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ABSTRACT

RESPONSE OF MODEL MICROBIAL COMMUNITIES TO INCREASED

PRODUCTIVITY

BY

Brendan James Marc Bohannan

I studied the effect of increased productivity on three microbial model

communities that differed in complexity. All three communities were maintained

in glucose-limited chemostats. Productivity was manipulated in these model

communities by altering the concentration of glucose in the incoming media.

In a simple food chain consisting of bacteriophage T4 and T4-sensitive E.

coli, the bacteriophage population responded to increased productivity with a

large and highly significant increase in equilibrium density. In contrast, the E. coli

population responded with a small but significant increase in equilibrium density.

Both populations had a significant decrease in stability in response to increased

productivity. T4-resistant E. coli mutants were detected in both higher and lower

productivity treatments. These mutants appeared significantly sooner, and

invaded at a faster rate, in the higher productivity treatment than in the lower

productivity treatment.

In a food web consisting of bacteriophage T4, T4-sensitive E. coli, and T4-

resistant E. coli, neither the bacteriophage nor the T4-sensitive E. coli population

changed in equilibrium density in response to increased productivity. Only the

T4-resistant E. coli responded to increased productivity with an increase in

equilibrium density. However, both the bacteriophage and the T4-sensitive E. coli

populations decreased in stability in response to increased productivity, although

to a lesser degree than the populations in the simple food chain. The T4-



resistant E. coli population increased in stability in response to increased

productivity.

In a food web consisting of bacteriophage T2, T2-sensitive E. coli, and

partially T2-resistant E. coli, increased productivity resulted in the exclusion of the

sensitive E. coli due to apparent competition. T2-resistant E. coli mutants were

not detected in the lower productivity treatments; however, they were detected in

the higher glucose treatment. Invasion of the higher glucose treatment by T2-

resistant mutants temporarily halted the exclusion of the sensitive E. coli.

The responses of all three different microbial model communities to

increased productivity were better predicted by prey-dependent mathematical

models than by ratio-dependent mathematical models.
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CHAPTER 1

MICROBES, MODELS AND MODULES:

TESTING ECOLOGICAL THEORY USING MICROBIAL MODEL SYSTEMS

BRIDGING THE GAP BETWEEN MICROBIOLOGY AND ECOLOGY

One way that science confronts the complexity of the natural world is by

dividing the study of nature among a variety of different disciplines, each with its

own perspective, traditions and history. This can be a very powerful approach,

providing multiple, overlapping windows on the natural world. However, with time

disciplines can become isolated from one another. This separation can act as an

impediment to understanding as barriers to communication grow between

disciplines. Because of these barriers, and the opportunity to surmount them,

doing research at the interface between disciplines can be very exciting. The

clash of perspective, approach, and history, and the resolution of this conflict, can

lead to new insights, novel approaches and great leaps in understanding.

Recent research at the interface of the disciplines of microbiology and ecology is

an excellent example of this process (Andrews 1991, Atlas and Bartha 1993).

These two disciplines have natural complementary strengths, but these strengths

have been overshadowed by the separation of these two disciplines over time.

Microbiology and ecology have been isolated from one another since early

in their respective histories. The science of ecology developed initially as a

subdiscipline of botany and zoology, heavily influenced by the naturalist tradition

1
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in these disciplines (Kingsland 1995). As such, it was a science in which the field

observation of organisms played a central role. Microbiology, on the other hand,

developed initially from interests in industry and medicine, with the principle

approach being laboratory experimentation on pure cultures (Atlas and Bartha

1993). Ecological research with microbes had to overcome tremendous

methodological obstacles (such as small size and lack of morphological detail)

that ecological research with plants and animals did not. This distinction served

to separate ecology from microbiology early on in their development as

disciplines.

Communication between ecologists and microbiologists in the early

twentieth century was minimal; the two disciplines had no common language or

approach (Atlas and Bertha 1993). However, this is not to say that they did not

influence one another. Mathematical modeling of the interactions between

pathogenic microorganisms and their hosts had a major influence on the

development of mathematical theory in ecology (e.g., Ross 1911), and research

with microbial microcosms played a major role in unifying theory and experiment

in ecology (e.g., Gause 1934). Microbiologists were certainly aware of the work

of ecologists; the Dutch microbiologist Martinus Beijerinck described his

approach to microbiology as “the study of microbial ecology” as early as 1905

(Van Iterson Jr. et al. 1940). Despite these examples, however, the disciplines

of microbiology and ecology became increasingly isolated from one another

during the first half of this century (Atlas and Bartha 1993). During this time,

microbial ecology developed as a distinct subdiscipline of microbiology, isolated

from general ecology, and with a different approach and perspective. The

ultimate result of this separation is that microbial ecology today lacks a solid

theoretical foundation, and general ecology has been largely prevented from

studying the ecology of the dominant form of life on earth, microorganisms.
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There remains a significant communication barrier between these

disciplines even today. For example, a recent review by ecologists of the

consequences of shared predators (Holt and Lawton 1994) failed to cite early

theoretical and experimental work by microbiologists (Levin et al. 1977).

Similarly, a recent review by a general ecologist of ratio-dependent predator-prey

theory (Berryman 1992) failed to mention that such theory was developed, and

experimentally tested, by microbiologists decades before ecologists rediscovered

such theory (Contois 1959). Microbiologists are equally guilty of such

nearsightedness. A recent journal article describing an experimental test of top-

down versus bottom-up controls of bacterial populations did not cite a single

article from the extensive literature on this topic in general ecology (Shiah and

Ducklow 1995). In another recent article, several microbiologists proposed a

conceptual model of the control of microbial diversity that was essentially a

reinvention of classical theory from general ecology, including the exploitation

ecosystem hypothesis, the role of keystone predators, and specialist versus

generalist predators (Thingstad et al. 1997). Not a single one of the classical

papers describing these theories was cited. Such myopic views of ecology and

microbiology retard the growth of both disciplines.

In the last twenty-five years, however, there has been a growing interest

by both general ecologists and microbial ecologists in bridging the gap between

these disciplines (Andrews 1991, Atlas and Bartha 1993). There is an increasing

awareness of the complementary strengths of microbiology and ecology.

Ecology has to offer microbiology a wealth of ecological theory, theory that could

be used to form the theoretical foundation for microbial ecology that has been

historically lacking. Microbiology has to offer ecology powerful model systems,

systems with short generation times, that are easy to manipulate, and that can be

used to test ecological ideas.



THE USE OF MICROBIAL MODEL SYSTEMS TO TEST ECOLOGICAL

THEORY

The use of microbial model systems to test ecological ideas has a long

history in ecology, dating at least to Woodruff’s (1912) exploration of succession

in hay infusions and Gause’s (1934) famous studies on protozoan competition

and predation. However, the use of laboratory model systems has always been

controversial (Kingsland 1995). Mertz and McCauley (1982) have argued that

the controversy surrounding laboratory studies in general ecology has increased

steadily since the 1960’s. This claim is supported by the observation that the

number of laboratory studies published in major ecological journals has declined

(as a percentage of the total papers published in these journals) since 1960 (Ives

et al. 1996). Mertz and McCauley (1982) attributed the decline in the popularity

of laboratory studies to the influence of Robert MacArthur on the development of

general ecology during this period. MacArthur was gifted as both a theoretical

ecologist and a field ecologist, but he was highly critical of laboratory studies as

being generally uninteresting and unimportant, referring to them condescendingly

as “bottle experiments” (MacArthur 1972). MacArthur was not the only eminent

ecologist to weigh in against laboratory studies during this period; G. Evelyn

Hutchinson criticized laboratory model systems as being highly artificial and

essentially “a rather inaccurate analogue computer... using organisms as its

moving parts.” (Hutchinson 1978).

Recent critics of laboratory studies have expanded on these earlier

critiques, raising concerns about the validity of laboratory microcosm research in

general, and microbial microcosms in particular (Peters 1991, Carpenter 1996,
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Lawton 1996). Laboratory microcosms have been criticized for being too simple,

too artificial, and too small in spatial and temporal scale to be useful for most

ecological questions. In addition, microbial microcosms have been criticized in

particular for using model organisms that are not representative of most other

organisms. As I will demonstrate below, these critiques suffer from confusion

about the purpose of a model system, misconceptions about laboratory

experiments, and a general ignorance of microbial biology.

Much of the criticism that has been directed at laboratory model systems

is centered on their simplicity. Laboratory model systems have been criticized as

lacking in realism and/or generality because of their simplicity (Diamond 1986,

Carpenter 1996, Lawton 1996), for not incorporating complexities such as

seasonality, disturbance or immigration (Lawton 1996), and for being “analogies”

(i.e., overly simplistic representations of natural systems) (Peters 1991). But

these critiques suffer from confusion about the purpose of laboratory model

systems. Laboratory model systems are not intended to be miniature versions of

field systems. Laboratory ecologists do not intend to reproduce nature in a

laboratory model system any more than theoreticians intend to reproduce nature

with a mathematical model; rather, the purpose is to simplify nature so that

aspects of it can be better understood (Lawton 1995, Drake et al. 1996, Lawton

1996). Like mathematical models, laboratory model systems are necessary

because we do not have full access, in time or space, to phenomena in nature

(Oreskes et al. 1994). Thus, simplicity is a strength of laboratory model systems,

not a weakness (Drake et al. 1996).

There is, however, no reason that complexities such as immigration,

disturbance, or seasonality cannot be included in a laboratory model system, if

the research question being addressed warrants the inclusion of these

complexities. One of the advantages of laboratory systems is that the decision
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whether to include particular complexities is up to the experimenter, not imposed

upon the experiment by the vagaries of nature (Lawton 1995, Drake et al. 1996).

It is possible with a laboratory model system, for example, for complexity to be

first reduced and then increased in a controlled fashion.

It is a misconception that laboratory experiments lack realism or that

laboratory systems behave like computers; neither the experimental organisms

nor their interactions are creations of the experimenter, nor are they under the

direct control of the experimenter (Mertz and McCauley 1982). It is also a

misconception that laboratory systems lack generality. Laboratory experiments

usually address fundamental ecological questions using simple systems and

because of this they potentially have more generality than studies of more

complex and thus more idiosyncratic field systems (Drake et al. 1996).

Laboratory studies have been criticized for using artificial communities and

for being too small in spatial and temporal scale (Lawton 1996). However, few

laboratory studies use truly artificial communities. Most studies use species that

co-occur in a particular habitat and in that sense they are no more artificial than

exclosure experiments in the field (Lawton 1996). It is a misconception that

laboratory experiments usually occur on small temporal scales; based on a

literature search, Ives et al. (1996) concluded that microcosm studies may

actually have longer average duration, in terms of generations of the organisms

involved, than field studies. In addition, one of the advantages of using

microorganisms in laboratory studies is that large relative temporal and spatial

scales are possible.

The criticism that the use of microorganisms in laboratory studies is

suspect because of their unique biology (Diamond 1986, Carpenter 1996) reflects

an ignorance of microbial biology. Considering that microorganisms are the

dominant form of life on earth, this criticism is more valid in reverse - What can
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we Ieam about a natural world dominated by microorganisms by studying plants

and animals? More to the point, while there are unique aspects to being of small

size (e.g., living in a world primarily governed by intermolecular forces rather than

by gravity) and being prokaryotic (e.g., parasexuality), prokaryotic and eukaryotic

microorganisms share the fundamental properties of larger organisms (Andrews

1991). Microorganisms are valid model organisms for questions that are

concerned with these fundamental properties. Certainly there are questions that

are not easily addressed using microorganisms, such as studies of life span, age-

related phenomena, gene flow or behavioral ecology (Andrews 1991). But this is

true of all experimental systems; the major challenge all experimenters face is

matching research questions with appropriate experimental systems.

There is considerable debate about the role laboratory model systems

play in ecology, and the relationship of laboratory studies to ecological theory and

field experiments. Carpenter (1996) and Diamond (1986) have argued that

laboratory studies should be primarily supportive of field studies, i.e., that the

purpose of laboratory studies is to provide supporting information for field studies

that is impossible or impractical to gather in the field. Others have argued that

laboratory studies are primarily supportive of ecological theory; i.e., that a major

role laboratory experiments play is to provide “clean tests” of ecological theory

(Daehler and Strong 1996, Drake et al. 1996). Still others have argued that

rather than being in the service of theoretical ecology or field ecology, laboratory

ecology should act as a bridge between theory and the field (Lawton 1995). Yet

another view is expressed by Slobodkin (1961):

In one sense, the distinction between theoretician, laboratory

worker and field worker is that the theoretician deals with all

conceivable worlds while the laboratory worker deals with all
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possible worlds and the field worker is confined to the real world.

The laboratory ecologist must ask the theoretician if his possible

world is an interesting one and must ask the field worker if it is at all

related to the real one.

Another way to state this is that the role of theory is to define what is logically

possible (given a set of assumptions), the role of laboratory experiment is to

determine what is biologically plausible and the role of field study is to delineate

what is ecologically relevant.

There are at least two points that both proponents and critics of laboratory

model systems appear to agree on (Diamond 1986, Lawton 1995, Carpenter

1996, Drake et al. 1996). First, all agree that laboratory model systems have the

definite advantages of replicability, reproducibility, mastery of environmental

variables and ease of manipulation. While there is debate over how important

these advantages are, the existence of these advantages is not in question.

Second, all parties agree that laboratory model systems are just one of many

tools available to ecologists. Or as Lawton (Lawton 1995) describes it, model

systems are “one part of a rich, interrelated web of approaches to understanding

and predicting the behavior of populations and systems.” Just as there are trade-

offs between different approaches to ecological modeling (Levins 1966), there

are trade-offs between different approaches to ecological experimentation

(Diamond 1986). Many ecologists have suggested that the ideal strategy is to

address ecological questions by utilizing multiple approaches, because

conclusions tested by different methodologies become more robust (Diamond

1 986, Lawton 1 995, Drake et al. 1 996).

Like all tools, laboratory model systems do some things well, some things

poorly and some things not at all (Lawton 1995). One area of ecology where
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laboratory model systems could perform well is community ecology. Lawton

(1995) and Drake (1996) suggest that the need for microcosm work is especially

critical at the community level, where complexity becomes particularly unwieldy in

the field (but see Carpenter 1996 for a differing opinion). One way in particular

that laboratory model systems could make a significant contribution to community

ecology is by testing community module theories.

THE MODULE APPROACH TO COMMUNITY ECOLOGY THEORY

Ecological communities are among the most complex entities studied by

scientists. Because of this, a number of approaches have been used to study

communities. One approach that has been particularly fruitful is the community

module approach (Holt 1995). This approach consists of mathematically

modeling abstract communities made up of small numbers of species (2 to 6) that

are linked in a specified structure of interactions (Figure 1). This approach

involves taking the wealth of theory available to describe pairwise interactions

and extending this theory to multiple populations. This approach combines the

explanatory power of population biology with the exciting questions and

complexity of community ecology.

A number of fundamental ecological questions have been addressed

using the community module approach (Holt 1995). One question that has been

addressed in depth with community modules (Abrams 1993) is: how do

communities respond to increased productivity? Productivity is the rate at which

energy flows in an ecological system (Rosenzweig 1995). Productivity is

assumed to be proportional to the input of resources into the bottom trophic level

of a community, and productivity is often manipulated by manipulating the
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Figure 1. Community modules. (A) a simple food chain module, (B) a keystone

predator module, (0) a shared predator module.
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nutrient input into a community (a process called enrichment) (Abrams 1993,

Rosenzweig 1995). How communities respond to increased productivity is a

question of not only great theoretical interest, but also great practical importance.

One of the major impacts that humans have on the environment is by increasing

productivity, either intentionally (e.g., by the use of agricultural fertilizers) or

unintentionally (e.g., by the introduction of pollutants into the environment)

(Abrams 1993).

The response that one would predict a community module to have to

increased productivity is dependent in part on what assumptions are made about

the interactions between trophic levels in a community module. There are a

number of different ways that trophic or predator-prey interactions can be

mathematically modeled. Two approaches that have gotten a great deal of

attention recently are the prey-dependent approach and the ratio-dependent

approach (Berryman 1992).

PREY-DEPENDENT VERSUS RATIO-DEPENDENT PREDATOR-PREY

THEORY

Predator-prey interactions are usually modeled using coupled differential

equations which in their simplest form

dN/dt = f(N)N - g(.)P

dP/dt = eg(.)P - mP



12

consist of a production rate fof prey N, a conversion rate 9 of prey into predators

P, a predator death rate m, and a per capita consumption rate g(.) of prey by

predators (this term is also called the functional response or the trophic function).

Prey-dependent models assume that the abundance of predators has no effect

on the per capita consumption of prey and therefore that g = g(N) (Berryman

1992). The basic assumption underiying prey-dependent models is that

predators and prey interact in a manner analogous to random encounters

between particles in a homogeneously mixed gas or liquid (i.e. they obey the law

of mass action).

In contrast, ratio-dependent models assume that predator abundance

does affect per capita consumption of prey and that g = g(N/P) (Arditi and

Ginzburg 1989) . The basic assumption underlying ratio-dependent models is

that predators have increasing difficulty meeting their energy demands as their

population density increases (i.e. they obey the “law of diminishing returns”)

(Berryman et al. 1995). Several mechanisms have been proposed to be

responsible for the “diminished returns” that predators face. These include

predator interference, prey refuges, intermittent prey reproduction, non-random

searching behavior by predators, and other spatial or temporal heterogeneities.

It has been argued that ratio-dependent trophic functions may represent the

cumulative effects of heterogeneity on population dynamics (Arditi and Ginzburg

1989).

These approaches are just two of many different approaches that can be

used to model predator-prey interactions. For example, models that are

intermediate between prey-dependent and ratio-dependent models in the effect

of predator abundance on per capita consumption of prey have been developed

(Berryman 1992). However, the prey-dependent and ratio-dependent
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approaches represent two extremes on a continuum and because of this it is

useful to contrast them (Power 1992).

Models of community modules are essentially predator-prey models

extended to multiple trophic levels. Community module models built from prey-

dependent models and those built from ratio-dependent models make very

different predictions concerning how a community will respond to increased

productivity. For example, prey-dependent food chain models predict that

increasing productivity in a three trophic level food chain (e.g., by increasing the

input of limiting resource to the first trophic level) will result in an increase in the

equilibrium population sizes of the primary producers and the secondary

consumers, but not an increase in the equilibrium population size of the primary

consumers. The mechanisms of population regulation appear to alternate

between trophic levels, with the first and third trophic levels primarily bottom-up

regulated (i.e., regulated by resources) and the second trophic level primarily top-

down regulated (i.e., regulated by predators) (Hairston et al. 1960, Fretwell 1977,

Oksanen et al. 1981). These models also predict that adding or removing a

trophic level will change the primary regulatory mechanism at each trophic level

(i.e. from primarily top-down to primarily bottom-up or vice-versa). Prey-

dependent food chain models also predict that as productivity of a food chain is

increased, the number of possible trophic levels in the food chain increases;

therefore at low levels of productivity multiple trophic levels cannot exist

(Oksanen et al. 1981). A third prediction of prey-dependent food chain models is

that a trophic level that is heterogeneous with respect to edibility can have a

different response to changes in productivity than a homogeneous trophic level

(e.g. it can change from top-down regulated to bottom-up regulated as less edible

variants out-reproduce the more edible) (Leibold 1989, Watson et al. 1992).
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Ratio-dependent food chain models make completely different

predictions. These models predict that increasing productivity (e.g., by

increasing resource input) in a food chain will result in increases in the

equilibrium population sizes at all trophic levels in a food chain (Power 1992).

The degree of response by each trophic level is determined by the relative

strength of top-down vs. bottom-up regulatory mechanisms, but the primary

control is bottom-up. Ratio-dependent models also predict that the number of

trophic levels possible in a food chain is not necessarily determined by the

resource input; therefore multiple trophic levels can exist at low levels of resource

input. Ratio-dependent models also predict that the response of a trophic level to

resource input is not effected by heterogeneity in edibility within the trophic level.

Recently, attempts have been made to determine which of these sets of

predictions better describes the response of communities to increased

productivity. Most of these attempts have utilized one of the following

approaches: 1. Constructing model food chains and measuring the response of

the food chains to changes in resource input (Schmitz 1993, Balciunas and

Lawler 1995), 2. Measuring the response of a natural community to the

manipulation of the number of trophic levels and/or the resource input (O’Brien et

al. 1992, Wooten and Power 1993, Stow et al. 1995), 3. Comparing trophic

structure and/or trophic level biomass across natural gradients of productivity

(Arditi et al. 1991a, Ginzburg and Akcakaya 1992, Hansson 1992, Persson et al.

1992). The results of these attempts have been inconclusive. In some studies

prey-dependent models appeared to predict the responses of the biological

communities accurately (Hansson 1992, Persson et al. 1992, Wooten and Power

1993), while in other studies the response appeared to be better described by

ratio-dependent models (Arditi et al. 1991a, Ginzburg and Akcakaya 1992,

O’Brien et al. 1992, Schmitz 1993, Balciunas and Lawler 1995).
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Those studies that utilized the comparative approach (approach 3 above)

have come under a great deal of criticism. There Is considerable debate over

whether the statistical analyses used in these studies have biased their

interpretation (Diehl et al. 1993), whether food chains can be accurately

positioned along a productivity gradient such that comparisons can be made

(Power 1992), and whether the comparative approach has sufficient resolution to

distinguish between the predictions of the altemative models (Diehl et al. 1993,

Lundberg and Fryxell 1995). Those studies that have utilized experimental

approaches (approaches 1 and 2 above) have also been criticized. A major

criticism of these studies is that the experimental time scale is too short to

distinguish adequately between the predictions of the alternative models

(Ginzburg and Akcakaya 1992). The different predictions of the two models refer

to steady-state (i.e. equilibrium) properties of food chains, not to short-term

dynamic responses of the food chains to experimental manipulation. To

distinguish adequately between the models, ”press” perturbation experiments

must be used in which the resource input level is altered and maintained in the

altered state long enough for the populations to reach equilibrium, rather than

'pulse" perturbations in which the perturbation is maintained for a short time

period relative to the time required for the attainment of equilibrium (Bender et al.

1984). Press experiments are difficult to perform because of the long time scale

usually required and the difficulty of determining when equilibria are attained.

Another criticism of the studies described above is that few attempts have

been made to determine the mechanisms that could underlie a ratio-dependent

food chain response when one is observed (Diehl et al. 1993, Abrams 1994a).

Ratio-dependent food chain models are essentially phenomenological in nature;

although underlying mechanisms have been suggested, few attempts have been

made to determine if these mechanisms are actually responsible for the
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response. In those studies where attempts have been made to determine

underlying mechanisms(Arditi et al. 1991b, Arditi and Saiah 1992), there is

considerable debate over whether the experimental results are best described by

modifying mechanistic prey-dependent models or by using phenomenological

ratio-dependent models (Arditi and Saiah 1992, Ruxton and Gurney 1992, Diehl

et al. 1993, Gleeson 1994, Abrams 1994a, Akcakaya et al. 1995, Berryman et al.

1995). The complexity of the experimental systems used in these studies makes

assigning mechanisms to the observed responses very difficult.

Finally, studies conducted on natural systems have run into a number of

difficulties stemming from the complexity of the systems studied. Researchers

working with field systems have had difficulty quantifying trophic level biomass

(especially if omnivory is present), manipulating food chain variables

experimentally, determining the appropriate temporal and spatial scales for study

and even defining the boundaries of a food chain (Power 1992).

The experimental difficulties described above can be avoided by using

microbial model food chains to test the ratio-dependent and prey-dependent food

chain models. Most microorganisms have relatively short generation times under

laboratory conditions, so the amount of time required for a press perturbation can

be quite short. The manipulation of experimental variables such as resource

Input is relatively simple in a laboratory system, as are replication and

enumeration. The interactions between many microorganisms are also well

understood; therefore it is possible to determine the mechanistic basis for the

dynamics of the interacting populations.
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THE BIOLOGY OF BACTERIOPHAGE-BACTERIA INTERACTIONS

Bacteria and bacteriophages have been proposed as ideal model systems

for studying predator-prey dynamics (Campbell 1961, Lenski and Levin 1985)

and have been successfully used as such by a number of researchers (Paynter

and Bungay 1969, Home 1970, Paynter and Bungay 1971, Chao et al. 1977,

Levin et al. 1977, Levin and Lenski 1983, Lenski and Levin 1985, Lenski 1988a,

Schrag and Mittler 1996). There are two major groups of bacteriophages:

temperate phages (i.e., phages that can lie dormant in bacterial cells after

infection) and lytic phages (i.e., phages that invariably kill the host cell following

infection and phage reproduction) (Lenski 1988c). Most studies that have used

bacteriophage as model predators have used lytic bacteriophages. The lytic T-

series bacteriophages (voracious predators of the bacterium Escherichia coli) are

the most commonly used bacteriophage model predators (Chao et al. 1977,

Levin et al. 1977, Lenski and Levin 1985, Lenski 1988a, Schrag and Mittler

1996), although virulent mutants of bacteriophage lambda have also been used

(Home 1970, Schrag and Mittler 1996).

The life cycle of a T phage begins with the adsorption of phage to the

surface of a prey bacterium (Goldberg et al. 1994). Under favorable conditions

the rate of adsorption can be very close to the rate of collision by Brownian

motion (Delbmck 1940a, Schlesinger 1960, Schwartz 1976). This rate can be

affected by the ratio of phage to bacteria; at a high ratio of phage to bacteria

competition for adsorption sites is possible and the adsorption rate per phage can

decrease (Lenski 1988c). If the ratio is extremely high, lysis-from-without can

occur whereby a large number of adsorptions can cause the cell to prematurely

burst and render the infection nonproductive (Delbruck 1940b, Abedon 1994).

The rate of adsorption is also affected by the number of bacteria; at high
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densities of bacteria, adsorption can reach a maximum independent of bacterial

density (Stent and Wollman 1952). The adsorption rate can also be affected by

the medium in which the interaction takes place, and by the physiological state of

the cell (Delbmck 1940a).

Adsorption of T phage to the bacterial surface occurs through an

interaction between the distal end of the phage’s tail fibers and the receptor

molecule (Goldberg et al. 1994). The interaction between tail fiber and receptor

molecule is highly specific. For example, phage T4 tail fibers bind only to the

glucosyl-or-1,3 terminus of rough lipopolysaccharide in E. coli B or to the OmpC

outer membrane protein in E. coli K12, while phage T2 binds to either the outer

membrane protein OmpF or to glucosyl-a-1,3 terminus of rough

lipopolysaccharide in E. coli B, and phage T7 binds only to the heptose residues

in the lipopolysaccharide core (Goldberg et al. 1994).

This initial specific binding is weak and reversible. Once this binding has

occurred, the phage is thought to “walk" around the bacterial cell by making and

breaking attachments to different individual receptor molecules (Goldberg et al.

1994). This walking continues until an injection site is reached. At the injection

site the phage attaches irreversibly to the bacterial cell through interactions

between the phage baseplate and the bacterial cell surface. The specific phage

and bacterial receptors involved in irreversible binding are unknown, but there is

some evidence that the injection sites are associated with Bayer’s junctions, sites

where the cytoplasmic membrane and the outer membrane of E. coli appear to

merge (Nikaido and Vaara 1987). Once irreversible binding occurs, the phage

DNA is ejected and taken up by the bacterial cell. Little is known of the

mechanics of DNA ejection or uptake.

Infection by phage DNA blocks bacterial DNA, RNA and protein synthesis,

turning E. coli into an efficient factory for the production of phage (Goldberg et al.
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1994). After a latent period during which phage particles are assembled, the

bacterial cell is destroyed and the phage progeny are released. A process know

as lysis inhibition can occur with phages T4, T2 and T6 (Doerrnann 1948,

Abedon 1994). With lysis inhibition, the adsorption of a second phage following

an initial phage infection can prolong the latent period and increase the total burst

size of the phage (the total number of phage progeny released per bacterial cell). .

Burst size and latent period can also be affected by growth media and

physiological state of the bacterial cell (Hadas et al. 1997).

Mutant bacteria that are invulnerable to predation by phage have been

reported (Lenski 1988c). Most of these phage-resistant mutants achieve

resistance through the loss or modification of the receptor molecule to which the

phage initially binds. This loss or modification can result in a competitive cost

because these receptor molecules are also involved in bacterial metabolism

(Lenski 1988c). The cost of phage resistance can vary depending on the species

of phage to which resistance is directed, the environment in which the cost is

measured, the genetic background and the specific mutation (Szmelcman and

Hofnung 1975, Lenski 1988a, Lenski 1988b).

OVERVIEW OF DISSERTATION RESEARCH

My dissertation research involves using chemostat communities of

bacteria and bacteriophage as model systems to study the effects of increased

productivity on ecological communities. I assembled model communities of E.

coli and T bacteriophages in glucose-limited chemostats and maintained them at

different productivity levels. I altered productivity levels in the model systems by

altering the concentration of glucose in the incoming media. I established model
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communities that were analogous to three different community modules: a simple

food chain module (Chapter 2), a keystone predator module (Chapter 3) and a

shared predator module (Chapter 4) (Figure 2). l tracked population densities of

bacteria and bacteriophage over time and l estimated equilibrium population

densities and stability in each treatment. The response of each model system

was then compared to the predictions of mathematical models of the

corresponding community module.
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Figure 2. Experimental communities. (A) simple food chain, (B) community with

keystone predator, (C) community with shared predator. Key: T1 = bacterio-

phage T4, T2 = bacteriophage T2, P1 = E. coli strain REL607, P2 = E. coli strain

REL6584, R = glucose.



CHAPTER 2

EFFECT OF RESOURCE ENRICHMENT ON A CHEMOSTAT COMMUNITY OF

BACTERIA AND BACTERIOPHAGE

INTRODUCTION

The dynamics of predator-prey and other exploitative interactions have

long been recognized as fundamentally important to the structure of ecological

communities (Hairston et al. 1960, Paine 1966, Lubchenco 1978). Nonetheless,

there remains considerable debate over such basic issues as the effects of

resource enrichment on these interactions and how best to model these effects

(Arditi et al. 1991a, Ginzburg and Akcakaya 1992, Diehl et al. 1993, Abrams

1994a, Berryman et al. 1995). Classical predator-prey models (i.e., Lotka-

Volterra models and modern variations thereof) make two controversial

predictions concerning the effect of resource enrichment on prey and their

predators. First, these models predict that enrichment will result in an increase in

the equilibrium population density of the predator but have no effect on the

equilibrium population density of the prey (Rosenzweig 1977) (Ehrlich and Birch

1967). Second, classical predator-prey models predict that enrichment can

destabilize a predator-prey pair, increasing the amplitude and period of

population oscillations (Rosenzweig 1971).
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These classical models are considered “prey-dependent” because they

assume that the attack rate of predators depends only on the instantaneous

density of prey. Some theorists have argued that the attack rate is often better

modeled as a function of the ratio of prey to predator density (Arditi and Ginzburg

1989). Such “ratio-dependent” models make very different predictions

conceming the effect of enrichment on prey and their predators. Enrichment is

not predicted to be destabilizing, and the equilibrium population sizes of both

predators and prey are predicted to increase in response to enrichment.

Proponents of ratio-dependent models have suggested that this approach

is superior because it captures the effects of heterogeneity on predator-prey

dynamics. Such heterogeneity could include differences in the time scales of

feeding by predators and reproduction by predators, discontinuous prey

reproduction, spatial heterogeneity and heterogeneity in prey edibility (Arditi and

Ginzburg 1989). The superiority of ratio-dependent models in these situations

has been hotly debated (Oksanen et al. 1992, Diehl et al. 1993, Gleeson 1994,

Abrams 1994a, Akcakaya et al. 1995, Berryman et al. 1995) . This debate has

centered on whether ratio-dependent models do indeed capture the effects of

heterogeneity, whether it is better to model heterogeneity by using a ratio-

dependent model or by explicitly incorporating heterogeneity into a prey-

dependent model, and what the tradeoffs are in using these two approaches.

There have been a number of attempts to answer these questions using

field systems. Most of these attempts have involved comparing trophic structure

and/or trophic level biomass across natural gradients of productivity (Arditi et al.

1991a, Ginzburg and Akcakaya 1992, Hansson 1992, Oksanen et al. 1992,

Persson et al. 1992) or measuring the response of a natural community to

enrichment (O’Brien et al. 1992, Wooton and Power 1993, Stow et al. 1995). The

results of these attempts have been inconclusive. In some studies prey-
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dependent models appeared to better predict the responses (Hansson 1992,

Oksanen et al. 1992, Persson et al. 1992, Wooton and Power 1993) while in

other studies the response appeared to be better predicted by ratio-dependent

models (Arditi et al. 1991 a, Ginzburg and Akcakaya 1992, O’Brien et al. 1992,

Schmitz 1993). The limitations inherent in using field systems to test these

models have been well discussed in the literature (Power 1992). These

limitations include difficulty determining whether populations are at or near

equilibrium, problems with quantifying trophic level biomass, and difficulty

defining the physical boundaries of food chains.

Some of these limitations can be circumvented by using laboratory model

systems. Ecological experiments with model laboratory systems can bridge the

gap between mathematical models and natural communities, by allowing the

predictions of mathematical models to be rigorously examined in a biological

system that is easily manipulated, replicated and controlled before such models

are applied directly to natural systems (Lawton 1995). Two attempts have been

made to test prey-dependent and ratio-dependent models using laboratory model

communities. In the first attempt, Harrison (Harrison 1995) reanalyzed the

classic experiments of Luckinbill (Luckinbill 1973). Luckinbill observed that

decreasing the concentration of nutrients in batch cultures of protozoan predators

and prey increased the stability of the populations dramatically (although

manipulating the interactions between predators and prey by thickening the

media was also necessary to achieve persistence). Luckinbill was unable to

compare equilibria between treatments because the predator populations went

extinct in the higher nutrient treatment. However, in his reanalysis of these

experiments, Harrison (1995) found no evidence for ratio-dependent predation.

In contrast, Balciunas and Lawler (Balciunas and Lawler 1995) found that

in batch culture both bacteriovorus protozoans and prey bacteria increased in
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abundance in response to increased nutrient input. However, they sampled the

bacteria population only twice during their 52 day experiment (they were primarily

interested in protozoan population dynamics); if the bacteria population cycled in

response to predation, these estimates of population density could be inaccurate.

In addition, Balciunas and Lawler used a heterogeneous population of bacteria in

their experiments and the increase in bacteria abundance could be due to an

increase in the abundance of less edible members of the mixed population.

Balciunas and Lawler found some evidence for predator mutual interference and

could not rule out ratio-dependent predation in their system.

Although most predator-prey theory assumes a “chemostat-like”

environment (i.e., continuous input of resources, constant mortality, etc.), both

studies above used batch culture systems rather than chemostats. In batch

culture, an aliquot of the culture is transferred at regular intervals to fresh culture

medium. The effect of such serial transfer is potentially confounding; it was

considered by Harrison (1995) to be the major reason that he was unable to get a

close fit between some of Luckinbill’s data and the predictions of mathematical

models.

I have built on these previous attempts by using chemostat communities of

bacteria and bacteriophage (viruses that feed on bacteria) to test prey-dependent

and ratio-dependent models. I observed the response of these communities to

resource enrichment and compared this response to quantitative predictions of

prey-dependent and ratio-dependent models. Both predator and prey persisted

in all replicates and l was able to estimate equilibrium densities and quantify

stability for all populations. In addition, bacteria and bacteriophage have

sufficiently short generation times that l was able to observe the effect of

enrichment on the evolution of predator-prey interactions during the course of my

experiment.
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METHODS

Experimental system

Bacteria and bacteriophages have been proposed as ideal experimental

systems for studying predator-prey dynamics (Campbell 1961, Lenski and Levin

1985) and have been successfully used as such by a number of researchers

(Paynter and Bungay 1969, Home 1970, Paynter and Bungay 1971, Chao et al.

1977, Levin and Lenski 1983, Lenski and Levin 1985, Lenski 1988a). Although

bacteriophage-bacteria interactions have been traditionally modeled using prey-

dependent models (Levin et al. 1977), bacteriophage-bacteria interactions have a

number of characteristics that could be modeled more simply using the ratio-

dependent approach. Temporal heterogeneity is present, with bacteriophage

feeding on bacteria on a time scale of seconds, but reproducing in bursts

approximately every half an hour. Heterogeneity in the susceptibility of bacteria

to bacteriophage attack is common, evolving rapidly even in populations of

bacteria started from a single clone (Lenski 1988b). There is strong evidence

that the chemostat environment is not spatially homogeneous, and that growth by

bacteria on the wall of a chemostat can have a profound effect on population

dynamics (Chao and Ramsdell 1985). Growth on the vessel wall has been

observed to act as a refuge for bacteria from bacteriophage, leading to greater

population stability than predicted by prey-dependent models (Schrag and Mittler

1996).

My experimental system consisted of E. coli B strain REL607 (Lenski et

al. 1991) and the virulent bacteriophage T4 (kindly provided by L. Snyder) in
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glucose-limited chemostats. My chemostat vessels are similar to those

described by Chao et al. (1977). The media consisted of Davis minimal broth

(Carlton and Brown 1981) supplemented with 2 x10“6 9 thiamine hydrochloride

per liter and either 0.1 or 0.5 pg per ml glucose. These glucose concentrations

were chosen because the predictions of the prey-dependent and ratio-

dependent models differ dramatically within this range of concentrations (see

below). The volume of the chemostats was maintained at approximately 30 ml,

the flow rate at approximately 0.2 turnovers per hour and the temperature at

37°C. Three replicate chemostats at each glucose concentration were

maintained simultaneously. Control chemostats, containing only E. coli, were

established at each glucose concentration and maintained simultaneously with

the treatment chemostats.

The population densities of E. coli and bacteriophage T4 were estimated

twice daily by dilution and plating. E. coli cells were plated on Davis minimal agar

supplemented with 2 x10'6 9 thiamine hydrochloride per liter and 4 mg per ml

glucose. Heat-killed cells were mixed with each sample to inactivate free

bacteriophage prior to plating, as described by Carlson and Miller (Carlson and

Miller 1994). Bacteriophage T4 was plated on a lawn of E. coli using Davis

minimal agar and the plate count technique described by Carlson and Miller

(1994). I also estimated the population densities of E. coli mutants resistant to

predation by bacteriophage T4. These T4-resistant cells were plated on Davis

minimal agar supplemented as above. A concentrated bacteriophage T4 lysate

was mixed with each sample to kill T4-sensitive E. coli prior to plating.

To estimate the population stability and equilibrium population densities of

T4 and E. coli, I treated each chemostat as a single observational unit. I first

calculated the mean and standard deviation of the T4 and E. coli population

densities over time for each chemostat. I then estimated the stability of each
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population as the mean coefficient of variation across replicate chemostats (the

lower the coefficient of variation, the higher the stability). 1 estimated the

equilibrium density of each population as the grand arithmetic mean of population

density across replicate chemostats. I determined that the arithmetic mean was

superior to the geometric mean as an estimator of equilibria by analyzing

simulated population data. The arithmetic mean estimated the equilibria of

simulated data more accurately than the geometric mean, and it was not

systematically biased.

E. coli mutants resistant to predation by bacteriophage T4 eventually

appeared in all chemostats. To remove the influence of these mutants on

stability and equilibria, l excluded the last two time points before the appearance

of resistant mutants from my calculations. I also excluded the first two time

points after inoculation, to allow time for the populations to reach equilibria. In

addition to these estimates, 1 also estimated population stability and equilibria for

the time period after the T4-resistant mutants had reached equilibrium in the

higher glucose treatment (the experiment was laminated before they reached

equilibrium in the lower glucose treatment).

I compared population stability and equilibria with t-tests. One-tailed

comparisons were used whenever the models made directional predictions. Prior

to comparison I tested for homogeneity of variances. The data were log-

transforrned prior to comparison whenever the variances were found to be

significantly different.

Mathematical models

I modeled my experimental system using modifications of the models

developed by Levin et al. (1977). I solved these models analytically and
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examined the behavior of the models numerically using STELLA ll simulation

software (High Performance Systems 1994). Because predator-resistant prey

evolved in the chemostats during the experiment, prey-dependent and ratio-

dependent models were also created for a system that included predator-

resistant prey. The details of the models are described below.

Numerical simulations. I ran all numerical simulations using a time step of

0.05 hours. I tested the sensitivity of the simulations to time step size by running

replicate simulations at step sizes of 0.1, 0.05 and 0.025 hours. Varying the size

of the time steps had no detectable effect on the results of the simulations. I

“sampled” the output of each simulation every 12 hours (the approximate

sampling interval of my experiments) to produce the predictions depicted

graphically.

Prey-dependent model. This model explicitly includes a time delay

between consumption of prey and reproduction by the predator. This model

differs from the model of Levin et al. in that it ignores the dynamics of infected

cells (I consider infected cells to instantaneously become “dead” cells in my

experimental system because infected cells will not produce colonies when

plated). This model also ignores spatial heterogeneity. Although theorists have

developed prey-dependent models that include spatial heterogeneity (Abrams

and Walters 1996), these models cannot be easily adapted to my experimental

system because they require parameters that I cannot yet estimate (e.g., cell

transfer rates between wall and liquid populations). The prey-dependent food

chain model is as follows,

dG’dt= (00- Ga) - £NipC/(K+C)

dN/dt: NIpC/(K+C) - a(N)P- wN

WIdt: Be4°’{a(N)P'} - a(MP - coP
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where 00 = concentration of glucose in the reservoir, C = concentration of

glucose in the chemostat, a) = flowrate, a = reciprocal of the yield of the bacteria,

N = population size of uninfected bacteria, w = maximum specific growth rate, K

= resource concentration at which the bacteria grow at one half w, a(N) = trophic

function, P = population size of free bacteriophage, fl = number of bacteriophage

progeny per infected bacterial cell, 1 = time lag between infection and release of

bacteriophage progeny, e40 = fraction of bacteria infected at time t - t that has

not washed out of the chemostat before releasing bacteriophage, N’= population

size of uninfected bacteria at time t- r, and P’ = population size of bacteriophage

at time t- r.

The following parameter values were used for this model : Co = either 0.1

or 0.5 pg per ml, to = 0.2 per hr, 2 = 2 x 10'5 pg (Lenski 1988b), w = 0.7726 per

hr (Vasi et al. 1994), K = 0.0727 pg per ml (Vasi et al. 1994), a = 3 x 10'7 ml per

hr (Lenski and Levin 1985), )3 = 80 viruses per bacterial cell and r = 0.6 hr

(Lenski and Levin 1985). The predictions for this model are presented in Figures

1A, 2A and 2B.

Ratio-dependent model. The ratio-dependent food chain model was

similar to the prey-dependent model above with the exception that the trophic

function a(N) was replaced with a(N/P). This model does not explicitly include a

time delay, but it is presumed that the ratio-dependent functional response

captures the effect of such temporal heterogeneity on predator-prey dynamics

(Arditi and Ginzburg 1989).(Tllman and Downing 1994) The model was as

follows,
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dC/df= (00- CM) - £NlpC/(K+C)

ledt= NlpC/(K-l-C) - 0(N/F9P- wN

dP/dt: [3(a(N/P) Fj- a(NF)P- wP.

The parameter values used for the ratio-dependent model were the same as for

the prey-dependent model with the exception of a. In the ratio-dependent model,

a has different units than in the prey-dependent model, and thus must be

estimated differently. Using the same value of a as that used in the prey-

dependent model would result in predicted equilibria for my system that are

orders of magnitude different from preliminary results for my system. Therefore I

estimated or by fitting the ratio-dependent trophic function to preliminary

estimates of equilibria for my system at a glucose input concentration of 0.1 pg

per ml (or = 8.95 x10‘3 per hr). I used this value to predict the equilibria of my

system at 0.5 pg per ml and to produce the predictions depicted in Figures 1B,

20 and 2E.

Prey-dependent model (post-invasion). I used a modification of the prey-

dependent model above to model my experimental system after T4-resistant

mutants of E. coli had invaded the chemostats. This modified model consists of

four differential equations,

dC/dt= (Co - Qar - aNipC/(K+C) - eannC/(KmC)

dN’dt= NrpC/(K-l-C) - a(N)P- (0N

dP/dt= fie‘afa(N)P'} - a(MP- (0P

dR/dt: Flu/RC/(Kn-I-C) - wFl
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where, in addition to the variables described above, Fl = population size of T4-

resistant bacteria, En = reciprocal of the yield of the T4-resistant bacteria, w n =

maximum specific growth rate of T4-resistant bacteria, and K R = resource

concentration at which T4-resistant bacteria grow at one half w n. In addition to

the parameter values used in the prey-dependent model above, I used the

following values: up n= 0.7027 per hr and K R = 0.123 pg per ml. These values

were determined experimentally. VB was estimated using the methods

described by Vasi et al. (1994). l was unable to directly estimate K n with

consistent and meaningful results. Instead, I estimated K n indirectly by first

estimating the fitness of the T4-resistant mutants relative to their T4-sensitive

ancestors in chemostats (as described by Lenski and Levin, 1985). The average

relative fitness was 0.575, similar to values previously reported by Lenski and

Levin (1985). From the relative fitness value I estimated the growth rates of the

T4-sensitive (p) and T4-resistant (pp) E. coli at steady state in the chemostats.

The equilibrium glucose concentration in the chemostats (C‘) was assumed to be

set by the superior competitor (the T4-sensitive E. coli). 6* was estimated from a

rearrangement of the Monod (Monod 1949) model using parameters for the T4-

sensitive E. coli,

C*=K/(W/fl'1)

Finally, I estimated K n from yet another rearrangement of the Monod model, in

this case using parameters estimated for the T4-resistant E. coli,

Kn= C’Wn/ un- 1)-

The predictions of this model are summarized in Figure 2C.



33

Ratio-dependent model (post-invasion). Proponents of ratio-dependent

models have argued that the ratio-dependent functional response incorporates

the net effect of heterogeneity on population dynamics and that heterogeneous

systems are more parsimoniously modeled by ratio-dependent models than by

other types of models (Arditi and Ginzburg 1989). I tested this idea by

developing a ratio-dependent model that combined the T4-sensitive and T4-

resistant E. coli into one population that is heterogeneous in edibility. I used the

same ratio-dependent model described above, with the exception that I fit the

ratio-dependent trophic function to estimates of equilibria from previously

published (Lenski and Levin 1985) observations of E. coli and T4 after invasion

by T4-resistant mutants (0: =2.28 x10'5 per hr). These observations were made

in chemostats with glucose input concentrations of 300 pg per ml. The

predictions of this model are summarized in Figure 2F.

RESULTS

Ecological dynamics

Model predictions. The predictions made by the ratio-dependent and

prey-dependent food chain models for the ecological dynamics in my system are

presented in Figures 3 and 4. The predictions of the prey-dependent model vary

depending on the concentration of glucose in the incoming media. At

concentrations ranging from approximately 0.08 pg per ml to 1 pg per ml, the

prey-dependent model predicts that: (1) the equilibrium population density of T4

will increase in response to enrichment and (2) the equilibrium population density

of E. coli will not change in response to enrichment (Figure 3A). I conducted my



. Figure 3. Relationship between glucose input concentration and equilibria. (A)

prey-dependent model (note that bacteriophage equilibria are divided by 100),

(B) ratio-dependent model. Key: solid line = equilibrium population density of T4-

sensitive E. coli, dotted line = equilibrium population density of T4, dashed line =

equilibrium concentration of glucose.
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Figure 4. Population equilibria and dynamics predicted by the models. Equilibria

I are from analytical solutions of the models; dynamics are from numerical

simulations of the models, “sampled” at 12 hour intervals. The population

densities (viruses per ml or bacteria per ml) have been log-transformed. (A)

prey-dependent model with a glucose input concentration of 0.1 pg per ml, (B)

prey-dependent model with a glucose input concentration of 0.5 pg per ml, (C)

prey-dependent model (altered to include heterogeneity in prey edibility) with a

glucose input concentration of 0.5 pg per ml, (D) ratio-dependent model with a

glucose input concentration of 0.1 pg per ml, (E) ratio-dependent model with a

glucose input concentration of 0.5 pg per ml, (F) ratio-dependent model (altered

to include heterogeneity in prey edibility) with a glucose input concentration of 0.5

pg per ml. Key: N* = equilibrium population density of T4-sensitive E. coli, P* =

equilibrium population density of T4, B* = equilibrium population density of total

E. coli (T4-sensitive and -resistant combined), solid line = E. coli population

dynamics, dotted line = T4 population dynamics.
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experiments within this input concentration range. As the glucose input

concentration is lowered below this range the model predicts that the T4

population will become extinct first, and then the E. coli population. Above

approximately 1 pg per ml, neither population equilibrium is predicted to increase

appreciably in response to enrichment. In addition, this model predicts that within

the range of concentrations used in my experiment both the T4 and E. coli

populations will to be less stable as glucose input concentration is increased

(Figures 4A and 4B).

In contrast, the ratio-dependent model predicts that the equilibrium

population densities of both T4 and E. coli will increase in response to

enrichment, regardless of the glucose input concentration range (Figure SB).

The ratio-dependent model also predicts that the stability of the populations will

not be affected by enrichment (Figures 4D and 4E).

Empirical observations. The dynamics of the T4 and E. coli populations

are shown in Figure 5 for representative chemostats with two different input

concentrations of glucose. The populations persisted in all chemostats with

apparent population cycles until the appearance of, and subsequent invasion by,

T4-resistant bacteria. There was a large and highly significant increase in the

equilibrium population density of bacteriophage T4 in response to enrichment (t

= 18.225, df = 4, one-tailed P < 0.0001; Figure 6A). The equilibrium population

density of E. coli responded to enrichment with a small but significant increase (t

= 2.4699, df = 4, one-tailed P = 0.0345; Figure 6A). There was a large and highly

significant decrease in stability (i.e., increase in coefficient of variation) for both

T4 and E. coli populations in response to enrichment (t = 4.6092, df = 4, one-

tailed P = 0.0050 for E. coli; t = 4.3042, df = 4, one-tailed P = 0.0063 for T4;

Figure SB). In control chemostats without bacteriophage, the E. coli population
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Figure 5. Dynamics of E. coli and bacteriophage T4 populations in

representative chemostats supplied with media containing different amounts of

glucose. The population densities (viruses per ml or bacteria per ml) have been

log-transformed. (A) 0.1 pg/ml glucose, (8) 0.5 )1ng glucose. Key: solid line =

total E. coli population, dotted line = T4 population, diamonds = T4-resistant E.

coli, arrows indicate first detection of T4-resistant E. coli.
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Figure 6. Effect of glucose input concentration on equilibrium densities and

population instability of E. coli and bacteriophage T4 populations interacting in a

chemostat. Equilibrium population density is estimated as the grand mean of the

mean population densities in 3 replicate chemostats. The equilibrium population

densities (viruses per ml or bacteria per ml) have been log-transformed in this

figure. Instability is estimated as the coefficient of variation of population

densities averaged across 3 replicate chemostats. Stars indicate statistical

significance: * = 0.01 < P < 0.05, ** = 0.001 < P < 0.01, ***, P < 0.001. (A)

equilibrium density, (B) instability. Key: striped bars = 0.1 pg per ml glucose

treatment, solid bars = 0.5 pg per ml glucose treatment.
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increased in response to enrichment. Population stability was unaffected by

enrichment in the control chemostats.

Fit of observations to mathematical models. Qualitatively, the response of

the predator and prey populations to enrichment was better predicted by the

prey-dependent model than the ratio-dependent model. In response to

enrichment: (1) the equilibrium population density of the predator increased, (2)

the equilibrium population density of the prey changed slightly, and (3) the

stability of both prey and predator populations decreased. However the

quantitative agreement between the model and my data was far from perfect.

The prey-dependent model predicted no change in the prey equilibrium; I

observed a small but significant increase. The prey dependent model predicted

an increase in the predator equilibrium of approximately three-fold; I observed

approximately a 13-fold increase. The predator and prey populations were

destabilized by increased resource input as predicted by the prey-dependent

model, but the prey population did not go to extinction in the high glucose

treatment as the model predicted (Figure 4B).

Evolutionary change

Model predictions. The prey-dependent and ratio-dependent food chain

models also make predictions regarding evolutionary change in my experimental

system. Evolutionary change in my system can be thought of as occurring in two

phases: (1) appearance of, and invasion by, T4-resistant mutants of E. coli, and

(2) persistence of T4—resistant mutants following invasion. I will discuss the

predictions for phase 1 first. Both models predict that T4-resistant mutants of E.

coli can invade the chemostat provided that they can grow fast enough at the

equilibrium glucose concentration to offset washout. However, the prey-
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dependent model predicts a substantially higher equilibrium glucose

concentration than the ratio-dependent model predicts (Figure 3), resulting in

much broader conditions for invasion by T4-resistant mutants. The prey-

dependent model also predicts that the equilibrium glucose concentration will be

proportional to the glucose input concentration and thus the rate of invasion by

T4-resistant mutants will be faster in the higher glucose treatment. The ratio-

dependent model does not predict this relationship. Both models predict that

enrichment could decrease the amount of time required for T4-resistant mutants

of E. coli to appear in the chemostats, either because the growth rate of E. coli is

increased by enrichment (prey-dependent model) or because the equilibrium

population size of E. coli is increased by enrichment (ratio-dependent model).

To produce predictions for phase 2, I modified the prey-dependent model

by adding an additional equation to describe the dynamics of the T4-resistant

mutants (see above). This model treats the resistant mutants as a separate

population and assumes that there is a trade-off between T4-resistance and

competitive ability. Such a trade-off has been previously reported (Lenski 1988a)

and has been shown to result in coexistence of bacteriophage-resistant and

bacteriophage-sensitive E. coli when bacteriophage is present (Chao et al. 1977).

I measured the magnitude of this trade-off in my system and it is similar to

previously reported trade-offs (see above). I also developed a ratio-dependent

model of my system after invasion by fitting my ratio-dependent model to

previously published observations of E. coli and T4 after invasion by T4-resistant

mutants (see above). This model combines the T4-resistant and T4-sensitive E.

coli into one heterogeneous population.

When the pre- and post-invasion versions of each model are compared,

several predictions emerge (compare Figures 43 and 4C for the prey-dependent

model, Figures 4E and 4F for the ratio-dependent model). The ratio-dependent
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model predicts a 4% increase in the equilibrium population density of total E. coli

(T4-sensitive and -resistant combined) following invasion, while the prey-

dependent model predicts a 22-fold increase. The ratio-dependent model

predicts no change in the stability of the total E. coli population following

invasion; in contrast, the prey-dependent model predicts that the population will

increase in stability. Both models predict a decrease in the population density of

T4 following invasion; however, the ratio-dependent model predicts a decrease of

approximately 300-fold, while the prey-dependent model predicts a decrease of

approximately 5-fold. Neither model predicts that the stability of the T4

population will change following invasion. However, the ratio-dependent model

predicts a stable equilibrium both before and after invasion by T4-resistant

mutants, while the prey-dependent model predicts that the population will exhibit

undamped oscillations both before and after invasion. In addition, the prey-

dependent model predicts that the T4 population oscillations will increase in

period following invasion.

Empirical observations. T4-resistant bacteria were eventually detected in

all treatment chemostats (they were not detected in control chemostats without

bacteriophage). T4 was unable to make visible plaques on a lawn of these

bacteria, indicating that the bacteria were completely resistant to predation by T4

(see also Lenski and Levin 1985). I tested these bacteria for genetic markers

present in REL607. The T4-resistant bacteria were identical to REL607 and were

therefore presumed to be T4-resistant mutants of REL607 (as opposed to

contaminating bacteria). These mutants appeared significantly sooner in the high

glucose treatment than in the low glucose treatment (t = 8.999, df = 4, one-tailed

P = 0.0004). I calculated the rate of invasion of these mutants by first fitting a

line to the log-transformed time series data for the mutants. Only those data

points occurring before the mutants reached equilibrium were used. The slopes
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of the best fit lines were then compared between treatments (only one replicate

of the lower glucose treatment had a sufficient number of data points to

determine the invasion rate; this was compared to the three replicates of the high

glucose treatment). The rate of invasion by these mutants was significantly

faster in the high glucose treatments than in the low glucose treatments (t =

7.1117, df = 2, one-tailed P = 0.0096).

The invasion of the chemostats by T4-resistant mutants had a significant

effect on the equilibrium density and stability of the E. coli population. The E. coli

population increased dramatically in population density (t= 10.944, df = 4, one-

tailed P = 0.0002, Figure 7) and stability (t = 7.8563, df = 4, one-tailed P =

0.0014) following invasion. The equilibrium density of the total E. coli population

after invasion was not significantly different from the equilibrium population

density of E. coli in the control chemostat without bacteriophage (indicating that

the population was now resource-limited, rather than predator-limited).

There was a moderate but significant decrease in equilibrium population

density of T4 (t = 11.199, df = 2, one-tailed P = 0.0039, Figure 7) following

invasion. The T4 population continued to cycle even after equilibrium was

reached by the T4-resistant E. coli in the higher glucose treatment (the

experiment was terminated before T4-resistant E. coli had reached equilibrium in

the lower glucose treatment). This persistence of T4 has also been observed by

other researchers; it is hypothesized to be due to the bacteriophage feeding on a

minority population of T4-sensitive E. coli, which coexists with resistant cells

because of a trade-off between resistance and competitive ability (Chao et al.

1977, Lenski and Levin 1985). Although I did observe a trade-off between

resistance and competitive ability in my system, I was unable to detect the .

minority population of T4-sensitive cells (presumably because it was too small

relative to the resistant population to detect directly). In two of the three replicate
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Figure 7. Effect of invasion by T4-resistant mutants of E. coli on the

equilibrium densities of total E. coli (T4-sensitive and -resistant cells)

and bacteriophage T4 populations interacting in a chemostat.

Equilibrium population density is estimated as the grand mean of the

mean population densities in 3 replicate chemostats. The equilibrium

population densities (viruses per ml or bacteria per ml) have been log-

transformed in this figure. Stars indicate statistical significance: ** =

0.001 < P < 0.01, ***, P < 0.001. Key: striped bars = before invasion

by T4-resistant mutants, shaded bars = after invasion by T4-resistant

mutants.
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chemostats the period of T4 population oscillations increased following invasion

(there was not enough data points in the third replicate to determine the period

length after invasion).

Fit of observations to mathematical models. Qualitatively, evolutionary

change occurred in my system in a manner most consistent with the predictions

of the prey-dependent model. The invasion by the mutants was faster in the

higher glucose than lower glucose treatments, and, following invasion by the T4-

resistant mutants: (1) the total equilibrium density of E. coli increased

substantially, (2) the stability of the total E. coli population increased dramatically,

(3) there was a moderate decrease in the equilibrium density of the T4

population, and (4) the T4 population continued to cycle, with oscillations longer

in period than before invasion. Quantitatively, both models predicted the total

equilibrium population density of E. coli within a factor of 2; however, the prey-

dependent model better predicted the equilibrium population size of T4 (within a

factor of 5) than did the ratio-dependent model (which under-estimated the

equilibrium by two orders of magnitude).

DISCUSSION

Currently there is great debate among ecologists over the strengths and

weaknesses of ratio-dependent predator-prey models. This debate has centered

on whether it is better to model the effects of heterogeneity on predator-prey

dynamics using ratio-dependent models or by altering prey-dependent models. I

believe that there are at least two important reasons why these issues remain

contentious. One reason is the profound difficulty of obtaining high quality

empirical data on predator-prey interactions. This is due at least in part to
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insufficient data to distinguish equilibrium from non-equilibrium dynamics and an

inability to perform critical manipulative experiments to test key predictions of the

alternative models. I have been able to circumvent each of these typical

limitations by studying the dynamics of bacteria and their predatory

bacteriophages in chemostats. l have population dynamics that extend for

several hundred hours, equivalent to some 100 generations under the maximum

generation time that is set by flow through the chemostat. l have manipulated the

key variable (rate of resource input) while being confident that all other extrinsic

factors (temperature, etc.) have remained unchanged.

A second reason for the lack of consensus on these issues may reflect the

diverse goals of model builders and users in ecology. Levins (Levins 1966)

distinguished three sometimes conflicting goals: realism, generality, and

precision. My own tastes favor a primary emphasis on mechanistic realism, but I

recognize that others may prefer, for example, generality to enable robust

inferences under conditions where it is not feasible to pursue a mechanistic

understanding. Nonetheless, it seems worthwhile to us to ask whether (and in

what respects) a more complex model that maintains mechanistic realism might

perform as well as, or better than, a simpler model that ignores mechanism.

Temporal and Spatial Heterogeneity

The chemostat is often assumed to be an environment homogeneous in

time and space, but this is an oversimplification. The presence of the vessel wall

introduces spatial heterogeneity into the chemostat, and growth on the vessel

wall can profoundly influence the dynamics of chemostat populations (Chao and

Ramsdell 1985, Schrag and Mittler 1996). Moreover, temporal heterogeneity is

present in chemostat communities of bacteria and bacteriophage because there
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is a latent period between prey consumption (i.e., infection) and predator

reproduction (i.e., cell lysis) (Lenski 1988b). The effects of these heterogeneities

can be modeled using a ratio-dependent model or by altering a prey-dependent

model. The ratio-dependent model is presumed to capture the effects of

temporal and spatial heterogeneity simply by virtue of the ratio-dependent

functional response. The prey-dependent model is more complex, requiring

additional terms to capture the effect of temporal heterogeneity; capturing the

effects of spatial heterogeneity using this model would require even more

complexity, and the inclusion of parameters not yet possible to estimate (see

above). Thus, with a chemostat community of bacteria and bacteriophage I can

ask: Does a prey-dependent model that explicitly incorporates temporal

heterogeneity (via a time delay) perform better than a ratio-dependent model that

incorporates temporal heterogeneity phenomenologically? Does a prey-

dependent model that ignores spatial heterogeneity perform better than a ratio-

dependent model that incorporate spatial heterogeneity phenomenologically?

And what are the trade-offs between these approaches?

The prey-dependent and ratio-dependent models make numerous

distinct predictions with respect to the effects of resource enrichment on the

dynamics of predators and prey. l estimated the response of chemostat

populations of bacteriophage and bacteria to enrichment and compared the

response to these predictions. In almost all respects, the predictions of the prey-

dependent models were fulfilled, whereas those of the ratio-dependent model

were not. In summarizing these points, I will gloss over one notable exception,

which I will then discuss in greater detail.

Both models predicted that resource enrichment would cause the

equilibrium population of the predator (bacteriophage T4) to increase

substantially, as indeed I observed. The equilibrium ratio of predators to prey
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also increased substantially in response to resource enrichment, as predicted by

the prey-dependent model but not the ratio-dependent model. Moreover,

resource enrichment destabilized the interaction, producing greater temporal

fluctuations of both prey and predator densities, an outcome predicted by the

prey-dependent model but not the ratio-dependent model.

In addition to these effects on the equilibrium and stability properties of the

system, as originally constituted, resource enrichment influenced the evolutionary

dynamics of my system. Both models predicted (but for different underlying

reasons) that T4-resistant bacteria might appear sooner at high than at low

resource inputs, and indeed I observed that effect. However, resource

enrichment also increased the rate at which resistant mutants subsequently

invaded the sensitive bacterial population, as predicted by the prey-dependent

model but not its ratio-dependent counterpart.

In short, the results of my experiments on resource enrichment in a simple

microbial community provide very strong support for several distinct predictions

of the prey-dependent model. At the same time, many predictions of the ratio-

dependent model are flatly contradicted by my results. However, as I noted

earlier there is one exception. That is, I observed an increase in the density of

sensitive bacteria in response to resource enrichment, a prediction of the ratio-

dependent model but not the prey-dependent model. This result was just barely

significant, with P = 0.0345 using a one-tailed test. I used a one-tailed test

because,'in all fairness, the ratio-dependent model makes a directional prediction

(while the prey-dependent model predicts no effect). I can think of at least three

possible reasons for this result. First, this significant difference could be due to

chance (Rice 1989). I performed many statistical tests in this paper, and all of

the other tests that were judged significant had associated P-values of less than

0.01. Thus, it seems possible that a spuriously significant result would be



52

obtained, and this one is the most likely candidate given its large P-value and the

fact that it alone contradicts a qualitative prediction of the prey-dependent model.

However, when I correct for the number of comparisons using the Sequential

Bonferroni method, this result remains significant (Sokal and Fiohlf1995).

The second potential explanation is that the difference between equilibria

is actually larger and highly significant, but that this effect is masked by

differences in mass per bacterial cell between treatments. I tracked population

density over time rather than biomass because density is much easier to

estimate accurately in my system. However, the prey-dependent model predicts

that the growth rate of the bacteria population will increase with increasing

glucose input, and faster growing bacterial cells tend to be larger (Bremer and

Dennis 1987, Mongold and Lenski 1996). Thus, it is possible that the mass per

bacterial cell could vary between my treatments, potentially affecting the

accuracy of my estimates of equilibria. The relationship between cell mass and

growth rate has been determined for my E. coli strain (Mongold and Lenski

1996), and the maximum growth rate difference possible between my treatments

can be estimated from the prey-dependent model. Using these estimates, the

cells in my 0.5 pg per ml treatment could be no more than 15% larger than the

cells in the 0.1 pg per ml treatment. Even if I account for this potential cell mass

difference in my estimates of equilibrium population densities of E. coli, the

difference in equilibria between treatments and the significance of this difference

increases only slightly. In addition, this slight increase in mass per cell would

likely be offset by a concomitant increase in the adsorption rate of bacteriophage

to the cell (because the cell would also be larger in volume and would thus be a

bigger “target").

The third possible explanation is that this difference is due to the spatial

heterogeneity present in my system. Recent research (Schrag and Mittler 1996)
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suggests that even in well-mixed chemostats, growth of E. coli on the vessel wall

can shelter E. coli cells from predation by bacteriophage. Wall growth was not

visible in my chemostats, but the growth need not be dense to make an impact.

Other researchers have demonstrated theoretically (Abrams and Walters 1996)

that the presence of prey refuges can lead to increases in equilibrium prey

density in response to enrichment. Thus, the presence of such a physical refuge

from predation could explain the slight increase in the equilibrium density of the

sensitive prey population at higher resource inputs. The presence of such a

refuge is ignored by my prey-dependent model; however, the ratio-dependent

model is presumed to capture the effects of such heterogeneity in the ratio-

dependent functional response (Arditi et al. 1991b, Arditi and Saiah 1992).

While the prey-dependent model accurately predicts many qualitative

effects of resource enrichment not predicted by the ratio-dependent model, the

quantitative agreement between the prey-dependent model and my empirical

observations is far from perfect. For example, the equilibrium density of the

predator population increases to a greater extent than is predicted by the prey-

dependent model. According to the prey-dependent model, the five-fold

experimental increase in the resource supply rate should have produced a three-

fold increase in the equilibrium density of the predator population, whereas I

obsenred an increase of about thirteen-fold. And while the prey-dependent

model predicts oscillations in prey and predator densities, as I observed, the

model also predicts that these oscillations should be of increasing amplitude,

leading to eventual extinction of one or both populations, whereas I did not

witness any such extinctions. These quantitative discrepancies could be

explained by the spatial heterogeneity in my system. Schrag and Mittler (1996)

have shown, both theoretically and empirically, that wall growth can stabilize the

oscillations of sensitive bacteria and their viral predators. By reducing the
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average vulnerability of the bacteria, and hence the average adsorption rate, wall

growth might simultaneously increase the expected equilibrium density of both

the prey and predator populations, as well as stabilize their interaction.

The ratio-dependent model did not provide a better quantitative fit to my

experimental observations than the preyvdependent model. The ratio-dependent

model predicted an approximately seven-fold increase in the prey and predator

populations in response to enrichment; I observed an approximately 13-fold

increase in predators and approximately a 1.5-fold increase in prey.

In summary, although the ratio-dependent model may have predicted the

qualitative effects of enrichment on the equilibrium densities of predator and prey,

it failed to predict the effects of enrichment on the stability of predator and prey

populations, as well as the effects of enrichment on the evolution of prey

defenses. A prey-dependent model altered to include temporal heterogeneity (in

the form of a time delay) did a much better job, even though it ignored spatial

heterogeneity in my system. But what of other forms of heterogeneity? For

example, can the effects of heterogeneity in prey edibility be captured by the

ratio-dependent model, as some have argued (Arditi et al. 1991 a, Samelle 1994).

Or is it better to alter a prey-dependent model to include this heterogeneity? I

can address this question with my system because heterogeneity developed in

prey edibility due to the evolution of T4-resistant E. coli.

Heterogeneity in Prey Edibility

The presence of heterogeneity in prey edibility has been recognized by a

number of ecologists as a factor that could alter the response of a food chain to

enrichment (McCauley et al. 1988, Leibold 1989, Abrams 1993, Kretzschmar et

al. 1993, Samelle 1994, Abrams and Walters 1996, Leibold 1996, Polis and
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Strong 1996). The addition of inedible (or less edible) individuals to a prey

population has been shown theoretically to result in a shift in population

regulation, from limitation primarily by predators to limitation primarily by

resources (Leibold 1989, Abrams 1993, Leibold 1996). I observed this shift in my

experimental system. The total E. coli population went from being primarily

predator-limited to primarily resource-limited due to the evolution of T4-

resistance.

The ratio-dependent model can easily capture the effect of heterogeneity

in prey edibility (albeit phenomenologically) by changing the value of the

coefficient in the functional response. In contrast, the prey-dependent model

describes this heterogeneity mechanistically, but it requires the inclusion of a

separate equation with multiple parameters to accomplish this. The prey-

dependent and ratio-dependent models make numerous distinct predictions with

respect to the effects of heterogeneity in prey edibility on the dynamics of

predators and prey. In almost all respects, the predictions of the prey-dependent

models were fulfilled by my experimental system, whereas those of the ratio-

dependent model were not.

Qualitatively, both models predicted that the equilibrium density of the E.

coli population would increase following invasion by T4-resistant E. coli; however,

only the prey-dependent model predicted that the total E. coli population would

increase in stability following invasion. Both models predicted that the

equilibrium density of T4 would decrease following invasion by T4-resistant E.

coli; however, only the prey-dependent model predicted that the T4 population

would continue to cycle. Moreover, the prey-dependent model accurately

predicted that the oscillations of the T4 population would increase in period in

response to invasion. Quantitatively, both models adequately predicted the total

population density of E. coli as well as the relatively high stability of the
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heterogeneous population. However, the prey-dependent model adequately

predicted the equilibrium density of T4 , while the ratio-dependent model

underestimated the equilibrium density by orders of magnitude.

As was the case for temporal and spatial heterogeneity, the ratio-

dependent model predicted the qualitative effects of heterogeneity in prey

edibility on equilibrium population density, but it failed to predict the effects of

heterogeneity in edibility on population stability. The prey-dependent model

(altered to include heterogeneity in edibility) was superior, predicting not only the

effect of heterogeneity on equilibria and stability, but even predicting the effect of

heterogeneity in edibility on the period of population cycles. However, the prey-

dependent model was much more complex, requiring not only additional

parameters but an additional equation.

Mechanistic Realism versus General Applicability

Since it was first proposed by Arditi and Ginzburg, the idea that ratio-

dependent models could parsimoniously model the effects of heterogeneity on

predator-prey dynamics has been hotly debated. This debate has centered on

whether the effects of heterogeneity could indeed be captured by such a simple

model, and what the limitations of using this approach might be. Using a

laboratory model system, l have demonstrated that although some qualitative

effects of heterogeneity may be captured by a ratio-dependent model, this

approach overlooks a number of important aspects of predator-prey dynamics.

In particular, the effects of resource enrichment on population stability and

evolution were not predicted by the ratio-dependent models. In contrast, the

prey-dependent models did a superior job of predicting the response of my model

system to enrichment, but at the cost of simplicity. The prey-dependent models
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are more complex than the ratio-dependent models and require detailed

information about the communities of interest. It is certainly not possible always

(perhaps even usually) to develop a fully mechanistic model of complex

communities. Ratio-dependent models may be very useful, for example, to

managers concerned with the effects of resource enrichment on the structure of

complex communities. While ratio-dependent models may be sold as able to

predict equilibrium responses in complex communities, they should also come

with the explicit warning that certain complications may be missed (e.g., unstable

equilibria) by virtue of the lack of mechanistic realism.



CHAPTER 3

EFFECT OF HETEROGENEITY IN PREY EDIBILITY ON THE RESPONSE OF

A MODEL FOOD CHAIN TO RESOURCE ENRICHMENT

INTRODUCTION

Ecologists have long debated the relative importance of population

regulation by resources (bottom-up control) and population regulation by

predators (top-down control) (Hairston et al. 1960, Murdoch 1966, Ehrlich and

Birch 1967, Slobodkin et al. 1967). This debate has recently focused on what

factors may determine the relative importance of these two types of population

control (Power 1992). The presence of heterogeneity in prey edibility has been

recognized by a number of ecologists as a factor that could shift the balance

between top-down and bottom-up control (McCauley et al. 1988, Leibold 1989,

Abrams 1993, Kretzschmar et al. 1993, Samelle 1994, Abrams and Walters

1996, Leibold 1996, Polis and Strong 1996). The presence of inedible (or less

edible) individuals in a prey population has been shown theoretically to result in

the damping of top-down forces and an increase in the relative importance of

bottom-up control (Leibold 1989, Abrams 1993, Leibold 1996). This damping

occurs because the lowered edibility of the less edible prey can act as a refuge

from predation.

The presence of this refuge can have a profound effect on how a prey

population is regulated. For example, compare the response of the following two

58
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prey populations to an enrichment of their resources: (1) a homogeneous and

highly edible population and (2) a population that consists of both inedible and

highly edible individuals. The equilibrium density of the homogeneous population

would be unaffected by enrichment, because the prey population is highly edible

and thus regulated completely by predators. The homogeneous prey population

would grow faster in response to enrichment but, at equilibrium, this additional

growth would be converted into predator biomass (Rosenzweig 1977, Abrams

1993). In contrast, the equilibrium density of the heterogeneous prey population

would increase in response to enrichment. This would occur because the

inedible component of the population would increase (because it is not limited by

predators and thus can respond to enrichment), whereas the edible component

would remain unchanged (because it is limited by predators), with the net effect

being an increase in the prey population in response to resource enrichment

(Phillips 1974, Abrams 1993, Leibold 1996). Adding heterogeneity in edibility to

the prey population has thus shifted the balance of forces regulating the prey

population from predominantly top-down to predominantly bottom-up.

Heterogeneity in prey edibility can also have a profound effect on how a

predator population is regulated. Less edible prey can essentially “siphon off”

resources that would othenrvise be eventually converted into predator biomass,

resulting in a decline in the degree of bottom-up control of the predator

population (Leibold 1989). If truly inedible prey are present, they can siphon off

such a large proportion of resources that the predator population no longer

responds to bottom-up control. In such a situation, the equilibrium density of the

heterogeneous prey population would increase in response to enrichment, but

the predator population would not (Abrams 1993, Leibold 1996) The addition of

heterogeneity in prey edibility has thus drastically shifted the forces regulating the

predator population.
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Several assumptions are made by theorists when making these

predictions. A trade-off between competitive ability and edibility is assumed (i.e.,

the more resistant an individual is to predation, the less able it is to compete for

resources). If this assumption is not made, then the least edible prey individuals

would always exclude those of higher edibility. It is also assumed that the

predator has a constant death rate, although the effect of changing the death rate

has been explored by some theorists (McCauley et al. 1988, Leibold 1989,

Leibold 1996). Another assumption is that the prey's resource level is such that it

will support a heterogeneous prey population. If the resource level is too low,

then the less edible prey may not be able to coexist with the more edible prey,

due to the tradeoff between edibility and competitiveness(Leibold 1996). If the

resource level is too high, then the less edible prey may be able to support a

large enough predator population that it can drive the more edible prey extinct

(“apparent competition” sensu Holt 1977). However, this cannot occur if the less

edible prey is completely inedible (Levin et al. 1977). A “chemostat-like”

environment (e.g., constant volume, continuous input of resources, etc.) is also

assumed.

Field observations of Daphnia and algae provide empirical support for

some of these predictions (McCauley et al. 1988, Leibold 1989, Watson et al.

1992). In some cases, populations of algae appear to be primarily top-down

regulated when they are relatively homogeneous in edibility, but bottom-up

regulated when their edibilities are heterogeneous (McCauley et al. 1988).

Furthermore, in populations with heterogeneous edibilities, the ratio of edible to

inedible individuals has been observed to decline as the algae’s resources are

enriched, as theory would predict (McCauley et al. 1988, Watson et al. 1992).

However, it has been suggested that these patterns are not actually due to the

presence of heterogeneity in the edibility of algae. The strong damping of top-
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down regulation of the algae population is consistently observed only when

higher trophic levels (i.e., predators of Daphnia and their respective predators)

are present, suggesting that these responses may be due not to interactions

between Daphnia and a heterogeneous population of algae but instead to

cascading effects of higher trophic levels (Samelle 1994). There is also debate

over whether Daphnia may feed on “inedible” algae and if so to what degree

(Leibold 1989). It has also been suggested that equilibrium may not have been

reached in these studies, especially it higher trophic levels (i.e., zooplanktivorous

and piscivorous fish) are present (Samelle 1994).

In this report, I demonstrate that heterogeneity in prey edibility can alter

the balance between bottom-up and top-down forces. I describe the responses of

model predator and prey populations to an enrichment of the prey’s resources,

and contrast the responses of systems with and without heterogeneity in prey

edibility. The results are compared with the predictions of two alternative

mathematical models that are constructed using different approaches to

modeling heterogeneity. My experimental system consisted of populations of the

bacterium Escherichia coli and the bacteriophage T4 (a virus that feeds on E.

coli) interacting in chemostats. I added heterogeneity in edibility to the prey

population by inoculating the chemostats with two strains of E. coli, one strain

that is susceptible to predation by T4 and one strain that is resistant to predation

by T4. Bacteria and bacteriophages have been proposed as ideal experimental

systems for studying predator-prey dynamics (Campbell 1961, Lenski and Levin

1985) and have been successfully used as such by a number of researchers

(Paynter and Bungay 1969, Home 1970, Paynter and Bungay 1971, Chao et al.

1977, Levin and Lenski 1983, Lenski and Levin 1985, Lenski 1988a).

The use of laboratory model communities such as mine has several

advantages. I am able to use organisms with short generation times, so that
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steady state responses to enrichment are achieved relatively quickly. I am able

to unambiguously quantify trophic-level population densities, and experimental

variables such as resource input are simple to manipulate. Variables other than

resource input can be controlled and the experiments can be replicated with

relative ease as well. It is also feasible to measure population parameters such

as prey edibility and the tradeoff between edibility and competitiveness in

laboratory model communities. Ecological experiments with model laboratory

systems bridge the gap between ecological theory and natural communities.

Such studies allow theoretical predictions to be rigorously examined in a

biological system that is easily manipulated, replicated, controlled and monitored

in ways that would be difficult or impossible with natural communities (Lawton

1995).

METHODS

Experimental system

My experimental system consisted of E. coli B strain REL607 (Lenski et

al. 1991), E. coli B strain REL6584, and the virulent bacteriophage T4 (kindly

provided by L. Snyder) in glucose-limited chemostats. REL6584 is identical to

REL607 with the exceptions that (1) it is resistant to predation by bacteriophage

T4, and (2) it cannot utilize the sugar arabinose. The ability to utilize arabinose

has been previously shown to confer neither a competitive advantage nor

disadvantage in a glucose-limited environment (Lenski 1988a). I used this trait

as a neutral marker to distinguish the two E. coli strains. T4-resistant mutants of

E. mli have been shown to be completely invulnerable to predation by T4 (Lenski
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and Levin 1985). Virtually all T4-resistant mutants of E. coli achieve this

resistance through the loss of the cell surface receptor to which T4 initially, and

reversibly, binds (Lenski 1988a). Resistance to predation by T4 has been shown

to result in a competitive disadvantage in a glucose-limited environment when

phage are not present (Lenski and Levin 1985, Lenski 1988a).

I measured the competitive disadvantage associated with T4-resistance by

coinoculating REL6584 and REL607 into phage-free, glucose-limited chemostats

and tracking their respective population densities. I calculated the competitive

disadvantage as described by Lenski and Levin (1985). The disadvantage was

approximately 35% for REL6584. I also checked the neutrality of the arabinose-

utilization marker by coinoculating REL607 and REL606 into glucose-limited

chemostats. REL606 is the T4-sensitive progenitor of REL6584; it is identical to

REL607 with the exception of its inability to utilize arabinose. l detected no effect

of the arabinose-utilization marker on competitive ability.

My chemostat vessels are similar to those described by Chao et al.

(1977). The media consisted of Davis minimal broth (Carlton and Brown 1981)

supplemented with 2 x10'6 9 thiamine hydrochloride per liter and either 0.1 or 0.5

pg per ml glucose. These glucose concentrations were chosen so that my

results could be compared to previous experiments at these concentrations (see

Chapter 2 above). The volume of the chemostats was maintained at

approximately 30 ml, the flow rate at approximately 0.2 turnovers per hour and

the temperature at 37°C. Three replicate chemostats at each glucose

concentration were maintained simultaneously. The chemostats were inoculated

with the edible prey (E. coli strain REL607) and the predator (bacteriophage T4)

approximately 75 hours before inoculation with the inedible prey (E. coli strain

REL6584), to ensure that the edible E. coli and the predator were coexisting prior

to the introduction of the inedible E. coli. Control chemostats, containing only
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edible E. coli and predator, were established at each glucose concentration and

maintained simultaneously with the treatment chemostats.

The population densities of the E. coli strains and phage T4 were

estimated twice daily by dilution and plating. REL607 cells were plated on Davis

minimal agar supplemented with 2 x10‘6 9 thiamine hydrochloride per liter and 4

mg per ml arabinose (this media allows growth of REL607 but not REL6584,

since REL6584 cannot utilize arabinose). Heat-killed REL607 cells were mixed

with each sample to inactivate free phage prior to plating, as described by

Carlson and Miller (1994). Bacteriophage T4 was plated on a lawn of REL607

using Davis minimal agar and the plate count technique described by Carlson

and Miller (1994). REL6584 cells were plated on Davis minimal agar

supplemented with 2 x10‘6 9 thiamine hydrochloride per liter and 4 mg per ml

glucose. A concentrated phage T4 lysate was mixed with each sample to kill

REL607 cells prior to plating.

To estimate the population stability and equilibrium population densities of

T4 and the E. coli strains, I treated each chemostat as a single observational unit.

I first calculated the mean and standard deviation of the T4 and E. coli population

densities over time for each chemostat. I then estimated the equilibrium density

of each population as the grand arithmetic mean of population density across

replicate chemostats. I had previously determined that the arithmetic mean is

superior to the geometric mean as an estimator of equilibria in my system (see

Chapter 2 above). I estimated stability as the mean coefficient of variation of

population densities across replicate chemostats (the higher the coefficient of

variation, the lower the stability). I excluded the first six time points after

inoculation of REL6584 from my calculations of equilibria and stability, to allow

time for the populations to reach equilibria.
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I compared population equilibria and stability between the resource

treatments with t-tests. One-tailed comparisons were used whenever the models

made directional predictions. Prior to comparison I tested for homogeneity of

variances. The data was log-transformed prior to comparison whenever the

variances were found to be significantly different. If heterogeneity of variances

was not eliminated by transformation, Welch’s approximate t (Zar 1984) was

used instead of Student’s tto make comparisons.

I tracked population density over time rather than biomass because

density is much easier to accurately estimate in my system. I do not expect

biomass per cell to vary between treatments. Biomass per bacterial cell can

increase at higher growth rates (Bremer and Dennis 1987, Mongold and Lenski

1996); however, no difference in growth rates between treatments is predicted by

either mathematical model described below.

Mathematical models

There is a great deal of controversy over how best to mathematically

model food chains with heterogeneous prey. Two approaches have received a

great deal of attention recently. The first approach is to modify traditional prey-

dependent models (i.e., Lotka-Volterra models and variations thereof) to

incorporate such heterogeneity. These models are considered “prey-dependent”

because they assume that the attack rate of predators depends only on the

instantaneous density of prey. Heterogeneity is incorporated into these models

by additional terms that explicitly describe the heterogeneous population. An

alternative approach is to use ratio-dependent predator-prey models. In these

models, the attack rate of predators is assumed to depend on the ratio of prey to

predator density. Proponents of this approach have asserted that this ratio
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incorporates the “net effect” of heterogeneity on population dynamics (Arditi and

Ginzburg 1989). The ratio-dependent approach is simpler mathematically than

the prey-dependent approach; however, this simplicity may come at the cost of

mechanistic realism. In an attempt to explore these possible tradeoffs, l modeled

my experimental system using both the prey-dependent and ratio-dependent

approaches.

I modeled my experimental system using the models first developed by

Levin et al. (1977). The prey-dependent model consisted of four differential

equations,

dC/dt = (00 - Qw - stC/(K+C) - ERHWnC/(Kn-I-C)

det = NrpC/(K-r-C) - aNP - mN

dP/dt = fle'miaN’P} - aNP- wP

dR/dt = RVRC/(KRr-C) - (0R

where Co = concentration of glucose in the reservoir, C = concentration of

glucose in the chemostat, a) = flowrate, e = reciprocal of the yield of the edible E.

coli, N = population size of uninfected edible E. coli, w = maximum specific

growth rate of edible E. coli, K = resource concentration at which the edible E.

coli grow at one half \y, or = attack (i.e., adsorption) rate of T4, [3 = number of T4

progeny per edible E. coli cell , 1: = time lag between infection and release of T4

progeny, e400 = fraction of edible E. coli infected at time t - 1: that has not washed

out of the chemostat before releasing T4 progeny, N’ = population size of

uninfected edible E. coli at time t - 1:, P’ = population size of T4 at time t- r, R =

population size of inedible E. coli, ea = reciprocal of the yield of the inedible E.
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coli, \Iln = maximum specific growth rate of inedible E. coli, and KR = resource

concentration at which inedible E. coli grow at one half \Iln-

I used the following parameter values for this model : Co = either 0.1 or

0.5 pg per ml, to = 0.2 per hr, 2 = 2 x 10'6 pg (Lenski 1988b), \p = 0.7726 per hr

(Vasi et al. 1994), K = 0.0727 pg per ml (Vasi et al. 1994), or = 3 x 10'7 ml per hr

(Lenski and Levin 1985), (Power 1992) ,B = 80 viruses per bacterial cell infected

(Lenski and Levin 1985), 1 = 0.6 hr (Lenski and Levin 1985), and 23 = 2 x 10'6 p.

l estimated \Iln (= 0.7027 per hr) and KR (= 0.123 pg per ml) as described in

Chapter 2 above.

The ratio-dependent model consisted of three differential equations,

dC/dt = (00- 00) - stC/(K+C)

dB/dt = BtpC/(K+C) - a(B/F)P- wB

dP/dt = fla(B’P)P} - o(B/F)P- mP

where in addition to the above parameters, B = the total population size of

uninfected edible and inedible E. coli. This model therefore combines the T4-

sensitive and T4-resistant E. coli into one population that is heterogeneous in

edibility. I fit the ratio-dependent trophic function (i.e., orB/P) to estimates of

equilibria from previously published observations (Lenski and Levin 1985) of

coexisting populations of T4-sensitive E. coli, T4-resistant E. coli, and T4. These

observations were made in chemostats with glucose input concentrations of 300

pg per ml, and they gave an estimated value for or of 2.28 x 10'5 per hour. I used

the average of \p and We above (0.7701 per hour) as the value for w in the ratio-

dependent model and the average of K and KR above (0.0986 pg per ml) as the

value of K. Proponents of ratio-dependent models have argued that the ratio-

dependent functional response incorporates the effect of temporal heterogeneity
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on population dynamics of predators and prey; therefore a time-lag is not

explicitly included in the ratio-dependent model. All other parameters were the

same as in the prey-dependent model.

I solved these models analytically and examined the behavior of the

models numerically using STELLA II simulation software (High Performance

Systems 1994). A time-step of 0.05 hours was used in the simulations.

However, I “sampled” the output of each simulation every 12 hours (the

approximate sampling interval of my experiments) to produce the dynamical

predictions shown in Figure 8.

RESULTS

Model Predictions

The prey-dependent model predicts that the equilibrium density of the

inedible E. coli will increase in response to enrichment (Figure 8A and B). It also

predicts that the equilibrium densities of the edible E. coli and the predator will be

unaffected by resource enrichment. In contrast, the ratio-dependent model

predicts that equilibrium densities of both the predator population and the total E.

coli population (edible and inedible combined) will increase in response to

enrichment (Figure BC and D). The prey-dependent model also predicts that the

edible prey and predator populations will be destabilized (i.e., the amplitude of

oscillations will increase) by enrichment (Figure 8A and B). The ratio-dependent

model does not make this prediction (Figure 8C and D).
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Figure 8. Population equilibria and dynamics predicted by prey-dependent and

ratio-dependent food chain models. Equilibria are from analytical solutions of the

models; dynamics are from numerical simulations of the models, “sampled” at 12

hour intervals. The population densities (viruses per ml or bacteria per ml) have

been log-transformed. (A) prey-dependent model with a glucose input

concentration of 0.1 pg per ml , (B) prey-dependent model with a glucose input

concentration of 0.5 pg per ml , (C) ratio-dependent model with a glucose input

concentration of 0.1 pg per ml , (D) ratio-dependent model with a glucose input

concentration of 0.5 pg per ml . Key: R“ = inedible E. coli equilibrium density, N“

= edible E. coli equilibrium density, P“ = T4 equilibrium density, B“ = total E. coli

equilibrium density; solid line = edible E. coli or total E. coli dynamics, dashed line

= inedible E. coli dynamics, dotted line = T4 dynamics.
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Empirical Observations

The dynamics of the T4 and E. coli populations are shown in Figure 9 for

representative chemostats with two different input concentrations of glucose.

The populations persisted in all chemostats with apparent population cycles.

There was a large and highly significant increase in the equilibrium density of the

inedible E. coli in response to enrichment (t = 15.238, df = 4, one-tailed P <

0.0001; Figure 10A). The equilibrium density of the edible E. all did not change

significantly in response to enrichment (Welch’s approximate t = 0.4976, df = 2,

one-tailed P = 0.3340; Figure 10A) nor did the predator population (t = 1.2421, df

= 4, one-tailed P = 0.1410; Figure 10A). I did not observe T4-resistant mutants of

the edible E. coli strain (REL607) in any of the treatment chemostats, although

they did appear in the control chemostats (see below).

Enrichment significantly destabilized the edible E. coli (t = 2.4503, df = 4,

one-tailed P = 0.0352; Figure 103), and the predator population (t = 2.7991, df =

4, one-tailed P = 0.0244; Figure IOB). The inedible E. coli became more stable

with enrichment (t = 7.0875, df = 4, one-tailed P = 0.0010; Figure 10B). The

population oscillations of the edible E. coli in the higher glucose treatment

appeared to be damped in Figure 9B and could possibly have converged on a

stable equilibrium; however, this apparent damping did not occur in the other

replicate chemostats at this glucose concentration.

The dynamics of the control chemostats (inoculated with edible E. coli and

T4 only) were essentially identical to those reported earlier for edible E. coli and

T4 (see Chapter 2 above). Enrichment appeared to destabilize both the E. coli

and T4 populations in these chemostats. Enrichment also resulted in a large

increase in the equilibrium population density of T4 (approximately fourteen-fold)

and a very small increase in E. coli (approximately 1.5-fold). E. coli and T4
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Figure 9. Dynamics of edible E. coli (squares), inedible E. coli (triangles), and

bacteriophage T4 (circles) in chemostats supplied with media containing different

amounts of glucose. Arrows indicate when the chemostats were inoculated with

inedible E. coli. The population densities (viruses per ml or bacteria per ml) have

been log-transformed. (A) 0.1 pg/ml glucose, (B) 0.5 pg/ml glucose.
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Figure 10. Effect of glucose input concentration on equilibrium population

densities and instability of edible E. coli, inedible E. coli, and bacteriophage T4

interacting in a chemostat. Equilibrium population density is estimated as the

grand mean of the mean population densities in 3 replicate chemostats.

Population instability is estimated as the mean of the coefficient of variation in 3

replicate chemostats. Error bars are standard error of the mean. (A) equilibrium

density, (B) instability.
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persisted in the control chemostats in apparent population cycles until the

appearance of, and subsequent invasion by, T4-resistant mutants of E. coli. T4-

resistant E. coli mutants appeared much sooner in the higher glucose treatment

than in the lower glucose treatment. Following invasion by the T4-resistant E.

coli mutants, the T4 population continued to persist in cycles.

Fit of observations to mathematical models

Qualitatively, the responses of the predator and prey populations to

enrichment were better predicted by the prey-dependent model than the ratio-

dependent model. In response to enrichment: (1) the equilibrium density of the

inedible E. coli increased, (2) the equilibrium density of the edible E. coli was

unchanged, (3) the equilibrium density of the bacteriophage T4 population was

also unchanged, (4) the stability of the edible E. coli and bacteriophage T4

populations decreased and (5) the stability of the inedible E. coli population

increased.

DISCUSSION

The relative importance of population regulation by resources (bottom-up

control) and population regulation by predators (top-down control) has long

fascinated ecologists. The central question in this debate has evolved from “Do

resources or predators regulate this particular population?” to “What factors may

modulate resource limitation and predation in this system, determining when and

where predators or resources will dominate in regulating populations?” (Power

1992). Many potential factors have been recognized, including heterogeneity in

prey edibility. Several theorists have shown that heterogeneity in prey edibility
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can have a profound effect on the balance between top-down and bottom-up

control (Leibold 1989, Abrams 1993, Leibold 1996). Patterns predicted by this

theory have been observed in natural systems (McCauley et al. 1988, Watson et

al. 1992), but it is unclear if the process undertying these patterns is actually

heterogeneity in edibility (Leibold 1989, Samelle 1994).

One of the advantages of laboratory model systems is that patterns can be

clearly linked to processes. In this study, I have clearly demonstrated that

heterogeneity in edibility (in its most extreme form, the presence of inedible

individuals in a prey population) can result in a shift in the relative importance of

top-down and bottom-up control. The equilibrium density of my model

heterogeneous prey population (edible and inedible E. coli) increased strongly in

response to an enrichment of its resources (Figure 10A). In contrast, the model

prey population without heterogeneity (edible E. coli only) increased only

marginally, if at all (Figure 6A). The model predator population (bacteriophage

T4) did not significantly increase when its prey were heterogeneous (Figure 10A),

even though it increased strongly in response to enrichment when its prey were

homogeneous (Figure 6A). The mechanism underlying this change in regulation

can be seen vividly in Figure 10A. The inedible fraction of the prey population

increased dramatically in response to enrichment, while the edible fraction

remained unchanged. This pattern is consistent with the hypothesis that the

inedible fraction is “siphoning off” resources from the edible prey and predator

and thus preventing the edible prey and predator from responding to enrichment.

Enrichment significantly destabilized the edible E. coli and bacteriophage

T4 populations in my model food chain (Figure 108). The presence of inedible

prey reduced the degree to which the food chain was destabilized by enrichment.

The edible E. coli exhibited large and undamped oscillations when the inedible E.

coli were absent (Figure 9B before arrow; also Figure 5B) but relatively small
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population oscillations in the higher glucose treatment when the inedible E. coli

were present (Figure QB after arrow). The T4 population oscillations were also

larger in the higher glucose treatment when the inedible E. coli were absent

(Figure 98 before arrow; also Figure SB) than when the inedible E. coli were

present (Figure 9B before arrow). The presence of inedible E. coli also effected

the evolutionary stability of my food chain. I did not detect inedible (i.e., T4-

resistant) mutants of the edible E. coli when inedible E. coli were already present,

but such mutants appeared consistently when inedible E. coli were absent.

Food chains with heterogeneous prey populations can be modeled in

different ways. The prey-dependent approach involves building on traditional

predator-prey models (i.e., Lotka-Volterra models and their derivatives) by adding

an equation for each distinctly different subpopulation (e.g., each level of

edibility), as well as terms that describe the interactions between these

subpopulations. The ratio-dependent approach is much simpler; it involves

changing the form of the predator's functional response from a function of the

prey’s density only, to a function of the ratio of prey to predator densities. This

ratio is assumed to incorporate the “net effect" of heterogeneity on population

dynamics. I used both of these approaches and found that the prey-dependent

model better predicted the response of my model system to enrichment. The

prey-dependent model was a better predictor of both changes in equilibrium

density and changes in population stability. I believe that this occurred for

several reasons. The first reason is that the prey population in my system had

truly inedible individuals. Some ecologists have argued that the damping of top-

down forces that results from the presence of “inedible” or “invulnerable” prey can

be expressed as ratio-dependence (Samelle 1994). However, ratio-dependent

models predict that both predator and prey will increase in response to

enrichment, a pattern that I did not observe in my study. An increase in both
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predator and prey could occur if less edible (but not inedible) prey are present

(Abrams 1993, Leibold 1996). It is possible that ratio-dependent models could

adequately capture the effects of this type of heterogeneity (edible and less

edible prey) while failing to capture the effects of the type of heterogeneity

present in my system (edible and inedible prey). Secondly, I have previously

noted that ratio-dependent models tend to overestimate the stability of simple

systems (see Chapter 2 above). This may explain the inability of these models to

predict the changes in population stability that I observed in my current study.

However, ratio-dependent models may still be useful for modeling other, more

complex, systems. Trophic complexities (e.g., omnivory, nutrient subsidies, prey

refuges, etc.) may lead to strong bottom-up control and possibly greater

population stability (Polls and Strong 1996), and these could possibly be

approximated by ratio-dependent models. However, trade-offs between

simplicity and mechanistic realism need to be carefully considered before using

the ratio-dependent approach (Diehl et al. 1993).

A third approach to modeling food chains with heterogeneous prey has

also been described by Kretzschmar et al. (1993). This approach is intermediate

in mathematical complexity and mechanistic realism between the two

approaches above. It consists of modeling the interactions between the predator

and edible prey using prey-dependent predator-prey equations and modeling the

interactions between inedible prey and edible prey using Lotka-Volterra

competition equations. The dynamics of the resource are not explicitly included

in these models. These models make qualitative predictions consistent with

many of my observations. Enrichment is predicted to be destabilizing to edible

prey and predators, the presence of inedible prey is predicted to reduce these

destabilizing effects, and the equilibrium density of inedible prey is predicted to

increase with enrichment, while the edible prey equilibrium is predicted to remain
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unchanged. However, these models also predict that the predator population will

increase in density at equilibrium in response to enrichment, a prediction

inconsistent with my observations.



CHAPTER 4

EFFECT OF PRODUCTIVITY ON THE IMPORTANCE OF APPARENT

COMPETITION IN A MODEL COMMUNITY

INTRODUCTION

Most species are embedded in a web of interactions with other species.

Changes in the abundance of one species can ripple through this web and

indirectly effect other species. Although ecologists have recognized for nearly

half a century that such indirect effects can occur (e.g., Andrewartha and Birch

1954), the comprehensive study of this phenomenon is relatively recent (Kerfoot

and Sih 1987). Recent research has focused on two goals: 1) to clarify the types

of indirect effects that occur in nature and 2) to determine the importance of

indirect effects in community dynamics. Ecologists have been relatively

successful in meeting the first goal, and numerous examples of indirect effects

have been reported (see review in Wooton 1993). However, the second goal has

been more difficult to accomplish, and identifying when and where indirect effects

are important remains a challenge.

One of the best studied examples of indirect effects are those that occur

between species that share a predator (Kerfoot and Sih 1987, Holt and Lawton

1994). Theoretically various interactions are possible between species that

share a predator, even when the prey species do not interact directly. Changes

81
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in the population density of one prey species may indirectly affect the

instantaneous growth rate, equilibrium population size, existence and magnitude

of population cycles, and evolution of prey defenses in the other prey species

(Abrams 1987). Of these possible effects, a negative relationship between the

equilibrium population sizes of prey has received the most attention in the

literature (see reviews in Jeffries and Lawton 1984, Holt and Lawton 1994). Holt

has labeled this type of indirect effect “apparent competition” (Holt 1977). If the

prey species differ in vulnerability to predation, apparent competition can result in

exclusion of the more vulnerable prey species. This effect occurs because the

density of predators at equilibrium must be sufficiently high to prevent the less

vulnerable prey type from increasing, and that same density of predators may

drive the more vulnerable prey type to extinction.

Several theorists have hypothesized that the importance of apparent

competition should vary with productivity (Holt et al. 1994, Leibold 1996). For

example, imagine a simple community consisting of two prey species competing

for a common resource and sharing a common predator. Theory predicts the

following response of this simple community to productivity. At high productivity

apparent competition will be the primary determinant of community structure, with

the less vulnerable prey excluding the more vulnerable prey. At low productivity

apparent competition will be relatively unimportant and exploitative competition

for resources will be the primary determinant of community structure, with the

superior competitor excluding the inferior competitor. At moderate levels of

productivity neither apparent nor exploitative competition are predicted to be the

primary influence on community structure, and both prey types can coexist if a

trade-off exists between competitive ability and vulnerability to predation. Thus,

the relative importance of apparent competition in this simple community is

controlled by productivity.
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Although the influence of productivity on apparent competition has been

theorized, this idea has not been tested experimentally. In this chapter, I report a

test of this theory using a laboratory model community. Apparent competition

has been shown to occur in laboratory communities of protozoan predators and

protozoan prey (Lawler 1993), protozoan predators and prey bacteria (Nakajima

and Kurihara 1994a, Nakajima and Kurihara 1994b), and bacteriophage and

bacteria (Levin et al. 1977, Lenski 1984). However, the effect of changes in

productivity on the importance of apparent competition has not previously been

demonstrated in laboratory model communities. In previous work, I used

laboratory model communities of E. coli and bacteriophage to determine the

effect of changes in productivity on the population dynamics in simple food

chains (see Chapter 2) and in communities with keystone predators (see Chapter

3). In this chapter, I expand on my earlier work and use a chemostat community

of E. coli and bacteriophage T2 to test a mathematical model of competition

between prey types with a shared predator. I assembled communities that

consisted of bacteriophage T2 and two E. coli strains that differed in their

susceptibility to this bacteriophage. I manipulated the productivity of this model

community and compared the observed responses to the predictions of a

mathematical model that includes both actual competition for resources and

apparent competition through a shared predator.

Chemostat communities of E. coli and bacteriophage T2 are excellent

model systems with which to test shared predator models for a number of

reasons. First, T2 is one of the few bacteriophages against which E. coli has

been observed to evolve partial resistance (i.e., reduced vulnerability). E. coli

can evolve complete resistance (i.e., invulnerability) to many bacteriophages;

however, partial resistance is rare. Because partial resistance is possible, model

communities that consist of prey populations that differ in susceptibility to a
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shared predator can be constructed using E. coli and bacteriophage T2. Second,

E. coli mutants that are partially resistant to bacteriophage T2 have the correlated

trait of complete resistance to bacteriophage T4. This relationship allows the

partially resistant mutants to be easily obtained (by selecting for T4-resistant

mutants) and easily tracked in a model community (by screening for T4-resistant

bacteria). Third, chemostat communities of E. coli and bacteriophage T2 share

the advantages of other microbial model systems. These advantages include the

ease with which experimental variables such as productivity can be manipulated

and the relatively short time period necessary to observe steady state responses

to changes such as increased productivity.

METHODS

Experimental system

My experimental system consisted of E. coli B strain REL607 (Lenski et al.

1991), E. coli B strain REL6584, and the virulent bacteriophage T2 (kindly

provided by L. Snyder) in glucose-limited chemostats. REL6584 is identical to

REL607 with the exceptions that ( 1) it cannot utilize the sugar arabinose, and (2)

it is invulnerable to predation by bacteriophage T4. The ability to utilize

arabinose has been previously shown to confer neither a competitive advantage

nor disadvantage in a glucose-limited environment (Lenski 1988a). I used this

trait as a neutral marker to distinguish the two E. coli strains. lnvulnerability to

predation by T4 has been shown to result in a competitive disadvantage in a

glucose-limited environment when phage is not present (Lenski and Levin 1985,

Lenski 1988a). Mutants of E. coli that are invulnerable to predation by T4 have
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also been shown to be less vulnerable to predation by bacteriophage T2 (Lenski

1984). This effect occurs because T4-invulnerable mutants of E. coli achieve

invulnerability through the loss of the cell surface receptor to which T4 initially

attaches (Lenski 1988a). This cell surface receptor is also one of two receptors

used for attachment by T2 (Lenski 1984). The loss of this receptor reduces the

rate at which T2 infects E. coli by approximately 50% (Lenski 1984). Thus,

mutants of E. coli that have reduced vulnerability to T2 can be detected by

screening for the correlated trait of invulnerability to T4 .

I measured the competitive disadvantage associated with reduced

vulnerability to T2 by co-inoculating REL6584 and REL607 into phage-free,

glucose-limited chemostats and tracking their respective population densities. I

calculated the competitive disadvantage as described by Lenski and Levin

(1985). The disadvantage was approximately 35% for REL6584. I also checked

the neutrality of the arabinose-utilization marker by co-inoculating REL607 and

REL606 into glucose-limited chemostats. REL606 is the T4-sensitive progenitor

of REL6584; it is identical to REL607 with the exception of its inability to utilize

arabinose. l detected no effect of the arabinose-utilization marker on competitive

ability.

My chemostat vessels are similar to those described by Chao et al.

(1977). The media consisted of Davis minimal broth (Carlton and Brown 1981)

supplemented with 2 x10‘6 9 thiamine hydrochloride per liter and various

concentrations of glucose (see below). The volume of the chemostats was

maintained at approximately 30 ml, the flow rate at approximately 0.2 turnovers

per hour and the temperature at 37°C. Replicate chemostats at each glucose

concentration were maintained simultaneously. The chemostats were inoculated

with the vulnerable prey (E. coli strain REL607), the less vulnerable prey (E. coli

strain REL6584), and the predator (bacteriophage T2) simultaneously. Control
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chemostats, containing each of the E. coli strains alone with the predator, were

established at each glucose concentration and maintained simultaneously with

the treatment chemostats.

I manipulated productivity in this experiment by running replicate

chemostats at different input concentrations of glucose. Each glucose input

concentration represented a different level of productivity. Three blocks of

chemostats were run. The first block consisted of two replicates with a glucose

input concentration of 0.1 pg per ml, two replicates with a glucose input

concentration of 0.5 pg per ml, and four control chemostats. These resource

levels were chosen so that my results could be compared to previous

experiments at these concentrations (see Chapters 2 and 3). The second block

consisted of two replicates with a glucose input concentration of 0.09 pg per ml,

two replicates with a glucose input concentration of 0.5 pg per ml, and four

control chemostats. The third block consisted of two replicates with each of the

following glucose input concentrations: 0.07, 0.08, 0.09, 0.10, 0.11, and 0.12 pg

per ml, and four control chemostats. The productivity levels in blocks two and

three were chosen to explore productivity levels slightly lower and slightly higher

than 0.1 pg per ml, in an effort to detect the transition between coexistence and

exclusion. I ran blocks 1 and 2 for 200 hours and block 3 for 100 hours.

The population densities of the E. coli strains and phage T2 were

estimated twice daily in blocks 1 and 2, and daily in block 3. Population densities

were estimated by dilution and plating. REL607 cells were plated on Davis

minimal agar supplemented with 2 x10‘6 g thiamine hydrochloride per liter and 4

mg per ml arabinose (this media allows growth of REL607 but not REL6584,

since REL6584 cannot utilize arabinose). Heat-killed REL607 cells were mixed

with each sample to inactivate free phage prior to plating, as described by

Carlson and Miller (1994). Bacteriophage T2 was plated on a lawn of REL607
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using Davis minimal agar and the plate count technique described by Carlson

and Miller (1994). REL6584 cells were plated on Davis minimal agar

supplemented with 2 x10'6 9 thiamine hydrochloride per liter and 4 mg per ml

glucose; a concentrated phage T4 lysate was mixed with each sample to kill

REL607 cells prior to plating.

In past laboratory studies, the vulnerability of E. coli to predation by T2 has

been observed to change due to evolution (Lenski 1984). Therefore, in each

chemostat l tracked the evolution of mutants with reduced vulnerability and

complete invulnerability to T2. I estimated the total population density of mutants

invulnerable to T2 in each chemostat by mixing concentrated phage T2 lysate

with an aliquot of each chemostat sample and plating on minimal glucose. The

fraction of these mutants derived from REL607 was estimated by mixing

concentrated phage T2 lysate with an aliquot of each sample and plating on

minimal arabinose (REL6584 cannot grow on minimal arabinose media). The

fraction of the invulnerable mutants derived from REL6584 was then determined

by subtraction of the REL607-derived mutants from the total. As described

above, invulnerability to predation by phage T4 can be used as a marker for

detecting partial invulnerability to phage T2. l estimated the density of mutants of

REL607 that were partially invulnerable to T2 by mixing concentrated phage T4

lysate with an aliquot of each sample and plating on minimal arabinose. This

media allows the growth of both partially invulnerable and completely

invulnerable mutants; l estimated the density of partially invulnerable mutants by

subtracting the density of invulnerable mutants (estimated as described above)

from the total.
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Mathematical models

I modeled my experimental system using modifications of the models

developed by Levin et al. (1977). l analyzed these models graphically and

examined the behavior of the models numerically using STELLA II simulation

software (High Performance Systems 1994).

Mathematical model. The model consisted of four coupled differential

equations,

dC/dt = (Co - C)a) - stC/(K + C) - Ean/IRC/(Kn + C)

det = NwC/(K + C) - aNP - wN

dR/dt = thRC/(Kn + C) - anFlP - (0R

dP/dt = fie‘m’mN’P’) + flgem‘WaRR’P’) - aNP - aRRP - wP

where Co = concentration of glucose in the reservoir, C = concentration of

glucose in the chemostat, a) = flowrate, e = reciprocal of the yield of the bacteria,

N = population density of the more vulnerable bacteria, R = population density of

the less vulnerable bacteria, P = population density of the bacteriophage, \p =

maximum specific growth rate, K = resource concentration at which the bacteria

grow at one half w, a(N )= trophic function, [3 = burst size of the bacteriophage, r

"0’ = fraction of bacteria infected at time t- 1' that= latent period of the phage, a

has not washed out before lysing, N’= population density of the more vulnerable

bacteria at time t- 1', P' = population density of bacteriophage at time t- 't, and Fi’

= population density of less vulnerable bacteria at time t - 1. Parameters that are

specific to the less vulnerable population are followed by the subscript R. Note

that equations describing the dynamics of the infected bacteria could also be

written. Such equations were not included in this model because infected
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Figure 11. Effect of productivity on the density of two prey types, a shared

predator, and a shared resource. (A) Graphical analysis of an idealized

community model (modified from Leibold, 1996) showing zero net growth

isoclines (ZNGl’s) and net consumer-prey impact vectors (C) for two prey types

(A and B). Coexistance is possible because the ZNGI’s intersect. The zone of

coexistance is determined by the slope of the impact vectors and their

intersection with the resource axis. (B) The predicted pattern of equilibrium

population densities across a gradient of productivity (modified from Leibold,

1996). Productivity is assumed to be proportional to resource input

concentration. The resource levels labeled 1, II and III are identical to those in

panel A. R = equilibrium resource concentration, P = equilibrium predator

density, NA = equilibrium density of more vulnerable prey, N3 = equilibrium

density of less vulnerable prey.
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bacteria cannot be easily tracked in the chemostats. The inclusion of infected

cell populations has very little effect on the dynamics of the other populations

(none if infected cells neither consume resources nor adsorb additional phage).

I used the following parameter values for this model : Co = either 0.1 or

0.5 pg per ml, (0 = 0.2 per hr, 2 = 2 x 10'6 pg (Lenski 1988b), \p = 0.7726 per hr

(Vasi et al. 1994), K = 0.0727 pg per ml (Vasi et al. 1994), or = 2 x 10'7 ml per hr

(Lenski 1984), [3 = 98 viruses per bacterial cell infected (Levin et al. 1977), 1: = 0.5

hr (Levin et al. 1977), an =1 x 10:7 ml per hr (Lenski 1984), en = 2 x 10'6pg

(Chapter 3), urn = 0.7027 per hr (Chapter 3) and KR = 0.123 pg per ml (Chapter

3).

Graphical analysis. I analyzed the model graphically as described by

Leibold (1996). This approach consists of plotting zero net growth isoclines and

net consumer-prey impact vectors for both prey types (Figure 11A). The

relationship between the impact vectors and the isoclines determines the overall

relationship between community structure and productivity (Figure 118). I

calculated the net consumer-prey impact vectors for each prey type in my

experimental system by taking the vector sum of the per capita feeding rate of

each prey type (calculated as ewC/{K + C} or any/nC/{Kn + 0}) and the per capita

contribution of each prey type to predator growth (calculated as flaP}+ [340:ng

as described by Leibold (1996).

Numerical simulations. I ran all numerical simulations using a time step of

0.05 hours. I tested the sensitivity of the simulations to time step size by running

replicate simulations at step sizes of 0.1, 0.05 and 0.025 hours. Varying the size

of the time steps had no detectable effect on the results of the simulations. I

“sampled” the output of each simulation every 12 hours (the approximate

sampling interval of my experiments) to produce the predictions depicted

graphically.



RESULTS

Model predictions

The graphical analysis of the models revealed that coexistence of both

prey types would occur only within a very small range of productivity levels

(Figure 12). The net consumer-prey impact vectors for the two types were very

similar in slope (2.85 x 107 viruses/pg glucose for the more vulnerable prey; 1.99

x 107 viruses/pg glucose for the less vulnerable prey) resulting in predicted

coexistence only within the range of 0.157 pg per ml glucose to 0.178 pg per ml

glucose. Below this range, the more vulnerable prey were predicted to displace

the less vulnerable prey. Above this range, the less vulnerable prey were

predicted to displace the more vulnerable prey.

Numerical simulations of the model are presented in Figure 13. The two

input concentrations I chose for this experiment are predicted to lie on either side

of the narrow range of coexistence as described above. In chemostats with an

input glucose concentration of 0.1 pg per ml, the more vulnerable prey is

predicted to displace the less vulnerable prey (Figure 13A). In chemostats with

an input glucose concentration of 0.5 pg per ml, the less vulnerable prey is

predicted to displace the more vulnerable prey (Figure 13B). These results are

due solely to the indirect interactions between the E. coli strains, because both E.

coli strains are predicted to persist for the duration of the experiment at both

glucose input concentrations when the other competitor is removed (Figure 14).
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Figure 12. Graphical analysis of the community model for T2,

prey bacteria and glucose. The zero net growth isoclines and the

consumer impact vectors for the more vulnerable prey (strain

REL607) and the less vulnerable prey (strain REL6584) are

shown. Key: zero net growth isocline for strain REL607 = ZNGIA,

zero net growth isocline for strain REL6584 = ZNGIB, consumer

impact vector for strain REL607 = A, consumer impact vector for

strain REL6584 = B.



Figure 13. Population equilibria and dynamics predicted by the model for

the treatment chemostats. Dynamics are from numerical simulations of

the model, “sampled” at 12 hour intervals. The population densities

(viruses per ml or bacteria per ml) have been log-transformed. (A) model

with a glucose input concentration of 0.1 pg per ml , (B) model with a

glucose input concentration of 0.5 pg per ml. Solid line = more vulnerable

E. coli dynamics, dashed line = less vulnerable E. coli dynamics, dotted

line = T2 dynamics.
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Figure 14. Population equilibria and dynamics predicted by the model for

the control chemostats. Dynamics are from numerical simulations of the

model, “sampled” at 12 hour intervals. The population densities (viruses

per ml or bacteria per ml) have been log-transformed. (A) T2 and more

vulnerable prey with a glucose input concentration of 0.1 pg per ml , (B) T2

and more vulnerable prey with a glucose input concentration of 0.5 pg per

ml, (C) T2 and less vulnerable prey with a glucose input concentration of

0.1 pg per ml , (D) T2 and less vulnerable prey with a glucose input

concentration of 0.5 pg per ml. Solid line = more vulnerable E. coli

dynamics, dashed line = less vulnerable E. coli dynamics, dotted line = T2

dynamics.
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Empirical observations

The dynamics of the viral predator T2 and E. coli prey populations are

shown in Figure 15 for representative chemostats with two different input

concentrations of glucose. In chemostats with an input glucose concentration of

0.1 pg per ml all three populations persisted in all four replicates (Figure 15A),

contrary to the predictions of the model (Figure 13A). lnvulnerable E. coli

mutants were not detected in any of the replicates of this treatment. In

chemostats with an input glucose concentration of 0.5 pg per ml, the more

vulnerable prey initially declined in all four replicates (Figure 153), as predicted

by the model (Figure 13B). The evolution of invulnerable E. coli (from a “less

vulnerable” ancestor) occurred in all four replicates of this higher glucose

treatment. The invasion of the chemostats by these invulnerable mutants initially

halted the decline in density of the more vulnerable E. coli. However, once the

invulnerable E. coli population reached its equilibrium, the more vulnerable E. coli

resumed their population decline in three of the four replicates. The phage

persisted in all four replicates of the higher glucose treatment, including the three

replicates where the invulnerable E. coli population reached its equilibrium and

the more vulnerable E. coli declined. The persistence of phage in these three

chemostats indicates that a minority population of the less vulnerable E. coli

persisted in these chemostats as well.

Control chemostats with T2 and each of the E. coli strains were run

simultaneously with the treatment chemostats. The dynamics of the T2 and E.

coli populations in representative control chemostats are shown in Figures 16

and 17. All populations persisted in all chemostats. Neither less vulnerable nor

invulnerable E. coli mutants were detected in the lower glucose controls (0.1 pg



Figure 15. Dynamics in treatment chemostats containing more vulnerable

E. coli (squares), less vulnerable E. coli (triangles), and bacteriophage T2

(circles) in chemostats supplied with media containing different amounts of

glucose. The dynamics of invulnerable mutants of strain 6584 (the less

vulnerable strain) are indicated with open triangles. The population

densities (viruses per ml or bacteria per ml) have been log-transformed.

(A) 0.1 pg/ml glucose, (B) 0.5 pg/ml glucose.
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Figure 16. Dynamics in control chemostats supplied with media

containing 0.1 pg per ml of glucose. The population densities (viruses per

ml or bacteria per ml) have been log-transformed. (A) bacteriophage T2

(circles) and more vulnerable E. coli (squares), (B) bacteriophage T2

(circles) and less vulnerable E. coli (triangles).
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Figure 17. Dynamics in control chemostats supplied with media

containing 0.5 pg per ml of glucose. The population densities (viruses per

ml or bacteria per ml) have been Iog-transfonned. (A) bacteriophage T2

(circles), more vulnerable E. coli (squares), less vulnerable E. coli

mutants (open squares) and invulnerable E. coli mutants (hatched

squares). (B) bacteriophage T2 (circles), less vulnerable E. coli (triangles)

and invulnerable E. coli mutants (open triangles).
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per ml and below); however, both kinds of mutants were eventually detected in

the higher glucose controls.

Lowering the glucose input concentration from 0.1 to 0.07 pg per ml did

not result in exclusion of the less vulnerable E. coli (Figure 18). All three

populations persisted at all of the lower glucose input concentrations used, with

the exception of one replicate of the 0.09 pg per ml treatment run for 200 hours.

In this replicate, the T2 population underwent an initial rapid decline (from which

it later recovered). During this decline the less vulnerable prey also declined

sharply and it continued to decline even after the T2 population had recovered.

In the other replicate of the 0.09 pg per ml treatment run for 200 hours, the less

vulnerable prey population appeared to be declining slightly, but this decline was

not evident until after 100 hours (Figure 19).

DISCUSSION

Ecologists have documented the existence of indirect effects in a number

of biological communities. However, identifying the factors that determine the

importance of indirect effects remains elusive, at least in part because of the

complexity of natural communities. One approach to identifying such factors is to

study simple community “modules” (i.e., abstract communities with 2 to 4

interacting populations) that have potential indirect interactions. Several theorists

have predicted that productivity can control the relative importance of indirect

effects in such community modules (Holt et al. 1994, Leibold 1996). For

example, apparent competition mediated by shared predators is predicted to be

an important determinant of community structure primarily at higher productivity

levels, while exploitative competition for resources is predicted to be important
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Figure 18. Dynamics in treatment chemostats containing more vulnerable E. coli

(squares), less vulnerable E. coli (triangles), and bacteriophage T2 (circles) in

chemostats supplied with media containing different amounts of glucose. The

population densities (viruses per ml or bacteria per ml) have been log-

transformed. (A) 0.07 pg/ml glucose, (B) 0.08 pg/ml glucose, (C) 0.09 pg/ml

glucose, (D) 0.1 pg/ml glucose, (E) 0.11 pg/ml, and (F) 0.12 pg/ml glucose.
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Figure 19. Dynamics of more vulnerable E. coli (squares),

less vulnerable E. coli (triangles), and bacteriophage T2

(circles) in a chemostat supplied with media containing 0.09

pg/ml glucose. The population densities (viruses per ml or

bacteria per ml) have been log-transformed.
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primarily at lower productivity levels. I tested this theory using chemostat

communities of bacteria and bacteriophage. Using these chemostat

communities, I demonstrated that the importance of apparent competition

increases with rising productivity. Apparent competition resulted in exclusion of

the more vulnerable prey at a higher productivity level (0.5 pg per ml glucose

input concentration) but not at a lower productivity level (0.1 pg per ml glucose

input concentration). However, contrary to the predictions of the model,

exploitative competition did not result in the exclusion of the inferior competitor

(the less vulnerable prey) at the lower productivity level.

The graphical analysis of my mathematical model predicted that the

productivity range within which both prey types were predicted to coexist was

verynarrow. One explanation for the lack of competitive exclusion at lower

productivity levels is that my estimates of model parameters were inaccurate and

that the lower productivity treatment actually fell within the coexistence range.

For example, the range of coexistence would be predicted to be broader and to

begin at a lower glucose concentration if the cost of reduced vulnerability is

actually lower than estimated (i.e., if the ratio \Ilnz \p is higher than estimated

and/or the ratio anK is lower than estimated). To determine if the range of

coexistence was indeed broader (as well as lower) than predicted, I repeated the

experiment using input concentrations of glucose that were slightly lower and

slightly higher than 0.1 pg per ml. Concentrations of 0.07, 0.08, 0.09, 0.11 and

0.12 pg per ml glucose were used. All populations persisted at all glucose input

treatments, with the exception of one replicate of the 0.09 pg per ml treatment.

Thus, it appears that the range of coexistence of the two prey types is lower and

broader than predicted theoretically.

Another explanation for the unexpectedly broad range of coexistence is

that growth of the prey on the chemostat wall may have prevented competitive



110

exclusion at lower productivity levels. Other researchers have observed that wall

growth can prevent competitive exclusion (Chao and Ramsdell 1985). I did not

observe growth on the chemostat walls in these experiments, but growth need

not be visible to have an effect. However, if wall growth was preventing

exclusion by exploitative competition at lower productivity levels, then

coexistence of the two prey types should be possible even when the predator is

absent. Yet, I observed competitive exclusion exactly as expected when the two

prey types were inoculated in chemostats in which T2 was absent (Figure 20).

Thus, coexistence of the two prey types does not occur in the case of pure

exploitative competition. Evidently, coexistence of the two prey types depends

on a combination of exploitative and apparent competition, even though it

remains unclear why coexistence occurs over a lower and broader range of

resource concentrations than predicted by the model.

Although exclusion due to exploitative competition did not occur at low

productivity in the presence of T2 (contrary to the predictions of the model), it

should be emphasized that the general trends in the data are consistent with the

model. In the long-term lower productivity treatments (those run for 200 hours;

6.9., Figure 15A) the less vulnerable prey persisted at a lower average population

density than the more vulnerable prey, while in the higher productivity treatment

the less vulnerable prey persisted at a higher average population density than the

more vulnerable prey (and eventually excluded them). In the short-tenn lower

productivity treatments (those run for 100 hours; 6.9., Figure 18) the ratio of less

vulnerable prey to more vulnerable prey declined over time, while in the higher

productivity treatment this ratio increased (until the more vulnerable prey was

excluded). Thus, the competitive relationship between the prey was reversed as

productivity was changed, in general agreement with the model.
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Figure 20. Dynamics of more vulnerable E. coli (squares)

and less vulnerable E. coli (triangles) in a chemostat

without predators. The population densities (viruses per

ml or bacteria per ml) have been log-transformed.
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It should be noted that starting population densities were not always

identical among replicates in this experiment. However, my mathematical model

does not predict any major effect of starting densities on population dynamics.

Numerical simulations of the model predict the exclusion of the less vulnerable E.

coli in the 0.1 pg per ml treatment and the exclusion of the more vulnerable E.

coli in the 0.5 pg per ml treatment, regardless of starting population densities.

None of my experiments showed any discernible effect of starting population

densities on subsequent dynamics.

The Evolutionary Ecology of Shared Predation

l was able to observe the evolutionary ecology of shared predation in my

experimental communities because invulnerable E. coli evolved in the highest

glucose treatment (e.g., Figure 15B). The invasion of the chemostats by these

invulnerable mutants had a profound effect on population dynamics, initially

halting the decline of the more vulnerable E. coli population. One likely

explanation for this result is that the invasion by the invulnerable mutants

depressed the equilibrium glucose concentration in the chemostats, and that this

decrease in equilibrium glucose concentration reversed the competitive

advantage between the more vulnerable E. coli and the less vulnerable E. coli.

This reversal would occur because at low glucose concentrations the more

vulnerable E. coli would have an advantage, since it is a superior competitor for

glucose. The reversal of the competitive advantage would halt the decline of the

more vulnerable E. coli population. This hypothesis could be tested in future

research by tracking the concentration of glucose in the chemostats.

It is interesting that the invasion had only a temporary effect on the

outcome of apparent competition in the majority of the replicate chemostats; once
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the invulnerable E. coli population reached its equilibrium density, the more

vulnerable E. coli resumed their population decline in three of the four replicates.

A likely explanation for this observation is that the initial invasion of the

chemostats by the invulnerable mutants resulted in an overshoot of the

invulnerable population’s equilibrium density and a severe (but temporary)

decrease in the glucose concentration in the chemostats. This severe decrease

could confer a transient advantage to the more vulnerable E. coli. However, as

the invulnerable population approached a stable equilibrium density the glucose

concentration in the chemostat would rise, restoring the competitive advantage of

the less vulnerable E. coli and resulting in the continued decline of the more

vulnerable E. coli. This hypothesis could be tested in future studies by tracking

the glucose concentrations in the chemostats during the invasion period.

The observation that the more vulnerable E. coli population resumed its

decline in only three of the four replicates suggests that there are significant

differences among the invulnerable mutants in the different chemostats.

Differences in the magnitude of the trade-off between invulnerability and

competitive ability for glucose could explain the results observed. The magnitude

of this trade-off would determine the equilibrium glucose concentration in the

chemostats and thus whether the less vulnerable or more vulnerable E. coli

would be competitively superior after the invulnerable mutants reached their

equilibrium. This idea could be tested in future experiments by measuring the

magnitude of this trade-off in mutants from the different replicates.

Implications for OtherAreas of Ecological Theory

My experiments also shed light on two contentious areas of ecological

theory: the relationship between productivity and species diversity, and the
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debate over prey-dependent versus ratio-dependent predator-prey models. The

nature of the relationship between productivity and species diversity has been

vigorously debated by ecologists (Abrams 1995, Rosenzweig 1995). In many

studies, species diversity has been obsenred to decline with increasing

productivity (see review in Goldberg and Miller 1990), at least within certain

productivity ranges. It is unclear what mechanisms may be responsible for this

decline. One explanation is that as productivity is increased apparent

competition becomes more important, resulting in the exclusion of more

vulnerable species and a decline in diversity (Leibold 1996). My experiments

have shown that this explanation is biologically plausible. Increasing productivity

resulted in a decline in diversity in my experimental system (from two prey types

to one prey type) through apparent competition.

My approach to modeling the interactions between a predator and two or

more prey that differ in their vulnerability is one of several different approaches

that have been described in the literature (see Chapter 3). For example, some

theorists have argued that shared predation by prey that differ in vulnerability can

be modeled using ratio-dependent functional responses (Arditi et al. 1991a,

Samelle 1994). Ratio-dependent models combine multiple prey populations with

different vulnerabilities into one population that is heterogeneous in vulnerability.

However, ratio-dependent models do not predict the exclusion of the more

vulnerable prey as productivity is increased, as I observed in this experiment and

as predicted by a model with a prey-dependent functional response. Thus, the

dynamics of community modules with simple food chains (Chapter 2), with

keystone predators (Chapter 3), and with apparent competition (this Chapter) are

all better predicted by more traditional prey-dependent models than by newer

ratio-dependent models.



CHAPTER 5

SUMMARY AND CONCLUSIONS

SUMMARY

I studied the effect of increased productivity on laboratory model

communities that differed in community structure. Three different model

communities were used. The first community I used was a simple food chain.

This community consisted of bacteriophage T4, a strain of E. coli vulnerable to

predation by bacteriophage T4, and the limiting nutrient glucose. The second

community I used was a food web with a keystone predator. This community

consisted of bacteriophage T4, a strain of E. coli vulnerable to predation by

bacteriophage T4, a strain of E. coli invulnerable to predation by bacteriophage

T4, and the limiting nutrient glucose. The third community I used was a food web

with a shared predator. This community consisted of bacteriophage T2, a strain

of E. coli highly vulnerable to predation by bacteriophage T2, a strain of E. coli

less vulnerable to predation by bacteriophage T2, and the limiting nutrient

glucose. All of these model communities were maintained in chemostats.

Productivity was manipulated in these model communities by altering the

concentration of glucose in the incoming media.

In the simple food chain, the bacteriophage population responded to

increased productivity with a large and highly significant increase in equilibrium

115
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density, while the E. coli population responded with a small but significant

increase in equilibrium density. Both populations had a significant decrease in

stability in response to increased productivity. Mutants of E. coli invulnerable to

bacteriophage were detected in both higher and lower productivity treatments.

These mutants appeared significantly sooner, and invaded at a faster rate, in the

higher productivity treatment than in the lower productivity treatment. The

bacteriophage population continued to oscillate in the higher productivity

treatment after the invasion by invulnerable E. coli mutants; however, the

bacteriophage population oscillated with a longer period and at a lower

equilibrium density following this invasion.

In the keystone predator food web, neither the bacteriophage nor the

vulnerable E. coli population changed in equilibrium density in response to

increased productivity. Only the invulnerable E. coli responded to increased

productivity with an increase in equilibrium density. However, both the

bacteriophage and the vulnerable E. coli populations decreased in stability in

response to increased productivity, although to a lesser degree than the

populations in the simple food chain. The invulnerable E. coli population

increased in stability in response to increased productivity. I did not observe

bacteriophage-invulnerable mutants of the vulnerable E. coli in any productivity

treatment, presumably because this niche was already filled.

In the shared predator food web, increased productivity resulted in the

exclusion of the more vulnerable E. coli due to apparent competition. Mutants of

E. coli invulnerable to bacteriophage were not detected in the lower productivity

treatments; however, they were detected in the higher glucose treatment.

Invasion of the higher glucose treatment by invulnerable mutants temporarily

halted the exclusion of the more vulnerable E. coli.



1 17

CONCLUSIONS

1. The response of microbial populations to changes in productivity can be

strongly influenced by community structure.

In my microbial model communities, community structure determined how

a given population responded to productivity (Figure 21). For example, E. coli

strain REL607 (the strain most vulnerable to phage predation) had strikingly

different responses to increased productivity when it was imbedded in a simple

food chain, a keystone predator web or a shared predator web. REL607

responded to increased productivity with an increase in equilibrium population

density when imbedded in a simple food chain, but no change whatsoever in

equilibrium population density when imbedded in a food web with a keystone

predator. Furthermore, when REL607 was imbedded in a shared predator web it

responded to increased productivity by being driven toward extinction by

apparent competition.

2. The response of microbial populations to changes in productivity is better

predicted by prey-dependent models than by ratio-dependent models.

In almost all regards, the prey-dependent mathematical models were

superior to the ratio-dependent mathematical models at predicting the responses

of my model communities to increased productivity. In a simple food chain, the

prey-dependent model successfully predicted the responses of all but one of the

population variables I measured (Table 1). The prey-dependent model even

predicted the response of the simple food chain to invasion by invulnerable E.

coli mutants (Table 2). The response of the keystone predator community to
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Community Structure

  
Predator (T): Persistence Persistence Persistence

(HI (0)

Prey (p1); Persistence Persistence Exclusion

(+) (0)

prey (p2): Persistence Persistence

(++>

Figure 21. Effect of community structure on the response of predator (T) and

prey (P1 and P2) populations to increased productivity. Key: H- = large increase

in equilibrium density, + = small increase in equilibrium density, 0 = no significant

change in equilibrium density, Persistence = persistence of population for

duration of experiment, Exclusion = competitive exclusion of population.
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increased productivity was accurately predicted by the prey-dependent model but

not the ratio-dependent model (Table 3). The prey-dependent model accurately

predicted the response of the shared predator community to a higher level of

productivity, although it did not predict the persistence properties of the

community at lower productivity (Table 4).

The degree to which the predictions of the prey-dependent mathematical

models fit the dynamics of my experimental communities was satisfying but also

somewhat surprising. There are a number of complexities in these experimental

systems that the prey-dependent models ignore, and that could have led to a

departure from the model predictions. These complexities include spatial

heterogeneity (Schrag and Mittler 1996), the possibility that population

parameters such as burst size and adsorption rate could vary with bacterial

growth rate (Hadas et al. 1997) and the potential for population parameters to

change over time due to evolution (Lenski 1988c). The prey-dependent models

did a reasonably good job of predicting the responses of my experimental

communities despite these complexities.

The ratio-dependent models did a particularly poor job of predicting the

response of population stability to increased productivity in my experimental

communities. Polis and Strong (1996) have suggested that the response of

population stability to increased productivity may decrease as community

complexity increases, although this idea has been challenged (Hairston and

Hairston 1997). If Polls and Strong are correct, then ratio-dependent models

might accurately predict the responses of populations in more complex

communities than those I constructed.
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3. Chemostat communities of E. coli and bacteriophage are excellent laboratory

model systems for studying community ecology.

Using chemostat communities of bacteria and phage, l was able to obtain

abundant and high-quality empirical data on population responses to increased

productivity. I was able to track populations for several hundred hours,

equivalent to some 100 generations under the maximum generation time that is

set by flow through the chemostat. Population oscillations were evident, and the

resolution of the time-series data was high enough that I was even able to detect

shifts in the period of oscillations following an invasion. Because of the short

generation time of my study organisms, l was also able to witness the evolution

of the interactions within my experimental communities and the effect increased

productivity had on evolutionary change. With this system I was able to increase

community complexity in a controlled manner, and measure the effect of added

complexity on the community’s response to increased productivity. This system

also allowed me to manipulate the key variable (productivity) while being

confident that all other extrinsic factors (temperature, etc.) remained unchanged.

Thus, chemostat communities of bacteria and phage are excellent

systems for doing rigorous, manipulative experiments in community ecology and

for testing community module theory. Community module theory now forms the

theoretical backbone of community ecology. Great strides in our theoretical

understanding of community ecology have been made through the careful and

detailed analysis of relatively simple community models. I believe that applying

this approach to experimental community ecology will prove equally fruitful.
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