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ABSTRACT

THE EVOLUTION OF PHENOTYPIC PLASTICITY IN A NATURAL

WILDFLOWER POPULATION

By

Brian Bruce Black

When the environment is heterogeneous, factors that influence whether genetic

specialization or phenotypically plastic generalists are favored include the patterns of

natural selection, the amount of genetic variation for trait plasticity, and the degree of

genetic interdependence between traits. In this study, I investigated the genetics and

fitness consequences ofresponses to variable light and litter environments in a population

of the winter annual wildflower Collinsia verna. Over two generations, I measured

natural light environments, and manipulated light and litter environments. I used

quantitative genetic breeding designs to investigate genetic and environmental effects on

traits within generations, and the effects ofmaternal environment and genotype on

offspring performance across generations.

Natural light environments were variable at a scale appropriate to favor plasticity,

but correlated across years in a way that might favor the evolution of plastic maternal

effects. There were maternal genotype-environment interactions for seed size and

dormancy. Maternal effects sometimes improved offspring performance, but also

appeared to constrain offspring performance when mothers were stressed.

There was additive genetic variation in some environments for

germination/dormancy, emergence date, flowering date, specific leaf area, mainstem
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length, mean seed mass, and reproductive investment; and strong evidence for genotype-

environment interactions (genetic variation for plasticity) for flowering date, specific leaf

area, mainstem length, and reproductive investment. There were no strong light

environment specialists among the genotypes sampled. However, significant maternal

effects on vegetative biomass, seed number, and seed mass without additive genetic

variation suggested that maternal genotypes may specialize for different reproductive

strategies.

The presence of leaf litter reversed the direction of direct linear selection on

emergence date and increased the size of direct linear selection on vegetative biomass.

Full sun reversed the direction of direct linear selection on specific leaf area, and

increased the size of direct linear selection on reproductive investment. These differences

in patterns of selection provide evidence that leaf litter and light are selective agents on

these traits.

Together, the parts of this study suggest that genetic variation for emergence date

and plastic maternal genetic effects on seed size and dormancy may be maintained by a

heterogeneous and unpredictable leaf litter environment. In contrast, the plasticity ofthe

light sensitive traits flowering date and specific leaf area may be at or near optimal levels.

Surprisingly, reproductive investment was both heritable and under strong directional

selection. Significant genotype-environment interactions appear to maintain genetic

variation in this trait.
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medium = 530, high = 536........................................... 57

Figure 8. Path diagrams for survival episode in Year 1. Double headed arrows represent

correlations among phenotypic traits. Single headed arrows represent

hypothesized causal links between traits and fitness. Path coefficients are

analogous to standardized linear selection gradients, and were calculated using

multiple linear regression on standardized traits. Logistic regression (Janzen and

Stern 1998) produced identical results. Dashed arrows represent negative

coefficients. The width of arrows is proportional to the magnitude of the

standardized path coefficient. U: unexplained variance. Significance values:

*P<0.05; **P<0.01; ***P<0.001; ****P<0.0001. ....................... 59

Figure 9. Paternal half-sib family reaction norms for Years 1 (50 sires and 3 light

treatments), and 2 (12 sires and 5 light treatments (3 manipulated and 2 natural)).

The significance values for all traits except germination and survival are based on

univariate mixed model REML analysis. Year 1 traits were analyzed with a

model that included sire, dam(sire), light, block, and all two way interactions,

except the dam-by-block interaction. The model for the second year omitted all

block terms. Germination and survival were analyzed by logistic analysis with a

simplified model including only sire, light, and their interaction. See text for

details. The bars on the right side of the figures represent one average standard

error for all sires in the most variable environment. No error bars are presented on

the vegetative biomass and seed number graphs because this data is plotted on a

logarithmic scale. The same symbol is used for the same sire throughout all

figures. The light level in the forest interior plots averaged 45% of full sun and on

the edge it averaged 70% of full sun................................... 92

Figure 10. Path models representing possible relationships between traits and fitness.

Straight lines with single headed arrows represent hypothesized causal

relationships, while curved lines with double headed arrows represent

correlations. (a) Multiple regression of all traits on fitness. This path diagram

represents the multivariate directional gradient analysis. (b) Path model 1 with

vegetative biomass and reproductive investment as intermediate traits, and three

multiplicative fitness components. (0) Path model 2 with only vegetative

biomass as an intermediate trait. Traits: emergence date (Edate); flowering date

(Fdate); specific leaf area (SLA); length of mainstem (Mainstem); reproductive

investment (RI); vegetative biomass (Mass); residual unexplained variation

(U) ............................................................ 128
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Figure 11. Means and standard errors ofphenotypic traits. Fixed effects ofthe eight

Figure

Figure

Figure

Figure

Figure

environments were analyzed in a single one-way MANOVA that included all

phenotypic traits and all fitness components (Figure 12) except survival as

dependent variables (GLM procedure, SAS 1989). All traits differ across

environments at P<0.0001. All pairwise means comparisons were made using the

tukey option ofthe means statement ofproc. GLM. Columns sharing a letter are

not significantly different from each other at P<0.05. .................... 132

12. Means and standard errors of fitness components. All pairwise means

comparisons were made as in Figure 11. Survival is not a continuous variable, so

it could not be analyzed this way. Environmental effects on survival were

analyzed separately using proportional hazards regression (Tables 8 and 9). . . 134

13. Survival episode standardized linear (B) and nonlinear (7) selection gradients

for emergence date. Because emergence date is the only measured trait that was

expressed during this episode, selection gradients and differentials were very

similar. Consequently, only the gradients are presented. Bars are 95% confidence

intervals based on 1000 bootstrap resampled data sets. P-value is the result of an

overall ANCOVA testing whether selection gradients differ across environments.

The Y-axis indicates the proportion by which relative fitness would change with a

change of one standard deviation in the trait. (a) Linear gradients. (b) Nonlinear

gradients........................................................ 140

14. Fecundity episode standardized linear selection differentials (S) and gradients

(B). Bars are 95% confidence intervals based on 1000 bootstrap resampled data

sets. P—values are the results ofANCOVAs testing wether differentials or

gradients differ across environments. The Y-axis indicates the proportion by

which relative fitness would increase with an increase of one standard deviation in

the trait. Note that the scale of the Y-axis differs between figures. (a) Emergence

date. (b) Flowering date. (c) Specific leaf area. ((1) Mainstem length. (e)

Vegetative biomass. (f) Reproductive investment ....................... 141

15. Fecundity episode standardized nonlinear selection differentials (C) and

gradients (7). See Figure 14 for details ............................... 145

16. Representative path diagram showing typical relationships among traits. This

diagram is for the natural forest interior plots. The size of the arrow indicates the

magnitude of the correlation or path coefficient. Solid lines are positive, dotted

lines are negative. "U" represents residual unexplained variance. All values are

from structural equation models based on the correlation matrices in Table 11.

For other environments see Tables 13 and 14........................... 155
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Chapter 1

INTRODUCTION: MICRO-EVOLUTIONARY CONSEQUENCES OF

ENVIRONMENTAL HETEROGENEITY

What are the micro-evolutionary consequences if environmental heterogeneity

results in patterns of natural selection that vary in space or time? This question has been

a recurring theme in evolutionary biology for at least 50 years, and continues to drive

much theoretical and empirical research in the field. By the 1950's, two basic hypotheses

were outlined. First, environmental heterogeneity may contribute to the maintenance of

genetic variation at multiple scales, including individual level heterozygosity, population

level allelic variation, local adaptation within and between populations, and population

differentiation (review in Roff 1997, Chapter 9). Second, it was suggested that

environmental heterogeneity could lead to the evolution ofplastic responses to the

environment that would allow individuals to maintain fitness homeostasis (review in Roff

1997, Chapter 6).

Theory deveIOped quickly in the first area, and supported the hypothesis that

environmental variation could maintain genetic variation at the individual, population,

and metapopulation scales (e.g. Levene 1953, Dempster 1955, Levins 1968, Gillespie

1974, Felsenstein 1976; reviews in Hedrick et a1. 1976, Hedrick 1986). In contrast, the

theoretical and empirical study of the evolution of phenotypic plasticity progressed

slowly until the 1980's (review in Schlichting and Pigliucci 1998). The concept of the

reaction norm quantifies plasticity by describing the relationship between phenotype and

environment. The idea was proposed by Woltereck in 1909 (discussed in Schlichting and
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Pigliucci 1998), and initially promoted by Schmalhausen (1949). Falconer (1952)

developed an alternative approach that viewed a trait expressed in two environments as

two genetically correlated traits. Lewontin (1957) argued that variable environments

should lead to generalist genotypes that can maintain homeostasis (meaning fitness)

across a range of environmental conditions. Lewontin's use of homeostasis is analogous

to the term generalist as it has most often been used in more recent discussions of

phenotypic plasticity. He argued that adaptive homeostasis implies only the relative

constancy of survival and reproduction in variable environments. He pointed out that it is

impossible to predict the relationship between homeostasis in this sense and the

variability or canalization ofphysiological and morphological characters. Variability

(plasticity) in some morphological and physiological characters can allow others to be

canalized. Bradshaw (1965) recognized that phenotypic plasticity is specific for

individual traits in relation to particular environmental factors, that the plasticity of a trait

is specific in pattern and direction, and that phenotypic plasticity is under genetic control.

MODELS: PLASTICITY EVOLUTION

A variety ofterms have been used in discussing phenotypic plasticity. Plasticity

has been associated with adaptability, ecological breadth, environmental stability,

canalization, homeostasis, environmental resistance, environmental tolerance,

environmental sensitivity, specialization, and generalization The terms generalist and

specialist are most common, and usually describe the relative ability to maintain fitness in

variable environments through coordinated, plastic responses in underlying traits. Most

often, generalists are considered to have adaptive plasticity in physiological and

morphological traits that allows them to tolerate unfavorable environments and to boost
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performance when conditions are favorable (e.g. de Jong 1990, van Tienderen 1991,

1997). Generalists have higher average fitness across environments, which is usually

manifest in less plastic reaction norms for fitness. Specialists on good environments lack

the underlying plasticity in physiological, morphological, and behavioral traits necessary

to maintain high relative fitness in variable environments. Consequently, they have more

plastic reaction norms for fitness. Specialists on stressful environments often lack the

ability to respond when resources are abundant, and so have low, flat reaction norms for

fitness. However, there are conflicting usages ofthe term generalist that can be quite

confusing. For example, a recent model by Scheiner (1998) distinguishes three possible

evolutionary outcomes in a spatially-structured environment: fixed environmental

specialist genotypes, adaptively plastic genotypes, or fixed generalist genotypes. Given

these continuing ambiguities, it is important in empirical studies to be explicit about

which traits are plastic, in response to which environmental factors with what fitness

consequences (Bradshaw 1965).

Types ofmodels

Models ofplasticity evolution have used four different approaches (optimality,

quantitative genetic, garnetic, and genetic algorithms) to address when adaptive plasticity

could evolve (reviews: Scheiner 1993, Roff 1997 Chapter 6, Schlichting and Pigliucci

1998). Models differ in their assumptions about the genetic basis of plasticity, the shape

of the reaction norm, and the nature of environmental variation. Although most

developmental, physiological, morphological, behavioral, and life history traits show

some degree ofplasticity, the underlying genetic basis of traits, and the genetic,

selectional, functional, and deveIOpmental constraints on the further evolution of those
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traits can differ. There is empirical evidence that plasticity can result from

environmentally dependent expression of alleles and/or the action of regulatory genes

(Schlichting and Pigliucci 1995, 1998). However, the relative importance of these two

genetic mechanisms is controversial (Via et a1. 1995, Roff 1997). It has been argued that

for many traits, control of plasticity by regulatory genes should have distinct advantages,

including stability of phenotypic expression, the ability to anticipate environmental

change by responding to cues, and the relaxation of constraints due to genetic correlations

(Schlichting and Pigliucci 1995, 1998). Regulatory control could result in nonlinear

reaction norms, a condition that cannot be accommodated by some models.

Optimality models generally do not consider the genetic basis ofplastic traits (e. g.

Stearns and Koella 1986, Houston and McNamara 1992, Moran 1992, Kawecki and

Stearns 1993, Berrigan and Koella 1994, McNamara and Houston 1996). These models

are most useful for predicting the fitness function for reaction norms as a compliment to

genetic models (Scheiner 1993). The strength of the genetic algorithm models is in their

ability to explicitly model the effects ofregulatory genes on plasticity evolution (Behera

1997, Behera and Nanjundiah 1997).

The garnetic models of de Jong (1988, 1989, 1990a) address how multiple plastic

traits interact. These models make no genetic assumptions, and address equilibrium

conditions rather than the dynamics ofplasticity evolution. De Jong's simplest models

examine two plastic traits each governed by a single locus with two alleles with

continuous environmental variation. They assume that plasticity is due to variation in the

effects of alleles across environments, and not regulatory genes. Each allelic combination

produces a different reaction norm. In the environment where reaction norms cross, there
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is no measurable additive genetic variation. The models show that the covariance of

traits within particular environments can be positive, zero, or negative. Consequently,

depending on the environment, qualitatively different conclusions about the evolutionary

independence of traits may be reached (Stearns et al. 1991).

There are two broad classes of quantitative genetic model, the character state

approach and the reaction norm approach. The character state approach (Falconer 1952,

Via and Lande 1985, 1987, van Tienderen 1991, 1997) treats reaction norm evolution as

the evolution of a set of correlated characters. The plasticity of a single trait is modeled

as if it were two separate traits, each expressed in a different environment. In character

state models, it is the correlation between character states that evolves. Character state

models assume discrete spatial variation. Consequently, reaction norms are constrained

to be linear between any two environments. Although the character state models do not

explicitly consider the underlying genetic basis of plasticity, Via (1993) argues that there

is no reason to assume plasticity is due to anything but environmentally sensitive

expression of alleles. She argues that this is a reasonable assumption because all

selection occurs within environments, and consequently, evolution is constrained to occur

only at those loci that control the expression of the trait in that environment. Selection

cannot act directly on the slope of the norm, or regulatory genes, if they exist. However,

this would not be true if individuals experience selection in more than one environment,

or ifthe genetically related progeny of an individual experience different environments

(Schlichting and Pigliucci 1995).

The alternative approach assumes that environmental variation is continuous and

defines the reaction norm as a trait that can evolve independent of the mean of the trait.
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The reaction norm is modeled as a function. When the norm evolves, the coefficients of

the function change. The simplest reaction norm models (e. g. de Jong 1990a) assume

that reaction norms are linear, and so are primarily interested in the evolution ofthe

slope. Others assume that reaction norms can take any shape (Gomulkiewicz and

Kirkpatrick 1992, Gavrilets and Scheiner 1993a, b). These models were designed to

explicitly allow for the possibility that the genetic basis ofplasticity is due to both

environmentally sensitive alleles at the loci that govern a trait, and independent

regulatory genes (Scheiner 1993). If plasticity is controlled by regulatory switches, then

nonlinear reaction norms are likely. There are many examples of threshold traits with

nonlinear norms (reviews in Schlichting and Pigliucci 1995, 1998). Gabriel and Lynch

(1987, 1992) and Gillespie and Turelli (1989) developed models that assume a Gausian

shape to the norm. This shape is appropriate when intermediate levels of an

environmental factor lead to maximum trait values. Gavrilets and Scheiner (1993a) and

de Jong (1995) have demonstrated that the character state approach is mathematically a

special case ofthe reaction norm approach. However, the two approaches may lead to

very different biological interpretations (reviewed in Via et a1. 1995)

Predictions

All models predict that plasticity is favored under many common conditions:

when spatial and temporal environmental variability is high and fine grained, when

differing habitats occur with equal frequency, when the strength of selection is equal in

all habitats, and/or when mating is common between individuals in different habitats. As

the spatial and temporal scale of environmental heterogeneity becomes coarser,

predictions about the evolution of plasticity change (reviewed in Scheiner 1993,
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Schlichting and Pigliucci 1995). Coarse grained Spatial variability is more likely to

select for specialists (van Tienderen 1991), but temporal variation at a scale longer than

the generation time of an organism can still select for plasticity (Lynch and Gabriel 1987,

Gabriel and Lynch 1992). Quantitative genetic models show how genetic correlations

between traits expressed in different environments affect reaction norm shape and

evolution (e.g. Via and Lande 1985, Gavrilets and Scheiner 1993a, b). The presence of

regulatory genes can both accelerate the rate of plasticity evolution, and increase the level

of adaptation achieved (Behera 1997, Behera and Nanjundiah 1997).

Via and Lande (1985, 1987) and van Tienderen (1991, 1997) have developed

models that predict that the dynamics ofplasticity evolution are quite different under hard

and sofi selection. Evolution toward a single plastic, generalist phenotype is more rapid

under soft selection. Soft selection may be both frequency and density dependent, but

density is not the most useful concept when assessing plant evolution in response to

variation in abiotic resources. Because density effects are mediated through resource

availability, they may not differ from variation in resource availability due to abiotic

causes. The key idea is that the fitness of a genotype is determined locally. Depending

on the spatial scale at which local fitness is determined, all genotypes may contribute

equally to the next generation. Under hard selection, the fitness of a genotype is

determined globally, and is independent of the demographic context. It is likely that soft

selection predominates in most natural plant populations (van Tienderen 1997,

Schlichting and Pigliucci 1998). Consequently, adaptive plasticity should be common.
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MODELS: PLASTICITY AND GENETIC VARIATION

The relationship between phenotypic plasticity and genetic variation in traits and

trait plasticity has caused much speculation in the plasticity literature (reviews in

Bradshaw 1965, Sultan 1987, Levin 1988). Sultan (1987) argues that one consequence of

plasticity is the reduction ofphenotypic selection and genotypic response. Ifplasticity

allows multiple genotypes to produce equally fit phenotypes in the same environment,

that is if reaction norms cross (converge) in the most common environments, then genetic

variation could persist. This genetic variation would be unmeasurable by quantitative

genetic methods in the (most common) environments where reaction norms cross, but

could be very important in changing environments. In contrast, some authors have seen

plasticity as an alternative to genetic polymorphism (local adaptation) as a strategy to

maintain fitness in heterogeneous environments (e.g. Jain 1979, review in Sultan, 1992).

A model by Whitlock (1996) suggests that the rate of evolution may be slowed in plastic

species with broad niche breadths, a result that supports this second view.

Costs and limits ofphenotypicplasticity

Recent attempts to model the effect ofphenotypic plasticity on the maintenance of

genetic variation have been inconclusive (review in Scheiner 1993). These models draw

links to earlier theory on the maintenance of genetic variation. Orzack (1985), de Jong

(1988) and Gavrilets and Scheiner (1993a) all found that genetic variation is maintained

only under very limited conditions. However, Gillespie and Turelli (1989), and

Zhivotovsky and Gavrilets (1992) developed quantitative genetic models based on a

different set of assumptions that predict the opposite.

The critical assumption that distinguishes these groups of models is whether an
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adaptively plastic generalist genotype can have higher fitness in particular environments

than specialists on those environments (Gillespie and Turelli 1989). Models that assume

this is possible necessarily assume that there are few limits to plasticity evolution.

Consequently, genetic variation is less likely to persist. However, if a "jack of all trades"

truly is a master ofnone, there must be fundamental constraints on plasticity evolution

(reviewed in Dewitt et al. 1998) such as strong genetic correlations across environments

(Via and Lande 1985), developmental limitations (van Tienderen 1990), or physiological

costs (van Tienderen 1991).

Ifplasticity is sufficiently costly, there should be detectable genotype-

environment interactions for fitness that can lead to the maintenance of genetic variation

(Bradshaw 1965, Sultan 1987, Gillespie and Turelli 1989, Mitchell-Olds 1992). Van

Tienderen (1991, 1997) showed that physiological costs of maintaining the capacity for

plastic responses could, in theory constrain plasticity evolution. Under soft selection,

costs did not affect evolution toward a single generalist genotype. However, under hard

selection costs can result in several adaptive peaks representing either specialists or

generalists. Although costs may be an important constraint on plasticity evolution,

several studies suggest they may be difficult to detect (van Tienderen 1997, DeWitt et al.

1998). At present, there is little empirical evidence of a cost ofplasticity in plants (Sultan

1992, DeWitt et al. 1998, but see Tucic et al. 1998, Callahan et al. 1999).

Predictable environmental variation

Some models have also focused on the importance ofpredictable variation in the

environment for plasticity evolution (e. g. Orzack 1985, Moran 1992, Gavrilets and

Scheiner 1993a, Sasaki and Ellner 1997, McNamara 1998, Scheiner 1998, de Jong 1999,
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Sasaki and de Jong 1999). All models agree that if environmental states are temporally

unpredictable, plastic responses are less likely to evolve, and genetic variation can be

maintained. Efforts to test the prediction that plasticity should be negatively correlated

with the predictability ofenvironmental variation have been inconclusive, largely due to

the lack of appropriate data (Gavrilets and Scheiner 1993a, Roff 1997).

The value ofmodels

All models have limitations. Except for the quantitative genetic model of

Gavrilets and Scheiner (1993b), all models assume stabilizing selection within

environments. Consequently, their relevance to the evolution of traits closely related to

fitness is uncertain because such traits are assumed to be under directional selection.

Gavrilets and Scheiner (1993b) show that under directional selection both the mean value

ofa trait across environments and the $10pe of the reaction norm can evolve. The genetic

basis ofplasticity in a trait is important when considering the validity of predictions. If

plasticity in a trait is primarily due to regulatory genes that function as switches in

difierent environments, then the relevance of quantitative genetic models is questionable

(but see Via 1993b).

As with all theory in population biology, the predictions of these models should

be considered qualitative, not quantitative (Levins 1968). The predictions ofmodels

based on a quantitative genetic approach in particular apply only to short term, local

projections (Pigliucci and Schlichting 1997). Consequently, long term plasticity

evolution is probably less constrained than quantitative genetic theory predicts. In

summary, models suggest that most traits should display adaptive plasticity unless this

plasticity entails significant costs or environmental variation is unpredictable. Genotype-

10
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environment interactions should be rare for traits that are highly plastic. Finally, the

presence of significant genotype-environment interactions implies strong cross-

environment genetic correlations and/or variable, unpredictable natural selection.

The real world is complex, with different abiotic and biotic environmental factors

varying at different spatial and temporal scales with differing degrees of predictability.

Because many combinations ofplasticity and canalization in underlying traits could

result in equally fit genotypes, there may be no simple relationship between fitness and

plasticity in a trait (Schlichting and Pigliucci, 1995). It is necessary to consider how

groups of traits are integrated to fit organisms to their enviromnents. Populations could

simultaneously maintain genetic variation in some traits and be adaptively plastic in

others. These diverse possibilities underscore the importance of empirical work

examining how traits and their plasticity interact to determine fitness in natural

populations.

EMPIRICAL STUDIES

Despite the recent profusion of theory addressing plasticity and reaction norm

evolution there is still little empirical work bearing directly on these questions (Roff

1997, Lynch and Walsh 1998). There is overwhelming evidence that plants alter their

phenotypes in response to the environment (reviews in Bradshaw 1965, Schlichting 1986,

Sultan 1987). However, we still lack studies of natural populations where the ecological

and evolutionary meaning ofphenotypic responses to the environment can best be

understood (Scheiner 1993, Schmitt 1995, Via et al. 1995). As mentioned above, there is

little evidence for a cost to plasticity, nor are there enough examples to assess the

relationship between plasticity and environmental predictability. There is limited support

11
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for the idea that genotype-environment interactions for fitness combined with spatial

variation in the environment can maintain genetic variation (e.g. Bell and Lechowicz

1991, review in Mitchell-Olds 1992). Most empirical studies of reaction norms have

been under controlled, laboratory conditions. For example, in a series of greenhouse

experiments, Sultan and Bazzaz (1993a,b,c) found that diverse patterns ofphysiological

and morphological plasticity to light, water, and nutrients can produce convergent

reaction norms for reproductive performance. Whether fitness differences would emerge

under field conditions, and whether these patterns reflect different, adaptive responses

and/or tradeoffs in plasticity evolution is unknown.

The best empirical evidence for the potential for plasticity to evolve comes from

the applied breeding literature. In a review of the evidence Jinks and Pooni (1988)

concluded: "Genetic variation for environmental sensitivity is as ubiquitous as that for

mean performance and is at least in part independent of it. As we learn more about the

genetic variation for environmental sensitivity and its specificity in respect ofcharacter

and environmental variable, it becomes clear that it is possible to select a pattern of

response to environmental variation to meet almost any requirements."

Contemporary quantitative genetic theory describes the process ofmultivariate

evolution in natural populations using the simple equation A2 = GB (e.g. Lande and

Arnold 1983). This equation shows that the predicted evolutionary response across one

generation in a vector of trait means (Az), depends on the additive genetic covariance

matrix (G), and the vector of selection gradients (B). The analytical techniques

developed with this theory have been very useful for empirical studies addressing

12
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questions of selection and genetic variation in natural populations. One result of these

studies has been the repeated demonstration that patterns of phenotypic selection are

variable (e.g. Kalisz 1986, Stewart and Schoen 1987, Kelly 1992, Stratton 1992,

Bennington and McGraw 1995). Further, a small but growing number of field studies

have shown that G (genetic variances and covariances) can change with the environment

(Shaw et a1. 1995, Bennington and McGraw 1996, Wulff 1998). Estimates ofboth

selection and genetic parameters across different environments in the field are rare.

Consequently, our understanding of the relationships between heterogeneous

environments, variable selection, genetic variation and phenotypic plasticity remains

largely speculative.

THE EVOLUTION OF PHENOTYPIC PLASTICITY IN A NATURAL

POPULATION

Two factors that can be expected to function as strong selective agents on plants

are light and leaf litter. Light is a primary plant resource, and has been shown to greatly

affect female fitness in many plant populations (reviews in Goldberg 1990, Sultan and

Bazzaz 1993a). Light availability for understory plants in forests can be highly variable

in time and space (Chapter 2), but in very predictable spatial patterns, and diurnal and

seasonal cycles. Thus it is likely that this variation in light availability should favor

plastic traits that would allow plants to tolerate low light levels and convert high light

availability into increased fitness.

Leaf litter also can affect plant fitness, particularly through reductions in the

establishment and survival of seedlings (e.g. Goldberg and Werner 1983, Bergelson 1990,

Carson and Peterson 1990, Foster and Gross 1997). In other cases, leaf litter may
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facilitate seedling establishment through the amelioration of abiotic stresses (e. g.

desiccation, Fowler 1986, Willrns et al. 1986, Harnrick and Lee 1987). Irnportantly, the

incidence, quantity, and persistence of leaf litter at particular locations in forests are

unpredictable (Frankland et al. 1963, Sydes and Grime 1981, Facelli and Carson 1991,

Molofsky and Augspurger 1992).

In this study I have examined the effects of manipulations to the light and leaf

litter environments within a natural population of the winter annual wildflower Collinsia

verna. I have followed naturally occurring plants and plants ofknown genetic

relationship through two years in the field. This approach has allowed me to investigate

several aspects ofphenotypic plasticity. Below, I describe the questions addressed in

each part ofthe study.

Environmental heterogeneity

The scale, pattern, and predictability of environmental variability within a

population can all effect the evolution of plastic responses. To address these questions

about variation in light environments, I measured the spatial variability and temporal

correlation across years of light environments within the population. These results are

presented in Chapter 2.

Maternal effects in heterogeneous environments

If natural environments are variable, but maternal and offspring environments are

correlated, natural selection should favor the evolution of plastic maternal effects on seed

traits. The phenotype of seeds should be appropriate for the germination environment

they will experience. In Chapter 2, I investigate the effects of maternal genotype,

maternal environment, and offspring environment on several measures ofperformance. I

14
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address two questions: Are maternal effects genetically variable, and does their

expression change with parent and/or offspring environment? Do traits under maternal

influence contribute to offspring survival and fecundity, and do these effects depend on

the offspring environment?

Quantifiing genetic and environmental effects on phenotypes

The environmental sensitivity of traits, genetic variation in the expression of

traits, and genotype-environment interactions can all influence plasticity evolution. In

Chapter 3, I present the results of two independent genetic studies designed to quantify

the genetic basis of light responsive traits. Half-sib breeding designs were completed in

each oftwo years. The resulting seeds were planted in three manipulated and two natural

light environments in the field. I present reaction norms, narrow sense heritabilities, and

cross-environment additive genetic correlations for nine traits: emergence date, winter

size, flowering date, specific leaf area, mainstem length, vegetative biomass, mean seed

mass, reproductive investment, and seed number.

Quantifiringphenotypic selection

To favor the evolution ofplastic responses, environmental heterogeneity must

result in variation in the pattern of natural selection. To examine the potential for

environment-dependant selection in this population, I manipulated light and leaf litter

creating eight different environments. Plants growing in these environments were

followed throughout their lives. In Chapter 4, I report the resulting patterns of natural

selection on six traits: emergence date, flowering date, specific leaf area, mainstem

length, vegetative biomass, and reproductive investment. I explore whether the

magnitude or direction of natural selection changes across environments, and investigate

15
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whether light or leaf litter can be characterized as causes of natural selection.

Together, these chapters attempt to address simultaneously the possible

relationships between patterns of environmental variation, patterns of variation in

phenotypic selection, and patterns of genetic variation and phenotypic plasticity within a

natural plant population. In Chapter 5, I summarize the results, describe ongoing work,

and suggest questions for future investigation.
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Chapter 2

PLASTIC MATERNAL EFFECTS: GENETIC VARIATION AND FITNESS

CONSEQUENCES IN A NATURAL PLANT POPULATION

INTRODUCTION

Parents generally affect the fitness of their offspring in ways beyond the direct

transmission of genes. Evolutionary ecologists have become increasingly interested in

understanding how these parental effects evolve (e. g. Rossiter 1996, Lynch and Walsh

1998, Mousseau and Fox 1998a, b, Wolf et a1. 1998). In seed plants parental effects are

primarily mediated through three avenues: (1) maternal control of seed provisioning with

resources essential for early seedling growth and establishment; (2) maternal control of

the thickness and permeability of the seed coat that affects dormancy and timing of

germination; (3) maternal traits affecting seed dispersal and the subsequent seed

germination environment like fleshy fruits, explosive capsules, barbed or winged seed

coats, or other dispersal structures directly attached to seeds or fruits (Schaal 1984, Roach

and Wulfl‘ 1987, Lacey 1991, Schmitt 1995, Wulff 1995, Lacey et al.1997).

Maternal genetic and environmental effects

Maternal environmental effects on seed dormancy and size are well known

(reviews in Roach and Wulff 1987, Platenkamp and Shaw 1993). Seed dormancy may be

critically important in buffering populations fi'om extinction when the quality ofthe

environment is temporally variable and reproductive success is unpredictable (Brown and

Venable 1986, Kalisz and McPeek 1992, 1993, Evans and Cabin 1995). Seed size

influences seed dispersal, and seedling size, growth, and competitive ability (e.g. Stanton
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1984, Stratton 1989, Gross and Smith 1991; see also reviews in Haig and Westoby 1988,

Schmitt 1995, Sultan 1996).

When the offspring environment is variable, Optimal allocation of dormant seeds

to the soil seed bank depends on the quality of the germination environment (Brown and

Venable 1986). In empirical studies, the rate of seed dormancy varies with

enviromnental quality across populations (reviewed in Philippi 1993, Evans and Cabin

1995). Dormant seeds are most valuable if pre-reproductive survival varies over time.

Moreover, the importance of seed size in determining seedling success can depend on the

offspring environment (Stratton 1989, reviewed in Haig and Westoby 1988). Under these

circumstances, maternal fitness can depend on timing of offspring germination, offspring

number, and offspring size; and maternal fitness and the fitness of individual offspring

usually conflict (McGinley et al. 1987). Greater seed mass may always benefit individual

offspring, but maternal fitness may be maximized by making more, smaller seeds in some

environments, and fewer, larger seeds in other environments. Consequently, the optimal

allocation of limited maternal resources to dormant seeds, to a few large seeds, or to

many small seeds can all depend on the predictability of the offspring environment and

. how conflicts of interest are resolved (reviews in Shaanker et al. 1988, Haig and Westoby

1988, Forbes 1991).

Although both maternal genotype and maternal environment can contribute to

offspring phenotype, most past studies ofmaternal effects in plants were not designed to

distinguish genetic from environmental effects (Lacey 1991). Recently, several

researchers have completed studies documenting the genetic basis of maternal effects in

plants (Biere 1991a, Platenkamp and Shaw 1993, Shaw et al. 1995, Helenurm and Schaal
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1996, Byers et al. 1997, Husband and Gurney 1998, Thiede 1998). Because maternal

effects on progeny traits can change with the environment, they can be viewed as plastic

(Lacey 1991, Schmitt et al. 1992, Platenkamp and Shaw 1993, Carriere 1994, Schmitt

1995, Sultan 1996). Major goals for current research are distinguishing the relative

magnitudes of maternal genetic and environmental effects in natural populations, and

understanding how maternal genotype and maternal environment interact in their effects

on offspring fitness. Significant genotype-environment interactions indicate genetic

variation for phenotypic plasticity (or reaction norms), and the potential for reaction norm

evolution (Schlichting 1986, Sultan 1987). However, genotype-environment interactions

for fitness components may also indicate the presence of locally adapted specialist

genotypes. Heterogeneous selection is the most common explanation for how such

genetic diversity in natural populations is maintained (e.g. Mitchell-Olds 1992), but this

idea remains relatively untested (Stratton and Bennington 1998). A few studies have now

documented genotype-environment interactions for maternal effects (reviewed in

Donohue and Schmitt 1998).

Plastic responses to light

An appropriate pattern and scale of environmental heterogeneity is a necessary

condition for plasticity evolution (Bell and Lechowicz 1991, van Tienderen 1991,

Pigliucci 1996). Light is a primary plant resource, and is a strong selective agent in plant

populations (Goldberg 1990, Sultan and Bazzaz 1993). Because light is critical for

seedling establishment and light availability is variable, selection should favor plastic

traits that enhance seedling survival and growth in diverse light environments (i.e.

tolerance of low light levels and conversion of high light availability into increased
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fitness). In high light environments, seed size may not affect offspring establishment,

and increased dormancy or dispersal could decrease offspring fitness by placing offspring

in a less favorable environment. However, in low light environments larger seeds may

improve offspring establishment, and increased dormancy or dispersal may facilitate

movement of offspring to more favorable environments and improve offspring fitness. If

light availability within a p0pulation varies due to topography or other vegetation, but

maternal and offspring environments are correlated, natural selection should favor the

evolution of a reaction norm ofmaternal effects on seed and offspring traits such that

offspring are prepared appropriately for the expected environment and maternal fitness is

maximized (Schmitt 1995).

Three recent studies have investigated maternal effects on seed and offspring

characters in response to variable light environments (Schmitt et al. 1992, Wulff et al.

1994, Sultan 1996). The evidence suggests that plastic responses to light are ubiquitous,

but we have little evidence that they are adaptive (but see Schmitt et a1. 1995, Dudley and

Schmitt 1996). To further our understanding of the interactive effects ofmaternal

genotype and maternal environment on offspring fitness, we must manipulate appropriate

environmental factors under natural field conditions, characterize the genetic basis of

plastic responses, and measure offspring fitness (Schmitt 1995, Sultan 1995).

In this study, I manipulated light environments across two generations within a

natural population ofthe winter annual wildflower Collinsia verna. Using a quantitative

genetic breeding design, I investigated the effects of maternal light environment, maternal

genotype, and offspring light environment on offspring performance. I measured natural

light in the population across two years to learn if light availability was similar across
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years at particular locations (<1 m scale), but varied between different locations (20 m

scale). Finally, to determine the consequences of plastic maternal effects, I examined the

relationship between maternally influenced traits and offspring fitness in each light

environment. I address the following specific questions: Does light availability vary in

a way that favors plastic maternal effects? Are maternal effects genetically variable, and

does their expression change with parent and/or offspring environment? Do traits under

maternal influence contribute to offspring survival and fecundity, and do these effects

depend on the offspring environment?

METHODS

Study system

Collinsia verna is a winter annual wildflower found in moist woods in eastern

North America. The study population occurs along the south facing edge of a woodlot

next to an agricultural field in Kalamazoo County, Southwest Michigan. In each of the

last ten years this population has included more than one million reproductive individuals

in an area of about one hectare. Fall seed germination is cued by diurnal temperature

fluctuations (Baskin and Baskin 1983). Seedlings emerge between September and

December, and overwinter with up to one pair of true leaves. Seed and seedling traits of

Collinsia verna contribute significantly to establishment, overwinter survival, and

fecundity (Kalisz 1989, Thiede 1996). The predominantly out-crossing plants flower

from late April to mid May. If pollinated, each flower produces a fruit with up to four

seeds. Seeds are passively dispersed in early June and remain dormant until fall.

Fecundity in the field is variable depending on the micro-environment, ranging from 5-50

seeds. Seeds Can remain dormant in the soil for at least three years (Kalisz 1991).
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Mortality in the seed bank is variable but low compared to the pre-reproductive mortality

ofplants. The soil seed bank can be demographically important for this species, and can

buffer populations against extinction (Kalisz and McPeek 1992, 1993, Kalisz et al.1997).

Experimental design

Light treatments-Light levels vary from 25% to 75% of full sun over the one

hectare area of the p0pulation (Results). To manipulate light levels, I cleared all woody

vegetation from a 15 X 20 m area along the southern edge of the population (Figure 1).

Fifteen 1 X 1.2 m plots in a 5 X 3 grid with 1 m spacing between plots were established

(5 blocks of 3 plots). Because different parts of this area were illuminated as the sun

tracked daily from east to west, blocks were oriented perpendicular to the edge of the

woodlot. Three light treatments were imposed to bracket the range of natural light

variation: 100% (high), 40% (medium), and 10% (low). I assigned light treatments

randomly in each block. Light was reduced by placing a wood lattice over the plots that

allowed partial light to reach the plants throughout the day (3.5 cm wood slats in a 15 cm

(medium) or 7 cm (low) grid). This created a more natural reduction in light levels by

retaining sunflecks that can be very important to the total energy balance ofplants

(Endler 1993). I removed leaf litter from the experimental plots weekly.

Breeding design-To examine the effects ofboth maternal and offspring light

environments on offspring traits, I planted the children and grandchildren of a nested

paternal half-sib breeding design in these treatments (Figure 2). In April of 1995 I

collected 204 plants fi'om the study population prior to flowering to serve as the first

generation. One individual was collected every 5 m along seven 150 m transects spaced

5 m apart. These transects spanned the range of natural variation in light in the
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Figure 1. Map of 15 experimental plots with randomly assigned light treatments. The

experimental area was placed south of the original fence-row in an area cleared of all

woody vegetation.  -
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Figure 2. Experimental design: Crossing and planting plan as described in text.
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population. In the greenhouse 50 of these field collected plants were randomly

designated as sires and each crossed to three randomly chosen dams in a standard nested

design (two sires with small dams were each crossed to one additional darn). Flowers of

dams were emasculated in the bud stage to prevent selfing. In July 1995 I weighed the

resulting seeds and planted them in 2 cm uniquely numbered plastic straws containing

moist soil fi'om the study site. In early August, I transferred the straws containing the

seeds to the field. Three seeds fi'om each firll-sib family were randomly planted into an 8

X 8 cm grid in each treatment (152 full-sib families X 3 seeds/family X 3 treatments X 5

blocks = 6840 seeds planted). This density is approximately one third ofthe average in

the population at harvest (unpublished data). The entire study area was established

within the natural Collinsia population, so that the planted seeds grew in a matrix of

naturally occurring plants (Figure 1). The experimental area was enclosed with 1.2 m

high 5 X 5 cm welded wire fencing.

Mothers (year 1, I995-96)-Plants emerging fiom the straws in the field treatments

are the mothers in this study (Figure 2, generation 2). I conducted censuses for

emergence and survival weekly from September through December. In December, the

numbers of cotyledons and true leaves were counted, and the diameters of the largest

cotyledon and leafwere measured to the nearest 0.4 mm. Winter size was calculated as

cotyledon area + leaf area. In mid-April a census for survival to flowering was done.

Plants in all treatments were naturally (open) pollinated. Plants were harvested before

seed dispersal in June of 1996 and scored for number of seeds and total seed mass. 1 call

these traits (emergence date, winter size, seed number, and mean seed mass) individual

traits to differentiate them from the maternal traits described below.
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Offspring (year 2, 1996-97)-Seeds collected from the field grown, open pollinated

mothers are the offspring in this study (Figure 2, generation 3). Seed production by

mothers was quite variable, but I used equal numbers of seeds from medium and high

light mothers in the subsequent planting (1325 each). Due to high mortality and low

fecundity, only 58 seeds were available from low light mothers. To increase the sample

size for the low light maternal environment, I included in the offspring generation an

additional 737 seeds produced by naturally emerging plants in the low light plots. All

seeds were randomly planted back into the 15 experimental plots (230 seeds X 5 blocks X

3 treatments = 3450) with the constraints that the grandchildren of generation 1 sires were

distributed equally in each treatment and block, and one third of the seeds from each

generation 2 mother were planted in each of the three environments. Because most ofthe

795 offspring from the low light maternal environment were ofunknown relationship, I

excluded these plants from the genetic analyses described below. Separate environmental

effects analyses include all three maternal light environments. Planting techniques were

as described above. I transferred the numbered straws containing the seeds to the field on

September 24, 1996. To increase survival in the low light treatments, I raised light levels

in this treatment from 10% to 18% of full sun. Census, harvest, and scoring techniques

were the same as in year 1. This species has a well-documented seed bank (Kalisz 1991).

Consequently, seeds that did not germinate were considered dormant.

Maternal effects-To address whether mothers alter the phenotype of their

offspring in response to the current environment in a way that increases maternal fitness,

I scored several measures of maternal performance. Two are traditional measures: the

number and size (mean mass) of the seeds produced by each mother. 1 measured four
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additional traits to quantify maternal performance in terms of offspring traits in each light

environment: (1) proportion of offspring germinating; (2) proportion ofoffspring

surviving (both based on number of seeds per mother per light treatment); (3) mean

number of seeds produced by surviving offspring; (4) mean mass of seeds produced by

offspring. I calculated these later four traits for each light environment by averaging the

trait values ofeach mother's offspring. Because these averages grouped offspring from

the same treatment across all 5 blocks, I could not include block in the subsequent

analyses. In separate analyses, block effects were small and mostly insignificant

(analyses not shown). This approach makes the tests for maternal effects more

conservative. Together, I refer to these six traits as maternal traits to differentiate them

fi'om the traits of individual offspring. Finally, I calculated a cumulative measure of

maternal fitness in each light environment as the product ofmean number of seeds

produced by offspring and proportion surviving divided by proportion germinating. This

calculation estimates the mean number of grandseeds per offspring once all offspring

germinate. It assumes that all dormant seeds germinate, and that their survival and

fecundity would be the same as in the year of this study. Because it does not discount the

value of a dormant seed, it is likely an overestimation of cumulative maternal fitness.

Light measurements- I measured photosynthetically active radiation (PAR) to

address three questions: Did the light manipulations effectively bracket the natural

variation in the light environment? Are parent and offspring light environments

correlated? Is light availability spatially variable? All light data were collected using a

Decagon AccuPAR light ceptometer (Decagon Devices, Inc. Pullman, WA). The

ceptometer has 20 quantum sensors arrayed along a l m wand. I measured light in the
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experimental plots weekly at solar noon throughout both years. Each reading consisted of

10 samples taken while moving the wand horizontally across the plot 10 cm above the

vegetation surface. Consequently, a reading was the average of at least 200 single point

samples (20 sensors X 10 samples). Three readings were taken on each plot at each

sampling time.

To determine if light levels were correlated across generations, I measured light

levels in the population in fifteen permanent I m2 plots at uniform intervals along three

10 m east-west transects spaced 20 m apart across a light gradient from the southern edge

to the forest interior. I made these measurements at solar noon weekly for one month

after leaf fall and in May of each year. Light levels for these fall and spring

measurements were expressed as percent of full sun. Because ambient light levels differ

between spring and fall, I calculated separate spring and fall across year correlations.

To assess spatial variation in light, I made measurements 30 times in the spring of

1997 at 50 points spaced on a 20 X 20 m grid throughout the full spatial extent of the

population. I took a reading from a single light sensor at the end of the wand every hour

between 1000 and 1500 on five days between May 7 and 24, 1997 prior to canopy leaf

out. Each reading was expressed as percent of full sun at each sample interval. I

calculated a light score for each point taking the mean of these 30 relative light level

values. I plotted the scores for each ofthe 50 points in a frequency graph.

Data analysis

Environmental eflects and genotype-environment interactions-All traits were

independently analyzed using the MIXED procedure of SAS (SAS 1992, 1997). Proc.

MIXED performs mixed model analysis of variance using a restricted maximum
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likelihood (REML) algorithm to directly compute variance components for random

effects. Maximum likelihood methods are generally superior for analysis of unbalanced

data (Shaw 1987, Searle et al. 1992, Littell et al. 1996). Fixed effects were tested by

computing a Type In F statistic. Denominator degrees of fieedom for these fixed effects

tests were estimated using the Satterthwaite approximation option (Littell et al. 1996).

The significance of variance components for random effects were assessed using one-

sided likelihood ratio tests (Littell et al. 1996).

Fixed effects of maternal environment, offspring environment, and their

interaction were examined first with the complete data set (including the offspring of

naturally emerging mothers from the low light environment). Genetic and environmental

effects and their interactions were then analyzed with a mixed, split plot model including

only mothers of known relationship from the medium and high light environments. The

model for each trait included block (except traits averaged across blocks), maternal

environment, sire, darn nested in sire, offspring environment, and their interactions. Sire

and dam were split plot factors, while light treatments were whole plot factors. Blocks

were Heated as fixed because they captured an east-west gradient of diurnal morning to

afternoon shading. Environmental effects, and their interaction were also treated as fixed,

while sire, darn nested in sire, and their interactions with fixed effects were treated as

random. Sire and dam effects both reflect genetic differences among mothers. The full

analysis included all main effects and two-way interactions except no dam interactions

could be examined for the four maternal traits due to sample size limitations. Highly

insignificant three-way and higher interactions with block were omitted from the final

model for seed number and mean seed mass of the mothers.
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These analyses assume that genotypes within plots are independent, which is

reasonable because the plantings were relatively low density and nearest neighbors were

always naturally occurring plants. Light treatment effects may be due to light or variation

in the temperature or moisture environment caused by light. They may also be due to

competitive interactions with other plants when light levels affected the size and density

ofcompetitors. These factors all naturally covary with light.

The germination and survival traits were trimodal and could not be transformed to

normality. The offspring ofmore than one third of the mothers had either complete or no

germination or survival, while the remaining families were normally distributed. These

distributions were a consequence of several mothers with only a few offspring planted in

each environment. Two approaches were used to examine the consequences ofthis

departure from normality. First, by using data from only the largest families, normality

assumptions could be met. Second, a balanced subset ofthe data was analyzed using

categorical modeling (SAS CATMOD procedure, SAS 1989). To achieve the necessary

. sample sizes for categorical modeling, a reduced model with only sire and environment

main effects and their interaction was necessary. Both approaches yielded results nearly

identical to the proc. MIXED analysis of the full data set with similar models, so only the

proc. MIXED results are presented. Seed number (mothers) and mean offspring seed

number were log transformed to achieve normality.

When the full mixed model analysis indicated that the effect of offspring

environment or the expression of genetic variation depended on the maternal environment

(as indicated by significant interaction terms), analyses within maternal environments

were done. The approach used for these analyses was as described above, with a model
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that included only offspring environment, sire, and darn nested in sire.

Reaction norm figures were constructed for each trait with significant sire or dam

effects by plotting family means against environment. Genotypic differences in slope in

these reaction norm plots indicate genotype-environment interactions. Statistical and

graphical approaches to detecting genotype-environment interactions are complimentary

and equally important because the power of statistical methods to detect genotype-

environment interaction can be limited (Lewontin 1974, Via and Lande 1985, Wahlsten

1990).

Fitness consequences ofmaternal eflects-The analyses described above revealed

effects ofmaternal genotype and enviromnent on seed mass (see Results). This suggests

that maternal effects on offspring fitness may be mediated through seed size. To

understand the relationships between seed mass and other traits, phenotypic correlations

(Pearson) ofmean seed mass with the other five matemal traits were calculated for each

environment, and correlations ofmean seed mass with individual traits (emergence date,

winter size, mean seed mass, and seed number) were calculated for each environment for

both years.

I used multivariate episodic selection analysis (Arnold and Wade 1984) to assess

the fitness consequences of seed mass and phenotypically correlated traits under maternal

influence. Two episodes of selection, survival to flowering and fecundity were analyzed

independently for each light environment in both the mother and the offspring

generations. The estimates of selection resulting from these analyses address whether a

character has fitness consequences in that episode independent of selection in other

episodes (Koenig et al. 1991). Traits analyzed in the survival episode were mean seed
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mass, emergence date, and winter size. The traits analyzed in the fecundity episode

included mean seed mass, emergence date, winter size, and several phenological and

morphological traits of adult plants. Due to snow cover, winter size data was not

collected for the offspring generation (Year 2, 1996-97).

Multivariate linear selection gradients ([3,) were calculated as the partial regression

coefficients of a trait on relative fitness. Linear selection gradients measure the direct

selection on each trait independent of all other traits in the analysis. Relative fitness was

calculated by dividing each absolute fitness measure (zero or one for the survival episode,

total seeds for the fecundity episode) by the mean for that environment. All phenotypic

traits were standardized within environments to a mean of zero and variance of one, and

transformed as needed before analysis to improve normality.

While the calculation of regression coefficients on a categorical measure of fitness

like survival provides an unbiased estimate of the selection parameter, parametric

significance tests are not valid (Mitchell-Olds and Shaw 1987). Significance tests of all

selection parameters were performed by bootstrap resampling methods (Dixon 1993).

The data set from each environment and year was resampled 1000 times using a SAS

macro (SAS 1990). The number of observations in each resampled data set was equal to

the number of observations in the original data set. Confidence intervals (95%) for all

selection parameters were calculated from the bootstrapped estimates of each parameter

by the shift-distribution method (Noreen 1989).

Path analysis was used to examine an a-priori model describing hypothesized

relationships between seed mass, emergence date, winter size, and survival. Because

winter size was not measured in the second year, only the data for the first year (1995-96)
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were used in this analysis.

RESULTS

Light

The light treatments effectively bracketed the average light level over a wide area

within the forest over the entire growing season (Figure 3), and natural light levels in 1

m2 plots were highly correlated across years (Figure 4a). At a 20 m scale, light levels in

the natural population were variable, ranging from 25% to 75% of full sun (Figure 4b).

The distribution was not normal, with 78% of the sites falling in the lower half ofthe

distribution. Both the mean and median were about 40% of full sun.

Genetic and environmental effects on the 6 maternal traits

These results draw on three separate analyses, the genotype-environment

interaction analysis of the genetic data set (medium and high light mothers, Figure 5,

Table 1), within-environment genetic analyses ofpr0portion germinating and offspring

mean seed mass (Table 2), and the environmental effects analysis of the full data set

(mothers from all treatments, Figure 6)

Seed number (mothers)-Seed number increased significantly with light (Figure

5a), and was typical of natural plants growing in the plots. There was a marginally

insignificant maternal family effect on seed number (P=0.07) suggesting that maternal

genotype or environment could potentially contribute to offspring fitness. Reaction

norms show that some families differed both in number of seeds and in plasticity.

Mean seed mass (mothers)-The environment in which seeds were produced

effected seed mass (Figure 5b). Seed mass was greater in medium light than either low or

high light maternal environments, and was most variable among individuals in low light.
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Figure 4. Temporal stability and spatial variability of light environments. (a) Between

year correlations in light levels for 15 plots spaced uniformly across a light gradient from

forest to edge. (b) Variation in light availability at 50 grid points covering the spatial

extent of the population.

43



 

(a) Across Year Correlation of Light Environments

 

   

    

 

   
 

  

 

0.9 4

0.8 -

{C

°.‘

8 0.7 -

2.‘

RT

:a 0.6 -

Q)

>-'

g 0.5 -

E

“5 0.4 —
t:

.2

1:

8.0.3 —

8

g I Fall Cl Spring

$2 0.2 ‘

rf311:0‘96 P<0.0001

0.1 -

rspring=0.85 P<0.0001

0 I I I I I I I I I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Mean proportion of full sun, Year 1 (1995-96)

20 _

(b) Variation in Light Levels in the Natural Population

15 r:

10-3
U .

5 T

0 .3

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75

Mean proportion of full sun, May 1997

Figure 4.



Figure 5. Reaction norms for traits affected by maternal genotype and/or environment.

Norms are for either paternal or maternal families depending on which effects were

significant in the mixed model analysis. (a) Mean number of seeds produced by

mothers, by paternal family, June 1996. (b) Mean mass of seeds produced by mothers,

by maternal family, June 1996. (c) Proportion of offspring germinating, by paternal

family, Fall 1996. Note that the x-axis is the maternal environment, not the germination

environment, and that there were too few seeds produced in the low maternal light

environment for them to be included in this analysis. ((1) Proportion of offspring

surviving to flowering, by paternal family, Spring 1997. Statistics based on genetic and

environmental effects mixed model REML analysis. When a variance component was

estimated as zero, no P value is reported. Many families did not survive in low light,

only those families with data for at least two environments are shown. The number of

families varies: (a)-50 families, (b)-58 families, (c) and (d)-20 families.
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Table 2. Within-environment mixed model REML analysis for matemal traits with

significant interactions in the firll analyses presented in Figure 5c (germination) and Table

1 (seed mass).

  

 

 

 

 

Maternal Light Fixed Effect or F-Value or Variance

Environment (N) Source Of Variance Component Est. (Std. Error) P

i at'

Medium (551) Offspring Environment F2,473 = 0.07 0.9305

Sire 0 ---.....

Dam(Sire) 0.0074 (0.0062) 0.1 128

Residual Variance 0.1777 (0.01 18)

High (451) Offspring Environment F2,370 = 2.66 0.0713

Sire 0.0085 (0.0081) 0.1283

Dam(Sire) 0.0156 (0.0095) 0.0161

Residual Variance 0.1372 (0.0102)

WW

Medium (192) Offspring Environment F2178 = 10.82 0.0001

Sire 0.1053 (0.0774) 0.0429

Dam(Sire) 0 --------

Residual Variance 1.0194 (0.1 159)

High (157) Offspring Environment F2,126 = 1.32 0.2705

Sire 0 ------

Dam(Sire) 0.203 (0.1441) 0.0564

Residual Variance 1.207 (0.1735)
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Figure 6. Germination, survival, and maternal fitness measures for the full data set

including the Offspring of natural mothers in the low light environment. (a) Proportion of

offspring germinating, Fall 1996. (b) Proportion of offspring surviving to Spring 1997.

(0) Mean seed number for offspring, June 1997. (d) Hypothetical cumulative maternal

fitness if all offspring had germinated. This measure assumes no mortality prior to

germination in dormant seeds, and equivalent survivorship and fecundity in dormant

seeds after germination. (e) Mean mass of seeds produced by offspring. Environmental

effects tested with fixed effects REML analysis. No genetic effects were included in the

models. ME = maternal environment, OE = offspring environment. Bars are standard

errors.
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The significant maternal genotype-enviromnent interaction for mean seed mass, and the

considerable crossing of maternal family reaction norms indicate the presence of genetic

variation for the plastic provisioning of seeds.

Proportion ofoffspring germinating-In the genetic analysis, there were no

significant main effects on Offspring germination: only the sire by maternal environment

interaction is significant (Figure 5c). Within maternal environments, there were

significant dam effects on offspring germination when seeds were produced in high light,

but not in medium light (Table 2). When the low maternal light environment was added

to the analysis, the effect of maternal environment became highly significant, while the

germination enviromnent continued to have no significant effect (Figure 6a). Overall,

seeds produced by mothers growing in the medium and high light environments

germinated at higher rates in each offspring environment, but mothers responded quite

differently to these environments. Some mothers produced more dormant seeds in the

medium light environment, while others did so in high light (Figure 5c). Seeds produced

by mothers in low light were least likely to germinate anywhere.

Proportion ofoffspring surviving-In both the genetic and the environmental

effects analyses there were no significant effects of maternal environment on Offspring

survival. Proportion surviving to flowering simply increased with light (Figures 5d, 6b).

In the genetic analysis the sire-offspring environment interaction term was insignificant

(P=0.09), but the reaction norm figure shows that mortality patterns for some families

differed dramatically across environments (Figure 5d).

Ofifs'pring mean seed number-Light had highly significant effects on seed

production by offspring in both analyses (Table 1, Figure 6c). Moreover, maternal
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environment had a significant effect on offspring fecundity (P=0.02 in the genetic

analysis, Table 1; P=0.05 in the environmental effects analysis, Figure 6c). The lowest

mean fecundities were for the offspring of low and high light mothers in their home

(maternal) environments. The offspring ofmedium light mothers performed as well as,

or better than the Offspring of other mothers for this trait (Figure 6c), and in the

cumulative fitness calculation (Figure 6d).

Oflspring mean seed mass-Light environment also had highly significant effects

on Offspring seed size in both the genetic (Table 1) and the environmental effects

analyses (Figure 6e). Mean seed mass was greatest in the medium light environment, and

lowest in the high light environment (Figure 6e). In the genetic analysis there was a

significant maternal environment-offspring environment interaction for seed mass

(P=0.048, Table 1). A within-matemal-environment genetic analysis was performed to

understand this interaction (Table 2). The offspring ofmedium light mothers altered seed

size in response to the environment (P<0.0001), but those from high light mothers did not

(Pr-0.27). These results are consistent with the pattern seen in Figure 6e. Moreover, this

analysis revealed genetic effects on seed provisioning expressed in offspring derived from

both maternal environments (medium light P=0.04, high light P=0.056).

Fitness consequences ofmaternal effects

Phenotypic correlations with seed mass-Larger seeds were less dormant (Table

3), achieved a greater winter size (Table 4), and emerged later in the second year (Table

4). Phenotypic correlations between mean seed mass of mothers and prOportion of

offspring surviving (Table 3), and offspring seed production (Tables 3, 4), were low and

insignificant when corrected for multiple tests. This result suggests that if present,
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Table 3. Pearson product-moment correlations by light environment for the maternal

traits. Offspring traits are the mean values for all the progeny of a single mother planted

in each offspring environment. The number in parentheses is the sample size. Traits:

Maternal mean seed number (M-Seeds), Proportion of offspring germinating (O-Germ),

Proportion of offspring surviving to flower (O-Surv), Offspring mean seed mass (0-

Mass), Offspring mean seed number (O-Seeds). Correlations in bold are significant after

sequential Bonferroni adjustment at a table-wide level of 0t=0.05 (Rice, 1989). #P<0.l,

*P<0.05, **P<0.01, ***P<0.001.

  
 

 

M-Seeds O-Genn O-Surv O-Mass O-Seeds

LQ‘ZLSlln

Maternal Mean Seed Mass -0.16*** 0.21*** -0.04 0.15# 0.15#

(449) (618) (324) (144) (145)

40%.Slln

Maternal Mean Seed Mass 01 l# 0.26*** -0.02 0.15* 0.03

(258) (620) (338) (264) (265)

LQQPALSnn

Maternal Mean Seed Mass 0.25*** 0.23*** 0.09 0.10# 0.12*

(180) (622) (350) (346) (346)
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Table 4. Pearson product-moment correlations with maternal mean seed mass by light

environment for traits of individual offspring. Traits: emergence date (Edate), winter

size (Wsize), mean seed mass (Smass), seed number (Seeds). Correlations in bold are

significant after sequential Bonferroni adjustment at a table-wide level of 0t=0.05.

#P<0.l, *P<0.05, **P<0.01, ***P<0.001.

  

 

Year Environment Edate Wsize =——S-r:sls= Seeds

1995-96 10% Sun 0.02 0.25*** 0.43* 0.31*

40% Sun -0.01 0.27*** 0.15*** 0.11**

100% Sun 002 0.25*** 0.29*** 0.06

1996-97 18% Sun 0.15*** 0.15# 0.15#

40% Sun 0.18*** 0.15* 0.03

100% Sun 0.18*** 0.10# 0.12““
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contributions of seed mass to offspring fitness were most likely mediated through the

correlations with timing of emergence and winter size. The phenotypic correlations

between maternal seed mass and seed number (Table 3) indicated a significant size-

nurnber tradeoff in low light (marginal in medium light), but in high light seed size and

number were positively correlated.

Phenotypic selection-Seed mass, emergence date, and winter size had little effect

on offspring fecundity (results not shown), so only the results of the survival episode are

presented. Seed mass did not contribute directly to survival in any environment in either

year (Figure 7a). In high light, later emerging seedlings were more likely to survive in

the first year, but early emergence was favored in the second year (Figure 7b). This result

is probably due to the absence of winter size in the multiple regression model in the

second year, rather than direct selection for early emergence. In the year it was measured,

winter size was an important determinant of survival across all environments (Figure 7c).

The path analysis confirmed that winter size was important for survival across all

environments (Figure 8), and showed that both seed mass and early emergence were

significant determinants of winter size. Interestingly, in the high light environment, the

analysis reveals that there was significant direct selection for later emergence, but indirect

selection for early emergence through winter size (Figure 80). In other analyses (Chapter

4), I found that the presence of leaf litter consistently selects for late emergence. These

results suggest that increased seed mass may allow seedlings to emerge later, yet still

achieve a sufficiently large size to survive the winter. This possibility is consistent with

the positive correlation between seed size and emergence date in the second year: larger

seeds emerged later (Table 4).
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Figure 7. Standardized linear selection gradients for survival episodes in each year. Bars

are 95% confidence intervals based on 1000 bootstrap resampled data sets. Winter size

data was not collected in Year 2 (1996-97). The y-axis indicates the proportion by which

relative fitness would change if trait value changed by one standard deviation. It is scaled

the same across all selection figures to facilitate comparisons among years, environments,

and traits. Sample sizes: Year 1 (1995-96): low = 1003 medium = 1135 high = 808;

Year 2 (1996-97): low = 493, medium = 530, high = 536.
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Figure 8. Path diagrams for survival episode in Year 1. Double headed arrows represent

correlations among phenotypic traits. Single headed arrows represent hypothesized

causal links between traits and fitness. Path coefficients are analogous to standardized

linear selection gradients, and were calculated using multiple linear regression on

standardized traits. Logistic regression (Janzen and Stern 1998) produced identical

results. Dashed arrows represent negative coefficients. The width of arrows is

proportional to the magnitude of the standardized path coefficient. U: unexplained

variance. Significance values: *P<0.05; **P<0.01; ***P<0.001; ****P<0.0001.
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DISCUSSION

The results of this study demonstrate that: (1) light environments in this

population of Collinsia verna vary in space but are correlated across years in a way likely

to favor plastic maternal effects (Figure 4); (2) there are significant maternal

environmental effects on seed number (Figures 5, 6), seed size (Figure 5), and dormancy

(Figure 6); (3) there are significant genotype-environment interactions in the field for

seed size and dormancy (Figure 5); and (4) seed size may have important consequences

for offspring fitness through its effect on size at overwintering. Below, I discuss whether

these results support the hypotheses that larger seed size increases offspring

establishment in reduced light environments and increased seed dormancy benefits

mothers in low light environments where offspring survival is unlikely. I conclude with a

discussion ofwhat the genotype-enviromnent interactions for seed size and dormancy

found in this study suggest about the factors affecting the evolution ofplastic maternal

effects.

Seed size plasticity and variation in dormancy-In both years Of this study, plants

growing in the high light environments produced smaller seeds on average than plants

growing in the medium light environments (Figures 5b, 6e). In low light in both years

mean seed mass was lowest and most variable. Reduced seed mass in the low light

environments was probably a consequence of absolute resource limitation. The mean

number Of seeds produced by mothers in low light (10% sun) was only slightly more than

one (Figure 5a), while offspring in the low light environment (18% sun) produced about

three seeds (Figure 6c). The significant negative correlation between seed size and

number in the low light environment but not in medium or high light (Table 3), suggests
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a seed size-number tradeoff in low light.

Increases in seed mass as light resources decline from high to medium levels

would be beneficial if offspring experience light environments similar to their mothers (as

shown here), and if offspring from large seeds had higher establishment, survival, or

fecundity in medium but not high light environments. However, the other results of this

study provide limited evidence that larger seeds may be indirectly beneficial to Offspring

survival and fecundity at all light levels. Although the offspring ofmedium and high

light mothers survived at similar rates across all environments (Figure 6b), and there was

no direct selection on seed size in the survival episode (Figure 7), the path analysis

suggested that increased seed size benefits offspring indirectly in all environments by

contributing to larger overwinter size, and higher survival to flowering (Figure 8). Seed

mass was only very weakly correlated with subsequent seed production (Table 4), and

was under no direct selection in the fecundity episode (results not shown), but the heavier

offspring ofmedium light mothers produced as many or more seeds than Offspring of

high or low light mothers by both the direct and cumulative measures (Table 1, Figures

6c-d).

Other studies have consistently shown direct and indirect effects of increased seed

size on dormancy, emergence time, early size, early growth rates, and many traits later in

the life history (recent reviews in Westoby et al. 1997, Rees 1997). In competitive

situations, differences in seedling size can persist throughout the life cycle, and lead to

differences in fitness (Gross 1984, Stanton 1984, Fenner 1985, Morse and Schmitt 1985,

Stratton 1989, Gross and Smith 1991). Although Thiede's (1996) two-year study of

selection on early life history traits in this population of Collinsia verna found no direct
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selection on seed mass, she did find direct selection for later emergence and larger winter

size. In addition, both emergence time and winter size had positive genetic correlations

with seed size.

Other univariate (Kalisz 1986, Winn 1988, Biere 1991b), and multivariate

(Mitchell-Olds and Bergelson 1990, Stratton 1992, Bennington and McGraw 1995)

selection studies also have detected relationships between juvenile traits (seed mass,

emergence date, and juvenile size) and survival or fecundity. Donohue and Schmitt

(1998) showed that greater seed mass in Plantago lanceolata increases individual fitness;

however, in contrast to this study, they found that maternal fitness was enhanced in some

environments when mothers reduced seed mass and produced more seeds.

The reduced performance ofthe offspring of low and high light grown mothers

(Figures 6c-e) may have many causes. Many ofthese Offspring started fi‘om smaller

seeds. Resource limitation in the low light treatment likely accounts for the lack of seed

set in more than 60% ofthe plants that survived to harvest. In addition, plants in low and

high light environments flowered out of synchrony with the rest ofthe population

(Chapter 4). Consequently, these plants may have received poor pollinator service, and

their seeds may have been produced through self pollination (Kalisz et al. 1999). There is

modest inbreeding depression in this species (Kalisz 1989), and population (Kalisz et al.

unpublished data). As a result, the possible positive maternal effects on survival seen in

the home environments ofoffspring oflow and high light mothers may be offset later in

the life history by the expression of inbreeding depression.

Other selective factors not addressed in this study may favor small seeds in high

light environments. Seed predation has been shown to be higher on forest edges (e.g.
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Jules and Rathcke 1999, Manson et al. 1999), and some evidence suggests that seed

foraging rodents favor species with larger seeds (e.g. Kelrick et al. 1986, Reader 1993,

Hulme 1998). But there is little direct evidence that seed predators select larger seeds

within species, and there are many examples of non-size-selective seed predation.(e.g.

Kerley and Erasmus 1991, Meiners and Stiles 1997). It has been suggested that seed

predation on species with a soil seed bank should select for smaller seeds (Thompson

1987)

The significant maternal environment-Offspring environment interaction effect on

the size of seeds produced by offspring is intriguing (Table 1). Essentially, the size of

grandchildren (and possibly their fitness) is in part determined by the environment of

their grandmothers. Grandparent environment has been shown to effect grandprogeny

phenotype in the lab in both plants (e.g. Case et al. 1996 and references therein) and

animals (Fox and Savalli 1998 and references therein), but studies showing such effects

in the field are rare. In the present study, the Offspring ofmedium light mothers

differentially provisioned seeds depending on their own light environment. In contrast,

the offspring of high light mothers were insensitive to their own environment, and always

made large seeds. Because in the second year plants in high light produced no more

seeds than plants growing in medium light (Figure 6c), the results presented here suggest

that high light could also be a stressfirl environment.

The higher dormancy in offspring of low light mothers (Figure 6a) may allow

these mothers to disperse their offspring further in space or time to better environments,

or may be beneficial if pre-reproductive mortality in reduced light is variable from

generation to generation. However, a strong test ofthese hypotheses would be very

64



difficult because individual dormant seeds would have to be followed for many years.

Moreover, these more dormant seeds may simply be smaller and less viable because of

resource limitation in their mothers, or they may be the less viable products of self

fertilization.

One other aspect of the offspring of low light mothers deserves comment. The

insignificant trend toward lower mortality in low light and higher mortality in high light

for the progeny of low light parents (Figure 6b), may be the result of a beneficial

maternal effect, but the result suggests that this effect is mediated through some aspect of

seed quality not measured by seed size. First, as mentioned above, each year low light

plants on average produced smaller seeds (Figures 5b, 6e). Moreover, the higher rate of

dormancy in the offspring of low light mothers suggests that they may have thicker seed

coats that would reduce the proportion of total seed mass allocated to resource storage.

Differences in nutrient concentration (nitrogen, etc.) in seeds, or the use ofmore

concentrated energy stores (lipids instead ofcarbohydrates) might affect seed quality but

not seed size (Westoby et al. 1992).

Genotype-environment interactions-The most striking results here are the

genotype-environment interactions for dormancy and seed size (Figures 5b-c). Nearly all

studies that have investigated maternal environment effects on seed mass have found

them (reviewed by Roach and Wulff 1987, Platenkamp and Shaw 1993, but see Weiner et

al. 1997). More recent studies have demonstrated significant genetic variation in seed

mass, germination date, and seedling size (e.g. Shaw et al. 1995, Helenurm and Schaal

1996, Sultan 1996, Byers et al. 1997, Husband and Gurney 1998, Thiede 1998). But

studies that show genetic variation for plastic maternal effects are rare (Donohue and

65



Schmitt 1998). Previous studies in Collinsia verna have shown that seed size and seed

dormancy are variable (Kalisz 1989, Thiede 1996), and under both additive genetic and

matemal genetic control (Thiede 1998, unpublished data). The results ofthe present

study suggest that any main effects of either genotype or environment on these traits

should be interpreted with caution.

The genotype-environment interactions for seed size and dormancy can be

interpreted as genetic variation for plasticity in these traits. Artificial selection on the

plasticity of dormancy and seed size would almost certainly succeed in altering reaction

norms. However, the alternate question is why does this genetic variation persist? Other

factors may be limiting plasticity evolution and contributing to the maintenance of

genetic variation in plasticity of seed size and dormancy (Mitchell-Olds 1992, Schmitt

1995). Future evolution in depends on the patterns Of natural selection on these traits,

gene flow between environments, and on the genetic correlations among traits. In

particular, variable selection can maintain genetic variation in natural populations if there

are genotype-environment interactions for components of fitness.

The basic quantitative genetic equation for multivariate evolution, A2 = GB,

shows that trait evolution depends on both the selection gradients, B, and the genetic

covariance matrix, G. Two hypotheses stand out as explanations for the persistence of

genetic variation in the plasticity of dormancy and seed size. First, direct selection ([3) on

these traits may be variable within light environments so that optima vary and fluctuate.

Second, correlated responses to selection may maintain some traits away from their

univariate Optima. In both cases, genetic variation would be maintained.
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Course grained, between-generation variation in survival to reproduction can

select for increased dormancy (reviews in Brown and Venable 1986, Evans and Cabin

1995, Rees 1997). If this selection differs across environments, mothers should produce

seeds that are more dormant in some environments than others. However, if variation in

survival to reproduction is fine grained (occurring within environments or generations),

and there are no good cues to predict offspring survival, then genetic variation in

dormancy may be maintained. In a companion study to this one, I have found a twofold

difference in survival to reproduction within light environments as a consequence of the

presence or absence of leaf litter (Chapter 4). The distribution of leaf litter in deciduous

forests during the fall is unpredictably variable at the single leaf scale (Frankland et al.

1963, Sydes and Grime 1981, Facelli and Carson 1991, Molofsky and Augspurger 1992,

personal Observation). In this population, leaf litter is quite transient, with substantial

decomposition occurring before the onset ofwinter (personal observation).

Consequently, leaf litter may be an unpredictable cause of fine grained variable natural

selection on dormancy independent of light environment, and may lead to the persistence

of genetic variation in dormancy and its plasticity.

There is strong evidence that selection on seed size in this population is indirect

through emergence date and winter size (this study, Thiede 1996). Other studies in

Collinsia verna have found significant positive genetic correlations between seed size and

emergence date (Kalisz 1989, Thiede 1998) and seed size and winter size (Thiede 1998);

and significant negative genetic correlations between emergence date and winter size

(Thiede 1998, Chapter 5). Consequently, selection for larger winter size as is consistently

seen produces correlated responses for larger seeds and earlier emergence. However,
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since selection for early emergence produces correlated responses for smaller seeds, the

overall effects on seed size are unclear. Further, my study of natural selection in this

population (Chapter 4) found that the direction of direct selection on emergence date (and

consequently selection on seed size) changes depending on the presence or absence of

leaf litter across all light environments. Leaf litter selects for later emergence and larger

seeds; the absence of leaf litter selects for earlier emergence and smaller seeds.

The path analysis (Figure 8) suggests that early emergence and larger seed size are

alternate strategies that both allow seedlings to achieve a size sufficient to survive the

winter. Larger seeds may be further advantaged if they emerge later and thereby avoid

the negative effects of leaf litter in early fall. More interesting still, seed size appears to

be largely controlled by maternal genes (Chapter 3, Thiede 1998), while timing of

emergence is an additive genetic trait (Chapter 3, Thiede 1998). Consequently, the

evolution of seed size will have very complicated and unpredictable dynamics where

selection in parents and offspring is likely to conflict (Westoby et al. 1992).

Conclusion-The spatial and temporal variation in light in this population favors

the evolution of plastic maternal effects, and seed size and dormancy are plastic. But

genetic variation in plasticity of seed size and dormancy may be maintained by variable

direct selection or correlated responses. Environmental factors like leaf litter may

contribute to this unpredictable, heterogeneous selective environment resulting in the

maintenance of a diversity of specialized genotypes with different seed provisioning and

dormancy strategies. Offspring of mothers from the two extreme light environments

produced fewer, and Often smaller seeds when grown in their home environments. This

result suggests that some plasticity of seed size seen in this study may be a maladaptive
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consequence of stressful maternal environments.

This study demonstrates the value ofperforming environmental manipulations in

the field to study micro-evolutionary processes. By quantifying maternal effects,

plasticity, genetic variation, and fitness components in an ecologically and evolutionarily

relevant context, it was possible to assess both the adaptive value of plasticity and the

factors that might affect the future evolution of the population. Wider application of this

approach will help to answer fundamental questions about maternal effects, plasticity

evolution, and the factors that maintain genetic variation in populations.
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Chapter 3

EVOLUTION OF REACTION NORMS: THE QUANTITATIVE GENETICS OF

RESPONSES TO VARIABLE LIGHT ENVIRONMENTS IN A NATURAL

PLANT POPULATION

INTRODUCTION

The consequences of environmental heterogeneity are an important focus of

theoretical and empirical studies in evolutionary ecology. Quantitative traits in all

organisms generally exhibit plastic responses to changes in the biotic or abiotic

environment (Travis 1994, Rolf 1997). Recent studies demonstrate that environmental

heterogeneity can cause spatial and temporal variation in natural selection (e.g. Kalisz

1986, Kelly 1992, Stratton 1992, 1995). Depending on patterns of gene flow, the

magnitude Of fitness differences, and stochastic factors, variable selection can both

maintain genetic variation within populations and lead to adaptive differentiation between

populations or subpopulations (e. g. Gillespie and Turelli 1989, Mitchell-Olds 1992; see

also Hedrick et al. 1976, Hedrick 1986). Other theory predicts that with gene flow

between environments, variable selection may lead to phenotypically-plastic generalist

genotypes that perform well across a broad range of environments (e.g. Via and Lande

1985, de Jong 1995, van Tienderen 1997, Scheiner 1998; reviews in Scheiner 1993, Roff

1997)

However, many factors may constrain reaction norm evolution and result in the

persistence of specialist genotypes and the maintenance of genetic variation. These

factors include the scale of environmental heterogeneity (course vs. fine; Lynch and

Gabriel 1987, van Tienderen 1991, Gabriel and Lynch 1992), a lack of predictability
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about future environmental states (Bradshaw 1965, Moran 1992, Getty 1996),

developmental limitations (van Tienderen 1990), physiological costs ofplasticity (Via

and Lande 1985, van Tienderen 1991, DeWitt et al. 1998), or a variety of genetic

constraints (discussed below, Falconer 1952, Via and Lande 1985). Data from natural

populations regarding the genetics ofresponses to variable environments is scarce (recent

reviews in Roff 1997, Schlichting and Pigliucci 1998).

Genetic constraints and the evolution ofreaction norms

Bradshaw (1965) recognized that the characteristics of plastic responses are

specific to particular environmental factors and are under genetic control. In this context,

the terms generalist and specialist describe the relative ability to maintain fitness in

variable environments through coordinated, plastic responses in underlying traits.

Generalists have adaptive plasticity in physiological and/or morphological traits that

allows them to maintain performance when resources are scarce, and to boost

performance when resources are abundant (de Jong 1990, Thompson 1991). Whether

generalists can be as fit in particular environments as specialists on those environments

remains controversial, and can affect whether variable selection favors plasticity or the

maintenance of genetic variation (Gillespie and Turelli 1989). Specialists for favorable

environments lack the underlying plasticity in physiological, morphological, and

behavioral traits necessary to maintain high relative fitness in less favorable

environments. Specialists for stressful environments may be more fit than generalists in

those environments, but may lack the ability to respond when resources are abundant, and

so have low, flat reaction norms for fitness.

Because different combinations of plasticity and canalization in underlying
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developmental, physiological, or morphological traits can trade off to produce equally fit

genotypes, there is no simple relationship between fitness across variable environments

and plasticity in a trait (Via 1987, Schlichting and Pigliucci 1995). For example, in a

series of greenhouse experiments, Sultan and Bazzaz (1993a, b, c) found that diverse

patterns ofphysiological and morphological plasticity to light, water, and nutrients can

produce convergent reaction norms for reproductive performance. Thus, it is necessary to

consider how groups of traits are integrated to produce generalists or specialists.

Genetic constraints on the evolution ofplasticity include an absolute lack of

genetic variation and genetic interdependence between the expression of single traits in

different environments. When the same genes determine a trait in different environments,

the cross-environment genetic correlation approaches one or negative one. Selection in

one environment will change the expression of the trait in all other environments. Values

of the cross-environment genetic correlation significantly different from one or negative

one indicate the presence of genotype-environment interaction, which is a measure of

genetic variation for phenotypic plasticity (Via 1987). As the cross-environment genetic

correlation for a trait approaches zero, genetic variation for plasticity of the trait

increases. Depending on the relationship between a trait and fitness in different

environments, significant negative or positive cross-environment genetic correlations can

either slow or accelerate reaction norm evolution. For example, Shaw and coworkers

(1995) found a negative genetic correlation for dry mass across manipulated competitive

environments in a study ofNemophila menziesii. This negative relationship is expected

to maintain specialist genotypes in the population and slow the evolution Of a competitive

generalist. Similarly, genetic correlations between different traits within and across
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environments may also affect plasticity evolution.

Plastic responses to light

Light is an important resource for photosynthetic plants, and light availability is a

strong selective agent in plant populations (reviews in Goldberg 1990, Sultan and Bazzaz

1993a). Moreover, because light availability varies in space and time, selection should

favor generalist genotypes possessing plastic traits that would both allow tolerance of low

light levels and the conversion of high light availability into increased growth and

reproduction. Genotypic differences in the plastic response ofmany physiological,

morphological, and life history traits to light quantity or quality have been characterized

many times in greenhouse or common garden environments (e.g. Clough et al. 1980,

Sultan and Bazzaz 1993a, Schmitt 1993, Andersson and Shaw 1994, Pigliucci et al. 1995,

Dudley and Schmitt 1995). However, it is uncertain if the genotypic differences seen in

these studies would be expressed in the field, or if expressed how they might affect

fitness or the dynamics ofplasticity evolution under natural conditions.

A better understanding of the evolution ofphenotypic plasticity requires the

careful manipulation of selectively relevant environmental factors and the

characterization of additive genetic variation for phenotypic plasticity within natural

populations of plants (Schmitt 1995, Sultan 1995, Pigliucci 1996). In plants, maternal

effects are known to be an important source ofresemblance between relatives (Roach and

Wulff 1987, Donohue and Schmitt 1998). Moreover, it has been shown that maternal

effects can Obscure genetically based tradeoffs in performance across environments

(Shaw et al. 1995). Relatively few studies have characterized additive genetic variance

and covariance independent of maternal effects within natural plant populations (e.g.
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Mitchell-Olds 1986, Mitchell-Olds and Bergelson 1990, Schwaegerle and Levin 1991,

Montalvo and Shaw 1994, Schoen et al. 1994, Campbell 1996, 1997a, b). Fewer still

have estimated these parameters across a range ofnatural field environments (Shaw et al.

1995, Bennington and McGraw 1996, Wulff 1998). Recent empirical comparisons

suggest that heritability estimates may be similar across different environments (Roff

1997). However, it is the genetic correlations that are keys to plasticity evolution, and

recent comparisons of genetic correlations across environments and between populations

have found no consistent patterns (reviews in Roff 1997).

In this study, two generations of half-sib Collinsia verna plants were grown in the

field in three manipulated and two natural light environments. Here I address the

following questions concerning the evolution ofphenotypic plasticity: (1) Are there

additive genetic and/or maternal effects on traits with plastic responses to light

environment? (2) Are there genotype-environment interactions indicative of genetic

variation in plasticity to light? (3) Are there fitness differences among genotypes that

would suggest specialization for particular light resource environments? By addressing

these questions under natural field conditions, this study avoids many of the interpretive

limitations of lab, greenhouse or common garden experiments.

METHODS

Study system

Collinsia verna is a winter annual wildflower native to moist woods and

floodplain forests in eastern North America. In many Collinsia habitats, light is so

limiting during the summer months that the forest floor is nearly barren. All growth of C.

verna occurs during the seasonal light-gap between forest canOpy senescence in the fall
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and leafout in the spring. The one hectare study population resides along the south facing

edge of a woodlot adjacent to an agricultural field in Kalamazoo County, southwest

Michigan. Seed germination in the fall is cued by diurnal temperature fluctuations

(Baskin and Baskin 1983). Seedlings emerge between September and December, and

overwinter with only cotyledons or a single pair of leaves. Flowering begins in late April

and ceases as the forest canOpy closes in May. By mid June fruits ripen, seeds are

passively dispersed, and plants die. Fecundity depends on the micro-environment,

ranging fiom five to fifty seeds.

Experimental design

Light treatments-Light in this population is spatially and temporally variable.

Peak irradiance in full sun at solar noon varies between 500 and 2000 umoles rn'2 sec‘l

over the October to May growing season. Depending on adjacent woody vegetation and

proximity to the southern edge, small patches within the forest receive from 25% to 75%

of this maximum (Figure 4 of Chapter 2). To establish different light levels in the field,

in July 1995 I cleared all trees and shrubs from a 15 X 20 m area along the southern edge

of the woodlot in the densest area of the Collinsia population. I then established 15 1.2

m2 plots in a 5 X 3 grid with l m spacing between plots (5 blocks of 3 plots each). I

randomly assigned one of three light treatments to the plots of each block: 100% sun

(high), 40% sun (medium), and 10% sun (low) (Figure l of Chaper 2).

Light treatments were constructed using a wood lattice that continued to allow

sun-flecks to reach the plots (Chapter 2). Mortality in low light during the first year

(1995-96) was greater than 95%. To increase survival for the second year (1996-97),

light levels in this treatment were increased from 10% to 18% of full sun in September
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1996. For the second year, 10 additional natural plots were established. These plots were

chosen to represent the range ofnatural light experienced by the population. Five plots

were located in the forest interior (45% Sun) and five were located along the southern

edge ofthe woodlot (70% Sun).

Breeding design-I used two independent breeding designs to generate the families

used in this study. Plants were collected prior to flowering at 5 to 20 m intervals from the

full area ofthe population (204 in year 1, 50 in year 2). Crosses were performed in the

greenhouse at Kellogg Biological Station. Sires were randomly chosen (year 1: 50; year

2: 12). Each sire was mated to three unique dams in standard nested half-sib designs

(North Carolina Design I, Lynch and Walsh 1998, Chapter 18). In the first year, two sires

with small initial mates were each mated to one additional darn. Flowers ofdams used in

crosses were emasculated in the bud stage to prevent self pollination. The crosses

produced 9338 and 1776 seeds in each year respectively. In year one, an average of 45

seeds from each full-sib family were randomly planted into the field plots (6840 seeds

total: 152 full-sib families X 3 seeds/family X 3 light treatments X 5 blocks). In year two,

an average of 50 seeds from each full sib family were randomly planted into each field

plot (1776 seeds total: 36 full-sib families X 2 seeds/family X 5 light treatments X 5

replicates). Seeds were individually planted in 2 cm long uniquely numbered plastic

straws inserted in the ground.

In each year emergence and survival censuses were conducted weekly from

September through December. When emergence ceased the number of cotyledons and

true leaves on each seedling were counted, and the diameter of the largest cotyledon and

leafwere measured. These data were used to calculate winter size (cotyledon area + leaf
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area). I conducted a census for survival to flowering in mid-April. Starting in late April,

the date of first flowering was recorded daily. After a plant flowered, a uniform sized

piece of leaf tissue was collected with a hole punch from the youngest fillly expanded

leaf. Samples were dried and weighed to determine specific leaf area. This trait

quantifies the morphological changes made in leaf characters to optimize photosynthetic

ability in different light environments. Plants surviving to the end of the experiment were

harvested prior to seed dispersal in June of each year and scored for mainstem length,

above ground vegetative biomass, number of seeds, and total seed mass. Reproductive

investment was calculated as the proportion of total above ground biomass allocated to

seeds. Because plants were dead or dying, this trait measures the efficiency with which

they were able to convert vegetative biomass to seed mass.

The light manipulations used in this study may simultaneously change many

aspects ofthe biotic and abiotic environment. To better understand these affects, I

measured light (Chapter 2) and several other parameters in the study plots. I counted

number ofconspecifics at overwintering and harvest; I measured soil temperature

throughout the season using Onset Hobo data loggers; and I measured volumetric water

content ofthe soil weekly in the fall using time-domain reflectometry.

Data analysis

Heritability-Within environment heritabilities (hz) were estimated using

MTDFREML (Multiple Trait Derivative Free Restricted Maximum Likelihood, Boldman

et al.1995). MTDFREML is a set ofprograms deveIOped to apply the animal model

(description in Lynch and Walsh 1998, pp. 755-758) to the estimation of genetic variance

components and the prediction of breeding values. Unlike ANOVA methods, the animal
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model uses all available pedigree information to produce restricted maximum likelihood

(REML) estimates of genetic variance components. From these variance components the

BLUP (best linear unbiased prediction) breeding values were calculated. Likelihood ratio

Chi-square tests were used to assess the significance of the additive genetic variance

components. Vegetative biomass and seed number were log transformed to improve

normality prior to all analyses.

All assumptions of the nested design for estimation of quantitative genetic

parameters were met in this study (Mitchell-Olds 1986, Mitchell-Olds and Rutledge

1986). Although Collinsia verna is self-compatible, outcrossing rates in this population

were above 0.9 in each year Of a three-year study (Kalisz et al. unpublished data), so

upward bias in heritabilities due to inbreeding should be negligible. The high pre-

flowering mortality in some environments in each year could bias the estimation of

genetic parameters for subsequent traits if mortality was associated with some sibships.

However, there were no significant effects of sire or sire-environment interaction on

survival, indicating that no measurable selection on half-sib families occurred at this

stage (see Results).

Environmental eflects and interactions-Main effects of environment and

genotype, and genotype-environment interactions were analyzed statistically using

maximum likelihood methods and graphically by examining reaction norm plots for

genotypic differences in slope. The approaches are complimentary and equally valuable

because the power of statistical methods to detect genotype-environment interaction can

be limited (Lewontin 1974, Via and Lande 1985, Wahlsten 1990). Reaction norm

figures were constructed for each year by plotting paternal half-sib family trait means
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against light enviromnents. Genetic variation for trait plasticity is suggested when trait

values for families change rank across environments. Changes in rank for fitness suggest

that negative cross-environment genetic correlations may retard the evolution of

generalists (Via 1984).

Mixed model REML analysis was used to examine the main and interactive

effects of light environment, block, sire, and dam on each trait in each year. A split-plot

model was used, with light environment as the whole plot factor, and sire and dam as

subplot factors. Maximum likelihood methods are generally superior for analysis of

unbalanced data (Searle et al. 1992, Littell et al. 1996). All analyses were completed

using the MIXED procedure of SAS (SAS 1992, 1997). Blocks were treated as fixed

because they were designed to capture an east-west gradient of diurnal morning-aftemoon

shading. Environmental effects were also treated as fixed, while sire, darn nested within

sire, and their interactions with fixed effects were treated as random. Because the new

natural plots in the second year could not be included in blocks with the existing

experimental treatments, no block effect was included in the full analysis this year. Block

effects in the first year and in an analysis of the three treatments in the second year were

all insignificant.

The final analysis included all main effects and two way interactions, except for

the darn by block interactions. When examined in reduced models, the dam by block

interactions and all three way interactions were highly insignificant. The significance of

random effects were assessed using likelihood ratio tests, while fixed effects were tested

by computing a Type III F statistic using the Satterthwaite option to estimate

denominator degrees of freedom (Littell et al. 1996). No sequential Bonferroni
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corrections (Rice 1989) have been applied to the results of these analyses because

correction for multiple tests is not apprOpriate when correlations are expected between

traits (Manly 1991, Simons and Roff 1996, Lynch and Walsh 1998 page 641). It is the

general patterns that are of interest here, rather than specific comparisons among traits or

environments.

Because germination and survival are discrete variables they were analyzed using

maximum likelihood logistic regression (SAS LOGISTIC procedure, SAS 1989). This is

the most appropriate analysis for data of this type, but the procedure cannot accommodate

the nested structure ofthe data (dams nested within sires). The fit ofmodels with sire

effects were compared to the fit ofmodels with dam effects using likelihood ratio chi-

square tests. Models with dam effects generally provided a poorer fit to the data, and

never significantly improved the likelihood of sire based models. Consequently, the

results presented are for models including terms for sire, light environment, and sire by

light environment interaction.

Genetic correlations across environments-The genetic correlations (r8) between

the same trait expressed in different environments indicate the degree to which traits are

free to evolve independently in those environments. They are directly interpretable in

terms of evolutionary quantitative genetic theory and they provide a dimensionless

measure for comparisons between traits and across environments (Via 1984, 1987, Via

and Lande 1985). The best way to estimate genetic correlations across environments is

the subject ofmuch discussion and research (Via 1984, Dutilleul and Potvin 1995,

Windig 1997, Dutilleul and Carriere 1998). The half-sib breeding designs used in this

study allow the calculation of the narrow sense additive genetic correlations (unbiased by
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any dominance or maternal effects) by two complementary methods.

First, the cross environment additive genetic correlations were calculated as the

Pearson product-moment correlations of the within environment predicted sire breeding

values fi'om the MTDFREML analyses described above. This method is similar to the

family means approach (e.g. Via 1984, Simons and Roff 1996) but it eliminates bias due

to unbalanced data and fractional contributions of dominance and environmental effects

(Shaw et a1. 1995, Lynch and Walsh 1998). Limitations of this approach are that genetic

correlations cannot be calculated when additive genetic variance components are

estimated as zero, and as in the case of family mean correlations, sampling error may

cause the calculated genetic correlations to underestimate the true values (Cameron 1993,

Notter and Diaz 1993, Mathur and Horst, 1994). This bias means that traits may not be

as genetically independent across environments as it appears based on the correlations

among breeding values.

For comparison the cross environment genetic correlation was also estimated fi'om

the variance components ofmixed-model REML analyses (SAS proc. MIXED) according

to the formula:

2

r ___ 6 sire

g 2 2 )

'\/(C sireEl X0 sireEZ

where 62”,, is estimated by the sire variance component from a two-way analysis, and

 

 

ofmg, and O'zmgz are estimated by the sire variance components from separate one-way

analyses in each environment (Yarnada 1962, Fry 1992, Windig 1997). As with

estimating the genetic correlation from breeding values, the genetic correlation estimated

by this technique is undefined whenever Oimf, or 02mm are zero. When 02mg, or 03mm

89



are near zero, sampling error can produce correlations that are outside of theoretical

bounds, sometimes resulting in estimates of rg that can be much in excess of one (Fry

1992)

The advantage of calculating product-moment correlations from predicted

breeding values is that they produce estimates that are within the theoretical bounds for

correlations and the usual t test of the null hypothesis r1, = 0 is easily applied. However,

the use ofFisher's z transformation (Sokal and Rohlf 1981) to test the alternative null

hypothesis for genetic data (rg= 1) has been shown to produce biased (Roff and Preziosi

1994) and highly unreliable results (Windig 1997). Fortunately, for the cross

environment genetic correlations calculated from mixed model REML analyses, the test

of the sire-environment interaction term is a test of the null hypothesis rg = 1, and the test

of the sire effect is a test of the null hypothesis r1, = 0 (Fry 1992). An insignificant sire-

environment interaction component suggests that the genetic basis of a trait is the same in

each environment. Other recent studies have applied jackknife or bootstrap resampling

methods to directly calculate standard errors of genetic correlations (e.g. Roff and

Preziosi 1994, Windig 1994, Reusch and Blanckenhom 1998, Phillips 1998). However,

the appropriate resampling level in complex designs such as this one is unclear (Shaw

1992). The available tests are sufficient to allow full interpretation of the results.

RESULTS

Light environment effects

All traits were significantly plastic in at least one year (germination, emergence

date, winter size, survival to flowering, flowering date, specific leaf area, mainstem

length, vegetative biomass, seed number, mean seed mass, and reproductive investment;
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Figure 9a-v). The primary difference between years occurred in traits expressed early in

the life cycle. The autumn of the first year was warm and dry. As a result, germination

rates were more variable, and emergence was delayed. This resulted in less variation in

emergence date and winter size. A more favorable germination environment in the

second year resulted in a higher fraction germinating, and earlier, more variable

emergence dates. Earlier emergence gave plants more time to respond to variation in

resources and resulted in greater size variation in December.

The light manipulations affected other aspects of the environment. There was a

higher incidence ofgrazing on C. verna by small herbivores in the low and medium light

treatments. Under winter snow cover, the temperature of the top 1 cm of soil remained

constant near freezing in the natural and full sun treatments, but the lattice covers

prevented snow accumulation, and temperatures in these treatments plunged to as much

as -15 degrees C with wide diurnal fluctuations. In spring, the tOp 1 cm Of soil in the high

light treatments was warmer and had more variable temperatures. The daily maximum

temperature in these plots in May 1997 often exceeded 35 degrees C compared to less

than 20 degrees C in shaded plots. The soil was drier in the high light treatments. The

mean weekly volumetric water content of top 5 cm of soil during October 1996 in high

light was 0.12 m3 water / m3 soil compared to 0.15 m3 water / m3 soil in each of the other

treatments (0.01 s.e. in all cases).

In contrast to these pattems, there were no clear relationships between the light

treatments and the density of naturally occurring conspecifics at harvest in either year.

The range was broad (from 75 plants/m2 in high light in year two, to 879 plants/m2 in

high light in year one), but most plots in each year had between 100 and 200 plants/m2 at
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Figure 9. Paternal half-sib family reaction norms for Years 1 (50 sires and 3 light

treatments), and 2 (12 sires and 5 light treatments (3 manipulated and 2 natural)). The

significance values for all traits except germination and survival are based on univariate

mixed mode] REML analysis. Year 1 traits were analyzed with a model that included

sire, dam(sire), light, block, and all two way interactions, except the dam-by-block

interaction. The model for the second year omitted all block terms. Germination and

survival were analyzed by logistic analysis with a simplified model including only sire,

light, and their interaction. See text for details. The bars on the right side of the figures

represent one average standard error for all sires in the most variable environment. No

error bars are presented on the vegetative biomass and seed number graphs because this

data is plotted on a logarithmic scale. The same symbol is used for the same sire

throughout all figures. The light level in the forest interior plots averaged 45% of full sun

and on the edge it averaged 70% of fill] sun.
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harvest. Densities were reduced in the second year most likely because all plants in the

first year were harvested prior to seed dispersal. Consequently, most of the plants in year

two were recruited from the seed bank.

Additive genetic effects and narrow sense heritabilities

Overall, there were significant narrow sense heritabilities in at least one

environment for six ofnine traits (Table 5). Surprisingly, the reduced number of sires in

year two does not appear to have limited the ability ofthese analyses to detect significant

genotypic effects and heritabilities. Paternal families differed significantly in the

proportion of seeds that germinated in both years (Figures 9a-b). There were also

significant sire effects on emergence date, flowering date, and reproductive investment in

at least one year (Figures 9c-d, i-j, u-v), and these traits were frequently heritable within

environments (Table 5). Although there were no significant sire effects on specific leaf

area, mainstem length, and mean seed mass (Figures 9k-n, s—t), all were significantly

heritable in at least one environment (Table 5). Significant within environment

heritabilities in the absence of significant overall sire effects are evidence for genotype-

environment interactions (Feldman and Lewontin 1975). Winter size, survival to

flowering, vegetative biomass, and seed number had no significant sire effects (Figures

9e-h, o-r), and were not significantly heritable in any environment (Table 5). This result

is expected of traits closely linked to fitness because they are likely under strong

selection.

There were more non-zero and significant heritability estimates in both years in

the higher light environments (full sun and natural edge, Table 5). In particular,

flowering date, specific leaf area, and mean seed mass were most heritable in high light.
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Emergence date was more heritable in the second year when this trait was more

phenotypically variable. Only reproductive investment was consistently heritable across

all environments in each year.

Darn effects

Significant darn effects on a trait in the absence of significant additive genetic

variation (sire effects) may be attributable to dominance, maternal genotype, or maternal

environment. There were highly significant darn effects on winter size in both years

(Figures 9e-t). Interestingly, in the second year there were significant dam effects on all

late life-cycle traits except specific leaf area (flowering date, mainstem length, vegetative

biomass, seed number, mean seed mass, and reproductive investment, Figures 9i-v).

Genotype-environrnent interactions

Statistical tests provide evidence for significant genotype-environment

interactions in the first year for flowering date (Figure 9i), specific leaf area (Figure 9k)

and reproductive investment (Figure 9n). As mentioned in the previous section, the

contrasting results ofsignificant within enviromnent heritability estimates (Table 5) but

insignificant sire effects for specific leaf area (Figures 9k-l), mainstem length (Figures

9m-n), and mean seed mass (Figures 9s-t) also suggest genotype-environment

interactions. In the second year, no statistical tests for additive genetic variation in

reaction norms approached significance. The reduced number of sires in this year limits

the power ofthese tests.

The reaction norm plots show considerable diversity in reaction norm shape

among sires, indicative of genotype-environment interactions and genetic variation for

plasticity (Figure 9). Reaction norms cross between environments for all traits, but often
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it is just a few genotypes that are responsible for most of the diversity in their shape. This

diversity is particularly important for evolution, but is not likely to be detected in

statistical tests of genotype-environment interaction (Lewontin 1974). Although

mortality in some enviromnents was quite high, there was no evidence of differential

mortality or cross environment tradeoffs among paternal families in either year (Figures

9g-h).

Genetic correlations across environments

The cross-environment genetic correlations are generally consistent with the

genotype-environment interaction results. In year 1, very few cross-environment genetic

correlations were significantly different from zero by either method, indicating

considerable cross-environment independence of traits (Table 6). Correlations for

flowering date and specific leaf area across the medium and high light environments were

significantly greater than zero by the breeding value method and significantly less than

one by the variance component method. In year 2 most genetic correlations were

significantly greater than zero by both methods, and none were significantly less than one

by the variance component method (Table 7). All cross-environment correlations in year

2 were larger in magnitude than their comparable values in year 1. These results suggest

that in contrast to year 1, the genetic basis of traits in year 2 was very similar across

environments. There were no significant negative genetic correlations in either year that

would indicate the presence of cross environment tradeoffs or genetic constraints on

plasticity evolution.
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Table 6. Cross environment additive genetic correlations. Data from 50 sires from Year

1 (1995-96). Methods: bv-from predicted breeding values. o’,,,,-from variance

components. Empty cells occur when there was no additive genetic variance for the trait

in at least one of the environments. Significance testing for the bv method done with

individual t tests. Significance testing for the variance component method is based on the

results of mixed model REML analyses. Because estimated variance components were

not greater than zero in at least two environments, cross-environment genetic correlations

could not be estimated for emergence date, winter size, and mean seed mass in Year 1,

and specific leaf area, vegetative biomass, and seed number in Year 2. Significance

values: bv method- Ho: rg=Oz $P<0.15; #P<0.1; *P<0.05; **P<0.01; ***P<0.001.

Correlations in bold are significantly different from zero afier a sequential Bonferroni

adjustment within traits (01:0.05) (Rice, 1989). 03,," method— Ho: rx=01 $P<0.15;

#P<0.l; **P<0.01; Ho: rg=l: 30,2; £<0.05.

 

Year 1: 1995-96 Environment Pairs

 

 

Trait Method 10% Sun- 10% Sun- 40% Sun-

40% Sun 100% Sun 100% Sun

Flowering Date bv 0.05 0.15 0.31 *

02,,” fl# 2 0A#

Specific Leaf Area bv 0.28*

OZ... 2—3

Mainstem Length bv

o 942$

Log Plant Mass bv 0.01

0'25," 9

Log Seeds bv 025#

02m 9.53

Reproductive Investment bv 0.09 -0.01 0.11

2 0 07 Q 0
0 sire
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DISCUSSION

This study of a natural population of Collinsia verna has found a surprising

diversity of genetic effects expressed in diverse field environments. There was additive

genetic variation in at least some environments for germination, timing of emergence,

flowering date, specific leaf area, mainstem length, mean seed mass, and reproductive

investment. There was strong evidence for genotype-environment interactions (genetic

variation for plasticity) for flowering date, specific leaf area, mainstem length, and

reproductive investment. The lack of evidence for genotype-environment interactions in

the fitness components survival, vegetative biomass, and seed number suggest that there

were no strong light environment specialists among the genotypes sampled. However,

significant maternal effects on vegetative biomass, seed number, and seed mass in the

absence of additive genetic variation suggest that maternal genotypes specialize for

different reproductive strategies.

Patterns ofgenetic variation

Heritability-The magnitudes of the heritabilities estimated in this study are low

but compare favorably with other narrow sense, field-based heritability estimates for non-

floral traits (e.g. Mitchell-Olds 1986, Bennington and McGraw 1996, Campbell 1997a,

Thiede 1998). As in numerous other studies, traits closely linked to fitness (vegetative

biomass, seed number) display little heritability. These traits are under strong selection

(see Chapter 4) Two traits in this study, emergence date and winter size, were

previously studied in this population (Thiede 1998). The significant heritability estimates

for emergence date found in all but the high light environment (Table 5) are similar to

previous estimates for this trait in the greenhouse (I12 = 0.14) and field (112 = 0.25) (Thiede
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1998). Winter size was most strongly influenced by maternal effects in this study and

that ofThiede (1998), but she also found a significant narrow sense heritability in the

greenhouse (h2 = 0.27). In this study the narrow sense heritability ofwinter size was non-

zero in all but the forest interior in at least one year, but was never significant.

Maintenance ofgenetic variation-In Chapter 4, I found that patterns of survival

and selection on emergence date depend on the presence or absence of leaf litter.

Survival to flowering is generally higher in the absence of leaf litter. Since germinating

seedlings are unable to predict if they will be trapped under a fallen leaf, this variable

selection could maintain the genetic variation for dormancy found in this study. The

absence of leaf litter also selects for early emergence, while the presence of litter selects

:for late emergence. The unpredictability of these litter effects again may maintain genetic

variation in emergence date.

Environmental ejfects on the expression ofgenetic variation-There are many ideas

about how the expression of genetic variation might change along resource gradients or in

novel or stressful environments. For example, novel or stressful environments have been

predicted to increase genetic variance (Holloway et al. 1990). Alternatively, if stressful

conditions are common and result in strong selection, genetic variation would be lost

faster. Similarly, relaxed selection in benign and high resource environments may allow

more genetic variation to persist. Another possibility is that genetic variation may be

lowest in the most common natural environment where selection occurs most fi'equently.

All these patterns have been found in nature. Novel or stressful environments

have been shown to increase heritability for many animal traits, but no patterns are seen

in data from plants (review in Hoffrnann and Parsons 1991). More recent work in plants

104



has found a decrease in genetic variance under stressful conditions (Sultan and Bazzaz

1993b, Bennington and McGraw 1996, J. Conner unpublished data). Increased genetic

variance under conditions of resource abundance has been demonstrated for other plant

species across resource gradients (Clough et al. 1980, Schwaegerle and Bazzaz 1987), but

the patterns are not always consistent, even within a species. For example, Polygonum

genotypes were found to display increased genetic variance along a soil moisture gradient

(Sultan and Bazzaz 1993b), but not with respect to a light gradient (Sultan and Bazzaz,

1993a).

In this study both the full sun and the low light environments are novel, and

consequently may be stressful. Natural variation in light availability in this population

ranges from 25% to 75% of full sun (Chapter 2). The results show that heritability

estimates along a light gradient vary, depending on the trait. Heritability estimates for

flowering date, specific leaf area, and mean seed mass were high or highest in full sun,

while estimates for emergence date and reproductive investment were highest in low

light. Winter size and mainstem length were most heritable in the intermediate or natural

light environments. Overall, trait heritability was lowest in the low resource

environments (Table 5: 10% sun, 40% sun, and forest interior). It is likely that genetic

variation is absent in low light simply because all genotypes performed poorly.

Maternal effects

In a half-sib design, the maternal variance component a fraction of the additive

genetic variance plus a portion of dominance variation and maternal environmental and

genetic effects (Falconer and Mackay 1996). In this study, winter size and mean seed

mass in both years, and length ofmainstem, vegetative biomass, and seed number in the
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second year had no additive genetic variance, but substantial among darn variance. It is

quite possible that these effects indicate genetic differences among mothers in their

effects on offspring phenotype (rather than dominance or maternal environment effects).

First, the relatively uniform greenhouse conditions under which the dams produced seeds

should minimize maternal environment effects. Second, other studies of this population

have found substantial maternal genetic effects on seed mass and winter size (Chapter 2,

'Thiede 1998). Finally, there is no evidence for dominance variation in seed mass or

winter size in this population (Thiede 1998).

The persistence of maternal effects in the absence of additive genetic variation

late in the life cycle in the second year is a striking result. The significant differences

among maternal families for seed number in the second year are clear evidence that

selection differentiated among maternal families. Further, the marginal dam-by-light

interaction term (Figure 9r) raises the possibility that different maternal genotypes may be

favored in different environments, and suggests that maternal plants specialize for

different seed provisioning strategies. A greenhouse study of this Collinsia population

also found that maternal effects persisted up until flowering for two size related traits

(Thiede 1998). In contrast, most other studies have found that maternal effects decline

through the life cycle (e. g. Biere 1991, Montalvo and Shaw 1994, Schmid and Dolt

1 994).

The between year differences in darn effects late in the life cycle may be due to

differences between years in the timing of emergence. Although there are strong dam

effects on winter size in both years, late emergence in the first year resulted in little

Phenotypic variation in winter size (Figures 9e-f ). Without a strongly established size
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hierarchy in the fall, over winter mortality and spring growth could not differentiate

among maternal families. Consequently, maternal effects could not persist into later life-

history stages. Earlier emergence in the second year resulted in much more variation in

overwinter size (Figures 9e-f), and possibly more variation among maternal families in

survival and spring growth (Figures 9m-v). Several other studies have found that the

expression ofmaternal effects may depend on the offspring environment (Stratton 1989,

Schmitt et a1. 1992, Schmid and Dolt 1994, Thiede 1998).

Genetic variation forplasticity

The integration ofplastic traits in coordinated responses to environmental

heterogeneity remains one of the most complex and poorly understood aspects of the

general phenomenon ofphenotypic plasticity (Schlichting and Pigliucci 1998). The

genetic and environmental effects on the suite of traits studied here were diverse and

complex. Consequently, generalizations about the effects of light gradients on the

expression of genetic variation, or plasticity evolution would be foolhardy. However, the

evidence found here for genetic variation for plasticity in several traits sheds light on

several issues.

Antagonistic pleiotropy-Mainstem length and reproductive investment are under

consistent directional selection (Chapter 4). Moreover, estimates of genetic correlations

found strong and significant positive genetic correlations between mainstem length and

vegetative biomass (Chapter 5, Table 15), and vegetative biomass is also under very

strong directional selection (Chapter 4). Under these circumstances, little genetic

variation would be expected to remain for these traits or their plasticity. Yet there is

strong evidence for genetic variation for plasticity for reproductive investment, and
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modest evidence for mainstem length. A possible explanation for this pattern is that there

are fundamental genetic tradeoffs between the ability to efficiently utilize resources and

convert them to seeds (the reproductive investment trait), and the ability to rapidly

acquire resources and convert them to biomass (the mainstem length and vegetative

biomass traits). If there are negative genetic correlations between reproductive

investment and the size traits, selection for greater Opportunistic growth ability and

biomass accumulation may also select for reduced efficiency in reproductive investment

and vice versa. This antagonistic pleiotropy may maintain genetic variation. Genetic

correlations of reproductive investment with mainstem length and vegetative biomass

were indeed negative, but they were insignificant (Chapter 5, Table 15).

Genotype-environment interactionsforfitness-There is a simpler explanation for

genetic variation in plasticity ofreproductive investment. The strong selection on this

trait across all environments simply favors different genotypes in different environments.

Consequently, genotype-environment interactions for fitness maintain genetic variation

for plasticity in this trait.

Control ofplasticity via a genetic switch-Some have suggested that plants should

be generalists for resource utilization regardless of the pattern of genetic correlations

between underlying traits (Chapin 1991, Chapin et al. 1993). Ideally, plants would be

able to both tolerate stressful low resource conditions and grow rapidly when resources

are abundant. Interspecific comparisons show that compared to sun plants, shade tolerant

plants have low relative growth rates, low photosynthetic rates, low transpiration and

stomatal conductance, low leaf turnover, and high ability to use sun flecks (e.g. Grime

1979, Chapin 1980, Chapin et al. 1993). Interestingly, when high light plants are grown
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under shady conditions, they show many ofthese shade plant characteristics, which may

represent an adaptive "stress resistance syndrome" (Chapin 1991, Chapin et al. 1993).

Chapin argues that conversion of a high resource genotype to a stress tolerant one

may involve a simple genetic switch. Hormonal regulators of plant growth, development,

and stress responses are known which meet the criteria of a genetic switch (Voesenek and

Blom 1996, Schlichting and Pigliucci 1998). If plastic responses are under single gene

control, quantitative genetics is an inappropriate model for understanding the evolution of

plasticity in these traits. It should be relatively easy for adaptively plastic responses to

resource limitation to evolve regardless of the genetic correlations among traits, and

consequently, we would expect most genotypes to be generalists with respect to light. It

is notable that there was no evidence in this study for differences among paternal families

in survival or fecundity. At this level, all genotypes appeared to be generalists.

Adaptive plasticity relaxes natural selection ?-Flowering date and specific leaf

area also show strong evidence for genetic variation for plasticity. But in contrast to most

other traits, they are under little direct selection (Chapter 4). In this case, the absence of

selection may allow genetic variation to persist. Intriguingly, adaptive plasticity may also

be responsible for the absence of selection: By being plastic, all genotypes produce

phenotypes appropriate for their environment.

Conclusion

The results of this study of Collinsia verna suggest that the patterns of genetic and

enviromnental effects on each trait are unique. Genotypes appear to specialize for

particular patterns of germination, emergence, and reproductive investment, while at the

same time they may be adaptively plastic for flowering date and specific leaf area.
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Persistent maternal effects suggest that maternal genotypes may specialize for different

reproductive strategies.
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Chapter 4

EVOLUTION OF REACTION NORMS: ENVIRONMENT-DEPENDENT

SELECTION IN A NATURAL POPULATION OF COLLINSIA VERNA

INTRODUCTION

Many recent studies have documented spatial and temporal variation in natural

selection within natural plant populations (e.g. Kalisz 1986, Kelly 1992, Stratton 1992,

1995, Gross et al. 1998). Depending on a variety of ecological and genetic factors,

theory suggests that the variable selection seen in these studies may lead to

phenotypically plastic generalist genotypes or to the persistence of specialist genotypes

and the maintenance of genetic variation (reviews in Hedrick 1986, Scheiner 1993, Roff

1997, Schlichting and Pigliucci 1998). To date, we have little ability to predict which of

these alternatives might prevail in particular populations. Moreover, a particular selective

regime may simultaneously result in plasticity in one suite of traits, and the maintenance

of genetic variation in another.

A better understanding of the evolutionary consequences of variable selection

requires detailed studies ofhow variation in environmental factors affect phenotypic

traits, plant fitness, and the expression of genetic variation in natural populations. In

particular, manipulation ofpotential selective agents is necessary to identify which

environmental factors are the causes ofnatural selection (Mitchell-Olds and Shaw 1987,

Wade and Kalisz 1990, Dudley and Schmitt 1996). Once a cause is identified,

information about the magnitude and predictability of variation in the selective agent is

necessary to predict whether this environmental variation would favor the evolution of
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adaptive plasticity or the maintenance of genetic variation in particular traits (e.g.

Bradshaw 1965, Via and Lande 1985).

Effects oflight and leaflitter

Two factors that can be expected to function as strong selective agents on plants

are light and leaf litter. Light is a primary plant resource, and has been shown to have a

strong effect on female fitness in many plant populations (reviews in Goldberg 1990,

Sultan and Bazzaz 1993). Light availability for understory plants in forests can be highly

variable in time and space (Chapter 2), but in very predictable spatial patterns, and

diurnal and seasonal cycles. Thus it is likely that this variation in light availability should

favor plastic traits that would allow plants to tolerate low light levels and convert high

light availability into increased fitness. If this selective regime has allowed the plasticity

of light responsive traits to evolve close to their Optima, we would expect to see relatively

little direct selection on these traits in all but the most extreme light environments.

Leaf litter also can have a major impact on plant fitness, particularly through

reductions in the establishment and survival of seedlings (e.g. Goldberg and Werner

1983, Bergelson 1990, Carson and Peterson 1990, Foster and Gross 1997). Litter inhibits

establishment through physical interference with the growth of emerging seedlings and

the reduction of light quantity and quality below the compensation point (Facelli and

Pickett 1991b, Foster and Gross 1998). Indirect negative effects of leaf litter on plant

fitness may include promotion of fungal pathogens, and creation of habitat for litter

dwelling seed predators and herbivores (Facelli 1994). However, in some habitats leaf

litter may facilitate seedling establishment through the amelioration of abiotic stresses

(e.g. desiccation, Fowler 1986, Wilhns et al. 1986, Harnrick and Lee 1987). An
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important abiotic stress affecting establishment ofwinter annuals in temperate deciduous

forests may be the diurnal freeze-thaw cycle that occurs at the soil surface during winter

months. Leaf litter may reduce the amplitude and frequency of these thermal cycles

(Facelli and Pickett 1991a). Thus, the effects of litter may be negative at germination, but

positive at later stages of growth. Importantly, the incidence, quantity, and persistence of

leaf litter at particular locations in forests are unpredictable (Frankland et a1. 1963, Sydes

and Grime 1981, Facelli and Carson 1991, Molofsky and Augspurger 1992).

Direct and indirect selection

Since the development of multiple regression methods for the study ofphenotypic

selection (Lande and Arnold 1983, Arnold and Wade 1984a, b), selection gradients have

received the most attention in the evolutionary ecology literature because they measure

only direct selection on a trait independent of variation in other traits, and they are easily

interpretable in terms of quantitative genetic equations for multivariate evolution (Brodie

et al. 1995). Selection differentials are problematic because although they measure total

selection on a trait. The indirect selection that is part of the differential is evolutionarily

important only if the phenotypic correlations among traits are representative of the

genetic correlations. Often, information about genetic correlations is unavailable or

would be prohibitively difficult to obtain. However, if traits are genetically correlated,

then correlated responses to selection can be a primary cause of evolutionary change in a

trait, and failure to consider correlated responses may lead to erroneous conclusions. A

great challenge for ecological genetic studies is to assess when indirect selection may

have important evolutionary consequences, especially in cases where selection gradients

and selection differentials suggest very different relationships between a trait and fitness
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(Brodie et al. 1995). Path analysis (structural equation modeling) is an underutilized tool

that can aid in understanding the potential sources of indirect selection on traits

(Kingsolver and Schemske 1991, Mitchell 1992, Conner 1996, Conner et al 1996).

In this study, I manipulated light and leaf litter within a natural population of the

forest winter annual Collinsia verna to quantify their effects on six phenotypic traits:

emergence date, date of first flowering, specific leaf area, plant height, above ground

vegetative biomass, and reproductive investment. The relationship ofthese traits to

survival and three multiplicative components of lifetime fitness in each environment was

estimated. 1 ask: Are traits plastic in response to these factors? Does the magnitude or

direction of selection on traits change across light and/or leaf litter environments? If

selection changes between particular environments, can light or leaf litter be

characterized as causes of natural selection? Do patterns of indirect selection differ from

those of direct selection in a way suggestive oftradeoffs between traits? If traits are

plastic, is the direction ofphenotypic change consistent with the observed pattern of

selection in such a way that the plasticity could be characterized as adaptive?

METHODS

Study system

Collinsia verna is a winter annual wildflower ofmoist woods in eastern North

America. The winter annual life history allows plants to grow in a window of light

availability between canopy leaf senescence in the fall and leafout in the spring. Seed

germination is cued by diurnal temperature fluctuations in the fall (Baskin and Baskin

1983). Flowering in this mostly out-crossing species begins in late April and ceases as

the canopy closes in May. Fruits ripen, seeds fall passively to the ground and plants die
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by mid-June. Biotic and abiotic conditions during the growing season are inherently

unpredictable, and can result in variable emergence, survival, and seed set (Chapter 2 and

this Chapter). Reproductive assurance in this mostly outcrossing species is achieved

through backup selfing (Kalisz et al. 1999). Long term persistence is ensured through the

production of a significant fraction ofdormant seeds (Kalisz 1991).

Experimental design

The study population (described in Thiede 1998), occurs along the south-facing

edge of a woodlot adjacent to an agricultural field in Kalamazoo County, southwest

Michigan. Eight different light and leaf litter environments were created at the field site.

Each light and litter combination was replicated five times for a total of40 1.2 m2 plots.

To control light levels, the entire woody canopy along the southern edge of the

population was cleared, and three light treatments were assigned randomly to the 15 plots

in this area: full sun, 40% of full sun, and 18% of full sun (Figure l of Chapter 2).

Reduced light was achieved by placing a wood lattice (3.5 cm wood strips in a 15 cm or 7

cm grid) over the plots that allowed sunflecks to reach the plants throughout the day.

Because light was being manipulated in these plots, leaf litter was not allowed to

accumulate (for details see Chapter 2). To understand how light and litter manipulations

relate to the conditions the plants naturally experience, 25 additional plots were

established. In 15 of these plots leaf litter was lefi intact. These plots were placed along

the natural light gradient with five in the forest interior, five along the southern edge, and

five in the full sun. The remaining ten plots, five along the southern edge and five in the

forest interior, had all leaf litter removed on a twice weekly basis. Light was more

variable in the plots in the forest and along the edge than in the cleared area where light
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levels were experimentally manipulated. The mean light availability in the forest interior

was about 45% of firll sun, while along the edge it was about 70% of full sun. Overall,

there were five light levels in the study: low (18%), medium (40%), forest interior (45%),

edge (70%), and full sun (100%). The low and medium light levels had all leaf litter

removed, while the three highest light levels had both litter and no litter treatments.

In the fall of 1996, I conducted weekly censuses of all naturally emerging

Collinsia verna seedlings. Plants were tagged with color coded washers. Mortality

censuses were done weekly through December, again just prior to flowering in April, and

at harvest in June. In April and May of 1997, survivors were tagged for date of first

flowering and sub-sampled for specific leaf area. A circular piece of leaf tissue from the

youngest fully expanded leaf was collected with a hole punch, air dried, and weighed to

determine specific leaf area for approximately 250 randomly chosen individuals in each

treatment, 50 from each plot. Plants were harvested prior to seed dispersal in June.

After harvest, plants were air dried and scored for length of the mainstem, aboveground

vegetative biomass, number of flowers, number of fruits, number of seeds, and total mass

of seeds. Multiplicative fitness components (fruits per flower and seeds per fiuit) were

calculated from these measures for use in path analysis. Reproductive investment was

calculated as the proportion of aboveground biomass that was seeds. Because all plants

were dying at this point, this trait measures the efficiency with which they were able to

convert vegetative biomass to seeds, not simply reproductive allocation.

Data analysis

Phenotypic plasticity-The first goal of the analysis was to determine if the traits

were plastic in response to the environmental manipulations. For this analysis, each of
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the eight environments was considered a unique treatment. Fixed effects of treatment on

emergence date, flowering date, specific leaf area, mainstem length, vegetative biomass,

reproductive investment, flowers, fi'uits/flower, seeds/fi'uit, and seeds were tested with a

one-way MANOVA (SAS GLM procedure, SAS 1989). This approach is conservative,

correcting for any correlations among traits. Although specific contrasts are of interest in

the selection parameters (below), these phenotypic traits and fitness components were

compared across all pairs of environments using univariate post-hoe tests. Traits were

log-transformed as necessary to improve normality.

Survival analysis-The effects of leaf litter, light level, and emergence date on

survival to flowering were analyzed with proportional hazards regression (SAS PHREG

procedure, SAS 1997). Litter was coded as present or absent (0 or 1), and light levels

were ordered from low (1) to full sun (5). The lifespan of each individual was determined

in days from the date the first seedling emerged. Because seeds that emerged late were

not exposed to the same conditions as those which emerged early, individuals that

emerged late were treated as missing values in the risk set until they emerged (Allison

1995). Data for plants that survived to flowering was treated as uncensored. There was

very little mortality between flowering and harvest, when all plants died. Treating

survivors as censored data increased the magnitude ofparameter estimates, but signs and

significance levels were identical.

Plants growing in the medium and low light treatments experienced high

mortality due to grazing by an unknown herbivore in early spring. The shade lattice

appeared to provide a refuge for these grazers, who removed the cotyledons and leaves of

many plants, killing them (personal observation). Because this mortality is likely an
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artifact of the lattice not directly related to the light and leaf litter manipulations of

interest, these treatments were excluded from the full analysis.

Phenotypic selection-Natural selection on emergence date, flowering date,

specific leaf area, mainstem length, vegetative biomass, and reproductive investment, was

analyzed using multivariate episodic selection analysis (Arnold and Wade 1984a). For

this analysis, all traits were standardized to a mean of zero and unit variance. Linear and

nonlinear selection differentials (S, C) and gradients ([3, 7) were calculated with simple

(S, C) and multiple regression (B and y) for two episodes of selection, survival to

flowering and fecundity (SAS REG procedure, SAS 1989). Variance inflation factors

(VIFs) were less than ten for all terms in all analyses, indicating that there were no

problems with multicollinearity (Neter et al. 1985). Although the selection parameters

calculated for each episode are not additive (Lynch and Arnold 1988), they do address the

fitness consequences of traits independent of selection in other episodes (Koerrig et al.

1991). Moreover, because only one trait, emergence date, is common to both selection

episodes little would be gained by transforming the selection parameters to make them

additive.

Selection gradients are a measure of direct selection on a trait, while the selection

differentials measure total selection on a trait including any indirect selection through

phenotypically correlated traits. The survival episode was a univariate analysis of

emergence date because no other traits were measured in this interval. The fecundity

episode included all six traits. Relative fitness was calculated for each episode by

dividing a plant's survival (0 = died or 1 = survived) or seed number by the mean

survivorship or seed number for all plants within the same environment. Confidence
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intervals for selection parameters were calculated using bootstrap resampling methods

(Noreen 1989, Dixon 1993). The data sets for each of the eight environments were

resampled 1000 times using a SAS macro (SAS 1990). The number of observations in

each resampled data set was equal to the number ofobservations in the original data set.

Bootstrapping and parametric significance tests produced nearly identical results.

Calculation of selection parameters for the survival episode using logistic regression

(SAS LOGISTIC procedure, SAS 1997), and back transforming the results (Janzen and

Stern 1998) also produced similar results (not reported).

Overall differences across environments in selection parameters were analyzed

with heterogeneous slope tests (ANCOVA in SAS GLM procedure, SAS 1989). For

traits where the linear selection gradients were significantly different, planned contrasts

were constructed using the contrast statement in proc GLM. Six contrasts were evaluated

for each trait: the three unmarripulated light environments (forest interior, edge, and full

sun) contrasted with each other, and presence versus absence of leaf litter within each

light environment.

Path analysis-Structural equation modeling was used to investigate the

relationships among traits in order to understand the sources of indirect selection in each

environment (SAS CALIS procedure, SAS 1997). The multiple regression technique

used in selection gradient analysis is analogous to a path model where all traits are

directly linked to fitness (Figure 10a). This model assumes no causal relationships

among traits and may be misleading when causal relationships among traits are expected.

In this study, it is likely that emergence date, flowering date, specific leaf area, and

mainstem length are causally related to the performance traits total vegetative biomass
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Figure 10. Path models representing possible relationships between traits and fitness.

Straight lines with single headed arrows represent hypothesized causal relationships,

while curved lines with double headed arrows represent correlations. (a) Multiple

regression of all traits on fitness. This path diagram represents the multivariate

directional gradient analysis. (b) Path model 1 with vegetative biomass and reproductive

investment as intermediate traits, and three multiplicative fitness components. (c) Path

model 2 with only vegetative biomass as an intermediate trait. Traits: emergence date

(Edate); flowering date (Fdate); specific leaf area (SLA); length ofmainstem (Mainstem);

reproductive investment (RI); vegetative biomass (Mass); residual unexplained variation

(U).
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and reproductive investment. It is also possible that these relationships may change

depending on the light environment.

Two a-priori path models were analyzed (Figure 10b-c). In model one, vegetative

biomass and reproductive investment were treated as intermediate traits linking

emergence date, flowering date, specific leaf area and mainstem length to fitness

components. In model two, only vegetative biomass was treated as an intermediate trait.

Model two may be more appropriate in high resource conditions, where abundant

resources make efficient conversion of resources to seeds less important. Model one may

be more appropriate in low resource conditions where the ability to efficiently use scarce

resources is critical. In both path models, seed number was partitioned into three

multiplicative components: flowers, fruits/flower, and seeds/fruit. Correlations among

all traits, and correlations of multiplicative fitness components with seed number are

provided to aid interpretation, but the analysis was run on the covariance matrices, as this

produces more reliable standard errors (Hatcher 1994).

Emergence date, flowering date, specific leaf area, vegetative biomass, and

number of flowers were log transformed based on the results of the diagnostics for

multivariate normality reported by the CALIS procedure. In structural equation

modeling, outliers do not have a strong effect on path coefficients, but can cause highly

inaccurate standard errors (Hatcher 1994). Path coefficients were estimated from the full

data set using the maximum likelihood method. For significance testing, outliers were

identified and excluded using the multivariate kurtosis diagnostics in the CALIS

procedure. The significance of individual paths was determined from t tests calculated by

dividing each path coefficient by its standard error. Because models one and two are not
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nested, there is no way to compare them statistically. The fit of each model to the data

was compared to that of a null model (no correlations among traits) with Chi-square tests

and three goodness-of—fit measures.

RESULTS

Phenotypicplasticity

All traits and fitness components were highly plastic in response to light

(MANOVA, P<0.0001 for each, Figures 1 1, 12). The effects of leaf litter were variable.

In the forest interior, litter had no effect on early life history traits, but had a dramatic

effect on vegetative biomass, reproductive investment, flowers, and seeds per fruit. On

the edge, leaf litter affected traits that were expressed throughout the life cycle:

emergence date, specific leaf area, mainstem length, and number of seeds. In the full sun,

leaf litter only affected emergence date and specific leaf area.

Traits varied in response to light following several different patterns. There were

maximums at intermediate light levels for traits closely linked to fitness (vegetative

biomass, reproductive investment, number of flowers, and number of seeds), suggesting

that the extreme environments were stressful. Mainstem length also had maximum

values in intermediate light environments. Emergence date was earliest in the forest

interior and edge environments. Flowering date and specific leaf area declined with

increasing light. These are characteristic light responses in most plants. Fruits per flower

showed a modest increase with light.

Survival analysis

The goal of this analysis was to understand the combined effects of leaf litter,

light environment, and emergence date on patterns of mortality. Because mortality in the
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Figure 11. Means and standard errors ofphenotypic traits. Fixed effects of the eight

environments were analyzed in a single one-way MANOVA that included all phenotypic

traits and all fitness components (Figure 12) except survival as dependent variables

(GLM procedure, SAS 1989). All traits differ across environments at P<0.0001. All

pairwise means comparisons were made using the tukey option of the means statement of

proc. GLM. Columns sharing a letter are not significantly different from each other at

P<0.05.
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Figure 11.
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Figure 12. Means and standard errors of fitness components. All pairwise means

comparisons were made as in Figure 11. Survival is not a continuous variable, so it could

not be analyzed this way. Environmental effects on survival were analyzed separately

using proportional hazards regression (Tables 8 and 9).
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Figure 12.
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medium and low light manipulations was caused by herbivory that was unrelated to light

or litter, these travo treatments were excluded from the full analysis. Overall, the presence

of leaf litter more than doubled the probability that plants would die before flowering

(Table 8), but this result was accompanied by a highly significant three-way interaction

between leaf litter, light environment, and emergence date. The risk ratio describes the

change in hazard of death as a consequence of a one unit change in the variable. Risk

ratios greater than one indicate an increasing hazard, less than one indicate a decreasing

hazard. The risk ratio of 0.998 for emergence date in Table 8 indicates that the hazard of

death before flowering declined 0.2% for every day that emergence was delayed or about

6% per month. The risk ratio of 1.005 for the significant two-way interaction of

emergence date and light indicates higher risk of death with greater combinations of these

two (late emergence in high light), while the risk ratio of 0.994 for the three-way

interaction suggests this relationship did not hold in the presence of litter as seen in

Figure 12a. This result is consistent with the hypothesis that leaf litter might reduce the

number of diurnal freeze-thaw cycles.

To better understand the three-way litter by light by emergence date interaction,

separate analyses of the effect of emergence date on survival were then run within each

litter and light level combination, including the low and medium light manipulations

(Table 9). When leaf litter was intact, there were no significant effects of emergence date

on the hazard function in any light environment. In the absence of leaf litter, the risk of

death increased with delayed emergence by 33-36% per month in the forest interior and

full sun, but by 63% per month along the edge. In the low light treatment (excluded fiom

the full analysis), the risk ratio of 0.995 indicates a 15% decline in the risk of death for
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Table 8. Proportional hazards regression survival analysis for effects of emergence date,

leaf litter, and light for forest interior, edge, and full sun environments (N=9836).

 

 

Variable P Risk Ratio

Emergence Date 0.6564 0.998

Leaf Litter 0.0138 2.099

Light 0.6124 0.969

Emergence Date X Leaf Litter 0.3831 1.007

Emergence Date X Light 0.0003 1.005

Leaf Litter X Light 0.5289 1.051

Emergence X Litter X Light 0.002 0.994
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Table 9. Proportional hazards regression survival analysis for effects of emergence date

on survival of Collinsia verna within environments.

 

 

Environment N P Risk Ratio

ElliLAanlilfi

Forest, With Leaf Litter 1402 0.5037 0.999

Forest, No Leaf Litter 1582 0.0001 1.011

Edge, With LeafLitter 2100 0.657 0.999

Edge, No Leaf Litter 2165 0.0001 1.021

Full Sun, With Leaf Litter 1466 0.6368 0.999

Full Sun, No Leaf Litter 1121 0.0001 1.012

iv ct

18% Sun, No LeafLitter 2982 0.0001 0.995

40% Sun, No Leaf Litter 2156 0.49 0.999
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every month that emergence is delayed. The herbivores preferred earlier emerging

seedlings.

Phenotypic selection: Survival episode

The direction of selection on emergence date changed in the unmarripulated light

environments depending on the presence or absence of leaf litter (Figure 13a). Moreover,

there was significant upward curvature in the fitness surface in all environments (positive

nonlinear gradients, Figure 13b). This means that there were dramatic nonlinear

increases in survival with late emergence in the presence of leaf litter, but with early

emergence in the absence of leaf litter. Overall, this result implies strong disruptive

selection on emergence date. In the low and medium light manipulations where

herbivory was the primary source of mortality, positive directional selection on

emergence date indicates that late emerging plants were less likely to be eaten. These

results are generally consistent with the survival analysis, but selection for late emergence

by leaf litter appears much stronger here than suggested in the previous analysis.

Phenotypic selection: Fecundity episode

The most striking result of this analysis was that indirect selection differed in sign

from direct selection for nearly all traits and environments (Figure 14). In contrast to the

survival episode, there were no changes in the direction of direct linear selection except

for specific leaf area (Figure 14). Direct selection favored higher specific leaf area (a

shade phenotype) in the forest interior and on the edge, but lower specific leaf area in the

undisturbed full sun environment (Figure 14c). Total linear selection (open bars, Figure

14) differed significantly in magnitude across enviromnents for all traits except

emergence date, and direct selection (shaded bars, Figure 14) differed for specific leaf
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Figure 13. Survival episode standardized linear (B) and nonlinear (7) selection gradients

for emergence date. Because emergence date is the only measured trait that was

expressed during this episode, selection gradients and differentials were very similar.

Consequently, only the gradients are presented. Bars are 95% confidence intervals based

on 1000 bootstrap resampled data sets. P-value is the result of an overall ANCOVA

testing whether selection gradients differ across environments. The Y-axis indicates the

proportion by which relative fitness would change with a change ofone standard

deviation in the trait. (3) Linear gradients. (b) Nonlinear gradients.
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Figure 14. Fecundity episode standardized linear selection differentials (S) and gradients

([3). Bars are 95% confidence intervals based on 1000 bootstrap resampled data sets. P-

values are the results ofANCOVAs testing wether differentials or gradients differ across

environments. The Y-axis indicates the proportion by which relative fitness would

increase with an increase of one standard deviation in the trait. Note that the scale of the

Y-axis differs between figures. (3) Emergence date. (b) Flowering date. (c) Specific leaf

area. ((1) Mainstem length. (e) Vegetative biomass. (0 Reproductive investment.
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Figure 14.
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area, vegetative biomass and reproductive investment.

Planned contrasts for these three traits showed different patterns of change in the

linear selection gradients across environments (Table 10). Selection on specific leaf area

and reproductive investment differed between the full sun and the other unmarripulated

environments (Figures 14c, f). In contrast, selection on vegetative biomass was similar

across light environments, but increased in the presence of leaf litter in the forest interior

and on the edge (Figure l4e).

There was little direct nonlinear selection (nonlinear gradients, 7“) on any trait in

any environment, except vegetative biomass (Figure 15, shaded bars). There was strong

and variable upward curvature in the fitness function for vegetative biomass. This

increasing slope suggests that fitness accelerated as plants got bigger across all

environments. Total nonlinear selection was generally negative for most traits (Figure

15, Open bars). When viewed in conjunction with the negative linear terms, these results

suggest that plants with particularly late emergence or flowering, or high specific leaf

area had very low fitness.

With one exception, correlational selection gradients (yij) were not significantly

different from zero (results not shown). There was significant correlational selection to

increase the covariance between vegetative biomass and reproductive investment across

all environments (range: 7,, = 0.2 in the forest interior to yij = 0.4 in the full sun). This

result simply suggests that plants that were able to allocate resources to seeds in

proportion tO their size had higher fitness.
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Figure 15. Fecundity episode standardized nonlinear selection differentials (C) and

gradients (7). See Figure 14 for details.
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Figure 15.
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Path analysis

The path analyses revealed sources of indirect selection on traits in the fecundity

episode, and also showed how different traits contribute to the multiplicative fitness

components in different ways. As suggested by many reviews of the use of structural

equation models (e.g. Petraitis et al. 1996, Shipley 1997, Grace and Pugesek 1998), Table

11 presents the raw data (means, standard deviations, and correlations) used in these

analyses. Correlations with seed number are also presented in this table to aid in

interpreting paths leading to multiplicative fitness components. Goodness of fit indices

for both path models (Figures 10b-c) in all environments are presented in Table 12. The

Chi-square statistic reported here is a measure ofhow well the specified model fits the

data, with higher P values indicating a better fit. Values of the normed fit index (NFI),

non-normed fit index (NNFI), and the comparative fit index (CFI) greater than 0.9

indicate an acceptable fit between model and data (Hatcher 1994). In all cases model one

provided a better fit to the data, so only the results of the analysis of this model are

presented. Results for model two were essentially identical to those for model one.

Consistent with the results of the fecundity selection episode, the relationships

among traits in the path analysis were quite similar across all environments (Tables 13

and 14). The path diagram for the natural forest environment is representative of these

results (Figure 16). Earlier emergence was predictive of greater vegetative biomass.

Earlier flowering was predictive of greater vegetative biomass and reproductive

investment, but later flowering increased number Of seeds per fi'uit. Selection favored

higher specific leaf area (shade phenotype) directly through its relationship with flower

number and indirectly through reproductive investment. But this selection was balanced
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Table 12. Goodness Of fit indices for path models. df= degrees Of freedom; NFI =

normed fit index; NNFI = non-normed fit index; CFI = comparative fit index.

 

Model Chi-square df P NFI NNFI CFI

MWn=214

Null Model 941.6317 36 <0.000 0

Model 1 25.2778 6 0.0003 0.973 0.872 0.979

Model 2 27.2053 7 0.0003 0.971 0.885 0.978

' e itt n=205

Null Model 1099.373 36 <0.000 0

Model 1 13.1631 6 0.0405 0.988 0.960 0.993

Model 2 24.4493 7 0.0009 0.978 0.916 0.984

Eorestlmmgnflmi n=190

Null Model 761.2273 36 <0.000 0

Model 1 16.0655 6 0.0134 0.979 0.917 0.986

Model 2 30.5346 7 0.0001 0.960 0.833 0.968

Wn=223

Null Model 847.4237 36 <0.000 0

Model 1 9.3355 6 0.1556 0.989 0.975 0.996

Model 2 20.3378 7 0.0049 0.976 0.916 0.984

W 11:224

Null Model 893.9886 36 <0.000 0

Model 1 5.3995 6 0.4937 0.994 1.004 1

Model 2 8.1612 7 0.3186 0.991 0.993 0.997

Wn=23l

Null Model 865.8145 36 <0.000 0

Model 1 14.0028 6 0.0296 0.984 0.942 0.990

Model 2 33.954 7 0.0001 0.961 0.833 0.968

Wn=316

Null Model 1407.2935 36 <0.000 0

Model 1 8.002 6 0.238 0.994 0.991 0.999

Model 2 17.9727 7 0.0121 0.987 0.983 0.992

Wn=272

Null Model 1335.4301 36 <0.000 0

Model 1 11.304 6 0.0794 0.992 0.976 0.996

Model 2 20.1626 7 0.0052 0.985 0.948 0.990
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Table 13. Path model one standardized path coefficients for all causal paths. *P<0.05,

**P<0.01, ***P<0.001. Environments: 1. Low light no leaf litter (18% Sun), 2. Medium

light no leaf litter (40% Sun), 3. Forest Interior natural, 4. Forest Interior no leaf litter, 5.

Edge natural, 6. Edge no leaf litter, 7. Full sun natural, 8. Full sun no leaf litter. Traits:

Emergence Date (ED), Vegetative Biomass (VB), Flowering Date (FD), Flowers (FL),

Fruits/Flower (FF), Seeds/Fruit (SF), Reproductive Investment (RI), Specific Leaf Area

(SLA), Mainstem Length (MS).

 

 

 

Environment

Path 1 2 3 4 5 6 7 8

ED>VB -0.03 0 -0.l6** -0.05 -0.l9*** -0.2*** -0.1 1*" -0.08

FD>VB -0.29*** -0.37*** -0.22*** -o.21*** -0.26*** -0.1* -0.19*** 015*”

FD>FL -0.08** -0.03 -0.02 -0.01 0 -0.09*** -0.06*** -0.02

FD>FF 0.1 0.06 -O.ll -0.l8*** -0.02 0.01 0.03* 0.09

FD>SF 0.12* 0.1 0.2** 0.08 0.09 0.18* 0.13”“ 0.11*

FD>RI -0.2*** -0.23** -0.23*** -0.18* -0.07* -0.14 -0.22*** -0.25***

SLA>VB -0.2*** -0.11* -O.l9** -0.18** -0.26*** -0.35*** -0.28*** -0.23***

SLA>FL 0 004* 009*" 004*" 0.05** 0.13*** 0.04 0.03

SLA>RI 0.14** 0.22** 0.34*** 0.11 0.29 036*" 0 0.34m

MS>VB 0.69*** 0.56*** 0.47*** 0.52*** 0.47*** 0.32*** 064*” 0.63***

MS>FL 029*" 0.03 0.03 -0.03* 0 -0.08*** -0.04** 0.02

MS>FF -0.33** -0.07 -0.02 0 -0.03 0 0.01 -0.17*

MS>SF -0.06 -0.03 -0.03 -0.07 0.01 0.13** 0.06 0.02

MS>RI 0.07 0 -0.01 -0.1 1* -0.15** 0.05 -0.l8* -0.11"'

VB>FL 0.56*** 0.93*** 0.93*** 0.97*** 0.97*** 1*" 0.97*** 0.96***

VB>FF 0.33** 036* 0.14 0.02 0.03 0.37*** 027*" 034*"

VB>SF 0.15 0.29" 025** 027*“ 028*** 0.12" 0.15* 0.21"

RI>FL 0.04 0.14*** 0.06 02*" 021*“ 024*" 02*“ 0.13***

RI>FF 043*" 033*“ 033*** 0.21 0.04 0.35 024* 047*"

RI>SF 0.62*** 0.68*** 0.62*** 0.63*** 0.6*** 0.57*** 0.65*** 0.66***
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Table 14. Path model one unanalyzed correlations. Details as in Table 13.

 

Environment

 

Path 1 2 3 4 5 6 7 8

 

ED<->FD 0.39*** 0.39*** 029*" 026*" 034*" 0.33*** 035*** 0.42***

ED<->SLA 0.1 0.08 -005 0.06 0.06 0.08 0.06 0.06

ED<->Ms -0.13* -011 -0.06 01* -013 -0.06 -0.07* -015

FD<->SLA 027*** 0.32*** 0.19 022* 011* 02* 0.06 0.23***

FD<->MS -0.13* -033*** -0.07* 002 -002 -007 -0.06* -0.21***

3LA<->Ms -005 -O.l6* -0.16*** -o.17** -003 -0.29*** -0.14* -0.11*

VB<->RI -0.08 -0.26*** -0.29*** -021*** -012* -0.29*** -0.17** -0.2***

FL<->FF -0.54*** -0.56*** -0.56*** -o.4*** -037*** -0.33*** -0.29*** -0.36**"‘

FL<->SF -0.27** -0.21** -0.17** -0.26*** -0.44*** -0.49*** -0.35*** -0.24***

FF<->SF -029*** -0.15* -0.23*** -0.3*** -0.04 -0.1 -0.31*** -0.l6*
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Figure 16. Representative path diagram showing typical relationships among traits. This

diagram is for the natural forest interior plots. The size of the arrow indicates the

magnitude of the correlation or path coefficient. Solid lines are positive, dotted lines are

negative. "U" represents residual unexplained variance. All values are from structural

equation models based on the correlation matrices in Table 11. For other environments

see Tables 13 and 14.
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by indirect selection for lower specific leaf area (sun phenotype) through vegetative

biomass. Lower specific leaf area, and longer mainstems were consistently predictive of

greater biomass and consequently more flowers and more seeds per fruit. Earlier

flowering and higher specific leaf area were predictive Ofhigher reproductive investment

and consequently more fruits per flower and more seeds per fi'uit.

Vegetative biomass increased fitness primarily through the production ofmore

flowers, while reproductive investment functioned through increases in fruits per flower

and seeds per fruit. Seed production was consistently more highly correlated with flower

number than with fruits per flower or seeds per fruit (Table 11). There were consistent

negative correlations between biomass and reproductive investment and between the

three multiplicative fitness components (Table 14). These negative correlations suggest

tradeoffs among these various fitness components.

In only two cases were there clear environmentally-dependent changes in the

signs Ofpath coefficients. In each case the magnitudes of the path coefficients were small

but significant (FD>FF and MS>FL, Table 13). Early flowering plants resulted in more

fruits per flower in the forest, but the Opposite was true in the sun. In each ofthese

environments plants flowering at these times were more likely to be flowering

synchronously with the bulk of the population. Longer mainstems were predictive of

more flowers in the low light manipulation, but fewer flowers in three other

environments.

DISCUSSION

The results of this study show that the presence of leaf litter caused a change in

the direction Of direct linear selection on emergence date. Full sun resulted in a change in
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the direction of direct linear selection on specific leaf area. These differences in selection

provide direct evidence that leaf litter and light were causes of selection in this

experiment (Wade and Kalisz 1990). The strength of selection on vegetative biomass and

reproductive investment was also environment-dependent in some cases (Table 10). In

other cases (flowering date and mainstem length), direct linear selection was surprisingly

consistent across all enviromnents, and quite small in magnitude. That flowering date,

specific leaf area, and mainstem length are highly plastic, but subject to little direct

selection in any environment suggests that the plasticity in these traits is near Optimal.

Selection always favored greater vegetative biomass and higher reproductive investment.

However, there were increasing fitness returns (nonlinear gradients) for greater biomass,

but not for greater reproductive investment. Instead, the nonlinear differentials suggest

that fitness returns plateau for reproductive investment.

Indirect linear selection was almost always in an opposing direction to direct

selection. Consequently, total selection on traits often differed in sign from direct

selection. Indirect selection of a greater magnitude and Opposite direction from direct

selection as seen in this study is a common finding in multivariate selection studies Of

many species (e.g. Impatiens pallida Mitchell-Olds and Bergelson 1990, Bennington and

McGraw 1995, Gross et a1. 1998, LobeIia Johnston 1992, Diodia teres Jordan 1991,

Chamaecristafasiculata Kelly 1992). In this study, the path analyses revealed consistent

relationships among traits across all environments that may lead to the observed patterns

of indirect selection.
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Traits

Several univariate studies have detected selection for earlier emergence (Kalisz

1986, Miller 1987, van der Toorn and Pons 1988, Biere 1991), and some multivariate

studies have found direct influences of emergence time on early survival (Kelly 1992,

Stratton 1992). However, most multivariate studies show that selection on emergence

date is indirect and occurs through phenotypic correlations with size-related traits

expressed later in the life-history (Mitchell-Olds and Bergelson 1990, Kelly 1992,

Stratton 1992, Bennington and McGraw 1995, Thiede 1996). In Collinsia, the size that

seedlings achieve by the onset Ofwinter is an important determinant of overwinter

survival (Chapter 2, see also Thiede 1996). Large size at overwintering is also correlated

with greater fecundity (Thiede 1996), but at a relatively low level compared with other

traits expressed later in the life-history (Chapter 2). Interestingly, there is some evidence

that sufficient size at overwintering can be achieved either through early emergence or

large seed size (Figure 8 of Chapter 2). Within generations, the phenotypic correlations

between these traits are negative (late emerging plants produce small seeds, unpublished

data, see also Thiede 1996). However, across generations the phenotypic correlations are

positive (large seeds emerge later, Chapter 2, see also Kalisz 1989, Thiede 1996), and the

traits have a significant positive genetic correlation (Kalisz 1989, Thiede 1998).

Three episodes of selection on emergence date in an Illinois population of

Collinsia verna were studied over two generations by Kalisz (1986): survival to spring,

survival from spring to fruiting, and fecundity. There was significant direct selection for

early emergence in the survival to spring episode ofthe first year (B=-0.06), and in both

fecundity episodes (year 1: (310.2, year 2 [3=-0.08). In the first year an autumn flood
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removed most litter, creating conditions similar to those in the no litter environments in

this study, where selection also favored early emergence (Figure 13a). In the fecundity

episode, Kalisz found selection for early emergence (range B=-0.05 to B=—0.33). Because

Kalisz's study was a univariate analysis, these results are best compared to the selection

differentials in this study (Figure 14a). Again, there are striking similarities, both overall,

and in her by transect analysis. Kalisz found that total lifetime selection on emergence

date at the quadrat scale was highly variable (year 1 range B=-0.55 to 0.2, P<0.01; year 2

range B=-0.96 to 0.68, P<0.89). Considering the small sample sizes in these calculations,

it is possible that the presence or absence of leaf litter accounts for these results.

There was no direct selection on flowering date in any environment (Figure 14b).

In contrast, many other studies in annual plants have shown that early flowering may

have significant fitness benefits (e. g. Mazer 1987, Lechowicz and Blias 1988, Brassard

and Schoen 1989, Lotz 1990, Bennington and McGraw 1995, Petit and Thompson 1998,

but see Ollerton and Lack 1992). This difference may be due to the size related traits in

my analysis. Benefits of early flowering here are accrued indirectly through the greater

biomass and higher reproductive investment achieved by early flowering plants.

However, some studies still found positive direct benefits Of early flowering even when

size related traits were included in the analysis (height: Bennington and McGraw 1995,

stern height: Petit and Thompson 1998).

Selection on flowering date may depend on variable weather conditions. Spring

storms in some years could eliminate the benefits of early flowering. The path analysis

suggests that plants flowering later in the spring benefit directly by producing more seeds

per fi'uit (Table 13). It is possible that pollinator service is better later in the season when
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conditions are more benign.

Specific leaf area is a trait that integrates over all the physiological and

morphological changes that plants make to optimize photosynthetic performance in

different light environments. Consequently, it is expected to be highly plastic. The

selection differentials and gradients for specific leaf area in this study (Figure 14c) are

remarkably similar to the pattern Of selection on this trait found in studies ofIris pumila

(Tucic et al. 1998) and Diodia teres (Jordan 1991). Dudley (1996) found similar changes

in selection on two other photosynthetic traits, water-use efficiency and leaf area between

two moisture environments. The consistency of these results is noteworthy, suggesting

physiological and morphological changes in the photosynthetic machinery are critical for

success when light and moisture environments are variable. Indirect selection on specific

leaf area favored a denser, sun leafmorphology, but the path analysis (Figure 16, Tables

13 and 14) suggested a persistent tradeoff across all environments. Plants with thick

leaves produced more biomass, but plants with thin leaves were more efficient at

converting vegetative biomass to seeds. Resources invested in thick, dense leaves may be

less labile.

Not surprisingly, positive direct selection for size related traits is a common

finding in nearly all selection studies (e.g. Impatiens pallida, Mitchell-Olds and

Bergelson 1990, Bennington and McGraw 1995, Gross et al. 1998; Erigeron annuus,

Stratton 1992). Interestingly, although overall selection favored taller, heavier plants,

direct selection in this study favored shorter plants (Figure 14d). Most multivariate

selection studies that include a plant height trait have not found significant direct

selection for smaller plants (e. g. Kelly 1992, Bennington and McGraw 1995, Petit and
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Thompson 1998, but see Gross et al. 1998). I could find no previous selection studies

that have included both measures ofplant height and biomass, so it is difficult tO assess

the generality of this finding. Selection for shorter plants is likely only when an analysis

includes other size traits more strongly correlated with fitness.

A-priori, selection would be expected to favor taller plants when inter and intra-

specific competition for light is greatest. Indeed, just this sort of adaptive plasticity in

stem elongation has been demonstrated in Impatiens capensis (selection gradients for

height at 25 plants/m2: [3 = -0.l2, at 1111 plants/m2 B = 0.25, Dudley and Schrrritt 1996),

and other species (Schmitt et al. 1995, Pigliucci and Schmitt 1999). The plots in the

current study spanned a range of densities, yet direct selection consistently favored

shorter plants. At harvest, densities ranged fi'om 75 plants/m2 in the full sun no litter

environment to 244 plants/m2 in the edge no litter environment. It is possible that direct

selection would favor longer stems at densities greater than the range encountered in this

study.

In contrast to other traits, total selection on vegetative biomass and reproductive

investment was less than direct selection (Figures 14e-f). The results ofthe path analysis

provide an explanation for this pattern: there is a tradeoff between these traits, and they

contribute to different fitness components (Figure 16, Table 13). The relationship

between vegetative biomass and flower number is obvious: larger plants have more

flowers. The relationship between reproductive investment and the number of seeds per

fruit suggests that reproductive investment may be a measure Of the ability to self

pollinate (Kalisz et al. 1999) and/or Of various display characters that affect the rate of

pollinator service (flower size, color, scent, rewards). However, it is difficult to see how
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investment in display characters or the ability to selfpollinate could result in the negative

correlation between vegetative biomass and reproductive investment. Given this negative

relationship, it is likely that reproductive investment is in part a measure ofthe ability to

reallocate resources to seeds. The tradeoffreflects a basic energetic constraint: large

plants must invest prOportionally more resources in structural tissues, which are then

unavailable to provision seeds.

Causes ofselection

The Observation that there is spatial and temporal variation in the magnitude of

selection within populations is a common finding, but rarely can the cause of this

variation be identified (e.g. Kalisz 1986, Stewart and Schoen 1987, Kelly 1992, Stratton

1992, Gross et al. 1998). Reciprocal transplants can demonstrate environment-dependent

selection and can suggest possible causal agents ofpopulation differentiation (e.g. Jordan

1991, Bennington and McGraw 1995, Petit and Thompson 1998). However, actual

environmental manipulations are necessary to identify specific causal agents of selection

(Mitchell-Olds and Shaw 1987, Wade and Kalisz 1990). Surprisingly few studies in

plants have used this powerful approach (Dudley 1996, Mauricio and Rausher 1997,

Tucic et al. 1998, Winn 1999).

Recently, researchers have manipulated both environment and phenotype to gain a

more mechanistic understanding Of environmental effects on plant phenotype and fitness

(reviews in Schmitt 1999, Schmitt et al. 1999, Schmitt 1997). By inducing the

production ofthe "wrong" phenotype in relevant environments, this approach allows both

the identification of causes of selection and the testing of adaptive plasticity hypotheses.

By manipulating plant height using mutants (Schmitt et a1. 1995, Callahan et al. 1999,
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Pigliucci and Schmitt 1999) and light and hormonal cues (Dudley and Schmitt 1996,

Cipollini and Schultz 1999), it has been shown that increased plant density selects for

shade-avoidance responses, and that plasticity in these traits is adaptive. Other studies Of

similar design have demonstrated the potential adaptive value ofhormOnally-induced

chemical defenses and the effectiveness of herbivores as selective agents (Baldwin 1998,

Agrawal et a1. 1999).

The results ofthis study show that in this population, leaf litter was a selective

force on emergence date (Figure 13a). Further, leaf litter and light interact in their

effects. In the presence of leaf litter, selection for late emergence was constant across

different light levels. Other studies have shown that leaf litter can be a source of

mortality, both directly through physical interference and shading, and indirectly through

its affect on pathogens and herbivores abundance (Facelli 1994). In this population, '

seedlings become etiolated and fragile when they emerge beneath litter. The environment

under the litter also provides an ideal habitat for foraging slugs which occur in abundance

in some autumns (Thiede 1996).

In the absence of leaf litter, the strength of selection for early emergence increased

with light availability. Here, the diurnal freeze/thaw cycle in the upper soil layer over the

winter may cause mortality, and this cycle may be stronger in high light. Late emerging,

shallowly rooted plants are vulnerable tO being heaved from the soil (personal

observation). That leaf litter selects for later emergence suggests that the litter layer

buffers these temperature cycles, and that late emerging seedlings are less likely to

become trapped under litter.

Results also showed that light environment was a selective force on specific leaf
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area (Table 10, Figure 14c). Low light favored a shade leaf morphology, while full sun

favored a sun leaf morphology. Environment-dependence in the pattern of selection on

vegetative biomass and reproductive investment was also evident (Table 10), but the

causal effects of environment are more difficult to characterize because these results were

not consistent across all environments (Figures 14e-f).

When is plasticity adaptive?

Because the plants in this study were not induced to produce the wrong phenotype

in each environment, this study cannot answer this question definitively. However, the

results for flowering date, specific leaf area, and mainstem length are consistent with the

hypothesis that plasticity is adaptive. The lack of strong direct selection on these traits

within environments in spite of significant plasticity across environments suggests that

plants are producing the appropriate phenotypes in each environment. The apparent

conflict between direct and indirect selection for each of these traits may mean that

tradeoffs among traits prevent a closer match between phenotype and environment.

In contrast, there is strong evidence that plasticity in timing of emergence is not

adaptive. Emergence date shows considerable plasticity in response to both leaf litter and

light (Figure lla), but plasticity is nearly always Opposite to the direction favored by

selection. Except on the edge, plants emerged earlier in the presence of leaf litter, but

selection in these environments favored later emergence. In the absence of litter, plants

in high light emerged late, but selection favored early emergence. Positive directional

selection on vegetative biomass and reproductive investment across all environments

(Figure 14) combined with the intermediate maxirna seen for these traits (Figure 11)

suggests that plasticity in these traits is not adaptive. Because both the low light and full
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sun environments increase mortality and reduce fecundity, these environments can be

characterized as stressful for this population (Hoffman and Parsons 1991, Bennington and

McGraw 1995).

A weakness Of all the approaches used in this study ofnatural selection is that

they are based upon correlations among traits (Mitchell-Olds and Shaw 1987, Wade and

Kalisz 1990, Brodie et al. 1995). These relationships may be due to causal relationships

among traits and/or between traits and fitness. They may also be caused by selection on

phenotypically correlated, but unmeasured traits, or by environmentally induced

covariance between traits and fitness (Rausher 1992). Selection on specific leaf area is a

good example. Although specific leaf area reflects changes in leaves that occur in

response to light availability, the actual traits under selection differ in different light

environments. The large thin leaves produced in shady environments where photons are

scarce and moisture more abundant probably maximize light harvesting ability (Sultan

and Bazzaz 1993). In contrast, smaller thicker leaves produced in more illuminated, drier

environments probably maximize water use efficiency (Dudley 1996). Finc-scale

variation in water availability in shady environments could result in the positive selection

on specific leaf area if plants in moist patches produced larger, thinner leaves and bigger,

more fecund plants. Similarly, fine-scale patchy distribution of light due to variation in

the density of competitors could be responsible for negative selection on specific leaf area

in the firll sun if plants growing in more illuminated patches produced thicker leaves and

had higher fitness.

These limitations are one reason why experimental manipulations ofphenotypes

to address questions regarding causal agents of selection and adaptive responses are so
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exciting. Still, there are limitations to phenotypic manipulations. Non-lethal mutations

and hormonal manipulations can have far reaching pleiotropic effects on the phenotype

unrelated to the focal traits (Ketterson and Nolan 1999, Preziosi et a1. 1999, Purrington

and Bergelson 1999, Tatar 1999). Additionally, they can produce phenotypes outside the

natural range, raising questions about their relevance to evolutionary processes in natural

populations. Consequently, more studies of the multivariate phenotype in the context of

environmental manipulations within natural populations will also be very valuable

(Schmitt 1999).
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Chapter 5

CONCLUSION: ENVIRONMENTAL HETEROGENEITY, PHENOTYPIC

PLASTICITY, AND THE MAINTENANCE OF GENETIC VARIATION IN A

NATURAL POPULATION

Understanding the evolutionary consequences Of spatially and temporally variable

environments remains a central goal ofplant evolutionary ecology. Presently, there is an

abundance of theory, but comparatively little empirical data to bear on the outstanding

questions. To meet this goal, we must determine the scale, pattern, and predictability Of

environmental heterogeneity within populations. We must investigate whether

environmental heterogeneity results in variable patterns of natural selection. And we

must determine the biotic and abiotic causes of natural selection.

Variable selection is most interesting when there is genetic variation that can fuel

a response to selection. Therefore, information is needed regarding the genetics Of

responses to variable environments and the genetic interdependence between traits

expressed in different environments. Finally, because maternal effects on seed and

offspring traits can be environment-dependant and can have a substantial impact on

Offspring fitness, more study is needed about the importance of these cross-generation

genetic and environmental interactions. In this study I have attempted to answer some of

these questions in a natural population of Collinsia verna.

ENVIRONMENTAL HETEROGENEITY

Light availability ranged fiom 25% to 75% of full sun within the population.

Natural light environments were correlated across years at a scale appropriate to favor the

evolution of plastic maternal effects.
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PLASTIC MATERNAL EFFECTS

There were important individual fitness consequences of traits influenced by

maternal genotype and environment, and there were genotype-environment interactions

for seed size and dormancy. The surviving Offspring of intermediate light mothers

consistently produced as many or more seeds than Offspring Of low and high light

mothers in all environments. The results suggest that maternal effects in plants can

improve Offspring performance in variable environments, but also may constrain

Offspring performance when mothers are stressed. Genetic variation for plastic maternal

effects can be maintained by a heterogeneous and unpredictable selective environment.

GENETIC AND ENVIRONMENTAL EFFECTS

There was additive genetic variation in at least some environments for

germination, emergence date, flowering date, specific leaf area, mainstem length, mean

seed mass, and reproductive investment. There was strong evidence for genotype-

environment interactions (genetic variation for plasticity) for flowering date, specific leaf

area, mainstem length, and reproductive investment. Finally, there were no genotype-

environment interactions for survival, vegetative biomass, or seed number suggesting that

there were no strong light environment specialists among the genotypes sampled.

However, significant maternal effects on vegetative biomass, seed number, and seed mass

without additive genetic variation suggested that maternal genotypes may specialize for

different reproductive strategies. The results suggest that genotypes may specialize for

particular patterns of germination, emergence, and reproductive investment, while they

may be adaptively plastic generalists for flowering date and specific leaf area.
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PHENOTYPIC SELECTION

All traits were highly plastic, and selection varied across environments for

emergence date, specific leaf area, vegetative biomass, and reproductive investment. The

presence Of leaf litter reversed the direction of selection on emergence date and increased

selection on vegetative biomass. Full sun reversed the direction of selection on specific

leaf area, and increased selection on reproductive investment. These differences in

patterns of selection provide direct evidence that leaf litter and light availability are

selective agents on these traits. Indirect selection on emergence date, flowering date,

specific leaf area, and mainstem length was larger in magnitude and in an opposing

direction to direct selection.

Together, the parts of this study have simultaneously addressed the relationships

between patterns Of environmental variation, patterns of variation in phenotypic selection,

and patterns of genetic variation and phenotypic plasticity within a natural plant

population. Genetic variation for emergence date and plastic maternal genetic effects on

seed size and dormancy may be maintained by a heterogeneous and unpredictable leaf

litter enviromnent. The presence or absence of leaf litter can directly or indirectly alter

the direction Of selection on these juvenile and maternal traits. In contrast, the plasticity

Ofthe light sensitive traits flowering date and specific leaf area appears to be at or near

Optimal levels. The absence of substantial genotype-environment interactions for either

of these traits supports this argument. Reproductive investment was both heritable and

under strong directional selection. Significant genotype-environment interactions appear

to maintain genetic variation in this trait.
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FUTURE DIRECTIONS

This research has produced several exceptionally rich data sets. Beyond the

contents of this dissertation, I have several analyses underway. Moreover, observations

during this study and the results above suggest several areas for future study.

Ongoing analysis ofthis data

Temporal variation in natural selection-Chapter 4 presents results Of phenotypic

selection for a single growing season, 1996-97. Temperature and soil moisture data I

collected during this field season, and anecdotal Observations suggest that this was a

benign year for all plants compared to the 1995-96 season. There was ample fall

moisture leading to earlier emergence and larger over winter size than the previous year.

Spring was warm and sunny compared to the previous year. In addition, the density of

plants in my study plots was lower in this second year. Together, these factors resulted in

plants that were much larger and more fecund in 1996-97 than those in 1995-96. Plants

from 1995-96 remain to be processed so that I can compare selection in the two years.

Environmental correlations and bias in selection analysis—The Lande-Arnold

multiple regression approach to measuring phenotypic selection (1983) used here in

Chapters 2 and 4 can give biased results if environmental factors also contribute to the

covariances between traits and fitness (review in Mauricio and Mojonnier 1997).

Phenotypic selection analysis in plants may be particularly prone to bias for two reasons.

First, plant size varies with local resource conditions, and traits that vary with size or

resources may be subject to environmental covariances with fitness. Second, spatial

heterogeneity in enviromnental conditions is expected to result in stronger enviromnental

covariances in sessile organisms like plants than in more mobile organisms (Mauricio and

178

 



Mojonnier 1997). Rausher (1992) has developed an approach to selection analysis that

can eliminate this bias. Rausher's method is identical to the Lande-Arnold approach,

except it uses estimates Ofbreeding values instead Of phenotypic values. TO be

successful, the method requires genetic data for many sires, and the traits of interest must

be genetically variable. My 1995-96 data set with 50 sires should be ideal for applying

this method. The results can then be compared to the phenotypic selection analysis for

natural plants in this year.

Genetic correlations between traits-The next major task that needs to be

completed is a multivariate analysis of the genetic data, giving unbiased between trait

additive genetic correlations. These correlations are of interest because they would

suggest additional genetic constraints on the independent evolution of traits. Using the

univariate analysis Of the genetic data presented in Chapter 3 I calculated additive genetic

correlations from the correlations ofbreeding values. This approach biases the

correlation estimates toward zero. However, all traits had significant genetic associations

with at least one trait in at least one year, excepting mean seed mass for which only one

year Ofcorrelations was available due to a lack of genetic variation (Table 15).

Flowering date in year one and specific leaf area in year two were independent of other

traits. In contrast tO the cross environment genetic correlations, strong negative

correlations between traits were common, especially in the second year. These negative

relationships are expected, generally occuning between timing traits (emergence and

flowering) and size related traits.

Correlational selection-If traits are genetically correlated, then correlated

responses to selection may be a very important force shaping the phenotype.
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Table 15. Between trait phenotypic and additive genetic correlations. Phenotypic

correlations include all data, sample sizes are as indicated in Table 5. Genetic

correlations were calculated from BLUP breeding values with environment treated as a

fixed effect. Year 1: data from 50 sires from 1995-96. Year 2: data from 12 sires from

1996-97. The sire variance component for mean seed mass in Year 2 was estimated as

zero, so no genetic correlations could be calculated. Correlations in bold are significant

after a sequential Bonferroni adjustment within years and type Of correlation (Ot=0.05).

#P<0.l, *P<0.05, **P<0.0l, ***P<0.001.

180

   



Sin-7.

11L- .

r. ‘i

.

W

L

115: 2t-

3 Sires r:

l

l 4:

if

:e

121 l‘

181

T
a
b
l
e

1
5
.

T
r
a
i
t

E
m
e
r
g
e
.
D
a
t
e

W
i
n
t
e
r
S
i
z
e

F
l
o
w
e
r
D
a
t
e

S
p
.
L
e
a
f
A
r
e
a

M
a
i
n
s
t
e
m

P
l
a
n
t
M
a
s
s

L
o
g
S
e
e
d
s

S
e
e
d
M
a
s
s

R
e
p
r
o
.

I
n
v
e
s
t
.

 

Y
e
a
r

MN v-‘N—‘Nv-‘N—‘N—‘N—‘Nv—‘N—‘N

-
0
.
5
3
*
*
*

-
0
.
6
6
*
*
*

-
0
.
0
3

0
.
1
2
*
*
*

0
.
0
1

0
.
0
6

-
0
.
0
9
*
*
*

-
0
.
2
*
*
*

-
0
.
0
8
*
*

-
0
.
1
9
*
*
*

0
.
0
6
#

-
0
.
1
7
*
*
*

-
0
.
0
8
*

-
0
.
2
1
*
*
*

0
.
0
8
*

-
0
.
1
l
*
*

S
i
z
e

-
0
.
6
0
*
*
*

-
0
.
7
6
*
*

-
0
2
4
*
*
*

-
0
.
3
5
*
*
*

-
0
.
1
7
*
*
*

-
0
.
0
9
*

0
.
3
*
*
*

0
.
3
8
*
*
*

0
.
2
9
*
*
*

0
.
4
8
*
*
*

0
1
5
*
*
*

0
4
4
*
*
*

0
.
0
4

0
.
2
5
*
*
*

-
0
.
0
4

0
.
2
1
*
*
*

F
l
o
w
e
r

D
a
t
e

0
.
0
6

0
.
7
5
"

-
0
.
1

1

-
0
.
7
9
*
*

0
.
3
7
*
*
*

0
4
1
*
*
*

-
0
.
2
2
*
*
*

-
0
.
1
4
*
*
*

-
0
.
2
8
*
*
*

-
0
4
*
*
*

-
0
.
3
4
*
*
*

-
0
.
5
4
*
*
*

0
.
0
9
*
*

-
0
1
4
*
*
*

-
0
.
2
5
*
*
*

-
0
4
4
*
*
*

M
a
i
n
s
t
e
m

L
e
a
f
A
r
e
a

L
e
n
g
t
h

0
.
0
8

-
0
.
1
2

-
0
.
1
6

-
0
.
0
2

0
.
0
9

0
.
0
7

-
0
.
1
s
*
*
*

0
3
4
*
*
*

-
0
.
3
7
*
*
*

0
.
2
1
*
*
*

-
0
1
4
*
*
*

0
1
4
*
*
*

-
0
0
1

0
.
1
2
*
*

0
.
1
8
*
*
*

0

-
0
2
5
#

0
.
5
1
#

0
3
3
*

-
0
.
2

-
0
.
1
8

0
.
4
3

-
0
2
8
*
.

-
0
.
0
3

0
.
8
3
*
*
*

0
.
8
5
*
*
*

0
.
4
9
*
*
*

0
.
7
3
*
*
*

0
.
2
5
*
*
*

0
.
2
9
*
*
*

-
0
.
l
8
*
*
*

0
.
1
4
*
*
*

0
.
7
0
*
*
*

0
5
9
*

0
.
5
8
*
*
*

0
.
8
5
*
*
*

0
.
2
1
*
*
*

0
.
3
1
*
*
*

-
0
.
3
l
*
*
*

0
.
1
6
*
*
*

M
e
a
n
S
e
e
d

M
a
s
s

0
.
0
1

L
o
g

S
e
e
d
s

0
.
1
9

-
0
.
7
1
*

0
.
1

0
.
1
4

0
.
8
1
*
*

-
0
.
1
1

-
0
.
8
0
*
*

0
3
1
*

-
0
.
1
1

0
.
3
8
*
*

-
0
.
0
4

0
.
3
8
"

0
6
3
*

-
0
2
7
#

-
0
.
1
8

-
0
.
0
7

0
.
0
4

0
.
0
1

-
0
.
0
5

0
.
2
2
*
*
*

0
.
4
7
*
*
*

0
.
5
5
*
*
*

0
.
1
1
*
*
*

0
.
4
1
*
*
*

R
e
p
r
o
.

I
n
v
e
s
t
.

0
.
2
2

-
0
.
8
2
*
*

-
0
.
2
5
#

0
.
6
1
*

-
0
.
1
5

-
0
.
8
5
*
*
*

0
.
5
2
*
*
*

-
0
.
0
9

-
0
.
1
8

-
0
.
5
7
#

-
0
.
2
7
#

0
.
0
6

0
5
4
*
*
*

0
7
7
*
*

0
.
2
6
#

 



In the current study, preliminary genetic correlation data (Table 15) suggests that

selection for greater biomass will also select for earlier emergence, earlier flowering,

lower specific leaf area, and longer mainstems. These results are in accord with the

results of the path analysis (Figure 16). Selection for greater reproductive investment

may also select for earlier emergence, earlier flowering, and lower specific leaf area, but

shorter mainstem length (opposing indirect selection through biomass). Given that many

genetic correlations are small, it seems possible that strong indirect selection in one

direction may be balanced by weaker direct selection in the opposite direction resulting in

relative stasis in the traits. Vegetative biomass and reproductive investment are unique

among the traits in that total selection is smaller than direct selection (Chapter 4 Figures

14e-f). This may be due to negative indirect selection through each other (Chapter 4,

Figure 16). However, vegetative biomass and reproductive investment appear to have

little direct genetic relationship (Table 15), so the tradeoffbetween these traits seen in the

path analysis may not be evolutionarily important.

The genetic correlations between emergence date and other traits are most

interesting. Emergence date was subject to variable selection, it was the most

consistently heritable trait in the second year, and the plasticity ofthis trait appeared to be

maladaptive. These observations may be causally related: unpredictable selection on

emergence date by leaf liter could maintain genetic variation in the trait. Moreover,

variable selection on emergence date may indirectly maintain genetic variation in

genetically correlated traits (seed mass, winter size, flowering date, and reproductive

investment; Table 15). Interestingly, the three traits with the strongest genetic

correlations with emergence date (flowering date, mainstem length, and reproductive
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investment) have more genetic variation than the two traits with low genetic correlations

with emergence date (specific leaf area and vegetative biomass). Consequently, variable

selection on emergence date may be maintaining genetic variation in other traits through

correlated responses.

Constancy ofgenetic parameters-Changes in quantitative genetic parameters

across environments may affect predictions about the evolution ofphenotypic plasticity

and the maintenance of genetic variation (e.g. Via and Lande 1985, 1987, Mitchell-Olds

1992). Moreover, a basic assumption of quantitative genetic models for predicting

evolutionary change is that the additive genetic variance-covariance matrix (G), is

constant (Lande 1979). Several recent studies of natural plant populations demonstrate

environment-dependence in quantitative genetic parameters (Mazer and Schick 1991,

Shaw and Platenkamp 1993, Anderson and Shaw 1994, Shaw et al. 1995, Bennington and

McGraw 1996).

Phillips and Arnold (1999) prOpose the use Ofcommon principle component

(CPC) analysis (Flury 1988) for comparing the structure of genetic covariance matrices.

The technique represents a powerful new approach tO this question, allowing the testing

of a hierarchy of hypotheses from unrelatedness to shared principle components, to

proportionality, to matrix equality (Amold and Phillips 1999). I used CPC software

(Phillips 1998) to compare pairs of additive genetic covariance matrices across

environments and across the two years of this study. Additive genetic covariance

matrices were calculated for each environment and each year as the covariance of the

BLUP breeding values. As with the calculation of genetic correlations by this method,

sampling error can cause covariance components to be significantly underestimated.
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Because sampling error may change across environments, this could contribute to

differences between matrices. However, the traits that differ most between matrices are

emergence date and winter size. These traits have the largest sample sizes in the data

sets, and consequently are least subject to underestimation due to sampling error. The

number Of traits that could be included in the covariance matrix varied from three to

seven depending on the number ofnonzero additive genetic variance component

estimates for the pair of environments or years. I omitted specific leaf area from all

matrices because the extreme size Of its (co)variances created problems for statistical

comparisons between common principle component models.

Based on these analyses, the G matrices for the two years in this study and for

most environment pairs are unrelated, lacking even a single shared principle component

(Table 16). The one exception was the comparison between forest and edge

environments in year two, where one test suggested unrelated structure, while the other

suggested equality. The low sample size in this year (12 sires) provides little power to

compare different models ofmatrix relatedness. Together, these results suggest that the

genetic relationships between traits may change dramatically across different resource

environments or between years. A labile G matrix would greatly complicate efforts to

make evolutionary predictions based on environment dependent selection.  
An additional question Of interest to quantitative geneticists is whether phenotypic

correlations are reasonable estimates Of genetic correlations (Cheverud 1988, Rolf 1995,

1996, 1997, Waitt and Levin 1998). Estimates ofphenotypic correlations are

significantly easier to obtain and are much more precise than genetic correlations. The

patterns in this data set match those of these previously published reviews (Table 15).
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Table 16. Comparison of genetic covariance matrices using common principle

components analysis. Only matrices with at least three traits in common were compared.

Traits: emergence date (ed), winter size (ws), flowering date (fd), mainstem length (ms),

vegetative biomass (vb), seeds (sd), mean seed mass (sm), reproductive investment (1i).

 

 

 

G Matrix 1 G Matrix 2

Year Environment Year Environment Traits in Matrices Best Model

1 --- 2 ---- ed, ws, fd, ms, vb, sd, 1i Unrelated

1 Medium Light 1 High Light fd, ms, vb, sd, ri Unrelated

2 Low Light 2 Edge ed, ws, fd Unrelated

2 Medium Light 2 Edge ed, ws, ri Unrelated

2 High Light 2 Edge ws, fd, sm, ri Unrelated

2 Forest 2 Edge ed, fd, ms, ri Equal/Unrelated

1 Medium Light 2 High Light ws, fd, ri Unrelated

1 Medium Light 2 Forest fd, ms, ri Unrelated

1 Medium Light 2 Edge ws, fd, ms, sd, ri Unrelated

1 High Light 2 High Light fd, sm, ri Unrelated

1 High Light 2 Edge fd, ms, sd, sm, ri Unrelated
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Phenotypic and genetic correlations are generally of the same sign, while genetic

correlations are often larger in magnitude (in spite of their tendency to be underestimated

by the methods used here). Phenotypic and genetic correlations are significantly

correlated in each year (Pearson correlations: r=0.77, P<0.0001 in year 1; r=0.67,

P<0.0001 in year 2).

Reviews have found more congruence between phenotypic and genetic

correlations for morphological traits than for life-history traits (Roff 1995, Simons and

Roff 1996). There was no evidence for this pattern in this data set. To address this

question, log plant mass and log seeds were selected as major fitness components. The

relationships between phenotypic and genetic correlations involving at least one of these

traits were little different fiom the whole data set (Pearson correlations: r=0.81, P=0.0003

in year 1; r=0.82, P=0.0006 in year 2). Although these similarities between phenotypic

and genetic correlations are striking, there are convincing reasons why phenotypic

correlations should not be used to predict phenotypic evolution (Willis et a1. 1991).

Moreover, although the phenotypic correlations were very similar across years (r=0.81,

P<0.0001, n=36), the results of the CPC analysis show a significant change in the genetic

architecture of these traits across years.

It has also been argued that due to antagonistic pleiotropy the genetic correlations

between major fitness components and other traits will be negative more often than

genetic correlations between non fitness components (Roff 1996). This pattern is not

supported in this study (Table 15). In the two years, 27% and 54% of the genetic

correlations including log plant mass or log seeds were negative, while 57% and 67% of

the genetic correlations between other traits were.
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Costs ofplasticity-The ability to respond adaptively to environmental variation

may be costly (review in DeWitt et al. 1998). Van Tienderen (1991) proposed a method

ofmeasuring these costs that combines genetic data and phenotypic selection analysis in

a way that is similar to Rausher's (1992) technique for reducing bias in the measurement

of selection. Recent applications of this technique in snails (DeWitt 1998) and Daphnia

(Scheiner and Berrigan 1998) have found little evidence of costs. However, a study in

Iris (Tucic et al. 1998) found evidence for a fitness cost ofproducing plastic change in

leaf length. My genetic data sets are ideal for the application Of this method.

Inbreeding depression in variable environments-There is considerable interest in

plant mating system evolution. Models focusing on the role Of inbreeding depression

suggest rrrixed mating should be rare (reviews: Lande and Schemske 1985, Charlesworth

and Charlesworth 1987, Uyenoyama et al. 1993), but other models suggest that mixed

mating is an evolutionary stable strategy when pollinator service is unpredictable (Lloyd

1979, Schoen and Brown 1991, Sakai 1995). Species like Collinsia verna with mixed

mating systems are ideal for tests of the theory (Kalisz et al.1999). The frequency of self

fertilization and the expression Of inbreeding depression could both be environment-

dependent. The results Of chapter one are consistent with this idea: delayed flowering in

low light mothers may have resulted in more inbred Offspring. These Offspring

performed as well as Offspring of other mothers in the intermediate light environment, but

their seed production was reduced in the extreme environments (Chapter 2, Figure 6c).

In 1996-97 I planted all the self fertilized Offspring of each sire. These Offspring

germinated at the same rate as their outcrossed half-sibs in all environments. Selfed and

outcrossed progeny did not differ in timing of emergence, survival, or specific leaf area in
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any environment. However, in each environment, selfed offspring were smaller at

overwintering, flowered later, were smaller at maturity, and produced fewer, smaller

seeds. The coefficient of inbreeding depression (5 = l - wsglfed / woummd) was modest in

the natural forest (0.28) and edge (0.23) environments, but was more substantial in the

manipulated environments (low = 0.45, medium = 0.51, high = 0.41). These higher

levels of inbreeding depression in extreme environments are unlikely exert selection

against self-fertilization if outcrossing is rare in these environments.

Evolutionary demography in variable environments-As part of this research I have

collected detailed demographic data for each of the light and leaf litter environments. I

hope to apply population dynamic models and explore the impact ofvariation in these

environmental factors on demographic processes. Surprisingly, results from Chapter 4

suggest that even in the low light environment many plants can produce enough seeds to

guarantee persistence for a few more generations (Chapter 4 Figure 12a, e).

Outstanding questions

Together, these chapters and ongoing analyses address only some ofthe factors

that will be important in the future evolution ofthis population. Like much scientific

research, field observations during this study and the results suggest at least as many

questions as are answered. There are several other areas ofpotentially fiuitfirl research in

this population.

Heterogeneity ofleaflitter and other environmentalfactors-Leaf litter is clearly

an important factor in this population, but the frequency and predictability of different

leaf litter environments are unknown. Also unexarnined is variation in selection or

genetic parameters associated with other variable aspects of the environment such as
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moisture, nutrient supply, and interspecific competition.

Evolution ofplant architecture-Data from this study suggests that there is a

simple genetic basis to a major change in plant architecture. Typical plants have paired

cotyledons, leaves, and branches, but two mothers had these organs in threes and

produced trifoliate offspring. Approximately 0.01% of the plants in the population have

the trifoliate phenotype. This phenotype could be advantageous in high light

environments where greater leaf area could increase competitive ability and/or additional

branches could increase seed production.

Physiology ofphotosynthetic acclimation-My research has used specific leaf area

as a measure of all the physiological and morphological changes that plants make to

maximize photosynthesis in different light environments. At a physiological level it is

well known that acclimation to high or low light alters the light compensation and

saturation points, and water use efficiency. It is less well known ifthere is genetic

variation and/or genotype-environment interaction for light compensation and saturation

points, and water use efficiency. Further, the degree to which acclimation is a

physiological phenomena and thus highly labile, as opposed to a consequence of

developmentally fixed morphological changes is little studied in an ecological genetic

context.

Functional ecology ofanthocyanin pigmentation-Anthocyarrin pigmentation in

Collinsia verna leaves varies between families, between seasons, and across light levels.

Studies in other species have shown that anthocyanin production is cued by low

temperatures and high light levels. Besides their importance as a pigment in flowers and

fruits, anthocyanins have no proven function in plants. There are several hypotheses in
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the literature: 1. A screen against ultra-violet light damage. 2. A mechanism for

elevating leaf temperature. 3. A mechanism conferring cold hardiness or freeze tolerance.

4. Defense against herbivory via secondary compounds or camouflage. 5. Aposematic

coloration. 6. Part Ofsome physiological mechanism like photosynthesis. 7. An artifact

Of another physiological process that performs one Of these functions, or some other

unknown function. These questions should be easy to investigate because the pigments

are easily extracted and quantified, and a great deal is known about their biosynthesis.

Multilevel selection-There is no active seed dispersal in Collinsia, setting up

conditions under which kin selection processes could Operate (Thiede 1996). Moreover,

in areas OfNorth America uncovered after the last glaciation, a novel mechanism has

been introduced that may be intensifying the potential for kin selection. This region has

no native earthworms. Alien, midden building earthworms were introduced by European

immigrants. Earthworms are long lived (10 years), and their burrows can persist for

hundreds Of years (Edwards and Bohlen 1996). Earthworms collect leaf litter, twigs, and

living plant material for their middens. My research plots each contained dozens of

stable earthworm burrows and middens. In the fall of 1995, I observed extraordinarily

high densities Of seedlings in these middens (3-5/cm2 or 50,000/m2). In May 1996 I

Observed dozens of dying plants being pulled into these middens. At harvest, some

middens contained the flower tags, seeds, and decomposing remains of 10-15 plants

collected fiom an area within about 10 cm ofthe burrows. As a result, worms may be

concentrating genetically related seeds in a very small area. Upon germination, the

seedlings are likely to compete very intensively with each other. Experiments to

investigate if kin selection has reduced the intensity of competition between genetically
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related individuals would be simple to design.

Predicting multivariate evolution-Finally, the synthesis Of all of the factors

affecting the multivariate evolution of traits and their plasticity in a single evolutionary

model has never been attempted. Indeed, it may never be a very rewarding or productive

venture given that predictions based on quantitative genetic parameters have only short-

terrn, local relevance. However, it should be possible to develop matrix models that

incorporate multiple environments, the fi'equencies ofthose environments, genetic

variances, covariances, and selection gradients within each environment, and genetic

covariances across environments. Studies like the present one could provide the data

necessary to parameterize such models.
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