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ABSTRACT

SYNTHESIS, MODELING AND CHARACTERIZATION OF ETHYLENE OXIDE-

SEGMENTED MICROBLOCK COPOLYMERS
By

Yiyan Chen

We synthesized and characterized a series of (AB), microblock copolymers where
the A block is either an exact length linear alkyl segment or a linear alkyl segment
containing a single double bond, and the B block is an exact length segment of
polyethylene oxide (PEO). Thus the A block is hydrophobic, and the B block is
hydrophilic. The polymers were prepared in high yields by metathesis polymerization of
o, w-alkenyl-substituted PEOs. The polymers had number average molecular weights as
high as 98,000. Differential scanning calorimetry shows that the polymer Tgs increase as
the length of PEO segments increase when PEO segments is short, and level off when
PEO segments become longer. Above T, the polymers exhibit a complicated sequence
of crystallization and melting transitions. Because of the amphiphilic nature of the
polymer segments, the polymers have good solubility in a variety of polar and nonpolar

solvents.

To understand the properties of the (AB), polymers, a series of model compounds
with the generic structure H(CH,),(OCH,CH,),O(CH2)H were synthesized. The melting
points of the model compounds show an odd-even effect when x < 12 and y < 6, with

compounds with odd values of y having higher melting points than oligomers with even
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values of y. This effect can be traced to a planar trans conformation for the PEO
segments in the oligomers. Unsaturated polymers follow the same trend as the model
compounds when ethylene oxide segment is short while saturated polymers follow the
trend once the PEO segment is = 3, which validates the use of these compounds as model

compounds for study the polymers.

We also found that crystalline model compounds with seven ethylene oxide units
have two kinds of structures: an extended planar zigzag form throughout the whole
molecule, and another having a helical ethylene oxide segment flanked by two planar
zigzag alkyl chains. More importantly, these conformations can be controlled by the
selection of crystallization method. Samples crystallized from polar solvents give the
planar zigzag conformation while samples crystallized from nonpolar solvent or fast
quenched from melt crystallize in a structure with planar conformations for alkyl chains
and a helical conformation for ethylene oxide segment. The structures of the saturated
polymer analogs can also be manipulated in the similar manner. This result points to a
general strategy for incorporating stable crystalline polymer sub-units into materials. By
using segment lengths that correspond to multiples of the polymer unit cell, such
segments can be expected to self-assemble into crystalline sub-units that have the same

structure as the parent polymer.
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INTRODUCTION

I. General

Block copolymers exhibit a fascinating range of microstructures and properties,
which has led to important applications as adhesives, compatibilizers, emulsifiers, and in
their bulk form, as thermoplastic elastomers. Therefore, block copolymers continue to
draw attention from scientists and engineers more than three decades after

commercialization of this class of materials.

Block copolymers are macromolecules comprised of chemically dissimilar,
terminally connected segments. Each segment is a homopolymer chain with many repeat
units. For block copolymers with two different types of segments A and B, their
sequential arrangement can vary from AB structures containing two segments, to ABA
block copolymers with three segments, to multiblock (AB), systems possessing many

segments.

By combining two or more chemically dissimilar segments in one molecule, one
not only obtains copolymers that combine the properties of individual segments, but more
importantly, it also gives rise to properties not found in simple polymer blends. The
basic physical concept that underlines these characteristics is phase separation. In a
polymer blend, the polymer phase separates at a macroscopic level. Domains larger than
hundreds of microns can easily be seen under microscope. Therefore, the properties of a

polymer blend is usually a simple combination the homopolymer properties. In the block
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copolymer case, phase separation is at the molecular level, generally on the order of the
block size. Phase separation at this level can lead to new polymer morphologies and thus

new properties. For example, both thermoplastic elastomers and toughened rubbers can

be realized with styrene-butadiene block copolymers.1 The properties of these materials
crucially depend on their morphology, both in the molten and solid state. Their phase
behavior and thermodynamics are particularly important to understand. They will be

discussed in more detail in the following section.

The most commonly encountered block copolymers are amorphous AB diblock
copolymers, formed by joining two homopolymers at a single point. The interface
between the two phases is defined by the link between the A and B blocks, and different
morphologies can be obtained by varying the magnitude of the chemical interactions
between the blocks and the ratio of the lengths of the two blocks. Since there is only one
connection between the two blocks, this kind of block copolymer is the simplest to study
and many properties of AB block copolymers have been elucidated to date. Many
applications of block copolymers, for example thermoplastic elastomers, require more
than two blocks with more connecting sites (this topic will be discussed in detail later).
This leads to triblock and even multiblock copolymers. Compared to diblock
copolymers, they have more than one chemical linking point making it possible to
effectively couple the behaviors of different phase separated domains, and expand the

range of properties available from block copolymers.

Due to the presence of a greater number of physical junction sites per
macromolecular chain, the polymer segment length in (AB), polymers can be shorter

than in ABA polymers to achieve the same properties, which could be an important
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feature for processing. Since the size of the phase-separated domains can be greatly
reduced in the (AB), system, it is easier to obtain a more ‘homogeneous’ material than in
AB or ABA systems. Because the size of the micro-domain can be reduced, it is more
likely that such materials have high optical clarity. The polymers studied in this research
are (AB), microblock copolymers. In particular, we studied the synthesis and
characterization of (AB), copolymers where the B blocks are exact length segments of
polyethylene oxide (PEO) and the A block is an exact length linear alkyl segment or a

linear alkyl segment containing a single double bond.

IL. Block copolymer properties
1. Phase separation and morphology

When two polymeric materials are mixed, the great majority are highly unmixable
and phase separate. This is a direct consequence of the well-known relationship for free

energy change for mixing (AGnix) given by equation 1:

AG,,. =AH, —-TAS,, eq. 1

mix mix

Polymers have a very small entropy of mixing (ASi;) due to their high molecular
weight. Therefore, a slightly positive enthalpy (AH) due to endothermic mixing is
sufficient to produce a positive free energy change, thus resulting in incompatibility (i.e.,
polymer phase separation). This incompatibility of the blend components provides a
driving force for each to aggregate in separate phases. These two-phase systems are

coarse dispersions in which the particles are usually large enough to make the blends

opaque.
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If two polymeric species are coupled by a chemical link, macroscopic phase
separation may be inhibited. As shown in Figure 1,2:3 the A and B segments still
segregate, but the domains have dimensions corresponding to the size of the single
blocks. In addition, the domains have a uniform size, and can form ordered mesoscopic
lattices. The relationship of morphology to the relative composition of the A block in a
AB diblock system is shown in Figure 2.2 In the figure, ¢4 is the volume fraction of A

block, Nyp is the degree of polymerization of the diblock copolymer and y is the Florry-

Huggins parameter? reflecting the interaction properties of the two blocks.
The Florry Huggins parameter y is defined as
x=AH_ kTN ,v, eq. 2

where N, is the number of repeat units in segment A and vg is the volume fraction
of segment B. 7 is a dimensionless parameter and it reflects the interaction properties of

the two blocks.

Microphase-separation leads to different classes of structures that depend on the
block copolymer composition. For very small ¢4, i.e. N4 « Ng (Where Ny and Np are the
number of monomer units in the A and B components respectively), spherical inclusions
of A in a B-matrix are formed, and they set up a body-centered cubic lattice (Figure 1a).
For larger values of N, (but still Ny < Np,) the A-domains have a cylindrical shape and
they are arranged in a hexagonal lattice (Figure 1b). Layered lattices (Figure 1d) form
under essentially symmetrical conditions, i.e. N4 =Np. Then, for N4 > N, the phases are

inverted and the A-blocks now constitute the continuous matrix.



Figure 1. Morphologies of AB block copolymers. White portions represent

block A, while dark portions represent block B of the AB polymer.
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Figure 2. Schematic phase diagram of a typical block copolymer
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In addition to lattices composed of spheres, cylinders and layers, periodic
structures occur under special conditions, where both phases are continuous. One

example, presented in Figure 1c, is an ordered bicontinuous double diamond
structure. 3.6 Hexagonally perforated layers (HPL)’-9 and a second bicontinuous cubic

structure known as a Ia§d/gyroid7’10’1l were recently found. These microstructures
exist in a narrow range of N4/Np, between the cylindrical and lamellar phases, and

theoretical calculations show that they are not stable relative to lamellae and cylinders in
the strong segregation limit. 12

The structures discussed above are mainly derived from AB diblock copolymers.
However, most triblock or multiblock copolymers also phase separate and exhibit similar

phase behavior. For instance, the triblock copolymer poly(2-vinylpyridine-b-styrene-b-2-

vinylpyridine), 1, has an alternating lamellar structure when the polystyrene volume

fraction ranges from 0.28 to 0.58. 13

@ @)

When more blocks are restrained in the same polymer chain, more complicated

phase behavior is expected and new morphologies are discovered. Matsushita and co-

workers14 reported a tricontinuous double-diamond structure formed from styrene-

isoprene-Z-vinylpyridine triblock copolymer 2. A knitting pattern in polystyrene-b-
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poly(ethylene-co-butylene)-b-poly(methylmethacrylate) triblock copolymers 3 was found
by Stadler’s research group.15 The morphology of well-defined poly(styrene-b-ethylene-
co-1-butene-b-methyl methacrylate) (P(S-b-EB-b-MMA)) triblock copolymers 4 of
molecular weights of approximately 2 x 10’ has been shown to have new ordered

morphologies.16 At a low EB content (6 wt%), the triblock copolymer shows PS

cylinders dispersed in a PMMA matrix. The cylinders are covered with small isolated EB

rings.
CHs
|
J&cw—cw—cw—cwi—écw—mﬂ—&cw—c
(';H21-X a | b
1 COOCHs
CHs
3
CHs
Cblg-CH—-)—E(CHz—CHg—CHz—CHz cm—cﬁﬂ—fcw—c—)-
—<_ a ﬁ éHa 1-x b | c
I COOCHs
CHs
4

The morphologies of microblock (AB), copolymers where n is large are much

less frequently reported, however, phase separation does occur in many cases.17,18
Since the block lengths for this kind of polymers are much smaller and the repeating

number n is much larger, the polymers show more complexity and their study requires
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more powerful equipment. Styrene(S)-isoprene(I) multiblock copolymers 5 of the (SIy)q

type (n = 1, 2, 3, 4) with total polystyrene volume fractions of about 0.5 were also found

to have alternating lamellar structures.19 Theoretical models based on confined-chain
and mean-field principles were used to elucidate the fundamental relationships between

microstructural dimensions and molecular characteristics in microphase-separated

multiblock copolymers in the strong-segregation 1imit.20  For (AB), multiblock
copolymers with the same molecular weight, an increase in n increases the homogeneous
(residually mixed) interphase volume fraction, thereby decreasing the extent of
thermodynamic incompatibility between the A and B blocks and making microphase
separation less favorable. If, on the other hand, the block lengths are held constant and
the copolymer molecular weight is allowed to vary with n, microphase separation
becomes more energetically favored as n is increased, which is consistent with the phase

diagram shown in Figure 2.




Figure 3
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Figure 3. Morphology model of thermoplastic rubber
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Phase separation can be used to generate useful materials with designed
properties. The most common application is as thermoplastic elastomers. As mentioned
before, styrene/butadiene copolymers can form both thermoplastic elastomers and
toughened rubbers. Polystyrene has a glass transition temperature, T, of about 110 °C
while the T, for polybutadiene is about -100 °C. Therefore, at room temperature,

polystyrene is a hard glassy block while the polybutadiene is a soft rubbery block. As

shown in Figure 321 for a PS-PB-PS triblock system, the blocks phase separate and form
two domains. The morphological domains formed by association of the hard blocks
serve as physical cross-linking and reinforcement sites, and the bulk material behaves
like an ordinary rubber. In contrast to ordinary rubber where the cross-links are
permanent, these cross-linking sites are thermally reversible, i.e. melt processing is
possible at temperatures above the Ty or Ty, (melting point) of the hard block, and the
material is therefore termed a thermoplastic elastomer. It is not hard to see that AB
diblock copolymers are incapable of producing network structures, since only one end of

the soft block is chemically linked to a hard segment domain.

More advanced structural designs based on phase separation have also been
reported. For example, spontaneously organizing systems can be tailored by balancing
organizing forces such as chemical incompatibility with others such as conformational
entropy. The resulting materials spontaneously organize on length scales ranging from a
few nanometers in LC phases to hundreds of nanometers in phase-separated structures,
and even micrometers in length for surface-segregated materials. Stupp and coworkers

have demonstrated the best example of this kind of manipulation in their design of a

mushroom-shaped supramolecule.22 The triblock polymer 6 used for this assembly

10
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consists of styrene, isoprene, and a rod-like block based on rigid aromatic rings. In these
materials, spontaneous noncentrosymetric organization was reported. Both microphase
separation of the two coil blocks and the crystallization of the rod component played
important roles in the selection of the unusual shape of the aggregate. This leads to
asymmetric packing of the units, which form micrometer-sized plate-like objects
exhibiting upper and lower surfaces that have hydrophobic and hydrophilic character,

respectively. The supramolecule assembly can also be chemically cross-linked to form

macromolecular clusters.23
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2. Crystallization of polymers

Like many small molecules, some polymers can be crystallized. However,
because of the dispersion in molecular weight and chain entanglements, polymer crystals
are different from small molecules. When polymers are cooled from their melts, they
produce structures which are only partially crystalline. Layer-like crystallites are
separated by disordered regions which leads to another kind of two-phase system—a
mixture of crystalline and amorphous phases. Transmission electron microscopic studies

of ultra-thin slices of polyethylene (PE) crystals show that the lamellar crystalline phase

coexists with the amorphous phase.24 Polymer crystallization requires that the
entanglements in the melt be resolved, which is unlikely to be completed within the given
time. Therefore, crystallization is preceded by demixing, whereby chain sequences which
can be stretched and incorporated into a growing crystal are separated from chains near
entanglements, which can only be excluded and shifted into the amorphous regions. The
non-crystallizable chain parts of a polymer are not only entanglements, but also include
endgroups, chemical perturbations like short chain branches, or specific local
conformations which oppose transformation into a uniform chain. They all become
accumulated in the amorphous parts of a partially crystalline polymer. Compared to
small molecules, another major difference of polymer crystals is that they rarely consist
of extended chains of whole polymer molecules. Because it is hard to achieve ordering

over a very long range, the polymer chains in polymer crystals often are folded.

Polymers usually crystallize as spherical crystals, or spherulites. Spherulites are

formed by nucleation followed by even radial growth.25 The polymer chains inside the

spherulites orient perpendicular to the radius vector in most polymers. Vaughan and

13
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Bassett26 showed that the center of the crystal spherulite is sheaf-like and formed by an
aggregate of layers. On further growth, they become curved, and finally establish a
stable spherical growth surface. When examined using polarized optical microscopy,

spherulites exhibit a characteristic Maltese cross pattern of light extinction.

In many cases, spherulites with constantly spaced concentric rings are observed.
They are called banded spherulites. For example, a polyethylene crystal observed with a

polarized optical microscope shows light extinctions along circles in a periodic manner in
addition to the Maltese cross.26 Other polymers such as poly(e—caprolactone),27 and

polyethylene oxide28 (PEO) crystallized under certain conditions, also show banded
spherulites. The reason for this behavior is that the crystallites periodically twist on a
certain length scale. The mechanism leading to this special texture is still under

discussion and has not yet been clarified.

As small molecule system states are mainly govemned by thermodynamic
equilibrium, it is important to note that structure formation for polymers crystallizing
from the melt are governed more by kinetic criteria rather than by equilibrium
thermodynamics. The structure which develops at a given temperature is that with the
maximum growth rate rather than the structure with the lowest free energy because of the
limited mobility of the polymer chains. Being kinetically controlled, structures of

partially crystalline samples are always strongly affected by thermal processing and show
a memory of the thermal history, i.e. the temperatures and times of crystallization,29»30

cooling rates, 31,32 etc. Figure 4 shows a nice illustration of PEO (M, = 6000) crystal

growth from a melt. The rate of crystal growth, as indicated by the radius of spherulite

14
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increment over time, is plotted against the crystallization temperature. The expected
increase in growth rate with super cooling is seen over the entire temperature range. The

relationship of the spherulite growth rate to the crystallization temperature can be

expressed with empirical equations:2

BO
TM—T)

u = Aeexp( eq. 3

where A and By are constants for a given polymer, and 7, is the equilibrium
melting temperature. Therefore, the lower the crystallization temperature, the faster the
crystallization rate. Since the molecular weight is low, it is possible to grow crystals with
fully extended chains at a temperature close to the equilibrium melting temperature. This
case is shown in the far right region of Figure 4. A break at 59.5 °C is observed, which
is caused by a change in crystal structure. Crystals formed in this part of the curve are
comprised of once-folded chains rather than extended molecules. These crystals have a
lower melting point and a higher Gibbs free energy than the thermodynamically most
stable extended chain form. However, the crystal growth rate is higher which
preferentially leads to the formation of this once-folded form. On further cooling, the
twice-folded chain crystal is formed preferentially and so on until a relatively continuous

growth rate increment is reached.

In the continuous growth regime, the crystallite thickness d. at crystallization

temperature T is inversely proportional to the difference of crystallization temperature

and melting temperature, as indicated in equation 4,2 where B, and B; are constants.

B,

dC(T)=T T+82 eq. 4
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Many well-defined block copolymers are partially crystalline. Being able to
include crystallinity as a design element in block copolymers is particularly attractive
since it would expand the range of properties that can be obtained from block
copolymers. For simplicity, we can think in terms of two limiting types of crystallizable
AB block combinations: copolymers with one crystallizable block, and those where both
blocks can crystallize. For copolymers where both the A and B blocks are long, each
block would be expected to phase separate and crystallize in the same crystal structure as
in the homopolymers. Copolymers where one or both blocks are short would form new
structures bearing the characteristic structure of the homopolymer for each block, or form
completely different structures.  Because of the large AHg, associated with
crystallization, one also would expect that the formation of crystalline phases would
substantially perturb the copolymer microstructures compared to those typically obtained
from amorphous AB copolymers. In particular, crystallization kinetics is likely to play
an important role in defining the block copolymer morphology. A couple of examples

will be shown in the following sections.

III. Multiple thermal transitions for polymers

When a block copolymer is characterized by a scanning thermal analysis
technique such as Differential Scanning Calorimetry (DSC) or Dynamic Mechanical
Analysis (DMA), they often show multiple transitions. For example, diblock copolymers
can show two T;’s based on their degree of phase separation or show several melting-

crystallization transitions during a DSC heating scan. These properties can be classified
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into three categories: phase separation, lamellar thickening and thinning, and

polymorphism.
1. General phase separated cases

When the two blocks of a diblock copolymer strongly phase separate on a
relatively large scale, the two polymer blocks have properties similar to the pure
homopolymers. For example, the structure-property relationship of perfectly alternating

segmented copolymers 7 based on soft poly(dimethylsiloxane) (PDMS) segments and

glassy poly(arylene ether sulphone) hard segments, have been studied.33 DMA and DSC
were used to analyze the copolymer properties. Isolated thermal transitions
corresponding to each block were observed, which is a good indication of the two-phase
nature of the material. The soft PDMS segments have Tgs near —115 °C while the T, of
the polysulphone is around 150 °C. The T, associated with the hard phase depends on
the composition of the copolymer and increases with the polysulphone block length in the
copolymer. (AB), type multi-block polymers 8 with soft segments of polybutadiene (Mn

= 2000) and various lengths of poly(ethylene terephthalate) (PET) hard segments show

two T,s because of the strongly incompatible blocks.34 However, as they are chemically
linked in one molecule, their T,s are also affected by each other. The Tgs of the
polyolefin blocks in these copolymers are all higher than that of their pure homo-
oligomers indicating decreased chain mobility for the polyolefin in the copolymer, while

the T, of the PET block is lower than that of pure PET homopolymer.

Polymers with pendent side chains that are chemically different relative to the
backbone also show multiple thermal transitions caused by phase separation. A series of

comblike semiflexible polymers 9, in which the alkyl side chains were located

18
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nonsymmetrically on the ring, were synthesized by reacting hydroxypropylcellulose with

hexyl, octyl, dodecyl, and octadecyl isocyanates.35 Besides a transition for the main
chain melting above 100 °C, DSC experiments showed side-chain melting around 50 °C
for polymers with 12 and 18 carbons in the pendant groups. The sample with 18-carbon

side chains also show multiple melting transitions that correspond to different side chain

packing patterns.

" : CHy
+-O£O0-+-O-+O-0tOt-EorET
7
EO—EQ%CH)—(cmcwcwcwﬂ—oc@ }—(ocwcweo@"%
8
0
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With shorter block lengths, the copolymer thermal transitions gradually get closer

and merge. Hashimoto and coworkers30 synthesized two series of styrene-butadiene and
styrene-isoprene tapered block copolymers and investigated the effects of compositional
variation along the main chain on microdomain structures and on linear dynamic
mechanical responses. As the segments became shorter, mixing of unlike segments
occurred both at the interphase boundary and inside the domains. The thermal behavior
was predictable for this kind of system. The two T,s, as indicated by the loss modulus
peaks in the mechanical spectrum, gradually approached each other as the block lengths
shortened and finally coalesced. At this point, the block copolymer is a one-phase system

or phase separation is only on a very small scale. The T, of the block copolymer can be

predicted by the Fox equation:4

X
X

1 + 2

1 eq. 5
TR

e |
e

2

Where T,; and T, are the glass transition temperature of the homopolymer of the

two blocks, and M, and M, are the weight fractions of the two blocks.
2. Lamellae thickening and thinning

As mentioned before, PEO samples crystallized at different temperatures can give
crystals with different lamellar thickness due to chain folding. When PEO or other
crystallizable polymers are incorporated in block copolymers, they often still show multi-

melting behavior based on chain folding.

The crystallization of oxyethylene/oxybutylene (E/B) diblock copolymers 10,

with one crystallizable E block and one noncrystallizable B block, has been studied by
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simultaneous small angle X-ray scattering (SAXS) and wide angle X-ray scattering

(WAXS), low-frequency Raman spectroscopy, and DSC.37.38 It was shown that the two
blocks phase separate and the PEO block crystallizes in once to multiply folded structures
based on the crystallization conditions, while the oxybutylene block is slightly stretched
compare to the melt. The phase behavior of a low molecular weight (My, = 6000)

symmetric triblock copolymer of poly(ethylene oxide) and poly(isobutylene), PEO-PIB-

PEO, has been studied using small-angle neutron scattering and TEM.39 This PEO-PIB-
PEO block copolymer forms an ordered lamellar phase at low temperatures induced by
the crystallization of the PEO segment in a helical conformation with a single fold. Near
the transition temperature, 45 °C, the PEO chains unfold, giving rise to significant

swelling of the lamellae.

H(OCH2CHz)n(OCH,CHCH2CHz)mOH
10

—(CHa—CH)x——(CHzCHp)y ——

11
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