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ABSTRACT
THE EVOLUTION OF PHENOTYPIC PLASTICITY IN A NATURAL
WILDFLOWER POPULATION
By

Brian Bruce Black

When the environment is heterogeneous, factors that influence whether genetic
specialization or phenotypically plastic generalists are favored include the patterns of
natural selection, the amount of genetic variation for trait plasticity, and the degree of
genetic interdependence between traits. In this study, I investigated the genetics and
fitness consequences of responses to variable light and litter environments in a population
of the winter annual wildflower Collinsia verna. Over two generations, I measured
natural light environments, and manipulated light and litter environments. I used
quantitative genetic breeding designs to investigate genetic and environmental effects on
traits within generations, and the effects of maternal environment and genotype on
offspring performance across generations.

Natural light environ;nents were variable at a scale appropriate to favor plasticity,
but correlated across years in a way that might favor the evolution of plastic maternal
effects. There were maternal genotype-environmeﬁt interactions for seed size and
dormancy. Maternal effects sometimes improved offspring performance, but also
appeared to constrain offspring performance when mothers were stressed.

There was additive genetic variation in some environments for

germination/dormancy, emergence date, flowering date, specific leaf area, mainstem
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length, mean seed mass, and reproductive investment; and strong evidence for genotype-
environment interactions (genetic variation for plasticity) for flowering date, specific leaf
area, mainstem length, and reproductive investment. There were no strong light
environment specialists among the genotypes sampled. However, significant maternal
effects on \?egetative biomass, seed number, and seed mass without additive genetic
variation suggested that maternal genotypes may specialize for different reproductive
strategies.

The presence of leaf litter reversed the direction of direct linear selection on
emergence date and increased the size of direct linear selection on vegetative biomass.
Full sun reversed the direction of direct linear selection on specific leaf area, and
increased the size of direct linear selection on reproductive investment. These differences
in patterns of selection provide evidence that leaf litter and light are selective agents on
these traits.

Together, the parts of this study suggest that genetic variation for emergence date
and plastic maternal genetic effects on seed size and dormancy may be maintained by a
heterogeneous and unpredictable leaf litter environment. In contrast, the plasticity of the
light sensitive traits flowering date and specific leaf area may be at or near optimal levels.
Surprisingly, reproductive investment was both heritable and under strong directional
selection. Significant genotype-environment interactions appear to maintain genetic

variation in this trait.
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Figure 11. Means and standard errors of phenotypic traits. Fixed effects of the eight
environments were analyzed in a single one-way MANOVA that included all
phenotypic traits and all fitness components (Figure 12) except survival as
dependent variables (GLM procedure, SAS 1989). All traits differ across
environments at P<0.0001. All pairwise means comparisons were made using the
tukey option of the means statement of proc. GLM. Columns sharing a letter are
not significantly different from each otherat P<0.05. .................... 132

Figure 12. Means and standard errors of fitness components. All pairwise means
comparisons were made as in Figure 11. Survival is not a continuous variable, so
it could not be analyzed this way. Environmental effects on survival were
analyzed separately using proportional hazards regression (Tables 8 and 9). .. 134

Figure 13. Survival episode standardized linear () and nonlinear (y) selection gradients
for emergence date. Because emergence date is the only measured trait that was
expressed during this episode, selection gradients and differentials were very
similar. Consequently, only the gradients are presented. Bars are 95% confidence
intervals based on 1000 bootstrap resampled data sets. P-value is the result of an
overall ANCOVA testing whether selection gradients differ across environments.
The Y-axis indicates the proportion by which relative fitness would change with a
change of one standard deviation in the trait. (a) Linear gradients. (b) Nonlinear
gradients.. . .. ... ... 140

Figure 14. Fecundity episode standardized linear selection differentials (S) and gradients
(B). Bars are 95% confidence intervals based on 1000 bootstrap resampled data
sets. P-values are the results of ANCOV As testing wether differentials or
gradients differ across environments. The Y-axis indicates the proportion by
which relative fitness would increase with an increase of one standard deviation in
the trait. Note that the scale of the Y-axis differs between figures. (a) Emergence
date. (b) Flowering date. (c) Specific leaf area. (d) Mainstem length. (e)
Vegetative biomass. (f) Reproductive investment....................... 141

Figure 15. Fecundity episode standardized nonlinear selection differentials (C) and
gradients (y). See Figure 14 fordetails .................. ... .. ... ..... 145

Figure 16. Representative path diagram showing typical relationships among traits. This
diagram is for the natural forest interior plots. The size of the arrow indicates the
magnitude of the correlation or path coefficient. Solid lines are positive, dotted
lines are negative. "U" represents residual unexplained variance. All values are
from structural equation models based on the correlation matrices in Table 11.

For other environments see Tables 13and 14........................... 155
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Chapter 1

INTRODUCTION: MICRO-EVOLUTIONARY CONSEQUENCES OF
ENVIRONMENTAL HETEROGENEITY

What are the micro-evolutionary consequences if environmental heterogeneity
results in patterns of natural selection that vary in space or time? This question has been
a recurring theme in evolutionary biology for at least 50 years, and continues to drive
much theoretical and empirical research in the field. By the 1950's, two basic hypotheses
were outlined. First, environmental heterogeneity may contribute to the maintenance of
genetic variation at multiple scales, including individual level heterozygosity, population
level allelic variation, local adaptation within and between populations, and population
differentiation (review in Roff 1997, Chapter 9). Second, it was suggested that
environmental heterogeneity could lead to the evolution of plastic responses to the
environment that would allow individuals to maintain fitness homeostasis (review in Roff
1997, Chapter 6).

Theory developed quickly in the first area, and supported the hypothesis that
environmental variation could maintain genetic variation at the individual, population,
and metapopulation scales (e.g. Levene 1953, Dempster 1955, Levins 1968, Gillespie
1974, Felsenstein 1976, reviews in Hedrick et al. 1976, Hedrick 1986). In contrast, the
theoretical and empirical study of the evolution of phenotypic plasticity progressed
slowly until the 1980's (review in Schlichting and Pigliucci 1998). The concept of the
reaction norm quantifies plasticity by describing the relationship between phenotype and

environment. The idea was proposed by Woltereck in 1909 (discussed in Schlichting and
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Pigliucci 1998), and initially promoted by Schmalhausen (1949). Falconer (1952)
developed an alternative approach that viewed a trait expressed in two environments as
two genetically correlated traits. Lewontin (1957) argued that variable environments
should lead to generalist genotypes that can maintain homeostasis (meaning fitness)
across a range of environmental conditions. Lewontin's use of homeostasis is analogous
to the term generalist as it has most often been used in more recent discussions of
phenotypic plasticity. He argued that adaptive homeostasis implies only the relative
constancy of survival and reproduction in variable environments. He pointed out that it is
impossible to predict the relationship between homeostasis in this sense and the
variability or canalization of physiological and morphological characters. Variability
(plasticity) in some morphological and physiological characters can allow others to be
canalized. Bradshaw (1965) recognized that phenotypic plasticity is specific for
individual traits in relation to particular environmental factors, that the plasticity of a trait
is specific in pattern and direction, and that phenotypic plasticity is under genetic control.
MODELS: PLASTICITY EVOLUTION

A variety of terms have been used in discussing phenotypic plasticity. Plasticity
has been associated with adaptability, ecological breadth, environmental stability,
canalization, homeostasis, environmental resistance, environmental tolerance,
environmental sensitivity, specialization, and generalization. The terms generalist and
specialist are most common, and usually describe the relative ability to maintain fitness in
variable environments through coordinated, plastic responses in underlying traits. Most
often, generalists are considered to have adaptive plasticity in physiological and

morphological traits that allows them to tolerate unfavorable environments and to boost
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performance when conditions are favorable (e.g. de Jong 1990, van Tienderen 1991,
1997). Generalists have higher average fitness across environments, which is usually
manifest in less plastic reaction norms for fitness. Specialists on good environments lack
the underlying plasticity in physiological, morphological, and behavioral traits necessary
to maintain high relative fitness in variable environments. Consequently, they have more
plastic reaction norms for fitness. Specialists on stressful environments often lack the
ability to respond when resources are abundant, and so have low, flat reaction norms for
fitness. However, there are conflicting usages of the term generalist that can be quite
confusing. For example, a recent model by Scheiner (1998) distinguishes three possible
evolutionary outcomes in a spatially-structured environment: fixed environmental
specialist genotypes, adaptively plastic genotypes, or fixed generalist genotypes. Given
these continuing ambiguities, it is important in empirical studies to be explicit about
which traits are plastic, in response to which environmental factors with what fitness
consequences (Bradshaw 1965).
Types of models

Models of plasticity evolution have used four different approaches (optimality,
quantitative genetic, gametic, and genetic algorithms) to address when adaptive plasticity
could evolve (reviews: Scheiner 1993, Roff 1997 Chapter 6, Schlichting and Pigliucci
1998). Models differ in their assumptions about the genetic basis of plasticity, the shape
of the reaction norm, and the nature of environmental variation. Although most
developmental, physiological, morphological, behavioral, and life history traits show
some degree of plasticity, the underlying genetic basis of traits, and the genetic,

selectional, functional, and developmental constraints on the further evolution of those
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traits can differ. There is empirical evidence that plasticity can result from
environmentally dependent expression of alleles and/or the action of regulatory genes
(Schlichting and Pigliucci 1995, 1998). However, the relative importance of these two
genetic mechanisms is controversial (Via et al. 1995, Roff 1997). It has been argued that
for many traits, control of plasticity by regulatory genes should have distinct advantages,
including stability of phenotypic expression, the ability to anticipate environmental
change by responding to cues, and the relaxation of constraints due to genetic correlations
(Schlichting and Pigliucci 1995, 1998). Regulatory control could result in nonlinear
reaction norms, a condition that cannot be accommodated by some models.

Optimality models generally do not consider the genetic basis of plastic traits (e.g.
Stearns and Koella 1986, Houston and McNamara 1992, Moran 1992, Kawecki and
Stearns 1993, Berrigan and Koella 1994, McNamara and Houston 1996). These models
are most useful for predicting the fitness function for reaction norms as a compliment to
genetic models (Scheiner 1993). The strength of the genetic algorithm models is in their
ability to explicitly model the effects of regulatory genes on plasticity evolution (Behera
1997, Behera and Nanjundiah 1997).

The gametic models of de Jong (1988, 1989, 1990a) address how multiple plastic
traits interact. These models make no genetic assumptions, and address equilibrium
conditions rather than the dynamics of plasticity evolution. De Jong's simplest models
examine two plastic traits each governed by a single locus with two alleles with
continuous environmental variation. They assume that plasticity is due to variation in the
effects of alleles across environments, and not regulatory genes. Each allelic combination

produces a different reaction norm. In the environment where reaction norms cross, there
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is no measurable additive genetic variation. The models show that the covariance of
traits within particular environments can be positive, zero, or negative. Consequently,
depending on the environment, qualitatively different conclusions about the evolutionary
independence of traits may be reached (Stearns et al. 1991).

There are two broad classes of quantitative genetic model, the character state
approach and the reaction norm approach. The character state approach (Falconer 1952,
Via and Lande 1985, 1987, van Tienderen 1991, 1997) treats reaction norm evolution as
the evolution of a set of correlated characters. The plasticity of a single trait is modeled
as if it were two separate traits, each expressed in a different environment. In character
state models, it is the correlation between character states that evolves. Character state
models assume discrete spatial variation. Consequently, reaction norms are constrained
to be linear between any two environments. Although the character state models do not
explicitly consider the underlying genetic basis of plasticity, Via (1993) argues that there
is no reason to assume plasticity is due to anything but environmentally sensitive
expression of alleles. She argues that this is a reasonable assumption because all
selection occurs within environments, and consequently, evolution is constrained to occur
only at those loci that control the expression of the trait in that environment. Selection
cannot act directly on the slope of the norm, or regulatory genes, if they exist. However,
this would not be true if individuals experience selection in more than one environment,
or if the genetically related progeny of an individual experience different environments
(Schlichting and Pigliucci 1995).

The alternative approach assumes that environmental variation is continuous and

defines the reaction norm as a trait that can evolve independent of the mean of the trait.
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The reaction norm is modeled as a function. When the norm evolves, the coefficients of
the function change. The simplest reaction norm models (e.g. de Jong 1990a) assume
that reaction norms are linear, and so are primarily interested in the evolution of the
slope. Others assume that reaction norms can take any shape (Gomulkiewicz and
Kirkpatrick 1992, Gavrilets and Scheiner 1993a, b). These models were designed to
explicitly allow for the possibility that the genetic basis of plasticity is due to both
environmentally sensitive alleles at the loci that govern a trait, and independent
regulatory genes (Scheiner 1993). If plasticity is controlled by regulatory switches, then
nonlinear reaction norms are likely. There are many examples of threshold traits with
nonlinear norms (reviews in Schlichting and Pigliucci 1995, 1998). Gabriel and Lynch
(1987, 1992) and Gillespie and Turelli (1989) developed models that assume a Gausian
shape to the norm. This shape is appropriate when intermediate levels of an
environmental factor lead to maximum trait values. Gavrilets and Scheiner (1993a) and
de Jong (1995) have demonstrated that the character state approach is mathematically a
special case of the reaction norm approach. However, the two approaches may lead to
very different biological interpretations (reviewed in Via et al. 1995)
Predictions

All models predict that plasticity is favored under many common conditions:
when spatial and temporal environmental variability is high and fine grained, when
differing habitats occur with equal frequency, when the strength of selection is equal in
all habitats, and/or when mating is common between individuals in different habitats. As
the spatial and temporal scale of environmental heterogeneity becomes coarser,

predictions about the evolution of plasticity change (reviewed in Scheiner 1993,
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Schlichting and Pigliucci 1995). Coarse grained spatial variability is more likely to
select for specialists (van Tienderen 1991), but temporal variation at a scale longer than
the generation time of an organism can still select for plasticity (Lynch and Gabriel 1987,
Gabriel and Lynch 1992). Quantitative genetic models show how genetic correlations
between traits expressed in different environments affect reaction norm shape and
evolution (e.g. Via and Lande 1985, Gavrilets and Scheiner 1993a, b). The presence of
regulatory genes can both accelerate the rate of plasticity evolution, and increase the level
of adaptation achieved (Behera 1997, Behera and Nanjundiah 1997).

Via and Lande (1985, 1987) and van Tienderen (1991, 1997) have developed
models that predict that the dynamics of plasticity evolution are quite different under hard
and soft selection. Evolution toward a single plastic, generalist phenotype is more rapid
under soft selection. Soft selection may be both frequency and density dependent, but
density is not the most useful concept when assessing plant evolution in response to
variation in abiotic resources. Because density effects are mediated through resource
availability, they may not differ from variation in resource availability due to abiotic
causes. The key idea is that the fitness of a genotype is determined locally. Depending
on the spatial scale at which local fitness is determined, all genotypes may contribute
equally to the next generation. Under hard selection, the fitness of a genotype is
determined globally, and is independent of the demographic context. It is likely that soft
selection predominates in most natural plant populations (van Tienderen 1997,

Schlichting and Pigliucci 1998). Consequently, adaptive plasticity should be common.
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MODELS: PLASTICITY AND GENETIC VARIATION

The relationship between phenotypic plasticity and genetic variation in traits and
trait plasticity has caused much speculation in the plasticity literature (reviews in
Bradshaw 1965, Sultan 1987, Levin 1988). Sultan (1987) argues that one consequence of
plasticity is the reduction of phenotypic selection and genotypic response. If plasticity
allows multiple genotypes to produce equally fit phenotypes in the same environment,
that is if reaction norms cross (converge) in the most common environments, then genetic
variation could persist. This genetic variation would be unmeasurable by quantitative
genetic methods in the (most common) environments where reaction norms cross, but
could be very important in changing environments. In contrast, some authors have seen
plasticity as an alternative to genetic polymorphism (local adaptation) as a strategy to
maintain fitness in heterogeneous environments (e.g. Jain 1979, review in Sultan, 1992).
A model by Whitlock (1996) suggests that the rate of evolution may be slowed in plastic
species with broad niche breadths, a result that supports this second view.

Costs and limits of phenotypic plasticity

Recent attempts to model the effect of phenotypic plasticity on the maintenance of
genetic variation have been inconclusive (review in Scheiner 1993). These models draw
links to earlier theory on the maintenance of genetic variation. Orzack (1985), de Jong
(1988) and Gavrilets and Scheiner (1993a) all found that genet<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>