0.

Even though the use of static load models is often satisfactory, there are, however,

many cases where it is necessary to account for the dynamics of load components. For

example, study of systems with large concentrations of motors requires representation of

load dynamics. Researchers developed various kinds of dynamic load models [30, 38, 39,

40, 41] to represent the dynamic characteristics of the system loads. Since this subject is

beyond the scope of this thesis, it is not going to be discussed in detail here.

It is worth noting that load can transition between dynamic load model and static load

model. For example, the static models mentioned above can be accomplished using the

generic non-linear dynamic model which satisfies:
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. V a, V a,

TPZP=i7i 447)0 0

13. B.

V0 V0

This change in load models is needed later to discuss why specific kinds of

biflucations occur and do not occur.
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CHAPTER 3

PROBLEM ANALYSIS

A large negative voltage spike was observed on the WSCC system shortly after the

McNary station generators were tripped. This large negative voltage spike could have been

resulted when the AC regulator portion of the automatic voltage regulator is disabled and

the network violates rather weak controllability conditions at generator buses [11, 57, 58,

59]. The theory in [11] indicates the unstable flux decay dynamics on the McNary

substation generators, that resulted from disablement of the AC regulator and loss of

network controllability on these generators, caused a self destructive stress test to be

administered. This stress produces the negative voltage spike and ultimately causes the

cascading instability of additional subsystems that may have produced the August 10, 1996

blackout on the WSCC system. The network controllability conditions are often violated in

many power systems but have no negative consequences because the AC regulator

overcomes this loss of controllability. Failure of the MXL to reduce field cmrent followed

by disablement of the AC regulator via an Overexcitation Protection Relay leaves the

system vulnerable to a cascading instability ofbifurcation subsystems that lead to blackout.

The understanding ofhow the MXL fails to reduce field current is studied in this chapter to

understand how and why this sequence occurs. This chapter also provides suggestions on

what may be done to avoid such failures in the Maximum Excitation Limiter that lead to

OXP relay tripping of the AC regulator, instability in the generator dynamics that

administer a self destructive stress test and finally cascading instability of bifurcation

subsystems and associated network and generator protective relaying actions.
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3.1 Disablement of Current MXL due to Oscillation

The traditional overexcitation limiting and protection mechanism is as follows: The

MXL detects the high field current condition and acts through the ac voltage regulator to

return the level of excitation to a preset value after a time delay during which overexcitation

is permitted. The MXL is supplemented by the Overexcitation Protection (OXP) device. If

the MXL finlction is unsuccessful, the OXP trips the ac regulator after a preset time

interval, and then transfers control to a dc regulator and repositions the setpoint to a value

corresponding to the rated value. If the tripping ofthe ac regulator and the repositioning the

setpoint has not reduced the field current below Ifd med, the OXP will also initiate a unit

trip after an additional time delay. When oscillation components exist in field current,

sometimes the MXL cannot work correctly. This results in the trip of the excitation control

system, sometimes, followed by the generator unit trip, and even voltage collapse of the

system if the conditions exist as derived in Chapter 5.

3.1 1 r ' An sis

The analysis here is based on the maximum excitation limiter system which is shown

in Chapter 2 (Figure 2.2).

Suppose that the field current Ifl, is composed of a constant component 10 and an

oscillating component Il cos271fi, that is,

Ifd(t) = 10 + II cos2717’t

(3- 1)

= I0 + II cos 5(t)

where

6(t) = 277?
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and f is the frequency of the oscillation observed in voltage, angle and field current.

 

  

 

Figure 3.1 1,4 with oscillation component

As is shown in Figure 3.1, A is determined by

10+],cosA=R (3.2)

where R is the continuous field current rating where field current limiting fi'om the MXL

occurs. Usually R = 1.051fmwd.

The expressions for the area a, (above R) and area (12 (below R) are now derived,

these expressions are then used to analyze the effects on X4 and X5 in Figure 2.2. Note

that the positive change in X, in Figure 2.2 for If, > R over (-A, A) is A, = K,a, and the

negative change in X4 for Ifd <R over (A, 27t-A) is A2 =(K, +K2)a2. If A, >A2 for

each cycle, then X4 increases, and X5 will eventually become positive and reduce the

excitation setpoint. If A, < A2 for each cycle, then X4 decreases toward the lower limit

- M, and X5 will stay at or decrease to zero.

Area 0, satisfies

a, = flu, + 1, coer - R)d6

(3.3)

= 2(10A - RA + II sin A)
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Noting that R = 10 + 1, 003A, (1, becomes

a, = 2(1, sinA — AI, cos A)

= 21,(sinA - AcosA)

The change in X, over interval (—A, A) is

A1 = K201

= 21,K2 (sinA — Acos A)

= 21,8,

where

B, = K,(sinA — Acos A)

Area a2 satisfies

a2 = I:”_A(R— I0 — I, cosd)d6

= (R- 1,,)(2n:— 2A) +21, sinA

Again noting that R = 10 + 1, 008A, a2 becomes

a2 = 2(71:I,cosA — AI, cosA + I, sinA)

= 21,(sinA - AcosA + 7rcosA)

The changein X, over interval (A, 27r-A) is

A2 = (Kl + K2 )0,

= 211 (K, + K, )(sinA — AcosA + JrcosA)

= 21,13,

where

B2 = (K, +K,)(sinA — AcosA + IrcosA)
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According to the value of the constant component I0 and the preset value R (usually

R = 1.051f, med), it can be classified into three cases:

Case 1: 10 <R

When 10 < R, A. must be less than g. Since A, < A, always holds, the oscillation

component does not affect X5 in Figure 2.2 and it remains zero, The voltage regulator set

point is not affected and the excitation system works fine. (It may make X4 go to the lower

limit value faster).

Carrel: 10 > R

When 10 > R, A. must be greater than ~25. For this case, we have A, > A,, A, = A,

and A, < A, three subcases.

(i) If A, > A,, the MXL is able to detect the high field current condition and reduces

the voltage setpoint on the AC regulator as expected( it may speed up the upper limiting);

(ii) If A, < A,, the MXL will mistaken the high field current (1,, > R) as low field

current and not reduce the voltage setpoint on the AC regulator, so it fails. This is where

the oscillation component will disable and confuse the MXL, and cause the overexcitation

protection relay to trip the excitation control system and the maximum excitation limiter;

(iii) If A, = A,, the oscillation effects are cancelled out, the MXL does not increase or

decrease X4 thus X5 even though 10 > R. If X, = 0, then the field current limit is going to

be violated, and the MXL does not reduce 1,. As a result, the excitation control system

will be tripped by the overexcitation protection relay. If X5 > 0 and this value is sufficiently

large, then X, will reduce If, to below R. to prevent unit tripping If X5 > 0 and this value

is not sufficiently large, then the excitation control system must be tripped by the
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overexcitation protection relay to prevent thermal damage to the generator field winding or

the rotor.

Case 3: I0 = R

When 10 = R, A must be less than {25' Since A, < A, always holds, the MXL always

goes to lower limiting as it should. In this case, X4 can be affected, but X5 is not affected.

0

3.1.2. ALL ° 03 Cat A‘W ‘ ‘ 11);.” Drug-m :9 01‘ - :10 M 1-1 Hr.

Suppose that A’ is the boundary point where A, = A,, or equivalently, B, = B,. The

value of A' can be determined by the following equations:

10 + I, cosA‘ = R

(3.11)

B1 = Bz

These equations are equivalent to

10 +1, cosA” = R

- a a s - a e a a (3’12)

K,(srnA —A cosA )=(K, +K,)(s1nA —A cosA + 7rcosA)

A‘ depends on K, and K, based on (3.12). For example, if we set K, = 100 and

K, = 1, we obtain

B, = sin A" - A" cos A‘

B, =101(sinA‘ — A‘ cosA’ + ncosA“)
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2 2.2 2.4 2.6 A" 2.8 3 A

Figure 3.2 Plot for determining A‘

The plots of B, and B, are shown in Figure 3.2. From the plot, we get A’ = 2.698. If

we set 11mm! = 1.0, R: 1.05, then, from equation (3.12), we obtain the relationship

between 10 and I, when A' = 2.698

10 = 1.05 — cos(2.698)1, (3.13)

Equation (3.13) that provides a boundary in 10 1, space for when MXL operates

correctly and when it malfunctions is shown graphically in Figure 3.3.
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I” A 2),.

(lo - R)

--------------------------------- A=rt/2 
0.8 _

  0.6 1 ' ' 1 up

0 0.2 0.4 0.6 0.8 11

Figure 3.3 Relationship between 10 and I,

Since the Maximum Excitation Limiter works incorrectly over 71'/2 < A < A' , and the

relationship between 10 and I, is given in Figure 3.3, we can conclude that the area

indicated by the arrows in Figure 3.3 is where the MXL works incorrectly. When 10 > R, a

complete description of when the MXL works correctly and incorrectly is given below in

terms of A’:

(a) With oscillation component, MXL works correctly when A 5 7r/2 (or equivalently

A, < A, with 10 S R) and when A _>. A' (or equivalently 10 > R with A, 2 A,). The second

case A Z A' suggests that the MXL will act to alleviate the field current violation;

(b) MXL does not work correctly when rr/2 < A < A'. (or equivalently 10 > R with

A, < A,);
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(c) When A 2 A', so that the MXL is acting correctly, increase in size of oscillation 1,

given a specific value of 10 will cause A < A' and thus the MXL to malflmction as shown

in Figure 3.3;

(d) When It/Z < A < A' , so that the MXL is working incorrectly, increase in average

field current value 10 given a specific value of 1, will cause A .>_ A' and thus the MXL to

operate properly.

.1 ' ' Rslts

The problem ofMXL disablement can be shown clearly by the following simulations.

Case 1; (10 < R, A <15)

For this case, the simulation parameters of the MXL shown in Figure 2.2 and the field

current expression 3.1 are: M=1.5, K,=100, K,=l, K,=l, R=1.05, 10:1.0, I,=0.2.

Here, I0 < R, A <1; the MXL should not act, that is, X, should remain zero. Figure 3.4

shows that X4 reaches its lower limit after a time delay because of the integration, and X5

remains zero for all the time regardless of the existence of the oscillation component. The

MXL works correctly.
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Figure 3.4 The MXL action when 10 < R

7:

MI. (10 = R: A = 3)

For this case, the simulation parameters are: M=l.5, K,=100, K,=l, K,=1,

R=1.05, 10:1.05, I,=0.2. Here, 10 =11, 13:; the MXL should not act, that is, X,

should remain zero. Figure 3.5 shows that X, and X5 go above zero a little for a short time

at the very beginning because X, = 0 at t= 0, then X, decreases and reaches its lower

limit — M, and finally oscillates around that lower limit. X5 remains zero after a short

interval where it is positive. Since the positive period for X, and X5 is very short, and the

magnitude is negligible, the MXL works correctly as intended.
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For this case, the simulation parameters are: M=l.5, K,=100, K,=1, K,=l,

R=1.05, I,=1.055, I,=0.2. Here, 10>R, 13>; with A, <A,, the MXL should act

since 10 > R, that is, X, and X, should be positive and go to the upper limit +M after

some time delay if it works correctly. Note that 10:1.055 is just slightly above R=l .05,

thus A is just slightly above 375 and less than A'. A is within the range where the

oscillation disables the MXL. This analysis suggests that the oscillation component keeps

A, < A,, this makes it impossible for X, to keep positive and reach its upper limit.

Therefore, X5 remains zero most of the time and the MXL works incorrectly. Figure 3.6

displays the result that confirms this point.
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Ce§e4;(10>R,A>A*)

For this case, the simulation parameters are: M=1.5, K,=100, K,=1, K,=1,

R=l.05, Io=1.07, I,=0.2, except that 10 is increased from 1.05 to 1.07, all the other

parametersarethe sameasthoseincase3. Here, 10>R, A>§ with A, >A,, theMXL

should act correctly since 10 is sufficiently greater than R for the particular I, value. X,

and X5 should be positive and go to the upper limit after some time delay. Since the

oscillation component remains small for the 10 - R value, A, > A, , X, remains positive

and near its upper limit. Therefore, X5 reaches and remains at its upper limit after a short
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time delay and the simulation confirms that the MXL works correctly. Figure 3.7 confirms

this analysis.
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(The effect ofincreasing 10 for certain I, )

Qa§_e_5_;_(IO>R, A < A * due to increase in 1,)

For this case, the simulation parameters are: M=1.5, K,=100, K,=1, K3= l ,

R=1.05, 10:1.07, I,=0.4, except that I, is increased from 0.2 to 0.4, all the other

18

parameters are the same as those in case 4. Here, 1,, > R, A >325 with A, > A,. This case is

the same as case 3. From Figure 3.8, it is clear that the MXL does not work correctly.
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These results show that when 10 is slightly above R with certain amount of oscillation

component, the MXL is disabled, but the MXL will again be enabled if 10 increases

sufficiently. Another result is that for any 10 value, if the magnitude of the oscillation

component increases sufficiently, the MXL will be disabled. The large magnitude of the

oscillation component (1,) in the WSCC system for a light stress (10 - R small) would

suggest why the McNaly station unit excitation control systems to be disabled and the use

ofoverexcitation protection relays to disable the excitation control system and its MXL.



3.2 Excitation Control System Tripping and Unit Tripping

IfMXL is unable to limit the field current level due to the existence of oscillations that

disable it, the OXP (Overexcitation Protection Relay) will trip the ac regulator to do

regulator or manual control and disable the excitation control system. When the excitation

control system is disabled without loss of PO controllability or PV controllability, the

armature reaction on the generator is no longer masked by the excitation control system due

to increased load on this generator. Generator internal voltage is reduced due to increased

reactive generation output. The reduction in E;(t) can cause a significant reduction in

voltage in the transmission network, and increased network reactive losses and reduced

shunt capacitive supply. This, in turn, is followed by further reduction of internal voltage

Eg(1) due to armature reaction in order to override possible generator response for decrease

in network shunt capacitive reactive supply and increase in network reactive losses due to

the drop ofnetwork voltage. Manual control requires the operator to adjust the field voltage

manually so that the generator terminal voltage Eg(t) and reactive power are about the same

as what are produced out of the generator through excitation control system action. A dc

regulator attempts to maintain field current at rating level but is not a feedback controller on

generator terminal voltage as the excitation control system is. The use of a DC regulator or

manual control does not overcome armature reaction that reduces internal voltage.

The complete disablement of the excitation control system and MXL via an

overexcitation protection relay for a generator together with a slow loss of PV

controllability causes immediate saddle node bifurcation in flux decay dynamics and thus

loss of stability [22]. The instability drives the internal voltage to decrease slowly toward

zero. As E,’(t) is reduced, loss of PQ controllability may result in E;(t) to decrease more

rapidly. Undervoltage relays or armature cmrent relays may trip the writ off line.
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If a loss of PQ controllability occurs, singularity induced or saddle node bifurcation

can occur. The internal voltage response E;(t) is stable and rapidly increasing. The MXL

is not generally fast enough to overcome the increase in Eg(t) by driving the generator

excitation control system setpoint to zero and Eg(t) continues to increase rapidly. As a

result, the OXP relay would trip the generator. This is likely what caused the tripping of the

McNary station generators during the August 1996 blackout on the WSCC system.

3.3 Uncontrollable Spreading Voltage Collapse

After the unstable generators were tripped off line, additional generators will try to

pick up the reactive power from the unstable generators as well as the decreased shunt

capacitive supply and increased network losses, the field eturent of these generators will

reach their limits and these additional generators may experience the same sequence as

those generators that initially get tripped. As a result, a spreading uncontrollable voltage

collapse will occur.
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CHAPTER 4

VOLTAGE AND LOAD CONTROLLABILITY

4.1 Introduction

Sensitivity indices have been used to help assess proximity to instability in a load

flow model and in linearized mid-term power system stability models from the inception

of the investigation of voltage instability at an equilibrium. The use of sensitivity

matrices other than sensitivity indices was first adopted in [15] and was applied to both

load flow and mid-term stability models. More recently, sensitivity matrices have been

used to assess proximity to instability along a transient trajectory [12, 56, 57]. Sensitivity

matrix elements have been shown to increase rapidly as the algebraic model, differential

algebraic, or differential model equilibrium approaches local bifurcation[12, 56, 57, 58]

or when the trajectory of the differential model approaches the boundary of the region of

attraction[12, 56, 57].

This chapter utilizes the sensitivity matrices upon which PQ controllability of load

buses and PV controllability of generator buses are defined and are related to the

sensitivity indices that were developed at the inception of voltage instability research [33,

62]. The condition for PQ controllability of load buses and PV controllability of

generator buses is based on common engineering judgement of the conditions that reflect

proper control capability and response of a transmission or distribution network.
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In this chapter, firstly, the results on PO and PV controllability in [15] are extended.

PV controllability of AQG is separated into voltage PV controllability and load PV

controllability based on AE; and AQ, changes respectively. Similarly, PQ controllability

of load bus voltages AV is broken into voltage PQ controllability and load PQ

controllability based on AE; and AQ, changes respectively. Secondly, it is shown that

-l . .

the test matrix elements for SQLV , Sn; and SQGQL assocrated wrth a voltage control

area slowly progress toward loss of load PQ controllability, (a) approach infinity, (b)

discontinuously change to negative infinity, and (c) then increase toward zero. Thirdly, It

is proven that if load PQ controllability is lost, then voltage PQ controllability, voltage

PV controllability and load PV controllability are lost. It is also proven that loss of

voltage PV controllability can occur before loss of load PQ controllability occurs.

Finally, it is proven that loss of load PQ controllability can occur if shunt capacitive

susceptance is added to every bus in a voltage control area, and that the margin to the

point of loss of load PQ controllability increases for the addition of shunt inductive

susceptance. Each of these results are related to instability in generator flux decay

dynamics through simulation results where these behaviors are observed. The simulation

results also validate the theoretical results. These theoretical and simulation results are

derived in order to theoretically establish (in chapter 5) the time behaviors that lead to

production of the sharp negative voltage spike observed in December 1994, July 1996

and August 1996 blackouts on the WSCC system.

4.2 Sensitivity Matrices

For a non-decoupled differential algebraic model
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'AP,‘ "A, B, C, D," A6 1

AP, A, B, C, D, A0

= . . 4.1
AQ, A, B, C, D, AEq/E, ( )

_AQ,_ _A, B, C, D,__AV/V_

APO
A6

[A6] can be determined by first setting [ ]= 0 in the first two equations in (4.1)

AP,

and solving to obtain:

A6 A, B, "‘ C, D, A5,;

=- (4.2)

A9 A, B, C, D, AV

. . A5 . . .
Substituting [A6] in the last two equations 1n (4.1) produces a reduced model

AQG = AE; 43

AQ, AV (')

where

J=[Jll J12-

J21 J22,

,6. 1),, FA. all!!! B.]"'[Ct 0.] (4'4)

C4 D4 _A4 B4 A2 32 C2 D2 

Here, the sensitivity model can now be derived from (4.4) and has the form

AV/V = SQLV“AQ, + SV, (AE; /E,;) (4.5)

AQG = 59.5 (Mi/ED " 59th AQ, (4-6)

The sensitivity matrices are defined as
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SQLV = 22

SVE = —SQLV—IJ21

SQGQL = -J128 LV—l (4'7)

SQGE = Jll " JIZSQLV—IJZl

The Jacobian can be based on a constant power model as in the Newton load flow or

as in a decoupled load flow where C,, C,, D,, D,, A,, A,, B3 and B, are null. In a

decoupled load flow, one could assume that angle differences are small and voltage

differences are small so that the remaining Jacobian elements are proportional to the

adrnittances connecting buses in the network. A further step is to assume that the matrices

include shunt admittance or constant current load [54]. A combination of constant

current, constant impedance, and constant power model is ofien used.

In this thesis, the non-decoupled constant power load model is used when saddle

node bifurcation is studied. Saddle node bifurcation occurs when an eigenvalue of the

equivalent differential model approaches zero which implies that the response is

infinitely slow at the bifurcation, all tap changers and switchable shunt capacitors in the

distribution system have time to complete their action to cause voltage and load recovery.

Thus, a constant power load model is appropriate for study of saddle node bifurcation.

Singularity induced bifurcation occurs in the network equations. This bifurcation can

develop as tap changers, switchable shunt capacitors, and generator electrical and inertial

dynamics respond to result in an equilibrium in an infinitesimal time interval. A constant

power load model reflects the effects of distribution level under load tap changers and

switchable shunt capacitors over an infinite time interval, but does not reflect the

transition from saddle node bifurcation to singularity induced bifurcation if the excitation

control system is disabled by an overexcitation protection relay and loss of voltage PV
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controllability has occurred on the generator. The conventional combination of constant

current, constant impedance, and constant power load model is not adequate to represent

the aggregated distribution network and load over this transition from an infinitely slow

instability to an infinitely fast instability. This is because the nature of the load model

must change dynamically over time due to tap changer and switchable shunt capacitor

controls aggregated in the load that change constant impedance and constant current

loads to behave as constant power loads. The induction motor load dynamics and

thermostatic load dynamics are also ignored if the conventional combination of constant

power, constant impedance and constant current load models are used.

Recent changes of power engineering load modeling [49] practice has witnessed use

of a short time transient and a long term steady state load model to handle induction

motor load and thermostatic load dynamics. as well as the action of tap changer controls

and switchable shunt capacitor controls in the distribution system. This short term and

long term load modeling allows a transition from one to the other over time as discussed

in Chapter 2. The long term model is very heavily constant power reflecting the effects of

thermostatic load recovery over time and the load recovery due to underload tap changers

and capacitors actions on voltage. The short term load model is often constant current and

constant impedance combinations. The long term model is used in computing a stable

equilibrium and the eigenvalues near saddle node bifurcation. The short term model is

used in computing the eigenvalues and eigenvectors of the differential equation model

near singularity induced bifurcation.

The difficulty in studying a bifurcation sequence is that the equilibrium is unstable

after the first bifirrcation. The use of a constant power model to compute the eigenvalue

and the long term changes in the equilibrium response before and shortly after bifurcation

for a saddle node bifurcation with an infinite steady state response time at bifurcation is
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appropriate. Once saddle node bifurcation occurs and is transitioning to singularity

induced bifurcation, one is no longer in equilibrium, a short term load model is

appropriate in attempting to analyze the response. This is especially true if the unstable

response afier saddle node bifurcation is becoming ever faster producing the negative

voltage spike.

4.3 Voltage and Load PV Controllability

4.3.1 Veltage PV Centlollebility

Voltage PV Controllability relates control of reactive generation( Q) to generator

internal voltage( EJ) at generator(PV) buses. For a system to be voltage PV controllable,

the reactive power injection at the PV buses should increase when the load at PQ buses is

fixed and the voltage at some PV buses is increased

Definition 4.1

A system is voltage PV controllable at any time t along the transient trajectory or at

an equilibrium point if: when AQ, = 0, any nonzero nonnegative control AE causes the

M

PV state AQG to become such that XAQG, > 0 and if AE, > 0 with AE, = 0 for all

i=1

j¢i then AQG, >0 and AQQ, S Oforalljati.

Theorem 4.1

A system is voltage PV controllable ifand only ifthe matrix SQGE is such that

M

2189,51,, >0, j=1,...,M

i=1
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>O,i=j

{SQGEh-{s 0, lat j

This proof is omitted but can be obtained from results in [15].

4.3.2 L ad PV ntrolla ili

Load PV Controllability relates control of reactive generation( Q) at generator(PV)

buses to load( Q,) at load(PQ) buses. For a system to be load PV controllable, the reactive

power injection at the PV buses should increase when the voltage at PV buses is fixed

and the load at PO buses is increased.

Definition 4.2

A system is load PV controllable at any time t along the transient trajectory or at an

equilibrium point if: when AB = 0, any nonzero nonpositive disturbance AQ, cause the

PVstate AQG to become nonzero nonnegative.

Theorem 4.2

A system is load PV controllable ifand only ifthe matrix SQGQL satisfiing

Q; =- SQer AQ, is nonnegative and no zero columns.

This proof is omitted but can be obtained from results in [15].

4.4 Voltage and Load PQ Controllability

4.4.1 V P ontr lla ili
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Voltage PQ Controllability relates control of voltage( V) at load(PQ) buses to

generator internal voltage( E,I) at PV buses. For a system to be voltage PQ controllable,

the voltage at PQ buses should increase when the load is fixed and the voltage at some

PV buses is increased.

Definition 4.3

A system is voltage PQ controllable at any time t along the transient trajectory or at

an equilibrium point if:

(a) When AQ, = 0, any nonzero nonnegative control AE causes the PQ state AV to

become nonnegative and

(b) When AQ, = 0, for each j there is a nonzero nonnegative control AE that

causes AV, to becomepositive.

Theorem 4.3

A suflicient condition for voltage PQ controllability is that SVE satisfying

AV = SVEAE is nonnegative with no zero rows.

This proof is omitted but can be obtained from results in [15].

44,2 Leed PQ Centrellability

Voltage PQ Controllability relates control of voltage( V) to load( Q,) at load(PQ)

buses. For a system to be load PQ controllable, the voltage at PO buses should increase

when the voltage at PV buses is fixed and the load at some PQ buses is increased

Definition 4.4
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A system is load PQ controllable at any time t along the transient trajectory or at an

equilibrium point if:

(a) when AE = 0, any nonzero nonnegative disturbance AQ, causes the PQ state

AV to become nonnegative and

(b) when AE = 0, for each j there is a nonzero nonnegative disturbance AQL that

causes AV}. to become positive.

Theorem 4.4

A suflicient conditionfor loadPQ controllability is that SQ, V is a M—matrix.

This proof is omitted but can be obtained from results in [15].

4.5 Effects of Loss of Load PQ Controllability

Theorem 4.5

As load PQ controllability is lost and SQLV loses its M matrix property by a single

-1

eigenvalue 11m,“ (11) of SQLV approaching zero and becoming negative, matrix SQLV

elements in the voltage control area associated with 11m," (11) approach infinity, become

negative infinity, and then increase toward zero if the constituent matrix is continuous,

does not change its magnitude as rapidly as T, and does not change sign in the

min

interval [11,, - 8,11,, + 8] when 8 is sufliciently small and [A —) 110.

Proof:

The M matrix SQLV has eigenvalues 11,, 1': 1,2...N, and the matrix SQLy—l has all

nonnegative elements by the proven properties of an M matrix. SQ, V can be written as
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N

SQLV = 2’1er (4.8)

i=1

where A, is the eigenvalue of S Ly and Z, is the constituent matrix of SQtV° Matrix

—1

SQL y can be expressed as

N

_ 1
Soy ‘= 2 i'rTZ" (4.9)

Since the constituent matrices satisfy

ZiZi =Zi

Z,Z,.=O, i¢j (4.10)

As one eigenvalue 1, approaches zero,

1
—1

59,1» z T2]: (4.11)

k

in the voltage control area [12] associated with that eigenvalue 21,.

. . . . . -l . .

The constltuent matrlx Z, must be nonnegative matrlx srnce S Ly 1s nonnegatrve

as long as load PQ controllability holds and SQLV is an M matrix. When A, approaches

-1

zero, elements of SQ, y must approach infinity if 11—1- grows faster than the elements of

k

matrix Z, could ever approach zero. If Z, does not have all zero elements when 11,, = 0

(because they must be nonnegative since SQLV is an M matrix until l, = 0), there are

some elements of SQL y—1 in the voltage control area associated with the bifurcating

eigenvalue 1,, that may approach infinity [45, 12]. If there is a small operating change

that causes 1,, to move from zero continuously to negative infinitesimal value where Z,
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elements have no perceptive change (because they are also continuous), then elements of

-l . . . . . .

SQLy can be near negatrve 1nfin1ty 1n the voltage control area assocrated wrth

.] .

eigenvalue 1,. The elements of SQL y may mcrease and approach zero as 11, becomes

more negative.

Theorem 4.6

Loss of voltage PV controllability, load PV controllability and voltage PQ

controllability occur in the voltage control area associated with 11m if (i) the

nonpositive continuous elements in J,,, J,, and 21",,“ changes imperceptibly in

[110 - 8,11,, + 8] when 8 is sufliciently small and (ii) the elements of SQL y—I approach

infinity, become negative infinity and increase in [[10 - 8,110 + 8] when 8 is sufficiently

small. Loss of voltage PV controllability may occur long before loss of load PQ

controllability occurs, but loss of load PV controllability and loss of voltage PQ

controllability generally occur simultaneously.

proof:

The sensitivity matrices are defined as

SQLV = J22

SVE = _SQLV-]J21

Scoot = "JrzSQLV—l

__ -1

SQGE ‘ Jll -J12SQLV J21

-1 . . . . .

where SQLV 1s the test matrix for load PQ controllabrllty, SVE rs the test matrix for

voltage PQ controllability, SQ
G
Q, is the test matrix for load PV controllability, and

SQoE is the test matrix for voltage PV controllability.
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When SQLV is singular, SW" is not technically defined, its elements may be very

large positive numbers before the singularity point and very large negative numbers in a

particular voltage control area after the singularity point as shown in Theorem 4.5. Since

it is assumed that J,, and J,, elements are nonpositive and change continuously and

._1 .

imperceptibly in [110 -8,fl0 +8] and elements of S Ly 1n the voltage control area

associated with A approach infinity, go to negative infinity and then approach zero as

,u —) 11,, in [110 —8,fl0 +8], elements of SW; and SQGQL in that voltage control area

. . -1 .

assocrated With Jim,“ behave the same as elements of S L y in that voltage control area.

Loss of load PV controllability and voltage PQ controllability occur in [11,, — 8,11,, + 8] in

the voltage control area associated with Am," as ,u —-) 110.

The conditions for voltage PV controllability are

M

259.511; > 0.1' =1..--,M (4.12)

i=1

S >O,i=j

{ 905i:- so, i¢ j (4°13)

SQGE = J11 —J12SQLV_IJ21

where

The diagonal elements of SQGE will approach zero and become negative because

the second term should dominate at PV buses in the voltage control area associated with

11 approaches zero since
min

(i) Z)“, must have all nonnegative elements by assumption that change

imperceptibly in [[10 — 8,11,, + 8] if load PQ controllability holds. This is true because

SQ, y" must have all nonnegative elements and Z,1 min is continuous;
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(ii) J12. and J,, have all nonpositive elements because they are off diagonal

submatrices of matrix J and change imperceptibly in [p10 - 8,11,, + 8] by assumption and

continuity;

(iii) The il th elements of _']12SQ, 11—1le in the voltage control area associated with

eigenvalue A,,,i are negative and grow toward infinite value as A,,, approaches zero
n 11

since every element ofmatrix

1

EZ—{J12}ij A. . {ZAm,,, }jk{J21}k1

J min

is negative because the elements in the sum associated with the voltage control area that

is nonzero is negative and approaches negative infinity as Amin approaches zero due to

assumed properties (i) and (ii);

1

(iv) SQGE is approximated by J,, when Amin is large and by -J,2 72,,“me at all

ma

buses in the voltage control area as A,,, is reduced. The diagonal elements in J,, are
['1

positive but the elements in -J,2 A——Z’1"““J21 in the voltage control area become more

min

negative as Am,n decreases toward zero;

1

(v) Since all of the elements in -J _ZA..:.J2| are negative and the fact that

12 Amin

condition (4.12) is violated before condition (4.13) is violated indicates that loss of

voltage PV controllability occurs substantially before loss of voltage PQ controllability

for buses in the voltage control area associated with A
I

min ’

(vi) The elements of SQGE in the voltage control area associated with Amin should

approach negative infinity, become positive infinity and then decrease as ,u —-) [.10 in
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[110 — 8,11,, + 8] if J,,,, J,, and 21",," elements in the voltage control area associated

Amin are continuous and thus do not change perceptibly as assumed.

In summary, when load PQ controllability is lost, voltage PV controllability, load PV

controllability and voltage PQ controllability can be lost. But loss of voltage PV

controllability can occur before load PQ controllability is lost.

4.6 Effects of Load Characteristics

Theorem 4.7

Assume that load PQ controllability and voltage PV controllability hold at some

operating point close to loss of load PQ controllability when the excitation control

system is disabled

(i) [finductive load susceptances increase at all buses, then elements of SQL y—1 will

become smaller .

(ii) If shunt capacitive susceptances increase at all buses, then SQ, y-1 will become

larger.

If the SQLV off-diagonal elements and all elements of Zion. change imperceptibly in

[#0 " 8.110 + 8]

Proof:

From [15], for a decoupled load flow model

AQG _ A5; _ Jn le AE;

[A91].- AVl_iJ21 JzziiAVl
v
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where J has positive diagonal elements, nonpositive off-diagonal elements. And when

E; is specified, AB; = 0, and

AQL = J,,AV = SQLVAV (4.14)

When V. z 1 and 5,, z 0, the Jacobians [54] can be expressed as
1

AQ, = B”AV (4.15)

where

B” = B’ -— 2diag{Bsmm ,BMMW3 } (4.16)

where B’ has positive diagonal elements and nonpositive off-diagonal elements. The fact

that off-diagonal elements of SQ], are assumed to change imperceptibly justifies use of

the decoupled model. The diagonal elements of B’ are the negative of the sum of its off

diagonal elements in a row plus the negative sum of the elements connecting that bus to

PV buses. Element Bsii's are negative when the susceptance is inductive, B,,,'s are

positive when the susceptance is capacitive.

From (4.14) and (4.15), we obtain

5,, = B” = B’ — 2diag{B
sm¢Lm+l, sm+Lm+2,.

..,B,M} (4.17)

(i) If inductive load susceptances increase at all buses, all the B,’s are negative and

becomes more negative. This will make the minimum row sum of SQLV increase since

the diagonal elements increase from (4.17), so that the lower bound on the minimum

eigenvalue Amin of SQLV’ which is the minimum row sum of S Ly, will increase. Since it

was assumed that the operating point is close to loss of load PQ controllability, the

minimum eigenvalue term in the modal expansion dominates in the voltage control area
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l
I O I —1 U

associated with that mrmmum eigenvalue. Therefore, S ,y z “—1Z11...... wrll become

min

smaller in the voltage control area associated with eigenvalue Amin for increase in shunt

inductive susceptance at all buses as long as changes in the discontinuous function of ,u

 A are greater than changes in Z1"... which are a continuous at 11,, and Amin = 0.

min

(ii) If shunt capacitive susceptances increase at all buses, all the B,'s are positive and

increase. This will make the minimum row sum of SQLV decrease since diagonal

elements of SQLV are decreasing from (4.17). The minimum eigenvalue of S Ly should

also decrease since it is assumed that the operating point is close to loss of load PQ

controllability and Amin is small, the minimum eigenvalue term in the modal expansion of

-l . . . . . . .

SQ, y dominates 1n the voltage control area assocrated wrth that mrmmum ergenvalue.

-1 . .

This suggests that the elements of SQLV in the voltage control area assocrated wrth

Amin are increasing toward infinite value as shunt capacitive susceptances are increasing.

Based on Theorem 4.6 and Theorem 4.7, the conclusion is that a network that has

sufficiently large line charging and shunt capacitive susceptance will experience loss of

voltage PV controllability long before it has experienced loss of load PV controllability,

loss of voltage PQ controllability and loss of load PQ controllability.

It should be noted that the ith diagonal element of SQL y-l should describe the slope

of the Q-V curve which is positive and decreases toward zero as Q,, = [1 -) [10. Since a

Q-V curve is really a reactive load stress test and the system should be stable as

Q,, = p —) [J,,, the elements of vector AQG = -SQGQLAQL,e, should be positive since

AQL, < 0 for increase in load at bus i, e, is a unit vector with l in the ith element and

zeros elsewhere, the ith column of SQer has all non-negative elements when load PV

controllability holds. This last condition on SQGQL is important since the increase in

reactive load should cause reactive generation increase and exhaustion of reactive
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reserves on certain generators in the reactive reserve basin at generator i. When the

system is stable, if a Q-V curve is run at generator i, the ith diagonal element of SQoE

must be positive and decrease toward zero as 11 —) ,uo since it is the slope of the Q-V

curve.

To establish that the Q-V curve stress test is administered under stable operating

conditions and that reactive load would produce the same result as reducing voltage AE,

to reduce AQG, to more negative values, all elements of SQGQL should be positive

indicating reactive load increase at any bus j would cause increased generation at every

generator.

4.7 Validation of Theory

The objective of this section is to (a) validate that SQ, fl approaches positive

infinity, jumps to negative infinity, and goes back to zero when a power system

experiences a negative voltage as observed in the WSCC system blackouts (b) validate

that infinity phenomena can occur both when all the exciters present and when one

exciter is disabled by an over-excitation protection relay (c) validate that SVE, SQGE and

SQer all show that same infinity phenomena, and (d) establish the effects of load

characteristics on S Liz-l when an exciter is disabled by the over-excitation protection

relay.

The example system studied here is taken from Fouad [55]. It is a 3-machine 9-bus

system, and the network is shown in Figure 4.1. The bus data, line data, generation data

and exciter data are summarized in Tables 4.1-4.4 respectively.
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Two different cases are investigated here. The first one is the network shown in

Figure 4.1 where all the excitation control systems are active on all three generators. The

second case is the same network but with the excitation control system on generator 3

disabled by an over-excitation protection relay.

For the first case, a disturbance, which is a sudden reactive load increase (1.56 pu) on

generator bus 3, is applied at t= 1.1(s). Then the internal bus voltage E; at generator 3

exhibits the behavior as shown in Figure 4.2(a). The sensitivity matrices corresponding

to each point of Eg are computed, and the results are shown respectively in Figure 4.2(b),

(C). (d) and (e).

In the second case where the excitation control system on generator 3 is disabled by

an over-excitation protection relay, a similar disturbance as in the first case (i.e. a sudden

reactive load increase of 1.56 pu) is applied at t=1.1(s) on generator bus 3. Now the

internal bus voltage E; at generator 3 exhibits the behavior as shown in Figure 4.3(a).

The sensitivity matrices corresponding to each point of E; are computed, and the results

are shown respectively in Figure 4.3(b), (c), (d) and (e). The fact that the infinity

discontinuity occurs respectively in Figure 4.1 and Figure 4.2 indicates that the trajectory

is on a singular surface or continues to cross the singular surface.

In order to perform the validation clearly, different points on Figure 4.2 and Figure

4.3 are zoomed. Figure 4.4 and Figure 4.5 show the behavior of SQL V"l around point B,

respectively for case 1 and case 2. It goes to positive infinity, jump to negative infinity

and then goes back to zero. Theorem 4.5 that states such behaviors in S LV_1 is

confirmed.

Figure 4.6 and Figure 4.7 show the occurrence pattern of loss of different

controllabilites for case 1 and case 2 respectively. At point A, the diagonal elements of



SQGE on generator 3 changes sign from positive to negative. Voltage PV controllability is

lost first, which apparently triggers the instability in E; at generator 3. This instability

then causes the sharp rise in SQL fl , SQGE and SQGQL as shown in Figure 4.6. Figure

4.7 shows the similar phenomena for case 2. At point B, S ,y-1 approaches positive

infinity, becomes negative infinity and increase toward zero, load PQ controllability is

lost. At the same time, SyE and SQGQL go through the same infinity transition process

and become negative afterwards, voltage PQ controllability and load PV controllability

are lost simultaneously. Theorem 4.6 which states all of the above behaviors in SQGE ,

Sn; and SQGQL is confirmed.

In Figure 4.8, there are three curves, the curve with circles is SQ, f] with the same

original settings as in case 2, the curve with dots is SQ, 11-] with 0.05 pu B increase on

every bus. The curve with stars is S Ly-l with 0.05 pu G shunt increase on every bus,

and all the other parameters are the same as in case 1. From Fig.4.8, it is shown clearly

that SQ, y-l becomes smaller when G shunt is increased, and SQL y—l becomes larger

when B shunt is increased. Theorem 4.7 is thus confirmed.
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bus voltage( angle p_gen q_gen p_load q_load G B bus

No. pu) (deg) (pu) (pu) (pu) (pu) shunt shunt type

1 1.04 0.00 0.716 0.27 0.00 0.03 0.00 0.00 l

2 1.025 9.30 1.63 0.07 0.00 -0.02 0.00 0.00 2

3 1.025 4.70 0.85 —0.1 l 0.00 -l .56 0.00 0.00 2

4 1.026 -2.20 0.00 0.00 0.00 0.00 0.00 0.00 3

5 0.996 -4.00 0.00 0.00 1.25 0.50 0.00 0.00 3

6 1.013 -3.70 0.00 0.00 0.90 0.30 0.00 0.00 3

7 1.026 3.70 0.00 0.00 0.00 0.00 0.00 0.00 3

8 1.016 0.70 0.00 0.00 1.00 0.35 0.00 0.00 3

9 1.032 2.00 0.00 0.00 0.00 1.60 0.00 0.00 3

Table 4.1 Bus data

From To resistance reactance line tap

bus bus (pu) (pu) charging ratio

1 4 0.0000 0.0576 0.0000 1 .0

4 5 0.0100 0.0850 0.0880 1.0

5 7 0.0320 0.1610 0.1530 1.0

7 2 0.0000 0.0625 0.0000 1.0

7 8 0.0085 0.0072 0.0745 1.0

8 9 0.0119 0.1008 0.1045 1.0

9 3 0.0000 0.1586 0.0000 1.0

9 6 0.0390 0.1700 0.1790 1.0

9 4 0.0170 0.0920 0.0800 1.0
 

Table 4.2 Line data
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Gen Base x_l r__a x d x' d T'_d x__q x'_q d_o d_l

No. mva

1 247.5 0.0336 0.01 0.145 0.061 8.96 0.097 0.097 13.54 9.6

2 191.9 0.0521 0.01 0.896 0.119 6.00 0.865 0.197 5.40 2.5

3 127.9 0.0742 0.01 1.313 0.865 5.89 1.258 0.250 3.01 1.0

Table 4.3 Generator data

Gen exc. T_R K_A T_A V_R V_R K_E E_l S_E E_2 S_E

No. type max min 1 2

l 1 0.06 25.0 0.06 5.0 -5.9 -0.02 0.75 0.12 1.0 0.30

2 0 0.06 25.0 0.00 5.0 -1.0 -0.05 0.75 0.07 1.0 0.30

3 2 0.06 1.00 0.01 5.0 -5.0 -0.06 0.75 0.09 1.0 0.36

Table 4.4 Exciter data
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Figure 4.1 A three-machine 9-bus test system

68



E
8
0
.
9

E
w
<
m

3
8
0
m
E
8
2

_
z
<
m
m
m
m

_

L 0
.

0
0

0
0

0
C
.

L

E
m
a
r
—
2
.
3
6

0

100

100

-100

100

-100

100

—100

0
 

 
 

 
 

o
o

o
0

_
_

 
 
 

 

69

Time

. ' -l
F1g.4.2 E , SQLV , SQGE,SVE and SQGQL for casel

 

 
 

 

 

 
 

l v v

.4

V

A

r—vr— fifiv—vfi

J

7

I

r————-—vv—“'————._

l

v

1]
Ir vy vr vv

Ll

 
 

   
   

  
 

 
  

  
 

J4

LL 1.. .n A.

 
 

 
 
 



. I -l
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CHAPTER 5

THEORETICAL AND SIMULATION

JUSTIFICATION FOR THE DYNAMIC

RESPONSES TO BIFURCATION SEQUENCES

ASSOCIATED WITH VOLTAGE COLLAPSE

This chapter establishes that a saddle node bifurcation followed by an inevitable

singularity induced bifurcation produces the characteristic negative voltage spike observed

on the December 14, 1994, July 2, 1996 and August 10, 1996 WSCC system voltage

collapse problems. The theory uses previously defined matrices T and N [8] to show that:

(a) Disablement of the excitation control system is not enough to cause instability, but

disablement of the excitation control system and slow loss of voltage PV controllability

cause saddle node bifurcation and thus loss of stability. This loss of stability causes

AE; (t) to decline. This can be observed in Figure 1.2(a) starting from 15:47:50 ignoring

the oscillations observed in that figure. The loss of stability can be observed in an

eigenvalue of T going to zero and slowly assuming positive value;

(b) The decline in voltage A5,, (I) should cause a generation decrease given that

{SQoE}-- <0. A dynamic Q—V curve is then produced as long as SQGQL has all

nonnegative elements and load PV controllability holds as 13E; (I) is decreasing;
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(c) The dynamic Q-V curve at a generator bus in a voltage control area should cause

-1

elements of SQLV associated with that voltage control area to approach infinity and

{SQGE )1, to continually decrease and thus further violate voltage PV controllability

conditions;

(d) A more and more rapid decline in AB; (1‘) should occur as the positive unstable

eigenvalue of T associated with the loss of voltage PV controllability and loss of the

excitation control system on generator i becomes more positive because the magnitude of

the positive eigenvalue depends on the degree of violation of PV controllability at bus i.

-1

The acceleration of SQLV elements to infinity causes acceleration in the magnitude of

violation in voltage PV controllability and increase in positive value for the unstable

-1

eigenvalue of T. This acceleration of SQLV elements to infinity causes the rate of

A512,“) decline to increase resulting in a spike and the eigenvalue approaching infinity.

The evolution of the slow decline in 135;“) at saddle node bifurcation to the more and

more rapid decline associated with singularity induced bifurcation can be observed in

Figure 12(3);

—1

(e) The chan e in S V values from +00 to — oo in the volta e control area causes
3 QL g

SQGE ‘0 change from -°° t0 +°°. and T from +00 to -<>o [15, 48, 40]. This change in T

causes a stable but infinitely fast rise in AE; (t). This can be observed in Figure 1.2(a).

5.1 Introduction

Sensentivity methods were very thoroughly investigated as a means of assessing

proximity to voltage instability in a loadflow model [15, 33, 62] and for assessment of the

stability of an equilibrium in a differential algebraic modol [15, 33, 62]. More recently

trajectory sensitivity methods have been applied [12, 56, 62] to assess proximity to the
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boundary of the region of attraction and to assess how discontinuities due to contingencies,

field current limiters, switchable shunt capacitors, and tap changers affect proximity to

instability of a trajectory. In all cases, the sensitivity measures become large as proximity

to instability become small. Network sensitivity matrices were first defined in chapter 4.

PQ contollability of voltage (V) at load buses and PV controllability of reactive genration

(Q6) at generator or voltage control buses was defined based on the understanding of the

proper response and contol of tese variables that not only reflected stable operation but

acceptable operaton. The concept of PQ controllability and PV controllability was extended

in chapter 4 to differentiate the response of the variables (V, Q) to reactive load Q, and

generator internal voltage (E). The properties of test matrices SQLV-l and SVE for load

and voltage PQ contolability respectively and test matrices SQGQL and SQc;E for load and

PV controllability were defined in chapter 4, are the foundation for the theory presented in

this chapter on how and why large negative voltage spikes can occur as a system

experiences a blackout. These large negative voltage spikes are believed to have

contributed to or possibly caused the three recent blackouts on the WSCC system because

(1) they represent a series of cascading bifurcations that make the dynamics unstable and

ultimately destroy the network's ability to transfer power and (2) the large negative voltage

spike triggers equipment protection limiters and relays that outage equipment that ultimately

cascades the blackout throughout the system.

A sharp negative voltage spike has been observed on the WSCC system prior to the

December 14, 1994, July 2, 1996 and August 10, 1996 blackouts. The voltage spike is

proven to occur due to Maximum Excitation Limiter (MXL) action that causes an unstable

trajectory crossing a singular surface due to loss of load and voltage PQ controllability.

This is quite possibly the voltage spikes that occurred on the first two WSCC blackouts. A

voltage spike is also proven to occur when a MXL is disabled by large interarea oscillations

and an Over Excitation Protection Relay (OXP) trips the AC regulator over to the DC

78



regulator of the automatic voltage regulator. The voltage spike that is observed during the

August 10, 1996 blackout quite possibly occurred due to a sequence of saddle node

bifurcation that is inevitably followed by the unstable trajectory crossing a singular surface.

The saddle node bifurcation occurs due to (a): disablement of the Maximum Excitarion

Limiter due to large interarea oscillations as proven in [57,60], (b) OXP relay tripping of

the AC regulalor of the AVR [57, 60] and loss of voltage PV controllability [60, 63]. Loss

of voltage PV controllability is proven to occur on networks where the network provides

the reactive supply via line charging and/or heavy shunt capacitive compensation. The

instability following saddle node bifurcation is proven to administer a dynamic Q—V stress

test that results in sigular surface via loss of load and voltage PV controllability [57, 62].

The voltage decline portion of the negative voltage spike is proven to occur due to the

saddle node bifurcation and the voltage increase is proven to occur due to the unstable .

trajectory crossing the singular surface. This bifurcation sequence is quite possibly what

produced the voltage spike that was observed on the August 10, 1996 blackout when the

large interarea oscillations apparently disabled Maximum Excitation Lirniters on the

McNary station generators that ultimately caused tripping of these generators.

5.2 Test Matrices for Static Bifurcation in Flux Decay

Dynamics

A test matrix T for static bifurcation in flux decay dynamics is defined in [8]:

   

A1 B1 Dr E11 C1

A, B D E C

T=- C,—[A, B, D, E,]A4 B: D: E: C: (5.1)

5 _A5 BS D5 E5_, _C5__   



A second expression for T is

 

 

X —X’

T=diag -1— diag —E;_ + QG°‘( d: d‘)

Tdor 0' 40:

r (5.2)
—K K V X —X

+diag A" R‘. 0" WSVE—diag ———d", a" Q E

K51 + 551' + SEiEfdor E401 G

where KA, is the excitation control system gain, KA, is the voltage sensor gain, K5, and

SE,- are the excitation control system parameters, and N is defined as:

 N =d1ag —- drag ‘ ’. ’ WS QLV +diag —‘—-—' SQ Q

T40, K5, +55, +SgiEfdo, E G L
401'

(5.3)

The derivation in [8] shows that the reduced differential equation model for a system

experiencing static bifurcation in flux decay dynamics is

 

I

40

AE’O , — q

AEq — T + NAQL (5.4)

The following Lemma taken from [8] qualifies derivation of the linearized model (5.4)

when T can be written as either (5.1) or (5.2) and N is defined by (5.3).

Lemma 5.1

Given that J, is nonsingular so that A is defined and J, is nonsingular so that T is

defined, then matrix T is singular ifand only ifboth A and J are singular.
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The matrix J, is a test matrix for causality[27] and causality is assured if

J 82 D2

6 — B, D, (5.5)

is nonsingular. A is defined only when the system is causal, it acts as the text matrix for

static bifurcation, a static bifurcation occurs when both I and

A1 C1 El Bl D1

A: A, C, E,—B, D,[

A5 C5 E5 BS DS

32 D2]-I[A2 C2 E2] (56)

B. D. A. C. E.

are singular. J, is the system jacobian matrix when generators are modeled by a classic

machine model with constant voltage behind transient reactance and the network is not

aggregated back to generator internal buses. Matrix

_A, ..

11: A2

A4  

Bl DI

32 D, (5 .7)

B4

is a test matrix for static bifurcation in generator inertial dynamics.

This Lemma shows that when T is defined, if loss of causality (J, nonsingular) and

angle instability (J, nonsingular) can not occur and if both J and A are

singular(nonsingular), then T is singular(nonsingular). The analysis in [30] shows that

when the exciter is disabled and the generator flux decay mode experiences saddle node

bifurcation, and the equivalent model (5.4) should capture this bifurcation. The

computational result in [32] on bifurcation subsystem theory suggests that on at least one

example, the bifurcation subsystem for a saddle node bifurcation when the excitation
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control system is disabled is just the generator flux decay dynamics AE;(t). All these

results suggest that model (5.4) contains the subsystem experiencing bifurcation and T

actually tests for this bifurcation that occurs in the subsystem model.

5.3 Effects of Loss of Voltage PQ Controllability on Stability

of Generators with Exciters

Lemma 5.2, Theorem 5.1 and Theorem 5.2 are taken from [11] where the proofs of

each result are given. Simulation results are also provided that help substantiate the theory.

Lemma 5.2:

If matrix W that specifies the voltage controlled buses is selected so that WSW; is

positive definite when voltage PQ controllability holds, then T is negative definite when

the excitation control system gain KA, is assumed large.

Theorem 5.1

Loss of voltage PQ controllability for one or more generator control buses causes

WSVE and T to be singular or have an eigenvalue change sign when KA, is assumed

large. This implies that loss ofvoltage PQ controllability causes instability in the flux decay

dynamics.

The results of Lemma 5.2 and Theorem 51 indicate that when the excitation control

system are active, preservation of voltage PQ controllability is sufficient to preserve

stability in generator flux decay dynamics, but loss of voltage PQ controllability is

sufficient to cause loss of stability in the generator flux decay dynamics. Simulation results

in [11] suggest that the loss of voltage PQ controllability bring on Hopf bifurcation

followed by node focus, and finally singularity induced bifurcation when loss of voltage

82



PQ controllability occurs. Such a sequence of bifurcation is shown in Figure 1.5, A saddle

node bifurcation in generator flux decay dynamics follows singularity induced bifurcation

since the unstable real eigenvalue crosses the jar axis, it is solely associated with the flux

decay dynamics. Theorem 5.1 theoretically confirms these experimental results. The result

also indicates slow loss of voltage PQ controllability can produce saddle node bifurcation

followed by the singularity induced bifurcation.

The remainder of this chapter will describe and justify the negative voltage spike that

characterizes voltage collapse incidents on the WSCC system.

5.4 Effects of Loss of Voltage PV Controllability and

Disablement of the Excitation Control System on Stability

of Generator Dynamics

Theorem 5.2:

Given that -T is irreducible, diagonally dominant, and positive definite when voltage

PVand voltage PQ controllability hold, T becomes singular or indefinite when (i) voltage

. 2

E

PV controllability is lost such that SQoEi; — QC,- + -)—(—qi—X'— < 0 (ii) field current

d,- " d,-

limits are reached on the same generator and (iii) the excitation control system on that

generator is completely disabled by an over excitation relay and placed under manual

control.

Theorem 5.2, taken from the result in [l 1], establishes that disablement of a generator

excitation system and loss of voltage PV controllability on that same generator produces

loss of stability in generator flux decay dynamics. If the loss of voltage PV controllability

occurs very slowly due to addition of switchable shunt capacitors that causes loss of
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voltage PV controllability (Theorem 4.7), then a saddle node bifurcation appears to

develop.

Theorem 5.3:

Matrix T is negative definite ifan excitation control system is disabled but voltage PV

controllability and voltage PQ controllability hold.

Theorem 5.3 establishes that disablement of the excitation control system alone is not a

sufficient condition for loss of stability in generator flux decay dynamics. The proof of

Theorem 5.3 is given in Appendix A.

5.5 Justification of the Bifurcation Sequence That Occurs due

to Loss of Voltage PV Controllability and Disablement of

the Excitation Control System on a Specific Generator

Theorem 5.4

m

Given that loss of voltage PV controllability occurs ( z SQoE.)- < 0.

i=1

. 2

qr‘ . .

— —— on a rotor contr l b h rSQGEH QC, + Xd —X;, < 0) gene 0 us w e e the excrtatron

t i

control system is disabled by an overexcitation limiter relay, load PV controllability, load

PQ controllability and voltage PQ controllability hold at all buses. then AE; (t) is

unstable and decreasing toward zero for AEJ' = 0, j ?'-'i and a load increase

AQL, < O.

The proof of Theorem 5.4 is given in Appendix A. Theorem 5.4 states that the loss of

stability caused by loss of voltage PV controllability and disablement of the excitation

control system on the same generator causes AE; (t) to be unstable and approach zero.
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Theorem 5.5 that follows proves that the loss of stability in AE; (I) does not cause

instantaneous voltage collapse, but inevitably leads to a cascading voltage collapse by

causing a singularity induced bifurcation that occurs in the algebraic submodel but affects

dynamics in the differential model. The slow decline in A1220) has exactly the same

effect as computing a Q-V curve at the internal bus i.

Theorem 5.5

Given that {SQG5 L, > 0 and load PV controllability holds until load PQ

controllability occurs. When voltage PV controllability is lost ( XSQGE, < 0.

j=1

. 2

E .
q‘ . < O) on generators where the excitation control system isS 5.. ‘— Q0. '1‘

Q6 " ' Xd. ' Xd.

disabled and AEJ- = Ofor j it i, then a dynamic Q-V curve stress test occurs on the

generator internal bus that inevitably produce loss ofload PQ controllability and singularity

induced bifurcation.

The proof of Theorem 5.5 is given in Appendix A.

Theorem 5.6

. . . -l . .
The dynamic Q-V curve, that is observed vra elements m SQLV assocrated With the

voltage control area approaching +00, causes continually increasing violation of voltage PV

controllability, causes an eigenvalue of T associated with the unstable generator in dial

voltage control area where the excitation control system is disabled to approach +00, causes

the more and more rapid decline in AE; (t) to producing the negative side of the voltage

spike.

The proof of Theorem 5.6 is given in Appendix A.
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5.6 Justification of the Large Negative Voltage Spike That

Develops due to Loss of Voltage PQ Controllability on

Generator Response with or without Excitation Control

Theorem 5.7

Given that (i) loss of voltage PV controllability (XSQGE<Eu 0,

i=1

E' 2
_ +__q_'_SQGEii QG,+ Xd -Xd < 0) and load PV controllability occur on a generator

control bus i in a voltage control area where the excitation control system is disabled by an

overexcitation limiter relay, and (ii) load and voltage PQ controllability hold at all other

buses, then the system is unstable and the change in E; is positive when AQL, < 0

(01(1qu =0, ] at LAB,” >0.

Theorem 5.8

Given that

(i). loss ofload PQ controllability has occurred at the generator control bus i;

—1

(ii). {WSQLV }ij approaches positive infinity, jumps to negative infinity but

increases toward zero after load PQ controllability is lost at bus j where

(iii). {WSVE}iifor generator i approaches positive infinity, jumps to negative

infinity , increase to zero and positive value after voltage PQ controllability is

lost at bus i,

(iv) the exciters on all machines are active where Aqu -_,0 j ¢ 1

(v) the system is stable;

then the steady state change AE; for increased load ( AQL < O ) is positive.
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Theorem 5.7 and Theorem 5.8, which are proven in Appendix A, deal with the effects

after the singularity induced bifurcation.

If a generator excitation control system is disabled via an overexcitation limiter relay

and loss of voltage PV controllability slowly develops at that same generator, then

singularity induced bifurcation inevitably follows which implies that load PV controllability

may ultimately be lost, as noted from results of Theorem 5.4. Theorem 5.7 states that if

voltage PV controllability and load PV controllability are lost on the generator where the

excitation control system is disabled, then AB; increases. This is initially surprising

because the voltage decline that occurred before singularity induced bifurcation is reversed

to produce a voltage rise.

Observation of SQGQL as singularity induced bifurcation (singularity of SQLV)

develops may indicate that SQG Q1. elements in the voltage control area(elements of both Q6

and Q) will increase toward infinity, become negative infinity, and then increase to zero.

SQoE elements approach negative infinity, become positive infinity, and then decrease.

From the proof of Theorem 5.7, large positive SQGQL elements can have a dominant effect

on AE‘; < 0, thus AE; will decrease more and more rapidly as loss of load PV

controllability develops due to elements of S00QL approaching infinity, AE; then will

increase extremely rapidly after loss of load PV controllability occurs because elements of

S
QG

QL are negative infinite. This could produce the large sharp negative voltage spike that

has been characteristic of the WSCC system blackout observed in December 14, 1994, July

2, 1996 and August 10, 1996.

The singularity induced bifurcation effectively causes the real eigenvalue of T

associated with the voltage control area to become positive, approach positive infinity,

become negative infinity and then decrease when this eigenvalue depends on the elements

of SQGE that approach zero and proceed to negative infinite, become positive infinite and
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then decrease toward zero. This suggests a bifurcation sequence of saddle node bifurcation,

that occurs if shunt susceptance is slowly added at bus i where the excitation system is

disabled, and singularity induced bifurcation that inevitably follows.

Theorem 5.8 indicates that if loss of load PQ controllability occurs for generators with

active excitation control, and the singularity induced bifurcation causes eigenvalues to

transverse through the right half plane toward infinity, enter the left half plane at infinity,

the stable response will cause AE; to increase for reactive load changes. Thus the voltages

on both generators with active excitation control may enhance the voltage spike observed

on generators where excitation has been disabled.

Theorem 5.9

As H increases in the interval [#0 — 8, #0 +8] and loss of load PQ controllability

occurs at no,

(i) The elements of SQLV associated with the voltage control area having the

dynamic Q-V curve go to +00, discontinuously change to —00, and then increase toward

zero.

(ii) The elements of SQGE associated with the voltage control area having the dynamic

Q-V curve approach —00, discontinuously change to +00, and then decrease toward zero as

long as J”, 1,2 and 12, are continuous in [no - e, #0 + 8].

(iii) The eigenvalue of T associated with one unstable generator where the excitation

control system is disabled, approaches +00 causes rapid decrease in AE; producing the

positive part of the spike and making the eigenvalue move through +00 to the left half

plane. The switching of SQGE elements from +00 to -00 causes the eigenvalue of T to

o o o I O C ’

swztch discontinuouslyfrom +00 to -00 and causes a rapid rtse tn AEqi.
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The proof of (i) and (ii) is from Theorem 4.6. The proof of (iii) is based on the proof

of Theorem 5.6 and the results in Theorem 5.7 and Theorem 5.8.

5.7 Simulation Study

Based on the simulation study performed on the 3-machine 9-bus power system in

chapter 4, test matrix T for static bifurcation in flux decay dynamics is computed here.

For easel, where all the exciters are active, the simulation results for SVE, SQLV_l , T

and E; are shown in Figure 5.1. The diagonal element of T plotted is for generator 3, the

diagonal element of SQLV-l is for load bus 9, the element of SVE represents the coupling

of internal generator bus 3 and load bus 9. At point X, the element of SVE approaches

infinity, jumps to negative infinity and remains negative until the next spike point at

t = 5.4s as shown in Figure 5.1(a). Loss of voltage PQ controllability thus occurs at point

X. At the same point of time, the element of T goes to zero and become positive as shown

in Figure 5.1(c). Instability in flux decay dynamics associated with generator 3 is brought

about at point X that is observed in E;. This confirms Theorem 5.1. In the same figure, it

is also shown in (d) that E; reaches the lowest point and increases after point Y. Theorem

5.8 is confirmed since all the conditions (i—v) are met just prior to the increase in E; on

generator 3.

For case 2, where the excitation control system on generator 3 is disabled, the

simulation results for the appropriate elements of SQGE , SVE and T are shown in Figure

5.2 at the same buses as in case 1. At point A, the diagonal element of SQoE associated

with generator 3 changes from positive to negative as shown in Figure 5.2(a), so that

voltage PV controllability is lost. Around the same time, the diagonal element of T changes

from negative to positive. This confirms Theorem 5.2. From Figure 5.2, it is also shown
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that before point A, 590E and SVE are positive, voltage PV controllability and voltage PQ

controllability hold, and the element of T is negative. This confirms the theory in Theorem

5.3.

In order to confirm the theories in Theorem 5.4, Theorem 5.5, Theorem 5.6, Theorem

5.7 and Theorem 5.9 clearly, the sensitivity matrices, the test matrix and the internal

voltage of generator 3 are plotted in Figure 5.3. On this graph, it is shown that between

point A and point B, the element of SQGE associated with generator 3 is negative, but the

appropriate elements of SQGE’ SVE and SQLV—l are positive, E; at generator 3 is unstable

and decrease toward zero. This confirms Theorem 5.4. At point B, SQLV—l approaches

positive infinity, jumps to negative infmity and then go back toward zero, load PQ

controllability is lost, and singularity induced bifurcation occurs. This confirms Theorem

5.5. Between point B and point C, the element of SQLV-l and T go through the infinity

process, E; at generator 3 declines more and more rapidly and produces the negative

spike. Theorem 5.6 is thus confirmed. A dynamic Q-V curve is generated that produces

singularity induced bifurcation and the negative spike.

At point B, load PQ controllability at bus 9 occurs since the element of SQLV--l goes to

positive infinity, discontinuously changes to negative infinity, and then increase toward

zero. At the same time, SQGE at generator 3 goes to negative infinity, discontinuously

changes to positive infinity, and then decrease toward zero. And the diagonal element of

matrix T associated with generator 3 switches from positive infinity to negative infinity and

causes a rise in E; as is shown at point C. This confirms Theorem 5.9.

At point C, the diagonal element of SQoE associated with generator 3 goes to negative

infinity, and then positive infinity, the appropriate element of SQGQL that relates generator

bus 3 to load bus 9 goes to positive infinity to assure loss of voltage and load PV

controllability as required by Theorem 5.7. It is not shown that load and voltage PV
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controllabilities are maintained because all elements of SVE and SQGQL are not shown but

they are because there are no spikes on any of the other sensitivity matrix elements. It is

then clear that the change in E; is positive at point C when these confirming conditions and

results of Theorem 5.7.

The results show that a sharp negative voltage spike is a result of singularity induced

bifurcation brought by a dynamic Q-V curve. This occurs when the exciter is disabled on a

generator.

A sharp negative voltage spike also occurs when the exciter is active and a maximum

excitation limiter is present as noted in the discussion of case 1 results.
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Fig. 5.1 Simulation result for theorems 5.1 and 5.8.
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Fig. 5.2 Simulation result for theorems 5.2 and 5.3.
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Fig.5.3 Simulation result for theorems 5.4, 5.5, 5.6, 5.7 and 5.9.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

The recent WCSS power system blackouts have some unique characteristics compared

with the classical voltage instability problems, which include:

0 Interarea oscillations existed before the blackout

0 Loss of control voltage stability and clogging voltage instability do not occur

because the dynamic submodel experiences instability before the loss of control in

algebraic submodel occurs

0 The stability controls were effective and responded to the contingency and became

unstable

0 A sharp voltage spike was observed

This dissertation has addressed three major aspects of the cause of the recent WCSS

power system blackouts.

1. It explained why maximum excitation limiters fail to reduce field current limit

violations when large inter-area oscillations are present and why this can lead to

switching from an AC regulator to a DC regulator excitation control and finally to

tripping of the generator off the system through theoretical analysis and simulation

studies. It proved that if the generator field current limit is exceeded and if the field
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current magnitude of the interarea oscillations slightly exceed the magnitude of the

generator field cunent limit violation, then the maximum excitation limiter will not

recognize the field current limit violation and would allow thermal damage to the

generator. The failure of the maximum excitation limiter will cause the over

excitation protection relay to trip out the AC regulator in an attempt to avoid the

thermal damage to the generator rotor. The tripping of the AC regulator with PSS

and stabilization compensator to a DC regulator, which has neither PSS nor

stabilization compensator, could lead to unstable generator dynamics that inevitably

cause a blackout to occur.

. It defined voltage PV controllability, load PV controllability, voltage PQ

controllability and load PQ controllability, and derived the conditions on sensitivity

matrices SQLV-l , SVE, SQaE and SQGQL that indicates when each type of the

controllability is retained and when it is lost. It has been proven that element of

SQLV—l approaches positive infinity, jump to negative infinity, then increase

toward zero when load PQ controllability is lost. It is further proved that loss of '

voltage PV controllability may occur long before loss of load PQ controllability

occurs, but loss of load PV controllability and loss of voltage PQ controllability

generally occur simultaneously. It is also proved that loss of load PQ controllability

is affected by the load characteristics of the network. Elements of SQ”:l becomes

larger when shunt capacitive load increases. All the theories are proved both

theoretically and through simulation.

. It has been established that a saddle node bifurcation followed by an inevitable

singularity induced bifurcation produces the characteristic negative voltage spike

observed on the WSCC power system blackouts. The thorough theoretical

justification and simulation studies present a clear understanding of the dynamic
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responses to bifurcation sequences associated with voltage collapse. It has also

been proven that disablement of the excitation control system by over excitation

protection relay is not enough to cause instability, but disablement of the excitation

control system and slow loss of voltage PV controllability cause saddle node

bifurcation that results in slow unstable decline in E} This unstable decline in E;

causes a reactive generation decrease, a dynamic produced Q—V curve occurs as Eq’

is decreasing. The dynamic Q-V curve at a generator bus in a voltage control area

causes elements of SQG5 associated with that voltage control area to further violate

voltage PV controllability conditions as E; decreases and voltage PV controllability

is finally lost. This dynamic Q-V curve also causes the elements of SQLV-l

approach infinity, become negative infinity and then increase toward zero. A more

and more rapid decline in E; occurs as load PQ controllability is lost. The

accelerated rate of E; decline causes a sharp negative voltage spike in E; . The

change in SQLV-l values from +00 to -00 in the voltage control area experiencing

instability causes SQGg to change from +00 to -00, and the unstable eigenvalue of T

to change from +00 to -00. Such a change in T causes a stable but fast rise in E; .

The purpose of the sensitivity analysis is to identify the subsystem which initially

experience instability, to identify why this instability occurs and how this instability could

cascade to other subsystems, including the algebraic model, and to identify what can be

done to cure the instability problem and when and where the cure should be applied. This

trajectory sensitivity approach is quite different because it focuses on the network

Sensitivity and controllability behaviors and how loss of one or more controllability

properties produce the instability in dynamical subsystems.

Based on the achievements of this dissertation, future research is defined as follows:
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To apply the sensitivity approach to the generator inertial dynamics, or the inertial

dynamics and flux decay dynamics of generators together because some bifurcation

actually produce instability in these subsystems of a power system model.

To apply the sensitivity approach to the inertial dynamics, or the inertial dynamics

and flux decay dynamics of inductions motors together.

To apply the sensitivity approach to underload tap changer and switchable shunt

capacitor control dynamics.

To link the trajectory sensitivity method to bifurcation subsystems that experience

the instability produced by bifurcation.
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APPENDIX A

THEOREM PROOFS

Proof of Theorem 5.3

When voltage PV controllability holds, SQcE is a diagonally dominant, and

I 2

diag ——qi—F ’ Q60. AlXdi _ Xd, , ( )

is a diagonal matrix with positive elements since

 

I 2 I 2

Q0 < qt < 4! , (A2)

0' Xd, Xd, - Xd,

Therefore, the matrix

El 2

diag ——5’-"-—— — QC + S
, ,. Q E (A3)

Xd — Xdi 0 G

i

should also be diagonally dominant. Since

diag .1— dia 31—
Trio, and 8 E4, (A4)

have all positive elements, matrix
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 d' d {X X3 d E, 2 Qa +5rag lag -—' lag ——:—,-— 0, G A5do, Eq‘. Xd‘. Xd , Q E ( )

is diagonally dominant and has positive eigenvalues, and

 

1

—dia8 T’

do.
I

d {X X‘; d { En Qc}+stag‘—,d" rag —— 0 A6

E Xdi— x; . QE ‘ )

has all negative eigenvalues. From [8,11], matrix (A6) is matrix T when KA.‘ = 0, for all

i, matrix (A5) is matrix -T when KA.‘ =0 forall i.

If field current limits are reached on a generator and the excitation control system is

disabled, the row of —T associated with that generator is replaced by a row of (A5), and

this row has the smallest row sum since the elements of this row are the elements of —T

with KA'. = 0. This row sum is positive since (A5) is diagonally dominant. Thus the

minimum row sum is a lower bound on all eigenvalues of —T , all eigenvalues of —T are

positive. If the smallest row sum of —T is positive with -T having all positive

eigenvalues, the largest row sum of T is negative and T has all negative eigenvalues.

In summary, if an excitation system is disabled, matrix T is diagonally dominant

and has all negative eigenvalues when voltage PV controllability and voltage PQ

controllability hold, that is, matrix T is negative definite.

Proof of Theorem 5.4

From[11], we know that

I

M?
, + NAQL (A7)

40

 AE§=T
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X - X'

T : diag J— diag —E;0i + QGot( 4; (ii)

T40! «to:

I (A8)

. "KA.KR V0 . Xd. _ Xd

+diag ' ’. ‘ WSVE — diag '—,—'— SQG

K5; + SE.’ + SEtEfdm E40: E

—K K V X _ X’

N = diag J— diag A‘ R‘. 0‘ WS'lgLv +diag —d‘4“ SQ Q

Trio, K5,. +SE: +SEtEfdm
qu; G L

(A9)

When the excitation system on the ith generator is disabled by over field current

 

limiter relay,K -'0 ,the ith row ofTrs replaced by the ith row of (A6),

X X’ E’ 2

—diag diag —i-:—d+' diag ——— Q, + S
I 0,. QGE (A10)

Tdoi E; X_ X

the i th row of N is replaced by the i th row of

. 1 . Xd- " X3,

d‘ag '71" MW 909. (Al 1)

dor 401'

When loss of voltage PV controllability occurs, SQGE is not diagonally dominant

. 2

and SQGE~ — QG-++——3‘———,— < 0, so matrix (A6) will not be diagonally dominant

" ' Xd, "Xd,

AE’ AB
4

and the ith row sum of TEE—"L E, will be negative if

2 t

SQGE —QG- +___'_<O for AE; <0 and AEj :0, J i l Note that

u . Xd, _ Xd,
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AB} = 0 j ¢ 1 is an approximation of the small changes in internal generator voltage

for generators with exciters compared to the unstable generator j= i. The increased

generation causes (a) generators to reach field current limits, (b) action of field current

limiters, and (c) ultimately singularity induced bifurcation.

When the system is load PV controllable, SQGQL rs nonnegative and no zero

columns, so the elements in ith row of matrix (A7) are nonnegative, the i th element of

NAQL {NAQL },. < 0 for AQL < 0.

From Theorem 2, we know that the generator that loses its excitation control and

those voltage control buses which experience loss of voltage PV controllability becomes

unstable.

 

., AE;

Therefore, M4, = T E' +{NAQL},- <0 for AE; <0, and AQL<O.

‘10,

' I

and thus Eq‘. is unstable and decreases toward zero.

Proof of Theorem 5.5:

The computing of a Q-V curve implies adding reactive load by decreasing voltage at

a bifurcation generator bus. Letting AE; (t) decrease at bus i with AEJ. = O for j¢i and

' 2

assuming SQGEii — Q61. + X (1" X. < O with loss of voltage PV controllability but

d, '" d,-

 

without loss of load PV controllability implies instability in flux decay dynamics causing

AE; (t) to continue to decrease producing a dynamic Q-V curve at bus i that causes

increasing reactive generation at bus j AQGJ- = {SQGE}jiAEi > 0 when AQL S O for

j 00 i. This analysis confirms that a Q—V curve stress test is administered through the

unstable generator dynamics resulting in inevitable bifurcation in the algebraic submodel of
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the differential algebraic model and singularity induced bifurcation in the differential

algebraic model because the effects are so dramatic on generator flux decay dynamics. This

-1

dynamic Q—V curve causes SQLV , SQGQL and SVE to approach infinity, become

negative infinity, and then increase, and SQoE to approach zero, become negative infinity,

then become infinity and then decrease in the voltage control area associated with 11m, as

noted in Theorem (4.6).

Proof of Theorem 5.6

The slope of the Q—V curve at generator i where the dynamic Q—V curve occurs is

{SQLvh , it approaches zero from Theorem 5.5 and the discussion of Q—V curves at the

end of Chapter 4. SQcE = 11 — J”SQLV-l]21 elements associated with the voltage

control area containing generator i where the dynamic Q-V curve occurs become negative

infinite as SQLV.l elements approach +00 because J”, 1,2 and J,, are continuous

—1

functions of the bifurcation parameter AQL, and change little compared to SQLy elements

approaching +00. The eigenvalue of T associated with generator i, where loss of PV

controllability occurs and the excitation control system is disabled, approaches +00, since

(i) the lower bound eigenvalue estimate computed via a minimum column sum of SQGE is

associated with the generator bus i experiencing the dynamic Q-V curve in the voltage

-1

control area where SQLV elements approaches infinite, and (ii) the minimum eigenvalue

of SQGE is related to this large eigenvalue of T by a negative constant diagonal. The

I

eigenvalue of T approaching + 00 explains the rapid decline in AEqi as the dynamic Q-V

curve ultimately causes loss of load PQ controllability from Theorem 5.4. Note that the

minimum column sum of SQoE is also a measure of violation for voltage PV

controllability condition, and the condition {SQGE},°,‘ > O is never violated before

N

condition Z{SQGE}U > 0 is violated.

l=|
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Proof of Theorem 5.7

When the excitation system on the ith generator is disabled by over field current

limiter relay, K4: = 0 , the i th row of T is replaced by the ith row of (21),

 

. 1 X -X,3, 15,; 2
—dzag T; diagT diag 36—7— 900.- + SQGE (A12)

the ith row of N is replaced by the i th row of (22)

d ' 1 d ——XX, S
rag _ rag QGQL A13

Tdo: EQm ( )

When loss of voltage PV controllability occurs in a voltage control area such that

 

2

SQGE" — QG_+ YJ——_ < O for a bus1n that voltage control area, matrix (A12)rs

ll 1

d d,-

’ I

. . . T AE‘I T_AE‘I . . .
not diagonally dormnant and the ith row sum of E: E' rs posrtrve for

40 40 1'

qt

AE’. >Oand AE'qj z0,j¢l

When loss of load PV controllability occurs at generator bus i, elements of SQaQL

in row i associated with the voltage control area containing the dynamic Q-V curve are

negative, elements in row i of matrix (A13) are negative, the i th element of NAQL

{NAQLL is generally then positive for AQL < 0 when i belongs to that voltage control area

experiencing the dynamic Q-V curve once load PV controllability is lost..
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From Theorem 5.4, we know that the generator that loses its excitation control and

those voltage control buses which experience loss of voltage PV controllability becomes

unstable.

.’ A_Efl. I ' . .

Therefore, AE,,= T E, +{NAQL},>O for A5,, >0,Aqu 00, 1:1,

(lo

and AQL < 0, the system is unstable and the change in E; is positive once load PV

controllability is lost in the voltage control area containing bus i.

Proof of Theorem 5.8

If the system is stable after loss of load PQ and load and voltage PV controllability,

at steady state,

TAE; = —NAQL (A14)

for the i th row of the equation above

{TL-AB; = -{N}.-AQL (A15)

Since the excitation control systems on all machines are active, T and N can be

represented as

 

 

T ~ dia J— dia _K""K”1V°i WS

g Tdo. g KB.- + SE. +SE.Efdm VE (A16)

—K K V

N z diag ——1— diag A‘ R‘- 0‘ WS—IQLV (A17)

Tdo, K5.- + SE: + SElEdei
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From theorem 4.6, when loss of load PQ controllability occurs, loss of voltage PQ

controllability may also occur, therefore, from given (1), (ii), (iii) and the above equations

for T and N , we know that {T},.,. will dominate the i th row of T as long as generator i is

the only generator in the voltage control area and W measures voltage in that voltage

control area that experiences loss of load PQ controllability and loss of load and voltage PV

controllability, {N}‘.j will dominate the i th row of N as long as generator bus i and load

bus j lie in the voltage control area where loss of load PQ controllability and loss of load

and voltage PV controllability occur, and (a) can be represented as

{T} ii Mr},- “ keg/CA "{N}ik AQLk (A18)

since AE'qj = 0, j¢ i, where {T},,. and {N}ik will be negative, and Nij z 0, AQLk

is negative. As a result, AE; is positive.
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