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ABSTRACT

BOUNDEDNESS OF INTEGRAL OPERATORS IN THE UPPER-HALF SPACE
WITH CARLESON MEASURES

BY

Naim Saiti

In this text we study the boundedness of the integral operator T, as a mapping
between the Lebesgue spaces: T : LP(X,dm) — LP(X*,du) for p > 1, where X is a
space of homogeneous type with a doubling measure m, and p is a Carleson measure

on X%, upper-half space over X.

In Chapter 1 we study the case when the kernel of the operator T' is admissible.
It is known that for such a kernel the operator T is dominated by the Hormander

Maximal Function, H, pointwise. Therefore it is bounded whenever H is.

The case when the kernel of the operator T has a singularity is studied in Chapters
2 and 3. In Chapter 2 we prove that if the operator T satisfies the Calderon-Zygmund
conditions and if the trace of the operator T, the operator Tj, is bounded for some

po > 1, and if T and T are related by the formula:
|Tf(z,t) — To.f(z)] < CH f(z,t) for every (z,t) € X, f € Co(X),

then T : LP°(X,dm) — LP(X*,du) is bounded. In Chapter 3 we give sufficient

conditions for the boundedness of the operator T' when p = 2, and X = R".

In Chapter 4 we have given an application of the theory of singular integral oper-

ators to the generalized Tent Spaces.
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Introduction

In the course of proving his famous corona theorem, L. Carleson, (see [4]) character-
ized those positive finite Borel measures p on the unit ball U in the complex plane C

such that
1/p
(f15Pdu) ™ < Clfl,

for every function f in the Hardy Space H? ( 0 < p < oo ), showing that this holds
if and only if the measure p satisfies the property pS < C(1 — s), for every set S of

the form
S=2S8,4={re?:s<r<1,8p—m(1-5)<0<b+7(l-5s)}
Such a measure is called a Carleson measure, and such sets S Carleson sets.

In this text we will study under what conditions an integral operator T is bounded

as a linear mapping between the Lebesgue spaces
T:LP(X,dm) — LP(X*,dp), p>1 (0.1)

over a space of homogeneous type X, supplied with a doubling measure m, where
X denotes upper-half space over X, and u a Carleson measure. A space of homoge-
neous type, first defined by R.R. Coifman and G. Weiss (see [7]), is a generalization
of Euclidean space, with the doubling measure being the Lebesgue measure. The
technique of working in such a space may be quite different, due to, for example,
not having dyadic cubes. This particular difficulty is overcome by using Calderén’s

covering lemma (see [1]).
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It is a well known fact (see [11]) that the nontangential maximal function N f and

a Carleson measure p are related by the formula
p({f >A}) <C|{Nf > A} is true for every A > 0 iff y is a Carleson measure.

There is also another maximal function, the Hérmander maximal function, H, that

is related to a Carleson measure, pu, by
H : L?(dm) — LP(dp)is bounded for every p > 1 iff p is a Carleson measure.

The proof of both results indicates that the distribution sets for both nontangential
maximal function and the Hormander maximal function have a similar structure. We
call such sets the sets with the tent structure. Using the properties of such sets, and
the LP-boundedness of corresponding trace operators, the restrictions of the operators
mentioned above to the space X, we prove the above statement about the Hérmander

maximal function, and we give an interesting generalization of it.

The significance of the Hormander maximal function is that it estimates integral
operators with so-called admissible kernels pointwise (see [12]). Therefore, such in-
tegral operators are LP-bounded whenever the Hérmander maximal function is. An
important example of a convolution operator with admissible kernel is the Poisson

transform on R".

The last two sections of Chapter 1 are dedicated to the vector-valued inequalities
for the Hérmander maximal function, of the type studied in [9]. We use the vector-
valued inequality proved by C. Fefferman and E. M. Stein (see [9]), and the approach
developed in Chapter 1 to give a more elegant proof of the result proved by F. J. Ruiz
and J. L. Torrea (see [18]), that, essentially, is a generalization of the Fefferman-Stein
result. At the end of the chapter, we give some applications of the vector-valued

theory in spaces of homogeneous type to the weighted vector-valued inequalities in
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R". In that way we obtain the boundedness of the vector-valued convolution operators

with admissible kernels.

In Chapter 2, we study integral operators whose kernels may not be absolutely
integrable. The boundedness of such operators as mappings LP(R") — LP(R"), was
first studied by A. P. Calderén and A. Zygmund (see [2] and [3]), and for that reason,
they are called the Calderdn- Zygmund operators. In this text we will use the name
singular integral operator, and study under what conditions such an operator, T, is
bounded as a linear mapping between the Lebesgue spaces in the formula (0.1) for
every p > 1. An important example of a singular integral operator in the upper-half
space is the operator that assigns the complex-conjugate @ of the harmonic function

u = P, x f, to the function f on the real line.

Singular integral operators whose range consists of functions with the domain
in the upper-half space were studied by F. J. Ruiz and J.L. Torrea (see [18], [19],
[20], [21], [22]). We start Chapter 2 by stating their main result. Using the good-A
approach used by R.R. Coifman and C. Fefferman in (5], we have obtained a stronger
conclusion, but used more assumptions, most of them are about the restriction of

T f(z,t) to the hyperplane X.

At the end of the chapter we give several examples of such singular integral op-
erators in Euclidean space, as well as the examples of convolution operators with the
Cauchy kernel on the unit ball in C*, and the Cauchy-Szeg6 kernel on the Heisenberg

Group.

In Chapter 3 we study the boundedness of the operator
T : L*(R",dz) - L*(RY*, du)

when 4 is a Carleson measure on R}*!. The whole chapter is based on the ideas

and techniques developed in [10]. We use the decomposition of an L2-function into



the sum of smooth atoms (by the virtue of the Calder6n formula), and we will prove
that if a singular integral operator satisfies certain cancelation properties (that play
the role of T1 and T*1 conditions), it will map a smooth atom into an equivalent
of a smooth molecule in L%(R%*!,dp), which implies the L2-boundedness. In the
last chapter, Chapter 4, we use the theory of singular integral operators to make a

conclusion about the boundedness of the linear mapping
T: LP(R",dz) — T7(du),

for every 1 < p,q < oo, when p is a Carleson measure on R}*!. The spaces T?(dp)
are generalized version of the tent spaces defined by Coifman, Meyer and Stein (see
[6]). The main technical tool in this chapter is Theorem 4.1 proved by F. J. Ruiz
and J. L. Torrea (see [21]), which makes it possible to apply the vector-valued theory

of singular integral operators to the new situation.

Throughout the whole text we will use the notion of accumulative constant, which
means that C will represent a constant, not necessarily the same in each two consec-

utive appearances.



Chapter 1

Boundedness of Integral Operators
with Admissible Kernels

In this chapter we study the LP-boundedness of a so-called non-singular integral op-
erator, or an integral operator with admissible kernel in the upper-half space supplied
with a Carleson measure. Such an operator is dominated by the Héormander maxi-
mal function pointwise, and therefore is bounded whenever the Hormander maximal

function is. We begin by introducing spaces of homogeneous type.

1.1 Definitions and Covering Lemmas

A space of homogeneous type was first defined by R. R. Coifman and G. Weiss (see

[7]). First, we define pseudometric.

Definition: Let X be a set. A map p: X x X — [0,00) is called a pseudometric

if and only if it has the following properties:
(i) p(z,y) > 0 if and only if z # y.
(ii) p(z,y) = ply, ) for all z,y € X.

(iii) There exists a constant k, > 1 such that for all z,y,z € X we have

p(z,z) < ky(p(z,y) + p(y, 2)).

5
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In case k, = 1, a pseudometric p is a metric and will be denoted by d(x,y).

The quasi-ball B(z,r), with the center at the point z, and radius r = r(B), is the

set B(z,r) ={y € X : p(z,y) <r}.

Definition: A space of homogeneous type is a topological space X endowed with

a pseudometric p such that:
(a) The family {B(z,r) : z € X,r > 0} is a basis for the topology on X.

(b) There ezists a Borel measure m on X which is a doubling measure, i. e. there

erist a constant C > 0 so that for everyxz € X, andr > 0

m(B(z,2r)) < Cm(B(z,r)).

Remark: It has been proved (see [7]), that properties (a) and (b) imply the

following:

There ezists a number N € N such that for any z € X, and for each r > 0, the

quasi-ball B(z,r) contains at most N points z; with p(z;, z;) > /2.

In this text we will use the notation: |B| = m(B).

Examples: Obviously every finite dimensional metric space, supplied with any

doubling measure, is a space of homogeneous type. A more interesting example is:

X =R" plz,y) =Y lz—y™  p>1
=1

In Chapter 3 we will give two interesting examples of spaces of homogeneous type: the

unit ball in C* with the non-isotopic metric p, and the Heisenberg Group on Rx C*~1.

As we can see, there are many similarities between Euclidean space and the spaces

of homogeneous type. One of the differences is that on a space of homogeneous type



we may not have features like dyadic cubes. Consequently, tools like the Whitney
decomposition theorem, or the Calderén-Zygmund Lemmas cannot be used. The
covering lemma, which follows is due to Calderdn, (see [1]), is the main tool in bridging

this difficulty. We use the following version of Calderén’s lemma.

Lemma 1.1 Let E be a subset of X and {B(z,7(z))}zce a covering of E, such
that the radii {r(z)}.cg are uniformly bounded. Then there ezist a (possibly finite)
sequence of disjoint quasi-balls { B(z;,7(x;))}2, such that for every indez i z; € E,
and

E C U;B(z;, Kr(z;)),
where constant K depends only on the space X. Moreover, for every quasi-ball B

from the covering there exists an indez i so that B C B(z;, Kr(z;)).

The constant K from the previous lemma is called the space constant. We will
use the notation B* = K B, where cB denotes the quasi-ball concentric with B so

that r(cB) = cr(B).

We conclude this section by listing the definitions of some of basic maximal func-

tions and Carleson measure.
The upper-half space X+, over a space of homogeneous type X, is defined by
Xt ={(z,t): z € X,t >0}.
The tent over the point (z,t) € X* is the set
T(z,t) = {(y,5) € X" : p(y,z) + s < t},

and the tent over a quasi-ball B C X, centered at the point z € X, and with the
radius r, is T(B(z,r)) = T(z,7). A Carleson square over the quasi-ball B in X, is
the set

S(B) ={(z,t)e X*:z2€ B,0<t<r}.
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A measure p is called a Carleson measure on X ™ if and only if there exist a constant

C, > 0 so that for every quasi-ball B in X we have
1(S(B)) < Cy|B|.
Notice that this implies that the measure p is a Carleson measure if and only if

u(T(B)) < C,|B|, for every quasi-ball B in X.

An important example of a Carleson measure on X+ is the measure defined by
wE)=|ENnX| forevery EC XT,

called the projection measure on X, which tells us that the measure m can be viewed

as a Carleson measure.

For f : X — C, a locally integrable function with respect to the measure m, we

define the Hardy-Littlewood mazimal function by

Mf(a:)=supr;—|/8|f|dm z € X,

where the supremum is taken over all quasi-balls B 3 z; and the Hormander mazimal

function by:
) |BI iy )

now, the supremum is taken over all quasi-balls B 3 z, such that the radius r(B) > t.
For a Borel measure £ in the upper-half space Xt we define the generalized Hsrmander

maximal function by

1
HzF(z,t) = su —_— Fldg,
sF(2,t) B:T(B)g(::,t) B(T(B)) /T(B)l 45

where we define 5oy fr(p) [F|dB = 0 when B(T(B)) = 0. In the special case, when
the measure [ is the projection measure on X, Hz becomes the ordinary Hérmander

maximal function.
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In Euclidean space R", with Euclidean distance, and m being ordinary Lebesgue

measure, it is more convenient to define the Hormander maximal function as

Hf(z,t):supl—clg—llq|f|dx t>0,

where the supreme is taken over all cubes Q 3 z, such that ¢(Q) > t (where £(Q)
represents the side-length of the cube Q). The Hérmander maximal function defined
as above is equivalent to the Hormander maximal function defined as a supreme over

the balls in R", since Lebesgue measure is a doubling measure.

We conclude this section by giving the definition of a nontangential maximal
function in the upper-half space X*. For given o > 0, we define the upward-pointing

cone with the vertex at the point (z,t) and the aperture o, by
Ta(z,t) = {(y,8) € Xt : p(z,y) < a(s — t)}.
Let F : X* — C be a measurable function, and a > 0. Then the function

NoF(z,t)= sup |F(y,s)|,

(y,8)€Ta(x,t)

represents the nontangential maximal function of the function F. The function
NoF(z) = NoF(z,0) is the traditional nontangential maximal function, used in most

texts in harmonic analysis .

1.2 Sets with the Tent Structure

We will see that the distribution sets for each of the maximal functions we have intro-
duced so far have a similar structure. We will say such sets have the tent structure.
Once we show that the distribution set of a certain subadditive operator in the upper-
half space X* has the tent structure, we can easily obtain the boundedness of such

an operator, as a mapping

LP(X,dm) = LP(X™,dp)
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when u is a Carleson measure, provided that the restriction of this function on X is

a bounded operator.

Definition: A set E C X* has the tent structure if and only if

(z,t) e E implies that T(z,t) C E.

The following theorem provides us with the most important property of the sets

with tent structure on spaces of homogeneous type.

Theorem 1.2 Let Borel set E C X* be a set that has the tent structure, and let p

and v be Borel measures on X*, such that
u(T(B*)) < v(T(B)),
for every quasi-ball B in X. Then

u(E) < v(E).

Proof: For fixed N > 0, let EN = ENn{(z,t) € X* :t < N}. If (z,t) € EV,
then T(x,t) C EV, and consequently B(z,t) C w(E"), where m(E") denotes the
projection of the set EN on X. If we do that for every point (z,t) € EVN, we have
obtained a covering of the set 7(E™) C X by a family of quasi-balls, { B(z, )}z t)cen,
whose radii are uniformly bounded. Applying the Calderdn covering lemma, we obtain
a sequence of pair-wise disjoint quasi-balls, { B;}, such that for every quasi-ball B from
the original covering there exists an index i so that B C B}. Thus, we conclude that

EN c U;T(B}). To finish proving the theorem we proceed as follows:

w(EN) < w(UT(B})) < Z w(T
The assumption of the theorem, the facts that { B;} are disjoint sets, and that T'(B;) C
EV, imply
< Y v(T(Bi) < v(EY).
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To complete the proof of the theorem, we let N — oo.
[ ]

Let us consider the set

FE, = {HgF > )\}

Let (z,t) € X* and (y, s) € T(z,t). If B is such a quasi-ball that T'(B) > (z,t), then
clearly T(B) > (y, s). Thus, we have established:

(y, ) € T(zx,t) implies HsF(z,t) < HgF(y,s) (1.1)

for every locally integrable function F' : Xt — C. This fact implies that if HgF(z,t) >
A, then HgF(y,s) > A, for every (y, s) € T(z,t). Consequently, E) is a set with the

tent structure.

The set
F\={NF >}

also has the tent structure, which is due to the fact
(y,s) € T(z,t) if and only if (z,t) € 'y (y, s)-

which implies that if (z,t) € F) and (y,s) € T(z,t), then I'y(z,t) C I'y(y,s) which

produces the statement
(y,s) € T(z,t) implies N\ F(z,t) < N F(y,s), (1.2)

for every locally integrable function F'.

The above facts imply the following corollary of Theorem 1.2.

Corollary 1.3 If 4 and v are two Borel measures on X, such that

w(T(B%)) < v(T(B)),
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for every quasi-ball B in X, then there ezists a constant C > 0 so that
u({HpF > A}) < v({HpF > A}),

and

p({MF > A}) < Cv({MF > A}),

for every A > 0, and locally integrable function F on X+.

Corollary 1.3 implies the boundedness of the Hormander maximal function as a

mapping:
H:LP(X,dm) — LP(X*,du)
for every p > 1, when u is a Carleson measure. We can show it in the following
way. Let the measure § be the projection measure. Then the generalized Hormander
maximal function becomes the ordinary Héormander maximal function. In the case
when p is a Carleson measure, and v the projection measure on X, Corollary 1.3
yields
p({Hf > A}) < C{M S > eA}],

because the restriction of the Hormander maximal function on X is the Hardy-
Littlewood maximal function. Using the fact that the Hardy-Littlewood maximal
function is bounded as a mapping M : L*(X,dm) — L*(X,dm) for every p > 1, and
a standard argument, we conclude that there exists a constant C, > 0 (that depends

only on p) such that
WH fllLex+du) < Coll fllLo(x dz) for every f € LP(X,dxz),

is true for every p > 1. For p = 1, H is a weak-type 1-1 bounded operator; in other

words, there exists a positive constant C so that for every A > 0 and f € L!'(X,dxz)

C
p({Hf > A}) < 'X”f”b‘(x,dz)-
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A function F : X* — R* is said to be of horizontal bounded ratio if and only if

there exists a positive constant Ar such that

F(z,t) < ApF(y,t) whenever p(z,y) < t.

Lemma 1.4 If 8 is a doubling measure on X+, then HgF is of horizontal bounded

ratio.

Proof: Let us fix t > 0, and let p(z,y) < t, and let B be a quasi-ball containing
the point z, so that r(B) > t. Then B* 5 y, and also 7(B*) > t, which means
(y,t) € T(B*). Thus

1 BT(BY)) 1
\FV5 < 3By BB Jrisn

B(T(B)) J1(s)
< CgHpF(y,t).

|F|dg

If we take the supreme of the left side of the above inequality over all quasi-balls B

containing the point z, so that r(B) > t, we obtain
HgF(z,t) < CgHgF (y, 1),
which proves the lemma.

We define the vertical mazimal function for a function F : X+ — R* as

F*(z,t) = sup F(z, s).

s>t
Obviously, for every (z,t) € X* and @ > 0 we have F*(z,t) < NoF(z,t). If the
function F is of horizontal bounded ratio, then the converse is also true; in other

words we have that N, F(z,t) < ApF*(z,t), for every (z,t) € X*.

The following lemma shows that there is an interesting relationship between the
Hoérmander maximal function and the nontangential maximal function. Before we

state the lemma we introduce the notation A, F(z) = N,F(z,0).
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Lemma 1.5 If p > 1, then there ezists a positive constant C, (that depends only on

p) such that for every f € LP(X,dm)

| Aco (H )| Lr(x,dm) < Cpll f | Lr(x,dm)-

Proof: If 3 is the projection measure on X, then 3 is a doubling measure and the

corresponding Hormander maximal function is of horizontal bounded ratio. Hence

Aw(Hf)(z) < C(Hf)(z,0) = CM f(x).

Now, we use the fact that for any p > 1, the Hardy-Littlewood maximal function

is L? bounded, to complete the proof of the lemma.

1.3 Admissible Kernels

Admissible kernels were first defined by W. T. Sledd and S. Gadbois (see [12]). The
main property of integral operator whose kernel is an admissible function is that it is
dominated by the Hérmander maximal function. Usually, such kernels are absolutely
integrable; so we do not call such operators singular. The most important example

of such an operator is the Poisson transform on R”.

First, we define constants

|B(z,2514)|
Cy= sup ————, k> 0.
(z,t)ex+ |B(.’B,t)|

Definition: A function ® : Rt — [0, 1] is an admissible function if and only if it

satisfies all of the following properties:
(a) ®(0) =1 and ®(1) > 0,

(b) ® is monotone decreasing, and
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(c)
Y Cid(2¥) < oo.

k=0
We define the kernel K by
)
K(I’ Y, t) = T zt )
Ix ®(252)dm(z)

where ® is an admissible function, and the corresponding integral operator
Kf(5,t) = [ K(z,y,0)f@)dmly).

The following lemma, from [12], solves the problem of the LP-boundedness of any
integral operator with admissible kernel. Essentially, the lemma tells us that such an

operator is bounded whenever the Hérmander maximal function is bounded.

Lemma 1.6 There exist a positive constant C so that
|Kf(z,t)] < CH f(z,t) for every (z,t) € XT,

and for every continuous function f with compact support in X.

Example: Poisson kernel. Let X = R", p(z,y) = |z — y|, and let m be
Lebesgue measure on R*. In this case Cy = 2¢+)n, Let

Cn

®(s) = m

Then @ is an admissible function because ), ﬁr < 00. The resulting admissi-
142

ble kernel K is the Poisson kernel on R"

cnt

K(z,y,t) = P(z,y) = —-
(z,9,t) = P(z,y) 1o

Lemma 1.6 yields the following pointwise estimate for the Poisson transform of a

function f.

|(P, * f)(z)] < CHf(z,t) for almost every (z,t) € (R*)* = R:*. (1.3)
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As a consequence of Lemma 1.5, and Lemma 1.6 we have that for any admissible
kernel K there exists a positive constant Cj, that depends only on p > 1, so that for

every f € LP(X,dm)

| Ao (K * f)llr(x,am) < Coll fllLe(x,dm)-

1.4 Vector-Valued Inequalities

The LP-boundedness of the Hardy-Littlewood maximal function is a well-known fact,
established in the first half of this century. However, its vector-valued version, the

inequality of type

{[Cunomie) <ol [Ein@mie) (1.4)
k
( p,q > 1, ) was established only in 1972 by C. Fefferman and M. Stein (see [9]).

The objective of this section is to prove the vector-valued version of the LP-
boundedness theorem for the Hérmander maximal function in the settings of the
space of homogeneous type when the measure in the upper-half space X+ is a Car-
leson measure. As a consequence of the theorem we conclude that the vector-valued

integral operator with admissible kernels
K : L% (X,dm) — L}, (X*,du),

is bounded for every 1 < p,q < oo.

We begin by stating the main result, that was proved by F. J. Ruiz and J. L.
Torrea (see [18]).

Theorem 1.7 Let p be a Carleson measure on X+, and 1 < p,q < co. Then there

exists a constant C > 0 so that for every vector-function f(z) = (fi(z), fo(z),...)
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such that {f (X4 |fk|")§dm}% < 00,
{ / (Zk:(ka)")fdn}% <C { / >y |fkr')5dm}i. (1.5)

In the course of proving this result F. J. Ruiz and J. L. Torrea considered three
different cases: p = ¢, p < ¢, and p > q. The case p = ¢ was trivial, and in the
case p < ¢ F. J. Ruiz and J. L. Torrea adapted the argument used by M. Stein
and C. Fefferman ( see [9]) to the new situation successfully. The key ingredient in

the proof of the theorem in the case p > ¢ is the following maximal operator. For
¢ € LP(X*,dp), we set
. 1
¢*(z) = SUp T /s - lp(z, t)|du(z, t),
where the supreme is taken over all quasi-balls B in X containing z.

We will show that the same result can be proved by using formula (1.4) and the
approach developed in the preceding sections of this chapter. Theorem 1.7 follows

from the following theorem.

Theorem 1.8 Let u and v be Borel measures on the upper-half space X+, so that

for every quasi-ball B in X we have

#(T(B")) < Cv(T(B)).

Then, for every p,q > 1 there exists a positive constant Cpq so that for every

vector-valued function (Fy(z,t), F5(z,t),....) the following two inequalities hold:

I (HBF)") e Ml awy < Coall (C(HaFR)) e llioixs av) (1.6)
k k

and

1 1
IV F)?) e llocx+,amy < Coall Qo (N1F)) 71| o(x+ vy (1.7)
k k
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Proof: We need to prove that each of the sets

D (HgFx)* > X%} and D_(NF) > X9}
k k

is a set with the tent structure, which is provided by the virtue of the formulas (1.1)

and (1.2). Hence, Theorem 1.8 follows from the Theorem 1.2.

Now, by considering a special case of the previous theorem and by using formula

(1.4), we obtain the result proved by F. J. Ruiz and J. L. Torrea in the following way.

Let the measure 3 be the projection measure. Then the operator Hz becomes
the ordinary Hérmander maximal function. If u is a Carleson measure and v the
projection measure on X, having in mind that Hf(z,0) = M f(z), from Theorem

1.8 we deduce

I (H £ | iox+ sy < Coall ;(Mfk)qﬁnmx,dz)-
k

Applying the Fefferman-Stein’s result and formula (1.4) to the last inequality, we

obtain the statement of Theorem 1.7.

1.5 Weighted Vector-Valued Inequalities in R".

In this section we apply the vector-valued theory in a space of homogeneous type to

Euclidean spaces.

A non-negative function w on R" is an A;-weight if and only if there exists a
constant C' > 0 so that
7
— [ w(zx)dz < C inf w(x),
Qi Jg W14 = C )
for every cube @ in R*. The last condition can also be interpreted as Mw(z) < Cw(z)

for almost every z € R".
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We define the weighted Hormander mazimal function on R" as

Hof(,1) = sup @ [ V@@ t20

where the supreme is taken over all cubes Q@ 3 z, ¢(Q) > t and w(Q) = [y w(z)dz.

(If w(Q) = 0, then we set i [ |f(z)|w(z)dz = 0. )

The following lemma provides two important properties of A, weights.
Lemma 1.9 If w € Ay, then there exists a constant C > 0 so that for every function
f € L\(R*,dw) N L}(R",dz), and every (z,t) € R}t we have
Hf(z,t) < CHyf(z,1),

and (the doubling condition)
w(Q") < Cw(Q),

where Q* represents the cube concentric to @, but £(Q*) = 34(Q).

For the proof see [24].

A positive measure p on R7+! belongs to the class Cy(w) if and only if

r(S(Q))
2e0 Q]

for every cube @ in R".

< Cw(z) for almost every z € R*,

Notice that the last condition implies that the measure y is a Carleson measure
over the space of homogeneous type endowed with the measure w, which is a doubling

measure when w € A;, because

wS@) _ u(S@Q) 1Ql oL
0@ ~ @ w@ S Glishe@HelTe < 6

w(Q)
due to the fact that |Q|infqw < fow.
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Let w € Ay, and p € Cj(w). On the space of homogeneous type (R", w), the corre-
sponding Hormander maximal function is the weighted Hérmander maximal function

H,. We apply Theorem 1.7 to this situation to obtain the inequality

([t t)Q)ﬁdu(x,t)}’%' <cff lfk(x)r')?w(z)dx}% ,

which is true for every vector function f(z) = (fi(z), f2(z), ...) such that

1

{[Sin@miuei) <.

Applying Lemma 1.9 to the last formula we obtain the following corollary.

Corollary 1.10 If w € A, and p € C\(w), then for every vector-valued function
f(z) we have

—

P

{[Can@omiaeol <o{ [Ciomivwas],
k k

when p,q > 1.



Chapter 2

Singular Integral Operators

In this chapter we study integral operators whose kernels may not be absolutely inte-
grable. We will call such operators singular integral operators or Calderon-Zygmund
operators. The most important example of a singular integral operator in the upper-
half space is the harmonic conjugate operator in the upper-half complex plane. Pre-
cisely, we consider a real-valued continuous function f that has compact support
in the real line, and define the harmonic function u(z,t) = P, * f(z), the Poisson

transform of f. The harmonic conjugate of u, the function , is given by

. 1 e T—y
u(z,t) = ;/_w mf(y)dy,

taken in the principal value sense. (The integral above does not have a singularity
when ¢ > 0 and at oo since the function f is compactly supported. Thus, @(z,t) =
2 lim, o Siz—yi>r ﬁ!w f(y)dy.) This gives us the idea to consider the operator T
that assigns the function @ to function f, i. e. Tf = 4. Since we are going to study
the operator T in a more general context of the space of homogeneous type, the

harmonicity of the function T f will not play any role.

The main result of this chapter concerns a singular integral operator in the upper

half space whose trace in X is a singular integral operator.

21
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2.1 The Ruiz-Torrea result

The following result, due to F. J. Ruiz and J. L. Torrea (see [18]), is proved in a much
more general context than we need right now. In order to state the vector-valued

version of this theorem, we need to introduce the following notation.

If F and F are Banach spaces, then
L% (X*,du) = {f: Xt > F; [ is Borel measurable and /x+ | fFdp < oo},

L%(X,dz) = {f : X = E; f is Borel measurable andA I fI%Edm < oo},
and let L(E, F) denote the set of all bounded linear operators from E to F. Let the
kernel K be a continuous map

K:XxXx[0,00)\{z=y,t=0} > L(E,F)

such that there exist positive constants C and € so that

Co(y,y')
(z,y)¢|B(z, p(z,y) + t)|’

“K(.’II, Y, t) - K(I, y” t)“L(E,F) S P
whenever p(z,y) +t > 2p(y,y').

Let f be a continuous function with compact support in X, let B be a quasi-ball
that contains the support of f, and z € X a point such that z € X \ 2B. Then, for

t > 0 we set

Tf(,t) = [ K(@,y,8)fy)dm(y), (2.1)
where the integral symbol represents the vector integral. Notice that f(y) € E
is a vector, and K(z,y,t) is a linear mapping £ — F. Therefore the expression
K(z,y,t)f(y) € F represents a vector. (Recall, (see [16]), that for a vector function
g: A C C — F over a Banach space F, we say that [, gdm = v, where v € F is a

vector, if for every linear functional A : F — C we have [, A(g)dm = A(v).)

Now, we state the theorem
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Theorem 2.1 Let u be a Carleson measure on X+, and let T be a vector-valued sin-
gular integral operator that satisfies the assumptions above, and that has a continuous

extension to LR (X,dm), i. e.
T: L®(X,dm) — LR (X, dp)
is bounded for some py > 1. Then:

T is a weak type 1-1 bounded operator; namely there erist a constant C > 0, so

that for every A > 0

C
p{(z,t) € X* : |ITf(z,t)llr > A} < Ty cxam)»

for every f € LL,(X,dm), and T is an LP-bounded operator for every p € (1,po), in

other words there ezists a constant C, > 0 (that depends only on p) so that

T flle.x+.duwy < Cpll fll 22 (x )

for every f € LE(X,dm).

In this chapter we will use the scalar case of Theorem 2.1. The vector case of the

theorem will be used in Chapter 4.

2.2 The operator T

In the special case when the measure p is the projection measure on X, we denote
the corresponding singular integral operator by Ty. In other words we set Ty f(z) =
Tf(z,0). In the next section we are going to deal with the LP-boundedness of the
operator T', which will depend heavily on the properties of its trace, the operator Tj.

In this section we are going to provide some information about the operator Tj.

In this chapter we restrict ourselves to the operators T, so that the restriction of

T f(z,t) to X, the expression Ty f(z), is an operator represented by the formula (2.1)
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for every z € X, not only for those z € X \ 2B, where B C X is the quasi-ball that
contains the support of the function f. For z € 2B we have to explain the meaning

of the representation formula (2.1).

In this chapter we will assume that the kernel K is a continuous mapping
K:X xXx[0,00)\{(z=y,t=0} > C,

that satisfies the following two conditions. There exist positive constants C and ¢, so
that for every z,z’,y € X(z # y), and t > 0 we have

C

K@< (B e v+ o

(2.2)

and

Cp(z,z')
(z,y)¢|B(z, p(z,y) + t)|’

|K(z,y,t) — K(z',y,t)| + |K(y,z,t) — K(y,2',t)| < p (2.3)

whenever p(z,y) > 2p(z,z') + t.

The condition (2.2), imposed on the kernel K, is needed for the L2-boundedness
of corresponding singular integral operator on Euclidean space R" (see [23]). However
F. J. Ruiz and J. L. Torrea did not use this condition when proving their theorem.
An integral operator whose kernel K satisfies conditions (2.2) and (2.3) is called a
Calder6n-Zygmund, or singular integral operator. Condition (2.2) also insures that

the integral in the following definition makes sense

Let K be the function described as above. For any s > 0 we set

Touf@)= [ K(2,3,0f@)dmy),

o(z,y)>s

when f is a continuous function with compact support in X.

We define the mazimal singular integral operator in the hyperplane, the operator

T, by the formula

Ty f(z) = sup|To,.f(z)]  z€X.

$>0
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If the operator
TF : L (X,dm) — LP°(X,dm)
is a bounded operator for some py > 1, the operator Ty can be defined by
Tof = lim T, f,
where the limit is taken in the LP°(X, dm)-sense (see [23]).
The same assumption insures the existence of the adjoint operator Tj, defined by
Tof =lmTs,f,
(where the limit is also taken in the L% (X, dm)-sense) is bounded as a mapping
Ty : L*(X,dm) — L*(X,dm),

where go is the conjugated exponent to po, i. e. ;- + .- = 1. Moreover, Tg is the same
type of operator as Ty, whose kernel is K(y, z,0), where K represents the complex

conjugate to the function K.
The following theorem is a simple consequence of Theorem 2.1.
Theorem 2.2 Let Ty be the operator associated with the operator T that satisfies

the scalar version of the representation formula (2.1), whose kernel K satisfies the

conditions (2.2) and (2.8) with t = 0. If the operator
T - LP°(X,dm) — LP(X,dm),
s bounded for one py > 1, then the operator
Ty : LP(X,dm) - LP(X,dm)

is bounded for every p > 1. When p = 1, the operator T; is a weak-type 1-1 bounded
operator; that is, there ezist a positive constant C so that for every A > 0, and every

continuous function f, with compact support in X,

o € X T/ @) > M < S lsoxam:
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Proof: To prove Theorem 2.2, we consider two different cases p < py and p > py.

When p < po, Theorem 2.1 applied to Tj gives that the operator Ty : L?(X,dm) —

LP(X,dm) is bounded for every p € (1,po], and weak-type 1-1 bounded when p = 1.

In order to prove the case p > py we need to consider the adjoint operator to Tj.
The operator Ty is L-bounded, for every q > qo, where gq is the conjugate exponent
to po, as an adjoint to a bounded operator. On the other hand, since the operator
T is of the same type as Ty, Theorem 2.1 implies that it is L9-bounded for every
q € (1,go). Thus, T* is LI-bounded for every g > 1, which implies the L?-boundedness

of the operator T for every p > 1.

The following result (see [23]) provides a connection between the singular integral

operator T, and the corresponding maximal singular integral operator on R".

Lemma 2.3 Let K(z,y,0) satisfy the conditions (2.2) and (2.3) with t =0, and for
every A > 0 and z,y € R* we have K(\z,\y,0) = A™"K(z,y,0). Then, there ezists

a positive constant C so that for every f € C§°(R"), and almost every r € R®
T¢ f(z) < CM(Tof)(z) + CM f(2),

where M represents the Hardy-Littlewood mazximal function.

For the proof of the lemma see ([23], page 67).

Remark: Lemma 2.3, combined with Theorem 2.2 implies that if the operator
Tp is L?(R")-bounded for one py > 1, then T is LP(R")-bounded for every p > 1,
due to the LP(R")-boundedness property of the Hardy-Littlewood maximal function

for every p > 1.
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2.3 Singular Integral Operators on X+

In this section we are going to focus on the problem of boundedness of the singular

integral operator as a mapping:
T : LP(X,dm) —» LP(X,dp) forp > 1,

when u is a Carleson measure. Unlike the operator Ty, the operator T does not have
a nice adjoint. Therefore, we cannot tell whether T is a LP-bounded operator for
P > po, by using Theorem 2.1. This difficulty can be overcome by using the good-A

principle argument (see [5] and [24]).

In this section we assume that the operator T', whose trace, Ty, is represented by
the formula (2.1), and the conditions (2.2) and (2.3) with ¢t = 0 , imposed on the
kernel K, are satisfied. So, T can be any operator whose range consists of functions
with the domain in X%, so that Tf(z,0) = Ty f(z), and T satisfies the properties
mentioned above. Additionally, we want the operators T and Tj to be related in the

following way. There exists a positive constant B so that
|Tf(z,t) — To.f(z)| < BH f(z,1) forevery z € X,and t > 0 (2.4)
for every continuous function f with compact support in X.

Now, we state the main result of this chapter.

Theorem 2.4 Let pu be a Carleson measure on X+ ,and let T and T, be the operators

defined as above which satisfy (2.4). If
TE . LP(X,dm) - LP(X,dm)
18 a bounded operator for some 1 < py < 0o, then the operator

T : LP(X,dm) — LP°(X ™, dp)
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is bounded; in other words, there ezist a positive constant Cp, > 0 (that depends only

on pg) so that

||Tf||1,po(x+,du) < C,,o”f”[,po(x,dm) for every f € LP°(X,dm).

Proof: Without loss of generality we can assume that f is a continuous function
with compact support in X, since the set Co(X) is dense in LP°(X). Let us fix a

A > 0. We want to estimate the u-measure of the set

Ay ={(z,t) € X*: [Tf(z,t)] >3\, Hf(z,t) <A},
where 0 < v < 1 is a fixed number to be specified later. We set

Q={ze X T f(z) > A}
If v is small, then property (2.4) yields
(z,t) € Ay implies T € (2.5)

because

3 <|Tf(z,t)| < |Touf(2)| + [Tof(z) — Tf(z,1)],

< T f(z) + BHf(z,t) < Tf f(z) + ByA.

So if we choose < so small that 3 — By > 1, claim (2.5) holds. (More explicitly, we
need v < 2/B, but we may need - to be even smaller; so we will not specify its upper

bound for now.)

The set €, is open and bounded. Let the family of quasi-balls { B(z, r(z))}zeq,,
where 7(z) is chosen so that B(z,r(z)) C Q) but B*(z,r(z)) N5 # 0, be a covering
of Q). (Recall that B* represents the quasi-ball with the same center as B, but
r(B*) = Kr(B) where K is the space constant from the Calderén covering Lemma.)

Using the covering lemma we obtain a sequence of pairwise disjoint quasi-balls {B;}
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such that 2 C U;B;. Moreover, for every index j there is a point w; € B}, so that
T3 f(w;) < A

The set Ry = {Mf > «)} is also open and bounded. Then, in the same way as
in case of §2), we obtain a sequence of pairwise disjoint quasi-balls {Dy}, Dy C R,
such that R, C U, Dy, and accordingly, for every index k, there is a point z; € Dj so

that M f(zx) < yA.

We set
P; = (B x [0,00)) N Ay and P, = (Dy % [0,00)) N Aj.
Formula (2.5) implies
Ay CU;P;.
Therefore, in order to estimate p(A)) we need to estimate p(P;) for each j.

Let (zo,t0) € P; (which means zo € B; ) for some index j. If B; N Ry = 0,
then we have found a point zo € B; such that M f(zo) < yA. If BN Ry # @, then
zo € Bj N Di for some index k. But, for every index k there is a point zx € Dy such

that M f(zx) < v
We distinguish two cases: 7(B;) < r(Dg) and r(B;) > r(Dg). In the case r(B;) >

7(Dx), which implies D; C B;* (because zo € B; N Dy # @), we set

f(:l,‘) = f(z)XBJ# + f(z)Xx\BJ# = fl(x) + f2(x)7

where BJ# denotes the quasi-ball in X concentric to B;, and r(BJ# ) = 20Kk,r(B;).
(K is the space constant from the covering lemma, and k, the constant from the
condition (iii) in the definition of pseudo-metric.) Notice that the set B} contains

points w; (TO#(w,-) < A), and zi. The formula

Pi=Pin({ITHi]>XNHf SyAYU{|T S| > 2)\ Hf <4A}) = P/ UP?,
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shows us that in order to estimate u(P;), it suffices to estimate each of u(P}), and

(P?) separately. Let
P} = P} n(B; x (t < Ar(B;)) U B; x (t > Ar(B;))) = P}' U PJ%,
where A = 40K kf,. Since the measure pu is a Carleson measure we have

u(P}') < u(S(AB))) < C|By|.

We will show that when vy > 0 is small, then P;*> = 0. Let (z,t) € P}*. Using

conditions (2.4), (2.2), and the fact that H f(z,t) < v\, we conclude

A <ITh@ D) < Toufiw )l + B < [ K@ v, 0l AW)ldm(y) + By,
which implies

(1—ny))\=b/\</ 1

B¥n{p(zy)>1} mlf (v)ldm(y).

But the integral on the left is 0, which yields a contradiction, if 1 — By > 0, which
happens when ~ is small. We will show that Bf N {p(z,y) > t} = O, using the

following argument. Let c be the center of the quasi-ball B;. Then

p(z,y) < kp(p(z,c) + p(y,c)) < ko(p(z,c) + 20KkPT(Bj))1

since y € B]#. The fact that p(z,y) >t > Ar(B,) implies

p(z,y) <k, (p(:v, c) + 2Of:k"p(:c, y)) = kyp(z,c) + %p(x, Y).

Hence

2k,p(z, ) > p(z,y) > 40KK2r(B;),

which yields

p(z,c) > 20K k,r(B;),
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which contradicts the fact that z € B}, so the set over which we integrate must be

empty.

Now, we claim that P2 @, for v sufficiently small. Condition (2.4) implies that

for any (z,t) € P? we have
Isz(.’L', t)l < lTo’tfg(IL')l + B')’/\

So, we need to estimate |To,f>(x)|, when (z,t) € P?. Recall that w; € B} is such a

point that T f(w;) < A, which implies

= K(z,y,0 dm
Toufa()] /(x\a,# IN{y:p(z,y)>t} (z,9,0)f(y) (y))
< K wy, 70 dm
- /(X\Bg#)ﬂ{y:p(z.ybt} (w;,9,0)f () (y)‘

+/x\31# |K (w;,y,0) — K(z,y,0)||f(y)|dm(y) = I + I,
(Notice that in the second integral we integrate over a larger set.)

Let us estimate the term I, first. Let n = 21Kk2r(B;). If t > 5 and p(z,y) > t,
then using the property (iii) of pseudometrics we conclude p(c;,y) > 20Kk,r(B;) =
r(BJ# ) (where c; is the center of the quasi-ball B;), which implies BJ# C B(z,n).

Hence, when t > 7 we have

I=

e K030 51 ()

I< /
{y:p(w;,y)>t}

K(wj,y,0)f (y)dm(y)’

+/ Wi, Y, dm
{y:p(wj,y)st}ﬂ{y=p(z'y)>t}l ( Y )”f( )I (y)

+/ w;, Y, dm
{y:p(wJ-,y)>t}ﬂ{y:p(r,y)5t}l ( Y )”f( )|dm(y)
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= |To.f(w;)| + A+ B.

Ifye{y:pwj,y) <t}n{y:p(z,y) > t}, then the property (iii) of pseudo-metrics

implies
ot < t— 2Kkk,,r(Bj)
p

< p(wj,y) < t,

for some ¢ < 1. Employing the property |K(w;,y,0)] < C|B(wj, p(w;,y))|™! we

obtain that

1

A<C— .
< C|B(w,-,ct)| B0, |f (y)|dm(y)

The fact that m is a doubling measure implies g(%”f% < const, which yields

A<C inf Mf(z) < CMf(z).

#
zEBj

When y € {y: p(wj,y) >t} N {y: p(z,y) < t}, then
t < p(wj,y) < 2k,t,
and in the same way as in the case of the term A we obtain

B<C inf# Mf(z) < CM f(zk).

zGBj

Thus, when t > n we have

I < XA+ CMf(zy).

If t <n, then

I < |Topf(wj)|+C |B(wj, p(w;, y))|~'1f (v)ldm(y)

{y:p(w;,y)<n}\BY

C/ B(w;, p(ws, v))|"[f () |ldm(y) < A+ E + F.
{y:p(z,y)ft}\{y:p(wi,y)>q}| (wj, p(wj, )7 | f () |dm(y) <

Ify € {y: p(wj,y) < n}\ BY then

en = 19Kr(B;)p(w;, y) < n.
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(The last claim is true, because whenever a € B}, and b € X \ BJ# , the property (iii)
of pseudo-metric implies p(a, b) > ML,::M > 19Kr(Bj), where c is the center of
the quasi-ball B;. In our case w; € B} and y € X \ Bf .) Notice that BJ# C B(wj,n),

therefore, using the same argument as when estimating the term A we conclude

E<LC inf# Mf(z) < CM f(zx).

$€BJ-

Ifye{y:plx,y) <t}\{y:p(wj,y) > n}, then
n < p(wj,y) < 2kym,

which yields
F<C inf Mf(z) < CM f(zy).

#
zEBj

When we summarize the last four results we have that for t > 7 as well as for t <7
we have

In order to estimate the term I we use the assumption (2.3) (Notice that 2p(z, w;) <

p(z,y), because z,w; € B}, and y € X \ BJ#) to get

P(xa 'wj)E
1S |5t 22,9) 1B oz g L @MW)

p(z,y)|B(z, p(z, y))|’
Since p(z,y) > 2m20Kr(B;) on 2™+ B¥ \ 2”‘BJ#, we have

< (Kr(B)))* f [ |f (v)ldm(y)

€ — 1
< OB 3 e B G vy 1

|B(z,2™+1r(B¥))|

Using the fact that W)_)I_ < C, where C is the doubling constant for the
' )

measure m, we get

II<CMf(zi) 327 < Cy,

m=0
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because zx € B; C 2"'BJ# for every index m.

We have proved
IT fa(z,t)] < A+ CyA+ ByA when (z,t) € P?.

Now, we choose <y to be so small that (C + B)y < 1, (Now we can fix v > 0.) to get

that the set P? is empty.

If 7(B;) < r(Dx), then B} C Di* (Recall 7o € B; N Dy # 0.) and we write:
1(@) = £(@)xpp + I@xx0p = Hi(@) + fola).
The same argument as in the other case, (now zx, w; € D} ) leads to

p(Py) < Cv|Dyl.

Let Jy = {j € N: B; C Df}. Then
w(Ujes, Pj) < Cu(DE x [0,00) N A)),
which implies

w(AN) <Y u(P)+ X wUjenP)

JE€(UkJk)e k

< Y wP)+uDE x[0,000nA) < S CyIBj|+ 3. Cy|Dkl.

JE(URJi)®E k JE(UrJi)e k

Thus, we have proved
() < Cv (HTFf > XY + {Mf > y2}]). (2.6)
To finish proving the theorem we proceed as follows.
[1TsPrdu=C [~ u((Ts > 3ahax

<C [TNu{HS > AN+ C [T NTITS > 30 HS < yAbd),
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here, we have used the formula A C (AN B) U B¢. Then (2.6) yields

<o) ([Eprdu+ [@ pram+ [(Msyrim).

Finally, using the fact that the operator H : LP°(X,dm) — LP°(X*,dyu) is bounded
(since pg > 1), the assumption of the LP°-boundedness of T, the L boundedness of
the Hardy-Littlewood maximal function for any py, > 1, and the fact that 7 is fixed,

we obtain that the last line is dominated by

CIUF 220 . amy

which completes the proof of the theorem.

Remark 1: In case when py = 1 we consider the case when the operator Ty is
weak type 1-1 bounded. If all the assumptions of Theorem 2.4 are satisfied then the

operator T is also a weak-type 1-1 bounded operator.

Remark 2: We can also prove the vector-valued version of Theorem 2.4. We
generalize the operator T in the same way as we did in Theorem 2.1, and also we
can define the corresponding vector-valued operator Ty. Essentially, in the proof of
Theorem 2.4 we need to replace the absolute value brackets by one of the norms:
I.lles |I-llrs or ||.|lee.F) (including the absolute value brackets in the definition of
the Hormander maximal function), and instead of L? spaces we consider their vector
version, either L%, or L%. The integrals in the proof of Theorem 2.4 now become

vector-integrals.

The following lemma is a useful tool when checking if condition (2.4) is satisfied.
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Lemma 2.5 Let X be such a space of homogeneous type. Suppose there erists a

positive integer d such that
|B(z,7)| = Cr® for everyzx € X andr > 0.

Then, condition (2.4), for the operators T and Ty, associated with the kernel K, is

satisfied if there exists a positive constant C such that

1 1
K (2,5,8) — K(2,4,0)| < C (p(x,y)d S t)d) , @7)

for every z,y € X and t > 0, such that p(z,y) > t.

Proof: To prove the lemma we proceed as follows.

TSt - Tof @I < [ 1K(@,y,8) - K(@,3,0ll/@)ldm(y)

p(z,y)>t
+[ K@y, O Wldmy) = L+ L,
p(zy)<t
Property (2.2) yields the following estimate for the term I,.

1

L <C
2 =" Iy |B(z, p(z, y) +1)]

|f(y)|dm(y)

1

< Cm B |f()|dm(y) < CH f(z,t).

In order to estimate the term I;, we use (2.7) and some elementary computation.

First, the binomial formula implies

(p(.’E, y) + t)d - p(.’IZ, y)d t
p(z,y)¢ s Cp(w,y)’

whenever p(z,y) > t. Thus, we have

t |f(y)]

I,<C
b= /p(z.y)>t p(z,y) |B(z, p(z,y) + t)|

dm(y)

> t I/ (W)
=C
kz;l [2"“¢<p(r‘y)s2“ p(z,y) |B(z, p(z, y))ldm(y)
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> 1
< —k+1____ d .
<CY T Lo e f@)ldm()
Finally, the facts that 35>, 27%*! = 2, 7‘,%%%{1})—, < C, where C is the doubling

constant for the measure m, and that for every k =1, 2, ...

1

B2 20)] Joegycane | W14 W) < BHS(3,2),

yield the desired estimate, which completes the proof of the lemma.

2.4 Singular Integral Operator on Atomic Spaces
for0<p<1

Let T be a singular integral operator that satisfies all the assumptions of the scalar

version of Theorem 1.2 (Ruiz-Torrea theorem), and is bounded as a mapping

T : LP(X,dm) — L (X*,dp)
for some py > 1. For p € (0,1] fixed, we define a p-atom as a Borel measurable
function on X whose support is in a quasi-ball B, [y a =0, and |a| < C|B|~'/?.

Let Ci be constants defined as in Section 1.3. If A > 0 is the doubling constant
for the measure m, i. e. for every quasi-ball B C X |B(z,2r)| < A|B(z,7)|, then
Ci < A%

Theorem 2.6 Let T be the operator defined as above, with the constant € as in the
condition (2.3), and let p € (0,1] be such a number that the series ¥, Cy P2 Pk
converges. Then there exists a positive constant C, that depends on the space X, p,

€, and the measure u, such that for every p-atom a we have

/ ITa(z, t)Pdu(z, t) < C.
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Proof: Let B = B(z,r) be the quasi-ball associated with the p-atom a. Holder’s

inequality applied to the integral

p
[ 5., [Ttz 1) Pdu(z, 1),

using the conjugate exponents po/p and 1/(1 — p/po), yields

p/po
< (»[I‘(B‘) lTa(.'L', t) |P0du(x, t)) (H(T(Bt)))l—p/po .

The LP°-boundedness of T" implies

< ([ lewlram@)"™” (T,

* 1-p/po
< clppm ey = ¢ (MEEN)

which is dominated by a constant due to the fact that u is a Carleson measure.

When z € X \ B?*, the property [a = 0 implies

Taa, )] = | [ (K(z,5,0) - Kz, 2,)aly)dm(y).

(Recall that z is the center of the quasi-ball B.) Notice that (z,t) € X*\T(B*), and
y € B, imply 2p(y, z) < p(z,z) + t; so we can use the estimate on the integrand in

the integral above, which yields

ply, 2)
Ta@, 0] < C [ iprm e eyl ()

The property |a| < C|B|~!/?, implies

rc'Bll—l/p

Ta(z. 0l < OlgG om0 + 010G, ) + OF

Let us define sets

A ={(z,t) € Xt :28"17(B*) < p(z, 2) + t < 2¥r(B*)},
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for k =1,2,... . Then, X+ \ T(B*) is a disjoint union of the sets {Ax}$>,. Thus
Ta(z,t)|Pdu(z,t) = Ta(z,t)|Pdu(z, t).
Jersniany Fo@OPdu() = 3 [ Ta(z, Ol dua,

The formula (2.8) implies

du(z,t)
z,p(z,2) + t)[P(p(z, z) + )P’

Ta(z,t)|Pdu(z,t) < CrP¢|B|P!
feopia Tal@ OPdu@ ) s CriBp™ 3 [ o

Using the facts that Ay C T(B(z,2*r(B*))), and p(z, z) + t > 2¥~1r(B*) whenever

(z,t) € A, we get

(B(z,2r(B"))))|2*B*|'*
|2kB- |p|2kBt|l—prp£

—epk

= u(T
Ta(z,t)Pdu(z,t) < CrP|BP~! u
Jeoipiay Tl OP s, ) < Cr1BP~ 3

We have also used the fact thza.t|—2‘7,2':+gl;l_—I < A. The facts that u is a Carleson measure,
and m is a doubling measure, imply
oo
<CC, Y cfParek,
k=1
since the series above is convergent by the assumption of the theorem, the expression
on the left side of the formula above is dominated by a constant, which completes the

proof of the theorem.
[}

Remark: In case when X = R", we have that Cy = 2F. Then the assumption

about the convergence of ¥, C, 277 becomes € > 5 — 1

2.5 Examples

Let X be Euclidean space R", with Euclidean distance being the metric, provided
with the following measure. Let w : R* — [0, 00) be a bounded homogeneous function

with the degree of homogeneity 0, such that infw > ¢ > 0. Then, the function w is
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bounded, and also an A; weight, since

l—é—lqu(:z)dm <C< C@ = Cw(z).

Therefore, the measure
w(F) = /Ew(x)dx EcCR*

is a doubling measure, and moreover it is comparable to Lebesgue measure on R"; i.

e. there exist positive constants ¢ and C such that for every cube @ in R* we have

clQl < w(Q) < ClQ,

where |Q| represents the Lebesgue measure of the cube Q. Also, it easy to see that

such a weight w belongs to the Muckenhoupt class A, for any p > 1.

We define T'f as the principal value of

Tit) = [ K@0f@wE)dy,

for every function f € C§°(R"). The integral above makes sense, because the function

w does not create a new, nor eliminates any of the existing singularities.

Moreover, if the kernel K satisfies K(Az, A\y,0) = A™"K(z,y,0) for every A > 0
and z,y € R*, and if we assume the boundedness of the operator Tp : LP(R", dw) —
LP(R™, dw) for some p > 1, then the operator Ty’ is bounded for every p > 1, because

w € A, (Muckenhoupt class, see [15]) for every p > 1.
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Harmonic Kernels
Harmonic Conjugate in the Complex Plane

As we know the complex conjugate to the harmonic function u(z,t) = P, * f(x)

is given by the formula

N 1 oo - 00 (PN
i) = [ oopral W fr [eCR®),

where the integral is taken in the principal value sense. Motivated by that fact, we

set k(z) = 21Z5, that produces the kernel

1 /z—y _l T—y
K(x,y,t)—tk( t )_w(x—y)2+t2’

which for ¢ = 0 induces ko(z) = L, the kernel of the Hilbert transform, that is a
homogeneous function with the degree of homogeneity—1. It is a well known fact

that the corresponding maximal singular integral operator
T¢ : LP(R,dz) — LP(R, dz)
is bounded for every p > 1.

A singular integral operator in the upper half-plane is defined by

T = [T Sty fr feCRRY)

taken in the principal value sense. The operator T satisfies all the assumptions in the
definition of the singular integral operators on R2%. The assumptions (2.2), and (2.3)
(with € = 1) are fulfilled because

2
1+ |=)*

k(z)| <

<qrEy M (VRE = K@) <

Thus, we only need to check if the condition (2.4) is satisfied. Elementary computa-

tions yield

71 (@,8) = Toaf @ = | (w00~ 57z ) 12 = vy
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|yl 12
SAﬁﬂﬂ+ﬁv@_yWW+A%AEEFI§ﬂﬂz—wuy

<[ PWIiE-vldy+ [ P y)ldy < Hf (1),

gt

Therefore, the condition (2.4) is satisfied. Thus, the operator
T : LP(R,dx) — LP(R2%, du),

is bounded for every p > 1, and weak type 1-1 bounded, when y is a Carleson measure.

Harmonic Conjugates of Functions in Several Variables.

In his attempt to define the conjugate functions to the function
u(z,t) = Py * f(z) z € R"t>0,f € Cs?(R"),

in several variables, J. Horvath (see [13]) considered the integrals

(i — yj) .
(z,t =/ - d =1,2,...,mn;
u;(z,1) S T— ﬁ)?fW)y J n

taken in the principal value sense, where z; — y; denotes j-th coordinate of z —y =

(z1 — y1,-.-,Zn — Yn)- Therefore, we will consider the kernels

() — CnZ; _ .
ki(z) = o 1)%1’ z=(21,Z9,..,Zn), J=12,...,m,

that each produces the kernel

, _ cn(zj — yj)
KJ(x’ Y, t) - (Il' _ y|2 + tz)g_;_x )

so that k;o(z) = caz;|z| "7, is the kernel of the Riesz transform R; ( j = 1,2, ...,n).
Notice that each k;o is homogeneous with the degree —n. We will consider the

following singular integral operator

Ti(a,t) = (Ixc_"(;lgjr‘t’;;%_lf<y)w(y)dy.
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Since the measures w(E) and | E| are comparable for every set E C R", u is a Carleson

measure with respect to w.

Let us check if the operator defined by Tf = u;, for any fixed j € {1,2,...,n}, is
a singular integral operator on R7}*!. The elementary formula

1a+b)?<a®+b® < (a+b)? fora,b>0, yields

924t (n +2)2°%
. < - , < -
lkJ(x)l — (lzl + 1),, a‘nd IVkJ(z)l — (l'TI + 1)n+1’

which imply (2.2) and (2.3). Now, we check if the property (2.4) holds.

(@ - T 01 < [ ol ~ Doy

‘ 2 2 "_12'_1. _ n+l1
+/ CnlyJI[(ly' +t%) ly|"*] |f(z — y)|w(y)dy.
lyl>t

ntl
ly["*+1(|y|? +t2) 2

If |y| > t, then elementary calculations yield

n41
ealyill(yl? +#2) = — lyI™*]] _ enl(lyl+ 8™ — [y[™*]
|yl +t B Iyl

< cﬂ(2n - 1)t>
this, with the boundedness of w, implies
Tocf(@) - T <C [ P@Ife-y)ldy+C [ P@)f-y)ldy
lyl<t lyl>t

=C [ P@)\f(z - y)ldy,
which proves that the property (2.4) holds.

Now, we need to consider the boundedness of the operator
T¢ : LP(R*, dw) — LP(R", dw).

First, notice that the kernel k(z, y,0) = k;(z—y)w(y) satisfies k(Az, Ay, 0) = A7"k(z,y,0),
which implies that the corresponding operator Tj satisfies the weak boundedness prop-

erty (see [10]), and due to the oddness of ky in both z and y, both conditions Ty1 = 0
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and Tyl = 0 are satisfied, which makes the operator Ty : LP(R",dz) — L?(R",dz),
bounded for every p > 1. Lemma 2.3 implies that the operator Ty : LP(R*,dz) —
LP(R*,dz) is bounded, and using the Muckenhoupt theory we can conclude the
boundedness of the operator Ty : LP(R",dw) — LP(R",dw), because w € A, for

every p > 1. Therefore, the operator
T : [*(R*,dw) = LP(R', du),

is bounded for every p > 1 and weak-type 1-1 bounded.

In the case of a singular integral operator whose kernel is harmonic, and when
w(z) = 1 we may obtain the LP-boundedness of the operator T, in the following

way. It is a well known fact that for the complex conjugate i of a harmonic function
u=P t* f )
u(z,t) = (P *H * f)(z),

where H represents the Hilbert transform. When n > 1, J. Horvath proved that
uj(z,t) = (P, * R * f)(z) j=12,..,n,
where R; f is the Riesz transform of the function f in R®. The formula (1.3) implies
||Tf||Lp(|R1+‘,du) = ||P x R; * f”LP(IR:“,du) < C||R;j * fl|Lo®n,dm)s
and the LP-boundedness of the Riesz transform ( p > 1) yields
“Tf“LP(IR'_;“,d;‘) < C“f“LP(IR",dm)'

(Notice that in the case n = 1 the Riesz transform becomes the Hilbert transform).



45

Examples — Non-harmonic Kernels

In case n = 1, the kernel

sign(z)|z|*

K(z,t) = |z[e+T + ot

zeR*,t>0,
is harmonic only for a = 1; for @ # 1 the kernel is not harmonic.

We claim that the corresponding convolution operator T satisfies all the assump-
tions in the definition of the singular integral operator for a convenient a. It is easy
to check that conditions (2.2) and (2.3) are satisfied for any a > 0. To show that
property (2.4) holds, according to Lemma 2.5 we need to determine if

1 sign(z)|z|® < t
z  |z|etl + et = z|(|z] + t)

when |z| > t,

1
|lz|+t?

which follows from —b——ar < which is true whenever |z| >t > 0.
|z|at4tet

The corresponding operator 7T is the Hilbert transform, whose maximal singular

integral operator is LP-bounded for every p > 1, thus the singular integral operator
T : LP(R*,dz) = (R}, du),

corresponding to the kernel K is bounded for every p > 1 and weak-type 1-1 bounded,

when p is a Carleson measure.

When n > 1, let Q be an odd (that is Q(—z) = —Q(z) ), bounded, and homoge-
neous function on R*, with degree of homogeneity 0 ( i. e. for every A > 0 we have

Q(A\z) = Q(z) ), such that
C
IVQ(z)] < @l for every z € R*, z # 0.
T
Let T be the convolution operator associated with the kernel

Q(x)

K(.’E,t) = W



46

It is a well-known fact that the convolution operator Ty with the kernel K(z,0)
has LP-bounded maximal singular integral operator for every p > 1 (see [23]). The
function K clearly satisfies condition (2.2) because 2 is a bounded function. Using

the formula
oK  82(la| + )" — On(lz| + t)" ' &

|z|

or; (|lz| +t)2n ’

boundedness of €2, and |VQ(z)| < FCI we obtain

C

< -

that implies condition (2.3), with ¢ = 1. The formula

|K(.’B, t) - K(‘Ta 0)' < |Q(.’L‘)I (I(Ell" - (lxl :_ t)") )

the fact that Q is a bounded function, and Lemma 2.5 imply that property (2.4)

holds. Thus, the operator
T : LP(R*,dw) = LR}, dp),

defined as above, is bounded for every p > 1 and weak-type 1-1 bounded when p is a

Carleson measure.

2.6 Cauchy Kernel on C* (n > 1)

Let X = S be the unit sphere in C*, p(z,y) = |1—(z, y)|"/? (where (z,y) = SF_, Txk)
be the non-isotopic metric on S, and o be the rotation invariant measure on S. When

n > 1, we have
o(B(z,r)) < r*" where B(z,r)={y € S:p(z,y) <r}, (2.9)

(The symbol < means there exist positive constants ¢ and C so that for every r > 0

we have cr?® < o(B(z,r)) < Cr?*)
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The role of X* will be played by the closed unit ball U in C*. The fact that
0 < t < 1 makes almost no difference. We take t2 + r2 = 1, where r = |z|, so that S

is obtained when t = 0.

Before we proceed, let us list some of the properties of the non-isotopic metric

(For the proof of these properties and the formula (2.9) see [17]) :

(a) For every z,y,z € U, where U is the closed unit ball in C* we have
p(z,y) < p(z, 2) + p(2,y).

(b) p is a metric on S.

(c) For every0 <r <1, and z,z € S we have
plrz,2) =1 —r(z,2)|'2 > V1-7.
(d) For every0 <r <1, and z € S we have
p(rz,z) =1 -r.
(e) If U is a unitary map, i. e. (Uz,Uy) = (z,y), then

p(Uz,Uy) = p(z,y),

and for every x € S there is a unitary map U such that Uz = e, = (1,0,0,...0).
(f) For every0 <r <1, and z,z € S we have

plz,2) +V1—r
3 :

p(rz,z) 2
The last property follows from (a), (b), and (c) as follows.

p(z,2) + V1 —r < p(rz, 2) + p(rz,z) + V1 — 1 < 3p(rz, 2).
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For every 0 <r <1, and z,y € S we define the Cauchy kernel as
Ci(z,y) = ca(1 —7(z,y))™" where 12 +t% =1.

The Cauchy kernel is a complex valued function and |Cy(z,-)| is not absolutely in-
tegrable. Therefore the kernel is not admissible. We will prove that the operator

represented by the formula

Tf(z,t) = [ Cz, 1) fW)do(y),

is a singular integral operator.

First, we check if forevery 0 <r <1,and z,y € S
|Ci(z,y)| < Co(B(z, plz,y) + 1))
The definition of C;, property (f), the fact /1 — r < t, and property (2.9), imply

|Ci(z,y)| = p(rz,y) ™" < C(p(z,y) + t) ™" = Co(B(z, p(z,y) + 1)) 7"

Next, we check if for every 0 < r < 1, and z,y € S such that 2p(z,y) < p(z, 2) +1¢

(r?2 +t2 = 1) it follows that

z,z)— z P(x’y)z
el 2) = Gl )l < OB 5@ 2) + 0) (o, ) +

To show that the above inequality holds, we employ the formula a™ — o™ =
(a —b) Xp_, ™ *bF71, to get
|Ci(z,2z) — Ci(y, 2)| = r|{z — y,2)| O_ p(rz, z) 2K p(ry, 2) 72K+,
k=1
Property (f) implies

< Crl{z —y,2)| Zn:(p(x, 2) +8) 720 (p(y, 2) + £)~HRHD,
k=1
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Recalling that p(y, z) +t > p(z,2) +t — p(z,y) > 3(p(z, z) + t), we obtain
= Crl(z -y, 2)|(p(z, 2) + 1) 2"+,
and now we use property (2.9) , again, to conclude
= Crl(z - y, 2)] o(B(z, p(x, 2) + 1) (ol 2) + 1) %,

so we need to prove that |(z — y, z)| < Cp(z,y)?. To show it, we use property (e) to
restrict ourselves to the case z = e;. Then |(z — vy, 2)| = |z; — y1|, where z,,y; € C
are the first components of z,y € C*. Now, the desired inequality follows from
pz ) =z =y, 2)P =1 = 211 = |21 — 31 ?
=1 =l|z )1 =l > 0.

Then, we check if the singular integral operator T', associated with the Cauchy

kernel, satisfies the property
ITf(:L"t) - TO,tf(I)I S BHf(:E’t)
Using Cy(z,y) = Co(rz,y) we obtain

ICe(z,y) = Co(z,9)| < CI1 = rll{z, y)| 3 p(z,y) 2" (p(=, y) + ) 2*+D.
k=1
Knowing that /1 — r < t we conclude
t2 1
p(z,y)? o(B(z, p(z,y))’

|Ci(z,y) — Co(z,y)| < C

when p(z,y) > t, and then the proof goes the same as in Lemma 2.5.

Now, let us check if the restriction of the operator T to the space X, the operator

To, has its maximal singular integral operator bounded. Property (2.4) implies

|To:f(z)| < |Tf(z,t)| + BH f(z,t) forevery z € X,t>0.
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When we take the supremum of both sides of the last inequality, with respect tot > 0

we obtain

T¢ f(z) < sup|Tf(z,t)| + BMf(z),
t>0
where M, represents the Hardy-Littlewood maximal function on S. Thus
T¢ f(z) < Na(Tf)(z) + BM f(z),

where N, represents the non-tangential maximal function on the unit ball. Theorem
6.3.1 (page 99, [17]), tells us that the operator No(T') is an LP-bounded operator for
every p > 1, and the LP-boundedness of the Hardy-Littlewood maximal function is a

well known fact. Therefore the operator

T : L*(S,do) — LP(S,do),
is bounded for every p > 1. Hence, the operator

T :LP(X,do) = LP(X*,du),

where p is a Carleson measure on the closed unit ball, U in C* (n > 1), is bounded

for every p > 1 and weak-type 1-1 bounded.

2.7 Cauchy-Szego Kernel on the Heisenberg Group

Let X = R x C*!, and let o be Lebesgue measure on R?"~!. If we write an element
z € X as £ = (11,1;), where z; € R, and z, € C*~!, then for z,y € X (y = (y1,%2))

we define operation o on X as
roy = (71 + Y1 + 23(z2, ¥2), T2 + Y2),

where (z,,y,) denotes the scalar product in C*~!. (X, o) is a group, with (0,0)

being the neutral element, and (—z;, —z;) the inverse to (z,,z;). We define the
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pseudometric, p on this group by
pley)=v(woy™)  where  y(z) = (jaaf’ +lzl') .
The pseudometric p is invariant under the group action which means, that for every

z,y,z € X, we have p(z,y) = p(z o 2,y 02).

It has been proved, see [14], that

o(B(z,r)) <" where B(z,r)={y€ X : p(z,y) <r} (2.10)

We define the Cauchy-Szego Kernel on X by
Culz,y) = e (t+ |72 — of? — ilm1 — 11 — 2%(z2,10)))
for every z,y € X and t > 0. The Cauchy-Szego Kernel is invariant under the group

action, which means that for every z,y,z € X and ¢ > 0, we have

Ci(z,y) = Ci(z o z,y02).

Let us prove that the integral operator defined by the Cauchy-Szeg6 kernel is a
singular integral operator on X*. First, we check if there exists a positive constant

C such that
C

Ci(z,y) < o(B(z,p(z,y) + t)),

for every z,y € X and t > 0.

Knowing that the Cauchy-Szego Kernel is invariant under the group action, it

suffices to prove the claim for y = 0.

. -n -n/2
|Ci(z,0)| = ca It + |z2|* + zx1| =Cn |(t + |z2|?)? + xﬂ

I—n/ -n/2

< cn lt2 + |zo|* + 22 . Cn |t2 + 7(1:)2|

< 2%t +v(z)| ™ = Co(B(z, p(z,0) + ),
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the last equation holds due to formula (2.10).

Next, we verify that

pz,y)'/?
|Ci(z, 2) — Ci(y, 2)| < Ca(B(z, ST 1) e T (2.11)

for every z,y,2 € X and t > 0 such that 2p(z,y) < p(z,2) +t. Again, using the

invariance of the Cauchy-Szego kernel under the group action, it suffices to prove the

claim for z = 0. Then
ICi(x,0) = Cily, 0)] = ca|(t + |22* + i)™ = (¢ + |yl +i91) ™"
As in the case of the Cauchy Kernel we obtain
ICu(z,0) = Ce(y, 0)| = n |lval® = leal® = i(yr — 21)|

n—1

S (¢ + laaf? + i)~ e+ [gaf?) 5D
k=0

X

)

which leads to the estimate
ICi(=,0) = Ciy, 0)| < C|lyaf* — |22l — i1 — 21)| (p(z, 0) + £) =+,
Thus, in order to prove the formula (2.11) we need to prove
[l9212 = |22 = (1 — 71)| < Cp(=, )2 (p(x, 0) + t)"/2.
Simple computations yield
19212 = &2l = (s = 21)| < |l2al® = [w2l?| + 21 = wal.

< |z = w2l (|z2| + |y2l) + |21 — y1 — 23(z2, y2)| + |25(z2, 22 — y2)] .

(In the last line we have used the fact that S(z;,z,) = 0.) Using that |z, — 5| <

p(z, y)1/2 = (|-’52 - yzl4 - |$1 ) 23(z2,y2)|2)’/4,



53

|z1 — y1 = 23(z2, y2)| < p(2,Y), |72| < (p(z,0) +1)'/2, |ya| < (p(y,0) +1)'/2, and the

Cauchy-Schwarz inequality we get
1921 = 22l? = (s — 21)| < Colz, 9)"/? [(p(x,0) + 1)'/* + (p(y,0) + ) /2] +
+p(z,y) + 2|22||T2 — va,
and using the same estimates on the last term on the right we have that
< Cp(z, )" ((o(2,0) + )/ + (p(y, 0) + 1)'/) + p(z, y) + 2p(z, y)"*(p(x, 0) +1)"/2.

Notice that 2p(z,y) < p(z,0) + ¢ implies p(z,y)'/? < (3(p(z,0) +1))"/2, and p(y,0) +

t < 3(p(z,0) + t), which altogether gives
< Cp(z,y)"(p(z,0) + )7,

what we wanted to prove.

To check if T satisfies the property
ITf(z,t) — Touf(x)| < BHf(z,1),

for every z € X and t > 0, we notice

|(t + |z2|? + iz1)" — (|32|? + iz1)|

|Ci(z,0) — Co(z,0)| < cn (t + p(z, 0))"p(z, O)"

The binomial formula and elementary computations imply that

(t + |zo|® + iz1)™ — (|72)? + iz1)" < Ct
p(z,0)" = p(z,0)’

whenever p(z,y) > t, and then the proof goes the same as in Lemma 2.5.

Thus, we have proved that the convolution operator associated with the Cauchy-

Szego kernel is a singular integral operator.



Chapter 3

Singular Integral Operators on
Euclidean Space

In this chapter we study under what conditions imposed on the Carleson measure pu

and the kernel K, the singular integral operator
T : L*(R*,dz) —» L*(R}*, dp),

is bounded. Euclidean space, R" is a space of homogeneous type with the quasi-metric

being Euclidean distance, and Lebesgue measure being the doubling measure.

The kernel K is still assumed to be a continuous map
K:R"xR'x[0,00)\ {z=y,t=0} - C,

satisfying conditions (2.2) and (2.3). Additionally, we assume that the kernel K

satisfies the following two cancelation properties.

K(z,y,t)dy =0, 3.1
/B(I’R)\B(m (z,y,t)dy (3.1)

forevery R>r >0,t >0, and z € R*; and

K(z,y,t)K(z', z, t)dp(z, t) = 0, 39
‘/S(B(y’ﬁ))\S(B(y.p)) (z,y, ) K( )du(z, t) (3.2)

for every y € R*, |2’ — 2| > p,t > 0, and R > p > 0. The first cancelation

property is supposed to play the role of the T'1-condition together with the weak
54
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boundedness property, while the second plays the role of T*1-condition, that requires
T*(const) = 0, but now we ask for more. T*p = 0, for the function ¢ = Ta(z,t), for
a certain type of functions a € C§°(R"*). Notice that the function ¢ is constant in
z, but not in ¢; (see [10] or [8]) and when x is the projection measure, the condition

(3.2) becomes the condition (3.1) in variable y.

The operator T is defined by the formula
Tf(z,t) = /R K(z,y,t)f(y)dy, forevery ze€R",t>0 (3.3)

and f € C°(R"), where C°(R") represents the set of all infinitely differentiable
functions with compact support in R®. The integral in (3.3) makes sense for any
f € LY(R") when t > 0 or |z —y| > 0, due to (2.2). When it is not the case, we define

T f(z,0) as in the previous chapter.

Using the Calderén formula, whose proof is based on the properties of the Fourier
transform on R", it is established that any function f € L?(R", dr) can be decomposed

into the sum of the smooth atoms (see [10]). We define a smooth atom as follows.

Definition: A function ag € C°(R") is a smooth atom in L*(R", dz) associated

with the dyadic cube Q if it satisfies:

(a) aq is supported inside the cube Q*, (Recall that Q* denotes the cube concentric
with the cube Q such that £(Q*) = 34(Q).),

(b) [aqg =0,

(c) |D"ag(z)| < ¢, €(Q)~"/2 for every multi-indez v, and = € R™.

The following theorem (see [10]) tells us that any function f € L?(R",dz) can be

written as an infinite linear combination of smooth atoms.
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Theorem 3.1 For any f € L*(R",dz), there ezists a sequence {sq} € €2, and a

sequence of smooth atoms {ag}, such that

f= ZSQGQ and ”f”%.z(lk",dx) = CZ |SQ|2,
Q Q

where the convergence of the series is taken in the L?-sense, and the summation is

over the family of all dyadic cubes in R™.

For the proof see [10].

Now, we are ready to prove the main result of this chapter.

Theorem 3.2 Let u be a Carleson measure, and let T be a linear operator repre-
sented by the formula (8.8), that satisfies conditions (2.2), (2.8), and the cancelation

properties (3.1), and (3.2). Then the operator
T : L*(R",dz) —» LA (R, dp),

is bounded.

Proof: The proof of this theorem is an adaptation of the technique developed
in [10], applied to this new situation. The proof of the theorem is rather technical,
and it will use several lemmas. Before we state and start proving the lemmas, let us
fix dyadic cubes P and Q, let zp and zg denote the center of the cube P and Q,

respectively, and let ap and ag be smooth atoms associated with cubes P and Q.

Lemma 3.3 Let u be a Carleson measure, and € > 0. Then there ezists a constant

C > 0 depending only on pu and €, so that for every cube Q, and every point z € R*,

du(z,t)
/l;:_"'l (1 + Ixt_(gl;_t)n+g S CIQI
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Proof of Lemma 3.3: Let
A = {(z,t) e RT 28 19(Q) < |z — 2| +t < 25¢(Q)},

for k =1,2,.... Then, R}*! is a disjoint union of the sets {Ag}32,, where

Ao ={(z,t) € R : |z — 2| + ¢ < £(Q)}. Thus

/ du(z,t) z / du(z,t)
n | | n+e |I z| n+e’
RE (14 ) A (14 755)

On Ay, we use the estimate <1 to get

1
(1+ B e

o g <

Since u is a Carleson measure, we conclude that

du(z, t)
o o gy =

On each Ay, (k=1,2,...), the estimate

1 1

< nte)’
(+ )™~ ()™

the fact that Ay C T'(B(z,2F4(Q))), and L%])i > 2k=! when (z,t) € Ay, imply

dp(z, t) dy(z,t)
/IR:“\T(B)( Iuli)"“ Z/A,, 2k—1)n-+e

. W(T(B(z,24(Q))))
= CHQry - e A

Using the fact that u is a Carleson measure, £(Q)" = |Q|, and that the series 332 , 27*¢

converges, we conclude that the last line is dominated by

ca,lal;
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which proves the lemma.

Lemma 3.4

|z — zg| +1t

Taq(a.0)] < co(@) ™ (14 22¢]

—n—e
) for every (z,t) € R+,

Proof of Lemma 3.4: Let (z,t) € S(2Q*). In this case we have

|z — zq| +1

")

<11,

and consequently

|III—:EQ|-|-t)_n—e o
1+ —m———— > 117"7€,
( Q) -

Using the cancelation property (3.1) we obtain

[Taq(z,t)| =

[ K00 a0) — a(a))e],

where c is such a constant that supp(aq) C B(z, §¢(Q)). (More precisely, we can set

¢ = 64/n.) The inequality (2.2), and the smoothness of the atom ag, yield

[Taq(z,0)l < CAQT™ [ (le =yl +1) "Iz - vldy,

c£(Q)
r

< ce@) R [T rrenldr = Co@)

0
which together with the previous inequality implies the lemma when (z,t) € S(2Q*).

If (z,t) € R} \ S(2Q*), then the fact that [ ag = 0 implies

[Tag@, 0] = || IK(z0.t) ~ K(z, 0, ]oo(v)ds]

Using property (2.3) (Notice that when y € Q* we have 2|y — zg| < |z — z¢| + t.)

and the fact that |ag| < C|Q|/2, we get

ly — zgl _
T )| < 1/2
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< CUQ)IQI™VA(|z — zol +1)™"Q,

and now we use the fact that "’;t(xg# > 1 to conclude

_ AN
Tagtanl < o 1+ 580 ™

which proves the lemma.

Lemma 3.5 Let a = min{e/2,1}. Then

¢(Q)

x {(1 Iy —foQ_)l + t)_n_e + (1 e —ezvg)l + t)’""}

for every z,y € R*, andt > 0.

|Tag(z,t) — Tag(y,t)| < C|Q|—1/2 (I-’L' - y|) 9

Proof of Lemma 3.5: If |z — y| > ¢(Q), then Lemma 3.4 applied to each term

on the left side of the inequality, and the fact that 1 < (%l)", imply the lemma.

Therefore, let |z — y| < £(Q).

If (z,t) € R}*'\S(cQ), where c = 4y/n is chosen so that supp(aq) C B(zq, $4(Q)).
(Notice that we could have taken ¢ = 3,/n, but we may need c to be a little bit larger.)
We have

Tag(a,t) ~ Tagly,t)| = | | [K(z,2,1) - K (3,2 O)ao(2)ds|

For chosen z,y and t we have that |z — y| < £(Q) < 3(|z — z| + t) is true for
every z € @*, which enables us to use property (2.3), which together with the fact

lag| < C|Q|~/? implies that

|5'3 — ?>l|e -1
Tag(z,t) — Tap(y, <C/ Q 12dz.
I Q( ) Q(y t)l = . (l ZI | t)n+el I 2
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For every z € Q* we have [zt —zg| +t < |z — 2|+ |z —zg| +t < 2(|]z — 2| + t) (The
last inequality holds because if (z,t) € R}*! \ S(cQ), then either |z — zg| < |z — 2|

or t > |z — zg|.) which implies that the above quantity is
< CIQI"?|z — y[*(lz — zql + 1),

o) (2™

Since ]%(%1 < 1 and a < ¢, we have

=y [z —zq| +t\ "¢
(Taq(s,1) - Tag(y, )] < CIQI ( o ) (W) .

The fact |z — zg| +t > €(Q) yields

|z — zg| +¢ l(lx—xQ|+t ) |t — zq| +t l(ly—xQ|+t )
@ 2\ ae Y ™ Twe 3\ wg Y-

(The last inequality is true since 1 + “’—‘i—%ﬂ <1+ 'x;zgl!—&w <2+ '—tl(z—g)—'ﬂ <

3]x—xgl+t
Q)

() =efle ) O T

which proves the lemma if (z,t) € R¥*! \ S(cQ).

.); so we conclude that

In the case |z — y| < £(Q), and (z,t) € S(cQ), we have that |z — zq| < £4(Q),
ly — zq| < (5 +1)4(Q), and t < cf(Q). So, it is easy to conclude that there exists a

positive constant § = (1 + $)™"7¢+ (2 4+ §)~""¢ such that

Ix—qu+t)_"—€ ( |y—xQ|+t)_"_e
(” 1Q ' ) e

So all we need to prove is

ITag(e, ) - Taglwtl < clai™ (1)
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Due to the fact supp(ag) C Q* C B(z,cf(Q)), we can write

Tag(z,t) — Tag(y,t) = /|z—z|<ct(Q)[K(z’ z,t) — K(y, z, t)]ag(z)dz

and employing the cancelation property (3.1) we can write the integral above as the

sum
Tag(z,t) — Tag(y,t) = /Iz—z|<3|z-y| K(z,zt)(ag(z) — ag(z))dz
o) K(y, z,t)(ag(z) — ag(y))dz+

/slz—ylﬂz—zlscz(o)[K(x’ 2t) = K(y, 2,1)|(aq(2) - aq(y))dz

—a K(y,z,t)dz=I+II+III + V.
o(y) /Ix_zw(q) (¥,2,1)

To estimate the term I, we use the inequality (2.2), which together with the

smoothness of the atom ag, implies

11| < Co@)~'-"/? / z—2l

|z—z|<3le—y| (|JT — 2| + )"

jz—y|
~clerruQ [ ar=cla

Having in mind that 172%1 < 1, and a < 1, we conclude
2 [le—yl\®
in<ciare (54
€(Q)

The term I1 is similar to the term I, now we have |y—z| < |z—y|+|z2—z| < 4|z—y|

which yields a different constant C. Thus
II chQ—l/2(|z I)
[11] < ClQ 70)

In order to estimate the term I11, we notice that |2 —y| > |z—z|—|z—y| > 2|z—y].
Therefore we can use the estimate (2.3) on the kernel K, which with the smoothness

of the atom ag produces

111 < Ce(Q)~'-/2 / o~y — 2|dz
] @ 3z-yl<lz—2l<et(@) (Jy — 2| + t)n+e lv ==
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(Notice that cf(Q) > 3|z — y|, because |z — y| < £(Q) and ¢ = 4y/n.)

Q)
<C 1/2 Ix y[* r=Cdr.
el Q) Jate-yi

If € > 1, we estimate the integral in the last formula in the following way
Q) %0 -
/ r ¢dr < / rY¢dr =Clz — y|" ¢,
2 2|z—y|
which implies

€ 1—¢
III| < C _1/2|Z—y| |$_y| =C _1/2'$—y|’
11 < lQ s Q]

and again, having in mind that %ﬁl < 1, and a < 1, we conclude

-1/2 |z -y
[111] < C|Q| ( (Q))

If e =1, then a = 1/2, so the estimate Inz < /= when z > 1, yields

/d(Q)r"ldrz Cln( ct(Q) ) <C €Q) ,
2|z—-y| 2|z — y| |z -yl

and
a
1 < clQ|™v? (——'z _ yl)
11 < clai (S
If e < 1, we have

Q) _
/2 r¢dr < CU(Q)!

|z—yl

which yields

iz (e =yl
11 < Q) ( i ) .

Having in mind that ]%1 < 1, and & < €, we obtain

e (e —yl)®
1) < ol (0
¢(Q)
Finally, we estimate the term IV. The cancelation property (3.1) implies

V= lao@|[, o Knaths= [ K(yzthdo]

z|<ct(Q) ly—2|<ct(Q)
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< C|Q|™V?

t)d
/AK(y,z, )dz|,

where A = A )UA; = {z€R": |z—z| < cf(Q) and |z —y| > cf(Q)}U{z € R* :
|z — z| > cf(Q) and |z — y| < cf(Q)}. The estimate (2.2) implies

H@+-yl
‘/ K(y, z,t)dz SC/ rTdr
Ay c4(Q)

lz -y |z — y]

because ¢ > 1. Similarly

Q) 1
<C rdr
c(Q)—|z-y|

‘/ K(y, 2,t)dz

Aq

_ |z — y| |z — vyl
=Ch (1+c€(Q)— |x-y|) <)

because cf(Q) — |z — y| > £(Q). When we put all of those estimates together we get

—1/2|z Yl
IV < ClQ| 7Q)

which due to the facts that a < 1 and Jf(—Qs;l < 1 yields:

1IV| < C|Q|~'/2 (Ime(Q) |)

which completes the proof of the lemma.
|

The following lemma is the key ingredient in the proof of Theorem 3.2.

Lemma 3.6 Let o = min{e/2,1}, {(P) < ¢(Q), and let u be a Carleson measure on
R2*!. Then

‘ [ Tar(z,t)Taq(z, y)du‘ <C ( eg;)n/m (1 + %9—') o
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Proof of Lemma 3.6: The property (3.2) implies

/Tap(x, t)Tag(z,t)du = /Tap(a:, t)(Tag(z,t) — Tag(zp,t))dp.

(To see that the property (3.2) implies that [ Tap(z,t)Tag(zp,t)du = 0, we notice
that Lemma 3.3 and Lemma 3.4 imply [|Ta|?’du < C, where the constant C
does not depend on the atom a. If we define Tpa(z,t) = [ K,(z,y,t)a(y)dy, where
K,(z,y,t) = K(z,y, t)xs(B(y’%))\s(B(y,p)), we have that T,a — Ta as p — 0, where the
convergence is in the L?(du)-sense. Thus, to prove the claim it suffices to show that
for every p > 0 we have [T,ap(z, t)T,aq(zp,t)du = 0. It follows directly from the
condition (3.2) and the Fubini Theorem, since all the functions K, ap, and aq are

bounded over a compact set.)

Let A = B(zp,3¢(Q)). If z € A, then
lzp — zg| < |z — zg| + |z — zp| < |z — 20| + 34(Q) + ¢,

for every t > 0. Hence

|z — zg| + t>_"_‘ ( lzp — xQ|>—"-‘
c(l+—€(Q) < 1+—€(Q) .

Lemma 3.4, applied to the first factor in the integral below, Lemma 3.5 applied to the

second factor in the integral below, together with the simple fact (1+ |I”——I"’u)""‘ <

¢(Q)
1+ 'z—’t’(—;’;—‘l-')‘"“‘ and the above estimate, yield
[y Tor(@ 0(Taq(z, ) ~ Tag(ep, )du| < C|P| ™

Elementary calculations yield
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—1/2)|-1/2 |$P_$Q|)_n_( @)a
<GP (” 7Q) (K(Q) x

oo ) (Y

lz"zelya < (1 4 lz=Zeltt)e Jeqds to

The estimate ( WP o)

-1/21)|-1/2 lzp — zq| o (_“_P) ax
< ciPel (” 70 ) e(Q))

!2,‘ _ :EPI +1 —-n—et+a
14 —m—r .
g /R ( TP an

Since a < ¢, Lemma 3.3 applied to the integral above, implies

comnare(os ) (85

which proves the lemma in the case (z,t) € S(A).

In the case (z,t) € R} \ S(A), which means |z — zp| +t > 34(Q), we have
|z —zp| +14(Q) , 34Q)

1+|.’L‘—.’Ep|+t |:L‘—.’Ep|+t€(Q) l 3
«P) 0Q) &P)” 2 €Q) &P 2Py
which implies
|:II—.’IIp|+t 1( |I—1L'p|+t) [(Q)
1+ ————> -1+ .
¢(P) 2 ¢(Q) ¢(P)
Using the last inequality and Lemma 3.4, (having in mind that (z,t) € R}t \ S(A4))
we obtain
10 [UP\T |zt —zp|+t\ """
Tap(z,t)| < C|P|™/? (—) (1+—- : 3.4
Thus

<

Tap (:l'" t) (TaQ (.’L’, y) - TaQ(:l:P’ t))dl‘

/RT'\S(A)

Tap(x,t)TaQ(mp,t)dy’ =I+11.

Tap(z,t)Tag(z, d /
ora, O Taqle i + |,

'/RT’\S(A)
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Let us estimate II first. The inequality (3.4), applied to the first factor in the

integral I/, and Lemma 3.4 applied to the second factor in the integral I, yield

—-1/2)|-1/2 @)Me ( |lzp — "’QI)_"-G
I1 < C|P|™V4Q| (Z(Q) 1+ 20) X

f (14 B2 ™,

Lemma 3.3 applied to the integral above produces

-1/2)|-1/2 @)He( |-’”P-$Q|)—n_e
11 < ClPI2(Q) (K(Q) L Q.

Since a < € and %%% < 1, we have

which is the desired estimate for I1.

In order to estimate I, we need to consider the sets
B = {(z,t) ER’}r“ \ S(A) : 2(|z — zp| + t) > |zp — z0|} and
C ={(z,t) e R¥' \ S(A) : 2(|z — zp| + t) < |zp — 20|}

The inequality (3.4), applied to the first factor in the integral bellow, and Lemma

3.4, applied to the second factor in the integral bellow, yield

- . ) €(P) n+e
‘/BTap(x, t)TaQ(x’t)dl“ < CIPI2jQI7 (@) g

SEt) ()

Since (z,t) € B, we have

|t —zp|+t\ " ¢ |:rp-:1:Q|)—n_6
("% ) SC(” Q) ’
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which together with Lemma 3.3 implies

n/2+e Ip — —n—¢
frrnase () (oo )™

Again, we use the facts that a < € and %%% < 1 to get the desired estimate for the
integral in I over the set B.

If (z,t) € C, then |z — zg| +t > |zp — zq| — (|Jz — zp| + t) > }|zp — zq|. This
fact, inequality (3.4), applied to the first factor in the integral below, and Lemma

3.4, applied to the second factor in the integral below, yield

. B K(P) n-+e
ILTGP(x’t)TaQ(x’t)d“‘ < C|P| /2|Q| /2 (m) X

lzp — zg| e |z —zp|+1t e
"(” e(Q)) /c(” 7Q) ) a

and Lemma 3.3 implies

< CIP|TQI? (%)M (1 + %) o 1Ql,

which, as in two previous cases, produces the desired estimate, which proves the

lemma.
[ |

Proof of Theorem 3.2: Let f € L?(R",dz) and let

f= ZSPaP
P

be its atomic decomposition (The convergence of the series is in a L?-sense.), where

the summation goes over all dyadic cubes in R*. Then, Lemma 3.6 implies:

Jirsiau= [ (3 rTar) (3 soTac)dn

<2 ¥ ISPIISQI(%)a+n/2(1+mz(—_Q;vczl)""“

UP)<YQ)
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B(P) al2 |$P _ qu —(YI+€)/2}
=2 lsp| | 57A5 1+ ———+—— %
«p)%(q, { i (e(Q)> ( (@ )

X {|SQ| (%) e (1 + Efe(—Q_;BQI> ‘("+e)/2} |

Applying the Cauchy-Schwarz inequality we obtain

So, let us estimate the factor A first. We can write:

A=Y Y sp2 Y 2079 ¥ (1+'x”_x‘?|) .

i€Z ¢(P)=2"" j=—o0 ¢(Q)=2-3 ¢Q)

[
N

Notice that the function

wo= ¥ (iskzzad)™

(Q)=2-;

is periodic with the period 27e, where e is any of the canonical basis vectors (1, 0,0, ...),

(0,1,0,...), ... in Z". Thus, without loss of generality we can assume that z € Qo =

{z:0< z; <277}. Then we have

lzp — le)—"_e n-
Z 14+ ——— SCZ(1+|k|)"‘§C.
[(Q):Z"‘j ( e(Q) keZn

The last estimate implies

ASCY Y Jsp X 2 e =Y |sp)? = Cl Iz gn az)-
P

i€Z ((P)=2"} j=—00

In order to estimate the factor B, let us write B as

[0 —n—e
B = 2 |3Q|2 22—i(n+0) Z (1 + ‘:EP — le) )
Q )

i=0 P:£(P)=2-¢(Q {(Q)
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Using the same argument as in the case of the factor A (the estimate on the function
g), and taking into account the fact that there are 2™ dyadic cubes P C @ with
{(P) = 27%(Q), we obtain

oo
B < C Z |SQ|2 Z 2—i(n+a)2ni
Q i=0
2= i 2 2
=CY |sgl’Y 27 =C) Isql* = Cll fllL2®n dz)»
Q i=0 Q
which completes the proof of the theorem.
]

Notice that in each example in Chapter 2 the kernel K was odd. Thus condition
(3.1) is clearly satisfied. Condition (3.2) is a statement that connects the Carleson
measure, u, and the kernel K. It is easy to see that when the kernel K is odd in z,

and the measure y is translation invariant in z, that condition (3.2) is satisfied.

Let o(t) = K(z',y,t), for some fixed z',y € R*. Then formally (assuming that all

the integrals exist)

[ K@z 00dutz,t) = [ K@ 2000du(a,t) + [ K(z,2,00)du(z,),

where II* = {z € R* : ; > 0}, and [I" = {z € R* : z; < 0}. Notice that the
mapping v¥(z,t) = (—z,t) maps II* into II7, and that for every set E C R}*! we
have u(E) = pu(¢(F)). That together with oddness of K in z implies that condition
(3.2) is satisfied.

One example of such a Carleson measure is the measure defined by
u(E)=|En{t =1t} for every set E C R*+!,

for any fixed to > 0.



Chapter 4

Applications to Tent Spaces

In this chapter we are going to study the problem of boundedness of the singular

integral operator

T: LP(R",dz) — T} (du),

as defined in Chapter 3. The measure p is a Carleson measure on R}*!, and the

symbol TP(du) denotes the tent space defined as follows.

Definition: Let u be a positive measure on R}, and T'(z) = {(y,t) € R} .
|z — y| < t} a cone with vertez at the point £ € R* and aperture 1. For 1 < q < oo

we set
1/q
a0 ={ [ woraeoe)” cer
A function f : R}t! — C belongs to the tent space T¥(dp) if and only if A,f €
LP(R",dz), and the norm on TP(du) is defined by

“f“Tq"(du) = ”AQf“LP(IR",d:c) for 1<p,qg<oo.

In case ¢ = 00, we define

Auf(z)= sup |f(y) seR.
(y,t)eT(z)
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If the measure y is defined by du = dzdt/t, we obtain the tent spaces defined in
[6]. We denote such tent spaces by TP. A reader can find more about tent spaces in
(6] or [19].

Lemma 1.5 implies that for any positive measure 4 on R?*!, and 1 < p < oo

there is a constant C > 0 so that
|H fll72 4wy < CllfllLr®n,dz) for every f € LP(R",dx).

As a consequence of this fact for any 1 < p < oo and any admissible kernel K there

is a constant C > 0 so that we have

| K * flize (4y) < CllfllLr®n do) for every f € LP(R",dz).

The following theorem, due to F. J. Ruiz and J. L. Torrea, (see [19]), is the
essential technical tool when applying the vector-valued versions of Theorem 2.1 and

Theorem 2.4 to the tent spaces.

Theorem 4.1 Let u be a Carleson measure and T a convolution operator, associated

with the kernel K, that satisfies the following two conditions.

There exist constants a > 0, and C > 0 so that

Cte
(|Jz — y| + t)n+e

|K(z,y,t)| < (4.1)

for every z,y € R*, withz # y, andt > 0. There exists € > 0 so that whenever
|z — y| +t > 2|y — y'| we have

Cly — y'|t®
(|Jz — y| + t)nteta’

|K(z,y,t) — K(z,y',t)| + |K(y,z,t) — K(¥,z,t)| < (4.2)

z,y,y € R*, and t > 0.

Let S be the operator defined by

Sf(z)(y,t) = Tf(y, t)xr(=)(y, ).
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Then the following statements are equivalent.
T:LP(R",dz) — T?(dp) is bounded (4.3)

S:LP(R*,dz) - L )(R", dzx) is bounded. (4.4)

P
Lo(RY* du/tm

Moreover, the operator S is a vector-valued singular integral operator whose (vector-

valued) kernel K is given by

K(.’L‘, Z) (y) t) = K(y? z,t, )XF(:) (ya t))

and satisfies the following two conditions. There exist positive constants C and € so
that

> C
| K (z, 2)||Lo(du/en) < 'l—z—_TIn, (4.5)

or every T,z € R* with x # z; and whenever 2|z — 2'| < |z — 2| we have
Ty

Clz - 2|

1K (2, 2) - f{(%z')”m(du/t") +[|K (2, ) - R(Z',x)”m(d;‘/t") < m,

(4.6)

for every z,z,2' € R*, with x # 2.

Notice that the conditions (4.1) and (4.2) imposed on the kernel K are stronger
than the conditions (2.2) and (2.3) imposed on kernel of singular integral operator

defined in Chapter 3.

Proof: The equivalence is obtained by the following computations.

IS fIIZe

L9(du/t™)

-/ ( [, ITf(y,t)I"du/t")p/q dz

= [(A(T)Pdz = T 5p0,y

(d2) =/||Tf(y, t)Xl‘(z:)(y’t)”’;ﬂ(dp/t")dx
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To prove that S is a vector-valued operator whose kernel K satisfy the conditions

(4.5) and (4.6) we need the following lemma.

Lemma 4.2 Let p be a Carleson measure, andn,b > 0. If we set T'y(z) = I'(z)N{t <

b}, and I'*(z) = ['(z) N {t > b}, then we have
tT" dp < Cb"
-/1'"’(::) H= ¢
and
/ "4y < CO.
Ty(z)
Proof of the lemma: For j > 1, we set
by . ,
[(z) =T(z) N {27'b < t < 27b}.

The first statement of the lemma follows from

(o o]
gy = / g
~/I"’(:::) Jz=:l ré(z) #

< 3@ u(S(B(z, 28))

=1

© u(S(Blz,28))
= C LY 5 2

<bC,Cy 2

i=1

The other statement of the lemma can be proved in the same way by using
[j(z) = T(z) N {277b < t < 279+1p},

which completes the proof of the lemma.



74

Now, we go back to proving (4.5).

V&, 2y = [ 1K o DI i, ).

(z
The estimate (4.1) produces

taq-n

1K @, 2 uqaurmy < C [ du

r@) (ly — z| + t)(n+ak

tog-n teg—n
=C / du+C / d
rie=si(z) (Jy — 2] + )@ ral Fias(@) (Jy — 2| + t)(nte) #

=1+ I,

The first statement of Lemma 4.2 (for 7 = nq ) implies

L <C t_nq_nd/l, < CI.’E - Zl—nq.
[lz-zl(z)

To estimate the term I3, we use the fact that |z — z| < t + |y — 2|, (that is because
|z — 2| < |z —y|+ |y — 2|, and |z — y| < ¢t, since (y,t) € ['(z)) to conclude
L<C 1797 g — 2| Ndp(y, 1),
Flz—zl(z)
and the second statement of Lemma 4.2 (for n = —aq ) to obtain
< C(lz — 2|7+t = Clg — 2|™,
which proves that K satisfies the condition (4.5).

In a similar way we can prove that K satisfies the condition (4.6).

The following lemma contains a simple, but useful observation.

Lemma 4.3 If p is a positive measure on R%*!, then

To(du) = LP(RY, dys).
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Proof: Using the Fubini theorem, we obtain

1457 riany = [, ( [ 0Pt d

= [ £ @0 ([ xrot dz) dusy,®)

n+l1
lR+

= [ lrwop ([, e dutun

= cn /m:“ £, OPdp = ClL s

which implies the lemma.

Now, as we have the technique set up, we are ready to prove the main result of
this chapter. We have already noticed that the kernel K that satisfies conditions
(4.1), and (4.2), also satisfies the conditions (2.2), and (2.3). We also assume that

the representation formula (3.3) is valid.

If we assume that for some py > 1 the operator
T : LP(R",dz) —» L (R",dm),

is bounded for some py > 0, which if we assume that K(z,y,0) = k(z — y), where the
function k is homogeneous with degree —n, would imply that the maximal singular
integral operator To# , is LP-bounded for every p > 1. We also assume that condition

(2.4) is satisfied, i. e. there exists a constant, B > 0, so that for every f € C§°(R"),
ITf(z,t) — To.f(x)| < BHf(z,1),

where the constant B > 0 does not depend on £ € R* and ¢ > 0.
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Theorem 4.4 Let u be a Carleson measure on R, and let T be an operator that

satisfies all the conditions above. Then
T:L°(R",dr) — T?(du)
is bounded for every 1 < p,q < oo.
Proof: Using Theorem 2.4 (See Remark 2 after the theorem.) we conclude that

T : L*(R*,dz) — LP(R%*,dp) is a bounded operator for every 1 < p < co. Lemma

4.3 implies that the operator
T: LP(R*,dz) — TF(du)

is bounded for every 1 < p < oo.

Applying Theorem 4.1 we obtain that the operator

S:LI(R",dz) > L (R, dz),

q
LR} dy/tn
is bounded for each fixed g € (1, 00).

Let E = LY(R}*!,dp/t"). Then Theorem 2.2 applied to the vector valued convo-

lution operator S, on R", whose vector-valued kernel satisfies condition (4.6), yields
S : LP(R*,dz) — L% (R", dx)

is a bounded operator for every 1 < p < co. By Theorem 4.1, the last statement is

equivalent to the statement that the operator
T:L*(R*,dz) — T} (dp)

is bounded for every 1 < p,q < co. Which proves the theorem.
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