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ABSTRACT

Phase Transitions in a Two-Component Site—Bond Percolation Model

By

Holger Martin Harreis

In standard percolation models either bond (randomly open edges) or site (ran-

domly occupied vertices) percolation is dealt with. Site-bond percolation combines

the two formulations, dealing with randomly occupied sites and randomly existing

bonds connecting these sites. However in this version of the model only one active

component exists, the other sites are considered unoccupied. A further generalization

is to consider several components, which was done for site percolation as well as bond

percolation previously and called polychromatic percolation.

In this work, a method to treat a N-component percolation model as effective one

component model is presented by introducing a scaled control variable p+. In Monte

Carlo simulations on 163, 323, 643 and 1283 simple cubic lattices the percolation

threshold in terms of p+ is determined for N = 2. Phase transitions are reported

in two limits for the bond existence probabilities p: and p¢. In the same limits,

empirical formulas for the percolation threshold pi as function of one component-

concentration, fb, are proposed. In the limit p: = O a new site percolation threshold,

ff 2 0.145, is reported.
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Chapter 1

Introduction

Critical phenomena are an everyday experience, not only in laboratories, but even

more in kitchens around the world do they have quite some importance in applied

experiments. Whoever has boiled an egg, whoever has made water boil (or freeze)

has let a phase transition happen. The theory of phase transitions has evolved to

a very important tool. A general feature of phase transitions is the fact that some

quality of the system under observation changes when a parameter which is freely

adjustable, is changed. The freezing of water or boiling of an egg are examples of

phase transitions in which the quality undergoing a transition changes abruptly as

a function of the varied external parameter. Here, this quality is the microscopic

structure, or, related to that, the density. Two distinct phases are present and are

separated, if one plots, for example, the density p versus the temperature T in a

phase diagram, by the phase transition line, on which, when ’crossed’, the system

goes from one phase to another. In the 1940’s, research on polymers and the process

of polymerization led to the question how the phase diagram for polymers might look

like and how one might find a reasonably simple model for polymerization that yet

would be able to reproduce the qualitative characteristics of such a complex system

as a polymer solution. The process of polymerization is close to the ’hardening’ of

an egg while being boiled: Single molecules, or monomers, form larger and larger
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macromolecules, large, but finite clusters of monomers, by means of an increasing

number of chemical bonds. Such a viscous solution of branched polymers is called sol

and it may result, at some point, in a very large network, of size on the order of the

system size, called a chemical gel (Physical gels in contrast are formed by means of

reversible bonds such as in the gelation of silica particles in water or NaCl solutions).

Examples of such sol-gel transitions in everyday life are pudding, gelatine or the milk-

to-cheese transformation. The first model to describe the behavior of gelation was

essentially invented by Flory, [F1041], and Stockmayer, [St043], in 1941 and 1943. In

1957, Broadbent and Hammersley, [BH57], introduced the term ’percolation’ and a

more mathematical approach to the model. In subsequent papers, the percolation

model has been applied, in a broad diversity of techniques, to a very wide range of

problems, see [Sah94], such as dispersion and flow in porous media, fracture and fault

patterns in rock, the morphological and transport properties of composite materials,

conductivity of (semi-) conductors, reaction kinetics, antigen-antibody reactions and

aggregations as well as the network formation on lymphocyte membranes.

In this work we will give, in Chapter 2, an introduction to some basic concepts

of percolation and statistical models and then present a multi-component site-bond

percolation model in Chapter 3. The results of Monte-Carlo simulations of this model

in the special case of two components will also be shown. In the same chapter, two

limits of the two component site-bond percolation model will be dealt with and their

characteristics discussed.

We shall furthermore abide by the following notation: Words defined in the text

will be emphasized using italic font, words considered to be important for the partic-

ular section will be highlighted by means of bold font.



Chapter 2

The Foundations of Percolation

Theory

In percolation theory, in the most general case, one deals with a graph of dimension

d without a priori specifying a certain structure. In this discussion, however, we will

restrict ourselves to percolation theory on the graph associated with Zd and more

specifically, we will only discuss d = 3 in most cases.

2. 1 Percolation Models

Let us begin with yet another illustrating example. We imagine a very large porous

rock that we submerge in a pool. At its center we have installed a water sensor. What

is the probability that the water will find its way to the center of the stone and wet

our sensor? To answer the question, we might try to model this random medium, the

stone, in the following way. Let p be a number that satisfies 0 g p g 1 and Z3 be the

simple cubic lattice. We then walk through the lattice and assign, at random, with

probability p, a bond to each edge (called open edge), whereas with probability (1 — p)

we leave the edge unoccupied (closed edge). After this we analyze the structure on

the lattice by deleting the closed edges, which leaves us with all open edges and the

set of their endpoints. All sites that are at least singly connected by bonds are said



to belong to one cluster. The question of the sensor-wetting is now related to the

existence of an infinite cluster. Clearly, in a finite system, which we will always have

to work with in a simulation, it is not at all apparent what infinite should mean,

we will come back to this question in the following sections, here it is sufficient to

think of it as a cluster that spans the whole system. It is easy to imagine that with

increasing p also the size of the clusters increases. At some point pC however, we will

have an abrupt change in the structure: An infinite cluster will exist in the lattice for

p > pc and the wetting of the center of the rock becomes possible. This value of p is

called the critical value or the percolation threshold. The model presented here has

bonds as the main ingredient and is thus called the bond percolation model. We will

introduce it in more depth in the following section, accompanied by an introduction

to other formulations of percolation models in the next sections. We will then present

results of percolation theory, which in most cases will generally hold for bond and

site percolation.

2.1 .1 Bond Percolation

We shall write Z = {. .. ,—1,0, 1,. . .} for the set of all integers and Z“ for the set

of all integral coordinate vectors 2 = (z1,22, . . . ,zd) where d is the dimension of the

system. The integral coordinate vectors 2: shall be called vertices. We call 151" the set

of all line segments < x, y >, (edges), between a pair of vertices x and y. Vertices

and edges together form the lattice, denoted by IL", which, in the case of d = 3 is the

simple cubic lattice. Let p and q satisfy 0 _<_ p S 1 and p+q = 1. We shall assign each

edge the condition open with probability p and the condition closed with probability

q. An equivalent formulation shall be to state that an edge is occupied by a bond

or unoccupied. Furthermore the assignments shall happen uncorrelated, each edge is

open or closed independently of all others. By Pp(X) we shall denote the probability





of some event X and we will write Ep(A) for the expectation value of an observable A.

A path of length m in the lattice ILd means a sequence zo, e0, 21, e1, . . . ,zm_1, em-1, zm

of vertices z,- and open edges e,- =< 23,-, 2,41 >. A circuit of length m + 1 shall mean

a path zo,e0, . .. ,zm satisfying em =< zm, 20 >. Path and Circuit are called open

if all of their edges are open, and closed if all of their edges are closed. A subgraph

of lLd is a set of edges e, and vertices 2:,— with e: 6 IE4 and z,- E Zd. Two subgraphs

are disjoint if they do not have any edge and vertex in common, they are edge-

disjoint if none of their edges is an element of both subgraphs. With the definition

of a subgraph we can finally put up the following definition: An open cluster or

just cluster is every subgraph that first only consists of open edges and the vertices

connected to them and secondly is disjoint from all other such subgraphs. To specify

a particular cluster we will write C(2), indicating that it contains the vertex 2 and it

will mean the set of vertices connected to 2 through open paths. The size of a cluster

C(2) will be written as |C(z)| and is defined as the number of vertices contained in

C(2) A cluster of size one would then be just one vertex without any open edge:

C(2) = {z}. If we furthermore introduce the notation z <—> y to indicate that there

exists an open path joining vertex z and vertex y, than a cluster may also be written

as C(2) = {y E Zd : z +——> y}. In the same spirit, z<~++ y means that there exists no

open path connecting z and y. Finally, the surface of a cluster C will be denoted by

BC and is defined as the set of vertices in C that are adjacent to vertices not in C.

In the definitions made here, for example in defining a cluster, we have assumed that

we only deal with nearest neighbor interaction. This is not a necessary condition,

percolation models with connections even longer than next-nearest neighbors have

been introduced, see 2.1.5. For a connection range that goes to infinity, however, the

percolation threshold goes to zero.



2.1 .2 Site Percolation

Site percolation may be formulated in an analogous way to bond percolation. Again,

we consider Z3 and call the integral coordinate vector z E Zd a vertex. We also

add the set of edges IE“ to obtain the lattice IL“. As before, we need two random

variables, f and g which, again, shall satisfy 0 S f g 1 and f + g = 1. However

now, the objects of interest are not the edges, which are Openwith probability p

and closed with probability q in the bond percolation model, but rather the vertices

which in the site percolation model are assigned the quality open with probability

f and closed with probability g = (1 — f). Every edge is considered to be open,

closed vertices can be thought of as junctions that are blocked. With this notion we

can use the concept of a path and a circuit as introduced above. Also the definition

of a cluster as given in the previous section still holds. Phrthermore, no change is

necessary in the definitions of size and surface of a cluster. We show an example

of typical site percolation configurations on the square lattice in Figs. 2.1 and 2.2,

where occupied sites are represented by black squares, whereas unoccupied sites are

symbolized by white squares. An experiment that was actually carried out and for

which the shown site percolation problem on the square lattice can be seen as a model,

is to place conducting and non-conducting spheres in a bowl and check on percolation

as a function of the concentration of the conducting spheres. In Fig. 2.1 we show

the system with a relatively low concentration of conducting spheres and we can see

that the system is in a non-conducting state, there is no path of black squares that

leads through the entire lattice. The system is in a subcritical state. In Fig. 2.2

the system is shown at a higher concentration of black squares, that is at a higher

concentration of conducting spheres. As can be seen, a percolating path that spans

the entire lattice, exists. The system is found to be in a supercritical state. Obviously

some transition takes place in the lattice in between these two states. The question
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Figure 2.1: Example of a typical site percolation configuration on a square lattice in

the subcritical phase. Black squares represent occupied vertices.

is, how this transition happens in detail.

As already briefly stated at the end of 2.1, many results hold for bond and site

percolation. A more strict way is to say that the bond percolation and the site

percolation model belong to the same universality class, [Sta79], meaning that they

are described by the same set of critical exponents, which will be introduced in Sec.

2.4. Still, although bond percolation was historically first, site percolation is the more

general of the two models, since it is known that every bond percolation process on

a given lattice can be expressed in terms of a site model on a different lattice, see,

for example, [Fis61], [FE61] and [Ke582]. The converse statement, however, does not

hold generally.



 
Figure 2.2: Example of a typical site percolation configuration on a square lattice in

the subcritical phase. Black squares represent occupied vertices.

2.1.3 Site-Bond Percolation

A very natural generalization of the two previous models is to simultaneously allow

open and closed edges as well as open and closed vertices. This means that no longer

only edges determine the ’passage’ of percolation as in the bond model, or only sites do

so, as in the site percolation model, but rather both the condition of edges and vertices

becomes important. We then have p,q 6 [0,1] with p + q = 1 and simultaneously

f, g 6 [0,1] satisfying f + g = 1. The concept of a cluster is still valid as in the two

models presented before. Both models from Secs. 2.1.1 and 2.1.2 represent certain

limits of the site-bond percolation model: Bond percolation is site-bond percolation

with f = 1 fixed and site percolation is site-bond percolation in the limit p = 1.

The site—bond percolation model thus allows us to go continuously from bond to site



percolation and vice versa. As sited in [Sta79], some of the earlier work on site-bond

percolation can be found in [OCG+78, WP78, CSK79, ARRS79].

2.1.4 Polychromatic Percolation

If one does not think of each vertex to be associated with only two states, occupied

or unoccupied, one has, in the most general formulation, N states the vertex can be

in, of which one can think of as an occupation by different species. Zallen, [Zal77]

introduced such a generalization for bond and site percolation and also gave it the

name polychromatic percolation. He focused on the coexistence of percolating species

in highly connected lattices, giving a criterion for the occurrence of a panchromatic

regime in which all species percolate and showing percolation phase diagrams. In

such a generalized model one has several ’percolation systems’ on one lattice and if

the appropriate parameters are favorable, one can, in principle, have all ’systems’ per-

colating. One important parameter is the connectivity of the lattice. On the simple

cubic lattice, for example, with a coordination number Z = 6 (again only counting

nearest neighbors), percolation of both species is possible in a certain range of the

bond existence probability p or the fraction of sites f, but on the square lattice with

Z = 4, no such regime exists. Therefor, not only the structure, but also the dimen-

sion of the lattice is important in polychromatic percolation. Yet another version

of polychromatic percolation has been introduced by Halley and Holcomb, [HH78].

They considered a so called ’Three—Component Reactive Percolation Model’. The

essentials are as follows: Two types of atoms are considered which can furthermore

react and form dimer molecules. Each vertex in the lattice can be occupied by either

one type of the atoms or the molecule. The main focus lies on the resistivity, which

was shown to behave qualitatively the same as observed in experiments.

A further generalization of polychromatic percolation lies in applying it to the
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site-bond percolation model, thus dealing with N different types of vertices and a

corresponding number of different edges, given by the number of combinations in

which neighboring vertices can occur. Work on this problem has been carried out in

the context of nuclear physics, see Sec. 2.6, [Baued], with two components, and in a

general approach for N components, where an approximate percolation criterion was

given, in[10395]. Further work has been done in the frame of this thesis and we will

deal with this problem in a later part of this work in further detail.

2.1.5 Miscellaneous Percolation Models

A variety of further different models have been proposed over the years, of which we

want to briefly introduce some, without giving a detailed review of every model.

Long-Range Interaction

In our discussion a cluster has been defined as the set of vertices and edges that are

connected by nearest-neighbor distances only. It is also possible to work with longer

range interactions. If one lets the coordination number z go to infinity, however, the

percolation threshold goes to zero as 1/(z — 1). As stated in [Sta79], in work with

nearest and next-nearest neighbor interactions on bcc lattices, [HSB+79, QBH76],

as well as with higher order interactions, [HKM78], no differences from ordinary

percolation have been found, indicating that also taking longer range interactions

into account does not change the universality class of the model.

Percolation on the Cayley Tree

This model is also called percolation on the Bethe lattice. It presents a very special

case, which nonetheless has received some attention, as the percolation problem is

exactly solvable here. In the Bethe lattice, one starts with one point, the origin and
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adds 2 neighbors to it, out of which z neighbors emanate again, one of which is the

connection to the origin, but 2 — 1 are new sites. Thus no closed loops are possible.

It turns out that in the high dimensionality limit, d ——> oo, percolation on hypercubic

lattices can be approximatively described by percolation on the Bethe lattice, since

in higher dimensions loops on hypercubic lattices become increasingly unimportant.

Trees on a Lattice

Analogously to the Bethe lattice, one can constrain percolation on other lattices to

be ’non-cyclic’, which causes a different behavior to emerge than the one observed in

ordinary percolation. As stated in [Sta79] no phase transition occurs in the case of

the square lattice.

Interacting Percolation

Until now, we have considered percolation to be an uncorrelated random process,

meaning that the state of each edge or vertex was completely independent of the state

of all of its neighbors. We may introduce some correlation by combining percolation

models with the Ising model of ferromagnets. One possible realization is, for example,

the so called Ising—correlated site-bond percolation discussed in [HS81]. In this model

the sites are occupied not randomly but correlated as the spins in an Ising model and

then bonds are formed with a certain bond existence probability, which gives three

free parameters: The site concentration f, the temperature T and the bond existence

probability p. Random site-bond percolation is still contained as T —> oo limit in this

model (And thus also ordinary bond and site percolation in the f ——> 1 and p —> 1

limits respectively).
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Continuous Percolation

All discussed percolation models so far happened to be constrained to a lattice of

some structure (we focused on the lattices related to Z“), processes in nature however

take place in continuous systems. Therefore the question arises, if critical exponents

turn out to be different in percolation processes that take place in a random model

system with continuous variables. Numerical evidence seems to exist that, at least

in three dimensions, the lattice structure is not important for the critical exponents.

Also considerations from the renormalization approach are in favor of this statement.

Directed Percolation

In this version of percolation, one can exclude open edges in some directions, allowing

only bonds to exist in the other directions. This will make the percolation threshold

go up. A further discussion can be found in the literature, for example [Dua90].

Invasion Percolation

One can think of invasion percolation as a system to dynamically model the dis-

placement of one fluid by another in a random medium as, for example porous rock.

The model uses a lattice where each site is assigned a number 1' E [0, 1] representing

the radius of the pore, which a vertex is considered to model. All edges are open

and represent the throats. According to the fact that capillary forces dominate, an

advancement of the invading fluid to pores with small radius takes place. One thus

starts out with all sites occupied by the defending fluid, the invading fluid is injected

from one site of the lattice. In each step, the neighboring defending fluid sites with

the smallest radius are occupied by the invading fluid. Finite clusters of the defend-

ing fluid that are completely disjoint from the rest of the fluid can form. They give

rise to two different versions of the model: Either the defending fluid is modeled as
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incompressible (like oil, for example) and the invading fluid can not advance in those

trapped finite clusters of the defending fluid, or it is modeled as compressible and the

invading fluid can further advance. In both cases the advancement stops as soon as

the invading cluster has reached the opposite site of the sample and percolates. One

then has the system at its critical point always. Systems exhibiting this feature are

called ’self-organized critical’, [BC89]. No finite clusters of the invading fluid exist

and one does not have an equivalent of the occupation probability f. It turns out

that in the former case, that is with trapping, invasion percolation is different from

ordinary percolation, whereas for invasion percolation without trapping the results

are equivalent to ordinary percolation.

2.2 Phase Transitions

Before, in Sec. 2.4, we will arrive at a discussion of some important results of percola-

tion theory, we want to briefly review a few aspects of phase transitions in general, as

well as, in Sec. 2.3, give a concise presentation of Monte-Carlo simulation techniques.

2.2.1 Definitions

A variety of physical phenomena can be seen as belonging to two categories. Systems

in the first category are characterized in that their constituents do not interact with

each other or that at least the interaction is negligible. In this case a knowledge of the

energy level of all the constituents allows a direct calculation of the thermodynamic

functions of the entire system. Examples of phenomena belonging to this first category

are the specific heat of gases and solids, where for the solids the interaction is a priori

not negligible but since for a very wide range of temperature the positions of the atoms

stay more or less fixed in space, a transformation to normal coordinates is possible

so that the entity of atoms can essentially be treated as a system of (practically)
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non-interacting harmonic oscillators. Another example is the spectral distribution

of black-body radiation. Systems belonging to the second category, however, do not

provide the basis for such a simple calculation of the thermodynamic functions, one

can not eliminate the interaction by means of any transformation. This interaction

leads, at some value of the temperature or another parameter, to a macroscopically

significant form of cooperative behavior. As a result, the thermodynamic functions

of systems in this category exhibit analytic discontinuities or singularities which are

associated with the phenomenon of phase transitions. Prominent examples are the

melting of solids, the condensation of gases, the phenomena of ferromagnetism and

antiferromagnetism, order-disorder transitions as well as normal state to superfluid

and normal state to superconducting state transitions.

Fundamental is the notion of a phase, it means a possible state of a macroscopical

system in thermal equilibrium. In different phases, the same macroscopical observ-

ables of the same system can assume totally different values, depending on the values

of external parameters. Regions in the parameter space in which changes of these

parameters bring forth a change of the system from one phase into the other, are the

critical parameter ranges.

The earliest classification of phase transitions was provided in 1933 by Ehrenfest,

in which the order of a phase transition is the means of classification. An n-th or-

der phase transition is, following Ehrenfest, characterized in that the (n — 1)st first

partial derivatives of the free enthalpy G after the natural variables of the system

(i.e. the temperature T and the pressure p in the fluid system or the temperature

and magnetic field in the case of the magnet) are continuous at the transition point,

whereas the nth derivative exhibits a discontinuity at this point. With increasing

order, however, the differences between two phases grow increasingly unimportant

and the question arises to which order a distinction between two phases is possible.
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Furthermore it turns out that phase transitions who are not of first order type are

characterized rather by singularities than by discontinuities as the Ehrenfest theory

would imply. There are other reasons, that go beyond the scope of this brief review,

that have led to the conclusion that the Ehrenfest scheme does not allow for a classifi-

cation general enough. That is why the Ehrenfest classification scheme has been more

or less abandoned, only two types of phase transitions remain: Discontinuous phase

transitions and continuous phase transitions, where the former correspond to the first

order phase transitions in the Ehrenfest classification and the latter essentially rep-

resent the second order phase transitions in a broader sense. The definition of the

discontinuous phase transition remains as for the first order phase transitions. They

are characterized by discontinuities in the first partial derivatives of some thermody-

namic potentials (i.e. discontinuities in the volume or in the spontaneous magnetic

moment). A continuous phase transition is present if there is non-analytical behavior

observed in the second partial derivatives at the critical point (e.g. experimentally in

the response functions like the heat capacity, the compressibility or the susceptibil-

ity). In most cases however, the notation remains according to the old classification,

with ’first order phase transition’ and ’second order phase transition’ used.

A phemenological approach for a unified description of all second order phase

transitions was given by Landau, we will just refer to the literature, for example

[Pat96].

2.2.2 The Order Parameter

We already cited the non-analytical behavior at a critical point as being characteristic

for a continuous phase transition. Aside this effect, a further typical characteristic

of a continuous phase transition is the order parameter. It signifies a macroscopic

observable that only makes sense to define in one of the two phases in a phase tran-
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sition. The name arises since phase transitions are often associated with a change

in the order of the system. In a multi-particle system there are always two ’com-

peting’ tendencies for minimizing the free energy F = U — T S: To minimize the

internal energy U, which can be achieved by a high order state, or to maximize the

entropy S, which goes along with a higher order state of the system. The effect of the

entropy however, scales linearly with temperature and thus the equilibrium will be

temperature dependent, which can lead to a phase transition, separating two phases

characterized by different order states of the system. Examples of order parameters

are I

o Ferromagnet: Spontaneous magnetization M, = m,/V.

> 0, if T < T6

(m3: Magnetlc moment), With M, { = 0, if T > Tc

0 Gas—Liquid system: Density difference An = n; — n9.

For T < Tc there are two phases, gas and liquid with two different densities nf

and ng, whereas above TC there is just one homogeneous phase where it makes

no sense to define An.

2.2.3 The Correlation Length and Long Range Order

An important concept in the context of phase transitions is the correlation function

of an observable A, being defined in the following way:

9(7‘3 7'“") = (a(7’)a(F')> — (0(0) (007%, (2-1)

where a0”) is the density of A:

A = / (13¢ am. (2.2)

The correlation function gives a measure of how much correlated the physical property

A is at f' and at r'. In a spatially homogeneous system we have that the correlation
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function is invariant under translations and thus becomes

90:37:") = 9(IF- 7"'|)-

As an example, let us consider the density correlation

9710". 7") = (”(7’)”(F'D - (”(0),

where n0?) means the particle density. In the special case of a homogeneous system

one usually encounters a damped, oscillatory behavior of g as a function of the distance

|F — F’ |, with vanishing correlations for |F — 77’] -+ 00:

gn(]r — F']) ————> 0.

|F—F’|—>oo

This happens, since for increasing distance the first term in (2.1) factorizes:

(n(F)n(f")) ——> (E) 2.

IF—F’l—mo V

Generally, the behavior of the correlation function in the vicinity of a critical point

is conjectured to follow:

]F—F’]

-o 4! exP( £(T) )

g(T,T )O( W. (2.3)

This can be taken as a heuristic defining equation for the correlation length 5 (T)

It obviously sets a length scale in the system, giving a measure for the range of the

correlation. A very important property of the correlation length is that it diverges at

the critical point:

This implies, that when approaching the critical point, the correlation length will

grow above the range of every interaction range in the system, spatial correlations
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from microscopic constituents will assume macroscopic dimension. One speaks of

long-range order or also critical fluctuations. The most important implication of this

behavior is that the physical properties of the system will, in the regime of critical

fluctuations, no longer be determined by the microscopic form of the interaction or

structure, but rather by the value of the correlation length 6, so that different observ-

ables of entirely different systems can show remarkably qualitatively equal behavior

in the vicinity of their respective critical points. This phenomenon is known as uni-

versality. Furthermore the system is scale-invariant, it ’looks’ the same, no matter

on what level of magnification it is looked at.

2.2.4 Critical Exponents and Universality

Very often, one observes the following limiting behavior of some physical property

A in the vicinity of a critical point. A shows a power law dependence on a reduced

parameter 5. The reduced parameter 5 is obtained from the parameter 7' which leads

to the phase transition:

7 — ’rc

= , 2.5e r. ( )
 

where rC denotes the critical value of the parameter r. 5 then determines the critical

behavior according to

A(5) 0: 5‘”. (215)

5—)0

This introduces a critical exponent it which determines the behavior in the direct

vicinity of the critical point. In the sense of the discussion in Sec. 2.2.3 and the

implications given by the divergence of the correlation length, a power law is to be

expected since at the critical point the system looses any characteristical length scale:

A power law does not introduce a characteristical length scale, as for example opposed

to an exponential behavior o< ex”, where a would set a length scale. As there are
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some physical quantities, like, for example, the heat capacity in the Ising model, that

diverge logarithmically on approaching the critical point and not according to a power

law, a critical exponent is usually defined in a more general way:

, ln|A(e)|

: l — .

w 5% Inc (2 7)

I _ . 1n|A(5)|

d) — gl/r‘rd lne ' (2.8)

In this definition the power law is contained as a special case. It is not a priori clear

that the same exponent 2p 2 1/1’ should hold for approaching the critical point from

both sides. In Table 2.1 we have compiled the critical exponents that usually appear

in a ferromagnetic system, see [N0198]. The Greek letters used here are convention.

For simplicity we have omitted the primed exponents. The exponent 7] seems, at first

 

 

 

 

] Property Exponent Definition

Heat Capacity a CH oc 5‘“ e —> 0 H = 0

Order Parameter 6 M, or —53 e /‘ 0 H = 0

Susceptibility ’7 XT oc 5-7 e —> 0 H = 0

Critical Isotherm 6 M o< H1” 5 = 0 H —-) 0

Correlation Length 1/ 5 or 8‘” 5 —-> 0 H = 0

Correlation Function 77 g(r’, 7"") oc IF— F’I—d+2—" e = 0 H = 0  

Table 2.1: Critical exponents in a ferromagnetic system (d is the dimension of the

system under observation)

sight, to have no real implication, since in (2.3) the behavior of g(f', 7'”) at the critical

point was already given. From there, 7) should, since 5 —0+ 00, simply be given by
5—)

17 = 3 — d. 77 however provides a means to quantify how much a real physical system

deviates from the simple conjecture in (2.3).

As already briefly stated in the previous section, a most remarkable feature of

continuous phase transitions is the phenomenon of universality. Since in discontinuous

phase transitions the correlation length stays finite and does not diverge, critical
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phenomena, along with universality are only observed in continuous phase transitions.

The concept of universality was introduced by Griffiths, [Gri70]. The universality

hypothesis states that the critical exponents are nearly universal, that is to say, they

are nearly the same for all thermodynamical systems. They only depend on

1. the dimension d of the system

2. the range of the interaction—potential in the system

3. the spindimensionality n.

For a classification of the interaction-range the interaction potential is usually as-

sumed to follow a functional form as

V(r) oc r"(d+2+f),

where r is the inter-particle distance. For f > 0 one then speaks of a short-ranged

interaction, if f < (d/2) - 2, then the interaction is said to be long-ranged and

for (d/2 — 2) < f < 0 one speaks of medium-ranged interaction. In the first case,

real universal behavior is expected, the interaction range is negligible compared to

the diverging correlation length. In the second case, the classical theories with a

special set of critical exponents become correct and in the third case on has to deal

with a rather complicated situation, where the critical exponents may depend on the

actual value of f. The spindimensionality gives the number of independent degrees

of freedom of the spins in the system. For example, n = 1 in the Ising model, n = 2

in the XY model and n = 3 in the Heisenberg model.

The critical exponents are not independent, but rather show mutual dependencies,

which are manifested in the scaling laws. It turns out that there exist two independent

critical exponents, through which all others can be expressed. These are mostly results
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of renormalization theory, to which we will briefly come back at a later point in the

context of finite-size scaling in percolation theory.

2.2.5 The Thermodynamic Limit

Thermodynamic potentials of a macroscopic system are known to be extensive,

(oc N, OCV),

meaning that at constant temperature, the total energy of the system can be seen

as a sum of the energies of parts of the system. This however requires that the

interaction between particles in one part and particles in another be negligible, which

can rigorously be only true in the thermodynamic limit

N

N —> 00, V —> 00, such that V —> const. (2.9)

Also only in the thermodynamic limit do the predictions of the different statistical

descriptions, canonical, microcanonical and grandcanonical ensemble coincide.

Furthermore, and this is the most important result for a discussion of phase transi-

tions, it can be shown that in a rigorous sense, in a finite system, no phase transitions

are possible. As example, one can contemplate a classical N—particle system in the

volume V. Thermodynamic potentials involve the logarithm of the grandcanoni-

cal partition function A. Phase transitions should then be expected at the zeros

of A. The grandcanonical partition function A turns out to be a polynomial of or-

der N’ with one-particle canonical partition functions Z,- as parameters, which are

all positive definite (N’ is the maximum number of particles to fit in V). Thus for

N’ < oo <=$ V < 00 there can occur no phase transition in the system. A detailed

theory has been developed by Yang and Lee, see for example [Pat96, Nol98].
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2.3 Monte Carlo Simulations

In investigating thermal systems one will almost never, aside from some special sit-

uations, encounter an exactly solvable problem. The Ising model, for example, is

exactly solvable, but only up to two dimensions and for some special lattices. In most

of the cases, thus, in order to calculate an observable, one will have to rely on some

other technique than direct calculation since the number of possible configurations

in a typical system forbids any practical analytical approach. Furthermore, such a

calculation would be rather inefficient, as a high number of configurations does essen-

tially not contribute to the expectation value of the observable since their probability

is negligible. That is, one will have to use numerical methods. In most cases then one

will not include the whole configuration space S in the averaging, but just some finite

portion of it, depending on the precision one wants to achieve. The most desirable

way to sample the configuration space, would be to include all those configurations

that contribute with a higher probability than others at the given temperature. This

procedure is called importance sampling. It is realized in an algorithm by defining a

transition function P(d>|7r). It gives the conditional probability that one configuration

(b E S is changed to some other configuration 7r 6 S. This function has to fulfill the

following requirements that we only want to cite but not discuss in further detail, see

[Bin79, BH97] for a discussion. It shall be ergodic, provide for detailed balance and

reproduce the equilibrium probability distribution of the system.

A Monte-Carlo simulation essentially provides an implementation of such a tran-

sition function. For thermal systems one has to care about the last point from above,

that is one needs to have an equilibration process before a high number s of Monte-

Carlo Steps can be applied for the ’measurement’. The average is then taken over

the configurations that occurred in these 3 steps. In thermal systems, one possible
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realization of the algorithm to implement the Monte-Carlo step is the Metropolis

Algorithm.

In the context of percolation theory however, we do not face most of the problems

that come up for thermal systems, namely there is no equilibrium configuration,

there is no critical slowing down and also there is no need for such requirements as

ergodicity and detailed balance to be fulfilled. This implies that the implementation

of the Monte-Carlo step in percolation theory can be rather simple: We go through

the lattice, occupy each site with the given probability and do the same for the

edges. This essentially constitutes one Monte Carlo step and is repeated a multiple

number of times to produce a high number of independent lattice configurations. The

expectation value of the observable that is to be investigated is computed by taking

into account these configurations.

2.4 Some Results

In this section, after having reviewed some general features of phase transitions and

also having pointed out the differences one encounters in the simulation of a percola-

tive system as opposed to a thermal system, we we will present some major results of

percolation theory that are the basis for the further discussion of the present work.

We will mostly deal with findings that hold for bond and site percolation theory,

should the contrary be the case, we will give an explicit indication of this.

2.4.1 The Infinite Cluster

We now combine the graphical concept and the probability part introduced in Secs.

2.1.1 and 2.1.2 and ask what happens in the lattice if the probability p for a vertex to

be occupied is changed. As already stated in the introductory example of Sec. 2.1.1,
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it is intuitively clear that with an increase in the value of p the average cluster size

will increase, since a higher value of p generally leads to a higher number of Open

edges. In a simple picture then, at some critical value pc, a further small increase in p

will allow large clusters to agglomerate and form a cluster Cm“, that spans the entire

system, meaning that some vertex yb E Cm”. in the bottom layer and some vertex

zt E Cm” in the top layer are connected: yb <———> zb. Although in a finite system

there exists a finite probability that the spanning cluster is not the biggest cluster in

the system, this probability is very small and usually the percolating cluster can be

identified with the cluster of maximal size, Cm“. In the thermodynamic limit, where

the lattice size L ——> 00, this would yield ICmazl ——> 00. Moreover, in a finite system,

finite probabilities exist that more than one spanning cluster is present. In a finite

system, we define the infinite cluster, Coo, by the following properties:

ICool = maXflCil}, (2-10)

and

vb, 2: E Co... (2.11)

where yb and zt have to fulfill the following requirements in a lattice of linear dimension

L:

31:. = (231'.- . . ,0), (2.12)

z; = (k,l, . . .,L), (2.13)

if percolation is checked in the direction of the last coordinate.

The Percolation Probability

After having introduced the concept of an infinite cluster, we can define one principal

quantity of interest: The percolation probability, also called strength of the infinite
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cluster, p0O (p) as the probability that a given vertex belongs to an infinite cluster,

pooh?) = P12(ICI = 00)- (2.14)

This may also be written as

oo—l

10:1—23and=s, aim
3:1

since a given vertex either belongs to the infinite cluster or to some finite cluster.

The notation ‘oo — 1’ as upper limit in the sum is meant to indicate that the infinite

cluster is excluded in the summation. Pp can further be expressed as a sum over all

existing cluster configurations, which are also called lattice animals, in the following

way:

Pp(|C|—" 8) =;asmb 10'"q"- (2.16)

Here, asmb is the number of lattice animals which are characterized by their number

of vertices s, edges m and boundary edges b.

Intuitively it is clear that p00 (p) is a monotonous function in p and has the limiting

values poo(0) = 0 and 1000(1) = 1. Furthermore, according to the above considerations,

we expect a critical behavior of the percolation probability with a critical value, the

percolation threshold pc, yielding

_ :0: if p<pc

1a®f—{>O, fl p>%. (2N)

The percolation threshold is formally defined as

19.: ——Sup{p l 1900(1)(p—)— 0} (2-18)

Uniqueness of the Infinite Cluster

As stated in the previous section, in a finite system, more than one percolating cluster

can exist. For an infinite percolating system however, it can be proved that the infinite

open cluster is unique, see [Gri99], where the following theorem is given:
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Theorem 1 Iffor some p it is poo(p) > 0, then

Pp(3 exactly one infinite open cluster) 2 1.

For the proof, we may refer to the literature.

Continuity of the Percolation Probability

One will notice that in (2.17) the case p = pC has been left out. As stated in Ref.

[Gri99], it is a known fact that for dimension d = 2 and for dimensions d 2 19

there exists no infinite cluster right at the critical point: poo(pc) = 0. For dimensions

d 2 3 S 19 the situation is not clear. It is believed that poo(pc) = 0 for dimensions

at Z 3 also, but no rigorous results exist. On one hand this is, in a sense, required,

since, as will be discussed in more detail later, an important conjecture of percolation

theory is that poo(p) undergoes a second order phase transition at the percolation

threshold pc. It is thus required that p00 (p) be continuous. The only way to fulfill

this requirement on the whole interval [0,1] is to assign poo(pc) = 0. On the other

hand, the existence of an infinite open cluster at the percolation threshold pc, called

incipient infinite cluster is discussed in this context, see for example [SA94]. However

we will have to distinguish between our model, as an ideal, mathematical system that

can be infinite in extent and the simulated physical system, which will always be

finite and subject to errors of all kinds. In such a system it will be impossible to

probe at exactly one value of the bond existence probability. Due to floating point

representation imprecision and the system discreteness, we will always end up with

an average taken over some small interval around the critical value pc. We will

thus deal with the subject in the following way: As long as we are considering ideal

characteristics of our system, we will consider the percolation probability to be zero
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right at the percolation threshold:

1900(1).) = 0, (2.19)

which implies

pa = maXfiD | 1900(1)) = 0}. (2-20)

In the context of physical systems however, we shall abide by the imprecise notation

of an infinite open cluster at the threshold, meaning the incipient cluster if probed

in an interval around the critical value pc, with the width given by the limitations of

the numerical experiment.

The Critical Phenomenon

For percolation in one dimension, d = 1, there is no real critical phenomenon, as

in a one-dimensional infinite system an infinite chain of occupied vertices is needed,

which is only possible for a critical value p6:1 : 1, so that only one phase, the

non-percolating one is accessible on a set with non-zero measure. The existence of

a nontrivial critical phenomenon for dimensions d 2 2 was shown by Broadbent and

Hammersley, [BH57, Ham57, Ham59] as cited in [Gri89] with the following theoreml.

Theorem 2 Ifd 2 2 then 0 < pg < 1.

We can thus specify two phases of the process: A subcritical phase and a supercrit-

ical phase, where in the former we will almost ever only have finite open clusters,

whereas in the latter there will be almost always an infinite open cluster present. The

probability that there exists an open infinite cluster, ib(p), follows

_ 0, if p<pc
11(p)—{ 1, ,, pm . (2.21)

 

1Again, we will not repeat the proof here, it can be found in the cited reference
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This is only exactly true in the thermodynamic limit of an infinite system: L —-> 00.

For finite L, finite-size-effects will ’smear out’ the step function to some differen-

tiable function. A more solid discussion of this effect is deferred to a later point, the

phenomenon of finite-size effects and finite-size scaling will be discussed in Sec. 2.5.

Site versus Bond Percolation

In the site percolation model, introduced in 2.1.2, the definition of the percolation

threshold is exactly the same as in the case of bond percolation, (2.18). However, if

we perform a simulation on exactly the same lattice, what will be the numerical value

of pf“, compared to p’c’m"? It has to be noted, that a bond percolation model on a

graph G may be reformulated as an equivalent site percolation model on a covering

graph Ge, see [Gri99], for which

szml = Pii‘emcl- (222)

For both processes on the same graph, however, we have

p2°""(G) S 102“er (223)

On a high number of lattices, the strict inequality is true.

2.4.2 Cluster Size

Aside from the very important quantity, the percolation probability, another impor-

tant property of percolation is the mean cluster size

X(P) = Ep(|C|)- (2-24)

It can, just as the percolation probability, be expressed in terms of the cluster size

distribution, being the first moment, whereas the percolation probability represented
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the zeroth moment:

00

x<p> = :3 PpuCI = s), (225)

8:1

where again Pp(|C I = s) is the probability that a given vertex belongs to a cluster

of size 3. At this point a brief note concerning the difference between bond and site

percolation is necessary. Basically, in site percolation a calculation of the mean cluster

size is possible in exactly the same way: The question is, what the probability is, when

going through the lattice and hitting every vertex with the same probability, that this

arbitrarily chosen vertex is part of an s-cluster. Since in bond percolation every vertex

is occupied, a distinction of open and closed vertices is not necessary. This is different

in site percolation. When hitting every lattice site with equal probability, also closed

vertices are included, which introduces an implicit dependence of the mean cluster

size on the fraction of occupied sites, p. To avoid this influence, we have to introduce

a normalization, the fraction of open sites. We thus generalize (2.25) to

_ 2:13 Pp(]Cl = 5)
 

x(p) — o. , (2.26)

28:1 Pp(|C])

where

°° 1 for bond percolation

Z Pp(|C|) = f . . (2.27)
3:, p or Site percolation

Also should we state that there is yet another way to define a mean cluster size. One

can take the average over all clusters, which would be equivalent to asking what the

mean cluster size is, if every cluster and not every site, as before, is hit with equal

probability. Given the actual number of clusters with size 3 to be NS, this amounts

to defining the mean cluster size as

00 N3

S 2 "313%. (2.28)

3:1 3

We will subsequently stick to the definition of the mean cluster size as given in (2.26)

in the further discussion.
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Although this is not a priori obvious, it is

x(p) < 00 if p < pc. (2.29)

For values of p above the percolation threshold the sum in (2.25) diverges because of

the existence of an infinite cluster:

X(P) = 00 if p > pa. (2.30)

This can be remedied by introducing a truncated mean cluster size that does not take

into account the infinite cluster:

X’(p) = Ep(|C|; ICI < 00)

oo—l

= Z s Pp(|C| = s). (2.31)

8:]

The symbolic notation ’oo — 1' means that the infinite cluster is not included in the

sum. If we consider X! (p) as a continuation of x(p) on p 6 [pc, 1], then x(p) shows

a singularity at p : pC and is finite on the rest of the interval [0,1]. Whenever

poo(p) = 0, then x(p) = xi (p) naturally. The fact that both poo and X show a phase

transition at the same one point p,.2 leads to calling percolation a model with a unique

phase transition.

2.4.3 The Number of Open Clusters per Vertex

For completeness, we will just give a short definition of this quantity and come back

to its postulated scaling behavior in Sec. 2.4.5. The Number of open clusters per

vertex is defined in the following way:

N
o
t
—
a

OO

:21);,, (|C|—_ s) (2.32)

The first terms can be calculated using elementary considerations for the proba-

bilities of clusters of a given size and then summing over the cluster size. The number

of open clusters per vertex is also referred to as f-function.
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2.4.4 Cluster Numbers

In this section we will present a short discussion about cluster numbers in percolation

systems. At some points, however, when the possibility arises in a natural way, we

will also wander off to other quantities, always giving reference though to the section

where we first introduced it or where we will give a more precise discussion. Also

do we have to clarify that by cluster numbers we do not mean the total number of

open clusters per vertex, but rather the number of open clusters of a given size 3 per

vertex, that is, the cluster size distribution. For the sake of simplicity we will mostly

argue on the basis of site percolation, which does not give a restriction on the general

results.

In the previous section we have already argued with the different moments of the

cluster size distribution Pp(|C| = s). It has to be noted, however, that this term is

somewhat imprecise. Pp(|C'| = 3) represents the probability that an arbitrary site

(every site in the lattice is hit with equal probability) belongs to a cluster with 3

sites. The real cluster numbers shall be denoted by n,, by which we mean the actual

number of clusters of size 3, N3, normalized by the number of sites in the lattice N:

n, = TV“ (2.33)

Then, the probability that a given vertex belongs to an s-cluster, is given by the

product of n, with the actual cluster size 3:

PP(]C] : 3) = 713(7)) 8° (2°34)

For a calculation of n, it is necessary to know the number of different configurations

clusters can be realized in with exactly 8 sites, which we denote by gst, compare (2.16).

In (2.16) we already introduced the corresponding quantity asmb for bond percolation.

Here, we have one index less, 3 being the number of vertices in the cluster and t being
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the number of perimeter vertices, which is the number of all empty neighbor vertices,

including internal unoccupied, neighboring vertices. To get n, we then have to sum

over all of these configurations, multiplied with their respective statistical weight. For

a configuration with 3 vertices and t perimeter sites, this is just p3(1 — p)‘, giving as

the number of size 3 clusters:

n. = 29.4230 — p)‘. (2.35)

One-dimensional exact Solution

In percolation we deal with statistically independent events. Thus, we have factorizing

probabilities always. Therefore, the probability to have 5 sites occupied is p‘. For

these occupied sites to be a cluster we furthermore need one unoccupied site at each

end of such a linear configuration of occupied sites. The probability to have this

condition fulfilled is simply given by (1 — p)2. Neglecting chain end eflects, every site

has probability p3 (1 — p)2 of being, say, the right end of the linear cluster and with

L sites in the whole lattice the total number of 3 clusters is L p’ (1 — p)2, giving a

normalized number of s-clusters per vertex

1a®h=fi(1-mf 93$

The percolation threshold in a one-dimensional system does not allow for a real phase

transition behavior: In a lattice of L sites, there will be

(1 — p) L ——> oo
L—ioo

empty sites in the linear chain, leading to a critical value of

2:1. (2M)
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Defining the probability for an occupied site chosen at random, to belong to an 3-

cluster as

nss

Zn, 3’

we can calculate the mean cluster size as, cf. (2.26)

X = 221283

= 2:57:23. (2.38)

 

’LUS:

 

This equation still represents a general result. The denominator is equal to p and

after evaluating the sum in the numerator, by turning it into derivatives of easier

sums, this gives

19

x(p) = ————1-9- for p < pc. (2.39)

With pC = 1, we thus encounter a divergence in the mean cluster size for p —+ pc,

which will also turn out to be the case in higher dimensions. In one dimension it is

also easy to calculate the correlation function and the correlation length, which we

introduced in the realm of the general discussion of phase transitions in (2.3). The

probability that a site at some position .v is in the same cluster as the site at the

origin requires the :1: connecting sites to be occupied, which happens with probability

p‘”. This is already the correlation function which we just rewrite in an exponential

form

—.’13

 

9(33) = 8344?), (2-40)

thus defining the correlation length 5 as

t— - 1 <2 41)
ln(p)° '



For p 2 pc = 1 the logarithm can be expanded as ln(1 — 2:) 2 —a: for :1: << 1, which

gives

 
6: p. _ p. (2.42)

Thus also the correlation length diverges at the threshold with a critical exponent,

see Table 2.1,

1/ z —1. (2.43)

The Cayley Tree

The second exactly solvable lattice is the so called Bethe lattice or Cayley tree, which

we already introduced in Sec. 2.1.5. If we try to find a way connecting the origin

to the surface, then we find (z — 1) new sites on which we can continue at every

branching, p (z - 1) of which will be occupied on average. We need at least one site

occupied at every branching for a continuous path to exist and thus:

I

z—l'

 

pa = (2-44)

Since we can, without any argumentative change, replace site by bond in the above

considerations, (2.44) is valid for both site and bond percolation. If we now want to

calculate n,, we can use (2.35). It turns out that in the Bethe lattice the number

of perimeter sites is uniquely related to the number of sites 3 in the cluster, thus gst

reduces to 9,. The relation of perimeter sites t to 3 reads

t = 2 + s(z — 2), (2.45)

as a single site has 2 empty neighbors, two sites have (2 — 2) neighbors and every site

more adds another (z -— 2) empty neighbors. Without explicitly deriving 9, we can

then calculate the ratio ns (p) /n, (pc):

  

ns(p) (p)8(11:1:)2+s(z—2).
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For the sake of simplicity we will set z = 3 in the further derivation and do the

following (exact) expansion:

f(p) : 53(3) 

= id.) + f’(p.-)(p — p.) + great) — p.12

1—2pc 1 2

———— — ——P— c

pc(1"pc)( p)

where in the last equality we have made use again of the fact that we set 2 = 3 finally

arriving at

 
pc:

[
\
D
l
r
—
t

Plugging this result back into (2.46) we have

  7:1?) = (11:: )2(1 _ 4(p — pct): (2.47)

oc exp(—c s) (2.48)

where

c = — ln(1 — a(p — pc)2) (2.49)

: a(p — pc)2 + 0((17 — pc)3), (250)

which is true for 1 — a(p -— pc)2 << 1. Making use of the heuristic argument that the

mean cluster size X (second moment of the cluster size distribution) has to diverge at

the threshold pc, which, with (2.38), is not possible for an exponential decay of n,,

we conjecture the plausible form

”s(pc) (X S—Tv (251)
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for large 3. This defines the so-called Fisher-exponent r. By calculation of X and

comparison with the general form for X (not derived here, see, e.g. [SA94]),

 

1

X 0C , (2.52)

p _ pc

we have

T = 5/2. (2.53)

Thus finally we arrive, with (2.46), at

n,(p) or 3-5/2 exp(—c s), (2.54)

valid for large 3.

To conclude this section, we want to point out why the Bethe lattice solution is

useful as an approximation of high-dimensional lattices. For ’normal’ lattices we have

for the relation of surface of some volume to the volume itself

av o< Vl-l/d. (2.55)

In the Bethe lattice with a branching factor 2, a cluster that has branched t times

will have

t—l

Nt 2 1+2 2(z-1)"

 

 

 

n=0

z(z — 1)‘ — 2

= 2.z _ 2 ( 56)

sites in the cluster of which

St = z(z — 1)"1 (2.57)

sites are surface sites. This gives the ratio

33‘. __ z(z —1)‘“1(z — 2)

Nt _ z(z — 1)‘ — 2

’31 (Z _ 2’ (2.58)



I represents a finite limit. In normal lattices, this is only attained, as (2.55) shows, for

a dimension 1/d = 0. Thus, percolation on a Cayley tree should approximatively de-

scribe percolation on non-100p-free lattices for higher dimensions d —) 00. In practice,

the results derived for the Bethe lattice hold for dimensions d > 6.

Conjectured Scaling Behavior of n,

For general lattices and dimensions, no exact solution for the cluster numbers is

known. Aside from the method of series expansion, where the cluster numbers for

clusters with a small number of vertices are calculated exactly and then extrapolation

methods for s —> 00 are employed, one will thus have to rely on conjectures and

checking them in numerical experiments. We might, with the derivations of the

previous section, try to postulate a general formula for the cluster numbers. It would

be very natural to assume

1-

exp(—c s). (2_59)7150(3—

This is essentially the solution for the Cayley tree, but here, we will allow a general

exponent for c:

c (X |p — pail/‘7 for p —> pc. (2.60)

An obvious problem with this form is the fact that the one-dimensional solution is

not contained as special case, since, using exp(ln p) :2: exp(p — 1) for p z pc, the

one-dimensional result (2.36) can be cast into

n. = (pa — 10)2 exp(-(pc — MS), (2-61)

which does not reproduce the power law in terms of s. A second problem arises with

respect to possible divergences in the cluster number. According to (2.35) the cluster

number is a finite polynomial in p, and hence n, and d;—::— for all n should stay finite.
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However, with (2.60), this is not the case for non-integer values of 1/0. Thus, we take

1/0

z’ 2 cs o< |(p —pc)| s to the power ofa as new 2:

z = (p — pc) 3". (2.62)

In the postulate above, (2.47), the assumption for the ratio 72, (p) /723 (pc) is an expo-

nential behavior,

"s (:0)

”3(196)

 oc exp(z).

For a more general scaling assumption which should also reproduce the one-dimensional

result, the conjecture should just read

"30”) = f(z). (2.63) 

We then have for the cluster numbers, with ns(pc) from (2.51),

ns(p) = s" f((p — pc)s") for p ——> pc, 3 —> oo. (2.64)

The exact form of f (2) has to be determined in simulations. A problem that occurred

for the first scaling hypothesis (2.59) has now been remedied: With the assumption

that f (z) analytical everywhere, It, will show no singularities, as expected.

The one-dimensional case now is included with a = 1 and T = —2, compare (2.61):

n, = 3‘222 exp(z).

2.4.5 Scaling Theory

We already applied ideas of scaling theory in the previous section with the scaling

assumption (2.64) for the cluster numbers. Scaling theory makes predictions about

the behavior of macroscopic observables for p in the vicinity of the critical value pc.

The basis of scaling theory has not yet been proven in a strict mathematical sense,
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[Gri99], but the conjectures have been verified to a very good extent in simulations.

We will, in the following, derive two scaling laws, but deprive us of a derivation of

the remaining scaling laws, but instead summarize the general idea of scaling theory.

Percolation Probability

With the new notation for cluster numbers introduced in the previous section, (2.34),

we have for the percolation probability in site percolation, in analogy to (2.15) for

bond percolation,

1300(1)) : p — :3 ”s(p)3- (265)

At the critical point, it is p00 2 0 and thus we can add and subtract pc in the following

form:

00—1 00—1

poo : (P _ pc) + Z "s(pc)5 — Z ”s(p)3

5:1 8:1

00—1

(1) — pa) + 2 (12.02.) - n. (19))8 (2-66)

3:1

where for the convergence of the first sum, T > 2 is necessary. Although f (z) does

not have to follow an exponential decay according to the new scaling assumption

(2.63), it will in any case show a decay. This, together with the fact that for the

Bethe lattice we found an exponential decay, is a heuristic motivation that only large

cluster numbers essentially contribute in the sum, which allows for replacing the sum
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by an integral,

p... = [d3 s“’(f(0)-f(2))

1 2—0—1’ _ Z

= /d2 W3 (f(O) f( l)

= up — pc>|“—2V“ / d7 |zl““"‘2)/" (f(0) — f(2))

(X '0’ — pc)lfl- (2°67)

This introduces the critical exponent fl

 p = . (2.68)

The limits of the integral are now case dependent: 0 to +00 for p > pC and —00 to

0 for p < pc, which is why the absolute values are introduced. We have furthermore

used

1

ds = ———sl“"dz , 2.69

a(p _ pa) ( )

s = 21/”(p—pC)—1/", (2.70)

in the derivation. For negative values of z, the factor of proportionality in the last

equation of (2.67) has to vanish, that is the integral should be zero:

f dz Izl‘H’ m0) — f(2)) = o.

This brings up a requirement to be fulfilled by f (z)
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Mean Cluster Size

An analogous calculation for the second moment of the cluster size distribution X

yields another scaling law. It is, see (2.26),

X oc Zszns

o< [d3 sT—2f(z)

dz
T—3 a 3—7 0—1

lP—Pc|( V [lel‘ V f(Z)

oc lp — ml”, (2.71)

which introduces another critical exponent,

 
'y = a (2.72)

Equations like (2.68) and (2.72) are known as scaling laws and they put up rela-

tions between the different critical exponents for different macroscopic observables.

The Correlation Length

We can introduce a probability Tpf (y, 2) that for a given vertex y in a cluster C also

some other vertex 2 = (n, 0,0, . . . ), lying directly ’above’ y belongs to the same finite

open cluster. It is conjectured that Tpf follows

nQ—d-fl, if p : pc

Tf Z 58
'

.5.) {em—map», if 10,20,ch (273)

Here, (1 is the dimension, 77 is yet another critical exponent and 5 (p) is the correlation

length. For p near to pC the behavior of E (p) has the form

6(1)) % lp — per", (2-74)
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a behavior which we already found with 1/ = 1 in the one dimensional example, see

(2.41). The notation ’z’ signifies that 6 and |p — pcl satisfy

lim log—€01— = —1/. (2.75)
pxpc log lp - pal

Scaling Theory

In a brief summary, the basic ideas of scaling theory are as follows. Macroscopic

quantities behave as powers of |p — pcl in the vicinity of the critical point pc. Examples

are the correlation length E, the percolation probability p,>0 and the mean cluster size

X- The correlation length gives a length scale for the system under observation, one

interpretation is to see it as the minimal length scale on which percolation at p can be

distinguished from percolation at pc. The correlation length diverges when the system

approaches the critical point. A further result of scaling theory are the scaling laws,

which the critical exponents are conjectured to satisfy and which reduce the set of

seven critical exponents to a set of two independent exponents. A further assumption

is that the critical exponents satisfy the hyperscaling relations, which involve the

critical exponents and the dimension d of the system. The hyperscaling relations are

only valid however for d S 6. .As already discussed for phase transitions in general,

the critical exponents are universal, depending only on the dimension of the system,

not the microscopic structure. A heuristic justification takes as argument that at the

critical point, where the critical exponents determine the behavior of the macroscopic

observables, the correlation length diverges, which makes any information on the

microscopic structure of the system irrelevant. Related to that is the fact that at the

critical point, the infinite cluster is fractal with a fractal dimension D = 91/48 2: 1.89

for site percolation on two-dimensional lattices, see [Fed88]. This so called incipient

infinite cluster is self-similar on all length-scales.
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2.4.6 Analogies of Percolative Phase Transitions to Thermal

Phase Transitions

Before, in the next section, we proceed to a discussion of Finite Size Scaling we want

to show the existing analogies between the quantities introduced above for percolation

theory and the thermal functions discussed in the realm of thermal phase transitions

in Sec. 2.2. We do so in the concise form of Table 2.2. In Table 2.3 we give a reference

 

 
 

Percolative Function Notation Thermal Function Notatio?)

Distance from critical point p — pc Distance from critical point T-Tc

F-Function [€(p) Free Energy F

Percolation Probability poo (p) Spontaneous Magnetization M

Mean Cluster Size x(p) Susceptibility X

Correlation Length g CorrelatiOn Length 5   

Table 2.2: Percolative functions and their analogous counterpart in thermal systems.

to the section in which we introduced or discussed the respective percolative function.

 

 
 

I Percolative Function Sec. ]

Number of Open Clusters per vertex 2.4.3

Percolation Probability 2.4.1

Mean Cluster Size 2.4.4, 2.4.5

Correlation length 2.2.3, 2.5, 2.4.5   

Table 2.3: Percolative functions and the section in which they were first introduced

or further discussed.

2.5 Finite Size Scaling

Let us consider a finite, d-dimensional site percolation system with occupation proba-

bility p. As soon as we have p > 0 in this finite system, there is a non-zero probability
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that every site in the system will be occupied, given by

(pL)d = exp(Ld lnp). (2.76)

This would not be possible in an infinite system and is an indication that the behavior

qualitatively changes in a finite system with respect to the infinite one. In a finite

lattice the singularities associated with the critical behavior will be smoothed out.

In simulations, it is found that the conjectured power laws in |p— pcl still hold,

but with a shifted value of pc. How does the shifted value pc(L) approach the real

value p6 = pc(oo)? Let us consider the one-dimensional example again. We call the

probability that there exist a spanning cluster 11. It is given by

Hsz

= exp(—L/§), (2'77)

thus defining the correlation length 5 as

1

{(29) = _E’ (2.78)

like in (2.41). In an infinite system, we would expect H to show a step-function like

behavior, with 11 = 1 at p = pc 2 1 and H = 0 for p < pc. According to our above

consideration, there will be a smoothed behavior present for L < 00. We may then

define an effective threshold, at a p defined by a more or less arbitrary value of II.

We choose to define the effective threshold in the following way:

_ 1

par = H 1(2) (2.79)

With the expansion

1 1

—— z —, (2.80)

lnp 1 — p
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valid for p z 1, we have for the effective threshold, as II é 1 /e, implying L = E,

19617: 1 - (2.81)E.

Thus the effective threshold at a linear dimension L approaches the true threshold in

an infinite system as

— = L'l/V 2 82
pc pet?" a ( ' )

with

1/ = 1. (2.83)

We now want to apply the same concept to higher dimensions. Although the

situation is not as easy as in one dimension, we conjecture an essentially similar, but

generalized behavior. With 11 again being the spanning probability, we postulate the

following scaling behavior for H in finite systems:

11(1), L) = 9((p — pc)L1/") for Ip - pal << 1, L >>1. (2-84)

Then the derivative of II with respect to p, which gives the probability that the system

starts percolating if p is increased by dp , reads

dH : diLl/v315— dz (2.85)

Here now we take the effective threshold to be the average threshold at which, aver-

aged over p E [0, 1], the system starts percolating:

pefl' : pav

1 (1H

2 d —. 2.f p p 3;; < 86)
0
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This can be rewritten in terms of z = (p — pc)L1/", yielding

1 d_g_

o

= [1)dz ———(zL1/"+pc)

z(p=0)

4/ z(p=1) dg 202:1) dg

= L " / dz zE+pC [dz 5. (2.87)

2(1):0) z(p=0)

Since we have

2(sz dg 1 an
/ dz 5 = fdp E

z(p=0) o

= lI(1)—H(0)

= 1, (2.88)

we deduce that the effective threshold approaches the real threshold as

z(P=1)

d9
e _ c : L—l/u / d

1017 p z Zdz

z(p=0)

o< L_1/" for Ipeg— pcl << 1, L << 1. (2.89)

As this finite size scaling is only valid for large lattice sizes, in the application system-

atic errors will occur. In higher dimensions no estimate for these deviations exists, we

will come back to the question of the systematic errors at a later point, see Sec. 3.7.

In the definition of the effective threshold (2.86), it is not at all necessary to define

the effective threshold as the average threshold, as we have done. It would be equally

46



possible to choose the inflexion point of II, or, as we have done in the discussion for

one dimension, to set peg = II'1(p’), where p’ can be some value in the smoothed

transition region of II. The result for how this effective threshold approaches the real

one, (2.89), does still hold.

2.6 Percolation in Nuclear Physics

Percolation has been introduced in nuclear physics by Bauer to propose a model

of fragmentation reactions, see [BDMP85, BPDM86, BBDG87, Bau88, Baued]. We

will briefly present the essential features of this model, called the nuclear lattice

model. Although this is, by no means, a restriction of the model, we just consider

fragmentation reactions of the type

p+AT=Ap+X. (2.90)

As underlying lattice the simple cubic lattice is chosen and sites on this lattice are

populated in an approximately spherical way to model the target nucleus. Deformed

nuclei could also be considered, but the results are not changed essentially. Thus the

lattice sites model the nucleons of the target nucleus and at the, initial state each

nucleon is connected by bonds to its six nearest neighbors. An impact parameter b is

chosen and according to the so-called fireball geometry the nucleons in the cylindrical

fireball channel, that is, the participants, are removed from the lattice. However, as

stated in [BPDM86], since mostly only 6 - 8 nucleons are removed, the effect is not

very important and basically the same results are obtained for a simulation that does

not take care of the fireball scenario. This has the further implication that also the

impact parameter b does not have a big influence on the results.

In this model, the breaking probability

p5 = (1 - p) (2.91)
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is chosen as input parameter, where p, as before, denotes what we called the bond

existence probability. Using Monte Carlo techniques, a computer simulation is per-

formed in which nearest neighbor bonds are broken according to pb. In the basic

version of this model, spin and isospin degeneracy are assumed, so that it suffices

to have one bond breaking probability pb. In the next step, cluster counting is per-

formed and the cluster size is recorded. In the simulation it is then integrated over

the impact parameter b, with the mass and multiplicity distribution for one value

of pb as result. Assumptions made for the realization of this model are as follows.

The motion of the nucleons in the target nucleus can be neglected, which amounts to

saying that the projectile sees a frozen image of the target, which is approximately

valid in the region treated with the model, where the proton energy lies far above

the Fermi energy of the target nucleons. As a further point, no energy conservation

is present in the model. It seems however, that, since the proton energy is sufficient

to completely fragment the target, energy conservation is not an important factor

in the determination of the mass spectra. A physical interpretation of the breaking

probability is possible through an analogy with the Ising model of ferromagnets. It

is possible, as cited in [BPDM86], to show that the breaking probability is related to

temperature in the following way:

Pb = 9XP(—Eb(T)/T), (2.92)

where for real nuclei at low temperatures

Eb(t) = 8 — $172. (2.93)

The simulation data reproduces the mass yield curves and multiplicity distributions

found in nuclear experiment of proton induced Multi-Fragmentation very well.

The fact that in the basic version of the model only one bond breaking probability

was used is no inherent restriction of the model and extensions of it have been inves-
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tigated, [Baued], using site-bond percolation with two components and two different

bond breaking probabilities. This system, in which one can model varied isospin

asymmetries, showed the same phase transition behavior as a one-component bond

percolation model with isospin symmetry. Further details about a two-component

percolation model will be discussed in Chapter 3.
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Chapter 3

Two-Component Site-Bond

Percolation

After reviewing the underlying ideas of percolation and phase transitions in general in

Chapter 2, we want to focus on one special percolation model, that is percolation with

two components on a simple cubic lattice using the combined site-bond percolation

approach. Some aspects of this model were investigated by us in the framework of

this thesis’ research and we will present the results thereof in the following sections.

3.1 General Case: N Components

Let us begin with a description of the model we have used in the most general formu-

lation. Although later on, we will consider a graph of dimension d = 3 in the special

case of the structure of a simple cubic lattice, we don’t make any assumptions about

the lattice dimension or the lattice structure in this general section. The approach

that is presented here is completely free of all such restrictions.

Thus we have a lattice of dimension d, as described in 2.1.1, and we have N

different components with which the vertices are populated. Then there exist

A5,, = (N +22 — 1) (3.1)
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different bond existence probabilities, one for each possible combination of sites to be

connected. The bonds are assumed to be directionless, meaning that the probability

of an edge to be open does only depend on the state of the two vertices it is connecting,

not on their respective localization. There is another set of free parameters associated

with the concentrations of the different species that populate the lattice. These are

the component fractions

N.

f.- = —T'—,
Zi=1Ni

(3.2)

where the N,’s are the actual number of particles of component i. Naturally, the

component concentrations f,- have to satisfy

N

2 f, = 1. (3.3)

i=1

Because of the normalization condition, the component concentrations constitute

(N — 1) free parameters. Overall we then have

Apar=(N—1)+(N+2_1)

2 (3.4)

free parameters a,- to vary.

The main question we are pursuing is at which parameter regime {aznf} in the AW,-

dimensional parameter space an infinite network Coo of connected vertices is present

in the lattice, that is, at which region {bjnf} the percolation probability poo({a,-}) is

IlOIlZCfOI

{b:?"’} = {az’ : p..(a.~) aé 0}. (3.5)

and, more specific, where and in which form, the percolation probability changes

from zero to a finite value. The particular type of bond shall be irrelevant for it to

belong to the infinite cluster. Although there exists no principle argument against

this approach, it is quite impractical for a system with N 2 3. It would be highly
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desirable to be able to reduce the dimensionality of the parameter space. Ideally one

would hope for a reduction of the dependence of the order parameter, p00 in this case,

on one variable at fixed component concentrations. We propose one such variable in

following the definitions of [Baued], generalizing them to N components. In analogy

to the bond existence probability in ordinary bond percolation processes, which gives

the density of bonds present in the system under observation, we introduce the scaled

control parameter p+,

N

P+ = Z aijpij- (3.6)

i21=1

Here, the pij’s denote the bond existence probability on an edge that has endvertices

occupied by species i and j. The aij’s give the probability to find a nearest neighbor

edge that connects two sites of flavors i and j:

0113‘ = 2fifj

1’ aji- (3.7)

Also the 0,-j’s are normalized and thus subjected to the constraint

2 an“ = 1. (3.8)

This should provide the essential tool for a simulation aimed at answering the question

related to (3.5) and we will present results in Sec. 3.2.

3.2 Two Components using the Natural Variables

We do not want to go into the detail of the simulation techniques used, at this

point, but merely present the results, deferring a deeper discussion of the simulation

techniques to Sec. 3.3. In Appendix A we show the source code of the programs
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used in the simulations. We have performed simulations on 163, 323, 643 and 1283

simple cubic lattices and set N = 2, the latter having as only argument the ease of

visualization of the results, which would hardly be possible for N > 2. However, as

there exists no fundamental constraints by setting N = 2, the results shown in this

section should also hold for N > 2.

3.2.1 General Considerations

For simplicity we shall call one species blue, the other red. With N = 2 we have as

number of free parameters

Apar : 4a (39)

which are the fraction of one component, say of the blue sites, fb, and three bond

existence probabilities: P55 for bonds connecting two blue sites, p,.r for bonds with

two red endvertices and p¢ for b-r-bonds. We will set

I): E pbb : prra (3'10)

thus introducing a symmetry in the system. This can be motivated by, for exam-

ple, considerations like isospin symmetry, where the e+e+ and e‘e‘ interactions are

identical. We furthermore have

Pye = pbr (3.11)

= (1 — pz). (3.12)

Given these conditions, (3.6) now reads

19+ = 0:19: + 094% (3-13)
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where (3.7) has become

01¢ 2fb(1— fb)

%’ 2(fb - %)2

f1,2 + (1 — fb)2

é‘t 2(fb — ":02-

(3.14)

(3.15)

Here we have replaced the double index by a more intuitive notation for just two

components. Due to the normalization condition (3.8) we have

: =(1—a¢). (3.16)

We carry out simulations according to these principles and with the techniques as

described in Sec. 3.3

3.2.2 Simulation Results

In Fig. 3.1 we show the results of the simulations, namely p00 as a function of the

two control parameters p: and p¢.

 

We see that the percolation probability poo

 

 

Figure 3.1: Probability to belong to the infinite cluster, poo, in a simple cubic two-

component site-bond percolation lattice of size 1283 as a function of the two param-

eters p: and p¢, calculated for a fraction of the blue species of fb = 0.5.
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changes from 0 (front corner) to 1 (back corner) for p= —) 1 and 12¢ —> 1, with a

critical line of a second order phase transition in the (p.__,, p¢)-plane. We expect some

parametric dependence on the concentration of one of the two species. We chose to

take fb, also possible would be the concentration of the red species in the lattice, f,.

In Fig. 3.1 we have set fb = 0.5. We show the effect of varied fb in Figs. 3.2 and

3.3, where fb : 0.2 and fb = 0.0 respectively. It can be seen that, according to

  

 
Figure 3.2: Probability to belong to the infinite cluster, poo, in a simple cubic two-

component site-bond percolation lattice of size 1283 as a function of the two param-

eters p: and p95, calculated for a fraction of the blue species of fb = 0.2.
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Figure 3.3: Probability to belong to the infinite cluster, poo, in a simple cubic two-

component site-bond percolation lattice of size 1283 as a function of the two param-

eters p: and p¢, calculated for a fraction of the blue species of fb = 0.0.
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the expectations, for only one component populating the lattice, fb = 0 or fb = 1, we

regain a two-dimensional curve which seems to scale, at least on an eye-analysis basis,

as predicted by scaling theory, compare Sec. 2.4.5 and in particular (2.67) Before, in

Sec. 3.4, we will come to a realization of the ideas presented in our general discussion

in Sec. 3.2.1, we will explain in more depth the simulation techniques used, in Sec.

3.3.

3.3 Simulation Techniques

The simulation programs are coded in FORTRAN and the source code can be found in

Appendix A. Several programs have been written to accommodate different needs.

First, there is a general program, which determines the percolation probability poo,

the probability that a spanning cluster exists, 1!), and the number of open clusters per

vertex. Three other programs have been written, aimed at more specific tasks, two to

determine the critical value of pr through the critical values of p:, p¢, respectively,

and one to find the threshold of fb. In the following sections, we will, in a concise

manner, describe the main features of the simulation as implemented in the programs.

3.3. 1 General Features

We aim at simulating a simple cubic lattice of dimension n3, with a maximum lattice

size maxn3. The implementation has been realized as a three dimensional logical array

neutron (maxn,maxn,maxn) in FORTRAN. Using a (pseudo) random number generator

taken from [PTVF92], modified to work with double precision, we sweep through

the lattice in order to determine which site is occupied by which of the two possible

species. In the source code, the notation is neutron(i , j ,k), meaning in a more neu-

tral formulation the blue components. As already stated in Sec. 2.3, a Monte Carlo

step in the case of percolation just consists of generating one particular configuration
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of the lattice. We do so by generating a pseudo random number ran at every vertex

3] = (i, j, k) and then comparing it to the probability of having a blue site, fb. The

array neutron(i , j ,k) is then assigned the following values:

TRUE, if ran < fb

neutron(1,j,k) = { FALSE, if ran > fb . (3.17)

In the next step we have to decide about the existing bonds in the lattice. The bond

status is implemented in the form of a four-dimensional logical array,

connected(maxn,maxn,maxn,3),

which gives the existing bonds at every vertex in the three spatial directions. For

populating the edges with bonds, we essentially proceed in the same way as in the

case of the sites, by sweeping through the lattice and calling the random number

generator at each edge. However there is one difference. Using neutron(i , j ,k) , we

first have to decide whether we have an edge with different endvertices or one that

connects two sites of the same flavor. The program then assigns

. . __ TRUE, if ran < p
connected(1,j,k,x) — { FALSE, if ran >p , (3.18)

where, in the case of a: = 3, which is the positive z-direction,

_ p2, if neutron(i,j,k) = neutron(i,j,k+1) (319)

p ’ 15¢, if neutron(i,j ,k) 7e neutron(i,j ,k+1) '

We use free boundary conditions, so that all values of connected(i, j ,k,x) on

the boundaries are initialized as FALSE:

connected(n, i ,j , 1) = FALSE

connected(i ,n,j ,2) = FALSE

connected(i,j ,n,3) = FALSE, i,j 6 [Ln] (3.20)

Furthermore a third array, an integer value array this time, is used to save the infor-

mation on the cluster status of every vertex. The integer value assigned to every

57



entry of clusterNumber(O:maxn1,0zmaxnl,0:maxn1) is the number correspond-

ing to the place in row at which the cluster find algorithm, see Sec. 3.3.2, found

the cluster to which the present vertex belongs. Here maxnl 2 man + 1. The

value clusterNumber(i, j ,k) = 0 is meant to indicate that (i, j, k) has not yet been

checked by the algorithm. The zeroth and n + lst layer vertices (in each direction)

are assigned cluster numbers hcln equal to the highest number of clusters occurring

if the lattice is fully fragmented, plus one:

hcln = n3 +1. (3.21)

This provides for a ‘surface cluster‘ that seems already checked, which lets the cluster

algorithm stop at the natural lattice boundaries. In the next step the lattice con-

figuration is analyzed with the cluster find algorithm and the appropriate values are

recorded. The whole Monte Carlo step is repeated nevem times, using independent

random number seeds each time, which are obtained from the system clock, with

new“ on the order of 100. Then the averages of the observables are calculated.

3.3.2 Cluster Analysis

We use a cluster algorithm first described in [BPDM86]. We abide by the same

notation as used in the cited reference for the description of the algorithm. The set

of all vertices in the lattice is denoted by A. The set of vertices that have not yet

been checked by the cluster find algorithm and are thus still uncounted, is written

as Am)“, with Am“ C A. The task is to find all clusters 0,, and record their size

|C,-|. The algorithm accomplishes this task by scanning the lattice for the first vertex

2", belonging to the subset of unchecked vertices: 2'; E Aml’". Now all other sites

2",- 6 Am", connected by open edges to 2",, 2} +—> 2", have to be detected. Am"
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denotes the next generation of unchecked sites,

A(1),i : A(0),i _ 0(0),i.

0(0).i = {2}} is called the zeroth generation of 0,, where C,- = {2", . . . 2",} is the cluster

with |C’,| = n which we want to detect. In the next step all previously unvisited

neighbors of 2", are checked if they are connected to the site from which the search

is originating. All neighboring sites that are connected to 2", form the so—called first

generation 0(1)" of 0,. At some n we will have

A(n+l),i ___ A(n),i _ 0(n—1),i : A(n),i,

as 0(n),i = (0, which is the termination condition for the algorithm. The cluster C,- is

then given by

a=UwW fix)

The algorithm restarts screening the lattice until a new starting vertex 2",“, belonging

to Am)“1 2 Am)’i — 0,, is found. All clusters have been found if Aw)” = (2) and N is

then the number of clusters in the present configuration.

3.3.3 Determination of the Critical Value

The second type of program written is aimed at the question of determining the

critical value in a more precise manner than from extrapolation methods based on

phase transition plots, of, for example, poo. Three different versions of this type of

program have been written, which determine the threshold for the onset of percolation

in terms of pz, p¢ and fb. In the description here, we will only describe the one that

gives pi through determining pi. The first steps in all three programs are the same

as described in Sec. 3.3.1, in that sense as that the procedure to populate the lattice
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and the edges are the same. They stand, however in a different framework, which is

described in the following. Every Monte-Carlo step now comprises an nested interval

method approach to the critical value. We repeat each Monte Carlo step nevent times,

with nevent again on the order of 100 and using different random seeds for each Mont

Carlo step. For each value of fb the program is given the values of p¢ that are to be

probed as well as a start interval for p: E [a, b]. The actual value of p: that is to be

probed in the first sweep of the lattice is determined according to

p==c=/\b+(1—/\)a.. (3,23)

A typical value that we used for /\ was

A = 0.9.

With the random number assigned for this Monte Carlo step the lattice is populated

and the edges determined to be open or closed. Then, the cluster find algorithm,

as described in Sec. 3.3.2, goes through the lattice. This time, however, as the aim

is to determine the critical value, not the whole cluster information is needed, the

only interesting question is whether there exists an infinite cluster as defined in Sec.

2.4.1 with (2.10) and (2.11). Therefore, the cluster find algorithm is constrained

to one boundary layer of the lattice in one direction, which in the program is the

(i, j, n), i, j E [1, n] layer. From there, the algorithm follows the branching of every

cluster but stops immediately if it reaches the bottom of the lattice, that is the

(i, j, 1), i, j E [1, n] layer. We then only have two possibilities: Either the algorithm

stops after checking all clusters originating in the (i, j, n), i, j 6 [Ln] layer and

not finding any spanning cluster, where we assign 1b = 0 or it stops after finding a

spanning cluster and 11) = 1 is assigned. Then the new pZ-interval is

{
(3.24)

 

a,c, if 112:0

c,b, if 212:1'
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This process is repeated a desired number of times, depending on the size of the final

interval one wants to attain. Usually, we set as final interval size

|d — cl 2 104,

where

depending on the outcome of the last step. The value of Cfinal from the final step then

gives the critical value

1952‘ = cfinaz. (3.25)

After completion of the new“ Monte-Carlo steps averaging over all obtained p? yields

the threshold:

1 " .

(i = — E'. 3.26p- n ;p_ ( )

The critical value of the scaled control parameter p+ is then simply given as

p: = 0:1): + a¢p¢. (3.27)

A calculation of the statistical errors is performed as well. However, to obtain the

total error, the systematic error, due to finite size effects, has to be added to the

Statistical errors. We will come back to a discussion of the systematic errors and

Ways to estimate them in Sec. 3.7.

3.4 Two Components using the Scaled Control Pa—

rameter

After giving a review of the techniques used in the simulations of which we present

the results, we now want to come back to the discussion led in Sec. 3.1. In (3.6) we

61



introduced a scaled control parameter with the intention of being more capable to

extract information about a possible phase transition and to be able to describe the

phase transition behavior in terms of just one variable. In Sec. 3.2 we then discussed

our model, in the case of two components, still in terms of two variables p: and p32.

Now we want to realize a description in terms of the variable p+.

3.4.1 Entire Parameter Range

First, we will aim at a discussion of the data from simulations where, as before,

fb = 0.5 and then come to present the results for fb 79 0.5.

Blue Species Concentration fb = 0.5

We take the same data as shown in Fig. 3.1, that is, we have p._., p¢ E [0, 1] and analyze

it in terms of the scaled control parameter p+. The result is shown in Fig. 3.4. Two
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Figure 3.4: Probability to belong to the infinite cluster, poo, as a function of the

scaled control parameter, p+, in a 1283 simple cubic lattice with fb = 0.5, for values

of p=,p¢ 6 [0,1], fitted with pc,o oc (p+ — pi)fl (solid line). Here pi 2 0.251 for the

’upper’ branch, pi 2 0.280 for the ’lower’ branch and fl = 0.41 in both cases. The

inset shows the same data in a double logarithmic representation.
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distinct branches can be seen, both in the shape of a second order phase transition.

Fig. 3.4 first suggests that the scaled control parameter p+ is a good variable, as

we only have two universal scaled curves. However, it suggests too, that some other

phase transition happens in the system as well. On a first eye-analysis it seems that

we see the system in two different states, which both show, as a function of p+, a

similar behavior in the percolation probability poo. Before we come to an analysis

about how the two phases, of which the two universal scaled curves are an indicator,

come about, we will devote some time to an analysis of the curves themselves.

In the main part of Fig. 3.4 we show the data on linearly scaled axes. Both

are in the form of a second order phase transition and we fit both curves with the

expectation from ordinary one component percolation theory, see (2.67),

poo = a (19+ - Pi)fl- (328)

With the fitting procedure, we find for the critical value of the ’upper branch’

pi = 0.251 :1: 0.002. (3.29)

Taking finite size effects into account, for which we did not correct at this point, this

stands in reasonable agreement with other numerical results for one component bond

percolation theory, see for example, [SA94], which state

p: = 0.2488, (3.30)

or [LZ98], where the threshold is given very precisely as

pi = 0.2488126 :i: 0.0000005. (3.31)

The value of the lower branch, however, is shifted to a higher threshold. With the

same fitting procedure we find for the critical value of the data belonging to the ’lower
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branch’

pi = 0.280 :t 0.002. (3.32)

Another important quantity that should elucidate the situation is the critical expo-

nent 6. To test upon it, we print the same data as shown in the main part of Fig.

3.4 in a double logarithmic plot, the result of which is shown in the inset of Fig. 3.4.

We can see that in the double logarithmic display both branches are well-fitted by

linear functions with the same slope B, that is, on a linear scale with the same critical

exponent, which we find to be

{3 = 0.41, (3.33)

for both branches. This is the same critical exponent as found by other authors for

one-component bond percolation theory and as given, for example, in [SA94]. We

should note again that the critical value of p+ depends on the dimension and the

lattice structure of the system, whereas the critical exponents just depend on the

dimensionality.

We now come back to the question which two states we see manifest in form of

the two poo curves. A further analysis of the data unveils that the ’upper branch’

constitutes of points with both p: and p¢ non-zero’, whereas all points with (p: =

0, p52 75 0) and (p: 96 0, p¢ = 0) fall on the ’lower’ branch. In a shorter notation we

can summarize this behavior in the following way

1?: 11¢ # 0, ’upper branch’ (3.34)

1): 13¢ = 0, ’lower branch’ (3.35)

This leads to the conclusion that some fundamental change has to take place in the

 

1We have to note that the term ’non-zero’ is somewhat imprecise, we will further elaborate this

point in Sec. 3.5.2
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system, when the system is brought to either one of the two limits

I): —> 0.

or

p¢ —~> 0.

Together with the results stated above we can now conclude that, as long as both

bond types are active, which corresponds to the (p: 96 0,p¢ 7e 0)-regime, the two-

component site-bond percolation system under observation here and the ordinary

one-component bond percolation system show an identical phase transition behavior,

which is in accordance with the findings presented in [Baued]. Obviously this means

further that the actual values of the individual bond existence probabilities p: and p¢

do not have a direct influence on the percolation probability, but rather that the actual

bond density p, is the direct equivalent of the control parameter in one-component

percolation and thus fulfills the expectations under which it was introduced. As soon

as one of the bond types is disabled, however, the system fundamentally changes its

behavior, going over to a new critical value of p+ for the order parameter poo. The

basic features are retained, a second order phase transition of the order parameter,

poo, is still observed and furthermore with the same critical exponent 3 as in the

non-zero regime of p: and p¢.

Blue Species Concentration fb 75 0.5

Probing at another value of fb yields essentially the same effect. As an example, in

Fig. 3.5, we show data for fb 2: 0.3. Here, the curve that we called ’upper branch’,

that is the data for values p= ;£ 0 and p¢ 72$ 0 can be shown to be exactly the same

as in the previous case, where fb = 0.5, we retain precisely the same critical value

pi r: 0.251
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Figure 3.5: Probability to belong to the infinite cluster, poo, as a function of the

scaled control parameter, p+, in a 1283 simple cubic lattice with fb = 0.3, for values

of pz, p¢ 6 [0,1], fitted with poo oc (p+ — pi)fl (solid line). Here pi 2 0.251 for the

’upper’ branch, pi 2 0.218 for the p9,; = 0 branch, pi 2 0.266 for the p= = 0 branch

and [3 = 0.41 in all cases.

and the same critical exponent 6. For the data that constitutes of points where either

p: = 0 or p¢ = 0, the situation is changed. First, the data for p= = 0 and p¢ = 0 do

not fall on the same universal scaled curve, but rather show different limiting values

for p+ —> 1 and different critical valuesz. We find

pi(p= = 0,p¢) = 0.266 :1: 0.002. (3.36)

for the ’p: = 0’-branch and

pi(pz, [9,2 = 0) = 0.218 :1: 0.002. (3.37)

for the ’p¢ = 0’-branch. In Fig. 3.6 we show the same data3 as depicted in Fig. 3.5

in a double-logarithmic plot. As can be seen, all three curves are very well fit with

 

2When we say p+ -> 1 limit here, we mean to indicate the direction in which we let p+ go, being

well aware that 104. = 1 can not be attained for most values of fb whilst p= = 0 or p¢ = 0.

3 We have to note that, since the data shown in Fig 3.5 is lower quality data then the one depicted

in Fig. 3.4, we have, in Fig. 3.6, corrected for some of the stronger fluctuations seen in Fig. 3.6 and

left out some data points
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Figure 3.6: The same data as shown in Fig. 3.5 in a double logarithmic representation,

with a slope of all three curves of 6 = 0.41.

linear functions of the same slope 6, that is the same critical exponent H in the linear

scale. As was already the case for fb = 0.5, we again have

B = 0.41, (3.38)

for all three branches. A different behavior in the limiting values of p+ and the critical

value pi for the ’p= = 0’-branch and the ’p¢ = 0’-branch has to be expected, since in

the system, we have a symmetry in the concentration with respect to fb = 0.5. This

symmetry is made possible through us setting

P: : Pbb : prri

which leaves edges connecting two sites of the same species and edges connecting two

sites of different species as only possibilities. We then have a ’binary’ system with

a: and cry; as the two quantities that show a symmetry with respect to f), = 0.5 and

furthermore have

a46=08=a26=99,
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see (3.14), (3.15) and Fig. 3.7, which leads to the coinciding of the (p= = 0,p¢ ¢ 0)

and (p: # 0, p¢ = 0) curves as shown in Fig. 3.4. The fact that the limiting values
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Figure 3.7: The normalized density of edges connecting two sites of equal flavor,

a:(fb) and the normalized density of edges connecting two sites of diflerent flavor,

a¢(fb). See also (3.14) and (3.15).

poo(p+ —) 1) of both curves differ can be understood in the following way. Having set

p: = 0 and letting p+ —> 1 requires letting p75 —> 1. Then the maximum value of p00

is determined by fb:

1900(1): = 0,p¢ = 1) = min(fb, (1 - ft»), (3.39)

with a symmetry again with respect to fb = 0.5. The same line of thought applies to

the case where p7; = 0 and p: = 1, however due to the behavior of a: we have

p000): :1,p¢ = 0) = max(fb,(1— fb)). (3.40)

It has to be noted that the equality in (3.39) and (3.40) is not strict, since geometrical

effects play an important role. By geometrical effects we mean the fact that due to

the geometric position of the particles on the lattice some of the particles will be

inaccessible by either, depending on the limit, bb—, rr- or br-bonds and thus a part
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of the whole fraction fb or fr = (1 — fb) will be excluded. We want to elaborate on

the footnote (2) made above to clarify the notation p+ —) 1. Having set one of the

bond existence probabilities equal to 0, the maximum value of p+ is given by a: or

a¢ respectively. Thus, unless fb = 0 or fb = 1 the real limit p+ = 1 can never be

reached once either p: = 0 or p¢ = 0, rather will it be impossible to probe above a

maximum value of p+, which is given as

max

p+ : a¢1

OI'

p+ : 0:,

depending on whether (p: = 0,p¢ : 1) or (p: = 0,p¢ = 1) was set.

3.5 The Percolation Probability

In the afore—held discussion on the behavior of the percolation probability as a function

of the scaled control parameter p+ it became clear that in a wide range of values of the

’contributing’ parameters p: and p¢ the percolation probability exhibits features sim-

ilar to the ones observed for the percolation probability in an ordinary one-component

bond percolation system, but that when setting one of the contributing parameters

to zero, the system would behave different. In this section we want to present results

that show how this different behavior comes about. We will more or less focus on the

limit p¢ = 0, as the same line of arguments applies in the p: = 0 limit, but we will

still present the results from an investigation in the second limit too.

3.5.1 p95 —> 0 Limit

Going back to Fig. 3.4 we can choose an arbitrary value of p+ > pi(’lower branch’),

so that the corresponding percolation probabilities will be non-zero and compare the
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percolation probability that we have on the upper branch with the one that one

obtains through the lower branch. One realizes that there exists a finite difference:

1980(1): at 0.2% 79 0) - poo(p=,p¢ = 0) > 0- (3-41)

The question arises, how the percolation probability behaves when the system is let

into the p¢ = 0 limit.

For simplicity, we first choose

p: = 1.

We will furthermore, for the sake of ease of argument, set

fb = 0.5

in this first discussion and then later on state the differences that occur for other

values of fb. Then setting p¢ = 0 corresponds to a lattice in which all available

bb—edges and all available rr-edges are open, but all br-edges are closed. With a

very high probability there will be an infinite network present. This comes about

in the following way. Effectively with this choice of parameters, we are modeling a

two-component site percolation model with two disjunct types of clusters. These are

clusters of b-type and clusters of r-type, which are entirely disconnected as p¢ = 0 was

chosen. Then, for site percolation, for the given fb, we are above the site percolation

threshold in the case of a simple cubic lattice, which is, compare [SA94],

C = 0.3116. (3.42)
site

Since the second species has a concentration f, = (1 - fb) scite above the threshold

as well, it is highly probable that both species will have a spanning cluster. According

to the definition we set forth for an infinite cluster (2.10) and (2.11), there will be

only one infinite cluster Coo, however, which has to fulfill the additional requirement
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of being the biggest cluster. Let us just assume that the biggest, spanning cluster,

which we identify with the infinite cluster, is of blue color. Following (2.66) and

(2.65), we can express the percolation probability as

1W(¢=0)=fb-:n2,s (3.43)

where, like before, the symbolic notation ’oo — 1’ for a finite system is meant to

indicate that in the sum the infinite cluster is excluded. From a simple argument,

we can approximately evaluate the sum, without exactly calculating every term in

the cluster size distribution n2 .Given the fact that p: = 1 and p¢-— 0, according

to the argument presented in the preceding section, see (3.40), we will encounter a

maximum value of poo,

= f, = 0.5. . (3-44)

It has to be noted that this value is an upper limit, typically the percolation proba-

bility will come to lie slightly below this value, as confirmed in simulations, where we

find

p00 2 0.48. (3.45)

The reason are geometrical effects. By geometrical effects it is meant that some blue

sites will be inaccessible from other blue sites, thus leading to the fact that not the

whole fraction of fb blue sites is accessible. In (3.43) 71.2 denotes the number of b-

clusters of size 3. As already stated, there is a high probability that also the second

color has a spanning cluster. If not so, then at least the biggest r-cluster, 05m,

will have a size on the order of the size of the infinite cluster, since both colors are

symmetric,

|~~ |le- (3.46)
ICrmax
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Analogously to (3.43) we can formulate the probability that a given lattice site is part

of the biggest r-cluster, C' as
man: 7

max— 1

192010914 = 0) = fr — Z n; s, (3.47)

3:1

and with the same line of thought as for the blue species we find

r,maz

em... = f.— = 0.5. (3.48)

Again, the true value will be slightly below that, where, again,

pin“ 2 0.48, (3.49)

is a typical value. Starting from this configuration where poo S, 0.5, and pin“ S, 0.5,

we now set

p95 2 E (3.50)

This will introduce a very low br-bond density in the lattice. The infinite cluster in

this new configuration of parameter values can then consist of both b- and r-vertices

and we can write the percolation probability p00 as

oo—l

poo(p;é = e) = 1 — Z n. s. (3.51)

3:1

This yields a difference in the percolation probability at p91 : 0 and the percolation

probability at p¢ : 5:

605(5) = poem = 8) - 90000.1 = 0) _

: 1—ZnSs—(fb—ans). (3.52)

By rewriting the concentration of the blue species, fb, as

fb = (1_ fr)

: 1 — Zn; 3, (3.53)

8:21
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we obtain

mas: oo—l

600(5) : (0:1 n: s + 2n; 3) — Z n, s. (3.54)

3:1

The difference (500 has the property that, if we let 5 —+ 0, for all e > 0, the limit will

be non-vanishing:

lirré 600(6 > 0) > 0. (3.55)

This comes about, since, with a very high probability, the bonds making up for this

low density will connect the two biggest clusters in the lattice, C00 and C' as
man: 3

according to our consideration above, we have,

poo + 192.... § 1- (3-56)

Thus almost surely do we have (3.55) fulfilled.

How is the situation in a simulation on a finite lattice? In this case the situation

is slightly different. Setting the bond probability p¢ to some fixed value p¢ > 0 does

yield a corresponding bond density, but just on average. Events where no bonds at

all are introduced in the lattice do have finite probabilities. What is the implication?

Let us consider a case where we set

P¢=€

= 1 an)1

Nedges -

 

which introduces on average one bond < 5,1" > in the lattice. For each event where

such a br-bond does occur, almost surely < 5,? > will connect the infinite cluster

Coo and the biggest cluster of the red colored species, C" We rely on the same
man: '

argument as above, which states that we have probabilities to belong to the infinite

cluster and to belong to the biggest red cluster, both close to 0.5,

Poo 1:92.151-
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Then, the ’new’ infinite cluster will be made up out of the ’former’ Cc,o and 0,2,”

together. This will yield, as in the case of the infinite lattice, a higher percolation

probability compared to the p¢ : 0 system. The rare events in which the br-bond

< 5,7" > does not connect C00 and Cg,” or where it connects C00 to some finite

r-cluster, C12", as well as the events in which no br-bond at all is formed, will exhibit

a smaller increase in the percolation probability or none at all. In a simulation an

average over all events will yield an eflective value of (50°, denoted by 6:017, with

0 < 655,7 < 600. (3.58)

The arguments presented, with (3.55) for the infinite lattice and (3.58) for the finite

lattice, lead to the conclusion that in the limit p¢ ——> 0 a first order phase transition

takes place in poo.

The simulation results support this conjecture, as shown in Fig. 3.8. It has to be

1
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Figure 3.8: Probability to belong to the infinite cluster, poo, as a function of the scaled

control parameter p+, in a 1283 simple cubic lattice with fb : 0.5, at fixed p: : 1

for varied p52. 50 independent simulation events where taken into account and the

average was taken over events in which the number of br-bonds actually formed in

the simulation, nbr, was non-zero.

noted that for the data shown here in the analysis the average was taken only over
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events in which the number of br-bonds, nb,, actually produced in the simulation,

was non-finite:

Tim-7&0.

Another possibility is to average over all events, which gives a smaller 637, as one also

includes events in which the lattice is completely unchanged and the same percola—

tion probability is found. Data from the same simulation, analyzed with the second

averaging technique, where all events were taken into account, is shown in Fig. 3.9.

Naturally the question arises, what the behavior is like for p: 31$ 1. Still, a first order

 1. . . ..

0.9- @3333

0.3 . j i 93.3 <p.=1.p..) *—6—'
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p
o
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Figure 3.9: Probability to belong to the infinite cluster, poo, as a function of the scaled

control parameter p+, in a 1283 simple cubic lattice with fb : 0.5, at fixed p= : 1

for varied p¢. 50 independent simulation events where taken into account and the

average was taken over all events.

phase transition will be observed, since essentially nothing is changed, compared to

the case where p: : 1. The effect will be somewhat less pronounced, that is a smaller

500 will be seen. This comes about since

ICoo(P= <1)| < lCoo(P= =1)|,
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and

ICINAI): < 1)| < ICI....1(1?= =1)|-

It is clear, however that

 

p_ > 191(1): 74 0.19.4 75 0)
_ a=(fb) (3.59)

is necessary to obtain this phase transition, as otherwise

poo : 0-

Equation (3.59) represents a condition p: and fb combined are subjected to. For

101(1): 75 0119.4 95 0) 131(1):.114 = 0)

a=(f6) < p: < a=(fb) (3’60)

  

the above argument, which relies on the existence of an infinite cluster in the p¢ : 0

limit does not hold anymore in exactly the same way. However we merely have to

replace the term ’infinite cluster 000’ by ’biggest b—cluster’ and then rely on the same

conduct of argument again. There will be no percolation being realized with p¢ : 0,

but connecting C3,“ (instead of Coo, as before) with 0;,” at 11¢ : 5 creates an

infinite br-cluster. In the case of p: satisfying (3.60), the effect will be diminished ,

as already explained afore, as the sums in (3.54) turn out smaller.

What is the situation like for fb # 0.5? In order to have the original argument

hold for p: : 1, the system has to stay above the site percolation threshold as given

in (3.42). Below, the same consideration as above applies, there will only be finite

clusters present and again, the term infinite cluster has to be replaced by biggest

finite cluster to follow the same line of argument. The first order phase transition

exhibits a smaller discontinuity with decreasing fb for

fb < 0.5,
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or with increasing fb for

fb > 0.5,

and the effect continuously vanishes for fb —> 0 and fb —> 1.

3.5.2 The ’Smearing—Out’ Effect

Some arguments of the discussion from the preceding section can be applied in the

question of an effect that we call ’smearing—out’ effect, which we already briefly com-

mented on in a footnote in Sec. 3.4.1. The observable we are interested in is the

percolation probability poo. We set p¢ and p= to some fixed value p=, p¢ E [0, 1], and

determine the percolation probability. We then show the percolation probability p00

as a function of p¢ and take p: as parameter, the result of which is shown Fig. 3.10".

It is noteworthy that we transformed the real parameter dependence on 19: that was

present in the simulation to a parametric dependence on p+ since then the known

values of thresholds are more easily compared. What leads to the functional forms

depicted in Fig. 3.10? At p+ : 0.25 there exist only finite b- and r-clusters, since the

system is below the threshold, pi 2 0.28. Then, increasing p71 only connects finite

clusters, leading to a small 600, leading to the nearly continuous looking function. For

a slightly higher value of pr : 0.26 the efl'ect is quite more important and yet more

astounding is the change from the curve where p+ : 0.26 to the one for p+ : 0.28,

where the claim of a first order phase transition seems more obvious than in the cases

cited before. For completeness we also show curves for p+ : 0.30 and p+ : 0.5, where

it becomes clear that the 1500 observed keeps becoming bigger with increased p+. At

the same time, the width of the transition region, where effects discussed above in

the context of 637 are of importance, becomes increasingly smaller. This transition

 

4We would like to note that the small ’hole’ in the ’right hand side’ of the simulation data is no

inherent effect, but rather due to a lack of simulation in this region, which however is symmetric to

the ’left hand side’ of the curves.
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Figure 3.10: Percolation probability as a function of p96, with a parametric dependence

on p+, shown for a 1283 simple cubic lattice with f), : 0.5.

region and its width have an effect when the percolation probability is shown as a

function of p+. It causes the two ’branches’ shown in Fig. 3.4 not to be clear, but

’smeared out’ around the most probable ’plateau’ value observed in Fig. 3.10. In

Fig. 3.4 we corrected for this smearing out by only taking into account data points

lying on the ’plateau’ seen in Fig. 3.10. Thus we can now precise or notation of ’p:

and p32 non-zero’, clarifying that we mean values of p: and p¢ chosen in such a way

that the effect of the transition region, due to the first order phase transition having

smaller discontinuities for smaller p: (smaller p+ in the figure), can not be seen, that

is, values chosen in such a way that p00 comes to lie in the plateau region.

3.5.3 p: ——> 0 Limit

In this section we want to briefly Show that the same results hold for p: —-> 0 as

in the preceding section for p¢ —+ 0. The backbone of the argumentation, which

is the presence of two clusters of essentially the same size in the lattice at p: : 0,

is retained, however the argumentation how they come about has to be changed.
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Again, for ease of argument, we first set p91 : 1 fixed and vary p: from p: : 0

to p= : e. For (p: : 0,p¢ : 1) the situation will be as follows: There are only

br-bonds allowed in the lattice, leading, with this combination of parameter values,

to an infinite br-cluster Coo. The percolation probability, poo, is given again, compare

(3.39) and (3.44), by

poo é f1. = 0.5. (3.61)

Although, contrary to the p¢ : 0 limit, no second species is left to provide a second

cluster with a size on the order of the size of the infinite cluster Coo, there is a second

br-cluster present in the system that we denote by Cm” and that, as was in the p¢ : 0

limit the biggest red cluster to the biggest blue cluster (assumed to be the infinite

cluster), is symmetric to the infinite cluster. Thus, with a very high probability, Cm“

spans the entire system as well. For 000 and Cm“ we have

lCmaxl z lCool1 (3.62)

yielding, as before,

poo + pmaz g 1. (3.63)

How does Cm” come about? This feature is unique to lattices where, from a given

vertex 2 it is not possible to reach every other vertex 2,- on the lattice with a path

2 <—+ z,- of length m odd and a path of length n even. This is the case for the simple

cubic lattice. Starting from some blue vertex 2? : (k, l, m), which coordinate integers

satisfy

k+l+m:(2n+1),n€N, (3.64)

it will be impossible to reach another blue vertex 2? : (r, s, t) with

r+s+t=2n,n€N, (3.65)
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since in this configuration, with all bb— and rr-bonds disabled and only br-edges open,

always an even number of bonds is needed to get from a vertex with one color to

another vertex of the same color. Thus in this configuration clusters incorporating

’odd’ vertices of one color and clusters incorporating ’even’ vertices of the same color

will be entirely disjunct, providing for the two systems that both have, with a very

high probability, spanning clusters. If we now let

> 0, (3.66)

a low density of bb— and rr-bonds is introduced in the lattice. The bond(s) introduced

by p: : a open, with a high probability, an edge connecting Cm” and Coo, leading

to a non-vanishing 600,

lim 600(6 > 0) > 0. (3.67)
e—>0

Another way of arguing, which is restricted to the special case where fb : 0.5 involves

the system as discussed in Sec. 3.5.1 and a symmetry transformation. Before we pro-

ceed to give the transformation, let us introduce some short notation. All operations

are done in Z/Z2. The color of a vertex is denoted by

_ 0, if (k,l,m) blue

c(k,l,m) _ { 1, if (k,l,m) red ’ (3'68)

and we define the parity of a vertex as

0, if (k+l+m):2n,nEN

p(k,l,m):{ 1, if (k+l+m):(2n+1), nEN' (3'69)

The symmetry transformation is described by the following transformation rules:

19’: = 12¢ (3.70)

1); = p: (3-71)

c(k,l,m)' : c(k,l,m)+p(k,l,m). (3.72)
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This changes the color of every ’odd’ blue and of every ’even’ red vertex. This

means that on average half of the blue species are changed to red and half of the red

species are changed to blue. Thus the concentrations are preserved and obviously, by

conserving the species concentrations fb : 0.5 and f, : 0.5, the densities of accessible

edges, a:(fb) and a¢(fb) are conserved too. Every br-edge gets transformed into a

bb— or rr-edge and every bb— and rr-edge becomes a br-edge. Since, however, the bond

probabilities p: and p¢ are transformed according to (3.70), these edges get occupied

with the same probability as the br-edges before. Thus, as already stated, (3.70)

represents a symmetry transformation for the system where fb : 0.5.

Applying this transformation to the special case (p: :0, p¢ : 1) yields a transfor-

mation to the system discussed in Sec. (3.5.1), where (p: : 1, p¢ : 0) or vice-versa.

Thus the simplest explanation of the behavior encountered here is to refer to the sys-

tem discussed in Sec. 3.5.1 and to the arguments presented there and then transform

the system with (3.70) to the system interested in in this section.

For simulations on finite lattices the slight changes in the line of argument as

discussed in Sec. 3.5.1 apply, to which we merely want to refer at this point. We

support the claim of conjecture (3.67) with Fig. 3.11, which reproduces the behavior

shown in Fig. 3.8. The two methods of averaging discussed above are also applicable

here, but, since Fig. 3.8 already exhibits the same features as Fig. 3.11 we restrict

ourselves to this one averaging technique. In this limit here, (p: : 0, p91 : 1), the

system has to be above a different percolation threshold, ff, see [HB99], which we

will discuss in Sec. 3.6.5.
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Figure 3.11: Probability to belong to the infinite cluster, poo, as a function of the

scaled control parameter p1,, in a 1283 simple cubic lattice with fb : 0.5, at fixed

p¢ : 1 for varied p=. 50 independent simulation events where taken into account and

the average was taken over events in which the number of br-bonds actually formed

in the simulation, 715,, was non-zero.

3.6 The Critical Value of the Scaled Control Pa-

rameter

Obviously the question arises, what the behavior of the critical value of the scaled

control parameter, pi, is like. In Sec. 3.4.1 the results presented pointed at a concen-

tration dependence of the threshold. We will again, as already done in the previous

section, first focus on the limit p¢ ——> 0 and then turn our attention to the case where

p: —) 0.

3.6.1 1),; —-> 0 Limit

From Fig. 3.4 in Sec. 3.4.1 it was already clear that when setting the system into

a limit in which only one type of edges can be open, the percolation threshold, or

to be exact, the critical value of the scaled control parameter, pi, would take a

different value than in the case where all types of edges could be open. What Fig. 3.4
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could not show was the way this transition came about. How is the critical value pi

transformed? In Sec. 3.5.1 we found that in the limit we focus on here, p¢ —> 0, the

percolation probability undergoes a first order phase transition. Is the same true for

the percolation threshold? In a simulation specially aimed at answering this question,

we set p¢ to fixed values,

19¢ 6 [0,1]

and then apply the algorithm described in Sec. 3.3.3, which uses the nested interval

method, to determine the corresponding critical value of pz, pi. With p¢ and p;

the percolation threshold pi can be calculated. We show the results in Fig. 3.12.

It can be seen that the transition is continuous. Unlike the percolation probability,
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Figure 3.12: Critical value of the scaled control parameter, pi, in a 1283 simple cubic

lattice with fb : 0.5, plotted as a function of p¢.

the percolation threshold pi does not exhibit a discontinuity when p¢ ——> 0. In the

Figure, we only show the interval p91 E [0.0, 0.1], as, for p¢ : 0.1 the system is at the

critical value that is encountered for the regime in which both p: and p76 are non-zero

in the sense of Sec. 3.5.2, (p: 71$ 0,p¢ 75 0): pi 2 0.2488. In Fig. 3.12 we also show
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a fit to the data, which is of the form

1

C 2, —> 0 : —— t. ,

The fit parameters were found to be

11 : 34.6 :1: 0.3 (3.74)

v : 1823 :1: 72 (3.75)

t : 0.2462 :1: 0.0003. (3.76)

It has to be noted that this formula only stands on empirical grounds, fits by expo-

nential functions may also be useful.

3.6.2 p: —> 0 Limit

Again, for completeness, we also want to discuss the second possible limit where one

of the bond types is disabled. We thus set p: to some fixed value p: E [0, 1] and then

subject p¢ to a variation with the nested interval method algorithm in order to find

its critical value pi. Again, having determined pi, we calculate the corresponding

pi and then show pi versus the bond existence probability p=. This has been done

in Fig. 3.13. The curve does not look any different from the one displayed in Fig.

3.13 and a fitting procedure with the function given in (3.73) reveals the following fit

parameters, which are in very good accordance with (3.74).

v. = 33.7103 (3.77)

v = 1744173 (3.78)

t 2 02461200003 (3.79)
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Figure 3.13: Critical value of the scaled control parameter, pi, in a 1283 simple cubic

lattice with fb = 0.5, plotted as a function of pz.

3.6.3 Concentration Dependence in the p¢ = 0 Limit

In the preceding section we showed the behavior of the system for either one of the

bond probabilities going to zero. We observed that the critical value of the scaled

control variable, p+ under goes a continuous phase transition when letting p: —> 0

or p¢ —> 0. Until now, in this question of the limiting behavior we have only been

looking at a system with a fixed concentration of blue species of fb = 0.5. We can

presume that for values of the blue species concentration fb aé 0.5 the general behavior

of a continuous transition will be conserved. This indeed is true, as simulation results

indicate, as shown in Fig. 3.14. Also shown is a fit to the data, as in (3.73) of the

form

1
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Figure 3.14: Critical value of the scaled control parameter, pi, in a 1283 simple cubic

lattice with fb = 0.3, plotted as a function of p76.

where the fit parameters were found to be

u = —17.610.7 (3.81)

v = —129.0114.6 (3.82)

t = 027410.003 (3.83)

in this case. It can be seen that the limiting value of pi (19¢ = O) is not the same as

for fb = 0.5 and we suspect a concentration dependence of the threshold in the limit

13¢ —+ 0. We undertook simulations, again of simple cubic lattices of size L = 163,

L = 323, L = 643 and L = 1283, at different concentrations of the blue species,

determining the critical value of the bond density for p¢ = 0. The results shown in

Fig. 3.15 are fits of the data obtained from the simulations on the four different

lattice sizes to the scaling law given in Sec. 2.5 in (2.89):

[pi(L) — pil oc L—l/V, (3.84)
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Figure 3.15: Critical value of the scaled control parameter, pi, plotted as a function

of the fraction of blue sites, fb, in the limit p¢ = 0 and obtained from simulations on

simple cubic lattices of size L = 163, L = 323, L = 643 and L = 1283 by a fit to the

scaling law |pi(L) — pi| oc L‘l/V. The errors, estimated as described in [vdM97], are

smaller than the symbol sizes.

where by pi we mean to indicate the threshold in a lattice of infinite extent. The

critical exponent V was kept fixed at

1/ = 0.88. (3.85)

We already alluded to the problem of the estimation of systematic errors in the

context of finite size scaling. We will come back to a discussion of different estimation

techniques in Sec. 3.7 and for the moment content ourselves with the statement that

the estimates we performed led to errorbars smaller than the symbol size in Fig. 3.15.

Also shown in Fig. 3.15 is a fit of the data with

2 _l2 l

Pi(fb,P¢=0)= (f;+:7:f:2-
 (3.86)

This is Eq. (3.13) for the critical values with the purely empirical assumption of

a hyperbola for pi(fb), which is in agreement with the results of Heermann and

Stauffer for a one component site—bond model [HS81]. Fitting the parameters to our
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simulation data results in

h = 400710.002 (3.87)

m = —4.42810.005 (3.88)

A comparison with the formula given by Heermann and Stauffer yields

 

 

1

h = C

pbond

= 4.019 (3.89)

1 _ pgondm _

pgand(f:ite - 1)

= —4.386, (3.90)

where pgmd = 0.2488 and site 2 0.3116 are the percolation thresholds for one com-

ponent bond- and site- percolation on a three dimensional simple cubic lattice, re-

spectively. However, in contrast to the one component model, due to the symmetry

introduced in the system, notably that p: E pbb = p", see (3.10) in Sec. 3.2.1 we

only have fb E [0.0, 0.5] as independent regime here, with the interval fb 6 [05,10]

being symmetric to the one shown here, with only the roles of blue and red sites

being switched. This is a manifestation of the two components behaving like two su-

perposed, non-interfering one component site-bond percolation systems. We further

illustrate this interpretation in the following. We presume that in the limit we are

discussing right now, p¢ = 0, there is no cross influence from the two species. We

check this presumption by taking the empirical formula as shown above or as given

in [H881] for a one component site-bond percolation model and plotting them for a

concentration fb and a concentration f, = (1 - fb). This corresponds to an isolated

system of blue sites with concentration fb and a second isolated system of red sites

with concentration f, = (1 - fb) and yields Fig. 3.16. For ease of comparison, we

express both concentrations in terms of one and thus for both curves do we use the
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Figure 3.16: Threshold p": versus concentration fb for two one-component site-bond

percolation models.

same variable fb. Following the presumption that both behave independently, we

just consider the two curves as superposed and obtain a phase diagram for the two

component system, by regarding the left axis as showing p: and not its critical value

pi. We first realize that indeed we do reproduce a picture with a symmetry with

respect to fb = 0.5 and secondly that there are three phases:

1. Below both curves: No percolation.

2. Above one of the curves, below the second: One component percolates.

3. Above both curves: Both components percolate.

We can also transform the natural variable that we have used so far in the analysis,

p; to the scaled control variable pi. We show the phase diagram in terms of pi in

Fig. 3.17. The curves now are in the same shape as our simulation results. We can

summarize two facts: First the fact that indeed in the limit p¢ = 0 the two—component

site-bond percolation system may be described by two superposed, independent one

component site-bond percolation systems and second that the two-component site-
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Figure 3.17: Threshold pi versus concentration fb for two one-component site-bond

percolation models.

bond percolation system essentially behaves as a one-component bond-percolation

system when both bond types are active, see Sec. 3.4.1. These two facts let us

conclude that the phase transition in pi observed for p¢ —+ 0, see Sec. 3.6.1, may be

interpreted as an effective transition from a one-component bond percolation model

to a one—component site-bond percolation model.

3.6.4 The Cut-Out Technique

In addition to the confirmation of the finding (3.86) through the results of Heermann

and Stauffer, we also performed another type of simulation to check on the decreasing

behavior of pi in the regime for small fb. It has to be stated that this method does

not represent a thorough verification, however it does give a good confirmation of the

results. We simulated a one-component bond percolation system on a simple cubic

lattice at some fixed p: > pi, let the cluster structure evolve and then determined

the percolation probability. In a second step an algorithm swept through the whole

lattice, cutting out sites at random with a given probability pm), which was varied,
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pm 6 [0,1], and determined the percolation probability again. In Fig. 3.18 we show

the percolation probability poo as a function of the probability that an arbitrary site

gets cut out, pm. A linear, decreasing dependence on the cut-probability is observed

0.38 . r 

  

   

pco(pcut) '—'A_‘

q‘w'Pcut

p
o
o

.
o

u

0
)

   
0 0.005 0.01 0.015 0.02

pcut

Figure 3.18: Percolation probability p00 versus the probability that a site gets ’cut-

01“,) pout-

in the first regime, for pout ,2 0.012 a stronger decrease sets in. For completeness, we

state the values of the fit parameters for the linear fit

29000283) = q + 0 pm, (3.91)

of the data also shown in Fig 3.18, which are

q = 036110.001 (3.92)

0 = —5.810.1. (3.93)

We can relate pm to fb and through the observation of a decreasing p00 can make

plausible a linear rise ofpi with pout or. In the framework of the two-component model

in the p7; = 0 limit, pout corresponds to fb. In the same regime however, we have

a quadratically decreasing function a:(fb), see Fig. 3.7. To arrive at the threshold

pi, we have to multiply p”: with 07:, which then will be decreasing, dominated by
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the quadratic decrease in 01:. It has to be noted that the argument is only valid

for relatively small values of the cutout probability pcut since at higher values the

system shows a rapid decrease to a vanishing percolation probability. It is at least an

intuitive, heuristic argument for explaining the seemingly counter-intuitive effect of a

decreasing threshold with an increasing number of sites of another species, which in

the limit p¢ act as geometrical obstructions for the percolating major concentration

species. We have to emphasize again that this is by far no thorough argument but

rather one of mere plausibility, giving however a good intuitive explanation for the

decrease of pi for small fb.

3.6.5 Concentration Dependence in the p: = 0 Limit

We now come to the question of the concentration dependence in the case where

all edges connecting sites occupied by the same species are closed always. In the

preceding sections we found that the percolation probability does not show a different

behavior whether p¢ ——> 0 or p: —> 0. Here however, it will become clear, that contrary

to the percolation probability, the critical value of the bond density, pi, does show a

different behavior in the two different limits. The simulation is essentially the same

as described in Sec. 3.6.3, p: 1:. 0 is set and with the nested interval method the

critical value of p73 is determined, from which pi is calculated. Again we undertook

simulations on simple cubic lattices of size L = 163, L = 323, L = 643 and L = 1283

and then fitted the results with the scaling relation (3.84), providing us with the

’true’ threshold in the limit of the lattice size L —+ 00. The same discussion as led in

Sec. 3.6.5, concerning the systematic errors, applies and again we refer to Sec. 3.7

for a more complete discussion. We present the simulation results in Fig. 3.19. In

the upper curve of Fig. 3.19 we go back to the bond existence probability p¢. Its

critical value, as a function of the concentration, pc fb , is well reproduced with an,2
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Figure 3.19: Critical value of p¢ and of the scaled control parameter, p; and pi,

plotted as a function of the fraction of blue sites fb in the limit p= = 0. The data

has been obtained by a fit to |pi(L) — pi| oc L‘l/V. Again the errors, estimated as

described in [vdM97], are smaller than the symbol sizes.

exponential fit:

80 = P;(fb)

= a exp(—d fb) +c (3.94)

Fitting this empirical formula to the simulation data gives

a = 2.121: 0.07 (3.95)

d = 10.9 :1: 0.2 (3.96)

c = 0.547 :1: 0.002 (3.97)

We define

ff E w"(p¢=1) (3-98)

and numerically get

f; 2 0.14 (3.99)
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from (3.94). We then also conduct an independent simulation, making use this time,

as described in Sec. 3.3, of the nested interval method to determine the critical value

of fb. We find

ff 2 0.145 i 0.001, (3.100)

which again is a result from a fit with data obtained on simple cubic lattices of size

L = 163, L = 323, L = 643 and L = 1283 to the scaling relation (3.84). What is the

significance of the parameter ff? Let us first consider the inverse case, where p71 = 0

and p: = 1. In this limit we effectively deal with a one-component site percolation

system, since one bond type is entirely ’switched off’ and the other edges are open

with probability one. This implies that we can decide to call one component the

inactive one, say the red species, and focus on the second species. If two blue sites

have one edge in common, it is open with probability one. This however, is exactly the

rule in a one-component site percolation system where the site percolation threshold

is known to be = 0.3116, (3.42), for a simple cubic lattice. In the exactly inversefag

case, (p: = 0, p¢ = 1), if two vertices occupied by different species have one edge in

common, it is open always. We thus conclude that ff can be regarded as a new site

percolation threshold in a simple site percolation system in which, unlike the ordinary

site percolation model, nearest neighbors only belong to the same cluster if they are

of opposite flavor. In the lower curve of Fig. 3.19 we show the critical value of the

bond density, pi. It is simply given as the product of pi(fb) with the edge density

a¢(fb), see (3.13) and (3.14):

pi(fb,p==0) = a¢(fb)p;(fb)

= 6—20.19?) (a exp(-dfb) +c> (3.101)

Here, ff determines the critical point of the phase transition line pi(fb, _ = 0).

An argument against a novel behavior could be the statement that in this case, the
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concentration of one species is no longer the appropriate parameter to characterize

the state of the system. To show that this argument does not hold for this purpose, we

propose one such new parameter that should be universal for the percolation systems

dealt with in this work. This is the density of accessible edges, which was already

introduced in (3.7), or, more specifically, for a two-component model in (3.14) and

(3.15). Although usually egdes are not included as ingredients in a site percolation

system, this quantity makes sense for a site percolation system too, as edges are

readily included in the line of argument of a site percolation system by setting them

open with probability one. For the model considered here the density of accessible

edges is given by a¢(fb) and at the new critical site percolation threshold ff we have

1

4:10;) = 5 — 20: — g)? (3.102)

For the ordinary site percolation system in which neighbors of the same flavor form

clusters, we have the density of accessible edges given as

am = (f,,-,.)2, (3.103)

and the critical value

aim = (fine)? (3104)

Then, if both systems were equal with respect to this variable, the critical density of

accessible edges in both systems would be expected to be the same:

a; E. ague. (3.105)

This requires

C 1 1
fb : 5 ¥ §\/1 — 2 Oxide, (3.106)

giving two solutions, symmetric with respect to fb = 0.5,

f; = 0.051, (3.107)
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and

ft = 0949. (3.108)

This stands in obvious contradiction to our findings. We conclude that this is another

argument in favor of a qualitatively new behavior.

3.7 Finite Size Effects

In the preceding sections we alluded several times to the subject of error estimates.

The statistical errors are not the ones that are troublesome, how a reasonably precise

estimate of the systematic errors resulting from finite size effects can be achieved, is

a more complicated subject. We will first focus on the one-dimensional case again

and then discuss briefly techniques that we used.

3.7.1 One-Dimensional Percolation Model

In Sec. 2.5 we derived the finite size scaling law for one dimensional percolation, see

(2.82) which read

it — pefi oc L‘W (3.109)

In the derivation we stated that it would be necessary to fulfill the condition

I? — pol << 1-

for the scaling law in the approximative form, as derived, to be valid. We now want

to know, how big the systematic errors are when we apply the scaling law to lattices

of small linear dimension. Why are systematic errors to be expected at all? The

reason lies exactly in the fact that in the derivation in Sec. 2.5 the approximation

Ip - pol << 1 was used. This led to the relatively simple expression of

approx: _ 1 _

pefl

h
]

..
4
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Had we not used this approximation, we would have obtained

pi?“ = exp(—1/L), (3.110)

resulting from

“(Pail = 1/6,

see (2.79). By relying on the approximative formula, however, the necessary condition

for its validity can not be satisfied any more, since for small L the system is not close

to the threshold. We therefore implicitly also have the condition

<< 1. (3.111)
b
‘
I
H

The systematic error entering the finite size scaling can be readily calculated,

exp(—1/L) — 1+ %

= f: ‘Lm. (3.112)
1

"2:2 71.

CTsys

 

 

We illustrate this effect in Fig. 3.20. In the next section we will go to a discussion

of the same phenomenon in higher dimensions, where it will become clear that the

analytical treatment presented here in the case of one dimension will not be possible

any more and one has to rely on estimation techniques.

3.7.2 Techniques in Higher Dimensions

In Sec. 2.5 we had conjectured a certain scaling behavior, (2.84) and from that derived

the scaling relation (2.89). In both equations, it was a requirement that

lpe6(L) - pol << 1 and L >> 1.

It is the second condition that one has to worry about. It is not a priori clear where

the linear dimension L of a lattice has to lie in order to be able to neglect the errors
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Figure 3.20: Exact (solid line) and approximative (dashed line) effective threshold in

a one-dimensional percolation system as a function of the linear lattice dimension L.

that are due to applying the finite size scaling equation in a regime where it only

holds in a very approximative way. We want to illustrate the situation that one faces

when applying the finite size scaling relation, (2.89), in Fig. 3.21, in which we show

the critical value of the bond density, pi, as a function of the linear lattice dimension,

as well as a fit with

|pi(L) — pi] = a. L—l/V. (3.113)

What is the ’true’ value of pi? One way to proceed is to fit the data with (3.113).

The true threshold is obtained as a fit parameter, together with an error estimate.

Another possibility constitutes of plotting the data in a double logarithmic plot and

then fitting with pi as fit parameter such that the expectation of a straight line

C C 1

lnlp+(L) —p+| =lna— ZlnL, (3.114)

where a = const, is fulfilled. This would also provide an error estimate for the fit

parameters. We applied the first method, as shown in Fig. 3.21. This led to errorbars

smaller than the symbol size in Fig. 3.15. We have to note that this method does not
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Figure 3.21: Finite size scaling for pi(L,p¢ = 0) shown as a function of the linear

dimension of a simple cubic lattice at a concentration of the blue species of fb = 0.5.

explicitly provide for an estimate of the systematic errors themselves. This is, as the

only weighting of the data points used in the fitting procedure comes in through the

statistical errors attached to each data point, no weighting that takes into account

the ’distance’ from the validity region of the scaling law is included. On the other

hand, the statistical errors do show a finite size scaling: The errorbars for smaller

lattice sizes turn out to be bigger than those for larger lattices, see Fig. 3.21, even

though the same number of events has been taken into account for calculating the

averages and their errors. Thus we already include a systematic finite size error in

the procedure. Yet this should not account for the second kind of systematic errors,

the ones due to the application of (3.113), which is only valid for L —-> 00. Is there

a way to estimate the errors solely due to the finite size scaling law? One way that

we can think of, is to try to find a sort of a finite size weighting factor scaling for

the error influence of each data point in a finite size scaling procedure. This scaling

function could, for example be in the form of an exponential.

A search of the literature did not reveal any thorough discussion on an estimate
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of the systematic errors in a determination of the ’true’ threshold pi(oo) due to finite

size scaling. We found two ways of dealing with the systematic error, where one

method tries to estimate them and the second tries to avoid them in the calculation

of the true threshold. We will present both methods.

The first method was proposed in [vdM97]. It relies essentially on fitting the data

with (3.113). The thresholds are calculated for different lattice sizes. Two fits are

done, one including the last three data points, giving pi(Lmax, Lma$_1, Lmax_2) the

other including the last two data points resulting in pi(L,,m, Lmax._1). The difference

between the two fit parameters is then taken as estimate for the systematic error,

asys : |pi(LmazraLmax—11Lmaz—2) — pi(Lmazn Lmaz—l)] - (3115)

We also performed calculations following this method to estimate the systematic

errors. Again, the errorbars obtained were smaller than the symbol size in Fig. 3.15.

A way to implement essentially this same method in what might be an improved way

would be to do the finite size scaling for all combinations of available data points,

not only fitting the last two and the last three, and then taking the largest difference

between the resulting fits for pi as estimate for the error am.

The second method is described in [BH97] In this case, not the percolation

probability pc,O but rather the probability that a cluster spans the entire system, 7/),

is taken to be the observable. For the infinite lattice, we have

_ 0, if psi):
10—{1’ if P>Pi . (3.116)

As a consequence, all 2/2L(p+) have a common intersection point 021mm (pi), which

we illustrate in Fig. 3.22. Extrapolation to Lmax —> 00 yields an estimate for the

percolation threshold pi. The advantage of this method is that it does not involve the

choice of a critical exponent, as 1/ in (3.113). Furthermore it does not involve a scaling
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Figure 3.22: Probability w that a spanning cluster exists, versus the lattice size L.

The percolation threshold pi is given by the common intersection point 011mm (pi).

relation. However, still an extrapolation to L —) 00 is needed and the determination

of the percolation threshold itself is not without error.

3.7.3 A Proposal for a Novel Technique

In Sec. 3.3.3 we described the approach that we took to determine, in a simulation, the

critical values pi, pi and ff. In summary, the simulation first carried out the nested

interval method and thus determined the threshold for one particular random number

sequence, then the algorithm was started with another random number sequence and

after a sufficient number of independent simulations, the average gave the critical

value. Another way to proceed, however, would be to just do the inverse: First

carry out many independent simulations, determine the percolation probability or the

spanning probability and then, decide, according to an appropriately chosen value a,

whether the system percolates or not. The parameter a. could be chosen such as to

give an effective threshold of 1/e, for example, as in (2.79), or, in general,

pefl: w‘1(a). (3.117)
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Based on this averaged information, whether poo < a or p00 > a, the decision about

the nested interval method would be made and the new ’test’ value for the parameter

1):, p¢ or fb chosen, at which again a number of independent simulations would

yield the decision about the further direction of the parameter value. How does one

obtain a way to estimate the systematic errors when applying this method? The idea

is to apply the same procedure to several values of a and furthermore at different

lattice sizes L, where three different lattice sizes would be a minimum requirement.

Another requirement is the knowledge of an interval Api for which, from theoretical

considerations, we know definitely

pi denotes the ’real’ threshold in a system of infinite extent. Through 1p this interval

Api gets mapped onto an interval of values 0, Am. We would then get three different

curves: pi(Aa'i,L1), pi(Aa§,L2) and pi(Aa§,L3). In the following the finite size

scaling law should be applied to all combinations of points

{pi(bi,L1),pi(b2,L2),pi(b3,L3)} (3.119)

with the condition that

01 6 A01, 02 E Aug, 03 6 A0,?” (3.120)

where the case of a higher number of lattice sizes to take into consideration, works in

an analogous way. This eventually leads to a hyperplane

pi(b1,b2,b3, L —> 00). (3.121)

Now the minimum pi(bl,bg,b3,L —+ oo)',,,,-n and maximum pi(b1,b2,ba,L “* 00);.“

have to be determined, giving an estimate of the error,

Usys = |pi(bl,02,b3, L —> ()0)i — pi(01,02,b3, L —') my I, (3.122)
min max
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and, as average taken over the hyperplane, the critical value pi. The interval

Apt-:1 : [pi-(b1) b21b39 L _) 00)::711'111 pi(bla b2) b3) L —) 00):. 12 (3123)man:

may be taken as new input in the procedure and in successive iterations the critical

value will be known with an error estimate. This method is based on ideas of von

Bergmann [vB99] and has evolved in several discussions with the author. It has to be

noted however that its practical aspects could not yet be tested and thus it remains

unclear whether it can live up to the expectations when applied to the determination

of the threshold and an estimate of its error.

3.8 Spin-Off Results

In this section, we will present some topics and related results that were not the main

interest in the line of research, but yet, in the pursuit of the main objectives, were

investigated in the line of work. We will not give a broad discussion of each of the

results but rather summarize in a concise manner the main aspects.

3.8.1 The Number of Open Clusters per Vertex

We already introduced the number of open clusters per vertex in Sec. 2.4.3. The

programs used determined this quantity that has also been called the f-functz'on and

we show a result for two different values of the concentration of the blue species in

Fig. 3.23. Also shown in the figure is the theoretical expectation, which we derive

in the following way, see [Bau]. The total number of open clusters per vertex has

to be calculated as given in (2.32). The first terms of this sum can still be given

analytically, we consider the first two:

N

“(19+) : N(1— 13+)z + 3310+“ " 19+)2Z—2 + - ~-

Z

= N(1— 5p.) + 002.2.)- (3.124)
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Figure 3.23: The number of open clusters per vertex in a simple cubic 1283 lattice,

calculated for a concentration of the blue species fb = 0.5. Also shown is the approx-

imate theoretical expectation.

Here, N is the total number of vertices in the lattice,

N 2 L3,

and z is the coordination number of the lattice type, thus .2 = 6 in our case of the

simple cubic lattice. In Fig. 3.23 we see that indeed this approximation, which,

because of the expansion made in the derivation is valid for p+ << 1, does hold in this

regime. Finite size effects are not taken into account here. Thus we find exactly what

is to be expected: For low values of pr the lattice is highly fragmented, showing a

high number of small clusters, whereas for high values of p+ gradually larger clusters

take over.

3.8.2 The Number of Spanning Clusters per Vertex

For the infinite lattice, according to Theorem 1, there can almost always be only

one infinite cluster present in the lattice and this will be the largest cluster. For

finite lattices however, a finite probability exists that more than one cluster spans
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the entire system. Furthermore, also a finite probability exists for a smaller cluster

than the largest one to percolate. The question is, wether this affects the percolation

threshold in a finite lattice, and if it does, in which way. In an attempt to estimate

the influence of this finite size eflect on the percolation probability poo, we introduced

a new quantity, which we called ppc and which represents the probability that an

arbitrary vertex of the lattice is part of any of the percolating clusters. If there is

only one percolating cluster, then we have poo and ppc equal. Thus, as we have the

theorem on the uniqueness of the infinite cluster in the limit of an infinite system, we

know that

lim poo = [iim ppc. (3.125)
L—)oo

We tested the new order parameter for several lattice sizes and focused on the question

of a difference in the percolation thresholds in terms of both variables. Within the

limits of the errorbars we could detect no different behavior, indicating that the

definition of the infinite cluster in a finite system and the checking mechanisms for it,

see (2.10) and (2.11) are reasonable. We show one such comparison of poo and ppc in

Fig. 3.24. Analogously to ppc we can also define a ’new’ spanning probability, given

as the probability that any cluster, not necessarily the one that complies with the

requirements for being the infinite cluster, Coo, percolates. We denote this quantity by

tbpc. Similarly to the results shown above, no difference in the percolation thresholds

derived from 1,0 or 2pm, could be detected. With the theorem of the uniqueness of the

infinite cluster we again have

252.8 = 3:18. 4... (3126)

With these two results it is confirmed that the percolation probability as used by us

in the framework of the research presented here in order to determine the percolation

threshold, is a sensible observable.
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Figure 3.24: Probability to belong to the infinite cluster, poo (19+), and the probability

to belong to any percolating cluster, ppc(p+) in a simple cubic 1003 lattice at fb = 0.5.

3.8.3 Two-Dimensional Percolation

In Sec. 2.2.4 we discussed that in general critical exponents are expected to be

universal, meaning that they only depend on the dimension of the system, but not

its microscopic structure. The critical exponents for two dimensional ordinary bond

percolation problems are well known, see for example, [SA94]. Obviously the question

remains to be answered whether the results presented in this work for two-component

site-bond percolation on a three dimensional simple cubic lattice do in principle hold

on a two dimensional lattice too. We investigated this question in some aspects on

a square lattice. More specifically we focused on the question of the concentration

dependence of the threshold in the limits of one of the two bond existence probabilities

set to zero: p: = 0 or p¢ = 0, see 3.6.3 and 3.6.5. Before we proceed to state

the results we have to note that there is a fundamental difference concerning two-

component site-bond percolation on a simple cubic lattice and two-component site-

bond percolation on a square lattice. This difference lies in the fact that on the simple

cubic lattice a panchromatic regime does exist, which is not the case for the square
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lattice. This comes about as the site percolation threshold on the square lattice is

noticeably higher than on the simple cubic lattice, leading to non-overlapping curves.

We illustrate our statement with Fig. 3.25 and also want to refer to Sec. 3.6.3, where

we led the corresponding discussion for the simple cubic lattice. Fig. 3.25 essentially

is Fig. 3.16 for the square lattice. We take again the assumption of a hyperbola, see
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Figure 3.25: Threshold pi versus concentration fb for two one-component site-bond

percolation models on the square lattice, compare Fig. 3.16.

(3.86),

1

PiUmpys = 0) =m (3.127)

This is justified by simulations performed by us, results of which could very well be

reproduced by a hyperbola of the given form with the parameters as calculated in

(3.128). We calculate the parameters as in (3.89), with pgond = 0.5 (exact, see [SE64])
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and c = 0.5927 for the square lattice yielding
site

 

 

1

h = C

pbond

= 2 (3.128)

m = c 1_fbond

pbond( site - 1)

= —-2.455. (3.129)

In contrast to the curves for the simple cubic lattice it becomes clear in Fig. 3.25

that for the square lattice, due to the higher site percolation threshold site, there are

only two phases present, no polychromatic regime is encountered where both species

percolate at the same time. Although this is no principle constraint in the sense

that yet mixed clusters are possible and thus also the limiting behavior of the system

when one of the bond existence probabilities is let to zero, should be investigable, we

did not further involve in research in two dimensions, aside from also checking the

cut-out technique, see 3.6.4, which yielded qualitatively the same results as on the

simple cubic lattice. The problem could be remedied by modeling the system on a

lattice of higher connectivity in two dimensions, where the site percolation thresholds

are lower, see [SA94] or [Gri99].
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Chapter 4

Summary and Conclusion

Since its first introduction in the context of polymer science, percolation theory has

evolved to an important field, providing possibilities to study phase transitions in a

framework relatively easy to model. In percolation theory a somewhat unusual phase

transition is dealt with, since it does not involve any concept of temperature. Rather

all interesting functions are purely geometric properties, like for example, the perco-

lation probability or the spanning probability, and not thermal properties like specific

heats as functions of temperatures as dealt with in the realm of thermal phase tran-

sitions. Nonetheless there is quite a deep similarity existent between thermal phase

transitions and percolative phase transitions, which we already alluded to in Table

2.2. It also becomes clear when looking at the scaling laws that describe the asymp-

totic behavior of the respective systems close to their phase transition point. As in

thermal phase transition simple power laws govern the behavior in the vicinity of

the critical point and also do the critical exponents show the property of universal-

ity. This principle of universality suggests that one should be able to find the same

critical exponents in real-life experiments as in computer experiments even though in

the real experiments impurities and defects in the lattice will alter and modify the

microscopic structure. As stated in [DZA83], metal-insulator films do indeed show

the same behavior as found in computer experiments. Other possible applications of
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percolation theory can be found again in [DZA83] or in [Sah94]. In addition, with

these correspondences between thermal and percolative phase transitions, including

universality of the critical exponents, an understanding of the percolative phase tran-

sitions, which are in some aspects easier to simulate and investigate, can help better

the understanding of more complicated thermal phase transitions.

In summarizing, this work presented, after a general introduction to percolation

theory and phase transitions in Chapter 2, research on a two-component site-bond

percolation system. We first described a novel method to treat N-component per-

colation as described in [Baued] and [HB99]. This approach was then applied in

Monte-Carlo simulations to a percolation model on a simple cubic lattice of various

sizes for N = 2 components. We introduced a scaled control variable, p+, giving the

bond density in the system under observation, being a function of the concentration

of one of the species in the lattice, fb, and the two bond existence probabilities p:

and p95. Here the intuitive notation p: means to indicate the probability for an edge

to be open if the endvertices are of the same ’color’ whereas the notation p¢ stands

for the probability of an edge with endvertices of different color to be open. In the

simulations we determined the percolation probability pr,o as a function of p+. We

found that for a regime where either one of the bond existence probabilities is set

to zero, p: = 0 or p¢ = 0, the system shows a different phase transition behavior

in the order parameter poo, see 3.5. We could furthermore establish that there is a

discontinuous phase transition taking place in the percolation probability poo whence

either p._. —-+ 0 or p¢ —> 0. As to the behavior of the percolation threshold pi in the

system we found that when both bond existence probabilities are non-zero, p: 76 0

and p¢ ¢ 0, the critical value of the scaled control variable, pi, coincides with the

known percolation threshold in an ordinary one component bond-percolation system,

pgond x 0.2488, independent of the composition of the system characterized by fb. In
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any one of the limits p: = 0 or 19;; = 0 however, a different percolation threshold pi

is found which furthermore depends on the concentration of one of the components:

pi(fb). As described in Sec. 3.6, the functional form turns out to be different in

both limits, we thus have pi(fb, p: = 0) and pi(fb, p¢ = 0). For the latter case we

could report that an empirical formula given by Heermann and Stauffer [H881] for a

one-component site-bond percolation system applies in the two-component site-bond

percolation model too. In the first case, however, a different behavior was found, for

which we proposed a novel empirical formula. In a brief notation this is summarized

by stating that for p: p¢ ¢ 0 we find a behavior similar to one—component bond

percolation, whereas for p: p¢ = 0 a different behavior is encountered. Aspects of

the simulation techniques and related results were also discussed.

The field for future work in this area seems vast. As a first generalization one might

try to apply the same method as described and applied here, to multi-component sys-

tems on lattices of higher dimension and/or higher connectivity. It should also be

interesting to check on this percolation model with a ’bond discrimination’ scheme

built in, differentiating between different types of bonds for the percolation process.

This approach should also find a broad range of possible applications. One might

think of special networks, or gelation phenomena where several components are in-

volved, which interact in special ways, as well as wetting phenomena. It should be

possible to find applications where either one of the limits discussed above or a model

with all types of bonds active, is applicable. Furthermore an application to stock—

market simulations seems possible and is being undertaken by the authors of [HB99].

In concluding, the present work and the works it is based on show that, although per-

colation theory has grown to a field that much attention is devoted to, open questions,

aside from still lacking proofs of widely accepted conjectures, remain, the answers of

which have possibly useful applications to other fields of science.
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Appendix A

Source Code

Following are the source codes of two of the programs used in the simulations. We

display these two as being representative of the two general techniques used, as de-

scribed in Sec. 3.3. All programs were written in FORTRAN and were compiled on

different machines with different FORTRAN-compilers. The random number generator

function listed at the end of the respective programs was taken from Ref. [PTVF92],

as the standard random number generators provided on the platforms used showed

correlations, especially for linear lattice dimensions L = 128. For an explanation of

the algorithms and concepts used in the program we refer to Sec. 3.3.

A.1 perc_prob_00 . f

The program displayed in the following is, as described in the section on simulation

techniques used, 3.3, the general purpose program aimed at determining the percola-

tion probability poo, the probability that a spanning cluster exists, 7,1), and the number

of open clusters per vertex.

program perc,prob00

t uses tortran 77 conventions

* uses a random number generator taken from numerical recipes in

t fortrsn 2nd ed.: ran1(iseed), modified to use double precision

implicit double precision (A-H,0-Z)
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call readpar(n. nevent, prob_nHin, dprob-n, nprob_n)

 

"
{
1
}

Loop over prob_n:

 

prob_n I prob_nHin

do iprob-n I O, nprob_n

call init(n, nevent, prob_n. iprob_n,

peqSt. dpeq, npeq, pneqSt, dpneq, npneq)

pneq I pneqSt

do ipneq I O. npneq

p-q ' paqSt

do ipeq I O, npeq

call Perc(n, nevent, prob-n, peq, pneq)

poq - M + dp-q

end do

pneq I pneq + dpneq

end do

prob-n I prob,n + dprob_n

end do

 

i
t
.
“

End Loop over prob-n:

 

‘
I
'

end

6”!

 
 

SUBROUTINE readpar(n, nevent. prob_nHin, dprob-n, nprob-n)

implicit double precision (A-H.0-Z)

parameter (maxn I 128)

input parameters:

open(unitI12.fileI’parall.dat’,statusI’old’)

read (12,*) n

I number of lattice sites in one direction

if (n .gt. maxn) then

print 1, ’ > Fatal Error: n must be less or equal maxn’

end it

read I, iseedO

iseed I iseedO

I seed for random number generator

read (12,.) nevent

I number of simulated events

read (12,!) prob_nMin, dprob_n. nprob_n

I probability that a given site is a neutron

END

SUBROUTINE init(n. nevent, prob-n. iprob-n,

peqSt, dpeq. npeq, pneqSt, dpneq. npneq)

implicit double precision (A-H.0-Z)

character lengthintot1, lintotl, nintoIB. probninfot4.

numinrot2, informationt40, pneqStintoI4

read (12.’(a)’) blankl

read (12.’(a)’) blank2

read (12.’(8a,18.0)’) prob_n_info. prob_n_num

read (12,!) peqSt, dpeq. npeq

read (12.¢) pneqSt. dpneq, npneq

open(unitI13,fileI’runnumber.dat’,form=’tormatted’,status=’old’)

read(13,’(a)’) lengthinfo

read(13.’(i2.2)') icurrentnumber

close(13)
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iprobn I prob_n I 1000

ipneqStI pneqSt I 1000

write(ninto.’(i3.3)’) n

write(probninto.’(i4.4)’) iprobn

write(pneqStinto,’(i4.4)’) ipneqSt

write(numinto,’(i2.2)’) icurrentnumber

write(linto,’(a)’) lengthinfo

open(unitI14,fi1eI’zlog_’//ninfo//’_’//probninfo//’-’

& //pneqStinto//'_’//linto//"//numinto//’.dat’,

& formI’formatted’,statusI’unknown’)

open(unitI16,file=’zpint_’//ninfo//’,’//probninfo//’_’

& //pneqStinfo//’_’//linfo//"//numinfo//’.dat’,

& formI’tormatted’,statusI’unknown’)

open(unitI17,fileI’zpperc-’//ninto//’_’llprobninfo/l’_’

& l/pneqStinfo//’_’//linto//"//numinto//’.dat’,

& formI’formatted’,statusI’unknown’)

open(unitI18,fileI’szunc-’l/ninfol/’-’//probninfo//’_’

& //pneqStinto//’-’//lin10//"//numinfo//’.dat’.

& tormI'formatted’,statusI’unknown’)

if ((nevent-l) .eq. 0) then

write (14,I)’8HARNING:standard deviation of average gives

& division by 0’

write (16.*)’8HARNING:standard deviation of average gives

& division by 0’

write (17,I)’#HARNING:standard deviation of average gives

& division by 0’

write (18,I)’8HARNING:standard deviation of average gives

& division by 0’

endif

information I ’II calc. with perc-prob00 on It’

write (14,I) information

write (14,’(a20,i5.4)’) ’n I’,n

write (14,’(a20.e15.8)’)’prob_n I’.prob_n

write (14,’(a20,e15.8)’)’peqStart =’,peqSt

write (14.’(a20.e15.8)’)’dpeq I’.dpeq

write (14,’(a20.15.4)’) ’npeq I’,npeq

write (14.’(a20,e15.8)’)’pneqStart I’,pneqSt

write (14,’(a20,e15.8)’)’dpneq I’,dpneq

write (14.’(a20,i5.4)’) ’npneq =’,npneq

write (14,*)

write (14,I)

END

 

SUBRDUTINE Perc(n, nevent, prob_n. peq, pneq)

implicit double precision (A-H.0-Z)

parameter (maxn I 128)

parameter (maxnl I 129)

parameter (maxn2 I 16384)

parameter (maxn3 I 2097162)

logical neutron(maxn,maxn,maxn), maxperc

integer clusterNumber(0:maxn1,0:maxn1,0:maxn1)

double precision nn, up

do irun

call

call

call

call

call

I 1,nevent

rndinit(iseed)

lattice(n. prob-n, iseed, neutron, nn, np)

rndinit(iseed)

PercChk(n, prob_n. peq, pneq, irun, iseed. neutron.

ppbonds, pnbonds. maxClusSize, multip, maxperc)

Statis(n. nevent. prob-n. peq, pneq, irun. nn, np,

ppbonds. pnbonds. maxClusSize. multip, maxperc)
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and do

END

 

SUBROUTINE rndinit(iseed)

implicit double precision (A-B,0-Z)

integer iseed. iseedO, iseed1

iseedO I O

iseed I 0‘

call system-clock(iseed0,iclock2,iclock3)

iseed I - (iseedO)

iseed1 I iseed

zinitret I ran1(iseed1)

write(14,’(a20,113.12)’)’randomseed I',iseed

write(14.I)

write(14,t)

END  
 

SUBRDUTINE lattice(n. prob_n, iseed1. neutron,

& theneutrons, theprotons)

implicit double precision (A-H,0-Z)

parameter (maxn I 128)

logical neutron(maxn.maxn.maxn). trueFalse

Determine which sites are neutrons:

theneutrons I 0.00

theprotons I 0.00

do in I 1.n

do iy I 1.n

do ix I 1.n

trueFalse I .TRUE.

it (ran1(iseed1) .1t. prob-n) then

theneutrons I theneutrons + 1.D0

else

trueFalse I .FALSE.

theprotons I theprotons + 1.D0

end if

neutron(ix.iy,iz) I trueFalse

and do

and do

and do

write(14,’(a20,e15.8)’)’theneutrons I’,theneutrons

write(14,’(a20,e16.8)’)’theprotons I’,theprotons

END

 

SUBROUTINE PercChk(n, prob-n. peq, pneq, irun, iseed,

& neutron, ppbonds, pnbonds, maxClusSize, multip, maxbotIn)

implicit double precision (A-H,0-Z)

parameter (maxn I 128)

parameter (maxnl I 129)

parameter (maxn2 I 16384)

parameter (maxn3 I 2097162)

logical connected(maxn.maxn.maxn.3),

t neutron(maxn,maxn,maxn).
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& trueFalse, maxbotIn, maxtopIn

integer newPoint(maxn3,3).

t clusterNumber(0:maxn1.0zmaxnl,0:maxn1)

integer iseed. iseed1. hcln

I Set random seed back to the initial value (ct Staufferbook p 73)

iseed1 I iseed

zinitret I ran1(iseed1)

n2 I n**2

n3 I nII3

hcln I (n3 + 1)

I One more than highest possible clusterNumber if the whole lattice

I is fragmented

I Determine existing bonds

I a: x-bonds -----------

ppbonds I 0.00

pnbonds I 0.00

do iz I 1.n

do iy I 1.n

do ix I 1.n-1

trueFalse I .FALSE.

if (neutron(ix,iy,iz) .eqv. neutron(ix+1.iy,iz)) then

if (ran1(iseed1) .1t. peq) then

trueFalse I .TRUE.

ppbonds I ppbonds + 1.00

end if

else

if (ran1(iseed1) .1t. pneq) than

trueFalse I .TRUE.

pnbonds I pnbonds + 1.00

end it

end if

connected(ix,iy.iz,1) I trueFalse

and do

end do

and do

I b: y-bonds -----------

do iz I 1.n

do iy I 1.n-1

do ix I 1.n

trueFalse I .FALSE.

if (neutron(ix,iy.iz) .eqv. neutron(ix.iy+1,iz)) then

if (ran1(iseed1) .1t. peq) then

trueFalse I .TRUE.

ppbonds I ppbonds + 1.00

and if

else

it (ran1(iseed1) .1t. pneq) then

trueFalse I .TRUE.

pnbonds I pnbonds + 1.00

and if

end if

connected(ix,iy,iz,2) I trueFalse

end do

end do

end do

I c: z-bonds -----------

do 12 I 1.n-1

do iy I 1.n

do ix I 1.n

trueFalse I .FALSE.

it (neutron(ix.iy,iz) .eqv. neutron(ix,iy,iz+1)) then

it (ran1(iseed1) .1t. peq) then

trueFalse I .TRUE.

ppbonds I ppbonds + 1.00
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end if

else

if (ran1(iseed1) .lt. pneq) then

trueFalse I .TRUE.

pnbonds I pnbonds + 1.00

end if

end if

connected(ix,iy,iz,3) I trueFalse

end do

and do

and do

Initialize connected values on boundaries as false

a: x-bonds -----------

do is I 1.n

do iy I 1.n

connected(n,iy,iz.1) I .FALSE.

enddo

enddo

b: y-bonds -----------

do is I 1.n

do ix I 1.n

connected(ix,n,iz.2) I .FALSE.

enddo

enddo

c: z-bonds -----------

do iy I 1.n

do ix I 1.n

connected(ix,iy,n,3) I .FALSE.

enddo

enddo

Assign the highest possible clusterNumber (hcln) to the surface

lattice points, so that they are treated as already belonging to a

cluster and are not dealt with in the cluster find algorithm

do iy I 0,n+1

do ix I 0.n+1

c1usterNumber(ix.iy.0) I hcln

end do

and do

do iy I 0,n+1

do ix I 0.n+1

c1usterNumber(ix,iy,n+1) I hcln

end do

end do

do is I 0,n+1

do ix I 0,n+1

c1usterNumber(ix,0,iz) I hcln

and do

and do

do is I 0.n+1

do ix I 0.n+1

c1usterNumber(ix.n+l,iz) I hcln

and do

end do

do iz I 0,n+1

do iy I 0,n+1

clusterNumber(O.iy.iz) I hcln

and do

and do

do iz I 0,n+1

do iy I 0.n+1

c1usterNumber(n*1,iy,iz) I hcln

end do

and do
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‘

sssI-new cluster, start

i

1400

Assign the clusterNumber 0 (not part of any cluster) to all points

in the lattice that don’t belong to the surface

do iz I 1.n

do iy I 1.n

do ix I 1.n

clusterNumber(ix.iy,iz) I 0

and do

and do

end do

CLUSTER FIND SUBROUTINE

multip I 0

maxClusSize I O

 

do iZI 1.n

do iy I 1.n

do ix I 1.n

IF(c1usterNumber(ix,iy,iz) .eq. 0) then

 

clusterNumber(ix.iy,iz) I multip + 1

newPoint(1,1) I ix

newPoint(1,2) I iy

newPoint(1,3) I iz

IHINO I 1

IMAXO I 1

continue

IMIN I IMAXO + 1

IMAX I IMIN

do I I IMINO,IHAXO

IIX I newPoint(I.1)

117 I newPoint(I,2)

112 I newPoint(I,3)

IF(clusterNumber(IIX-l.IIY.IIZ) .eq. 0) THEN

IF( connected(IIX-1,IIY.IIZ,1)) THEN

newPoint(IMAX,1) I IIX-l

newPoint(IHAX.2) I II?

newPoint(IHAX.3) I 112

IMAX I IMAX + 1

c1usterNumber(IIx-1,IIY,IIZ) I multip+1

END IF

END IF

IF(clusterNumber(IIX+1,IIY,IIZ) .eq. 0) THEN

IF( connected(IIX.IIY,IIZ.1)) THEN

newPoint(INAX.1) I IIX+1

newPoint(IHAX.2) I IIY

newPoint(IMAX,3) I III

IMAX I IMAX + 1

clusterNumber(IIX+1,IIY.IIZ) I multip+1

END IF

END IF

IF(clusterNumber(IIX,IIY-1,IIZ) .eq. 0) THEN

IF( connected(IIX,IIY-1,IIZ,2)) THEN

newPoint(INAX.1) I IIX

newPoint(IMAX,2) I IIY-l

newPoint(IHAX,3) I 112

IMAX I IMAX 4* 1

clusterNumber(IIX,IIY-1,IIZ) I multip+1

END IF

END IF

IF(clusterNumber(IIX,IIY+1,IIZ) .eq. 0) THEN

IF( connected(IIX,IIY,IIZ,2)) THEN

newPoint(IHAX,1) I IIX

newPoint(IMAX,2) I IIY+1

newPoint(IMAX,3) I IIZ
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IHAX I IHAX + 1

clueterNumber(IIX,IIY+1,IIZ) I multip+1

END IF

END IF

IF(c1usterNumber(IIX,IIY,IIZ-1) .eq. 0) THEN

IF( connected(IIX,IIY.IIZ-1.3)) THEN

newPoint(IHAX,1) I IIX

newPoint(IHAX,2) I II?

newPoint(IHAx,3) I IIZ-1

IMAX I IHAX + 1

c1ueterNumber<IIX.IIY,112-1) I multip+1

END IF

END IF

IF(c1ueterNumber(IIX,IIY,IIZ+1) .eq. 0) THEN

IF( connected(IIX.IIY,IIZ,3)) THEN

newPoint(IMAX,1) I IIX

newPoint(IHAx,2) I IIY

newPoint(IMAX,3) I II2+1

IMAX I IMAX + 1

c1ueterNumber(IIX,IIY,IIZ+1) I multip+1

END IF

END IF

end do

IF(IMAX .NE. IMIN) THEN

IMINO I IMIN

IMAXO I IMAX - 1

GOTO 1400

ENDIF

; increase multiplicity

multip I multip + 1

; IHAXO contains cluster size

if (imaxo .gt. maxClusSize) then

maxClusSize I imaxo

indexHax I multip

end if

END IF

end do

end do

end do

END CLUSTER FIND SUBROUTINE

Check on Percolation of infinite cluster

maxtopIn I .FALSE.

maxbotIn I .FALSE.

do iy I 1.n

do ix I 1.n

if (clueterNunber(ix.iy,n) .eq. indexMax)

& maxtopIn I .TRUE.

end do

end do

if (maxtopIn) then

do iy I 1.n

do ix I 1.n

if (clueterNumber(ix.iy,1) .eq. indexHax)

& maxbotIn I .TRUE.

end do

end do

end it

pint I dble(maxClusSize) / (dble(n)#*3)

write (14,’(a20,i5.4)’) ’irun I’.irun

write (14,’(a20.e15.8)’) ’peq I’,peq

write (14.’(a20,e15.8)’) ’pneq I’,pneq

write (14,’(a20.e15.8)’) ’ppbonde I’,ppbonde

write (14,’(a20,e15.8)’) ’pnbonds I’,pnbonde

write (14,’(a20,i13.12)’)’maxClSizeI’,maxCIueSize
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§
§
§
§

write (14,’(a20,e15.8)’) ’pint I’,pinf

write (14,’(a20.i13.12)’)'multip I’.mu1tip

write (14,’(a20,12)’) ’maxbotIn I’.maxbotIn

write (14.*)

write (14,*)

END

 

SUBROUTINE Statis(n, nevent. prob_n. peq, pneq. irun, nn, np,

& ppbonds, pnbonds. maxClusSize, multip, maxperc)

implicit double precision (A-H.0-Z)

parameter (maxn I 128)

parameter (maxnl I 129)

parameter (maxn2 I 16384)

parameter (maxn3 I 2097152)

logical maxperc

double precision nn. np, anu. invanu

SAVE sumP, sumN, sumPPBonds. sumPNBonds. sumInfClus. sm2IntClus.

t sumPercP, sm2PercP, sumMult. sm2Mult

if (irun .eq. 1) then

sun? I 0.D0

sumN I 0.D0

ave? I 0.D0

aveN I 0.D0

sumPPBonds I 0.00

sumPNBonds I 0.00

sumInfClus I 0.DO

sm2InfCLus I 0.00

aveInfCLus I 0.D0

av2InIClus I 0.D0

stdInfClus I 0.DO

sumPercP I 0.D0

sm2PercP I 0.DO

avePercP I 0.D0

aw2PercP I 0.DO

sthercP I 0.D0

sumHult I 0.00

sm2Mult I 0.00

aveHult I 0.D0

av2Mult I 0.00

sthult I 0.DO

endif

Summation

Particles

sun? I sum? + up

sumN I sumN + nn

Bonds

sumPPBonds I sumPPBonds + ppbonds

sumPNBonds I sumPNBonds + pnbonds

Percolation

it (maxperc) sumInfClus I sumInfClus + dble(maxClusSize)

if (maxperc) sm2In101us I sm2InIClus + (dble(maxClusSize))II2

if (maxperc) sumPercP I sumPercP + 1.D0

if (maxperc) sm2PercP I sm2PercP + 1.00

sumMult I sumHult + dble(multip)

sm2Mult I sm2Hult + (db1e(multip))II2

Averaging

if (irun .eq. nevent) then
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if ((nevent-l) .eq. 0) then

srt I 0.1D-20

else

srt I sqrt(dh1e(nevent-1))

endif

I Particles

aveP I sumP / dble(nevent)

aveN I sumN / dble(nevent)

* Bonds

avePPBonds I sumPPBonds / db1e(nevent)

avePNBonds I sumPNBonds / dble(nevent)

* Percolation

aveInfClus I (sumIntClus / (dble(n)**3)) / dble(nevent)

av2In1C1us I sm2InfClus / ((dble(n)**3)II2)

stdInICIus I sqrt(abs(av2In1Clus/db1e(nevent)-aveIn1C1us*I2))

& /srt

avePercP I sumPercP / dble(nevent)

av2PercP I sm2PercP

sthercP I sqrt(abs(av2PercP / dble(nevent) - avePercPII2))

& /srt

aveNult I sumHult / (dble(n)**3) / dble(nevent)

av2Hult I sm2Mult / ((dble(n)**3)*t2)

sthult I sqrt(abs(av2Mult / dble(nevent) - aveHultII2))

l / srt

anu I 2.DOIprob_nI(1.D0-prob_n)

invanu I (1.00 - anu)

pplus I invanutpeq + anquneq

§ Output

I LogFile

write(14.’(a20.e15.8)’)’anu I’,anu

write(14,’(a20,e15.8)’)’invanuI’,inwanu

write(14,’(a20,e16.8)’)’pplus I’.pplus

write(14,’(a20.2e15.8)’)’pinf. stdpint I’,aveIn1Clus.stdIn1Clus

write(14.’(a20.2e15.8)’)’pperc. stdppercI’,avePercP. sthercP

write(14.’(a20.2e15.8)’)’ffunc, stdftunCI’,aweHult, sthult

I Files

write (16,’(5e15.8)’) peq, pneq, pplus.

& aveIntClus, stdIntClus

write (17,’(5e15.8)’) peq, pneq, pplus.

& avePercP. sthercP

write (18.’(5e15.8)’) peq, pneq, pplus,

t aveflult, sthult

endif

END

FUNCTION ran1(idum)

IMPLICIT DOUBLE PRECISION (A-H,UIZ)

INTEGER idum. IA, IH, IO. IR, NTAB, NDIV

DOUBLE PRECISION ran1. AH, EPS, RNMX

PARAMETER (IAI16807, IHI2147483647, AMI1./IH, IQI127773, IRI2836,

& NTABI32, NDIVI1+(IM-1)/NTAB, EPSI1.2d-7. RNMXI1.dO-EPS)

INTEGER j, k. iv(NTAB). iy

SAVE iv. iy

DATA iv INTABIO/. iy /0/

it (idum .le. 0 .or. iy .eq. 0) then

idumImax(-idum,1)

do jINTAB+8, 1, -1

indum/IQ

idumIIAI(idum-kIIO)-IRIk

if (idum .1t. 0) idumIidum+IH

if (j .le. NTAB) iv(j)Iidum

enddo

iniw(1)
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endif

indum/IO

idumIIAI(idum-kIIQ)-Ifi*k

if (idum .1t. 0) idumIidum+IM

jI1+iy/NDIV

iniv(j)

iv(j)Iidum

ran1Imin(AHIiy,RNMX)

return

END

A.2 perc_ppintv0477 . f

The second program, perc_ppintv0477 . f was written to accommodate the more

specific need of determining the critical value of the bond density, pi, through deter-

mination of pi. Similar versions aiming at the critical value of 19,5 and fb respectively

have also been used. Again, for a more thorough discussion of the programs features,

we refer to Sec. 3.3.

program perc-ppintv0477

uses fortran 77 conventions

varies prob_n, pp at fixed pn and determines ppc, pplusc

uses a random number generator taken from numerical recipes in

fortran 2nd ed.: ran1(iseed), modified to use double precision

Lattice population with neutrons has own subroutine: lattice{
i
i
i
}

implicit double precision (A-H.O-Z)

call readpar(n, nevent, prob-nHin, dprob_n. nprob_n, delta,

t zlambda)

 

Loop over prob_n:

*
I
i
l
r

 

prob_n I prob_nflin

do iprob_n I O. nprob_n

call init(n, nevent. prob_n, iprob_n. delta. zlambda. apeqSt,

& bpeqSt, pneqSt, dpneq, npneq)

pneq I pneqSt

do ipneq I O, npneq

call iter(n. newent, prob-n, apeqSt, bpeqSt, pneq,

& delta. zlambda)

pneq I pneq + dpneq

end do

prob_n I prob-n + dprob_n

and do

i
f

 

End Loop over prob_n:

i
f
i

 

end

 

SUBROUTINE readpar(n. nevent, prob_nHin, dprob_n. nprob_n, delta,

& zlambda)

implicit double precision (A-H,O-Z)

parameter (maxn I 128)

I input parameters:

open(unitI12,fileI’parall.dat’,statusI’old’)
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read (12,I) n

I number of lattice sites in one direction

if (n .gt. maxn) then

print I, ’ > Fatal Error: n must be less or equal maxn’

end if

read I. iseedO

iseed I iseedO

I seed for random number generator

read (12.I) nevent

I number of simulated events

read (12.I) prob_nHin, dprob_n. nprob_n

I probability that a given site is a neutron

read (12.I) delta

precision to be reached in the final interval step

read (12.I) zlambda

interval division

END

 

SUBROUTINE init(n, nevent, prob_n. iprob_n. delta. zlambda,

l apeqSt, bpeqSt. pneqSt. dpneq, npneq)

implicit double precision (A-H.O-Z)

character lengthinfoI1. linfoIl. ninfoI3, probninfoI4,

& numinfoI2, informationI40, pneqStinfoI4

 

read (12,’(a)’) blankl

read (12.’(a)’) b1ank2

read (12,’(8a.f8.0)’) prob_n_info, prob_n-num

read (12.I) apeqSt. bpeqSt

read (12.I) pneqSt, dpneq, npneq

open(unitI13,fileI’runnumber.dat’,formI’formatted’,statusI’old’)

read(13,’(a)’) lengthinfo

read(13,’(i2.2)’) icurrentnumber

close(13)

iprobn I prob_n I 1000

ipneqStI pneqSt I 1000

write(ninfo,’(i3.3)’) n

write(probninfo,’(i4.4)’) iprobn

write(pneqStinfo,’(i4.4)’) ipneqSt

write(numinfo,’(i2.2)’) icurrentnumber

write(1info,’(a)’) lengthinfo

open(unitI14,fileI’zlog_’llninfo/l’_’//probninfo//’_’

t //pneqStinfo//’_’//linfo//"//numinfo//’.dat’,

t formI’formatted’,statusI’unknown’)

open(unitI16,fileI’zpplusclog_’//ninfo//’_’//probninfo//’-’

& //pneqStinfo//’_’//linfo//"l/numinfo/l’.dat’,

& formI’formatted’.statusI’unknown’)

if (iprob_n .eq. 0) then

open(unitI17,fileI’zpeqc_’//ninfo//’_’//probninfo//’_’

& //pneqStinfo//’_’//linfo//"llnuminfo/l’.dat’,

& formI’formatted’,statusI’unknown’)

open(unitI18,fileI’zpplusc-’I/ninfo/l’-’//probninfo//’_’

& //pneqStinfo//’-’//linfo//"l/numinfo//’.dat’.

& formI’formatted’.statusI’unknown’)

endif

if ((nevent-1) .eq. 0) then

write (14,I)’8HARNING:standard deviation of average gives

& division by 0'

write (16.I)’8UARNING:standard deviation of average gives

t division by 0’

write (17,I)’8HARNING:standard deviation of average gives
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t division by 0’

write (18,I)’8HARNING:standard deviation of average gives

& division by 0’

endif

information I ’II calc. with perc_ppintv0477 on II’

write (14.I) information

write (14,’(a20,i4.4)’) ’n I’,n

write (14,’(a20.e15.8)’)’delta I’,delta

write (14,'(a20.e15.8)’)’zlambda I’,zlambda

write (14,’(a20,e15.8)’)’prob_n I’,prob_n

write (14,’(a20.e15.8)’)’apeqStartI’,apeqSt

write (14.’(a20,e15.8)’)’bpeqStartI’,bpeqSt

write (14,’(a20.e16.8)’)’pneqStartI’,pneqSt

write (14,’(a20,e15.8)’)’dpneq I’.dpneq

write (14,’(a20,i4.4)’) ’npneq I’.npneq

write (14,I)

write (14,I)

END

 

SUBROUTINE iter(n, nevent, prob_n, apeqSt, bpeqSt, pneq,

& delta. zlambda)

implicit double precision (A-H,O-Z)

 

parameter (maxn I 128)

logical neutron(maxn.maxn,maxn)

integer perc, percount

double precision invanu

sumpeqc I 0.D0

sm2peqc I O.D0

sumpplusc I 0.00

sm2pplusc I 0.D0

anu I 2.DOIprob-nI(1.DO-prob_n)

invanu I (1.D0 - anu)

write (14.’(a20.e15.8)’)’anu I’.anu

do irun I 1.nevent

call rndinit(iseed)

call lattice(n, prob_n, iseed, neutron)

call rndinit(iseed)

a I apeqSt

b I bpeqSt

percount I 0

do while ((b - a) .gt. delta)

c I zlambdaIb + (1-zlambda)Ia

call PercChk(n, prob_n. c, pneq. irun, iseed, neutron. perc)

if (perc .E0. 1) then

b I c

percount I percount + 1

else

a I c

endif

end do

peqc I c

write(14,’(a20,e15.8)’)’anu’,anu

write(14,’(a20,e15.8)’)’invanu’.invanu

write(14.’(a20,e15.8)’)’peqc’,peqc

pplusc I invanqueqc I anquneq

write(14,’(a20.e16.8)’)’pplusc’.pplusc

write (16,’(i4.4,3e15.8)’) irun.pneq,peqc.pplusc

sumpeqc I sumpeqc + peqc

sm2peqc I sm2peqc + (peqc)II2

sumpplusc I sumpplusc I pplusc
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sm2pplusc I sm2pplusc + (pplusc)II2

and do

srt I sqrt(db1e(nevent-1))

if ((nevent-l) .eq. 0) then

srt I 0.1D-20

endif

avpeqc I sumpeqc / dble(nevent)

stdpeqcI sqrt(abs(sm2peqc/dble(nevent)-avpeqcII2))/srt

avpplusc I sumpplusc / dble(nevent)

stdpplusCI sqrt(abs(sm2pplusc/dble(nevent)-avppluscII2))/srt

deltapplus I invanuIdelta

write (17.'(i4.4,5e15.8)’) n,prob-n, pneq, avpeqc, delta. stdpeqc

write (18,’(i4.4.5e16.8)’) n,prob_n, pneq, avpplusc. deltapplus,

& stdpplusc

END

 i
f

SUBROUTINE rndinit(iseed)

implicit double precision (A-H.O-Z)

integer iseed, iseedO. iseed1

iseedO I 0

iseed I 0

call system_clock(iseed0,iclock2.iclock3)

iseed I - (iseedO)

iseed1 I iseed

zinitret I ran1(iseed1)

write(14.’(a20,i13.12)’)’randomseed I’,iseed

Brito(14,*)

write(14.I)

END

 

SUBROUTINE lattice(n, prob_n. iseed1, neutron)

implicit double precision (A-H.O-Z)

parameter (maxn I 128)

logical neutron(maxn,maxn,maxn), trueFalse

Determine which sites are neutrons:

theneutrons I 0.D0

theprotons I 0.D0

sumNeutron I O.D0

sumProton I 0.00

do iz I 1.n

do iy I 1.n

do ix I 1.n

trueFalse I .TRUE.

if (ran1(iseed1) .1t. prob-n) then

theneutrons I theneutrons + 1.00

else

trueFalse I .FALSE.

theprotons I theprotons + 1.D0

end if

neutron(ix.iy.iz) I trueFalse

end do

end do

and do

sumNeutron I sumNeutron + theneutrons
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sumProton I sumProton I theprotons

write(14,’(a20.e15.8)’)’sumNeutron I ’,sumNeutron

write(14,’(a20,e15.8)’)’sumProton I ’,sumProton

END

 

SUBROUTINE PercChk(n, prob_n, peq, pneq, irun. iseed,

t neutron, perc)

implicit double precision (A-H.O-Z)

parameter (maxn I 128)

parameter (maxni I 129)

parameter (maxn2 I 16384)

parameter (maxn3 I 2097152)

logical connected(maxn.maxn.maxn,3),

& neutron(maxn,maxn,maxn).

& trueFalse

integer newPoint(maxn3.3),

& clusterNumber(0:maxn1.0zmaxnl,O:maxn1)

integer iseed, perc, hcln

I Set random seed back to the initial value (cf Staufferbook p 73)

iseed1 I iseed

zinitret I ran1(iseed1)

n2 I nII2

n3 I nII3

hcln I (n3 I 1)

I One more than highest possible clusterNumber if the whole lattice

I is fragmented

I Determine existing bonds

I a: x-bonds -----------

ppbonds I 0.00

pnbonds I 0.DO

do iz I 1.n

do iy I 1.n

do ix I 1.n-1

trueFalse I .FALSE.

if (neutron(ix.iy.iz) .eqv. neutron(ix+1.iy.iz)) then

if (ran1(iseed1) .1t. peq) then

trueFalse I .TRUE.

ppbonds I ppbonds I 1.DO

end if

else

if (ran1(iseed1) .1t. pneq) then

trueFalse I .TRUE.

pnbonds I pnbonds I 1.DO

end if

end if

connected(ix,iy.iz,1) I trueFalse

end do

end do

end do

I b: y-bonds -----------

do iz I 1.n

do iy I 1.n-1

do ix I 1.n

trueFalse I .FALSE.

if (neutron(ix,iy,iz) .eqv. neutron(ix.iy+1,iz)) then

if (ran1(iseed1) .lt. peq) then

trueFalse I .TRUE.

ppbonds I ppbonds I 1.DO

end if

else
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if (ran1(iseed1) .1t. pneq) then

trueFalse I .TRUE.

pnbonds I pnbonds I 1.D0

end if

end if

connected(ix,iy,iz,2) I trueFalse

end do

and do

end do

I c: z-bonds -----------

do i: I 1.n-1

do iy I 1.n

do ix I 1.n

trueFalse I .FALSE.

if (neutron(ix.iy.iz) .eqv. neutron(ix,iy.iz+1)) then

if (ran1(iseed1) .lt. peq) then

truePalse I .TRUE.

ppbonds I ppbonds I 1.D0

end if

else

if (ran1(iseed1) .1t. pneq) then

trueFalse I .TRUE.

pnbonds I pnbonds I 1.D0

end if

end if

connected(ix,iy.iz.3) I trueFalse

end do

end do

end do

I Initialize connected values on boundaries as false

I a: x-bonds -----------

do in I 1.n

do iy I 1.n

connected(n.iy,iz,1) I .FALSE.

enddo

enddo

I b: y-bonds -----------

do iz I 1.n

do ix I 1.n

connected(ix,n.iz,2) I .FALSE.

enddo

enddo

I c: z-bonds -----------

do iy I 1.n

do ix I 1.n

connected(ix.iy,n,3) I .FALSE.

enddo

enddo

Assign the highest possible clusterNumber (hcln) to the surface lattice

points, so that they are treated as already belonging to a

cluster and are not dealt with in the cluster find algorithm

§
§
§
§
§

do iy I 0,nI1

do ix I O,nI1

clusterNumber(ix,iy,0) I hcln

end do

end do

do iy I O,nI1

do ix I 0,nI1

clusterNumber(ix.iy.nI1) I hcln

and do

end do

do iz I 0,nI1

do ix I O,nI1

clusterNumber(ix.0,iz) I hcln

end do
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IIII'DOU cluster, start

*

1400

end do

do iz I 0,nI1

do ix I 0,nI1

clusterNumber(ix,nI1.iz) I hcln

end do

end do

do iz I 0,nI1

do iy I 0,nI1

clusterNumber(0,iy,iz) I hcln

end do

end do

do is I 0,nI1

do iy I 0,nI1

clusterNumber(nI1,iy.iz) I hcln

end do

end do

Assign the clusterNumber 0 (not part of any cluster) to all points in

the lattice that don’t belong to the surface

do iz I 1.n

do iy I 1.n

do ix I 1.n

clusterNumber(ix.iy,iz) I 0

 

end do

end do

end do

CLUSTER FIND SUBROUTINE

perc I 0

multip I 0

ipclsize I 0

maxClusSize I O

i2I1

do iy I 1.n

do ix I 1.n

IP(clusterNumber(ix,iy.iz) .eq. 0) then

 

c1usterNumber(ix,iy,iz) I multip + 1

newPoint(1,1) I ix

newPoint(1,2) I iy

newPoint(1.3) I is

IHINO I 1

IMAXO I 1

continue

IMIN I IMAXO I 1

IHAX I IMIN

do I I IMINO,IHAXO

IIX I newPoint(I.1)

IIY I newPoint(I,2)

112 I newPoint(I.3)

IF(clusterNumber(IIX-1,IIY,IIZ) .eq. 0) THEN

IF( connected(IIX-1.IIY,IIZ,1)) THEN

newPoint(IMAx,1) I IIx-i

newPoint(IHAX.2) I IIY

newPoint(IMAX,3) I IIZ

IMAX I IMAX I 1

clusterNumber(IIX-1,IIY,IIZ) I multip+1

END IF

END IF

IF(clusterNumber(IIXI1,IIY,IIZ) .eq. 0) THEN

IF( connected(IIX,IIY.IIZ,1)) THEN

newPoint(IHAx.1) I IIXII
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newPoint(IHAX.2) I II?

newPoint(IHAx,3) I 112

IHAX I IHAX I 1

clusterNumber(IIXI1,IIY.IIZ) I multile

END IF

END IF

IF(clusterNumber(IIX.IIY-l.IIZ) .eq. 0) THEN

IF( connected(IIx.IIY-1,IIZ.2)) THEN

newPoint(IHAX,1) I IIX

newPoint(IHAX.2) I IIY-1

newPoint(IHAX.3) I 112

IMAX I IHAX I 1

clusterNumber(IIX,IIY-1,IIZ) I multile

END IF

END IF

IF(clusterNumber(IIX,IIY+1,IIZ) .eq. 0) THEN

IF( connected(IIX,IIY,IIZ,2)) THEN

newPoint(IHAX,1) I IIX

newPoint(IHAX,2) I IIY+1

newPoint(IHAX,3) I IIZ

IHAX I IHAX I 1

clusterNumber(IIX,IIYI1,IIZ) I multipIi

END IF

END IF

IF(clusterNumber(IIX,IIY,IIZ-1) .eq. 0) THEN

IF( connected(IIX,IIY,112-1.3)) THEN

newPoint(IHAX,1) I III

newPoint(IHAX,2) I IIY

newPoint(IHAx,3) I IIZ-1

IHAX I IHAX I 1

clusterNumber(IIX,IIY,IIZ-1) I multile

END IF

END IF

IF(clusterNumber(IIX,IIY.IIZI1) .eq. 0) THEN

IF( connected(IIX,IIY,IIZ,3)) THEN

newPoint(IHAX,1) I IIX

newPoint(IHAX,2) I IIY

'newPoint(IHAX,3) I IIZI1

IMAX I IMAX I 1

clusterNumber(IIX.IIY,IIZI1) I multip+1

IF(IIZI1 .EQ. n) THEN

perc I 1

multip I multile

ipclsize I imaxo

write (14,’(a20.15.4)’) ’irun I’,irun

write (14,’(a20,e15.8)’) ’peq I’,peq

write (14,’(a20,e15.8)’) ’pneq I’,pneq

write (14.’(a20,e16.8)’) ’ppbonds I',ppbonds

write (14,’(a20,e15.8)’) ’pnbonds I’,pnbonds

write (14,’(a20.i13.12)’)’multip I’.multip

write (14,’(a20,i13.12)’)’ipclsize I’,

ipclsize

write (14,’(a20.i2.1)’) ’perc I’,perc

write (14.I)

write (14.I)

RETURN

END IF

END IF

END IF

and do

IF(IHAX .NE. IMIN) THEN

IMINO I IHIN

IHAXO I IMAX - 1

GOTO 1400

ENDIF

; increase multiplicity
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multip I multip I 1

; IMAXO contains cluster size

if (imaxo .gt. maxClusSize) then

maxClusSize I imaxo

indexHax I multip

end if

END IF

end do

and do

END CLUSTER FIND SUBROUTINE

write (14,’(a20,i5.4)’) ’irun I’,irun

write (14.’(a20,e15.8)’) ’peq I’,peq

write (14.’(a20,e15.8)’) ’pneq I’,pneq

write (14,’(a20,e15.8)’) ’ppbonds I’,ppbonds

write (14.’(a20,e15.8)’) ’pnbonds I’,pnbonds

write (14.’(a20,i13.12)’)’multip I’,multip

write (14,’(a20,i13.12)’)’ipclsize I’,ipclsize

write (14,’(a20.i2.1)’) ’perc I’,perc

write (14,I)

write (14,*)

END

 

FUNCTION ran1(idum)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

INTEGER idum, IA, IH, IO, IR. NTAB. NDIV

DOUBLE PRECISION ran1, AH. EPS, RNHX

PARAMETER (IA-16807, IHI2147483647. AHI1./IH, IOI127773, IRI2836.

& NTABI32, NDIVI1I(IH-1)/NTAB, EPSI1.2d-7, RNHXI1.dO-EPS)

INTEGER j. k, iv(NTAB), iy

SAVE iv, iy

DATA iv /NTABIO/, iy /0/

if (idum .le. 0 .or. iy .eq. 0) then

idumImax(-idum,1)

do jINTAB+8, 1, -1

indum/IO

idumIIAI(idum-kIIO)-IRIk

if (idum .1t. 0) idumIidumIIH

if (j .le. NTAB) iv(j)=idum

enddo

iniv(1)

endif

indum/IQ

idumIIAI(idu.m-kIIQ)-IRIk

if (idum .1t. 0) idumIidumIIM

jIlIiy/NDIV

iniv(j)

iv(j)=idum

ran1Imin(AHIiy,RNMX)

return

END
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